High fluoride and low pH level have been detected in popular flavoured beverages in Malaysia.
Ha Rahim, Zubaidah; M Bakri, Marina; Hm, Zakir; Ia, Ahmed; Na, Zulkifli
2014-03-01
In children, excessive ingestion of fluoride from different sources including bottled drinking water and flavoured beverages or soft drinks can lead to the development of dental fluorosis. In addition, the pH level of beverages is important. Low pH can cause dental erosion. In this study we explore the fluoride content and pH level of certain popular beverages available in Malaysian supermarkets and hawkers' stalls. Bottled drinking water and selected popular flavoured packet drinks were purchased from a supermarket and the corresponding flavoured hawkers' drinks, from a hawker's stall in Kuala Lumpur. Fluoride and pH of the beverages were determined using digital fluoride meter and digital pH meter respectively. It was found that fluoride content and pH level vary among the beverages. The mean fluoride content in both packet and hawkers' drinks (7.64±1.88 mg/L, 7.51±1.60 mg/L, respectively) was approximately 7 times higher than the bottled drinking water (1.05±0.35 mg/L). Among the beverages, the tea packet drink was found to contain the highest amount of fluoride (13.02±0.23 mg/L). The mean pH of bottled-drinking water was near neutral (6.96±0.17), but acidic for both supermarket (4.78.00±0.49) and hawkers' drinks (5.73±0.24). The lychee packet drink had the lowest pH level (2.97±0.03). Due to the wide variation of the fluoride content and pH level of the drinks tested in this study, it is recommended that steps should be taken to control the fluoride concentration and pH level in beverages if dental fluorosis and erosion are to be prevented.
High fluoride and low pH level have been detected in popular flavoured beverages in Malaysia
HA Rahim, Zubaidah; M Bakri, Marina; HM, Zakir; IA, Ahmed; NA, Zulkifli
2014-01-01
Objective: In children, excessive ingestion of fluoride from different sources including bottled drinking water and flavoured beverages or soft drinks can lead to the development of dental fluorosis. In addition, the pH level of beverages is important. Low pH can cause dental erosion. In this study we explore the fluoride content and pH level of certain popular beverages available in Malaysian supermarkets and hawkers’ stalls. Methods: Bottled drinking water and selected popular flavoured packet drinks were purchased from a supermarket and the corresponding flavoured hawkers’ drinks, from a hawker’s stall in Kuala Lumpur. Fluoride and pH of the beverages were determined using digital fluoride meter and digital pH meter respectively. Results: It was found that fluoride content and pH level vary among the beverages. The mean fluoride content in both packet and hawkers’ drinks (7.64±1.88 mg/L, 7.51±1.60 mg/L, respectively) was approximately 7 times higher than the bottled drinking water (1.05±0.35 mg/L). Among the beverages, the tea packet drink was found to contain the highest amount of fluoride (13.02±0.23 mg/L). The mean pH of bottled-drinking water was near neutral (6.96±0.17), but acidic for both supermarket (4.78.00±0.49) and hawkers’ drinks (5.73±0.24). The lychee packet drink had the lowest pH level (2.97±0.03). Conclusions: Due to the wide variation of the fluoride content and pH level of the drinks tested in this study, it is recommended that steps should be taken to control the fluoride concentration and pH level in beverages if dental fluorosis and erosion are to be prevented. PMID:24772152
Akter, Tahera; Jhohura, Fatema Tuz; Akter, Fahmida; Chowdhury, Tridib Roy; Mistry, Sabuj Kanti; Dey, Digbijoy; Barua, Milan Kanti; Islam, Md Akramul; Rahman, Mahfuzar
2016-02-09
Public health is at risk due to chemical contaminants in drinking water which may have immediate health consequences. Drinking water sources are susceptible to pollutants depending on geological conditions and agricultural, industrial, and other man-made activities. Ensuring the safety of drinking water is, therefore, a growing problem. To assess drinking water quality, we measured multiple chemical parameters in drinking water samples from across Bangladesh with the aim of improving public health interventions. In this cross-sectional study conducted in 24 randomly selected upazilas, arsenic was measured in drinking water in the field using an arsenic testing kit and a sub-sample was validated in the laboratory. Water samples were collected to test water pH in the laboratory as well as a sub-sample of collected drinking water was tested for water pH using a portable pH meter. For laboratory testing of other chemical parameters, iron, manganese, and salinity, drinking water samples were collected from 12 out of 24 upazilas. Drinking water at sample sites was slightly alkaline (pH 7.4 ± 0.4) but within acceptable limits. Manganese concentrations varied from 0.1 to 5.5 mg/L with a median value of 0.2 mg/L. The median iron concentrations in water exceeded WHO standards (0.3 mg/L) at most of the sample sites and exceeded Bangladesh standards (1.0 mg/L) at a few sample sites. Salinity was relatively higher in coastal districts. After laboratory confirmation, arsenic concentrations were found higher in Shibchar (Madaripur) and Alfadanga (Faridpur) compared to other sample sites exceeding WHO standard (0.01 mg/L). Of the total sampling sites, 33 % had good-quality water for drinking based on the Water Quality Index (WQI). However, the majority of the households (67 %) used poor-quality drinking water. Higher values of iron, manganese, and arsenic reduced drinking water quality. Awareness raising on chemical contents in drinking water at household level is required to improve public health.
Vergili, I
2013-09-30
Pharmaceutical active compounds (PhACs) are persistent during the process used to treat drinking water and, because drinking water treatment plants are not specifically designed to remove PhACs, these compounds are found in drinking water. Although there are currently no regulations or drinking water directives for PhACs, precautionary principles suggest ensuring maximal removal of PhACs through improved or existing treatment techniques. This study was designed to investigate the performance of a nanofiltration membrane in cross-flow filtration equipment for the removal of three PhACs [carbamazepine (CBZ), diclofenac (DIC) and ibuprofen (IBU)] that were spiked in water taken from a drinking water treatment plant using surface water. Because of their low solubilities, high log Kow values, low dipole moments and negative charges, higher rejection values were obtained for DIC and IBU. Low to moderate rejection values were most likely due to the small molecular sizes of the PhACs (i.e., MW < MWCO) and the divalent ions present in the raw water. Flux declines obtained from DIC studies was attributed to the adsorption of DIC ions inside the membrane pores, which decreases the flux. The most evident change in the FT-IR spectrum after nanofiltration was the appearance of new intense bands at 1072 cm(-1) and 1011 cm(-1), indicating the deposition of calcium salts on the membrane surface. Copyright © 2013 Elsevier Ltd. All rights reserved.
Drinking influences exhaled breath condensate acidity.
Kullmann, Tamás; Barta, Imre; Antus, Balázs; Horváth, Ildikó
2008-01-01
Exhaled breath condensate analysis is a developing method for investigating airway pathology. Impact of food and drink on breath condensate composition has not been systematically addressed. The aim of the study was to follow exhaled breath condensate pH after drinking an acidic and a neutral beverage. Breath condensate, capillary blood, and urine of 12 healthy volunteers were collected before and after drinking either 1 l of coke or 1 l of mineral water. The pH of each sample was determined with a blood gas analyzer. The mean difference between the pH of two breath condensate samples collected within 15 min before drinking was 0.13+/-0.03. Condensate pH decreased significantly from 6.29+/-0.02 to 6.24+/-0.02 (p<0.03) after drinking coke and from 6.37+/-0.03 to 6.22+/-0.04 (p<0.003) after drinking water. Drinking coke induced significant changes in blood and urine pH as well. Drinking influences exhaled breath condensate composition and may contribute to the variability of exhaled breath condensate pH.
Meet EPA Scientist Jody Shoemaker, Ph.D.
EPA research chemist Jody Shoemaker, Ph.D., works to support Agency efforts to protect drinking water. She helps develop methods for analyzing organic chemicals on the Drinking Water Contaminant Candidate List (CCL).
Dahl, C; Søgaard, A J; Tell, G S; Flaten, T P; Krogh, T; Aamodt, G
2013-02-01
Compared to pH ≥7.0 in Norwegian municipal drinking water, pH <7.0 increased the risk of forearm fractures in the population-based Cohort of Norway (CONOR; n = 127,272). The association was attenuated (p > 0.05) after adjustments for indicators of bacteria and organic matter, which may signify an association between poor drinking water and bone health. The Norwegian population has the highest rate of fractures ever reported. A large variation in fracture rate both between and within countries indicates that an environmental factor, such as the quality of drinking water, could be one of the causes of the disparities. Our aim was to investigate a possible association between pH (an important parameter for water quality) and self-reported forearm fracture and to examine whether other water quality factors could account for this association. Using Geographic Information Systems, information on the quality of drinking water was linked to CONOR (n = 127,272; mean age, 50.2 ± 15.8 years), a database comprising ten regional epidemiological health surveys from across the country in the time period 1994-2003. The highest risk of forearm fracture was found at a pH of around 6.75, with a decreasing risk toward both higher and lower pH values. The increased adjusted odds of forearm fracture in men consuming municipal drinking water with pH <7.0 compared to water with pH ≥7.0 was odds ratio (OR) = 1.19 (95 % CI, 1.14, 1.25), and the corresponding increased odds in women was OR = 1.14 (95 % CI, 1.08, 1.19). This association was attenuated (p > 0.05) after further adjustments for other water quality factors (color grade, intestinal enterococci, and Clostridium perfringens). Our findings indicate a higher risk of fracture when consuming water of an acidic pH; however, the risk does not only seem to be due to the acidity level per se, but also to other aspects of water quality associated with pH.
Pant, Narayan Dutt; Poudyal, Nimesh; Bhattacharya, Shyamal Kumar
2016-06-07
Water-related diseases are of great concern in developing countries like Nepal. Every year, there are countless morbidity and mortality due to the consumption of unsafe drinking water. Recently, there have been increased uses of bottled drinking water in an assumption that the bottled water is safer than the tap water and its use will help to protect from water-related diseases. So, the main objective of this study was to analyze the bacteriological quality of bottled drinking water and that of municipal tap water. A total of 100 samples (76 tap water and 24 bottled water) were analyzed for bacteriological quality and pH. The methods used were spread plate method for total plate count (TPC) and membrane filter method for total coliform count (TCC), fecal coliform count (FCC), and fecal streptococcal count (FSC). pH meter was used for measuring pH. One hundred percent of the tap water samples and 87.5 % of the bottled water samples were found to be contaminated with heterotrophic bacteria. Of the tap water samples, 55.3 % were positive for total coliforms, compared with 25 % of the bottled water. No bottled water samples were positive for fecal coliforms and fecal streptococci, in contrast to 21.1 % and 14.5 % of the tap water samples being contaminated with fecal coliforms and fecal streptococci, respectively. One hundred percent of the tap water samples and 54.2 % of the bottled water samples had pH in the acceptable range. All of the municipal tap water samples and most of the bottled drinking water samples distributed in Dharan municipality were found to be contaminated with one or more than one type of indicator organisms. On the basis of our findings, we may conclude that comparatively, the bottled drinking water may have been safer (than tap water) to drink.
RELATIONSHIPS BETWEEN OXIDATION-REDUCTION, OXIDANT, AND PH IN DRINKING WATER
Oxidation and reduction (redox) reactions are very important in drinking water. Oxidation-reduction potential (ORP) measurements reflect the redox state of water. Redox measurements are not widely made by drinking water utilities in part because they are not well understood. The ...
HEALTH EFFECTS OF CHRONIC EXPOSURE TO ARSENIC IN DRINKING WATER IN INNER MONGOLIA: II. VIBROTACTILE AND VISUAL MEASURES.
David Otto, Ph.D., Judy Mumford, Ph.D., Richard Kwok, M.S.P.H., Ken Hudnell, Ph.D.,
U.S. Environmental Protection Agency; Yanhong Li, M.D., Yajuan ...
Drinking Water Quality of Water Vending Machines in Parit Raja, Batu Pahat, Johor
NASA Astrophysics Data System (ADS)
Hashim, N. H.; Yusop, H. M.
2016-07-01
An increased in demand from the consumer due to their perceptions on tap water quality is identified as one of the major factor on why they are mentally prepared to pay for the price of the better quality drinking water. The thought that filtered water quality including that are commercially available in the market such as mineral and bottled drinking water and from the drinking water vending machine makes they highly confident on the level of hygiene, safety and the mineral content of this type of drinking water. This study was investigated the vended water quality from the drinking water vending machine in eight locations in Parit Raja are in terms of pH, total dissolve solids (TDS), turbidity, mineral content (chromium, arsenic, cadmium, lead and nickel), total organic carbon (TOC), pH, total colony-forming units (CFU) and total coliform. All experiments were conducted in one month duration in triplicate samples for each sampling event. The results indicated the TDS and all heavy metals in eight vended water machines in Parit Raja area were found to be below the Food Act 1983, Regulation 360C (Standard for Packaged Drinking Water and Vended water, 2012) and Malaysian Drinking Water Quality, Ministry of Health 1983. No coliform was presence in any of the vended water samples. pH was found to be slightly excess the limit provided while turbidity was found to be 45 to 95 times more higher than 0.1 NTU as required by the Malaysian Food Act Regulation. The data obtained in this study would suggest the important of routine maintenance and inspection of vended water provider in order to maintain a good quality, hygienic and safety level of vended water.
The potential effects of pH and buffering capacity on dental erosion.
Owens, Barry M
2007-01-01
Soft drink pH (initial pH) has been shown to be a causative factor--but not necessarily the primary initiating factor--of dental erosion. The titratable acidity or buffering capacity has been acknowledged as playing a significant role in the etiology of these lesions. This in vitro study sought to evaluate five different soft drinks (Coca-Cola Classic, Diet Coke, Gatorade sports drink, Red Bull high-energy drink, Starbucks Frappucino coffee drink) and tap water (control) in terms of initial pH and buffering capacity. Initial pH was measured in triplicate for the six beverages. The buffering capacity of each beverage was assessed by measuring the weight (in grams) of 0.10 M sodium hydroxide necessary for titration to pH levels of 5.0, 6.0, 7.0, and 8.3. Coca-Cola Classic produced the lowest mean pH, while Starbucks Frappucino produced the highest pH of any of the drinks except for tap water. Based on statistical analysis using ANOVA and Fisher's post hoc tests at a P < 0.05 level of significance, Red Bull had the highest mean buffering capacity (indicating the strongest potential for erosion of enamel), followed by Gatorade, Coca-Cola Classic, Diet Coke, and Starbucks Frappucino.
RELATIONSHIPS BETWEEN OXIDATION-REDUCTION POTENTIAL, OXIDANT, AND PH IN DRINKING WATER
Oxidation and reduction (redox) reactions are very important in drinking water. Oxidation-reduction potential (ORP) measurements reflect the redox state of water. Redox measurements are not widely made by drinking water utilities in part because they are not well understood. The ...
Zhang, Hangjun; Zhu, Guoying; Jia, Xiuying; Ding, Ying; Zhang, Mi; Gao, Qing; Hu, Ciming; Xu, Shuying
2011-01-01
A new kind of low-cost syntactic adsorbent from bamboo charcoal and chitosan was developed for the removal of microcystin-LR from drinking water. Removal efficiency was higher for the syntactic adsorbent when the amount of bamboo charcoal was increased. The optimum dose ratio of bamboo charcoal to chitosan was 6:4, and the optimum amount was 15 mg/L; equilibrium time was 6 hr. The adsorption isotherm was non-linear and could be simulated by the Freundlich model (R2 = 0.9337). Adsorption efficiency was strongly affected by pH and natural organic matter (NOM). Removal efficiency was 16% higher at pH 3 than at pH 9. Efficiency rate was reduced by 15% with 25 mg/L NOM (UV254 = 0.089 cm(-1)) in drinking water. This study demonstrated that the bamboo charcoal modified with chitosan can effectively remove microcystin-LR from drinking water.
HEALTH EFFECTS OF CHRONIC EXPOSURE TO ARSENIC VIA DRINKING WATER IN INNER MONGOLIA:
VI. DEVELOPMENTAL EFFECTS
Richard K. Kwok, M.S.P.H., Judy L. Mumford, Ph.D., Pauline Mendola, Ph.D. Epidemiology and Biomarkers Branch, NHEERL, US Environmental Protection Agency; Yajua...
pH of drinking water influences the composition of gut microbiome and type 1 diabetes incidence.
Sofi, M Hanief; Gudi, Radhika; Karumuthil-Melethil, Subha; Perez, Nicolas; Johnson, Benjamin M; Vasu, Chenthamarakshan
2014-02-01
Nonobese diabetic (NOD) mice spontaneously develop type 1 diabetes (T1D), progression of which is similar to that in humans, and therefore are widely used as a model for understanding the immunological basis of this disease. The incidence of T1D in NOD mice is influenced by the degree of cleanliness of the mouse colony and the gut microflora. In this report, we show that the T1D incidence and rate of disease progression are profoundly influenced by the pH of drinking water, which also affects the composition and diversity of commensal bacteria in the gut. Female NOD mice that were maintained on acidic pH water (AW) developed insulitis and hyperglycemia rapidly compared with those on neutral pH water (NW). Interestingly, forced dysbiosis by segmented filamentous bacteria (SFB)-positive fecal transfer significantly suppressed the insulitis and T1D incidence in mice that were on AW but not in those on NW. The 16S rDNA-targeted pyrosequencing revealed a significant change in the composition and diversity of gut flora when the pH of drinking water was altered. Importantly, autoantigen-specific T-cell frequencies in the periphery and proinflammatory cytokine response in the intestinal mucosa are significantly higher in AW-recipient mice compared with their NW counterparts. These observations suggest that pH of drinking water affects the composition of gut microflora, leading to an altered autoimmune response and T1D incidence in NOD mice.
pH of Drinking Water Influences the Composition of Gut Microbiome and Type 1 Diabetes Incidence
Sofi, M. Hanief; Gudi, Radhika; Karumuthil-Melethil, Subha; Perez, Nicolas; Johnson, Benjamin M.; Vasu, Chenthamarakshan
2014-01-01
Nonobese diabetic (NOD) mice spontaneously develop type 1 diabetes (T1D), progression of which is similar to that in humans, and therefore are widely used as a model for understanding the immunological basis of this disease. The incidence of T1D in NOD mice is influenced by the degree of cleanliness of the mouse colony and the gut microflora. In this report, we show that the T1D incidence and rate of disease progression are profoundly influenced by the pH of drinking water, which also affects the composition and diversity of commensal bacteria in the gut. Female NOD mice that were maintained on acidic pH water (AW) developed insulitis and hyperglycemia rapidly compared with those on neutral pH water (NW). Interestingly, forced dysbiosis by segmented filamentous bacteria (SFB)-positive fecal transfer significantly suppressed the insulitis and T1D incidence in mice that were on AW but not in those on NW. The 16S rDNA–targeted pyrosequencing revealed a significant change in the composition and diversity of gut flora when the pH of drinking water was altered. Importantly, autoantigen-specific T-cell frequencies in the periphery and proinflammatory cytokine response in the intestinal mucosa are significantly higher in AW-recipient mice compared with their NW counterparts. These observations suggest that pH of drinking water affects the composition of gut microflora, leading to an altered autoimmune response and T1D incidence in NOD mice. PMID:24194504
Heberer, Th; Reddersen, K; Mechlinski, A
2002-01-01
Recently, the occurrence and fate of pharmaceutically active compounds (PhACs) in the aquatic environment was recognized as one of the emerging issues in environmental chemistry and as a matter of public concern. Residues of PhACs have been found as contaminants in sewage, surface, and ground- and drinking water samples. Since June 2000, a new long-term monitoring program of sewage, surface, ground- and drinking water has been carried out in Berlin, Germany. Samples, collected periodically from selected sites in the Berlin area, are investigated for residues of PhACs and related contaminants. The purpose of this monitoring is to investigate these compounds over a long time period to get more reliable data on their occurrence and fate in the different aquatic compartments. Moreover, the surface water investigations allow the calculation of season-dependent contaminant loads in the Berlin waters. In the course of the monitoring program, PhACs and some other polar compounds were detected at concentrations up to the microg/L-level in all compartments of the Berlin water cycle. The monitoring is accompanied and supported by several other investigations such as laboratory column experiments and studies on bank filtration and drinking water treatment using conventional or membrane filtration techniques.
On-line detection of Escherichia coli intrusion in a pilot-scale drinking water distribution system.
Ikonen, Jenni; Pitkänen, Tarja; Kosse, Pascal; Ciszek, Robert; Kolehmainen, Mikko; Miettinen, Ilkka T
2017-08-01
Improvements in microbial drinking water quality monitoring are needed for the better control of drinking water distribution systems and for public health protection. Conventional water quality monitoring programmes are not always able to detect a microbial contamination of drinking water. In the drinking water production chain, in addition to the vulnerability of source waters, the distribution networks are prone to contamination. In this study, a pilot-scale drinking-water distribution network with an on-line monitoring system was utilized for detecting bacterial intrusion. During the experimental Escherichia coli intrusions, the contaminant was measured by applying a set of on-line sensors for electric conductivity (EC), pH, temperature (T), turbidity, UV-absorbance at 254 nm (UVAS SC) and with a device for particle counting. Monitored parameters were compared with the measured E. coli counts using the integral calculations of the detected peaks. EC measurement gave the strongest signal compared with the measured baseline during the E. coli intrusion. Integral calculations showed that the peaks in the EC, pH, T, turbidity and UVAS SC data were detected corresponding to the time predicted. However, the pH and temperature peaks detected were barely above the measured baseline and could easily be mixed with the background noise. The results indicate that on-line monitoring can be utilized for the rapid detection of microbial contaminants in the drinking water distribution system although the peak interpretation has to be performed carefully to avoid being mixed up with normal variations in the measurement data. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gora, Stephanie L; Andrews, Susan A
2017-05-01
Titanium dioxide is a photocatalyst that can remove organic contaminants of interest to the drinking water treatment industry, including natural organic matter (NOM) and disinfection byproduct (DBP) precursors. The photocatalytic reaction occurs in two steps: adsorption of the contaminant followed by degradation of the adsorbed contaminant upon irradiation with UV light. The second part of this process can lead to the formation of reactive intermediates and negative impacts on treated water quality, such as increased DBP formation potential (DBPfp). Adsorption alone does not result in the formation of reactive intermediates and thus may prove to be a safe way to incorporate TiO 2 into drinking water treatment processes. The goal of this study was to expand on the current understanding of NOM adsorption on TiO 2 and examine it in a drinking water context by observing NOM adsorption from real water sources and evaluating the effects of the resulting reductions on the DBPfp of the treated water. Bottle point isotherm tests were conducted with raw water from two Canadian water treatment plants adjusted to pH 4, pH 6 and pH 8 and dosed with TiO 2 nanoparticles. The DOC results were a good fit to a modified Freundlich isotherm. DBP precursors and liquid chromatography with organic carbon detection NOM fractions associated with DBP formation were removed to some extent at all pHs, but most effectively at pH 4. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tracking persistent pharmaceutical residues from municipal sewage to drinking water
NASA Astrophysics Data System (ADS)
Heberer, Thomas
2002-09-01
In urban areas such as Berlin (Germany) with high municipal sewage water discharges and low surface water flows there is a potential risk of drinking water contamination by polar organic compounds when groundwater recharge is used in drinking water production. Thus, some pharmaceutically active compounds (PhACs) are not eliminated completely in the municipal sewage treatment plants (STPs) and they are discharged as contaminants into the receiving waters. In terms of several monitoring studies carried out in Berlin between 1996 and 2000, PhACs such as clofibric acid, diclofenac, ibuprofen, propyphenazone, primidone and carbamazepine were detected at individual concentrations up to the μg/l-level in influent and effluent samples from STPs and in all surface water samples collected downstream from the STPs. Under recharge conditions, several compounds were also found at individual concentrations up to 7.3 μg/l in samples collected from groundwater aquifers near to contaminated water courses. A few of the PhACs were also identified at the ng/l-level in Berlin tap water samples.
Siti Farizwana, M R; Mazrura, S; Zurahanim Fasha, A; Ahmad Rohi, G
2010-01-01
The study was to determine the concentration of aluminium (Al) and study the physicochemical parameters (pH, total dissolved solids (TDS), turbidity, and residual chlorine) in drinking water supply in selected palm oil estates in Kota Tinggi, Johor. Water samples were collected from the estates with the private and the public water supplies. The sampling points were at the water source (S), the treatment plant outlet (TPO), and at the nearest houses (H1) and the furthest houses (H2) from the TPO. All estates with private water supply failed to meet the NSDWQ for Al with mean concentration of 0.99 ± 1.52 mg/L. However, Al concentrations in all public water supply estates were well within the limit except for one estate. The pH for all samples complied with the NSDWQ except from the private estates for the drinking water supply with an acidic pH (5.50 ± 0.90). The private water supply showed violated turbidity value in the drinking water samples (14.2 ± 24.1 NTU). Insufficient amount of chlorination was observed in the private water supply estates (0.09 ± 0.30 mg/L). Private water supplies with inefficient water treatment served unsatisfactory drinking water quality to the community which may lead to major health problems.
Three treatment media, used for the removal of arsenic from drinking water, were sequentially extracted using 10mM MgCl2 (pH 8), 10mM NaH2PO4 (pH 7) followed by 10mM (NH4)2C2O4 (pH 3). The media were extracted using an on-line automated continuous extraction system which allowed...
Health Effects of Chronic Exposure to Arsenic via Drinking Water in Inner Mongolia: I. Biomarkers for Assessing Exposure and Effects
Judy L. Mumford, Ph.D., Mike Schmitt, M.S.P.H., Richard K. Kwok, M.S.P.H., Rebecca Calderon, Ph.D., National Health and Environmental Effect...
Water Quality of Hills Water, Supply Water and RO Water Machine at Ulu Yam Selangor
NASA Astrophysics Data System (ADS)
Ngadiman, N.; ‘I Bahari, N.; Kaamin, M.; Hamid, N. B.; Mokhtar, M.; Sahat, S.
2016-07-01
The rapid development resulted in the deterioration of the quality of drinking water in Malaysia. Recognizing the importance of water quality, new alternatives for drinking water such as mineral water processing from reverse osmosis (RO) machine become more popular. Hence, the demand for mineral water, natural spring water or water from the hills or mountains rose lately. More consumers believed the quality of these spring water better than other source of drinking water. However, the quality of all the drinking water sources is to meet the required quality standard. Therefore, this paper aims to measure the quality of the waters from hills, from RO machine and the water supply in Ulu Yam, Selangor Batang Kali, Malaysia. The water quality was determined based on following parameters: ammoniacal nitrogen (NH3), iron (Fe), turbidity (NTU) and pH. The results show that the water from hills has better quality compared to water supply and water from RO machine. The value of NH3 ranged from 0.03 mg/L- 0.67 mg/L; Fe was from 0.03mg/L - 0.12 mg/L, turbidity at 0.42 NTU - 0.88 NTU and pH is at 6.60 - 0.71. Based on the studied parameters, all three types of water are fit for drinking and have met the required national drinking water quality standard.
Stability of florfenicol in drinking water.
Hayes, John M; Eichman, Jonathan; Katz, Terry; Gilewicz, Rosalia
2003-01-01
Florfenicol, a broad-spectrum antibiotic, is being developed for veterinary application as an oral concentrate intended for dilution with drinking water. When a drug product is dosed via drinking water in a farm setting, a number of variables, including pH, chlorine content, hardness of the water used for dilution, and container material, may affect its stability, leading to a decrease in drug potency. The stability of florfenicol after dilution of Florfenicol Drinking Water Concentrate Oral Solution, 23 mg/mL, with drinking water was studied. A stability-indicating, validated liquid chromatographic method was used to evaluate florfenicol stability at 25 degrees C at 5, 10, and 24 h after dilution. The results indicate that florfenicol is stable under a range of simulated field conditions, including various pipe materials and conditions of hard or soft and chlorinated or nonchlorinated water at low or high pH. Significant degradation (> 10%) was observed only for isolated combinations in galvanized pipes. Analysis indicated that the florfenicol concentration in 8 of the 12 water samples stored in galvanized pipes remained above 90% of the initial concentration (100 mg/L) for 24 h after dilution.
Siti Farizwana, M. R.; Mazrura, S.; Zurahanim Fasha, A.; Ahmad Rohi, G.
2010-01-01
The study was to determine the concentration of aluminium (Al) and study the physicochemical parameters (pH, total dissolved solids (TDS), turbidity, and residual chlorine) in drinking water supply in selected palm oil estates in Kota Tinggi, Johor. Water samples were collected from the estates with the private and the public water supplies. The sampling points were at the water source (S), the treatment plant outlet (TPO), and at the nearest houses (H1) and the furthest houses (H2) from the TPO. All estates with private water supply failed to meet the NSDWQ for Al with mean concentration of 0.99 ± 1.52 mg/L. However, Al concentrations in all public water supply estates were well within the limit except for one estate. The pH for all samples complied with the NSDWQ except from the private estates for the drinking water supply with an acidic pH (5.50 ± 0.90). The private water supply showed violated turbidity value in the drinking water samples (14.2 ± 24.1 NTU). Insufficient amount of chlorination was observed in the private water supply estates (0.09 ± 0.30 mg/L). Private water supplies with inefficient water treatment served unsatisfactory drinking water quality to the community which may lead to major health problems. PMID:21461348
Concentration of heavy metals in drinking water of different localities in district east Karachi.
Jaleel, M A; Noreen, R; Baseer, A
2001-01-01
Several heavy metals are present in drinking water that play important roles in the body provided their level remains within the specified range recommended by WHO. But now due to the industrialization and rapid urbanization, the problems of pollution have surfaced. This study was designed to ascertain the contents of some heavy metals and then their variations if any in drinking water in different localities of district East of Karachi, Pakistan. Drinking water samples were collected from different sources and localities of district East of Karachi. The concentration of the heavy metals i.e. Lead, Arsenic, Copper, Iron, Mercury, Chromium, Manganese, Nickel, Cadmium and Zinc were determined by Atomic Absorption Spectrophotometry. PH was estimated by pH meter. Total dissolved solids (TDS) were calculated by formula. These concentrations of heavy metals, pH and TDS were compared with the standards set by WHO. Concentrations of lead and nickel were found to be significantly elevated as compared to WHO recommended levels in all the three sources of water (Piped water, Hand pump water and Tanker water supply). Chromium was found to be raised in hand pump water. Arsenic and Mercury were not detected in any source of water. Copper, iron, manganese, cadmium and zinc were found to be within the safe limits in all the three sources of water. pH was found to be within the range of WHO recommended level in all the three sources of water. TDS was found to be elevated in hand pump water and tanker water. Concentrations of lead and nickel were found to be significantly elevated as compared to WHO recommended levels in all the three sources of water in district East of Karachi.
Evaluation of drinking quality of groundwater through multivariate techniques in urban area.
Das, Madhumita; Kumar, A; Mohapatra, M; Muduli, S D
2010-07-01
Groundwater is a major source of drinking water in urban areas. Because of the growing threat of debasing water quality due to urbanization and development, monitoring water quality is a prerequisite to ensure its suitability for use in drinking. But analysis of a large number of properties and parameter to parameter basis evaluation of water quality is not feasible in a regular interval. Multivariate techniques could streamline the data without much loss of information to a reasonably manageable data set. In this study, using principal component analysis, 11 relevant properties of 58 water samples were grouped into three statistical factors. Discriminant analysis identified "pH influence" as the most distinguished factor and pH, Fe, and NO₃⁻ as the most discriminating variables and could be treated as water quality indicators. These were utilized to classify the sampling sites into homogeneous clusters that reflect location-wise importance of specific indicator/s for use to monitor drinking water quality in the whole study area.
Quality testing of autoclaved rodent drinking water during short-term and long-term storage.
Peveler, Jessica L; Crisler, Robin; Hickman, Deb
2015-06-01
All animals need clean water to drink. At the authors' animal facility, drinking water for immunocompromised rodents is filtered by reverse osmosis, acidified during bottling and sterilized in an autoclave. Autoclaved water bottles can be stored in unopened autoclave bags for 7 d or in opened bags for 2 d; if not used during that time, they are emptied, cleaned, refilled and sterilized again. The authors wished to determine whether the storage period of 2-7 d was adequate and necessary to ensure the quality of drinking water. They tested water bottles for pH levels and for the presence of adenosine triphosphate as a measure of organic contamination during short-term and long-term storage. The pH of autoclaved drinking water generally remained stable during storage. Furthermore, no instances of organic contamination were detected in autoclaved water bottles stored for up to 22 d in unopened bags and only one instance was detected in bottles stored for up to 119 d in opened bags in a room with individually ventilated cages. On the basis of these findings, the acceptable storage period for autoclaved water bottles in opened bags at the authors' facility was extended to 21 d.
Removal of aluminum from drinking water treatment sludge using vacuum electrokinetic technology.
Xu, Hang; Ding, Mingmei; Shen, Kunlun; Cui, Jianfeng; Chen, Wei
2017-04-01
A vacuum electrokinetic apparatus was operated at a municipal water supply plant in Wuxi, China to study the removal of aluminum from the plant's drinking water treatment sludge, high in trivalent aluminum content. The effect of several experimental variables (initial pH, potential gradient, and zone in the sludge tank) and the trivalent aluminum removal mechanism were analyzed. The speciation of trivalent aluminum mainly depends on the initial pH of drinking water treatment sludge, and more fractions of trivalent aluminum were migrated at pH 4 than at higher or lower pH. The application of high voltage can enhance the removal efficiency of aluminum. A three-dimensional electric field analysis explained the difference in the removal efficiency at different zones in the sludge tank. In view of energy consumption, when the initial pH was 4 and a potential gradient of 2 V cm -1 was applied, achieving a final aluminum concentration of 30 g kg -1 after 120 h. The specific energy consumption was 11.7 kWh kg -1 of Al removed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Helmi, K; Menard-Szczebara, F; Lénès, D; Jacob, P; Jossent, J; Barbot, C; Delabre, K; Arnal, C
2010-01-01
Biofilms colonizing pipe surfaces of drinking water distribution systems could provide habitat and shelter for pathogenic viruses present in the water phase. This study aims (i) to develop a method to detect viral particles present in a drinking water biofilm and (ii) to study viral interactions with drinking water biofilms. A pilot scale system was used to develop drinking water biofilms on 3 materials (7 cm(2) discs): PVC, cast iron and cement. Biofilms were inoculated with viral model including MS2, PhiX174 or adenovirus. Five techniques were tested to recover virus from biofilms. The most efficient uses beef extract and glycine at pH = 9. After sonication and centrifugation, the pH of the supernatant is neutralized prior to viral analysis. The calculated recovery rates varied from 29.3 to 74.6% depending on the virus (MS2 or PhiX174) and the material. Applying this protocol, the interactions of virus models (MS2 and adenovirus) with drinking water biofilms were compared. Our results show that adsorption of viruses to biofilms depends on their isoelectric points, the disc material and the hydrodynamic conditions. Applying hydrodynamic conditions similar to those existing in drinking water networks resulted in a viral adsorption corresponding to less than 1% of the initial viral load.
Minerals leached into drinking water from rubber stoppers.
Kennedy, B W; Beal, T S
1991-06-01
Drinking water and its delivery system are potential sources of variation in animal research. Concern arose that rubber stoppers used to cork water bottles might be a source of some nutritionally required minerals which could leach into drinking water. Six types of stoppers, each having different compositions, were cleaned with stainless-steel sipper tubes inserted into them and attached to polypropylene bottles filled with either deionized water (pH 4.5) or acidified-deionized water (pH 2.5). After six days of contact, water levels of copper, magnesium, iron, manganese, zinc, chromium, and selenium were determined by atomic absorption spectroscopy. Additionally, three of the stopper types were analyzed for mineral content. Minerals were present in both stoppers and drinking water. Acidified-deionized water generally leached minerals from the stoppers than did deionized water. The black stopper which is commonly used in animal facilities contained and leached measurable levels of some minerals, but it still can be recommended for typical animal husbandry uses, although other types of stoppers would be more suitable for specific nutritional and toxicologic studies.
Tanabe, Mai; Takahashi, Toshiyuki; Shimoyama, Kazuhiro; Toyoshima, Yukako; Ueno, Toshiaki
2013-10-28
The aim of this study was to investigate the influences of rehydration and food consumption on salivary flow, pH, and buffering capacity during bicycle ergometer exercise in participants. Ten healthy volunteers exercised on a bicycle ergometer at 80% of their maximal heart rate. These sessions lasted for two periods of 20 min separated by 5-min rest intervals. Volunteers were subjected to one of the following conditions: (1) no water (mineral water) or food consumption, (2) only water for rehydration, (3) water and food consumption, (4) a sports drink only for rehydration, and (5) rehydration with a sports drink and food. Statistical significance was assessed using one-way analysis of variance and Dunnett's test (p < 0.05). The salivary pH decreased significantly during and after exercise in conditions 4 and 5. The salivary buffering capacity decreased significantly during exercise and/or after the exercise in conditions 1, 3, 4, and 5. The results showed that salivary pH and buffering capacity decreased greatly depending on the combination of a sports drink and food.
Kaewtapee, C; Krutthai, N; Poosuwan, K; Poeikhampha, T; Koonawootrittriron, S; Bunchasak, C
2010-06-01
This study was conducted to evaluate the effect of adding liquid DL-methionine hydroxy analogue free acid (LMA) to drinking water on growth performance, small intestinal morphology and volatile fatty acids in the caecum of nursery pigs. Twenty-four crossbred pigs (Large White x Landrace, BW approximately 18 kg) were divided into three groups with four replications of two piglets each. The piglets received drinking water without (control), with 0.05 or 0.10% LMA. The results indicated that adding LMA at 0.10% to drinking water significantly increased their weight gain, average daily feed intake (p < 0.05) and tended to improve the feed conversion ratio. Adding LMA to drinking water significantly increased their water intake and significantly reduced the pH of drinking water (p < 0.01), thus total plate count (p < 0.01) and Escherichia coli in drinking water was reduced (p < 0.05), while the total number of bacteria in the caecum was not significantly affected. Liquid DL-methionine hydroxy analogue free acid supplementation in drinking water tended to decrease pH in the stomach, duodenum, jejunum, colon and rectum. Furthermore, adding LMA at 0.10% significantly increased villous height in the duodenum, jejunum and ileum (p < 0.05), and the villous height:crypt depth ratio in the jejunum and ileum (p < 0.01) was higher, whereas acetic acid concentration in the caecum was significantly lower than in the control group. It could be concluded that adding LMA to drinking water improved growth performance of the nursery pigs because of high water quality and high nutrient utilization caused by an improvement of small intestinal morphology (not from nutritional effect of methionine source).
Physical, chemical and microbial analysis of bottled drinking water.
Sasikaran, S; Sritharan, K; Balakumar, S; Arasaratnam, V
2012-09-01
People rely on the quality of the bottled drinking water, expecting it to be free of microbial contamination and health hazards. To evaluate the quality of bottled drinking water sold in Jaffna peninsula by analysing the physical, chemical and microbial contents and comparing with the recommended Sri Lankan Standard (SLS) values. All bottled water samples sold in Jaffna peninsula were collected. Electrical conductivity, total dissolved solid, pH, calcium, nitrate, total aerobic and anaerobic count, coliform bacterial count and faecal contamination were checked. These are 22 brands of bottled drinking water sold in Jaffna peninsula. The sample had very low electrical conductivity when compared with SLS (750 μS/ cm) and varied from 19 to 253 μS/cm with the mean of 80.53 (±60.92) μS/cm. The pH values of the bottled drinking water brands varied from 4.11 to 7.58 with a mean of 6.2 (±0.75). The total dissolved solid content of the bottled drinking water brands varied from 9 to 123.67 mg/l with a mean of 39.5 (±30.23) mg/l. The calcium content of the bottled drinking water brands varied from 6.48 to 83.77 mg/l with a mean of 49.9 (±25.09) mg/l. The nitrate content of the bottled drinking water brands varied from 0.21 to 4.19 mg/l with the mean of 1.26 (±1.08) mg/l. Aerobic bacterial count varied from 0 to 800 colony forming unit per ml (cfu/ml) with a mean of 262.6 (±327.50) cfu/ml. Among the 22 drinking bottled water brands 14 and 9% of bottled drinking water brands showed fungal and coliform bacterial contaminants respectively. The water brands which contained faecal contamination had either Escherichia coli or Klebsiella spp. The bottled drinking water available for sale do not meet the standards stipulated by SLS.
Edokpayi, Joshua N; Odiyo, John O; Popoola, Elizabeth O; Msagati, Titus A M
2018-01-01
Access to clean and safe drinking water is still a problem in developing countries and more pronounced in rural areas. Due to erratic supply of potable, rural dwellers often seek for an alternative source of water to meet their basic water needs. The objective of this study is to monitor the microbiological and physicochemical water quality parameters of Nzhelele River which is a major alternative source of drinking water to villages along its course in Limpopo province of South Africa. Membrane filtration method was employed in evaluating the levels of E. coli and Enterococci in the river water from January-June, 2014. Specialized multimeter was used to measure the pH, electrical conductivity and turbidity of the river water. Ion Chromatograph was used to measure major anions such as fluoride, chloride, nitrate and sulphate in the water. High levels of E. coli (1 x 10 2 - 8 x 10 4 cfu/100 mL) and enterococci (1 x 10 2 - 5.7 x 10 3 cfu/100 mL) were found in the river water and exceeded their permissible limits of 0 cfu/100 mL for drinking water. Turbidity values ranged from 1.12-739.9 NTU. The pH, electrical conductivity, chloride, fluoride, nitrate and sulphate levels were below their permissible limits for drinking water. The river water is contaminated with faecal organisms and is unfit for drinking purposes. However, the levels of the major anions accessed were within the permissible limits of drinking water.
Edokpayi, Joshua N.; Odiyo, John O.; Popoola, Elizabeth O.; Msagati, Titus A.M.
2018-01-01
Background: Access to clean and safe drinking water is still a problem in developing countries and more pronounced in rural areas. Due to erratic supply of potable, rural dwellers often seek for an alternative source of water to meet their basic water needs. The objective of this study is to monitor the microbiological and physicochemical water quality parameters of Nzhelele River which is a major alternative source of drinking water to villages along its course in Limpopo province of South Africa. Methods: Membrane filtration method was employed in evaluating the levels of E. coli and Enterococci in the river water from January-June, 2014. Specialized multimeter was used to measure the pH, electrical conductivity and turbidity of the river water. Ion Chromatograph was used to measure major anions such as fluoride, chloride, nitrate and sulphate in the water. Results: High levels of E. coli (1 x 102 - 8 x 104 cfu/100 mL) and enterococci (1 x 102 – 5.7 x 103 cfu/100 mL) were found in the river water and exceeded their permissible limits of 0 cfu/100 mL for drinking water. Turbidity values ranged from 1.12-739.9 NTU. The pH, electrical conductivity, chloride, fluoride, nitrate and sulphate levels were below their permissible limits for drinking water. Conclusion: The river water is contaminated with faecal organisms and is unfit for drinking purposes. However, the levels of the major anions accessed were within the permissible limits of drinking water. PMID:29541268
Coliform culturability in over- versus undersaturated drinking waters.
Grandjean, D; Fass, S; Tozza, D; Cavard, J; Lahoussine, V; Saby, S; Guilloteau, H; Block, J-C
2005-05-01
The culturability of Escherichia coli in undersaturated drinking water with respect to CaCO3 (corrosive water) or in oversaturated water (non-corrosive water) was tested in different reactors: glass flasks (batch, "non-reactive" wall); glass reactors (chemostat, "non-reactive" wall) versus a corroded cast iron Propella reactor (chemostat, "reactive" wall) and a 15-year-old distribution system pilot (chemostat, "reactive" wall with 1% corroded cast iron and 99% cement-lined cast iron). The E. coli in E. coli-spiked drinking water was not able to maintain its culturability and colonize the experimental systems. It appears from our results that the optimal pH for maintaining E. coli culturability was around 8.2 or higher. However, in reactors with a reactive wall (corroded cast iron), the decline in E. coli culturability was slower when the pH was adjusted to 7.9 or 7.7 (i.e. a reactor fed with corrosive water; pH
Meet EPA Environmental Engineer Terra Haxton, Ph.D.
EPA Environmental Engineer Terra Haxton, Ph.D., uses computer simulation models to protect drinking water. She investigates approaches to help water utilities be better prepared to respond to contamination incidents in their distribution systems.
2013-01-01
Background The aim of this study was to investigate the influences of rehydration and food consumption on salivary flow, pH, and buffering capacity during bicycle ergometer exercise in participants. Methods Ten healthy volunteers exercised on a bicycle ergometer at 80% of their maximal heart rate. These sessions lasted for two periods of 20 min separated by 5-min rest intervals. Volunteers were subjected to one of the following conditions: (1) no water (mineral water) or food consumption, (2) only water for rehydration, (3) water and food consumption, (4) a sports drink only for rehydration, and (5) rehydration with a sports drink and food. Statistical significance was assessed using one-way analysis of variance and Dunnett’s test (p < 0.05). Results The salivary pH decreased significantly during and after exercise in conditions 4 and 5. The salivary buffering capacity decreased significantly during exercise and/or after the exercise in conditions 1, 3, 4, and 5. Conclusions The results showed that salivary pH and buffering capacity decreased greatly depending on the combination of a sports drink and food. PMID:24160307
Effect of pH and Pressure on Uranium Removal from Drinking Water Using NF/RO Membranes.
Schulte-Herbrüggen, Helfrid M A; Semião, Andrea J C; Chaurand, Perrine; Graham, Margaret C
2016-06-07
Groundwater is becoming an increasingly important drinking water source. However, the use of groundwater for potable purposes can lead to chronic human exposure to geogenic contaminants, for example, uranium. Nanofiltration (NF) and reverse osmosis (RO) processes are used for drinking water purification, and it is important to understand how contaminants interact with membranes since accumulation of contaminants to the membrane surface can lead to fouling, performance decline and possible breakthrough of contaminants. During the current study laboratory experiments were conducted using NF (TFC-SR2) and RO (BW30) membranes to establish the behavior of uranium across pH (3-10) and pressure (5-15 bar) ranges. The results showed that important determinants of uranium-membrane sorption interactions were (i) the uranium speciation (uranium species valence and size in relation to membrane surface charge and pore size) and (ii) concentration polarization, depending on the pH values. The results show that it is important to monitor sorption of uranium to membranes, which is controlled by pH and concentration polarization, and, if necessary, adjust those parameters controlling uranium sorption.
An assessment of drinking water contamination with Helicobacter pylori in Lima, Peru.
Boehnke, Kevin F; Brewster, Rebecca K; Sánchez, Brisa N; Valdivieso, Manuel; Bussalleu, Alejandro; Guevara, Magaly; Saenz, Claudia Gonzales; Alva, Soledad Osorio; Gil, Elena; Xi, Chuanwu
2018-04-01
Helicobacter pylori is a gut bacterium that is the primary cause of gastric cancer. H. pylori infection has been consistently associated with lack of access to sanitation and clean drinking water. In this study, we conducted time-series sampling of drinking water in Lima, Peru, to examine trends of H. pylori contamination and other water characteristics. Drinking water samples were collected from a single faucet in Lima's Lince district 5 days per week from June 2015 to May 2016, and pH, temperature, free available chlorine, and conductivity were measured. Quantities of H. pylori in all water samples were measured using quantitative polymerase chain reaction. Relationships between the presence/absence and quantity of H. pylori and water characteristics in the 2015-2016 period were examined using regression methods accounting for the time-series design. Forty-nine of 241 (20.3%) of drinking water samples were contaminated with H. pylori. Statistical analyses identified no associations between sampling date and the likelihood of contamination with H. pylori. Statistically significant relationships were found between lower temperatures and a lower likelihood of the presence of H. pylori (P < .05), as well as between higher pH and higher quantities of H. pylori (P < .05). This study has provided evidence of the presence of H. pylori DNA in the drinking water of a single drinking water faucet in the Lince district of Lima. However, no seasonal trends were observed. Further studies are needed to determine the presence of H. pylori in other drinking water sources in other districts in Lima, as well as to determine the viability of H. pylori in these water sources. Such studies would potentially allow for better understanding and estimates of the risk of infection due to exposure to H. pylori in drinking water. © 2018 John Wiley & Sons Ltd.
Systemic and local effects of long-term exposure to alkaline drinking water in rats.
Merne, M E; Syrjänen, K J; Syrjänen, S M
2001-08-01
Alkaline conditions in the oral cavity may be caused by a variety of stimuli, including tobacco products, antacids, alkaline drinking water or bicarbonate toothpaste. The effects of alkaline pH on oral mucosa have not been systematically studied. To assess the systemic (organ) and local (oral mucosal) effects of alkalinity, drinking water supplemented with Ca(OH)2 or NaOH, with pH 11.2 or 12 was administered to rats (n = 36) for 52 weeks. Tissues were subjected to histopathological examination; oral mucosal biopsy samples were also subjected to immunohistochemical (IHC) analyses for pankeratin, CK19, CK5, CK4, PCNA, ICAM-1, CD44, CD68, S-100, HSP 60, HSP70, and HSP90. At completion of the study, animals in the study groups had lower body weights (up to 29% less) than controls despite equal food and water intake, suggesting a systemic response to the alkaline treatment. The lowest body weight was found in rats exposed to water with the highest pH value and starting the experiment when young (6 weeks). No histological changes attributable to alkaline exposure occurred in the oral mucosa or other tissues studied. Alkaline exposure did not affect cell proliferation in the oral epithelium, as shown by the equal expression of PCNA in groups. The up-regulation of HSP70 protein expression in the oral mucosa of rats exposed to alkaline water, especially Ca(OH)2 treated rats, may indicate a protective response. Intercellular adhesion molecule-1 (ICAM-1) positivity was lost in 6/12 rats treated with Ca(OH)2 with pH 11.2, and loss of CD44 expression was seen in 3/6 rats in both study groups exposed to alkaline water with pH 12. The results suggest that the oral mucosa in rats is resistant to the effects of highly alkaline drinking water. However, high alkalinity may have some unknown systemic effects leading to growth retardation, the cause of which remains to be determined.
Effect of soft drinks on the release of calcium from enamel surfaces.
Rirattanapong, Praphasri; Vongsavan, Kadkao; Surarit, Rudee
2013-09-01
Continuous consumption of soft drinks is the main cause of potential oral health problems, including dental caries and erosion. The purpose of this study was to compare the effect of three different types of soft drinks on the release of calcium from the enamel surface of teeth. Forty bovine teeth were selected for the experiment. They were divided into four groups (n=10/group): Group 1 (Coke), Group 2 (Pepsi), Group 3 (Sprite), and Group 4 (distilled water, the control). The pH of each beverage was measured using a pH meter. The release of calcium ions was measured using an atomic absorption spectrophotometer at baseline, 15, 30, and 60 minutes. The results were assessed by analysis of variance and then by the Tukey test (p< 0.05). Coke, with a pH of 2.39, was the most acidic among the soft drinks. Coke, Pepsi, and Sprite showed no significant mean differences in the calcium released, but there was a significant mean difference of these soft drinks with distilled water at 60 minutes. We concluded that prolonged exposure to soft drinks could lead to significant enamel loss.
Nsoh, Fuh Anold; Wung, Buh Amos; Atashili, Julius; Benjamin, Pokam Thumamo; Marvlyn, Eba; Ivo, Keumami Katte; Nguedia, Assob Jules Clément
2016-11-08
Access to potable water remains a major challenge particularly in resource-limited settings. Although the potential contaminants of water are varied, enteric pathogenic protozoa are known to cause waterborne diseases greatly. This study aimed at investigating the prevalence, characteristics and correlates of enteric pathogenic protozoa in drinking water sources in Buea, Cameroon. A cross-sectional study was conducted using 155 water samples collected from various drinking sources (boreholes, springs, taps and wells). Each sample was subjected to physicochemical examinations (pH, turbidity, odour and sliminess) and parasitological analysis (wet mount, modified Ziehl-Neelsen stain) to determine the presence of enteric pathogenic protozoa. A data collection tool was used to note characteristics of collected samples and the data was analysed using EPI-INFO Version 3.5.3. The overall prevalence of enteric pathogenic protozoa in water sources was 62.6 %. Eight species of enteric protozoa were observed with Cryptosporidium parvum being the most predominant (45.8 %). Spring water was the most contaminated source with enteric protozoa (85.7 %) while pipe borne water had all eight species of protozoa identified. A pH of 6 was the only significant factor associated with the prevalence of these pathogens in water sources. The prevalence of enteric protozoa in water sources in Molyko and Bomaka is high, spring water is the most contaminated water source and Cryptosporidium parvum is the most common protozoa contaminating water. A water pH of 6 is associated to the prevalence of protozoa. Community members need to be educated to treat water before drinking to avoid infection by enteric protozoa in water and further studies with larger samples of water need to be conducted to find other correlates of the presence of protozoa in water.
Hua, Wen Yi; Bennett, Erin R; Maio, Xui-Sheng; Metcalfe, Chris D; Letcher, Robert J
2006-09-01
The influence of seasonal changes in water conditions and parameters on several major pharmacologically active compounds (PhACs) and s-triazine herbicides was assessed in the wastewater and sewage treatment plant (WSTP) effluent as well as the downstream surface water from sites on the Canadian side of the upper Detroit River, between the Little River WSTP and near the water intake of a major drinking water treatment facility for the City of Windsor (ON, Canada). The assessed PhACs were of neutral (carbamazepine, cotinine, caffeine, cyclophosphamide, fluoxetine, norfluoxetine, pentoxifylline, and trimethoprim) and acidic (ibuprofen, bezafibrate, clofibric acid, diclofenac, fenoprofen, gemfibrozil, indomethacin, naproxen, and ketoprofen) varieties. The major assessed s-triazine herbicides were atrazine, simazine, propazine, prometon, ametryn, prometryn, and terbutryn. At sampling times from September 2002 to June 2003, 15 PhACs were detected in the WSTP effluent at concentrations ranging from 1.7 to 1244 ng/L. The PhAC concentrations decreased by as much 92 to 100% at the Little River/Detroit River confluence because of the river dilution effect, with further continual decreases at sites downstream from the WSTP. The only quantifiable s-triazine in WSTP effluent, atrazine, ranged from 6.7 to 200 ng/L and was higher in Detroit River surface waters than in WSTP effluent. Only carbamazepine, cotinine, and atrazine were detectable at the low-nanogram and subnanogram levels in surface waters near a drinking water intake site. Unlike the PhACs, atrazine in the Detroit River is not attributable to point sources, and it is heavily influenced by seasonal agricultural usage and runoff. Detroit River surface water concentrations of carbamazepine, cotinine, and atrazine may present a health concern to aquatic wildlife and to humans via the consumption of drinking water.
Koufman, Jamie A; Johnston, Nikki
2012-07-01
At the cellular level, tissue-bound pepsin is fundamental to the pathophysiologic mechanism of reflux disease, and although the thresholds for laryngeal damage in laryngopharyngeal reflux and for esophageal damage in gastroesophageal reflux disease differ, both forms of damage are due to pepsin, which requires acid for its activation. In addition, human pepsin remains stable at pH 7.4 and may be reactivated by hydrogen ions from any source. Thus, most tap and bottled waters (typically pH 6.7 to 7.4) would not be expected to affect pepsin stability. The purposes of these in vitro studies were to investigate whether artesian well water containing natural bicarbonate (pH 8.8) might irreversibly denature (inactivate) human pepsin, and to establish its potential acid-buffering capacity. Laboratory studies were performed to determine whether human pepsin was inactivated by pH 8.8 alkaline water. In addition, the buffering capacity of the alkaline water was measured and compared to that of the two most popular commercially available bottled waters. The pH 8.8 alkaline water irreversibly inactivated human pepsin (in vitro), and its hydrochloric acid-buffering capacity far exceeded that of the conventional-pH waters. Unlike conventional drinking water, pH 8.8 alkaline water instantly denatures pepsin, rendering it permanently inactive. In addition, it has good acid-buffering capacity. Thus, the consumption of alkaline water may have therapeutic benefits for patients with reflux disease.
Removal of trace metal contaminants from potable water by electrocoagulation.
Heffron, Joe; Marhefke, Matt; Mayer, Brooke K
2016-06-21
This study investigated the effects of four operational and environmental variables on the removal of trace metal contaminants from drinking water by electrocoagulation (EC). Removal efficiencies for five metals (arsenic, cadmium, chromium, lead and nickel) were compared under varying combinations of electrode material, post-treatment, water composition and pH. Iron electrodes out-performed aluminum electrodes in removing chromium and arsenic. At pH 6.5, aluminum electrodes were slightly more effective at removing nickel and cadmium, while at pH 8.5, iron electrodes were more effective for these metals. Regardless of electrode, cadmium and nickel removal efficiencies were higher at pH 8.5 than at pH 6.5. Post-EC treatment using membrane filtration (0.45 μm) enhanced contaminant removal for all metals but nickel. With the exception of lead, all metals exhibited poorer removal efficiencies as the ionic strength of the background electrolyte increased, particularly in the very high-solids synthetic groundwaters. Residual aluminum concentrations were lowest at pH 6.5, while iron residuals were lowest in low ionic strength waters. Both aluminum and iron residuals required post-treatment filtration to meet drinking water standards. EC with post-treatment filtration appears to effectively remove trace metal contaminants to potable water standards, but both reactor and source water parameters critically impact removal efficiency.
Removal of trace metal contaminants from potable water by electrocoagulation
NASA Astrophysics Data System (ADS)
Heffron, Joe; Marhefke, Matt; Mayer, Brooke K.
2016-06-01
This study investigated the effects of four operational and environmental variables on the removal of trace metal contaminants from drinking water by electrocoagulation (EC). Removal efficiencies for five metals (arsenic, cadmium, chromium, lead and nickel) were compared under varying combinations of electrode material, post-treatment, water composition and pH. Iron electrodes out-performed aluminum electrodes in removing chromium and arsenic. At pH 6.5, aluminum electrodes were slightly more effective at removing nickel and cadmium, while at pH 8.5, iron electrodes were more effective for these metals. Regardless of electrode, cadmium and nickel removal efficiencies were higher at pH 8.5 than at pH 6.5. Post-EC treatment using membrane filtration (0.45 μm) enhanced contaminant removal for all metals but nickel. With the exception of lead, all metals exhibited poorer removal efficiencies as the ionic strength of the background electrolyte increased, particularly in the very high-solids synthetic groundwaters. Residual aluminum concentrations were lowest at pH 6.5, while iron residuals were lowest in low ionic strength waters. Both aluminum and iron residuals required post-treatment filtration to meet drinking water standards. EC with post-treatment filtration appears to effectively remove trace metal contaminants to potable water standards, but both reactor and source water parameters critically impact removal efficiency.
Is Your Drinking Water Acidic? A Comparison of the Varied pH of Popular Bottled Waters.
Wright, Kellie F
2015-06-01
Dental professionals continually educate patients on the dangers of consuming acidic foods and beverages due to their potential to contribute to dental erosion and tooth decay. Excess acid in the diet can also lead to acidosis, which causes negative systemic side effects. However, water is not typically categorized as acidic. The purpose of this in-vitro study was to investigate the pH levels of several popular brands of bottled water and compare them to various other acidic beverages. Two different brands of marketed alkaline water (with a pH of 8.8 or higher) were also studied, tested for acidity and described. A pilot in-vitro study was conducted to determine the pH levels of a convenience sample of popular brands of bottled water, tap water and other known acidic beverages in comparison with the pH values reported on the respective manufacturers' website. Each beverage was tested in a laboratory using a calibrated Corning pH meter model 240, and waters were compared to the corresponding company's testified pH value. Waters were also compared and contrasted based on their process of purification. The data was then compiled and analyzed descriptively. The pH values for the tested beverages and bottled waters were found to be predominantly acidic. Ten out of the 14 beverages tested were acidic (pH<7), 2 municipal (or "tap") waters were neutral (pH=7) and 2 bottled waters were alkaline (pH>7). The majority of waters tested had a more acidic pH when tested in the lab than the value listed in their water quality reports. It is beneficial for the health care provider to be aware of the potential acidity of popular bottled drinking waters and educate patients accordingly. Copyright © 2015 The American Dental Hygienists’ Association.
Chlorpyrifos (CP) is an organophosphate (OP) pesticide that was used as a model compound to investigate the transformation of OP pesticides at low pH and in the presence of bromide and natural organic matter (NOM) under drinking water treatment conditions. Raman spectroscopy was...
Arsenic is a naturally occurring drinking water contaminant that has known adverse human health effects. The recent compilation of new health effects data prompted the U.S. Environmental Protection Agency (USEPA) to reduce the previous arsenic maximum contaminant level (MCL) of ...
Arsenic is a naturally occurring drinking water contaminant that has known adverse human health effects. The recent compilation of new health effects data prompted the U.S. Environmental Protection Agency (USEPA) to recently reduce the previous arsenic maximum contaminant level ...
Revis, N W; McCauley, P; Bull, R; Holdsworth, G
1986-01-01
The effects of drinking water containing 2 or 15 ppm chlorine (pH 6.5 and 8.5), chlorine dioxide, and monochloramine on thyroid function and plasma cholesterol were studied because previous investigators have reported cardiovascular abnormalities in experimental animals exposed to chlorinated water. Plasma thyroxine (T4) levels, as compared to controls, were significantly decreased in pigeons fed a normal or high-cholesterol diet and drinking water containing these drinking water disinfectants at a concentration of 15 ppm (the exception was chlorine at pH 6.5) for 3 months. In most of the treatment groups, T4 levels were significantly lower following the exposure to drinking water containing the 2 ppm dose. Increases in plasma cholesterol were frequently observed in the groups with lower T4 levels. This association was most evident in pigeons fed the high-cholesterol diet and exposed to these disinfectants at a dose of 15 ppm. For example, after 3 months of exposure to deionized water or water containing 15 ppm monochloramine, plasma cholesterol was 1266 +/- 172 and 2049 +/- 212 mg/dl, respectively, a difference of 783 mg/dl. The factor(s) associated with the effect of these disinfectants on plasma T4 and cholesterol is not known. We suggest however that these effects are probably mediated by products formed when these disinfectants react with organic matter in the upper gastrointestinal tract. PMID:3456597
Chandio, Tasawar Ali; Khan, Muhammad Nasiruddin; Sarwar, Anila
2015-08-01
The fluoride level in drinking water is an important parameter and has to be controlled in order to prevent dental and skeletal fluorosis. The objective of this study is to assess fluoride content and other water quality parameters in the samples taken from open wells, tube wells, and karezes of Mastung, Mangochar, and Pringabad areas of Balochistan province. A total number of 96 drinking water samples out of 150 were found unfit for human consumption. Area-wise analysis show that the samples from 39 sites from Mastung, 12 from Mangochar, and 13 from Pringabad were found in the risk of dental fluorosis of mild to severe nature. However, 12 sampling sites from Mastung, 8 from Mangochar, and 2 from Pringabad were identified as the risks of mottling and skeletal fluorosis or other bone abnormalities. The highest concentration of F(-) has been observed as 14 mg L(-1) in Mastung. Correlation analysis show that fluoride solubility in drinking water is pH dependent; and the salts of Ca(2+), Na(+), K(+), Cl(-), and SO4(2-) contribute to attain the favorable pH for dissolution of fluoride compounds in drinking water. Principal component analysis shows that the geochemical composition of the rocks is only responsible for groundwater contamination. On the basis of the results, defloridation of the identified sampling sites and continuous monitoring of drinking water at regular basis is recommended at government level to avoid further fluorosis risks.
Franks, Bernard J.; Irwin, G.A.
1981-01-01
Virtually all treated public water supplies in Florida meet the National Interim Primary and Secondary Drinking Water Regulations. These findings are based on a water-quality reconnaissance of 126 raw and treated public water supplies throughout the State during the period February through April 1980. Primary drinking water regulations maximum contaminant levels were rarely exceeded, although mercury (1 site), fluoride (2 sites), and radionuclides (3 sites) in water supplies were above established maximum contaminant levels. Dissolved solids, chloride, copper, manganese, iron, color, sulfate, and pH, were occasionally slightly in excess of the recommended maximum contaminant levels of the secondary drinking water regulation. The secondary regulations, however, pertain mainly to the esthetic quality of drinking water and not directly to public health aspects. (USGS)
[Physicochemical composition of bottled drinking water marketed in Ouagadougou (Burkina Faso)].
Some, Issa Touridomon; Banao, Issouf; Gouado, Inocent; Tapsoba, Théophile Lincoln
2009-01-01
The bottled drinking water marketed in urban areas includes natural mineral water, spring water, and treated drinking water. Their physicochemical qualities depend on the type and quantity of their components and define their safe use. Bottled water is widely consumed in Ouagadougou (Burkina Faso), and many brand names exist. Although many publications have examined the microbiological qualities of such water, no study has examined the physicochemical quality of water from Burkina Faso. This study, conducted from March 2005 through January 2006, aimed to assess the physicochemical composition of drinking water sold in Ouagadougou to facilitate better choices and use by consumers. Results showed that all the water analyzed in Ouagadougou is soft (TH < 50 ppm) or moderately soft (50 < TH < 200 ppm) and weakly mineralized (total dissolved solid content < 500 mg/L, sulfates [SO(2-)(4)] < 200 mg/L, [Ca(++)] < 150 mg/L, [Mg(2+)] < 50 mg/L, and [HCO(3)-] < 600 mg/l). Some imported water, however, is hard and highly mineralized. French standards do not set limit values for the natural mineral water parameters described above, and much of the water sold in Ouagadougou was natural mineral water. The spring water met potability standards, except for the Montagne d'Arrée brand, which had a pH value of 5.8, below the WHO standards of 6.5 < pH 8.5.
Factors affecting the water odor caused by chloramines during drinking water disinfection.
Wang, An-Qi; Lin, Yi-Li; Xu, Bin; Hu, Chen-Yan; Gao, Ze-Chen; Liu, Zhi; Cao, Tong-Cheng; Gao, Nai-Yun
2018-10-15
Chloramine disinfection is one of the most common disinfection methods in drinking water treatment. In this study, the temporal variability of water odors during monochloramine auto-decomposition was investigated to elucidate the characteristics of odor problems caused by adopting chloramine disinfection in tap water. Odor intensities and dominant odorant contributions were determined using the flavor profile analysis (FPA) and odor active value (OAV), respectively. During auto-decomposition of monochloramine, Cl 2 /N molar ratio, pH, temperature, and the presence of NOM all affected odor intensity and odor temporal variation in drinking water. In general, decreasing pH from 8.5 to 6.0 led to increasing perceived odor intensity due to the formation of dichloramine. The major odorants responsible for chlorinous odor under acidic and non-acidic conditions were dichloramine and monochloramine, respectively. Chloraminated water with a Cl 2 /N molar ratio of 0.6 or NOM concentration <2 mg-C L -1 inhibited odor intensity. Furthermore, the influence of rechlorination on chlorinous odor intensity for chloraminated water should not be neglected. The results of this study will be beneficial for the control of chlorinous odors caused by chloramine disinfection in drinking water. Copyright © 2018 Elsevier B.V. All rights reserved.
Installation Restoration Program. Phase 2. Confirmation/Quantification. Stage 1. Volume 1.
1987-04-29
Dichlorobenzene 4000.0 U.S. EPA estimate of safe levels of toxicants in drinking water for human health effects (Federal Register. 28 November 1980). (2... Plastic bottle 40C 500 ml TOC Glass bottle 40 C; H 2 So4 to pHɚ 250 al Metals Plastic bottle HNO3 to pHɚ 500 ml Volatile organics Glass vial with 40C... safe levels of toxicants in drinking water for human health effects (Federal Register. 28 November 1980). 4-3 TABLE 4-2. REGULATORY GUIDELINES OR
Drinking water and biofilm disinfection by Fenton-like reaction.
Gosselin, F; Madeira, L M; Juhna, T; Block, J C
2013-10-01
A Fenton-like disinfection process was conducted with Fenton's reagent (H2O2) at pH 3 or 5 on autochthonous drinking water biofilms grown on corroded or non-corroded pipe material. The biofilm disinfection by Fenton-like oxidation was limited by the low content of iron and copper in the biomass grown on non-corroded plumbing. It was slightly improved by spiking the distribution system with some additional iron source (soluble iron II or ferrihydrite particles appeared as interesting candidates). However successful in situ disinfection of biofilms was only achieved in fully corroded cast iron pipes using H2O2 and adjusting the pH to 5. These new results provide additional support for the use of Fenton's processes for cleaning drinking water distribution systems contaminated with biological agents or organics. Copyright © 2013 Elsevier Ltd. All rights reserved.
Comparative study on the removal technologies of 2-methylisoborneol (MIB) in drinking water.
Liang, Cun-Zhen; Wang, Dong-Sheng; Ge, Xiao-Peng; Yang, Min; Sun, Wei
2006-01-01
Removal of 2-methylisoborneol (MIB) in drinking water by ozone, powdered activated carbon (PAC), potassium permanganate and potassium ferrate was investigated. The adsorption kinetics of MIB by both wood-based and coat-based PACs show that main removal of MIB occurs within contact time of 1 h. Compared with the wood-based PAC, the coat-based PAC evidently improved the removal efficiency of MIB. The removal percentage of trace MIB at any given time for a particular carbon dosage was irrelative to the initial concentration of MIB. A series of experiments were performed to determine the effect of pH on the ozonation of MIB. The results show that pH has a significant effect on the ozonation of MIB. It is conclusive that potassium permanganate and potassium ferrate are ineffective in removing the MIB in drinking water.
Removal of trace metal contaminants from potable water by electrocoagulation
Heffron, Joe; Marhefke, Matt; Mayer, Brooke K.
2016-01-01
This study investigated the effects of four operational and environmental variables on the removal of trace metal contaminants from drinking water by electrocoagulation (EC). Removal efficiencies for five metals (arsenic, cadmium, chromium, lead and nickel) were compared under varying combinations of electrode material, post-treatment, water composition and pH. Iron electrodes out-performed aluminum electrodes in removing chromium and arsenic. At pH 6.5, aluminum electrodes were slightly more effective at removing nickel and cadmium, while at pH 8.5, iron electrodes were more effective for these metals. Regardless of electrode, cadmium and nickel removal efficiencies were higher at pH 8.5 than at pH 6.5. Post-EC treatment using membrane filtration (0.45 μm) enhanced contaminant removal for all metals but nickel. With the exception of lead, all metals exhibited poorer removal efficiencies as the ionic strength of the background electrolyte increased, particularly in the very high-solids synthetic groundwaters. Residual aluminum concentrations were lowest at pH 6.5, while iron residuals were lowest in low ionic strength waters. Both aluminum and iron residuals required post-treatment filtration to meet drinking water standards. EC with post-treatment filtration appears to effectively remove trace metal contaminants to potable water standards, but both reactor and source water parameters critically impact removal efficiency. PMID:27324564
Storing Drinking-water in Copper pots Kills Contaminating Diarrhoeagenic Bacteria
Sudha, V.B. Preethi; Ganesan, Sheeba; Pazhani, G.P.; Ramamurthy, T.; Nair, G.B.
2012-01-01
Microbially-unsafe water is still a major concern in most developing countries. Although many water-purification methods exist, these are expensive and beyond the reach of many people, especially in rural areas. Ayurveda recommends the use of copper for storing drinking-water. Therefore, the objective of this study was to evaluate the effect of copper pot on microbially-contaminated drinking-water. The antibacterial effect of copper pot against important diarrhoeagenic bacteria, including Vibrio cholerae O1, Shigella flexneri 2a, enterotoxigenic Escherichia coli, enteropathogenic E. coli, Salmonella enterica Typhi, and Salmonella Paratyphi is reported. When drinking-water (pH 7.83±0.4; source: ground) was contaminated with 500 CFU/mL of the above bacteria and stored in copper pots for 16 hours at room temperature, no bacteria could be recovered on the culture medium. Recovery failed even after resuscitation in enrichment broth, followed by plating on selective media, indicating loss of culturability. This is the first report on the effect of copper on S. flexneri 2a, enteropathogenic E. coli, and Salmonella Paratyphi. After 16 hours, there was a slight increase in the pH of water from 7.83 to 7.93 in the copper pots while the other physicochemical parameters remained unchanged. Copper content (177±16 ppb) in water stored in copper pots was well within the permissible limits of the World Health Organization. Copper holds promise as a point-of-use solution for microbial purification of drinking-water, especially in developing countries. PMID:22524115
Storing drinking-water in copper pots kills contaminating diarrhoeagenic bacteria.
Sudha, V B Preethi; Ganesan, Sheeba; Pazhani, G P; Ramamurthy, T; Nair, G B; Venkatasubramanian, Padma
2012-03-01
Microbially-unsafe water is still a major concern in most developing countries. Although many water-purification methods exist, these are expensive and beyond the reach of many people, especially in rural areas. Ayurveda recommends the use of copper for storing drinking-water. Therefore, the objective of this study was to evaluate the effect of copper pot on microbially-contaminated drinking-water. The antibacterial effect of copper pot against important diarrhoeagenic bacteria, including Vibrio cholerae O1, Shigella flexneri 2a, enterotoxigenic Escherichia coli, enteropathogenic E. coli, Salmonella enterica Typhi, and Salmonella Paratyphi is reported. When drinking-water (pH 7.83 +/- 0.4; source: ground) was contaminated with 500 CFU/mL of the above bacteria and stored in copper pots for 16 hours at room temperature, no bacteria could be recovered on the culture medium. Recovery failed even after resuscitation in enrichment broth, followed by plating on selective media, indicating loss of culturability. This is the first report on the effect of copper on S. flexneri 2a, enteropathogenic E. coli, and Salmonella Paratyphi. After 16 hours, there was a slight increase in the pH of water from 7.83 to 7.93 in the copper pots while the other physicochemical parameters remained unchanged. Copper content (177 +/- 16 ppb) in water stored in copper pots was well within the permissible limits of the World Health Organization. Copper holds promise as a point-of-use solution for microbial purification of drinking-water, especially in developing countries.
Malassa, Husam; Al-Rimawi, Fuad; Al-Khatib, Mahmoud; Al-Qutob, Mutaz
2014-10-01
Rainwater samples harvested for drinking from the west part of Hebron (south of West Bank in Palestine), the largest city in the West Bank, were analyzed for the content of different trace heavy metals (Cr, Mn, Co, Ni, Cu, Zn, Mo, Ag, Cd, Bi, and Pb) by inductively coupled plasma mass spectrometry (ICP-MS). This study was conducted to determine the water quality of harvested rainwater used for drinking of south West Bank (case study, Hebron area). A total of 44 water samples were collected in November 2012 from 44 house cisterns used to collect rainwater from the roofs of houses. The samples were analyzed for their pH, temperature, electrical conductivity, total dissolved solids, and different heavy metal contents. The pH of all water samples was within the US Environmental Protection Agency limits (6.5-8.5), while some water samples were found to exceed the allowed WHO limit for total dissolved solids (TDSs) in drinking water. Results showed that concentrations of the heavy metals vary significantly between the 44 samples. Results also showed that the concentration of five heavy metals (Cr, Mn, Ni, Ag, and Pb) is higher than the WHO limits for these heavy metals in drinking water. Overall, our findings revealed that harvested rainwater used for drinking of this part of south West Bank is contaminated with heavy metals that might affect human health.
Lake Recovery Through Reduced Sulfate Deposition: A New Paradigm for Drinking Water Treatment.
Anderson, Lindsay E; Krkošek, Wendy H; Stoddart, Amina K; Trueman, Benjamin F; Gagnon, Graham A
2017-02-07
This study examined sulfate deposition in Nova Scotia from 1999 to 2015, and its association with increased pH and organic matter in two protected surface water supplies (Pockwock Lake and Lake Major) located in Halifax, Nova Scotia. The study also examined the effect of lake water chemistry on drinking water treatment processes. Sulfate deposition in the region decreased by 68%, whereas pH increased by 0.1-0.4 units over the 16-year period. Average monthly color concentrations in Pockwock Lake and Lake Major increased by 1.7 and 3.8×, respectively. Accordingly, the coagulant demand increased by 1.5 and 3.8× for the water treatment plants supplied by Pockwock Lake and Lake Major. Not only was this coagulant increase costly for the utility, it also resulted in compromised filter performance, particularly for the direct-biofiltration plant supplied by Pockwock Lake that was found to already be operating at the upper limit of the recommended direct filtration thresholds for color, total organic carbon and coagulant dose. Additionally, in 2012-2013 geosmin occurred in Pockwock Lake, which could have been attributed to reduced sulfate deposition as increases in pH favor more diverse cyanobacteria populations. Overall, this study demonstrated the impact that ambient air quality can have on drinking water supplies.
Systemic and local effects of long-term exposure to alkaline drinking water in rats
Merne, Marina ET; Syrjänen, Kari J; Syrjänen, Stina M
2001-01-01
Alkaline conditions in the oral cavity may be caused by a variety of stimuli, including tobacco products, antacids, alkaline drinking water or bicarbonate toothpaste. The effects of alkaline pH on oral mucosa have not been systematically studied. To assess the systemic (organ) and local (oral mucosal) effects of alkalinity, drinking water supplemented with Ca(OH)2 or NaOH, with pH 11.2 or 12 was administered to rats (n = 36) for 52 weeks. Tissues were subjected to histopathological examination; oral mucosal biopsy samples were also subjected to immunohistochemical (IHC) analyses for pankeratin, CK19, CK5, CK4, PCNA, ICAM-1, CD44, CD68, S-100, HSP 60, HSP70, and HSP90. At completion of the study, animals in the study groups had lower body weights (up to 29% less) than controls despite equal food and water intake, suggesting a systemic response to the alkaline treatment. The lowest body weight was found in rats exposed to water with the highest pH value and starting the experiment when young (6 weeks). No histological changes attributable to alkaline exposure occurred in the oral mucosa or other tissues studied. Alkaline exposure did not affect cell proliferation in the oral epithelium, as shown by the equal expression of PCNA in groups. The up-regulation of HSP70 protein expression in the oral mucosa of rats exposed to alkaline water, especially Ca(OH)2 treated rats, may indicate a protective response. Intercellular adhesion molecule-1 (ICAM-1) positivity was lost in 6/12 rats treated with Ca(OH)2 with pH 11.2, and loss of CD44 expression was seen in 3/6 rats in both study groups exposed to alkaline water with pH 12. The results suggest that the oral mucosa in rats is resistant to the effects of highly alkaline drinking water. However, high alkalinity may have some unknown systemic effects leading to growth retardation, the cause of which remains to be determined. PMID:11493345
Assessment of Drinking Water Quality from Bottled Water Coolers
FARHADKHANI, Marzieh; NIKAEEN, Mahnaz; AKBARI ADERGANI, Behrouz; HATAMZADEH, Maryam; NABAVI, Bibi Fatemeh; HASSANZADEH, Akbar
2014-01-01
Abstract Background Drinking water quality can be deteriorated by microbial and toxic chemicals during transport, storage and handling before using by the consumer. This study was conducted to evaluate the microbial and physicochemical quality of drinking water from bottled water coolers. Methods A total of 64 water samples, over a 5-month period in 2012-2013, were collected from free standing bottled water coolers and water taps in Isfahan. Water samples were analyzed for heterotrophic plate count (HPC), temperature, pH, residual chlorine, turbidity, electrical conductivity (EC) and total organic carbon (TOC). Identification of predominant bacteria was also performed by sequence analysis of 16S rDNA. Results The mean HPC of water coolers was determined at 38864 CFU/ml which exceeded the acceptable level for drinking water in 62% of analyzed samples. The HPC from the water coolers was also found to be significantly (P < 0.05) higher than that of the tap waters. The statistical analysis showed no significant difference between the values of pH, EC, turbidity and TOC in water coolers and tap waters. According to sequence analysis eleven species of bacteria were identified. Conclusion A high HPC is indicative of microbial water quality deterioration in water coolers. The presence of some opportunistic pathogens in water coolers, furthermore, is a concern from a public health point of view. The results highlight the importance of a periodic disinfection procedure and monitoring system for water coolers in order to keep the level of microbial contamination under control. PMID:26060769
Chebeir, Michelle; Liu, Haizhou
2018-05-17
The occurrence of chromium (Cr) as an inorganic contaminant in drinking water is widely reported. One source of Cr is its accumulation in iron-containing corrosion scales of drinking water distribution systems as Cr(III)-Fe(III) hydroxide, i.e., FexCr(1-x)(OH)3(s), where x represents the Fe(III) molar content and typically varies between 0.25 and 0.75. This study investigated the kinetics of inadvertent hexavalent chromium Cr(VI) formation via the oxidation of FexCr(1-x)(OH)3(s) by chlorine as a residual disinfectant in drinking water, and examined the impacts of Fe(III) content and drinking water chemical parameters including pH, bromide and bicarbonate on the rate of Cr(VI) formation. Data showed that an increase in Fe(III) molar content resulted in a significant decrease in the stoichiometric Cr(VI) yield and the rate of Cr(VI) formation, mainly due to chlorine decay induced by Fe(III) surface sites. An increase in bicarbonate enhanced the rate of Cr(VI) formation, likely due to the formation of Fe(III)-carbonato surface complexes that slowed down the scavenging reaction with chlorine. The presence of bromide significantly accelerated the oxidation of FexCr(1-x)(OH)3(s) by chlorine, resulting from the catalytic effect of bromide acting as an electron shuttle. A higher solution pH between 6 and 8.5 slowed down the oxidation of Cr(III) by chlorine. These findings suggested that the oxidative conversion of chromium-containing iron corrosion products in drinking water distribution systems can lead to the occurrence of Cr(VI) at the tap, and the abundance of iron, and a careful control of pH, bicarbonate and bromide levels can assist the control of Cr(VI) formation.
Roux, S; Baudoin, C; Boute, D; Brazier, M; De La Guéronniere, V; De Vernejoul, M C
2004-01-01
To compare the effects of 2 drinking waters containing similar calcium (Ca) concentration in order to analyze the role of ions other than Ca on bone metabolism. These mineral drinking-waters differed by their mineral composition primarily concerning the concentration of bicarbonate (HCO3-), high in the HB, and sulfate, high in HS water. Of 60 included women, 39 completed the study. Patients were randomly assigned to an intake of 1 liter per day of mineral water HB or HS for 28 d, followed by cross-over to the alternative drinking-water for a further 28 d. At baseline and after each period of one month, Ca metabolism parameters, acid-base status, and bone remodeling markers were measured. Changes in Ca metabolism were significant in the HB group where the ionized Ca increased and the PTH decreased. Serum pH showed a similar increase whatever the used drinking water compared to baseline. In the HB group, significant increase in urine pH, and significant decrease in AT-HCO3- and NH4+ were observed. Bone resorption markers, urinary CTx/Cr, Pyr/Cr, and D-Pyr/Cr, significantly decreased in the HB group compared to baseline, and were not significantly modified in the HS group. These results showed a beneficial effect of the bicarbonaterich HB water on bone metabolism. This may account for a better bioavailability of the Ca, a greater alkalinization, and a larger decrease in PTH level secondary to a higher ionized Ca level. The higher content of silica in HB water may have also participated to the positive action on bone balance that was observed. In this short term study, these data underlined the potential role of the mineral drinking water composition on bone metabolism.
Hua, Wenyi; Bennett, Erin R; Letcher, Robert J
2006-07-01
The depletion and degradation of pharmacologically active compounds (PhACs) and pesticides as a function of ozonation in drinking water treatment processes is not well studied. The A.H. Weeks drinking water treatment plant (DWTP) serves the City of Windsor, Ontario Canada, and incorporates ozone treatment into the production of drinking water. This DWTP also operates a real-time, scaled down pilot plant, which has two parallel streams, conventional and ozone plus conventional treatments. In this study water samples were collected from key points in the two streams of the pilot plant system to determine the depletion and influence of seasonal changes in water processing parameters on eighteen major PhACs (and metabolites) and seven s-triazines herbicides. However, only carbamazepine (antiepileptic), caffeine (stimulant), cotinine (metabolite of nicotine) and atrazine were consistently detectable in the raw water intake (low to sub-ng/L level). Regardless of the seasonality, the flocculation-coagulation and dual media filtration steps without ozone treatment resulted in no decrease in analyte concentrations, while decreases of 66-100% (undetectable, method detection limits 0.05-1 ng/L) of the analyte concentrations were observed when ozone treatment was part of the water processing. These findings demonstrate that ozone treatment is highly effective in depleting carbamazepine, caffeine, cotinine, and atrazine, and thus is highly influential in the fate of these compounds in drinking water treatment regardless of the seasonal time frame. Currently very few Canadian DWTPs incorporate ozonation into conventional treatment, which suggests that human exposure to these compounds via drinking water consumption may be an issue in affected communities.
Dissolution of Enamel on Exposure to Various Commercial Beverages Available in India.
Panda, Abikshyeet; Ghosh, Bikramaditya; Pal, Imon; Kumar, Vijay; Bhuyan, Lipsa; Dash, Kailash C
2017-11-01
The study was aimed to estimate the pH of the commonly available soft drinks in the Indian market and to assess the detrimental effects of the juices and beverages on the tooth surface by measuring the weight loss of the tooth sample. The study was done with eight different types of commercially available carbonated drink and fruit juices available in the Indian market among which six were carbonated drinks and two were juices. Carbonated drinks experimented were Coca-Cola, Pepsi, Fanta, Mirinda, 7Up and Sprite, and two fruit juices were Tropicana orange juice and real orange juice. Ten different bottles from each category were obtained, and the pH was estimated. Each of the beverages was divided into batch of 10 containers containing the tooth sample. Weight of all samples was measured at 24, 48, 72, 96, and 120 hours with subsequently changing each solution at an interval of 24 hours. The mean pH of the beverages was found ranging from 2.13 ± 0.02 in Pepsi to 3.41 ± 0.02 in Tropicana on opening. The mean pH of water was found to be 6.98 ± 0.01. Among carbonated drinks, the mean weight loss after 24 hours was highest in Coca-Cola and least in 7Up. Tropicana fruit juice had a higher tooth loss than real orange juices. When compared with water, the tooth loss was significantly higher in Coca-Cola after all specified time (hours). The pH of both carbonated drinks and fruit juices was below the critical pH. The weight loss was also seen after every 24 hours in all the carbonated drinks and beverages. The study showed that these commercial beverages are harmful to the tooth structures, and hence, the health professionals play a major role in educating the population about its effects and advising them to use these products precisely. The change in lifestyle has increased the demand of soft drinks and artificial juice in Indian market. The use of these carbonated drinks and fruit juices causes damage to the tooth structure in all ages, especially in young mass. Our study provides an idea about the deleterious effects of these commercial drinks on dental hard tissues.
THE EFFECT OF PH AND DISSOLVED INORGANIC CARBON ON THE PROPERTIES OF IRON COLLOIDAL SUSPENSIONS
Discolored water resulting from suspended iron particles is a relatively common drinking water consumer complaint. These particles result from the oxygenation of Fe(II), and this study shows that pH and dissolved inorganic carbon (DIC) have important effects on their properties....
Free Available Chlorine Disinfection Criteria for Fixed Army Installation Primary Drinking Water
1981-12-01
Buffered Water with Fuivic Acid (5 C.U.) at pH 9 and 60C ............................................ 6. FAC Disinfection of f 2 Coliphage in Buffered Water ...with and without 250 mg/L -Ca+ at pH 5, 7, and 9 and 6°C ............... 31 10. FAC Disinfection of f 2 Coliphage in Water Containing 5 NTU Bentonite2...rngi L Ca+ 2 at pH- 5, 7, and q and 60C ...... ........................ 34 13. FAC Disinfection of f 2 Coliphage in Borate-Buffered Water with 250 mg
Paired-City Study to Determine the Contribution of Source Water Type to the Endemic Level of Microbial Disease
F Frost PhD, T Kunde MPH, L Harter PhD, T Muller MS, GF Craun PE MPH, RL Calderon MPH PhD
ABSTRACT
Context: The effectiveness of current drinking...
Health Effects of Chronic Exposure to Arsenic via Drinking Water in Inner Mongolia: V. Biomarker Studies - a Pilot Study
Michael T. Schmitt, M.S.P.H., Judy S. Mumford, Ph.D., National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agenc...
Factors influencing disinfection by-products formation in drinking water of six cities in China.
Ye, Bixiong; Wang, Wuyi; Yang, Linsheng; Wei, Jianrong; E, Xueli
2009-11-15
Based on the measured chemical and physical data in drinking water from six cities in China, the factors including total organic carbon (TOC), ultraviolet absorbance at 254 nm (UV(254)), pH, applied chlorine dosage, temperature, concentrations of bromide ion and several chemical elements which possibly affect the formation of trihalomethane (THM) and haloacetic acid (HAA) have been studied. The results showed that: in all factors, TOC and UV(254) have definite correlations with total THM, but have nonsignificant relationships with total HAA. In the studied pH range of 6.5-8.5 for drinking water, the total THM concentration increased with the increasing of pH value, but the total HAA concentration slightly decreased. A low but significant relationship (r=0.26, p<0.01) occurred between total THM and applied chlorine dosage. Similar relationship (r=0.21, p<0.01) was found between total HAA and applied chlorine dosage. When the water temperature was low, the variation of THMs and HAAs was little, but in warmer water, the concentration of THMs and HAAs varied quickly. The extent of bromine incorporation into the DBPs increases with increasing bromide ion concentration. Based on the effect of chemical elements for the DBPs remove effect, the polyferric chloride could be a preferred flocculant agent in waterworks.
García-Ávila, Fernando; Ramos-Fernández, Lía; Pauta, Damián; Quezada, Diego
2018-06-01
This document presents the physical-chemical parameters with the objective of evaluating and analyzing the drinking water quality in the Azogues city applying the water quality index (WQI) and to research the water stability in the distribution network using corrosion indexes. Thirty samples were collected monthly for six months throughout the drinking water distribution network; turbidity, temperature, electric conductivity, pH, total dissolved solids, total hardness, calcium, magnesium, alkalinity, chlorides, nitrates, sulfates and phosphates were determined; the physical-chemical parameters were measured using standard methods. The processed data revealed that the average values of LSI, RSI and PSI were 0.5 (±0.34), 6.76 (±0.6), 6.50 (±0.99) respectively. The WQI calculation indicated that 100% of the samples are considered excellent quality water. According to the Langelier, Ryznar and Pukorius indexes showed that drinking water in Azogues is corrosive. The quality of drinking water according to the WQI is in a good and excellent category.
Ander, E L; Watts, M J; Smedley, P L; Hamilton, E M; Close, R; Crabbe, H; Fletcher, T; Rimell, A; Studden, M; Leonardi, G
2016-12-01
Tap water from 497 properties using private water supplies, in an area of metalliferous and arsenic mineralisation (Cornwall, UK), was measured to assess the extent of compliance with chemical drinking water quality standards, and how this is influenced by householder water treatment decisions. The proportion of analyses exceeding water quality standards were high, with 65 % of tap water samples exceeding one or more chemical standards. The highest exceedances for health-based standards were nitrate (11 %) and arsenic (5 %). Arsenic had a maximum observed concentration of 440 µg/L. Exceedances were also high for pH (47 %), manganese (12 %) and aluminium (7 %), for which standards are set primarily on aesthetic grounds. However, the highest observed concentrations of manganese and aluminium also exceeded relevant health-based guidelines. Significant reductions in concentrations of aluminium, cadmium, copper, lead and/or nickel were found in tap waters where households were successfully treating low-pH groundwaters, and similar adventitious results were found for arsenic and nickel where treatment was installed for iron and/or manganese removal, and successful treatment specifically to decrease tap water arsenic concentrations was observed at two properties where it was installed. However, 31 % of samples where pH treatment was reported had pH < 6.5 (the minimum value in the drinking water regulations), suggesting widespread problems with system maintenance. Other examples of ineffectual treatment are seen in failed responses post-treatment, including for nitrate. This demonstrates that even where the tap waters are considered to be treated, they may still fail one or more drinking water quality standards. We find that the degree of drinking water standard exceedances warrant further work to understand environmental controls and the location of high concentrations. We also found that residents were more willing to accept drinking water with high metal (iron and manganese) concentrations than international guidelines assume. These findings point to the need for regulators to reinforce the guidance on drinking water quality standards to private water supply users, and the benefits to long-term health of complying with these, even in areas where treated mains water is widely available.
Dynamics of Chromium(VI) Removal from Drinking Water by Iron Electrocoagulation.
Pan, Chao; Troyer, Lyndsay D; Catalano, Jeffrey G; Giammar, Daniel E
2016-12-20
The potential for new U.S. regulations for Cr(VI) in drinking water have spurred strong interests in improving technologies for Cr(VI) removal. This study examined iron electrocoagulation for Cr(VI) removal at conditions directly relevant to drinking water treatment. Cr(VI) is chemically reduced to less soluble Cr(III) species by the Fe(II) produced from an iron anode, and XANES spectra indicate that the Cr is entirely Cr(III) in solid-phases produced in electrocoagulation. The dynamics of Cr(VI) removal in electrocoagulation at pH 6 and pH 8 at both oxic and anoxic conditions can be described by a new model that incorporates Fe(II) release from the anode and heterogeneous and homogeneous reduction of Cr(VI) by Fe(II). Heterogeneous Cr(VI) reduction by adsorbed Fe(II) was critical to interpreting Cr(VI) removal at pH 6, and the Fe- and Cr-containing EC product was found to catalyze the redox reaction. Dissolved oxygen (DO) did not observably inhibit Cr(VI) removal because Fe(II) reacts with DO more slowly than it does with Cr(VI), and Cr(VI) removal was faster at higher pH. Even in the presence of common groundwater solutes, iron electrocoagulation lowered Cr(VI) concentrations to levels well below California's 10 μg/L.
Removing lead in drinking water with activated carbon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, R.M.; Kuennen, R.W.
A point-of-use (POU) granular activated carbon (GAC) fixed bed adsorber (FBA) was evaluated for reduction of soluble and insoluble lead from drinking water. Some of the factors which affect lead removal by GAC were evaluated, such as carbon type, solution pH, and a limited amount of work on competitive interactions. The design criteria for lead reduction by a POU device are also addressed. Minicolumns were used to evaluate the capacity of carbon for lead under a variety of conditions. The importance of surface chemistry of the carbon and the relationship with the pH of the water for lead reduction wasmore » demonstrated. Results indicate that a properly designed POU-GAC-FBA can reduce lead in drinking water to below the EPA action level of 15 ppb while being tested under a variety of conditions as specified under the National Sanitation Foundation (NSF) International Standard 53 test protocol. 37 refs., 9 figs., 1 tab.« less
A Framework for Developing pH Guidance for Drinking Water Treatment and Distribution - abstract
Worldwide, many agencies have historically limited the range of pH values of distributed water between 6.5 and 8.5. Although this range is not a regulatory limit, many jurisdictions have used it as one. In some cases, the range has been a barrier to optimizing distribution syste...
A Framework for Developing pH Guidance for Drinking Water Treatment and Distribution
Worldwide, many agencies have historically limited the range of pH values of distributed water between 6.5 and 8.5. Although this range is not a regulatory limit, many jurisdictions have used it as one. In some cases, the range has been a barrier to optimizing distribution syste...
Relationship Between Redox Potential, Disinfectant, and pH in Drinking Water
This work will examine the effects of pH and oxidant type (chlorine [Cl2], oxygen [O2], hydrogen peroxide [H2O2], monochloramine [MCA], and potassium permanganate [KMnO4]) and concentration (mg/L) on the redox potential of buffered test water. Also, the effects of incrementing ir...
NASA Astrophysics Data System (ADS)
Gorai, A. K.; Hasni, S. A.; Iqbal, Jawed
2016-11-01
Groundwater is the most important natural resource for drinking water to many people around the world, especially in rural areas where the supply of treated water is not available. Drinking water resources cannot be optimally used and sustained unless the quality of water is properly assessed. To this end, an attempt has been made to develop a suitable methodology for the assessment of drinking water quality on the basis of 11 physico-chemical parameters. The present study aims to select the fuzzy aggregation approach for estimation of the water quality index of a sample to check the suitability for drinking purposes. Based on expert's opinion and author's judgement, 11 water quality (pollutant) variables (Alkalinity, Dissolved Solids (DS), Hardness, pH, Ca, Mg, Fe, Fluoride, As, Sulphate, Nitrates) are selected for the quality assessment. The output results of proposed methodology are compared with the output obtained from widely used deterministic method (weighted arithmetic mean aggregation) for the suitability of the developed methodology.
Trihalomethane hydrolysis in drinking water at elevated temperatures.
Zhang, Xiao-Lu; Yang, Hong-Wei; Wang, Xiao-Mao; Karanfil, Tanju; Xie, Yuefeng F
2015-07-01
Hydrolysis could contribute to the loss of trihalomethanes (THMs) in the drinking water at elevated temperatures. This study was aimed at investigating THM hydrolysis pertaining to the storage of hot boiled water in enclosed containers. The water pH value was in the range of 6.1-8.2 and the water temperature was varied from 65 to 95 °C. The effects of halide ions, natural organic matter, and drinking water matrix were investigated. Results showed that the hydrolysis rates declined in the order following CHBrCl2 > CHBr2Cl > CHBr3 > CHCl3. THM hydrolysis was primarily through the alkaline pathway, except for CHCl3 in water at relatively low pH value. The activation energies for the alkaline hydrolysis of CHCl3, CHBrCl2, CHBr2Cl and CHBr3 were 109, 113, 115 and 116 kJ/mol, respectively. No hydrolysis intermediates could accumulate in the water. The natural organic matter, and probably other constituents, in drinking water could substantially decrease THM hydrolysis rates by more than 50%. When a drinking water was at 90 °C or above, the first order rate constants for THM hydrolysis were in the magnitude of 10(-2)‒10(-1) 1/h. When the boiled real tap water was stored in an enclosed container, THMs continued increasing during the first few hours and then kept decreasing later on due to the competition between hydrolysis and further formation. The removal of THMs, especially brominated THMs, by hydrolysis would greatly reduce one's exposure to disinfection by-products by consuming the boiled water stored in enclosed containers. Copyright © 2015 Elsevier Ltd. All rights reserved.
Oh, Jin-Aa; Shin, Ho-Sang
2015-05-22
An ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed to determine the level of hydrazine in drinking water. The method is based on the derivatization of hydrazine with naphthalene-2,3-dicarboxaldehyde (NDA) in water. The optimum conditions for UPLC-MS/MS detection were determined as follows: derivatization reagent dosage, 50mg/L of NDA; pH 2; and reaction time, 1min; room temperature. The formed derivative was injected into an LC system without extraction or purification procedures. Under the established conditions, the method was used to detect hydrazine in raw drinking water and chlorinated drinking water. The limits of detection and quantification for hydrazine in drinking water were 0.003μg/L and 0.01μg/L, respectively. The accuracy was in the range of 97-104%, and precision, expressed as relative standard deviation, was less than 9% in drinking water. Hydrazine was detected at a concentration of 0.13μg/L in one sample among 24 raw drinking water samples and in a range of 0.04-0.45μg/L in three samples among 24 chlorinated drinking water samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Johnson, B M; Gaudreau, M-C; Al-Gadban, M M; Gudi, R; Vasu, C
2015-01-01
Environmental factors, including microbes and diet, play a key role in initiating autoimmunity in genetically predisposed individuals. However, the influence of gut microflora in the initiation and progression of systemic lupus erythematosus (SLE) is not well understood. In this study, we have examined the impact of drinking water pH on immune response, disease incidence and gut microbiome in a spontaneous mouse model of SLE. Our results show that (SWR × NZB) F1 (SNF1) mice that were given acidic pH water (AW) developed nephritis at a slower pace compared to those on neutral pH water (NW). Immunological analyses revealed that the NW-recipient mice carry relatively higher levels of circulating autoantibodies against nuclear antigen (nAg) as well as plasma cells. Importantly, 16S rRNA gene-targeted sequencing revealed that the composition of gut microbiome is significantly different between NW and AW groups of mice. In addition, analysis of cytokine and transcription factor expression revealed that immune response in the gut mucosa of NW recipient mice is dominated by T helper type 17 (Th17) and Th9-associated factors. Segmented filamentous bacteria (SFB) promote a Th17 response and autoimmunity in mouse models of arthritis and multiple sclerosis. Interestingly, however, not only was SFB colonization unaffected by the pH of drinking water, but also SFB failed to cause a profound increase in Th17 response and had no significant effect on lupus incidence. Overall, these observations show that simple dietary deviations such as the pH of drinking water can influence lupus incidence and affect the composition of gut microbiome. PMID:25703185
NASA Astrophysics Data System (ADS)
Brima, Eid I.
2017-03-01
Basic information about major elements in bottled drinking water is provided on product labels. However, more information is needed about trace elements in bottled drinking water and other sources of drinking water to assess its quality and suitability for drinking. This is the first such study to be carried out in Najran city in the Kingdom of Saudi Arabia (KSA). A total of 48 water samples were collected from different sources comprising wells, stations for drinking water treatment and bottled drinking water (purchased from local supermarkets). The concentrations of 24 elements [aluminum (Al), arsenic (As), barium (Ba), calcium (Ca), cadmium (Cd), cobalt (Co), chromium (Cr), cesium (Cs), copper (Cu), iron (Fe), potassium (K), magnesium (Mg), manganese (Mn), molydenum (Mo), sodium (Na), nickel (Ni), lead (Pb), rubidium (Rb), selenium (Se), strontium (Sr), titanium (Ti), vanadium (V), uranium (U) and zinc (Zn)] were determined by inductively coupled plasma-mass spectrometry (ICP-MS). Anions (chlorine (Cl-), fluoride (F-), sulfate (SO4 2-) and nitrate (NO3 -) were determined by ion chromatography (IC). Electrical conductivity (EC), pH, total dissolved salts (TDS) and total hardness (TH) were also measured. All parameters of treated drinking water and bottled drinking water samples did not exceed the World Health Organization (WHO) 2008, US Environmental Protection Agency (USEPA 2009), Gulf Cooperation Council Standardization Organization (GSO) 2008 and Saudi Arabian Standards Organization (SASO) 1984 recommended guidelines. It is noteworthy that groundwater samples were not used for drinking purpose. This study is important to raise public knowledge about drinking water, and to promote public health.
[Drinking water quality indices in the Orenburg Region].
Golubkina, N A; Burtseva, T I; Gatsenko, A Iu
2011-01-01
The quality of underground waters from 22 areas of the Orenburg Region was studied from the values of mineralization and pH and the amounts of the ions of Se, Cl, Pb, Cd, F, and phenols. High fluorine ion concentrations (5-12 mg/l), high mineralization (> 1 g/l), and alkalinity (pH > 8.0) were shown to be human risk factors in a considerable number of areas. Districts with cadmium, lead, and phenol ion-polluted underground waters were identified. The amount of selenium in the drinking water (18-319 ng/l) and in the sera of donors in Orenburg, Buzuluk, and Orsk (86-97 microg/l) fails to support the data available in the literature on environmental selenium pollution and is comparable with the relevant data for the Moscow Region.
Corrosion and scaling potential in drinking water distribution system of tabriz, northwestern iran.
Taghipour, Hassan; Shakerkhatibi, Mohammad; Pourakbar, Mojtaba; Belvasi, Mehdi
2012-01-01
This paper discusses the corrosion and scaling potential of Tabriz drinking water distribution system in Northwest of Iran. Internal corrosion of piping is a serious problem in drinking water industry. Corrosive water can cause intrusion of heavy metals especially lead in to water, therefore effecting public health. The aim of this study was to determine corrosion and scaling potential in potable water distribution system of Tabriz during the spring and summer in 2011. This study was carried out using Langlier Saturation Index, Ryznar Stability Index, Puckorius Scaling Index, and Aggressiveness indices. Eighty samples were taken from all over the city within two seasons, spring, and summer. Related parameters including temperature, pH, total dissolved solids, calcium hardness, and total alkalinity in all samples were measured in laboratory according to standard method manual. For the statistical analysis of the results, SPSS software (version 11.5) was used The mean and standard deviation values of Langlier, Ryznar, Puckorius and Aggressiveness Indices were equal to -0.68 (±0.43), 8.43 (±0.55), 7.86 (±0.36) and 11.23 (±0.43), respectively. By survey of corrosion indices, it was found that Tabriz drinking water is corrosive. In order to corrosion control, it is suggested that laboratorial study with regard to the distribution system condition be carried out to adjust effective parameters such as pH.
Surveying drinking water quality (Balikhlou River, Ardabil Province, Iran)
NASA Astrophysics Data System (ADS)
Aalipour erdi, Mehdi; Gasempour niari, Hassan; Mousavi Meshkini, Seyyed Reza; Foroug, Somayeh
2018-03-01
Considering the importance of Balikhlou River as one of the most important water sources of Ardabil, Nir and Sarein cities, maintaining water quality of this river is the most important goals in provincial and national levels. This river includes a wide area that provides agricultural, industrial and drinking water for the residents. Thus, surveying the quality of this river is important in planning and managing of region. This study examined the quality of river through eight physicochemical parameters (SO4, No3, BOD5, TDS, turbidity, pH, EC, COD) in two high- and low-water seasons by international and national standards in 2013. For this purpose, a review along the river has been done in five stations using t test and SPSS software. Model results showed that the amount difference in TDS and EC with WHO standards, and TDS rates with Iran standards in low-water seasons, pH and EC with WHO standards in high-water seasons, is not significant in high-water season; but for pH and SO4 parameters, turbidity and NO3 in both standards and EC value with WHO standard in low-water season and pH, EC, SO4 parameters and turbidity and NO3 in high-water season have significant difference from 5 to 1%, this shows the ideal limit and lowness of parameters for different usage.
Bacterial community structure in the drinking water microbiome is governed by filtration processes.
Pinto, Ameet J; Xi, Chuanwu; Raskin, Lutgarde
2012-08-21
The bacterial community structure of a drinking water microbiome was characterized over three seasons using 16S rRNA gene based pyrosequencing of samples obtained from source water (a mix of a groundwater and a surface water), different points in a drinking water plant operated to treat this source water, and in the associated drinking water distribution system. Even though the source water was shown to seed the drinking water microbiome, treatment process operations limit the source water's influence on the distribution system bacterial community. Rather, in this plant, filtration by dual media rapid sand filters played a primary role in shaping the distribution system bacterial community over seasonal time scales as the filters harbored a stable bacterial community that seeded the water treatment processes past filtration. Bacterial taxa that colonized the filter and sloughed off in the filter effluent were able to persist in the distribution system despite disinfection of finished water by chloramination and filter backwashing with chloraminated backwash water. Thus, filter colonization presents a possible ecological survival strategy for bacterial communities in drinking water systems, which presents an opportunity to control the drinking water microbiome by manipulating the filter microbial community. Grouping bacterial taxa based on their association with the filter helped to elucidate relationships between the abundance of bacterial groups and water quality parameters and showed that pH was the strongest regulator of the bacterial community in the sampled drinking water system.
[Effect on iron release in drinking water distribution systems].
Niu, Zhang-bin; Wang, Yang; Zhang, Xiao-jian; Chen, Chao; Wang, Sheng-hui
2007-10-01
Batch-scale experiments were done to quantitatively study the effect of inorganic chemical parameters on iron release in drinking water distribution systems. The parameters include acid-base condition, oxidation-reduction condition, and neutral ion condition. It was found that the iron release rate decreased with pH, alkalinity, the concentration of dissolved oxygen increasing, and the iron release rate increased with the concentration of chloride increasing. The theoretical critical formula of iron release rate was elucidated. According to the formula, the necessary condition for controlling iron release is that pH is above 7.6, the concentration of alkalinity and dissolved oxygen is more than 150 mg/L and 2 mg/L, and the concentration of chloride is less than 150 mg/L of distributed water.
The integration of nutrients, cyanobacterial biomass and ...
This presentation is an integrated evaluation of cyanobacterial growth and toxin production, from a reservoir through drinking water treatment - where biomass and toxin removal are achieved. Data is generated by a variety of methods: online instrumentation for chlorophyll, dissolved oxygen, temperature and pH; enzyme linked immune substrate (ELISA) and liquid chromatography/mass spectrometric (LC/MS) methods for toxin analysis; microscopic methods for species identification; quantitative PCR methods for species identification; and bench-scale engineering studies for removal of toxins and biomass through drinking water treatment. This presentation is an integrated evaluation of cyanobacterial growth and toxin production, from a reservoir through drinking water treatment. The content will be useful for EPA regional office staff, state primacy personnel, state and local health personnel, drinking water treatment managers and consulting engineers.
Cuoco, Emilio; Tedesco, Dario; Poreda, Robert J; Williams, Jeremy C; De Francesco, Stefano; Balagizi, Charles; Darrah, Thomas H
2013-01-15
On January 2, 2010 the Nyamuragira volcano erupted lava fountains extending up to 300 m vertically along an ~1.5 km segment of its southern flank cascading ash and gas on nearby villages and cities along the western side of the rift valley. Because rain water is the only available potable water resource within this region, volcanic impacts on drinking water constitutes a major potential hazard to public health within the region. During the 2010 eruption, concerns were expressed by local inhabitants about water quality and feelings of physical discomfort (e.g. nausea, bloating, indigestion, etc.) after consuming rain water collected after the eruption began. We present the elemental and ionic chemistry of drinking water samples collected within the region on the third day of the eruption (January 5, 2010). We identify a significant impact on water quality associated with the eruption including lower pH (i.e. acidification) and increases in acidic halogens (e.g. F(-) and Cl(-)), major ions (e.g. SO(4)(2-), NH(4)(+), Na(+), Ca(2+)), potentially toxic metals (e.g. Al(3+), Mn(2+), Cd(2+), Pb(2+), Hf(4+)), and particulate load. In many cases, the water's composition significantly exceeds World Health Organization (WHO) drinking water standards. The degree of pollution depends upon: (1) ash plume direction and (2) ash plume density. The potential negative health impacts are a function of the water's pH, which regulates the elements and their chemical form that are released into drinking water. Copyright © 2012 Elsevier B.V. All rights reserved.
Electrolytes, sugar, calories, osmolarity and pH of beverages and coconut water.
Chavalittamrong, B; Pidatcha, P; Thavisri, U
1982-09-01
Oral rehydration has been recommended in patients with diarrhoea to replace fluid loss from the gastrointestinal tract and reduce the need for intravenous therapy. Beverages (i.e. Cola, Sprite etc.) and coconut water may be used as sources of oral fluid when glucose-electrolyte solution is not available. To evaluate the usefulness and effectiveness of these soft drinks, the basic data such as electrolytes, sugar, calories, osmolarity and pH were determined. The electrolytes of the beverages were significantly lower (p less than 0.001) than the coconut water, especially potassium. The osmolarity of the beverages, which were 693 mOsm/l, was significantly higher (p less than 0.001) than the coconut water (288 mOsm/l); pH of the beverages (3.1) was more acidic (p less than 0.001) than the coconut water (5.4). While the sugar content of the beverages, which were 8.7 gm/dl, was significantly higher (p less than 0.001) than the coconut water (1.1 gm/dl). On comparison, all brands of beverages would give more calories than the coconut water however the coconut water would be absorbed more easily than any brand of soft drink beverage.
NASA Astrophysics Data System (ADS)
Harun, M. A. Y. A.; Kabir, G. M. M.
2013-03-01
This study investigates existing water supply scenario, and evaluates the performance of pond sand filter (PSF) in meeting drinking water demand of Dacope Upazila in southwest coastal Bangladesh. Questionnaire survey to the villagers reveals that PSF is the major drinking water sources (38 %) of the study area followed by tubewells (30.4 %), rainwater harvesting (RWH) systems (12.6 %), ponds (10.3 %) and others (8.7 %). The spot test and laboratory analysis show that odour, colour, pH, dissolved oxygen, hardness, calcium, magnesium, nitrate, sulphate and phosphate of the PSFs water meet Bangladesh standard. The efficiency of PSF in reducing total dissolved solids (TDS) (15 %) and potassium (8.2 %) is not enough to meet the standard of 20 % PSFs for TDS and one-third PSFs for potassium. The study proves that PSF is unable to remove coliform bacteria by 100 % from highly contaminated water. Hence, disinfection should be adopted before distribution to ensure safe drinking water. Majority of the PSF's users (80 %) are either partially satisfied or dissatisfied with the existing system. The beneficiary's willingness to pay for drinking water technologies seems that the combination of PSF and RWH could ensure sustainable drinking water in coastal region of Bangladesh.
[Influence of water source switching on water quality in drinking water distribution system].
Wang, Yang; Niu, Zhang-bin; Zhang, Xiao-jian; Chen, Chao; He, Wen-jie; Han, Hong-da
2007-10-01
This study investigates the regularity of the change on the physical and chemical water qualities in the distribution system during the process of water source switching in A city. Due to the water source switching, the water quality is chemical-astable. Because of the differences between the two water sources, pH reduced from 7.54 to 7.18, alkalinity reduced from 188 mg x L(-1) to 117 mg x L(-1), chloride (Cl(-)) reduced from 310 mg x L(-1) to 132 mg x L(-1), conductance reduced from 0.176 S x m(-1) to 0.087 S x m(-1) and the ions of calcium and magnesium reduced to 15 mg x L(-1) and 11 mg x L(-1) respectively. Residual chlorine changed while the increase of the chlorine demand and the water quantity decreasing at night, and the changes of pH, alkalinity and residual chlorine brought the iron increased to 0.4 mg x L(-1) at the tiptop, which was over the standard. The influence of the change of the water parameters on the water chemical-stability in the drinking water distribution system is analyzed, and the controlling countermeasure is advanced: increasing pH, using phosphate and enhancing the quality of the water in distribution system especially the residual chlorine.
Quality assessment of commercially supplied drinking jar water in Chittagong City, Bangladesh
NASA Astrophysics Data System (ADS)
Mina, Sohana Akter; Marzan, Lolo Wal; Sultana, Tasrin; Akter, Yasmin
2018-03-01
Chittagong is the second most populated city in Bangladesh where drinking water is supplied using small jar. Water quality is an important concern for the consumers and, therefore, the present study was done by collecting 38 drinking jar water samples from Chittagong City, Bangladesh to determine the microbial contamination and physiochemical properties. Molecular study was done by the PCR amplification of 16SrDNA, LacZ and uidA gene for the identification of bacteria, coliform and fecal coliform. TVC, MPN and different biochemical test were done for enumeration and identification. TDS, pH, and metals (Fe, As, Pb and Cr) concentration were also measured. No heavy metal (As, Pb and Cr) was found in any of the water samples but Fe was detected in low concentrations (0.02-0.05 mg/l). TDS and pH level were normal in all samples. But microbial contaminations were (60.53 and 50%) recorded in molecular and biochemical test, respectively. The range of total bacterial count was (1.5 × 102-1.6 × 104) cfu/ml. The total coliform count (TCCm) was recorded (14-40) in 100 ml of water samples. The presence of total coliform and fecal coliform was 26.32 and 18.42%, respectively, in PCR analysis but in biochemical test those were 18.42 and 15.78%, respectively. A total of 11 bacterial species: Enterobacter aerogenes, Escherrichia coli, Aeromonas, Bacillus sp., Cardiobacterium, Corynebacterium, Clostridium, Klebsiella sp., Lactobacillus, Micrococcus sp., Pseudomonas sp. were found. This study indicates that some of the drinking jar water samples were of poor quality which may increase the risk of water-borne disease. Hence, the producer of drinking jar water has to implement necessary quality control steps.
Kulthanan, Kanokvalai; Nuchkull, Piyavadee; Varothai, Supenya
2013-07-01
Patients with atopic dermatitis (AD) have increased susceptibility to irritants. Some patients have questions about types of water for bathing or skin cleansing. We studied the pH of water from various sources to give an overview for physicians to recommend patients with AD. Water from various sources was collected for measurement of the pH using a pH meter and pH-indicator strips. Bottled drinking still water had pH between 6.9 and 7.5 while the sparkling type had pH between 4.9 and 5.5. Water derived from home water filters had an approximate pH of 7.5 as same as tap water. Swimming pool water had had pH between 7.2 and 7.5 while seawater had a pH of 8. Normal saline and distilled water had pH of 5.4 and 5.7, respectively. Facial mineral water had pH between 7.5 and 8, while facial makeup removing water had an acidic pH. Normal saline, distilled water, bottled sparkling water and facial makeup removing water had similar pH to that of normal skin of normal people. However, other factors including benefits of mineral substances in the water in terms of bacteriostatic and anti-inflammation should be considered in the selection of cleansing water.
Kulthanan, Kanokvalai; Varothai, Supenya
2013-01-01
Background Patients with atopic dermatitis (AD) have increased susceptibility to irritants. Some patients have questions about types of water for bathing or skin cleansing. Objective We studied the pH of water from various sources to give an overview for physicians to recommend patients with AD. Methods Water from various sources was collected for measurement of the pH using a pH meter and pH-indicator strips. Results Bottled drinking still water had pH between 6.9 and 7.5 while the sparkling type had pH between 4.9 and 5.5. Water derived from home water filters had an approximate pH of 7.5 as same as tap water. Swimming pool water had had pH between 7.2 and 7.5 while seawater had a pH of 8. Normal saline and distilled water had pH of 5.4 and 5.7, respectively. Facial mineral water had pH between 7.5 and 8, while facial makeup removing water had an acidic pH. Conclusion Normal saline, distilled water, bottled sparkling water and facial makeup removing water had similar pH to that of normal skin of normal people. However, other factors including benefits of mineral substances in the water in terms of bacteriostatic and anti-inflammation should be considered in the selection of cleansing water. PMID:23956962
Removal of Arsenic from Drinking Water by Adsorption and Coagulation
NASA Astrophysics Data System (ADS)
Zhang, M.; Sugita, H.; Hara, J.; Takahashi, S.
2013-12-01
Removal of arsenic from drinking water has been an important issue worldwide, which has attracted greater attentions in recent years especially for supplying safe drinking water in developing countries. Although many kinds of treatment approaches that are available or applicable both in principle and practice, such as adsorption, coagulation, membrane filtration, ion exchange, biological process, electrocoagulation and so on, the first 2 approaches (i.e., adsorption and coagulation) are most promising due to the low-cost, high-efficiency, simplicity of treating systems, and thus can be practically used in developing countries. In this study, a literature survey on water quality in Bangladesh was performed to understand the ranges of arsenic concentration and pH of groundwater in Bangladesh. A series of tests were then organized and performed to investigate the effects of arsenic concentration, arsenic forms, pH, chemical compositions of the materials used for adsorption and coagulation, particle size distribution and treatment time on quality of treated water. The experimental results obtained in the study illustrated that both adsorption and coagulation can be used to effectively reduce the concentrations of either arsenic (V) or arsenic (III) from the contaminated water. Coagulation of arsenic with a magnesium-based material developed in this study can be very effective to remove arsenic, especially arsenic (V), from contaminated water with a concentration of 10 ppm to an undetectable level of 0.002 ppm by ICP analyses. Compared to arsenic (III), arsenic (V) is easier to be removed. The materials used for adsorption and coagulation in this study can remove arsenic (V) up to 9 mg/g and 6 mg/g, and arsenic (III) up to 4 mg/g and 3 mg/g, respectively, depending on test conditions and compositions of the materials being used. The control of pH during treatment can be a challenging technical issue for developing both adsorbent and coagulant. Keywords: Water Treatment, Arsenic, Adsorption, Coagulation, Drinking Water, Bangladesh
Chitosan-Based Nanocomposite Beads for Drinking Water Production
NASA Astrophysics Data System (ADS)
Masheane, ML; Nthunya, LN; Sambaza, SS; Malinga, SP; Nxumalo, EN; Mamba, BB; Mhlanga, SD
2017-05-01
Potable drinking water is essential for the good health of humans and it is a critical feedstock in a variety of industries such as food and pharmaceutical industries. For the first time, chitosan-alumina/functionalised multiwalled carbon nanotube (f-MWCNT) nanocomposite beads were developed and investigated for the reduction of various physico-chemical parameters from water samples collected from open wells used for drinking purposes by a rural community in South Africa. The water samples were analysed before and after the reduction of the identified contaminants by the nanocomposite beads. The nanocomposite beads were effective in the removal of nitrate, chromium and other physico-chemical parameters. Although, the water samples contained these contaminants within the WHO and SANS241 limits for no risk, the long-term exposure and accumulation is an environmental and health concern. The reduction of these contaminants was dependent on pH levels. At lower pH, the reduction was significantly higher, up to 99.2% (SPC), 91.0% (DOC), 92.2% (DO), 92.2% (turbidity), 96.5% (nitrate) and 97.7% (chromium). Generally, the chitosan-alumina/f-MWCNT nanocomposite beads offer a promising alternative material for reduction and removal of various physico-chemical parameters for production portable water.
Pitting Corrosion of Copper in Waters with High pH and Low Alkalinity
Localized or pitting corrosion of copper pipes used in household drinking-water plumbing is a problem for many water utilities and their customers. Extreme attack can lead to pinhole water leaks that may result in water damage, mold growth, and costly repairs. Water quality has b...
Marois-Fiset, Jean-Thomas; Carabin, Anne; Lavoie, Audrey
2013-01-01
The effects of temperature and pH on the water treatment performance of a point-of-use (POU) coagulant/disinfectant product were evaluated. Cold temperatures (∼5°C) reduced the bactericidal efficiency of the product with regard to Escherichia coli and total coliform log10 reductions. PMID:23335762
Tang, Zhijian; Hong, Seungkwan; Xiao, Weizhong; Taylor, James
2006-03-01
The impacts of distribution water quality changes caused by blending different source waters on lead release from corrosion loops containing small lead coupons were investigated in a pilot distribution study. The 1-year pilot study demonstrated that lead release to drinking water increased as chlorides increased and sulfates decreased. Silica and calcium inhibited lead release to a lesser degree than sulfates. An additional 3-month field study isolated and verified the effects of chlorides and sulfates on lead release. Lead release decreased with increasing pH and increasing alkalinity during the 1-year pilot study; however, the effects of pH and alkalinity on lead release, were not clearly elucidated due to confounding effects. A statistical model was developed using nonlinear regression, which showed that lead release increased with increasing chlorides, alkalinity and temperature, and decreased with increasing pH and sulfates. The model indicated that primary treatment processes such as enhanced coagulation and RO (reverse osmosis membrane) were related to lead release by water quality. Chlorides are high in RO-finished water and increase lead release, while sulfates are high following enhanced coagulation and decrease lead release.
Low zinc in drinking water is associated with the risk of type 1 diabetes in children.
Samuelsson, Ulf; Oikarinen, Sami; Hyöty, Heikki; Ludvigsson, Johnny
2011-05-01
To explore if drinking water may influence the development of type 1 diabetes in children, either via enterovirus spread via drinking water or quality of drinking water related to acidity or concentration of certain minerals. One hundred and forty-two families with a child with diabetes and who lived either in seven municipalities with a high annual diabetes incidence during 1977-2001 and in six municipalities with the lowest incidence during those 25 yr were asked to participate. Three hundred and seventy-three families in these communities were used as controls. The families filled a 200-mL plastic bottle with their tap drinking water and returned it by mail. The water samples were analyzed for pH, zinc, iron, nitrate, nitrite, nitrate-nitrogen and nitrite-nitrogen, and occurrence of enterovirus RNA. Enterovirus RNA was not found in the tap water samples. The concentration of zinc, nitrate, and nitrate-nitrogen was lower in the municipalities with high incidence of type 1 diabetes. The water samples from families with a child with diabetes had lower concentration of zinc than water samples from control families. Low zinc in drinking water is associated with the risk of developing type 1 diabetes during childhood. Enterovirus does not seem to be spread via drinking water in a country with modern water works. © 2010 John Wiley & Sons A/S.
McKie, Michael J; Andrews, Susan A; Andrews, Robert C
2016-02-15
The presence of endocrine disrupting compounds (EDCs), pharmaceutically active compounds (PhACs) and artificial sweeteners are of concern to water providers because they may be incompletely removed by wastewater treatment processes and they pose an unknown risk to consumers due to long-term consumption of low concentrations of these compounds. This study utilized pilot-scale conventional and biological drinking water treatment processes to assess the removal of nine PhACs and EDCs, and two artificial sweeteners. Conventional treatment (coagulation, flocculation, settling, non-biological dual-media filtration) was compared to biofilters with or without the addition of in-line coagulant (0.2-0.8 mg Al(3+)/L; alum or PACl). A combination of biofiltration, with or without in-line alum, and conventional filtration was able to reduce 7 of the 9 PhACs and EDCs by more than 50% from river water while artificial sweeteners were inconsistently removed by conventional treatment or biofiltration. Increasing doses of PACl from 0 to 0.8 mg/L resulted in average removals of PhACs, EDCs increasing from 39 to 70% and artificial sweeteners removal increasing from ~15% to ~35% in lake water. These results suggest that a combination of biological, chemical and physical treatment can be applied to effectively reduce the concentration of EDCs, PhACs, and artificial sweeteners. Copyright © 2015 Elsevier B.V. All rights reserved.
Abusallout, Ibrahim; Rahman, Shamimur; Hua, Guanghui
2017-11-01
Disinfection byproduct (DBP) concentrations in drinking water distribution systems and indoor water uses depend on competitive formation and degradation reactions. This study investigated the dehalogenation kinetics of total organic chlorine (TOCl), bromine (TOBr) and iodine (TOI) produced by fulvic acid under different pH and temperature conditions, and total organic halogen (TOX) variations in a treated drinking water under simulated distribution system and heating scenarios. TOX dehalogenation rates were generally in the order of TOI ≅ TOCl(NH 2 Cl) > TOBr > TOCl(Cl 2 ). The half-lives of different groups of TOX compounds formed by fulvic acid varied between 27 and 139 days during incubation at 20 °C and 0.98-2.17 days during heating at 55 °C. Base-catalyzed reactions played a major role in TOX degradation as evidenced by enhanced dehalogenation under high pH conditions. The results of heating of a treated water in the presence of residuals showed that TOX concentrations of chlorinated samples increased rapidly when chlorine residuals were present and then gradually decreased after chlorine residuals were exhausted. The final TOX concentrations of chlorinated samples after heating showed moderate decreases with increasing ambient water ages. Chloraminated samples with different ambient water ages exhibited similar final TOX concentrations during simulated distribution system and heating experiments. This study reinforces the importance of understanding DBP variations in indoor water uses as wells as in distribution systems to provide more accurate DBP information for exposure assessment and regulatory determination. Published by Elsevier Ltd.
CO2 emissions from German drinking water reservoirs.
Saidi, Helmi; Koschorreck, Matthias
2017-03-01
Globally, reservoirs are a significant source of atmospheric CO 2 . However, precise quantification of greenhouse gas emissions from drinking water reservoirs on the regional or national scale is still challenging. We calculated CO 2 fluxes for 39 German drinking water reservoirs during a period of 22years (1991-2013) using routine monitoring data in order to quantify total emission of CO 2 from drinking water reservoirs in Germany and to identify major drivers. All reservoirs were a net CO 2 source with a median flux of 167gCm -2 y -1 , which makes gaseous emissions a relevant process for the carbon budget of each reservoir. Fluxes varied seasonally with median fluxes of 13, 48, and 201gCm -2 y -1 in spring, summer, and autumn respectively. Differences between reservoirs appeared to be primarily caused by the concentration of CO 2 in the surface water rather than by the physical gas transfer coefficient. Consideration of short term fluctuations of the gas transfer coefficient due to varying wind speed had only a minor effect on the annual budgets. High CO 2 emissions only occurred in reservoirs with pH<7 and total alkalinity <0.2mEql -1 . Annual CO 2 emissions correlated exponentially with pH but not with dissolved organic carbon (DOC). There was significant correlation between land use in the catchment and CO 2 emissions. In total, German drinking water reservoirs emit 44000t of CO 2 annually, which makes them a negligible CO 2 source (<0.005% of national CO 2 emissions) in Germany. Copyright © 2017 Elsevier B.V. All rights reserved.
Evaluating the risk of water distribution system failure: A shared frailty model
NASA Astrophysics Data System (ADS)
Clark, Robert M.; Thurnau, Robert C.
2011-12-01
Condition assessment (CA) Modeling is drawing increasing interest as a technique that can assist in managing drinking water infrastructure. This paper develops a model based on the application of a Cox proportional hazard (PH)/shared frailty model and applies it to evaluating the risk of failure in drinking water networks using data from the Laramie Water Utility (located in Laramie, Wyoming, USA). Using the risk model a cost/ benefit analysis incorporating the inspection value method (IVM), is used to assist in making improved repair, replacement and rehabilitation decisions for selected drinking water distribution system pipes. A separate model is developed to predict failures in prestressed concrete cylinder pipe (PCCP). Various currently available inspection technologies are presented and discussed.
Impact of Persistent Degassing of Kilauea Volcano on Domestic Water Supplies
NASA Astrophysics Data System (ADS)
Thomas, D. M.; Macomber, T.
2010-12-01
In March, 2008, a small explosive eruption in the summit crater of Kilauea Volcano marked the initiation of a new, persistently degassing vent at Kilauea. Emission rates of sulfur dioxide initially exceeded 1000 tons per day but declined to a longer term rate of ~800 tons per day. Because of its location farther inland, the plume from this vent generated more severe and more frequent adverse air quality impacts on the surrounding and downwind communities than has the longer lived degassing vents at Pu'u O'o. Because many residents on Hawaii Island derive their domestic water supply from roof catchment systems, deposition of aerosols produced in the volcanic plume could pose a significant health threat to the community. In order to quantify that risk, a program of screening of water catchment systems was undertaken in three communities: Lower Puna, upwind of the vent; Volcano Village, immediately adjacent to the Kilauea summit; and Hawaiian Ocean View Estates, located ~65 km downwind from the vent. An aggregate of 439 samples were collected and analyzed for pH, and fluoride, chloride and sulfate ion concentrations; the median values and extrema are shown in Table I below. The pH values for the catchments proved not to be a good indicator of plume influence: the Volcano and Ocean View communities showed a bimodal distribution of values reflecting residents managing their water systems (median pH = 6.2 and 7.2 respectively) and those that didn't (median pH = 4.5 and 4.3 respectively); however, the lower extremes for pH gave values of 2.9 and 3.3 respectively. Chloride values were also variable due to the use of sodium hypochlorite to treat for biological contaminants. The median values for fluoride and sulfate show a progressive increase from the Puna catchments to Volcano and Ocean View. We believe that these values are consistent with the relative exposure of the communities to the volcanic plume: although the Volcano community is closer to the source, wind conditions conducive to exposure are infrequent whereas the more distant Ocean View community is exposed to a more dilute plume but at a much higher frequency. Even though the median values are within accepted limits for drinking water, the extreme values observed are cause for concern: the pH values are well below those recommended for drinking water and the fluoride values are approaching WHO recommended drinking water levels. With even modest increases in plume output or exposure times, some of the community catchment systems can accumulate sufficient acid or fluoride ion concentrations to pose a significant health threat if drinking water is drawn from those catchments. Continued monitoring of catchment water quality is recommended.Table I. Catchment Water Supply Analytical Results Concentrations in parts per million
Hou, Xiandeng; Peters, Heather L; Yang, Zheng; Wagner, Karl A; Batchelor, James D; Daniel, Meredith M; Jones, Bradley T
2003-03-01
A convenient method is described for monitoring Cd, Ni, Cu, and Pb at trace levels in drinking water samples. These metals are preconcentrated on a chelating solid-phase extraction disk and then determined by X-ray fluorescence spectrometry. The method tolerates a wide pH range (pH 6-14) and a large amount of alkaline and alkaline earth elements. The preconcentration factor is well over 1600, assuming a 1 L water sample volume. The limits of detection for Cd, Ni, Cu, and Pb are 3.8, 0.6, 0.4, and 0.3 ng/mL, respectively. These are well below the federal maximum contaminant level values, which are 5, 100, 1300, and 15 ng/mL, respectively. The proposed method has many advantages including ease of operation, multielement capability, nondestructiveness, high sensitivity, and relative cost efficiency. The solid-phase extraction step can be conducted in the field and then the disks can be mailed to a laboratory for the analysis, eliminating the cost of transporting large volumes of water samples. Furthermore, the color of the used extraction disk provides an initial estimate of the degree of contamination for some transition metals (for example, Ni and Cu). Thus, the overall cost for analysis of metals in drinking water can be minimized by implementing the method, and small water supply companies with limited budgets will be better able to comply with the Safe Drinking Water Act.
Arsenic in groundwater in eastern New England: Occurrence, controls, and human health implications
Ayotte, J.D.; Montgomery, D.L.; Flanagan, S.M.; Robinson, K.W.
2003-01-01
In eastern New England, high concentrations (greater than 10 ??g/L) of arsenic occur in groundwater. Privately supplied drinking water from bedrock aquifers often has arsenic concentrations at levels of concern to human health, whereas drinking water from unconsolidated aquifers is least affected by arsenic contamination. Water from wells in metasedimentary bedrock units, primarily in Maine and New Hampshire, has the highest arsenic concentrations - nearly 30% of wells in these aquifers produce water with arsenic concentrations greater than 10 ??g/L. Arsenic was also found at concentrations of 3-40 mg/kg in whole rock samples in these formations, suggesting a possible geologic source. Arsenic is most common in groundwater with high pH. High pH is related to groundwater age and possibly the presence of calcite in bedrock. Ion exchange in areas formerly inundated by seawater also may increase pH. Wells sampled twice during periods of 1-10 months have similar arsenic concentrations (slope = 0.89; r-squared = 0.97). On the basis of water-use information for the aquifers studied, about 103 000 people with private wells could have water supplies with arsenic at levels of concern (greater than 10 ??g/L) for human health.
Kinetics and mechanism for degradation of dichlorvos by permanganate in drinking water treatment.
Liu, Chao; Qiang, Zhimin; Adams, Craig; Tian, Fang; Zhang, Tao
2009-08-01
The degradation kinetics and mechanism of dichlorvos by permanganate during drinking water treatment were investigated. The reaction of dichlorvos with permanganate was of second-order overall with negligible pH dependence and an activation energy of 29.5 kJ x mol(-1). At pH 7.0 and 25 degrees C, the rate constant was 25.2+/-0.4M(-1)s(-1). Dichlorvos was first degraded to trimethyl phosphate (TMP) and dimethyl phosphate (DMP) simultaneously which approximately accounted for <5% and >or=95% with respect to phosphorus mass, respectively. Further oxidation of DMP generated a final byproduct, monomethyl phosphate (MMP). MMP was for the first time identified as a major byproduct in chemical oxidation of dichlorvos. The kinetic model based on degradation mechanism and determined reaction rate constants allowed us to predict the evolution of dichlorvos and its byproduct concentrations during permanganate pre-oxidation process at water treatment plants. These results suggest that even though the dichlorvos concentration in surface water complies with the surface water quality standards of China (50 microg L(-1)), its concentration after conventional water treatment will most probably exceed the drinking water quality standards (1 microg L(-1)). Moreover, luminescent bacteria test shows that the acute toxicity of dichlorvos solution evidently increased after permanganate oxidation.
Biadglegne, Fantahun; Tessema, Belay; Kibret, Mulugeta; Abera, Bayeh; Huruy, Kahsay; Anagaw, Belay; Mulu, Andargachew
2009-10-01
The consumption of bottled drinking water is becoming increasing in Ethiopia. As a result there has been a growing concern about the chemical, physical and bacteriological quality of this product. Studies on the chemical, physical and bacteriological quality of bottled water is quite scarce in Ethiopia. This study was therefore aimed to assess the physicochemical and bacteriological qualities of three factories of bottled drinking water products produced in Amhara region. A Laboratory based comparative study was conducted to evaluate the physicochemical and bacteriological quality of three factories of bottled drinking water produced in Amhara region. Analysis on the quality of bottled drinking water from the sources, wholesalers and retailers were made with World Health Organization and Quality and Standards Authority of Ethiopia recommendations. Triplicate samples from three types of bottled drinking water were randomly collected and analyzed from June, 2006 to December, 2006. A total of 108 commercial bottled drinking water samples were analyzed. The result showed that except pH of factory A all the physicochemical parameters analyzed were with in the recommended limits. The pH value of factory A tested from sources is 5.3 and from wholesalers and retailers is 5.5 and 5.3, respectively, which is below the normal value set by World Health Organization (6.5-8.0) and Quality and Standards Authority of Ethiopia (6.0-8.5). Our analyses also demonstrated that 2 (16.7%) of the samples tested from sources and 1 (8.3%) from wholesalers of factory B were contaminated with total coliforms, where as 2 (16.7%) samples from retailers were also contaminated with total coliforms. On the other hand, 1 (8.3%) of the samples tested from wholesalers and 2 (16.7%) of the samples tested from retailers of factory A were also contaminated with total coliforms. Total coliforms were not detected from all samples of factory C, fecal coliforms were not also isolated from all samples. Percent of coefficient of variation showed that variations in total coliforms counts were significant with in the samples of both factory A and B (CV > 10%). Based on the recommended limit of World Health Organization and Quality and Standards Authority of Ethiopia, 7.4% of bottled drinking water sold commercially could be considered unfit for human consumption. Consumers of bottled water should be aware of this.
Szabo, Jeff; Minamyer, Scott
2014-11-01
This report summarizes the current state of knowledge on the persistence of radiological agents on drinking water infrastructure (such as pipes) along with information on decontamination should persistence occur. Decontamination options for drinking water infrastructure have been explored for some important radiological agents (cesium, strontium and cobalt), but important data gaps remain. Although some targeted experiments have been published on cesium, strontium and cobalt persistence on drinking water infrastructure, most of the data comes from nuclear clean-up sites. Furthermore, the studies focused on drinking water systems use non-radioactive surrogates. Non-radioactive cobalt was shown to be persistent on iron due to oxidation with free chlorine in drinking water and precipitation on the iron surface. Decontamination with acidification was an effective removal method. Strontium persistence on iron was transient in tap water, but adherence to cement-mortar has been demonstrated and should be further explored. Cesium persistence on iron water infrastructure was observed when flow was stagnant, but not with water flow present. Future research suggestions focus on expanding the available cesium, strontium and cobalt persistence data to other common infrastructure materials, specifically cement-mortar. Further exploration chelating agents and low pH treatment is recommended for future decontamination studies. Published by Elsevier Ltd.
A nation-wide survey of the chemical composition of drinking water in Norway.
Flaten, T P
1991-02-01
Water samples were collected from 384 waterworks that supply 70.9% of the Norwegian population. The samples were collected after water treatment and were analysed for 30 constituents. Although most constituents show wide concentration ranges, Norwegian drinking water is generally soft. The median values obtained are: 0.88 mg Si l-1, 0.06 mg Al l-1, 47 micrograms Fe l-1, 0.69 mg Mg l-1, 2.9 mg Ca l-1, 3.8 mg Na l-1, 6 micrograms Mn l-1, 12 micrograms Cu l-1, 14 micrograms Zn l-1, 9 micrograms Ba l-1, 15 micrograms Sr l-1, 0.14 mg K l-1, 58 micrograms F- l-1, 6.4 mg Cl- l-1, 11 micrograms Br- l-1, 0.46 mg NO3- l-1, 5.3 mg SO4(2-) l-1, 2.4 mg TOC l-1, 6.8 (pH), 5) microseconds cm-1 (conductivity) and 11 mg Pt l-1 (colour). Titanium, Pb, Ni, Co, V, Mo, Cd, Be and Li were seldom or never quantified, due to insufficient sensitivity of the ICP (inductively coupled plasma) method. Norwegian quality criteria, which exist for 17 of the constituents examined, are generally fulfilled, indicating that the chemical quality of drinking water, by and large, is good in Norway. For Fe, Ca, Mn, Cu, pH, TOC and colour, however, the norms for good drinking water are exceeded in more than 9% of the samples, reflecting two of the major problems associated with Norwegian drinking water supplies: (i) many water sources contain high concentrations of humic substances; (ii) in large parts of the country, the waters are soft and acidic, and therefore corrosive towards pipes, plumbing and other installations. Most constituents show marked regional distribution patterns, which are discussed in the light of different mechanisms contributing to the chemical composition of drinking water, namely: chemical weathering of mineral matter; atmospheric supply of salt particles from the sea; anthropogenic pollution (including acid precipitation); corrosion of water pipes and plumbing; water treatment; decomposition of organic matter; and hydrological differences.
El Menyiy, Nawal; Al Waili, Noori; Bakour, Meryem; Al-Waili, Hamza; Lyoussi, Badiaa
2016-10-01
Propolis is a natural honeybee product with wide biological activities and potential therapeutic properties. The aim of the study is to evaluate the protective effect of propolis extract on nephrotoxicity and hepatotoxicity induced by ethylene glycol in rats. Five groups of rats were used. Group 1 received drinking water, group 2 received 0.75% ethylene-glycol in drinking water, group 3 received 0.75% ethylene-glycol in drinking water along with cystone 500 mg/kg/body weight (bw) daily, group 4 received 0.75% ethylene-glycol in drinking water along with propolis extract at a dose of 100 mg/kg/bw daily, and group 5 received 0.75% ethylene-glycol in drinking water along with propolis extract at a dose of 250 mg/kg/bw daily. The treatment continued for a total of 30 d. Urinalyses for pH, crystals, protein, creatinine, uric acid and electrolytes, and renal and liver function tests were performed. Ethylene-glycol increased urinary pH, urinary volume, and urinary calcium, phosphorus, uric acid and protein excretion. It decreased creatinine clearance and magnesium and caused crystaluria. Treatment with propolis extract or cystone normalized the level of magnesium, creatinine, sodium, potassium and chloride. Propolis is more potent than cystone. Propolis extract alleviates urinary protein excretion and ameliorates the deterioration of liver and kidney function caused by ethylene glycol. Propolis extract has a potential protective effect against ethylene glycol induced hepatotoxicity and nephrotoxicity and has a potential to treat and prevent urinary calculus, crystaluria and proteinuria. Copyright © 2016 IMSS. Published by Elsevier Inc. All rights reserved.
Liu, Hua-liang; Wang, Lian-hong
2013-05-01
To develop an analytical method for simultaneous determination of 6 pesticides, namely bentazone, 2,4-dichlorophenoxyacetic acid,carbofuran, carbaryl, atrazine and pentachlorophenol, in drinking water by high performance liquid chromatography-tandem mass spectrometry, and thereby to provide a reference to revise the Health Standards for Drinking Water (GB/T 5750-2006). Meanwhile, to evaluate the content of the above 6 pesticides in the drinking water samples supplied by 12 centralized water plants in Jiangsu province. The 10 ml water sample was acidized by hydrochloric acid to pH ≤ 2, and then concentrated by solid phase extraction cartridge and eluted with acetone. The solvent was changed into methanol after drying by nitrogen blow. The target compounds were separated by C18 column using methanol/water as mobile phase, and detected by mass spectrometry with multi-reaction-monitoring(MRM) mode. The repeatability and sensitivity of the assay were evaluated. The drinking water samples from the 12 water plants were then detected. In this experimental method, the minimum detectable concentration were around 0.02-0.41 µg/L, with the recovery rate at 75%-115%, and the RSD between 2% and 10%. Under the experimental condition, there were no pesticides detected in the drinking water samples from the 12 centralized water plants. The method is efficient and environment-friendly, with little discharge of effluent, which could meet the requirement of the drinking water monitor.
Microelectrode investigation of the reactions between metallic pipe materials and monochloramine
Water quality parameters (i.e., pH, dissolved oxygen [DO], and phosphate) are known to impact metal reactivity with disinfectants and therefore corrosion and metals release into drinking water supplies. With various water utilities switching from free chlorine to chloramines for ...
HEALTH EFFECTS AND RISK ASSESSMENT OF ARSENIC
Abstract - In this review, we will focus on the effects of arsenic (As) exposure from drinking water sources. The primary inorganic As species in water are arsenate (V) and/or arsenite (III); their proportions depend on the water's redox potential and pH. Many As contamination...
Chlorine dioxide as a post-disinfectant for Dutch drinking water.
Wondergem, E; van Dijk-Looijaard, A M
1991-02-01
Chlorine dioxide has some important advantages over chlorine with respect to water quality (no formation of trihalomethanes, no impairment of taste and no odor) and stability when used for oxidation/disinfection of drinking water. In this paper, results are presented of experiments into the consumption and reaction kinetics of chlorine dioxide in a number of (drinking) waters in The Netherlands. It was found that chlorine dioxide consumption is related to the dissolved oxygen content (DOC) of the water and the reaction time. Water samples from a plant that applied ozonation and activated carbon filtration had a very low chlorine dioxide consumption. Other water quality parameters, including pH and CO3(2-), did not have any influence on consumption. The temporary advised Dutch guidelines of 0.2 mg l-1 (dosage) is sufficient for activated carbon treated water. For other Dutch drinking waters, however, none of the 0.2 mg l-1 chlorine dioxide remained after a reaction time of 10 min, as was also found for the water of Dutch pumping stations where chlorine dioxide is at present used for disinfection.
Probability-based nitrate contamination map of groundwater in Kinmen.
Liu, Chen-Wuing; Wang, Yeuh-Bin; Jang, Cheng-Shin
2013-12-01
Groundwater supplies over 50% of drinking water in Kinmen. Approximately 16.8% of groundwater samples in Kinmen exceed the drinking water quality standard (DWQS) of NO3 (-)-N (10 mg/L). The residents drinking high nitrate-polluted groundwater pose a potential risk to health. To formulate effective water quality management plan and assure a safe drinking water in Kinmen, the detailed spatial distribution of nitrate-N in groundwater is a prerequisite. The aim of this study is to develop an efficient scheme for evaluating spatial distribution of nitrate-N in residential well water using logistic regression (LR) model. A probability-based nitrate-N contamination map in Kinmen is constructed. The LR model predicted the binary occurrence probability of groundwater nitrate-N concentrations exceeding DWQS by simple measurement variables as independent variables, including sampling season, soil type, water table depth, pH, EC, DO, and Eh. The analyzed results reveal that three statistically significant explanatory variables, soil type, pH, and EC, are selected for the forward stepwise LR analysis. The total ratio of correct classification reaches 92.7%. The highest probability of nitrate-N contamination map presents in the central zone, indicating that groundwater in the central zone should not be used for drinking purposes. Furthermore, a handy EC-pH-probability curve of nitrate-N exceeding the threshold of DWQS was developed. This curve can be used for preliminary screening of nitrate-N contamination in Kinmen groundwater. This study recommended that the local agency should implement the best management practice strategies to control nonpoint nitrogen sources and carry out a systematic monitoring of groundwater quality in residential wells of the high nitrate-N contamination zones.
Updating national standards for drinking-water: a Philippine experience.
Lomboy, M; Riego de Dios, J; Magtibay, B; Quizon, R; Molina, V; Fadrilan-Camacho, V; See, J; Enoveso, A; Barbosa, L; Agravante, A
2017-04-01
The latest version of the Philippine National Standards for Drinking-Water (PNSDW) was issued in 2007 by the Department of Health (DOH). Due to several issues and concerns, the DOH decided to make an update which is relevant and necessary to meet the needs of the stakeholders. As an output, the water quality parameters are now categorized into mandatory, primary, and secondary. The ten mandatory parameters are core parameters which all water service providers nationwide are obligated to test. These include thermotolerant coliforms or Escherichia coli, arsenic, cadmium, lead, nitrate, color, turbidity, pH, total dissolved solids, and disinfectant residual. The 55 primary parameters are site-specific and can be adopted as enforceable parameters when developing new water sources or when the existing source is at high risk of contamination. The 11 secondary parameters include operational parameters and those that affect the esthetic quality of drinking-water. In addition, the updated PNSDW include new sections: (1) reporting and interpretation of results and corrective actions; (2) emergency drinking-water parameters; (3) proposed Sustainable Development Goal parameters; and (4) standards for other drinking-water sources. The lessons learned and insights gained from the updating of standards are likewise incorporated in this paper.
Assessment of drinking water quality and rural household water treatment in Balaka District, Malawi
NASA Astrophysics Data System (ADS)
Mkwate, Raphael C.; Chidya, Russel C. G.; Wanda, Elijah M. M.
2017-08-01
Access to drinking water from unsafe sources is widespread amongst communities in rural areas such as Balaka District in Malawi. This situation puts many individuals and communities at risk of waterborne diseases despite some households adopting household water treatment to improve the quality of the water. However, there still remains data gaps regarding the quality of drinking water from such sources and the household water treatment methods used to improve public health. This study was, therefore, conducted to help bridge the knowledge gap by evaluating drinking water quality and adoption rate of household water treatment and storage (HWTS) practices in Nkaya, Balaka District. Water samples were collected from eleven systematically selected sites and analyzed for physico-chemical and microbiological parameters: pH, TDS, electrical conductivity (EC), turbidity, F-, Cl-, NO3-, Na, K, Fe, Faecal Coliform (FC) and Faecal Streptococcus (FS) bacteria using standard methods. The mean results were compared to the World Health Organization (WHO) and Malawi Bureau of Standards (MBS) (MS 733:2005) to ascertain the water quality for drinking purposes. A total of 204 randomly selected households were interviewed to determine their access to drinking water, water quality perception and HWTS among others. The majority of households (72%, n = 83) in Njerenje accessed water from shallow wells and rivers whilst in Phimbi boreholes were commonly used. Several households (>95%, n = 204) were observed to be practicing HWST techniques by boiling or chlorination and water storage in closed containers. The levels of pH (7.10-7.64), F- (0.89-1.46 mg/L), Cl- (5.45-89.84 mg/L), NO3- (0-0.16 mg/L), Na (20-490 mg/L), K (2.40-14 mg/L) and Fe (0.10-0.40 mg/L) for most sites were within the standard limits. The EC (358-2220 μS/cm), turbidity (0.54-14.60 NTU), FC (0-56 cfu/100 mL) and FS (0-120 cfu/100 mL) - mainly in shallow wells, were found to be above the WHO and MBS water quality specifications. The majority of the water samples (73%, n = 11) were classified as of ;Intermediate risk; (FC 11-100 cfu/100 mL), hence not suitable for human consumption without prior treatment. This calls for large scale adoption of HWTS and continued monitoring of the water sources used in the study areas.
Veterinary antibiotics used in animal agriculture as NDMA precursors.
Leavey-Roback, Shannon L; Krasner, Stuart W; Suffet, Irwin Mel H
2016-12-01
The formation of carcinogenic N-nitrosodimethylamine (NDMA) during chloramination at drinking water treatment plants has raised concerns as more plants have switched from chlorine to chloramine disinfection. In this study, a source of NDMA precursors that has yet to be investigated was examined. Veterinary antibiotics are used in large quantities at animal agricultural operations. They may contaminate drinking water sources and may not be removed during wastewater and drinking water treatment. Ten antibiotics used in animal agriculture were shown to produce NDMA or N-nitrosodiethylamine (NDEA) during chloramination. Molar conversions ranged from 0.04 to 4.9 percent, with antibiotics containing more than one dimethylamine (DMA) functional group forming significantly more NDMA. The highest formation for most of the compounds was seen near pH 8.4, in a range of pH 6 to 11 that was investigated. The effect of chlorine-to-ammonia ratio (Cl 2 /NH 3 ), temperature, and hold time varied for each chemical, suggesting that the effects of these parameters were compound-specific. Copyright © 2016 Elsevier Ltd. All rights reserved.
An Assessment of Potential Exposure and Risk from Estrogens in Drinking Water
Caldwell, Daniel J.; Mastrocco, Frank; Nowak, Edward; Johnston, James; Yekel, Harry; Pfeiffer, Danielle; Hoyt, Marilyn; DuPlessie, Beth M.; Anderson, Paul D.
2010-01-01
Background Detection of estrogens in the environment has raised concerns in recent years because of their potential to affect both wildlife and humans. Objectives We compared exposures to prescribed and naturally occurring estrogens in drinking water to exposures to naturally occurring background levels of estrogens in the diet of children and adults and to four independently derived acceptable daily intakes (ADIs) to determine whether drinking water intakes are larger or smaller than dietary intake or ADIs. Methods We used the Pharmaceutical Assessment and Transport Evaluation (PhATE) model to predict concentrations of estrogens potentially present in drinking water. Predicted drinking water concentrations were combined with default water intake rates to estimate drinking water exposures. Predicted drinking water intakes were compared to dietary intakes and also to ADIs. We present comparisons for individual estrogens as well as combined estrogens. Results In the analysis we estimated that a child’s exposures to individual prescribed estrogens in drinking water are 730–480,000 times lower (depending upon estrogen type) than exposure to background levels of naturally occurring estrogens in milk. A child’s exposure to total estrogens in drinking water (prescribed and naturally occurring) is about 150 times lower than exposure from milk. Adult margins of exposure (MOEs) based on total dietary exposure are about 2 times smaller than those for children. Margins of safety (MOSs) for an adult’s exposure to total prescribed estrogens in drinking water vary from about 135 to > 17,000, depending on ADI. MOSs for exposure to total estrogens in drinking water are about 2 times lower than MOSs for prescribed estrogens. Depending on the ADI that is used, MOSs for young children range from 28 to 5,120 for total estrogens (including both prescribed and naturally occurring sources) in drinking water. Conclusions The consistently large MOEs and MOSs strongly suggest that prescribed and total estrogens that may potentially be present in drinking water in the United States are not causing adverse effects in U.S. residents, including sensitive subpopulations. PMID:20194073
Mora, Abrahan; Mac-Quhae, César; Calzadilla, Malvis; Sánchez, Luzmila
2009-02-01
To ascertain the water quality for human consumption, chemical parameters such as pH, conductivity and total dissolved calcium, magnesium, iron, aluminum, zinc, copper and manganese were measured during four sampling periods (November 2002; March, May and July 2003) in drinking water wells which supply several forest camps and rural populations located in the eastern Llanos of Venezuela. Copper levels in drinking water in November 2002 were found to be significantly higher (P<0.05) than the other assessed periods. Temporal variations of the other parameters considered were not statistically significant. Calcium and magnesium concentrations were found to be extremely low (mean concentration+/-S.D. of 0.27+/-0.25mg/l for Ca and 0.219+/-0.118 for Mg) during the four sampling periods, probably because of the carbonate bearing scarcity in the soils lithic component. The rest of the metals complied with the Venezuelan and International guidelines of quality criteria for drinking water.
Multivariate analysis of drinking water quality parameters in Bhopal, India.
Parashar, Charu; Verma, Neelam; Dixit, Savita; Shrivastava, Rajneesh
2008-05-01
Pollution of water bodies is one of the areas of major concern to environmentalists. Water quality is an index of health and well being of a society. Industrialization, urbanization and modern agriculture practices have direct impact on the water resources. These factors influence the water resources quantitatively and qualitatively. The study area selected were the Upper lake and Kolar reservoir of Bhopal, the state capital of Madhya Pradesh, India. The Upper lake and Kolar reservoir both are the important sources of potable water supply for the Bhopal city. The physico-chemical parameters like temperature, pH, turbidity, total hardness, alkalinity, BOD, COD, Chloride, nitrate and phosphate were studied to ascertain the drinking water quality.
Assessment of heavy metals in loose deposits in drinking water distribution system.
Liu, Quanli; Han, Weiqiang; Han, Bingjun; Shu, Min; Shi, Baoyou
2018-06-09
Heavy metal accumulation and potential releases from loose deposits in drinking water distribution system (DWDS) can have critical impacts on drinking water safety, but the associated risks have not been sufficiently evaluated. In this work, the potential biological toxicity of heavy metals in loose deposits was calculated based on consensus-based sediment quality guidelines, and the effects of some of the main water quality parameters, such as the pH and bicarbonate and phosphate content, on the release behaviors of pre-accumulated heavy metals were investigated. The results showed that heavy metals (Cu, As, Cr, Pb, and Cd) significantly accumulated in all the samples, but the contents of the heavy metals were multiple magnitudes lower than the Fe and Mn contents. The potential biotoxicity of As and Cu was relatively high, but the biotoxicity of Cd was negligible. The water quality can significantly influence the release of heavy metals from loose deposits. As the pH increased from 7.0 to 9.0, the release of As and Cr obviously increased. The release of As, Cu, Pb, and Cr also accelerated with the addition of phosphate (from 1 to 5 mg/L). In contrast to the trends for the pH and phosphate, variations in the bicarbonate content did not have a significant influence on the release of As and Cr. The release ratios of heavy metals in the samples were very low, and there was not a correlation between the release rate of the heavy metals in the loose deposits and their potential biotoxicity.
Erosive characteristics and fluoride content of cola-type drinks.
Omid, N; Zohoori, F V; Kometa, S; Maguire, A
2016-04-01
Excessive consumption of carbonated soft drinks is detrimental to general and oral health. This study determined endogenous pH, titratable acidity (TA) and fluoride (F) ion concentration of cola-type drinks available in the UK. Subsidiary aims were to compare: (i) endogenous pH and TA of drinks upon opening (T0) and after 20 minutes (T20); (ii) endogenous pH, TA and F ion concentration of diet vs regular and plastic bottle vs canned drinks. Endogenous pH, TA (mls 0.1M NaOH) and F ion (mg/L) of 71 products were measured using a pH meter and F-ISE. A Wilcoxon Signed Ranks Test compared pH and TAs at T0 and T20; a Mann-Whitney U test compared pH, TAs and F ion concentration for; a) regular vs diet drinks; and b) plastic bottle vs canned drinks. Mean (±SD) pH for regular and diet drinks was 2.44 ± 0.12 and 2.83 ± 0.33 respectively (p = 0.001). Mean NaOH (ml) to raise pH to 5.5 and 5.7 was 5.49 ± 0.76 and 6.40 ± 0.78 (regular drinks); 5.17 ± 1.03 and 6.03 ± 1.07 (diet drinks). Diet (p = 0.040) and regular (p = 0.041) drinks had higher TA to pH 5.7 at T0 compared with T20; at T20 regular drinks had higher TA to pH 5.5 (p = 0.026) and pH 5.7 (p = 0.030) than diet drinks. There was no difference in F ion concentration between regular vs diet drinks (p = 0.754) and no significant container effect. Erosive characteristics were similar between manufacturers, but higher erosive potentials were evident at T0 compared with 20 minutes later and for regular compared with diet drinks. F ion concentration of drinks was low.
Clark, Thomas M; Vieira, Marcus A L; Huegel, Kara L; Flury, Dawn; Carper, Melissa
2007-12-01
The responses of larval Aedes aegypti to media of pH 4, 7 and 11 provide evidence for pH regulatory strategies. Drinking rates in pH 4 media were elevated 3- to 5-fold above those observed in pH 7 or 11. Total body water was elevated during acute exposure to acidic media. During chronic exposure, total body water was decreased and Malpighian tubule mitochondrial luminosity, quantified using Mitotracker Green FM, increased. Malpighian tubule secretion rates and energy demands thus appear to increase dramatically during acid exposure. In alkaline media, drinking rates were quite low. Larvae in pH 11 media excreted net acid (0.12 nequiv H(+) g(-1) h(-1)) and the pH indicators azolitmin and bromothymol blue revealed that the rectal lumen is acidic in vivo at all ambient pH values. The anal papillae (AP) were found to be highly permeant to acid-base equivalents. Ambient pH influenced the length, and the mass-specific length, of the AP in the presence of NaCl (59.9 mmol l(-1)). In contrast, the length and mass-specific length of AP were not influenced by ambient pH in low NaCl conditions. Mitochondrial luminosity was reduced in AP of larvae reared in acidic media, and was not elevated in alkaline media, relative to that of larvae reared in neutral media. These data suggest that the AP may compromise acid-base balance in acidic media, and may also be an important site of trade-offs between H(+) homeostasis and NaCl uptake in dilute, acidic media.
The influence of the chemical composition of drinking water on cuprosolvency by biofilm bacteria.
Critchley, M M; Cromar, N J; McClure, N C; Fallowfield, H J
2003-01-01
This study investigated the influence of water chemistry on copper solvation (cuprosolvency) by pure culture biofilms of heterotrophic bacteria isolated from copper plumbing. Heterotrophic bacteria isolated from copper plumbing biofilms including Acidovorax delafieldii, Flavobacterium sp., Corynebacterium sp., Pseudomonas sp. and Stenotrophomonas maltophilia were used in laboratory coupon experiments to assess their potential for cuprosolvency. Sterile copper coupons were exposed to pure cultures of bacteria to allow biofilm formation and suspended in drinking waters with different chemical compositions. Sterile coupons not exposed to bacteria were used as controls. After 5 days of incubation, copper release and biofilm accumulation was quantified. The results demonstrated that cuprosolvency in the control experiments was influenced by water pH, total organic carbon (TOC) and conductivity. Cuprosolvency in the presence of biofilms correlated with the chemical composition of the water supplies particularly pH, Langeliers Index, chloride, alkalinity, TOC and soluble phosphate concentrations. The results suggest water quality may influence cuprosolvency by biofilms present within copper plumbing pipes. The potential for water chemistry to influence cuprosolvency by biofilms may contribute to the sporadic nature of copper corrosion problems in distribution systems.
Detection of viruses in drinking water by concentration on magnetic iron oxide.
Rao, V C; Waghmare, S V; Lakhe, S B
1981-09-01
Discharge of raw domestic wastes containing human enteric viruses into water courses, consumption of untreated water from canals, streams, and shallow wells in villages, and cross-contamination of water in the distribution system because of intermittent water supply in urban areas continue to cause widespread outbreaks of infectious hepatitis in India. To detect a low number of viruses in 50- to 100-liter samples of water, a method was developed with magnetic iron oxide as the virus adsorbent. Poliovirus-seeded dechlorinated tap water, adjusted to pH 3.0 and 0.0005 M AlCl3, was filtered through a 10-g bed of iron oxide sandwiched between two AP20 prefilter pads held in a 142-mm-diameter, stainless-steel holder. Virus was eluted from iron oxide by recirculating three times a 100-ml volume of 3% beef extract, pH 9.0. The eluate was reconcentrated to 5 ml by adjusting to pH 3, adding 1 g of iron oxide, stirring for 30 min, and eluting the readsorbed virus with 5 ml of beef extract, pH 9.0. Virus recovery varied from 60 to 80%. Using the above method, we took a survey of drinking water at three locations in Nagpur during 1976 and found the presence of virus in 7 of 50 samples. The quantity of virus recovered ranged from 1 to 7 plaque-forming units per 30 to 60 liters. Virus was detected in some samples even with residual chlorine. No coliforms were detected in the virus-positive samples.
A better understanding of brass corrosion may provide information and guidance on the use of the safest materials for the production of plumbing fixtures, and optimization of corrosion control treatments. The effect of alloy composition and pH on the metal leached from six differ...
Meier, J R; Knohl, R B; Coleman, W E; Ringhand, H P; Munch, J W; Kaylor, W H; Streicher, R P; Kopfler, F C
1987-12-01
3-Chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) was detected by gas chromatography/mass spectrometry in drinking water samples from 3 locations in the U.S.A., and also in a chlorinated humic acid solution. MX appears to account for a significant proportion of the mutagenicity of these samples, as measured in the Ames test using strain TA100 without metabolic activation. Studies on recovery of MX from spiked water samples by XAD-2/8 resin adsorption/acetone elution indicated that sample acidification prior to resin adsorption was essential to the effective recovery of MX. The stability of MX in aqueous solution was pH and temperature dependent. At 23 degrees C the order of stability, based on persistence of mutagenic activity was found to be: pH 2 greater than pH 4 greater than pH 8 greater than pH 6. The half-life at pH 8 and 23 degrees C was 4.6 days. One of the degradation products has been tentatively identified as 2-chloro-3-(dichloromethyl)-4-oxo-2-butenoic acid, an open form of MX which appears to be in the "E" configuration. Overall, these results suggest that MX is formed during water chlorination as a result of reaction of chlorine with humic substances, and that a substantial fraction of the MX formed is likely to persist throughout the distribution system.
Does quality of drinking water matter in kidney stone disease: A study in West Bengal, India.
Mitra, Pubali; Pal, Dilip Kumar; Das, Madhusudan
2018-05-01
The combined interaction of epidemiology, environmental exposure, dietary habits, and genetic factors causes kidney stone disease (KSD), a common public health problem worldwide. Because a high water intake (>3 L daily) is widely recommended by physicians to prevent KSD, the present study evaluated whether the quantity of water that people consume daily is associated with KSD and whether the quality of drinking water has any effect on disease prevalence. Information regarding residential address, daily volume of water consumption, and source of drinking water was collected from 1,266 patients with kidney stones in West Bengal, India. Drinking water was collected by use of proper methods from case (high stone prevalence) and control (zero stone prevalence) areas thrice yearly. Water samples were analyzed for pH, alkalinity, hardness, total dissolved solutes, electrical conductivity, and salinity. Average values of the studied parameters were compared to determine if there were any statistically significant differences between the case and control areas. We observed that as many as 53.6% of the patients consumed <3 L of water daily. Analysis of drinking water samples from case and control areas, however, did not show any statistically significant alterations in the studied parameters. All water samples were found to be suitable for consumption. It is not the quality of water, rather the quantity of water consumed that matters most in the occurrence of KSD.
Jawale, Bhushan Arun; Bendgude, Vikas; Mahuli, Amit V; Dave, Bhavana; Kulkarni, Harshal; Mittal, Simpy
2012-03-01
A high incidence of dental caries and dental erosion associated with frequent consumption of soft drinks has been reported. The purpose of this study was to evaluate the pH response of dental plaque to a regular, diet and high energy drink. Twenty subjects were recruited for this study. All subjects were between the ages of 20 and 25 and had at least four restored tooth surfaces present. The subjects were asked to refrain from brushing for 48 hours prior to the study. At baseline, plaque pH was measured from four separate locations using harvesting method. Subjects were asked to swish with 15 ml of the respective soft drink for 1 minute. Plaque pH was measured at the four designated tooth sites at 5, 10 and 20 minutes intervals. Subjects then repeated the experiment using the other two soft drinks. pH was minimum for regular soft drink (2.65 ± 0.026) followed by high energy drink (3.39 ± 0.026) and diet soft drink (3.78 ± 0.006). The maximum drop in plaque pH was seen with regular soft drink followed by high energy drink and diet soft drink. Regular soft drink possesses a greater acid challenge potential on enamel than diet and high energy soft drinks. However, in this clinical trial, the pH associated with either soft drink did not reach the critical pH which is expected for enamel demineralization and dissolution.
Pathak, Satya P; Gopal, K
2012-07-01
The purpose of this study is the development of a suitable process for the disinfection of drinking water by evaluating bactericidal efficacy of silver ions from silver electrodes. A prototype of a silver ioniser with silver electrodes and control unit has been fabricated. Silver ions from silver electrodes in water samples were estimated with an atomic absorption spectrophotometer. A fresh culture of Escherichia coli (1.75 × 10(3) c.f.u./ml) was exposed to 1, 2, 5, 10 and 20 ppb of silver ions in 100 ml of autoclaved tap water for 60 min. The effect of different pH and temperatures on bactericidal efficacy was observed at constant silver ion concentration (5 ppb) and contact time of 30 min. The maximum bactericidal activity (100%) was observed at 20 ppb of silver ion concentration indicating total disinfection after 20 min while minimum bactericidal activity (25%) was observed after 10 min at 01 ppb of silver ions. Likewise, 100% bactericidal activity was noticed with 2, 5 and 10 ppb of silver ions after 60, 50 and 40 min, respectively. Bactericidal activity at pH 5, 6, 7, 8 and 9 was observed at 79.9%, 79.8%, 80.5%, 100% and 100%, respectively, whereas it was 80.4%, 88.3%, 100%, 100% and 100% at 10°C, 20°C, 30°C, 40°C and 50°C, respectively. The findings of this study revealed that very low concentrations of silver ions at pH 8-9 and temperature >20°C have bactericidal efficacy for total disinfection of drinking water. Silver ionisation is suitable for water disinfection and an appropriate alternative to chlorination which forms carcinogenic disinfection by-products.
The ability to predict water quality in lakes is important since lakes are sources of water for agriculture, drinking, and recreational uses. Lakes are also home to a dynamic ecosystem of lacustrine wetlands and deep waters. They are sensitive to pH changes and are dependent on d...
NASA Astrophysics Data System (ADS)
Kichigin, V. I.; Egorova, Y. A.; Nesterenko, O. I.
2017-11-01
The paper investigates changes in water physico-chemical composition and its physical indicators through ζ-potential in residential buildings in eight administrative districts of Samara. The results are processed by the methods of mathematical statistics and presented at the 0.05 level of importance. The sampling points for water in the city districts were chosen with the aid of random numbers tables. It was determined that the quality of drinking water was stable and consistent with the existing standards in Zheleznodorozhniy, Samarskiy, Leninskiy, Octyabrskiy, Kirovsliy, Sovetskiy and Promyshlenniy districts of Samara. The following indicators were taken into account: pH, colour, turbidity, alkalinity, general rigidity, content of ions Ca2 +, Mg2 +. It was also established that drinking water in Kuibyshevskiy district (with all other excellent indicators) had increased mineralization due to the natural hydrological conditions of the water inlet. Some change in the size of zeta-potential of the water was detected during its transportation through the existing water-supplying networks of the city. It was shown that the link between zeta-potential and various kinds of contamination in drinking water is underexplored and requires further detailed study.
Deng, Ying; Wei, Jianrong; E, Xueli; Wang, Wuyi; et al
2008-03-01
To find the distribution level and geographical variations of disinfection by-products (DBPs) in drinking water. The samples were selected from water utilities in six cities (Daqing, Beijing, Tianjin, Zhengzhou, Changsha and Shenzhen) of China. The water source and technology of water treatment were investigated and the indices including trihalomethanes (THMs) and haloacetic acids (HAAs) in main DBPs and natural organic materials (NOM), pH, chlorine dosage and temperature were determined. In six cities the highest concentrations of TTHMs and THAAs in the distribution system were 92.8 microg/L and 40.0 microg/L, respectively. The concentration of every compound of THMs and HAAs was under the limit of standards for drinking water quality, but the concentrations of 'TTHMs at some samples were higher than the maximum acceptable level (MAC) defined by standards for drinking water quality. The geographical variations of THMs and HAAs in six cities were Zhengzhou > Tianjin > Daqing > Beijing > Shenzhen > Changsha and Changsha > Tianjin > Shenzhen > Daqing > Zhengzhou > Beijing, respectively. The levels of THMs of drinking water at Tianjin and Zhengzhou were higher than the others and the levels of HAAs of drinking water at Changsha, Tianjin and Shenzhen were higher than the others. The seasonal variations of both groups of THMs and HAAs were high in summer and low in winter. The pollution level of DBPs in drinking water from Chinese six cities were low. The concentration of DBPs related to seasonal. THMs distributed mainly to the North and HAAs distributed mainly to the South.
Carbohydrate-electrolyte drinks exhibit risks for human enamel surface loss
Passos, Vanara Florêncio; Lima, Juliana Paiva Marques; Santiago, Sérgio Lima; Rodrigues, Lidiany Karla Azevedo
2016-01-01
Objectives The aim of this investigation was to give insights into the impact of carbohydrate-electrolyte drinks on the likely capacity of enamel surface dissolution and the influence of human saliva exposure as a biological protective factor. Materials and Methods The pH, titratable acidity (TA) to pH 7.0, and buffer capacity (β) of common beverages ingested by patients under physical activity were analyzed. Then, we randomly distributed 50 specimens of human enamel into 5 groups. Processed and natural coconut water served as controls for testing three carbohydrate-electrolyte drinks. In all specimens, we measured surface microhardness (Knoop hardness numbers) and enamel loss (profilometry, µm) for baseline and after simulated intake cycling exposure model. We also prepared areas of specimens to be exposed to human saliva overnight prior to the simulated intake cycling exposure. The cycles were performed by alternated immersions in beverages and artificial saliva. ANOVA two-way and Tukey HDS tests were used. Results The range of pH, TA, and β were 2.85 - 4.81, 8.33 - 46.66 mM/L and 3.48 - 10.25 mM/L × pH, respectively. The highest capacity of enamel surface dissolution was found for commercially available sports drinks for all variables. Single time human saliva exposure failed to significantly promote protective effect for the acidic attack of beverages. Conclusions In this study, carbohydrate-electrolyte drinks usually consumed during endurance training may have a greater capacity of dissolution of enamel surface depending on their physicochemical proprieties associated with pH and titratable acidity. PMID:27847745
POTENTIAL EFFECTS OF PHOSPHATE PRODUCTS ON LEAD SOLUBILITY IN PLUMBING SYSTEMS
Lead concentrations in drinking water can be minimized by adjusting the pH and alkalinity. Such lead solubility controls, however, may be offset by other water treatment measures that inadvertently increase lead solubility, e.g., the adding of polyphosphate-containing products. ...
Jia, Aiyin; Wu, Chunde; Duan, Yan
2016-05-05
This study investigated the precursors and factors affecting formation of haloacetonitriles (HANs) and chloropicrin (TCNM) during chlorination/chloramination of eight amino acids in the effluent water of V-type clarifying filtration from a drinking water treatment plant. The yields of trichloroacetonitrile (TCAN), dichloroacetonitrile (DCAN) and TCNM were higher during chlorination than during chloramination. Tyrosine and tryptophan produced the greatest amount of DCAN and also generated a small amount of TCAN during chlorination process. Besides, the yields of DCAN were higher than TCNM during chlorination/chloramination. Contact time, Cl2:org-N molar ratios, pH, temperature and bromide ion affected nitrogenous disinfection by-products (N-DBPs) formation during chlorination of tryptophan in different degrees. TCAN, DCAN and TCNM formation showed the increasing and then decreasing with prolonged contact time. Higher Cl2:org-N molar ratios improved N-DBPs formation within a certain range. The pH affected N-DBPs formation differently. HANs increased with increasing pH from 5 to 6 and decreased with increasing pH from 6 to 9, while TCNM increased with increasing pH from 5 to 9. Higher temperatures enhanced TCNM formation, but reduced the formation of TCAN and DCAN. The presence of bromide ions improved the yields of HANs and TCNM and shifted N-DBPs to more brominated ones. Copyright © 2016 Elsevier B.V. All rights reserved.
Di Martino, G; Piccirillo, A; Giacomelli, M; Comin, D; Gallina, A; Capello, K; Buniolo, F; Montesissa, C; Bonfanti, L
2018-04-17
Drinking water for poultry is not subject to particular microbiological, chemical and physical requirements, thereby representing a potential transmission route for pathogenic microorganisms and contaminants and/or becoming unsuitable for water-administered medications. This study assessed the microbiological, chemical and physical drinking water quality of 28 turkey farms in North-Eastern Italy: 14 supplied with tap water (TW) and 14 with well water (WW). Water salinity, hardness, pH, ammonia, sulphate, phosphate, nitrate, chromium, copper and iron levels were also assessed. Moreover, total bacterial count at 22°C, presence and enumeration of Enterococcus spp. and E. coli, presence of Salmonella spp. and Campylobacter spp. were quantified. A water sample was collected in winter and in summer at 3 sampling sites: the water source (A), the beginning (B) and the end (C) of the nipple line (168 samples in total). Chemical and physical quality of both TW and WW sources was mostly within the limits of TW for humans. However, high levels of hardness and iron were evidenced in both sources. In WW vs. TW, sulphate and salinity levels were significantly higher, whilst pH and nitrate levels were significantly lower. At site A, microbiological quality of WW and TW was mostly within the limit of TW for humans. However, both sources had a significantly lower microbiological quality at sites B and C. Salmonella enterica subsp. enterica serotype Kentucky was isolated only twice from WW. Campylobacter spp. were rarely isolated (3.6% of farms); however, Campylobacter spp. farm-level prevalence by real-time PCR was up to 43% for both water sources. Winter posed at higher risk than summer for Campylobacter spp. presence in water, whereas no significant associations were found with water source, site, recirculation system, and turkey age. Low salinity and high hardness were significant risk factors for C. coli and C. jejuni presence, respectively. These results show the need of improving sanitization of drinking water pipelines for commercial turkeys.
Extensive localized or pitting corrosion of copper pipes used in household drinking-water plumbing can eventually lead to pinhole water leaks that may result in water damage, mold growth, and costly repairs. A growing number of problems have been associated with high pH and low ...
Li, Wei; Duan, Jinming; Niu, Chaoying; Qiang, Naichen; Mulcahy, Dennis
2011-10-01
A simple detection method using ultra-performance liquid chromatography electrospray ionisation tandem mass spectrometry (UPLC-ESI-MS-MS) coupled with the sample dilution method for determining trace microcystin-LR (MC-LR) in drinking water is presented. The limit of detection (LOD) was 0.04 µg/L and the limit of quantitation (LOQ) was 0.1 µg/L. Water matrix effects of ionic strength, dissolved organic carbon (DOC) and pH were examined. The results indicate that signal detection intensity for MC-LR was significantly suppressed as the ionic strength increased from ultrapure water condition, whereas it increased slightly with solution pH and DOC at low concentrations. However, addition of methanol (MeOH) into the sample was able to counter the signal suppression effects. In this study, dilution of the tap water sample by adding 4% MeOH (v/v) was observed to be adequate to compensate for the signal suppression. The recoveries of the samples fortified with MC-LR (0.2, 1, and 10 µg/L) for three different tap water samples ranged from 84.4% to 112.9%.
Karthikeyan, G; Sundarraj, A Shunmuga; Elango, K P
2003-10-01
193 drinking water samples from water sources of 27 panchayats of Veppanapalli block of Dharmapuri district of Tamil Nadu were analysed for chemical quality parameters. Based on the fluoride content of the water sources, fluoride maps differentiating regions with high / low fluoride levels were prepared using Isopleth mapping technique. The interdependence among the important chemical quality parameters were assessed using correlation studies. The experimental results of the application of linear and multiple regression equations on the influence of hardness, alkalinity, total dissolved solids and pH on fluoride are discussed.
Quality of drinking water from the agricultural area treated with pitcher water filters
Królak, Elżbieta; Raczuk, Jolanta; Sakowicz, Danuta; Biardzka, Elżbieta
Home methods of drinking water treatment through filtration have recently become quite popular. The aim of the study was to compare chemical composition of unfiltered water with water filtered in households with pitcher water filters. Obtained results were discussed in view of the effect of analysed chemical components of water on human health. Water samples were taken from water works supplies and from home dug wells from the agricultural area. Unfiltered water and water filtered through filters filled with active carbon and ion-exchanging resin and placed in a pitcher were analysed. Electrolytic conductivity, pH, hardness and the concentrations of calcium, magnesium, nitrate, phosphate and chloride ions were determined in water samples. Results of analyses were statistically processed. As a result of water filtration, the concentration of phosphates significantly increased and the concentrations of calcium, magnesium, electrolytic conductivity and pH decreased. No changes were noted in the concentration of chloride ions. Filtering water decreased the concentration of nitrates in dug wells samples. Using water purification devices is justified in the case of water originating from home dug wells contaminated with nitrates when, at the same time, consumers’ diet is supplemented with calcium and magnesium. Filtration of water from water works supplies, controlled by sanitary inspection seems aimless.
ANFIS-based modelling for coagulant dosage in drinking water treatment plant: a case study.
Heddam, Salim; Bermad, Abdelmalek; Dechemi, Noureddine
2012-04-01
Coagulation is the most important stage in drinking water treatment processes for the maintenance of acceptable treated water quality and economic plant operation, which involves many complex physical and chemical phenomena. Moreover, coagulant dosing rate is non-linearly correlated to raw water characteristics such as turbidity, conductivity, pH, temperature, etc. As such, coagulation reaction is hard or even impossible to control satisfactorily by conventional methods. Traditionally, jar tests are used to determine the optimum coagulant dosage. However, this is expensive and time-consuming and does not enable responses to changes in raw water quality in real time. Modelling can be used to overcome these limitations. In this study, an Adaptive Neuro-Fuzzy Inference System (ANFIS) was used for modelling of coagulant dosage in drinking water treatment plant of Boudouaou, Algeria. Six on-line variables of raw water quality including turbidity, conductivity, temperature, dissolved oxygen, ultraviolet absorbance, and the pH of water, and alum dosage were used to build the coagulant dosage model. Two ANFIS-based Neuro-fuzzy systems are presented. The two Neuro-fuzzy systems are: (1) grid partition-based fuzzy inference system (FIS), named ANFIS-GRID, and (2) subtractive clustering based (FIS), named ANFIS-SUB. The low root mean square error and high correlation coefficient values were obtained with ANFIS-SUB method of a first-order Sugeno type inference. This study demonstrates that ANFIS-SUB outperforms ANFIS-GRID due to its simplicity in parameter selection and its fitness in the target problem.
Osteo-dental fluorosis in relation to chemical constituents of drinking waters.
Choubisa, S L
2012-01-01
Study was conducted in 17 fluoride endemic villages to find out association between the prevalence and severity of osteo-dental fluorosis with different chemical constituents of drinking waters. These villages were arranged in 7 sets, each containing 2 to 3 villages with identical mean fluoride (F) concentrations in the range 1.0 to 5.8 mg/L but having different mean values of total hardness, alkalinity and nitrate (NO3) content in drinking water sources. A close association or relationship was found between the prevalence of fluorosis and the total hardness and alkalinity of potable waters. A low prevalence of fluorosis was found at low alkalinity and at high total hardness. But no specific association was observed between the prevalence figures of fluorosis with pH and NO3 levels which is also discussed in the present communication.
Preparation of fly ash based zeolite for removal of fluoride from drinking water
NASA Astrophysics Data System (ADS)
Panda, Laxmidhar; Kar, Biswabandita; Dash, Subhakanta
2018-05-01
Fluoride contamination of drinking water is a worldwide phenomenon and scientists are working relentlessly to find ways to remove fluoride from drinking water. Out of the different methods employed for removal fluoride from drinking water adsorption process is the most suitable because in this process the adsorbent is regenerated and the process is cost effective. In the present study fly ash is used as the raw material, which is treated with alkali (NaOH) to form NaP1 zeolite. This zeolite is then subjected to characterization by standard procedures. It is found that the synthesized zeolite has more crystalline character than the raw fly ash and has also more voids and channels on its surface. The surface of the synthesized zeolite is modified with calcium chloride and the same is employed for removal of fluoride under varying pH, contact time, initial concentration of fluoride, temperature and adsorbent dose etc so as to assess the suitably or otherwise of the synthesized product.
Deng, Yang; Wu, Meiyin; Zhang, Huiqin; Zheng, Lei; Acosta, Yaritza; Hsu, Tsung-Ta D
2017-11-01
Although ferrate(VI) has long been recognized as a multi-purpose treatment agent, previous investigations regarding ferrate(VI) for addressing harmful algal blooms (HABs) impacts in drinking water treatment only focused on a single HAB pollutant (e.g. algal cells or algal toxins). Moreover, the performance of ferrate(VI)-driven coagulation was poorly investigated in comparison with ferrate(VI) oxidation, though it has been widely acknowledged as a major ferrate(VI) treatment mechanism. We herein reported ferrate(VI) as an emerging agent for simultaneous and effective removal of algal cells and toxins in a simulated HAB-impacted water. Ferrate(VI)-driven oxidation enabled algal cell inactivation and toxin decomposition. Subsequently, Fe(III) from ferrate(VI) reduction initiated an in-situ coagulation for cell aggregation. Cell viability (initial 4.26 × 10 4 cells/mL at pH 5.5 and 5.16 × 10 4 cells/mL at pH 7.5) decreased to 0.0% at ≥ 7 mg/L Fe(VI) at pH 5.5 and 7.5, respectively. Cell density and turbidity were dramatically decreased at pH 5.5 once ferrate(VI) doses were beyond their respective threshold levels, which are defined as minimum effective iron doses (MEIDs). However, the particulate removal at pH 7.5 was poor, likely because the coagulation was principally driven by charge neutralization and a higher pH could not sufficiently lower the particle surface charge. Meanwhile, algal toxins (i.e., microcystins) of 3.98 μg/L could be substantially decomposed at either pH. And the greater degradation achieved at pH 5.5 was due to the higher reactivity of ferrate(VI) at the lower pH. This study represents the first step toward the ferrate(VI) application as a promising approach for addressing multiple HABs impacts for water treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
The quality of raw water for drinking water unit in Jakarta-Indonesia
NASA Astrophysics Data System (ADS)
Sidabutar, Noni Valeria; Hartono, Djoko M.; Soesilo, Tri Edhi Budhi; Hutapea, Reynold C.
2017-03-01
Water problems, i.e quality, quantity, continuity of clean water faced by the mostly urban area. Jakarta also faces similar issues, because the needs of society higher than the number of water fulfilled by the government. Moreover, Jakarta's water quality does not meet the standard set by the Government and heavily polluted by anthropogenic activities along its rivers. This research employs a quantitative research approach with the mix-method. It examines the raw water quality status for drinking water in West Tarum Canalin 2011-2015. The research results show water quality with this research, using water quality of with the water categorized as heavily-polluted category based on the Ministry of Environment's Decree No 115/2003 regarding the Guidelines for Determination of Water Quality Status. This present research also shown the water quality (parameters pH, temperature, Dissolved Oxygen (DO), Chemical Oxygen Demand (COD), and Biochemical Oxygen Demand (BOD)) from Jatiluhur Dam to the intake drinking water unit. In thirteen points of sampling also, the results obtained the parameters DO, COD, and BOD are fluctuating and exceed the standard.
Effects of iron on arsenic speciation and redox chemistry in acid mine water
Bednar, A.J.; Garbarino, J.R.; Ranville, J.F.; Wildeman, T.R.
2005-01-01
Concern about arsenic is increasing throughout the world, including areas of the United States. Elevated levels of arsenic above current drinking-water regulations in ground and surface water can be the result of purely natural phenomena, but often are due to anthropogenic activities, such as mining and agriculture. The current study correlates arsenic speciation in acid mine drainage and mining-influenced water with the important water-chemistry properties Eh, pH, and iron(III) concentration. The results show that arsenic speciation is generally in equilibrium with iron chemistry in low pH AMD, which is often not the case in other natural-water matrices. High pH mine waters and groundwater do not always hold to the redox predictions as well as low pH AMD samples. The oxidation and precipitation of oxyhydroxides deplete iron from some systems, and also affect arsenite and arsenate concentrations through sorption processes. ?? 2004 Elsevier B.V. All rights reserved.
Cromeans, Theresa L.; Kahler, Amy M.; Hill, Vincent R.
2010-01-01
Inactivation of infectious viruses during drinking water treatment is usually achieved with free chlorine. Many drinking water utilities in the United States now use monochloramine as a secondary disinfectant to minimize disinfectant by-product formation and biofilm growth. The inactivation of human adenoviruses 2, 40, and 41 (HAdV2, HAdV40, and HAdV41), coxsackieviruses B3 and B5 (CVB3 and CVB5), echoviruses 1 and 11 (E1 and E11), and murine norovirus (MNV) are compared in this study. Experiments were performed with 0.2 mg of free chlorine or 1 mg of monochloramine/liter at pH 7 and 8 in buffered reagent-grade water at 5°C. CT values (disinfectant concentration × time) for 2- to 4-log10 (99 to 99.99%) reductions in virus titers were calculated by using the efficiency factor Hom model. The enteroviruses required the longest times for chlorine inactivation and MNV the least time. CVB5 required the longest exposure time, with CT values of 7.4 and 10 mg·min/liter (pH 7 and 8) for 4-log10 inactivation. Monochloramine disinfection was most effective for E1 (CT values ranged from 8 to 18 mg·min/liter for 2- and 3-log10 reductions, respectively). E11 and HAdV2 were the least susceptible to monochloramine disinfection (CT values of 1,300 and 1,600 mg-min/liter for 3-log10 reductions, respectively). Monochloramine inactivation was most successful for the adenoviruses, CVB5, and E1 at pH 7. A greater variation in inactivation rates between viruses was observed during monochloramine disinfection than during chlorine disinfection. These data will be useful in drinking water risk assessment studies and disinfection system planning. PMID:20023080
Mulamattathil, Suma George; Bezuidenhout, Carlos; Mbewe, Moses
2015-12-01
Mafikeng, the capital of the North West Province, receives water from two sources, namely the Molopo eye and the Modimola dam. Once treated, the potable water is mixed and supplied to the city via distribution systems. This study was designed to assess the quality of drinking water in Mafikeng and also to determine whether the water from the two sources has an impact on the mixed water quality. Physico-chemical parameters and bacteriological quality (faecal coliforms (FCs), total coliforms (TCs), heterotrophic bacteria and Peudomonas spp.) was monitored at three drinking water sites weekly for 4 months. The results revealed that the physico-chemical quality of the water was generally acceptable. The pH ranged from 5.7 ± 0.18 to 8.6 ± 0.14, the temperature ranged from 18.3 ± 0.69 to 25.1 ± 0.69 °C and the total dissolved solids (TDS) ranged from 159.9 ± 22.44 to 364.4 ± 12.44 mg/l. These values are within the target water quality range for drinking water as prescribed by WHO, Department of Water Affairs and SANS 241. What is of concern was the microbial quality of the water. FCs, TCs, heterotrophic bacteria and Pseudomonas spp. were present in some of the treated water samples. The most significant finding of this study is that all drinking water samples were positive for Pseudomonas spp. (>100/100 ml).
Ma, Xiangmeng; Armas, Stephanie M; Soliman, Mikhael; Lytle, Darren A; Chumbimuni-Torres, Karin; Tetard, Laurene; Lee, Woo Hyoung
2018-02-20
A novel method using a micro-ion-selective electrode (micro-ISE) technique was developed for in situ lead monitoring at the water-metal interface of a brass-leaded solder galvanic joint in a prepared chlorinated drinking water environment. The developed lead micro-ISE (100 μm tip diameter) showed excellent performance toward soluble lead (Pb 2+ ) with sensitivity of 22.2 ± 0.5 mV decade -1 and limit of detection (LOD) of 1.22 × 10 -6 M (0.25 mg L -1 ). The response time was less than 10 s with a working pH range of 2.0-7.0. Using the lead micro-ISE, lead concentration microprofiles were measured from the bulk to the metal surface (within 50 μm) over time. Combined with two-dimensional (2D) pH mapping, this work clearly demonstrated that Pb 2+ ions build-up across the lead anode surface was substantial, nonuniform, and dependent on local surface pH. A large pH gradient (ΔpH = 6.0) developed across the brass and leaded-tin solder joint coupon. Local pH decreases were observed above the leaded solder to a pH as low as 4.0, indicating it was anodic relative to the brass. The low pH above the leaded solder supported elevated lead levels where even small local pH differences of 0.6 units (ΔpH = 0.6) resulted in about four times higher surface lead concentrations (42.9 vs 11.6 mg L -1 ) and 5 times higher fluxes (18.5 × 10 -6 vs 3.5 × 10 -6 mg cm -2 s -1 ). Continuous surface lead leaching monitoring was also conducted for 16 h.
Determination of trace metals in drinking water in Irbid City-Northern Jordan.
Alomary, Ahmed
2013-02-01
Drinking water samples from Irbid, the second populated city in Jordan were analyzed for trace metals (As, Ba, Cd, Pb, Cr, Cu, Fe, Zn, Mn, Ni, and Se) content. The study was undertaken to determine if the metal concentrations were within the national and international guidelines. A total of 90 drinking water samples were collected from Al-Yarmouk University area. The samples were collected from three different water types: tap water (TW), home-purified water (HPW), and plant-purified water (PPW). All the samples were analyzed for trace metals using an inductively coupled plasma-optical emission spectrometry. All the samples analyzed were within the United States Environmental Protection Agency admissible pH limit (6.5-8.5). The results showed that concentrations of the trace metals vary significantly between the three drinking water types. The results showed that HPW samples have the lowest level of trace metals and the concentrations of some essential trace metals in these samples are less than the recommended amounts. Slight differences in the metal contents were found between HPW samples, little differences between PPW samples; however, significant differences were found between TW samples. Although some TW samples showed high levels of trace metals, however, the mean level of most elements determined in the samples were well within the Jordanian standards as well as the World Health Organization standards for drinking water.
Li, Longfei; Su, Min; Shi, Xiaolei; Wang, Yana; Wang, Minmin; He, Jinxing
2014-02-01
A method for the determination of diethylstilbestrol (DES), hexestrol (HEX) and dienestrol (DS) residues in drinking water was established by on-line solid phase extraction (SPE) coupled with high performance liquid chromatography (HPLC). The material synthesized on the base of sol-gel technology was employed as adsorbent. This material was prepared using 3-aminopropyltriethoxysilane (APTES) as the functional monomer, tetraethoxysilane (TEOS) as the crosslinking agent, and acetic acid as the initiator. The synthesized adsorbent showed outstanding property for the estrogen extraction. The estrogen can be caught effectively from water samples and the extraction can be achieved rapidly. Some important parameters, such as pH of sample solution, eluent solvents, loading flow rate, which might influence extraction efficiency, were optimized. The results indicated that the limit of detection (S/N = 3) of the developed method could reach 0.07-0.13 microg/L under the conditions of pH 7.0 of sample solution, methanol and 1% (v/v) acetic acid aqueous solution as the eluent solvent and the loading flow rate of 2 mL/min. The recoveries of the three estrogens from the water samples at three spiked levels ranged from 82.31% to 99.43% with RSD of 1.61%-7.15%. The method was simple, rapid, and suitable to detect the trace residues of estrogens in drinking water.
Drinking water quality assessment.
Aryal, J; Gautam, B; Sapkota, N
2012-09-01
Drinking water quality is the great public health concern because it is a major risk factor for high incidence of diarrheal diseases in Nepal. In the recent years, the prevalence rate of diarrhoea has been found the highest in Myagdi district. This study was carried out to assess the quality of drinking water from different natural sources, reservoirs and collection taps at Arthunge VDC of Myagdi district. A cross-sectional study was carried out using random sampling method in Arthunge VDC of Myagdi district from January to June,2010. 84 water samples representing natural sources, reservoirs and collection taps from the study area were collected. The physico-chemical and microbiological analysis was performed following standards technique set by APHA 1998 and statistical analysis was carried out using SPSS 11.5. The result was also compared with national and WHO guidelines. Out of 84 water samples (from natural source, reservoirs and tap water) analyzed, drinking water quality parameters (except arsenic and total coliform) of all water samples was found to be within the WHO standards and national standards.15.48% of water samples showed pH (13) higher than the WHO permissible guideline values. Similarly, 85.71% of water samples showed higher Arsenic value (72) than WHO value. Further, the statistical analysis showed no significant difference (P<0.05) of physico-chemical parameters and total coliform count of drinking water for collection taps water samples of winter (January, 2010) and summer (June, 2010). The microbiological examination of water samples revealed the presence of total coliform in 86.90% of water samples. The results obtained from physico-chemical analysis of water samples were within national standard and WHO standards except arsenic. The study also found the coliform contamination to be the key problem with drinking water.
Does quality of drinking water matter in kidney stone disease: A study in West Bengal, India
Mitra, Pubali; Pal, Dilip Kumar
2018-01-01
Purpose The combined interaction of epidemiology, environmental exposure, dietary habits, and genetic factors causes kidney stone disease (KSD), a common public health problem worldwide. Because a high water intake (>3 L daily) is widely recommended by physicians to prevent KSD, the present study evaluated whether the quantity of water that people consume daily is associated with KSD and whether the quality of drinking water has any effect on disease prevalence. Materials and Methods Information regarding residential address, daily volume of water consumption, and source of drinking water was collected from 1,266 patients with kidney stones in West Bengal, India. Drinking water was collected by use of proper methods from case (high stone prevalence) and control (zero stone prevalence) areas thrice yearly. Water samples were analyzed for pH, alkalinity, hardness, total dissolved solutes, electrical conductivity, and salinity. Average values of the studied parameters were compared to determine if there were any statistically significant differences between the case and control areas. Results We observed that as many as 53.6% of the patients consumed <3 L of water daily. Analysis of drinking water samples from case and control areas, however, did not show any statistically significant alterations in the studied parameters. All water samples were found to be suitable for consumption. Conclusions It is not the quality of water, rather the quantity of water consumed that matters most in the occurrence of KSD. PMID:29744472
USDA-ARS?s Scientific Manuscript database
It has been proposed that ground water contaminated with low concentrations of As (V) be remediated by infiltration and recharge into infiltration basins using the subsurface materials to adsorb the metal. This low cost remediation scheme allows for production of water that meets the drinking water ...
CONTROL OF ORGANIC DRINKING WATER QUALITY BY PRECIPITATIVE PROCESSES
Plant and bench studies were conducted on a highly colored surface water using Alum and Polyvalent Aluminum Chloride (PAC1) coagulation to minimize THMPF. Optimum coagulation pH and dose were identified by season for Alum and PAC1 for color, DOC, THMPF and TOXFP removal. Aluminum...
Eid, Neveen H; Al Doghaither, Huda A; Kumosani, Taha A; Gull, Munazza
2017-01-01
To evaluate the indigenous bacterial strains of drinking water from the most commercial water types including bottled and filtered water that are currently used in Saudi Arabia. Thirty randomly selected commercial brands of bottled water were purchased from Saudi local markets. Moreover, samples from tap water and filtered water were collected in sterilized glass bottles and stored at 4°C. Biochemical analyses including pH, temperature, lactose fermentation test (LAC), indole test (IND), methyl red test (MR), Voges-Proskauer test (VP), urease test (URE), catalase test (CAT), aerobic and anaerobic test (Ae/An) were measured. Molecular identification and comparative sequence analyses were done by full length 16S rRNA gene sequences using gene bank databases and phylogenetic trees were constructed to see the closely related similarity index between bacterial strains. Among 30 water samples tested, 18 were found positive for bacterial growth. Molecular identification of four selected bacterial strains indicated the alarming presence of pathogenic bacteria Bacillus spp . in most common commercial types of drinking water used in Saudi Arabia. The lack of awareness about good sanitation, poor personal hygienic practices and failure of safe water management and supply are the important factors for poor drinking water quality in these sources, need to be addressed.
Removal of Strontium from Drinking Water by Conventional ...
The United States Environmental Protection Agency Contaminant Candidate List 3 lists strontium as a contaminant for potential regulatory consideration in drinking water. There is very little data available on strontium removal from drinking water. As a result, there is an immediate need to perform treatment studies. The objective of this work is to evaluate the effectiveness of conventional and lime-soda ash softening treatments to remove strontium from surface and ground waters. Conventional drinking water treatment with aluminum and iron coagulants were able to achieve 12% and 5.9% strontium removal at best, while lime softening removed as much as 78% from natural strontium-containing ground water. Systematic fundamental experiments showed that strontium removal during the lime-soda ash softening was related to pH, calcium concentration and dissolved inorganic carbon concentration. Final strontium concentration was also directly associated with initial strontium concentration. Precipitated solids showed well-formed crystals or agglomerates of mixed solids, two polymorphs of calcium carbonate (vaterite and calcite), and strontianite, depending on initial water quality conditions. X-ray diffraction analysis suggested that strontium likely replaced calcium inside the crystal lattice and was likely mainly responsible for removal during lime softening. To inform the public.
Impact of water quality on chlorine demand of corroding copper.
Lytle, Darren A; Liggett, Jennifer
2016-04-01
Copper is widely used in drinking water premise plumbing system materials. In buildings such as hospitals, large and complicated plumbing networks make it difficult to maintain good water quality. Sustaining safe disinfectant residuals throughout a building to protect against waterborne pathogens such as Legionella is particularly challenging since copper and other reactive distribution system materials can exert considerable demands. The objective of this work was to evaluate the impact of pH and orthophosphate on the consumption of free chlorine associated with corroding copper pipes over time. A copper test-loop pilot system was used to control test conditions and systematically meet the study objectives. Chlorine consumption trends attributed to abiotic reactions with copper over time were different for each pH condition tested, and the total amount of chlorine consumed over the test runs increased with increasing pH. Orthophosphate eliminated chlorine consumption trends with elapsed time (i.e., chlorine demand was consistent across entire test runs). Orthophosphate also greatly reduced the total amount of chlorine consumed over the test runs. Interestingly, the total amount of chlorine consumed and the consumption rate were not pH dependent when orthophosphate was present. The findings reflect the complex and competing reactions at the copper pipe wall including corrosion, oxidation of Cu(I) minerals and ions, and possible oxidation of Cu(II) minerals, and the change in chlorine species all as a function of pH. The work has practical applications for maintaining chlorine residuals in premise plumbing drinking water systems including large buildings such as hospitals. Published by Elsevier Ltd.
Rahman, Safiur; Gagnon, Graham A
2014-01-01
Corrosion control strategies are important for many utilities in maintaining water quality from the water treatment plant to the customers' tap. In drinking water with low alkalinity, water quality can become significantly degraded in iron-based pipes if water utilities are not diligent in maintaining proper corrosion control. This article reports on experiments conducted in bicarbonate buffered (5 mg-C/L) synthetic water to determine the effects of corrosion control (pH and phosphate) and dissolved organic matter (DOM) on the rate constants of the Fe(II) oxidation process. A factorial design approach elucidated that pH (P = 0.007, contribution: 42.5%) and phosphate (P = 0.025, contribution: 22.7%) were the statistically significant factors in the Fe(II) oxidation process at a 95% confidence level. The comprehensive study revealed a significant dependency relationship between the Fe(II) oxidation rate constants (k) and phosphate-to- Fe(II) mole ratio. At pH 6.5, the optimum mole ratio was found to be 0.3 to reduce the k values. Conversely, the k values were observed to increase for the phosphate-to- Fe(II) mole ratio > 1. The factorial design approach revealed that chlorine and DOM for the designated dosages did not cause a statistically significant (α = 0.05, P > 0.05)change in rate constants. However, an increment of the chlorine to ferrous iron mole ratio by a factor of ∼ 2.5 resulted in an increase k values by a factor of ∼ 10. This study conclusively demonstrated that the lowest Fe(II) oxidation rate constant was obtained under low pH conditions (pH ≤ 6.5), with chlorine doses less than 2.2 mg/L and with a phosphate-to-Fe(II) mole ratio ≈ 0.3 in the iron water systems.
Klarich, Kathryn L.; Pflug, Nicholas C.; DeWald, Eden M.; Hladik, Michelle L.; Kolpin, Dana W.; Cwiertny, David M.; LeFevre, Gergory H.
2017-01-01
Neonicotinoid insecticides are widespread in surface waters across the agriculturally-intensive Midwestern US. We report for the first time the presence of three neonicotinoids in finished drinking water and demonstrate their general persistence during conventional water treatment. Periodic tap water grab samples were collected at the University of Iowa over seven weeks in 2016 (May-July) after maize/soy planting. Clothianidin, imidacloprid, and thiamethoxam were ubiquitously detected in finished water samples and ranged from 0.24-57.3 ng/L. Samples collected along the University of Iowa treatment train indicate no apparent removal of clothianidin and imidacloprid, with modest thiamethoxam removal (~50%). In contrast, the concentrations of all neonicotinoids were substantially lower in the Iowa City treatment facility finished water using granular activated carbon (GAC) filtration. Batch experiments investigated potential losses. Thiamethoxam losses are due to base-catalyzed hydrolysis at high pH conditions during lime softening. GAC rapidly and nearly completely removed all three neonicotinoids. Clothianidin is susceptible to reaction with free chlorine and may undergo at least partial transformation during chlorination. Our work provides new insights into the persistence of neonicotinoids and their potential for transformation during water treatment and distribution, while also identifying GAC as an effective management tool to lower neonicotinoid concentrations in finished drinking water.
Assessment of the quality of water from hand-dug wells in ghana.
Nkansah, Marian Asantewah; Boadi, Nathaniel Owusu; Badu, Mercy
2010-04-26
This study focused upon the determination of physicochemical and microbial properties, including metals, selected anions and coliform bacteria in drinking water samples from hand-dug wells in the Kumasi metropolis of the Republic of Ghana. The purpose was to assess the quality of water from these sources. Ten different water samples were taken from different parts of Kumasi, the capital of the Ashanti region of Ghana and analyzed for physicochemical parameters including pH, electrical conductivity, total dissolved solids, alkalinity total hardness and coliform bacteria. Metals and anions analyzed were Ca, Mg, Fe, Mn, NO(3) (-), NO(2) (-), SO(4) (2-), PO(4) (2-), F(-) and Cl(-). Bacteria analysed were total coliform and Escherichia coli.THE DATA SHOWED VARIATION OF THE INVESTIGATED PARAMETERS IN SAMPLES AS FOLLOWS: pH, 6.30-0.70; conductivity (EC), 46-682 muS/cm; PO(4) (3-), 0.67-76.00 mg/L; F(-), 0.20-0.80 mg/L; NO(3) (-), 0-0.968 mg/L; NO(2) (-), 0-0.063 mg/L; SO(4) (2-), 3.0-07.0 mg/L; Fe, 0-1.2 mg/L; Mn, 0-0.018 mg/L. Total coliform and Escherichia coli were below the minimum detection limit (MDL) of 20 MPN per 100 ml in all the samples. The concentrations of most of the investigated parameters in the drinking water samples from Ashanti region were within the permissible limits of the World Health Organization drinking water quality guidelines.
NASA Astrophysics Data System (ADS)
Barakat, Ahmed; Meddah, Redouane; Afdali, Mustapha; Touhami, Fatima
2018-04-01
The present study was conducted to examine the water quality of karst springs located along the Piedmont of Béni-Mellal Atlas (Morocco) for drinking purposes. Twenty-five water samples were collected from seven springs in June, July, August and September 2013, and May 2016 have been analyzed for their physicochemical and microbial characteristics. The analytical data of temperature, pH, DO, TAC, TH, oxidizability and NH4+ showed that all sampled springs are suitable as drinking water according to Moroccan and the World Health Organization (WHO) standards. Nevertheless, EC, turbidity, and NO3- were sometimes noted higher than the allowable limits, what would be ascribed to erosion and leaching of soil and karstic rocks. The microbial analysis revealed the presence of fecal contamination (total coliforms, E. coli, and intestinal enterococci) in all springs at various times. The water quality index (WQI) calculated based on physicochemical and microbial data reveled that water quality categorization for all sampling springs was found to be 'medium' to 'good' for drinking uses in the National Sanitation Foundation WQI (NSF-WQI), and ''necessary treatment becoming more extensive'' to ''purification not necessary'' in the Dinius' Second Index (D-WQI). The Aine Asserdoune and Foum el Anceur springs showed the good quality of drinking water. According to Moroccan standards for water used for drinking purposes, the waters belong to category A1 that requires becoming drinkable a simple physical treatment and disinfection. From the type of parameters present in quantities exceeding drinking water limits, it is very obvious that these water resources are under the influence of anthropogenic activities such as sewage, waste disposal, deforestation and agricultural activities, caused land degradation and nonpoint pollution sources. Environmental attention, such as systematic quality control and adequate treatment before being used for drinking use and access to sewage sanitation, are required to guarantee sufficient protection of the studied springs.
Occurrence of regulated and emerging iodinated DBPs in the Shanghai drinking water.
Wei, Xiao; Chen, Xin; Wang, Xia; Zheng, Weiwei; Zhang, Dong; Tian, Dajun; Jiang, Songhui; Ong, Choon Nam; He, Gengsheng; Qu, Weidong
2013-01-01
Drinking water chlorination plays a pivotal role in preventing pathogen contamination against water-borne disease. However, chemical disinfection leads to the formation of halogenated disinfection by products (DBPs). Many DBPs are highly toxic and are of health concern. In this study, we conducted a comprehensive measurements of DBPs, including iodoacetic acid (IAA), iodoform (IF), nine haloacetic acids and four trihalomethanes in drinking waters from 13 water plants in Shanghai, China. The results suggested that IAA and IF were found in all the water treatment plants, with maximum levels of 1.66 µg/L and 1.25 µg/L for IAA and IF, respectively. Owing to deterioration of water quality, the Huangpu River has higher IAA and IF than the Yangtze River. Our results also demonstrated that low pH, high natural organic matter, ammonia nitrogen, and iodide in source waters increased IAA and IF formation. Compared to chlorine, chloramines resulted in higher concentration of iodinated DBP, but reduced the levels of trihalomethanes. This is the first study to reveal the widespread occurrence of IAA and IF in drinking water in China. The data provide a better understanding on the formation of iodinated disinfection byproducts and the findings should be useful for treatment process improvement and disinfection byproducts controls.
Occurrence of Regulated and Emerging Iodinated DBPs in the Shanghai Drinking Water
Wei, Xiao; Chen, Xin; Wang, Xia; Zheng, Weiwei; Zhang, Dong; Tian, Dajun; Jiang, Songhui; Ong, Choon Nam; He, Gengsheng; Qu, Weidong
2013-01-01
Drinking water chlorination plays a pivotal role in preventing pathogen contamination against water-borne disease. However, chemical disinfection leads to the formation of halogenated disinfection by products (DBPs). Many DBPs are highly toxic and are of health concern. In this study, we conducted a comprehensive measurements of DBPs, including iodoacetic acid (IAA), iodoform (IF), nine haloacetic acids and four trihalomethanes in drinking waters from 13 water plants in Shanghai, China. The results suggested that IAA and IF were found in all the water treatment plants, with maximum levels of 1.66 µg/L and 1.25 µg/L for IAA and IF, respectively. Owing to deterioration of water quality, the Huangpu River has higher IAA and IF than the Yangtze River. Our results also demonstrated that low pH, high natural organic matter, ammonia nitrogen, and iodide in source waters increased IAA and IF formation. Compared to chlorine, chloramines resulted in higher concentration of iodinated DBP, but reduced the levels of trihalomethanes. This is the first study to reveal the widespread occurrence of IAA and IF in drinking water in China. The data provide a better understanding on the formation of iodinated disinfection byproducts and the findings should be useful for treatment process improvement and disinfection byproducts controls. PMID:23555742
Physico-Chemical and Microbial Analysis of Selected Borehole Water in Mahikeng, South Africa.
Palamuleni, Lobina; Akoth, Mercy
2015-07-23
Groundwater is generally considered a "safe source" of drinking water because it is abstracted with low microbial load with little need for treatment before drinking. However, groundwater resources are commonly vulnerable to pollution, which may degrade their quality. An assessment of microbial and physicochemical qualities of borehole water in the rural environs of Mahikeng town, South Africa, was carried out. The study aimed at determining levels of physicochemical (temperature, pH, turbidity and nitrate) and bacteriological (both faecal and total coliform bacteria) contaminants in drinking water using standard microbiology methods. Furthermore, identities of isolates were determined using the API 20E assay. Results were compared with World Health Organisation (WHO) and Department of Water Affairs (DWAF-SA) water quality drinking standards. All analyses for physicochemical parameters were within acceptable limits except for turbidity while microbial loads during spring were higher than the WHO and DWAF thresholds. The detection of Escherichia coli, Salmonella and Klebsiella species in borehole water that was intended for human consumption suggests that water from these sources may pose severe health risks to consumers and is unsuitable for direct human consumption without treatment. The study recommends mobilisation of onsite treatment interventions to protect the households from further possible consequences of using the water.
Physico-Chemical and Microbial Analysis of Selected Borehole Water in Mahikeng, South Africa
Palamuleni, Lobina; Akoth, Mercy
2015-01-01
Groundwater is generally considered a “safe source” of drinking water because it is abstracted with low microbial load with little need for treatment before drinking. However, groundwater resources are commonly vulnerable to pollution, which may degrade their quality. An assessment of microbial and physicochemical qualities of borehole water in the rural environs of Mahikeng town, South Africa, was carried out. The study aimed at determining levels of physicochemical (temperature, pH, turbidity and nitrate) and bacteriological (both faecal and total coliform bacteria) contaminants in drinking water using standard microbiology methods. Furthermore, identities of isolates were determined using the API 20E assay. Results were compared with World Health Organisation (WHO) and Department of Water Affairs (DWAF-SA) water quality drinking standards. All analyses for physicochemical parameters were within acceptable limits except for turbidity while microbial loads during spring were higher than the WHO and DWAF thresholds. The detection of Escherichia coli, Salmonella and Klebsiella species in borehole water that was intended for human consumption suggests that water from these sources may pose severe health risks to consumers and is unsuitable for direct human consumption without treatment. The study recommends mobilisation of onsite treatment interventions to protect the households from further possible consequences of using the water. PMID:26213950
Rajasekharan, Vishnu V; Clark, Brandi N; Boonsalee, Sansanee; Switzer, Jay A
2007-06-15
The commonly used disinfectants in drinking water are free chlorine (in the form of HOCl/OCl-) and monochloramine (NH2Cl). While free chlorine reacts with natural organic matter in water to produce chlorinated hydrocarbon byproducts, there is also concern that NH2Cl may react with Pbto produce soluble Pb(II) products--leading to elevated Pb levels in drinking water. In this study, electrochemical methods are used to compare the thermodynamics and kinetics of the reduction of these two disinfectants. The standard reduction potential for NH2Cl/Cl- was estimated to be +1.45 V in acidic media and +0.74 V in alkaline media versus NHE using thermodynamic cycles. The kinetics of electroreduction of the two disinfectants was studied using an Au rotating disk electrode. The exchange current densities estimated from Koutecky-Levich plots were 8.2 x 10(-5) and 4.1 x 10(-5) A/cm2, and by low overpotential experiments were 7.5 +/- 0.3 x 10(-5) and 3.7 +/- 0.4 x 10(-5) A/cm2 for free chlorine and NH2Cl, respectively. The rate constantforthe electrochemical reduction of free chlorine at equilibrium is approximately twice as large as that for the reduction of NH2Cl. Equilibrium potential measurements show that free chlorine will oxidize Pb to PbO2 above pH 1.7, whereas NH2Cl will oxidize Pb to PbO2 only above about pH 9.5, if the total dissolved inorganic carbon (DIC) is 18 ppm. Hence, NH2Cl is not capable of producing a passivating PbO2 layer on Pb, and could lead to elevated levels of dissolved Pb in drinking water.
Wahman, David G; Speitel, Gerald E; Machavaram, Madhav V
2014-09-01
Drinking water monochloramine (NH2Cl) use may promote ammonia-oxidizing bacteria (AOB). AOB use (i) ammonia monooxygenase for biological ammonia (NH3) oxidation to hydroxylamine (NH2OH) and (ii) hydroxylamine oxidoreductase for NH2OH oxidation to nitrite. NH2Cl and NH2OH may react, providing AOB potential benefits and detriments. The NH2Cl/NH2OH reaction would benefit AOB by removing the disinfectant (NH2Cl) and releasing their growth substrate (NH3), but the NH2Cl/NH2OH reaction would also provide a possible additional inactivation mechanism besides direct NH2Cl reaction with cells. Because biological NH2OH oxidation supplies the electrons required for biological NH3 oxidation, the NH2Cl/NH2OH reaction provides a direct mechanism for NH2Cl to inhibit NH3 oxidation, starving the cell of reductant by preventing biological NH2OH oxidation. To investigate possible NH2Cl/NH2OH reaction implications on AOB, an understanding of the underlying abiotic reaction is first required. The present study conducted a detailed literature review and proposed an abiotic NH2Cl/NH2OH reaction scheme (RS) for chloramination relevant drinking water conditions (μM concentrations, air saturation, and pH 7-9). Next, RS literature based kinetics and end-products were evaluated experimentally between pHs 7.7 and 8.3, representing (i) the pH range for future experiments with AOB and (ii) mid-range pHs typically found in chloraminated drinking water. In addition, a (15)N stable isotope experiment was conducted to verify nitrous oxide and nitrogen gas production and their nitrogen source. Finally, the RS was slightly refined using the experimental data and an AQUASIM implemented kinetic model. A chloraminated drinking water relevant RS is proposed and provides the abiotic reaction foundation for future AOB biotic experiments. Published by Elsevier Ltd.
Modeling of bromate formation by ozonation of surface waters in drinking water treatment.
Legube, Bernard; Parinet, Bernard; Gelinet, Karine; Berne, Florence; Croue, Jean-Philippe
2004-04-01
The main objective of this paper is to try to develop statistically and chemically rational models for bromate formation by ozonation of clarified surface waters. The results presented here show that bromate formation by ozonation of natural waters in drinking water treatment is directly proportional to the "Ct" value ("Ctau" in this study). Moreover, this proportionality strongly depends on many parameters: increasing of pH, temperature and bromide level leading to an increase of bromate formation; ammonia and dissolved organic carbon concentrations causing a reverse effect. Taking into account limitation of theoretical modeling, we proposed to predict bromate formation by stochastic simulations (multi-linear regression and artificial neural networks methods) from 40 experiments (BrO(3)(-) vs. "Ctau") carried out with three sand filtered waters sampled on three different waterworks. With seven selected variables we used a simple architecture of neural networks, optimized by "neural connection" of SPSS Inc./Recognition Inc. The bromate modeling by artificial neural networks gives better result than multi-linear regression. The artificial neural networks model allowed us classifying variables by decreasing order of influence (for the studied cases in our variables scale): "Ctau", [N-NH(4)(+)], [Br(-)], pH, temperature, DOC, alkalinity.
Phototransformation of selected pharmaceuticals during UV treatment of drinking water.
Canonica, Silvio; Meunier, Laurence; von Gunten, Urs
2008-01-01
The kinetics of Ultraviolet C (UV-C)-induced direct phototransformation of four representative pharmaceuticals, i.e., 17alpha-ethinylestradiol (EE2), diclofenac, sulfamethoxazole, and iopromide, was investigated in dilute solutions of pure water buffered at various pH values using a low-pressure and a medium-pressure mercury arc lamp. Except for iopromide, pH-dependent rate constants were observed, which could be related to acid-base equilibria. Quantum yields for direct phototransformation were found to be largely wavelength-independent, except for EE2. This compound, which also had a rather inefficient direct phototransformation, mainly underwent indirect phototransformation in natural water samples, while the UV-induced depletion of the other pharmaceuticals appeared to be unaffected by the presence of natural water components. At the UV-C (254 nm) drinking-water disinfection fluence (dose) of 400 Jm(-2), the degree of depletion of the select pharmaceuticals at pH=7.0 in pure water was 0.4% for EE2, 27% for diclofenac, 15% for sulfamethoxazole, and 15% for iopromide, indicating that phototransformation should be seriously taken into account when evaluating the possibility of formation of UV transformation products from pharmaceuticals present as micropollutants.
Water treatment plants assessment at Talkha power plant.
El-Sebaie, Olfat D; Abd El-Kerim, Ghazy E; Ramadan, Mohamed H; Abd El-Atey, Magda M; Taha, Sahr Ahmed
2002-01-01
Talkha power plant is the only power plant located in El-Mansoura. It generates electricity using two different methods by steam turbine and gas turbine. Both plants drew water from River Nile (208 m3 /h). The Nile raw water passes through different treatment processes to be suitable for drinking and operational uses. At Talkha power plant, there are two purification plants used for drinking water supply (100 m3/h) and for water demineralization supply (108 m3/h). This study aimed at studying the efficiency of the water purification plants. For drinking water purification plant, the annual River Nile water characterized by slightly alkaline pH (7.4-8), high annual mean values of turbidity (10.06 NTU), Standard Plate Count (SPC) (313.3 CFU/1 ml), total coliform (2717/100 ml), fecal coliform (0-2400/100 ml), and total algae (3 x 10(4) org/I). The dominant group of algae all over the study period was green algae. The blue green algae was abundant in Summer and Autumn seasons. The pH range, and the annual mean values of turbidity, TDS, total hardness, sulfates, chlorides, nitrates, nitrites, fluoride, and residual chlorine for purified water were in compliance with Egyptian drinking water standards. All the SPC recorded values with an annual mean value of 10.13 CFU/1 ml indicated that chlorine dose and contact time were not enough to kill the bacteria. However, they were in compliance with Egyptian decree (should not exceed 50 CFU/1 ml). Although the removal efficiency of the plant for total coliform and blue green algae was high (98.5% and 99.2%, respectively), the limits of the obtained results with an annual mean values of 40/100 ml and 15.6 org/l were not in compliance with the Egyptian decree (should be free from total coliform, fecal coliform and blue green algae). For water demineralization treatment plant, the raw water was characterized by slightly alkaline pH. The annual mean values of conductivity, turbidity, and TDS were 354.6 microS/cm, 10.84 NTU, and 214.6 mg/I, respectively. There was an increase in the results of conductivity, turbidity, total hardness, and TDS in carbon filter effluent which was attributed to the desorption of adsorbed ions on the carbon media. The removal efficiencies of turbidity, total hardness, and TDS indicated the high efficiency of the cationic filter. The annual removal efficiencies of conductivity, turbidity, chloride, and TDS proved the efficiency of the anionic filter for removing the dissolved and suspended ions. All of the recorded values of the pH, conductivity, turbidity, chlorides, hardness, and TDS of the mixed bed effluent indicated that the water at this stage was of high quality for boiler feed. The study recommended adjustment of coagulant and residual chlorine doses as well as contact time, and continuous monitoring and maintenance of the different units.
Validation of Student Generated Data for Assessment of Groundwater Quality
ERIC Educational Resources Information Center
Peckenham, John M.; Thornton, Teresa; Peckenham, Phoebe
2012-01-01
As part of a research project to evaluate the effects of sand and gravel mining on water quality, students were trained to analyze their own drinking water for simple quality indicators. Indicators analyzed were pH, conductivity, hardness, nitrate, chloride, and dissolved iron. Approximately 523 analyses were completed by students between 2006 and…
Relieving Dry Mouth: Varying Levels of pH Found in Bottled Water.
Fisher, Bailey Jean; Spencer, Angela; Haywood, Van; Konchady, Gayathri
2017-07-01
It is estimated that 30% of people older than 60 years suffer from hyposalivation or dry mouth. Drinking water frequently has been recommended as a safe, non-pharmacologic way to combat hyposalivation. The saliva in patients with dry mouth is acidic. Beverages consumed daily may have an erosive potential on teeth. The pH and the mineral content of the beverage determine its erosive potential. An acidic beverage, therefore, may have harmful effects on mineralized tooth structures, causing erosion of enamel, dentin, and cementum. Because bottled water is both convenient and easily available, the authors tested the pH of eight common brands of bottled water. (One brand included two different bottle types, for a total of nine bottled waters tested.) To standardize the pH electrode, pH buffers of 4.7 and 10 were used. The pH was measured using the Denver Instruments basic pH meter. Six recordings were used for each brand and then averaged to report the pH. Two of the bottled water samples tested were below the critical level of 5.2 pH to 5.5 pH, the level at which erosion of enamel occurs. Six of the samples tested were below the critical pH of 6.8, at which erosion of root dentin occurs. The authors conclude that both patients and clinicians incorrectly presume bottled water to be innocuous. Clinicians should be cognizant of the erosive potential of different brands of bottled water to both educate patients and to recommend water with neutral or alkaline pH for patients with symptoms of dry mouth to prevent further deterioration and demineralization of tooth structure.
Onodera, S; Nagatsuka, A; Rokuhara, T; Asakura, T; Hirayama, N; Suzuki, S
1993-07-16
Amberlite XAD resin and activated carbon columns were tested for their abilities to concentrate trace organic pollutants in chlorinated water. Both XAD-2 and XAD-7 resin columns (20 ml) were capable of adsorbing about 30% of total organic halogen (TOX) present in 20 l of drinking water (pH 7) containing about 100 micrograms/l of TOX, whereas the carbon column (10 ml) adsorbed over 90% of TOX. The adsorption capacity of XAD-7 resin was found to be strongly dependent on the solution pH, as compared with those of XAD-2 and carbon adsorbents. Soxhlet and sonication extractions were also evaluated for their abilities to recover the adsorbed organics from the adsorbents, by measurements of TOX, chromatographable compounds and mutagenicity in the eluates. Soxhlet extraction gave higher recoveries than sonication, as measured with the above indices, but these differences were generally small (ca. 20%), with exception of the carbon extracts. The XAD-2 and XAD-7 extracts of drinking water also showed about 3-4 times higher mutagenic activity than the carbon extracts.
Hosseinifard, Seyed Javad; Mirzaei Aminiyan, Milad
One of the important purposes of hydrology is to ensure water supply in accordance with the quality criteria for agricultural, industrial, and drinking water uses. The groundwater is the main source of water supply in arid and semi-arid regions. This study was conducted to evaluate factors regulating groundwater quality in Rafsanjan plain. A total of 1040 groundwater samples randomly were collected from different areas of Rafsanjan. Then, each sample was analyzed for the major ions based on standard methods. The pH, SAR, EC, and TDS parameters and concentrations of Ca 2+ , Mg 2+ , and Na + cations, and Cl - , [Formula: see text], [Formula: see text] and [Formula: see text] anions were measured. Also boron concentration in each sample was determined. Although, maximum and minimum values of EC and TDS linked to the Anar-Beyaz area and Eastern Urban, respectively, irrigation water EC condition, however, was critical in the study areas. The pH value in Western Urban was higher than the other areas, and its value for Anar-Beyaz area was lower than the other areas, but pH value is at the optimal level in all the study areas. The results showed that hazard state with respect to Mg was critical except in Koshkoueiyeh and Anar-Beyaz areas, that these areas are marginal for irrigation use with little harm with reference to Mg. From the results, it was concluded that the status of boron concentration in study areas was critical. According to the hydrochemistry diagrams, the main groundwater type in different study areas was NaCl. Groundwater quality was not appropriate for drinking usage, and its status for agricultural practices was unsuitable in these areas.
Monitoring of potentially toxic cyanobacteria using an online multi-probe in drinking water sources.
Zamyadi, A; McQuaid, N; Prévost, M; Dorner, S
2012-02-01
Toxic cyanobacteria threaten the water quality of drinking water sources across the globe. Two such water bodies in Canada (a reservoir on the Yamaska River and a bay of Lake Champlain in Québec) were monitored using a YSI 6600 V2-4 (YSI, Yellow Springs, Ohio, USA) submersible multi-probe measuring in vivo phycocyanin (PC) and chlorophyll-a (Chl-a) fluorescence, pH, dissolved oxygen, conductivity, temperature, and turbidity in parallel. The linearity of the in vivo fluorescence PC and Chl-a probe measurements were validated in the laboratory with Microcystis aeruginosa (r(2) = 0.96 and r(2) = 0.82 respectively). Under environmental conditions, in vivo PC fluorescence was strongly correlated with extracted PC (r = 0.79) while in vivo Chl-a fluorescence had a weaker relationship with extracted Chl-a (r = 0.23). Multiple regression analysis revealed significant correlations between extracted Chl-a, extracted PC and cyanobacterial biovolume and in vivo fluorescence parameters measured by the sensors (i.e. turbidity and pH). This information will help water authorities select the in vivo parameters that are the most useful indicators for monitoring cyanobacteria. Despite highly toxic cyanobacterial bloom development 10 m from the drinking water treatment plant's (DWTP) intake on several sampling dates, low in vivo PC fluorescence, cyanobacterial biovolume, and microcystin concentrations were detected in the plant's untreated water. The reservoir's hydrodynamics appear to have prevented the transport of toxins and cells into the DWTP which would have deteriorated the water quality. The multi-probe readings and toxin analyses provided critical evidence that the DWTP's untreated water was unaffected by the toxic cyanobacterial blooms present in its source water.
An on-line pre-concentration system for determination of cadmium in drinking water using FAAS.
dos Santos, Walter N L; Costa, Jorge L O; Araujo, Rennan G O; de Jesus, Djane S; Costa, Antônio C S
2006-10-11
In the present paper, a minicolumn of polyurethane foam loaded with 4-(2-pyridylazo)-resorcinol (PAR) is proposed as pre-concentration system for cadmium determination in drinking water samples by flame atomic absorption spectrometry. The optimization step was performed using two-level full factorial design and Doehlert matrix, involving the variables: sampling flow rate, elution concentration, buffer concentration and pH. Using the established experimental conditions in the optimization step of: pH 8.2, sampling flow rate 8.5 mL min(-1), buffer concentration 0.05 mol L(-1) and elution concentration of 1.0 mol L(-1), this system allows the determination of cadmium with detection limit (LD) (3sigma/S) of 20.0 ng L(-1) and quantification limit (LQ) (10sigma/S) of 64 ng L(-1), precision expressed as relative standard deviation (R.S.D.) of 5.0 and 4.7% for cadmium concentration of 5.0 and 40.0 microg L(-1), respectively, and a pre-concentration factor of 158 for a sample volume of 20.0 mL. The accuracy was confirmed by cadmium determination in the standard reference material, NIST SRM 1643d trace elements in natural water. This procedure was applied for cadmium determination in drinking water samples collected from Salvador City, Bahia, Brazil. For five samples analyzed, the achieved concentrations varied from 0.31 to 0.86 microg L(-1).
Bacteriological assessment of drinking water supply options in coastal areas of Bangladesh.
Islam, Md Atikul; Sakakibara, Hiroyuki; Karim, Md Rezaul; Sekine, Masahiko; Mahmud, Zahid Hayat
2011-06-01
This study was conducted to assess the bacteriological quality of alternative drinking water supply options in southwest coastal areas of Bangladesh. A total of 90 water samples were collected during both dry and wet seasons from household based rainwater harvesting systems (RWHSS), community based rain water harvesting systems (CRWHSs), pond-sand filters (PSFs) and ponds. The samples were evaluated for faecal coliform, Escherichia coli and Heterotrophic Plate Count, as well as Vibrio cholerae, Salmonella spp., Shigella spp. and Pseudomonas spp. Physico-chemical parameters (pH, electrical conductivity, and color) were also examined. In addition, sanitary inspections were conducted to identify faecal contamination sources. All options showed varying degrees of indicator bacterial contamination. The median E. coli concentrations measured for RWHSs, CRWHSS, PSFS, and ponds were 16, 7, 11, and 488 cfu/100 ml during the wet season, respectively. Vibrio cholerae 01/0139, Salmonella and Shigella spp. were not found in any samples. However, Vibrio cholerae Non-01/Non-0139 and Pseudomonas spp. were isolated from 74.4% and 91.1% of the water samples collected during the wet season. A maximum pH of 10.4 was found in CRWHSS. Estimation of the disease burden for all options in disability adjusted life years (DALYs) showed an increased disease burden during the wet season. According to sanitary inspections, poor maintenance and unprotected ponds were responsible for rainwater and PSF water contamination, respectively. The findings of the present study suggest that alternative drinking water supply options available in southwest coastal Bangladesh pose a substantial risk to public health.
Nagymáté, Zsuzsanna; Homonnay, Zalán G; Márialigeti, Károly
2016-01-01
Total microbial community structure, and particularly nitrifying communities inhabiting five different small drinking water networks characterized with different water physical and chemical parameters was investigated, using cultivation-based methods and sequence aided Terminal Restriction Fragment Length Polymorphism (T-RFLP) analysis. Ammonium ion, originated from well water, was only partially oxidized via nitrite to nitrate in the drinking water distribution systems. Nitrification occurred at low ammonium ion concentration (27-46μM), relatively high pH (7.6-8.2) and over a wide range of dissolved oxygen concentrations (0.4-9.0mgL(-1)). The nitrifying communities of the distribution systems were characterized by variable most probable numbers (2×10(2)-7.1×10(4) MPN L(-1)) and probably originated from the non-treated well water. The sequence aided T-RFLP method revealed that ammonia-oxidizing microorganisms and nitrite-oxidizing Bacteria (Nitrosomonas oligotropha, Nitrosopumilus maritimus, and Nitrospira moscoviensis, 'Candidatus Nitrospira defluvii') were present in different ratios in the total microbial communities of the distinct parts of the water network systems. The nitrate generated by nitrification was partly utilized by nitrate-reducing (and denitrifying) Bacteria, present in low MPN and characterized by sequence aided T-RFLP as Comamonas sp. and Pseudomonas spp. Different environmental factors, like pH, chemical oxygen demand, calculated total inorganic nitrogen content (moreover nitrite and nitrate concentration), temperature had important effect on the total bacterial and archaeal community distribution. Copyright © 2016 Elsevier GmbH. All rights reserved.
Ahmad, T; Khalid, T; Mushtaq, T; Mirza, M A; Nadeem, A; Babar, M E; Ahmad, G
2008-07-01
The effect of water supplementation of KCl on performance of heat-stressed Hubbard broilers was evaluated in the present experiment. The 3 experimental treatments (i.e., control, 0.3 and 0.6% KCl) were allocated to 3 replicates of 15 birds each. The control group was kept on dugout tap water, whereas the other 2 groups were supplied water supplemented with 0.3 and 0.6% KCl (wt/vol) by supplementing 3 and 6 g of KCl, respectively, per liter of drinking water. Broilers were provided ad libitum access to feed and water for the experimental period of 7 to 42 d of age and kept in open-sided house. The birds were reared under continuous thermostress (minimum 28.2 +/- 1.02 and maximum 37.5 +/- 0.78 degrees C) environment. Supplementing drinking water with 0.6% KCl reduced panting-phase blood pH to 7.31 and significantly increased live BW gain by 14.5 (P = 0.036) and 7.9% (P = 0.029) at 28 and 42 d of age, respectively, relative to control. An improved (P = 0.04) feed:gain and lowered body temperature were noted in groups supplemented with 0.6% KCl as compared with control and 0.3% KCl. Enhanced physiological adaptation with 0.6% KCl was evidenced by a more favorable pH during the panting phase in the present study. These findings demonstrated a possibility of better broiler live performance through KCl supplementation under conditions of severe heat stress (35 to 38 degrees C).
Rahman, Aminur; Hashem, Abul; Nur-A-Tomal, Shahruk
2016-12-01
Safe potable water is essential for good health. Worldwide, school-aged children especially in the developing countries are suffering from various water-borne diseases. In the study, drinking water supplies for primary school children were monitored at Magura district, Bangladesh, to ensure safe potable water. APHA standard analytical methods were applied for determining the physicochemical parameters of the water samples. For determination of the essential physicochemical parameters, the samples were collected from 20 randomly selected tube wells of primary schools at Magura. The metal contents, especially arsenic (As), iron (Fe), and manganese (Mn), in the water samples were analyzed by atomic absorption spectroscopy. The range of physicochemical parameters found in water samples were as follows: pH 7.05-9.03, electrical conductivity 400-2340 μS/cm, chloride 10-640 mg/L, hardness 200-535 mg/L as CaCO 3 , and total dissolved solids 208-1216 mg/L. The level of metals in the tube well water samples were as follows: As 1 to 55 μg/L, Fe 40 to 9890 μg/L, and Mn 10 to 370 μg/L. Drinking water parameters of Magura district did not meet the requirement of the World Health Organization drinking water quality guideline, or the Drinking Water Quality Standards of Bangladesh.
Huang, Bin; Chi, Guangyu; Chen, Xin; Shi, Yi
2011-11-01
The performance of acetic acid-supported pH-heterogenized heterotrophic denitrification (HD) facilitated with ferrous sulfide-based autotrophic denitrification (AD) was investigated in upflow activated carbon-packed column reactors for reliable removal of highly elevated nitrate (42 mg NO(3)-Nl(-1)) in drinking water. The use of acetic acid as substrate provided sufficient internal carbon dioxide to completely eliminate the need of external pH adjustment for HD, but simultaneously created vertically heterogenized pH varying from 4.8 to 7.8 in the HD reactor. After 5-week acclimation, the HD reactor developed a moderate nitrate removal capacity with about one third of nitrate removal occurring in the acidic zone (pH 4.8-6.2). To increase the treatment reliability, acetic acid-supported HD was operated under 10% carbon limitation to remove >85% of nitrate, and ferrous sulfide-based AD was supplementally operated to remove residual nitrate and formed nitrite without excess of soluble organic carbon, nitrite or sulfate in the final effluent. Copyright © 2011 Elsevier Ltd. All rights reserved.
Combined electrocoagulation and electroflotation for removal of fluoride from drinking water.
Zuo, Qianhai; Chen, Xueming; Li, Wei; Chen, Guohua
2008-11-30
A combined electrocoagulation (EC) and electroflotation (EF) process was proposed to remove fluoride from drinking water. Its efficacy was investigated under different conditions. Experimental results showed that the combined process could remove fluoride effectively. The total hydraulic retention time required was only 30 min. After treatment, the fluoride concentration was reduced from initial 4.0-6.0mg/L to lower than 1.0mg/L. The influent pH value was found to be a very important variable that affected fluoride removal significantly. The optimal influent pH range is 6.0-7.0 at which not only can effective defluoridation be achieved, but also no pH readjustment is needed after treatment. In addition, it was found that SO(4)(2-) had negative effect; Ca(2+) had positive effect; while Cl(-) had little effect on the fluoride removal. The EC charge loading, EF charge loading and energy consumption were 3.0 Faradays/m(3), 1.5 Faradays/m(3), and 1.2 kWh/m(3), respectively, under typical conditions where fluoride was reduced from initial 4.0 to 0.87 mg/L.
Contamination of faecal coliforms in ice cubes sampled from food outlets in Kubang Kerian, Kelantan.
Noor Izani, N J; Zulaikha, A R; Mohamad Noor, M R; Amri, M A; Mahat, N A
2012-03-01
The use of ice cubes in beverages is common among patrons of food outlets in Malaysia although its safety for human consumption remains unclear. Hence, this study was designed to determine the presence of faecal coliforms and several useful water physicochemical parameters viz. free residual chlorine concentration, turbidity and pH in ice cubes from 30 randomly selected food outlets in Kubang Kerian, Kelantan. Faecal coliforms were found in ice cubes in 16 (53%) food outlets ranging between 1 CFU/100mL to >50 CFU/ 100mL, while in the remaining 14 (47%) food outlets, in samples of tap water as well as in commercially bottled drinking water, faecal coliforms were not detected. The highest faecal coliform counts of >50 CFU/100mL were observed in 3 (10%) food outlets followed by 11-50 CFU/100mL and 1-10 CFU/100mL in 7 (23%) and 6 (20%) food outlets, respectively. All samples recorded low free residual chlorine concentration (<0.10mg/L) with the pH ranging between 5.5 and 7.3 and turbidity between 0.14-1.76 NTU. Since contamination by faecal coliforms was not detected in 47% of the samples, tap water and commercially bottled drinking water, it was concluded that (1) contamination by faecal coliforms may occur due to improper handling of ice cubes at the food outlets or (2) they may not be the water sources used for making ice cubes. Since low free residual chlorine concentrations were observed (<0.10mg/ L) in all samples as well as in both tap water and commercially bottled drinking water, with the pH ranged between 5.5-7.3, ineffective disinfection of water source as a contributing factor to such high counts of faecal coliforms in ice cubes also could not be ruled out. Therefore, a periodical, yet comprehensive check on the food outlets, including that of ice cube is crucial in ensuring better food and water for human consumption.
Wang, Wendong; Zhang, Xiaoni; Wang, Hongping; Wang, Xiaochang; Zhou, Lichuan; Liu, Rui; Liang, Yuting
2012-09-01
Manganese (II) is commonly present in drinking water. This paper mainly focuses on the adsorption of manganese on suspended and deposited amorphous Al(OH)(3) solids. The effects of water flow rate and water quality parameters, including solution pH and the concentrations of Mn(2+), humic acid, and co-existing cations on adsorption were investigated. It was found that chemical adsorption mainly took place in drinking water with pHs above 7.5; suspended Al(OH)(3) showed strong adsorption capacity for Mn(2+). When the total Mn(2+) input was 3 mg/L, 1.0 g solid could accumulate approximately 24.0 mg of Mn(2+) at 15 °C. In drinking water with pHs below 7.5, because of H(+) inhibition, active reaction sites on amorphous Al(OH)(3) surface were much less. The adsorption of Mn(2+) on Al(OH)(3) changed gradually from chemical coordination to physical adsorption. In drinking water with high concentrations of Ca(2+), Mg(2+), Fe(3+), and HA, the removal of Mn(2+) was enhanced due to the effects of co-precipitation and adsorption. In solution with 1.0 mg/L HA, the residual concentration of Mn(2+) was below 0.005 mg/L, much lower than the limit value required by the Chinese Standard for Drinking Water Quality. Unlike suspended Al(OH)(3), deposited Al(OH)(3) had a much lower adsorption capacity of 0.85 mg/g, and the variation in flow rate and major water quality parameters had little effect on it. Improved managements of water age, pipe flushing and mechanical cleaning were suggested to control residual Mn(2+). Copyright © 2012 Elsevier Ltd. All rights reserved.
Geogenic Groundwater Contamination: A Case Study Of Canakkale - Western Turkey
NASA Astrophysics Data System (ADS)
Deniz, Ozan; Çalık, Ayten
2016-04-01
Study area is located NW of Turkey. Total area of the drainage basin is 465 square kilometers and mostly covered by volcanic rocks. Majority of these rocks have highly altered and lost their primary properties because of alteration processes. Especially argillic alteration is common. Tectonic movements and cooling fractures were created suitable circulation environment of groundwater in the rocks (secondary porosity). Alteration affects the composition of groundwater and some rock elements pass into groundwater during the movement of water in the cavities of rocks. High concentration of natural contaminants related to water-rock interaction in spring water has been studied in this research. Field measurements such as pH, electrical conductivity, temperature, oxidation-reduction potential and salinity carried out in 500 water points (spring, drilling, well and stream). 150 water samples taken from the water points and 50 rock samples taken from the source of springs has been investigated in point of major anion-cations, heavy metals and trace elements. Some components in the water such as pH (3.5-9.1), specific electrical conductivity (84-6400 microS/cm), aluminum (27-44902 ppb), iron (10-8048 ppb), manganese (0.13-8740 ppb), nickel (0.2-627 ppb), lead (0.1-42.5 ppb) and sulphate (10 to 1940 ppm) extremely high or low in the springs sourced from especially highly altered Miocene aged volcanic rocks. Some measured parameters highly above according to European Communities Drinking Water Regulations (2007) and TS266 (2015-Intended for Human Consumption Water Regulations of Turkey) drinking water standards. The most common element which is found in the groundwater is aluminum that is higher than to the drinking water standards (200 microg/L). The highest levels of the Al values measured in acidic waters with very low pH (3.4) emerging from altered volcanic rocks because of acid mine drainage in Obakoy district, north of the study area. The abundance of this element in some water sources is believed to be closely associated with the alteration of feldspar minerals in the andesite and basalts of the Middle Eocene Sahinli Formation. Various studies related to topic show that consumption of these water containing high aluminum, iron, manganese, nickel and lead for drinking purposes cause serious health problems (Alzheimer's, Parkinson's, physical and mental development disorders in children, various cancers, stomach - intestinal disorders and skin diseases). This situation limits the usable groundwater potential and causes potable water scarcity in the region. Consequently, while using of these groundwater resources in the region, taking several precautions are necessary and doing new water resource explorations are recommended. This study is supported by The Turkish Scientific and Technical Research Institute (Project number: 113Y577). Keywords: Geogenic groundwater contamination, Water-Rock Interaction, Canakkale
Türker, Onur Can; Baran, Talat
2018-01-28
The metalloid boron (B) and its compounds widely exist in the environment, and boron can have hazardous effects on plants, animals, and human beings when it is found in high concentrations in water bodies. It is difficult and costly to remove B with conventional treatment methods from drinking water. Therefore, alternative and cost-effective treatment techniques are necessary. In this study, for the first time, a novel and environmentally friendly method based on the phytoremediation ability of chitosan and duckweed (Lemna gibba L.) combination was evaluated for B removal from drinking water. Our results from batch adsorption experiment indicated that the highest B uptake capacity of chitosan bead was found as 3.18 mg/g, and we determined the optimal B sorption occurs at pH value of 7. The Langmuir isotherm and pseudo-second-order kinetic model better fitted the equilibrium obtained for B removal. B in drinking water could be reduced to less than 2.4 mg L -1 when 0.05 g of plant-based chitosan beads and 12 L. gibba fronds were used in the 4-day treatment period.
Kang, Hye-In; Shin, Ho-Sang
2015-01-20
A novel derivatization method of free cyanide (HCN + CN(-)) including cyanogen chloride in chlorinated drinking water was developed with d-cysteine and hypochlorite. The optimum conditions (0.5 mM D-cysteine, 0.5 mM hypochlorite, pH 4.5, and a reaction time of 10 min at room temperature) were established by the variation of parameters. Cyanide (C(13)N(15)) was chosen as an internal standard. The formed β-thiocyanoalanine was directly injected into a liquid chromatography-tandem mass spectrometer without any additional extraction or purification procedures. Under the established conditions, the limits of detection and the limits of quantification were 0.07 and 0.2 μg/L, respectively, and the interday relative standard deviation was less than 4% at concentrations of 4.0, 20.0, and 100.0 μg/L. The method was successfully applied to determine CN(-) in chlorinated water samples. The detected concentration range and detection frequency of CN(-) were 0.20-8.42 μg/L (14/24) in source drinking water and 0.21-1.03 μg/L (18/24) in chlorinated drinking water.
Dutta, Joydev; Chetia, Mridul; Misra, A K
2011-10-01
Contamination of drinking water by arsenic and other heavy metals and their related toxicology is a serious concern now-a-days. Millions of individual world-wide are suffering from the arsenic and other heavy metal related diseases due to the consumption of contaminated groundwater. 60 water samples from different sources of 6 small tea gardens of Sonitpur district were collected to study the potability of water for drinking purposes. The water samples collected from sources like tube wells, ring wells and ponds were analyzed for arsenic, heavy metals like iron, manganese and mercury with sodium, potassium, calcium, magnesium, pH, total hardness, chloride, fluoride and sulphate. Some drain water samples of the tea garden areas were also collected to analyze the above mentioned water parameters to see the contamination level. Experiments revealed that 78% samples of total collection had arsenic content above the permissible limit (0.01 ppm) of WHO guideline value for drinking water. The highest arsenic was observed 0.09 ppm at one sample of Gobindra Dahal tea garden of Gohpur sub division of Sonitpur district. 94% samples had contamination due to manganese 39% samples had iron and 44% samples had Hg. The water quality data was subjected to some statistical treatments like NDA, cluster analysis and pearson correlation to observe the distribution pattern of the different water quality parameters. A strong pearson correlation coefficient was observed between parameters-arsenic and manganese (0.865) and arsenic and mercury (0.837) at 0.01 level, indicated the same sources of drinking water contamination.
ALKALINITY, PH, AND COPPER CORROSION BY-PRODUCT RELEASE
Contrary to expectations, higher bicarbonate concentrations exacerbate copper corrosion rates and by-product release. In fact, as illustrated by monitoring experiences of large utilities and by laboratory data, the concentration of copper corrosion by-products in drinking water i...
Meet EPA Ecologist Caroline Ridley, Ph.D.
EPA ecologist Caroline Ridley assesses the impact of human activities on the environment.Her recent work includes examining the impacts of mining on salmon in Alaska and the impacts of hydraulic fracturing for oil and gas on drinking water nationwide.
Tsega, N; Sahile, S; Kibret, M; Abera, B
2013-12-01
Accesses to safe water is a universal need however, many of the world's population lack access to adequate and safe water. Consumption of water contaminated causes health risk to the public and the situation is serous in rural areas. To assess the bacteriological and physico-chemical quality of drinking water sources in a rural community of Ethiopia. Water samples were collected from tap, open springs, open dug wells and protected springs for bacteriological analysis of total coliforms and thermotolerant coliforms. The turbidity, pH and temperature were measured immediately after collection. Most drinking water sources were found to have coliform counts above the recommended national and international guidelines and had high sanitary risk scores. There was a statistically significant difference among water sources with respect to TC and TTC (p < 0.05) and there was a statistically significant positive correlation between coliform counts and sanitary risk scores (p < 0.01). Most water sources didn't satisfy the turbidity values recommended by WHO. The water sources were heavily contaminated which suggested poor protection and sanitation practice in the water sources. Source protection strategies as well as monitoring are recommend for this community.
Chapa-Martínez, C A; Hinojosa-Reyes, L; Hernández-Ramírez, A; Ruiz-Ruiz, E; Maya-Treviño, L; Guzmán-Mar, J L
2016-09-15
The leaching of antimony (Sb) from polyethylene terephthalate (PET) bottling material was assessed in twelve brands of bottled water purchased in Mexican supermarkets by atomic fluorescence spectrometry with a hydride generation system (HG-AFS). Dowex® 1X8-100 ion-exchange resin was used to preconcentrate trace amounts of Sb in water samples. Migration experiments from the PET bottle material were performed in water according to the following storage conditions: 1) temperature (25 and 75°C), 2) pH (3 and 7) and 3) exposure time (5 and 15days), using ultrapure water as a simulant for liquid foods. The test conditions were studied by a 2(3) factorial experimental design. The Sb concentration measured in the PET packaging materials varied between 73.0 and 111.3mg/kg. The Sb concentration (0.28-2.30μg/L) in all of the PET bottled drinking water samples examined at the initial stage of the study was below the maximum contaminant level of 5μg/L prescribed by European Union (EU) regulations. The parameters studied (pH, temperature, and storage time) significantly affected the release of Sb, with temperature having the highest positive significant effect within the studied experimental domain. The highest Sb concentration leached from PET containers was in water samples at pH7 stored at 75°C for a period of 5days. The extent of Sb leaching from the PET ingredients for different brands of drinking water can differ by as much as one order of magnitude in experiments conducted under the worst-case conditions. The chronic daily intake (CDI) caused by the release of Sb in one brand exceeded the Environmental Protection Agency (USEPA) regulated CDI value of 400ng/kg/day, with values of 514.3 and 566.2ng/kg/day for adults and children. Thus, the appropriate selection of the polymer used for the production of PET bottles seems to ensure low Sb levels in water samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Boone, J Scott; Guan, Bing; Vigo, Craig; Boone, Tripp; Byrne, Christian; Ferrario, Joseph
2014-06-06
A trace analytical method was developed for the determination of seventeen specific perfluorinated chemicals (PFCs) in environmental and drinking waters. The objectives were to optimize an isotope-dilution method to increase the precision and accuracy of the analysis of the PFCs and to eliminate the need for matrix-matched standards. A 250 mL sample of environmental or drinking water was buffered to a pH of 4, spiked with labeled surrogate standards, extracted through solid phase extraction cartridges, and eluted with ammonium hydroxide in methyl tert-butyl ether: methanol solution. The sample eluents were concentrated to volume and analyzed by liquid chromatography/tandem mass spectrometry (LC-MS/MS). The lowest concentration minimal reporting levels (LCMRLs) for the seventeen PFCs were calculated and ranged from 0.034 to 0.600 ng/L for surface water and from 0.033 to 0.640 ng/L for drinking water. The relative standard deviations (RSDs) for all compounds were <20% for all concentrations above the LCMRL. The method proved effective and cost efficient and addressed the problems with the recovery of perfluorobutanoic acid (PFBA) and other short chain PFCs. Various surface water and drinking water samples were used during method development to optimize this method. The method was used to evaluate samples from the Mississippi River at New Orleans and drinking water samples from a private residence in that same city. The method was also used to determine PFC contamination in well water samples from a fire training area where perfluorinated foams were used in training to extinguish fires. Published by Elsevier B.V.
Predicted pH at the domestic and public supply drinking water depths, Central Valley, California
Rosecrans, Celia Z.; Nolan, Bernard T.; Gronberg, Jo Ann M.
2017-03-08
This scientific investigations map is a product of the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) project modeling and mapping team. The prediction grids depicted in this map are of continuous pH and are intended to provide an understanding of groundwater-quality conditions at the domestic and public supply drinking water zones in the groundwater of the Central Valley of California. The chemical quality of groundwater and the fate of many contaminants is often influenced by pH in all aquifers. These grids are of interest to water-resource managers, water-quality researchers, and groundwater modelers concerned with the occurrence of natural and anthropogenic contaminants related to pH. In this work, the median well depth categorized as domestic supply was 30 meters below land surface, and the median well depth categorized as public supply is 100 meters below land surface. Prediction grids were created using prediction modeling methods, specifically boosted regression trees (BRT) with a Gaussian error distribution within a statistical learning framework within the computing framework of R (http://www.r-project.org/). The statistical learning framework seeks to maximize the predictive performance of machine learning methods through model tuning by cross validation. The response variable was measured pH from 1,337 wells and was compiled from two sources: USGS National Water Information System (NWIS) database (all data are publicly available from the USGS: http://waterdata.usgs.gov/ca/nwis/nwis) and the California State Water Resources Control Board Division of Drinking Water (SWRCB-DDW) database (water quality data are publicly available from the SWRCB: http://www.waterboards.ca.gov/gama/geotracker_gama.shtml). Only wells with measured pH and well depth data were selected, and for wells with multiple records, only the most recent sample in the period 1993–2014 was used. A total of 1,003 wells (training dataset) were used to train the BRT model, and 334 wells (hold-out dataset) were used to validate the prediction model. The training r-squared was 0.70, and the root-mean-square error (RMSE) in standard pH units was 0.26. The hold-out r-squared was 0.43, and RMSE in standard pH units was 0.37. Predictor variables consisting of more than 60 variables from 7 sources were assembled to develop a model that incorporates regional-scale soil properties, soil chemistry, land use, aquifer textures, and aquifer hydrology. Previously developed Central Valley model outputs of textures (Central Valley Textural Model, CVTM; Faunt and others, 2010) and MODFLOW-simulated vertical water fluxes and predicted depth to water table (Central Valley Hydrologic Model, CVHM; Faunt, 2009) were used to represent aquifer textures and groundwater hydraulics, respectively. In this work, wells were attributed to predictor variable values in ArcGIS using a 500-meter buffer.Faunt, C.C., ed., 2009, Groundwater availability in the Central Valley aquifer, California: U.S. Geological Survey Professional Paper 1776, 225 p., accessed at https://pubs.usgs.gov/pp/1766/.Faunt, C.C., Belitz, K., and Hanson, R.T., 2010, Development of a three-dimensional model of sedimentary texture in valley-fill deposits of Central Valley, California, USA: Hydrogeology Journal, v. 18, no. 3, p. 625–649, https://doi.org/10.1007/s10040-009-0539-7.
NASA Astrophysics Data System (ADS)
Kolmykova, Lyudmila; Korobova, Elena; Ryzhenko, Boris
2015-04-01
Water is one of the main natural agents providing chemical elements' migration in the environment and food chains. In our opinion a study of spatial variation of the essential trace elements in local drinking water is worth considering as the factor that may contribute to variation of the health risk in areas contaminated by radionuclides and radioiodine in particular. Radioiodine was proved to increase the risk of thyroid cancer among children who lived in areas contaminated during the Chernobyl accident. It was also shown that low stable iodine status of the contaminated area and population also contributed to the risk of this disease in case of radionuclide contamination. The goal of the study was to investigate chemical composition of the drinking water in rural settlements of the Bryansk oblast' subjected to radioiodine contamination and to evaluate speciation of stable I and Se on the basis of their total concentration and chemical composition of the real water samples with the help of thermodynamic modelling. Water samples were collected from different aquifers discharging at different depths (dug wells, local private bore holes and water pipes) in rural settlements located in areas with contrasting soil iodine status. Thermodynamic modelling was performed using original software (HCh code of Y.Shvarov, Moscow State University, RUSSIA) incorporating the measured pH, Corg and elements' concentration values. Performed modelling showed possibility of formation of complex CaI+ ion in aqueous phase, I sorption by goethite and transfer of Se to solid phase as FeSe in the observed pH-Eh conditions. It helped to identify environmental conditions providing high I and Se mobility and their depletion from natural waters. Both the experimental data and modeling showed that I and Se migration and deficiency in natural water is closely connected to pH, Eh conditions and the concentration of typomorphic chemical elements (Ca, Mg, Fe) defining the class of water migration in landscapes (according Perel'man, 1975). Obtained data will be used for evaluation of contribution of I and Se status of drinking water to the risk of thyroid diseases among local population.
Yang, Chih-Ching; Yao, Chien-An; Lin, Yi-Ruu; Yang, Jyh-Chin; Chien, Chiang-Ting
2014-01-01
Deep-sea water (DSW), which is rich in micronutrients and minerals and with antioxidant and anti-inflammatory qualities, may be developed as marine drugs to provide intestinal protection against duodenal ulcers. We determined several characteristics in the modified DSW. We explored duodenal pressure, oxygenation, microvascular blood flow, and changes in pH and oxidative redox potential (ORP) values within the stomach and duodenum in response to tap water (TW, hardness: 2.48 ppm), DSW600 (hardness: 600 ppm), and DSW1200 (hardness: 1200 ppm) in Wistar rats and analyzed oxidative stress and apoptosis gene expressions by cDNA and RNA microarrays in the duodenal epithelium. We compared the effects of drinking DSW, MgCl2, and selenium water on duodenal ulcers using pathologic scoring, immunohistochemical analysis, and Western blotting. Our results showed DSW has a higher pH value, lower ORP value, higher scavenging H2O2 and HOCl activity, higher Mg2+ concentrations, and micronutrients selenium compared with TW samples. Water infusion significantly increased intestinal pressure, O2 levels, and microvascular blood flow in DSW and TW groups. Microarray showed DSW600, DSW1200, selenium water upregulated antioxidant and anti-apoptotic genes and downregulated pro-apoptotic gene expression compared with the TW group. Drinking DSW600, DSW1200, and selenium water but not Mg2+ water significantly enhanced Bcl-2 and thioredoxin reductase 1 expression. Bax/Bcl-2/caspase 3/poly-(ADP-ribose)-polymerase signaling was activated during the pathogenesis of duodenal ulceration. DSW drinking reduced ulcer area as well as apoptotic signaling in acetic acid-induced duodenal ulcers. DSW, which contains selenium, provides intestinal protection against duodenal ulcers through the upregulation of Bcl-2 and thioredoxin reductase 1. PMID:24984066
Effectiveness of solar disinfection (SODIS) in rural coastal Bangladesh.
Islam, Md Atikul; Azad, Abul Kalam; Akber, Md Ali; Rahman, Masudur; Sadhu, Indrojit
2015-12-01
Scarcity of drinking water in the coastal area of Bangladesh compels the inhabitants to be highly dependent on alternative water supply options like rainwater harvesting system (RWHS), pond sand filter (PSF), and rain-feed ponds. Susceptibility of these alternative water supply options to microbial contamination demands a low-cost water treatment technology. This study evaluates the effectiveness of solar disinfection (SODIS) to treat drinking water from available sources in the southwest coastal area of Bangladesh. A total of 50 households from Dacope upazila in Khulna district were selected to investigate the performance of SODIS. Data were collected in two rounds to examine fecal coliform (FC) and Escherichia coli (E. coli) contamination of drinking water at the household water storage containers and SODIS bottles, and thereby determined the effectiveness of SODIS in reducing fecal contamination. All water samples were analyzed for pH, electrical conductivity, turbidity and salinity. SODIS significantly reduced FC and E. coli contamination under household conditions. The median health risk reduction by SODIS was more than 96 and 90% for pond and RWHS, respectively. Besides, turbidity of the treated water was found to be less than 5 NTU, except pond water. Only 34% of the participating households routinely adopted SODIS during the study.
Mouthguard and sports drinks on tooth surface pH.
Maeda, Y; Yang, T-C; Miyanaga, H; Tanaka, Y; Ikebe, K; Akimoto, N
2014-09-01
The influence of sports drinks and mouthguards on the pH level of tooth surface was examined. A custom-made mouthguard was fabricated for each subject. The pH level was measured by electric pH meter with sensitivity of 0.01 up to 30 min. Sports drinks (pH=3.75) containing 9.4% sugar were used in this study. Measurements were performed on a cohort of 23 female subjects without a mouthguard (control), wearing a mouthguard only (MG), wearing a mouthguard after 30 ml sports drink intake (SD+MG), wearing a mouthguard during a 5-min jogging exercise (MG+EX) and wearing a mouthguard during jogging after sports drink intake (SD+MG+EX). For 7 male subjects, the same measurements were performed while a sports drink was taken over the mouthguard (MG+SD, MD+EX+SD). MG showed statistically higher pH level than control (p<0.05). SD+MG exhibited a significant decrease in pH level, and SD+MG+EX exhibited even below the critical level of pH 5.5 in some subjects. When sports drinks were taken over the mouthguard, no significant differences in pH level were observed among the different conditions.Within the limitations of this study, it was suggested that wearing a mouthguard during exercise is in itself not a possible risk factor for dental caries, while wearing a mouthguard after consuming sports drinks is. © Georg Thieme Verlag KG Stuttgart · New York.
Microalgae removal with Moringa oleifera.
Barrado-Moreno, M M; Beltran-Heredia, J; Martín-Gallardo, J
2016-02-01
Moringa oleifera seed extract was tested for algae (Chlorella, Microcystis, Oocystis and Scenedesmus) removal by Jar-test technique. This coagulant can be used in drinking water treatment. Jar-test has been carried out in order to evaluate the efficiency of this natural coagulant agent inside real surface water matrix. The influence of variables has been studied in this process, including operating parameters such as coagulant dosage, initial algae concentration, pH, agitation time and water matrix. Removal capacity is verified for water with high contamination of algae while the process is not affected by the pH and water matrix. Coagulation process may be modelling through Langmuir and Freundlich adsorption hypothesis, so acceptable r2 coefficients are obtained. Copyright © 2015 Elsevier Ltd. All rights reserved.
Patil, Dilip A; Deshmukh, Prashant K; Fursule, Ravindra A; Patil, Pravin O
2010-07-01
This study has been carried out to find out the water pollutants and to test the suitability of water for drinking and irrigation purposes in Dhule and surrounding areas in Maharashtra State in India. The analysis was carried out for the parameters pH, DO (dissolved oxygen), BOD (biological oxygen demand), Cl-, NO3-, F-, S(2)-, total alkalinity, total solid, total dissolved solids (TDS), total suspended solids (TSS), total hardness, calcium, magnesium, carbonate and noncarbonate hardness, and concentrations of calcium and magnesium. These parameters were compared against the standards laid down by World Health Organization (WHO) and Indian Council of Medical Research (ICMR) for drinking water quality. High levels of NO(3)-, Cl-, F-, S(2)-, total solid, TDS, TSS, total hardness, magnesium and calcium have been found in the collected samples. From these observations, it has been found that fluoride is present as per the permissible limit (WHO 2003) in some of the villages studied, but both fluoride and nitrate levels are unacceptable in drinking water samples taken from several villages in Dhule. This is a serious problem and, therefore, requires immediate attention. Excess of theses impurities in water causes many diseases in plants and animals. This study has been carried out to find out the water pollutants and to test the suitability of water for drinking and irrigation purposes in Dhule and surrounding areas in Maharashtra.
Ferrazzano, G F; Coda, M; Cantile, T; Sangianantoni, G; Ingenito, A
2012-12-01
Erosion of dental hard tissues induced by acidic dietary components is a high-prevalence finding, especially among children and adolescents. Acidic soft drinks are frequently implicated in dental erosion. The aim of this in vitro study was to assess if CPP-ACP preparation is capable of reducing enamel erosion caused by a cola-type drink. Twenty-five sound human permanent premolars, extracted for orthodontic reasons in patients of 12-16 years old, were used. The roots were removed and the crowns were sectioned in order to obtain 3 enamel sections from each tooth. The specimens were immersed in: (A) cola-type drink; (B) cola-type drink plus CPP-ACP; (C) deionised water (control) for: 48 h, 24 h, 12 h, 6 h and 3 h, respectively. pH values were constantly monitored. Statistical analysis was performed using ANOVA. The enamel samples were evaluated for surface changes using scanning electron microscopy (SEM). Specimens subjected to cola-type drink (treatment A) showed wide areas of enamel dissolution, while the treatment B specimens showed a few areas of little enamel erosion, different from control samples. Adding CPP-ACP to the cola-type drinks influenced pH levels of the solutions, but always in the acidity range. CPP-ACP provides protection against dental erosion from cola-type drinks in vitro. Therefore, further studies are necessary to evaluate if adding casein phosphopeptide-stabilised amorphous calcium phosphate complex to acidic cola drinks could reduce their erosive potential in vivo as well.
Rajaeian, Babak; Allard, Sébastien; Joll, Cynthia; Heitz, Anna
2018-07-01
Silver impregnated activated carbon (SIAC) has been found to be effective in mitigating the formation of brominated-disinfection by products during drinking water treatment. However, there are still uncertainties regarding its silver leaching properties, and strategies for the prevention of silver leaching have remained elusive. This study focused on the evaluation of one type of commercially available SIAC for its ability to remove bromide while minimising silver leaching from the material. Both synthetic and real water matrices were tested. Depending on solution pH, it was found that changing the surface charge properties of SIAC, as measured by the point of zero charge pH, can result in additional bromide removal while minimising the extent of silver leaching. To better understand the mechanism of silver leaching from the SIAC, eight preconditioning environments, i.e. variable pH and ionic strength were tested for a fixed amount of SIAC and two preconditioning environments were selected for a more detailed investigation. Experiments carried out in synthetic water showed that preconditioning at pH 10.4 did not deteriorate the capacity of SIAC to remove bromide, but significantly decreased the release of silver in the form of ionic silver (Ag + ), silver bromide (AgBr) and silver chloride (AgCl) from 40% for the pristine to 3% for the treated SIAC. This was confirmed using a groundwater sample. These results suggest that preconditioned SIAC has the potential to be an effective method for bromide removal with minimised silver leaching in a long-term field application for drinking water production. Copyright © 2018 Elsevier Ltd. All rights reserved.
Saha, Suparna; Sarkar, Priyabrata
2012-08-15
An arsenic adsorbent comprising alumina nanoparticles dispersed in polymer matrix was developed and its removal potential studied. Alumina nanoparticles were prepared by reverse microemulsion technique and these were immobilized on chitosan grafted polyacrylamide matrix by in situ dispersion. The loading capacity of this new synthesized adsorbent was found to be high (6.56 mg/g). Batch adsorption studies were performed as a function of contact time, initial arsenic concentration, pH and presence of competing anions. The removal was found to be pH dependent, and maximum removal was obtained at pH 7.2 while the equilibrium time was 6h. The equilibrium adsorption data fitted very well with Freundlich isotherm. However, the D-R isotherm studies indicated that chemisorptions might play an important role. This was also confirmed by the FTIR study of the arsenic loaded adsorbent. A mechanism of arsenic sorption by the new polymeric adsorbent has been proposed. The regeneration study of the adsorbent resulted in retention of 94% capacity in the fifth cycle. An optimum pH of 7.2, operation at normal temperature, high adsorption capacity and good recycle potential of this new adsorbent would make it an ideal material for removal of arsenic from drinking water. Copyright © 2012 Elsevier B.V. All rights reserved.
Multicausal analysis on water deterioration processes present in a drinking water treatment system.
Wang, Li; Ma, Fang; Pang, Changlong; Firdoz, Shaik
2013-03-01
The fluctuation of water turbidity has been studied during summer in the settling tanks of a drinking water treatment plant. Results from the multiple cause-effect model indicated that five main pathways interactively influenced thequalityof tank water. During rain, turbidity levels increased mainly as a result of decreasing pH and anaerobic reactions (partial effect = 68%). Increasing water temperature combined with dissolved oxygen concentration (partial effect = 64%) was the key parameterforcontrolling decreases in water turbidity during nighttime periods after a rainy day. The dominant factor influencing increases in turbidity during sunny daytime periods was algal blooms (partial effect = 86%). However, short-circuiting waves (partial effect = 77%) was the main cause for increased nighttime water turbidity after a sunny day. The trade offbetween regulatory pathways was responsible for environmental changes, and the outcome was determined by the comparative strengths of each pathway.
ISFET-based sensor signal processor chip design for environment monitoring applications
NASA Astrophysics Data System (ADS)
Chung, Wen-Yaw; Yang, Chung-Huang; Wang, Ming-Ga
2004-12-01
In recent years Ion-Sensitive Field Effect Transistor (ISFET) based transducers create valuable applications in physiological data acquisition and environment monitoring. This paper presents a mixed-mode ASIC design for potentiometric ISFET-based bio-chemical sensor applications including H+ sensing and hand-held pH meter. For battery power consideration, the proposed system consists of low voltage (3V) analog front-end readout circuits and digital processor has been developed and fabricated in a 0.5mm double-poly double-metal CMOS technology. To assure that the correct pH value can be measured, the two-point calibration circuitry based on the response of standard pH4 and pH7 buffer solution has been implemented by using algorithmic state machine hardware algorithms. The measurement accuracy of the chip is 10 bits and the measured range between pH 2 to pH 12 compared to ideal values is within the accuracy of 0.1pH. For homeland environmental applications, the system provide rapid, easy to use, and cost-effective on-site testing on the quality of water, such as drinking water, ground water and river water. The processor has a potential usage in battery-operated and portable devices in environmental monitoring applications compared to commercial hand-held pH meter.
Water quality assessment for groundwater around a municipal waste dumpsite.
Kayode, Olusola T; Okagbue, Hilary I; Achuka, Justina A
2018-04-01
The dataset for this article contains geostatistical analysis of the level to which groundwater quality around a municipal waste dumpsite located in Oke-Afa, Oshodi/Isolo area of Lagos state, southwestern has been compromised for drinking. Groundwater samples were collected from eight hand-dug wells and two borehole wells around or near the dumpsite. The pH, turbidity, salinity, conductivity, total hydrocarbon, total dissolved solids (TDS), dissolved oxygen, chloride, Sulphate (SO 4 ), Nitrate (NO 3 ) and Phosphate (PO 4 ) were determined for the water samples and compared with World Health Organization (WHO) drinking water standard. Notably, the turbidity, TDS, chloride and conductivity of some of the samples were above the WHO acceptable limits. Also, high quantities of heavy metals such as Aluminum and Barium were also present as shown from the data. The dataset can provide insights into the health implications of the contaminants especially when the mean concentration levels of the contaminants are above the recommended WHO drinking water standard.
Evaluating of arsenic(V) removal from water by weak-base anion exchange adsorbents.
Awual, M Rabiul; Hossain, M Amran; Shenashen, M A; Yaita, Tsuyoshi; Suzuki, Shinichi; Jyo, Akinori
2013-01-01
Arsenic contamination of groundwater has been called the largest mass poisoning calamity in human history and creates severe health problems. The effective adsorbents are imperative in response to the widespread removal of toxic arsenic exposure through drinking water. Evaluation of arsenic(V) removal from water by weak-base anion exchange adsorbents was studied in this paper, aiming at the determination of the effects of pH, competing anions, and feed flow rates to improvement on remediation. Two types of weak-base adsorbents were used to evaluate arsenic(V) removal efficiency both in batch and column approaches. Anion selectivity was determined by both adsorbents in batch method as equilibrium As(V) adsorption capacities. Column studies were performed in fixed-bed experiments using both adsorbent packed columns, and kinetic performance was dependent on the feed flow rate and competing anions. The weak-base adsorbents clarified that these are selective to arsenic(V) over competition of chloride, nitrate, and sulfate anions. The solution pH played an important role in arsenic(V) removal, and a higher pH can cause lower adsorption capacities. A low concentration level of arsenic(V) was also removed by these adsorbents even at a high flow rate of 250-350 h(-1). Adsorbed arsenic(V) was quantitatively eluted with 1 M HCl acid and regenerated into hydrochloride form simultaneously for the next adsorption operation after rinsing with water. The weak-base anion exchange adsorbents are to be an effective means to remove arsenic(V) from drinking water. The fast adsorption rate and the excellent adsorption capacity in the neutral pH range will render this removal technique attractive in practical use in chemical industry.
EFFECT OF PH, DIC, ORTHOPHOSPHATE AND SULFATE ON DRINKING WATER CUPROSOLVENCY
Field data from various copper monitoring studies and Lead and Copper Rule compliance data are often inappropriate and misleading for reliably determining fundamental chemical relationships behind copper corrosion control. To address this deficiency, a comprehensive solubility mo...
Nationwide Drinking Water Sampling Campaign for Exposure Assessments in Denmark
Voutchkova, Denitza Dimitrova; Hansen, Birgitte; Ernstsen, Vibeke; Kristiansen, Søren Munch
2018-01-01
Nationwide sampling campaign of treated drinking water of groundwater origin was designed and implemented in Denmark in 2013. The main purpose of the sampling was to obtain data on the spatial variation of iodine concentration and speciation in treated drinking water, which was supplied to the majority of the Danish population. This data was to be used in future exposure and epidemiologic studies. The water supply sector (83 companies, owning 144 waterworks throughout Denmark) was involved actively in the planning and implementation process, which reduced significantly the cost and duration of data collection. The dataset resulting from this collaboration covers not only iodine species (I−, IO3−, TI), but also major elements and parameters (pH, electrical conductivity, DOC, TC, TN, F−, Cl−, NO3−, SO42−, Ca2+, Mg2+, K+, Na+) and a long list of trace elements (n = 66). The water samples represent 144 waterworks abstracting about 45% of the annual Danish groundwater abstraction for drinking water purposes, which supply about 2.5 million Danes (45% of all Danish residents). This technical note presents the design, implementation, and limitations of such a sampling design in detail in order (1) to facilitate the future use of this dataset, (2) to inform future replication studies, or (3) to provide an example for other researchers. PMID:29518987
Quality of our groundwater resources: Arsenic and fluoride
Nordstrom, D. Kirk
2011-01-01
Groundwater often contains arsenic or fluoride concentrations too high for drinking or cooking. These constituents, often naturally occurring, are not easy to remove. The right combination of natural or manmade conditions can lead to elevated arsenic or fluoride which includes continental source rocks, high alkalinity and pH, reducing conditions for arsenic, high phosphate, high temperature and high silica. Agencies responsible for safe drinking water should be aware of these conditions, be prepared to monitor, and treat if necessary.
Evaluation of Plaque pH Changes Following Consumption of Health Drinks by Children: A Pilot Study
Garg, Dhruv; Srikant, N; Bhandary, Meghna; Nayak, Anupama P; Rao, Arathi; Suprabha, BS
2017-01-01
Introduction With increased trend among people to choose a healthy diet, there is an increased consumption of health drinks by children. Thus, it is important to know their cariogenicity. Aim To evaluate the effect of consumption of health drinks viz., Horlicks, Boost and Complan on plaque pH in children. Materials and Methods The study consisted of four groups: Group I (control)- 10% sucrose solution, Group II- Horlicks, Group III- Boost, Group IV- Complan. Samples of plaque from representative teeth were collected and pH was measured using an electrode outside the mouth. After baseline pH was recorded, children were given their respective drinks and were asked to consume slowly over a period of three to five minutes following swish with 20 ml of the test drink for one minute. The pH was then recorded after 10, 20, 30, 40 and 60 minutes of the post consumption period. Obtained values were subjected to one-way ANOVA test for multiple group comparison followed by Post-Hoc Tukey’s test for group wise comparison. Results Twenty minutes after consumption of Complan and Boost, pH was decreased, but not to the critical pH value as in case of sucrose. The pH was found to be slightly increased, 20 minutes post Horlicks consumption. Post 60 minutes consumption of all the drinks including sucrose solution, the pH was increased in comparison to post 20 minutes. However, 60 minutes post consumption of Boost and Horlicks, pH increased above the baseline. Conclusion Consumption of health drinks viz., Complan and Boost did not lower the plaque pH to the level of critical pH. Consumption of Horlicks increased the plaque pH. PMID:28658897
Bacteriological and Physical Quality of Locally Packaged Drinking Water in Kampala, Uganda
Halage, Abdullah Ali; Ssemugabo, Charles; Ssemwanga, David K.; Musoke, David; Mugambe, Richard K.; Guwatudde, David; Ssempebwa, John C.
2015-01-01
Objective. To assess the bacteriological and physical quality of locally packaged drinking water sold for public consumption. Methods. This was cross-sectional study where a total of 60 samples of bottled water from 10 brands and 30 samples of sachet water from 15 brands purchased randomly were analyzed for bacteriological contamination (total coliform and faecal coliform per 100 mL) using membrane filtrate method and reported in terms of cfu/100 mL. Results. Both bottled water and sachet water were not contaminated with faecal coliform. Majority (70%, 21/30) of the sachet water analyzed exceeded acceptable limits of 0 total coliforms per 100 mL set by WHO and the national drinking water standards. The physical quality (turbidity and pH) of all the packaged water brands analyzed was within the acceptable limits. There was statistically significant difference between the median count of total coliform in both sachet water and bottled water brands (U(24) = 37.0, p = 0.027). Conclusion. Both bottled water and sachet water were not contaminated with faecal coliforms; majority of sachet water was contaminated with total coliform above acceptable limits. Government and other stakeholders should consider intensifying surveillance activities and enforcing strict hygienic measures in this rapidly expanding industry to improve packaged water quality. PMID:26508915
Bacteriological and physical quality of locally packaged drinking water in Kampala, Uganda.
Halage, Abdullah Ali; Ssemugabo, Charles; Ssemwanga, David K; Musoke, David; Mugambe, Richard K; Guwatudde, David; Ssempebwa, John C
2015-01-01
To assess the bacteriological and physical quality of locally packaged drinking water sold for public consumption. This was cross-sectional study where a total of 60 samples of bottled water from 10 brands and 30 samples of sachet water from 15 brands purchased randomly were analyzed for bacteriological contamination (total coliform and faecal coliform per 100 mL) using membrane filtrate method and reported in terms of cfu/100 mL. Both bottled water and sachet water were not contaminated with faecal coliform. Majority (70%, 21/30) of the sachet water analyzed exceeded acceptable limits of 0 total coliforms per 100 mL set by WHO and the national drinking water standards. The physical quality (turbidity and pH) of all the packaged water brands analyzed was within the acceptable limits. There was statistically significant difference between the median count of total coliform in both sachet water and bottled water brands (U(24) = 37.0, p = 0.027). Both bottled water and sachet water were not contaminated with faecal coliforms; majority of sachet water was contaminated with total coliform above acceptable limits. Government and other stakeholders should consider intensifying surveillance activities and enforcing strict hygienic measures in this rapidly expanding industry to improve packaged water quality.
Shrestha, Akina; Sharma, Subodh; Gerold, Jana; Erismann, Séverine; Sagar, Sanjay; Koju, Rajendra; Schindler, Christian; Odermatt, Peter; Utzinger, Jürg; Cissé, Guéladio
2017-01-18
This study assessed drinking water quality, sanitation, and hygiene (WASH) conditions among 708 schoolchildren and 562 households in Dolakha and Ramechhap districts of Nepal. Cross-sectional surveys were carried out in March and June 2015. A Delagua water quality testing kit was employed on 634 water samples obtained from 16 purposively selected schools, 40 community water sources, and 562 households to examine water quality. A flame atomic absorption spectrophotometer was used to test lead and arsenic content of the same samples. Additionally, a questionnaire survey was conducted to obtain WASH predictors. A total of 75% of school drinking water source samples and 76.9% point-of-use samples (water bottles) at schools, 39.5% water source samples in the community, and 27.4% point-of-use samples at household levels were contaminated with thermo-tolerant coliforms. The values of water samples for pH (6.8-7.6), free and total residual chlorine (0.1-0.5 mg/L), mean lead concentration (0.01 mg/L), and mean arsenic concentration (0.05 mg/L) were within national drinking water quality standards. The presence of domestic animals roaming inside schoolchildren's homes was significantly associated with drinking water contamination (adjusted odds ratio: 1.64; 95% confidence interval: 1.08-2.50; p = 0.02). Our findings call for an improvement of WASH conditions at the unit of school, households, and communities.
Shrestha, Akina; Sharma, Subodh; Gerold, Jana; Erismann, Séverine; Sagar, Sanjay; Koju, Rajendra; Schindler, Christian; Odermatt, Peter; Utzinger, Jürg; Cissé, Guéladio
2017-01-01
This study assessed drinking water quality, sanitation, and hygiene (WASH) conditions among 708 schoolchildren and 562 households in Dolakha and Ramechhap districts of Nepal. Cross-sectional surveys were carried out in March and June 2015. A Delagua water quality testing kit was employed on 634 water samples obtained from 16 purposively selected schools, 40 community water sources, and 562 households to examine water quality. A flame atomic absorption spectrophotometer was used to test lead and arsenic content of the same samples. Additionally, a questionnaire survey was conducted to obtain WASH predictors. A total of 75% of school drinking water source samples and 76.9% point-of-use samples (water bottles) at schools, 39.5% water source samples in the community, and 27.4% point-of-use samples at household levels were contaminated with thermo-tolerant coliforms. The values of water samples for pH (6.8–7.6), free and total residual chlorine (0.1–0.5 mg/L), mean lead concentration (0.01 mg/L), and mean arsenic concentration (0.05 mg/L) were within national drinking water quality standards. The presence of domestic animals roaming inside schoolchildren’s homes was significantly associated with drinking water contamination (adjusted odds ratio: 1.64; 95% confidence interval: 1.08–2.50; p = 0.02). Our findings call for an improvement of WASH conditions at the unit of school, households, and communities. PMID:28106779
Singh, Kunwar P; Rai, Premanjali; Pandey, Priyanka; Sinha, Sarita
2012-01-01
The present research aims to investigate the individual and interactive effects of chlorine dose/dissolved organic carbon ratio, pH, temperature, bromide concentration, and reaction time on trihalomethanes (THMs) formation in surface water (a drinking water source) during disinfection by chlorination in a prototype laboratory-scale simulation and to develop a model for the prediction and optimization of THMs levels in chlorinated water for their effective control. A five-factor Box-Behnken experimental design combined with response surface and optimization modeling was used for predicting the THMs levels in chlorinated water. The adequacy of the selected model and statistical significance of the regression coefficients, independent variables, and their interactions were tested by the analysis of variance and t test statistics. The THMs levels predicted by the model were very close to the experimental values (R(2) = 0.95). Optimization modeling predicted maximum (192 μg/l) TMHs formation (highest risk) level in water during chlorination was very close to the experimental value (186.8 ± 1.72 μg/l) determined in laboratory experiments. The pH of water followed by reaction time and temperature were the most significant factors that affect the THMs formation during chlorination. The developed model can be used to determine the optimum characteristics of raw water and chlorination conditions for maintaining the THMs levels within the safe limit.
Wang, Ding; Bolton, James R; Hofmann, Ron
2012-10-01
The effectiveness of ultraviolet (UV) combined with chlorine as a novel advanced oxidation process (AOP) for drinking water treatment was evaluated in a bench scale study by comparing the rate of trichloroethylene (TCE) decay when using UV/chlorine to the rates of decay by UV alone and UV/hydrogen peroxide (H₂O₂) at various pH values. A medium pressure mercury UV lamp was used. The UV/chlorine process was more efficient than the UV/H₂O₂ process at pH 5, but in the neutral and alkaline pH range, the UV/H₂O₂ process became more efficient. The pH effect was probably controlled by the increasing concentration of OCl⁻ at higher pH values. A mechanistic kinetic model of the UV/chlorine treatment of TCE showed good agreement with the experimental data. Copyright © 2012 Elsevier Ltd. All rights reserved.
Horčičiak, Michal; Masár, Marián; Bodor, Róbert; Danč, Ladislav; Bel, Peter
2012-03-01
A new method for the determination of trace glyphosate (GLYP), non-selective pesticide, by CZE with online ITP pre-treatment of drinking waters on a column-coupling (CC) chip has been developed. CC chip was equipped with two injection channels of 0.9 and 9.9 μL volumes, two separation channels of 9.3 μL total volume and a pair of conductivity detectors. A very effective ITP sample clean-up performed in the first channel at low pH (3.2) was introduced for quick CZE resolution and detection of GLYP carried out at higher pH (6.1) in the second channel on the CC chip. The LOD for GLYP was estimated at 2.5 μg/L (15 nmol/L) using a 9.9 |mL volume of the injection channel. ITP-CZE analyses of model and real samples have provided very favorable intra-day (0.1-1.2% RSD) and inter-day (2.9% RSD) repeatabilities of the migration time for GLYP while 0.2-6.9% RSD values were typical for the peak area data. Recoveries of GLYP in spiked drinking water varied in the range of 99-109%. A minimum pre-treatment of drinking water (degassing and dilution) and a short analysis time (ca. 10 min) were distinctive features of ITP-CZE determinations of GLYP on the CC chip with high sample volume loaded, as well. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chai, Liyuan; Wang, Yunyan; Zhao, Na; Yang, Weichun; You, Xiangyu
2013-08-01
A novel adsorbent of sulfate-doped Fe3O4/Al2O3 nanoparticles with magnetic separability was developed for fluoride removal from drinking water. The nanosized adsorbent was characterized and its performance in fluoride removal was evaluated. Kinetic data reveal that the fluoride adsorption was rapid in the beginning followed by a slower adsorption process, nearly 90% adsorption can be achieved within 20 min and only 10-15% additional removal occurred in the following 8 h. The fluoride adsorption isotherm was well described by Elovich model. The calculated adsorption capacity of this nanoadsorbent for fluoride by two-site Langmuir model was 70.4 mg/g at pH 7.0. Moreover, this nanoadsorbent performed well over a considerable wide pH range of 4-10, and the fluoride removal efficiencies reached up to 90% and 70% throughout the pH range of 4-10 with initial fluoride concentrations of 10 mg/L and 50 mg/L, respectively. The observed sulfate-fluoride displacement and decreased sulfur content on the adsorbent surface reveal that anion exchange process was an important mechanism for fluoride adsorption by the sulfate-doped Fe3O4/Al2O3 nanoparticles. Moreover, a shift of the pH of zero point charge (pHPZC) of the nanoparticles and surface analysis based on X-ray photoelectron spectroscopy (XPS) suggest the formation of inner-sphere fluoride complex at the aluminum center as another adsorption mechanism. With the exception of PO4(3-), other co-existing anions (NO3(-), Cl(-) and SO4(2-)) did not evidently inhibit fluoride removal by the nanoparticles. Findings of this study demonstrate the potential utility of the nanoparticles as an effective adsorbent for fluoride removal from drinking water. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ikonen, Jenni; Pitkänen, Tarja; Miettinen, Ilkka T
2013-10-25
In this study, different optical, physical and chemical measurements were tested for their capacity to detect changes in water quality. The tests included UV-absorbance at 254 nm, absorbance at 420 nm, turbidity, particle counting, temperature, pH, electric conductivity (EC), free chlorine concentration and ATP concentration measurements. Special emphasis was given to investigating the potential for measurement tools to detect changes in bacterial concentrations in drinking water. Bacterial colony counts (CFU) and total bacterial cell counts (TBC) were used as reference methods for assessing the bacterial water quality. The study consists of a series of laboratory scale experiments: monitoring of regrowth of Pseudomonas fluorescens, estimation of the detection limits for optical measurements using Escherichia coli dilutions, verification of the relationships by analysing grab water samples from various distribution systems and utilisation of the measurements in the case of an accidentally contaminated distribution network. We found significant correlations between the tested measurements and the bacterial water quality. As the bacterial contamination of water often co-occurs with the intrusion of matrixes containing mainly non-bacterial components, the tested measurement tools can be considered to have the potential to rapidly detect any major changes in drinking water quality.
Ikonen, Jenni; Pitkänen, Tarja; Miettinen, Ilkka T.
2013-01-01
In this study, different optical, physical and chemical measurements were tested for their capacity to detect changes in water quality. The tests included UV-absorbance at 254 nm, absorbance at 420 nm, turbidity, particle counting, temperature, pH, electric conductivity (EC), free chlorine concentration and ATP concentration measurements. Special emphasis was given to investigating the potential for measurement tools to detect changes in bacterial concentrations in drinking water. Bacterial colony counts (CFU) and total bacterial cell counts (TBC) were used as reference methods for assessing the bacterial water quality. The study consists of a series of laboratory scale experiments: monitoring of regrowth of Pseudomonas fluorescens, estimation of the detection limits for optical measurements using Escherichia coli dilutions, verification of the relationships by analysing grab water samples from various distribution systems and utilisation of the measurements in the case of an accidentally contaminated distribution network. We found significant correlations between the tested measurements and the bacterial water quality. As the bacterial contamination of water often co-occurs with the intrusion of matrixes containing mainly non-bacterial components, the tested measurement tools can be considered to have the potential to rapidly detect any major changes in drinking water quality. PMID:24284353
Lu, Jingrang; Gerke, Tammie L; Buse, Helen Y; Ashbolt, Nicholas J
2014-12-01
A quantitative polymerase chain reaction assay (115 bp amplicon) specific to Escherichia coli K12 with an ABI(TM) internal control was developed based on sequence data encoding the rfb gene cluster. Assay specificity was evaluated using three E. coli K12 strains (ATCC W3110, MG1655 & DH1), 24 non-K12 E. coli and 23 bacterial genera. The biofilm detection limit was 10(3) colony-forming units (CFU) E. coli K12 mL(-1), but required a modified protocol, which included a bio-blocker Pseudomonas aeruginosa with ethylenediaminetetraacetic acid buffered to pH 5 prior to cell lysis/DNA extraction. The novel protocol yielded the same sensitivity for drinking water biofilms associated with Fe3O4 (magnetite)-coated SiO2 (quartz) grains and biofilm-surface iron corrosion products from a drinking water distribution system. The novel DNA extraction protocol and specific E. coli K12 assay are sensitive and robust enough for detection and quantification within iron drinking water pipe biofilms, and are particularly well suited for studying enteric bacterial interactions within biofilms.
Sillanpää, Mika; Ncibi, Mohamed Chaker; Matilainen, Anu; Vepsäläinen, Mikko
2018-01-01
Natural organic matter (NOM) is a complex matrix of organic substances produced in (or channeled to) aquatic ecosystems via various biological, geological and hydrological cycles. Such variability is posing a serious challenge to most water treatment technologies, especially the ones designed to treat drinking water supplies. Lately, in addition to the fluctuating composition of NOM, a substantial increase of its concentration in fresh waters, and also municipal wastewater effluents, has been reported worldwide, which justifies the urgent need to develop highly efficient and versatile water treatment processes. Coagulation is among the most applied processes for water and wastewater treatment. The application of coagulation to remove NOM from drinking water supplies has received a great deal of attention from researchers around the world because it was efficient and helped avoiding the formation of disinfection by products (DBPs). Nonetheless, with the increased fluctuation of NOM in water (concentration and composition), the efficiency of conventional coagulation was substantially reduced, hence the need to develop enhanced coagulation processes by optimizing the operating conditions (mainly the amount coagulants and pH), developing more efficient inorganic or organic coagulants, as well as coupling coagulation with other water treatment technologies. In the present review, recent research studies dealing with the application of coagulation for NOM removal from drinking water supplies are presented and compared. In addition, integration schemes combining coagulation and other water treatment processes are presented, including membrane filtration, oxidation, adsorption and others processes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Investigating aquifer contamination and groundwater quality in eastern Terai region of Nepal.
Mahato, Sanjay; Mahato, Asmita; Karna, Pankaj Kumar; Balmiki, Nisha
2018-05-21
This study aims at assessing the groundwater quality of the three districts of Eastern Terai region of Nepal viz. Morang, Jhapa, Sunsari using physicochemical characteristics and statistical approach so that possible contamination of water reservoir can be understood. pH, temperature, conductivity, turbidity, color, total dissolved solids, fluorides, ammonia, nitrates, chloride, total hardness, calcium hardness, calcium, magnesium, total alkalinity, iron, manganese, arsenic have to be analyzed to know the present status of groundwater quality. Results revealed that the value of analyzed parameters were within the acceptable limits for drinking water recommended by World Health Organization except for pH, turbidity, ammonia and iron. As per Nepal Drinking Water Quality Standards, fluoride and manganese too were not complying with the permissible limit. Electrical conductivity, total dissolved solids, chloride, total hardness, calcium hardness, manganese, and total alkalinity show good positive correlation with major water quality parameters. Calcium, magnesium, total hardness, calcium hardness and total alkalinity greatly influences total dissolved solids and electrical conductivity. ANOVA, Tukey, and clustering highlight the significance of three districts. Groundwater can be considered safe, but there is always a chance of contamination through chemical wastes in the heavily industrialized area of Morang and Sunsari Industrial corridor.
[Effects of algae and kaolinite particles on the survival of bacteriophage MS2].
He, Qiang; Wu, Qing-Qing; Ma, Hong-Fang; Zhou, Zhen-Ming; Yuan, Bao-Ling
2014-08-01
In this study, Bacteriophage MS2, Kaolinite and Microcystis aeruginosa were selected as model materials for human enteric viruses, inorganic and organic particles, respectively. The influence of the inorganic (Kaolinite) or organic (Microcystis aeruginosa) particles on the survival of MS2 at different conditions, such as particles concentration, pH, ion concentration and natural organic matter (NOM) were studied. The results showed that Kaolinite had no effect on the survival of phage MS2 except that apparent survival of MS2 increased 1 logarithm in higher hardness water. Microcystis aeruginosa addition reduced 1 logarithm of MS2 survival. However, when the pH value was greater than 4.0 or the concentration of Microcystis aeruginosa was less than 1.0 x 10(6) cells x L(-1), Microcystis aeruginosa addition had no influence on the survival of MS2. In higher hardness water, Microcystis aeruginosa protected MS2 viruses and then increased the survival of MS2. In drinking water, resource containing higher concentration of particles, the survival ability of virus would be enhanced with the increase of the hardness and then elevated the risks of drinking water safety.
Tissier, Adeline; Denis, Martine; Hartemann, Philippe; Gassilloud, Benoît
2012-02-01
Investigations of Campylobacter jejuni and Campylobacter coli in samples of drinking water suspected of being at the origin of an outbreak very often lead to negative results. One of the reasons for this failure is the small volume of water typically used for detecting these pathogens (10 to 1,000 ml). The efficiencies of three microfilters and different elution procedures were determined using real-time quantitative PCR to propose a procedure allowing detection of Campylobacter in 20 liters of drinking water or low-turbidity water samples. The results showed that more than 80% of the bacteria inoculated in 1 liter of drinking water were retained on each microfilter. An elution with a solution containing 3% beef extract, 0.05 M glycine at pH 9, combined with direct extraction of the bacterial genomes retained on the cellulose ester microfilter, allowed recovery of 87.3% (±22% [standard deviation]) of Campylobacter per 1 liter of tap water. Recoveries obtained from 20-liter volumes of tap water spiked with a C. coli strain were 69.5% (±10.3%) and 78.5% (±15.1%) for 91 CFU and 36 CFU, respectively. Finally, tests performed on eight samples of 20 liters of groundwater collected from an alluvial well used for the production of drinking water revealed the presence of C. jejuni and C. coli genomes, whereas no bacteria were detected with the normative culture method in volumes ranging from 10 to 1,000 ml. In the absence of available epidemiological data and information on bacterial viability, these last results indicate only that the water resource is not protected from contamination by Campylobacter.
Tissier, Adeline; Denis, Martine; Hartemann, Philippe
2012-01-01
Investigations of Campylobacter jejuni and Campylobacter coli in samples of drinking water suspected of being at the origin of an outbreak very often lead to negative results. One of the reasons for this failure is the small volume of water typically used for detecting these pathogens (10 to 1,000 ml). The efficiencies of three microfilters and different elution procedures were determined using real-time quantitative PCR to propose a procedure allowing detection of Campylobacter in 20 liters of drinking water or low-turbidity water samples. The results showed that more than 80% of the bacteria inoculated in 1 liter of drinking water were retained on each microfilter. An elution with a solution containing 3% beef extract, 0.05 M glycine at pH 9, combined with direct extraction of the bacterial genomes retained on the cellulose ester microfilter, allowed recovery of 87.3% (±22% [standard deviation]) of Campylobacter per 1 liter of tap water. Recoveries obtained from 20-liter volumes of tap water spiked with a C. coli strain were 69.5% (±10.3%) and 78.5% (±15.1%) for 91 CFU and 36 CFU, respectively. Finally, tests performed on eight samples of 20 liters of groundwater collected from an alluvial well used for the production of drinking water revealed the presence of C. jejuni and C. coli genomes, whereas no bacteria were detected with the normative culture method in volumes ranging from 10 to 1,000 ml. In the absence of available epidemiological data and information on bacterial viability, these last results indicate only that the water resource is not protected from contamination by Campylobacter. PMID:22138985
Lane, Rachael F; Adams, Craig D; Randtke, Stephen J; Carter, Ray E
2015-08-01
Bisphenol A (BPA), bisphenol F (BPF), and bisphenol A diglycidyl ether (BADGE) are common components of epoxy coatings used in food packaging and in drinking water distribution systems. Thus, leachates from the epoxy may be exposed to the disinfectants free chlorine (Cl2/HOCl/OCl(-)) and monochloramine (MCA, NH2Cl). Bisphenols are known endocrine disrupting chemicals (EDC) with estrogenic activity. Chlorination by-products have the potential to have reduced or enhanced estrogenic qualities, and are, therefore, of interest. In this work, chlorination reactions for bisphenols and BADGE were explored (via LC/MS/MS) and kinetic modeling (using a pseudo-first order approach) was conducted to predict the fate of these compounds in drinking water. The half-lives of BPA and BPF with 1 mg/L of free chlorine ranged from 3 to 35 min over the pH range from 6 to 11 and the temperature range of 10-25 °C. Half-lives for reactions of BPA and BPF with a nominal MCA concentration of 3.5 mg/L as Cl2 were from 1 to 10 days and were greater at higher pH and lower temperature. Formation of chlorinated bisphenol A by-products was observed during the kinetic studies. BADGE was found unreactive with either oxidant. Copyright © 2015. Published by Elsevier Ltd.
Nie, Xiao-Bao; Li, Zhi-Hong; Long, Yuan-Nan; He, Pan-Pan; Xu, Chao
2017-06-01
The inactivation of Tubifex tubifex is important to prevent contamination of drinking water. Chlorine is a widely-used disinfectant and the key factor in the inactivation of T. tubifex. This study investigated the inactivation kinetics of chlorine on T. tubifex and the synergistic effect of the sequential use of chlorine and UV irradiation. The experimental results indicated that the Ct (concentration × time reaction ) concept could be used to evaluate the inactivation kinetics of T. tubifex with chlorine, thus allowing for the use of a simpler Ct approach for the assessment of T. tubifex chlorine inactivation requirements. The inactivation kinetics of T. tubifex by chlorine was found to be well-fitted to a delayed pseudo first-order Chick-Watson expression. Sequential experiments revealed that UV irradiation and chlorine worked synergistically to effectively inactivate T. tubifex as a result of the decreased activation energy, E a , induced by primary UV irradiation. Furthermore, the inactivation effectiveness of T. tubifex by chlorine was found to be affected by several drinking water quality parameters including pH, turbidity, and chemical oxygen demand with potassium permanganate (COD Mn ) concentration. High pH exhibited pronounced inactivation effectiveness and the decrease in turbidity and COD Mn concentrations contributed to the inactivation of T. tubifex. Copyright © 2017 Elsevier Ltd. All rights reserved.
The polyatomic background at the major isotope of Cr was evaluated as a function of collision cell gas flow rate using three different mobile phases. The stability of CrVI was evaluated as a function of solution pH using an enriched 53CrVI. The recovery was ≥ 95% at pH 7.8 but...
[Influencing factors and mechanism of arsenic removal during the aluminum coagulation process].
Chen, Gui-Xia; Hu, Cheng-Zhi; Zhu, Ling-Feng; Tong, Hua-Qing
2013-04-01
Aluminum coagulants are widely used in arsenic (As) removal during the drinking water treatment process. Aluminium chloride (AlCl3) and polyaluminium chloride (PACl) which contains high content of Al13 were used as coagulants. The effects of aluminum species, pH, humic acid (HA) and coexisting anions on arsenic removal were investigated. Results showed that AlCl3 and PACl were almost ineffective in As(II) removal while the As(V) removal efficiency reached almost 100%. pH was an important influencing factor on the arsenic removal efficiency, because pH influenced the distribution of aluminum species during the coagulation process. The efficiency of arsenic removal by aluminum coagulants was positively correlated with the content of Al13 species. HA and some coexisting anions showed negative impact on arsenic removal because of the competitive adsorption. The negative influence of HA was more pronounced at low coagulant dosages. PO4(3-) and F(-) showed marked influence during arsenic removal, but there was no obvious influence when SiO3(2-), CO3(2-) and SO4(2-) coexisted. The present study would be helpful to direct arsenic removal by enhanced coagulation during the drinking water treatment.
A novel oral vehicle for poorly soluble HSV-helicase inhibitors: PK/PD validations.
Duan, Jianmin; Liard, Francine; Paris, William; Lambert, Michelle
2004-11-01
The current study describes the design and validation of a novel oral vehicle for delivering poorly water-soluble herpes simplex virus (HSV)-helicase inhibitors in preclinical pharmacokinetic (PK) and pharmacodynamic (PD) evaluations. Poorly water-soluble compounds were used in solubility and drinking compliance tests in mice. A preferred vehicle containing 0.1% bovine serum albumin (BSA), 3% dextrose, 5% polyethylene glycol (PEG) 400, and 2% peanut oil, pH 2.8 with HCL (BDPP) was selected. This vehicle was further validated with oral PK and in vivo antiviral PD studies using BILS 45 BS. Solubility screen and drinking compliance tests revealed that the BDPP vehicle could solubilize BILS compounds at 0.5-3 mg/ml concentration range and could be administered to mice without reducing water consumption. Comparative oral PK of BILS 45 BS in HCL or BDPP by gavage at 40 mg/kg showed overlapping PK profiles. In vivo antiviral efficacy and potency of BILS 45 BS in BDPP by oral gavages or in drinking water were confirmed to be comparable as that achieved by gavage in HCL solution. These results provide a protein-enriched novel oral vehicle for delivering poorly water-soluble antiviral compounds in a continuous administration mode. Similar approaches may be applicable to other poorly soluble compounds by gavage or in drinking solution.
Leavey-Roback, Shannon L; Sugar, Catherine A; Krasner, Stuart W; Suffet, Irwin H Mel
2016-05-15
The formation of the carcinogen N-nitrosodimethylamine (NDMA) during drinking water treatment has raised concerns in the drinking water industry. Many bench-scale laboratory tests and pilot plant studies have been completed to try to determine which factors during water treatment increase or decrease the amount of NDMA formed in drinking water. This study used data from over 20 drinking water treatment plants in the United States and Canada to determine which factors are most highly correlated with the NDMA concentration in delivered water using a mixed effects model with a random intercept. This type of analysis has not been used previously with trihalomethane (THM) models due to the fact that those studies did not sample such a large number and range of plants as was done in this NDMA study. Ultraviolet absorbance at 254 nm (UV254) in the plant influent and pre-chlorination time used at the plant were highly correlated in all models with NDMA concentration in finished water as well as the percentage change between NDMA formation potential in the plant influent and actual formation in the finished water. Specifically, an increase in UV254 absorbance in a model was associated with an increase in NDMA and an increase in pre-chlorination time in a model was associated with a decrease in NDMA. Other water quality parameters including sucralose concentration in the plant influent, polyDADMAC polymer dose, pH, and chlorine-to-ammonia weight ratio used in the plant were also correlated with NDMA concentration in the distribution system. Lastly, NDMA precursor loading was correlated with the use of polyDADMAC (where precursors were added) and the use of ozone and granular activated carbon (GAC) treatment (where precursors were removed). Copyright © 2016 Elsevier Ltd. All rights reserved.
Commissaris, R L; Ardayfio, P A; McQueen, D A; Gilchrist, G A; Overstreet, D H
2000-09-01
The high DPAT sensitivity (HDS) and low DPAT sensitivity (LDS) rat lines are the result of selective breeding for differences in the hypothermic response to acute treatment with the 5-HT(1A) receptor agonist 8-hydroxydipropylaminotetralin (8-OHDPAT). The HDS rats exhibit a much greater hypothermic response than do the LDS rats. The present study examined conflict anxiety-like behavior and the effects of acute challenges with 8-OHDPAT and phenobarbital (PhB) on conflict behavior in HDS and LDS rats. Water-restricted (24-h deprivation) HDS and LDS rats were trained to drink from a tube that was occasionally electrified. The 5-s bouts of drinking tube electrification occurred on a fixed interval (FI) 30-s schedule and were signaled by the presence of a tone. Under this schedule, responding is suppressed approximately 10-fold during the tone-on periods compared to the no-tone periods. After two weeks of training in this repeated measures drink suppression conflict paradigm, the effects of acute challenges with 8-OHDPAT (30-500 microg/kg, SC, +10 min) or PhB (20 mg/kg, IP, +10 min) were determined. In control (i.e. , non-drug) conflict test sessions, rats of the HDS line accepted significantly fewer shocks than did rats of the LDS line. Acute treatment with 8-OHDPAT resulted in a modest increase in punished responding (maximum increase: +30-40 shocks/session) in both lines at doses of 60 and 125 microg/kg. Higher doses produced significant general behavioral disruption and substantial reductions in water intake (unpunished responding) in both HDS and LDS rats. Neither the increase in shocks received nor the decrease in water intake produced by these 8-OHDPAT challenges differed between HDS and LDS rats. In both lines, acute PhB treatment resulted in a more dramatic increase in punished responding than did 8-OHDPAT (+55-65 shocks/session) and an increase in water intake. The effects of PhB also did not differ between HDS and LDS rats. These data suggest that the HDS and LDS rats exhibit differences in baseline anxiety-like behavior in the conflict task, but do not differ in their response to acute challenges with PhB or 8-OHDPAT.
Parliman, D.J.; Young, H.W.
1990-01-01
Hydrologic and chemical data were collected during September through November 1989 from 90 wells and 6 springs in southern Elmore County, southwestern Idaho. These data were collected to characterize the chemical quality of water in major water-yielding zones in areas near Mountain Home and the Mountain Home Air Force Base. The data include well and spring locations, well-construction and water-level information, and chemical analysis of water from each well and spring inventoried. Ground water in the study area is generally suitable for most uses. In localized areas, water is highly mineralized, and pH, concentrations of dissolved sulfate, chloride, or nitrite plus nitrate as nitrogen exceed national public drinking water limits. Fecal coliform and fecal streptococci bacteria were detected in separate water samples. One or more volatile organic compounds were detected in water samples from 15 wells, and the concentration of benzene exceeded the national public drinking water limit in a water sample from one well.
Condition Assessment Modeling for Distribution Systems Using Shared Frailty Analysis
Condition Assessment (CA) modeling is drawing increasing interest as a methodology for managing drinking water infrastructure. This paper develops a Cox Proportional Hazard (PH)/shared frailty model and applies it to the problem of investment in the repair and replacement of dri...
EFFECT OF PH, DIC, ORTHOPHOSPHATE AND SULFATE ON DRINKING WATER CUPROSOLVENCY (EPA/600/R-95/085)
Field data from various copper monitoring studies and Lead and Copper Rule compliance data are often inappropriate and misleading for reliably determining fundamental chemical relationships behind copper corrosion control. To address this deficiency, a comprehensive solubility m...
Wu, Qihua; Shi, Honglan; Adams, Craig D; Timmons, Terry; Ma, Yinfa
2012-11-15
The potential occurrences of endocrine-disrupting compounds (EDCs), as well as pharmaceuticals, are considered to be emerging environmental problems due to their persistence and continuous input into the aquatic ecosystem, even at only trace concentrations. This study systematically investigated the oxidative removal of eight specially selected ECDs and pharmaceuticals by comparing their relative reactivity as a function of different oxidative treatment processes (i.e., free chlorine, ozone, monochloramine, and permanganate) under various pH conditions. For the oxidative removal study, EDC and pharmaceutical standards were spiked into both deionized water and natural water, followed by treatment using common oxidants at typical water treatment concentrations. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used for identification and quantification. The removal efficiency of the EDCs and pharmaceuticals varied significantly between oxidation processes. Free chlorine, permanganate, and ozone treatments were all highly effective at the elimination of triclosan and estrone, while they were not effective for removing ibuprofen, iopromide, and clofibric acid. Monochloramine (at a dose of 3mg/L) was mostly ineffective in eliminating any of the selected EDCs and pharmaceuticals under the tested conditions. pH also played an important role in the removal efficiency of the EDCs and pharmaceuticals during free chlorine, permanganate, and ozone treatments. Additionally, the study identified the oxidation products of triclosan by permanganate, and 2,4-dichlorophenol was identified as the major oxidation product of triclosan by permanganate in drinking water system treatment. Furthermore, 2,4-dichlorophenol was further degradated to 4,5-dichloro-2-(2,4-dichlorophenoxy)phenol and/or 5,6-dichloro-2-(2,4-dichlorophenoxy)phenol. The kinetics for this reaction indicated that the reaction was first order in the drinking water system. Copyright © 2012 Elsevier B.V. All rights reserved.
Fujii, Mie; Kitasako, Yuichi; Sadr, Alireza; Tagami, Junji
2011-01-01
This study aimed to evaluate enamel surface roughness (Ra) and pH before and after erosion by soft drinks. Enamel was exposed to a soft drink (cola, orange juice or green tea) for 1, 5 or 60 min; Ra was measured using contact-stylus surface profilometry (SSP) and non-contact focus variation 3D microscope (FVM). Surface pH was measured using a micro pH sensor. Data were analyzed at significance level of alpha=0.05. There was a significant correlation in Ra between SSP and FVM. FVM images showed no changes in the surface morphology after various periods of exposure to green tea. Unlike cola and orange juice, exposure to green tea did not significantly affect Ra or pH. A significant correlation was observed between surface pH and Ra change after exposure to the drinks. Optical surface analysis and micro pH sensor may be useful tools for non-damaging, quantitative assessment of soft drinks erosion on enamel.
Water quality in Gaines Creek and Gaines Creek arm of Eufaula Lake, Oklahoma
Kurklin, J.K.
1990-01-01
Based on samples collected from May 1978 to May 1980 and analyzed for major anions, nitrogen, trace elements, phytoplankton, and bacteria, the water in Gaines Creek and the Gaines Creek arm of Eufaula Lake was similar with respect to suitability for municipal use. Water from Gaines Creek had a pH range of 5.7 to 7.6 and a maximum specific conductance of 97 microsiemens per centimeter at 25o Celsius, whereas water from the Gaines Creek arm of Eufaula Lake had a pH range of 6.0 to 9.2 and a maximum specific conductance of 260 microsiemens per centimeter at 25o Celsius. Dissolved oxygen, pH, temperature, and specific conductance values for the lake varied with depth. With the exceptions of cadmium, iron, lead, and manganese, trace-element determinations of samples were within recommended national primary and secondary drinking-water standards. When compared to the National Academy of Sciences water-quality criteria, phytoplankton and bacteria counts exceeded recommendations; however, water from either Gaines Creek or Eufaula Lake could be treated similarly and used as a municipal water supply.
Idris, Ali Mohamed; Vani, Nandimandalam Venkata; Almutari, Dhafi A; Jafar, Mohammed A; Boreak, Nezar
2016-12-01
To determine the amount of sugar and pH in commercially available soft drinks in Jazan, Saudi Arabia. This was further compared with their labeled values in order to inform the regulations. The effects of these drinks on teeth is reviewed. Ten brands of popular soft drinks including 6 regular carbonated drinks and 4 energy drinks were obtained from the local markets. Their pH was determined using a pH meter. The amount of total sugar, glucose, fructose, and sucrose was estimated using high performance liquid chromatography (using Dionex ICS 5000 ion chromatography) at the Saudi Food and Drug Authority. Descriptive statistics was done to obtain the mean and standard deviation. Intergroup comparison was performed using independent t -test, and the labeled and estimated values within the group were compared with paired t -test. The labeled and estimated sugar in energy drinks (14.3 ± 0.48 and 15.6 ± 2.3, respectively) were higher than the carbonated drinks (11.2 ± 0.46 and 12.8 ± 0.99), which was statistically significant. In addition, there was a significant difference in the concentration of glucose in energy drinks (5.7 ± 1.7) compared to carbonated drinks (4.1 ± 1.4). The pH of these drinks ranged from 2.4 to 3.2. The differences between the estimated and labeled sugar in carbonated drinks showed statistical significance. Mild variation was observed in total sugar, glucose, fructose, and sucrose levels among different bottles of the same brand of these drinks. The low pH and high sugar content in these drinks are detrimental to dental health. Comparison of the estimated sugar with their labeled values showed variation in most of the brands. Preventive strategies should be implemented to reduce the health risks posed by these soft drinks.
Idris, Ali Mohamed; Vani, Nandimandalam Venkata; Almutari, Dhafi A.; Jafar, Mohammed A.; Boreak, Nezar
2016-01-01
Objective: To determine the amount of sugar and pH in commercially available soft drinks in Jazan, Saudi Arabia. This was further compared with their labeled values in order to inform the regulations. The effects of these drinks on teeth is reviewed. Materials and Methods: Ten brands of popular soft drinks including 6 regular carbonated drinks and 4 energy drinks were obtained from the local markets. Their pH was determined using a pH meter. The amount of total sugar, glucose, fructose, and sucrose was estimated using high performance liquid chromatography (using Dionex ICS 5000 ion chromatography) at the Saudi Food and Drug Authority. Descriptive statistics was done to obtain the mean and standard deviation. Intergroup comparison was performed using independent t-test, and the labeled and estimated values within the group were compared with paired t-test. Results: The labeled and estimated sugar in energy drinks (14.3 ± 0.48 and 15.6 ± 2.3, respectively) were higher than the carbonated drinks (11.2 ± 0.46 and 12.8 ± 0.99), which was statistically significant. In addition, there was a significant difference in the concentration of glucose in energy drinks (5.7 ± 1.7) compared to carbonated drinks (4.1 ± 1.4). The pH of these drinks ranged from 2.4 to 3.2. The differences between the estimated and labeled sugar in carbonated drinks showed statistical significance. Mild variation was observed in total sugar, glucose, fructose, and sucrose levels among different bottles of the same brand of these drinks. Conclusion: The low pH and high sugar content in these drinks are detrimental to dental health. Comparison of the estimated sugar with their labeled values showed variation in most of the brands. Preventive strategies should be implemented to reduce the health risks posed by these soft drinks. PMID:28217536
Immediate erosive potential of cola drinks and orange juices.
Jensdottir, T; Holbrook, P; Nauntofte, B; Buchwald, C; Bardow, A
2006-03-01
Little is known about the erosive potential of soft drinks within the first minutes of exposure to teeth, and about the potentially protective role of salivary proteins. We hypothesized that the erosive potential is determined primarily by pH and decreases in the presence of salivary proteins. To investigate this, we first added uncoated hydroxyapatite crystals and, second, salivary-protein-coated hydroxyapatite crystals to 20 commercially available cola drinks and orange juices simultaneously, with pH recordings every 15 sec for 3 min. The amount of apatite lost per liter of soft drink per sec was calculated from titratable acidity values to each pH obtained by crystal addition. The erosive potential within the first minutes of exposure was determined solely by the pH of the drink, and the erosive potential was ten-fold higher in cola drinks compared with juices. However, salivary proteins reduced the erosive potential of cola drinks by up to 50%.
Zhu, Mengfei; Zhu, Li; Wang, Jianlong; Yue, Tianli; Li, Ronghua; Li, Zhonghong
2017-07-01
Removing heavy metal ions from aqueous solutions is one of the most challenging separations. In situ oxidized Fe 3 O 4 membranes using 316L porous stainless steel filter tube have shown great potential for removing anion Cr(VI). Here we report the performances of the in situ oxidized Fe 3 O 4 membranes for removing two toxic cations Cd(II) and Pb(II) commonly existing in water and their potential applications for drinking water purification. The membranes exhibited high removal efficiency: 97% at pH 9.0 for Cd(II) of 1.0 mg/L initial concentration and 100% at pH 5.0-6.0 for Pb(II) of 5.0 mg/L initial concentration. The maximum adsorption capabilities were estimated at 0.800 mg/g and 2.251 mg/g respectively for Cd(II) and Pb(II) at 318 K by the Langmuir model. Results of batch tests revealed the existence of electrostatic attraction and chemisorption. XRD and FT-IR analyses indicated that the chemisorption might be the insertion of Cd(II) and Pb(II) into the Fe 3 O 4 crystal faces of 311 and 511 to form mononuclear or binuclear coordination with O atoms of Fe-O 6 groups. Competitive adsorption of Cd(II) and Pb(II) in binary solutions revealed a preferential adsorption for Pb(II). Na 2 EDTA solution was used to regenerate the membranes, and the maximum desorption ratio was 90.29% and 99.75% respectively for Cd(II) and Pb(II). The membranes were able to efficiently lower Cd(II) and Pb(II) concentrations to meet the drinking water standards recommended by the World Health Organization and are promising for engineering applications aimed at drinking water purification. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kinetic Analysis of Haloacetonitrile Stability in Drinking Waters.
Yu, Yun; Reckhow, David A
2015-09-15
Haloacetonitriles (HANs) are an important class of drinking water disinfection byproducts (DBPs) that are reactive and can undergo considerable transformation on time scales relevant to system distribution (i.e., from a few hours to a week or more). The stability of seven mono-, di-, and trihaloacetonitriles was examined under a variety of conditions including different pH levels and disinfectant doses that are typical of drinking water distribution systems. Results indicated that hydroxide, hypochlorite, and their protonated forms could react with HANs via nucleophilic attack on the nitrile carbon, forming the corresponding haloacetamides (HAMs) and haloacetic acids (HAAs) as major reaction intermediates and end products. Other stable intermediate products, such as the N-chloro-haloacetamides (N-chloro-HAMs), may form during the course of HAN chlorination. A scheme of pathways for the HAN reactions was proposed, and the rate constants for individual reactions were estimated. Under slightly basic conditions, hydroxide and hypochlorite are primary reactants and their associated second-order reaction rate constants were estimated to be 6 to 9 orders of magnitude higher than those of their protonated conjugates (i.e., neutral water and hypochlorous acid), which are much weaker but more predominant nucleophiles at neutral and acidic pHs. Developed using the estimated reaction rate constants, the linear free energy relationships (LFERs) summarized the nucleophilic nature of HAN reactions and demonstrated an activating effect of the electron withdrawing halogens on nitrile reactivity, leading to decreasing HAN stability with increasing degree of halogenation of the substituents, while subsequent shift from chlorine to bromine atoms has a contrary stabilizing effect on HANs. The chemical kinetic model together with the reaction rate constants that were determined in this work can be used for quantitative predictions of HAN concentrations depending on pH and free chlorine contact times (CTs), which can be applied as an informative tool by drinking water treatment and system management engineers to better control these emerging nitrogenous DBPs, and can also be significant in making regulatory decisions.
Jiang, Jia-Qian; Wang, S; Panagoulopoulos, A
2006-04-01
This paper aims to explore potassium ferrate(VI) (K2FeO4) as an alternative water treatment chemical for both drinking water and wastewater treatment. The performance of potassium ferrate(VI) was evaluated in comparison with that of sodium hypochlorite (NaOCl) and that of NaOCl plus ferric sulphate (FS) or alum (AS). The dosages of ferrate(VI), NaOCl and FS/AS and sample pH values were varied in order to investigate the effects of these factors on the treatment performance. The study demonstrates that in drinking water treatment, ferrate(VI) can remove 10-20% more UV(254)-abs and DOC than FS for the same dose compared for natural pH range (6 and 8). The THMFP was reduced to less than 100 microg l(-1) by ferrate(VI) at a low dose. In addition to this, ferrate(VI) can achieve the disinfection targets (>6 log10 inactivation of Escherichia coliform (E. coli)) at a very low dose (6 mg l(-1) as Fe) and over wide working pH in comparison with chlorination (10 mg l(-1) as Cl2) plus coagulation (FS, 4 mg l(-1) as Fe). In wastewater treatment, ferrate(VI) can reduce 30% more COD, and kill 3log10 more bacteria compared to AS and FS at a similar or even smaller dose. Also, potassium ferrate(VI) can produce less sludge volume and remove more pollutants, which could make sludge treatment easier.
3D Printing-Based Integrated Water Quality Sensing System
Banna, Muinul; Bera, Kaustav; Sochol, Ryan; Lin, Liwei; Najjaran, Homayoun; Sadiq, Rehan; Hoorfar, Mina
2017-01-01
The online and accurate monitoring of drinking water supply networks is critically in demand to rapidly detect the accidental or deliberate contamination of drinking water. At present, miniaturized water quality monitoring sensors developed in the laboratories are usually tested under ambient pressure and steady-state flow conditions; however, in Water Distribution Systems (WDS), both the pressure and the flowrate fluctuate. In this paper, an interface is designed and fabricated using additive manufacturing or 3D printing technology—material extrusion (Trade Name: fused deposition modeling, FDM) and material jetting—to provide a conduit for miniaturized sensors for continuous online water quality monitoring. The interface is designed to meet two main criteria: low pressure at the inlet of the sensors and a low flowrate to minimize the water bled (i.e., leakage), despite varying pressure from WDS. To meet the above criteria, a two-dimensional computational fluid dynamics model was used to optimize the geometry of the channel. The 3D printed interface, with the embedded miniaturized pH and conductivity sensors, was then tested at different temperatures and flowrates. The results show that the response of the pH sensor is independent of the flowrate and temperature. As for the conductivity sensor, the flowrate and temperature affect only the readings at a very low conductivity (4 µS/cm) and high flowrates (30 mL/min), and a very high conductivity (460 µS/cm), respectively. PMID:28594387
Toxqui, Laura; Vaquero, M Pilar
2016-06-28
Water intake is essential for health maintenance and disease prevention. The effects of an intervention with two mineral waters, sodium-bicarbonated mineral water (BW) or control mineral water low in mineral content (CW), on cardiometabolic risk biomarkers were studied. In a randomised-controlled crossover-trial, sixty-four moderately hypercholesterolaemic adults were randomly assigned to consume 1 L/day of either BW (sodium, 1 g/L; bicarbonate, 2 g/L) or CW with the main meals for eight weeks, separated by an eight-week washout period. Blood lipids, lipid oxidation, glucose, insulin, aldosterone, urine pH, urinary electrolytes, blood pressure, body weight, fluid intake, energy, and nutrients from total diet and beverages were determined. Total cholesterol, LDL cholesterol, and glucose decreased (p < 0.01), oxidised LDL tended to decrease (p = 0.073), and apolipoprotein B increased during the intervention, without water type effect. Energy and carbohydrates from beverages decreased since soft drinks and fruit juice consumptions decreased throughout the trial. BW increased urinary pH (p = 0.006) and reduced calcium/creatinine excretion (p = 0.011). Urinary potassium/creatinine decreased with both waters. Consumption of 1 L/day of mineral water with the main meals reduces cardiometabolic risk biomarkers, likely to be attributed to a replacement of soft drinks by water. In addition, BW does not affect blood pressure and exerts a moderate alkalizing effect in the body.
Wu, Ting; Li, Xiaoping; Yang, Tao; Sun, Xuemeng; Cai, Yue; Ai, Yuwei; Zhao, Yanan; Liu, Dongying; Zhang, Xu; Li, Xiaoyun; Wang, Lijun; Yu, Hongtao
2017-01-01
The purpose of this study was to identify the concentration of multi-elements (MEs) in source water (surface and drinking water) and assess their quality for sustainability. A total of 161 water samples including 88 tap drinking waters (DW) and 73 surface waters (SW) were collected from five cities in Xi’an, Yan’an, Xining, Lanzhou, and Urumqi in northwestern China. Eighteen parameters including pH, electrical conductivity (EC), total organic carbon (TOC) total nitrogen (TN), chemical compositions of anions (F−, Cl−, NO3−, HCO3−, SO42−), cations (NH4+, K+, Na+, Ca2+, Mg2+), and metals (lead (Pb), chromium (Cr), cadmium (Cd), copper (Cu)) were analyzed in the first time at the five cities . The results showed that pH values and concentrations of Cl−, SO42−, Na+, K+, Ca2+, Mg2+ and Cd, Cr, Cu in DW were within the permissible limits of the Chinese Drinking Water Quality Criteria, whereas the concentrations of other ions (F−, NO3−, NH4+ and Pb) exceeded their permissible values. In terms of the SW, the concentrations of F−, Cl−, NO3−, SO42− were over the third range threshold i.e., water suitable for fishing and swimming of the Surface Water Quality Standards in China. The spatial distributions of most MEs in source water are similar, and there was no clear variation for all ions and metals. The metals in DW may be caused by water pipes, faucets and their fittings. The noncarcinogenic risk of metals in DW for local children are in decreasing order Cr > Cd > Pb > Cu. The carcinogenic risk from Cr exposure was at the acceptable level according to threshold of USEPA. Although the comprehensive index of potential ecological assessment of Cr, Cd, Pb and Cu in SW ranked at low risk level and was in the order of Huang River in Xining > Peaceful Canal in Urumqi > Yan River in Yan’an > Yellow River in Lanzhou, their adverse effects to ecology and human health at a low concentration in local semi-arid and arid areas should not be ignored in the long run. PMID:28974043
Wu, Ting; Li, Xiaoping; Yang, Tao; Sun, Xuemeng; Mielke, Howard W; Cai, Yue; Ai, Yuwei; Zhao, Yanan; Liu, Dongying; Zhang, Xu; Li, Xiaoyun; Wang, Lijun; Yu, Hongtao
2017-10-02
The purpose of this study was to identify the concentration of multi-elements (MEs) in source water (surface and drinking water) and assess their quality for sustainability. A total of 161 water samples including 88 tap drinking waters (DW) and 73 surface waters (SW) were collected from five cities in Xi'an, Yan'an, Xining, Lanzhou, and Urumqi in northwestern China. Eighteen parameters including pH, electrical conductivity (EC), total organic carbon (TOC) total nitrogen (TN), chemical compositions of anions (F - , Cl - , NO₃ - ,HCO₃ - , SO₄ 2- ), cations (NH₄⁺, K⁺, Na⁺, Ca 2+ ,Mg 2+ ), and metals (lead (Pb), chromium (Cr), cadmium (Cd), copper (Cu)) were analyzed in the first time at the five cities . The results showed that pH values and concentrations of Cl - , SO₄ 2- , Na⁺, K⁺, Ca 2+ , Mg 2+ and Cd, Cr, Cu in DW were within the permissible limits of the Chinese Drinking Water Quality Criteria, whereas the concentrations of other ions (F - , NO₃ - , NH₄⁺ and Pb) exceeded their permissible values. In terms of the SW, the concentrations of F - , Cl - , NO₃ - , SO₄ 2- were over the third range threshold i.e., water suitable for fishing and swimming of the Surface Water Quality Standards in China. The spatial distributions of most MEs in source water are similar, and there was no clear variation for all ions and metals. The metals in DW may be caused by water pipes, faucets and their fittings. The noncarcinogenic risk of metals in DW for local children are in decreasing order Cr > Cd > Pb > Cu. The carcinogenic risk from Cr exposure was at the acceptable level according to threshold of USEPA. Although the comprehensive index of potential ecological assessment of Cr, Cd, Pb and Cu in SW ranked at low risk level and was in the order of Huang River in Xining > Peaceful Canal in Urumqi > Yan River in Yan'an > Yellow River in Lanzhou, their adverse effects to ecology and human health at a low concentration in local semi-arid and arid areas should not be ignored in the long run.
Goodwill, Joseph E; Mai, Xuyen; Jiang, Yanjun; Reckhow, David A; Tobiason, John E
2016-09-01
Manganese is a contaminant of concern for many drinking water utilities, and future regulation may be pending. An analysis of soluble manganese (Mn(II)) oxidation by ferrate (Fe(VI)) was executed at the bench-scale, in a laboratory matrix, both with and without the presence of natural organic matter (NOM) and at two different pH values, 6.2 and 7.5. In the matrix without NOM, the oxidation of Mn(II) by Fe(VI) followed a stoichiometry of 2 mol Fe(VI) to 3 mol Mn(II). The presence of NOM did not significantly affect the stoichiometry of the oxidation reaction, indicating relative selectivity of Fe(VI) for Mn(II). The size distribution of resulting particles included significant amounts of nanoparticles. Resulting manganese oxide particles were confirmed to be MnO2 via X-ray photoelectron spectroscopy. The rate of the Mn(II) oxidation reaction was fast relative to typical time scales in drinking water treatment, with an estimated second order rate constant of approximately 1 × 10(4) M(-1) s(-1) at pH 9.2 and > 9 × 10(4) M(-1) s(-1) at pH 6.2. In general, ferrate is a potential option for Mn(II) oxidation in water treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Titratable acidity of beverages influences salivary pH recovery.
Tenuta, Livia Maria Andaló; Fernández, Constanza Estefany; Brandão, Ana Carolina Siqueira; Cury, Jaime Aparecido
2015-01-01
A low pH and a high titratable acidity of juices and cola-based beverages are relevant factors that contribute to dental erosion, but the relative importance of these properties to maintain salivary pH at demineralizing levels for long periods of time after drinking is unknown. In this crossover study conducted in vivo, orange juice, a cola-based soft drink, and a 10% sucrose solution (negative control) were tested. These drinks differ in terms of their pH (3.5 ± 0.04, 2.5 ± 0.05, and 5.9 ± 0.1, respectively) and titratable acidity (3.17 ± 0.06, 0.57 ± 0.04 and < 0.005 mmols OH- to reach pH 5.5, respectively). Eight volunteers with a normal salivary flow rate and buffering capacity kept 15 mL of each beverage in their mouth for 10 s, expectorated it, and their saliva was collected after 15, 30, 45, 60, 90, and 120 s. The salivary pH, determined using a mini pH electrode, returned to the baseline value at 30 s after expectoration of the cola-based soft drink, but only at 90 s after expectoration of the orange juice. The salivary pH increased to greater than 5.5 at 15 s after expectoration of the cola drink and at 30 s after expectoration of the orange juice. These findings suggest that the titratable acidity of a beverage influences salivary pH values after drinking acidic beverages more than the beverage pH.
Jeffrey Yang, Y; Haught, Roy C; Goodrich, James A
2009-06-01
Accurate detection and identification of natural or intentional contamination events in a drinking water pipe is critical to drinking water supply security and health risk management. To use conventional water quality sensors for the purpose, we have explored a real-time event adaptive detection, identification and warning (READiw) methodology and examined it using pilot-scale pipe flow experiments of 11 chemical and biological contaminants each at three concentration levels. The tested contaminants include pesticide and herbicides (aldicarb, glyphosate and dicamba), alkaloids (nicotine and colchicine), E. coli in terrific broth, biological growth media (nutrient broth, terrific broth, tryptic soy broth), and inorganic chemical compounds (mercuric chloride and potassium ferricyanide). First, through adaptive transformation of the sensor outputs, contaminant signals were enhanced and background noise was reduced in time-series plots leading to detection and identification of all simulated contamination events. The improved sensor detection threshold was 0.1% of the background for pH and oxidation-reduction potential (ORP), 0.9% for free chlorine, 1.6% for total chlorine, and 0.9% for chloride. Second, the relative changes calculated from adaptively transformed residual chlorine measurements were quantitatively related to contaminant-chlorine reactivity in drinking water. We have shown that based on these kinetic and chemical differences, the tested contaminants were distinguishable in forensic discrimination diagrams made of adaptively transformed sensor measurements.
Huang, Tinglin; Guo, Lin; Zhang, Haihan; Su, Junfeng; Wen, Gang; Zhang, Kai
2015-11-01
An aerobic denitrifier, identified as Pseudomonas stutzeri strain ZF31, was isolated from the Zhoucun drinking-water reservoir. Strain ZF31 removed 97% of nitrate nitrogen after 16h, without nitrite accumulation. Sequence amplification indicated the presence of the denitrification genes napA, nirS, norB, and nosZ. Nitrogen balance analysis revealed that approximately 75% of the initial nitrogen was removed as gas products. Response surface methodology (RSM) experiments showed that maximum removal of total nitrogen (TN) occurred at pH 8.23, a C/N ratio of 6.68, temperature of 27.72°C, and with shaking at 54.15rpm. The TN removal rate at low C/N ratio (i.e., 3) and low temperature (i.e., 10°C) was 73.30% and 60.08%, respectively. These results suggest that strain ZF31 has potential applications for the bioremediation of slightly polluted drinking-water reservoirs. Copyright © 2015 Elsevier Ltd. All rights reserved.
A comparison of sports and energy drinks--Physiochemical properties and enamel dissolution.
Jain, Poonam; Hall-May, Emily; Golabek, Kristi; Agustin, Ma Zenia
2012-01-01
The consumption of sports and energy drinks by children and adolescents has increased at an alarming rate in recent years. It is essential for dental professionals to be informed about the physiochemical properties of these drinks and their effects on enamel. The present study measured the fluoride levels, pH, and titratable acidity of multiple popular, commercially available brands of sports and energy drinks. Enamel dissolution was measured as weight loss using an in vitro multiple exposure model consisting of repeated short exposures to these drinks, alternating with exposure to artificial saliva. The relationship between enamel dissolution and fluoride levels, pH, and titratable acidity was also examined. There was a statistically significant difference between the fluoride levels (p = 0.034) and pH (p = 0.04) of the sports and energy drinks studied. The titratable acidity of energy drinks (11.78) was found to be significantly higher than that of sports drinks (3.58) (p < 0.001). Five of the energy drinks (Red Bull Sugar Free, Monster Assault, Von Dutch, Rockstar, and 5-Hour Energy) were found to have the highest titratable acidity values among the brands studied. Enamel weight loss after exposure to energy drinks was significantly higher than it was after exposure to sports drinks. The effect of titratable acidity on enamel weight loss was found to vary inversely with the pH of the drinks. The findings indicated that energy drinks have significantly higher titratable acidity and enamel dissolution associated with them than sports drinks. Enamel weight loss after exposure to energy drinks was more than two times higher than it was after exposure to sports drinks. Titratable acidity is a significant predictor of enamel dissolution, and its effect on enamel weight loss varies inversely with the pH of the drink. The data from the current study can be used to educate patients about the differences between sports and energy drinks and the effects of these drinks on tooth enamel.
Ferrante, Margherita; Signorelli, Salvatore Santo; Ferlito, Santina Letizia; Grasso, Alfina; Dimartino, Angela; Copat, Chiara
2018-04-01
The study conducted in two regions of Guinea Bissau, Oio and Cacheu, focusing on the characterization of the groundwater supplies sampled during the dry season and their associated risks for human health. Twenty samples were collected in wells located nearby pit latrines. In situ analyses were conducted with Semi-quantitative test strips for the determination of turbidity, pH, chloride, carbonate, sulfites, ammonium, nitrite and nitrate. The analysis of metals was performed by an ICP-MS Elan DRC-e and an ICP-OES Optima 8000. The Target Hazard Quotient (THQ) was applied to evaluate the risk of developing chronic systemic effects derived from exposure to metals. Values of concern of turbidity ammonium, and pH values were lower than the normal range for drinking water in most samples. From both regions, Fe and Al were occasionally found with values higher than the international thresholds fixed by the World Health Organization and by the European Commission for drinking water, while, only in one sample from Cacheu region Pb was found significantly above these limits. THQs resulted next to the level of risk (1) for the highest values found of Al, As, Fe and Mn. Of great concern is the resident risk obtained from a well water of Cacheu for the highest value of Pb (96.8μg/L), because the values of the resident risk found of 1 and 0.7 for child and adults respectively. The results obtained highlighted a close correlation between the chemistry of water and sediment and a correlation with the proximity of the water supplies with the latrines. This study evidenced the potential toxicity of the water supplies for the local populations and the risk of developing chronic systemic effects due to some physico-chemical parameters, the importance of functioning water pipeline system, the importance of maintaining adequate distance between latrines and drinking water access. Copyright © 2017 Elsevier B.V. All rights reserved.
Preliminary post-tsunami water quality survey in Phang-Nga province, southern Thailand.
Tharnpoophasiam, Prapin; Suthisarnsuntorn, Usanee; Worakhunpiset, Suwalee; Charoenjai, Prasasana; Tunyong, Witawat; Phrom-In, Suvannee; Chattanadee, Siriporn
2006-01-01
This preliminary water quality survey was performed eight weeks after the tsunami hit Phang-Nga Province on 26 December 2004. Water samples collected from the affected area, 10 km parallel to the seaside, were compared with water samples from the control area approximately 4 km from the seaside, which the tsunami waves could not reach. These samples included 18 surface-water samples, 37 well-water samples, and 8 drinking-water samples, which were examined for microbiology and physical-chemical properties. The microbiological examinations focused on enteric bacteria, which were isolated by culture method, while physical-chemical properties comprised on-site testing for pH, salinity, dissolved oxygen (DO), conductivity and total dissolved solids (TDS) by portable electrochemical meter (Sens Ion 156). The results of the microbiological examinations showed that water samples in the affected areas were more contaminated with enteric bacteria than the control area: 45.4% of surface-water samples in the affected area, and 40.0% in the control; 19.0% of well-water samples in the affected area, and 7.7% in the control. All eight drinking-water samples were clear of enteric bacteria. Tests for physical-chemical properties showed that the salinity, pH, conductivity, and TDS of surface-water samples from the affected area were significantly higher than the control. The salinity, conductivity, and TDS of the well-water samples from the affected areas were also significantly greater than those from the control area. The surface and well water in the tsunami-affected area have been changed greatly and need improvement.
Dasary, Samuel S.R.; Zones, Yolanda K.; Barnes, Sandra L.; Ray, P. C.; Singh, Anant K.
2015-01-01
Alizarin functionalized on plasmonic gold nanoparticle displays strong surface enhanced Raman scattering from the various Raman modes of Alizarin, which can be exploited in multiple ways for heavy metal sensing purposes. The present article reports a surface enhanced Raman spectroscopy (SERS) probe for trace level Cadmium in water samples. Alizarin, a highly Raman active dye was functionalized on plasmonic gold surface as a Raman reporter, and then 3-mercaptopropionic acid, 2,6-Pyridinedicarboxylic acid at pH 8.5 was immobilized on the surface of the nanoparticle for the selective coordination of the Cd (II). Upon addition of Cadmium, gold nanoparticle provide an excellent hotspot for Alizarin dye and Raman signal enhancement. This plasmonic SERS assay provided an excellent sensitivity for Cadmium detection from the drinking water samples. We achieved as low as 10 ppt sensitivity from various drinking water sources against other Alkali and heavy metal ions. The developed SERS probe is quite simple and rapid with excellent repeatability and has great potential for prototype scale up for field application. PMID:26770012
NASA Astrophysics Data System (ADS)
Montgomery, S. D.; Mckibben, M. A.
2011-12-01
Tungsten, an emerging contaminant, has no EPA standard for its permissible levels in drinking water. At sites in California, Nevada, and Arizona there may be a correlation between elevated levels of tungsten in drinking water and clusters of childhood acute lymphocytic leukemia (ALL). Developing a better understanding of how tungsten is released from rocks into surface and groundwaters is therefore of growing environmental interest. Knowledge of tungstate ore mineral weathering processes, particularly the rates of dissolution of scheelite (CaWO4) in groundwater, could improve models of how tungsten is released and transported in natural waters. Our research is focusing on experimental determination of the rates and products of tungstate mineral dissolution in synthetic groundwater, as a function of temperature, pH and mineral surface area. The initial rate method is being used to develop rate laws. Batch reactor experiments are conducted within constant temperature circulation baths over a pH range of 2-9. Cleaned scheelite powder with grain diameters of 106-150um is placed between two screens in a sample platform and then placed inside a two liter Teflon vessel filled with synthetic groundwater. Ports on the vessel allow sample extraction, temperature and pH measurement, gas inflow, and water circulation. Aliquots of solution are taken periodically for product analysis by ICP -MS. Changes in mineral surface characteristics are monitored using SEM and EDS methods. Results so far reveal that the dissolution of scheelite is incongruent at both neutral and low pH. Solid tungstic acid forms on scheelite mineral surfaces under acidic conditions, implying that this phase controls the dissolution rate in acidic environments. The influence of dissolved CO2 and resultant calcium carbonate precipitation on the dissolution of scheelite at higher pH is also being investigated. The rate law being developed for scheelite dissolution will be useful in reactive-transport computer codes designed to model tungsten contamination in a variety of surface and groundwater settings.
Optimization of adenovirus 40 and 41 recovery from tap water using small disk filters.
McMinn, Brian R
2013-11-01
Currently, the U.S. Environmental Protection Agency's Information Collection Rule (ICR) for the primary concentration of viruses from drinking and surface waters uses the 1MDS filter, but a more cost effective option, the NanoCeram® filter, has been shown to recover comparable levels of enterovirus and norovirus from both matrices. In order to achieve the highest viral recoveries, filtration methods require the identification of optimal concentration conditions that are unique for each virus type. This study evaluated the effectiveness of 1MDS and NanoCeram filters in recovering adenovirus (AdV) 40 and 41 from tap water, and optimized two secondary concentration procedures the celite and organic flocculation method. Adjustments in pH were made to both virus elution solutions and sample matrices to determine which resulted in higher virus recovery. Samples were analyzed by quantitative PCR (qPCR) and Most Probable Number (MPN) techniques and AdV recoveries were determined by comparing levels of virus in sample concentrates to that in the initial input. The recovery of adenovirus was highest for samples in unconditioned tap water (pH 8) using the 1MDS filter and celite for secondary concentration. Elution buffer containing 0.1% sodium polyphosphate at pH 10.0 was determined to be most effective overall for both AdV types. Under these conditions, the average recovery for AdV40 and 41 was 49% and 60%, respectively. By optimizing secondary elution steps, AdV recovery from tap water could be improved at least two-fold compared to the currently used methodology. Identification of the optimal concentration conditions for human AdV (HAdV) is important for timely and sensitive detection of these viruses from both surface and drinking waters. Published by Elsevier B.V.
Bacterial Colonization of Pellet Softening Reactors Used during Drinking Water Treatment▿
Hammes, Frederik; Boon, Nico; Vital, Marius; Ross, Petra; Magic-Knezev, Aleksandra; Dignum, Marco
2011-01-01
Pellet softening reactors are used in centralized and decentralized drinking water treatment plants for the removal of calcium (hardness) through chemically induced precipitation of calcite. This is accomplished in fluidized pellet reactors, where a strong base is added to the influent to increase the pH and facilitate the process of precipitation on an added seeding material. Here we describe for the first time the opportunistic bacterial colonization of the calcite pellets in a full-scale pellet softening reactor and the functional contribution of these colonizing bacteria to the overall drinking water treatment process. ATP analysis, advanced microscopy, and community fingerprinting with denaturing gradient gel electrophoretic (DGGE) analysis were used to characterize the biomass on the pellets, while assimilable organic carbon (AOC), dissolved organic carbon, and flow cytometric analysis were used to characterize the impact of the biological processes on drinking water quality. The data revealed pellet colonization at concentrations in excess of 500 ng of ATP/g of pellet and reactor biomass concentrations as high as 220 mg of ATP/m3 of reactor, comprising a wide variety of different microorganisms. These organisms removed as much as 60% of AOC from the water during treatment, thus contributing toward the biological stabilization of the drinking water. Notably, only a small fraction (about 60,000 cells/ml) of the bacteria in the reactors was released into the effluent under normal conditions, while the majority of the bacteria colonizing the pellets were captured in the calcite structures of the pellets and were removed as a reusable product. PMID:21148700
Bacterial colonization of pellet softening reactors used during drinking water treatment.
Hammes, Frederik; Boon, Nico; Vital, Marius; Ross, Petra; Magic-Knezev, Aleksandra; Dignum, Marco
2011-02-01
Pellet softening reactors are used in centralized and decentralized drinking water treatment plants for the removal of calcium (hardness) through chemically induced precipitation of calcite. This is accomplished in fluidized pellet reactors, where a strong base is added to the influent to increase the pH and facilitate the process of precipitation on an added seeding material. Here we describe for the first time the opportunistic bacterial colonization of the calcite pellets in a full-scale pellet softening reactor and the functional contribution of these colonizing bacteria to the overall drinking water treatment process. ATP analysis, advanced microscopy, and community fingerprinting with denaturing gradient gel electrophoretic (DGGE) analysis were used to characterize the biomass on the pellets, while assimilable organic carbon (AOC), dissolved organic carbon, and flow cytometric analysis were used to characterize the impact of the biological processes on drinking water quality. The data revealed pellet colonization at concentrations in excess of 500 ng of ATP/g of pellet and reactor biomass concentrations as high as 220 mg of ATP/m(3) of reactor, comprising a wide variety of different microorganisms. These organisms removed as much as 60% of AOC from the water during treatment, thus contributing toward the biological stabilization of the drinking water. Notably, only a small fraction (about 60,000 cells/ml) of the bacteria in the reactors was released into the effluent under normal conditions, while the majority of the bacteria colonizing the pellets were captured in the calcite structures of the pellets and were removed as a reusable product.
The stability of amoxicillin trihydrate and potassium clavulanate combination in aqueous solutions.
Jerzsele, Akos; Nagy, Gábor
2009-12-01
The effect of various environmental factors on the stability of aqueous solutions of amoxicillin-clavulanic acid combination in a veterinary water-soluble powder product was investigated. In the swine industry, the combination is administered via the drinking water, where both substances are quickly decomposed depending on several environmental factors. The degradation rate of the substances was determined in solutions of different water hardness levels (German hardness of 2, 6 and 10) and pH values (3.0, 7.0 and 10.0), and in troughs made of different materials (metal or plastic). Increasing the water hardness decreased the stability of both substances, amoxicillin being more stable at each hardness value than clavulanate. Amoxicillin trihydrate proved to be most stable at an acidic pH, while increasing the pH decreased its stability (P < 0.05). Maximum stability of potassium clavulanate was experienced at neutral pH, while its decomposition rate was significantly higher at acidic and alkaline pH values (P < 0.01). The stability of the amoxicillin-clavulanic acid combination depends mainly on the less stable clavulanate, although the effect of metallic ions significantly increased the decomposition rate of amoxicillin, rendering it less stable in metal troughs than clavulanate (P < 0.05). Therefore, the amoxicillin-clavulanic acid combination should be administered to the animals in soft water, at neutral pH and in plastic troughs.
Evaluation of potable groundwater quality in some villages of Adilabad in Andhra Pradesh, India.
Rasheed, M A; Radha, B Anu; Rao, P L Srinivasa; Lakshmi, M; Chennaiah, J Bala; Dayal, A M
2012-07-01
Reconnaissance hydrochemical survey was conducted in some villages of Adilabad district, Andhra Pradesh to assess the quality of groundwater, which is mainly used for drinking purpose. The study consists of the determination of physico-chemical properties, trace metals, heavy metals and rare earth elements in water samples. The data showed the variation of the investigated parameters in samples as follows: pH 6.92 to 8.32, EC 192 to 2706 microS cm(-1), TDS 129.18 to 1813.02 ppm. The pH of the waters was within the permissible limits whereas EC and TDS were above the permissible limits of World Health Organization (WHO). Total 27 elements (Li, Be, B, Na, Mg, Al, Si, K, Ca, V, Cr, Mn, Fe, Ni, Co, Cu, Zn, As, Se, Rb, Sr, Mo, Ag, Cd, Sb, Ba and Pb) were analyzed using Inductively Coupled Plasma-Mass Spectrometer (ICP-MS). The concentration of elements in water samples ranged between 0.063 to 0.611 mg l(-1) for B, 11.273 to 392 mg l(-)1 for Na, 5.871 to 77.475 mg l(-1) for Mg, 0.035 to 1.905 mg l(-1) for Al, 0.752 to 227.893 mg l(-1) for K, 11.556 to 121.655 mg l(-1) for Ca and 0.076 to 0.669 mg l(-1) for Fe respectively. The concentrations of Na, Mg, Al, K, Ca, and Fe exceeded the permissible limits of WHO and BIS guidelines for drinking water quality. In the present study, Bhimavaram, Kazipalli, Kannepalli and Chennur areas of the Adilabad are especially prone to geogenic contamination. Overall water quality was found unsatisfactory for drinking purposes.
Selective removal of arsenate from drinking water using a polymeric ligand exchanger.
An, Byungryul; Steinwinder, Thomas R; Zhao, Dongye
2005-12-01
The new maximum contaminant level (MCL) of 10 microg/L for arsenic in the US drinking water will take effect on January 22, 2006. The compliance cost is estimated to be approximately dollar 600 million per year using current treatment technologies. This research aims to develop an innovative ion exchange process that may help water utilities comply with the new MCL in a more cost-effective manner. A polymeric ligand exchanger (PLE) was prepared by loading Cu2+ to a commercially available chelating ion exchange resin. Results from batch and column experiments indicated that the PLE offered unusually high selectivity for arsenate over other ubiquitous anions such as sulfate, bicarbonate and chloride. The average binary arsenate/sulfate separation factor for the PLE was determined to be 12, which were over two orders of magnitude greater than that (0.1-0.2) for commercial strong-base anion (SBA) exchangers. Because of the enhanced arsenate selectivity, the PLE was able to treat approximately 10 times more bed volumes (BVs) of water than commonly used SBA resins. The PLE can operate optimally in the neutral pH range (6.0-8.0). The exhausted PLE can be regenerated highly efficiently. More than 95% arsenate capacity can be recovered using approximately 22 BVs of 4% (w/w) NaCl at pH 9.1, and the regenerated PLE can be reused without any capacity drop. Upon treatment using FeCl3, the spent brine was recovered and reused for regeneration, which may cut down the regenerant need and reduces the volume of process waste residuals. The PLE can be used as a highly selective and reusable sorbent for removal of arsenate from drinking water.
Effects of water chemistry on arsenic removal from drinking water by electrocoagulation.
Wan, Wei; Pepping, Troy J; Banerji, Tuhin; Chaudhari, Sanjeev; Giammar, Daniel E
2011-01-01
Exposure to arsenic through drinking water poses a threat to human health. Electrocoagulation is a water treatment technology that involves electrolytic oxidation of anode materials and in-situ generation of coagulant. The electrochemical generation of coagulant is an alternative to using chemical coagulants, and the process can also oxidize As(III) to As(V). Batch electrocoagulation experiments were performed in the laboratory using iron electrodes. The experiments quantified the effects of pH, initial arsenic concentration and oxidation state, and concentrations of dissolved phosphate, silica and sulfate on the rate and extent of arsenic removal. The iron generated during electrocoagulation precipitated as lepidocrocite (γ-FeOOH), except when dissolved silica was present, and arsenic was removed by adsorption to the lepidocrocite. Arsenic removal was slower at higher pH. When solutions initially contained As(III), a portion of the As(III) was oxidized to As(V) during electrocoagulation. As(V) removal was faster than As(III) removal. The presence of 1 and 4 mg/L phosphate inhibited arsenic removal, while the presence of 5 and 20 mg/L silica or 10 and 50 mg/L sulfate had no significant effect on arsenic removal. For most conditions examined in this study, over 99.9% arsenic removal efficiency was achieved. Electrocoagulation was also highly effective at removing arsenic from drinking water in field trials conducted in a village in Eastern India. By using operation times long enough to produce sufficient iron oxide for removal of both phosphate and arsenate, the performance of the systems in field trials was not inhibited by high phosphate concentrations. Copyright © 2010 Elsevier Ltd. All rights reserved.
Baig, Shams Ali; Lou, Zimo; Baig, Muzaffar Ali; Qasim, Muhammad; Shams, Dilawar Farhan; Mahmood, Qaisar; Xu, Xinhua
2017-04-01
Corrosion deposits formed within drinking water distribution systems deteriorate drinking water quality and resultantly cause public health consequences. In the present study, an attempt was made to investigate the concurrent conditions of corrosion scales and the drinking water quality in selected water supply schemes (WSS) in districts Chitral, Peshawar, and Abbottabad, northern Pakistan. Characterization analyses of the corrosion by-products revealed the presence of α-FeOOH, γ-FeOOH, Fe 3 O 4 , and SiO 2 as major constituents with different proportions. The constituents of all the representative XRD peaks of Peshawar WSS were found insignificant as compared to other WSS, and the reason could be the variation of source water quality. Well-crystallized particles in SEM images indicated the formation of dense oxide layer on corrosion by-products. A wider asymmetric vibration peak of SiO 2 appeared only in Chitral and Abbottabad WSS, which demonstrated higher siltation in the water source. One-way ANOVA analysis showed significant variations in pH, turbidity, TDS, K, Mg, PO 4 , Cl, and SO 4 values, which revealed that these parameters differently contributed to the source water quality. Findings from this study suggested the implementation of proper corrosion prevention measures and the establishment of international collaboration for best corrosion practices, expertise, and developing standards.
Desorption of Arsenic from Drinking Water Distribution System Solids
Given the limited knowledge regarding the soluble release of arsenic from DWDS solids, the objectives of this research were to: 1) investigate the effect of pH on the dissolution/desorption of arsenic from DWDS solids, and 2) examine the effect of orthophosphate on the soluble re...
STAGNATION TIME, COMPOSITION, PH, AND ORTHOPHOSPHATE EFFECTS ON METAL LEACHING FROM BRASS
Plumbing products made of brass and similar alloys are the only lead containing materials still installed in drinking water systems and, by law, may contain up to 8% lead. Brass ranges in metal composition depending on its application. Brass is composed of approximately 60 to 80%...
Neurotoxic and hepatotoxic cyanotoxins removal by nanofiltration.
Teixeira, Margarida Ribau; Rosa, Maria João
2006-08-01
This study investigates the influence of chemical feed characteristics on nanofiltration performance for cyanotoxins removal, namely the neurotoxic anatoxin-a (alkaloid of 166 g/mol, positively charged) and the hepatotoxic microcystins (cyclic peptides of approximately 1,000 g/mol, negatively charged). Results indicate that NF membranes are an effective barrier against anatoxin-a and microcystins in drinking water. Anatoxin-a and especially microcystins were almost completely removed, regardless of the variations in feed water quality (natural organic matter and competitive toxin), the water recovery rate and the pH values. Anatoxin-a removal was governed by electrostatic interactions and steric hindrance, whereas for microcystins the latter was the main mechanism. In turn, fluxes were significantly impacted by background organics and, especially, inorganics (pH, calcium).
Factors influencing lead and iron release from some Egyptian drinking water pipes.
Lasheen, M R; Sharaby, C M; El-Kholy, N G; Elsherif, I Y; El-Wakeel, S T
2008-12-30
The major objective of this study is to assess the effect of stagnation time, pipe age, pipes material and water quality parameters such as pH, alkalinity and chloride to sulfate mass ratio on lead and iron release from different types of water pipes used in Egypt namely polyvinyl chloride (PVC), polypropylene (PP) and galvanized iron (GI), by using fill and dump method. Low pH increased lead and iron release from pipes. Lead and iron release decreased as pH and alkalinity increased. Lead and iron release increased with increasing chloride to sulfate mass ratio in all pipes. EDTA was used as an example of natural organic matter which may be influence metals release. It is found that lead and iron release increased then this release decreased with time. In general, GI pipes showed to be the most effected by water quality parameters tested and the highest iron release. PVC pipes are the most lead releasing pipes while PP pipes are the least releasing.
Xu, Weihong; Wang, Jing; Wang, Lei; Sheng, Guoping; Liu, Jinhuai; Yu, Hanqing; Huang, Xing-Jiu
2013-09-15
Arsenic contaminated natural water is commonly used as drinking water source in some districts of Asia. To meet the increasingly strict drinking water standards, exploration of efficient arsenic removal methods is highly desired. In this study, hierarchically porous CeO₂-ZrO₂ nanospheres were synthesized, and their suitability as arsenic sorbents was examined. The CeO₂-ZrO₂ hollow nanospheres showed an adsorption capacity of 27.1 and 9.2 mg g(-1) for As(V) and As(III), respectively, at an equilibrium arsenic concentration of 0.01 mg L(-1) (the standard for drinking water) under neutral conditions, indicating a high arsenic removal performance of the adsorbent at low arsenic concentrations. Such a great arsenic adsorption capacity was attributed to the high surface hydroxyl density and presence of hierarchically porous network in the hollow nanospheres. The analysis of Fourier transformed infrared spectra and X-ray photoelectron spectroscopy demonstrated that the adsorption of arsenic on the CeO₂-ZrO₂ nanospheres was completed through the formation of a surface complex by substituting hydroxyl with arsenic species. In addition, the CeO₂-ZrO₂ nanospheres were able to remove over 97% arsenic in real underground water with initial arsenic concentration of 0.376 mg L(-1) to meet the guideline limit of arsenic in drinking water regulated by the World Health Organization without any pre-treatment and/or pH adjustment. Copyright © 2013 Elsevier B.V. All rights reserved.
Using natural biomass microorganisms for drinking water denitrification.
Costa, Darleila Damasceno; Gomes, Anderson Albino; Fernandes, Mylena; Lopes da Costa Bortoluzzi, Roseli; Magalhães, Maria de Lourdes Borba; Skoronski, Everton
2018-07-01
Among the methods that are studied to eliminate nitrate from drinking water, biological denitrification is an attractive strategy. Although several studies report the use of denitrifying bacteria for nitrate removal, they usually involve the use of sewage sludge as biomass to obtain the microbiota. In the present study, denitrifying bacteria was isolated from bamboo, and variable parameters were controlled focusing on optimal bacterial performance followed by physicochemical analysis of water adequacy. In this way, bamboo was used as a source of denitrifying microorganisms, using either Immobilized Microorganisms (IM) or Suspended Microorganisms (SM) for nitrate removal. Denitrification parameters optimization was carried out by analysis of denitrification at different pH values, temperature, nitrate concentrations, carbon sources as well as different C/N ratios. In addition, operational stability and denitrification kinetics were evaluated. Microorganisms present in the biomass responsible for denitrification were identified as Proteus mirabilis. The denitrified water was submitted to physicochemical treatment such as coagulation and flocculation to adjust to the parameters of color and turbidity to drinking water standards. Denitrification using IM occurred with 73% efficiency in the absence of an external carbon source. The use of SM provided superior denitrification efficiency using ethanol (96.46%), glucose (98.58%) or glycerol (98.5%) as carbon source. The evaluation of the operational stability allowed 12 cycles of biomass reuse using the IM and 9 cycles using the SM. After physical-chemical treatment, only SM denitrified water remained within drinking water standards parameters of color and turbidity. Copyright © 2018 Elsevier Ltd. All rights reserved.
Concentration of ions in selected bottled water samples sold in Malaysia
NASA Astrophysics Data System (ADS)
Aris, Ahmad Zaharin; Kam, Ryan Chuan Yang; Lim, Ai Phing; Praveena, Sarva Mangala
2013-03-01
Many consumers around the world, including Malaysians, have turned to bottled water as their main source of drinking water. The aim of this study is to determine the physical and chemical properties of bottled water samples sold in Selangor, Malaysia. A total of 20 bottled water brands consisting of `natural mineral (NM)' and `packaged drinking (PD)' types were randomly collected and analyzed for their physical-chemical characteristics: hydrogen ion concentration (pH), electrical conductivity (EC) and total dissolved solids (TDS), selected major ions: calcium (Ca), potassium (K), magnesium (Mg) and sodium (Na), and minor trace constituents: copper (Cu) and zinc (Zn) to ascertain their suitability for human consumption. The results obtained were compared with guideline values recommended by World Health Organization (WHO) and Malaysian Ministry of Health (MMOH), respectively. It was found that all bottled water samples were in accordance with the guidelines set by WHO and MMOH except for one sample (D3) which was below the pH limit of 6.5. Both NM and PD bottled water were dominated by Na + K > Ca > Mg. Low values for EC and TDS in the bottled water samples showed that water was deficient in essential elements, likely an indication that these were removed by water treatment. Minerals like major ions were present in very low concentrations which could pose a risk to individuals who consume this water on a regular basis. Generally, the overall quality of the supplied bottled water was in accordance to standards and guidelines set by WHO and MMOH and safe for consumption.
Trihalomethanes in Comerio Drinking Water and Their Reduction by Nanostructured Materials
Bourdon, Jorge Hernandez; Linares, Francisco Marquez
2014-01-01
The formation of disinfection by-products (DBPs) during chlorination of drinking water is an issue which has drawn significant scientific attention due to the possible adverse effects that these compounds have on human health and the formation of another DBPs. Some factors that affect the formation of DBPs include: chlorine dose and residue, contact time, temperature, pH and natural organic matter (NOM). The most frequently detected DBPs in drinking water are trihalomethanes (THMs) and haloacetic acids (HAAs). The MCLs are standards established by the United States Environmental Protection Agency (USEPA) for drinking water quality established in Stage 1, Disinfectants and Disinfectionmore » Byproducts Rule (DBPR), and they limit the amount of potentially hazardous substances that are allowed in drinking water. The water quality data for THMs were evaluated in the Puerto Rico Aqueduct and Sewer Authority (PRASA). During this evaluation, the THMs exceeded the maximum contamination limit (MCLs) for the Comerio Water Treatment Plant (CWTP). USEPA classified the THMs as Group B2 carcinogens (shown to cause cancer in laboratory animals). This research evaluated the THMs concentrations in the following sampling sites: CWTP, Río Hondo and Piñas Abajo schools, Comerio Health Center (CDT), and the Vázquez Ortiz family, in the municipality of Comerio Puerto Rcio. The results show that the factors affecting the formation of THMs occur in different concentrations across the distribution line. Furthermore, there are not specific ranges to determine the formation of THMs in drinking water when the chemical and physical parameters were evaluated. Three different nanostructured materials (graphene, mordenite (MOR) and multiwalled carbon nanotubes (MWCNTs)) were used in this research, to reduce the THMs formation by adsorption in specific contact times. The results showed that graphene is the best nanomaterial to reduce THMs in drinking water. Graphene can reduce 80 parts per billion (ppb) of THMs in about 2 hours. In addition mordenite can reduce approximately 80 ppb of THMs and MWCNTs adsorbs 71 ppb of THMs in the same period of time respectively. Finally, in order to complement the adsorption results previously obtained, total organic carbon (TOC) analyses were measured, after different contact times with the nanomaterials.« less
Chemometric studies of water quality parameters of Sankarankovil block of Tirunelveli, Tamilnadu.
Alagumuthu, G; Rajan, M
2010-09-01
The fluoride concentration in ground water was determined in Sankarankovil block of Tirunelveli district of Tamilnadu (India) where it is the only source of drinking water. Various other water quality parameters such as pH, electrical conductivity total hardness and total alkalinity as well as calcium, magnesium, carbonate, bicarbonate and chloride concentrations were also measured. A systematic calculation of correlation coefficient among different physico-chemical parameters was performed. The analytical results indicated considerable variations among the analyzed samples with respect to their chemical composition. Majority of the samples do not comply with Indian as well as WHO water quality standards. The fluoride concentration in the ground water of these villages varied from 0.66 to 3.84 mg l(-1), causes dental fluorosis among people especially children of these villages. The high and low fluoride containing areas were located using isopleth mapping technique. Overall water quality was found unsatisfactory for drinking purposes without any prior treatment except at few locations out of 50 villages.
Uras, Yusuf; Uysal, Yagmur; Arikan, Tugba Atilan; Kop, Alican; Caliskan, Mustafa
2015-06-01
The aim of this study was to investigate the sources of drinking water for Derebogazi Village, Kahramanmaras Province, Turkey, in terms of hydrogeochemistry, isotope geochemistry, and medical geology. Water samples were obtained from seven different water sources in the area, all of which are located within quartzite units of Paleozoic age, and isotopic analyses of (18)O and (2)H (deuterium) were conducted on the samples. Samples were collected from the region for 1 year. Water quality of the samples was assessed in terms of various water quality parameters, such as temperature, pH, conductivity, alkalinity, trace element concentrations, anion-cation measurements, and metal concentrations, using ion chromatography, inductively coupled plasma (ICP) mass spectrometry, ICP-optical emission spectrometry techniques. Regional health surveys had revealed that the heights of local people are significantly below the average for the country. In terms of medical geology, the sampled drinking water from the seven sources was deficient in calcium and magnesium ions, which promote bone development. Bone mineral density screening tests were conducted on ten females using dual energy X-ray absorptiometry to investigate possible developmental disorder(s) and potential for mineral loss in the region. Of these ten women, three had T-scores close to the osteoporosis range (T-score < -2.5).
Yousefi, Mahmood; Saleh, Hossein Najafi; Mahvi, Amir Hossein; Alimohammadi, Mahmood; Nabizadeh, Ramin; Mohammadi, Ali Akbar
2018-02-01
This cross-sectional study was conducted on the drinking water resources of the city of Jolfa (East Azerbaijan province, Iran) from samples taken from 30 wells. Calcium hardness, pH, total alkalinity, TDS, temperature and other chemical parameters were measured using standard methods. The Langelier, Rayzner, Puckhorius and aggressive indices were calculated. The results showed that the Langelier, Reynar, Puckorius, Larson-skold and aggressive indices were 1.15 (± 0.43), 6.92 (± 0.54), 6.42 (± 0.9), 0.85 (± 0.72) and 12.79 (± 0.47), respectively. In terms of water classification, 30% of samples fell into the NaCl category and 26.6% in the NaHCO 3 category and 43.4% samples in the CaHCO 3 , MgHCO 3 and MgCl category. The sedimentation indices indicated that the water of the wells could be considered as corrosive.
Study of the efficiency of some water treatment unit that present in houses in Erbil city-Iraq
NASA Astrophysics Data System (ADS)
Toma, Janan. Jabbar.; Hanna, Aveen. Matti.
2017-09-01
Many people in Erbil city started more than two decade to put special treatment units in their houses to purified water to become safer for drinking uses. The aim of this study was determine the efficiency of six kind water treatment units which include (two replicate of Crystal Water Purifier, So-Safe Water Filter, R O Water Purifier, Kontec Water Purified and Al-Kawther Purified Water). Water samples were collected in two sites one before and other after treatment unit. Each sample was collect with three replication during May to October-2016. Analyzed for Major cations concentration (calcium, magnesium, sodium and potassium), anions concentration (nitrate and chloride) and hydrogen ion concentration (pH), electrical conductivity (EC), total dissolved solids (TDS), alkalinity and total hardness by using standard methods. The water quality index values for all raw water sample befor and after treatment was good and excellent respectively for drinking purposes. Efficiency of So-Safe Water Filter was 66.32% it means was more efficiency than others special water treatment units while in RO Water Purifier was 27.14%, means less efficiency than other water purifier water under this study. Values for major cations, anions and others chemicals characteristics in the water samples after treatment became lower concentrations than befor treatment, likely an indication that these were removed by treatment. According to guideline of world health organization all of variables except total hardness befor treatment are safe and suitable for drinking purposes.
NASA Astrophysics Data System (ADS)
Herojeet, Rajkumar; Rishi, Madhuri S.; Lata, Renu; Dolma, Konchok
2017-09-01
Sirsa River flows through the central part of the Nalagarh valley, belongs to the rapid industrial belt of Baddi, Barotiwala and Nalagarh (BBN). The appraisal of surface water quality to ascertain its utility in such ecologically sensitive areas is need of the hour. The present study envisages the application of multivariate analysis, water utility class and conventional graphical representation to reveal the hidden factor responsible for deterioration of water quality and determine the hydrochemical facies and its evolution processes of water types in Nalagarh valley, India. The quality assessment is made by estimating pH, electrical conductivity (EC), total dissolved solids (TDS), total hardness, major ions (Na+, K+, Ca2+, Mg2+, HCO3 -, Cl-, SO4 2-, NO3 - and PO4 3-), dissolved oxygen (DO), biological oxygen demand (BOD) and total coliform (TC) to determine its suitability for drinking and domestic purposes. The parameters like pH, TDS, TH, Ca2+, HCO3 -, Cl-, SO4 2-, NO3 - are within the desirable limit as per Bureau of Indian Standards (Indian Standard Drinking Water Specification (Second Edition) IS:10500. Indian Standard Institute, New Delhi, pp 1-18, 2012). Mg2+, Na+ and K+ ions for pre monsoon and EC during pre and post monsoon at few sites and approx 40% samples of BOD and TC for both seasons exceeds the permissible limits indicate organic contamination from human activities. Water quality classification for designated use indicates that maximum surface water samples are not suitable for drinking water source without conventional treatment. The result of piper trillinear and Chadha's diagram classified majority of surface water samples for both seasons fall in the fields of Ca2+-Mg2+-HCO3 - water type indicating temporary hardness. PCA and CA reveal that the surface water chemistry is influenced by natural factors such as weathering of minerals, ion exchange processes and anthropogenic factors. Thus, the present paper illustrates the importance of multivariate techniques for reliable quality characterization of surface water quality to develop effective pollution reduction strategies and maintain a fine balance between the industrialization and ecological integrity.
Oxidation of microcystins by permanganate: reaction kinetics and implications for water treatment.
Rodríguez, Eva; Majado, María E; Meriluoto, Jussi; Acero, Juan L
2007-01-01
A few genera of cyanobacteria produce toxins which contaminate drinking water resources. Microcystins (MC), widely reported cyanotoxins, cause acute and chronic toxicity effects in living beings including humans and warrant removal from drinking water. In the present study, unknown second-order rate constants for the reactions of microcystin-LR (MC-LR), -RR and -YR with potassium permanganate were determined at pH 6.2-8.2 and temperature 10-25 degrees C. The reaction of permanganate with MCs is second-order overall and first-order with respect to both permanganate and toxin. The second-order rate constant for the reaction of MC-LR with permanganate at pH 7 and 20 degrees C was 357.2+/-17.5M(-1)s(-1). The influence of pH on the oxidation process was not appreciable and the activation energy was 28.8 kJ mol(-1). Slightly higher reactivity with permanganate was found for MC-RR (418.0M(-1)s(-1)) and MC-YR (405.9M(-1)s(-1)). According to the results obtained, permanganate likely attacks the Adda moiety of the MC molecule. The oxidation of MCs in a natural surface water was also investigated. A permanganate dose of 1-1.25mgL(-1) was enough to reduce MCs concentration below the guideline value of 1microgL(-1). Permanganate oxidation is therefore a feasible option for microcystin removal during preoxidation processes. However, the oxidant dose must be carefully optimized in order to remove extracellular MCs without causing cell lysis (due to chemical stress) and further release of MCs.
Baig, Shams Ali A; Xu, Xinhua; Khan, Rashid
2012-01-01
In mid-July 2010 flash flooding in Pakistan destroyed the basic water, environmental sanitation and livelihood infrastructures in 82 districts. Two months later, the local press of Swat (northern Pakistan) reported that several residents of Marghazar town became ill and were hospitalized after drinking contaminated water. A non-governmental organization (Oxfam GB) team took action to determine the causes of this incident and analyzed the community drinking water supply. Standard methods were used to analyze six physio-chemical and four microbiological water quality parameters at five selected sampling locations in the water supply system. The samples from sites numbers (SN)02, 03, 04 and 05 were found to be microbiologically unfit for drinking due to the presence of Escherichia coli, Shigella, Salmonella and Staphylococcus aureus (range 18-96 ± 14 cfu/100 mL). However, the pH, conductivity, total dissolved solid, total hardness as calcium carbonate and nitrate as NO3(-2) of all the samples were within WHO permissible limits. Higher turbidities were recorded at SN04 and 05 of 6 ± 0.23 and 9 ± 1.23, respectively. Quantitative results revealed the presence of pathogenic organisms and water quality risk factors due to the damaged water and environmental sanitation infrastructure. Continued water quality monitoring, the application of household based disinfectants, and healthy domestic hygiene practices are highly recommended in similar circumstances.
Groundwater quality in some villages of Haryana, India: focus on fluoride and fluorosis.
Meenakshi; Garg, V K; Kavita; Renuka; Malik, Anju
2004-01-02
The fluoride concentration in underground water was determined in four villages of Jind district of Haryana state (India) where it is the only source of drinking water. Various other water quality parameters such as pH, electrical conductivity, total dissolved salts, total hardness, total alkalinity as well as sodium, potassium, calcium, magnesium, carbonate, bicarbonate, chloride and sulfate concentrations were also measured. A systematic calculation of correlation coefficients among different physico-chemical parameters was performed. The analytical results indicated considerable variations among the analyzed samples with respect to their chemical composition. Majority of the samples do not comply with Indian as well as WHO standards for most of the water quality parameters measured. The fluoride concentration in the underground water of these villages varied from 0.3 to 6.9 mg/l, causing dental fluorosis among people especially children of these villages. Overall water quality was found unsatisfactory for drinking purposes without any prior treatment except at eight locations out of 60.
Antibacterial protection by enterocin AS-48 in sport and energy drinks with less acidic pH values.
Viedma, Pilar Martinez; Abriouel, Hikmate; Ben Omar, Nabil; López, Rosario Lucas; Valdivia, Eva; Gálvez, Antonio
2009-04-01
The low pH and acid content found in sports and energy drinks are a matter of concern in dental health. Raising the pH may solve this problem, but at the same time increase the risks of spoilage or presence of pathogenic bacteria. In the present study, commercial energy drinks were adjusted to pH 5.0 and challenged with Listeria monocytogenes (drinks A to F), Staphylococcus aureus, Bacillus cereus, and Bacillus licheniformis (drink A) during storage at 37 degrees C. L. monocytogenes was able to grow in drink A and survived in drinks D and F for at least 2 days. Addition of enterocin AS-48 (1 microg/ml final concentration) rapidly inactivated L. monocytogenes in all drinks tested. S. aureus and B. cereus also survived quite well in drink A, and were completely inactivated by 12.5 microg/ml enterocin AS-48 after 2 days of storage or by 25 microg/ml bacteriocin after 1 day. B. licheniformis was able to multiply in drink A, but it was completely inactivated by 5 microg/ml enterocin AS-48 after 2 days of storage or by 12.5 microg/ml bacteriocin after 1 day. Results from the present study suggest that enterocin AS-48 could be used as a natural preservative against these target bacteria in less acidic sport and energy drinks.
NASA Astrophysics Data System (ADS)
Mihucz, Victor G.; Bencs, László; Koncz, Kornél; Tatár, Enikő; Weiszburg, Tamás; Záray, Gyula
2017-02-01
A method of high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS-GFAAS), combined with on-site separation/solid phase extraction (SPE) has been developed for the speciation of inorganic As (iAs) in geothermal and drinking water samples. The HR-CS-GFAAS calibration curves were linear up to 200 μg/L As, but using second order polynomial fitting, accurate calibration could be performed up to 500 μg/L. It has been demonstrated that sample pH should not be higher than 8 for an accurate speciation of As(V) with a recovery of ≈ 95%. Geothermal water had fairly high salt content (≈ 2200 mg/L) due to the presence of chlorides and sulfates at mg/L levels. Therefore, a two-fold dilution of these types of samples before SPE is recommended, especially, for total As determinations, when the As concentration is as high as 400 μg/L. For drinking water, sampled from public wells with records of As concentrations higher than the 10 μg/L in the past, the reduction of As contamination below the WHO's health limit value could be observed. However, the electrical conductivity was close to 2500 μS/cm, i.e., the guideline limit for drinking water, which was due to their higher chloride content. The proposed fit-for-purpose SPE-HR-CS-GFAAS method could be a candidate for screening drinking water quality.
Enhanced drinking water supply through harvested rainwater treatment
NASA Astrophysics Data System (ADS)
Naddeo, Vincenzo; Scannapieco, Davide; Belgiorno, Vincenzo
2013-08-01
Decentralized drinking water systems represent an important element in the process of achieving the Millennium Development Goals, as centralized systems are often inefficient or nonexistent in developing countries. In those countries, most water quality related problems are due to hygiene factors and pathogens. A potential solution might include decentralized systems, which might rely on thermal and/or UV disinfection methods as well as physical and chemical treatments to provide drinking water from rainwater. For application in developing countries, decentralized systems major constraints include low cost, ease of use, environmental sustainability, reduced maintenance and independence from energy sources. This work focuses on an innovative decentralized system that can be used to collect and treat rainwater for potable use (drinking and cooking purposes) of a single household, or a small community. The experimented treatment system combines in one compact unit a Filtration process with an adsorption step on GAC and a UV disinfection phase in an innovative design (FAD - Filtration Adsorption Disinfection). All tests have been carried out using a full scale FAD treatment unit. The efficiency of FAD technology has been discussed in terms of pH, turbidity, COD, TOC, DOC, Escherichia coli and Total coliforms. FAD technology is attractive since it provides a total barrier for pathogens and organic contaminants, and reduces turbidity, thus increasing the overall quality of the water. The FAD unit costs are low, especially if compared to other water treatment technologies and could become a viable option for developing countries.
NASA Astrophysics Data System (ADS)
Pritchard, M.; Craven, T.; Mkandawire, T.; Edmondson, A. S.; O'Neill, J. G.
The powder obtained from the seeds of the Moringa oleifera tree has been shown to be an effective primary coagulant for water treatment. When the seeds are dried, dehusked, crushed and added to water, the powder acts as a coagulant binding colloidal particles and bacteria to form agglomerated particles (flocs), which settle allowing the clarified supernatant to be poured off. Very little research has been undertaken on the parameters affecting the effectiveness of M. oleifera, especially in Malawi, for purification of drinking water and there is a great need for further testing in this area. Conclusive data needs to be compiled to demonstrate the effects of various water parameters have on the efficiency of the seeds. A parametric study was undertaken at Leeds Metropolitan University, UK, with the aim to establish the most appropriate dosing method; the optimum dosage for removal of turbidity; the influence of pH and temperature; together with the shelf life of the M. oleifera seeds. The study revealed that the most suitable dosing method was to mix the powder into a concentrated paste, hence forming a stock suspension. The optimum M. oleifera dose, for turbidity values between 40 and 200 NTU, ranged between 30 and 55 mg/l. With turbidity set at 130 NTU and a M. oleifera dose within the optimum range at 50 mg/l, pH levels were varied between 4 and 9. It was discovered that the coagulant performance was not too sensitive to pH fluctuations when conditions were within the optimum range. The most efficient coagulation, determined by the greatest reduction in turbidity, occurred at pH 6.5. Alkaline conditions were overall more favourable than acidic conditions; pH 9 had an efficiency of 65% of optimum, whilst at pH 5 the efficiency dropped to around 55%. The efficiency further dropped at pH 4, where the powder only produced results of around 10% of optimum conditions. A temperature range of 4-60 °C was studied in this research. Colder waters (<15 °C) were found to hinder the effectiveness of the coagulation process. The higher the temperature the more effective was the coagulation. It was also found that the age of the seeds, up to 18 months, did not have any noticeable effect on dose level and percentage reduction in turbidity, although at 18 months the seeds had a narrower dosing range to produce near-optimum reduction. Seeds aged 24 months showed a significant decline in coagulant efficiency.
Reimann, Clemens; Bjorvatn, Kjell; Frengstad, Bjørn; Melaku, Zenebe; Tekle-Haimanot, Redda; Siewers, Ulrich
2003-07-20
Drinking water samples were collected throughout the Ethiopian part of the Rift Valley, separated into water drawn from deep wells (deeper than 60 m), shallow wells (<60 m deep), hot springs (T>36 degrees C), springs (T<32 degrees C) and rivers. A total of 138 samples were analysed for 70 parameters (Ag, Al, As, B, Ba, Be, Bi, Br, Ca, Cd, Ce, Cl, Co, Cr, Cs, Cu, Dy, Er, Eu, F, Fe, Ga, Gd, Ge, Hf, Hg, Ho, I, In, K, La, Li, Lu, Mg, Mn, Mo, Na, Nb, Nd, Ni, NO(2), NO(3), Pb, Pr, Rb, Sb, Se, Si, Sm, Sn, SO(4), Sr, Ta, Tb, Te, Th, Ti, Tl, Tm, U, V, W, Y, Yb, Zn, Zr, temperature, pH, conductivity and alkalinity) with ion chromatography (anions), spectrometry (ICP-OES and ICP-MS, cations) and parameter-specific (e.g. titration) techniques. In terms of European water directives and WHO guidelines, 86% of all wells yield water that fails to pass the quality standards set for drinking water. The most problematic element is fluoride (F), for which 33% of all samples returned values above 1.5 mg/l and up to 11.6 mg/l. The incidence of dental and skeletal fluorosis is well documented in the Rift Valley. Another problematic element may be uranium (U)-47% of all wells yield water with concentrations above the newly suggested WHO maximum acceptable concentration (MAC) of 2 microg/l. Fortunately, only 7% of the collected samples are above the 10 microg/l EU-MAC for As in drinking water.
Smith, Richard L; Buckwalter, Seanne P; Repert, Deborah A; Miller, Daniel N
2005-05-01
Nitrate removal by hydrogen-coupled denitrification was examined using flow-through, packed-bed bioreactors to develop a small-scale, cost effective system for treating nitrate-contaminated drinking-water supplies. Nitrate removal was accomplished using a Rhodocyclus sp., strain HOD 5, isolated from a sole-source drinking-water aquifer. The autotrophic capacity of the purple non-sulfur photosynthetic bacterium made it particularly adept for this purpose. Initial tests used a commercial bioreactor filled with glass beads and countercurrent, non-sterile flow of an autotrophic, air-saturated, growth medium and hydrogen gas. Complete removal of 2 mM nitrate was achieved for more than 300 days of operation at a 2-h retention time. A low-cost hydrogen generator/bioreactor system was then constructed from readily available materials as a water treatment approach using the Rhodocyclus strain. After initial tests with the growth medium, the constructed system was tested using nitrate-amended drinking water obtained from fractured granite and sandstone aquifers, with moderate and low TDS loads, respectively. Incomplete nitrate removal was evident in both water types, with high-nitrite concentrations in the bioreactor output, due to a pH increase, which inhibited nitrite reduction. This was rectified by including carbon dioxide in the hydrogen stream. Additionally, complete nitrate removal was accomplished with wastewater-impacted surface water, with a concurrent decrease in dissolved organic carbon. The results of this study using three chemically distinct water supplies demonstrate that hydrogen-coupled denitrification can serve as the basis for small-scale remediation and that pilot-scale testing might be the next logical step.
Smith, R.L.; Buckwalter, S.P.; Repert, D.A.; Miller, D.N.
2005-01-01
Nitrate removal by hydrogen-coupled denitrification was examined using flow-through, packed-bed bioreactors to develop a small-scale, cost effective system for treating nitrate-contaminated drinking-water supplies. Nitrate removal was accomplished using a Rhodocyclus sp., strain HOD 5, isolated from a sole-source drinking-water aquifer. The autotrophic capacity of the purple non-sulfur photosynthetic bacterium made it particularly adept for this purpose. Initial tests used a commercial bioreactor filled with glass beads and countercurrent, non-sterile flow of an autotrophic, air-saturated, growth medium and hydrogen gas. Complete removal of 2 mM nitrate was achieved for more than 300 days of operation at a 2-h retention time. A low-cost hydrogen generator/bioreactor system was then constructed from readily available materials as a water treatment approach using the Rhodocyclus strain. After initial tests with the growth medium, the constructed system was tested using nitrate-amended drinking water obtained from fractured granite and sandstone aquifers, with moderate and low TDS loads, respectively. Incomplete nitrate removal was evident in both water types, with high-nitrite concentrations in the bioreactor output, due to a pH increase, which inhibited nitrite reduction. This was rectified by including carbon dioxide in the hydrogen stream. Additionally, complete nitrate removal was accomplished with wastewater-impacted surface water, with a concurrent decrease in dissolved organic carbon. The results of this study using three chemically distinct water supplies demonstrate that hydrogen-coupled denitrification can serve as the basis for small-scale remediation and that pilot-scale testing might be the next logical step.
Delgado, Luis F; Charles, Philippe; Glucina, Karl; Morlay, Catherine
2012-12-01
Recent studies have demonstrated the presence of trace-level pharmaceutically active compounds (PhACs) and endocrine disrupting compounds (EDCs) in a number of finished drinking waters (DWs). Since there is sparse knowledge currently available on the potential effects on human health associated with the chronic exposure to trace levels of these Emerging Contaminants (ECs) through routes such as DW, it is suggested that the most appropriate criterion is a treatment criterion in order to prioritize ECs to be monitored during DW preparation. Hence, only the few ECs showing the lowest removals towards a given DW Treatment (DWT) process would serve as indicators of the overall efficiency of this process and would be relevant for DW quality monitoring. In addition, models should be developed for estimating the removal of ECs in DWT processes, thereby overcoming the practical difficulties of experimentally assessing each compound. Therefore, the present review has two objectives: (1) to provide an overview of the recent scientific surveys on the occurrence of PhACs and EDCs in finished DWs; and (2) to propose the potential of Quantitative-Structure-Activity-Relationship-(QSAR)-like models to rank ECs found in environmental waters, including parent compounds, metabolites and transformation products, in order to select the most relevant compounds to be considered as indicators for monitoring purposes in DWT systems. Copyright © 2012 Elsevier Ltd. All rights reserved.
Survival of enteric pathogens in common beverages: an in vitro study.
Sheth, N K; Wisniewski, T R; Franson, T R
1988-06-01
This in vitro study was undertaken to determine the potential for survival of enteric pathogens in common drinking beverages. Three carbonated soft drinks, two alcoholic beverages, skim milk, and water were inoculated with Salmonella, Shigella, and enterotoxigenic Escherichia coli, and quantitative counts were performed over 2 days. Our studies showed poorest survival of all three organisms in wine, and greatest growth in milk and water. Beer and cola allowed survival of small numbers of Salmonella and E. coli at 48 h, whereas sour mix and diet cola were sterile by 48 h. Survival features may correlate with pH of the beverages. These observations may be useful in guiding travellers for appropriate beverage consumption while visiting areas endemic for "traveller's diarrhea."
Jung, Kyung-Won; Ahn, Kyu-Hong
2016-01-01
The present study is focused on the application of recovered coagulant (RC) by acidification from drinking water treatment residuals for both adjusting the initial pH and aiding coagulant in electrocoagulation. To do this, real cotton textile wastewater was used as a target pollutant, and decolorization and chemical oxygen demand (COD) removal efficiency were monitored. A preliminary test indicated that a stainless steel electrode combined with RC significantly accelerated decolorization and COD removal efficiencies, by about 52% and 56%, respectively, even at an operating time of 5 min. A single electrocoagulation system meanwhile requires at least 40 min to attain the similar removal performances. Subsequently, the interactive effect of three independent variables (applied voltage, initial pH, and reaction time) on the response variables (decolorization and COD removal) was evaluated, and these parameters were statistically optimized using the response surface methodology. Analysis of variance showed a high coefficient of determination values (decolorization, R(2) = 0.9925 and COD removal, R(2) = 0.9973) and satisfactory prediction second-order polynomial quadratic regression models. Average decolorization and COD removal of 89.52% and 94.14%, respectively, were achieved, corresponding to 97.8% and 98.1% of the predicted values under statistically optimized conditions. The results suggest that the RC effectively played a dual role of both adjusting the initial pH and aiding coagulant in the electrocoagulation process.
Nagarajan, R; Rajmohan, N; Mahendran, U; Senthamilkumar, S
2010-12-01
As groundwater is a vital source of water for domestic and agricultural activities in Thanjavur city due to lack of surface water resources, groundwater quality and its suitability for drinking and agricultural usage were evaluated. In this study, 102 groundwater samples were collected from dug wells and bore wells during March 2008 and analyzed for pH, electrical conductivity, temperature, major ions, and nitrate. Results suggest that, in 90% of groundwater samples, sodium and chloride are predominant cation and anion, respectively, and NaCl and CaMgCl are major water types in the study area. The groundwater quality in the study site is impaired by surface contamination sources, mineral dissolution, ion exchange, and evaporation. Nitrate, chloride, and sulfate concentrations strongly express the impact of surface contamination sources such as agricultural and domestic activities, on groundwater quality, and 13% of samples have elevated nitrate content (>45 mg/l as NO(3)). PHREEQC code and Gibbs plots were employed to evaluate the contribution of mineral dissolution and suggest that mineral dissolution, especially carbonate minerals, regulates water chemistry. Groundwater suitability for drinking usage was evaluated by the World Health Organization and Indian standards and suggests that 34% of samples are not suitable for drinking. Integrated groundwater suitability map for drinking purposes was created using drinking water standards based on a concept that if the groundwater sample exceeds any one of the standards, it is not suitable for drinking. This map illustrates that wells in zones 1, 2, 3, and 4 are not fit for drinking purpose. Likewise, irrigational suitability of groundwater in the study region was evaluated, and results suggest that 20% samples are not fit for irrigation. Groundwater suitability map for irrigation was also produced based on salinity and sodium hazards and denotes that wells mostly situated in zones 2 and 3 are not suitable for irrigation. Both integrated suitability maps for drinking and irrigation usage provide overall scenario about the groundwater quality in the study area. Finally, the study concluded that groundwater quality is impaired by man-made activities, and proper management plan is necessary to protect valuable groundwater resources in Thanjavur city.
Hesari, Nikou; Kıratlı Yılmazçoban, Nursel; Elzein, Mohamad; Alum, Absar; Abbaszadegan, Morteza
2017-01-03
Rapid bacterial detection using biosensors is a novel approach for microbiological testing applications. Validation of such methods is an obstacle in the adoption of new bio-sensing technologies for water testing. Therefore, establishing a quality assurance and quality control (QA/QC) plan is essential to demonstrate accuracy and reliability of the biosensor method for the detection of E. coli in drinking water samples. In this study, different reagents and assay conditions including temperatures, holding time, E. coli strains and concentrations, dissolving agents, salinity and pH effects, quality of substrates of various suppliers of 4-methylumbelliferyl glucuronide (MUG), and environmental water samples were included in the QA/QC plan and used in the assay optimization and documentation. Furthermore, the procedural QA/QC for the monitoring of drinking water samples was established to validate the performance of the biosensor platform for the detection of E. coli using a culture-based standard technique. Implementing the developed QA/QC plan, the same level of precision and accuracy was achieved using both the standard and the biosensor methods. The established procedural QA/QC for the biosensor will provide a reliable tool for a near real-time monitoring of E. coli in drinking water samples to both industry and regulatory authorities.
Hesari, Nikou; Kıratlı Yılmazçoban, Nursel; Elzein, Mohamad; Alum, Absar; Abbaszadegan, Morteza
2017-01-01
Rapid bacterial detection using biosensors is a novel approach for microbiological testing applications. Validation of such methods is an obstacle in the adoption of new bio-sensing technologies for water testing. Therefore, establishing a quality assurance and quality control (QA/QC) plan is essential to demonstrate accuracy and reliability of the biosensor method for the detection of E. coli in drinking water samples. In this study, different reagents and assay conditions including temperatures, holding time, E. coli strains and concentrations, dissolving agents, salinity and pH effects, quality of substrates of various suppliers of 4-methylumbelliferyl glucuronide (MUG), and environmental water samples were included in the QA/QC plan and used in the assay optimization and documentation. Furthermore, the procedural QA/QC for the monitoring of drinking water samples was established to validate the performance of the biosensor platform for the detection of E. coli using a culture-based standard technique. Implementing the developed QA/QC plan, the same level of precision and accuracy was achieved using both the standard and the biosensor methods. The established procedural QA/QC for the biosensor will provide a reliable tool for a near real-time monitoring of E. coli in drinking water samples to both industry and regulatory authorities. PMID:28054956
Natural organic matters removal efficiency by coagulation
NASA Astrophysics Data System (ADS)
Sapingi, Mohd Sharizal Mohd; Pishal, Munirah; Murshed, Mohamad Fared
2017-10-01
The presence of Natural Organic Matter (NOM) in surface water results in unwanted characteristics in terms of color, odor, and taste. NOM content reaction with free chlorine in treated water lowers the water quality further. Chlorine is added for disinfection and produces undesirable disinfection by-products (DPBs). DBPs in drinking water are carcinogenic to consumers and may promote cancerous cell development in the human body. This study was performed to compare the coagulant efficiency of aluminum sulfate (Alum) and ferric chloride (FeCl3) on NOM removal (as in UV254 absorbance) and turbidity removal under three pH conditions (pH 6, pH 7, and sample actual pH). The three sampling points for these studies were Jalan Baru River, Kerian River, and Redac Pond. Additional sampling points, such as Lubuk Buntar and a tubewell located in the Civil Engineering School, were included to observe differences in characteristics. DOC, UV absorbance, and full wavelength were tested, after which samples treated with alum were also tested to further analyze the NOM content. Based on UV254 absorbance and DOC data, specific UV value was calculated to obtain vital synopsis of the characteristics of NOM content, as well as coagulation efficiency.
[Characteristics and comparative study of a new drinking-water defluoridation adsorbent Bio-F].
Zhu, Chi; Zhao, Liang-Yuan; Yuan, Heng; Yang, Han-Ying; Li, Ang; Wang, Peng; Yang, Shao
2009-04-15
To evaluate the application potentiality pf a new type drinking-water defluoridation adsorbent Bio-F, comparative study on the defluoridation characteristics of common adsorbents activated alumina (AA), bone char (BC), activated clinoptilolite (AC) with Bio-F was conducted. The defluoridation characteristics under different conditions, such as particle diameter, pH, retention time, fluorine concentration, regeneration stability, were investigated by continuous-flow column experiments and static tests. The defluoridation efficiency of high fluoride underground water by four types of adsorbents was also compared. The results showed that F(-) adsorption kinetics of Bio-F fitted the Lagergren First-order equation (R2 = 0.9580). F(-) adsorption by Bio-F was found to fit the Langmuir adsorption isotherm (R2 = 0.9992). The results indicated that the static defluoridation capacity (DC) of Bio-F was 4.0883 mg x g(-1), which was about 1.8 folds and 5.8 folds of those of AA and AC respectively. DC of all four adsorbents was positively correlated with F(-) concentration and negatively correlated with particle size. High concentration of CO3(2-) and HCO3(-) reduced the DC of Bio-F (p < 0.05), while high concentration of Ca2+, NO3(-), HPO4(2-) favored defluoridation by Bio-F (p < 0.001). The optimal retention time of Bio-F was 3-4 min, which was less than that of AC (20 min) and AA (11 min). The DC of Bio-F remained relatively stable in pH 4.0-9.0 and in regeneration since the DC variation was not more than 15%. The above results indicated that Bio-F was superior to AA, BC and AC in drinking-water defluoridation.
Drinking water quality assessment in Southern Sindh (Pakistan).
Memon, Mehrunisa; Soomro, Mohammed Saleh; Akhtar, Mohammad Saleem; Memon, Kazi Suleman
2011-06-01
The southern Sindh province of Pakistan adjoins the Arabian Sea coast where drinking water quality is deteriorating due to dumping of industrial and urban waste and use of agrochemicals and yet has limited fresh water resources. The study assessed the drinking water quality of canal, shallow pumps, dug wells, and water supply schemes from the administrative districts of Thatta, Badin, and Thar by measuring physical, chemical, and biological (total coliform) quality parameters. All four water bodies (dug wells, shallow pumps canal water, and water supply schemes) exceeded WHO MPL for turbidity (24%, 28%, 96%, 69%), coliform (96%, 77%, 92%, 81%), and electrical conductivity (100%, 99%, 44%, 63%), respectively. However, the turbidity was lower in underground water, i.e., 24% and 28% in dug wells and shallow pumps as compared to open water, i.e., 96% and 69% in canal and water supply schemes, respectively. In dug wells and shallow pumps, limits for TDS, alkalinity, hardness, and sodium exceeded, respectively, by 63% and 33%; 59% and 70%, 40% and 27%, and 78% and 26%. Sodium was major problem in dug wells and shallow pumps of district Thar and considerable percent in shallow pumps of Badin. Iron was major problem in all water bodies of district Badin ranging from 50% to 69% and to some extent in open waters of Thatta. Other parameters as pH, copper, manganese, zinc, and phosphorus were within standard permissible limits of World Health Organization. Some common diseases found in the study area were gastroenteritis, diarrhea and vomiting, kidney, and skin problems.
Groundwater quality in the Genesee River Basin, New York, 2010
Reddy, James E.
2012-01-01
Water samples collected from eight production wells and eight private residential wells in the Genesee River Basin from September through December 2010 were analyzed to characterize the groundwater quality in the basin. Eight of the wells were completed in sand and gravel aquifers, and eight were finished in bedrock aquifers. Three of the 16 wells were sampled in the first Genesee River Basin study during 2005-2006. Water samples from the 2010 study were analyzed for 147 physiochemical properties and constituents that included major ions, nutrients, trace elements, radionuclides, pesticides, volatile organic compounds (VOCs), and indicator bacteria. Results of the water-quality analyses are presented in tabular form for individual wells, and summary statistics for specific constituents are presented by aquifer type. The results are compared with Federal and New York State drinking-water standards, which typically are identical. The results indicate that groundwater generally is of acceptable quality, although concentrations of the following constituents exceeded current or proposed Federal or New York State drinking-water standards at each of the 16 wells sampled: color (one sample), sodium (three samples), sulfate (three samples), total dissolved solids (four samples), aluminum (one sample), arsenic (two samples), copper (one sample), iron (nine samples), manganese (eight samples), radon-222 (nine samples), and total coliform bacteria (six samples). Existing drinking-water standards for pH, chloride, fluoride, nitrate, nitrite, antimony, barium, beryllium, cadmium, chromium, lead, mercury, selenium, silver, thallium, zinc, gross alpha radioactivity, uranium, fecal coliform, Escherichia coli, and heterotrophic bacteria were not exceeded in any of the samples collected. None of the pesticides and VOCs analyzed exceeded existing drinking-water standards.
Groundwater quality in western New York, 2011
Reddy, James E.
2013-01-01
Water samples collected from 16 production wells and 15 private residential wells in western New York from July through November 2011 were analyzed to characterize the groundwater quality. Fifteen of the wells were finished in sand and gravel aquifers, and 16 were finished in bedrock aquifers. Six of the 31 wells were sampled in a previous western New York study, which was conducted in 2006. Water samples from the 2011 study were analyzed for 147 physiochemical properties and constituents that included major ions, nutrients, trace elements, radionuclides, pesticides, volatile organic compounds (VOCs), and indicator bacteria. Results of the water-quality analyses are presented in tabular form for individual wells, and summary statistics for specific constituents are presented by aquifer type. The results are compared with Federal and New York State drinking-water standards, which typically are identical. The results indicate that groundwater generally is of acceptable quality, although at 30 of the 31 wells sampled, at least one of the following constituents was detected at a concentration that exceeded current or proposed Federal or New York State drinking-water standards: pH (two samples), sodium (eight samples), sulfate (three samples), total dissolved solids (nine samples), aluminum (two samples), arsenic (one sample), iron (ten samples), manganese (twelve samples), radon-222 (sixteen samples), benzene (one sample), and total coliform bacteria (nine samples). Existing drinking-water standards for color, chloride, fluoride, nitrate, nitrite, antimony, barium, beryllium, cadmium, chromium, copper, lead, mercury, selenium, silver, thallium, zinc, gross alpha radioactivity, uranium, fecal coliform, Escherichia coli, and heterotrophic bacteria were not exceeded in any of the samples collected. None of the pesticides analyzed exceeded existing drinking-water standards.
O'Donnell, Alissa J; Lytle, Darren A; Harmon, Stephen; Vu, Kevin; Chait, Hannah; Dionysiou, Dionysios D
2016-10-15
The United States Environmental Protection Agency Contaminant Candidate List 3 lists strontium as a contaminant for potential regulatory consideration in drinking water. Very limited data is available on strontium removal from drinking water and as a result, there is an immediate need for treatment information. The objective of this work is to evaluate the effectiveness of coagulation/filtration and lime-soda ash softening treatment methods to remove strontium from surface and ground waters. Coagulation/filtration jar test results on natural waters showed that conventional treatment with aluminum and iron coagulants were able to achieve only 12% and 5.9% strontium removal, while lime softening removed as high as 78% from natural strontium-containing ground water. Controlled batch experiments on synthetic water showed that strontium removal during the lime-soda ash softening was affected by pH, calcium concentration and dissolved inorganic carbon concentration. In all softening jar tests, the final strontium concentration was directly related to the initial strontium concentration and the removal of strontium was directly associated with calcium removal. Precipitated solids showed well-formed crystals or agglomerates of mixed solids, two polymorphs of calcium carbonate (vaterite and calcite), and strontianite, depending on initial water quality conditions. X-ray diffraction analysis suggested that strontium was likely incorporated in the calcium carbonate crystal lattice and was likely responsible for removal during lime softening. Copyright © 2016. Published by Elsevier Ltd.
Chen, Jie; Shu, Chiajung; Wang, Ning; Feng, Jiangtao; Ma, Hongyu; Yan, Wei
2017-06-01
More than 20 countries are still suffering problems of excessive fluoride containing water, and greater than 8mg/L fluoride groundwater has been reported in some villages in China. In order to meet the challenge in the drinking water defluoridation engineering, a high efficiency and affinity defluoridation adsorbent PPy/TiO 2 composite was designed and synthetized by in-situ chemical oxidative polymerization. Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction Investigator (XRD), X-ray photoelectron spectroscopy (XPS), Thermogravimetric analysis (TG), N 2 isotherm analysis, Scanning Electron Microscopy (SEM) and Zeta potential analysis were conducted to characterize surface and textural properties of the as-prepared PPy/TiO 2 , and the possibility of fluoride adsorption was carefully estimated by adsorption isotherm and kinetic studies. Characterization investigations demonstrate the uniqueness of surface and textural properties, such as suitable specific surface area and abundant positively charged nitrogen atoms (N + ), which indicate the composite is a suitable material for the fluoride adsorption. Adsorption isotherms and kinetics follow better with Langmuir and pseudo-second-order model, respectively. The maximum adsorption capacity reaches 33.178mg/g at 25°C according to Langmuir model, and particular interest was the ability to reduce the concentration of fluoride from 11.678mg/L to 1.5mg/L for drinking water at pH of 7 within 30min. Moreover, the adsorbent can be easily recycled without the loss of adsorption capacity after six cycles, greatly highlighting its outstanding affinity to fluoride, low-cost and novel to be used in the purification of fluoride containing water for drinking. Furthermore, the adsorption mechanism was extensively investigated and discussed by FTIR investigation and batch adsorption studies including effect of pH, surface potential and thermodynamics. The adsorption is confirmed to be a spontaneous and exothermic process with decreasing entropy, which is prominently conducted through electrostatic attraction, and ionic exchange, and chelation may be also involved. Hydroxyls and positively charged nitrogen atoms play important roles in the adsorption. Copyright © 2017 Elsevier Inc. All rights reserved.
Arp, H P H; Brown, T N; Berger, U; Hale, S E
2017-07-19
The contaminants that have the greatest chances of appearing in drinking water are those that are mobile enough in the aquatic environment to enter drinking water sources and persistent enough to survive treatment processes. Herein a screening procedure to rank neutral, ionizable and ionic organic compounds for being persistent and mobile organic compounds (PMOCs) is presented and applied to the list of industrial substances registered under the EU REACH legislation as of December 2014. This comprised 5155 identifiable, unique organic structures. The minimum cut-off criteria considered for PMOC classification herein are a freshwater half-life >40 days, which is consistent with the REACH definition of freshwater persistency, and a log D oc < 4.5 between pH 4-10 (where D oc is the organic carbon-water distribution coefficient). Experimental data were given the highest priority, followed by data from an array of available quantitative structure-activity relationships (QSARs), and as a third resort, an original Iterative Fragment Selection (IFS) QSAR. In total, 52% of the unique REACH structures made the minimum criteria to be considered a PMOC, and 21% achieved the highest PMOC ranking (half-life > 40 days, log D oc < 1.0 between pH 4-10). Only 9% of neutral substances received the highest PMOC ranking, compared to 30% of ionizable compounds and 44% of ionic compounds. Predicted hydrolysis products for all REACH parents (contributing 5043 additional structures) were found to have higher PMOC rankings than their parents, due to increased mobility but not persistence. The fewest experimental data available were for ionic compounds; therefore, their ranking is more uncertain than neutral and ionizable compounds. The most sensitive parameter for the PMOC ranking was freshwater persistency, which was also the parameter that QSARs performed the most poorly at predicting. Several prioritized drinking water contaminants in the EU and USA, and other contaminants of concern, were identified as PMOCs. This identification and ranking procedure for PMOCs can be part of a strategy to better identify contaminants that pose a threat to drinking water sources.
Tian, Yi-Mei; Liu, Yang; Zhao, Peng; Shan, Jin-Lin; Yang, Suo-Yin; Liu, Wei
2012-04-01
Desalted water, with strong corrosion characteristics, would possibly lead to serious "red water" when transmitted and distributed in existing municipal water distribution network. The main reason for red water phenomenon is iron release in water pipes. In order to study the methods of controlling iron release in existing drinking water distribution pipe, tubercle analysis of steel pipe and cast iron pipe, which have served the distribution system for 30-40 years, was carried out, the main construction materials were Fe3O4 and FeOOH; and immersion experiments were carried in more corrosive pipes. Through changing mixing volume of tap water and desalted water, pH, alkalinity, chloride and sulfate, the influence of different water quality indexes on iron release were mainly analyzed. Meanwhile, based on controlling iron content, water quality conditions were established to meet with the safety distribution of desalted water: volume ratio of potable water and desalted water should be higher than or equal to 2, pH was higher than 7.6, alkalinity was higher than 200 mg x L(-1).
Zou, Nan; Gu, Kejia; Liu, Shaowen; Hou, Yanbing; Zhang, Jialei; Xu, Xiang; Li, Xuesheng; Pan, Canping
2016-03-01
An analytical method based on dispersive solid-phase extraction with a multiwalled carbon nanotubes sorbent coupled with positive pulse glow discharge ion mobility spectrometry was developed for analysis of 30 pesticide residues in drinking water samples. Reduced ion mobilities and the mass-mobility correlation of 30 pesticides were measured. The pesticides were divided into five groups to verify the separation capability of pulse glow discharge in mobility spectrometry. The extraction conditions such as desorption solvent, ionic strength, conditions of adsorption and desorption, the amounts of multiwalled carbon nanotubes, and solution pH were optimized. The enrichment factors of pesticides were 5.4- to 48.7-fold (theoretical enrichment factor was 50-fold). The detection limits of pesticides were 0.01∼0.77 μg/kg. The linear range was 0.005-0.2 mg/L for pesticide standard solutions, with determination coefficients from 0.9616 to 0.9999. The method was applied for the analysis of practical and spiked drinking water samples. All results were confirmed by high-performance liquid chromatography with tandem mass spectrometry. The proposed method was proven to be a commendably rapid screening qualitative and semiquantitative technique for the analysis of pesticide residues in drinking water samples on site. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Krishna kumar, S.; Logeshkumaran, A.; Magesh, N. S.; Godson, Prince S.; Chandrasekar, N.
2015-12-01
In the present study, the geochemical characteristics of groundwater and drinking water quality has been studied. 24 groundwater samples were collected and analyzed for pH, electrical conductivity, total dissolved solids, carbonate, bicarbonate, chloride, sulphate, nitrate, calcium, magnesium, sodium, potassium and total hardness. The results were evaluated and compared with WHO and BIS water quality standards. The studied results reveal that the groundwater is fresh to brackish and moderately high to hard in nature. Na and Cl are dominant ions among cations and anions. Chloride, calcium and magnesium ions are within the allowable limit except few samples. According to Gibbs diagram, the predominant samples fall in the rock-water interaction dominance and evaporation dominance field. The piper trilinear diagram shows that groundwater samples are Na-Cl and mixed CaMgCl type. Based on the WQI results majority of the samples are falling under excellent to good category and suitable for drinking water purposes.
State of the art on cyanotoxins in water and their behaviour towards chlorine.
Merel, Sylvain; Clément, Michel; Thomas, Olivier
2010-04-01
The occurrence of cyanobacterial blooms is drastically increasing in temperate countries and drinking water resources are threatened. As a result, cyanotoxins should be considered in water treatment to protect human health. This study presents a state of the art on cyanotoxins in water and their behaviour towards chlorination, a common drinking water disinfection process. Chlorination efficiency on cyanotoxins alteration depends on pH, chlorine dose and oxidant nature. Microcystins and cylindrospermopsin are efficiently transformed by chlorine, with respectively 6 and 2 by-products identified. In addition, chlorination of microcystins and cylindrospermopsin is associated with a loss of acute toxicity. Even though they have been less investigated, saxitoxins and nodularins are also altered by chlorine. For these toxins, no by-products have been identified, but the chlorinated mixture does not show acute toxicity. On the contrary, the fact that anatoxin-a has a very slow reaction kinetics suggests that this toxin resists chlorination. Copyright 2009 Elsevier Ltd. All rights reserved.
Silver Dissolution and Release from Ceramic Water Filters.
Mittelman, Anjuliee M; Lantagne, Daniele S; Rayner, Justine; Pennell, Kurt D
2015-07-21
Application of silver nanoparticles (nAg) or silver nitrate (AgNO3) has been shown to improve the microbiological efficacy of ceramic water filters used for household water treatment. Silver release, however, can lead to undesirable health effects and reduced filter effectiveness over time. The objectives of this study were to evaluate the contribution of nanoparticle detachment, dissolution, and cation exchange to silver elution, and to estimate silver retention under different influent water chemistries. Dissolved silver (Ag(+)) and nAg release from filter disks painted with 0.03 mg/g casein-coated nAg or AgNO3 were measured as a function of pH (5-9), ionic strength (1-50 mM), and cation species (Na(+), Ca(2+), Mg(2+)). Silver elution was controlled by dissolution as Ag(+) and subsequent cation exchange reactions regardless of the applied silver form. Effluent silver levels fell below the drinking water standard (0.1 mg/L) after flushing with 30-42 pore volumes of pH 7, 10 mM NaNO3 at pH 7. When the influent water was at pH 5, contained divalent cations or 50 mM NaNO3, silver concentrations were 5-10 times above the standard. Our findings support regular filter replacement and indicate that saline, hard, or acidic waters should be avoided to minimize effluent silver concentrations and preserve silver treatment integrity.
Hamid, H; Shi, H Q; Ma, G Y; Fan, Y; Li, W X; Zhao, L H; Zhang, J Y; Ji, C; Ma, Q G
2018-06-01
The ban on the use of antibiotic feed additives as growth promoters compelled the researchers for exploring the future utility of other alternatives. This experiment was designed to evaluate the effect of acidified drinking water on growth performance, gastrointestinal pH, digestive enzymes, intestinal histomorphology, and cecum microbial counting of the broiler chicken. A total of 540 one-day-old male broilers (Arbor Acre) were randomly assigned to 5 treatments, with 6 replicates of 18 chicks per replicate. Broilers received diets and water as follows: NC (negative control, basal diet, normal water), PC (positive control, basal diet + 8 ppm colistin sulfate + 8 ppm enduracidin, normal water), A1 (basal diet, continuous supply of acidified water during whole experiment period), A2 (basal diet, intermittent acidification of water during 0 to 14 d, 22 to 28 d, and 36 to 42 d), and A3 [basal diet, intermittent acidification of water (24 h/d from 0 to 14 d and from 10:00 am to 4:00 pm on d 15 to 42)]. During the entire period, the acidified groups (A1, A2, and A3) and PC group showed improve on weight gain, average daily gain and feed conversion ratio compared to NC group (P < 0.05). The pH in crop, proventriculus and ileum at 43 d declined by 0.04, 1.03, 1.23; 0.55, 0.69, 0.70; and 0.63, 0.74, 1.21 in A1, A2, and A3 group, respectively. There was a significant decline of lipase activity in the PC and acidified groups compared to NC group. The A2 group had higher villus height in jejunum than NC group. The PC and acidified groups reduced (P < 0.05) the total aerobic bacteria count of cecum when contrasted to NC group. Therefore, we conclude that acidified drinking water can improve growth performance, compensate for gastric acidity, and control pathogenic bacteria in broilers and may be considered as a potential alternative to improve production parameters. Discontinuous supply of acidified water had the same or even better influence on broilers compared to continuous supply.
Apodaca, Lori Estelle; Bails, Jeffrey B.
2000-01-01
Water-quality samples were collected in the summer of 1997 from 45 sites (43 wells and 2 springs) in selected alluvial aquifers throughout the Southern Rocky Mountains physiographic province of the Upper Colorado River Basin study unit as part of the U.S. Geological Survey National Water-Quality Assessment Program. The objective of this study was to assess the water-quality conditions in selected alluvial aquifers in the Southern Rocky Mountains physiographic province. Alluvial aquifers are productive aquifers in the Southern Rocky Mountains physiographic province and provide for easily developed wells. Water-quality samples were collected from areas where ground water is used predominantly for domestic or public water supply. Twenty-three of the 45 sites sampled were located in or near mining districts. No statistical differences were observed between the mining sites and sites not associated with mining activities for the majority of the constituents analyzed. Water samples were analyzed for major ions, nutrients, dissolved organic carbon, trace elements, radon-222, pesticides, volatile organic compounds, bacteria, and methylene blue active substances. In addition, field parameters consisting of water temperature, specific conductance, dissolved oxygen, pH, turbidity, and alkalinity were measured at all sites.Specific conductance for the ground-water sites ranged from 57 to 6,650 microsiemens per centimeter and had higher concentrations measured in areas such as the northwestern part of the study unit. Dissolved oxygen ranged from 0.1 to 6.0 mg/L (milligrams per liter) and had a median concentration of 2.9 mg/L. The pH field values ranged from 6.1 to 8.1; about 4 percent of the sites (2 of 45) had pH values outside the range of 6.5 to 8.5 and so did not meet the U.S. Environmental Protection Agency secondary maximum contaminant level standard for drinking water. About 5 percent (2 of 43) of the samples exceeded the U.S. Environmental Protection Agency recommended turbidity value of 5 nephelometric turbidity units; one of these samples was from a monitoring well. The U.S. Environmental Protection Agency secondary maximum contaminant levels for dissolved solids, sulfate, iron, and manganese were exceeded at some of the sites. Higher dissolved-solids concentrations were detected where sedimentary rocks are exposed, such as in the northwestern part of the Southern Rocky Mountains physiographic province. The dominant water compositions for the sites sampled are calcium, magnesium, and bicarbonate. However, sites in areas where sedimentary rocks are exposed and sites located in or near mining areas show more sulfate-dominated waters. Nutrient concentrations were less than the U.S. Environmental Protection Agency drinking-water standards. Only one site had a nitrate concentration greater than 3.0 mg/L, a level indicating possible influence from human activities. No significant differences among land-use/land-cover classifications (forest, rangeland, and urban) for drinking-water wells (42 sites) were identified for dissolved-solids, sulfate, nitrate, iron or manganese concentrations. Radon concentrations were higher in parts of the study unit where Precambrian rocks are exposed. All radon concentrations in ground water exceeded the previous U.S. Environmental Protection Agency proposed maximum contaminant level for drinking water, which has been withdrawn pending further review.Pesticide detections were at concentrations below the reporting limits and were too few to allow for comparison of the data. Eight volatile organic compounds were detected at six sites; all concentrations complied with U.S. Environmental Protection Agency drinking-water standards. Total coliform bacteria were detected at six sites, but no Escherichia coli (E. coli) was detected. Methylene blue active substances were detected at three sites at concentrations just above the reporting limit. Overall, the water quality in the Southern Rocky Mountains physiograph
NASA Astrophysics Data System (ADS)
Edet, Aniekan
2017-09-01
The rapid expansion of economic activities in coastal parts of Nigeria has triggered an uncoordinated development of groundwater leading to stress on the resource. Hence a study was conducted to assess the hydrogeological characteristics of the shallow coastal aquifer of southern Akwa Ibom State, Nigeria. Emphasis was on the hydraulic characteristics, quality with respect to domestic and irrigation purposes and influence of seawater. The study result revealed that the aquifer consist of intercalations of clayey sand and sand. The aquifer is characterized by high hydraulic conductivity and transmissivity values. The groundwater flow direction is southwards with higher groundwater depletion in the dry season. Groundwater samples from hand dug wells and boreholes were evaluated based on World Health Organization standard and some indices, respectively, for drinking and irrigation uses. The groundwaters are fit for drinking and domestic uses. However, more than 70 % of the pH values are not within the allowable limits of between 6.5 and 9.2 for drinking and domestic use. Therefore, it is recommended that neutralizing filter containing calcite or ground limestone should be applied to raise the pH of the groundwater. Of the 10 parameters used to assess the water for irrigation use, only sodium adsorption ratio (SAR), magnesium hazard (MH) and magnesium ratio indicated the excellent quality of these waters. Na+-K+-HCO3 - constitute the dominant water type. Total dissolved solids and ratios of Na+/Cl-, Mg2+/Cl-, and Ca2+/SO4 2- and saltwater mixing index (SMI) suggest some level of seawater intrusion in the area.
Syed, J; Chadwick, R G
2009-02-14
Much recent attention has been given to the erosive potential of carbonated beverages. Some have shown that the risks of developing erosion, if such drinks are consumed once daily and four times daily, are respectively 2.2 and 5.13 times greater than if they are not consumed at all. The addition of ultra-heat treated (UHT) milk to such beverages has been identified by a survey as common practice in Pakistan. It is known that the addition of calcium to orange juice and acidic candies reduces the capacity of these dietary items to produce dental erosion by the law of mass action. While potentially helpful, such a practice at manufacture may affect adversely product stability and flavour, thus compromising market share. As a result an alternative approach is for the consumer to carry out such modification. The addition of milk is one such potential means.Objective To assess the capacity of six brands of carbonated drinks to bring about dental erosion and determine if consumer modification by the addition of milk affected this. In vitro study. For each drink in both manufactured and consumer modified (25 ml of drink with 6.25 ml UHT milk) states, the pH and titratable acidity were measured. These assessments were also made for distilled water dilution of the manufactured drinks in the ratio of 1 part drink to 0.25 parts water. In addition, the effects of a 60 min exposure to the drinks in manufactured and consumer modified states, upon the surface microhardness and profile of human molar buccal tooth substance were determined. The addition of milk significantly increased the mean pH (p <0.001) and decreased the mean titratable acidity (p <0.001). Its addition had significantly more (p <0.001) than a simple dilution effect upon these values. Milk addition significantly lessened (p <0.001) the reductions in surface microhardness of tooth substance when exposed to the drinks except in the case of one beverage. There was, however, no significant effect (p = 0.0732) of its inclusion upon the depth loss of tooth substance. Within the limitations of this study, the addition of milk to carbonated beverages reduced overall their capacity to bring about dental erosion.
Calcium nephrolithiasis: effect of water hardness on urinary electrolytes.
Schwartz, Bradley F; Schenkman, Noah S; Bruce, Jeremy E; Leslie, Stephen W; Stoller, Marshall L
2002-07-01
To analyze the impact of water hardness from public water supplies on calcium stone incidence and 24-hour urine chemistries in patients with known calcium urinary stone formation. Patients are frequently concerned that their public water supply may contribute to urinary stone disease. Investigators have documented an inverse relationship between water hardness and calcium lithogenesis. Others have found no such association. Patients who form calcium stones (n = 4833) were identified geographically by their zip code. Water hardness information from distinct geographic public water supplies was obtained, and patient 24-hour urine chemistries were evaluated. Drinking water hardness was divided into decile rankings on the basis of the public water supply information obtained from the Environmental Protection Agency. These data were compared with patient questionnaires and 24-hour urine chemistries. The calcium and magnesium levels in the drinking water were analyzed as independent variables. The number of total lifetime stone episodes was similar between patients residing in areas with soft public water and hard public water. Patients consuming the softest water decile formed 3.4 lifetime stones and those who consumed the hardest water developed 3.0 lifetime stones (P = 0.0017). The 24-hour urine calcium, magnesium, and citrate levels increased directly with drinking water hardness, and no significant change was found in urinary oxalate, uric acid, pH, or volume. The impact of water hardness on urinary stone formation remains unclear, despite a weak correlation between water hardness and urinary calcium, magnesium, and citrate excretion. Tap water, however, can change urinary electrolytes in patients who form calcium stones.
Disinfection by-product formation from the chlorination and chloramination of amines.
Bond, Tom; Mokhtar Kamal, Nurul Hana; Bonnisseau, Thomas; Templeton, Michael R
2014-08-15
This study investigated the relative effect of chlorination and chloramination on DBP formation from seven model amine precursor compounds, representative of those commonly found in natural waters, at pH 6, 7 and 8. The quantified DBPs included chloroform, dichloroacetonitrile (DCAN), trichloroacetonitrile (TCAN) and chloropicrin (trichloronitromethane). The aggregate formation (i.e. the mass sum of the formation from the individual precursors) of chloroform, DCAN and TCAN from all precursors was reduced by respectively 75-87%, 66-90% and 89-93% when considering pre-formed monochloramine compared to chlorine. The formation of both haloacetonitriles decreased with increasing pH following chlorination, but formation after chloramination was relatively insensitive to pH change. The highest formation of chloropicrin was from chloramination at pH 7. These results indicate that, while chloramination is effective at reducing the concentrations of trihalomethanes and haloacetonitriles in drinking water compared with chlorination, the opposite is true for the halonitromethanes. Copyright © 2014 Elsevier B.V. All rights reserved.
Leeth, David C.
2002-01-01
In 1998, the U.S. Geological Survey, in cooperation with the U.S. Department of the Navy, began an investigation to determine background ground-water quality of the water-table zone of the surficial aquifer and soil chemistry at Naval Submarine Base Kings Bay, Camden County, Georgia, and to compare these data to two abandoned solid- waste disposal areas (referred to by the U.S. Navy as Sites 5 and 16). The quality of water in the water-table zone generally is within the U.S. Environmental Protection Agency (USEPA) drinking-water regulation. The pH of ground water in the study area ranged from 4.0 to 7.6 standard units, with a median value of 5.4. Water from 29 wells is above the pH range and 3 wells are within the range of the USEPA secondary drinking-water regulation (formerly known as the Secondary Maximum Contaminant Level or SMCL) of 6.5 to 8.5 standard units. Also, water from one well at Site 5 had a chloride concentration of 570 milligrams per liter (mg/L,), which is above the USEPA secondary drinking-water regulation of 250 mg/L. Sulfate concentrations in water from two wells at Site 5 are above the USEPA secondary drinking-water regulation of 250 mg/L. Of 22 soil-sampling locations for this study, 4 locations had concentrations above the detection limit for either volatile organic compounds (VOCs), base-neutral acids (BNAs), or pesticides. VOCs detected in the study area include toluene in one background sample; and acetone in one background sample and one sample from Site 16--however, detection of these two compounds may be a laboratory artifact. Pesticides detected in soil at the Submarine Base include two degradates of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT): 1,1-dichloro-2,2-bis(p-chlorophenyl)ethane (4,4'-DDD) in one background sample, 1,1-dichloro-2,2-bis(p-chlorophenyl)ethene (4,4'-DDE) in one background sample and one sample from Site 16; and dibenzofuran in one sample from Site 16. BNAs were detected in one background sample and in two samples from Site 16. Hypothesis testing, using the Wilcoxon rank-sum test (also known as the Mann-Whitney test), indicates no statistical difference between ground-water constituent concentrations from Sites 5 and 16, and background concentrations. Hypothesis testing, however, indicates the concentration of barium in background ground-water samples is greater than in ground-water samples collected at Site 16.
Assessment of variable drinking water sources used in Egypt on broiler health and welfare.
ELSaidy, N; Mohamed, R A; Abouelenien, F
2015-07-01
This study assessed the impact of four water sources used as drinking water in Egypt for broiler chickens on its performance, carcass characteristic, hematological, and immunological responses. A total of 204 unsexed 1-day old Indian River broiler chickens were used in this study. They were randomly allocated into four treatment groups of 51 birds in each, with three replicates, 17 birds per replicate. Groups were classified according to water source they had been received into (T1) received farm tap water; (T2) received filtered tap water (T3) received farm stored water at rooftop tanks, (T4) received underground (well) water. All water sources showed no significant differences among treated groups at (p>0.05) for most of the performance parameters and carcass characteristics. However (T2) group showed higher records for body weight (BWT), BWT gain (BWG), feed conversion ratio, bursa weight, serum total protein, globulin (G), albumin (A) and A/G ratio, Ab titer against New castle disease virus vaccine. On the other hand, it showed lower records for water intake (WI), WI/Feed intake ratio, total leukocytes count %, heterophil %, lymphocyte %, H/L ratio, liver weight, glutamic oxaloacetic transaminase, glutamic pyruvic transaminase, serum uric acid and creatinine. Where filtered water reverse osmosis showed lowest records for bacterial load, the absence of coliform bacteria, total dissolved solids (TDS), electrical conductivity (EC) and salinity. On the other hand stored water showed higher numerical values for TDS, EC, alkalinity, salinity, pH, bacterial count, and coliform count. Base on the results of this study, it is concluded that different water sources could safely be used as drinking water for poultry; as long as it is present within the acceptable range of drinking water quality for chickens. Suggesting the benefits of treatment of water sources on improving chickens' health and welfare. Draw attention to the importance of maintaining the hygienic quality of stored water.
Rao, Koppula Yadav; Anjum, Mohammad Shakeel; Reddy, Peddireddy Parthasarathi; Monica, Mocherla; Hameed, Irram Abbass; Sagar, Goje Vidya
2016-05-01
Humanity highly depends on water and its proper utilization and management. Water has various uses and its use as thirst quenching fluid is the most significant one. To assess physical, chemical, trace metal and bacterial parameters of various public and packaged drinking water samples collected from villages of Vikarabad mandal. Public and packaged drinking water samples collected were analysed for various parameters using American Public Health Association (APHA 18(th) edition 1992) guidelines and the results obtained were compared with bureau of Indian standards for drinking water. Descriptive statistics and Pearson's correlations were done. Among bottled water samples, magnesium in 1 sample was >30mg/litre, nickel in 2 samples was >0.02mg/litre. Among sachet water samples, copper in 1 sample was >0.05mg/litre, nickel in 2 samples was >0.02mg/litre. Among canned water samples, total hardness in 1 sample was >200mg/litre, magnesium in 3 samples was >30mg/litre. In tap water sample, calcium was >75mg/litre, magnesium was >30mg/litre, nickel was >0.02mg/litre. Among public bore well water samples, pH in 1 sample was >8.5, total dissolved solids in 17 samples was >500mg/litre, total alkalinity in 9 samples was >200mg/litre, total hardness in 20 samples was >200mg/litre, calcium in 14 samples was >75mg/litre, fluoride in 1 sample was >1mg/litre, magnesium in 14 samples was >30mg/litre. Total coliform was absent in bottled water, sachet water, canned water, tap water samples. Total Coliform was present but E. coli was absent in 4 public bore well water samples. The MPN per 100 ml in those 4 samples of public bore well water was 50. Physical, chemical, trace metal and bacterial parameters tested in present study showed values greater than acceptable limit for some samples, which can pose serious threat to consumers of that region.
Assessment of variable drinking water sources used in Egypt on broiler health and welfare
ELSaidy, N.; Mohamed, R. A.; Abouelenien, F.
2015-01-01
Aim: This study assessed the impact of four water sources used as drinking water in Egypt for broiler chickens on its performance, carcass characteristic, hematological, and immunological responses. Materials and Methods: A total of 204 unsexed 1-day old Indian River broiler chickens were used in this study. They were randomly allocated into four treatment groups of 51 birds in each, with three replicates, 17 birds per replicate. Groups were classified according to water source they had been received into (T1) received farm tap water; (T2) received filtered tap water (T3) received farm stored water at rooftop tanks, (T4) received underground (well) water. Results: All water sources showed no significant differences among treated groups at (p>0.05) for most of the performance parameters and carcass characteristics. However (T2) group showed higher records for body weight (BWT), BWT gain (BWG), feed conversion ratio, bursa weight, serum total protein, globulin (G), albumin (A) and A/G ratio, Ab titer against New castle disease virus vaccine. On the other hand, it showed lower records for water intake (WI), WI/Feed intake ratio, total leukocytes count %, heterophil %, lymphocyte %, H/L ratio, liver weight, glutamic oxaloacetic transaminase, glutamic pyruvic transaminase, serum uric acid and creatinine. Where filtered water reverse osmosis showed lowest records for bacterial load, the absence of coliform bacteria, total dissolved solids (TDS), electrical conductivity (EC) and salinity. On the other hand stored water showed higher numerical values for TDS, EC, alkalinity, salinity, pH, bacterial count, and coliform count. Conclusion: Base on the results of this study, it is concluded that different water sources could safely be used as drinking water for poultry; as long as it is present within the acceptable range of drinking water quality for chickens. Suggesting the benefits of treatment of water sources on improving chickens’ health and welfare. Draw attention to the importance of maintaining the hygienic quality of stored water. PMID:27047165
Sehar, Shama; Naz, Iffat; Ali, Naeem; Ahmed, Safia
2013-02-01
The present study was conducted to investigate drinking water quality (groundwater) from water samples taken from Qasim Abad, a locality of approximately 5,000 population, situated between twin cities Rawalpindi and Islamabad in Pakistan. The main sources of drinking water in this area are water bores which are dug upto the depth of 250-280 ft in almost every house. The study consists of the determination of physico-chemical properties, trace metals, heavy metals, rare earth elements and microbiological quality of drinking water. The data showed the variation of the investigated parameters in samples as follows: pH 6.75 to 8.70, electrical conductivity 540 to 855 μS/cm, total dissolved solids 325.46 to 515.23 ppm and dissolved oxygen 1.50 to 5.64 mg/L which are within the WHO guidelines for drinking water quality. The water samples were analysed for 30 elements (aluminium, iron, magnesium, manganese, silicon, zinc, molybdenum, titanium, chromium, nickel, tungsten, silver, arsenic, boron, barium, beryllium, cadmium, cobalt, copper, gallium, mercury, lanthanum, niobium, neodymium, lead, selenium, samarium, tin, vanadium and zirconium) by using inductively coupled plasma atomic emission spectroscopy. The organic contamination was detected in terms of most probable number (MPN) of faecal coliforms. Overall, elemental levels were lower than the recommended values but three water bores (B-1, B-6, B-7) had higher values of iron (1.6, 2.206, 0.65 ppm), two water bores (B-1, B-6) had higher values of aluminium (0.95, 1.92 ppm), respectively, and molybdenum was higher by 0.01 ppm only in one water bore (B-11). The total number of coliforms present in water samples was found to be within the prescribed limit of the WHO except for 5 out of 11 bore water samples (B-2, B-3, B-4, B-8, B-11), which were found in the range 5-35 MPN/100 mL, a consequence of infiltration of contaminated water (sewage) through cross connection, leakage points and back siphoning.
In many regions of the United States, groundwaters that contain arsenic (primarily As[III]) also contain significant amounts of iron (Fe[II]). Arsenic removal will most likely be achieved by iron removal in many of those cases which will consist of oxidization followed by filtra...
Impacts of Early-Stage Drinking Water Treatment on Cyanobacterial Toxin Release and Degradation
This presentation summarizes the impact of potassium permanganate application to suspensions of intact, toxin-producing cyanobacterial cells at pH 7 and 9, oxidant doses of 1, 2.5 and 5 mg/L, turbidities of 0.1, 5 and 20 NTU, and powdered activated carbon doses of 0 and 10 mg/L
In vivo dental plaque pH variation with regular and diet soft drinks.
Roos, Erik H; Donly, Kevin J
2002-01-01
Despite the presence or absence of artificial sweeteners in cola drinks, both regular and diet soft drinks still contain phosphoric and citric acid, which contributes to the total acidic challenge potential on enamel. The purpose of this study was to assess the plaque pH, in vivo, after a substrate challenge of diet and regular soft drinks. Seventeen subjects were recruited for this study. All subjects were between the ages of 12 and 15 and had at least 4 restored tooth surfaces present. The subjects were given consent by their parents and were asked to refrain from brushing for 48 hours prior to the study. At baseline, plaque pH was measured from 4 separate locations using touch electrode methodology. Each subject was then randomly assigned to one of two groups. The first group was exposed to regular Coke followed by Diet Coke, while the second group was exposed to Diet Coke followed by regular Coke. Subjects were asked to swish with 15 ml of the respective soft drink for one minute. Plaque pH was measured at the 4 designated tooth sites at 5-, 10- and 20-minute intervals. Subjects then repeated the experiment using the other soft drink. The results showed that regular Coke had significantly more acidic plaque pH values at the 5-, 10- and 20-minute intervals compared to Diet Coke, (P = < .001), when subjected to a t test. The mean pH at 5 minutes for Coke and Diet Coke was 5.5 +/- 0.5 and 6.0 +/- 0.7, respectively. At 10 minutes, the pH for Coke and Diet Coke was 5.6 +/- 0.6 and 6.2 +/- 0.7, respectively. The pH at 20 minutes for Coke and Diet Coke was 5.7 +/- 0.7 and 6.5 +/- 0.5, respectively. These data suggest that regular Coke possesses a greater acid challenge potential on enamel than Diet Coke. However, in this clinical trial, the pH associated with either soft drink did not reach the critical pH which is expected for enamel demineralization and dissolution.
A Summary of Publications on the Development of Mode-of ...
Chemical contaminants are formed as a consequence of chemical disinfection of public drinking waters. Chemical disinfectants, which are used to kill harmful microorganisms, react with natural organic matter (NOM), bromide, iodide, and other compounds, forming complex mixtures of potentially toxic disinfection byproducts (DBPs). The types and concentrations of DBPs formed during disinfection and the relative proportions of the components vary depending on factors such as source water conditions (e.g., types of NOM present), disinfectant type (e.g., chlorine, ozone, chloramine), and treatment conditions (e.g., pH and temperature). To date, over 500 DBPs have been detected in treated waters. However, typically more than 50% of the organic halide mass produced by chlorination disinfection consists of unidentified chemicals, which are not measured by routine analyses of DBPs. The protocols and methods typically used to evaluate chemical mixtures are best applied to simple defined mixtures consisting of relatively few chemicals. These approaches rely on assumptions (e.g., common mode of action, independent toxic action) regarding the type of joint toxic action (e.g., dose-additivity, synergism) that might be observed. Such methods, used for site assessments or toxicological studies, are often not sufficient to estimate health risk for complex drinking water DBP mixtures. Actual drinking water exposures involve multiple chemicals, many of w
Use of drinking water treatment solids for arsenate removal from desalination concentrate.
Xu, Xuesong; Lin, Lu; Papelis, Charalambos; Myint, Maung; Cath, Tzahi Y; Xu, Pei
2015-05-01
Desalination of impaired water can be hindered by the limited options for concentrate disposal. Selective removal of specific contaminants using inexpensive adsorbents is an attractive option to address the challenges of concentrate management. In this study, two types of ferric-based drinking water treatment solids (DWTS) were examined for arsenate removal from reverse osmosis concentrate during continuous-flow once-through column experiments. Arsenate sorption was investigated under different operating conditions including pH, arsenate concentration, hydraulic retention time, loading rate, temperature, and moisture content of the DWTS. Arsenate removal by the DWTS was affected primarily by surface complexation, electrostatic interactions, and arsenate speciation. Results indicated that arsenate sorption was highly dependent on initial pH and initial arsenate concentration. Acidic conditions enhanced arsenate sorption as a result of weaker electrostatic repulsion between predominantly monovalent H2AsO4(-) and negatively charged particles in the DWTS. High initial arsenate concentration increased the driving force for arsenate sorption to the DWTS surface. Tests revealed that the potential risks associated with the use of DWTS include the leaching of organic contaminants and ammonia, which can be alleviated by using wet DWTS or discarding the initially treated effluent that contains high organic concentration. Copyright © 2015 Elsevier Inc. All rights reserved.
Wan, Zhen; Chen, Wei; Liu, Cheng; Liu, Yu; Dong, Changlong
2015-04-01
For this study, a novel adsorbent of γ-AlOOH @CS (pseudoboehmite and chitosan shell) magnetic nanoparticles (ACMN) with magnetic separation capabilities was developed to remove fluoride from drinking water. The adsorbent was first characterized, and then its performance in removing fluoride was evaluated. Kinetic data demonstrated rapid fluoride adsorption with more than 80% fluoride adsorption within the initial 20 min and equilibrium reached in 60 min. Based on the results of kinetic and isotherm models, the fluoride adsorption process on the ACMN's surface was a monolayer adsorption on a homogeneous surface. Thermodynamic parameters presented that the adsorption process is spontaneous and endothermic in nature. The mechanism for the adsorption involved electrostatic interaction and hydrogen bonding. Moreover, the calculated adsorption capacity of the ACMN for fluoride using the Langmuir model was 67.5 mg/g (20°C, pH=7.0±0.1), higher than other fluoride removal adsorbents. This nanoadsorbent performed well over a pH range of 4-10. The study found that PO4(3-) was the co-existing anion most able to hinder the nanoparticle's fluoride adsorption, followed by NO3(-) then Cl(-). Experimental results suggest that ACMN is a promising adsorbent for treating fluoride-contaminated water. Copyright © 2014 Elsevier Inc. All rights reserved.
Kubena, L F; Byrd, J A; Moore, R W; Ricke, S C; Nisbet, D J
2005-02-01
Feed deprivation is used in the layer industry to induce molting and stimulate multiple egg-laying cycles in laying hens. Unfortunately, the stress involved increases susceptibility to Salmonella enteritidis (SE), the risk of SE-positive eggs, and incidence of SE in internal organs. Leghorn hens over 50 wk of age were divided into 4 treatment groups of 12 hens each in experiment 1 and 3 treatment groups of 12 hens in experiments 2 and 3; hens were placed in individual laying hen cages. Treatment groups were 1) nonmolted (NM) and received feed and distilled water for 9 d, 2) force molted by feed removal for 9 d and received distilled water, 3) force molted by feed removal for 9 d and received 0.5% lactic acid (LA) in distilled water. An additional group (4) in experiment 1 only was force molted by feed removal for 9 d and received 0.5% acetic acid in distilled water. Seven days before feed removal hens were exposed to an 8L:16D photoperiod, which was continued throughout the experiment. Individual hens among all treatments were challenged orally with 10(4) SE on d 4 of feed removal. When compared with the NM treatments, weight losses were significantly higher in the M treatments, regardless of water treatments. When compared with NM treatments, crop pH was significantly higher in the M treatment receiving distilled water. Crop pH was reduced to that of the NM controls by 0.5% acetic acid in the drinking water. No consistent significant changes were observed for volatile fatty acids. The number of hens positive for SE in crop and ceca after culture and the number of SE per crop and per gram of cecal contents were higher in the M treatments, when compared with the NM treatments, but there was no effect of addition of either of the acids to the drinking water. Additional research using different acid treatment regimens may provide a tool for reducing the incidence of SE in eggs and internal organs during and following molting of laying hens.
DeSimone, Leslie A.; Hamilton, Pixie A.; Gilliom, Robert J.
2009-01-01
More than 43 million people - about 15 percent of the U.S. population - rely on domestic wells as their source of drinking water (Hutson and others, 2004). The quality and safety of water from domestic wells, also known as private wells, are not regulated by the Federal Safe Drinking Water Act or, in most cases, by state laws. Rather, individual homeowners are responsible for maintaining their domestic well systems and for monitoring water quality. The lack of regular monitoring of domestic wells makes periodic assessments at national, regional, and local scales important sources for providing information about this key source of drinking water. This study from the National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey (USGS) assesses water-quality conditions for about 2,100 domestic wells. The sampled wells are located in 48 states and in parts of 30 regionally extensive aquifers used for water supply in the United States. As many as 219 properties and contaminants, including pH, major ions, nutrients, trace elements, radon, pesticides, and volatile organic compounds (VOCs), were measured. Fecal indicator bacteria and additional radionuclides were analyzed for a smaller number of wells. The large number of contaminants assessed and the broad geographic coverage of the present study provides a foundation for an improved understanding of the quality of water from the major aquifers tapped by domestic supply wells in the United States.
AddoNtim, Susana; Mitra, Somenath
2012-01-01
The adsorptive removal of arsenic from water using a multiwall carbon nanotube-zirconia nanohybrid (MWCNT-ZrO2) is presented. The MWCNT-ZrO2 with 4.85% zirconia was effective in meeting the drinking water standard levels of 10 μg L−1. The absorption capacity of the composite were 2000 μg g−1 and 5000 μg g−1 for As (III) and As (V) respectively, which were significantly higher than those reported previously for iron oxide coated MWCNTs. The adsorption of As (V) on MWCNT-ZrO2 was faster than that of As (III), and a pseudo-second order rate equation effectively described the uptake kinetics. The adsorption isotherms for As (III) and As (V) fitted both the Langmuir and Freundlich models. A major advantage of the MWCNT-ZrO2 was that the adsorption capacity was not a function of pH. PMID:22424815
Ishaq, M; Jan, F Akbar; Khan, Murad Ali; Ihsanullah, I; Ahmad, I; Shakirullah, M; Roohullah
2013-02-01
The purpose of the present study was to find out the sources of mercury and arsenic pollution of water in the industrial area of Peshawar, the capital of Khyber Pakhtunkhwa, Pakistan. Samples of effluents, mud, and water were collected from the target area (industrial area of Peshawar), the area of water supply source, and from the less polluted area, the Lower Dir district, as the control. Hg was determined by the cold vapor generation technique, while arsenic was determined using the electrothermal atomic absorption technique. Data of the water from the industrial area were compared with that of the source area, control area, as well as with the WHO and some international drinking water quality standards. The results show that some parameters, i.e., TDS, DO, pH, and hardness, were more than the permissible limits. Textile and glass industries were found to be the major sources of Hg and As pollution. Downstream dilution of these contaminants was also observed.
Assessment and modeling of groundwater quality using WQI and GIS in Upper Egypt area.
Rabeiy, Ragab ElSayed
2017-04-04
The continuous growth and development of population need more fresh water for drinking, irrigation, and domestic in arid countries like Egypt. Evaluation the quality of groundwater is an essential study to ensure its suitability for different purposes. In this study, 812 groundwater samples were taken within the middle area of Upper Egypt (Sohag Governorate) to assess the quality of groundwater for drinking and irrigation purposes. Eleven water parameters were analyzed at each groundwater sample (Na + , K + , Ca 2+ , Mg 2+ , HCO 3 - SO 4 2- , Fe 2+ , Mn 2+ , Cl - , electrical conductivity, and pH) to exploit them in water quality evaluation. A classical statistics were applied for the raw data to examine the distribution of physicochemical parameters in the investigated area. The relationship between groundwater parameters was tested using the correlation coefficient where a strong relationship was found between several water parameters such as Ca 2+ and Cl - . Water quality index (WQI) is a mathematical model used to transform many water parameters into a single indicator value which represents the water quality level. Results of WQI showed that 20% of groundwater samples are excellent, 75% are good for drinking, and 7% are very poor water while only 1% of samples are unsuitable for drinking. To test the suitability of groundwater for irrigation, three indices are used; they are sodium adsorption ration (SAR), sodium percentage (Na%), and permeability index (PI). For irrigation suitability, the study proved that most sampling sites are suitable while less than 3% are unsuitable for irrigation. The spatial distribution of the estimated values of WQI, SAR, Na%, PI, and each groundwater parameter was spatially modeled using GIS.
Sisay, Tadesse; Beyene, Abebe; Alemayehu, Esayas
2017-10-18
The failure to provide safe drinking water services to all people is the greatest development setback of the twenty-first century including Ethiopia. Potential pollutants from various sources are deteriorating drinking water quality in different seasons, and associated health risks were not clearly known. We determined seasonal and spatial variations of urban drinking water characteristics and associated health risks in Agaro, Jimma, and Metu towns, Southwest Ethiopia. Seventy-two samples were collected during dry and rainy seasons of 2014 and 2015. The majority (87.4%) of physicochemical parameters was found within the recommended limits. However, free residual chlorine in Jimma and Agaro town water sources was lower than the recommended limit and negatively correlated with total and fecal coliform counts (r = - 0.585 and - 0.638). Statistically significant differences were observed at pH, turbidity, and total coliform between dry and rainy seasons (p < 0.05). A Kruskal-Wallis H test revealed a statistically significant difference in electrical conductivity, total hardness, fluoride, iron, and fecal coliform across the study towns (p < 0.05). The Agaro town water source was the highest in fluoride concentration (3.15 mg/l). The daily exposure level for high fluoride concentration in Agaro town was estimated between 0.19 and 0.41 mg/kg day, and the average cumulative hazard index of fluoride was > 3.13 for all age groups. Water quality variations were observed in all conventional water treatment systems in the rainy season, and further research should focus on its optimization to safeguard the public.
Long-Term Bacterial Dynamics in a Full-Scale Drinking Water Distribution System
Prest, E. I.; Weissbrodt, D. G.; Hammes, F.; van Loosdrecht, M. C. M.; Vrouwenvelder, J. S.
2016-01-01
Large seasonal variations in microbial drinking water quality can occur in distribution networks, but are often not taken into account when evaluating results from short-term water sampling campaigns. Temporal dynamics in bacterial community characteristics were investigated during a two-year drinking water monitoring campaign in a full-scale distribution system operating without detectable disinfectant residual. A total of 368 water samples were collected on a biweekly basis at the water treatment plant (WTP) effluent and at one fixed location in the drinking water distribution network (NET). The samples were analysed for heterotrophic plate counts (HPC), Aeromonas plate counts, adenosine-tri-phosphate (ATP) concentrations, and flow cytometric (FCM) total and intact cell counts (TCC, ICC), water temperature, pH, conductivity, total organic carbon (TOC) and assimilable organic carbon (AOC). Multivariate analysis of the large dataset was performed to explore correlative trends between microbial and environmental parameters. The WTP effluent displayed considerable seasonal variations in TCC (from 90 × 103 cells mL-1 in winter time up to 455 × 103 cells mL-1 in summer time) and in bacterial ATP concentrations (<1–3.6 ng L-1), which were congruent with water temperature variations. These fluctuations were not detected with HPC and Aeromonas counts. The water in the network was predominantly influenced by the characteristics of the WTP effluent. The increase in ICC between the WTP effluent and the network sampling location was small (34 × 103 cells mL-1 on average) compared to seasonal fluctuations in ICC in the WTP effluent. Interestingly, the extent of bacterial growth in the NET was inversely correlated to AOC concentrations in the WTP effluent (Pearson’s correlation factor r = -0.35), and positively correlated with water temperature (r = 0.49). Collecting a large dataset at high frequency over a two year period enabled the characterization of previously undocumented seasonal dynamics in the distribution network. Moreover, high-resolution FCM data enabled prediction of bacterial cell concentrations at specific water temperatures and time of year. The study highlights the need to systematically assess temporal fluctuations in parallel to spatial dynamics for individual drinking water distribution systems. PMID:27792739
Long-Term Bacterial Dynamics in a Full-Scale Drinking Water Distribution System.
Prest, E I; Weissbrodt, D G; Hammes, F; van Loosdrecht, M C M; Vrouwenvelder, J S
2016-01-01
Large seasonal variations in microbial drinking water quality can occur in distribution networks, but are often not taken into account when evaluating results from short-term water sampling campaigns. Temporal dynamics in bacterial community characteristics were investigated during a two-year drinking water monitoring campaign in a full-scale distribution system operating without detectable disinfectant residual. A total of 368 water samples were collected on a biweekly basis at the water treatment plant (WTP) effluent and at one fixed location in the drinking water distribution network (NET). The samples were analysed for heterotrophic plate counts (HPC), Aeromonas plate counts, adenosine-tri-phosphate (ATP) concentrations, and flow cytometric (FCM) total and intact cell counts (TCC, ICC), water temperature, pH, conductivity, total organic carbon (TOC) and assimilable organic carbon (AOC). Multivariate analysis of the large dataset was performed to explore correlative trends between microbial and environmental parameters. The WTP effluent displayed considerable seasonal variations in TCC (from 90 × 103 cells mL-1 in winter time up to 455 × 103 cells mL-1 in summer time) and in bacterial ATP concentrations (<1-3.6 ng L-1), which were congruent with water temperature variations. These fluctuations were not detected with HPC and Aeromonas counts. The water in the network was predominantly influenced by the characteristics of the WTP effluent. The increase in ICC between the WTP effluent and the network sampling location was small (34 × 103 cells mL-1 on average) compared to seasonal fluctuations in ICC in the WTP effluent. Interestingly, the extent of bacterial growth in the NET was inversely correlated to AOC concentrations in the WTP effluent (Pearson's correlation factor r = -0.35), and positively correlated with water temperature (r = 0.49). Collecting a large dataset at high frequency over a two year period enabled the characterization of previously undocumented seasonal dynamics in the distribution network. Moreover, high-resolution FCM data enabled prediction of bacterial cell concentrations at specific water temperatures and time of year. The study highlights the need to systematically assess temporal fluctuations in parallel to spatial dynamics for individual drinking water distribution systems.
Studies on the treatment of surface water using rajma seeds
NASA Astrophysics Data System (ADS)
Merlin, S. Babitha; Abirami, M.; Kumar, R. Suresh
2018-03-01
Indiscriminate disposal of wastewater with suspended solids have led to higher amount of pollution to the natural water bodies. Turbidity removal becomes an essential part in the water treatment when surface water is used for drinking purpose, this can be achieved by means of coagulation process. Coagulation process is the dosing of a coagulant in water, resulting in the destabilization of negatively charged particles. Commercial coagulants which were widely used can synthesize by-products in turn may pollute the environment and deteriorate the ecosystem at a slow rate. So, now-a-days natural coagulants are used as a potential substitute because it's biodegradable, ecofriendly and non-toxic. In this study, the turbid surface water samples were treated using powdered seeds of Rajma (natural coagulant) followed by variations in dosage, settling time and pH were also studied. From the results obtained, it was found that the Rajma seeds powder achieved 48.80% efficiency for 0.5 g/l of optimum dose at pH 6 for 20 min settling time respectively.
Hagiwara, Kenta; Inui, Tetsuo; Koike, Yuya; Aizawa, Mamoru; Nakamura, Toshihiro
2015-03-01
A rapid and simple method using wavelength-dispersive X-ray fluorescence (WDXRF) spectrometry after in situ solid-phase extraction (SPE) was developed for the speciation and evaluation of the concentration of inorganic arsenic (As) in drinking water. The method involves the simultaneous collection of As(III) and As(V) using 13 mm ϕ SPE miniature disks. The removal of Pb(2+) from the sample water was first conducted to avoid the overlapping PbLα and AsKα spectra on the XRF spectrum. To this end, a 50 mL aqueous sample (pH 5-9) was passed through an iminodiacetate chelating disk. The filtrate was adjusted to pH 2-3 with HCl, and then ammonium pyrrolidine dithiocarbamate solution was added. The solution was passed through a hydrophilic polytetrafluoroethylene filter placed on a Zr and Ca loaded cation-exchange disk at a flow rate of 12.5 mL min(-1) to separate As(III)-pyrrolidine dithiocarbamate complex and As(V). Each SPE disk was affixed to an acrylic plate using adhesive cellophane tape, and then examined by WDXRF spectrometry. The detection limits of As(III) and As(V) were 0.8 and 0.6 μg L(-1), respectively. The proposed method was successfully applied to screening for As speciation and concentration evaluation in spring water and well water. Copyright © 2014 Elsevier B.V. All rights reserved.
Ground-Water Quality in the Delaware River Basin, New York, 2001 and 2005-2006
Nystrom, Elizabeth A.
2007-01-01
The Federal Clean Water Act Amendments of 1977 require that States monitor and report on the quality of ground water and surface water. To satisfy part of these requirements, the U.S. Geological Survey and New York State Department of Environmental Conservation have developed a program in which ground-water quality is assessed in 2 to 3 of New York State's 14 major basins each year. To characterize the quality of ground water in the Delaware River Basin in New York, water samples were collected from December 2005 to February 2006 from 10 wells finished in bedrock. Data from 9 samples collected from wells finished in sand and gravel in July and August 2001 for the National Water Quality Assessment Program also are included. Ground-water samples were collected and processed using standard U.S. Geological Survey procedures. Samples were analyzed for more than 230 properties and compounds, including physical properties, major ions, nutrients, trace elements, radon-222, pesticides and pesticide degradates, volatile organic compounds, and bacteria. Concentrations of most compounds were less than drinking-water standards established by the U.S. Environmental Protection Agency and New York State Department of Health; many of the organic analytes were not detected in any sample. Drinking-water standards that were exceeded at some sites include those for color, turbidity, pH, aluminum, arsenic, iron, manganese, radon-222, and bacteria. pH ranged from 5.6 to 8.3; the pH of nine samples was less than the U.S. Environmental Protection Agency secondary drinking-water standard range of 6.5 to 8.5. Water in the basin is generally soft to moderately hard (hardness 120 milligrams per liter as CaCO3 or less). The cation with the highest median concentration was calcium; the anion with the highest median concentrations was bicarbonate. Nitrate was the predominant nutrient detected but no sample exceeded the 10 mg/L U.S. Environmental Protection Agency maximum contaminant level. The trace elements detected with the highest median concentrations were strontium and iron in unfiltered water and strontium and barium in filtered water. Concentrations of trace elements in several samples exceeded U.S. Environmental Protection Agency secondary drinking-water standards, including aluminum (50-200 micrograms per liter, three wells), arsenic (10 micrograms per liter, one well), iron (300 micrograms per liter, three wells), and manganese (50 micrograms per liter, four wells). The median concentration of radon-222 was 1,580 picoCuries per liter. Radon-222 is not currently regulated, but the U.S. Environmental Protection Agency has proposed a maximum contaminant level of 300 picoCuries per liter along with an alternative maximum contaminant level of 4,000 picoCuries per liter, to be in effect in states that have programs to address radon in indoor air. Concentrations of radon-222 exceeded the proposed maximum contaminant level in all 19 of the samples and exceeded the proposed alternative maximum contaminant level in 1 sample. Eleven pesticides and pesticide degradates were detected in samples from ten wells; all were herbicides or herbicide degradates. Three volatile organic compounds were detected, including disinfection byproducts such as trichloromethane and gasoline components or additives such as methyl tert-butyl ether. No pesticides, pesticide degradates, or volatile organic compounds were detected above established limits. Coliform bacteria were detected in samples from five wells, four of which were finished in sand and gravel; Escherichia coli was not detected in any sample.
Chu, Wenhai; Li, Xin; Bond, Tom; Gao, Naiyun; Bin, Xu; Wang, Qiongfang; Ding, Shunke
2016-12-15
The haloacetamides (HAcAms), an emerging class of nitrogen-containing disinfection byproducts (N-DBPs), are highly cytotoxic and genotoxic, and typically occur in treated drinking waters at low μg/L concentrations. Since many drinking distribution and storage systems contain unlined cast iron and copper pipes, reactions of HAcAms with zero-valent iron (ZVI) and metallic copper (Cu) may play a role in determining their fate. Moreover, ZVI and/or Cu are potentially effective HAcAm treatment technologies in drinking water supply and storage systems. This study reports that ZVI alone reduces trichloroacetamide (TCAcAm) to sequentially form dichloroacetamide (DCAcAm) and then monochloroacetamide (MCAcAm), whereas Cu alone does not impact HAcAm concentrations. The addition of Cu to ZVI significantly improved the removal of HAcAms, relative to ZVI alone. TCAcAm and their reduction products (DCAcAm and MCAcAm) were all decreased to below detection limits at a molar ratio of ZVI/Cu of 1:1 after 24 h reaction (ZVI/TCAcAm = 0.18 M/5.30 μM). TCAcAm reduction increased with the decreasing pH from 8.0 to 5.0, but values from an integrated toxic risk assessment were minimised at pH 7.0, due to limited removal MCAcAm under weak acid conditions (pH = 5.0 and 6.0). Higher temperatures (40 °C) promoted the reductive dehalogenation of HAcAms. Bromine was preferentially removed over chlorine, thus brominated HAcAms were more easily reduced than chlorinated HAcAms by ZVI/Cu. Although tribromoacetamide was more easily reduced than TCAcAm during ZVI/Cu reduction, treatment of tribromoacetamide resulted in a higher integrated toxicity risk than TCAcAm, due to the formation of monobromoacetamide (MBAcAm). Copyright © 2016 Elsevier Ltd. All rights reserved.
Formation of NDMA from ranitidine and sumatriptan: the role of pH.
Shen, Ruqiao; Andrews, Susan A
2013-02-01
N-nitrosodimethylamine (NDMA) is an emerging disinfection by-product (DBP) which can be formed via the chloramination of amine-based precursors. The formation of NDMA is mainly determined by the speciation of chloramines and the precursor amine groups, both of which are highly dependent on pH. The impact of pH on NDMA formation has been studied for the model precursor dimethylamine (DMA) and natural organic matter (NOM), but little is known for amine-based pharmaceuticals which have been newly identified as a group of potential NDMA precursors, especially in waters impacted by treated wastewater effluents. This study investigates the role of pH in the formation of NDMA from two amine-based pharmaceuticals, ranitidine and sumatriptan, under drinking water relevant conditions. The results indicate that pH affects both the ultimate NDMA formation as well as the reaction kinetics. The maximum NDMA formation typically occurs in the pH range of 7-8. At lower pH, the reaction is limited due to the lack of non-protonated amines. At higher pH, although the initial reaction is enhanced by the increasing amount of non-protonated amines, the ultimate NDMA formation is limited because of the lack of dichloramine. Copyright © 2012 Elsevier Ltd. All rights reserved.
Effect of soft drinks on proximal plaque pH at normal and low salivary secretion rates.
Johansson, Ann-Katrin; Lingström, Peter; Birkhed, Dowen
2007-11-01
The aim of this study was to investigate the effect of different types of drinks on plaque pH during normal and drug-induced low salivary secretion rates. Three drinks were tested in 10 healthy adult subjects: 1) Coca-Cola regular, 2) Coca-Cola light, and 3) fresh orange juice. pH was measured in the maxillary incisor and premolar region with the microtouch method. The area under the pH curve (AUC) was calculated. During normal salivary condition, mouth-rinsing with Coca-Cola regular resulted in a slightly more pronounced drop in pH during the first few minutes than it did with orange juice. After this initial phase, both products showed similar and relatively slow pH recovery. Coca-Cola light also resulted in low pH values during the very first minutes, but thereafter in a rapid recovery back to baseline. During dry mouth conditions, the regular Cola drink showed a large initial drop in pH, and slightly more pronounced than for orange juice. After the initial phase, both products had a similar and slow recovery back to baseline. At most time-points, AUC was significantly greater in dry conditions compared to normal conditions for Coca-Cola regular and orange juice, but not for Coca-Cola light. Coca-Cola light generally showed a significantly smaller AUC than Coca-Cola regular and orange juice. The main conclusion from this study is that a low salivary secretion rate may accentuate the fall in pH in dental plaque after gentle mouth-rinsing with soft drinks.
Xu, Ke; Ben, Weiwei; Ling, Wencui; Zhang, Yu; Qu, Jiuhui; Qiang, Zhimin
2017-10-15
Levofloxacin (LF) is a frequently detected fluoroquinolone in surface water, and permanganate (MnO 4 - ) is a commonly used oxidant in drinking water treatment. This study investigated the impact of humic acid (HA) on LF degradation by aqueous MnO 4 - from both kinetic and mechanistic aspects. In the absence of HA, the second-order rate constant (k) of LF degradation by MnO 4 - was determined to be 3.9 M -1 s -1 at pH 7.5, which increased with decreasing pH. In the presence of HA, the pseudo-first-order rate constant (k obs ) of LF degradation at pH 7.5 was significantly increased by 3.8- and 2.8-fold at [HA] o :[KMnO 4 ] o (mass ratio) = 0.5 and 1, respectively. Secondary oxidant scavenging and electron paramagnetic resonance tests indicated that HA could form a complex with Mn(III), a strongly oxidative intermediate produced in the reaction of MnO 4 - with HA, to induce the successive formation of superoxide radicals (O 2 - ) and hydroxyl radicals (OH). The resulting OH primarily contributed to the accelerated LF degradation, and the complex [HA-Mn(III)] could account for the rest of acceleration. The degradation of LF and its byproducts during MnO 4 - oxidation was mainly through hydroxylation, dehydrogenation and carboxylation, and the presence of HA led to a stronger destruction of LF. This study helps better understand the degradation of organic micropollutants by MnO 4 - in drinking water treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ward, N R; Wolfe, R L; Olson, B H
1984-01-01
The influence of pH, application technique, and chlorine-to-nitrogen weight ratio on the bactericidal activity of inorganic chloramine compounds was determined with stock and environmental strains of Escherichia coli, Salmonella spp., Pseudomonas aeruginosa, Klebsiella pneumoniae, and Enterobacter cloacae. The rate of inactivation increased from 1.5 to 2 times as the chlorine-to-nitrogen weight ratio was adjusted from 2:1 to 5:1, 5 to 6 times as the pH was decreased from 8 to 6, and 5 to 6 times as the concentration was increased from 1 to 5 mg/liter. Separate additions of free chlorine and ammonia (concurrent addition and preammoniation) into seeded water at or below pH 7.5 resulted in killing comparable to that observed with free chlorine (99% inactivation in less than 20 s). At pH 8, inactivation by separate additions was considerably slower and was comparable to that by prereacted chloramine compounds (99% inactivation in 25 to 26 min). Determination of the effectiveness of inorganic chloramine compounds as primary disinfectants for drinking water must consider the method of application, pH and concentrations of chlorine and ammonia. PMID:6437328
NASA Astrophysics Data System (ADS)
Dhillon, Karaj S.; Dhillon, Surjit K.
2016-02-01
More than 750 groundwater samples collected from different hydrological zones of Punjab state in India were analysed for selenium and some quality parameters to determine suitability of groundwater for irrigation and drinking purpose. Selenium content varied from 0.01 to 35.6 μg L-1. Average Se content in groundwater was the highest in Northeastern Siwalik foothill zone (NSFZ) followed by Central zone (CZ) and Southwestern zone (SWZ). Majority of the water samples contained <10 μg Se L-1 - the safe limit for drinking purpose except one location each in SWZ and CZ and three locations in NSFZ. Only at one location, water contained >20 μg Se L-1 which is considered unsuitable for irrigation of crops. On the basis of pH, 42% of the samples were unfit for drinking in SWZ, 41% in CZ and 6% in NSFZ. Only in SWZ, 24% of the samples with high total dissolved salts were unfit for drinking and 18% unfit for irrigation purpose due to high EC. Selenium content in groundwater was inversely related to depth of water and the degree of relationship was higher for NSFZ (r = -0.342∗∗) followed by CZ (r = -0.157∗) and SWZ (r = -0.126∗). Depending on the amount of water consumed from 2 to 5 L, average Se intake varied from 1.66 to 6.39 μg d-1 and its contribution towards the recommended daily Se allowance ranged from 3.0% to 11.6% for women and 2.4% to 9.1% for men. Among the grain samples, 94% of wheat and 46% of rice contained Se above the deficiency limit of 100 μg kg-1. Thus, the residents in the study area primarily consuming wheat grains and drinking groundwater are getting adequate supply of Se. Among the materials tested for decreasing Se from drinking waters, scrap iron fillings showed potential for commercial use.
The role of groundwater chemistry in the transport of bacteria to water-supply wells
Harvey, R.W.; Metge, D.W.
1999-01-01
Static mini-columns and in situ injection and recovery tests were used to assess the effects of modest changes in groundwater chemistry upon the pH-dependence of bacterial attachment, a primary determinant of bacterial mobility in drinking water aquifers. In uncontaminated groundwater (<1 mg l-1 dissolved organic carbon, DOC), bacterial attachment to aquifer grain surfaces declined steadily from 93 to 20% in response to an increase in pH from 5.8 to 7.8. However, bacterial attachment in modestly-contaminated groundwater (4 mg l-1 DOC) was relatively insensitive to pH change from pH 3.5 to pH 8, as was bacterial attachment in uncontaminated groundwater amended with only ~3 mg l-1 of purified humic acid. Destruction by UV-oxidation of the DOC in contaminated groundwater partially restored the pH-dependence of bacterial attachment. Results from static column tests and from a small-scale (3.6 m) natural-gradient injection and recovery study suggest that low concentrations of surfactants can also substantively alter the attraction of groundwater bacteria for grain surfaces and, therefore can alter the transport of bacteria to water-supply wells. This phenomenon was pH-sensitive and dependent upon the nature of the surfactant. At pH 7.6, 200 mg l-1 of the non-ionic surfactant, Imbentin, caused a doubling of fractional bacterial attachment in aquifer-sediment columns, but had little effect under slightly acidic conditions (e.g. at pH 5.8). In contrast, 1 mg l-1 of linear alkylbenzene sulphonate (LAS) surfactant, a common sewage-derived contaminant, decreased the fractional bacterial attachment by more than 30% at pH 5.8, but had little effect at pH 7.3.Static mini-columns and in situ injection and recovery tests were used to assess the effects of modest changes in groundwater chemistry upon the pH-dependence of bacterial attachment, a primary determinant of bacterial mobility in drinking water aquifers. In uncontaminated groundwater (<1 mg l-1 dissolved organic carbon, DOC), bacterial attachment to aquifer grain surfaces declined steadily from 93 to 20% in response to an increase in pH from 5.8 to 7.8. However, bacterial attachment in modestly-contaminated groundwater (4 mg l-1 DOC) was relatively insensitive to pH change from pH 3.5 to pH 8, as was bacterial attachment in uncontaminated groundwater amended with only approx. 3 mg l-1 of purified humic acid. Destruction of UV-oxidation of the DOC in contaminated groundwater partially restored the pH-dependence of bacterial attachment. Results from the static column tests and from a small-scale (3.6 m) natural-gradient injection and recovery study suggest that low concentrations of surfactants can also substantively alter the attraction of groundwater bacteria for grain surfaces and, therefore can alter the transport of bacteria to water-supply wells. This phenomenon was pH-sensitive and dependent upon the nature of the surfactant. At pH 7.6, 200 mg l-1 of the non-ionic surfactant, Imbentin, caused a doubling of fractional bacterial attachment in aquifer-sediment columns, but had little effect under slightly acidic conditions (e.g. at pH 5.8). In contrast, 1 mg l-1 of linear alkylbenzene sulphonate (LAS) surfactant, a common sewage-derived contaminant, decreased the fractional bacterial attachment by more than 30% at pH 5.8, but had little effect at pH 7.3.
Optimizing magnetic nanoparticles for drinking water technology: The case of Cr(VI).
Simeonidis, K; Kaprara, E; Samaras, T; Angelakeris, M; Pliatsikas, N; Vourlias, G; Mitrakas, M; Andritsos, N
2015-12-01
The potential of magnetite nanoparticles to be applied in drinking water treatment for the removal of hexavalent chromium is discussed. In this study, a method for their preparation which combines the use of low-cost iron sources (FeSO4 and Fe2(SO4)3) and a continuous flow mode, was developed. The produced magnetite nanoparticles with a size of around 20 nm, appeared relatively stable to passivation providing a removal capacity of 1.8 μg Cr(VI)/mg for a residual concentration of 50 μg/L when tested in natural water at pH7. Such efficiency is explained by the reducing ability of magnetite which turns Cr(VI) to an insoluble Cr(OH)3 form. The successful operation of a small-scale system consisting of a contact reactor and a magnetic separator demonstrates a way for the practical introduction and recovery of magnetite nanoparticles in water treatment technology. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Domek, M.J.; LeChevallier, M.W.; Cameron, S.C.
1984-08-01
Low levels of copper in chlorine-free distribution water caused injury of coliform populations. Monitoring of 44 drinking water samples indicated that 64% of the coliform population was injured. Physical and chemical parameters were measured, including three heavy metals (Cu, Cd, and Pb). Copper concentrations were important, ranging from 0.007 to 0.54 mg/liter. Statistical analyses of these factors were used to develop a model to predict coliform injury. The model predicted almost 90% injury with a copper concentration near the mean observed value (0.158 mg/liter) in distribution waters. Laboratory studies with copper concentrations of 0.025 and 0.050 mg/liter in an inorganicmore » carbon buffer under controlled conditions of temperature and pH caused over 90% injury within 6 and 2 days, respectively. Studies of the metabolism of injured Escherichia coli cells indicated that the respiratory chain is at least one site of damage in injured cells.« less
Huang, Ting-Lin; Zhou, Shi-Lei; Zhang, Hai-Han; Bai, Shi-Yuan; He, Xiu-Xiu; Yang, Xiao
2015-05-04
Nitrogen is considered to be one of the most widespread pollutants leading to eutrophication of freshwater ecosystems, especially in drinking water reservoirs. In this study, an oligotrophic aerobic denitrifier was isolated from drinking water reservoir sediment. Nitrogen removal performance was explored. The strain was identified by 16S rRNA gene sequence analysis as Zoogloea sp. N299. This species exhibits a periplasmic nitrate reductase gene (napA). Its specific growth rate was 0.22 h-1. Obvious denitrification and perfect nitrogen removal performances occurred when cultured in nitrate and nitrite mediums, at rates of 75.53%±1.69% and 58.65%±0.61%, respectively. The ammonia removal rate reached 44.12%±1.61% in ammonia medium. Zoogloea sp. N299 was inoculated into sterilized and unsterilized reservoir source waters with a dissolved oxygen level of 5-9 mg/L, pH 8-9, and C/N 1.14:1. The total nitrogen removal rate reached 46.41%±3.17% (sterilized) and 44.88%±4.31% (unsterilized). The cell optical density suggested the strain could survive in oligotrophic drinking water reservoir water conditions and perform nitrogen removal. Sodium acetate was the most favorable carbon source for nitrogen removal by strain N299 (p<0.05). High C/N was beneficial for nitrate reduction (p<0.05). The nitrate removal efficiencies showed no significant differences among the tested inoculums dosage (p>0.05). Furthermore, strain N299 could efficiently remove nitrate at neutral and slightly alkaline and low temperature conditions. These results, therefore, demonstrate that Zoogloea sp. N299 has high removal characteristics, and can be used as a nitrogen removal microbial inoculum with simultaneous aerobic nitrification and denitrification in a micro-polluted reservoir water ecosystem.
Formation and occurrence of new polar iodinated disinfection byproducts in drinking water.
Pan, Yang; Li, Wenbin; An, Hao; Cui, Hao; Wang, Ying
2016-02-01
During drinking water disinfection, iodinated disinfection byproducts (I-DBPs) can be generated through reactions between iodide, disinfectants, and natural organic matter. Drinking water I-DBPs have been increasingly attracting attention as emerging organic pollutants as a result of their significantly higher toxicity and growth inhibition than their chloro- and bromo-analogues. In this study, by adopting ultra performance liquid chromatography/electrospray ionization-triple quadrupole mass spectrometry precursor ion scan, multiple reaction monitoring, and product ion scan analyses, 11 new polar I-DBPs with confirmed structures and eight new polar I-DBPs with proposed structures were detected in simulated drinking water samples. Chloramination of simulated raw waters containing natural organic matter with higher aromaticity produced higher levels of new phenolic I-DBPs. Formation of new polar I-DBPs and total organic iodine (TOI) was most favored in chloramination, followed by chlorine dioxide treatment, and relatively minor in chlorination. Lower pH in chloramination substantially enhanced the formation of new polar I-DBPs and TOI. NH2Cl and dissolved organic nitrogen could be important nitrogen sources and precursors for formation of the two new nitrogenous phenolic I-DBPs. Notably, in tap water samples collected from nine major cities located in the Yangtze River Delta region of China, seven of the 11 new polar I-DBPs with confirmed structures were detected at levels from 0.11 to 28 ng/L, and the two new nitrogenous phenolic I-DBPs were ubiquitous with concentrations from 0.12 to 24 ng/L, likely due to the relatively high dissolved organic nitrogen levels in regional source waters. Copyright © 2015 Elsevier Ltd. All rights reserved.
Evaluation of the erosive potential of soft drinks.
de Carvalho Sales-Peres, Sílvia Helena; Magalhães, Ana Carolina; de Andrade Moreira Machado, Maria Aparecida; Buzalaf, Marília Afonso Rabelo
2007-01-01
This in vitro study evaluated the capability of different soft drinks (Coca-Cola(R)-C, Coca-Cola Light(R)-CL, Guaraná(R)-G, Pepsi Twist(R)-P and Sprite Light(R)-SL) to erode dental enamel, relating the percentage of superficial microhardness change (%SMHC) to concentrations of fluoride and phosphate, buffering capacity and pH of these drinks. The soft drinks were evaluated in respect to concentration of phosphate and fluoride spectrophotometrically using Fiske, Subarrow method and by specific electrode (Orion 9609), respectively. The pH and the buffering capacity were determined by glass electrode and by estimating of the volume of NaOH necessary to change the pH of the drink in one unit, respectively. One hundred specimens of bovine enamel were randomly assigned to 5 groups of 20 each. They were exposed to 4 cycles of demineralisation in the beverage and remineralisation in artificial saliva. The softening of enamel was evaluated by %SMHC. The mean %SMHC was: C=77.27%, CL= 72.45%, SL=78.43%, G=66.65% and P=67.95%. Comparing the %SMHC promoted by 5 soft drinks, SL = C > CL > P = G (P<.05). There was not significant correlation between %SMHC and the other variables tested for the five drinks (P>.05). The five soft drinks caused surface softening of enamel (erosion). In respect to the chemical variables tested, despite not statistically significant, the pH seems to have more influence on the erosive potential of these drinks. (Eur J Dent 2007;1:10-13).
Slack, L.J.
1987-01-01
Lake Tuscaloosa, created in 1969 by the impoundment of North River, provides the primary water supply for Tuscaloosa, Alabama , and surrounding areas. This report describes the percent contribution of major tributaries to the mean inflow to the lake; water quality; and changes in water quality in the lake and selected tributaries. During base flow, about 60% of the total flow into Lake Tuscaloosa is contributed by Binion and Carroll Creeks, which drain only 22% of the Lake Tuscaloosa basin. Binion and Carroll Creek basins are underlain primarily by sand and gravel deposits of the Coker Formation. Mean inflow to the lake was 1,150 cu ft/sec during 1983, a wet year, and 450 cu ft/sec during 1985, a relatively dry year. More than 80% of the total inflow during both years was contributed by North River and Binion, Cripple, and Carroll Creeks. About 59% was contributed by North River during those years. Except for pH, sulfate, and dissolved and total recoverable iron and manganese, the water quality of the tributaries is generally within drinking water limits and acceptable for most uses. The water quality of Lake Tuscaloosa is generally within drinking water limits and acceptable for most uses. The maximum and median concentrations of sulfate increased every year at the dam from 1979 to 1985 (7.2 to 18 mg/L and 6.2 to 14 mg/L, respectively). The dissolved solids concentrations for water at the dam have varied (1979-86) from 27 to 43 mg/L; the sulfate, 5.2 to 18 mg/L; and the dissolved iron, 10 to 250 micrograms/L--all within the recommended drinking water limits. However, concentrations of dissolved manganese and total recoverable iron and manganese at the dam commonly exceeded the recommended drinking water limits. In November 1985, after the summer warmup and increase in biological activity, the water quality at five depth profiles sites on Lake Tuscaloosa was acceptable for most uses, generally. However, a dissolved oxygen concentration of 1 mg/L or less was observed within 5 to 10 ft of the bottom for several depth profiles. At depths > 35 to 40 ft (out of a total depth of about 50 to 100 ft) the dissolved oxygen concentration was < 5 mg/L at several sites. By mid-January 1986, the temperature and dissolved oxygen depth profiles were virtually constant from top to bottom of the lake at all five sites; this indicated that lake turnover was complete. However, significant variation existed in pH depth profiles. (Author 's abstract)
Belila, A; El-Chakhtoura, J; Otaibi, N; Muyzer, G; Gonzalez-Gil, G; Saikaly, P E; van Loosdrecht, M C M; Vrouwenvelder, J S
2016-05-01
Microbial processes inevitably play a role in membrane-based desalination plants, mainly recognized as membrane biofouling. We assessed the bacterial community structure and diversity during different treatment steps in a full-scale seawater desalination plant producing 40,000 m(3)/d of drinking water. Water samples were taken over the full treatment train consisting of chlorination, spruce media and cartridge filters, de-chlorination, first and second pass reverse osmosis (RO) membranes and final chlorine dosage for drinking water distribution. The water samples were analyzed for water quality parameters (total bacterial cell number, total organic carbon, conductivity, pH, etc.) and microbial community composition by 16S rRNA gene pyrosequencing. The planktonic microbial community was dominated by Proteobacteria (48.6%) followed by Bacteroidetes (15%), Firmicutes (9.3%) and Cyanobacteria (4.9%). During the pretreatment step, the spruce media filter did not impact the bacterial community composition dominated by Proteobacteria. In contrast, the RO and final chlorination treatment steps reduced the Proteobacterial relative abundance in the produced water where Firmicutes constituted the most dominant bacterial group. Shannon and Chao1 diversity indices showed that bacterial species richness and diversity decreased during the seawater desalination process. The two-stage RO filtration strongly reduced the water conductivity (>99%), TOC concentration (98.5%) and total bacterial cell number (>99%), albeit some bacterial DNA was found in the water after RO filtration. About 0.25% of the total bacterial operational taxonomic units (OTUs) were present in all stages of the desalination plant: the seawater, the RO permeates and the chlorinated drinking water, suggesting that these bacterial strains can survive in different environments such as high/low salt concentration and with/without residual disinfectant. These bacterial strains were not caused by contamination during water sample filtration or from DNA extraction protocols. Control measurements for sample contamination are important for clean water studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Evaluation of selective composite cryogel for bromate removal from drinking water.
Hajizadeh, Solmaz; Kirsebom, Harald; Galaev, Igor Y; Mattiasson, Bo
2010-06-01
Bromate, which is a potential carcinogen, should be removed from drinking water to levels of less than 10 microg/L. A chitosan-based molecularly imprinted polymer (MIP) and a sol-gel ion-exchange double hydrous oxide (Fe(2)O(3) x Al(2)O(3) x xH(2)O) adsorbent (inorganic adsorbent) were prepared for this purpose. The sorption behavior of each adsorbent including sorption kinetics, isotherms, effect of pH and selective sorption were investigated in detail. Sorption experimental results showed that the MIP adsorbents had better selectivity for bromate, even in the presence of high concentrations of nitrate, as compared to the inorganic adsorbent. It was found that pH does not affect the adsorption of bromate when using the inorganic adsorbent. Additionally, both adsorbents were immobilized in a polymeric cryogel inside plastic carriers to make them more practical for using in larger scale. Regeneration of the cryogels either containing MIP or inorganic adsorbents were carried out by 0.1 M NaOH and 0.1 M NaCl, respectively. It was found that the regenerated MIP and inorganic adsorbents could be used at least three and five times, respectively, without any loss in their sorption capacity.
Quantification of melamine in drinking water and wastewater by micellar liquid chromatography.
Beltrán-Martinavarro, Beatriz; Peris-Vicente, Juan; Rambla-Alegre, Maria; Marco-Peiró, Sergio; Esteve-Romero, Josep; Carda-Broch, Samuel
2013-01-01
Because of the large potential health impact caused by deliberate contamination with the synthetic chemical melamine of different products for human and animal consumption, the World Health Organization and the Food and Agriculture Organization of the United Nations provided a range of recommendations in order to facilitate obtaining needed data, among which was the determination of the background levels of melamine in drinking water and wastewater (December 4, 2008). A chromatographic procedure using a C18 column, a micellar mobile phase consisting of sodium dodecyl sulfate (0.1 M), and 1-propanol (7.5%) buffered at pH 3, and detection by absorbance at 210 nm is reported in this paper for the quantification of melamine in drinking water and wastewater. Samples were filtered and directly injected into the chromatographic system, thus avoiding an extraction procedure. The optimal mobile phase composition was obtained by a chemometrics approach that considered the retention factor, efficiency, and peak shape. Melamine was eluted in about 6.2 min without interferences. Validation was performed following U.S. Food and Drug Administration guidelines. The analytical parameters studied were linearity (0.03-5 microg/mL, R2 = 0.998), LOD (13 nglmL), intraday and interday accuracy (between 4.1 and 12.2%), intraday and interday precision (less than 14.8%), and robustness (RSD < 5.1% for retention time and <9.0% for area). The proposed methodology was successfully applied for analysis of local wastewater and drinking water, in which no melamine was found.
Gu, Binghe; Meldrum, Brian; McCabe, Terry; Phillips, Scott
2012-01-01
A theoretical treatment was developed and validated that relates analyte concentration and mass sensitivities to injection volume, retention factor, particle diameter, column length, column inner diameter and detection wavelength in liquid chromatography, and sample volume and extracted volume in solid-phase extraction (SPE). The principles were applied to improve sensitivity for trace analysis of clopyralid in drinking water. It was demonstrated that a concentration limit of detection of 0.02 ppb (μg/L) for clopyralid could be achieved with the use of simple UV detection and 100 mL of a spiked drinking water sample. This enabled reliable quantitation of clopyralid at the targeted 0.1 ppb level. Using a buffered solution as the elution solvent (potassium acetate buffer, pH 4.5, containing 10% of methanol) in the SPE procedures was found superior to using 100% methanol, as it provided better extraction recovery (70-90%) and precision (5% for a concentration at 0.1 ppb level). In addition, the eluted sample was in a weaker solvent than the mobile phase, permitting the direct injection of the extracted sample, which enabled a faster cycle time of the overall analysis. Excluding the preparation of calibration standards, the analysis of a single sample, including acidification, extraction, elution and LC run, could be completed in 1 h. The method was used successfully for the determination of clopyralid in over 200 clopyralid monoethanolamine-fortified drinking water samples, which were treated with various water treatment resins. Copyright © 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
Dahl, Cecilie; Søgaard, Anne Johanne; Tell, Grethe S; Flaten, Trond Peder; Hongve, Dag; Omsland, Tone Kristin; Holvik, Kristin; Meyer, Haakon E; Aamodt, Geir
2013-11-01
Norway has a high incidence of hip fractures, and the incidence varies by degree of urbanization. This variation may reflect a difference in underlying environmental factors, perhaps variations in the concentration of calcium and magnesium in municipal drinking water. A trace metal survey (1986-1991) in 556 waterworks (supplying 64% of the Norwegian population) was linked geographically to hip fractures from hospitals throughout the country (1994-2000). In all, 5472 men and 13,604 women aged 50-85years suffered a hip fracture. Poisson regression models were fitted, adjusting for age, urbanization degree, region of residence, type of water source, and pH. The concentrations of calcium and magnesium in drinking water were generally low. An inverse association was found between concentration of magnesium and risk of hip fracture in both genders (IRR men highest vs. lowest tertile=0.80, 95% CI: 0.74, 0.87; IRR women highest vs. lowest tertile=0.90, 95% CI: 0.85, 0.95), but no consistent association between calcium and hip fracture risk was observed. The highest tertile of urbanization degree (city), compared to the lowest (rural), was related to a 23 and 24% increase in hip fracture risk in men and women, respectively. The association between magnesium and hip fracture did not explain the variation in hip fracture risk between city and rural areas. Magnesium in drinking water may have a protective role against hip fractures; however this association should be further investigated. © 2013 Elsevier Inc. All rights reserved.
Defluoridation of drinking water using adsorption processes.
Loganathan, Paripurnanda; Vigneswaran, Saravanamuthu; Kandasamy, Jaya; Naidu, Ravi
2013-03-15
Excessive intake of fluoride (F), mainly through drinking water, is a serious health hazard affecting humans worldwide. There are several methods used for the defluoridation of drinking water, of which adsorption processes are generally considered attractive because of their effectiveness, convenience, ease of operation, simplicity of design, and for economic and environmental reasons. In this paper, we present a comprehensive and a critical literature review on various adsorbents used for defluoridation, their relative effectiveness, mechanisms and thermodynamics of adsorption, and suggestions are made on choice of adsorbents for various circumstances. Effects of pH, temperature, kinetics and co-existing anions on F adsorption are also reviewed. Because the adsorption is very weak in extremely low or high pHs, depending on the adsorbent, acids or alkalis are used to desorb F and regenerate the adsorbents. However, adsorption capacity generally decreases with repeated use of the regenerated adsorbent. Future research needs to explore highly efficient, low cost adsorbents that can be easily regenerated for reuse over several cycles of operations without significant loss of adsorptive capacity and which have good hydraulic conductivity to prevent filter clogging during the fixed-bed treatment process. Copyright © 2013 Elsevier B.V. All rights reserved.
Bruzzoniti, Maria Concetta; Kobylinska, Dorota Korte; Franko, Mladen; Sarzanini, Corrado
2010-04-14
A flow injection method has been developed for determination of silver. The method is based on a reduction reaction with sodium borohydride which leads to the formation of a colloidal species which is monitored at a wavelength of 390 nm. The reaction variables flow rate, sodium borohydride concentration and pH, which affect sensitivity, were investigated and their effects were established using a two-levels, three-factor experimental design. Further optimization of manifold variables (reaction coil and injection volume) allowed us to determine silver in the range 0.050-5.0 mg L(-1) with a minimum detectable concentration of 0.050 mg L(-1). Silver is added, as biocide, to drinking water for spacecrafts. The chemical species of silver, present in this kind of sample, were characterized by a procedure based on the selective retention of Ag(+) onto a 2.2.2. cryptand based substrate followed by determination of the non-bound and bound (after elution) Ag(+) by the FIA method. The method optimized was applied to a drinking water sample provided for the launch with the Automated Transfer Vehicle (ATV) module Jule Verne to the International Space Station (March 9, 2008). Copyright 2010 Elsevier B.V. All rights reserved.
Soylak, Mustafa; Unsal, Yunus Emre; Yilmaz, Erkan; Tuzen, Mustafa
2011-08-01
A new solid phase extraction method is described for sensitive and selective determination of trace levels of rhodamine B in soft drink, food and industrial waste water samples. The method is based on the adsorption of rhodamine B on the Sepabeads SP 70 resin and its elution with 5 mL of acetonitrile in a mini chromatographic column. Rhodamine B was determined by using UV visible spectrophotometry at 556 nm. The effects of different parameters such as pH, amount of rhodamine B, flow rates of sample and eluent solutions, resin amount, and sample volume were investigated. The influences of some alkali, alkali earth and transition metals on the recoveries of rhodamine B were investigated. The preconcentration factor was found 40. The detection limit based on three times the standard deviation of the reagent blank for rhodamine B was 3.14 μg L⁻¹. The relative standard deviations of the procedure were found as 5% in 1×10⁻⁵ mol L⁻¹ rhodamine B. The presented procedure was successfully applied to real samples including soft drink, food and industrial waste water and lipstick samples. Copyright © 2011 Elsevier Ltd. All rights reserved.
Influence of Soft Drinks with Low pH on Different Ni-Ti Orthodontic Archwire Surface Patterns
NASA Astrophysics Data System (ADS)
Abalos, C.; Paul, A.; Mendoza, A.; Solano, E.; Palazon, C.; Gil, F. J.
2013-03-01
The aim of this study was to determine the influence of soft drinks on the surface of Ni-Ti archwires and their corrosion behavior. Archwires with different patterns (smooth, scratch, dimple, and crack) were selected and characterized by scanning electron microscopy and laser confocal microscopy. Immersion tests were performed in artificial saliva (pH 6.7) with a soft drink with a pH of 2.5 for 28 days. The results showed an increase in the surface defects and/or roughness of the dimple, crack and scratch patterns with the immersion times, and a decrease in corrosion resistance. A relationship between the surface pattern and the extent of the corrosion in Ni-Ti archwires with soft drinks at low pH has been demonstrated. Pattern should be taken into account in future studies, and manufacturing processes that produce surface defects (especially cracks) should be avoided.
Eckhardt, David A.V.; Sloto, Ronald A.
2012-01-01
Groundwater samples were collected from 15 production wells and 1 spring at 9 national park units in New York, Pennsylvania, and West Virginia in July and August 2011 and analyzed to characterize the quality of these water supplies. The sample sites generally were selected to represent areas of potential effects on water quality by drilling and development of gas wells in Marcellus Shale and Utica Shale areas of the northeastern United States. The groundwater samples were analyzed for 53 constituents, including nutrients, major inorganic constituents, trace elements, chemical oxygen demand, radioactivity, and dissolved gases, including methane and radon-222. Results indicated that the groundwater used for water supply at the selected national park units is generally of acceptable quality, although concentrations of some constituents exceeded at least one drinking-water guideline at several wells. Nine analytes were detected in concentrations that exceeded Federal drinking-water standards, mostly secondary standards that define aesthetic properties of water, such as taste and odor. One sample had an arsenic concentration that exceeded the U.S. Environmental Protection Agency maximum contaminant level (MCL) of 10 micrograms per liter (μg/L). The pH, which is a measure of acidity (hydrogen ion activity), ranged from 4.8 to 8.4, and in 5 of the 16 samples, the pH values were outside the accepted U.S. Environmental Protection Agency secondary maximum contaminant level (SMCL) range of 6.5 to 8.5. The concentration of total dissolved solids exceeded the SMCL of 500 milligrams per liter (mg/L) at four sites. The sulfate concentration exceeded the SMCL of 250 mg/L concentration in one sample, and the fluoride concentration exceeded the SMCL of 2 mg/L in one sample. Sodium concentrations exceeded the U.S. Environmental Protection Agency drinking water health advisory of 60 mg/L at four sites. Iron concentrations exceeded the SMCL of 300 μg/L in two samples, and manganese concentrations exceeded the SMCL of 50 μg/L in five samples. Radon-222 concentrations exceeded the proposed U.S. Environmental Protection Agency MCL of 300 picocuries per liter in eight samples.
Model-based pH monitor for sensor assessment.
van Schagen, Kim; Rietveld, Luuk; Veersma, Alex; Babuska, Robert
2009-01-01
Owing to the nature of the treatment processes, monitoring the processes based on individual online measurements is difficult or even impossible. However, the measurements (online and laboratory) can be combined with a priori process knowledge, using mathematical models, to objectively monitor the treatment processes and measurement devices. The pH measurement is a commonly used measurement at different stages in the drinking water treatment plant, although it is a unreliable instrument, requiring significant maintenance. It is shown that, using a grey-box model, it is possible to assess the measurement devices effectively, even if detailed information of the specific processes is unknown.
Effect of Solution Properties on Arsenic Adsorption by Drinking Water Treatment Residuals
NASA Astrophysics Data System (ADS)
Nagar, R.; Sarkar, D.; Datta, R.; Sharma, S.
2005-05-01
Arsenic (As) is a ubiquitous element in the environment. Higher levels of As in soils may result from various anthropogenic sources such as use of arsenical pesticides, fertilizers, wood preservatives, smelter wastes, and coal combustion. This is of great environmental and human health concern due to the high toxicity and proven carcinogenicity of several arsenical species. Thus there is a need for developing cost effective technologies capable of lowering bioavailable As concentrations in soils to environmentally acceptable levels. In-situ immobilization of metals using inexpensive amendments such as minerals (apatite, zeolite, or clay minerals) or waste by-products (steel shot, beringite, and iron-rich biosolids) to reduce bioavailability is an inexpensive alternative to the more expensive ex-situ remediation methods. One such emerging in-situ technique is the application of drinking water treatment residuals (WTRs). WTRs can be classified as a byproduct of drinking water treatment plants and are generally composed of amorphous Fe/Al oxides, activated C and cationic polymers. WTRs possess amorphous structure and generally have high positive charge. Because As is chemically similar to phosphorus, the oxyanions As (V) and As (III) may have the potential of being retained by the WTRs. Thus, it is hypothesized that WTRs retain As irreversibly, thereby reducing As biavailability. As mobility of arsenic is controlled by adsorption reactions, knowledge of adsorption of As by WTRs is of primary relevance. Although the overall rate of adsorption is dependent on numerous factors, review of the literature indicates that competing ions in solution play an important role in the overall retention of As; however, little work has been conducted to identify which ions provide the most competition. As arsenic adsorption appears to be influenced by the variable pH-dependent charges developed on the soil particle surfaces, the effect of pH is also of critical importance. Hence, the purpose of the present study is to investigate the effect of solution properties, such as pH, ionic strength and competing ions on the adsorption of As by WTRs and WTR amended soils. Three types of WTRs are being used, namely Fe- WTR, Al- WTR and Ca-WTR. Effect of pH is being studied by varying the pH values between 3 and 9. The solid/solution ratio has been fixed at 1:5 and a 24 h equilibration has been chosen based on the results of earlier adsorption experiments. Furthermore, As adsorption will be studied in presence of potentially competing ions such as phosphate, sulfate, and selenate. Keywords: Adsorption, water treatment residuals, oxyanions, in-situ remediation, Arsenic
Rigobello, Eliane Sloboda; Dantas, Angela Di Bernardo; Di Bernardo, Luiz; Vieira, Eny Maria
2013-06-01
This study was carried out to evaluate the efficiency of conventional drinking water treatment processes with and without pre-oxidation with chlorine and chlorine dioxide and the use of granular activated carbon (GAC) filtration for the removal of diclofenac (DCF). Water treatment was performed using the Jar test with filters on a lab scale, employing nonchlorinated artesian well water prepared with aquatic humic substances to yield 20HU true color, kaolin turbidity of 70 NTU and 1mgL(-1) DCF. For the quantification of DCF in water samples, solid phase extraction and HPLC-DAD methods were developed and validated. There was no removal of DCF in coagulation with aluminum sulfate (3.47mgAlL(-1) and pH=6.5), flocculation, sedimentation and sand filtration. In the treatment with pre-oxidation and disinfection, DCF was partially removed, but the concentration of dissolved organic carbon (DOC) was unchanged and byproducts of DCF were observed. Chlorine dioxide was more effective than chorine in oxidizing DCF. In conclusion, the identification of DCF and DOC in finished water indicated the incomplete elimination of DCF through conventional treatments. Nevertheless, conventional drinking water treatment followed by GAC filtration was effective in removing DCF (⩾99.7%). In the oxidation with chlorine, three byproducts were tentatively identified, corresponding to a hydroxylation, aromatic substitution of one hydrogen by chlorine and a decarboxylation/hydroxylation. Oxidation with chlorine dioxide resulted in only one byproduct (hydroxylation). Copyright © 2013 Elsevier Ltd. All rights reserved.
Bench-scale evaluation of drinking water treatment parameters on iron particles and water quality.
Rahman, M Safiur; Gagnon, Graham A
2014-01-01
Discoloration of water resulting from suspended iron particles is one of the main customer complaints received by water suppliers. However, understanding of the mechanisms of discoloration as well as role of materials involved in the process is limited. In this study, an array of bench scale experiments were conducted to evaluate the impact of the most common variables (pH, PO4, Cl2 and DOM) on the properties of iron particles and suspensions derived from the oxygenation of Fe(II) ions in NaHCO3 buffered synthetic water systems. The most important factors as well as their rank influencing iron suspension color and turbidity formation were identified for a range of water quality parameters. This was accomplished using a 2(4) full factorial design approach at a 95% confidence level. The statistical analysis revealed that phosphate was found to be the most significant factor to alter color (contribution: 37.9%) and turbidity (contribution: 45.5%) in an iron-water system. A comprehensive study revealed that phosphate and chlorine produced iron suspension with reduced color and turbidity, made ζ-potential more negative, reduced the average particle size, and increased iron suspension stability. In the presence of DOM, color was observed to increase but a reverse trend was observed to decrease the turbidity and to alter particle size distribution. HPSEC results suggest that higher molecular weight fractions of DOM tend to adsorb onto the surfaces of iron particles at early stages, resulting in alteration of the surface charge of iron particles. This in turn limits particles aggregation and makes iron colloids highly stable. In the presence of a phosphate based corrosion inhibitor, this study demonstrated that color and turbidity resulting from suspended iron were lower at a pH value of 6.5 (compared to pH of 8.5). The same trend was observed in presence of DOM. This study also suggested that iron colloid suspension color and turbidity in chlorinated drinking water systems could be lower than non-chlorinated systems. Copyright © 2013 Elsevier Ltd. All rights reserved.
Characteristics of salt taste and free chlorine or chloramine in drinking water.
Wiesenthal, K E; McGuire, M J; Suffet, I H
2007-01-01
Salty taste with or without chlorine or chloramine flavour is one of the major consumer complaints to water utilities. The flavour profile analysis (FPA) taste panel method determined the average taste threshold concentration for salt (NaCl) in Milli-Q water to be 640 +/- 3 mg/L at pH 8. Chlorine and chloramine disinfectants have no antagonistic or synergistic effects on the taste of NaCl, salt, in Milli-Q water. The flavour threshold concentrations for chlorine or chloramine in Milli-Q water alone or in the presence of NaCl could not be estimated by the Weber-Fechner curves due to the chlorine or chloramine flavour outliers in the 0.2-0.8 mg/L concentration range. Apparently, NaCl is not equilibrated with the concentration of ions in the saliva in the mouth and the concentration of free chlorine or chloramines cannot be tasted correctly. Therefore, dechlorinated tap water may be the best background water to use for a particular drinking water evaluation of chlorine and chloramine thresholds. Laboratory FPA studies of free chlorine found that a 67% dilution of Central Arizona Project (CAP) (Tucson, AZ) water with Milli-O water was required to reduce the free chlorine flavour to a threshold value instead of a theoretical value of 80% (Krasner and Barrett, 1980). No synergistic effect was found for chlorine flavour on the dilution of CAP water with Milli-Q water. When Central Avra Valley (AVRA) groundwater was used for the dilution of CAP water, a synergistic effect of the TDS present was observed for the chlorine flavour. Apparently, the actual mineral content of drinking water, and not just NaCl in Milli-Q water, is needed for comparative flavour tests for chlorine and chloramines.
Dahl, Cecilie; Søgaard, Anne Johanne; Tell, Grethe S; Forsén, Lisa; Flaten, Trond Peder; Hongve, Dag; Omsland, Tone Kristin; Holvik, Kristin; Meyer, Haakon E; Aamodt, Geir
2015-12-01
The Norwegian population has among the highest hip fracture rates in the world. The incidence varies geographically, also within Norway. Calcium in drinking water has been found to be beneficially associated with bone health in some studies, but not in all. In most previous studies, other minerals in water have not been taken into account. Trace minerals, for which drinking water can be an important source and even fulfill the daily nutritional requirement, could act as effect-modifiers in the association between calcium and hip fracture risk. The aim of the present study was to investigate the association between calcium in drinking water and hip fracture, and whether other water minerals modified this association. A survey of trace metals in 429 waterworks, supplying 64% of the population in Norway, was linked geographically to the home addresses of patients with incident hip fractures (1994-2000). Drinking water mineral concentrations were divided into "low" (below and equal waterworks average) and "high" (above waterworks average). Poisson regression models were fitted, and all incidence rate ratios (IRRs) were adjusted for age, geographic region, urbanization degree, type of water source, and pH of the water. Effect modifications were examined by stratification, and interactions between calcium and magnesium, copper, zinc, iron and manganese were tested both on the multiplicative and the additive scale. Analyses were stratified on gender. Among those supplied from the 429 waterworks (2,110,916 person-years in men and 2,397,217 person-years in women), 5433 men and 13,493 women aged 50-85 years suffered a hip fracture during 1994-2000. Compared to low calcium in drinking water, a high level was associated with a 15% lower hip fracture risk in men (IRR=0.85, 95% CI: 0.78, 0.91) but no significant difference was found in women (IRR=0.98, 95%CI: 0.93-1.02). There was interaction between calcium and copper on hip fracture risk in men (p=0.051); the association between calcium and hip fracture risk was stronger when the copper concentration in water was high (IRR=0.52, 95% CI: 0.35, 0.78) as opposed to when it was low (IRR=0.88, 95% CI: 0.81, 0.94). This pattern persisted also after including potential confounding factors and other minerals in the model. No similar variation in risk was found in women. In this large, prospective population study covering two thirds of the Norwegian population and comprising 19,000 hip fractures, we found an inverse association between calcium in drinking water and hip fracture risk in men. The association was stronger when the copper concentration in the water was high. Copyright © 2015 Elsevier Inc. All rights reserved.
Jafari, Khadijeh; Mohammadi, Ali Akbar; Heidari, Zahra; Asghari, Farzaneh Baghal; Radfard, Majid; Yousefi, Mahmood; Shams, Mahmoud
2018-06-01
A lack of access to safe drinking water can lead to adverse health effects such as infection, disease, and undesirable aesthetic problems. The current study focused on the investigation of groundwater quality in Tiran's villages (Isfahan province, Iran). To determine essential microbiological quality, water samples were collected from 46 randomly-selected water wells during a one-year period. The parameters of pH and chlorine were measured on-site. Turbidity was measured at 420 nm using a DR5000 spectrophotometer. Microbiological tests including general thermoforms, Escherichia coli , and thermophiles were carried out according to the National Iranian Standard Method 3759. Data showed that 1.8% of the villages under study had contaminated water resources. The turbidity values for 94.5% of the resources were within recommended limits (<5NTU). In 20.6% of the samples, the residual free chlorine was in the range of 0 to 0.2 mg/L, 8.79% of samples had values greater than the recommended limits, and18.5% had no free residual chlorine.
Abdul, Rasheed M; Mutnuri, Lakshmi; Dattatreya, Patil J; Mohan, Dayal A
2012-03-01
A total of 16 people died and over 500 people were hospitalized due to diarrhoeal illness in the Bholakpur area of Hyderabad, India on 6th May 2009. A study was conducted with immediate effect to evaluate the quality of municipal tap water of the Bholakpur locality. The study consists of the determination of physico-chemical properties, trace metals, heavy metals, rare earth elements and microbiological quality of drinking water. The data showed the variation of the investigated parameters in samples as follows: pH 7.14 to 8.72, EC 455 to 769 μS/cm, TDS 303.51 to 515.23 ppm and DO 1.01 to 6.83 mg/L which are within WHO guidelines for drinking water quality. The water samples were analyzed for 27 elements (Li, Be, B, Na, Mg, Al, Si, K, Ca, V, Cr, Mn, Fe, Ni, Co, Cu, Zn, As, Se, Rb, Sr, Mo, Ag, Cd, Sb, Ba and Pb) using inductively coupled plasma-mass spectrometry (ICP-MS). The concentrations of Fe (0.12 to 1.13 mg/L), Pb (0.01 to 0.07 mg/L), Cu (0.01 to 0.19 mg/L), Ni (0.01 to 0.15 mg/L), Al (0.16 to 0.49 mg/L), and Na (38.36 to 68.69 mg/L) were obtained, which exceed the permissible limits of the World Health Organization (WHO) for drinking water quality guidelines. The remaining elements were within the permissible limits. The microbiological quality of water was tested using standard plate count, membrane filtration technique, thermotolerant coliform (TTC), and most probable number (MPN) methods. The total heterotrophic bacteria ranged from 1.0 × 10(5) to 18 × 10(7 )cfu/ml. Total viable bacteria in all the water samples were found to be too numerable to count and total number of coliform bacteria in all water samples were found to be of order of 1,100 to >2,400 MPN index/100 ml. TTC tested positive for coliform bacteria at 44.2°C. All the water samples of the study area exceeded the permissible counts of WHO and that (zero and minimal counts) of the control site (National Geophysical Research Institute) water samples. Excessively high colony numbers indicate that the water is highly contaminated with microorganisms and is hazardous for drinking purposes. Bacteriological pollution of drinking water supplies caused diarrhoeal illness in Bholakpur, which is due to the infiltration of contaminated water (sewage) through cross connection, leakage points, and back siphoning.
NASA Astrophysics Data System (ADS)
Yunlong, Song; Zhang, Jinsong; Zhu, Jia; Li, Wang; Chang, Aimin; Yi, Tao
2017-12-01
Controlling of water quality pollution and eutrophication of reservoirs has become a very important research topic in urban drinking water field. Xili reservoir is an important water source of drinking water in Shenzhen. And its water quality has played an important role to the city’s drinking water security. A fifteen-month’s field observation was conducted from April 2013 to June 2014 in Xili reservoir, in order to analyze the temporal and spatial distribution of water quality factors and seasonal variation of trophic states. Xili reservoir was seriously polluted by nitrogen. Judged by TN most of the samples were no better than grade VI. Other water quality factor including WT, SD, pH, DO, COD, TOC, TP, Fe, silicate, turbidity, chlorophyll-a were pretty good. One-way ANOVA showed that significant difference was found in water quality factors on month (p<0.005). The spatial heterogeneity of water quality was obvious (p<0.05). The successions of water quality factors y were similar and the mainly pattern was Pre-rainy period > Latter rainy period > High temperature and rain free period > Temperature jump period > Winter drought period. Two-way ANOVA showed that months rather than locations were the key influencing factors of water quality factors succession.TLI (Σ) were about 35~52, suggesting Xili reservoir was in mycotrophic trophic states. As a result of runoff pollution, water quality at sampling sites 1 and 10 was poor. In the rainy season, near sampling sites 1 and 10, water appeared to be Light-eutrophic. The phytoplankton biomass of Xili reservoir was low. Water temperature was the main driving factor of phytoplankton succession.The 14 water quality factors were divided into five groups by factor analysis. The total interpretation rate was about 70.82%. F1 represents the climatic change represented by water temperature and organic pollution. F2 represents the concentration of nitrogen. F3 represents the phytoplankton biomass. F4 represents the sensory indexes of water body, such as turbidity, transparency.
Beshiru, Abeni; Okareh, Oladapo T; Chigor, Vincent N; Igbinosa, Etinosa O
2018-06-09
Surface waters are important to humans because they are a significant water supply source. They are, however, under serious environmental stress and are being threatened as a consequence of developmental activities. The present study describes the physicochemical properties and water quality indices of five different rivers used for drinking and other domestic activities in rural and pre-urban communities in Edo North, Nigeria. The physicochemical variable ranges include pH [wet season (6.47 ± 0.30-6.89 ± 0.11), dry season (6.61 ± 0.14-7.84 ± 0.24)], electrical conductivity (EC) [wet season (3.33 ± 0.57-12.33 ± 2.51 μS/cm), dry season (5.33 ± 0.57-21.33 ± 2.08 μS/cm)], water temperature [wet season (24.23 ± 0.98-25.40 ± 1.15 °C), dry season (26.20 ± 0.55-27.10 ± 0.75 °C)], TDS [wet season (417.00 ± 15.87-433.33 ± 18.50 mg/L), dry season (319.33 ± 16.50-372.66 ± 22.30 mg/L)], turbidity [wet season (1.01 ± 0.11-2.08 ± 0.99 NTU), dry season (3.11 ± 0.01-5.41 ± 0.24 NTU)], and DO [wet season (2.65 ± 0.37-3.99 ± 0.01 mg/L), dry season (2.12 ± 0.11-2.44 ± 0.01 mg/L)]. For the wet and dry seasons, the water quality indices were 120.225 and 585.015 for River Osolo, 119.849 and 445.751 for River Foreign, 200.474 and 587.833 for Ijoh River, 105.261 and 512.498 for Ole River, and 150.114 and 489.992 for Ole Extension River, respectively. The pH was negatively correlated with DO (r = -0.648), and EC was negatively correlated with DO (r = -0.635). Most of the evaluated parameters were within recommended water safety guidelines. However, the water quality index shows that the water quality was very poor and/or unsuitable for drinking and other domestic uses, especially during the dry season. It is suggested that river water be treated prior to its use for drinking and other domestic purposes.
Mohammadi, Mohammad Javad; Takdastan, Afshin; Jorfi, Sahand; Neisi, Abdolkazem; Farhadi, Majid; Yari, Ahmad Reza; Dobaradaran, Sina; Khaniabadi, Yusef Omidi
2017-04-01
In this work, we present the result of an electric coagulation process with iron and aluminum electrodes for removal of chemical and biological oxygen demand (COD and BOD) from grey water in different car washes of Ahvaz, Iran. Nowadays, one of the important dangerous that can contaminate water resources for drinking, agriculture and industrial is Car wash effluent [1,2]. In this study, initial COD and BOD concentration, pH of the solution, voltage power and reaction time was investigated. The concentration level of remaining COD and BOD in samples was measured, using DR/5000 UV-vis HACH spectrophotometer [3,4]. The effects of contact time, initial pH, electrical potential and voltage data on removal of COD and BOD were presented. Statistical analysis of the data was carried out using Special Package for Social Sciences (SPSS 16).
Quality assessment of rooftop runoff and harvested rainwater from a building catchment.
Lee, J Y; Kim, H J; Han, M Y
2011-01-01
A major obstacle to the promotion of rainwater harvesting is chemical and microbiological concerns. To determine its suitability as an alternative water resource, water quality parameters such as pH, turbidity and metal ion concentrations and counted total coliform, Escherichia coli and heterotrophic bacteria were measured. It was observed that the stored rainwater had a neutral average pH and that its turbidity depended on the duration and intensity of the rainfall event. Metal concentrations were within the permissible limits specified in the Korea drinking water standard. In addition, counts of coliform, E. coli and heterotrophic bacteria were higher in the first flush 5 min after the start of the rainfall event. Principal component analysis and correlation analysis through 40 events in 2009 showed that the quality of stored rainwater depends on the conditions of the catchment and storage tank and the antecedent dry period.
Broséus, R; Vincent, S; Aboulfadl, K; Daneshvar, A; Sauvé, S; Barbeau, B; Prévost, M
2009-10-01
This study investigates the oxidation of pharmaceuticals, endocrine disrupting compounds and pesticides during ozonation applied in drinking water treatment. In the first step, second-order rate constants for the reactions of selected compounds with molecular ozone (k(O3)) were determined in bench-scale experiments at pH 8.10: caffeine (650+/-22M(-1)s(-1)), progesterone (601+/-9M(-1)s(-1)), medroxyprogesterone (558+/-9M(-1)s(-1)), norethindrone (2215+/-76M(-1)s(-1)) and levonorgestrel (1427+/-62M(-1)s(-1)). Compared to phenolic estrogens (estrone, 17beta-estradiol, estriol and 17alpha-ethinylestradiol), the selected progestogen endocrine disruptors reacted far slower with ozone. In the second part of the study, bench-scale experiments were conducted with surface waters spiked with 16 target compounds to assess their oxidative removal using ozone and determine if bench-scale results would accurately predict full-scale removal data. Overall, the data provided evidence that ozone is effective for removing trace organic contaminants from water with ozone doses typically applied in drinking water treatment. Ozonation removed over 80% of caffeine, pharmaceuticals and endocrine disruptors within the CT value of about 2 mg min L(-1). As expected, pesticides were found to be the most recalcitrant compounds to oxidize. Caffeine can be used as an indicator compound to gauge the efficacy of ozone treatment.
Zhao, Hua-Zhang; Yang, Wei; Zhu, Jun; Ni, Jin-Ren
2009-03-01
The defluoridation efficiency (epsilon(F)) of electrocoagulation (EC) is closely related to the pH level of the F(-)-containing solution. The pH level usually needs to be adjusted by adding acid in order to obtain the highest epsilon(F) for the F(-)-containing groundwater. The use of combined EC (CEC), which is the combination of chemical coagulation with EC, was proposed to remove fluoride from drinking water for the first time in this study. The optimal scheme for the design and operation of CEC were obtained through experiments on the treatment of F(-)-containing groundwater. It was found, with OH(-) being the only alkalinity of the raw water, that the highest efficiency would be obtained when the molar ratio of alkalinity and fluoride to Al(III) (gamma(Alkalinity+F)) was controlled at 3.0. However, when the raw water contained HCO(3)(-) alkalinity, a correction coefficient was needed to correct the concentration of HCO(3)(-) to obtain the optimal defluoridation condition of gamma(Alkalinity+F)=3.0 for CEC. The correction coefficient of HCO(3)(-) concentration was concluded as 0.60 from the experiment. For the practical F(-)-containing groundwater treatment, CEC can achieve similar epsilon(F) as an acid-adding EC process. The consumption of aluminum electrode was decreased in CEC. The energy consumption also declined greatly in CEC, which is less than one third of that in the acid-adding EC process.
Bisphenol diglycidyl ethers and bisphenol A and their hydrolysis in drinking water.
Lane, R F; Adams, C D; Randtke, S J; Carter, R E
2015-04-01
Epoxy coatings are commonly used to protect the interior (and exterior) surfaces of water mains and storage tanks and can be used on the interior surfaces of water pipes in homes, hospitals, hotels, and other buildings. Common major components of epoxies include bisphenols, such as bisphenol A (BPA) or bisphenol F (BPF), and their reactive prepolymers, bisphenol A diglycidyl ether (BADGE) and bisphenol F diglycidyl ether (BFDGE), respectively. There currently are health concerns about the safety of BPA and BPF due to known estrogenic effects. Determination of key bisphenol leachates, development of a hydrolysis model, and identification of stable hydrolysis products will aid in assessment of human bisphenol exposure through ingestion of drinking water. Liquid chromatography/mass spectrometry (LC/MS/MS) was used for quantitation of key analytes, and a pseudo-first order kinetic approach was used for modeling. In fill-and-dump studies on epoxy-coated pipe specimens, BADGE and a BPA-like compound were identified as leachates. The BADGE hydrolysis model predicts BADGE half-lives at pH 7 and 15, 25, 35, and 40 °C to be 11, 4.6, 2.0, and 1.4 days respectively; the BFDGE half-life was 5 days at pH 7 and 25 °C. The two identified BADGE hydrolysis products are BADGE-H2O and BADGE 2H2O, with BADGE 2H2O being the final end product under the conditions studied. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Amalraj, Augustine; Pius, Anitha
2017-10-01
The aim of this study is to design and develop a novel cost effective method for fluoride removal, applicable to rural areas of developing countries. Adsorption is widely considered as one of the appropriate technologies for water defluoridation. This study investigates the feasibility of using low-cost biomass based activated carbon from the bark of Morinda tinctoria coated with aluminum hydroxide (AHAC) for water defluoridation, at neutral pH range. Characterization of AHAC was done through IR, SEM with EDAX studies before and after fluoride treatment. The fluoride adsorption capacity of AHAC as a function of contact time, pH and initial fluoride concentration was investigated. The role of co-existing interfering ions also was studied. The isotherm and kinetic models were used to understand the nature of the fluoride adsorption onto AHAC. Freundlich isotherm and intra-particle diffusion were the best-fitting models for the adsorption of fluoride on AHAC. Fluoride adsorption kinetics well fitted with pseudo-second order model. The results showed excellent fluoride adsorption capacity was found to be 26.03 mg g-1 at neutral pH.
Evaluation of The Erosive Potential of Soft Drinks
de Carvalho Sales-Peres, Sílvia Helena; Magalhães, Ana Carolina; de Andrade Moreira Machado, Maria Aparecida; Buzalaf, Marília Afonso Rabelo
2007-01-01
Objectives This in vitro study evaluated the capability of different soft drinks (Coca-Cola®-C, Coca-Cola Light®-CL, Guaraná®-G, Pepsi Twist®-P and Sprite Light®-SL) to erode dental enamel, relating the percentage of superficial microhardness change (%SMHC) to concentrations of fluoride and phosphate, buffering capacity and pH of these drinks. Methods The soft drinks were evaluated in respect to concentration of phosphate and fluoride spectrophotometrically using Fiske, Subarrow method and by specific electrode (Orion 9609), respectively. The pH and the buffering capacity were determined by glass electrode and by estimating of the volume of NaOH necessary to change the pH of the drink in one unit, respectively. One hundred specimens of bovine enamel were randomly assigned to 5 groups of 20 each. They were exposed to 4 cycles of demineralisation in the beverage and remineralisation in artificial saliva. The softening of enamel was evaluated by %SMHC. Results The mean %SMHC was: C=77.27%, CL= 72.45%, SL=78.43%, G=66.65% and P=67.95%. Comparing the %SMHC promoted by 5 soft drinks, SL = C > CL > P = G (P<.05). There was not significant correlation between %SMHC and the other variables tested for the five drinks (P>.05). Conclusions The five soft drinks caused surface softening of enamel (erosion). In respect to the chemical variables tested, despite not statistically significant, the pH seems to have more influence on the erosive potential of these drinks. (Eur J Dent 2007;1:10–13) PMID:19212490
de Vet, W W J M; Dinkla, I J T; Rietveld, L C; van Loosdrecht, M C M
2011-11-01
Iron oxidation under neutral conditions (pH 6.5-8) may be a homo- or heterogeneous chemically- or a biologically-mediated process. The chemical oxidation is supposed to outpace the biological process under slightly alkaline conditions (pH 7-8). The iron oxidation kinetics and growth of Gallionella spp. - obligatory chemolithotrophic iron oxidizers - were assessed in natural, organic carbon-containing water, in continuous lab-scale reactors and full-scale groundwater trickling filters in the Netherlands. From Gallionella cell numbers determined by qPCR, balances were made for all systems. The homogeneous chemical iron oxidation occurred in accordance with the literature, but was retarded by a low water temperature (13 °C). The contribution of the heterogeneous chemical oxidation was, despite the presence of freshly formed iron oxyhydroxides, much lower than in previous studies in ultrapure water. This could be caused by the adsorption of natural organic matter (NOM) on the iron oxide surfaces. In the oxygen-saturated natural water with a pH ranging from 6.5 to 7.7, Gallionella spp. grew uninhibited and biological iron oxidation was an important, and probably the dominant, process. Gallionella growth was not even inhibited in a full-scale filter after plate aeration. From this we conclude that Gallionella spp. can grow under neutral pH and fully aerated conditions when the chemical iron oxidation is retarded by low water temperature and inhibition of the autocatalytic iron oxidation. Copyright © 2011 Elsevier Ltd. All rights reserved.
Mirlohi, Susan; Dietrich, Andrea M; Duncan, Susan E
2011-08-01
Humans interact with their environment through the five senses, but little is known about population variability in the ability to assess contaminants. Sensory thresholds and biochemical indicators of metallic flavor perception in humans were evaluated for ferrous (Fe(2+)) iron in drinking water; subjects aged 19-84 years participated. Metallic flavor thresholds for individuals and subpopulations based on age were determined. Oral lipid oxidation and oral pH were measured in saliva as potential biochemical indicators. Individual thresholds were 0.007-14.14 mg/L Fe(2+) and the overall population threshold was 0.17 mg/L Fe(2+) in reagent water. Average thresholds for individuals younger and older than 50 years of age (grouped by the daily recommended nutritional guidelines for iron intake) were significantly different (p = 0.013); the population thresholds for each group were 0.045 mg/L Fe(2+) and 0.498 mg/L Fe(2+), respectively. Many subjects >50 and a few subjects <50 years were insensitive to metallic flavor. There was no correlation between age, oral lipid oxidation, and oral pH. Standardized olfactory assessment found poor sensitivity for Fe(2+) corresponded with conditions of mild, moderate, and total anosmia. The findings demonstrate an age-dependent sensitivity to iron indicating as people age they are less sensitive to metallic perception.
The Assessment of Chemical Quality of Drinking Water in Hamadan Province, the West of Iran.
Leili, Mostafa; Naghibi, Afsaneh; Norouzi, HoseinAli; Khodabakhshi, Mahdi
2015-01-01
The aim of present work was to evaluate the drinking water quality from various regions including both urban and rural areas of Hamadan Province, western Iran. In this cross-sectional descriptive study, the samples were collected for a periods of 12 months between January 25, 2014 and January 25, 2015 from frequently used household taps as well as from municipal and communal water supplies. The main parameters investigated were nitrate, fluoride, pH, turbidity and chlorine. The maximum and minimum values for nitrate concentrations were measured as 140.80 mg/l and 1.56 mg/l, respectively. Nitrate and fluoride content of samples were higher in wet season than in dry season and their concentration was higher in rural areas rather to urban areas. On average, fluoride contents in both urban and rural areas were well compliance with the WHO guidelines. The pH of all samples of the study regions was in the ranges of 6.25 to 8.41 that were in the standard ranges. Twenty three percent of total samples were exceeded Iranian standards of one NTU for turbidity. The groundwater of the study area is presently having not serious health risks. However, regarding that disinfection efficiency adversely is affected by turbidity, particular attention and more programs for regular monitoring has to be done, which will not always be done in all regions.
Gabarrón, S; Gernjak, W; Valero, F; Barceló, A; Petrovic, M; Rodríguez-Roda, I
2016-05-15
Emerging contaminants (EC) have gained much attention with globally increasing consumption and detection in aquatic ecosystems during the last two decades from ng/L to lower ug/L. The aim of this study was to evaluate the occurrence and removal of pharmaceutically active compounds (PhACs), endocrine disrupting chemicals (EDCs) and related compounds in a Drinking Water Treatment Plant (DWTP) treating raw water from the Mediterranean Llobregat River. The DWTP combined conventional treatment steps with the world's largest electrodialysis reversal (EDR) facility. 49 different PhACs, EDCs and related compounds were found above their limit of quantification in the influent of the DWTP, summing up to a total concentration of ECs between 1600-4200 ng/L. As expected, oxidation using chlorine dioxide and granular activated carbon filters were the most efficient technologies for EC removal. However, despite the low concentration detected in the influent of the EDR process, it was also possible to demonstrate that this process partially removed ionized compounds, thereby constituting an additional barrier against EC pollution in the product. In the product of the EDR system, only 18 out of 49 compounds were quantifiable in at least one of the four experimental campaigns, showing in all cases removals higher than 65% and often beyond 90% for the overall DWTP process. Copyright © 2016 Elsevier B.V. All rights reserved.
Leaching of lead from new unplasticized polyvinyl chloride (uPVC) pipes into drinking water.
Zhang, Yuanyuan; Lin, Yi-Pin
2015-06-01
Unplasticized polyvinyl chloride (uPVC) pipes have been used in the premise plumbing system due to their high strength, long-term durability, and low cost. uPVC pipes, however, may contain lead due to the use of lead compounds as the stabilizer during the manufacturing process. The release of lead from three locally purchased uPVC pipes was investigated in this study. The effects of various water quality parameters including pH value, temperature, and type of disinfectant on the rate of lead release were examined. The elemental mapping obtained using scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX) confirmed the presence of lead on the inner surfaces of the uPVC pipes and their surface lead weight percentages were determined. The leachable lead concentration for each pipe was determined using high strength acidic EDTA solutions (pH 4, EDTA = 100 mg/L). Lead leaching experiments using tap water and reconstituted tape water under static conditions showed that the rate of lead release increased with the decreasing pH value and increasing temperature. In the presence of monochloramine, lead release was faster than that in the presence of free chlorine.
Saana, Sixtus Bieranye Bayaa Martin; Fosu, Samuel Asiedu; Sebiawu, Godfred Etsey; Jackson, Napoleon; Karikari, Thomas
2016-01-01
Underground water is an important natural resource serving as a reliable source of drinking water for many people worldwide, especially in developing countries. Underground water quality needs to be given a primary research and quality control attention due to possible contamination. This study was therefore designed to determine the physico-chemical and bacteriological quality of borehole water in the Upper West and Northern regions of Ghana. The study was conducted in seven districts in Ghana (including six in the Upper West region and one in the Northern region). The bacterial load of the water samples was determined using standard microbiological methods. Physico-chemical properties including pH, total alkalinity, temperature, turbidity, true colour, total dissolved solids (TDS), electrical conductivity, total hardness, calcium hardness, magnesium hardness, total iron, calcium ion, magnesium ion, chloride ion, fluoride ion, aluminium ion, arsenic, ammonium ions, nitrate and nitrite concentrations were determined. The values obtained were compared with the World Health Organization (WHO) standards for drinking water. The recorded pH, total alkalinity and temperature ranges were 6.14-7.50, 48-240 mg/l and 28.8-32.8 °C, respectively. Furthermore, the mean concentrations of iron, calcium, magnesium, chloride, fluoride, aluminium, arsenic, ammonium, nitrate and nitrite were 0.06, 22.11, 29.84, 13.97, 0.00, 0.00, 0.00, 0.01, 2.09 and 0.26 mg/l, respectively. Turbidity, true colour, TDS and electrical conductivity of the water samples ranged from 0.13 to 105 NTU, 5 to 130 HU, 80.1 to 524 mg/l and 131 to 873 µS/cm, respectively. In addition, the mean total hardness value was found to be 178.07 mg/l whereas calcium hardness and magnesium hardness respectively were 55.28 and 122.79 mg/l. Only 14% of the water samples tested positive for faecal coliforms. The study revealed that only a few of the values for the bacteriological and physico-chemical parameters of the water samples were above the tolerable limits recommended by the WHO. This calls for regular monitoring and purification of boreholes to ensure good water quality.
Sahin, Latife; Cetinkaya, Hakan; Murat Saç, Müslim; Içhedef, Mutlu
2013-08-01
The concentration of radium and radon has been determined in drinking water samples collected from various locations of Kutahya city, Turkey. The water samples are taken from public water sources and tap water, with the collector chamber method used to measure the radon and radium concentration. The radon concentration ranges between 0.1 and 48.6±1.7 Bq l(-1), while the radium concentration varies from a minimum detectable activity of <0.02-0.7±0.2 Bq l(-1) in Kutahya city. In addition to the radon and radium levels, parameters such as pH, conductivity and temperature of the water, humidity, pressure, elevation and the coordinates of the sampling points have also been measured and recorded. The annual effective dose from radon and radium due to typical water usage has been calculated. The resulting contribution to the annual effective dose due to radon ingestion varies between 0.3 and 124.2 μSv y(-1); the contribution to the annual effective dose due to radium ingestion varies between 0 and 143.3 μSv y(-1); the dose contribution to the stomach due to radon ingestion varies between 0.03 and 14.9 μSv y(-1). The dose contribution due to radon inhalation ranges between 0.3 and 122.5 μSv y(-1), assuming a typical transfer of radon in water to the air. For the overwhelming majority of the Kutahya population, it is determined that the average radiation exposure from drinking water is less than 73.6 µSv y(-1).
Assessment of Young Dong tributary and Imgok Creek impacted by Young Dong coal mine, South Korea.
Lee, Byung-Tae; Ranville, James F; Wildeman, Thomas R; Jang, Min; Shim, Yon Sik; Ji, Won Hyun; Park, Hyun Sung; Lee, Hyun Ju
2012-01-01
An initial reclamation of the Young Dong coal mine site, located in northeastern South Korea, was completed in 1995. Despite the filling of the adit with limestone, acid rock drainage (ARD) enters Young Dong tributary and is then discharged to Imgok Creek. This ARD carries an average of 500 mg CaCO(3)/l of mineral acidity, primarily as Fe(II) and Al. Before spring runoff, the flow of Imgok Creek is 3.3-4 times greater than that of the tributary and has an alkalinity of 100 mg CaCO(3)/l, which is sufficient to eliminate the mineral acidity and raise the pH to about 6.5. From April through September 2008, there were at least two periods of high surface flow that affects the flow of ARD from the adit. Flow of ARD reaches 2.8 m(3)/min during spring runoff. This raised the concentrations of Fe and Al in the confluence with Imgok Creek. However, by 2 km downstream the pH of the Imgok Creek is 6.5 and only dissolved Fe is above the Korean drinking water criteria (0.30 mg/l). This suggests only a minor impact of Young Dong Creek water on Imgok Creek. Acid digestion of the sediments in Imgok Creek and Young Dong Tributary reveals considerable abundances of heavy metals, which could have a long-term impact on water quality. However, several water-based leaching tests, which better simulate the bioavailable metals pool, released only Al, Fe, Mn, and Zn at concentrations exceeding the criteria for drinking water or aquatic life.
Groundwater quality from a part of Prakasam District, Andhra Pradesh, India
NASA Astrophysics Data System (ADS)
Subba Rao, N.
2018-03-01
Quality of groundwater is assessed from a part of Prakasam district, Andhra Pradesh, India. Groundwater samples collected from thirty locations from the study area were analysed for pH, electrical conductivity (EC), total dissolved solids (TDS), calcium (Ca2+), magnesium (Mg2+), sodium (Na+), potassium (K+), bicarbonate ( {HCO}3^{ - } ), chloride (Cl-), sulphate ( {SO}4^{2 - } ), nitrate ( {NO}3^{ - } ) and fluoride (F-). The results of the chemical analysis indicate that the groundwater is alkaline in nature and are mainly characterized by Na+- {HCO}3^{ - } and Na+-Cl- facies. Groundwater chemistry reflects the dominance of rock weathering and is subsequently modified by human activities, which are supported by genetic geochemical evolution and hydrogeochemical relations. Further, the chemical parameters (pH, TDS, Ca2+, Mg2+, Na+, {HCO}3^{ - } , Cl-, {SO}4^{2 - } , {NO}3^{ - } and F-) were compared with the drinking water quality standards. The sodium adsorption ratio, percent sodium, permeability index, residual sodium carbonate, magnesium ratio and Kelly's ratio were computed and USSL, Wilcox and Doneen's diagrams were also used for evaluation of groundwater quality for irrigation. For industrial purpose, the pH, TDS, {HCO}3^{ - } , Cl- and {SO}4^{2 - } were used to assess the impact of incrustation and corrosion activities on metal surfaces. As a whole, it is observed that the groundwater quality is not suitable for drinking, irrigation and industrial purposes due to one or more chemical parameters exceeding their standard limits. Therefore, groundwater management measures were suggested to improve the water quality.
Setty, Karen E; Kayser, Georgia L; Bowling, Michael; Enault, Jerome; Loret, Jean-Francois; Serra, Claudia Puigdomenech; Alonso, Jordi Martin; Mateu, Arnau Pla; Bartram, Jamie
2017-05-01
Water Safety Plans (WSPs), recommended by the World Health Organization since 2004, seek to proactively identify potential risks to drinking water supplies and implement preventive barriers that improve safety. To evaluate the outcomes of WSP application in large drinking water systems in France and Spain, we undertook analysis of water quality and compliance indicators between 2003 and 2015, in conjunction with an observational retrospective cohort study of acute gastroenteritis incidence, before and after WSPs were implemented at five locations. Measured water quality indicators included bacteria (E. coli, fecal streptococci, total coliform, heterotrophic plate count), disinfectants (residual free and total chlorine), disinfection by-products (trihalomethanes, bromate), aluminum, pH, turbidity, and total organic carbon, comprising about 240K manual samples and 1.2M automated sensor readings. We used multiple, Poisson, or Tobit regression models to evaluate water quality before and after the WSP intervention. The compliance assessment analyzed exceedances of regulated, recommended, or operational water quality thresholds using chi-squared or Fisher's exact tests. Poisson regression was used to examine acute gastroenteritis incidence rates in WSP-affected drinking water service areas relative to a comparison area. Implementation of a WSP generally resulted in unchanged or improved water quality, while compliance improved at most locations. Evidence for reduced acute gastroenteritis incidence following WSP implementation was found at only one of the three locations examined. Outcomes of WSPs should be expected to vary across large water utilities in developed nations, as the intervention itself is adapted to the needs of each location. The approach may translate to diverse water quality, compliance, and health outcomes. Copyright © 2017 Elsevier GmbH. All rights reserved.
Saleh, Mahmoud A; Abdel-Rahman, Fawzia H; Woodard, Brooke B; Clark, Shavon; Wallace, Cecil; Aboaba, Adetoun; Zhang, Wenluo; Nance, James H
2008-03-01
Due to the increased demand and consumption of bottled water in the United States, there has been a growing concern about the quality of this product. Retail outlets sell local as well as imported bottled water to consumers. Three bottles for each of 35 different brands of bottled water were randomly collected from local grocery stores in the greater Houston area. Out of the 35 different brands, 16 were designated as spring water, 11 were purified and/or fortified tap water, 5 were carbonated water and 3 were distilled water. Chemical, microbial and physical properties of all samples were evaluated including pH, conductivity, bacteria counts, anion concentration, trace metal concentration, heavy metal and volatile organics concentration were determined in all samples. Inductively coupled plasma/mass spectrometry (ICPMS) was used for elemental analysis, gas chromatography with electron capture detector (GCECD) as well as gas chromatography mass spectrometry (GCMS) were used for analysis of volatile organics, ion chromatography (IC) and selective ion electrodes were used for the analysis of anions. Bacterial identification was performed using the Biolog software (Biolog, Inc., Hayward, Ca, USA). The results obtained were compared with guidelines of drinking water recommended by the International Bottled Water Association (IBWA), United States Food and Drug Administration (FDA), United States Environmental Protection Agency (EPA) and the World Health Organization (WHO) drinking water standard. The majority of the analyzed chemicals were below their respective drinking water standards for maximum admissible concentrations (MAC). Volatile organic chemicals were found to be below detection limits. Four of the 35 brands of the bottled water samples analyzed were found to be contaminated with bacteria.
Owusu-Agyeman, Isaac; Shen, Junjie; Schäfer, Andrea Iris
2018-04-15
Real water pH and ionic strength vary greatly, which influences the performance of membrane processes such as nanofiltration (NF) and reverse osmosis (RO). Systematic variation of pH (3-12) and ionic strength (2-10g/L as total dissolved solids (TDS)) was undertaken with a real Tanzanian water to investigate how water quality affects retention mechanisms of fluoride (F) and natural organic matter (NOM). An autonomous solar powered NF/RO system driven by a solar array simulator was supplied with constant power from a generator. An open NF (NF270) and a brackish water RO (BW30) membrane were used. A surface water with a very high F (59.7mg/L) and NOM (110mgC/L) was used. Retention of F by NF270 was <20% at pH <6, increased to 40% at pH6, and 60-70% at pH7-12, indicating a dominance of charge repulsion while being ineffective in meeting the guideline of 1.5mg/L. Increase in ionic strength led to a significant decline in retention of F (from 70 to 50%) and electrical conductivity (from 60 to 10%) by NF270, presumably due to charge screening. In contrast, BW30 retained about 50% of F at pH3, >80% at pH4, and about 99% at pH >5, due to the smaller pore size and hence a more dominant size exclusion. In consequence, only little impact of ionic strength increase was observed for BW30. The concentration of NOM in permeates of both NF270 and BW30 were typically <2mg/L. This was not affected by pH or ionic strength due to the fact that the bulk of NOM was rejected by both membranes through size exclusion. The research is carried out in the context of providing safe drinking water for rural and remote communities where infrastructure is lacking, and water quality varies significantly. While other studies focus on energy fluctuations, this research emphasises on feed water quality that affects system performance and may alter due to a number of environmental factors. Copyright © 2017 Elsevier B.V. All rights reserved.
Nicholson, Robert S.; Hunchak-Kariouk, Kathryn; Cauller, Stephen J.
2003-01-01
Surface water and ground water from unconfined aquifers are the primary sources of drinking water for much of the population, about 391,000, in the Metedeconk River, Toms River, and Kettle Creek watersheds in the New Jersey Coastal Plain. The quality of these sources of drinking water is a concern because they are vulnerable to contamination. Indications of the occurrence, distribution, and likely sources and transport mechanisms of certain contaminants were obtained from 48 selected reports and 2 selected data sets on water quality in or near the watersheds (1980-2001). These indications are described and briefly summarized in this report. The findings of studies on ground-water quality indicate that shallow ground water within the study area generally meets primary drinking-water standards, with notable exceptions. Volatile organic compounds, mercury, arsenic, radionuclides, nitrate, and coliform bacteria have been detected in shallow ground water in some areas at levels that exceed Federal and State drinking-water standards. For example, results of analyses of untreated samples collected from more than 13,000 private wells during 1983-99 indicated that concentrations of volatile organic compounds in samples from 7.3 percent of the wells exceeded at least 1 of 11 drinking-water standards, according to records maintained by the Ocean County Health Department. In cases of exceedances, however, water treatment, well replacement, and (or) retesting assured that applicable drinking-water standards were being met at the tap. Reported concentrations of the pesticide chlordane in some areas exceeded the drinking-water standard; few data are available on the occurrence of other pesticides. Studies of nearby areas, however, indicate that pesticide concentrations generally could be expected to be below drinking-water standards. The combination of low pH and low dissolved solids in many areas results in shallow ground water that is highly corrosive and, if untreated, able to leach trace elements and release asbestos fibers from plumbing materials. Reported concentrations of nitrate, volatile organic compounds, trace elements, and pesticides in samples from the monitored mainstem and tributary streams within the study area generally are below maximum contaminant levels for drinking water or below detection limits. Results of studies in other areas indicate that pesticide concentrations in surface water could be considerably higher during high flows soon after the application of pesticides to crops than during low flows. Fecal coliform bacteria counts in streams vary considerably. Concentrations or counts of these classes of surface-water-quality constituents likely are functions of the intensity and type of upstream development. Results of limited monitoring for radionuclide concentrations reported by the Brick Township Municipal Utilities Authority of the Metedeconk River indicate that radionuclide concentrations or activities do not exceed maximum contaminant levels for drinking water. As a consequence of organic matter in surface water, the formati ultraviolet absorbance in samples from the Metedeconk River and the Toms River exceeded the alternative compliance criteria for source water (2.0 milligrams per liter for total organic carbon and 0.02 absorbance units-liters per milligram-centimeter for specific ultraviolet absorbance) with respect to treatment requirements for preventing elevated concentrations of disinfection by-products in treated water. Water-quality and treatment issues associated with use of ground and surface water for potable supply in the study area are related to human activities and naturally occurring factors. Additional monitoring and analysis of ground and surface water would be needed to determine conclusively the occurrence and distribution of some contaminants and the relative importance of various potential contaminant sources, transport and attenuation mechanisms, and transport pathways.
Behbahani, Mohsen; Lin, Boren; Phares, Tamara L; Seo, Youngwoo
2018-06-05
The objective of this study is to evaluate the influence of water distribution system conditions (pH, total organic carbon, residual chlorine, and phosphate) on haloacetic acids (HAAs) biodegradation. A series of batch microcosm tests were conducted to determine biodegradation kinetics and collected biomass was used for real time quantitative reverse transcription polymerase chain reaction analyses to monitor how these drinking water distribution system conditions affect the relative expression of bacterial dehalogenase genes. It was observed that tested water distribution system conditions affected HAA biodegradation with different removal efficiencies (0-100%). HAA biodegradation was improved in tested samples with TOC (3 mg/L) and pH 8.5 compared to those of TOC (0 mg/L) and pH 7, respectively. However, slight improvement was observed with the increased PO 4 concentration (3.5 mg/L), and the presence of residual chlorine even at low concentration prohibited biodegradation of HAAs. The observed trend in the relative expression of dehII genes was compatible with the HAA biodegradation trend. Overall relative expression ratio of dehII genes was lower at pH 7, phosphate (0.5 mg/L), and TOC (0 mg/L) in comparison with pH 8.5, phosphate (3.5 mg/L), and TOC (3 mg/L) in the same experimental conditions. Copyright © 2018 Elsevier B.V. All rights reserved.
Rao, Koppula Yadav; Anjum, Mohammad Shakeel; Reddy, Peddireddy Parthasarathi; Monica, Mocherla; Hameed, Irram Abbass
2016-01-01
Introduction Humanity highly depends on water and its proper utilization and management. Water has various uses and its use as thirst quenching fluid is the most significant one. Aim To assess physical, chemical, trace metal and bacterial parameters of various public and packaged drinking water samples collected from villages of Vikarabad mandal. Materials and Methods Public and packaged drinking water samples collected were analysed for various parameters using American Public Health Association (APHA 18th edition 1992) guidelines and the results obtained were compared with bureau of Indian standards for drinking water. Statistical Analysis Descriptive statistics and Pearson’s correlations were done. Results Among bottled water samples, magnesium in 1 sample was >30mg/litre, nickel in 2 samples was >0.02mg/litre. Among sachet water samples, copper in 1 sample was >0.05mg/litre, nickel in 2 samples was >0.02mg/litre. Among canned water samples, total hardness in 1 sample was >200mg/litre, magnesium in 3 samples was >30mg/litre. In tap water sample, calcium was >75mg/litre, magnesium was >30mg/litre, nickel was >0.02mg/litre. Among public bore well water samples, pH in 1 sample was >8.5, total dissolved solids in 17 samples was >500mg/litre, total alkalinity in 9 samples was >200mg/litre, total hardness in 20 samples was >200mg/litre, calcium in 14 samples was >75mg/litre, fluoride in 1 sample was >1mg/litre, magnesium in 14 samples was >30mg/litre. Total coliform was absent in bottled water, sachet water, canned water, tap water samples. Total Coliform was present but E. coli was absent in 4 public bore well water samples. The MPN per 100 ml in those 4 samples of public bore well water was 50. Conclusion Physical, chemical, trace metal and bacterial parameters tested in present study showed values greater than acceptable limit for some samples, which can pose serious threat to consumers of that region. PMID:27437248
Szabo, Jeffrey G; Meiners, Greg; Heckman, Lee; Rice, Eugene W; Hall, John
2017-02-01
Decontamination of Bacillus spores adhered to common drinking water infrastructure surfaces was evaluated using a variety of disinfectants. Corroded iron and cement-mortar lined iron represented the infrastructure surfaces, and were conditioned in a 23 m long, 15 cm diameter (75 ft long, 6 in diameter) pilot-scale drinking water distribution pipe system. Decontamination was evaluated using increased water velocity (flushing) alone at 0.5 m s -1 (1.7 ft s -1 ), as well as free chlorine (5 and 25 mg L -1 ), monochloramine (25 mg L -1 ), chlorine dioxide (5 and 25 mg L -1 ), ozone (2.0 mg L -1 ), peracetic acid 25 mg L -1 ) and acidified nitrite (0.1 mol L -1 at pH 2 and 3), all followed by flushing at 0.3 m s -1 (1 ft s -1 ). Flushing alone reduced the adhered spores by 0.5 and 2.0 log 10 from iron and cement-mortar, respectively. Log 10 reduction on corroded iron pipe wall coupons ranged from 1.0 to 2.9 at respective chlorine dioxide concentrations of 5 and 25 mg L -1 , although spores were undetectable on the iron surface during disinfection at 25 mg L -1 . Acidified nitrite (pH 2, 0.1 mol L -1 ) yielded no detectable spores on the iron surface during the flushing phase after disinfection. Chlorine dioxide was the best performing disinfectant with >3.0 log 10 removal from cement-mortar at 5 and 25 mg L -1 . The data show that free chlorine, monochloramine, ozone and chlorine dioxide followed by flushing can reduce adhered spores by > 3.0 log 10 on cement-mortar. Published by Elsevier Ltd.
West, Danielle M; Wu, Qihua; Donovan, Ariel; Shi, Honglan; Ma, Yinfa; Jiang, Hua; Wang, Jianmin
2016-06-01
In this study, the formation of eight N-nitrosamines, N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine, N-nitrosomethylamine, N-nitrosodi-n-propylamine, N-nitrosodi-n-butylamine, N-Nitrosopiperidine, N-Nitrosopyrrolidine, N-Nitrosomorpholine, were systematically evaluated with respect to seven N-nitrosamine precursors (dimethylamine, trimethylamine, 3-(dimethylaminomethyl)indole, 4-dimethylaminoantipyrine, ethylmethylamine, diethylamine, dipropylamine) and three disinfectants (monochloramine, free chlorine, peracetic acid) under variable dosages, exposure times, and pH in a drinking water system. Without the presence of the seven selected N-nitrosamine precursors N-nitrosamine formation was not observed under any tested condition except very low levels of N-Nitrosopyrrolidine under some conditions. With selected N-nitrosamine precursors present N-nitrosamines formed at different levels under different conditions. The highest N-nitrosamine formation was NDMA with a maximum concentration of 1180 ng/L by monochloramine disinfection with precursors present; much lower levels of N-nitrosamines were formed by free chlorine disinfection; and no detectable level of N-nitrosamines were observed by peracetic acid disinfection except low level of N-Nitrosodi-n-propylamine under some conditions. NDMA formation was not affected by pH while four other N-nitrosamine formations were slightly affected by sample pH tested between 7 and 9, with formation decreasing with increasing pH. Monochloramine exposure time study displayed fast formation of N-nitrosamines, largely formed in four hours of exposure and maximized after seven days. This was a systematic study on the N-nitrosamine formation with the seven major N-nitrosamine precursors presence and absence under different conditions, including peracetic acid disinfection which has not been studied elsewhere. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Vijith, H.; Satheesh, R.
2007-09-01
Hydrogeochemistry of groundwater in upland sub-watersheds of Meenachil river, parts of Western Ghats, Kottayam, Kerala, India was used to assess the quality of groundwater for determining its suitability for drinking and agricultural purposes. The study area is dominated by rocks of Archaean age, and Charnonckite is dominated over other rocks. Rubber plantation dominated over other types of the vegetation in the area. Though the study area receives heavy rainfall, it frequently faces water scarcity as well as water quality problems. Hence, a Geographical Information System (GIS) based assessment of spatiotemporal behaviour of groundwater quality has been carried out in the region. Twenty-eight water samples were collected from different wells and analysed for major chemical constituents both in monsoon and post-monsoon seasons to determine the quality variation. Physical and chemical parameters of groundwater such as pH, dissolved oxygen (DO), total hardness (TH), chloride (Cl), nitrate (NO3) and phosphate (PO4) were determined. A surface map was prepared in the ArcGIS 8.3 (spatial analyst module) to assess the quality in terms of spatial variation, and it showed that the high and low regions of water quality varied spatially during the study period. The influence of lithology over the quality of groundwater is negligible in this region because majority of the area comes under single lithology, i.e. charnockite, and it was found that the extensive use of fertilizers and pesticides in the rubber, tea and other agricultural practices influenced the groundwater quality of the region. According to the overall assessment of the basin, all the parameters analysed are below the desirable limits of WHO and Indian standards for drinking water. Hence, considering the pH, the groundwater in the study area is not suitable for drinking but can be used for irrigation, industrial and domestic purposes. The spatial analysis of groundwater quality patterns of the study area shows seasonal fluctuations and these spatial patterns of physical and chemical constituents are useful in deciding water use strategies for various purposes.
Delafont, Vincent; Bouchon, Didier; Héchard, Yann; Moulin, Laurent
2016-09-01
Free-living amoebae (FLA) constitute an important part of eukaryotic populations colonising drinking water networks. However, little is known about the factors influencing their ecology in such environments. Because of their status as reservoir of potentially pathogenic bacteria, understanding environmental factors impacting FLA populations and their associated bacterial community is crucial. Through sampling of a large drinking water network, the diversity of cultivable FLA and their bacterial community were investigated by an amplicon sequencing approach, and their correlation with physicochemical parameters was studied. While FLA ubiquitously colonised the water network all year long, significant changes in population composition were observed. These changes were partially explained by several environmental parameters, namely water origin, temperature, pH and chlorine concentration. The characterisation of FLA associated bacterial community reflected a diverse but rather stable consortium composed of nearly 1400 OTUs. The definition of a core community highlighted the predominance of only few genera, majorly dominated by Pseudomonas and Stenotrophomonas. Co-occurrence analysis also showed significant patterns of FLA-bacteria association, and allowed uncovering potentially new FLA - bacteria interactions. From our knowledge, this study is the first that combines a large sampling scheme with high-throughput identification of FLA together with associated bacteria, along with their influencing environmental parameters. Our results demonstrate the importance of physicochemical parameters in the ecology of FLA and their bacterial community in water networks. Copyright © 2016 Elsevier Ltd. All rights reserved.
Water quality management using statistical analysis and time-series prediction model
NASA Astrophysics Data System (ADS)
Parmar, Kulwinder Singh; Bhardwaj, Rashmi
2014-12-01
This paper deals with water quality management using statistical analysis and time-series prediction model. The monthly variation of water quality standards has been used to compare statistical mean, median, mode, standard deviation, kurtosis, skewness, coefficient of variation at Yamuna River. Model validated using R-squared, root mean square error, mean absolute percentage error, maximum absolute percentage error, mean absolute error, maximum absolute error, normalized Bayesian information criterion, Ljung-Box analysis, predicted value and confidence limits. Using auto regressive integrated moving average model, future water quality parameters values have been estimated. It is observed that predictive model is useful at 95 % confidence limits and curve is platykurtic for potential of hydrogen (pH), free ammonia, total Kjeldahl nitrogen, dissolved oxygen, water temperature (WT); leptokurtic for chemical oxygen demand, biochemical oxygen demand. Also, it is observed that predicted series is close to the original series which provides a perfect fit. All parameters except pH and WT cross the prescribed limits of the World Health Organization /United States Environmental Protection Agency, and thus water is not fit for drinking, agriculture and industrial use.
Water quality assessment of sacred glacial Lake Satopanth of Garhwal Himalaya, India
NASA Astrophysics Data System (ADS)
Sharma, Ramesh C.; Kumar, Rahul
2017-12-01
Satopanth Lake is a glacial lake, located at an altitude of 4600 m above sea level in Garhwal Himalaya of Uttarakhand state in India where an attempt was made to assess the water quality. A total of sixteen physico-chemical parameters including temperature, hardness, alkalinity, dissolved oxygen, conductivity, pH, calcium, magnesium, chlorides, nitrates, sulphates and phosphates were recorded during 2014 and 2015 between June and August in ice-free period. The mean values of pH ranged from 6.85 to 7.10; water temperature fluctuated from 0.1 to 0.3 °C; dissolved oxygen varied from 5.90 to 6.0 mg.L-1; free CO2 varied from 8.40 to 8.60 mg.L-1; total dissolved solids varied from 88.0 to 89.5 mg.L-1; calcium from 7.88 to 7.95 mg.L-1; magnesium from 0.53 to 0.66 mg.L-1. All the physico-chemical values were within the prescribed WHO/BIS limit for drinking water. Water Quality Index (WQI) calculated based on these parameters also revealed the excellent quality of lake water.
Ntim, Susana Addo; Mitra, Somenath
2012-06-01
The adsorptive removal of arsenic from water using a multiwall carbon nanotube-zirconia nanohybrid (MWCNT-ZrO(2)) is presented. The MWCNT-ZrO(2) with 4.85% zirconia was effective in meeting the drinking water standard levels of 10 μg L(-1). The absorption capacity of the composite were 2000 μg g(-1) and 5000 μg g(-1) for As(III) and As(V) respectively, which were significantly higher than those reported previously for iron oxide coated MWCNTs. The adsorption of As(V) on MWCNT-ZrO(2) was faster than that of As(III), and a pseudo-second order rate equation effectively described the uptake kinetics. The adsorption isotherms for As(III) and As(V) fitted both the Langmuir and Freundlich models. A major advantage of the MWCNT-ZrO(2) was that the adsorption capacity was not a function of pH. Copyright © 2012 Elsevier Inc. All rights reserved.
Chapman, Melinda J.; Gurley, Laura N.; Fitzgerald, Sharon A.
2014-01-01
Records were obtained for 305 wells and 1 spring in northwestern Lee and southeastern Chatham counties, North Carolina. Well depths ranged from 26 to 720 feet and yields ranged from 0.25 to 100 gallons per minute. A subset of 56 wells and 1 spring were sampled for baseline groundwaterquality constituents including the following: major ions; dissolved metals; nutrients; dissolved gases (including methane); volatile and semivolatile organic compounds; glycols; isotopes of strontium, radium, methane (if sufficient concentration), and water; and dissolved organic and inorganic carbon. Dissolved methane gas concentrations were low, ranging from less than 0.00007 (lowest reporting level) to 0.48 milligrams per liter. Concentrations of nitrate, boron, iron, manganese, sulfate, chloride, total dissolved solids, and measurements of pH exceeded federal and state drinking water standards in a few samples. Iron and manganese concentrations exceeded the secondary (aesthetic) drinking water standard in approximately 35 to 37 percent of the samples.
Dubrawski, K L; Cataldo, M; Dubrawski, Z; Mazumder, A; Wilkinson, D P; Mohseni, M
2018-06-01
Harmful algal blooms (HAB) release microtoxins that contaminate drinking water supplies and risk the health of millions annually. Crystalline ferrate(VI) is a powerful oxidant capable of removing algal microtoxins. We investigate in-situ electrochemically produced ferrate from common carbon steel as an on-demand alternative to crystalline ferrate for the removal of microcystin-LR (MC-LR) and compare the removal efficacy for both electrochemical (EC) and chemical dosing methodologies. We report that a very low dose of EC-ferrate in deionized water (0.5 mg FeO 4 2- L -1 ) oxidizes MC-LR (MC-LR 0 = 10 μg L -1 ) to below the guideline limit (1.0 μg L -1 ) within 10 minutes' contact time. With bicarbonate or natural organic matter (NOM), doses of 2.0-5.0 mg FeO 4 2- L -1 are required, with lower efficacy of EC-ferrate than crystalline ferrate due to loss of EC-ferrate by water oxidation. To evaluate the EC-ferrate process to concurrently oxidize micropollutants, coagulate NOM, and disinfect drinking water, we spiked NOM-containing real water with MC-LR and Escherichia coli, finding that EC-ferrate is effective at 10.0 mg FeO 4 2- L -1 under normal operation or 2.0 mg FeO 4 2- L -1 if the test water has initial pH optimized. We suggest in-situ EC-ferrate may be appropriate for sporadic HAB events in small water systems as a primary or back-up technology.
Formation of toxic iodinated disinfection by-products from compounds used in medical imaging.
Duirk, Stephen E; Lindell, Cristal; Cornelison, Christopher C; Kormos, Jennifer; Ternes, Thomas A; Attene-Ramos, Matias; Osiol, Jennifer; Wagner, Elizabeth D; Plewa, Michael J; Richardson, Susan D
2011-08-15
Iodinated X-ray contrast media (ICM) were investigated as a source of iodine in the formation of iodo-trihalomethane (iodo-THM) and iodo-acid disinfection byproducts (DBPs), both of which are highly genotoxic and/or cytotoxic in mammalian cells. ICM are widely used at medical centers to enable imaging of soft tissues (e.g., organs, veins, blood vessels) and are designed to be inert substances, with 95% eliminated in urine and feces unmetabolized within 24 h. ICM are not well removed in wastewater treatment plants, such that they have been found at elevated concentrations in rivers and streams (up to 100 μg/L). Naturally occurring iodide in source waters is believed to be a primary source of iodine in the formation of iodo-DBPs, but a previous 23-city iodo-DBP occurrence study also revealed appreciable levels of iodo-DBPs in some drinking waters that had very low or no detectable iodide in their source waters. When 10 of the original 23 cities' source waters were resampled, four ICM were found--iopamidol, iopromide, iohexol, and diatrizoate--with iopamidol most frequently detected, in 6 of the 10 plants sampled, with concentrations up to 2700 ng/L. Subsequent controlled laboratory reactions of iopamidol with aqueous chlorine and monochloramine in the absence of natural organic matter (NOM) produced only trace levels of iodo-DBPs; however, when reacted in real source waters (containing NOM), chlorine and monochloramine produced significant levels of iodo-THMs and iodo-acids, up to 212 nM for dichloroiodomethane and 3.0 nM for iodoacetic acid, respectively, for chlorination. The pH behavior was different for chlorine and monochloramine, such that iodo-DBP concentrations maximized at higher pH (8.5) for chlorine, but at lower pH (6.5) for monochloramine. Extracts from chloraminated source waters with and without iopamidol, as well as from chlorinated source waters with iopamidol, were the most cytotoxic samples in mammalian cells. Source waters with iopamidol but no disinfectant added were the least cytotoxic. While extracts from chlorinated and chloraminated source waters were genotoxic, the addition of iopamidol enhanced their genotoxicity. Therefore, while ICM are not toxic in themselves, their presence in source waters may be a source of concern because of the formation of highly toxic iodo-DBPs in chlorinated and chloraminated drinking water.
Machado, Ana; Bordalo, Adriano A
2014-08-01
Potable water is a resource out of reach for millions worldwide, and the available water may be chemically and microbiologically compromised. This is particularly acute in Africa, where water-networks may be non-existent or restricted to a small fraction of the urban population, as in the case of Guinea-Bissau, West Africa. This study was carried out seasonally in Bolama (11°N), where unprotected hand-dug wells with acidic water are the sole source of water for the population. We inspected the free-living bacterial community dynamics by automated rRNA intergenic spacer analyses, quantitative polymerase chain reaction and cloning approaches. The results revealed a clear seasonal shift in bacterial assemblage composition and microbial abundance within the same sampling site. Temperature, pH and turbidity, together with the infiltration and percolation of surface water, which takes place in the wet season, seemed to be the driving factors in the shaping and selection of the bacterial community and deterioration of water quality. Analysis of 16S rDNA sequences revealed several potential pathogenic bacteria and uncultured bacteria associated with water and sediments, corroborating the importance of a culture-independent approach in drinking water monitoring. Copyright © 2014. Published by Elsevier B.V.
Quality of ground water in the Columbia Basin, Washington, 1983
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turney, G.L.
1986-01-01
Groundwater from 188 sites in the Columbia Basin of central Washington was sampled and analyzed in 1983 for pH, specific conductance, and concentrations of fecal coliform bacteria, major dissolved ions, and dissolved iron, manganese, and nitrate. Twenty of the samples were also analyzed for concentrations of dissolved trace metals including aluminum, arsenic, barium, cadmium, chromium, copper, lead, mercury, selenium, silver, and zinc. The predominant water types were sodium bicarbonate and calcium bicarbonate. The sodium bicarbonate water samples had higher pH, fluoride, and sodium:adsorption ratio values than samples with other water types. Most trace metal concentrations were also < 10 ug/Lmore » except for barium and zinc, which had maximum concentrations of 170 and 600 ug/L, respectively. Nitrate concentrations were < 1.0 mg/L in water from more than half the wells sampled. US EPA (Environmental Protection Agency) drinking water regulations were exceeded in several samples, most commonly involving pH and concentrations of fluoride, nitrate, and dissolved solids in samples from Adams and Grant Counties. Generally, the historical data lead to similar conclusions about the quality of groundwater in the Columbia Basin region. However, historical samples had higher dissolved solids concentrations in Douglas County. Historical samples also included fewer sodium bicarbonate type waters in the region as a whole than the 1983 samples. 24 refs., 2 figs., 4 tabs.« less
Samal, Alok C; Bhattacharya, Piyal; Mallick, Anusaya; Ali, Md Motakabber; Pyne, Jagadish; Santra, Subhas C
2015-04-01
To assess the status of severity of fluoride contamination in lateritic Bankura and Purulia districts of West Bengal, concentrations of fluoride in different water sources and agricultural field soils were investigated. The fluoride content (mg/l) was observed to differ with aquifer depths: 0.19-0.47 in dug wells, 0.01-0.17 in shallow tube wells, and 0.07-1.6 in deep tube wells. Fluoride within the World Health Organization (WHO) prescribed range (1.0-1.5 mg/l) was estimated only in ~17% of the total collected water samples while ~67% showed <0.7 mg/l fluoride and thus may impede in the production and maintenance of healthy teeth and bones of the residents, especially children. Fluoride in water was found to be significantly correlated (r = 0.63) with pH. The exposure dose of fluoride (mg/kg/day) from drinking water in infants, children, and adults was estimated in the ranges 0.02-0.53, 0.01-0.24, and 0.01-0.14, respectively against the standard value of 0.05. A clear risk of dental fluorosis is apparent in infants and children of the study area. The fluoride in soil (55-399 mg/kg) was detected to be significantly correlated with the fluoride content in deep tube wells and soil pH (r = 0.56 and 0.71, respectively). The relationships of soil fluoride with total hardness and that with phosphate were not significant. There is a high possibility of bioaccumulation of fluoride from contaminated soil and water of the study area to cultivated crops. This will enhance the quantity of fluoride intake into human food chain in addition to drinking water pathway.
Toor, Gurpal S; Han, Lu; Stanley, Craig D
2013-05-01
Our objective was to evaluate changes in water quality parameters during 1983-2007 in a subtropical drinking water reservoir (area: 7 km(2)) located in Lake Manatee Watershed (area: 338 km(2)) in Florida, USA. Most water quality parameters (color, turbidity, Secchi depth, pH, EC, dissolved oxygen, total alkalinity, cations, anions, and lead) were below the Florida potable water standards. Concentrations of copper exceeded the potable water standard of <30 μg l(-1) in about half of the samples. About 75 % of total N in lake was organic N (0.93 mg l(-1)) with the remainder (25 %) as inorganic N (NH3-N: 0.19, NO3-N: 0.17 mg l(-1)), while 86 % of total P was orthophosphate. Mean total N/P was <6:1 indicating N limitation in the lake. Mean monthly concentration of chlorophyll-a was much lower than the EPA water quality threshold of 20 μg l(-1). Concentrations of total N showed significant increase from 1983 to 1994 and a decrease from 1997 to 2007. Total P showed significant increase during 1983-2007. Mean concentrations of total N (n = 215; 1.24 mg l(-1)) were lower, and total P (n = 286; 0.26 mg l(-1)) was much higher than the EPA numeric criteria of 1.27 mg total N l(-1) and 0.05 mg total P l(-1) for Florida's colored lakes, respectively. Seasonal trends were observed for many water quality parameters where concentrations were typically elevated during wet months (June-September). Results suggest that reducing transport of organic N may be one potential option to protect water quality in this drinking water reservoir.
Drinking Water Contamination Due To Lead-based Solder
NASA Astrophysics Data System (ADS)
Garcia, N.; Bartelt, E.; Cuff, K. E.
2004-12-01
The presence of lead in drinking water creates many health hazards. Exposure to lead-contaminated water can affect the brain, the central nervous system, blood cells, and kidneys, causing such problems as mental retardation, kidney disease, heart disease, stroke, and death. One way in which lead can contaminate our water supply is through the use of lead solder to join pipes. Lead solder was widely used in the past because of its ease of application as well as its low cost. Lead contamination in residential areas has previously been found to be a particularly serious problem in first-draw samples, of water that has sat stagnant in pipes overnight. To investigate the time-dependence of drinking water lead contamination, we analyzed samples taken hourly of water exposed to lead solder. While our preliminary data was insufficient to show more than a rough correlation between time of exposure and lead concentration over short periods (1-3 hours), we were able to confirm that overnight exposure of water to lead-based solder results in the presence high levels of lead. We also investigated other, external factors that previous research has indicated contribute to increased concentrations of lead. Our analysis of samples of lead-exposed water at various pH and temperatures suggests that these factors can be equally significant in terms of their contribution to elevated lead concentration levels. In particular, water that is slightly corrosive appears to severely impact the solubility of lead. As this type of water is common in much of the Northeast United States, the presence of lead-based solder in residential areas there is especially problematic. Although lead-based solder has been banned since the 1980s, it remains a serious concern, and a practical solution still requires further research.
Weyer, Peter J.; Romitti, Paul A.; Mohanty, Binayak P.; Shinde, Mayura U.; Vuong, Ann M.; Sharkey, Joseph R.; Dwivedi, Dipankar; Horel, Scott A.; Kantamneni, Jiji; Huber, John C.; Zheng, Qi; Werler, Martha M.; Kelley, Katherine E.; Griesenbeck, John S.; Zhan, F. Benjamin; Langlois, Peter H.; Suarez, Lucina; Canfield, Mark A.
2013-01-01
Background: Previous studies of prenatal exposure to drinking-water nitrate and birth defects in offspring have not accounted for water consumption patterns or potential interaction with nitrosatable drugs. Objectives: We examined the relation between prenatal exposure to drinking-water nitrate and selected birth defects, accounting for maternal water consumption patterns and nitrosatable drug exposure. Methods: With data from the National Birth Defects Prevention Study, we linked addresses of 3,300 case mothers and 1,121 control mothers from the Iowa and Texas sites to public water supplies and respective nitrate measurements. We assigned nitrate levels for bottled water from collection of representative samples and standard laboratory testing. Daily nitrate consumption was estimated from self-reported water consumption at home and work. Results: With the lowest tertile of nitrate intake around conception as the referent group, mothers of babies with spina bifida were 2.0 times more likely (95% CI: 1.3, 3.2) to ingest ≥ 5 mg nitrate daily from drinking water (vs. < 0.91 mg) than control mothers. During 1 month preconception through the first trimester, mothers of limb deficiency, cleft palate, and cleft lip cases were, respectively, 1.8 (95% CI: 1.1, 3.1), 1.9 (95% CI: 1.2, 3.1), and 1.8 (95% CI: 1.1, 3.1) times more likely than control mothers to ingest ≥ 5.42 mg of nitrate daily (vs. < 1.0 mg). Higher water nitrate intake did not increase associations between prenatal nitrosatable drug use and birth defects. Conclusions: Higher water nitrate intake was associated with several birth defects in offspring, but did not strengthen associations between nitrosatable drugs and birth defects. Citation: Brender JD, Weyer PJ, Romitti PA, Mohanty BP, Shinde MU, Vuong AM, Sharkey JR, Dwivedi D, Horel SA, Kantamneni J, Huber JC Jr., Zheng Q, Werler MM, Kelley KE, Griesenbeck JS, Zhan FB, Langlois PH, Suarez L, Canfield MA, and the National Birth Defects Prevention Study. 2013. Prenatal nitrate intake from drinking water and selected birth defects in offspring of participants in the National Birth Defects Prevention Study. Environ Health Perspect 121:1083–1089; http://dx.doi.org/10.1289/ehp.1206249 PMID:23771435
Impact of effects of acid precipitation on toxicity of metals.
Nordberg, G F; Goyer, R A; Clarkson, T W
1985-01-01
Acid precipitation may increase human exposure to several potentially toxic metals by increasing metal concentrations in major pathways to man, particularly food and water, and in some instances by enhancing the conversion of metal species to more toxic forms. Human exposures to methylmercury are almost entirely by way of consumption of fish and seafood. In some countries, intakes by this route may approach the levels that can give rise to adverse health effects for population groups with a high consumption of these food items. A possible increase in methylmercury concentrations in fish from lakes affected by acid precipitation may thus be of concern to selected population groups. Human exposures to lead reach levels that are near those associated with adverse health effects in certain sensitive segments of the general population in several countries. The possibility exists that increased exposures to lead may be caused by acid precipitation through a mobilization of lead from soils into crops. A route of exposure to lead that may possibly be influenced by acid precipitation is an increased deterioration of surface materials containing lead and a subsequent ingestion by small children. A similar situation with regard to uptake from food exists for cadmium (at least in some countries). Human metal exposures via drinking water may be increased by acid precipitation. Decreasing pH increases corrosiveness of water enhancing the mobilization of metal salts from soil; metallic compounds may be mobilized from minerals, which may eventually reach drinking water. Also, the dissolution of metals (Pb, Cd, Cu) from piping systems for drinking water by soft acidic waters of high corrosivity may increase metal concentrations in drinking water. Exposures have occasionally reached concentrations which are in the range where adverse health effects may be expected in otherwise healthy persons. Dissolution from piping systems can be prevented by neutralizing the water before distribution. Increased aluminum concentrations in water is a result mainly of the occurrence of Al in acidified natural waters and the use of Al chemicals in drinking water purification. If such water is used for dialysis in patients with chronic renal failure, it may give rise to cases of dialysis dementia and other disorders. A possible influence on health of persons with normal renal function (e.g., causing Alzheimer's disease) is uncertain and requires further investigation.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:3908087
Characterization, sorption, and exhaustion of metal oxide nanoparticles as metal adsorbents
NASA Astrophysics Data System (ADS)
Engates, Karen Elizabeth
Safe drinking water is paramount to human survival. Current treatments do not adequately remove all metals from solution, are expensive, and use many resources. Metal oxide nanoparticles are ideal sorbents for metals due to their smaller size and increased surface area in comparison to bulk media. With increasing demand for fresh drinking water and recent environmental catastrophes to show how fragile water supplies are, new approaches to water conservation incorporating new technologies like metal oxide nanoparticles should be considered as an alternative method for metal contaminant adsorbents from typical treatment methods. This research evaluated the potential of manufactured iron, anatase, and aluminum nanoparticles (Al2O3, TiO2, Fe2O3) to remove metal contaminants (Pb, Cd, Cu, Ni, Zn) in lab-controlled and natural waters in comparison to their bulk counterparts by focusing on pH, contaminant and adsorbent concentrations, particle size, and exhaustive capabilities. Microscopy techniques (SEM, BET, EDX) were used to characterize the adsorbents. Adsorption experiments were performed using 0.01, 0.1, or 0.5 g/L nanoparticles in pH 8 solution. When results were normalized by mass, nanoparticles adsorbed more than bulk particles but when surface area normalized the opposite was observed. Adsorption was pH-dependent and increased with time and solid concentration. Aluminum oxide was found to be the least acceptable adsorbent for the metals tested, while titanium dioxide anatase (TiO2) and hematite (alpha-Fe2O3) showed great ability to remove individual and multiple metals from pH 8 and natural waters. Intraparticle diffusion was likely part of the complex kinetic process for all metals using Fe2O3 but not TiO 2 nanoparticles within the first hour of adsorption. Adsorption kinetics for all metals tested were described by a modified first order rate equation used to consider the diminishing equilibrium metal concentrations with increasing metal oxides, showing faster adsorption rates for nanoparticles compared to bulk particles. Isotherms were best fit with most correlations of r=0.99 or better using the Langmuir-Freundlich equation which describes a heterogeneous surface with monolayer adsorption. Calculated rate constants and distribution coefficients (Kd) showed TiO2 nanoparticles were very good sorbents and more rapid in removing metals than other nanoparticles studied here and reported in the literature. Desorption studies concluded Pb, Cd, and Zn appear to be irreversibly sorbed to TiO2 surfaces at pH 8. TiO2 and Fe2O3 nanoparticles were capable of multiple metal loadings, with exhaustion for both adsorbents at pH 6. Exhaustion studies at pH 8 showed hematite exhausted after four consecutive cycles while anatase showed no exhaustion after 8 cycles. Their bulk counterparts exhausted in earlier cycles indicating the lack of ability to adsorb much of the multiple metals in solution. The increased surface area of TiO2 and Fe 2O3 nanoparticles, coupled with strong adsorption at the pH of most natural waters and resistance to desorption of some metals, may offer a potential remediation method for removal of metals from water in the future.
Sorensen, James P R; Baker, Andy; Cumberland, Susan A; Lapworth, Dan J; MacDonald, Alan M; Pedley, Steve; Taylor, Richard G; Ward, Jade S T
2018-05-01
We assess the use of fluorescent dissolved organic matter at excitation-emission wavelengths of 280nm and 360nm, termed tryptophan-like fluorescence (TLF), as an indicator of faecally contaminated drinking water. A significant logistic regression model was developed using TLF as a predictor of thermotolerant coliforms (TTCs) using data from groundwater- and surface water-derived drinking water sources in India, Malawi, South Africa and Zambia. A TLF threshold of 1.3ppb dissolved tryptophan was selected to classify TTC contamination. Validation of the TLF threshold indicated a false-negative error rate of 15% and a false-positive error rate of 18%. The threshold was unsuccessful at classifying contaminated sources containing <10 TTC cfu per 100mL, which we consider the current limit of detection. If only sources above this limit were classified, the false-negative error rate was very low at 4%. TLF intensity was very strongly correlated with TTC concentration (ρ s =0.80). A higher threshold of 6.9ppb dissolved tryptophan is proposed to indicate heavily contaminated sources (≥100 TTC cfu per 100mL). Current commercially available fluorimeters are easy-to-use, suitable for use online and in remote environments, require neither reagents nor consumables, and crucially provide an instantaneous reading. TLF measurements are not appreciably impaired by common intereferents, such as pH, turbidity and temperature, within typical natural ranges. The technology is a viable option for the real-time screening of faecally contaminated drinking water globally. Copyright © 2017 Natural Environment Research Council (NERC), as represented by the British Geological Survey (BGS. Published by Elsevier B.V. All rights reserved.
Impact of RO-desalted water on distribution water qualities.
Taylor, J; Dietz, J; Randall, A; Hong, S
2005-01-01
A large-scale pilot distribution study was conducted to investigate the impacts of blending different source waters on distribution water qualities, with an emphasis on metal release (i.e. corrosion). The principal source waters investigated were conventionally treated ground water (G1), surface water processed by enhanced treatment (S1), and desalted seawater by reverse osmosis membranes (RO). Due to the nature of raw water quality and associated treatment processes, G1 water had high alkalinity, while S1 and RO sources were characterized as high sulfate and high chloride waters, respectively. The blending ratio of different treated waters determined the quality of finished waters. Iron release from aged cast iron pipes increased significantly when exposed to RO and S1 waters: that is, the greater iron release was experienced with alkalinity reduced below the background of G1 water. Copper release to drinking water, however, increased with increasing alkalinity and decreasing pH. Lead release, on the other hand, increased with increasing chloride and decreasing sulfate. The effect of pH and alkalinity on lead release was not clearly observed from pilot blending study. The flat and compact corrosion scales observed for lead surface exposed to S1 water may be attributable to lead concentration less than that of RO water blends.
Scheurer, Marco; Godejohann, Markus; Wick, Arne; Happel, Oliver; Ternes, Thomas A; Brauch, Heinz-Jürgen; Ruck, Wolfgang K L; Lange, Frank Thomas
2012-05-01
The two artificial sweeteners cyclamate (CYC) and acesulfame (ACE) have been detected in wastewater and drinking water treatment plants. As in both facilities ozonation might be applied, it is important to find out if undesired oxidation products (OPs) are formed. For the separation and detection of the OPs, several analytical techniques, including nuclear magnetic resonance experiments, were applied. In order to distinguish between direct ozone reaction and a radical mechanism, experiments were carried out at different pH values with and without scavenging OH radicals. Kinetic experiments were used for confirmation that the OPs are formed during short ozone contact time applied in waterworks. Samples from a waterworks using bank filtrate as raw water were analyzed in order to prove that the identified OPs are formed in real and full-scale ozone applications. In the case of CYC, oxidation mainly occurs at the carbon atom, where the sulfonamide moiety is bound to the cyclohexyl ring. Consequently, amidosulfonic acid and cyclohexanone are formed as main OPs of CYC. When ozone reacts at another carbon atom of the ring a keto moiety is introduced into the CYC molecule. Acetic acid and the product ACE OP170, an anionic compound with m/z=170 and an aldehyde hydrate moiety, were identified as the main OPs for ACE. The observed reaction products suggest an ozone reaction according to the Criegee mechanism due to the presence of a C=C double bond. ACE OP170 was also detected after the ozonation unit of a full-scale drinking water treatment plant which uses surface water-influenced bank filtrate as raw water. Acesulfame can be expected to be found in anthropogenic-influenced raw water used for drinking water production. However, when ACE OP170 is formed during ozonation, it is not expected to cause any problem for drinking water suppliers, because the primary findings suggest its removal in subsequent treatment steps, such as activated carbon filters.
Impact of water quality on chlorine demand of corroding copper
Copper is widely used in drinking water premise plumbing system materials. In buildings such ashospitals, large and complicated plumbing networks make it difficult to maintain good water quality.Sustaining safe disinfectant residuals throughout a building to protect against waterborne pathogenssuch as Legionella is particularly challenging since copper and other reactive distribution system materialscan exert considerable demands. The objective of this work was to evaluate the impact of pH andorthophosphate on the consumption of free chlorine associated with corroding copper pipes over time. Acopper test-loop pilot system was used to control test conditions and systematically meet the studyobjectives. Chlorine consumption trends attributed to abiotic reactions with copper over time weredifferent for each pH condition tested, and the total amount of chlorine consumed over the test runsincreased with increasing pH. Orthophosphate eliminated chlorine consumption trends with elapsedtime (i.e., chlorine demand was consistent across entire test runs). Orthophosphate also greatly reducedthe total amount of chlorine consumed over the test runs. Interestingly, the total amount of chlorineconsumed and the consumption rate were not pH dependent when orthophosphate was present. Thefindings reflect the complex and competing reactions at the copper pipe wall including corrosion,oxidation of Cu(I) minerals and ions, and possible oxidation of Cu(II) minerals, and the change in
Assessment of physico-chemical characteristics of water in Tamilnadu.
Udhayakumar, R; Manivannan, P; Raghu, K; Vaideki, S
2016-12-01
Water is an important component to human life. The major aims of the present work are to assess the quality of the ground water and its impact in Villupuram District of Tamilnadu. The present study focus to bring an awareness among the people about the quality of ground water by taking water samples from various locations for Physico - Chemical analysis of the ground water. This analysis result was compared with the WHO, ICMR, USPH and European standards of drinking water quality parameters with the following water quality parameters namely pH, Electrical conductivity, Cl, , Na, K, Ca , Mg, Total dissolved solids, Total hardness, Dissolved oxygen, Fluoride etc. Various chemical methods have been employed to investigate the extent level of pollution in ground water. Copyright © 2016 Elsevier Inc. All rights reserved.
Hoyland, Victoria W; Knocke, William R; Falkinham, Joseph O; Pruden, Amy; Singh, Gargi
2014-12-01
Soluble manganese (Mn) presents a significant treatment challenge to many water utilities, causing aesthetic and operational concerns. While application of free chlorine to oxidize Mn prior to filtration can be effective, this is not feasible for surface water treatment plants using ozonation followed by biofiltration because it inhibits biological removal of organics. Manganese-oxidizing bacteria (MOB) readily oxidize Mn in groundwater treatment applications, which normally involve pH > 7.0. The purpose of this study was to evaluate the potential for biological Mn removal at the lower pH conditions (6.2-6.3) often employed in enhanced coagulation to optimize organics removal. Four laboratory-scale biofilters were operated over a pH range of 6.3-7.3. The biofilters were able to oxidize Mn at a pH as low as pH 6.3 with greater than 98% Mn removal. Removal of simulated organic ozonation by-products was also greater than 90% in all columns. Stress studies indicated that well-acclimated MOB can withstand variations in Mn concentration (e.g., 0.1-0.2 mg/L), hydraulic loading rate (e.g., 2-4 gpm/ft(2); 1.36 × 10(-3)-2.72 × 10(-3) m/s), and temperature (e.g., 7-22 °C) typically found at surface water treatment plants at least for relatively short (1-2 days) periods of time. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zhang, Huining; Gu, Li; Liu, Bing; Gan, Huihui; Zhang, Kefeng; Jin, Huixia; Yu, Xin
2016-09-01
Dissolved organic nitrogen (DON) is a key precursor of numerous disinfection by-products (DBPs), especially nitrogenous DBPs (N-DBPs) formed during disinfection in drinking water treatment. To effectively control DBPs, reduction of the DON concentration before the disinfection process is critical. Traditional biofilters can increase the DON concentration in the effluent, so an improved biofilter is needed. In this study, an improved biofilter was set up with two-layer columns using activated carbon and quartz sand under different influent patterns. Compared with the single-layer filter, the two-layer biofilter controlled the DON concentration more efficiently. The two-point influent biofilter controlled the DON concentration more effectively than the single-point influent biofilter. The improved biofilter resulted in an environment (including matrix, DO, and pH) suitable for microbial growth. Along the depth of the biofilter column, the environment affected the microbial biomass and microbial activity and thus affected the DON concentration.
Analysis of Wastewater Treatment Efficiency in a Soft Drinks Industry
NASA Astrophysics Data System (ADS)
Boguniewicz-Zabłocka, Joanna; Capodaglio, Andrea G.; Vogel, Daniel
2017-10-01
During manufacturing processes, most industrial plants generate wastewater which could become harmful to the environment. Discharge of untreated or improperly treated industrial wastewaters into surface water could, in fact, lead to deterioration of the receiving water body's quality. This paper concerns wastewater treatment solutions used in the soft drink production industry: wastewater treatment plant effectiveness analysis was determined in terms of basic pollution indicators, such as BOD, COD, TSS and variable pH. Initially, the performance of mechanic-biological systems for the treatment of wastewater from a specific beverages production process was studied in different periods, due to wastewater flow fluctuation. The study then showed the positive effects on treatment of wastewater augmentation by methanol, nitrogen and phosphorus salts dosed into it during the treatment process. Results confirm that after implemented modification (methanol, nitrogen and phosphorus additions) pollution removal occurs mostly with higher efficiency.
The influence of brewing water characteristic on sensory perception of pour-over local coffee
NASA Astrophysics Data System (ADS)
Fibrianto, K.; Ardianti, A. D.; Pradipta, K.; Sunarharum, W. B.
2018-01-01
The coffee quality can be characterized by its multisensory perceptions. The content and mineral composition and other substances of brewing water can affect the result of brewed-coffee. The water may influence in extraction capabilities and flavor clarity. The ground Dampit coffee and two commercial instant coffee with pour-over method were used in this study. Various types of commercial drinking water were used to brew the coffee. The result suggests that the different brewing water affects the intensity of sweet and chocolate aroma, as well as oily mouth-feel. Surprisingly, taste and flavour attributes were not affected by the pH of brewing water within the range of 5.5 to 9.1.
Mineralizing urban net-zero water treatment: Field experience for energy-positive water management.
Wu, Tingting; Englehardt, James D
2016-12-01
An urban net-zero water treatment system, designed for energy-positive water management, 100% recycle of comingled black/grey water to drinking water standards, and mineralization of hormones and other organics, without production of concentrate, was constructed and operated for two years, serving an occupied four-bedroom, four-bath university residence hall apartment. The system comprised septic tank, denitrifying membrane bioreactor (MBR), iron-mediated aeration (IMA) reactor, vacuum ultrafilter, and peroxone or UV/H 2 O 2 advanced oxidation, with 14% rainwater make-up and concomitant discharge of 14% of treated water (ultimately for reuse in irrigation). Chemical oxygen demand was reduced to 12.9 ± 3.7 mg/L by MBR and further decreased to below the detection limit (<0.7 mg/L) by IMA and advanced oxidation treatment. The process produced a mineral water meeting 115 of 115 Florida drinking water standards that, after 10 months of recycle operation with ∼14% rainwater make-up, had a total dissolved solids of ∼500 mg/L, pH 7.8 ± 0.4, turbidity 0.12 ± 0.06 NTU, and NO 3 -N concentration 3.0 ± 1.0 mg/L. None of 97 hormones, personal care products, and pharmaceuticals analyzed were detected in the product water. For a typical single-home system with full occupancy, sludge pumping is projected on a 12-24 month cycle. Operational aspects, including disinfection requirements, pH evolution through the process, mineral control, advanced oxidation by-products, and applicability of point-of-use filters, are discussed. A distributed, peroxone-based NZW management system is projected to save more energy than is consumed in treatment, due largely to retention of wastewater thermal energy. Recommendations regarding design and operation are offered. Copyright © 2016 Elsevier Ltd. All rights reserved.
Detecting potential impacts of deep subsurface CO2 injection on shallow drinking water
NASA Astrophysics Data System (ADS)
Smyth, R. C.; Yang, C.; Romanak, K.; Mickler, P. J.; Lu, J.; Hovorka, S. D.
2012-12-01
Presented here are results from one aspect of collective research conducted at Gulf Coast Carbon Center, BEG, Jackson School at UT Austin. The biggest hurdle to public acceptance of CCS is to show that drinking water resources will not be impacted. Since late 1990s our group has been supported by US DOE NETL and private industry to research how best to detect potential impacts to shallow (0 to ~0.25 km) subsurface drinking water from deep (~1 to 3.5 km) injection of CO2. Work has and continues to include (1) field sampling and testing, (2) laboratory batch experiments, (3) geochemical modeling. The objective has been to identify the most sensitive geochemical indicators using data from research-level investigations, which can be economically applied on an industrial-scale. The worst-case scenario would be introduction of CO2 directly into drinking water from a leaking wellbore at a brownfield site. This is unlikely for a properly screened and/or maintained site, but needs to be considered. Our results show aquifer matrix (carbonate vs. clastic) to be critical to interpretation of pH and carbonate (DIC, Alkalinity, and δ13C of DIC) parameters because of the influence of water-rock reaction (buffering vs. non-buffering) on aqueous geochemistry. Field groundwater sampling sites to date are Cranfield, MS and SACROC, TX CO2-EOR oilfields. Two major aquifer types are represented, one dominated by silicate (Cranfield) and the other by carbonate (SACROC) water-rock reactions. We tested sensitivity of geochemical indicators (pH, DIC, Alkalinity, and δ13C of DIC) by modeling the effects of increasing pCO2 on aqueous geochemistry, and laboratory batch experiments, both with partial pressure of CO2 gas (pCO2) at 1x105 Pa (1 atm). Aquifer matrix and groundwater data provided constraints for the geochemical models. We used results from modeling and batch experiments to rank geochemical parameter sensitivity to increased pCO2 into weakly, mildly and strongly sensitive categories for both aquifer systems. DIC concentration is strongly sensitive to increased pCO2 for both aquifers; however, CO2 outgassing during sampling complicates direct field measurement of DIC. Interpretation of data from in-situ push-pull aquifer tests is ongoing and will be used to augment results summarized here. We are currently designing groundwater monitoring plans for two additional industrial-scale sites where we will further test the sensitivity and utility of our sampling approach.
Pandith, Madhnure; Malpe, D B; Rao, A D; Rao, P N
2016-02-01
Seasonal variations in groundwater reveal lesser concentrations of major ions except NO3(-) during post-monsoon seasons in shallow aquifers as compared to deeper aquifers. The F(-) concentration from deeper aquifers is high in both seasons and shows a moderate positive relationship with weathering depth and is >5 mg/L in compound lava flow. Groundwater is mainly a Ca-HCO3 type in shallow aquifers and mixed type in deeper aquifers. Fluoride shows a positive correlation with pH, Na(+), HCO3(-) in shallow aquifers and an inverse correlation with Ca(2+) and HCO3(-) from deeper aquifers in both seasons. Approximately 45% of the samples are not suitable for drinking from both aquifers but suitable for irrigation purposes. Rock-water interaction, moderate alkalinity, sluggish movement, and higher residence time are the main causes for high F(-) in deeper aquifers as compared to shallow aquifers. As recommendations, drinking water requirement may be met from shallow aquifers/surface water and fluoride rich groundwater for other purposes. Most effective defluoridation techniques like ion exchange and reverse osmosis may be adopted along with integrated fluorosis mitigation measures and rooftop rainwater harvesting. Supplementary calcium and phosphorous rich food should be provided to children and creating awareness about safe drinking water habits, side effects of high F(-), and NO3(-) rich groundwater, improving oral hygiene conditions are other measures.
Gifford, Mac; Chester, Mikhail; Hristovski, Kiril; Westerhoff, Paul
2018-01-01
Treatment of drinking water decreases human health risks by reducing pollutants, but the required materials, chemicals, and energy emit pollutants and increase health risks. We explored human carcinogenic and non-carcinogenic disease tradeoffs of water treatment by comparing pollutant dose-response curves against life cycle burden using USEtox methodology. An illustrative wellhead sorbent groundwater treatment system removing hexavalent chromium or pentavalent arsenic serving 3200 people was studied. Reducing pollutant concentrations in drinking water from 20 μg L -1 to 10 μg L -1 avoided 37 potential cancer cases and 64 potential non-cancer disease cases. Human carcinogenicity embedded in treatment was 0.2-5.3 cases, and non-carcinogenic toxicity was 0.2-14.3 cases, depending on technology and degree of treatment. Embedded toxicity impacts from treating Cr(VI) using strong-base anion exchange were <10% of those from using weak base anion exchange. Acidification and neutralization contributed >90% of the toxicity impacts for treatment options requiring pH control. In scenarios where benefits exceeded burdens, tradeoffs still existed. Benefits are experienced by a local population but burdens are born externally where the materials and energy are produced, thus exporting the health risks. Even when burdens clearly exceeded benefits, cost considerations may still drive selecting a detrimental treatment level or technology. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shi, Ao
2016-02-01
A method has been developed for the simultaneous determination of 23 antibiotics (four categories) and 3 β-agonists in livestock drinking water using solid-phase extraction and ultra performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (UPLC-ESI MS/MS). The samples were adjusted pH to 5. 0, added Na2EDTA, enriched and cleaned-up by an HLB solid-phase extraction cartridge. The target compounds were confirmed and quantified by UPLC-ESI MS/MS with external standard method for the anti- biotics and internal standard method for the β-agonists. The recoveries were assessed by using lab tap water as matrix. The average recoveries of the 23 antibiotics and the 3 β-agonists were in the range of 50. 7%-104. 6% and the relative standard deviations (RSDs) were 2. 6%-8. 8% (n= 3). Under the optimal conditions, the calibration curves of the 23 antibiotics and the 3 β-agonists showed good linearity with the correlation coefficients better than 0. 994. The limits of detection (LODs, S/N≥3) ranged from 0. 01-0. 20 ng/L. The developed method was applied to analyze the livestock drinking waters in 36 Beijing intensive livestock farms. The results showed that some antibiotics were detected.
Sorption of fluoride using chemically modified Moringa oleifera leaves
NASA Astrophysics Data System (ADS)
Dan, Shabnam; Chattree, Amit
2018-05-01
Contamination of drinking water due to fluoride is a severe health hazard problem. Excess of fluoride (> 1.5 mg/L) in drinking water is harmful to human health. Various treatment technologies for removing fluoride from groundwater have been investigated. The present study showed that the leaves of Moringa oleifera, a herbal plant is an effective adsorbent for the removal of fluoride from aqueous solution. Acid treated Moringa oleifera leaves powder showed good adsorption capacity than alkali treated Moringa oleifera leaves powder. Batch sorptive defluoridation was conducted under the variable experimental condition such as pH, contact time, adsorbent dose and initial fluoride ion concentration. Maximum defluoridation was achieved at pH 1. The percentage of fluoride removal increases with adsorbent dose. The equilibrium sorption data were fitted into Langmuir, Freundlich and Temkin isotherms. Of the three adsorption isotherms, the R 2 value of Langmuir isotherm model was the highest. The maximum monolayer coverage ( Q max) from Langmuir isotherm model was determined to be 1.1441 mg/g, the separation factor indicating a favorable sorption experiment is 0.035. It was also discovered that the adsorption did not conform to the Freundlich adsorption isotherm. The heat of sorption process was estimated from Temkin Isotherm model to be - 0.042 J/mol which vividly proved that the adsorption experiment followed a physical process.
Bacillus purgationiresistans sp. nov., isolated from a drinking-water treatment plant.
Vaz-Moreira, Ivone; Figueira, Vânia; Lopes, Ana R; Lobo-da-Cunha, Alexandre; Spröer, Cathrin; Schumann, Peter; Nunes, Olga C; Manaia, Célia M
2012-01-01
A Gram-positive, aerobic, non-motile, endospore-forming rod, designated DS22(T), was isolated from a drinking-water treatment plant. Cells were catalase- and oxidase-positive. Growth occurred at 15-37 °C, at pH 7-10 and with <8% (w/v) NaCl (optimum growth: 30 °C, pH 7-8 and 1-3% NaCl). The major respiratory quinone was menaquinone 7, the G+C content of the genomic DNA was 36.5 mol% and the cell wall contained meso-diaminopimelic acid. On the basis of 16S rRNA gene sequence analysis, strain DS22(T) was a member of the genus Bacillus. Its closest phylogenetic neighbours were Bacillus horneckiae NRRL B-59162(T) (98.5% 16S rRNA gene sequence similarity), Bacillus oceanisediminis H2(T) (97.9%), Bacillus infantis SMC 4352-1(T) (97.4%), Bacillus firmus IAM 12464(T) (96.8%) and Bacillus muralis LMG 20238(T) (96.8%). DNA-DNA hybridization, and biochemical and physiological characterization allowed the differentiation of strain DS22(T) from its closest phylogenetic neighbours. The data supports the proposal of a novel species, Bacillus purgationiresistans sp. nov.; the type strain is DS22(T) (=DSM 23494(T)=NRRL B-59432(T)=LMG 25783(T)).
De Vera, Glen Andrew; Stalter, Daniel; Gernjak, Wolfgang; Weinberg, Howard S; Keller, Jurg; Farré, Maria José
2015-12-15
When ozonation is employed in advanced water treatment plants to produce drinking water, dissolved organic matter reacts with ozone (O3) and/or hydroxyl radicals (OH) affecting disinfection byproduct (DBP) formation with subsequently used chlorine-based disinfectants. This study presents the effects of varying exposures of O3 and •OH on DBP concentrations and their associated toxicity generated after subsequent chlorination. DBP formation potential tests and in vitro bioassays were conducted after batch ozonation experiments of coagulated surface water with and without addition of tertiary butanol (t-BuOH, 10 mM) and hydrogen peroxide (H2O2, 1 mg/mg O3), and at different pH (6-8) and transferred ozone doses (0-1 mg/mg TOC). Although ozonation led to a 24-37% decrease in formation of total trihalomethanes, haloacetic acids, haloacetonitriles, and trihaloacetamides, an increase in formation of total trihalonitromethanes, chloral hydrate, and haloketones was observed. This effect however was less pronounced for samples ozonated at conditions favoring molecular ozone (e.g., pH 6 and in the presence of t-BuOH) over •OH reactions (e.g., pH 8 and in the presence of H2O2). Compared to ozonation only, addition of H2O2 consistently enhanced formation of all DBP groups (20-61%) except trihalonitromethanes. This proves that •OH-transformed organic matter is more susceptible to halogen incorporation. Analogously, adsorbable organic halogen (AOX) concentrations increased under conditions that favor •OH reactions. The ratio of unknown to known AOX, however, was greater at conditions that promote direct O3 reactions. Although significant correlation was found between AOX and genotoxicity with the p53 bioassay, toxicity tests using 4 in vitro bioassays showed relatively low absolute differences between various ozonation conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sturdevant-Rees, P. L.; Long, S. C.; Barten, P. K.
2002-05-01
A forty-month investigation to collect microbial and water-quality measurements during storm events under a variety of meteorological and land-use conditions is in its initial stages. Intense sampling during storm event periods will be used to optimize sampling and analysis strategies for accurate determination of constituent loads. Of particular interest is identification of meteorological and hydrologic conditions under which sampling and analysis of surface waters for traditional microbial organisms, emerging microbial organisms and non-bacterial pathogens are critical to ensure the integrity of surface-water drinking supplies. This work is particular to the Quabbin-Ware-Wachusett reservoir system in Massachusetts, which provides unfiltered drinking water to 2.5 million people in Boston and surrounding communities. Sampling and analysis strategies will be optimized in terms of number of samples over the hydrograph, timing of sample collection (including sample initiation), constituents measured, volumes analyzed, and monetary and personnel costs. Initial water-quality analyses include pH, temperature, turbidity, conductivity, total suspended solids, total phosphorus, total Kjeldahl-nitrogen, ammonia nitrogen, and total and fecal coliforms. Giardia cysts and Cryptosporidium oocysts will also be measured at all sample sites. Sorbitol-fermenting Bifidobacteria, Rhodococcus coprophilus, Clostridium perfringens spores, and Somatic and F-specific coliphages are measured at select sites as potential alternative source-specific indicator organisms. It is anticipated that the final database will consist of transport data for the above parameters during twenty-four distinct storm-events in addition to monthly baseline data. Results and analyses for the first monitored storm-event will be presented.
Serrano, María; Gallego, Mercedes; Silva, Manuel
2013-09-13
Low-molecular-mass aldehydes (LMMAs) are water disinfection by-products formed by the reaction of ozone and/or chlorine with natural organic matter in water. LMMAs are mutagenic and carcinogenic compounds, which are detected at ng/L levels in water. An analytical method that allows simultaneous derivatisation and extraction of LMMAs in water has been developed using the classical static headspace technique coupled with gas chromatography-mass spectrometry (HS-GC-MS). Important parameters controlling the derivatisation of LMMAs with o-2,3,4,5,6-pentafluorobenzylhydroxylamine, oxime-products extraction and headspace generation were optimised to obtain the highest sensitivity, completing the entire process in 20min. For the first time the derivatisation reaction was carried out at alkaline pH adjusted with sodium hydrogen carbonate which exerts a significant enhancement effect on the derivatisation efficiency of the aldehydes; up to 20-fold with respect to those obtained in weak acid media as recommended by EPA Method 556.1. The addition of 200μL of n-hexane, as a chemical modifier, favoured the volatilisation of oxime-products, increasing the sensitivity of the method. The proposed method allows the achieving of detection limits from 2 to 80ng/L and has excellent precision (RSD average value of 6.4%) and accuracy (recovery ranging from 97% to 99%) for LMMA quantifications in drinking water samples. Finally, the HS-GC-MS method was validated relative to EPA Method 556.1 for the analysis of drinking water samples subjected to several disinfection treatments. Copyright © 2013 Elsevier B.V. All rights reserved.
Patrick, Molly; Steenland, Maria; Dismer, Amber; Pierre-Louis, Jocelyne; Murphy, Jennifer L; Kahler, Amy; Mull, Bonnie; Etheart, Melissa D; Rossignol, Emmanuel; Boncy, Jacques; Hill, Vincent; Handzel, Thomas
2017-10-01
Consumption of drinking water from private vendors has increased considerably in Port-au-Prince, Haiti, in recent decades. A major type of vendor is private kiosks, advertising reverse osmosis-treated water for sale by volume. To describe the scale and geographical distribution of private kiosks in metropolitan Port-au-Prince, an inventory of private kiosks was conducted from July to August 2013. Coordinates of kiosks were recorded with global positioning system units and a brief questionnaire was administered with the operator to document key kiosk characteristics. To assess the quality of water originating from private kiosks, water quality analyses were also conducted on a sample of those inventoried as well as from the major provider company sites. The parameters tested were Escherichia coli , free chlorine residual, pH, turbidity, and total dissolved solids. More than 1,300 kiosks were inventoried, the majority of which were franchises of four large provider companies. Approximately half of kiosks reported opening within 12 months of the date of the inventory. The kiosk treatment chain and sales price was consistent among a majority of the kiosks. Of the 757 kiosks sampled for water quality, 90.9% of samples met World Health Organization (WHO) microbiological guideline at the point of sale for nondetectable E. coli in a 100-mL sample. Of the eight provider company sites tested, all samples met the WHO microbiological guideline. Because of the increasing role of the private sector in drinking water provision in Port-au-Prince and elsewhere in Haiti, this assessment was an important first step for government regulation of this sector.
Winston, Gary; Lerman, Shlomo; Goldberger, Shalom; Collins, Malcolm; Leventhal, Alex
2003-06-01
Herein, we report on the actual events linked to an ammonia spillage into the main waterline of the Tel-Aviv metropolitan area and its surrounding municipalities. Based upon a large magnitude increase of unknown origin in the turbidity and ammonia levels of the main drinking water supply, area residents were warned of possible serious contamination and advised to refrain from drinking tap water until further notice. Turbidity was later linked only to CaCO3, which was precipitated from the water due to the rise in pH caused by the excessive ammonia levels. The source of the ammonia (a malfunction of the measurement buoy in the ammonia tank) was not identified until several days after the warning was issued. The toxicological implications of the turbidity and ammonia elevations are considered and reconciled with the management strategies that followed. Of consequence to the management of this crisis was the approach of Ministry of Health officials to regard the ammonia, from the onset, as an indicator of several possible sources of origin rather than as a contaminant. Decision-making policies were hampered by ineffective communication between the national water supplier and government health officials. An outcome of this crisis was a heightened awareness of the potential of a water crisis occurring during peace time and not only in association with terrorist activities, to which Israeli citizens are highly sensitized. Finally, the present paper may serve to guide municipal environmental and health officials more appropriately in the event of similar drinking water crises in Israel or elsewhere.
Worldwide occurrences of arsenic in ground water
Nordstrom, D. Kirk
2002-01-01
Numerous aquifers worldwide carry soluble arsenic at concentrations greater than the World Health Organization--and U.S. Environmental Protection Agency--recommended drinking water standard of 10 mg per liter. Sources include both natural (black shales, young sediments with low flushing rates, gold mineralization, and geothermal environments) and anthropogenic (mining activities, livestock feed additives, pesticides, and arsenic trioxide wastes and stockpiles). Increased solubility and mobility of arsenic is promoted by high pH (>8.5), competing oxyanions, and reducing conditions. In this Policy Forum, Nordstrom argues that human health risks from arsenic in ground water can be minimized by incorporating hydrogeochemical knowledge into water management decisions and by more careful monitoring for arsenic in geologically high-risk areas.
Results of exploratory drilling at Point MacKenzie, Alaska, 1981
Patrick, Leslie
1981-01-01
The Matanuska-Susitna Borough anticipates industrial development near Point MacKenzie, Alaska. Because little hydrologic information is available for the area, the Borough contracted for the drilling of two test wells. It was found that: Both wells penetrated unconsolidated stratified clay, silt, sand, and gravel; each well penetrated a shallow unconfined and deeper confined aquifers; the water levels in the wells rise and fall with the tide; the chemical analyses indicate that the water quality meets the Alaska Drinking Water Standards, except for slightly high levels of manganese and pH; and the potential for saltwater intrusion should be evaluated as part of future studies. (USGS)
Teklu, Berhan M; Hailu, Amare; Wiegant, Daniel A; Scholten, Bernice S; Van den Brink, Paul J
2018-05-01
The area around Lake Ziway in Ethiopia is going through a major agricultural transformation with both small-scale farmers and large horticultural companies using pesticides and fertilisers at an increased rate. To be able to understand how this influences the water quality of Lake Ziway, water quality data was gathered to study the dynamics of pesticide concentrations and physicochemical parameters for the years from 2009 to 2015. Results indicate that for some physicochemical parameters, including pH, potassium and iron, over 50 % of the values were above the maximum permissible limit of the Ethiopian standard for drinking water. The fungicide spiroxamine poses a high chronic risk when the water is used for drinking water, while the estimated intake of diazinon was approximately 50 % of the acceptable daily intake. Higher-tier risk assessment indicated that the fungicide spiroxamine poses a high acute risk to aquatic organisms, while possible acute risks were indicated for the insecticides deltamethrin and endosulfan. Longer-term monitoring needs to be established to show the water quality changes across time and space, and the current study can be used as a baseline measurement for further research in the area as well as an example for other surface water systems in Ethiopia and Africa.
Kumar, Deepak; Singh, Anshuman; Jha, Rishi Kumar
2018-04-21
Investigation of presence of Uranium (U) in groundwater/drinking water is an active are of research due to its chemical and radiological toxicity as well as long-term health effects. The current study had the objective of estimating U as a naturally occurring radioactive element in groundwater samples and assessment of ingestion dose, when groundwater is the source of drinking water. The random sampling method was chosen for the collection of samples based on population density. The estimation of U was done using LED fluorimeter. Statistical tools were applied to analyze the data and its spatial distribution. The U concentrations in three blocks of urban Patna were well below the permissible limits suggested by different health agencies of the world. A correlation test was performed to analyze the association of U with other physiochemical parameters of water samples. It was found that the sulfate, chloride, calcium, hardness, alkalinity, TDS, salinity, and ORP were positively correlated, whereas fluoride, phosphate, magnesium, dissolved oxygen, and pH were negatively correlated with U concentrations. The ingestion dose due to U, occurring in groundwater, was found to vary from 0.2-27.0 μSv y -1 with a mean of 4.2 μSv y - 1 , which was well below the recommended limit of 0.1 mSv (WHO WHO Chron 38:104-108, 2012).Therefore, the water in this region is fit for drinking purposes.
Effect of drinking water disinfection by-products in human peripheral blood lymphocytes and sperm.
Ali, Aftab; Kurzawa-Zegota, Malgorzata; Najafzadeh, Mojgan; Gopalan, Rajendran C; Plewa, Michael J; Anderson, Diana
2014-12-01
Drinking water disinfection by-products (DBPs) are generated by the chemical disinfection of water and may pose hazards to public health. Two major classes of DBPs are found in finished drinking water: haloacetic acids (HAAs) and trihalomethanes (THMs). HAAs are formed following disinfection with chlorine, which reacts with iodide and bromide in the water. Previously the HAAs were shown to be cytotoxic, genotoxic, mutagenic, teratogenic and carcinogenic. To determine the effect of HAAs in human somatic and germ cells and whether oxidative stress is involved in genotoxic action. In the present study both somatic and germ cells have been examined as peripheral blood lymphocytes and sperm. The effects of three HAA compounds: iodoacetic acid (IAA), bromoacetic acid (BAA) and chloroacetic acid (CAA) were investigated. After determining appropriate concentration responses, oxygen radical involvement with the antioxidants, butylated hydroxanisole (BHA) and the enzyme catalase, were investigated in the single cell gel electrophoresis (Comet) assay under alkaline conditions, >pH 13 and the micronucleus assay. In the Comet assay, BHA and catalase were able to reduce DNA damage in each cell type compared to HAA alone. In the micronucleus assay, micronuclei (MNi) were found in peripheral lymphocytes exposed to all three HAAs and catalase and BHA were in general, able to reduce MNi induction, suggesting oxygen radicals play a role in both assays. These observations are of concern to public health since both human somatic and germ cells show similar genotoxic responses. Copyright © 2014. Published by Elsevier B.V.
The Quality of Fog Water Collected for Domestic and Agricultural Use in Chile.
NASA Astrophysics Data System (ADS)
Schemenauer, Robert S.; Cereceda, Pilar
1992-03-01
One exciting new application of meteorology is the prospect of using high-elevation fogs as an and land's water resource. This has now become reality in northern Chile where a pilot project has used 50 fog collectors to generate an average of 7200 1 of water per day during three drought years. The chemical composition of the fog water is of primary importance and is examined in this paper.A small, carefully cleaned fog-water collector was used at the site (elevation 780 m) to study the incoming fog (cloud). The ion and trace-element concentrations met Chilean and the World Health Organization's (WHO) drinking-water standards. The pH values, however, were at times extremely low. Samples from 1987 and 1988 were consistent with those from the larger dataset in 1989. The lowest observed pH was 3.46. The acidity was associated with high concentrations (89%) of excess sulfate in the 15 fog-water samples (based on Cl as the seawater tracer element). The NO3/SO4 equivalents ratio for the fog samples was 0.18, showing the dominance of SO4 in determining the acidity of the fog samples. The relative abundances of ions and trace elements in the dry deposition are very similar to those in the fog water, suggesting that the aerosols originate primarily from evaporated cloud droplets over the ocean. Based on enrichment-factor calculations (with Cl as the indicator element for seawater and A1 for the earth's crust), sea salts were the main source of Na+, Mg++, and Cl in the fog water; soil dust was the main source of Fe, Al and Ti; and other sources provided Ca++, K+, NH4+, Br SO4NO3 As,Cd,Pb,V,Mn,Ni,Cu,SrSb,and Ba in the fog water.The use of enrichment factors based on the relative abundances in soil extracts suggests that As, V, Cu, and Sr may be available from wetted soil dust.The output from the large (48 m2) fog collectors was also acceptable, except for several of the 24 trace elements, which exceeded the maximum allowable values in the first flush of water after a dry period of a few days. The pH values were again near 4 and would have to undergo a simple treatment to raise them to a value of 6 or more to meet the drinking-water standard. The output from a 2000-1 fog-water storage tank was completely acceptable and that from a 25 000-1 storage tank completely acceptable, except for a low pH. In contrast, both the water presently being used in a nearby village and local spring water were unacceptable. It is concluded that fog water is an attractive alternative as a water supply even after collection on the large meshes at this site.
Abeywickarama, Buddhika; Ralapanawa, Udaya; Chandrajith, Rohana
2016-10-01
An area with extremely high incidence of urinary calculi was investigated in the view of identifying the relationship between the disease prevalence and the drinking water geochemistry. The prevalence of the kidney stone disease in the selected Padiyapelella-Hanguranketa area in Central Highlands of Sri Lanka is significantly higher compared with neighboring regions. Drinking water samples were collected from water sources that used by clinically identified kidney stone patients and healthy people. A total of 83 samples were collected and analyzed for major anions and cations. The anions in the area varied in the order HCO3 (-) > Cl(-) > SO4 (2-) > NO3 (-) and cations varied in the order Ca(2+) > Mg(2+) > Na(+) > K(+) > Fe(2+). The dissolved silica that occurs as silicic acid (H4SiO4) in natural waters varied from 8.8 to 84 mg/L in prevalence samples, while it was between 9.7 and 65 mg/L for samples from non-prevalence locations. Hydrogeochemical data obtained from the two groups were compared using the Wilcoxon rank-sum test. It showed that pH, total hardness, Na(+), Ca(2+) and Fe(2+) had significant difference (p < 0.005) between water sources used by patients and non-patients. Elemental ratio plots, Gibbs' plot and factor analysis indicated that the chemical composition of water sources in this area is strongly influenced by rock-water interactions, particularly the weathering of carbonate and silicate minerals. This study reveals a kind of association between stone formation and drinking water geochemistry as evident by the high hardness/calcium contents in spring water used by patients.
Kohfahl, Claus; Navarro, Daniel Sánchez-Rodas; Mendoza, Jorge Armando; Vadillo, Iñaki; Giménez-Forcada, Elena
2016-02-15
A study has been performed to explore the origin, spatiotemporal behaviour and mobilisation mechanism of the elevated arsenic (As) concentrations found in ground water and drinking ponds of the Doñana National Park, Southern Spain. At a larger scale, 13 piezometers and surface water samples of about 50 artificial drinking ponds and freshwater lagoons throughout the National Park were collected and analysed for major ions, metals and trace elements. At a smaller scale, 5 locations were equipped with piezometers and groundwater was sampled up to 4 times for ambient parameters, major ions, metals, trace elements and iron (Fe) speciation. As was analysed for inorganic and organic speciation. Undisturbed sediment samples were analysed for physical parameters, mineralogy, geochemistry as well as As species. Sediment analyses yielded total As between 0.1 and 18 mg/kg and are not correlated with As concentration in water. Results of the surface- and groundwater sampling revealed elevated concentration of As up to 302 μg/L within a restricted area of the National Park. Results of groundwater sampling reveals strong correlation of As with Fe(2+) pointing to As mobilisation due to reductive dissolution of hydroferric oxides (HFO) in areas of locally elevated amounts of organic matter within the sediments. High As concentrations in surface water ponds are correlated with elevated alkalinity and pH attributed to algae metabolism, leading to As desorption from HFO. The algae metabolism is responsible for the presence of methylated arsenic species in surface water, in contrast to ground water in which only inorganic As species was found. Temporal variations in surface water and groundwater are also related to changes in pH and alkalinity as a result of enhanced algae metabolism in surface water or related to changes in the redox level in the case of groundwater. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Do, T. D.; Pifer, A.; Chowdhury, Z.; Wahman, D.; Zhang, W.; Fairey, J.
2017-12-01
Detection of nitrification events in chloraminated drinking water distribution systems remains an ongoing challenge for many drinking water utilities, including Dallas Water Utilities (DWU) and the City of Houston (CoH). Each year, these utilities experience nitrification events that necessitate extensive flushing, resulting in the loss of billions of gallons of finished water. Biological techniques used to quantify the activity of nitrifying bacteria are impractical for real-time monitoring because they require significant laboratory efforts and/or lengthy incubation times. At present, DWU and CoH regularly rely on physicochemical parameters including total chlorine and monochloramine residual, and free ammonia, nitrite, and nitrate as indicators of nitrification, but these metrics lack specificity to nitrifying bacteria. To improve detection of nitrification in chloraminated drinking water distribution systems, we seek to develop a real-time fluorescence-based sensor system to detect the early onset of nitrification events by measuring the fluorescence of soluble microbial products (SMPs) specific to nitrifying bacteria. Preliminary data indicates that fluorescence-based metrics have the sensitivity to detect these SMPs in the early stages of nitrification, but several remaining challenges will be explored in this presentation. We will focus on benchtop and sensor results from ongoing batch and annular reactor experiments designed to (1) identify fluorescence wavelength pairs and data processing techniques suitable for measurement of SMPs from nitrification and (2) assess and correct potential interferences, such as those from monochloramine, pH, iron, nitrite, nitrate and humic substances. This work will serve as the basis for developing fluorescence sensor packages for full-scale testing and validation in the DWU and CoH systems. Findings from this research could be leveraged to identify nitrification events in their early stages, facilitating proactive interventions and decreasing the severity and frequency of nitrification episodes and water loss due to flushing.
Huang, Ting-Lin; Zhou, Shi-Lei; Zhang, Hai-Han; Bai, Shi-Yuan; He, Xiu-Xiu; Yang, Xiao
2015-01-01
Nitrogen is considered to be one of the most widespread pollutants leading to eutrophication of freshwater ecosystems, especially in drinking water reservoirs. In this study, an oligotrophic aerobic denitrifier was isolated from drinking water reservoir sediment. Nitrogen removal performance was explored. The strain was identified by 16S rRNA gene sequence analysis as Zoogloea sp. N299. This species exhibits a periplasmic nitrate reductase gene (napA). Its specific growth rate was 0.22 h−1. Obvious denitrification and perfect nitrogen removal performances occurred when cultured in nitrate and nitrite mediums, at rates of 75.53% ± 1.69% and 58.65% ± 0.61%, respectively. The ammonia removal rate reached 44.12% ± 1.61% in ammonia medium. Zoogloea sp. N299 was inoculated into sterilized and unsterilized reservoir source waters with a dissolved oxygen level of 5–9 mg/L, pH 8–9, and C/N 1.14:1. The total nitrogen removal rate reached 46.41% ± 3.17% (sterilized) and 44.88% ± 4.31% (unsterilized). The cell optical density suggested the strain could survive in oligotrophic drinking water reservoir water conditions and perform nitrogen removal. Sodium acetate was the most favorable carbon source for nitrogen removal by strain N299 (p < 0.05). High C/N was beneficial for nitrate reduction (p < 0.05). The nitrate removal efficiencies showed no significant differences among the tested inoculums dosage (p > 0.05). Furthermore, strain N299 could efficiently remove nitrate at neutral and slightly alkaline and low temperature conditions. These results, therefore, demonstrate that Zoogloea sp. N299 has high removal characteristics, and can be used as a nitrogen removal microbial inoculum with simultaneous aerobic nitrification and denitrification in a micro-polluted reservoir water ecosystem. PMID:25946341
Quality of water in the fractured-bedrock aquifer of New Hampshire
Moore, Richard Bridge
2004-01-01
Over the past few decades, New Hampshire has experienced considerable population growth, which is forcing some communities to look for alternative public and private water supplies in the bedrock aquifer. Because the quality of water from the aquifer can vary, the U.S. Geological Survey statistically analyzed well data from 1,353 domestic and 360 public-supply bedrock wells to characterize the ground water. The domestic-well data were from homeowner-collected samples analyzed by the New Hampshire Department of Environmental Services (NHDES) Environmental Laboratory from 1984 to 1994. Bedrock water in New Hampshire often contains high concentrations of iron, manganese, arsenic, and radon gas. Water samples from 21 percent of the domestic bedrock wells contained arsenic above the U.S. Environmental Protection Agency (USEPA) 10 micrograms per liter (?g/L) drinking-water standard for public-water supplies, and 96 percent had radon concentrations greater than the USEPA-proposed 300 picocurie per liter (pCi/L) standard for public-water supplies. Some elevated fluoride concentrations (2 percent of samples) were above the 4 milligrams per liter (mg/L) USEPA drinking-water standard for public-water supplies. Water from the bedrock aquifer also typically is soft to moderately hard, and has a pH greater than 7.0. Variations in bedrock water quality were discernable when the data were compared to lithochemical groupings of the bedrock, indicating that the type of bedrock has an effect on the quality of water in the bedrock aquifer of New Hampshire. Ground-water samples from the metasedimentary lithochemical group have greater concentrations of total iron and total manganese than do the felsic and mafic igneous lithochemical groups. Ground-water samples from the felsic igneous group have higher concentrations of total fluoride than do those from the other lithochemical groups. For arsenic, the calcareous metasedimentary group was identified, using the public-supply database, as having higher concentrations, on average, than the other lithochemical groups. The use of a radon-gas-potential classification of bedrock in the State indicated where high radon concentrations in the air and in water from private and public-supply wells were more likely to occur. In general, samples from the bedrock aquifer tend to have higher pH (are less acidic), greater hardness, much higher concentrations of iron, similar concentrations of manganese, and higher concentrations of fluoride and arsenic than do samples from stratified-drift aquifers in New Hampshire. An understanding of the water-quality conditions of water in bedrock aquifers is important from a public-health perspective because an increasing number of domestic bedrock wells are being drilled and relied upon as a source of drinking water in the State.
NASA Astrophysics Data System (ADS)
Craig, L.; Stillings, L. L.
2014-12-01
In northern Ghana, groundwater is the main source of household water and is generally considered safe to drink. However in some areas it contains fluoride (F-) concentrations above the 1.5 ppm limit recommended by the World Health Organization, putting the users at risk of fluorosis. The study area in the Upper East Region of Ghana has pockets of groundwater F- up to 4.6 ppm and, as a result, also has a high percentage of residents with dental fluorosis. They have no alternative water source and, because of poverty and limited access to technology, lack the capacity to set up advanced treatment systems. One proposed solution is to attach F- adsorption filters to the wells, since adsorption is considered a simple and cost effective approach for treating high F-drinking water. This study evaluates activated alumina as a sorbent for use in de-fluoridation filters in the study area. We evaluated the long-term adsorption capacity of activated alumina, and changes in F- adsorption rate and capacity with grain size. We measured differences in positive surface charge (C m-2) via slow acid titration, as well as F- loading with varied prior hydration time. Results from this research show no notable change in F- adsorption or positive surface charge when the activated alumina surface was pre-equilibrated in distilled water from 24 hours to 30 weeks. The results of F- loading show a maximum of ~3.4 mg F- sorbed per gm activated alumina (initial pH ~6.9, initial F- 1 to 60 ppm, 20 hr reaction time). The pH dependent surface charge is ~0.14 C m-2 at pH of ~4.4 and is zero at pH ~8.6. F- loading experiments were conducted with grain size 0.125 to 0.250 mm and 0.5 to 1.0 mm to evaluate changes in F- adsorption rate (initial pH ~6.9, initial F- 10 ppm) and F- loading (initial pH ~6.9, initial F- 1 to 60 ppm, 20 hr reaction time). The F- loading did not change with grain size. However time to equilibrium increased dramatically with a decrease in grain size - after one hour of reaction time, the larger grain size adsorbed only 59% of F-, while at the finer grain size 90% was adsorbed. Future work will determine the volume of high F- water that can be treated before activated alumina needs to be regenerated or changed. These data will aid in the design of a small-scale F- adsorption filter in the study area, and will predict the longevity of activated alumina as the sorbent.
Naghipour, Dariush; Ashrafi, Seyed Davoud; Mojtahedi, Ali; Vatandoost, Masoud; Hosseinzadeh, Loghman; Roohbakhsh, Esmail
2018-02-01
In this research, we measured various parameters related to drinking water quality include turbidity, temperature, pH, EC, TDS, Alkalinity, fecal and total coliform, heterotrophic plate count (HPC), free chlorine, Mn, Ca, Mg, Fe, Na, Cl - , F - , HCO 3 , in the inlet and outlet of household water treatment devices according to the standard methods for the examination of water and wastewater (W.E. Federation and Association and A.P.H., 2005) [1]. Sixty four inlet and outlet water samples were taken from thirty two household water treatment devices from eight different residential blocks in Golsar town of Rasht, Iran. The data obtained from experiments were analyzed using the software Special Package for Social Sciences (SPSS 24) and MS-Excel.
Scholz, C; Jones, T G; West, M; Ehbair, A M S; Dunn, C; Freeman, C
2016-09-01
The objective of this study was to monitor a newly constructed wetland (CW) in north Wales, UK, to assess whether it contributes to an improvement in water quality (nutrient removal) of a nearby drinking water reservoir. Inflow and outflow of the Free Water Surface (FWS) CW were monitored on a weekly basis and over a period of 6 months. Physicochemical parameters including pH, conductivity and dissolved oxygen (DO) were measured, as well as nutrients and dissolved organic and inorganic carbon (DOC, DIC) concentration. The CW was seen to contribute to water quality improvement; results show that nutrient removal took place within weeks after construction. It was found that 72 % of initial nitrate (N03 (-)), 53 % of initial phosphate (PO4 (3-)) and 35 % of initial biological oxygen demand (BOD) were removed, calculated as a total over the whole sampling period. From our study, it can be concluded that while inorganic nutrients do decline in CWs, the DOC outputs increases. This may suggest that CWs represent a source for DOC. To assess the carbon in- and output a C budget was calculated.
Montoya-Pachongo, Carolina; Douterelo, Isabel; Noakes, Catherine; Camargo-Valero, Miller Alonso; Sleigh, Andrew; Escobar-Rivera, Juan-Carlos; Torres-Lozada, Patricia
2018-03-01
Operation and maintenance (O&M) of drinking water distribution networks (DWDNs) in tropical countries simultaneously face the control of acute and chronic risks due to the presence of microorganisms and disinfection by-products, respectively. In this study, results from a detailed field characterization of microbiological, chemical and infrastructural parameters of a tropical-climate DWDN are presented. Water physicochemical parameters and the characteristics of the network were assessed to evaluate the relationship between abiotic and microbiological factors and their association with the presence of total trihalomethanes (TTHMs). Illumina sequencing of the bacterial 16s rRNA gene revealed significant differences in the composition of biofilm and planktonic communities. The highly diverse biofilm communities showed the presence of methylotrophic bacteria, which suggest the presence of methyl radicals such as THMs within this habitat. Microbiological parameters correlated with water age, pH, temperature and free residual chlorine. The results from this study are necessary to increase the awareness of O&M practices in DWDNs required to reduce biofilm formation and maintain appropriate microbiological and chemical water quality, in relation to biofilm detachment and DBP formation. Copyright © 2017 Elsevier B.V. All rights reserved.
Scott, Daniel B; Van Dyke, Michele I; Anderson, William B; Huck, Peter M
2015-12-01
The potential for regrowth of nitrifying microorganisms was monitored in 2 full-scale chloraminated drinking water distribution systems in Ontario, Canada, over a 9-month period. Quantitative PCR was used to measure amoA genes from ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), and these values were compared with water quality parameters that can influence nitrifier survival and growth, including total chlorine, ammonia, temperature, pH, and organic carbon. Although there were no severe nitrification episodes, AOB and AOA were frequently detected at low concentrations in samples collected from both distribution systems. A culture-based presence-absence test confirmed the presence of viable nitrifiers. AOB were usually present in similar or greater numbers than AOA in both systems. As well, AOB showed higher regrowth potential compared with AOA in both systems. Statistically significant correlations were measured between several water quality parameters of relevance to nitrification. Total chlorine was negatively correlated with both nitrifiers and heterotrophic plate count (HPC) bacteria, and ammonia levels were positively correlated with nitrifiers. Of particular importance was the strong correlation between HPC and AOB, which reinforced the usefulness of HPC as an operational parameter to measure general microbiological conditions in distribution systems.
Volk, Christian; Kaplan, Louis A; Robinson, Jeff; Johnson, Bruce; Wood, Larry; Zhu, Hai Wei; LeChevallier, Mark
2005-06-01
Natural organic matter (NOM) in drinking water supplies can provide precursors for disinfectant byproducts, molecules that impact taste and odors, compounds that influence the efficacy of treatment, and other compounds that are a source of energy and carbon for the regrowth of microorganisms during distribution. NOM, measured as dissolved organic carbon (DOC), was monitored daily in the White River and the Indiana-American water treatment plant over 22 months. Other parameters were either measured daily (UV-absorbance, alkalinity, color, temperature) or continuously (turbidity, pH, and discharge) and used with stepwise linear regressions to predict DOC concentrations. The predictive models were validated with monthly samples of the river water and treatment plant effluent taken over a 2-year period after the daily monitoring had ended. Biodegradable DOC (BDOC) concentrations were measured in the river water and plant effluent twice monthly for 18 months. The BDOC measurements, along with measurements of humic and carbohydrate constituents within the DOC and BDOC pools, revealed that carbohydrates were the organic fraction with the highest percent removal during treatment, followed by BDOC, humic substances, and refractory DOC.
Feasibility of the silver-UV process for drinking water disinfection.
Butkus, Michael A; Talbot, Mark; Labare, Michael P
2005-12-01
A synergistic effect between cationic silver and UV radiation (silver-UV disinfection) has been observed that can appreciably enhance inactivation of viruses. The purpose of this work was to assess the feasibility of this technique for drinking water disinfection and evaluate the effects of selected impurities, found in fresh water, and common parameters on inactivation of the coliphage MS-2 with the silver-UV process. Turbidity (kaolin), calcium hardness, carbonate alkalinity, and pH did not significantly degrade inactivation. Inactivation was reduced in the presence of chloride, at concentrations greater than 30 mg/L, and in water samples with UV-254 absorbance values greater than ca. 0.1 cm(-1). Inactivation of MS-2 with silver-UV disinfection was also reduced at high phosphate concentrations (above ca. 5 mM). Silver-UV inactivation of MS-2 increased with increases in temperature between 10 and 20 degrees C. Silver-UV inactivation of MS-2 was increased by greater than 1-log over UV alone, in two untreated fresh water sources, which indicates that silver-UV may be a viable treatment technology. An assessment of operation and management costs suggests that an increase in inactivation of MS-2 with silver-UV disinfection could be economically beneficial.
CHANGES IN BACTERIAL COMPOSITION OF BIOFILM IN A ...
This study examined the development of bacterial biofilms within a metropolitan distribution system. The distribution system is fed with different source water (i.e., groundwater, GW and surface water, SW) and undergoes different treatment processes in separate facilities. The biofilm community was characterized using 16S rRNA gene clone libraries and functional potential analysis, generated from total DNA extracted from coupons in biofilm annular reactors fed with onsite drinking water for up to eighteen months. Significant differences in the bacterial community structure were observed between GW and SW. Representatives that explained the dissimilarity between service areas were associated with Betaproteobacteria, Alphaproteobacteria, Actinobacteria, Gammaproteobacteria, and Firmicutes. After nine months the biofilm bacterial community from both areas were dominated by Mycobacterium species. The distribution of the dominant OTU (Mycobacterium) positively correlated with the drinking water distribution system (DWDS) temperature, but no clear relationship was seen with free chlorine residual, pH, turbidity or total organic carbon (TOC). The results suggest that biofilm microbial communities harbor distinct and diverse bacterial communities, and that source water, treatment processes and environmental conditions may play an important role in shaping the bacterial community in the distribution system. On the other hand, several bacterial groups were present i
Hydrogeochemical quality and suitability studies of groundwater in northern Bangladesh.
Islam, M J; Hakim, M A; Hanafi, M M; Juraimi, Abdul Shukor; Aktar, Sharmin; Siddiqa, Aysha; Rahman, A K M Shajedur; Islam, M Atikul; Halim, M A
2014-07-01
Agriculture, rapid urbanization and geochemical processes have direct or indirect effects on the chemical composition of groundwater and aquifer geochemistry. Hydro-chemical investigations, which are significant for assessment of water quality, were carried out to study the sources of dissolved ions in groundwater of Dinajpur district, northern Bangladesh. The groundwater samplish were analyzed for physico-chemical properties like pH, electrical conductance, hardness, alkalinity, total dissolved solids and Ca2+, Mg2+, Na+, K+, CO3(2-), HCO3(-), SO4(2-) and Cl- ions, respectively. Based on the analyses, certain parameters like sodium adsorption ratio, soluble sodium percentage, potential salinity, residual sodium carbonate, Kelly's ratio, permeability index and Gibbs ratio were also calculated. The results showed that the groundwater of study area was fresh, slightly acidic (pH 5.3-6.4) and low in TDS (35-275 mg I(-1)). Ground water of the study area was found suitable for irrigation, drinking and domestic purposes, since most of the parameters analyzed were within the WHO recommended values for drinking water. High concentration of NO3- and Cl- was reported in areas with extensive agriculture and rapid urbanization. Ion-exchange, weathering, oxidation and dissolution of minerals were major geochemical processes governing the groundwater evolution in study area. Gibb's diagram showed that all the samples fell in the rock dominance field. Based on evaluation, it is clear that groundwater quality of the study area was suitable for both domestic and irrigation purposes.
NASA Astrophysics Data System (ADS)
Abdullah, Md. Pauzi; Yee, Lim Fang; Ata, Sadia; Abdullah, Abass; Ishak, Basar; Abidin, Khairul Nidzham Zainal
Disinfection is the most crucial process in the treatment of drinking water supply and is the final barrier against bacteriological impurities in drinking water. Chlorine is the primary disinfectant used in the drinking water treatment process throughout Malaysia. However, the occurrence of various disinfection by-products such as trihalomethanes (THM) and haloacetic acids created a major issue on the potential health hazards which may pose adverse health effects in both human and animals. To simulate real water treatment conditions and to represent the conditions inherent in a tropical country, this study was performed at an urbanized water treatment plant with a daily production of about 549,000 m 3 of treated water. The purpose of this work is to examine the relationship between the water quality parameters in the raw water with chlorine demand and the formation of disinfection by-products. This study also investigated the possibility of the statistical model applications for the prediction of chlorine demand and the THM formation. Two models were developed to estimate the chlorine demand and the THM formation. For the statistical evaluation, correlation and simple linear regression analysis were conducted using SPSS. The results of Kolmogorov-Smirnov test for the estimation of goodness-of-fit of the dependent variables of the models to the normal distribution showed that all the dependent variables followed the normal distribution at significance level of 0.05. Good linear correlations were observed between the independent parameters and formation of THM and the chlorine demand. This study also revealed that ammonia and the specific ultraviolet absorbent (SUVA) were the function of chlorine consumption in the treatment process. Chlorine dosage and SUVA increase the yield of THM. Chlorine demand and THM formation was moderately sensitive, but significant to the pH. The level of significance ( α) for the statistical tests and the inclusion of a variable in the model was 0.05. A better understanding of these relationships will help the water utilities or plant operators to minimize the THM formation, providing a healthier and better drinking water quality as well as optimizing the chlorine dosage in the disinfection process.
Adapting water treatment design and operations to the impacts of global climate change
NASA Astrophysics Data System (ADS)
Clark, Robert M.; Li, Zhiwei; Buchberger, Steven G.
2011-12-01
It is anticipated that global climate change will adversely impact source water quality in many areas of the United States and will therefore, potentially, impact the design and operation of current and future water treatment systems. The USEPA has initiated an effort called the Water Resources Adaptation Program (WRAP) which is intended to develop tools and techniques that can assess the impact of global climate change on urban drinking water and wastewater infrastructure. A three step approach for assessing climate change impacts on water treatment operation and design is being persude in this effort. The first step is the stochastic characterization of source water quality, the second step is the application of the USEPA Water Treatment Plant model and the third step is the application of cost algorithms to provide a metric that can be used to assess the coat impact of climate change. A model has been validated using data collected from Cincinnati's Richard Miller Water Treatment Plant for the USEPA Information Collection Rule (ICR) database. An analysis of the water treatment processes in response to assumed perturbations in raw water quality identified TOC, pH, and bromide as the three most important parameters affecting performance of the Miller WTP. The Miller Plant was simulated using the EPA WTP model to examine the impact of these parameters on selected regulated water quality parameters. Uncertainty in influent water quality was analyzed to estimate the risk of violating drinking water maximum contaminant levels (MCLs).Water quality changes in the Ohio River were projected for 2050 using Monte Carlo simulation and the WTP model was used to evaluate the effects of water quality changes on design and operation. Results indicate that the existing Miller WTP might not meet Safe Drinking Water Act MCL requirements for certain extreme future conditions. However, it was found that the risk of MCL violations under future conditions could be controlled by enhancing existing WTP design and operation or by process retrofitting and modification.
Subanky, Suvendran
2017-01-01
Chunnakam and Vadamaradchi are two major aquifer systems in Jaffna Peninsula, Sri Lanka. This study was performed to compare water quality in the domestic wells in these aquifers and to assess the efficacy of household water treatments for treating contaminated water. Replicate well water samples were collected from each aquifer and pH, dissolved oxygen (DO), conductivity, total dissolved solids (TDS), salinity, temperature, total solids (TS), total hardness (TH), chemical oxygen demand (COD), oil and grease (OG), nitrate N (N), and total phosphate (TP) were measured. The sampled water from the domestic wells was filtered through commercial mineral filter and Moringa oleifera leaf powder and boiled at 100°C for 10 minutes and the TH, OG, N, and TP were measured. Both OG and N in Chunnakam were significantly higher and the DO were significantly lower than those of Vadamaradchi. TH, N, and OG of some wells exceeded the drinking water quality standards established by Sri Lanka Standards Institution. Moringa oleifera leaf powder filtration reduced N significantly and filtering through commercial mineral filter reduced OG, TH, and N significantly. Boiling at 100°C could remove TH significantly but may cause significant increase in N which might result in health impacts. PMID:29181225
Kang, Hye-In; Shin, Ho-Sang
2016-05-27
A simple and convenient headspace solid-phase microextraction (HS-SPME) gas chromatography mass spectrometry (GC-MS) method was described for the determination of glutaraldehyde in water. Glutaraldehyde in water reacted with 2,2,2-trifluoroethylhydrazine (TFEH) in a headspace vial and the formed TFEH derivatives were vaporized and adsorbed onto a fiber. The optimal HS-SPME conditions were achieved with a 50/30μm-divinylbenzene-carboxen-polydimethylsiloxane fiber, 0.06% 2,2,2-TFEH, 25% salt, an extraction/derivatization temperature of 80°C, a heating time of 30min, and a pH of 6.5. The desorption was performed for 1min at 240°C. Under the established conditions, the lowest limits of detection were 0.3μg/L and 0.1μg/L in 6.0mL of surface water and drinking water, respectively, and the intra- and inter-day relative standard deviation was less than 9.1% at concentrations of 50, 100 and 500μg/L. The calibration curve showed good linearity with R=0.9995 and R=0.9993 in surface water and drinking water, respectively. This method is simple, amenable to automation and environmentally friendly. Copyright © 2016 Elsevier B.V. All rights reserved.
Wijeyaratne, W M Dimuthu Nilmini; Subanky, Suvendran
2017-01-01
Chunnakam and Vadamaradchi are two major aquifer systems in Jaffna Peninsula, Sri Lanka. This study was performed to compare water quality in the domestic wells in these aquifers and to assess the efficacy of household water treatments for treating contaminated water. Replicate well water samples were collected from each aquifer and pH, dissolved oxygen (DO), conductivity, total dissolved solids (TDS), salinity, temperature, total solids (TS), total hardness (TH), chemical oxygen demand (COD), oil and grease (OG), nitrate N (N), and total phosphate (TP) were measured. The sampled water from the domestic wells was filtered through commercial mineral filter and Moringa oleifera leaf powder and boiled at 100°C for 10 minutes and the TH, OG, N, and TP were measured. Both OG and N in Chunnakam were significantly higher and the DO were significantly lower than those of Vadamaradchi. TH, N, and OG of some wells exceeded the drinking water quality standards established by Sri Lanka Standards Institution. Moringa oleifera leaf powder filtration reduced N significantly and filtering through commercial mineral filter reduced OG, TH, and N significantly. Boiling at 100°C could remove TH significantly but may cause significant increase in N which might result in health impacts.
McCurry, Daniel L; Krasner, Stuart W; von Gunten, Urs; Mitch, William A
2015-11-01
Utilities using chloramines need strategies to mitigate nitrosamine formation to meet potential future nitrosamine regulations. The ability to reduce NDMA formation under typical post-chloramination conditions of pretreatment with ultraviolet light from a low pressure mercury lamp (LPUV), free chlorine (HOCl), ozone (O3), and UV light from a medium pressure mercury lamp (MPUV) were compared at exposures relevant to drinking water treatment. The order of efficacy after application to waters impacted by upstream wastewater discharges was O3 > HOCl ≈ MPUV > LPUV. NDMA precursor abatement generally did not correlate well between oxidants, and waters exhibited different behaviors with respect to pH and temperature, suggesting a variety of source-dependent NDMA precursors. For wastewater-impacted waters, the observed pH dependence for precursor abatement suggested the important role of secondary or tertiary amine precursors. Although hydroxyl radicals did not appear to be important for NDMA precursor abatement during O3 or MPUV pretreatment, the efficacy of MPUV correlated strongly with dissolved organic carbon concentration (p = 0.01), suggesting alternative indirect photochemical pathways. The temperature dependences during pre- and post-disinfection indicated that NDMA formation is likely to increase during warm seasons for O3 pretreatment, decrease for HOCl pretreatment, and remain unchanged for MPUV treatment, although seasonal changes in source water quality may counteract the temperature effects. For two waters impacted by relatively high polyDADMAC coagulant doses, pretreatment with HOCl, O3, and MPUV increased NDMA formation during post-chloramination. For O3 pretreatment, hydroxyl radicals likely led to precursor formation from the polymer in the latter tests. MPUV treatment of polymer-impacted water increased subsequent NDMA formation through an indirect photochemical process. Many factors may mitigate the importance of this increased NDMA formation, including the low polyDADMAC doses typically applied, and simultaneous degradation of watershed-associated precursors. Copyright © 2015 Elsevier Ltd. All rights reserved.
Liu, Chao; von Gunten, Urs; Croué, Jean-Philippe
2013-09-15
Bromate formation from the reaction between chlorine and bromide in homogeneous solution is a slow process. The present study investigated metal oxides enhanced bromate formation during chlorination of bromide-containing waters. Selected metal oxides enhanced the decay of hypobromous acid (HOBr), a requisite intermediate during the oxidation of bromide to bromate, via (i) disproportionation to bromate in the presence of nickel oxide (NiO) and cupric oxide (CuO), (ii) oxidation of a metal to a higher valence state in the presence of cuprous oxide (Cu2O) and (iii) oxygen formation by NiO and CuO. Goethite (α-FeOOH) did not enhance either of these pathways. Non-charged species of metal oxides seem to be responsible for the catalytic disproportionation which shows its highest rate in the pH range near the pKa of HOBr. Due to the ability to catalyze HOBr disproportionation, bromate was formed during chlorination of bromide-containing waters in the presence of CuO and NiO, whereas no bromate was detected in the presence of Cu2O and α-FeOOH for analogous conditions. The inhibition ability of coexisting anions on bromate formation at pH 8.6 follows the sequence of phosphate > sulfate > bicarbonate/carbonate. A black deposit in a water pipe harvested from a drinking water distribution system exerted significant residual oxidant decay and bromate formation during chlorination of bromide-containing waters. Energy dispersive spectroscopy (EDS) analyses showed that the black deposit contained copper (14%, atomic percentage) and nickel (1.8%, atomic percentage). Cupric oxide was further confirmed by X-ray diffraction (XRD). These results indicate that bromate formation may be of concern during chlorination of bromide-containing waters in distribution systems containing CuO and/or NiO. Copyright © 2013 Elsevier Ltd. All rights reserved.
2010-03-01
Mark N. Goltz , PE, Ph.D. (Chairman) Date //signed// 25 March 2010...I would like to express my sincere appreciation to Dr. Mark N. Goltz for his patience, support and guidance throughout this process. His...OF RESPONSIBLE PERSON Mark N. Goltz (ENV) a. REPORT U b. ABSTRAC T U c. THIS PAGE U 19b. TELEPHONE NUMBER (Include area code) (937) 255-3636
Craig, Laura; Stillings, Lisa; Decker, David L.; Thomas, James M.
2015-01-01
Fluoride is considered beneficial to teeth and bones when consumed in low concentrations, but at elevated concentrations it can cause dental and skeletal fluorosis. Most fluoride-related health problems occur in poor, rural communities of the developing world where groundwater fluoride concentrations are high and the primary sources of drinking water are from community hand-pump borehole drilled wells. One solution to drinking high fluoride water is to attach a simple de-fluoridation filter to the hand-pump; and indigenous materials have been recommended as low-cost sorbents for use in these filters. In an effort to develop an effective, inexpensive, and low-maintenance de-fluoridation filter for a high fluoride region in rural northern Ghana, this study conducted batch fluoride adsorption experiments and potentiometric titrations to investigate the effectiveness of indigenous laterite and bauxite as sorbents for fluoride removal. It also determined the physical and chemical properties of each sorbent. Their properties and the experimental results, including fluoride adsorption capacity, were then compared to those of activated alumina, which has been identified as a good sorbent for removing fluoride from drinking water. The results indicate that, of the three sorbents, bauxite has the highest fluoride adsorption capacity per unit area, but is limited by a low specific surface area. When considering fluoride adsorption per unit weight, activated alumina has the highest fluoride adsorption capacity because of its high specific surface area. Activated alumina also adsorbs fluoride well in a wider pH range than bauxite, and particularly laterite. The differences in adsorption capacity are largely due to surface area, pore size, and mineralogy of the sorbent.
Wei, Chao; Guo, Huaming; Zhang, Di; Wu, Yang; Han, Shuangbao; An, Yonghui; Zhang, Fucun
2016-02-01
High-F(-) groundwater is widely distributed in Xiji County, which endangers the safety of drinking water. In order to evaluate the key factors controlling the origin and geochemical mechanisms of F(-) enrichment in groundwater at Xiji County, one hundred and five groundwater samples and sixty-two sediment samples were collected. Fluoride concentration in the groundwater samples ranged from 0.2 to 3.01 mg/L (mean 1.13 mg/L), with 17 % exceeding the WHO drinking water guideline value of 1.5 mg/L and 48 % exceeding the Chinese drinking water guideline value of 1.0 mg/L. High-F(-) groundwaters were characterized by hydrochemical types of Na-HCO3 and Na-SO4·Cl, which were found in Quaternary sediment aquifer and in Tertiary clastic aquifer, respectively. Conditions favorable for F(-) enrichment in groundwater included weakly alkaline pH (7.2-8.9), low concentration of Ca(2+), and high concentrations of HCO3 (-) and Na(+). Calcite and fluorite were the main minerals controlling F(-) concentration in groundwaters. The hydrolysis of F-bearing minerals in aquifer sediments was the more important process for F(-) release in Tertiary clastic aquifer, which was facilitated by long residence time of groundwater, in comparison with Quaternary sediment aquifer. Cation exchange would also play important roles, which removed Ca(2+) and Mg(2+) and led to more free mobility of F(-) in groundwater and permitted dissolution of fluorite, especially in Tertiary clastic aquifer. However, evapotranspiration and competing adsorption of B and HCO3 (-) were the more important processes for F(-) enrichment in Quaternary groundwater. Groundwater in Lower Cretaceous aquifer had relatively low F(-) concentration, which was considered to be the potential drinking water resource.
Cui, Changzheng; Jin, Lei; Jiang, Lei; Han, Qi; Lin, Kuangfei; Lu, Shuguang; Zhang, Dong; Cao, Guomin
2016-12-01
Trace levels of residual antibiotics in drinking water may threaten public health and become a serious problem in modern society. In this work, we investigated the degradation of twelve sulfonamides (SAs) at environmentally relevant trace level concentrations by three different methods: ultraviolet (UV) photolysis, peroxymonosulfate (PMS) oxidation, and UV-activated PMS (UV/PMS). Sulfaguanidine, sulfadiazine, sulfamerazine, sulfamethazine, sulfathiazole, sulfamethoxydiazine, and sulfadimethoxine were be effectively removed by direct UV photolysis and PMS oxidation. However, sulfanilamide, sulfamethizole, sulfamethoxazole, sulfisoxazole, and sulfachloropyridazine were not completely degraded, despite prolonging the UV irradiation time to 30min or increasing the PMS concentration to 5.0mg·L -1 . UV/PMS provided more thorough elimination of SAs, as demonstrated by the complete removal of 200ng·L -1 of all SAs within 5min at an initial PMS concentration of 1.0mg·L -1 . UV/PMS promoted SA decomposition more efficiently than UV photolysis or PMS oxidation alone. Bicarbonate concentration and pH had a negligible effect on SA degradation by UV/PMS. However, humic acid retarded the process. Removal of 200ng·L -1 of each SA from a sample of sand-filtered effluent from a drinking water treatment plant (DWTPs) was quickly and completely achieved by UV/PMS. Meanwhile, about 41% of the total organic carbon (TOC) was eliminated. Scavenging experiments showed that sulfate radical (SO 4 - ) was the predominant species involved in the degradation. It is concluded that UV/PMS is a rapid and efficient method for removing trace-level SAs from drinking water. Copyright © 2016 Elsevier B.V. All rights reserved.
Thraenhart, O; Kuwert, E
1975-07-01
The present study was performed in order to evaluate comparatively the inactivation of polio virus type I strains (wild type and attenuated) by means of chlorine and ozone. Polio virus type I was chosen with regard to its epidemiological behaviour and high stability in drinking-water and sewage lines. In view of the lack of propagation techniques, hepatitis viruses A and B, unfortunately, could not be used for these experiments. The experiments were done under laboratory conditions only, and not in the water recovery plant because of hygienic reasons. Defined quantities of disinfectants were examined for their virus-inactivating effect in water without redox-potential (double-distilled water), water with low defined redox-potential (double-distilled water + KOH), previously chlorinated water with a residual chlorine content of 0.03 mg chlorine per liter (tap water) and water with a high redox-potential (well water from the drinking-water plant). Time-course studies were performed, both with chlorine and ozone, in order to evaluate the characteristics of the inactivation procedure. The experimental conditions chosen varied from experiment to experiment to obtain relevant conclusions for the practice. On the basis of our results, and taking into account the quantitative differences in effect, chlorine and ozone principially can be considered equivalent in their action of virus-disinfection. Both, the initial rate and the kinetics of virus disinfection are really identical. Both disinfectants are dependant on the condition of the water (redox-potential, pH etc.) to a great extent in their efficacy. Therefore, a decision of whether or not ozone should substitute for chlorine for the drinking-water supply in Essen cannot be drawn on the basis of virological experiments. This decision, then, depends more or less on other questions - such as relative costs and practicability of the ozonization on a large technical scale. The safety risk and technical reliability of the ozonization process is of particular significance. In the present condition of the Essen reservoir water, a good virus disinfection can be expected already with 1.0 to 1.5 mg ozone/liter (dissolved!); such a concentration guarantees very little residual ozone and, thus, makes then this procedure technically feasible. Continuous checking of the redox-potential and the amount of the ozone added is necessary. With regard to a continuous supply of ozone, the dependence on current supply must be guaranteed. Ozonization of water, probably by the cleavage of humic acid, promotes bacterial recontamination of the drinking-water in the city taps(Stalder und Klosterkötter, 45). Therefore only a combined pre-ozonization with subsequent chlorination would guarantee, both, safety and improvement of the cosmetical conditions of the drinking-water. Such a combination would be feasible with highly reduced amounts of ozone and chlorine.
NASA Astrophysics Data System (ADS)
Popp, A. L.; Marçais, J.; Moeck, C.; Brennwald, M. S.; Kipfer, R.
2017-12-01
Public drinking water supply in urban areas is often challenging due to exposure to potential contamination and high water demands. At our study site, a drinking water supply field in Switzerland, managed aquifer recharge (MAR) was implemented to overcome an increasing water demand and decreasing water quality. Water from the river Rhine is put on a system of channels and ponds to artificially infiltrate and hence, increase the natural groundwater availability. The groundwater system consists of two overlying aquifers, with hydraulic connections related to fractures and faults. The deeper aquifer contains contaminants, which possibly originate from nearby landfills and industrial areas. The operating water works aims to pump recently infiltrated water only. However, we suspect that the pumped water contains a fraction of old water due to the fractured zones which serve as hydraulic connection between the two aquifers. With this study, we aim to better understand the mixing patterns between recently infiltrated water and old groundwater to evaluate the risk for contamination of the system. To reach our objective, we used a set of gas tracers (222Rn, 3H/3He, 4He) from fifteen wells distributed throughout the area to estimate the residence time distribution (RTD) of each well. We calibrated the RTD with a Binary Mixing Model, where the fraction of young groundwater is assumed to follow a Piston Flow Model. The older groundwater fraction is calibrated with a Dispersion Model. Our results reflect the heterogeneity of the system with some abstraction wells containing young water only and others showing an admixture of old water which can only be explained by a connection to the deeper aquifer. We also show that our results on calibrated RTDs are in accordance with other geochemical data such as electrical conductivity, major ions and pH. Our results will contribute to a sound conceptual flow and transport understanding and will help to optimize the water supply system.
Selective removal of uranium ions from contaminated waters using modified-X nanozeolite.
Shakur, H R; Rezaee Ebrahim Saraee, Kh; Abdi, M R; Azimi, G
2016-12-01
In order to efficiently remove of uranium anionic species (which are the most dominant species of uranium in natural water at neutral pH) from contaminated waters, nano-NaX zeolite was synthesized and then modified using various divalent cations (Mg 2+ , Ca 2+ , Mn 2+ ) and ZnO nanoparticles (from 1.7 to 10.3wt%). Different characterization techniques of XRF, XRD, FE-SEM, TEM, FT-IR, and AAS were used to characterize the final synthesized absorbents. Sorption experiments by batch technique were done to study the effect of solid-liquid ratio, initial uranium concentration, contact time and temperature under neutral condition of pH and presence of all anions and cations which are available in the waters. Results showed that although nano-NaX zeolite due to its negative framework charge had a low sorption capacity for adsorption of uranium anionic species, but modification of parent nano-NaX zeolite with ZnO nanoparticles and various cations effectively improved its uranium adsorption capacity. Also, results showed that under optimum condition of pH=7.56, contact time of 60min at 27°C with solid-liquid ratio of 20g/L a maximum uranium removal efficiency of 99.7% can be obtained in the presence of all anions and cations which are available in the drinking waters by NaX/ZnO nanocomposite. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Craig, L.; Stillings, L. L.; Decker, D.; Thomas, J.
2013-12-01
In northern Ghana, groundwater is the main source of household water and is generally considered a safe and economical source of drinking water. However in some areas it contains fluoride (F-) concentrations above the 1.5 ppm limit recommended by the World Health Organization, putting the users at risk of fluorosis. The study area in the Upper East Region of northern Ghana has pockets of groundwater F- up to 4.6 ppm and, as a result, also has a high percentage of residents with dental fluorosis. They have no alternative water source and, because of the poverty and limited access to technology, the affected community lacks the capacity to set up advanced treatment systems. One proposed solution is to attach F- adsorption filters to the wells, since adsorption is considered a simple and cost effective approach for treating high F- drinking water. This study evaluates activated alumina as a sorbent for use in de-fluoridation filters in the study area. We evaluated the long-term adsorption capacity of activated alumina, as well as potential changes in F- adsorption rate and capacity with grain size. We measured differences in positive surface charge (as C m-2) via slow acid titration, as well as F- loading with varied prior hydration time. Experimental results from this research show no notable change in F- adsorption or positive surface charge when the activated alumina surface was pre-equilibrated in distilled water from 24 hours up to 30 weeks before the experiment. The results of F- loading show a maximum of ~3.4 mg F- sorbed per gm activated alumina (at initial pH ~6.9, initial F- 1 to 60 ppm, and 20 hr reaction time). The pH dependent surface charge shows a maximum of ~0.14 C m-2 at pH of ~4.4 and zero surface charge at pH ~8.5. F- loading experiments were conducted with grain size ranges 0.125 to 0.250 mm and 0.5 to 1.0 mm to evaluate changes in F- adsorption rate (initial pH ~6.9, initial F- 10 ppm) and F- loading (initial pH ~6.9, initial F- 1 to 60 ppm, 20 hr reaction time). The F- loading onto activated alumina did not change with grain size. However time to equilibrium increased dramatically with a decrease in grain size - after one hour of reaction time, the larger grain size adsorbed only 59% of F-, while at the finer grain size 90% was adsorbed. Future work will determine the volume of high F- water that can be treated before activated alumina needs to be regenerated or changed. These data will be incorporated into the design of a small-scale F-1 adsorption filter in the study area, and will predict the longevity of activated alumina as the sorbent.
Arsenic chemistry in soils and sediments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fendorf, S.; Nico, P.; Kocar, B.D.
2009-10-15
Arsenic is a naturally occurring trace element that poses a threat to human and ecosystem health, particularly when incorporated into food or water supplies. The greatest risk imposed by arsenic to human health results from contamination of drinking water, for which the World Health Organization recommends a maximum limit of 10 {micro}g L{sup -1}. Continued ingestion of drinking water having hazardous levels of arsenic can lead to arsenicosis and cancers of the bladder, skin, lungs and kidneys. Unfortunately, arsenic tainted drinking waters are a global threat and presently having a devastating impact on human health within Asia. Nearly 100 millionmore » people, for example, are presently consuming drinking water having arsenic concentrations exceeding the World Health Organization's recommended limit (Ahmed et al., 2006). Arsenic contamination of the environment often results from human activities such as mining or pesticide application, but recently natural sources of arsenic have demonstrated a devastating impact on water quality. Arsenic becomes problematic from a health perspective principally when it partitions into the aqueous rather than the solid phase. Dissolved concentrations, and the resulting mobility, of arsenic within soils and sediments are the combined result of biogeochemical processes linked to hydrologic factors. Processes favoring the partitioning of As into the aqueous phase, potentially leading to hazardous concentrations, vary extensively but can broadly be grouped into four categories: (1) ion displacement, (2) desorption (or limited sorption) at pH values > 8.5, (3) reduction of arsenate to arsenite, and (4) mineral dissolution, particularly reductive dissolution of Fe and Mn (hydr)oxides. Although various processes may liberate arsenic from solids, a transition from aerobic to anaerobic conditions, and commensurate arsenic and iron/manganese reduction, appears to be a dominant, but not exclusive, means by which high concentrations of dissolved arsenic are generated. Within the subsequent sections of this chapter, we explore and describe the biological and chemical processes that control the partitioning of arsenic between the solid and aqueous phase.« less
Comparison of the erosive potential of gastric juice and a carbonated drink in vitro.
Bartlett, D W; Coward, P Y
2001-11-01
The aim of this study was to compare the erosive effect of gastric juice and a carbonated drink on enamel and dentine by measuring release of calcium from 30 hemisectioned teeth in vitro. In addition, the titrable acidity (mL of 0.05 M sodium hydroxide required to neutralize) and pH of the fluids was estimated. The mean pH of the seven gastric acid samples was 2.92 (range 1.2-6.78) and mean titratable acidity 0.68 mL (range 0.03-1.64). Both the pH and the titratable acidity of the gastric juice varied between patients all of whom suffered from symptoms of reflux disease. The carbonated drink had a pH of 2.45 and a titratable acidity of 0.29 mL. The median amount of calcium released by the gastric acids from enamel was 69.6 microg L-1 (interquartile range 5.4-144) and 62.4 microg L-1 (2.2-125.3) from dentine. The carbonated drink released 18.7 microg L-1 (13.4-23.4) and 18.6 microg L-1 (11.9-35.3), respectively. The differences in calcium release by gastric juice and the carbonated drink were statistically significant for both enamel (P < 0.005) and dentine (P < 0.01). It is concluded that gastric juice has a greater potential, per unit time, for erosion than a carbonated drink.
Drinking-Water Standards and Regulations. Volume 2. Manual for 1982-88
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, L.K.; Wang, M.H.S.
1988-04-10
The following 11 important documents are compiled for Drinking Water Standards and Regulations: (1) U.S. Environmental Agency Water Programs, National Interim Primary Drinking Water Regulations; (2) New Jersey Safe Drinking Water Act; (3) Summary of New Jersey Drinking Water Standards; (4) U.S. Environmental Protection Agency Safe Drinking Water Act of 1986 Amendments; (5) U.S. Environmental Protection Agency National Primary Drinking Water Standards; (6) Canadian National Health and Welfare Drinking Water Quality Guidelines--Maximum Acceptable Concentrations; (7) U.S. Environmental Protection Agency, National Primary Drinking Water Regulations, Filtration and Disinfection Turbidity, Giardia Lamblia, Viruses, Legionella, and Heterotrophic Bacteria; (8) Public Water Supply Manual--Guidemore » to the Safe Drinking Water Program; (9) Public Water Supply Manual--Emergency Response; (10) U.S. EPA Approved Krofta Chemicals; (11) NY-DOH Approved Krofta Chemicals.« less
New England's Drinking Water | Drinking Water in New ...
2017-07-06
Information on Drinking Water in New England. Major Topics covered include: Conservation, Private Wells, Preventing Contamination, Drinking Water Sources, Consumer Confidence Reports, and Drinking Water Awards.
Steenland, Maria; Dismer, Amber; Pierre-Louis, Jocelyne; Murphy, Jennifer L.; Kahler, Amy; Mull, Bonnie; Etheart, Melissa D.; Rossignol, Emmanuel; Boncy, Jacques; Hill, Vincent; Handzel, Thomas
2017-01-01
Abstract. Consumption of drinking water from private vendors has increased considerably in Port-au-Prince, Haiti, in recent decades. A major type of vendor is private kiosks, advertising reverse osmosis-treated water for sale by volume. To describe the scale and geographical distribution of private kiosks in metropolitan Port-au-Prince, an inventory of private kiosks was conducted from July to August 2013. Coordinates of kiosks were recorded with global positioning system units and a brief questionnaire was administered with the operator to document key kiosk characteristics. To assess the quality of water originating from private kiosks, water quality analyses were also conducted on a sample of those inventoried as well as from the major provider company sites. The parameters tested were Escherichia coli, free chlorine residual, pH, turbidity, and total dissolved solids. More than 1,300 kiosks were inventoried, the majority of which were franchises of four large provider companies. Approximately half of kiosks reported opening within 12 months of the date of the inventory. The kiosk treatment chain and sales price was consistent among a majority of the kiosks. Of the 757 kiosks sampled for water quality, 90.9% of samples met World Health Organization (WHO) microbiological guideline at the point of sale for nondetectable E. coli in a 100-mL sample. Of the eight provider company sites tested, all samples met the WHO microbiological guideline. Because of the increasing role of the private sector in drinking water provision in Port-au-Prince and elsewhere in Haiti, this assessment was an important first step for government regulation of this sector. PMID:29064355
Groundwater quality in central New York, 2012
Reddy, James E.
2014-01-01
Water samples were collected from 14 production wells and 15 private wells in central New York from August through December 2012 in a study conducted by the U.S. Geological Survey in cooperation with the New York State Department of Environmental Conservation. The samples were analyzed to characterize the groundwater quality in unconsolidated and bedrock aquifers in this area. Fifteen of the wells are finished in sand-and-gravel aquifers, and 14 are finished in bedrock aquifers. Six of the 29 wells were sampled in a previous central New York study, which was conducted in 2007. Water samples from the 2012 study were analyzed for 147 physiochemical properties and constituents, including major ions, nutrients, trace elements, radionuclides, pesticides, volatile organic compounds, dissolved gases (argon, carbon dioxide, methane, nitrogen, oxygen), and indicator bacteria. Results of the water-quality analyses are presented in tabular form for individual wells, and summary statistics for specific constituents are presented by aquifer type. The results are compared with Federal and New York State drinking-water standards, which typically are identical. The results indicate that the groundwater generally is of acceptable quality, although for all of the wells sampled, at least one of the following constituents was detected at a concentration that exceeded current or proposed Federal or New York State drinking-water standards: color (2 samples), pH (7 samples), sodium (9 samples), chloride (2 samples), fluoride (2 samples), sulfate (2 samples), dissolved solids (8 samples), aluminum (4 samples), arsenic (1 sample), iron (9 samples), manganese (13 samples), radon-222 (13 samples), total coliform bacteria (6 samples), and heterotrophic bacteria (2 samples). Drinking-water standards for nitrate, nitrite, antimony, barium, beryllium, cadmium, chromium, copper, lead, mercury, selenium, silver, thallium, zinc, gross alpha radioactivity, uranium, fecal coliform, and Escherichia coliwere not exceeded in any of the samples collected. None of the pesticides or volatile organic compounds analyzed exceeded drinking-water standards. Methane was detected in 11 sand-and-gravel wells and 9 bedrock wells. Five of the 14 bedrock wells had water with methane concentrations approaching 10 mg/L; water in one bedrock well had 37 mg/L of methane.
Performance of point-of-use devices to remove manganese from drinking water.
Carrière, Annie; Brouillon, Manon; Sauvé, Sébastien; Bouchard, Maryse F; Barbeau, Benoit
2011-01-01
A recent epidemiological study reported significant cognitive deficits among children in relation with consumption of water with manganese concentrations in the order of 50-100 ug/L. Concerns for neurotoxic effects of manganese raises the need for evaluating the efficiency of domestic water treatment systems for removal of this metal. The objective of the present study was to determine whether POU devices are efficient at reducing dissolved manganese concentration in drinking water. Various devices were tested according to the NSF 53 protocol for general metals for high pH test water. Based on these assays, the pour-through filters were identified as the most promising POU devices, with dissolved manganese removal greater than 60% at 100% rated capacity, and greater than 45% at 200% rated capacity (influent Mn ≈1,000 μg/L). Under-the-sink filters using cationic exchange resins (i.e., water softeners) were also efficient at removing dissolved manganese but over a shorter operating life. Manganese leaching was also observed beyond their rated capacity, making them less robust treatments. The activated carbon block filters and other proprietary technologies were found to be inappropriate for dissolved manganese removal. Further evaluation of POU devices performance should evaluate the impact of hardness on process performance. The impact of particulate Mn should also be evaluated.
[A PhD completed. Prevention and treatment of periodontal diseases and bad breath].
van der Sluijs, E; Slot, D E; van der Weijden, G A
2018-01-01
Rinsing the mouth with water, or brushing with a dry toothbrush, does not contribute to an improvement in plaque removal during toothbrushing, nor does brushing according to a specific brushing regimen. Rinsing with water or drinking water has an immediate effect on bad morning breath. The combination of toothbrushing, tongue cleaning and a mouthwash has an effect on bad morning breath after 24 hours, in contrast with brushing with toothpaste only. The use of mouthwash with the specific ingredients chlorhexidine and essential oils has a positive effect on the reduction of gingivitis. The use of similar mouthwashes as a cooling solution in an ultrasonic device has no added effect on treatment results among periodontal patients. Water is an effective cooling solution.
Cool, Geneviève; Lebel, Alexandre; Sadiq, Rehan; Rodriguez, Manuel J
2015-12-01
The regional variability of the probability of occurrence of high total trihalomethane (TTHM) levels was assessed using multilevel logistic regression models that incorporate environmental and infrastructure characteristics. The models were structured in a three-level hierarchical configuration: samples (first level), drinking water utilities (DWUs, second level) and natural regions, an ecological hierarchical division from the Quebec ecological framework of reference (third level). They considered six independent variables: precipitation, temperature, source type, seasons, treatment type and pH. The average probability of TTHM concentrations exceeding the targeted threshold was 18.1%. The probability was influenced by seasons, treatment type, precipitations and temperature. The variance at all levels was significant, showing that the probability of TTHM concentrations exceeding the threshold is most likely to be similar if located within the same DWU and within the same natural region. However, most of the variance initially attributed to natural regions was explained by treatment types and clarified by spatial aggregation on treatment types. Nevertheless, even after controlling for treatment type, there was still significant regional variability of the probability of TTHM concentrations exceeding the threshold. Regional variability was particularly important for DWUs using chlorination alone since they lack the appropriate treatment required to reduce the amount of natural organic matter (NOM) in source water prior to disinfection. Results presented herein could be of interest to authorities in identifying regions with specific needs regarding drinking water quality and for epidemiological studies identifying geographical variations in population exposure to disinfection by-products (DBPs).
Adsorption of microcystin-LR on mesoporous carbons and its potential use in drinking water source.
Park, Jeong-Ann; Jung, Sung-Mok; Yi, In-Geol; Choi, Jae-Woo; Kim, Song-Bae; Lee, Sang-Hyup
2017-06-01
Microcystin-LR (MC-LR) is a common toxin derived from cyanobacterial blooms an effective, rapid and non-toxic method needs to be developed for its removal from drinking water treatment plants (DWTP). For an adsorption-based method, mesoporous carbon can be a promising supplemental adsorbent. The effect of mesoporous carbon (MC1, MC2, and MC3) properties and water quality parameters on the adsorption of MC-LR were investigated and the results were analyzed by kinetic, isotherm, thermodynamic, Derjaguin-Landau-Verwey-Overbeek (DLVO), and intraparticle diffusion models. MC1 was the most appropriate type for the removal of MC-LR with a maximum adsorption capacity of 35,670.49 μg/g. Adsorption of MC-LR is a spontaneous reaction dominated by van der Waals interactions. Pore sizes of 8.5-14 nm enhance the pore diffusion of MC-LR from the surface to the mesopores of MC1. The adsorption capacity was not sensitive to changes in the pH (3.2-8.0) and the existence of organic matter (2-5 mg/L). Furthermore, the final concentration of MC-LR was below the WHO guideline level after a 10-min reaction with 20 mg/L of MC1 in the Nak-Dong River, a drinking water source. The MC-LR adsorption mainly competed with humic substances (500-1000 g/mole); however, they did not have a great effect on adsorption. Copyright © 2017. Published by Elsevier Ltd.
Safety Evaluation of Green Tea Polyphenols Consumption in Middle-aged Ovariectomized Rat Model.
Shen, Chwan-Li; Brackee, Gordon; Song, Xiao; Tomison, Michael D; Finckbone, VelvetLee; Mitchell, Kelly T; Tang, Lili; Chyu, Ming-Chien; Dunn, Dale M; Wang, Jia-Sheng
2017-09-01
This work evaluates chronic safety in middle-aged ovariectomized rats supplemented with different dosages of green tea polyphenols (GTP) in drinking water. The experiment used 6-mo-old sham (n = 39) and ovariectomized (OVX, n = 143) female rats. All sham (n = 39) and 39 of the OVX animals received no GTP treatment and their samples were collected for outcome measures at baseline, 3 mo, and 6 mo (n = 13 per group for each). The remaining OVX animals were randomized into 4 groups receiving 0.15%, 0.5%, 1%, and 1.5% (n = 26 for each) of GTP (wt/vol), respectively, in drinking water for 3 and 6 mo. No mortality or abnormal treatment-related findings in clinical observations or ophthalmologic examinations were noted. No treatment-related macroscopic or microscopic findings were noted for animals administered 1.5% GTP supplementation. Throughout the study, there was no difference in the body weight among all OVX groups. In all OVX groups, feed intake and water consumption significantly decreased with GTP dose throughout the study period. At 6 mo, GTP intake did not affect hematology, clinical chemistry, and urinalysis, except for phosphorus and blood urea nitrogen (increased), total cholesterol, lactate dehydrogenase, and urine pH (decreased). This study reveals that the no-observed-adverse-effect level (NOAEL) of GTP is 1.5% (wt/vol) in drinking water, the highest dose used in this study. © 2017 Institute of Food Technologists®.
Ormachea Muñoz, Mauricio; Wern, Hannes; Johnsson, Fredrick; Bhattacharya, Prosun; Sracek, Ondra; Thunvik, Roger; Quintanilla, Jorge; Bundschuh, Jochen
2013-11-15
Environmental settings in the southern area of Lake Poopó in the Bolivian highlands, the Altiplano, have generated elevated amounts of arsenic (As) in the water. The area is characterised by a semiarid climate, slow hydrological flow and geologic formations of predominantly volcanic origin. The present study aimed at mapping the extent of the water contamination in the area and to investigate the geogenic sources and processes involved in the release of As to the groundwater. Ground- and surface-water samples were collected from 24 different sites, including drinking water wells and rivers, in the southern Poopó basin in two different field campaigns during the dry and rainy seasons. The results revealed variable levels of As in shallow drinking water wells and average concentration exceeding the WHO guidelines value. Arsenic concentrations range from below 5.2 μg/L (the detection level) to 207 μg/L and averages 72 μg/L. Additionally, high boron (B) concentrations (average 1902 μg/L), and high salinity are further serious concerns for deteriorating the groundwater quality and rendering it unsuitable for drinking. Groundwater is predominantly of the Na-Cl-HCO3 type or the Ca-Na-HCO3 type with neutral or slightly alkaline pH and oxidising character. While farmers are seriously concerned about the water scarcity, and on a few occasions about salinity, there are no concerns about As and B present at levels exceeding the WHO guidelines, and causing negative long term effects on human health. Sediment samples from two soil profiles and a river bed along with fourteen rock samples were also collected and analysed. Sequential extractions of the sediments together with the calculation of the mineral saturation indices indicate that iron oxides and hydroxides are the important secondary minerals phases which are important adsorbents for As. High pH values, and the competition of As with HCO3 and dissolved silica for the adsorption sites probably seems to be an important process for the mobilisation of As in the shallow groundwaters of the region. Continuous monitoring and expansion of monitoring systems are necessary prerequisites for better understanding of the pattern of As mobilisation in the Southern Poopó Basin. Copyright © 2013 Elsevier B.V. All rights reserved.
Potential of using plant extracts for purification of shallow well water in Malawi
NASA Astrophysics Data System (ADS)
Pritchard, M.; Mkandawire, T.; Edmondson, A.; O'Neill, J. G.; Kululanga, G.
There has been very little scientific research work into the use of plant extracts to purify groundwater. Research studies on the purification of groundwater have mainly been carried out in developed countries and have focused on water purification systems using aluminium sulphate (a coagulant) and chlorine (a disinfectant). Such systems are expensive and not viable for rural communities due to abject poverty. Shallow well water, which is commonly available throughout Africa, is often grossly contaminated and usually consumed untreated. As a result, water-related diseases kill more than 5 million people every year worldwide. This research was aimed at examining natural plant extracts in order to develop inexpensive ways for rural communities to purify their groundwater. The study involved creating an inventory of plant extracts that have been used for water and wastewater purification. A prioritisation system was derived to select the most suitable extracts, which took into account criteria such as availability, purification potential, yield and cost of extraction. Laboratory trials were undertaken on the most promising plant extracts, namely: Moringa oleifera, Jatropha curcas and Guar gum. The extracts were added to water samples obtained from five shallow wells in Malawi. The trials consisted of jar tests to assess the coagulation potential and the resulting effect on physico-chemical and microbiological parameters such as temperature, pH, turbidity and coliforms. The results showed that the addition of M. oleifera, J. curcas and Guar gum can considerably improve the quality of shallow well water. Turbidity reduction was higher for more turbid water. A reduction efficiency exceeding 90% was achieved by all three extracts on shallow well water that had a turbidity of 49 NTU. A reduction in coliforms was about 80% for all extracts. The pH of the water samples increased with dosage, but remained within acceptable levels for drinking water for all the extracts. Overall, M. oleifera powder produced superior results, followed by Guar gum and lastly J. curcas. There is a need to carry out further more detailed tests, which include toxicity to guarantee the safety of using plant extracts as a coagulant in the purification of drinking water for human consumption.
Zhao, Tong; Zhao, Ping; West, Joe W; Bernard, John K; Cross, Heath G; Doyle, Michael P
2006-05-01
Cattle drinking water is a source of on-farm Escherichia coli O157:H7 transmission. The antimicrobial activities of disinfectants to control E. coli O157:H7 in on-farm drinking water are frequently neutralized by the presence of rumen content and manure that generally contaminate the drinking water. Different chemical treatments, including lactic acid, acidic calcium sulfate, chlorine, chlorine dioxide, hydrogen peroxide, caprylic acid, ozone, butyric acid, sodium benzoate, and competing E. coli, were tested individually or in combination for inactivation of E. coli O157:H7 in the presence of rumen content. Chlorine (5 ppm), ozone (22 to 24 ppm at 5 degrees C), and competing E. coli treatment of water had minimal effects (<1 log CFU/ml reduction) on killing E. coli O157:H7 in the presence of rumen content at water-to-rumen content ratios of 50:1 (vol/wt) and lower. Four chemical-treatment combinations, including (i) 0.1% lactic acid, 0.9% acidic calcium sulfate, and 0.05% caprylic acid (treatment A); (ii) 0.1% lactic acid, 0.9% acidic calcium sulfate, and 0.1% sodium benzoate (treatment B); (iii) 0.1% lactic acid, 0.9% acidic calcium sulfate, and 0.5% butyric acid (treatment C); and (iv) 0.1% lactic acid, 0.9% acidic calcium sulfate, and 100 ppm chlorine dioxide (treatment D); were highly effective (>3 log CFU/ml reduction) at 21 degrees C in killing E. coli O157:H7, O26:H11, and O111:NM in water heavily contaminated with rumen content (10:1 water/rumen content ratio [vol/wt]) or feces (20:1 water/feces ratio [vol/wt]). Among them, treatments A, B, and C killed >5 log CFU E. coli O157:H7, O26:H11, and O111:NM/ml within 30 min in water containing rumen content or feces, whereas treatment D inactivated approximately 3 to 4 log CFU/ml under the same conditions. Cattle given water containing treatment A or C or untreated water (control) ad libitum for two 7-day periods drank 15.2, 13.8, and 30.3 liters/day, respectively, and cattle given water containing 0.1% lactic acid plus 0.9% acidic calcium sulfate (pH 2.1) drank 18.6 liters/day. The amounts of water consumed for all water treatments were significantly different from that for the control, but there were no significant differences among the water treatments. Such treatments may best be applied periodically to drinking water troughs and then flushed, rather than being added continuously, to avoid reduced water consumption by cattle.
Chycki, Jakub; Zając, Tomasz; Maszczyk, Adam; Kurylas, Anna
2017-09-01
Previously it was demonstrated that mineralization and alkalization properties of mineral water are important factors influencing acid-base balance and hydration in athletes. The purpose of this study was to investigate the effects of drinking different types of water on urine pH, specific urine gravity, and post-exercise lactate utilization in response to strenuous exercise. Thirty-six male soccer players were divided into three intervention groups, consuming around 4.0 l/day of different types of water for 7 days: HM (n=12; highly mineralized water), LM (n=12; low mineralized water), and CON (n=12; table water). The athletes performed an exercise protocol on two occasions (before and after intervention). The exercise protocol consisted of 5 bouts of intensive 60-s (120% VO 2max ) cycling separated by 60 s of passive rest. Body composition, urinalysis and lactate concentration were evaluated - before (t0), immediately after (t1), 5' (t2), and 30' (t3) after exercise. Total body water and its active transport (TBW - total body water / ICW - intracellular water / ECW - extracellular water) showed no significant differences in all groups, at both occasions. In the post-hydration state we found a significant decrease of specific urine gravity in HM (1021±4.2 vs 1015±3.8 g/L) and LM (1022±3.1 vs 1008±4.2 g/L). We also found a significant increase of pH and lactate utilization rate in LM. In conclusion, the athletes hydrated with alkaline, low mineralized water demonstrated favourable changes in hydration status in response to high-intensity interval exercise with a significant decrease of specific urine gravity, increased urine pH and more efficient utilization of lactate after supramaximal exercise.
A review of permissible limits of drinking water
Kumar, Manoj; Puri, Avinash
2012-01-01
Water is one of the prime necessities of life. We can hardly live for a few days without water. In a man's body, 70-80% is water. Cell, blood, and bones contain 90%, 75%, and 22% water, respectively. The general survey reveals that the total surface area of earth is 51 crore km2 out of which 36.1 crore km2 is covered sea. In addition to this, we get water from rivers, lakes, tanks, and now on hills. In spite of such abundance, there is a shortage of soft water in the world. Physicochemical parameter of any water body plays a very important role in maintaining the fragile ecosystem that maintains various life forms. Present research paper deals with various water quality parameter, chlorides, dissolved oxygen, total iron, nitrate, water temperature, pH, total phosphorous, fecal coli form bacteria, and adverse effect of these parameters on human being. PMID:23112507
Graphene quantum dot as a green and facile sensor for free chlorine in drinking water.
Dong, Yongqiang; Li, Geli; Zhou, Nana; Wang, Ruixue; Chi, Yuwu; Chen, Guonan
2012-10-02
Free chlorine was found to be able to destroy the passivated surface of the graphene quantum dots (GQDs) obtained by pyrolyzing citric acid, resulting in significant quenching of their fluorescence (FL) signal. After optimizing some experimental conditions (including response time, concentration of GQDs, and pH value of solution), a green and facile sensing system has been developed for the detection of free residual chlorine in water based on FL quenching of GQDs. The sensing system exhibits many advantages, such as short response time, excellent selectivity, wide linear response range, and high sensitivity. The linear response range of free chlorine (R(2) = 0.992) was from 0.05 to 10 μM. The detection limit (S/N = 3) was as low as 0.05 μM, which is much lower than that of the most widely used N-N-diethyl-p-phenylenediamine (DPD) colorimetric method. This sensing system was finally used to detect free residual chlorine in local tap water samples. The result agreed well with that by the DPD colorimetric method, suggesting the potential application of this new, green, sensitive, and facile sensing system in drinking water quality monitoring.
Zhang, Yue; Shi, Baoyou; Zhao, Yuanyuan; Yan, Mingquan; Lytle, Darren A; Wang, Dongsheng
2016-04-01
Finished drinking water usually contains some residual aluminum. The deposition of residual aluminum in distribution systems and potential release back to the drinking water could significantly influence the water quality at consumer taps. A preliminary analysis of aluminum content in cast iron pipe corrosion scales and loose deposits demonstrated that aluminum deposition on distribution pipe surfaces could be excessive for water treated by aluminum coagulants including polyaluminum chloride (PACl). In this work, the deposition features of different aluminum species in PACl were investigated by simulated coil-pipe test, batch reactor test and quartz crystal microbalance with dissipation monitoring. The deposition amount of non-polymeric aluminum species was the least, and its deposition layer was soft and hydrated, which indicated the possible formation of amorphous Al(OH)3. Al13 had the highest deposition tendency, and the deposition layer was rigid and much less hydrated, which indicated that the deposited aluminum might possess regular structure and self-aggregation of Al13 could be the main deposition mechanism. While for Al30, its deposition was relatively slower and deposited aluminum amount was relatively less compared with Al13. However, the total deposited mass of Al30 was much higher than that of Al13, which was attributed to the deposition of particulate aluminum matters with much higher hydration state. Compared with stationary condition, stirring could significantly enhance the deposition process, while the effect of pH on deposition was relatively weak in the near neutral range of 6.7 to 8.7. Copyright © 2015. Published by Elsevier B.V.
Development of a water quality index (WQI) for the Loktak Lake in India
NASA Astrophysics Data System (ADS)
Das Kangabam, Rajiv; Bhoominathan, Sarojini Devi; Kanagaraj, Suganthi; Govindaraju, Munisamy
2017-10-01
The present work was carried out to assess a water quality index (WQI) of the Loktak Lake, an important wetland which has been under pressure due to the increasing anthropogenic activities. Physicochemical parameters like temperature (Tem), potential hydrogen (pH), electrical conductivity (EC), turbidity (T), dissolved oxygen (DO), total hardness (TH), calcium (Ca), chloride (Cl), fluoride (F), sulphate ({SO}4^{2-}), magnesium (Mg), phosphate ({PO}4^{3-}), sodium (Na), potassium (K), nitrite (NO2), nitrate (NO3), total dissolved solids (TDS), total carbon (TC), biochemical oxygen demand (BOD), and chemical oxygen demand (COD) were analyzed using standard procedures. The values obtained were compared with the guidelines for drinking purpose suggested by the World Health Organization and Bureau of Indian Standard. The result shows the higher concentration of nitrite in all the location which is beyond the permissible limit. Eleven parameters were selected to derive the WQI for the estimation of water potential for five sampling sites. A relative weight was assigned to each parameter range from 1.46 to 4.09 based on its importance. The WQI values range from 64 to 77 indicating that the Loktak Lake water is not fit for drinking, including both human and animals, even though the people living inside the Lake are using it for drinking purposes. The implementation of WQI is necessary for proper management of the Loktak Lake and it will be a very helpful tool for the public and decision makers to evaluate the water quality of the Loktak Lake for sustainable management.
Potable groundwater quality in some villages of Haryana, India: focus on fluoride.
Bishnoi, Mukul; Arora, Shalu
2007-04-01
The fluoride concentration in ground water was determined in ten villages of Rohtak district of Haryana state (India). The fluoride concentration in the underground water of these villages varied from 0.034-2.09 mg/l. Various other water quality parameters, viz., pH, electrical conductivity, total dissolved salts, total hardness, total alkalinity sodium, potassium, calcium, magnesium, carbonate, bicarbonate, chloride and sulfate were also measured. A systematic calculation of correlation coefficients among different physicochemical parameters indicated considerable variations among the analyzed samples with respect to their chemical composition. Majority of the samples do not comply with Indian as well as WHO standards for most of the water quality parameters measured. Overall water quality was found unsatisfactory for drinking purposes. Fluoride content was higher than permissible limit in 50% samples.