Akter, Tahera; Jhohura, Fatema Tuz; Akter, Fahmida; Chowdhury, Tridib Roy; Mistry, Sabuj Kanti; Dey, Digbijoy; Barua, Milan Kanti; Islam, Md Akramul; Rahman, Mahfuzar
2016-02-09
Public health is at risk due to chemical contaminants in drinking water which may have immediate health consequences. Drinking water sources are susceptible to pollutants depending on geological conditions and agricultural, industrial, and other man-made activities. Ensuring the safety of drinking water is, therefore, a growing problem. To assess drinking water quality, we measured multiple chemical parameters in drinking water samples from across Bangladesh with the aim of improving public health interventions. In this cross-sectional study conducted in 24 randomly selected upazilas, arsenic was measured in drinking water in the field using an arsenic testing kit and a sub-sample was validated in the laboratory. Water samples were collected to test water pH in the laboratory as well as a sub-sample of collected drinking water was tested for water pH using a portable pH meter. For laboratory testing of other chemical parameters, iron, manganese, and salinity, drinking water samples were collected from 12 out of 24 upazilas. Drinking water at sample sites was slightly alkaline (pH 7.4 ± 0.4) but within acceptable limits. Manganese concentrations varied from 0.1 to 5.5 mg/L with a median value of 0.2 mg/L. The median iron concentrations in water exceeded WHO standards (0.3 mg/L) at most of the sample sites and exceeded Bangladesh standards (1.0 mg/L) at a few sample sites. Salinity was relatively higher in coastal districts. After laboratory confirmation, arsenic concentrations were found higher in Shibchar (Madaripur) and Alfadanga (Faridpur) compared to other sample sites exceeding WHO standard (0.01 mg/L). Of the total sampling sites, 33 % had good-quality water for drinking based on the Water Quality Index (WQI). However, the majority of the households (67 %) used poor-quality drinking water. Higher values of iron, manganese, and arsenic reduced drinking water quality. Awareness raising on chemical contents in drinking water at household level is required to improve public health.
[Bacteriological quality of drinking water in the City of Merida, Mexico].
Flores-Abuxapqui, J J; Suárez-Hoil, G J; Puc-Franco, M A; Heredia-Navarrete, M R; Vivas-Rosel, M D; Franco-Monsreal, J
1995-01-01
With the aim of knowing the microbiological quality of drinking water in Merida, Yucatan, 383 paired samples of drinking water (two per house) were studied. Three hundred sixty four (95%) city water system samples and 283 (73.89%) tap water samples met the microbiological standards for drinking water. It was concluded that microbiological quality of drinking water from the city water system is satisfactory, except for the water system district Merida III, which has a significant aerobic plate count contamination level (21.7% of the samples). Domestic storage systems preserve water quality, with the exception of district Merida I, which has the highest level of contamination (4.8% of the samples) possibly from sewage water and fecal sources.
Ferdous, Jannatul; Sultana, Rebeca; Rashid, Ridwan B; Tasnimuzzaman, Md; Nordland, Andreas; Begum, Anowara; Jensen, Peter K M
2018-01-01
Bangladesh is a cholera endemic country with a population at high risk of cholera. Toxigenic and non-toxigenic Vibrio cholerae ( V. cholerae ) can cause cholera and cholera-like diarrheal illness and outbreaks. Drinking water is one of the primary routes of cholera transmission in Bangladesh. The aim of this study was to conduct a comparative assessment of the presence of V. cholerae between point-of-drinking water and source water, and to investigate the variability of virulence profile using molecular methods of a densely populated low-income settlement of Dhaka, Bangladesh. Water samples were collected and tested for V. cholerae from "point-of-drinking" and "source" in 477 study households in routine visits at 6 week intervals over a period of 14 months. We studied the virulence profiles of V. cholerae positive water samples using 22 different virulence gene markers present in toxigenic O1/O139 and non-O1/O139 V. cholerae using polymerase chain reaction (PCR). A total of 1,463 water samples were collected, with 1,082 samples from point-of-drinking water in 388 households and 381 samples from 66 water sources. V. cholerae was detected in 10% of point-of-drinking water samples and in 9% of source water samples. Twenty-three percent of households and 38% of the sources were positive for V. cholerae in at least one visit. Samples collected from point-of-drinking and linked sources in a 7 day interval showed significantly higher odds ( P < 0.05) of V. cholerae presence in point-of-drinking compared to source [OR = 17.24 (95% CI = 7.14-42.89)] water. Based on the 7 day interval data, 53% (17/32) of source water samples were negative for V. cholerae while linked point-of-drinking water samples were positive. There were significantly higher odds ( p < 0.05) of the presence of V. cholerae O1 [OR = 9.13 (95% CI = 2.85-29.26)] and V. cholerae O139 [OR = 4.73 (95% CI = 1.19-18.79)] in source water samples than in point-of-drinking water samples. Contamination of water at the point-of-drinking is less likely to depend on the contamination at the water source. Hygiene education interventions and programs should focus and emphasize on water at the point-of-drinking, including repeated cleaning of drinking vessels, which is of paramount importance in preventing cholera.
Ferdous, Jannatul; Sultana, Rebeca; Rashid, Ridwan B.; Tasnimuzzaman, Md.; Nordland, Andreas; Begum, Anowara; Jensen, Peter K. M.
2018-01-01
Bangladesh is a cholera endemic country with a population at high risk of cholera. Toxigenic and non-toxigenic Vibrio cholerae (V. cholerae) can cause cholera and cholera-like diarrheal illness and outbreaks. Drinking water is one of the primary routes of cholera transmission in Bangladesh. The aim of this study was to conduct a comparative assessment of the presence of V. cholerae between point-of-drinking water and source water, and to investigate the variability of virulence profile using molecular methods of a densely populated low-income settlement of Dhaka, Bangladesh. Water samples were collected and tested for V. cholerae from “point-of-drinking” and “source” in 477 study households in routine visits at 6 week intervals over a period of 14 months. We studied the virulence profiles of V. cholerae positive water samples using 22 different virulence gene markers present in toxigenic O1/O139 and non-O1/O139 V. cholerae using polymerase chain reaction (PCR). A total of 1,463 water samples were collected, with 1,082 samples from point-of-drinking water in 388 households and 381 samples from 66 water sources. V. cholerae was detected in 10% of point-of-drinking water samples and in 9% of source water samples. Twenty-three percent of households and 38% of the sources were positive for V. cholerae in at least one visit. Samples collected from point-of-drinking and linked sources in a 7 day interval showed significantly higher odds (P < 0.05) of V. cholerae presence in point-of-drinking compared to source [OR = 17.24 (95% CI = 7.14–42.89)] water. Based on the 7 day interval data, 53% (17/32) of source water samples were negative for V. cholerae while linked point-of-drinking water samples were positive. There were significantly higher odds (p < 0.05) of the presence of V. cholerae O1 [OR = 9.13 (95% CI = 2.85–29.26)] and V. cholerae O139 [OR = 4.73 (95% CI = 1.19–18.79)] in source water samples than in point-of-drinking water samples. Contamination of water at the point-of-drinking is less likely to depend on the contamination at the water source. Hygiene education interventions and programs should focus and emphasize on water at the point-of-drinking, including repeated cleaning of drinking vessels, which is of paramount importance in preventing cholera. PMID:29616005
van Heerden, J; Ehlers, M M; Heim, A; Grabow, W O K
2005-01-01
Human adenoviruses (HAds), of which there are 51 serotypes, are associated with gastrointestinal, respiratory, urinary tract and eye infections. The importance of water in the transmission of HAds and the potential health risks constituted by HAds in these environments are widely recognized. Adenoviruses have not previously been quantified in river and treated drinking water samples. In this study, HAds in river water and treated drinking water sources in South Africa were detected, quantified and typed. Adenoviruses were recovered from the water samples using a glass wool adsorption-elution method followed by polyethylene glycol/NaCl precipitation for secondary concentration. The sensitivity and specificity of two nested PCR methods were compared for detection of HAds in the water samples. Over a 1-year period (June 2002 to July 2003), HAds were detected in 5.32% (10/188) of the treated drinking water and 22.22% (10/45) of river water samples using the conventional nested PCR method. The HAds detected in the water samples were quantified using a real-time PCR method. The original treated drinking water and river water samples had an estimate of less than one copy per litre of HAd DNA present. The hexon-PCR products used for typing HAds were directly sequenced or cloned into plasmids before sequencing. In treated drinking water samples, species D HAds predominated. In addition, adenovirus serotypes 2, 40 and 41 were each detected in three different treated drinking water samples. Most (70%) of the HAds detected in river water samples analysed were enteric HAds (serotypes 40 and 41). One HAd serotype 2 and two species D HAds were detected in the river water. Adenoviruses detected in river and treated drinking water samples were successfully quantified and typed. The detection of HAds in drinking water supplies treated and disinfected by internationally recommended methods, and which conform to quality limits for indicator bacteria, warrants an investigation of the risk of infection constituted by these viruses. The risk of infection may have implications for the management of drinking water quality. This study is unique as it is the first report on the quantification and typing of HAds in treated drinking water and river water. This baseline data is necessary for the meaningful assessment of the potential risk of infection constituted by these viruses.
Zhang, Xiao-Ping; He, Yan-Yan; Zhu, Qian; Ma, Xiao-Jiang; Cai, Li
2010-12-30
To understand the contamination status of Cryptosporidium sp. and Giardia lamblia in drinking water, source water and environmental water in Shanghai. All water samples collected from drinking water, source water and environmental water were detected by a procedure of micromembrane filtration, immune magnetic separation (IMS), and immunofluorescent assay (IFA). Cryptosporidium oocysts and Giardia cysts were not found in 156 samples of the drinking water including finished water, tap water, or pipe water for directly drinking in communities. Among 70 samples either source water of water plants (15 samples), environmental water from Huangpu River(25), canal water around animal sheds(15), exit water from waste-water treatment plants(9), or waste water due to daily life(6), Cryptosporidium oocysts were detected in 1(6.7%), 2(8.0%), 7(46.7%), 1(11.1%), and 1(16.7%) samples, respectively; and Giardia cysts were detected in 1(6.7%), 3(12.0%), 6 (40.0%), 2(22.2%), and 2(33.3%), respectively. The positive rate of Cryptosporidium oocysts and Giardia cysts was 17.1% (12/70) and 20.0% (14/70), respectively. No Cryptosporidium oocysts and Giardia cysts have been detected in drinking water, but found in source water and environmental water samples in Shanghai.
Presence of rotavirus and free-living amoebae in the water supplies of Karachi, Pakistan.
Yousuf, Farzana Abubakar; Siddiqui, Ruqaiyyah; Khan, Naveed Ahmed
2017-06-01
Rotavirus and pathogenic free-living amoebae are causative agents of important health problems, especially for developing countries like Pakistan where the population has limited access to clean water supplies. Here, we evaluated the prevalence of rotavirus and free-living amoebae (Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri) in drinking water supplies of Karachi, Pakistan. Six water filtration plants that supply drinking water to the population of Karachi were investigated. Additionally, drinking water samples from households were analyzed for the presence of rotavirus and free-living amoebae. Rotavirus was present in 35% of the water samples collected from water filtration plants; however, domestic tap water samples had a prevalence of only 5%. Out of 20 water samples from filtration plants, 13 (65%) were positive for Acanthamoeba spp., and one (5%) was positive for B. mandrillaris. Out of 20 drinking water samples collected from different areas of Karachi, 35% were positive for Acanthamoeba spp. Rotavirus was detected in 5% of the drinking water samples tested. Overall, these findings showed for the first time the presence of rotavirus, in addition to pathogenic free-living amoebae in drinking water supplies of Karachi that could be an important public health risk for the affected population.
Correlation between lead levels in drinking water and mothers' breast milk: Dakahlia, Egypt.
Mandour, Raafat A; Ghanem, Abdel-Aziz; El-Azab, Somaia M
2013-04-01
This study was performed on fifty-two drinking tap water samples (surface and groundwater) collected from different districts of Dakahlia Governorate and fifty-two breast milk samples from lactating mothers hosted in Dakahlia Governorate hospitals. All these samples were subjected to lead analysis. Lead level in drinking groundwater showed higher levels than in drinking surface water. Also, an elevation of lead levels in breast milk of mothers drinking groundwater was noticed when compared with that of mothers drinking surface water. The comparison between mean lead levels in drinking water and mothers' breast milk samples showed positive relationship. Lead concentrations in breast milk of the studied samples were elevated by exposure to smoking. We conclude that prolonged contact with lead plumbing can increase the lead content in tap water with subsequent increase in lead burden in infant fed formula and infant blood. Also, we recommend that chemical analyses must be carried out periodically for the surface and groundwater to ensure the water suitability for drinking purposes. Passive exposure to smoking during lactation should be avoided. Capsule: Prolonged contact with lead plumbing can increase the lead content in tap water with subsequent increase in lead burden in infant fed formula and infant blood.
Human health impacts of drinking water (surface and ground) pollution Dakahlyia Governorate, Egypt
NASA Astrophysics Data System (ADS)
Mandour, R. A.
2012-09-01
This study was done on 30 drinking tap water samples (surface and ground) and 30 urine samples taken from patients who attended some of Dakahlyia governorate hospitals. These patients were complaining of poor-quality tap water in their houses, which was confirmed by this study that drinking water is contaminated with trace elements in some of the studied areas. The aim of this study was to determine the relationship between the contaminant drinking water (surface and ground) in Dakahlyia governorate and its impact on human health. This study reports the relationship between nickel and hair loss, obviously shown in water and urine samples. Renal failure cases were related to lead and cadmium contaminated drinking water, where compatibilities in results of water and urine samples were observed. Also, liver cirrhosis cases were related to iron-contaminated drinking water. Studies of these diseases suggest that abnormal incidence in specific areas is related to industrial wastes and agricultural activities that have released hazardous and toxic materials in the drinking water and thereby led to its contamination in these areas. We conclude that trace elements should be removed from drinking water for human safety.
Previous studies showed that disinfected drinking water samples gave mutagenic spectra typical of halogenated furanones. In this study, we used the TA7000 base-¿specific Salmonella typhimurium tester strains to characterize water samples from two drinking water treatment plants (...
Pant, Narayan Dutt; Poudyal, Nimesh; Bhattacharya, Shyamal Kumar
2016-06-07
Water-related diseases are of great concern in developing countries like Nepal. Every year, there are countless morbidity and mortality due to the consumption of unsafe drinking water. Recently, there have been increased uses of bottled drinking water in an assumption that the bottled water is safer than the tap water and its use will help to protect from water-related diseases. So, the main objective of this study was to analyze the bacteriological quality of bottled drinking water and that of municipal tap water. A total of 100 samples (76 tap water and 24 bottled water) were analyzed for bacteriological quality and pH. The methods used were spread plate method for total plate count (TPC) and membrane filter method for total coliform count (TCC), fecal coliform count (FCC), and fecal streptococcal count (FSC). pH meter was used for measuring pH. One hundred percent of the tap water samples and 87.5 % of the bottled water samples were found to be contaminated with heterotrophic bacteria. Of the tap water samples, 55.3 % were positive for total coliforms, compared with 25 % of the bottled water. No bottled water samples were positive for fecal coliforms and fecal streptococci, in contrast to 21.1 % and 14.5 % of the tap water samples being contaminated with fecal coliforms and fecal streptococci, respectively. One hundred percent of the tap water samples and 54.2 % of the bottled water samples had pH in the acceptable range. All of the municipal tap water samples and most of the bottled drinking water samples distributed in Dharan municipality were found to be contaminated with one or more than one type of indicator organisms. On the basis of our findings, we may conclude that comparatively, the bottled drinking water may have been safer (than tap water) to drink.
Al-Sulami, A A; Al-Taee, A M R; Yehyazarian, A A
2013-11-01
This study in Iraq investigated the occurrence of Legionella. pneumophila in different drinking-water sources in Basra governorate as well as the susceptibility of isolates to several antibiotics. A total of 222 water samples were collected in 2008-2009: 49 samples from water purification plants (at entry points, from precipitation tanks, from filtration tanks and at exit points), 127 samples of tap water; and 46 samples from tankers and plants supplying water by reverse osmosis. The findings confirmed the presence of L. pneumophila in sources of crude water, in general drinking water supplies and drinking water tankers. Of 258 isolates 77.1% were serotype 1 and 22.9% serotypes 2-15. All examined isolates displayed drug resistance, particularly to ampicillin, but were 100% susceptible to doxycycline. The prevalence of L. pneumophila, especially serogroup 1, is a strong indicator of unsuitability of drinking water and requires appropriate action.
Occurrence of pharmaceuticals in a water supply system and related human health risk assessment.
de Jesus Gaffney, Vanessa; Almeida, Cristina M M; Rodrigues, Alexandre; Ferreira, Elisabete; Benoliel, Maria João; Cardoso, Vitor Vale
2015-04-01
A monitoring study of 31 pharmaceuticals along Lisbon's drinking water supply system was implemented, which comprised the analysis of 250 samples including raw water (surface water and groundwater), and drinking water. Of the 31 pharmaceutical compounds, only sixteen were quantified in the analyzed samples, with levels ranging from 0.005 to 46 ng/L in raw water samples and 0.09-46 ng/L in drinking water samples. The human health risk assessment performed showed that appreciable risks to the consumer's health arising from exposure to trace levels of pharmaceuticals in drinking water are extremely unlikely, as RQs values were all below 0.001. Also, pharmaceuticals were selected as indicators to be used as a tool to control the quality of raw water and the treatment efficiency in the drinking water treatment plants. Copyright © 2014 Elsevier Ltd. All rights reserved.
Presence of rotavirus and free-living amoebae in the water supplies of Karachi, Pakistan
Yousuf, Farzana Abubakar; Siddiqui, Ruqaiyyah; Khan, Naveed Ahmed
2017-01-01
ABSTRACT Rotavirus and pathogenic free-living amoebae are causative agents of important health problems, especially for developing countries like Pakistan where the population has limited access to clean water supplies. Here, we evaluated the prevalence of rotavirus and free-living amoebae (Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri) in drinking water supplies of Karachi, Pakistan. Six water filtration plants that supply drinking water to the population of Karachi were investigated. Additionally, drinking water samples from households were analyzed for the presence of rotavirus and free-living amoebae. Rotavirus was present in 35% of the water samples collected from water filtration plants; however, domestic tap water samples had a prevalence of only 5%. Out of 20 water samples from filtration plants, 13 (65%) were positive for Acanthamoeba spp., and one (5%) was positive for B. mandrillaris. Out of 20 drinking water samples collected from different areas of Karachi, 35% were positive for Acanthamoeba spp. Rotavirus was detected in 5% of the drinking water samples tested. Overall, these findings showed for the first time the presence of rotavirus, in addition to pathogenic free-living amoebae in drinking water supplies of Karachi that could be an important public health risk for the affected population. PMID:28591260
Zhang, L; Chen, C
1997-09-01
According to the data obtained from the "National Survey on Drinking Water Quality and Waterborne Diseases", the geographic distribution and exposure population of high arsenic drinking water were reported. From the data of more than 28,800 water samples, we found 9.02 million people drinking the water with As concentration of 0.030-0.049 mg/L, 3.34 million people having their water of 0.050-0.099 mg/L and 2.29 million people having water of > 0.1 mg/L. A total of 14.6 million people, about 1.5% of the surveyed population was exposed to As (> 0.030 mg/L) from drinking water. 80% of high-As-drinking water was groundwater. The situation of As in drinking water in provinces, autonomous regions and municipalities were listed. The locations of sampling site where water As exceeded the national standard for drinking water were illustrated.
Toxicological and chemical insights into representative source and drinking water in eastern China.
Shi, Peng; Zhou, Sicong; Xiao, Hongxia; Qiu, Jingfan; Li, Aimin; Zhou, Qing; Pan, Yang; Hollert, Henner
2018-02-01
Drinking water safety is continuously threatened by the emergence of numerous toxic organic pollutants (TOPs) in environmental waters. In this study, an approach integrating in vitro bioassays and chemical analyses was performed to explore toxicological profiles of representative source and drinking water from waterworks of the Yangtze River (Yz), Taihu Lake (Th), and the Huaihe River (Hh) basins in eastern China. Overall, 34 of 96 TOPs were detected in all water samples, with higher concentrations in both source and drinking water samples of Hh, and pollutant profiles also differed across different river basins. Non-specific bioassays indicated that source water samples of Hh waterworks showed higher genotoxicity and mutagenicity than samples of Yz and Th. An EROD assay demonstrated dioxin-like toxicity which was detected in 5 of 7 source water samples, with toxin concentration levels ranging from 62.40 to 115.51 picograms TCDD equivalents per liter of water (eq./L). PAHs and PCBs were not the main contributors to observed dioxin-like toxicity in detected samples. All source water samples induced estrogenic activities of 8.00-129.00 nanograms 17β-estradiol eq./L, and estrogens, including 17α-ethinylestradiol and estriol, contributed 40.38-84.15% of the observed activities in examined samples. While drinking water treatments efficiently removed TOPs and their toxic effects, and estrogenic activity was still observed in drinking water samples of Hh. Altogether, this study indicated that the representative source water in eastern China, especially that found in Hh, may negatively affect human health, a finding that demonstrates an urgent requirement for advanced drinking water treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kassenga, Gabriel R
2007-03-01
The consumption of bottled and plastic-bagged drinking water in Tanzania has increased largely because of the deteriorating quality of tap water. It is uncertain whether these water products are safe for drinking. In this study, the microbiological quality of bottled and plastic-bagged drinking water sold in Dar es Salaam, Tanzania, was investigated. One hundred and thirty samples representing 13 brands of bottled water collected from shops, supermarkets and street vendors were analysed for total coliform and faecal coliform organisms as well as heterotrophic bacteria. These were compared with 61 samples of tap water. Heterotrophic bacteria were detected in 92% of the bottled water samples analysed. Total and faecal coliform bacteria were present in 4.6% and 3.6%, respectively, of samples analysed with a tendency for higher contamination rates in plastic-bagged drinking water. Microbiological quality of tap water was found to be worse compared with bottled water, with 49.2% and 26.2% of sampling points showing the presence of total coliform and faecal coliform organisms, respectively. The results suggest caution and vigilance to avert outbreaks of waterborne diseases from these types of drinking water.
Monitoring for contaminants of emerging concern in drinking water using POCIS passive samplers.
Metcalfe, Chris; Hoque, M Ehsanul; Sultana, Tamanna; Murray, Craig; Helm, Paul; Kleywegt, Sonya
2014-03-01
Contaminants of emerging concern (CEC) have been detected in drinking water world-wide. The source of most of these compounds is generally attributed to contamination from municipal wastewater. Traditional water sampling methods (grab or composite) often require the concentration of large amounts of water in order to detect trace levels of these contaminants. The Polar Organic Compounds Integrative Sampler (POCIS) is a passive sampling technology that has been developed to concentrate trace levels of CEC to provide time-weighted average concentrations for individual compounds in water. However, few studies to date have evaluated whether POCIS is suitable for monitoring contaminants in drinking water. In this study, the POCIS was evaluated as a monitoring tool for CEC in drinking water over a period of 2 and 4 weeks with comparisons to typical grab samples. Seven "indicator compounds" which included carbamazepine, trimethoprim, sulfamethoxazole, ibuprofen, gemfibrozil, estrone and sucralose, were monitored in five drinking water treatment plants (DWTPs) in Ontario. All indicator compounds were detected in raw water samples from the POCIS in comparison to six from grab samples. Similarly, four compounds were detected in grab samples of treated drinking water, whereas six were detected in the POCIS. Sucralose was the only compound that was detected consistently at all five plants. The POCIS technique provided integrative exposures of CECs in drinking water at lower detection limits, while episodic events were captured via traditional sampling methods. There was evidence that the accumulation of target compounds by POCIS is a dynamic process, with adsorption and desorption on the sorbent occurring in response to ambient levels of the target compounds in water. CECs in treated drinking water were present at low ng L(-1) concentrations, which are not considered to be a threat to human health.
Presence of enteric viruses in source waters for drinking water production in The Netherlands.
Lodder, W J; van den Berg, H H J L; Rutjes, S A; de Roda Husman, A M
2010-09-01
The quality of drinking water in The Netherlands has to comply with the Dutch Drinking Water Directive: less than one infection in 10,000 persons per year may occur due to consumption of unboiled drinking water. Since virus concentrations in drinking waters may be below the detection limit but entail a public health risk, the infection risk from drinking water consumption requires the assessment of the virus concentrations in source waters and of the removal efficiency of treatment processes. In this study, samples of source waters were taken during 4 years of regular sampling (1999 to 2002), and enteroviruses, reoviruses, somatic phages, and F-specific phages were detected in 75% (range, 0.0033 to 5.2 PFU/liter), 83% (0.0030 to 5.9 PFU/liter), 100% (1.1 to 114,156 PFU/liter), and 97% (0.12 to 14,403 PFU/liter), respectively, of 75 tested source water samples originating from 10 locations for drinking water production. By endpoint dilution reverse transcription-PCR (RT-PCR), 45% of the tested source water samples were positive for norovirus RNA (0.22 to 177 PCR-detectable units [PDU]/liter), and 48% were positive for rotavirus RNA (0.65 to 2,249 PDU/liter). Multiple viruses were regularly detected in the source water samples. A significant correlation between the concentrations of the two phages and those of the enteroviruses could be demonstrated. The virus concentrations varied greatly between 10 tested locations, and a seasonal effect was observed. Peak concentrations of pathogenic viruses occur in source waters used for drinking water production. If seasonal and short-term fluctuations coincide with less efficient or failing treatment, an unacceptable public health risk from exposure to this drinking water may occur.
Baloch, Shahnawaz; Kazi, Tasneem Gul; Afridi, Hassan Imran; Baig, Jameel Ahmed; Talpur, Farah Naz; Arain, Muhammad Balal
2017-10-01
There is some evidence that natural levels of lithium (Li) in drinking water may have a protective effect on neurological health. In present study, we evaluate the Li levels in drinking water of different origin and bottled mineral water. To evaluate the association between lithium levels in drinking water with human health, the scalp hair samples of male subjects (25-45 years) consumed drinking water obtained from ground water (GW), municipal treated water (MTW) and bottled mineral water (BMW) from rural and urban areas of Sindh, Pakistan were selected. The water samples were pre-concentrated five to tenfold at 60 °C using temperature-controlled electric hot plate. While scalp hair samples were oxidized by acid in a microwave oven, prior to determined by flame atomic absorption spectrometry. The Li content in different types of drinking water, GW, MTW and BMW was found in the range of 5.12-22.6, 4.2-16.7 and 0.0-16.3 µg/L, respectively. It was observed that Li concentration in the scalp hair samples of adult males consuming ground water was found to be higher, ranged as 292-393 μg/kg, than those who are drinking municipal treated and bottle mineral water (212-268 and 145-208 μg/kg), respectively.
Environmental surveillance master sampling schedule
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bisping, L.E.
This document contains the planned 1994 schedules for routine collection of samples for the Surface Environmental Surveillance Project (SESP), Drinking Water Project, and Ground-Water Surveillance Project. Samples are routinely collected for the SESP and analyzed to determine the quality of air, surface water, soil, sediment, wildlife, vegetation, foodstuffs, and farm products at Hanford Site and surrounding communities. The responsibility for monitoring the onsite drinking water falls outside the scope of the SESP. The Hanford Environmental Health Foundation is responsible for monitoring the nonradiological parameters as defined in the National Drinking Water Standards while PNL conducts the radiological monitoring of themore » onsite drinking water. PNL conducts the drinking water monitoring project concurrent with the SESP to promote efficiency and consistency, utilize the expertise developed over the years, and reduce costs associated with management, procedure development, data management, quality control and reporting. The ground-water sampling schedule identifies ground-water sampling events used by PNL for environmental surveillance of the Hanford Site.« less
Al-Khatib, Issam A; Orabi, Moammar
2004-05-01
We studied the biological characteristics of drinking-water in three villages in Ramallah and al-Bireh district, by testing the total coliforms. Water samples were collected from rain-fed cisterns between October and November 2001. The results show that 87% of tested samples of drinking-water were highly contaminated and in need of coagulation, filtration and disinfection based on the World Health Organization guidelines for drinking-water, and 10.5% had low contamination and were in need of treatment by disinfection only. Only 2.5% of the tested samples were not contaminated and were suitable for drinking without treatment. The main cause of drinking-water con tamination was the presence of cesspits, wastewater and solid waste dumping sites near the cisterns.
Lou, Jie-Chung; Lee, Wei-Li; Han, Jia-Yun
2007-01-01
Two surveys of consumer satisfaction with drinking water conducted by Taiwan Water Supply Corp. are presented in this study. The study results show that although a lot of money was invested to modify traditional treatment processes, over 60% of local residents still avoided drinking tap water. Over half of the respondents felt that sample TT (from the traditional treatment process) was not a good drinking water, whether in the first or second survey, whereas almost 60% of respondents felt that samples PA, PB, CCL and CT (from advanced treatment processes) were good to drink. For all drinking water samples, respondent satisfaction with a sample primarily depended on it having no unpleasant flavors. Taiwan Environmental Protection Administration plans to revise the drinking water quality standards for TH and TDS in the near future. The new standards require a lower TH concentration (from currently 400mg/L (as CaCO(3)) to 150mg/L (as CaCO(3))), and a lower TDS maximum admissible concentration from the current guideline of 600 to 250mg/L. Therefore, this study also evaluated the impacts on drinking water tastes caused by variations in TH and TDS concentrations, and assessed the need to issue more strict drinking water quality standards for TH and TDS. The research results showed that most respondents could not tell the difference in water taste among water samples with different TDS, TH and alkalinity. Furthermore, hardness was found to be inversely associated with cardiovascular diseases and cancers, and complying with more strict standards would lead most water facilities to invest billions of dollars to upgrade their treatment processes. Consequently, in terms of drinking water tastes alone, this study suggested that Taiwan Environmental Protection Administration should conduct more thorough reviews of the scientific literature that provides the rationale for setting standards and reconsider if it is necessary to revise drinking water quality standards for TH and TDS.
NASA Astrophysics Data System (ADS)
Birawida, A. B.; Selomo, M.; Mallongi, A.
2018-05-01
Coliform bacteria are suspected to come from faeces. As a result, their presence in various places ranging from drinking water, foodstuffs or other ingredients to human needs are not expected. This research aimed to describe bacterial contaminations, depot sanitations, equipment sanitations, worker hygiene, raw water quality, and refill drinking water in Barrang Lompo island in 2017. The observational research applied descriptive approach. Water samples collected grab from the drinking water depot taps, then examined using Most Probable Number (MPN) method. The results showed that three of six depots have qualified drinking water quality. Raw water samples from all depots indicated that none were eligible. The samples examined contained gram-negative bacteria. The types of bacteria that grew on the sample were Klebsiella pneumonia and Pseudomonas aerogenosa. In the environmental sanitation depots and worker hygiene, there was no one eligible. Sanitary appliances were all eligible and there were depots that used reserve osmosis methods and used combination methods between reserve osmosis and ultraviolet light. It was concluded that almost all samples of drinking water were contaminated by bacteria. Owners and depot workers were advised to improve and implement better hygiene and sanitation.
New methods for the detection of viruses: call for review of drinking water quality guidelines.
Grabow, W O; Taylor, M B; de Villiers, J C
2001-01-01
Drinking water supplies which meet international recommendations for source, treatment and disinfection were analysed. Viruses recovered from 100 L-1,000 L volumes by in-line glass wool filters were inoculated in parallel into four cell culture systems. Cell culture inoculation was used to isolate cytopathogenic viruses, amplify the nucleic acid of non-cytopathogenic viruses and confirm viability of viruses. Over a period of two years, viruses were detected in 23% of 413 drinking water samples and 73% of 224 raw water samples. Cytopathogenic viruses were detected in 6% raw water samples but not in any treated drinking water supplies. Enteroviruses were detected in 17% drinking water samples, adenoviruses in 4% and hepatitis A virus in 3%. In addition to these viruses, astro- and rotaviruses were detected in raw water. All drinking water supplies had heterotrophic plate counts of < 100/mL, total and faecal coliform counts of 0/100 mL and negative results in qualitative presence-absence tests for somatic and F-RNA coliphages (500 mL samples). These results call for a revision of water quality guidelines based on indicator organisms and vague reference to the absence of viruses.
Drinking water quality assessment.
Aryal, J; Gautam, B; Sapkota, N
2012-09-01
Drinking water quality is the great public health concern because it is a major risk factor for high incidence of diarrheal diseases in Nepal. In the recent years, the prevalence rate of diarrhoea has been found the highest in Myagdi district. This study was carried out to assess the quality of drinking water from different natural sources, reservoirs and collection taps at Arthunge VDC of Myagdi district. A cross-sectional study was carried out using random sampling method in Arthunge VDC of Myagdi district from January to June,2010. 84 water samples representing natural sources, reservoirs and collection taps from the study area were collected. The physico-chemical and microbiological analysis was performed following standards technique set by APHA 1998 and statistical analysis was carried out using SPSS 11.5. The result was also compared with national and WHO guidelines. Out of 84 water samples (from natural source, reservoirs and tap water) analyzed, drinking water quality parameters (except arsenic and total coliform) of all water samples was found to be within the WHO standards and national standards.15.48% of water samples showed pH (13) higher than the WHO permissible guideline values. Similarly, 85.71% of water samples showed higher Arsenic value (72) than WHO value. Further, the statistical analysis showed no significant difference (P<0.05) of physico-chemical parameters and total coliform count of drinking water for collection taps water samples of winter (January, 2010) and summer (June, 2010). The microbiological examination of water samples revealed the presence of total coliform in 86.90% of water samples. The results obtained from physico-chemical analysis of water samples were within national standard and WHO standards except arsenic. The study also found the coliform contamination to be the key problem with drinking water.
Oh, Jin-Aa; Shin, Ho-Sang
2015-05-22
An ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed to determine the level of hydrazine in drinking water. The method is based on the derivatization of hydrazine with naphthalene-2,3-dicarboxaldehyde (NDA) in water. The optimum conditions for UPLC-MS/MS detection were determined as follows: derivatization reagent dosage, 50mg/L of NDA; pH 2; and reaction time, 1min; room temperature. The formed derivative was injected into an LC system without extraction or purification procedures. Under the established conditions, the method was used to detect hydrazine in raw drinking water and chlorinated drinking water. The limits of detection and quantification for hydrazine in drinking water were 0.003μg/L and 0.01μg/L, respectively. The accuracy was in the range of 97-104%, and precision, expressed as relative standard deviation, was less than 9% in drinking water. Hydrazine was detected at a concentration of 0.13μg/L in one sample among 24 raw drinking water samples and in a range of 0.04-0.45μg/L in three samples among 24 chlorinated drinking water samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Wang, Hexing; Wang, Na; Wang, Bin; Zhao, Qi; Fang, Hong; Fu, Chaowei; Tang, Chuanxi; Jiang, Feng; Zhou, Ying; Chen, Yue; Jiang, Qingwu
2016-03-01
A variety of antibiotics have been found in aquatic environments, but antibiotics in drinking water and their contribution to antibiotic exposure in human are not well-explored. For this, representative drinking water samples and 530 urine samples from schoolchildren were selected in Shanghai, and 21 common antibiotics (five macrolides, two β-lactams, three tetracyclines, four fluoquinolones, four sulfonamides, and three phenicols) were measured in water samples and urines by isotope dilution two-dimensional ultraperformance liquid chromatography coupled with high-resolution quadrupole time-of-flight mass spectrometry. Drinking water included 46 terminal tap water samples from different spots in the distribution system of the city, 45 bottled water samples from 14 common brands, and eight barreled water samples of different brands. Of 21 antibiotics, only florfenicol and thiamphenicol were found in tap water, with the median concentrations of 0.0089 ng/mL and 0.0064 ng/mL, respectively; only florfenicol was found in three bottled water samples from a same brand, with the concentrations ranging from 0.00060 to 0.0010 ng/mL; no antibiotics were found in barreled water. In contrast, besides florfenicol and thiamphenicol, an additional 17 antibiotics were detected in urine samples, and the total daily exposure doses and detection frequencies of florfenicol and thiamphenicol based on urine samples were significantly and substantially higher than their predicted daily exposure doses and detection frequencies from drinking water by Monte Carlo Simulation. These data indicated that drinking water was contaminated by some antibiotics in Shanghai, but played a limited role in antibiotic exposure of children.
Organochlorine pesticides residues in bottled drinking water from Mexico City.
Díaz, Gilberto; Ortiz, Rutilio; Schettino, Beatriz; Vega, Salvador; Gutiérrez, Rey
2009-06-01
This work describes concentrations of organochlorine pesticides in bottled drinking water (BDW) in Mexico City. The results of 36 samples (1.5 and 19 L presentations, 18 samples, respectively) showed the presence of seven pesticides (HCH isomers, heptachlor, aldrin, and p,p'-DDE) in bottled water compared with the drinking water standards set by NOM-127-SSA1-1994, EPA, and World Health Organization. The concentrations of the majority of organochlorine pesticides were within drinking water standards (0.01 ng/mL) except for beta-HCH of BW 3, 5, and 6 samples with values of 0.121, 0.136, and 0.192 ng/mL, respectively. It is important monitoring drinking bottled water for protecting human health.
Völker, S; Schreiber, C; Müller, H; Zacharias, N; Kistemann, T
2017-05-01
After the amendment of the Drinking Water Ordinance in 2011, the requirements for the hygienic-microbiological monitoring of drinking water installations have increased significantly. In the BMBF-funded project "Biofilm Management" (2010-2014), we examined the extent to which established sampling strategies in practice can uncover drinking water plumbing systems systemically colonized with Legionella. Moreover, we investigated additional parameters that might be suitable for detecting systemic contaminations. We subjected the drinking water plumbing systems of 8 buildings with known microbial contamination (Legionella) to an intensive hygienic-microbiological sampling with high spatial and temporal resolution. A total of 626 drinking hot water samples were analyzed with classical culture-based methods. In addition, comprehensive hygienic observations were conducted in each building and qualitative interviews with operators and users were applied. Collected tap-specific parameters were quantitatively analyzed by means of sensitivity and accuracy calculations. The systemic presence of Legionella in drinking water plumbing systems has a high spatial and temporal variability. Established sampling strategies were only partially suitable to detect long-term Legionella contaminations in practice. In particular, the sampling of hot water at the calorifier and circulation re-entrance showed little significance in terms of contamination events. To detect the systemic presence of Legionella,the parameters stagnation (qualitatively assessed) and temperature (compliance with the 5K-rule) showed better results. © Georg Thieme Verlag KG Stuttgart · New York.
Risk Assessment and effect of Penicillin-G on bacterial diversity in drinking water
NASA Astrophysics Data System (ADS)
Wu, Qing; Zhao, Xiaofei; Peng, Sen; Wang, Lei; Zhao, Xinhua
2018-02-01
Penicillin-G was detected in drinking water by LC-MS/MS and the bacterial diversity was investigated by PCR and high-throughput sequencing. The results showed that bacteria community structure in drinking water has undergone major changes when added different concentrations of penicillin-G. The diversity index of each sample was calculated. The results showed that the total number and abundance of bacterial community species in drinking water samples decreased significantly after the addition of penicillin-G. However, the number and abundance of community structure did not change with the concentration. Penicillin-G inhibits the activity of bacterial community in drinking water and can reduce the bacterial diversity in drinking water.
Iaconelli, M; Muscillo, M; Della Libera, S; Fratini, M; Meucci, L; De Ceglia, M; Giacosa, D; La Rosa, G
2017-03-01
Human enteric viruses are a major cause of waterborne diseases, and can be transmitted by contaminated water of all kinds, including drinking and recreational water. The objectives of the present study were to assess the occurrence of enteric viruses (enterovirus, norovirus, adenovirus, hepatitis A and E virus) in raw and treated wastewaters, in rivers receiving wastewater discharges, and in drinking waters. Wastewater treatment plants' (WWTP) pathogen removal efficiencies by adenovirus quantitative real-time PCR and the presence of infectious enterovirus, by cell culture assays, in treated wastewaters and in surface waters were also evaluated. A total of 90 water samples were collected: raw and treated wastewaters (treated effluents and ultrafiltered water reused for industrial purposes), water from two rivers receiving treated discharges, and drinking water. Nested PCR assays were used for the identification of viral DNA/RNA, followed by direct amplicon sequencing. All raw sewage samples (21/21), 61.9 % of treated wastewater samples (13/21), and 25 % of ultrafiltered water samples (3/12) were contaminated with at least one viral family. Multiple virus families and genera were frequently detected. Mean positive PCRs per sample decreased significantly from raw to treated sewage and to ultrafiltered waters. Moreover, quantitative adenovirus data showed a reduction in excess of 99 % in viral genome copies following wastewater treatment. In surface waters, 78.6 % (22/28) of samples tested positive for one or more viruses by molecular methods, but enterovirus-specific infectivity assays did not reveal infectious particles in these samples. All drinking water samples tested negative for all viruses, demonstrating the effectiveness of treatment in removing viral pathogens from drinking water. Integrated strategies to manage water from all sources are crucial to ensure water quality.
Determination of trace metals in drinking water in Irbid City-Northern Jordan.
Alomary, Ahmed
2013-02-01
Drinking water samples from Irbid, the second populated city in Jordan were analyzed for trace metals (As, Ba, Cd, Pb, Cr, Cu, Fe, Zn, Mn, Ni, and Se) content. The study was undertaken to determine if the metal concentrations were within the national and international guidelines. A total of 90 drinking water samples were collected from Al-Yarmouk University area. The samples were collected from three different water types: tap water (TW), home-purified water (HPW), and plant-purified water (PPW). All the samples were analyzed for trace metals using an inductively coupled plasma-optical emission spectrometry. All the samples analyzed were within the United States Environmental Protection Agency admissible pH limit (6.5-8.5). The results showed that concentrations of the trace metals vary significantly between the three drinking water types. The results showed that HPW samples have the lowest level of trace metals and the concentrations of some essential trace metals in these samples are less than the recommended amounts. Slight differences in the metal contents were found between HPW samples, little differences between PPW samples; however, significant differences were found between TW samples. Although some TW samples showed high levels of trace metals, however, the mean level of most elements determined in the samples were well within the Jordanian standards as well as the World Health Organization standards for drinking water.
Liu, Liwei; Zheng, Huaili; Xu, Bincheng; Xiao, Lang; Chigan, Yong; Zhangluo, Yilan
2018-03-01
In this paper, a procedure for in-situ pre-concentration in graphite furnace by repeated sampling and pyrolysis is proposed for the determination of ultra-trace thallium in drinking water by graphite furnace atomic absorption spectrometry (GF-AAS). Without any other laborious enrichment processes that routinely result in analyte loss and contamination, thallium was directly concentrated in the graphite furnace automatically and subsequently subject to analysis. The effects of several key factors, such as the temperature for pyrolysis and atomization, the chemical modifier, and the repeated sampling times were investigated. Under the optimized conditions, a limit of detection of 0.01µgL -1 was obtained, which fulfilled thallium determination in drinking water by GB 5749-2006 regulated by China. Successful analysis of thallium in certified water samples and drinking water samples was demonstrated, with analytical results in good agreement with the certified values and those by inductively coupled plasma mass spectrometry (ICP-MS), respectively. Routine spike-recovery tests with randomly selected drinking water samples showed satisfactory results of 80-96%. The proposed method is simple and sensitive for screening of ultra-trace thallium in drinking water samples. Copyright © 2017. Published by Elsevier B.V.
Presence of Toxoplasma gondii in Drinking Water from an Endemic Region in Southern Mexico.
Hernandez-Cortazar, Ivonne B; Acosta-Viana, Karla Y; Guzman-Marin, Eugenia; Ortega-Pacheco, Antonio; Segura-Correa, Jose C; Jimenez-Coello, Matilde
2017-05-01
Toxoplasmosis can be acquired through the ingestion of contaminated drinking water with oocysts of Toxoplasma gondii, highly resistant to the routinely disinfection processes; based on chlorination commonly used in the water supply industry. The aim of this study was to determine the presence of T. gondii DNA in samples of public drinking water from an endemic region of southern Mexico. In total 74 samples of water (5 L each) were collected from the three well fields (I, II, and III) and 71 independent wells, distributing public drinking water to the city of Merida Yucatan, after passing through the chlorination process. Water samples were filtered and concentrated by a sucrose solution, then DNA was extracted and evaluated through a nested-PCR (nPCR) specific for T. gondii. Positive samples were detected in 5.4% (4/74) of the water samples. This is the first report of the presence of T. gondii DNA in public drinking water from a large city in southern Mexico, where their consumption without any postpurification treatment could pose a risk for acquiring the infection in the urban population.
Norovirus contamination of a drinking water supply at a hotel resort.
Jack, Susan; Bell, Derek; Hewitt, Joanne
2013-12-13
To investigate a waterborne gastroenteritis outbreak and consider wider environmental contamination concerns. An acute gastroenteritis outbreak was investigated through interviews, analysis of faecal samples, drinking water and environmental water samples. A total of 53 cases reported an illness of acute gastroenteritis following stays and/or dining at a hotel or neighbouring resort in southern New Zealand over a 1-month period in early spring 2012. The consumption of table or tap water was strongly associated with the illness. Faecal samples were positive for norovirus (NoV) genogroup I and II (GI and GII). Drinking tap water samples were positive for NoV GI and GII but negative for Escherichia coli (E. coli). Wider environmental water testing at local drinking water sources, around the sewage disposal field and at the nearby river showed the presence of NoV GI and GII. Voluntary boil water notices were issued and implemented with no further cases following this action. Additional treatment of drinking water supplies has been implemented and sewerage disposal concerns referred to local government. Investigation of this gastroenteritis outbreak revealed contamination of both drinking water and the wider environment with NoV. Bacterial indicators do not adequately cover contamination by viruses but due to costs, frequent virus monitoring programmes are currently impractical. A strategy to decrease environmental contamination of drinking water supplies in this busy tourist location through improved management of sewage disposal and drinking water is urgently required.
Heijnen, Leo; van der Kooij, Dick
2013-01-01
Studies have shown that certain opportunistic pathogenic species of nontuberculous mycobacteria (NTM) can be present in distributed drinking water. However, detailed information about NTM population composition in drinking water is lacking. Therefore, NTM communities in unchlorinated drinking water from the distribution system of five treatment plants in the Netherlands were characterized using 454 pyrosequencing of the hsp65 gene. Results showed high diversities in unchlorinated drinking water, with up to 28 different NTM operational taxonomic units (OTUs) in a single sample. Each drinking water sample had a unique NTM community, and most (81.1%) OTUs were observed only once. One OTU was observed in 14 of 16 drinking water samples, indicating that this NTM species is well adapted to unchlorinated drinking water conditions. A clear influence of season, source type (groundwater, surface water), easily assimilable organic carbon (AOC) concentration, biofilm formation rate, and active biomass in treated water on the establishment of an NTM community in drinking water was not observed. Apparently, local conditions are more important for the development of a specific NTM community in the drinking water distribution system. A low (4.2%) number of hsp65 gene sequences showed more than 97% similarity to sequences of the opportunistic pathogens M. avium, M. genavense, and M. gordonae. However, most (95.8%) NTM hsp65 gene sequences were related to not-yet-described NTM species that have not been linked to disease, indicating that most NTM species in unchlorinated drinking water from distribution systems in the Netherlands have a low public health significance. PMID:23913420
van der Wielen, Paul W J J; Heijnen, Leo; van der Kooij, Dick
2013-10-01
Studies have shown that certain opportunistic pathogenic species of nontuberculous mycobacteria (NTM) can be present in distributed drinking water. However, detailed information about NTM population composition in drinking water is lacking. Therefore, NTM communities in unchlorinated drinking water from the distribution system of five treatment plants in the Netherlands were characterized using 454 pyrosequencing of the hsp65 gene. Results showed high diversities in unchlorinated drinking water, with up to 28 different NTM operational taxonomic units (OTUs) in a single sample. Each drinking water sample had a unique NTM community, and most (81.1%) OTUs were observed only once. One OTU was observed in 14 of 16 drinking water samples, indicating that this NTM species is well adapted to unchlorinated drinking water conditions. A clear influence of season, source type (groundwater, surface water), easily assimilable organic carbon (AOC) concentration, biofilm formation rate, and active biomass in treated water on the establishment of an NTM community in drinking water was not observed. Apparently, local conditions are more important for the development of a specific NTM community in the drinking water distribution system. A low (4.2%) number of hsp65 gene sequences showed more than 97% similarity to sequences of the opportunistic pathogens M. avium, M. genavense, and M. gordonae. However, most (95.8%) NTM hsp65 gene sequences were related to not-yet-described NTM species that have not been linked to disease, indicating that most NTM species in unchlorinated drinking water from distribution systems in the Netherlands have a low public health significance.
NASA Astrophysics Data System (ADS)
Brima, Eid I.
2017-03-01
Basic information about major elements in bottled drinking water is provided on product labels. However, more information is needed about trace elements in bottled drinking water and other sources of drinking water to assess its quality and suitability for drinking. This is the first such study to be carried out in Najran city in the Kingdom of Saudi Arabia (KSA). A total of 48 water samples were collected from different sources comprising wells, stations for drinking water treatment and bottled drinking water (purchased from local supermarkets). The concentrations of 24 elements [aluminum (Al), arsenic (As), barium (Ba), calcium (Ca), cadmium (Cd), cobalt (Co), chromium (Cr), cesium (Cs), copper (Cu), iron (Fe), potassium (K), magnesium (Mg), manganese (Mn), molydenum (Mo), sodium (Na), nickel (Ni), lead (Pb), rubidium (Rb), selenium (Se), strontium (Sr), titanium (Ti), vanadium (V), uranium (U) and zinc (Zn)] were determined by inductively coupled plasma-mass spectrometry (ICP-MS). Anions (chlorine (Cl-), fluoride (F-), sulfate (SO4 2-) and nitrate (NO3 -) were determined by ion chromatography (IC). Electrical conductivity (EC), pH, total dissolved salts (TDS) and total hardness (TH) were also measured. All parameters of treated drinking water and bottled drinking water samples did not exceed the World Health Organization (WHO) 2008, US Environmental Protection Agency (USEPA 2009), Gulf Cooperation Council Standardization Organization (GSO) 2008 and Saudi Arabian Standards Organization (SASO) 1984 recommended guidelines. It is noteworthy that groundwater samples were not used for drinking purpose. This study is important to raise public knowledge about drinking water, and to promote public health.
Diversity and Significance of Mold Species in Norwegian Drinking Water▿
Hageskal, Gunhild; Knutsen, Ann Kristin; Gaustad, Peter; de Hoog, G. Sybren; Skaar, Ida
2006-01-01
In order to determine the occurrence, distribution, and significance of mold species in groundwater- and surface water-derived drinking water in Norway, molds isolated from 273 water samples were identified. Samples of raw water, treated water, and water from private homes and hospital installations were analyzed by incubation of 100-ml membrane-filtered samples on dichloran-18% glycerol agar. The total count (number of CFU per 100 ml) of fungal species and the species diversity within each sample were determined. The identification of mold species was based on morphological and molecular methods. In total, 94 mold species belonging to 30 genera were identified. The mycobiota was dominated by species of Penicillium, Trichoderma, and Aspergillus, with some of them occurring throughout the drinking water system. Several of the same species as isolated from water may have the potential to cause allergic reactions or disease in humans. Other species are common contaminants of food and beverages, and some may cause unwanted changes in the taste or smell of water. The present results indicate that the mycobiota of water should be considered when the microbiological safety and quality of drinking water are assessed. In fact, molds in drinking water should possibly be included in the Norwegian water supply and drinking water regulations. PMID:17028226
Fecal contamination of drinking water within peri-urban households, Lima, Peru.
Oswald, William E; Lescano, Andrés G; Bern, Caryn; Calderon, Maritza M; Cabrera, Lilia; Gilman, Robert H
2007-10-01
We assessed fecal contamination of drinking water in households in 2 peri-urban communities of Lima, Peru. We measured Escherichia coli counts in municipal source water and, within households, water from principal storage containers, stored boiled drinking water, and water in a serving cup. Source water was microbiologically clean, but 26 (28%) of 93 samples of water stored for cooking had fecal contamination. Twenty-seven (30%) of 91 stored boiled drinking water samples grew E. coli. Boiled water was more frequently contaminated when served in a drinking cup than when stored (P < 0.01). Post-source contamination increased successively through the steps of usage from source water to the point of consumption. Boiling failed to ensure safe drinking water at the point of consumption because of easily contaminated containers and poor domestic hygiene. Hygiene education, better point-of-use treatment and storage options, and in-house water connections are urgently needed.
Neonicotinoid pesticides in drinking water in agricultural regions of southern Ontario, Canada.
Sultana, Tamanna; Murray, Craig; Kleywegt, Sonya; Metcalfe, Chris D
2018-07-01
Because of the persistence and solubility of neonicotinoid insecticides (NNIs), there is concern that these compounds may contaminate sources of drinking water. The objective of this project was to evaluate the distribution of NNIs in raw and treated drinking water from selected municipalities that draw their water from the lower Great Lakes in areas of southern Ontario, Canada where there is high intensity agriculture. Sites were monitored using Polar Organic Chemical Integrative Samplers (POCIS) and by collecting grab samples at six drinking water treatment plants. Thiamethoxam, clothianidin and imidacloprid were detected in both POCIS and grab samples of raw water. The frequency of detection of NNIs was much lower in treated drinking water, but some compounds were still detected at estimated concentrations in the low ng L -1 range. Thiamethoxam was detected in one grab sample of raw drinking water at a mean concentration of 0.28 μg L -1 , which is above the guidelines for drinking water recommended in some jurisdictions, including the European Union directive on pesticide levels <0.1 μg L -1 in water intended for human consumption. Further work is required to determine whether contamination of sources of drinking water with this class of insecticides is a global problem in agricultural regions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Fluoride concentration in community water and bottled drinking water: a dilemma today.
Dhingra, S; Marya, C M; Jnaneswar, A; Kumar, H
2013-01-01
Because of the potential for contamination of municipal water supplies, people appear to be turning to alternative sources for their pure drinking water. The present study analyzed the fluoride concentration in community water and bottled drinking water sold in Faridabad city. A comparative evaluation of fluoride content in community water supply and bottled drinking water was done using ion-selective electrode method. The community water samples were collected from six different areas (i.e. north zone, south zone, east zone, west zone and central zone) in the city from public health water supply taps while bottled drinking water samples were randomly picked from grocery shops or supermarkets. The fluoride concentration in the community water supply in this study ranges from 0.11 to 0.26 mg/L with mean fluoride concentration of 0.17 mg/L. The mean concentration of fluoride in bottled drinking water was 0.06 mg/L. The differences observed between mean of two water samples was statistically significant. The results obtained from the present study clearly state that the fluoride concentration was insufficient in community water supply from all the areas and also was deficient in bottled drinking water sold in Faridabad city. So, Alternative sources of fluorides should be supplemented for optimal dental benefits from the use of fluoride.
Low zinc in drinking water is associated with the risk of type 1 diabetes in children.
Samuelsson, Ulf; Oikarinen, Sami; Hyöty, Heikki; Ludvigsson, Johnny
2011-05-01
To explore if drinking water may influence the development of type 1 diabetes in children, either via enterovirus spread via drinking water or quality of drinking water related to acidity or concentration of certain minerals. One hundred and forty-two families with a child with diabetes and who lived either in seven municipalities with a high annual diabetes incidence during 1977-2001 and in six municipalities with the lowest incidence during those 25 yr were asked to participate. Three hundred and seventy-three families in these communities were used as controls. The families filled a 200-mL plastic bottle with their tap drinking water and returned it by mail. The water samples were analyzed for pH, zinc, iron, nitrate, nitrite, nitrate-nitrogen and nitrite-nitrogen, and occurrence of enterovirus RNA. Enterovirus RNA was not found in the tap water samples. The concentration of zinc, nitrate, and nitrate-nitrogen was lower in the municipalities with high incidence of type 1 diabetes. The water samples from families with a child with diabetes had lower concentration of zinc than water samples from control families. Low zinc in drinking water is associated with the risk of developing type 1 diabetes during childhood. Enterovirus does not seem to be spread via drinking water in a country with modern water works. © 2010 John Wiley & Sons A/S.
Bi-Xian, N I; Ming-Xue, S; Xiang-Zhen, X U; Xiao-Ting, W; Yang, D; Xiao-Lin, J
2017-05-17
Objective To know the contamination status of Giardia lamblia and Cryptosporidium in drinking water of Jiangsu Province, so as to provide the evidence for producing hygiene and safety drinking water. Methods A total of 28 water plants of 13 cities in Jiangsu Province were selected, and the source water (10 L), chlorinated water (100 L) and tap water (100 L) were collected separately in each site. The water samples were then treated by filtration, washing, centrifuging concentration, immune magnetic separation, and immunofluorescent assay, to detect the numbers of Giardia cysts and Cryptosporidium oocysts. Results Totally 84 samples from 13 cities were collected, including 28 source water, 28 chlorinated water and 28 tap water samples. Among the chlorinated water and tap water samples, no Giardia cysts and Cryptosporidium oocysts were found. However, Giardia cysts were detected in 3 (10.71%, 3/28) source water samples (Yancheng, Lianyungang, Changzhou cities), with the density of 1 cyst/10 L of all. Cryptosporidium oocysts were also detected in 3 (10.71%, 3/28) source water samples (Nanjing, Zhenjiang, Yangzhou cities), with the density of 1 oocyst/10 L of all. Conclusions The source water in partial areas of Jiangsu Province has been contaminated by Giardia and Cryptosporidium . To ensure the safety of drinking, the regulation of source water and surveillance of drinking water should be strengthened.
Trends in the occurrence of MTBE in drinking water in the Northeast United States
Moran, M.J.
2007-01-01
Public water systems in Connecticut, Maine, Maryland, New Hampshire, New Jersey, and Rhode Island sampled treated drinking water from 1993-2006 and analyzed the samples for MTBE. The US Geological Survey examined trends in the occurrence of MTBE in drinking water derived from ground water in these States for two near-decadal time steps; 1993-1999 and 2000-2006. MTBE was detected in 14% of drinking water samples collected in all States from 1993-1999 and in 19% of drinking water samples collected from the same systems from 2000-2006 and this difference was statistically significant. Trends in the occurrence of MTBE in each State by individual year indicated significant positive trends in Maryland and New Hampshire. Significant, increasing trends in MTBE concentrations were observed in Maryland and Rhode Island by individual year. This is an abstract of a paper presented at the 2007 Petroleum Hydrocarbons and Organic Chemicals in Ground Water: Prevention, Assessment and Remediation Conference (Houston, TX 11/5-6/2007).
Correlations of water quality parameters with mutagenicity of chlorinated drinking water samples.
Schenck, Kathleen M; Sivaganesan, Mano; Rice, Glenn E
2009-01-01
Adverse health effects that may result from chronic exposure to mixtures of disinfection by-products (DBPs) present in drinking waters may be linked to both the types and concentrations of DBPs present. Depending on the characteristics of the source water and treatment processes used, both types and concentrations of DBPs found in drinking waters vary substantially. The composition of a drinking-water mixture also may change during distribution. This study evaluated the relationships between mutagenicity, using the Ames assay, and water quality parameters. The study included information on treatment, mutagenicity data, and water quality data for source waters, finished waters, and distribution samples collected from five full-scale drinking water treatment plants, which used chlorine exclusively for disinfection. Four of the plants used surface water sources and the fifth plant used groundwater. Correlations between mutagenicity and water quality parameters are presented. The highest correlation was observed between mutagenicity and the total organic halide concentrations in the treated samples.
Rural drinking water at supply and household levels: quality and management.
Hoque, Bilqis A; Hallman, Kelly; Levy, Jason; Bouis, Howarth; Ali, Nahid; Khan, Feroze; Khanam, Sufia; Kabir, Mamun; Hossain, Sanower; Shah Alam, Mohammad
2006-09-01
Access to safe drinking water has been an important national goal in Bangladesh and other developing countries. While Bangladesh has almost achieved accepted bacteriological drinking water standards for water supply, high rates of diarrheal disease morbidity indicate that pathogen transmission continues through water supply chain (and other modes). This paper investigates the association between water quality and selected management practices by users at both the supply and household levels in rural Bangladesh. Two hundred and seventy tube-well water samples and 300 water samples from household storage containers were tested for fecal coliform (FC) concentrations over three surveys (during different seasons). The tube-well water samples were tested for arsenic concentration during the first survey. Overall, the FC was low (the median value ranged from 0 to 4 cfu/100ml) in water at the supply point (tube-well water samples) but significantly higher in water samples stored in households. At the supply point, 61% of tube-well water samples met the Bangladesh and WHO standards of FC; however, only 37% of stored water samples met the standards during the first survey. When arsenic contamination was also taken into account, only 52% of the samples met both the minimum microbiological and arsenic content standards of safety. The contamination rate for water samples from covered household storage containers was significantly lower than that of uncovered containers. The rate of water contamination in storage containers was highest during the February-May period. It is shown that safe drinking water was achieved by a combination of a protected and high quality source at the initial point and maintaining quality from the initial supply (source) point through to final consumption. It is recommended that the government and other relevant actors in Bangladesh establish a comprehensive drinking water system that integrates water supply, quality, handling and related educational programs in order to ensure the safety of drinking water supplies.
Nichols, R. A. B.; Connelly, L.; Sullivan, C. B.; Smith, H. V.
2010-01-01
We analyzed 1,042 Cryptosporidium oocyst-positive slides (456 from raw waters and 586 from drinking waters) of which 55.7% contained 1 or 2 oocysts, to determine species/genotypes present in Scottish waters. Two nested PCR-restriction fragment length polymorphism (RFLP) assays targeting different loci (1 and 2) of the hypervariable region of the 18S rRNA gene were used for species identification, and 62.4% of samples were amplified with at least one of the PCR assays. More samples (577 slides; 48.7% from raw water and 51.3% from drinking water) were amplified at locus 1 than at locus 2 (419 slides; 50.1% from raw water and 49.9% from drinking water). PCR at loci 1 and 2 amplified 45.4% and 31.7% of samples containing 1 or 2 oocysts, respectively. We detected both human-infectious and non-human-infectious species/genotype oocysts in Scottish raw and drinking waters. Cryptosporidium andersoni, Cryptosporidium parvum, and the Cryptosporidium cervine genotype (now Cryptosporidium ubiquitum) were most commonly detected in both raw and drinking waters, with C. ubiquitum being most common in drinking waters (12.5%) followed by C. parvum (4.2%) and C. andersoni (4.0%). Numerous samples (16.6% total; 18.9% from drinking water) contained mixtures of two or more species/genotypes, and we describe strategies for unraveling their identity. Repetitive analysis for discriminating mixtures proved useful, but both template concentration and PCR assay influenced outcomes. Five novel Cryptosporidium spp. (SW1 to SW5) were identified by RFLP/sequencing, and Cryptosporidium sp. SW1 was the fourth most common contaminant of Scottish drinking water (3%). PMID:20639357
Steyer, Andrej; Torkar, Karmen Godič; Gutiérrez-Aguirre, Ion; Poljšak-Prijatelj, Mateja
2011-09-01
Waterborne infections have been shown to be important in outbreaks of gastroenteritis throughout the world. Although improved sanitary conditions are being progressively applied, fecal contaminations remain an emerging problem also in developed countries. The aim of our study was to investigate the prevalence of fecal contaminated water sources in Slovenia, including surface waters and groundwater sources throughout the country. In total, 152 water samples were investigated, of which 72 samples represents groundwater from individual wells, 17 samples from public collection supplies and 63 samples from surface stream waters. Two liters of untreated water samples were collected and concentrated by the adsorption/elution technique with positively charged filters followed by an additional ultracentrifugation step. Group A rotaviruses, noroviruses (genogroups I and II) and astroviruses were detected with real-time RT-PCR method in 69 (45.4%) out of 152 samples collected, of which 31/89 (34.8%) drinking water and 38/63 (60.3%) surface water samples were positive for at least one virus tested. In 30.3% of drinking water samples group A rotaviruses were detected (27/89), followed by noroviruses GI (2.2%; 2/89) and astroviruses (2.2%; 2/89). In drinking groundwater samples group A rotaviruses were detected in 27 out of 72 tested samples (37.5%), genogroup I noroviruses in two (2.8%), and human astroviruses in one (1.4%) samples. In surface water samples norovirus genogroup GII was the most frequently detected (41.3%; 26/63), followed by norovirus GI (33.3%; 21/63), human astrovirus (27.0%; 17/63) and group A rotavirus (17.5%; 11/63). Our study demonstrates relatively high percentage of groundwater contamination in Slovenia and, suggests that raw groundwater used as individual drinking water supply may constitute a possible source of enteric virus infections. In the future, testing for enteric viruses should be applied for drinking water sources in waterborne outbreaks. Copyright © 2011 Elsevier GmbH. All rights reserved.
Varade, Abhay M; Yenkie, Rajshree; Shende, Rahul; Kodate, Jaya
2014-01-01
The water quality of Hingna area of Nagpur district, Central India was assessed for its suitability as drinking water. 22 water samples, representing both the surface and groundwater sources, were collected and analysed for different inorganic constituents by using the standard procedures. The result depicted abundance of major ions; Ca2+ > Mg2+ > Na+ > K+ = HCO3- > Cl- > SO4(2-) > NO3-. The concentrations of different elements in water were compared with the drinking water standards defined by World Health Organization (WHO). The hydro-chemical results reveal that most of the samples were within the desirable limits of the drinking water quality. However, few samples of the area, showed higher values of total dissolved solids (TDS), total hardness (TH), and magnesium (Mg) indicating their 'hard water type' nature and found to be unfit for the drinking purpose. Such poor water quality of these samples is found due to the combined effect of urbanization and industrial activities. The potential health risks associated with various water parameters have also been documented in this paper.
Smith, Kirk P.
2011-01-01
Water samples were collected in nearly all of the subbasins in the Cambridge drinking-water source area and from Fresh Pond during the study period. Discrete water samples were collected during base-flow conditions with an antecedent dry period of at least 3 days. Composite sampl
An assessment of drinking water contamination with Helicobacter pylori in Lima, Peru.
Boehnke, Kevin F; Brewster, Rebecca K; Sánchez, Brisa N; Valdivieso, Manuel; Bussalleu, Alejandro; Guevara, Magaly; Saenz, Claudia Gonzales; Alva, Soledad Osorio; Gil, Elena; Xi, Chuanwu
2018-04-01
Helicobacter pylori is a gut bacterium that is the primary cause of gastric cancer. H. pylori infection has been consistently associated with lack of access to sanitation and clean drinking water. In this study, we conducted time-series sampling of drinking water in Lima, Peru, to examine trends of H. pylori contamination and other water characteristics. Drinking water samples were collected from a single faucet in Lima's Lince district 5 days per week from June 2015 to May 2016, and pH, temperature, free available chlorine, and conductivity were measured. Quantities of H. pylori in all water samples were measured using quantitative polymerase chain reaction. Relationships between the presence/absence and quantity of H. pylori and water characteristics in the 2015-2016 period were examined using regression methods accounting for the time-series design. Forty-nine of 241 (20.3%) of drinking water samples were contaminated with H. pylori. Statistical analyses identified no associations between sampling date and the likelihood of contamination with H. pylori. Statistically significant relationships were found between lower temperatures and a lower likelihood of the presence of H. pylori (P < .05), as well as between higher pH and higher quantities of H. pylori (P < .05). This study has provided evidence of the presence of H. pylori DNA in the drinking water of a single drinking water faucet in the Lince district of Lima. However, no seasonal trends were observed. Further studies are needed to determine the presence of H. pylori in other drinking water sources in other districts in Lima, as well as to determine the viability of H. pylori in these water sources. Such studies would potentially allow for better understanding and estimates of the risk of infection due to exposure to H. pylori in drinking water. © 2018 John Wiley & Sons Ltd.
Molina Frechero, Nelly; Sánchez Pérez, Leonor; Castañeda Castaneira, Enrique; Oropeza Oropeza, Anastasio; Gaona, Enrique; Salas Pacheco, José; Bologna Molina, Ronell
2013-01-01
Fluoride is ingested primarily through consuming drinking water. When drinking water contains fluoride concentrations>0.7 parts per million (ppm), consuming such water can be toxic to the human body; this toxicity is called "fluorosis." Therefore, it is critical to determine the fluoride concentrations in drinking water. The objective of this study was to determine the fluoride concentration in the drinking water of the city of Durango. The wells that supply the drinking water distribution system for the city of Durango were studied. One hundred eighty-nine (189) water samples were analyzed, and the fluoride concentration in each sample was quantified as established by the law NMX-AA-077-SCFI-2001. The fluoride concentrations in such samples varied between 2.22 and 7.23 ppm with a 4.313±1.318 ppm mean concentration. The highest values were observed in the northern area of the city, with a 5.001±2.669 ppm mean value. The samples produced values that exceeded the national standard for fluoride in drinking water. Chronic exposure to fluoride at such concentrations produces harmful health effects, the first sign of which is dental fluorosis. Therefore, it is essential that the government authorities implement water defluoridation programs and take preventative measures to reduce the ingestion of this toxic halogen.
Molina Frechero, Nelly; Sánchez Pérez, Leonor; Castañeda Castaneira, Enrique; Oropeza Oropeza, Anastasio; Gaona, Enrique; Salas Pacheco, José; Bologna Molina, Ronell
2013-01-01
Fluoride is ingested primarily through consuming drinking water. When drinking water contains fluoride concentrations >0.7 parts per million (ppm), consuming such water can be toxic to the human body; this toxicity is called “fluorosis.” Therefore, it is critical to determine the fluoride concentrations in drinking water. The objective of this study was to determine the fluoride concentration in the drinking water of the city of Durango. The wells that supply the drinking water distribution system for the city of Durango were studied. One hundred eighty-nine (189) water samples were analyzed, and the fluoride concentration in each sample was quantified as established by the law NMX-AA-077-SCFI-2001. The fluoride concentrations in such samples varied between 2.22 and 7.23 ppm with a 4.313 ± 1.318 ppm mean concentration. The highest values were observed in the northern area of the city, with a 5.001 ± 2.669 ppm mean value. The samples produced values that exceeded the national standard for fluoride in drinking water. Chronic exposure to fluoride at such concentrations produces harmful health effects, the first sign of which is dental fluorosis. Therefore, it is essential that the government authorities implement water defluoridation programs and take preventative measures to reduce the ingestion of this toxic halogen. PMID:24348140
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vartiainen, T.; Lampelo, S.
The mutagenicity of chlorinated drinking waters processed from humus-rich surface waters has been shown to be very high. The effect of placental S9 on the mutagenicity of drinking waters has not been studied previously. The purpose of this study was to compare the effects of human placental and rat liver microsomal fractions on the mutagenicity of drinking waters processed from humus-rich surface waters. The samples of 34 drinking and two raw waters from 26 localities in Finland were tested for mutagenicity in Ames Salmonella typhimurium tester strain TA100 with and without metabolic activations. Between the drinking water samples, clear differencesmore » were recorded in the presence of placental and rat liver S9, suggesting different mutagens in the drinking waters. Rat liver S9 decreased the mutagenicities of drinking water concentrates, but placental S9 increased, decreased, or had no effect. It is not known if placental mutagenicity enhancing system might cause any health hazard to a developing fetus.« less
Microbiological Contamination of Drinking Water Associated with Subsequent Child Diarrhea
Luby, Stephen P.; Halder, Amal K.; Huda, Tarique Md.; Unicomb, Leanne; Sirajul Islam, M.; Arnold, Benjamin F.; Johnston, Richard B.
2015-01-01
We used a prospective, longitudinal cohort enrolled as part of a program evaluation to assess the relationship between drinking water microbiological quality and child diarrhea. We included 50 villages across rural Bangladesh. Within each village field-workers enrolled a systematic random sample of 10 households with a child under the age of 3 years. Community monitors visited households monthly and recorded whether children under the age of 5 years had diarrhea in the preceding 2 days. Every 3 months, a research assistant visited the household and requested a water sample from the source or container used to provide drinking water to the child. Laboratory technicians measured the concentration of Escherichia coli in the water samples using membrane filtration. Of drinking water samples, 59% (2,273/3,833) were contaminated with E. coli. Of 12,192 monthly follow-up visits over 2 years, mothers reported that their child had diarrhea in the preceding 2 days in 1,156 (9.5%) visits. In a multivariable general linear model, the log10 of E. coli contamination of the preceding drinking water sample was associated with an increased prevalence of child diarrhea (prevalence ratio = 1.14, 95% CI = 1.05, 1.23). These data provide further evidence of the health benefits of improved microbiological quality of drinking water. PMID:26438031
[The occurrence of aeromonads in a drinking water supply system].
Stelzer, W; Jacob, J; Feuerpfeil, I; Schulze, E
1992-01-01
This study concerns with the occurrence of aeromonads, coliforms and colony counts in a drinking water supply. Aeromonas contents were detected in the range of 15.0 to greater than 2,400/100 ml in the raw water samples of the man made lake. After the drinking water treatment process including fast sand filtration and chlorination aeromonads indicated in comparison to total coliforms and colony counts early and significant an after-growth of maximal 240 aeromonads/100 ml in the peripheric drinking water supply. Drinking water samples characterized by a higher water temperature resulted in the highest contents of aeromonads. The Aeromonas-Species Aeromonas sobria and Aeromonas hydrophila were isolated most frequently with 56.9 and 37.4 percent, respectively. The role of aeromonads as an indicator of after-growth in drinking water supplies is discussed.
Santhi, V A; Sakai, N; Ahmad, E D; Mustafa, A M
2012-06-15
This study investigated the level of bisphenol A (BPA) in surface water used as potable water, drinking water (tap and bottled mineral water) and human plasma in the Langat River basin, Malaysia. BPA was present in 93% of the surface water samples at levels ranging from below limit of quantification (LOQ; 1.3 ng/L) to 215 ng/L while six fold higher levels were detected in samples collected near industrial and municipal sewage treatment plant outlets. Low levels of BPA were detected in most of the drinking water samples. BPA in tap water ranged from 3.5 to 59.8 ng/L with the highest levels detected in samples collected from taps connected to PVC pipes and water filter devices. Bottled mineral water had lower levels of BPA (3.3±2.6 ng/L) although samples stored in poor storage condition had significantly higher levels (11.3±5.3 ng/L). Meanwhile, only 17% of the plasma samples had detectable levels of BPA ranging from 0.81 to 3.65 ng/mL. The study shows that BPA is a ubiquitous contaminant in surface, tap and bottled mineral water. However, exposure to BPA from drinking water is very low and is less than 0.01% of the tolerable daily intake (TDI). Copyright © 2012 Elsevier B.V. All rights reserved.
Evaluation of human enteric viruses in surface water and drinking water resources in southern Ghana.
Gibson, Kristen E; Opryszko, Melissa C; Schissler, James T; Guo, Yayi; Schwab, Kellogg J
2011-01-01
An estimated 884 million people worldwide do not have access to an improved drinking water source, and the microbial quality of these sources is often unknown. In this study, a combined tangential flow, hollow fiber ultrafiltration (UF), and real-time PCR method was applied to large volume (100 L) groundwater (N = 4), surface water (N = 9), and finished (i.e., receiving treatment) drinking water (N = 6) samples for the evaluation of human enteric viruses and bacterial indicators. Human enteric viruses including norovirus GI and GII, adenovirus, and polyomavirus were detected in five different samples including one groundwater, three surface water, and one drinking water sample. Total coliforms and Escherichia coli assessed for each sample before and after UF revealed a lack of correlation between bacterial indicators and the presence of human enteric viruses.
Evaluation of Human Enteric Viruses in Surface Water and Drinking Water Resources in Southern Ghana
Gibson, Kristen E.; Opryszko, Melissa C.; Schissler, James T.; Guo, Yayi; Schwab, Kellogg J.
2011-01-01
An estimated 884 million people worldwide do not have access to an improved drinking water source, and the microbial quality of these sources is often unknown. In this study, a combined tangential flow, hollow fiber ultrafiltration (UF), and real-time PCR method was applied to large volume (100 L) groundwater (N = 4), surface water (N = 9), and finished (i.e., receiving treatment) drinking water (N = 6) samples for the evaluation of human enteric viruses and bacterial indicators. Human enteric viruses including norovirus GI and GII, adenovirus, and polyomavirus were detected in five different samples including one groundwater, three surface water, and one drinking water sample. Total coliforms and Escherichia coli assessed for each sample before and after UF revealed a lack of correlation between bacterial indicators and the presence of human enteric viruses. PMID:21212196
Kosaka, Koji; Asami, Mari; Takei, Kanako; Akiba, Michihiro
2011-01-01
An analytical method for determining bromate in drinking water was developed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The (18)O-enriched bromate was used as an internal standard. The limit of quantification (LOQ) of bromate was 0.2 µg/L. The peak of bromate was separated from those of coexisting ions (i.e., chloride, nitrate and sulfate). The relative and absolute recoveries of bromate in two drinking water samples and in a synthesized ion solution (100 mg/L chloride, 10 mg N/L nitrate, and 100 mg/L sulfate) were 99-105 and 94-105%, respectively. Bromate concentrations in 11 drinking water samples determined by LC-MS/MS were <0.2-2.3 µg/L. The results of the present study indicated that the proposed method was suitable for determining bromate concentrations in drinking water without sample pretreatment.
Liu, Hua-liang; Wang, Lian-hong
2013-05-01
To develop an analytical method for simultaneous determination of 6 pesticides, namely bentazone, 2,4-dichlorophenoxyacetic acid,carbofuran, carbaryl, atrazine and pentachlorophenol, in drinking water by high performance liquid chromatography-tandem mass spectrometry, and thereby to provide a reference to revise the Health Standards for Drinking Water (GB/T 5750-2006). Meanwhile, to evaluate the content of the above 6 pesticides in the drinking water samples supplied by 12 centralized water plants in Jiangsu province. The 10 ml water sample was acidized by hydrochloric acid to pH ≤ 2, and then concentrated by solid phase extraction cartridge and eluted with acetone. The solvent was changed into methanol after drying by nitrogen blow. The target compounds were separated by C18 column using methanol/water as mobile phase, and detected by mass spectrometry with multi-reaction-monitoring(MRM) mode. The repeatability and sensitivity of the assay were evaluated. The drinking water samples from the 12 water plants were then detected. In this experimental method, the minimum detectable concentration were around 0.02-0.41 µg/L, with the recovery rate at 75%-115%, and the RSD between 2% and 10%. Under the experimental condition, there were no pesticides detected in the drinking water samples from the 12 centralized water plants. The method is efficient and environment-friendly, with little discharge of effluent, which could meet the requirement of the drinking water monitor.
Monitoring of Cryptosporidium and Giardia in Czech drinking water sources.
Dolejs, P; Ditrich, O; Machula, T; Kalousková, N; Puzová, G
2000-01-01
In Czech raw water sources for drinking water supply, Cryptosporidium was found in numbers from 0 to 7400 per 100 liters and Giardia from 0 to 485 per 100 liters. The summer floods of 1997 probably brought the highest numbers of Cryptosporidium oocysts into one of the reservoirs sampled; since then these numbers decreased steadily. A relatively high number of Cryptosporidium oocysts was found in one sample of treated water. Repeated sampling demonstrated that this was a sporadic event. The reason for the presence of Cryptosporidium in a sample of treated drinking-water is unclear and requires further study.
The Savannah River Site`s groundwater monitoring program. Third quarter 1990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-05-06
The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During third quarter 1990 (July through September) EPD/EMS conducted routine sampling of monitoring wells and drinking water locations. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. All analytical results from third quarter 1990 are listed in thismore » report, which is distributed to all site custodians. One or more analytes exceeded Flag 2 in 87 monitoring well series. Analytes exceeded Flat 2 for the first since 1984 in 14 monitoring well series. In addition to groundwater monitoring, EPD/EMS collected drinking water samples from SRS drinking water systems supplied by wells. The drinking water samples were analyzed for radioactive constituents.« less
The Savannah River Site's groundwater monitoring program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-05-06
The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During third quarter 1990 (July through September) EPD/EMS conducted routine sampling of monitoring wells and drinking water locations. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. All analytical results from third quarter 1990 are listed in thismore » report, which is distributed to all site custodians. One or more analytes exceeded Flag 2 in 87 monitoring well series. Analytes exceeded Flat 2 for the first since 1984 in 14 monitoring well series. In addition to groundwater monitoring, EPD/EMS collected drinking water samples from SRS drinking water systems supplied by wells. The drinking water samples were analyzed for radioactive constituents.« less
Fluorometric determination of the DNA concentration in municipal drinking water.
McCoy, W F; Olson, B H
1985-01-01
DNA concentrations in municipal drinking water samples were measured by fluorometry, using Hoechst 33258 fluorochrome. The concentration, extraction, and detection methods used were adapted from existing techniques. The method is reproducible, fast, accurate, and simple. The amounts of DNA per cell for five different bacterial isolates obtained from drinking water samples were determined by measuring DNA concentration and total cell concentration (acridine orange epifluorescence direct cell counting) in stationary pure cultures. The relationship between DNA concentration and epifluorescence total direct cell concentration in 11 different drinking water samples was linear and positive; the amounts of DNA per cell in these samples did not differ significantly from the amounts in pure culture isolates. We found significant linear correlations between DNA concentration and colony-forming unit concentration, as well as between epifluorescence direct cell counts and colony-forming unit concentration. DNA concentration measurements of municipal drinking water samples appear to monitor changes in bacteriological quality at least as well as total heterotrophic plate counting and epifluorescence direct cell counting. PMID:3890737
Investigation of drinking water quality in Kosovo.
Berisha, Fatlume; Goessler, Walter
2013-01-01
In the recent years, not much environmental monitoring has been conducted in the territory of Kosovo. This study represents the first comprehensive monitoring of the drinking water situation throughout most of the territory of Kosovo. We present the distribution of major and minor trace elements in drinking water samples from Kosovo. During our study we collected 951 samples from four different sources: private-bored wells; naturally flowing artesian water; pumped-drilled wells; and public water sources (tap water). The randomly selected drinking water samples were investigated by routine water analyses using inductively coupled plasma mass spectrometry (ICPMS) for 32 elements (Li, Be, B, Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Rb, Sr, Mo, Ag, Cd, Sn, Sb, Te, Ba, Tl, Pb, Bi, Th, U). Even though there are set guidelines for elemental exposure in drinking water worldwide, in developing countries, such as Kosovo, the lack of monitoring drinking water continues to be an important health concern. This study reports the concentrations of major and minor elements in the drinking water in Kosovo. Additionally, we show the variation of the metal concentration within different sources. Of the 15 regulated elements, the following five elements: Mn, Fe, Al, Ni, As, and U were the elements which most often exceeded the guidelines set by the EU and/or WHO.
Fingler, Sanja; Mendaš, G; Dvoršćak, M; Stipičević, S; Vasilić, Ž; Drevenkar, V
2017-04-01
The frequency and mass concentrations of 13 herbicide micropollutants (triazines, phenylureas, chloroacetanilides and trifluralin) were investigated during 2014 in surface, ground and drinking waters in the area of the city of Zagreb and its suburbs. Herbicide compounds were accumulated from water by solid-phase extraction using either octadecylsilica or styrene-divinylbenzene sorbent cartridges and analysed either by high-performance liquid chromatography with UV-diode array detector or gas chromatography with mass spectrometric detection. Atrazine was the most frequently detected herbicide in drinking (84 % of samples) and ground (61 % of samples) waters in mass concentrations of 5 to 68 ng L -1 . It was followed by metolachlor and terbuthylazine, the former being detected in 54 % of drinking (up to 15 ng L -1 ) and 23 % of ground (up to 100 ng L -1 ) waters, and the latter in 45 % of drinking (up to 20 ng L -1 ) and 26 % of ground (up to 25 ng L -1 ) water samples. Acetochlor was the fourth most abundant herbicide in drinking waters, detected in 32 % of samples. Its mass concentrations of 107 to 117 ng L -1 in three tap water samples were the highest of all herbicides measured in the drinking waters. The most frequently (62 % of samples) and highly (up to 887 ng L -1 ) detected herbicide in surface waters was metolachlor, followed by terbuthylazine detected in 49 % of samples in mass concentrations of up to 690 ng L -1 , and atrazine detected in 30 % of samples in mass concentrations of up to 18 ng L -1 . The seasonal variations in herbicide concentrations in surface waters were observed for terbuthylazine, metolachlor, acetochlor, chlortoluron and isoproturon with the highest concentrations measured from April to August.
Ground-water quality of the southern High Plains aquifer, Texas and New Mexico, 2001
Fahlquist, Lynne
2003-01-01
In 2001, the U.S. Geological Survey National Water-Quality Assessment Program collected water samples from 48 wells in the southern High Plains as part of a larger scientific effort to broadly characterize and understand factors affecting water quality of the High Plains aquifer across the entire High Plains. Water samples were collected primarily from domestic wells in Texas and eastern New Mexico. Depths of wells sampled ranged from 100 to 500 feet, with a median depth of 201 feet. Depths to water ranged from 34 to 445 feet below land surface, with a median depth of 134 feet. Of 240 properties or constituents measured or analyzed, 10 exceeded U.S. Environmental Protection Agency public drinking-water standards or guidelines in one or more samples - arsenic, boron, chloride, dissolved solids, fluoride, manganese, nitrate, radon, strontium, and sulfate. Measured dissolved solids concentrations in 29 samples were larger than the public drinking-water guideline of 500 milligrams per liter. Fluoride concentrations in 16 samples, mostly in the southern part of the study area, were larger than the public drinking-water standard of 4 milligrams per liter. Nitrate was detected in all samples, and concentrations in six samples were larger than the public drinking-water standard of 10 milligrams per liter. Arsenic concentrations in 14 samples in the southern part of the study area were larger than the new (2002) public drinking-water standard of 10 micrograms per liter. Radon concentrations in 36 samples were larger than a proposed public drinking-water standard of 300 picocuries per liter. Pesticides were detected at very small concentrations, less than 1 microgram per liter, in less than 20 percent of the samples. The most frequently detected compounds were atrazine and breakdown products of atrazine, a finding similar to those of National Water-Quality Assessment aquifer studies across the Nation. Four volatile organic compounds were detected at small concentrations in six water samples. About 70 percent of the 48 primarily domestic wells sampled contained some fraction of recently (less than about 50 years ago) recharged ground water, as indicated by the presence of one or more pesticides, or tritium or nitrate concentrations greater than threshold levels.
Evaluation of minerals content of drinking water in Malaysia.
Azlan, Azrina; Khoo, Hock Eng; Idris, Mohd Aizat; Ismail, Amin; Razman, Muhammad Rizal
2012-01-01
The drinking and mineral water samples obtained from different geographical locations had concentrations of the selected minerals lower than the standard limits, except for manganese, arsenic, and fluoride. The concentrations of manganese and arsenic in two mineral water samples were slightly higher than the standard international recommended limits. One mineral water sample had a fluoride concentration higher than the standard limits, whereas manganese was not detected in nine drinking and mineral water samples. Most of the selected minerals found in the tap water samples were below the international standard limits, except for iron and manganese. The concentrations of iron and manganese in the tap water samples were higher than the standard limits, which were obtained from one and three of the studied locations, respectively. The potable water obtained from various manufacturers and locations in Peninsular Malaysia is safe for consumption, as the minerals concentrations were below the standard limits prescribed by the Malaysian Food Regulations of 1985. The data obtained may also provide important information related to daily intake of these minerals from drinking water.
Evaluation of Minerals Content of Drinking Water in Malaysia
Azlan, Azrina; Khoo, Hock Eng; Idris, Mohd Aizat; Ismail, Amin; Razman, Muhammad Rizal
2012-01-01
The drinking and mineral water samples obtained from different geographical locations had concentrations of the selected minerals lower than the standard limits, except for manganese, arsenic, and fluoride. The concentrations of manganese and arsenic in two mineral water samples were slightly higher than the standard international recommended limits. One mineral water sample had a fluoride concentration higher than the standard limits, whereas manganese was not detected in nine drinking and mineral water samples. Most of the selected minerals found in the tap water samples were below the international standard limits, except for iron and manganese. The concentrations of iron and manganese in the tap water samples were higher than the standard limits, which were obtained from one and three of the studied locations, respectively. The potable water obtained from various manufacturers and locations in Peninsular Malaysia is safe for consumption, as the minerals concentrations were below the standard limits prescribed by the Malaysian Food Regulations of 1985. The data obtained may also provide important information related to daily intake of these minerals from drinking water. PMID:22649292
Castro-Hermida, José Antonio; González-Warleta, Marta; Mezo, Mercedes
2015-01-01
The objectives of this cross-sectional study were to detect the presence of Cryptosporidium spp. and Giardia duodenalis in drinking water treatments plants (DWTPs) in Galicia (NW Spain) and to identify which species and genotype of these pathogenic protozoans are present in the water. Samples of untreated water (surface or ground water sources) and of treated drinking water (in total, 254 samples) were collected from 127 DWTPs and analysed by an immunofluorescence antibody test (IFAT) and by PCR. Considering the untreated water samples, Cryptosporidium spp. were detected in 69 samples (54.3%) by IFAT, and DNA of this parasite was detected in 57 samples (44.8%) by PCR, whereas G. duodenalis was detected in 76 samples (59.8%) by IFAT and in 56 samples (44.0%) by PCR. Considering the treated drinking water samples, Cryptosporidium spp. was detected in 52 samples (40.9%) by IFAT, and the parasite DNA was detected in 51 samples (40.1%) by PCR, whereas G. duodenalis was detected in 58 samples (45.6%) by IFAT and in 43 samples (33.8%) by PCR. The percentage viability of the (oo)cysts ranged between 90.0% and 95.0% in all samples analysed. Cryptosporidium andersoni, C. hominis, C. parvum and assemblages A-I, A-II, E of G. duodenalis were identified. The results indicate that Cryptosporidium spp. and G. duodenalis are widespread in the environment and that DWTPs are largely ineffective in reducing/inactivating these pathogens in drinking water destined for human and animal consumption in Galicia. In conclusion, the findings suggest the need for better monitoring of water quality and identification of sources of contamination. Copyright © 2014 Elsevier GmbH. All rights reserved.
Fluoride and bacterial content of bottled drinking water versus municipal tap water.
Mythri, H; Chandu, G N; Prashant, G M; Subba Reddy, V V
2010-01-01
Water is a divine gift. People quench their thirst without questioning the source of water. But, apprehension about contaminants in municipal water supplies along with increased fear of fluorosis made bottled drinking water as one of the important tradable commodities. The objectives of the study were to determine and compare the fluoride and bacterial contents of commercially available bottled drinking water and municipal tap water in Davangere city, Karnataka. Fifty samples of 10 categories of bottled drinking water with different batch numbers were purchased and municipal water from different sources were collected. Fluoride levels were determined by an ion-selective electrode. Water was cultured quantitatively and levels of bacteria were calculated as colony-forming units (CFUs) per milliliter. Descriptive analysis of water samples for fluoride concentration was in the range of 0.07-0.33 for bottled drinking water, Bisleri showing the highest of 0.33. A comparison of the mean values of microbial count for bottled drinking water with that of municipal tap water showed no statistically significant difference, but was more than the standard levels along with the presence of fungus and maggots. The fluoride concentration was below the optimal level for both municipal tap water and bottled drinking water. CFUs were more than the recommended level in both municipal tap water and bottled drinking water.
FLUORIDE CONTENT OF COMMERCIALLY AVAILABLE BOTTLED DRINKING WATER IN BANGKOK, THAILAND.
Rirattanapong, Praphasri; Rirattanapong, Opas
2016-09-01
The use of bottled drinking water may be a source of fluoride and could be a risk factor for fluorosis among infants and young children. The aim of this study was to evaluate the fluoride content of commercially available bottled drinking water in Bangkok, Thailand. Forty-five water samples (15 samples of plain water and 30 samples of mineral water) were purchased from several supermarkets in Bangkok, Thailand. Three bottles of each water sample were purchased, and the fluoride content of each sample was measured twice using a combination fluoride-ion selective electrode. The average reading for each sample was then calculated. Data were analyzed by descriptive statistics. Differences between mineral and plain water samples were determined by Student’s t-test. The mean (±SD) fluoride content for all the water samples was 0.17 (±0.17) mg F/l (range: 0.01-0.89 mg F/l). Six brands (13%) tested stated the fluoride content on the label. The actual fluoride content in each of their brands varied little from the label. Eight samples (18%) had a fluoride content >0.3 mg F/l and two samples (4%) had a fluoride content >0.6 mg F/l. The mean mineral water fluoride concentration was significantly higher than the mean fluoride concentration of plain water (p=0.001). We found commercially sold bottled drinking water in Bangkok, Thailand contained varying concentrations of fluoride; some with high concentrations of fluoride. Health professions need to be aware this varying fluoride content of bottled drinking water and educate the parents of infants and small children about this when prescribing fluoride supplements. Consideration should be made to have fluoride content put on the label of bottled water especially among brands with a content >0.3 mg F/l.
Microbiological evaluation of drinking water sold by roadside vendors of Delhi, India
NASA Astrophysics Data System (ADS)
Chauhan, Abhishek; Goyal, Pankaj; Varma, Ajit; Jindal, Tanu
2017-07-01
Delhi has emerged as one of the greenest capital city of the world. Microbiological assessment of drinking water emphasizes estimation of the hygienic quality of the water sold with reference to community health significance. This study was conducted to evaluate the quality of drinking water sold by roadside vendors in east, west, north and south zones of capital of India. A total number of 36 samples (nine from each zone) were collected as per national guidelines and studied for microbiological assessment. All the drinking water samples were collected in gamma-sterilized bottles and were kept in an ice pack to prevent any significant change in the microbial flora of the samples during the transportation. The water samples were transported to the laboratory in vertical position maintaining the temperature 1-4 °C with ice pack enveloped conditions. Samples were analyzed for total MPN coliform per 100 ml and for the presence and absence of common human pathogenic bacteria such as Escherichia coli, Salmonella, Staphylococcus aureus and Pseudomonas aeruginosa. All the samples were found to be contaminated with coliform organisms in the range of 14 to >1600 per 100 ml of sample. Out of 36 water samples, the occurrence of E. coli was 61 %, Salmonella 25 % S. aureus 14 % and P. aeruginosa 53 % as 22, 9, 5 and 19 samples were found contaminated, respectively. The numbers of coliform bacteria and presence of some common pathogenic bacteria suggested that the quality of drinking water sold by roadside vendors is not within the Indian standard and WHO guidelines laid down for drinking water quality. Hence, there is a vital need to study the root cause in terms of hygiene, sanitation of vendors and source of contamination to prevent waterborne diseases.
Hanf, R William; Kelly, Lynn M
2005-03-01
Drinking water is supplied to most U.S. Department of Energy (DOE) facilities on the Hanford Site by DOE-owned, contractor-operated pumping and distribution systems. Water is primarily obtained from the Columbia River, but some facilities use water from on-site groundwater wells. Because of the large amount of radioactive and chemical waste produced, stored, and disposed of at Hanford, some people are concerned that waste materials are contaminating on-site drinking-water supplies. This paper describes the drinking-water facilities and treatment requirements on the Hanford Site and summarizes radiological and non-radiological water quality data obtained from water samples collected from each drinking-water system in use during 2001 and 2002. Monitoring data show that Hanford-produced radionuclides are measurable in some drinking-water samples. The only non-radiological contaminants detected either were by-products of the chlorination process or came from off-site agricultural activities. Contaminant level values were, in all cases, below state and federal drinking-water limits. This information will provide assurance to current employees and future site developers that drinking water on the Hanford Site is safe for public consumption.
An assessment of drinking-water quality post-Haiyan.
Magtibay, Bonifacio; Anarna, Maria Sonabel; Fernando, Arturo
2015-01-01
Access to safe drinking-water is one of the most important public health concerns in an emergency setting. This descriptive study reports on an assessment of water quality in drinking-water supply systems in areas affected by Typhoon Haiyan immediately following and 10 months after the typhoon. Water quality testing and risk assessments of the drinking-water systems were conducted three weeks and 10 months post-Haiyan. Portable test kits were used to determine the presence of Escherichia coli and the level of residual chlorine in water samples. The level of risk was fed back to the water operators for their action. Of the 121 water samples collected three weeks post-Haiyan, 44% were contaminated, while 65% (244/373) of samples were found positive for E. coli 10 months post-Haiyan. For the three components of drinking-water systems - source, storage and distribution - the proportions of contaminated systems were 70%, 67% and 57%, respectively, 10 months after Haiyan. Vulnerability to faecal contamination was attributed to weak water safety programmes in the drinking-water supply systems. Poor water quality can be prevented or reduced by developing and implementing a water safety plan for the systems. This, in turn, will help prevent waterborne disease outbreaks caused by contaminated water post-disaster.
An assessment of drinking-water quality post-Haiyan
Anarna, Maria Sonabel; Fernando, Arturo
2015-01-01
Introduction Access to safe drinking-water is one of the most important public health concerns in an emergency setting. This descriptive study reports on an assessment of water quality in drinking-water supply systems in areas affected by Typhoon Haiyan immediately following and 10 months after the typhoon. Methods Water quality testing and risk assessments of the drinking-water systems were conducted three weeks and 10 months post-Haiyan. Portable test kits were used to determine the presence of Escherichia coli and the level of residual chlorine in water samples. The level of risk was fed back to the water operators for their action. Results Of the 121 water samples collected three weeks post-Haiyan, 44% were contaminated, while 65% (244/373) of samples were found positive for E. coli 10 months post-Haiyan. For the three components of drinking-water systems – source, storage and distribution – the proportions of contaminated systems were 70%, 67% and 57%, respectively, 10 months after Haiyan. Discussion Vulnerability to faecal contamination was attributed to weak water safety programmes in the drinking-water supply systems. Poor water quality can be prevented or reduced by developing and implementing a water safety plan for the systems. This, in turn, will help prevent waterborne disease outbreaks caused by contaminated water post-disaster. PMID:26767136
Changes in mouse gut bacterial community in response to different types of drinking water.
Dias, Marcela F; Reis, Mariana P; Acurcio, Leonardo B; Carmo, Anderson O; Diamantino, Cristiane F; Motta, Amanda M; Kalapothakis, Evanguedes; Nicoli, Jacques R; Nascimento, Andréa M A
2018-04-01
Gut microbiota exerts a fundamental role on host physiology, and how extrinsic perturbations influence its composition has been increasingly examined. However, the effect of drinking water on gut microbiota is still poorly understood. In this study, we explored the response of mouse gut bacterial community (fecal and mucosa-adhered) to the ingestion of different types of drinking water. The experimental cohort was divided according to different water sources into four groups of mice that consumed autoclaved tap water (control group), water collected directly from a drinking water treatment plant, tap water, and commercial bottled mineral water. Differences among groups were observed, especially related to control group, which exhibited the smallest intra-group variation, and the largest distance from test groups on the last experimental day. Clinically important taxa, such as Acinetobacter and Staphylococcus, increased in feces of mice that drank tap water and in mucosa-adhered samples of animals from disinfected and tap water groups. Furthermore, statistical analyses showed that both time elapsed between samplings and water type significantly influenced the variation observed in the samples. Our results reveal that drinking water potentially affects gut microbiota composition. Additionally, the increase of typical drinking water clinically relevant and antibiotic resistance-associated bacteria in gut microbiota is a cause of concern. Copyright © 2017 Elsevier Ltd. All rights reserved.
Estrogenic effects in the influents and effluents of the drinking water treatment plants.
Gou, Yan-You; Lin, Susana; Que, Danielle E; Tayo, Lemmuel L; Lin, Ding-Yan; Chen, Kuan-Chung; Chen, Fu-An; Chiang, Pen-Chi; Wang, Gen-Shuh; Hsu, Yi-Chyuan; Chuang, Kuo Pin; Chuang, Chun-Yu; Tsou, Tsui-Chun; Chao, How-Ran
2016-05-01
Estrogen-like endocrine disrupting compounds (EEDC) such as bisphenol A, nonylphenol, and phthalic acid esters are toxic compounds that may occur in both raw- and drinking water. The aim of this study was to combine chemical- and bioassay to evaluate the risk of EEDCs in the drinking water treatment plants (DWTPs). Fifty-six samples were collected from seven DWTPs located in northern-, central-, and southern Taiwan from 2011 to 2012 and subjected to chemical analyses and two bioassay methods for total estrogenic activity (E-Screen and T47D-KBluc assay). Among of the considered EEDCs, only dibutyl phthalate (DBP) and di (2-ethylhexyl) phthalate (DEHP) were detected in both drinking and raw water samples. DBP levels in drinking water ranged from
Microbiological Contamination of Drinking Water Associated with Subsequent Child Diarrhea.
Luby, Stephen P; Halder, Amal K; Huda, Tarique Md; Unicomb, Leanne; Islam, M Sirajul; Arnold, Benjamin F; Johnston, Richard B
2015-11-01
We used a prospective, longitudinal cohort enrolled as part of a program evaluation to assess the relationship between drinking water microbiological quality and child diarrhea. We included 50 villages across rural Bangladesh. Within each village field-workers enrolled a systematic random sample of 10 households with a child under the age of 3 years. Community monitors visited households monthly and recorded whether children under the age of 5 years had diarrhea in the preceding 2 days. Every 3 months, a research assistant visited the household and requested a water sample from the source or container used to provide drinking water to the child. Laboratory technicians measured the concentration of Escherichia coli in the water samples using membrane filtration. Of drinking water samples, 59% (2,273/3,833) were contaminated with E. coli. Of 12,192 monthly follow-up visits over 2 years, mothers reported that their child had diarrhea in the preceding 2 days in 1,156 (9.5%) visits. In a multivariable general linear model, the log10 of E. coli contamination of the preceding drinking water sample was associated with an increased prevalence of child diarrhea (prevalence ratio = 1.14, 95% CI = 1.05, 1.23). These data provide further evidence of the health benefits of improved microbiological quality of drinking water. © The American Society of Tropical Medicine and Hygiene.
Ging, Patricia B.
2002-01-01
Since 1991, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program has collected pesticide data from streams and aquifers throughout the Nation (Gilliom and others, 1995). However, little published information on pesticides in public drinking water is available. The NAWQA Program usually collects data on the sources of drinking water but not on the finished drinking water. Therefore, the U.S. Environmental Protection Agency (USEPA), in conjunction with the NAWQA Program, has initiated a nationwide pilot project to collect information on concentrations of pesticides and their breakdown products in finished drinking water, in source waters such as reservoirs, and in the basins that contribute water to the reservoirs. The pilot project was designed to collect water samples from finished drinking-water supplies and the associated source water from selected reservoirs that receive runoff from a variety of land uses. Lake Waxahachie, in Ellis County in north-central Texas, was chosen to represent a reservoir receiving water that includes runoff from cotton cropland. This fact sheet presents the results of pesticide sampling of source water from Lake Waxahachie and in finished drinking water from the lake. Analyses are compared to indicate differences in pesticide detections and concentrations between lake water and finished drinking water.
Ido, Akiko; Hiromori, Youhei; Meng, Liping; Usuda, Haruki; Nagase, Hisamitsu; Yang, Min; Hu, Jianying; Nakanishi, Tsuyoshi
2017-04-12
Fibrates, which are widely used lipidaemic-modulating drugs, are emerging environmental pollutants. However, fibrate concentrations in the environment have not been thoroughly surveyed. Here, we determined concentrations of the most commonly used fibrates and their metabolites in source water and drinking water samples from ten drinking water treatment plants in Shanghai and Zhejiang, China, using solid-phase extraction and liquid chromatography-tandem mass spectrometry. All the target compounds were detected in at least some of the source water samples, at concentrations ranging from 0.04 ng/L (fenofibrate) to 1.53 ng/L (gemfibrozil). All the compounds except fenofibrate were also detected in at least some of the drinking water samples, at recoveries ranging from 35.5% to 91.7%, suggesting that these compounds are poorly removed by typical drinking water treatment processes. In a peroxisome proliferator-activated receptor α agonistic activity assay, the target compounds showed no significant activity at nanogram per litre concentrations; therefore, our results suggest that the fibrate concentrations in drinking water in Shanghai and Zhejiang, China do not significantly affect human health. However, because of the increasing westernization of the Chinese diet, fibrate use may increase, and thus monitoring fibrate concentrations in aquatic environments and drinking water in China will become increasingly important.
Ido, Akiko; Hiromori, Youhei; Meng, Liping; Usuda, Haruki; Nagase, Hisamitsu; Yang, Min; Hu, Jianying; Nakanishi, Tsuyoshi
2017-01-01
Fibrates, which are widely used lipidaemic-modulating drugs, are emerging environmental pollutants. However, fibrate concentrations in the environment have not been thoroughly surveyed. Here, we determined concentrations of the most commonly used fibrates and their metabolites in source water and drinking water samples from ten drinking water treatment plants in Shanghai and Zhejiang, China, using solid-phase extraction and liquid chromatography–tandem mass spectrometry. All the target compounds were detected in at least some of the source water samples, at concentrations ranging from 0.04 ng/L (fenofibrate) to 1.53 ng/L (gemfibrozil). All the compounds except fenofibrate were also detected in at least some of the drinking water samples, at recoveries ranging from 35.5% to 91.7%, suggesting that these compounds are poorly removed by typical drinking water treatment processes. In a peroxisome proliferator-activated receptor α agonistic activity assay, the target compounds showed no significant activity at nanogram per litre concentrations; therefore, our results suggest that the fibrate concentrations in drinking water in Shanghai and Zhejiang, China do not significantly affect human health. However, because of the increasing westernization of the Chinese diet, fibrate use may increase, and thus monitoring fibrate concentrations in aquatic environments and drinking water in China will become increasingly important. PMID:28401920
NASA Astrophysics Data System (ADS)
Ido, Akiko; Hiromori, Youhei; Meng, Liping; Usuda, Haruki; Nagase, Hisamitsu; Yang, Min; Hu, Jianying; Nakanishi, Tsuyoshi
2017-04-01
Fibrates, which are widely used lipidaemic-modulating drugs, are emerging environmental pollutants. However, fibrate concentrations in the environment have not been thoroughly surveyed. Here, we determined concentrations of the most commonly used fibrates and their metabolites in source water and drinking water samples from ten drinking water treatment plants in Shanghai and Zhejiang, China, using solid-phase extraction and liquid chromatography-tandem mass spectrometry. All the target compounds were detected in at least some of the source water samples, at concentrations ranging from 0.04 ng/L (fenofibrate) to 1.53 ng/L (gemfibrozil). All the compounds except fenofibrate were also detected in at least some of the drinking water samples, at recoveries ranging from 35.5% to 91.7%, suggesting that these compounds are poorly removed by typical drinking water treatment processes. In a peroxisome proliferator-activated receptor α agonistic activity assay, the target compounds showed no significant activity at nanogram per litre concentrations; therefore, our results suggest that the fibrate concentrations in drinking water in Shanghai and Zhejiang, China do not significantly affect human health. However, because of the increasing westernization of the Chinese diet, fibrate use may increase, and thus monitoring fibrate concentrations in aquatic environments and drinking water in China will become increasingly important.
NASA Astrophysics Data System (ADS)
Malem Indirawati, Sri; Pandia, Setiaty; Mawengkang, Herman; Hasan, Wirsal
2018-01-01
The burden of pollution due to industrial waste, ports, community activities and marine intrusion further exacerbate environmental quality. This pollution causes drinking water sources polluted. This study aims to analyze Pb contamination in marine, and drinking water from wellbores and measure the magnitude of health risks. This is cross sectional study and quantitative research that analyzes Pb concentrations in marine and drinking water. The sample are 250 people who live in coastal area and drink water from wellbores. Water samples were examined in certified laboratories by using Atomic Absorbstion Spectrophotometer method, health risk was analyzed by the environmental health risk (EHRA) method. Pb concentrations average in marine is 52 μgl-1 . Pb concentration from 92 samples of drinking water average is 4.5 μgl-1 and range 5.4 - 26.2 μgl-1. The amount of health risk RQ <1, which means that it has not shown risk yet. Pb exceeded the environmental quality standard in marine, There are 14.7% of people consuming Pb contaminated drinking water. Community complaints found at the study sites were diarrhea 22.8% and dizziness 17.2% and skin disease 17.2%, upper respiratory tract infection, rheumatism and hypertension.
West, Danielle M; Mu, Ruipu; Gamagedara, Sanjeewa; Ma, Yinfa; Adams, Craig; Eichholz, Todd; Burken, Joel G; Shi, Honglan
2015-06-01
Perchlorate and bromate occurrence in drinking water causes health concerns due to their effects on thyroid function and carcinogenicity, respectively. The purpose of this study was threefold: (1) to advance a sensitive method for simultaneous rapid detection of perchlorate and bromate in drinking water system, (2) to systematically study the occurrence of these two contaminants in Missouri drinking water treatment systems, and (3) to examine effective sorbents for minimizing perchlorate in drinking water. A rapid high-performance ion exchange chromatography-tandem mass spectrometry (HPIC-MS/MS) method was advanced for simultaneous detection of perchlorate and bromate in drinking water. The HPIC-MS/MS method was rapid, required no preconcentration of the water samples, and had detection limits for perchlorate and bromate of 0.04 and 0.01 μg/L, respectively. The method was applied to determine perchlorate and bromate concentrations in total of 23 selected Missouri drinking water treatment systems during differing seasons. The water systems selected include different source waters: groundwater, lake water, river water, and groundwater influenced by surface water. The concentrations of perchlorate and bromate were lower than or near to method detection limits in most of the drinking water samples monitored. The removal of perchlorate by various adsorbents was studied. A cationic organoclay (TC-99) exhibited effective removal of perchlorate from drinking water matrices.
Detection of enteroviruses in untreated and treated drinking water supplies in South Africa.
Ehlers, M M; Grabow, W O K; Pavlov, D N
2005-06-01
Enteric viruses have been detected in many drinking water supplies all over the world. A meaningful number of these supplies were treated and disinfected according to internationally acceptable methods. In addition, counts of bacterial indicators (coliform bacteria and heterotrophic plate count organisms) in these water supplies were within limits generally recommended for treated drinking water and these findings have been supported by epidemiological data on infections associated with drinking water. The shortcomings of conventional treatment methods and indicator organisms to confirm the absence of enteric viruses from drinking water, was generally ascribed to the exceptional resistance of these viruses. In this study, the prevalence of enteroviruses detected from July 2000 to June 2002 in sewage, river-, borehole-, spring- and dam water as well as drinking water supplies treated and disinfected according to international specifications for the production of safe drinking water was analysed. A glass wool adsorption-elution technique was used to recover viruses from 10--20 l of sewage as well as environmental water samples, in the case of drinking water from more than 100 l. Recovered enteroviruses were inoculated onto two cell culture types (BGM and PLC/PRF/5 cells) for amplification of viral RNA with nested-PCR being used to detect the amplified viral RNA. Results from the study demonstrated the presence of enteroviruses in 42.5% of sewage and in 18.7% of treated drinking water samples. Furthermore, enteroviruses were detected in 28.5% of river water, in 26.7% of dam/spring water and in 25.3% of borehole water samples. The high prevalence of coxsackie B viruses found in this study suggested, that a potential health risk and a burden of disease constituted by these viruses might be meaningful. These findings indicated that strategies, other than end-point analysis of treated and disinfected drinking water supplies, may be required to ensure the production of drinking water that does not exceed acceptable health risks. More reliable approaches to ensure acceptable safety of drinking water supplies may be based on control by multiple-barrier principles from catchment to tap using hazard assessment and critical control point (HACCP) principles.
Amirhooshang, Alvandi; Ramin, Abiri; Ehsan, Aryan; Mansour, Rezaei; Shahram, Bagherabadi
2014-09-01
To gain a better understanding of transmission and selecting appropriate measures for preventing the spread of Helicobacter pylori, the aim of this study was to investigate the prevalence of H. pylori in drinking water samples in Kermanshah, Iran. Drinking water samples were collected from around Kermanshah and filtered through 0.45 μm nitrocellulose filters. The bacterial sediment was subjected to DNA extraction and polymerase chain reaction (PCR) for H. pylori detection using newly designed primers targeted at the conserved region of the ureC gene. The overall detection rates for H. pylori DNA in the water samples were 56% (66/118) with a frequency of 36% (25/70) in tap water samples and 85% (41/48) in wells. The detection limit was 50 bacteria per liter of filtered water and a pure H. pylori DNA copy number of 6 per reaction. Based on the evidence we may suggest that recontamination occurred and H. pylori entered into the water piping system through cracked or broken pipes or was released from established H. pylori biofilms on pipes. In conclusion, a high prevalence of H. pylori was detected in drinking water samples that strengthens the evidence of H. pylori transmission through drinking water.
Moreno-Mesonero, Laura; Moreno, Yolanda; Alonso, José Luis; Ferrús, M Antonia
2017-10-01
Helicobacter pylori is one of the most concerning emerging waterborne pathogens. It has been suggested that it could survive in water inside free-living amoebae (FLA), but nobody has studied this relationship in the environment yet. Thus, we aimed to detect viable H. pylori cells from inside FLA in water samples. Sixty-nine wastewater and 31 drinking water samples were collected. FLA were purified and identified by PCR and sequencing. For exclusively detecting H. pylori inside FLA, samples were exposed to sodium hypochlorite and assayed by specific PMA-qPCR, DVC-FISH and culture. FLA were detected in 38.7% of drinking water and 79.7% of wastewater samples, even after disinfection. In wastewater, Acanthamoeba spp. and members of the family Vahlkampfiidae were identified. In drinking water, Acanthamoeba spp. and Echinamoeba and/or Vermamoeba were present. In 39 (58.2%) FLA-positive samples, H. pylori was detected by PMA-qPCR. After DVC-FISH, 21 (31.3%) samples harboured viable H. pylori internalized cells. H. pylori was cultured from 10 wastewater samples. To our knowledge, this is the first report that demonstrates that H. pylori can survive inside FLA in drinking water and wastewater, strongly supporting the hypothesis that FLA could play an important role in the transmission of H. pylori to humans. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Investigation of Drinking Water Quality in Kosovo
Berisha, Fatlume; Goessler, Walter
2013-01-01
In the recent years, not much environmental monitoring has been conducted in the territory of Kosovo. This study represents the first comprehensive monitoring of the drinking water situation throughout most of the territory of Kosovo. We present the distribution of major and minor trace elements in drinking water samples from Kosovo. During our study we collected 951 samples from four different sources: private-bored wells; naturally flowing artesian water; pumped-drilled wells; and public water sources (tap water). The randomly selected drinking water samples were investigated by routine water analyses using inductively coupled plasma mass spectrometry (ICPMS) for 32 elements (Li, Be, B, Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Rb, Sr, Mo, Ag, Cd, Sn, Sb, Te, Ba, Tl, Pb, Bi, Th, U). Even though there are set guidelines for elemental exposure in drinking water worldwide, in developing countries, such as Kosovo, the lack of monitoring drinking water continues to be an important health concern. This study reports the concentrations of major and minor elements in the drinking water in Kosovo. Additionally, we show the variation of the metal concentration within different sources. Of the 15 regulated elements, the following five elements: Mn, Fe, Al, Ni, As, and U were the elements which most often exceeded the guidelines set by the EU and/or WHO. PMID:23509472
Dutta, Joydev; Chetia, Mridul; Misra, A K
2011-10-01
Contamination of drinking water by arsenic and other heavy metals and their related toxicology is a serious concern now-a-days. Millions of individual world-wide are suffering from the arsenic and other heavy metal related diseases due to the consumption of contaminated groundwater. 60 water samples from different sources of 6 small tea gardens of Sonitpur district were collected to study the potability of water for drinking purposes. The water samples collected from sources like tube wells, ring wells and ponds were analyzed for arsenic, heavy metals like iron, manganese and mercury with sodium, potassium, calcium, magnesium, pH, total hardness, chloride, fluoride and sulphate. Some drain water samples of the tea garden areas were also collected to analyze the above mentioned water parameters to see the contamination level. Experiments revealed that 78% samples of total collection had arsenic content above the permissible limit (0.01 ppm) of WHO guideline value for drinking water. The highest arsenic was observed 0.09 ppm at one sample of Gobindra Dahal tea garden of Gohpur sub division of Sonitpur district. 94% samples had contamination due to manganese 39% samples had iron and 44% samples had Hg. The water quality data was subjected to some statistical treatments like NDA, cluster analysis and pearson correlation to observe the distribution pattern of the different water quality parameters. A strong pearson correlation coefficient was observed between parameters-arsenic and manganese (0.865) and arsenic and mercury (0.837) at 0.01 level, indicated the same sources of drinking water contamination.
Boakye-Ansah, Akosua Sarpong; Ferrero, Giuliana; Rusca, Maria; van der Zaag, Pieter
2016-10-01
Over past decades strategies for improving access to drinking water in cities of the Global South have mainly focused on increasing coverage, while water quality has often been overlooked. This paper focuses on drinking water quality in the centralized water supply network of Lilongwe, the capital of Malawi. It shows how microbial contamination of drinking water is unequally distributed to consumers in low-income (unplanned areas) and higher-income neighbourhoods (planned areas). Microbial contamination and residual disinfectant concentration were measured in 170 water samples collected from in-house taps in high-income areas and from kiosks and water storage facilities in low-income areas between November 2014 and January 2015. Faecal contamination (Escherichia coli) was detected in 10% of the 40 samples collected from planned areas, in 59% of the 64 samples collected from kiosks in the unplanned areas and in 75% of the 32 samples of water stored at household level. Differences in water quality in planned and unplanned areas were found to be statistically significant at p < 0.05. Finally, the paper shows how the inequalities in microbial contamination of drinking water are produced by decisions both on the development of the water supply infrastructure and on how this is operated and maintained.
Ma, Liping; Li, Bing; Jiang, Xiao-Tao; Wang, Yu-Lin; Xia, Yu; Li, An-Dong; Zhang, Tong
2017-11-28
Excesses of antibiotic resistance genes (ARGs), which are regarded as emerging environmental pollutants, have been observed in various environments. The incidence of ARGs in drinking water causes potential risks to human health and receives more attention from the public. However, ARGs harbored in drinking water remain largely unexplored. In this study, we aimed at establishing an antibiotic resistome catalogue in drinking water samples from a wide range of regions and to explore the potential hosts of ARGs. A catalogue of antibiotic resistome in drinking water was established, and the host-tracking of ARGs was conducted through a large-scale survey using metagenomic approach. The drinking water samples were collected at the point of use in 25 cities in mainland China, Hong Kong, Macau, Taiwan, South Africa, Singapore and the USA. In total, 181 ARG subtypes belonging to 16 ARG types were detected with an abundance range of 2.8 × 10 -2 to 4.2 × 10 -1 copies of ARG per cell. The highest abundance was found in northern China (Henan Province). Bacitracin, multidrug, aminoglycoside, sulfonamide, and beta-lactam resistance genes were dominant in drinking water. Of the drinking water samples tested, 84% had a higher ARG abundance than typical environmental ecosystems of sediment and soil. Metagenomic assembly-based host-tracking analysis identified Acidovorax, Acinetobacter, Aeromonas, Methylobacterium, Methyloversatilis, Mycobacterium, Polaromonas, and Pseudomonas as the hosts of ARGs. Moreover, potential horizontal transfer of ARGs in drinking water systems was proposed by network and Procrustes analyses. The antibiotic resistome catalogue compiled using a large-scale survey provides a useful reference for future studies on the global surveillance and risk management of ARGs in drinking water. .
Iodoacid drinking water disinfection byproducts (DBPs) were recently uncovered in drinking water samples from source water with a high bromide/iodide concentration that was disinfected with chloramines. The purpose of this paper is to report the analytical chemical identification...
Drinking Water Quality of Water Vending Machines in Parit Raja, Batu Pahat, Johor
NASA Astrophysics Data System (ADS)
Hashim, N. H.; Yusop, H. M.
2016-07-01
An increased in demand from the consumer due to their perceptions on tap water quality is identified as one of the major factor on why they are mentally prepared to pay for the price of the better quality drinking water. The thought that filtered water quality including that are commercially available in the market such as mineral and bottled drinking water and from the drinking water vending machine makes they highly confident on the level of hygiene, safety and the mineral content of this type of drinking water. This study was investigated the vended water quality from the drinking water vending machine in eight locations in Parit Raja are in terms of pH, total dissolve solids (TDS), turbidity, mineral content (chromium, arsenic, cadmium, lead and nickel), total organic carbon (TOC), pH, total colony-forming units (CFU) and total coliform. All experiments were conducted in one month duration in triplicate samples for each sampling event. The results indicated the TDS and all heavy metals in eight vended water machines in Parit Raja area were found to be below the Food Act 1983, Regulation 360C (Standard for Packaged Drinking Water and Vended water, 2012) and Malaysian Drinking Water Quality, Ministry of Health 1983. No coliform was presence in any of the vended water samples. pH was found to be slightly excess the limit provided while turbidity was found to be 45 to 95 times more higher than 0.1 NTU as required by the Malaysian Food Act Regulation. The data obtained in this study would suggest the important of routine maintenance and inspection of vended water provider in order to maintain a good quality, hygienic and safety level of vended water.
Ross Schmidt, Heather C.
2004-01-01
Water-quality samples were collected from 20 surface-water sites and 11 ground-water sites on the Prairie Band Potawatomi Reservation in northeastern Kansas in an effort to describe existing water-quality conditions on the reservation and to compare water-quality conditions to results from previous reports published as part of a multiyear cooperative study with the Prairie Band Potawatomi Nation. Water is a valuable resource to the Prairie Band Potawatomi Nation as tribal members use the streams draining the reservation, Soldier, Little Soldier, and South Cedar Creeks, to fulfill subsistence hunting and fishing needs and as the tribe develops an economic base on the reservation. Samples were collected once at 20 surface-water monitoring sites during June 2001, and quarterly samples were collected at 5 of the 20 monitoring sites from May 2001 through August 2003. Ground-water-quality samples were collected once from seven wells and twice from four wells during April through May 2003 and in August 2003. Surface-water-quality samples collected from May through August 2001 were analyzed for physical properties, nutrients, pesticides, fecal indicator bacteria, and total suspended solids. In November 2001, an additional analysis for dissolved solids, major ions, trace elements, and suspended-sediment concentration was added for surface-water samples. Ground-water samples were analyzed for physical properties, dissolved solids, major ions, nutrients, trace elements, pesticides, and fecal indicator bacteria. Chemical oxygen demand and volatile organic compounds were analyzed in a sample from one monitoring well located near a construction and demolition landfill on the reservation. Previous reports published as a part of this ongoing study identified total phosphorus, triazine herbicides, and fecal coliform bacteria as exceeding their respective water-quality criteria in surface water on the reservation. Previous ground-water assessments identified occasional sample concentrations of dissolved solids, sodium, sulfate, boron, iron, and manganese as exceeding their respective water-quality criteria. Forty percent of the 65 surface-water samples analyzed for total phosphorus exceeded the aquatic-life goal of 0.1 mg/L (milligrams per liter) established by the U.S. Environmental Protection Agency (USEPA). Concentrations of dissolved solids and sodium occasionally exceeded USEPA Secondary Drinking-Water Regulations and Drinking-Water Advisory Levels, respectively. One of the 20 samples analyzed for atrazine concentrations exceeded the Maximum Contaminant Level (MCL) of 3.0 ?g/L (micrograms per liter) as an annual average established for drinking water by USEPA. A triazine herbicide screen was used on 63 surface-water samples, and triazine compounds were frequently detected. Triazine herbicides and their degradates are listed on the USEPA Contaminant Candidate List. Nitrite plus nitrate concentrations in two ground-water samples from one monitoring well exceeded the MCL of 10 mg/L established by USEPA for drinking water. Arsenic concentrations in two samples from one monitoring well also exceeded the proposed MCL of 10 ?g/L established by the USEPA for drinking water. Concentrations of dissolved solids and sulfate in some ground-water samples exceeded their respective Secondary Drinking-Water Regulations, and concentrations exceeded the taste threshold of the USEPA?s Drinking-Water Advisory Level for sodium. Consequently, in the event that ground water on the reservation is to be used as a drinking-water source, additional treatment may be necessary to remove excess dissolved solids, sulfate, and sodium.
Burnet, Jean-Baptiste; Ogorzaly, Leslie; Penny, Christian; Cauchie, Henry-Michel
2015-09-23
The occurrence of faecal pathogens in drinking water resources constitutes a threat to the supply of safe drinking water, even in industrialized nations. To efficiently assess and monitor the risk posed by these pathogens, sampling deserves careful design, based on preliminary knowledge on their distribution dynamics in water. For the protozoan pathogens Cryptosporidium and Giardia, only little is known about their spatial distribution within drinking water supplies, especially at fine scale. Two-dimensional distribution maps were generated by sampling cross-sections at meter resolution in two different zones of a drinking water reservoir. Samples were analysed for protozoan pathogens as well as for E. coli, turbidity and physico-chemical parameters. Parasites displayed heterogeneous distribution patterns, as reflected by significant (oo)cyst density gradients along reservoir depth. Spatial correlations between parasites and E. coli were observed near the reservoir inlet but were absent in the downstream lacustrine zone. Measurements of surface and subsurface flow velocities suggest a role of local hydrodynamics on these spatial patterns. This fine-scale spatial study emphasizes the importance of sampling design (site, depth and position on the reservoir) for the acquisition of representative parasite data and for optimization of microbial risk assessment and monitoring. Such spatial information should prove useful to the modelling of pathogen transport dynamics in drinking water supplies.
Fluoride in drinking water and human urine in Southern Haryana, India.
Singh, Bhupinder; Gaur, Shalini; Garg, V K
2007-06-01
The objective of this study was to determine the fluoride content in drinking water and urine samples of adolescent males aged 11-16 years living in Southern Haryana, India. A total of 30 drinking water sources in the studied habitations were assessed for fluoride contamination. Fluoride was estimated in the urine of 400 male children randomly selected from these habitations. The fluoride concentration in drinking water and urine samples was determined using USEPA fluoride ion selective electrode method. The mean fluoride concentration in drinking water samples of Pataudi, Haily Mandi and Harsaru villages was 1.68+/-0.35, 3.22+/-1.18 and 1.78+/-0.12 mg/l, respectively. The mean urinary fluoride concentration was 2.26+/-0.024 mg/l at Pataudi, 2.48+/-0.77 mg/l at Haily Mandi and 2.43+/-0.84 mg/l at Harsaru village. The higher fluoride levels in the urine of children may be associated to higher fluoride levels in drinking water. The accuracy of measurements was assessed with known addition method in water and urine. Mean fluoride recovery was 98.0 and 99.1% in water and urine. The levels obtained were reproducible with in +/-3% error limit.
Moreira, Maria João; Soares, Sónia; de Lurdes Delgado, Maria; Figueiredo, João; Silva, Elisabete; Castro, António; Cosa, José Manuel Correida Da
2010-01-01
Cryptosporidium and Giardia are 2 protozoan parasites responsible for waterborne diseases outbreaks worldwide. In order to assess the prevalence of these protozoans in drinking water samples in the northern part of Portugal and the risk of human infection, we have established a long term program aiming at pinpointing the sources of surface water, drinking water, and environmental contamination, working with the water-supply industry. Total 43 sources of drinking water samples were selected, and a total of 167 samples were analyzed using the Method 1623. Sensitivity assays regarding the genetic characterization by PCR and sequencing of the genes, 18S SSU rRNA, for Cryptosporidium spp. and β,-giardin for G. duodenalis were set in the laboratory. According to the defined criteria, molecular analysis was performed over 4 samples. Environmental stages of the protozoa were detected in 25.7% (43 out of 167) of the water samples, 8.4% (14 out of 167) with cysts of Giardia, 10.2% (17 out of 167) with oocysts of Cryptosporidium and 7.2% (12 out of 167) for both species. The mean concentrations were 0.1-12.7 oocysts of Cryptosporidium spp. per 10 L and 0.1-108.3 cysts of Giardia duodenalis per 10 L. Our results suggest that the efficiency in drinking water plants must be ameliorated in their efficiency in reducing the levels of contamination. We suggest the implementation of systematic monitoring programs for both protozoa. To authors' knowledge, this is the first report evaluating the concentration of environmental stages of Cryptosporidium and Giardia in drinking water samples in the northern part of Portugal. PMID:20333284
Analysis of the bacterial communities associated with different drinking water treatment processes.
Zeng, Dan-Ning; Fan, Zhen-Yu; Chi, Liang; Wang, Xia; Qu, Wei-Dong; Quan, Zhe-Xue
2013-09-01
A drinking water plant was surveyed to determine the bacterial composition of different drinking water treatment processes (DWTP). Water samples were collected from different processing steps in the plant (i.e., coagulation, sedimentation, sand filtration, and chloramine disinfection) and from distantly piped water. The samples were pyrosequensed using sample-specific oligonucleotide barcodes. The taxonomic composition of the microbial communities of different DWTP and piped water was dominated by the phylum Proteobacteria. Additionally, a large proportion of the sequences were assigned to the phyla Actinobacteria and Bacteroidetes. The piped water exhibited increasing taxonomic diversity, including human pathogens such as the Mycobacterium, which revealed a threat to the safety of drinking water. Surprisingly, we also found that a sister group of SAR11 (LD12) persisted throughout the DWTP, which was always detected in freshwater aquatic systems. Moreover, Polynucleobacter, Rhodoferax, and a group of Actinobacteria, hgcI clade, were relatively consistent throughout the processes. It is concluded that smaller-size microorganisms tended to survive against the present treatment procedure. More improvement should be made to ensure the long-distance transmission drinking water.
What's Wrong with the Tap? Examining Perceptions of Tap Water and Bottled Water at Purdue University
NASA Astrophysics Data System (ADS)
Saylor, Amber; Prokopy, Linda Stalker; Amberg, Shannon
2011-09-01
The environmental impacts of bottled water prompted us to explore drinking water choices at Purdue University, located in West Lafayette, IN. A random sample of 2,045 Purdue University students, staff, and faculty was invited to participate in an online survey. The survey assessed current behaviors as well as perceived barriers and benefits to drinking tap water versus bottled water. 677 surveys were completed for a response rate of 33.1%. We then conducted qualitative interviews with a purposive sample of university undergraduates ( n = 21) to obtain contextual insights into the survey results and the beliefs of individuals with a variety of drinking water preferences. This study revealed that women drink disproportionately more bottled water then men while undergraduate students drink more than graduate students, staff and faculty. The study also uncovered a widespread belief that recycling eliminates the environmental impacts of bottled water. Important barriers to drinking tap water at Purdue include: perceived risks from tap water and the perceived safety of bottled water, preferring the taste of bottled water, and the convenience of drinking bottled water. The qualitative interviews revealed that drinking water choices can be influenced by several factors—especially whether individuals trust tap water to be clean—but involve varying levels of complexity. The implications of these results for social marketing strategies to promote tap water are discussed.
Saylor, Amber; Prokopy, Linda Stalker; Amberg, Shannon
2011-09-01
The environmental impacts of bottled water prompted us to explore drinking water choices at Purdue University, located in West Lafayette, IN. A random sample of 2,045 Purdue University students, staff, and faculty was invited to participate in an online survey. The survey assessed current behaviors as well as perceived barriers and benefits to drinking tap water versus bottled water. 677 surveys were completed for a response rate of 33.1%. We then conducted qualitative interviews with a purposive sample of university undergraduates (n = 21) to obtain contextual insights into the survey results and the beliefs of individuals with a variety of drinking water preferences. This study revealed that women drink disproportionately more bottled water then men while undergraduate students drink more than graduate students, staff and faculty. The study also uncovered a widespread belief that recycling eliminates the environmental impacts of bottled water. Important barriers to drinking tap water at Purdue include: perceived risks from tap water and the perceived safety of bottled water, preferring the taste of bottled water, and the convenience of drinking bottled water. The qualitative interviews revealed that drinking water choices can be influenced by several factors-especially whether individuals trust tap water to be clean-but involve varying levels of complexity. The implications of these results for social marketing strategies to promote tap water are discussed.
Performance of Traditional and Molecular Methods for Detecting Biological Agents in Drinking Water
USGS Report - To reduce the impact from a possible bioterrorist attack on drinking-water supplies, analytical methods are needed to rapidly detect the presence of biological agents in water. To this end, 13 drinking-water samples were collected at 9 water-treatment plants in Ohio...
Microbial pathogens in source and treated waters from drinking water treatment plants in the US
An occurrence survey was conducted on selected pathogens in source and treated drinking water collected from 25 drinking water treatment plants (DWTPs) in the United States. Water samples were analyzed for the protozoa Giardia and Cryptosporidium (EPA Method 1623); the fungi Asp...
Faraji, Hossein; Mohammadi, Ali Akbar; Akbari-Adergani, Behrouz; Vakili Saatloo, Naimeh; Lashkarboloki, Gholamreza; Mahvi, Amir Hossein
2014-12-01
Fluoride is an essential element for human health. However, excess fluoride in drinking water may cause dental and/or skeletal fluorosis. Drinking water is the main route of fluoride intake. The aim of the present study was to measure fluoride levels in human breast milk collected from two regions of Golestan Province, northern Iran with different amount of fluoride concentration of drinking water in Bandar Gaz and Nokande cities and to correlate it with fluoride concentrations in drinking water used by mothers living in these two areas. Twenty samples of water were collected from seven drinking water wells during 2012 from Bandar Gaz and Nokande in Iran during 2012. Fluoride concentration of water samples was measured using SPADNS method. Sixty breast milk samples were collected from lactating mothers of Bandar Gaz and Nokande cities. Content in breast milk was determined using standard F ion-selective electrode. Spearman's rho correlation analysis was used to assess any possible relationship between fluoride levels in breast milk and in drinking water. The means and standard deviation for F concentration in breast milk and drinking water were 0.002188±0.00026224 ppm and 0.5850±0.22542 ppm, respectively. Analysis of data showed that the variables were not normally distributed so the Spearman correlation coefficient between two variables calculated (ρ S = 0.65) and it was significant (P=0.002). Fluoride concentration in water can directly act on its concentration in breast milk. We speculate that modifying F concentration in water can affect accessibility of fluoride for infants.
FARAJI, Hossein; MOHAMMADI, Ali Akbar; AKBARI-ADERGANI, Behrouz; VAKILI SAATLOO, Naimeh; LASHKARBOLOKI, Gholamreza; MAHVI, Amir Hossein
2014-01-01
Background: Fluoride is an essential element for human health. However, excess fluoride in drinking water may cause dental and/or skeletal fluorosis. Drinking water is the main route of fluoride intake. The aim of the present study was to measure fluoride levels in human breast milk collected from two regions of Golestan Province, northern Iran with different amount of fluoride concentration of drinking water in Bandar Gaz and Nokande cities and to correlate it with fluoride concentrations in drinking water used by mothers living in these two areas. Methods: Twenty samples of water were collected from seven drinking water wells during 2012 from Bandar Gaz and Nokande in Iran during 2012. Fluoride concentration of water samples was measured using SPADNS method. Sixty breast milk samples were collected from lactating mothers of Bandar Gaz and Nokande cities. Content in breast milk was determined using standard F ion-selective electrode. Spearman’s rho correlation analysis was used to assess any possible relationship between fluoride levels in breast milk and in drinking water. Results: The means and standard deviation for F concentration in breast milk and drinking water were 0.002188±0.00026224 ppm and 0.5850±0.22542 ppm, respectively. Analysis of data showed that the variables were not normally distributed so the Spearman correlation coefficient between two variables calculated (ρS = 0.65) and it was significant (P=0.002). Conclusion: Fluoride concentration in water can directly act on its concentration in breast milk. We speculate that modifying F concentration in water can affect accessibility of fluoride for infants. PMID:26171359
40 CFR 141.803 - Coliform sampling.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Coliform sampling. 141.803 Section 141...) NATIONAL PRIMARY DRINKING WATER REGULATIONS Aircraft Drinking Water Rule § 141.803 Coliform sampling. (a) Analytical methodology. Air carriers must follow the sampling and analysis requirements under this section...
40 CFR 141.803 - Coliform sampling.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Coliform sampling. 141.803 Section 141...) NATIONAL PRIMARY DRINKING WATER REGULATIONS Aircraft Drinking Water Rule § 141.803 Coliform sampling. (a) Analytical methodology. Air carriers must follow the sampling and analysis requirements under this section...
Biadglegne, Fantahun; Tessema, Belay; Kibret, Mulugeta; Abera, Bayeh; Huruy, Kahsay; Anagaw, Belay; Mulu, Andargachew
2009-10-01
The consumption of bottled drinking water is becoming increasing in Ethiopia. As a result there has been a growing concern about the chemical, physical and bacteriological quality of this product. Studies on the chemical, physical and bacteriological quality of bottled water is quite scarce in Ethiopia. This study was therefore aimed to assess the physicochemical and bacteriological qualities of three factories of bottled drinking water products produced in Amhara region. A Laboratory based comparative study was conducted to evaluate the physicochemical and bacteriological quality of three factories of bottled drinking water produced in Amhara region. Analysis on the quality of bottled drinking water from the sources, wholesalers and retailers were made with World Health Organization and Quality and Standards Authority of Ethiopia recommendations. Triplicate samples from three types of bottled drinking water were randomly collected and analyzed from June, 2006 to December, 2006. A total of 108 commercial bottled drinking water samples were analyzed. The result showed that except pH of factory A all the physicochemical parameters analyzed were with in the recommended limits. The pH value of factory A tested from sources is 5.3 and from wholesalers and retailers is 5.5 and 5.3, respectively, which is below the normal value set by World Health Organization (6.5-8.0) and Quality and Standards Authority of Ethiopia (6.0-8.5). Our analyses also demonstrated that 2 (16.7%) of the samples tested from sources and 1 (8.3%) from wholesalers of factory B were contaminated with total coliforms, where as 2 (16.7%) samples from retailers were also contaminated with total coliforms. On the other hand, 1 (8.3%) of the samples tested from wholesalers and 2 (16.7%) of the samples tested from retailers of factory A were also contaminated with total coliforms. Total coliforms were not detected from all samples of factory C, fecal coliforms were not also isolated from all samples. Percent of coefficient of variation showed that variations in total coliforms counts were significant with in the samples of both factory A and B (CV > 10%). Based on the recommended limit of World Health Organization and Quality and Standards Authority of Ethiopia, 7.4% of bottled drinking water sold commercially could be considered unfit for human consumption. Consumers of bottled water should be aware of this.
Alam, Noore; Corbett, Stephen J; Ptolemy, Helen C
2008-01-01
To assess the health risks associated with consumption of drinking water with elevated nickel concentration in a NSW country town named Sampleton. We used enHealth Guidelines (2002) as our risk assessment tool. Laboratory test results for nickel in water samples were compared with the Australian Drinking Water Guidelines 2004 and the World Health Organization's (WHO) Guidelines for Drinking Water Quality 2005. The mean nickel concentration in the drinking water samples tested over a 4-year period (2002-2005) was 0.03 mg/L (95% CI: 0.02-0.04). The average daily consumption of two litres of water by a 70-kg adult provided 0.06 mg (0.03 mg x 2) of nickel, which was only 7% of the lowest observed adverse effect level (LOAEL) based on experiments on nickel-sensitive people in a fasting state. The mean nickel concentration in drinking water appears to have no health risks for the inhabitants of Sampleton.
Verheyen, Jens; Timmen-Wego, Monika; Laudien, Rainer; Boussaad, Ibrahim; Sen, Sibel; Koc, Aynur; Uesbeck, Alexandra; Mazou, Farouk; Pfister, Herbert
2009-05-01
Diseases associated with viruses also found in environmental samples cause major health problems in developing countries. Little is known about the frequency and pattern of viral contamination of drinking water sources in these resource-poor settings. We established a method to analyze 10 liters of water from drinking water sources in a rural area of Benin for the presence of adenoviruses and rotaviruses. Overall, 541 samples from 287 drinking water sources were tested. A total of 12.9% of the sources were positive for adenoviruses and 2.1% of the sources were positive for rotaviruses at least once. Due to the temporary nature of viral contamination in drinking water sources, the probability of virus detection increased with the number of samples taken at one test site over time. No seasonal pattern for viral contaminations was found after samples obtained during the dry and wet seasons were compared. Overall, 3 of 15 surface water samples (20%) and 35 of 247 wells (14.2%) but also 2 of 25 pumps (8%) tested positive for adenoviruses or rotaviruses. The presence of latrines within a radius of 50 m in the vicinity of pumps or wells was identified as being a risk factor for virus detection. In summary, viral contamination was correlated with the presence of latrines in the vicinity of drinking water sources, indicating the importance of appropriate decision support systems in these socioeconomic prospering regions.
Campestrini, Iolana; Jardim, Wilson F
2017-01-15
The occurrence of illicit drugs in natural waters (surface, source and drinking water) is of interest due to the poor sanitation coverage and the high consumption of drugs of abuse in Brazil. In addition, little is known about the effects of these compounds on aquatic organisms and human health. This work investigates the occurrence of cocaine (COC) and its major metabolite, benzoylecgonine (BE), in surface and drinking water collected in rivers from a populated geographic area in Brazil. Surface water samples were collected in 22 locations from 16 different rivers and one dam from São Paulo State, whereas drinking water samples were collected in 5 locations. Samples were collected during the dry and wet season. Among the 34 surface water samples analyzed, BE was detected above the LOD in 94%, while COC in 85%. BE concentrations ranged from 10ngL -1 to 1019ngL -1 and COC concentrations from 6ngL -1 to 62ngL -1 . In the drinking water samples analyzed, BE and COC were found in 100% of the samples analyzed. For BE, concentrations were found in the range from 10ngL -1 to 652ngL -1 , and COC was quantified in concentrations between 6 and 22ngL -1 . These concentrations are one of the highest found in urban surface waters and may pose some risk to aquatic species. However, no human health risk was identified using the Hazard Quotient. BE is proposed as a reliable indicator of sewage contamination in both source and drinking water. Copyright © 2016 Elsevier B.V. All rights reserved.
Blokker, E J Mirjam; van de Ven, Bianca M; de Jongh, Cindy M; Slaats, P G G Nellie
2013-05-01
Coal tar and bitumen have been historically used to coat the insides of cast iron drinking water mains. Polycyclic aromatic hydrocarbons (PAHs) may leach from these coatings into the drinking water and form a potential health risk for humans. We estimated the potential human cancer risk from PAHs in coated cast iron water mains. In a Dutch nationwide study, we collected drinking water samples at 120 locations over a period of 17 days under various operational conditions, such as undisturbed operation, during flushing of pipes, and after a mains repair, and analyzed these samples for PAHs. We then estimated the health risk associated with an exposure scenario over a lifetime. During flushing, PAH levels frequently exceeded drinking water quality standards; after flushing, these levels dropped rapidly. After the repair of cast iron water mains, PAH levels exceeded the drinking water standards for up to 40 days in some locations. The estimated margin of exposure for PAH exposure through drinking water was > 10,000 for all 120 measurement locations, which suggests that PAH exposure through drinking water is of low concern for consumer health. However, factors that differ among water systems, such as the use of chlorination for disinfection, may influence PAH levels in other locations.
van de Ven, Bianca M.; de Jongh, Cindy M.
2013-01-01
Background: Coal tar and bitumen have been historically used to coat the insides of cast iron drinking water mains. Polycyclic aromatic hydrocarbons (PAHs) may leach from these coatings into the drinking water and form a potential health risk for humans. Objective: We estimated the potential human cancer risk from PAHs in coated cast iron water mains. Method: In a Dutch nationwide study, we collected drinking water samples at 120 locations over a period of 17 days under various operational conditions, such as undisturbed operation, during flushing of pipes, and after a mains repair, and analyzed these samples for PAHs. We then estimated the health risk associated with an exposure scenario over a lifetime. Results: During flushing, PAH levels frequently exceeded drinking water quality standards; after flushing, these levels dropped rapidly. After the repair of cast iron water mains, PAH levels exceeded the drinking water standards for up to 40 days in some locations. Conclusions: The estimated margin of exposure for PAH exposure through drinking water was > 10,000 for all 120 measurement locations, which suggests that PAH exposure through drinking water is of low concern for consumer health. However, factors that differ among water systems, such as the use of chlorination for disinfection, may influence PAH levels in other locations. PMID:23425894
Rao, Koppula Yadav; Anjum, Mohammad Shakeel; Reddy, Peddireddy Parthasarathi; Monica, Mocherla; Hameed, Irram Abbass; Sagar, Goje Vidya
2016-05-01
Humanity highly depends on water and its proper utilization and management. Water has various uses and its use as thirst quenching fluid is the most significant one. To assess physical, chemical, trace metal and bacterial parameters of various public and packaged drinking water samples collected from villages of Vikarabad mandal. Public and packaged drinking water samples collected were analysed for various parameters using American Public Health Association (APHA 18(th) edition 1992) guidelines and the results obtained were compared with bureau of Indian standards for drinking water. Descriptive statistics and Pearson's correlations were done. Among bottled water samples, magnesium in 1 sample was >30mg/litre, nickel in 2 samples was >0.02mg/litre. Among sachet water samples, copper in 1 sample was >0.05mg/litre, nickel in 2 samples was >0.02mg/litre. Among canned water samples, total hardness in 1 sample was >200mg/litre, magnesium in 3 samples was >30mg/litre. In tap water sample, calcium was >75mg/litre, magnesium was >30mg/litre, nickel was >0.02mg/litre. Among public bore well water samples, pH in 1 sample was >8.5, total dissolved solids in 17 samples was >500mg/litre, total alkalinity in 9 samples was >200mg/litre, total hardness in 20 samples was >200mg/litre, calcium in 14 samples was >75mg/litre, fluoride in 1 sample was >1mg/litre, magnesium in 14 samples was >30mg/litre. Total coliform was absent in bottled water, sachet water, canned water, tap water samples. Total Coliform was present but E. coli was absent in 4 public bore well water samples. The MPN per 100 ml in those 4 samples of public bore well water was 50. Physical, chemical, trace metal and bacterial parameters tested in present study showed values greater than acceptable limit for some samples, which can pose serious threat to consumers of that region.
van der Lugt, Wilco; Euser, Sjoerd M; Bruin, Jacob P; Den Boer, Jeroen W; Walker, Jimmy T; Crespi, Sebastian
2017-11-01
Legionella continues to be a problem in water systems. This study investigated the influence of different shower mixer faucets, and the influence of the presence of cast iron rust from a drinking water system on the growth of Legionella. The research is conducted using a model of a household containing four drinking water systems. All four systems, which contained standard plumbing components including copper pipes and a water heater, were filled with unchlorinated drinking water. Furthermore, all systems had three different shower faucets: (A) a stainless-steel faucet, (B) a brass-ceramic faucet, and (C) a brass thermostatic faucet. System 1 was solely filled with drinking water. System 2 was filled with drinking water, and cast iron rust. System 3 was contaminated with Legionella, and system 4 was contaminated with a Legionella, and cast iron rust. During a period of 34 months, 450 cold water samples were taken from 15 sample points of the four drinking water systems, and tested for Legionella according to the Dutch Standard (NEN 6265). In system 4, with added cast iron rust, the stainless-steel mixer faucet (A) had the highest concentration of Legionella at >4.3log10CFU/l (>20,000CFU/l) and was positive in 46.4% of samples. In contrast, the stainless-steel mixer faucet (A) of system 3 without cast iron rust showed 14.3% positive samples with a maximum concentration of 3.9log10CFU/l (7600CFU/l) Legionella. Additionally, both contaminated systems (3 and 4), with the brass thermostatic faucet (C), tested positive for Legionella. System 3 in 85.7% of the samples, with a maximum concentration of 4.38log10CFU/l (24,200CFU/l), and system 4 in 64.3% of the samples with a maximum concentration of 4.13log10CFU/l (13.400CFU/l). These results suggest that both the type of faucet used in a drinking water system and the presence or absence of cast iron rust influence the growth of Legionella. Copyright © 2017 Elsevier GmbH. All rights reserved.
Liu, Yu; Shen, Jimin; Chen, Zhonglin; Ren, Nanqi; Li, Yifan
2013-04-01
The levels of polycyclic aromatic hydrocarbons (PAHs) in the water and the sediment samples collected near the Mopanshan Reservoir-the most important drinking water resource of Harbin City in Northeast China-were examined. A total of 16 PAHs were concurrently identified and quantified in the three water bodies tested (Lalin River, Mangniu River, and Mopanshan Reservoir) and in the Mopanshan drinking water treatment plant during the high- and low water periods. The total PAH concentrations in the water and sediment samples ranged from 122.7 to 639.8 ng/L and from 89.1 to 749.0 ng/g dry weight, respectively. Similar spatial and temporal trends were also found for both samples. The lowest Σ16PAH concentration of the Mopanshan Reservoir was obtained during the high water period; by contrast, the Lalin River had the highest concentration during the low water period. The PAH profiles resembling the three water bodies, with high percentages of low-molecular weight PAHs and dominated by two- to three-ring PAHs (78.4 to 89.0%). Two of the molecular indices used reflected the possible PAH sources, indicating the main input from coal combustion, especially during the low water period. The conventional drinking water treatment operations resulted in a 20.7 to 67.0% decrease in the different-ringed PAHs in the Mopanshan-treated drinking water. These findings indicate that human activities negatively affect the drinking water resource. Without the obvious removal of the PAHs in the waterworks, drinking water poses certain potential health risks to people.
Niagolova, Nedialka; McElmurry, Shawn P; Voice, Thomas C; Long, David T; Petropoulos, Evangelos A; Havezov, Ivan; Chou, Karen; Ganev, Varban
2005-03-01
This study explored two hypotheses relating elevated concentrations of nitrogen species in drinking water and the disease Balkan Endemic Nephropathy (BEN). Drinking water samples were collected from a variety of water supplies in both endemic and non-endemic villages in the Vratza and Montana districts of Bulgaria. The majority of well water samples exceeded US drinking water standards for nitrate + nitrite. No statistically significant difference was observed for any of the nitrogen species between villages classified as endemic and non-endemic. Other constituents (sodium, potassium and chloride) known to be indicators of anthropogenic pollution were also found at elevated concentrations and all followed the order wells > springs > taps. This ordering coincides with the proximity of human influences to the water sources. Our results clearly establish an exposure pathway between anthropogenic activity and drinking water supplies, suggesting that the causative agent for BEN could result from surface contamination.
Hippelein, M; Matthiessen, A; Kolychalow, O; Ostendorp, G
2012-12-01
In rural areas of Schleswig-Holstein, Germany, drinking water for about 37 000 people is provided by approximately 10 000 small-scale water supplies. For those wells data on pesticides in the drinking water are rare. In this study 100 small-scale water supplies, mainly situated in areas with intensive agriculture, fruit-growing or tree-nursery, were selected and the drinking water was analysed for pesticides. In 68 samples at least one agent or metabolite was detectable, 38 samples showed multiple contaminations. The metabolites dimethylsulfamide and chloridazone-desphenyl were found in nearly 40% of the wells in concentrations up to 42 µg/L. Bentazone was the most frequently detected biocidal agent. These data show that pesticides in drinking water from small-scale supplies are a notable issue in preventive public health. © Georg Thieme Verlag KG Stuttgart · New York.
Dataset of producing and curing concrete using domestic treated wastewater
Asadollahfardi, Gholamreza; Delnavaz, Mohammad; Rashnoiee, Vahid; Fazeli, Alireza; Gonabadi, Navid
2015-01-01
We tested the setting time of cement, slump and compressive and tensile strength of 54 triplicate cubic samples and 9 cylindrical samples of concrete with and without a Super plasticizer admixture. We produced concrete samples made with drinking water and treated domestic wastewater containing 300, 400 kg/m3 of cement before chlorination and then cured concrete samples made with drinking water and treated wastewater. Second, concrete samples made with 350 kg/m3 of cement with a Superplasticizer admixture made with drinking water and treated wastewater and then cured with treated wastewater. The compressive strength of all the concrete samples made with treated wastewater had a high coefficient of determination with the control concrete samples. A 28-day tensile strength of all the samples was 96–100% of the tensile strength of the control samples and the setting time was reduced by 30 min which was consistent with a ASTMC191 standard. All samples produced and cured with treated waste water did not have a significant effect on water absorption, slump and surface electrical resistivity tests. However, compressive strength at 21 days of concrete samples using 300 kg/m3 of cement in rapid freezing and thawing conditions was about 11% lower than concrete samples made with drinking water. PMID:26862577
Dataset of producing and curing concrete using domestic treated wastewater.
Asadollahfardi, Gholamreza; Delnavaz, Mohammad; Rashnoiee, Vahid; Fazeli, Alireza; Gonabadi, Navid
2016-03-01
We tested the setting time of cement, slump and compressive and tensile strength of 54 triplicate cubic samples and 9 cylindrical samples of concrete with and without a Super plasticizer admixture. We produced concrete samples made with drinking water and treated domestic wastewater containing 300, 400 kg/m(3) of cement before chlorination and then cured concrete samples made with drinking water and treated wastewater. Second, concrete samples made with 350 kg/m(3) of cement with a Superplasticizer admixture made with drinking water and treated wastewater and then cured with treated wastewater. The compressive strength of all the concrete samples made with treated wastewater had a high coefficient of determination with the control concrete samples. A 28-day tensile strength of all the samples was 96-100% of the tensile strength of the control samples and the setting time was reduced by 30 min which was consistent with a ASTMC191 standard. All samples produced and cured with treated waste water did not have a significant effect on water absorption, slump and surface electrical resistivity tests. However, compressive strength at 21 days of concrete samples using 300 kg/m(3) of cement in rapid freezing and thawing conditions was about 11% lower than concrete samples made with drinking water.
Zhang, Huijuan; Zhu, Jiping; Aranda-Rodriguez, Rocio; Feng, Yong-Lai
2011-11-07
Haloacetic acids (HAAs) are by-products of the chlorination of drinking water containing natural organic matter and bromide. A simple and sensitive method has been developed for determination of ten HAAs in drinking water. The pressure-assisted electrokinetic injection (PAEKI), an on-line enrichment technique, was employed to introduce the sample into a capillary electrophoresis (CE)-electrospray ionization-tandem mass spectrometry system (ESI-MS/MS). HAAs were monitored in selected reaction monitoring mode. With 3 min of PAEKI time, the ten major HAAs (HAA10) in drinking water were enriched up to 20,000-fold into the capillary without compromising resolution. A simple solid phase clean-up method has been developed to eliminate the influence of ionic matrices from drinking water on PAEKI. Under conditions optimized for mass spectrometry, PAEKI and capillary electrophoresis, detection limits defined as three times ratio of signal to noise have been achieved in a range of 0.013-0.12 μg L(-1) for ten HAAs in water sample. The overall recoveries for all ten HAAs in drinking water samples were between 76 and 125%. Six HAAs including monochloro- (MCAA), dichloro- (DCAA), trichloro- (TCAA), monobromo- (MBAA), bromochloro- (BCAA), and bromodichloroacetic acids (BDCAA) were found in tap water samples collected. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.
(238)U and total radioactivity in drinking waters in Van province, Turkey.
Selçuk Zorer, Özlem; Dağ, Beşir
2014-06-01
As part of the national survey to evaluate natural radioactivity in the environment, concentration levels of total radioactivity and natural uranium have been analysed in drinking water samples. A survey to study natural radioactivity in drinking waters was carried out in the Van province, East Turkey. Twenty-three samples of drinking water were collected in the Van province and analysed for total α, total β and (238)U activity. The total α and total β activities were counted by using the α/β counter of the multi-detector low background system (PIC MPC-9604), and the (238)U concentrations were determined by inductively coupled plasma-mass spectrometry (Thermo Scientific Element 2). The samples were categorised according to origin: tap, spring or mineral supply. The activity concentrations for total α were found to range from 0.002 to 0.030 Bq L(-1) and for total β from 0.023 to 1.351 Bq L(-1). Uranium concentrations ranging from 0.562 to 14.710 μg L(-1) were observed in drinking waters. Following the World Health Organisation rules, all investigated waters can be used as drinking water.
Laboratory investigation of drinking water sources of Kangra, Himachal Pradesh.
Thakur, S D; Panda, A K
2012-06-01
A total of 70 drinking water sources including piped water supply (n = 36), ground water sources (n = 24, hand pumps and bore wells) and natural water sources (n = 10, springs/step-wells) from various parts of district Kangra, Himachal Pradesh were investigated for their suitability for drinking purpose by presumptive coliform test. Three samples were collected from each source during different parts of the year. Piped water sources (91.7%) were most contaminated followed by natural water sources (90%) and ground water sources (62.5%). 70.5% of the total water samples (n = 210) were positive for coliforms. All the three samples from 8.3% (n = 3), 37.5% (n = 9) and 10% (n = 1) piped water, ground water and natural sources respectively, were negative for coliform organisms. A variety of organisms including Proteus, Klebsiella, Citrobacter, Escherichia coli (E. coli), Pasteurella, Enterobacter and Serratia liquefaciens were isolated from water samples positive for coliforms in presumptive coliform test. Thermo-tolerant coliform organisms; Escherichia coli, Citrobacter, Klebsiella and Enterobacter were 71.2% (n = 52) of the total bacterial isolations. These findings suggest absence of adequate treatment and disinfection of the water sources supplying drinking water in district Kangra.
ASBESTOS IN DRINKING WATER PERFORMANCE EVALUATION STUDIES
Performance evaluations of laboratories testing for asbestos in drinking water according to USEPA Test Method 100.1 or 100.2 are complicated by the difficulty of providing stable sample dispersions of asbestos in water. Reference samples of a graduated series of chrysotile asbes...
ASBESTOS IN DRINKING WATER PERFORMANCE EVALUATION STUDIES
Performance evaluations of laboratories testing for asbestos in drinking water according to USEPA Test Method 100.1 or 100.2 are complicated by the difficulty of providing stable sample dispersions of asbestos in water. Reference samples of a graduated series of chrysotile asbest...
The microbial quality of drinking water in Manonyane community: Maseru District (Lesotho).
Gwimbi, P
2011-09-01
Provision of good quality household drinking water is an important means of improving public health in rural communities especially in Africa; and is the rationale behind protecting drinking water sources and promoting healthy practices at and around such sources. To examine the microbial content of drinking water from different types of drinking water sources in Manonyane community of Lesotho. The community's hygienic practices around the water sources are also assessed to establish their contribution to water quality. Water samples from thirty five water sources comprising 22 springs, 6 open wells, 6 boreholes and 1 open reservoir were assessed. Total coliform and Escherichia coli bacteria were analyzed in water sampled. Results of the tests were compared with the prescribed World Health Organization desirable limits. A household survey and field observations were conducted to assess the hygienic conditions and practices at and around the water sources. Total coliform were detected in 97% and Escherichia coli in 71% of the water samples. The concentration levels of Total coliform and Escherichia coli were above the permissible limits of the World Health Organization drinking water quality guidelines in each case. Protected sources had significantly less number of colony forming units (cfu) per 100 ml of water sample compared to unprotected sources (56% versus 95%, p < 0.05). Similarly in terms of Escherichia coli, protected sources had less counts (7% versus 40%, p < 0.05) compared with those from unprotected sources. Hygiene conditions and practices that seemed to potentially contribute increased total coliform and Escherichia coli counts included non protection of water sources from livestock faeces, laundry practices, and water sources being down slope of pit latrines in some cases. These findings suggest source water protection and good hygiene practices can improve the quality of household drinking water where disinfection is not available. The results also suggest important lines of inquiry and provide support and input for environmental and public health programmes, particularly those related to water and sanitation.
Xu, Jiajiong; Tang, Wei; Ma, Jun; Wang, Hong
2017-07-01
Drinking water treatment processes remove undesirable chemicals and microorganisms from source water, which is vital to public health protection. The purpose of this study was to investigate the effects of treatment processes and configuration on the microbiome by comparing microbial community shifts in two series of different treatment processes operated in parallel within a full-scale drinking water treatment plant (DWTP) in Southeast China. Illumina sequencing of 16S rRNA genes of water samples demonstrated little effect of coagulation/sedimentation and pre-oxidation steps on bacterial communities, in contrast to dramatic and concurrent microbial community shifts during ozonation, granular activated carbon treatment, sand filtration, and disinfection for both series. A large number of unique operational taxonomic units (OTUs) at these four treatment steps further illustrated their strong shaping power towards the drinking water microbial communities. Interestingly, multidimensional scaling analysis revealed tight clustering of biofilm samples collected from different treatment steps, with Nitrospira, the nitrite-oxidizing bacteria, noted at higher relative abundances in biofilm compared to water samples. Overall, this study provides a snapshot of step-to-step microbial evolvement in multi-step drinking water treatment systems, and the results provide insight to control and manipulation of the drinking water microbiome via optimization of DWTP design and operation.
An occurrence survey was conducted on selected pathogens in source and treated drinking water collected from 25 drinking water treatment plants (DWTPs) in the United States. Water samples were analyzed for the protozoa Giardia and Cryptosporidium (EPA Method 1623); the fungi Aspe...
Boone, J Scott; Guan, Bing; Vigo, Craig; Boone, Tripp; Byrne, Christian; Ferrario, Joseph
2014-06-06
A trace analytical method was developed for the determination of seventeen specific perfluorinated chemicals (PFCs) in environmental and drinking waters. The objectives were to optimize an isotope-dilution method to increase the precision and accuracy of the analysis of the PFCs and to eliminate the need for matrix-matched standards. A 250 mL sample of environmental or drinking water was buffered to a pH of 4, spiked with labeled surrogate standards, extracted through solid phase extraction cartridges, and eluted with ammonium hydroxide in methyl tert-butyl ether: methanol solution. The sample eluents were concentrated to volume and analyzed by liquid chromatography/tandem mass spectrometry (LC-MS/MS). The lowest concentration minimal reporting levels (LCMRLs) for the seventeen PFCs were calculated and ranged from 0.034 to 0.600 ng/L for surface water and from 0.033 to 0.640 ng/L for drinking water. The relative standard deviations (RSDs) for all compounds were <20% for all concentrations above the LCMRL. The method proved effective and cost efficient and addressed the problems with the recovery of perfluorobutanoic acid (PFBA) and other short chain PFCs. Various surface water and drinking water samples were used during method development to optimize this method. The method was used to evaluate samples from the Mississippi River at New Orleans and drinking water samples from a private residence in that same city. The method was also used to determine PFC contamination in well water samples from a fire training area where perfluorinated foams were used in training to extinguish fires. Published by Elsevier B.V.
Biological instability in a chlorinated drinking water distribution network.
Nescerecka, Alina; Rubulis, Janis; Vital, Marius; Juhna, Talis; Hammes, Frederik
2014-01-01
The purpose of a drinking water distribution system is to deliver drinking water to the consumer, preferably with the same quality as when it left the treatment plant. In this context, the maintenance of good microbiological quality is often referred to as biological stability, and the addition of sufficient chlorine residuals is regarded as one way to achieve this. The full-scale drinking water distribution system of Riga (Latvia) was investigated with respect to biological stability in chlorinated drinking water. Flow cytometric (FCM) intact cell concentrations, intracellular adenosine tri-phosphate (ATP), heterotrophic plate counts and residual chlorine measurements were performed to evaluate the drinking water quality and stability at 49 sampling points throughout the distribution network. Cell viability methods were compared and the importance of extracellular ATP measurements was examined as well. FCM intact cell concentrations varied from 5×10(3) cells mL(-1) to 4.66×10(5) cells mL(-1) in the network. While this parameter did not exceed 2.1×10(4) cells mL(-1) in the effluent from any water treatment plant, 50% of all the network samples contained more than 1.06×10(5) cells mL(-1). This indisputably demonstrates biological instability in this particular drinking water distribution system, which was ascribed to a loss of disinfectant residuals and concomitant bacterial growth. The study highlights the potential of using cultivation-independent methods for the assessment of chlorinated water samples. In addition, it underlines the complexity of full-scale drinking water distribution systems, and the resulting challenges to establish the causes of biological instability.
Biological Instability in a Chlorinated Drinking Water Distribution Network
Nescerecka, Alina; Rubulis, Janis; Vital, Marius; Juhna, Talis; Hammes, Frederik
2014-01-01
The purpose of a drinking water distribution system is to deliver drinking water to the consumer, preferably with the same quality as when it left the treatment plant. In this context, the maintenance of good microbiological quality is often referred to as biological stability, and the addition of sufficient chlorine residuals is regarded as one way to achieve this. The full-scale drinking water distribution system of Riga (Latvia) was investigated with respect to biological stability in chlorinated drinking water. Flow cytometric (FCM) intact cell concentrations, intracellular adenosine tri-phosphate (ATP), heterotrophic plate counts and residual chlorine measurements were performed to evaluate the drinking water quality and stability at 49 sampling points throughout the distribution network. Cell viability methods were compared and the importance of extracellular ATP measurements was examined as well. FCM intact cell concentrations varied from 5×103 cells mL−1 to 4.66×105 cells mL−1 in the network. While this parameter did not exceed 2.1×104 cells mL−1 in the effluent from any water treatment plant, 50% of all the network samples contained more than 1.06×105 cells mL−1. This indisputably demonstrates biological instability in this particular drinking water distribution system, which was ascribed to a loss of disinfectant residuals and concomitant bacterial growth. The study highlights the potential of using cultivation-independent methods for the assessment of chlorinated water samples. In addition, it underlines the complexity of full-scale drinking water distribution systems, and the resulting challenges to establish the causes of biological instability. PMID:24796923
Myint, Su Latt Tun; Myint, Thuzar; Aung, Wah Wah; Wai, Khin Thet
2015-01-01
A major health consequence of rapid population growth in urban areas is the increased pressure on existing overstretched water and sanitation services. This study of an expanding periurban neighbourhood of Yangon Region, Myanmar, aimed to ascertain the prevalence of acute diarrhoea in children under 5 years; to identify household sources of drinking-water; to describe purification and storage practices; and to assess drinking-water contamination at point-of-use. A survey of the prevalence of acute diarrhoea in children under 5 years was done in 211 households in February 2013; demographic data were also collected, along with data and details of sources of drinking water, water purification, storage practices and waste disposal. During March-August, a subset of 112 households was revisited to collect drinking water samples. The samples were analysed by the multiple tube fermentation method to count thermotolerant (faecal) coliforms and there was a qualitative determination of the presence of Escherichia coli. Acute diarrhoea in children under 5 years was reported in 4.74% (10/211, 95% CI: 3.0-9.0) of households within the past two weeks. More than half of the households used insanitary pit latrines and 36% disposed of their waste into nearby streams and ponds. Improved sources of drinking water were used, mainly the unchlorinated ward reservoir, a chlorinated tube well or purified bottled water. Nearly a quarter of households never used any method for drinking-water purification. Ninety-four per cent (105/112) of water samples were contaminated with thermotolerant (faecal) coliforms, ranging from 2.2 colony-forming units (CFU)/100 mL (21.4%) to more than 1000 CFU/100 mL (60.7%). Of faecal (thermotolerant)-coliform-positive water samples, 70% (47/68) grew E. coli. The prevalence of acute diarrhoea reported for children under 5 years was high and a high level of drinking-water contamination was detected, though it was unclear whether this was due to contamination at source or at point-of-use. Maintenance of drinking-water quality in study households is complex. Further research is crucial to prove the cost effectiveness in quality improvement of drinking water at point-of-use in resource-limited settings. In addition, empowerment of householders to use measures of treating water by boiling, filtration or chlorination, and safe storage with proper handling is essential.
Malassa, Husam; Al-Rimawi, Fuad; Al-Khatib, Mahmoud; Al-Qutob, Mutaz
2014-10-01
Rainwater samples harvested for drinking from the west part of Hebron (south of West Bank in Palestine), the largest city in the West Bank, were analyzed for the content of different trace heavy metals (Cr, Mn, Co, Ni, Cu, Zn, Mo, Ag, Cd, Bi, and Pb) by inductively coupled plasma mass spectrometry (ICP-MS). This study was conducted to determine the water quality of harvested rainwater used for drinking of south West Bank (case study, Hebron area). A total of 44 water samples were collected in November 2012 from 44 house cisterns used to collect rainwater from the roofs of houses. The samples were analyzed for their pH, temperature, electrical conductivity, total dissolved solids, and different heavy metal contents. The pH of all water samples was within the US Environmental Protection Agency limits (6.5-8.5), while some water samples were found to exceed the allowed WHO limit for total dissolved solids (TDSs) in drinking water. Results showed that concentrations of the heavy metals vary significantly between the 44 samples. Results also showed that the concentration of five heavy metals (Cr, Mn, Ni, Ag, and Pb) is higher than the WHO limits for these heavy metals in drinking water. Overall, our findings revealed that harvested rainwater used for drinking of this part of south West Bank is contaminated with heavy metals that might affect human health.
Li, Zekai; Chang, Fangyu; Shi, Peng; Chen, Xun; Yang, Feng; Zhou, Qing; Pan, Yang; Li, Aimin
2018-09-01
Semi-volatile organic compounds (SVOCs) in drinking water have been considered a severe threat to public health worldwide. However, SVOC contamination and the associated human health risks of the drinking water from cities along tributaries of the Yangtze River and Huaihe River in China have been seldom reported. Here, we focused on the occurrence and distribution of a series of SVOCs, mainly including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and phthalate esters (PAEs), in drinking water of this region. In brief, a total of 31 SVOCs were detectable in all of the drinking water samples, and the total concentrations ranged from 0.92 ng/L to 266.16 ng/L in March and from 24.82 ng/L to 643.93 ng/L in August, with the highest concentrations in Dongtai (DT) and Xinghua (XH), respectively. Spatial and temporal differences of the SVOCs were also observed in drinking water samples, demonstrating the linkage between pollutant profiles and geographical locations, as well as exogenous wastewater discharge. Moreover, PAEs occupied 79.17-100.00% of the total concentrations of SVOCs in drinking water samples collected from the tributaries of the Yangtze River in March, while OCPs were the predominant SVOCs in most of drinking water samples from the tributaries of the Huaihe River. The human health assessment indicated that SVOCs posed negligible non-carcinogenic risks, but residents living in DT, Dafeng (DF), Chengdong (CD), Guanyun (GY) and Lianyungang (LY) may suffer carcinogenic health risks, which could be mainly induced by benzene hexachloride and heptachlor in August. Copyright © 2018 Elsevier Ltd. All rights reserved.
Contribution of Drinking Water Softeners to Daily Phosphate Intake in Slovenia
Jereb, Gregor; Poljšak, Borut; Eržen, Ivan
2017-01-01
The cumulative phosphate intake in a typical daily diet is high and, according to several studies, already exceeds recommended values. The exposure of the general population to phosphorus via drinking water is generally not known. One of the hidden sources of phosphorus in a daily diet is sodium polyphosphate, commonly used as a drinking water softener. In Slovenia, softening of drinking water is carried out exclusively within the internal (household) drinking water supply systems to prevent the accumulation of limescale. The aim of the study was to determine the prevalence of sodium phosphates in the drinking water in Slovenia in different types of buildings, to determine residents’ awareness of the presence of chemical softeners in their drinking water, and to provide an exposure assessment on the phosphorus intake from drinking water. In the current study, the presence of phosphates in the samples of drinking water was determined using a spectrophotometric method with ammonium molybdate. In nearly half of the samples, the presence of phosphates as water softeners was confirmed. The measured concentrations varied substantially from 0.2 mg PO4/L to 24.6 mg PO4/L. Nearly 70% of the respondents were not familiar with the exact data on water softening in their buildings. It follows that concentrations of added phosphates should be controlled and the consumers should be informed of the added chemicals in their drinking water. The health risks of using sodium polyphosphate as a drinking water softener have not been sufficiently investigated and assessed. It is highly recommended that proper guidelines and regulations are developed and introduced to protect human health from adverse effects of chemicals in water intended for human consumption. PMID:28984825
Contribution of Drinking Water Softeners to Daily Phosphate Intake in Slovenia.
Jereb, Gregor; Poljšak, Borut; Eržen, Ivan
2017-10-06
The cumulative phosphate intake in a typical daily diet is high and, according to several studies, already exceeds recommended values. The exposure of the general population to phosphorus via drinking water is generally not known. One of the hidden sources of phosphorus in a daily diet is sodium polyphosphate, commonly used as a drinking water softener. In Slovenia, softening of drinking water is carried out exclusively within the internal (household) drinking water supply systems to prevent the accumulation of limescale. The aim of the study was to determine the prevalence of sodium phosphates in the drinking water in Slovenia in different types of buildings, to determine residents' awareness of the presence of chemical softeners in their drinking water, and to provide an exposure assessment on the phosphorus intake from drinking water. In the current study, the presence of phosphates in the samples of drinking water was determined using a spectrophotometric method with ammonium molybdate. In nearly half of the samples, the presence of phosphates as water softeners was confirmed. The measured concentrations varied substantially from 0.2 mg PO4/L to 24.6 mg PO4/L. Nearly 70% of the respondents were not familiar with the exact data on water softening in their buildings. It follows that concentrations of added phosphates should be controlled and the consumers should be informed of the added chemicals in their drinking water. The health risks of using sodium polyphosphate as a drinking water softener have not been sufficiently investigated and assessed. It is highly recommended that proper guidelines and regulations are developed and introduced to protect human health from adverse effects of chemicals in water intended for human consumption.
Chandio, Tasawar Ali; Khan, Muhammad Nasiruddin; Sarwar, Anila
2015-08-01
The fluoride level in drinking water is an important parameter and has to be controlled in order to prevent dental and skeletal fluorosis. The objective of this study is to assess fluoride content and other water quality parameters in the samples taken from open wells, tube wells, and karezes of Mastung, Mangochar, and Pringabad areas of Balochistan province. A total number of 96 drinking water samples out of 150 were found unfit for human consumption. Area-wise analysis show that the samples from 39 sites from Mastung, 12 from Mangochar, and 13 from Pringabad were found in the risk of dental fluorosis of mild to severe nature. However, 12 sampling sites from Mastung, 8 from Mangochar, and 2 from Pringabad were identified as the risks of mottling and skeletal fluorosis or other bone abnormalities. The highest concentration of F(-) has been observed as 14 mg L(-1) in Mastung. Correlation analysis show that fluoride solubility in drinking water is pH dependent; and the salts of Ca(2+), Na(+), K(+), Cl(-), and SO4(2-) contribute to attain the favorable pH for dissolution of fluoride compounds in drinking water. Principal component analysis shows that the geochemical composition of the rocks is only responsible for groundwater contamination. On the basis of the results, defloridation of the identified sampling sites and continuous monitoring of drinking water at regular basis is recommended at government level to avoid further fluorosis risks.
Hill, Vincent R; Narayanan, Jothikumar; Gallen, Rachel R; Ferdinand, Karen L; Cromeans, Theresa; Vinjé, Jan
2015-05-26
Drinking and environmental water samples contain a diverse array of constituents that can interfere with molecular testing techniques, especially when large volumes of water are concentrated to the small volumes needed for effective molecular analysis. In this study, a suite of enteric viruses, bacteria, and protozoan parasites were seeded into concentrated source water and finished drinking water samples, in order to investigate the relative performance of nucleic acid extraction techniques for molecular testing. Real-time PCR and reverse transcription-PCR crossing threshold (CT) values were used as the metrics for evaluating relative performance. Experimental results were used to develop a guanidinium isothiocyanate-based lysis buffer (UNEX buffer) that enabled effective simultaneous extraction and recovery of DNA and RNA from the suite of study microbes. Procedures for bead beating, nucleic acid purification, and PCR facilitation were also developed and integrated in the protocol. The final lysis buffer and sample preparation procedure was found to be effective for a panel of drinking water and source water concentrates when compared to commercial nucleic acid extraction kits. The UNEX buffer-based extraction protocol enabled PCR detection of six study microbes, in 100 L finished water samples from four drinking water treatment facilities, within three CT values (i.e., within 90% difference) of the reagent-grade water control. The results from this study indicate that this newly formulated lysis buffer and sample preparation procedure can be useful for standardized molecular testing of drinking and environmental waters.
Hill, Vincent R.; Narayanan, Jothikumar; Gallen, Rachel R.; Ferdinand, Karen L.; Cromeans, Theresa; Vinjé, Jan
2015-01-01
Drinking and environmental water samples contain a diverse array of constituents that can interfere with molecular testing techniques, especially when large volumes of water are concentrated to the small volumes needed for effective molecular analysis. In this study, a suite of enteric viruses, bacteria, and protozoan parasites were seeded into concentrated source water and finished drinking water samples, in order to investigate the relative performance of nucleic acid extraction techniques for molecular testing. Real-time PCR and reverse transcription-PCR crossing threshold (CT) values were used as the metrics for evaluating relative performance. Experimental results were used to develop a guanidinium isothiocyanate-based lysis buffer (UNEX buffer) that enabled effective simultaneous extraction and recovery of DNA and RNA from the suite of study microbes. Procedures for bead beating, nucleic acid purification, and PCR facilitation were also developed and integrated in the protocol. The final lysis buffer and sample preparation procedure was found to be effective for a panel of drinking water and source water concentrates when compared to commercial nucleic acid extraction kits. The UNEX buffer-based extraction protocol enabled PCR detection of six study microbes, in 100 L finished water samples from four drinking water treatment facilities, within three CT values (i.e., within 90% difference) of the reagent-grade water control. The results from this study indicate that this newly formulated lysis buffer and sample preparation procedure can be useful for standardized molecular testing of drinking and environmental waters. PMID:26016775
Psutka, Rebecca; Peletz, Rachel; Michelo, Sandford; Kelly, Paul; Clasen, Thomas
2011-07-15
Boiling is the most common method of disinfecting water in the home and the benchmark against which other point-of-use water treatment is measured. In a six-week study in peri-urban Zambia, we assessed the microbiological effectiveness and potential cost of boiling among 49 households without a water connection who reported "always" or "almost always" boiling their water before drinking it. Source and household drinking water samples were compared weekly for thermotolerant coliforms (TTC), an indicator of fecal contamination. Demographics, costs, and other information were collected through surveys and structured observations. Drinking water samples taken at the household (geometric mean 7.2 TTC/100 mL, 95% CI, 5.4-9.7) were actually worse in microbiological quality than source water (geometric mean 4.0 TTC/100 mL, 95% CI, 3.1-5.1) (p < 0.001), although both are relatively low levels of contamination. Only 60% of drinking water samples were reported to have actually been boiled at the time of collection from the home, suggesting over-reporting and inconsistent compliance. However, these samples were of no higher microbiological quality. Evidence suggests that water quality deteriorated after boiling due to lack of residual protection and unsafe storage and handling. The potential cost of fuel or electricity for boiling was estimated at 5% and 7% of income, respectively. In this setting where microbiological water quality was relatively good at the source, safe-storage practices that minimize recontamination may be more effective in managing the risk of disease from drinking water at a fraction of the cost of boiling.
Occurrence of nontuberculous mycobacteria in environmental samples.
Covert, T C; Rodgers, M R; Reyes, A L; Stelma, G N
1999-06-01
Nontuberculous mycobacteria (NTM) are a major cause of opportunistic infection in immunocompromised hosts. Because there is no evidence of person-to-person transmission and NTM have been found in drinking water, the environment is considered a likely source of infection. In this study the widespread occurrence of NTM was examined in drinking water, bottled water, and ice samples. A total of 139 samples were examined for NTM by a membrane filtration culture technique followed by PCR amplification and 16S rRNA sequence determination to identify the isolates. NTM were not detected in bottled water or cisterns but were detected in 54% of the ice samples and 35% of the public drinking-water samples from 21 states. The most frequently occurring isolate was M. mucogenicum (formerly referred to as an M. chelonae-like organism).
Molybdenum distributions and variability in drinking water from England and Wales.
Smedley, P L; Cooper, D M; Lapworth, D J
2014-10-01
An investigation has been carried out of molybdenum in drinking water from a selection of public supply sources and domestic taps across England and Wales. This was to assess concentrations in relation to the World Health Organization (WHO) health-based value for Mo in drinking water of 70 μg/l and the decision to remove the element from the list of formal guideline values. Samples of treated drinking water from 12 water supply works were monitored up to four times over an 18-month period, and 24 domestic taps were sampled from three of their supply areas. Significant (p < 0.05) differences were apparent in Mo concentration between sources. Highest concentrations were derived from groundwater from a sulphide-mineralised catchment, although concentrations were only 1.5 μg/l. Temporal variability within sites was small, and no seasonal effects (p > 0.05) were detected. Tap water samples collected from three towns (North Wales, the English Midlands, and South East England) supplied uniquely by upland reservoir water, river water, and Chalk groundwater, respectively, also showed a remarkable uniformity in Mo concentrations at each location. Within each, the variability was very small between houses (old and new), between pre-flush and post-flush samples, and between the tap water and respective source water samples. The results indicate that water distribution pipework has a negligible effect on supplied tap water Mo concentrations. The findings contrast with those for Cu, Zn, Ni, Pb, and Cd, which showed significant differences (p < 0.05) in concentrations between pre-flush and post-flush tap water samples. In two pre-flush samples, concentrations of Ni or Pb were above drinking water limits, although in all cases, post-flush waters were compliant. The high concentrations, most likely derived from metal pipework in the domestic distribution system, accumulated during overnight stagnation. The concentrations of Mo observed in British drinking water, in all cases less than 2 μg/l, were more than an order of magnitude below the WHO health-based value and suggest that Mo is unlikely to pose a significant health or water supply problem in England and Wales.
Machado, Kelly C; Grassi, Marco Tadeu; Vidal, Cristiane; Pescara, Igor C; Jardim, Wilson F; Fernandes, Andreia N; Sodré, Fernando F; Almeida, Fernanda V; Santana, Joyce S; Canela, Maria Cristina; Nunes, Camila R O; Bichinho, Kátia M; Severo, Flaviana J R
2016-12-01
This is the first nationwide survey of emerging contaminants in Brazilian waters. One hundred drinking water samples were investigated in 22 Brazilian state capitals. In addition, seven source water samples from two of the most populous regions of the country were evaluated. Samples were collected from June to September of 2011 and again during the same period in 2012. The study covered emerging contaminants of different classes, including hormones, plasticizers, herbicides, triclosan and caffeine. The analytical method for the determination of the compounds was based on solid-phase extraction followed by analysis via liquid chromatography electrospray triple-quadrupole mass spectrometry (LC-MS/MS). Caffeine, triclosan, atrazine, phenolphthalein and bisphenol A were found in at least one of the samples collected in the two sampling campaigns. Caffeine and atrazine were the most frequently detected substances in both drinking and source water. Caffeine concentrations in drinking water ranged from 1.8ngL -1 to values above 2.0μgL -1 while source-water concentrations varied from 40ngL -1 to about 19μgL -1 . For atrazine, concentrations were found in the range from 2.0 to 6.0ngL -1 in drinking water and at concentrations of up to 15ngL -1 in source water. The widespread presence of caffeine in samples of treated water is an indication of the presence of domestic sewage in the source water, considering that caffeine is a compound of anthropogenic origin. Copyright © 2016 Elsevier B.V. All rights reserved.
Chemical quality and regulatory compliance of drinking water in Iceland.
Gunnarsdottir, Maria J; Gardarsson, Sigurdur M; Jonsson, Gunnar St; Bartram, Jamie
2016-11-01
Assuring sufficient quality of drinking water is of great importance for public wellbeing and prosperity. Nations have developed regulatory system with the aim of providing drinking water of sufficient quality and to minimize the risk of contamination of the water supply in the first place. In this study the chemical quality of Icelandic drinking water was evaluated by systematically analyzing results from audit monitoring where 53 parameters were assessed for 345 samples from 79 aquifers, serving 74 water supply systems. Compliance to the Icelandic Drinking Water Regulation (IDWR) was evaluated with regard to parametric values, minimum requirement of sampling, and limit of detection. Water quality compliance was divided according to health-related chemicals and indicators, and analyzed according to size. Samples from few individual locations were benchmarked against natural background levels (NBLs) in order to identify potential pollution sources. The results show that drinking compliance was 99.97% in health-related chemicals and 99.44% in indicator parameters indicating that Icelandic groundwater abstracted for drinking water supply is generally of high quality with no expected health risks. In 10 water supply systems, of the 74 tested, there was an indication of anthropogenic chemical pollution, either at the source or in the network, and in another 6 water supplies there was a need to improve the water intake to prevent surface water intrusion. Benchmarking against the NBLs proved to be useful in tracing potential pollution sources, providing a useful tool for identifying pollution at an early stage. Copyright © 2016 Elsevier GmbH. All rights reserved.
Bacterial community structure in the drinking water microbiome is governed by filtration processes.
Pinto, Ameet J; Xi, Chuanwu; Raskin, Lutgarde
2012-08-21
The bacterial community structure of a drinking water microbiome was characterized over three seasons using 16S rRNA gene based pyrosequencing of samples obtained from source water (a mix of a groundwater and a surface water), different points in a drinking water plant operated to treat this source water, and in the associated drinking water distribution system. Even though the source water was shown to seed the drinking water microbiome, treatment process operations limit the source water's influence on the distribution system bacterial community. Rather, in this plant, filtration by dual media rapid sand filters played a primary role in shaping the distribution system bacterial community over seasonal time scales as the filters harbored a stable bacterial community that seeded the water treatment processes past filtration. Bacterial taxa that colonized the filter and sloughed off in the filter effluent were able to persist in the distribution system despite disinfection of finished water by chloramination and filter backwashing with chloraminated backwash water. Thus, filter colonization presents a possible ecological survival strategy for bacterial communities in drinking water systems, which presents an opportunity to control the drinking water microbiome by manipulating the filter microbial community. Grouping bacterial taxa based on their association with the filter helped to elucidate relationships between the abundance of bacterial groups and water quality parameters and showed that pH was the strongest regulator of the bacterial community in the sampled drinking water system.
Zeng, Qiang; Zhang, Shao-Hui; Liao, Jing; Miao, Dong-Yue; Wang, Xin-Yi; Yang, Pan; Yun, Luo-Jia; Liu, Ai-Lin; Lu, Wen-Qing
2015-10-15
Potential genotoxic effects of chlorinated drinking water now are of a great concern. In this study, raw water, finished water, and tap water from a water plant in Wuhan, China were collected in two different sampling times of the year (January and July). Genotoxic effects of water extracts were evaluated using a combination of three different bioassays: SOS/umu test, HGPRT gene mutation assay, and micronucleus assay, which were separately used to detect DNA damage, gene mutation, and chromosome aberration. The results of three different bioassays showed that all water samples in January and July induced at least one types of genotoxic effects, of which the DNA-damage effects were all detectable. The levels of DNA-damage effects and gene-mutation effects of finished water and tap water in January were higher than those in July. Chlorination could increase the DNA-damage effects of drinking water in January and the gene-mutation effects of drinking water in both January and July, but did not increase the chromosome-aberration effects of drinking water in both January and July. Our results highlighted the importance of using a combination of different bioassays to evaluate the genotoxicity of water samples in different seasons. Copyright © 2015 Elsevier B.V. All rights reserved.
van der Kooij, Dick
2013-01-01
The multiplication of opportunistic pathogens in drinking water supplies might pose a threat to public health. In this study, distributed unchlorinated drinking water from eight treatment plants in the Netherlands was sampled and analyzed for fungi, nontuberculous mycobacteria (NTM), and several opportunistic pathogens by using selective quantitative PCR methods. Fungi and NTM were detected in all drinking water samples, whereas Legionella pneumophila, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, and Aspergillus fumigatus were sporadically observed. Mycobacterium avium complex and Acanthamoeba spp. were not detected. Season had no influence on the occurrence of these organisms, except for NTM and S. maltophilia, which were present in higher numbers in the summer. Opportunistic pathogens were more often observed in premise plumbing water samples than in samples from the distribution system. The lowest number of these organisms was observed in the finished water at the plant. Thus, fungi, NTM, and some of the studied opportunistic pathogens can multiply in the distribution and premise plumbing systems. Assimilable organic carbon (AOC) and/or total organic carbon (TOC) had no clear effects on fungal and NTM numbers or on P. aeruginosa- and S. maltophilia-positive samples. However, L. pneumophila was detected more often in water with AOC concentrations above 10 μg C liter−1 than in water with AOC levels below 5 μg C liter−1. Finally, samples that contained L. pneumophila, P. aeruginosa, or S. maltophilia were more frequently positive for a second opportunistic pathogen, which shows that certain drinking water types and/or sampling locations promote the growth of multiple opportunistic pathogens. PMID:23160134
van der Wielen, Paul W J J; van der Kooij, Dick
2013-02-01
The multiplication of opportunistic pathogens in drinking water supplies might pose a threat to public health. In this study, distributed unchlorinated drinking water from eight treatment plants in the Netherlands was sampled and analyzed for fungi, nontuberculous mycobacteria (NTM), and several opportunistic pathogens by using selective quantitative PCR methods. Fungi and NTM were detected in all drinking water samples, whereas Legionella pneumophila, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, and Aspergillus fumigatus were sporadically observed. Mycobacterium avium complex and Acanthamoeba spp. were not detected. Season had no influence on the occurrence of these organisms, except for NTM and S. maltophilia, which were present in higher numbers in the summer. Opportunistic pathogens were more often observed in premise plumbing water samples than in samples from the distribution system. The lowest number of these organisms was observed in the finished water at the plant. Thus, fungi, NTM, and some of the studied opportunistic pathogens can multiply in the distribution and premise plumbing systems. Assimilable organic carbon (AOC) and/or total organic carbon (TOC) had no clear effects on fungal and NTM numbers or on P. aeruginosa- and S. maltophilia-positive samples. However, L. pneumophila was detected more often in water with AOC concentrations above 10 μg C liter(-1) than in water with AOC levels below 5 μg C liter(-1). Finally, samples that contained L. pneumophila, P. aeruginosa, or S. maltophilia were more frequently positive for a second opportunistic pathogen, which shows that certain drinking water types and/or sampling locations promote the growth of multiple opportunistic pathogens.
Van Den Bergh, K; Du Laing, G; Montoya, Juan Carlos; De Deckere, E; Tack, F M G
2010-11-01
In the rural areas around Oruro (Bolivia), untreated groundwater is used directly as drinking water. This research aimed to evaluate the general drinking water quality, with focus on arsenic (As) concentrations, based on analysis of 67 samples from about 16 communities of the Oruro district. Subsequently a filter using Iron Oxide Coated Sand (IOCS) and a filter using a Composite Iron Matrix (CIM) were tested for their arsenic removal capacity using synthetic water mimicking real groundwater. Heavy metal concentrations in the sampled drinking water barely exceeded WHO guidelines. Arsenic concentrations reached values up to 964 μ g L⁻¹ and exceeded the current WHO provisional guideline value of 10 μ g L⁻¹ in more than 50% of the sampled wells. The WHO guideline of 250 mg L⁻¹ for chloride and sulphate was also exceeded in more than a third of the samples, indicating high salinity in the drinking waters. Synthetic drinking water could be treated effectively by the IOCS- and CIM-based filters reducing As to concentrations lower than 10 μ g L⁻¹. High levels of chloride and sulphate did not influence As removal efficiency. However, phosphate concentrations in the range from 4 to 24 mg L⁻¹ drastically decreased removal efficiency of the IOCS-based filter but had no effects on removal efficiency of the CIM-based filter. Results of this study can be used as a base for further testing and practical implementation of drinking water purification in the Oruro region.
Enteropathogenic Bacteria Contamination of Unchlorinated Drinking Water in Korea, 2010
Lee, Si Won; Lee, Do Kyung; An, Hyang Mi; Cha, Min Kyeong; Kim, Kyung Jae
2011-01-01
Objectives The purpose of this study was to assess the microbiological quality of unchlorinated drinking water in Korea, 2010. One hundred and eighty unchlorinated drinking water samples were collected from various sites in Seoul and Gyeonggi province. Methods To investigate bacterial presence, the pour plate method was used with cultures grown on selective media for total bacteria, total coliforms, and Staphylococcus spp., respectively. Results In the 180 total bacteria investigation, 72 samples from Seoul and 33 samples from Gyeonggi province were of an unacceptable quality (>102 CFU/mL). Of all the samples tested, total coliforms were detected in 28 samples (15.6%) and Staphylococcus spp. in 12 samples (6.7%). Most of the coliform isolates exhibited high-level resistance to cefazolin (88.2%), cefonicid (64.7%) and ceftazidime (20.6%). In addition, Staphylococcus spp. isolates exhibited high-level resistance to mupirocin (42%). Species of Pseudomonas, Acinetobacter, Cupriavidus, Hafnia, Rahnella, Serratia, and Yersinia were isolated from the water samples. Conclusions The results of this study suggest that consumption of unchlorinated drinking water could represent a notable risk to the health of consumers. As such, there is need for continuous monitoring of these water sources and to establish standards. PMID:22216417
Burnet, Jean-Baptiste; Ogorzaly, Leslie; Penny, Christian; Cauchie, Henry-Michel
2015-01-01
Background: The occurrence of faecal pathogens in drinking water resources constitutes a threat to the supply of safe drinking water, even in industrialized nations. To efficiently assess and monitor the risk posed by these pathogens, sampling deserves careful design, based on preliminary knowledge on their distribution dynamics in water. For the protozoan pathogens Cryptosporidium and Giardia, only little is known about their spatial distribution within drinking water supplies, especially at fine scale. Methods: Two-dimensional distribution maps were generated by sampling cross-sections at meter resolution in two different zones of a drinking water reservoir. Samples were analysed for protozoan pathogens as well as for E. coli, turbidity and physico-chemical parameters. Results: Parasites displayed heterogeneous distribution patterns, as reflected by significant (oo)cyst density gradients along reservoir depth. Spatial correlations between parasites and E. coli were observed near the reservoir inlet but were absent in the downstream lacustrine zone. Measurements of surface and subsurface flow velocities suggest a role of local hydrodynamics on these spatial patterns. Conclusion: This fine-scale spatial study emphasizes the importance of sampling design (site, depth and position on the reservoir) for the acquisition of representative parasite data and for optimization of microbial risk assessment and monitoring. Such spatial information should prove useful to the modelling of pathogen transport dynamics in drinking water supplies. PMID:26404350
Kato, Masashi; Kumasaka, Mayuko Y; Ohnuma, Shoko; Furuta, Akio; Kato, Yoko; Shekhar, Hossain U; Kojima, Michiyo; Koike, Yasuko; Dinh Thang, Nguyen; Ohgami, Nobutaka; Ly, Thuy Bich; Jia, Xiaofang; Yetti, Husna; Naito, Hisao; Ichihara, Gaku; Yajima, Ichiro
2013-01-01
Health risk for well drinking water is a worldwide problem. Our recent studies showed increased toxicity by exposure to barium alone (≤700 µg/L) and coexposure to barium (137 µg/L) and arsenic (225 µg/L). The present edition of WHO health-based guidelines for drinking water revised in 2011 has maintained the values of arsenic (10 µg/L) and barium (700 µg/L), but not elements such as manganese, iron and zinc. Nevertheless, there have been very few studies on barium in drinking water and human samples. This study showed significant correlations between levels of arsenic and barium, but not its homologous elements (magnesium, calcium and strontium), in urine, toenail and hair samples obtained from residents of Jessore, Bangladesh. Significant correlation between levels of arsenic and barium in well drinking water and levels in human urine, toenail and hair samples were also observed. Based on these results, a high-performance and low-cost adsorbent composed of a hydrotalcite-like compound for barium and arsenic was developed. The adsorbent reduced levels of barium and arsenic from well water in Bangladesh and Vietnam to <7 µg/L within 1 min. Thus, we have showed levels of arsenic and barium in humans and propose a novel remediation system.
Kato, Masashi; Kumasaka, Mayuko Y.; Ohnuma, Shoko; Furuta, Akio; Kato, Yoko; Shekhar, Hossain U.; Kojima, Michiyo; Koike, Yasuko; Dinh Thang, Nguyen; Ohgami, Nobutaka; Ly, Thuy Bich; Jia, Xiaofang; Yetti, Husna; Naito, Hisao; Ichihara, Gaku; Yajima, Ichiro
2013-01-01
Health risk for well drinking water is a worldwide problem. Our recent studies showed increased toxicity by exposure to barium alone (≤700 µg/L) and coexposure to barium (137 µg/L) and arsenic (225 µg/L). The present edition of WHO health-based guidelines for drinking water revised in 2011 has maintained the values of arsenic (10 µg/L) and barium (700 µg/L), but not elements such as manganese, iron and zinc. Nevertheless, there have been very few studies on barium in drinking water and human samples. This study showed significant correlations between levels of arsenic and barium, but not its homologous elements (magnesium, calcium and strontium), in urine, toenail and hair samples obtained from residents of Jessore, Bangladesh. Significant correlation between levels of arsenic and barium in well drinking water and levels in human urine, toenail and hair samples were also observed. Based on these results, a high-performance and low-cost adsorbent composed of a hydrotalcite-like compound for barium and arsenic was developed. The adsorbent reduced levels of barium and arsenic from well water in Bangladesh and Vietnam to <7 µg/L within 1 min. Thus, we have showed levels of arsenic and barium in humans and propose a novel remediation system. PMID:23805262
Munch, Jean W; Bassett, Margarita V
2006-01-01
N-nitrosodimethylamine (NDMA) is a probable human carcinogen of concern that has been identified as a drinking water contaminant. U.S. Environmental Protection Agency Method 521 has been developed for the analysis of NDMA and 6 additional N-nitrosamines in drinking water at low ng/L concentrations. The method uses solid-phase extraction with coconut charcoal as the sorbent and dichloromethane as the eluent to concentrate 0.50 L water samples to 1 mL. The extracts are analyzed by gas chromatography-chemical ionization tandem mass spectrometry using large-volume injection. Method performance was evaluated in 2 laboratories. Typical analyte recoveries of 87-104% were demonstrated for fortified reagent water samples, and recoveries of 77-106% were demonstrated for fortified drinking water samples. All relative standard deviations on replicate analyses were < 11%.
Hladik, Michelle L; Bouwer, Edward J; Roberts, A Lynn
2008-12-01
Treated drinking water samples from 12 water utilities in the Midwestern United States were collected during Fall 2003 and Spring 2004 and were analyzed for selected neutral degradates of chloroacetamide herbicides, along with related compounds. Target analytes included 20 neutral chloroacetamide degradates, six ionic chloroacetamide degradates, four parent chloroacetamide herbicides, three triazine herbicides, and two neutral triazine degradates. In the fall samples, 17 of 20 neutral chloroacetamide degradates were detected in the finished drinking water, while 19 of 20 neutral chloroacetamide degradates were detected in the spring. Median concentrations for the neutral chloroacetamide degradates were approximately 2-60ng/L during both sampling periods. Concentrations measured in the fall samples of treated water were nearly the same as those measured in source waters, despite the variety of treatment trains employed. Significant removals (average of 40% for all compounds) were only found in the spring samples at those utilities that employed activated carbon.
The source water and treated drinking water from twenty five drinking water treatment plants (DWTPs) across the United States were sampled in 2010 – 2012. Samples were analyzed for 247 contaminants using 15 chemical and microbiological methods. Most of these contaminants are no...
Environmental Survey of Drinking Water Sources in Kampala, Uganda, during a Typhoid Fever Outbreak
Kahler, A. M.; Nansubuga, I.; Nanyunja, E. M.; Kaplan, B.; Jothikumar, N.; Routh, J.; Gómez, G. A.; Mintz, E. D.; Hill, V. R.
2017-01-01
ABSTRACT In 2015, a typhoid fever outbreak began in downtown Kampala, Uganda, and spread into adjacent districts. In response, an environmental survey of drinking water source types was conducted in areas of the city with high case numbers. A total of 122 samples was collected from 12 source types and tested for Escherichia coli, free chlorine, and conductivity. An additional 37 grab samples from seven source types and 16 paired large volume (20 liter) samples from wells and springs were also collected and tested for the presence of Salmonella enterica serovar Typhi. Escherichia coli was detected in 60% of kaveras (drinking water sold in plastic bags) and 80% of refilled water bottles; free chlorine was not detected in either source type. Most jerry cans (68%) contained E. coli and had free chlorine residuals below the WHO-recommended level of 0.5 mg/liter during outbreaks. Elevated conductivity readings for kaveras, refilled water bottles, and jerry cans (compared to treated surface water supplied by the water utility) suggested that they likely contained untreated groundwater. All unprotected springs and wells and more than 60% of protected springs contained E. coli. Water samples collected from the water utility were found to have acceptable free chlorine levels and no detectable E. coli. While S. Typhi was not detected in water samples, Salmonella spp. were detected in samples from two unprotected springs, one protected spring, and one refilled water bottle. These data provided clear evidence that unregulated vended water and groundwater represented a risk for typhoid transmission. IMPORTANCE Despite the high incidence of typhoid fever globally, relatively few outbreak investigations incorporate drinking water testing. During waterborne disease outbreaks, measurement of physical-chemical parameters, such as free chlorine residual and electrical conductivity, and of microbiological parameters, such as the presence of E. coli or the implicated etiologic agent, in drinking water samples can identify contaminated sources. This investigation indicated that unregulated vended water and groundwater sources were contaminated and were therefore a risk to consumers during the 2015 typhoid fever outbreak in Kampala. Identification of contaminated drinking water sources and sources that do not contain adequate disinfectant levels can lead to rapid targeted interventions. PMID:28970225
Effect of disopyramide on bacterial diversity in drinking water
NASA Astrophysics Data System (ADS)
Wu, Qing; Zhao, Xiaofei; Tian, Qi; Wang, Lei; Zhao, Xinhua
2018-02-01
Disopyramide was detected in drinking water by LC-MS/MS and the microbial diversity was investigated by PCR and high-throughput sequencing. The results showed that bacteria community structure in drinking water changed a lot when added different concentrations of disopyramide. The results of Shannon index showed that the total number and abundance of bacterial community species in drinking water samples decreased significantly after the addition of disopyramide. However, the number and abundance of community structure did not change with the concentration of disopyramide. Disopyramide inhibits the activity of bacterial community in drinking water and also can reduce the bacterial community diversity in drinking water.
Liu, Hui; Yang, Yuelian; Cui, Jinghua; Liu, Lanzheng; Liu, Huiyuan; Hu, Guangchun; Shi, Yuwen; Li, Jian
2013-07-01
A membrane filter (MF) method was evaluated for its suitability for qualitative and quantitative analyses of Cronobacter spp. in drinking water by pure strains of Cronobacter and non-Cronobacter, and samples spiked with chlorinated Cronobacter sakazakii ATCC 29544. The applicability was verified by the tests: for pure strains, the sensitivity and the specificity were both 100%; for spiked samples, the MF method recovered 82.8 ± 10.4% chlorinated ATCC 29544 cells. The MF method was also applied to screen Cronobacter spp. in drinking water samples from municipal water supplies on premises (MWSP) and small community water supplies on premises (SCWSP). The isolation rate of Cronobacter spp. from SCWSP samples was 31/114, which was significantly higher than that from MWSP samples which was 1/131. Besides, the study confirmed the possibility of using total coliform as an indicator of contamination level of Cronobacter spp. in drinking water, and the acquired correct positive rate was 96%. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Lead in drinking water: sampling in primary schools and preschools in south central Kansas.
Massey, Anne R; Steele, Janet E
2012-03-01
Studies in Philadelphia, New York City, Houston, Washington, DC, and Greenville, North Carolina, have revealed high lead levels in drinking water. Unlike urban areas, lead levels in drinking water in suburban and rural areas have not been adequately studied. In the study described in this article, drinking water in primary schools and preschools in five suburban and rural south central Kansas towns was sampled to determine if any exceeded the U.S. Environmental Protection Agency (U.S. EPA) guidance level for schools and child care facilities of 20 parts per billion (ppb). The results showed a total of 32.1% of the samples had detectable lead levels and 3.6% exceeded the U.S. EPA guidance level for schools and child care providers of 20 ppb. These results indicate that about one-third of the drinking water consumed by children age six and under in the five suburban and rural south central Kansas towns studied has some lead contamination, exposing these children to both short-term and long-term health risks. The authors suggest a need for increased surveillance of children's drinking water in these facilities.
Groundwater Monitoring Plan. Volume 2. Final Quality Assurance Project Plan
1993-10-01
5 Table 4-2. US EPA Drinking Water MCLs ........................................ 4-6 Table 5-1. Sample Bottle Requirements, Preservation, and Holding... drinking water . " The types of quality control samples that will be collected during the Canal Creek groundwater monitoring program. ]- Jacobs...Revision No.: 0 Date: 10/27/93 Page: 6 of 9 Canal Creek Area, APG-EA, Maryland Groundwater Monitoring Plan, VOLUME I1 Table 4-2. US EPA Drinking Water
Zafeiraki, Effrosyni; Costopoulou, Danae; Vassiliadou, Irene; Leondiadis, Leondios; Dassenakis, Emmanouil; Traag, Wim; Hoogenboom, Ron L A P; van Leeuwen, Stefan P J
2015-01-01
In the present study 11 perfluoroalkylated substances (PFASs) were analysed in drinking tap water samples from the Netherlands (n = 37) and from Greece (n = 43) by applying LC-MS/MS and isotope dilution. PFASs concentrations above the limit of quantification, LOQ (0.6 ng/l) were detected in 20.9% of the samples from Greece. Total PFAS concentrations ranged between
The correlation of arsenic levels in drinking water with the biological samples of skin disorders.
Kazi, Tasneem Gul; Arain, Muhammad Balal; Baig, Jameel Ahmed; Jamali, Muhammad Khan; Afridi, Hassan Imran; Jalbani, Nusrat; Sarfraz, Raja Adil; Shah, Abdul Qadir; Niaz, Abdul
2009-01-15
Arsenic (As) poisoning has become a worldwide public health concern. The skin is quite sensitive to As and skin lesions are the most common and earliest nonmalignant effects associated to chronic As exposure. In 2005-2007, a survey was carried out on surface and groundwater arsenic contamination and relationships between As exposure via the drinking water and related adverse health effects (melanosis and keratosis) on villagers resides on the banks of Manchar lake, southern part of Sindh, Pakistan. We screened the population from arsenic-affected villages, 61 to 73% population were identified patients suffering from chronic arsenic toxicity. The effects of As toxicity via drinking water were estimated by biological samples (scalp hair and blood) of adults (males and females), have or have not skin problem (n=187). The referent samples of both genders were also collected from the areas having low level of As (<10 microg/L) in drinking water (n=121). Arsenic concentration in drinking water and biological samples were analyzed using electrothermal atomic absorption spectrometry. The range of arsenic concentrations in lake surface water was 35.2-158 microg/L, which is 3-15 folds higher than World Health Organization [WHO, 2004. Guidelines for drinking-water quality third ed., WHO Geneva Switzerland.]. It was observed that As concentration in the scalp hair and blood samples were above the range of permissible values 0.034-0.319 microg As/g for hair and <0.5-4.2 microg/L for blood. The linear regressions showed good correlations between arsenic concentrations in water versus hair and blood samples of exposed skin diseased subjects (R2=0.852 and 0.718) as compared to non-diseased subjects (R2=0.573 and 0.351), respectively.
Lee, Sunggyu; Jeong, Woochang; Kannan, Kurunthachalam; Moon, Hyo-Bang
2016-10-15
Organophosphate flame retardants (OPFRs) have been widely used as flame retardants and plasticizers in commercial products. Limited data are available on the occurrence and exposure of OPFRs via drinking water consumption. In this study, 127 drinking water samples were collected from tap water, purified water (tap water that is passed through in-house filters) and bottled water from major cities in Korea in 2014. The total concentrations of OPFRs (ΣOPFR) in all of the samples ranged from below the method detection limit (MDL) to 1660 (median: 48.7) ng/L. The predominant OPFR compounds in drinking water were tris(2-chloroethyl) phosphate (TCEP), tris(2-chloroethyl) phosphate (TCPP), and tris(2-butoxyethyl) phosphate (TBEP). Significant differences were observed in the levels of TCPP, TBEP and ΣOPFR among various types of drinking water. TCPP is introduced in the drinking water during the water purification process. Regional differences existed in the levels and patterns of OPFRs in water samples, which indicated the existence of diverse sources of these contaminants. Purified water was a significant contributor to the total OPFR intake by humans. The estimated daily intake of OPFRs was lower than the tentative oral reference dose (RfD) values. In comparison with exposure of OPFRs via dust ingestion, water consumption was a significant source of chlorinated PFRs (99% for TCEP and 34% for TCPP to the total intakes) for Koreans. Copyright © 2016 Elsevier Ltd. All rights reserved.
In vitro bioassays have been successfully used to screen for estrogenic activity in wastewater and surface water, however, few have been applied to treated drinking water. Here, extracts of source and treated drinking water samples were assayed for estrogenic activity using T47D...
van Wendel de Joode, Berna; Barbeau, Benoit; Bouchard, Maryse F; Mora, Ana María; Skytt, Åsa; Córdoba, Leonel; Quesada, Rosario; Lundh, Thomas; Lindh, Christian H; Mergler, Donna
2016-08-01
Elevated manganese (Mn) in drinking water has been reported worldwide. While, naturally occurring Mn in groundwater is generally the major source, anthropogenic contamination by Mn-containing fungicides such as mancozeb may also occur. The main objective of this study was to examine factors associated with Mn and ethylenethiourea (ETU), a degradation product of mancozeb, in drinking water samples from villages situated near banana plantations with aerial spraying of mancozeb. Drinking water samples (n = 126) were obtained from 124 homes of women participating in the Infants' Environmental Health Study (ISA, for its acronym in Spanish), living nearby large-scale banana plantations. Concentrations of Mn, iron (Fe), arsenic (As), lead (Pb), cadmium (Cd) and ethylenethiourea (ETU), a degradation product of mancozeb, were measured in water samples. Only six percent of samples had detectable ETU concentrations (limit of detection (LOD) = 0.15 μg/L), whereas 94% of the samples had detectable Mn (LOD = 0.05 μg/L). Mn concentrations were higher than 100 and 500 μg/L in 22% and 7% of the samples, respectively. Mn was highest in samples from private and banana farm wells. Distance from a banana plantation was inversely associated with Mn concentrations, with a 61.5% decrease (95% CI: -97.0, -26.0) in Mn concentrations for each km increase in distance. Mn concentrations in water transported with trucks from one village to another were almost 1000 times higher than Mn in water obtained from taps in houses supplied by the same well but not transported, indicating environmental Mn contamination. Elevated Mn in drinking water may be partly explained by aerial spraying of mancozeb; however, naturally occurring Mn in groundwater, and intensive agriculture may also contribute. Drinking water risk assessment for mancozeb should consider Mn as a health hazard. The findings of this study evidence the need for health-based World Health Organization (WHO) guidelines on Mn in drinking water. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
DRINKING WATER ARSENIC IN UTAH: A COHORT MORTALITY STUDY
The association of drinking water arsenic and mortality outcome was investigated in a cohort of residents from Millard County, Utah. Median drinking water arsenic concentrations for selected study towns ranged from 14 to 166 ppb and were from public and private samples collected ...
García-Ávila, Fernando; Ramos-Fernández, Lía; Pauta, Damián; Quezada, Diego
2018-06-01
This document presents the physical-chemical parameters with the objective of evaluating and analyzing the drinking water quality in the Azogues city applying the water quality index (WQI) and to research the water stability in the distribution network using corrosion indexes. Thirty samples were collected monthly for six months throughout the drinking water distribution network; turbidity, temperature, electric conductivity, pH, total dissolved solids, total hardness, calcium, magnesium, alkalinity, chlorides, nitrates, sulfates and phosphates were determined; the physical-chemical parameters were measured using standard methods. The processed data revealed that the average values of LSI, RSI and PSI were 0.5 (±0.34), 6.76 (±0.6), 6.50 (±0.99) respectively. The WQI calculation indicated that 100% of the samples are considered excellent quality water. According to the Langelier, Ryznar and Pukorius indexes showed that drinking water in Azogues is corrosive. The quality of drinking water according to the WQI is in a good and excellent category.
Pesticides in Surface Drinking-Water Supplies of the Northern Great Plains
Donald, David B.; Cessna, Allan J.; Sverko, Ed; Glozier, Nancy E.
2007-01-01
Background Human health anomalies have been associated with pesticide exposure for people living in rural landscapes in the northern Great Plains of North America. Objective The objective of this study was to investigate the occurrence of 45 pesticides in drinking water from reservoirs in this area that received water primarily from snowmelt and rainfall runoff from agricultural crop lands. Methods Water from 15 reservoirs was sampled frequently during the spring pesticide application period (early May to mid-August) and less frequently for the remainder of the year. Drinking water was sampled in early July. Sample extracts were analyzed for pesticide content using mass spectrometric detection. Results We detected two insecticides and 27 herbicides in reservoir water. Consistent detection of a subset of 7 herbicides suggested that atmospheric deposition, either directly or in rain, was the principal pathway from fields to the reservoirs. However, the highest concentrations and number of herbicides in drinking water were associated with runoff from a localized 133-mm rainfall over 15 days toward the end of spring herbicide application. Water treatment removed from 14 to 86% of individual herbicides. Drinking water contained 3–15 herbicides (average, 6.4). Conclusions We estimated the mean annual calculated concentration of herbicides in drinking water to be 75 ng/L (2,4-dichlorophenoxy)acetic acid, 31 ng/L (2-chloro-4-methylphenoxy)acetic acid, 24 ng/L clopyralid, 11 ng/L dichlorprop, 4 ng/L dicamba, 3 ng/L mecoprop, and 1 ng/L bro-moxynil. The maximum total concentration of herbicides in drinking water was 2,423 ng/L. For the seven herbicides with established drinking water guidelines, all concentrations of the individual chemicals were well below their respective guideline. However, guidelines have not been established for the majority of the herbicides found in drinking water or for mixtures of pesticides. PMID:17687445
Background: Current evidence suggests that drinking water, soil, and produce are potential sources of Mycobacterium avium infections, a pathogen not known to be transmitted person-to-person.
Methods: We sampled water during 2000-2002 from a large municipal drinking water ...
Brahman, Kapil Dev; Kazi, Tasneem Gul; Afridi, Hassan Imran; Arain, Sadaf Sadia; Kazi, Atif Gul; Talpur, Farah Naz; Baig, Jameel Ahmed; Panhwar, Abdul Haleem; Arain, Mariam Shezadi; Ali, Jamshed; Arain, Mohammad Balal; Naeemullah
2016-07-01
Humans are exposed to arsenic (As) through air, drinking water, and food. The arsenic (As) hazardous quotient was calculated on the basis of its concentration in drinking water of different origin and scalp hair of male subjects (n = 313), residents of different exposed and non-exposed areas of Sindh, Pakistan. The total As was determined in water and scalp hair samples, while As species were determined in water samples by advance extraction methodologies. The total As concentrations in drinking water of less-exposed (LE) and high-exposed (HE) areas was found to be 2.63 to 4.46 and 52 to 235, fold higher than the permissible limit, respectively, than recommended by World Health Organization (2004) for drinking water. While the levels of As in drinking water of non-exposed (NE) areas was within the permissible limit. The resulted data indicated that the dominant species was As(+5) in groundwater samples. The levels of As in scalp hair samples of male subjects of two age groups (18-30 and 31-50 years), belonging to NE, LE, and HE areas, ranged from 0.26 to 0.69, 0.58 to 1.34, and 15.6 to 60.9 μg/g, respectively. A significant correlation between As levels in drinking water and scalp hair was observed in HE area (r = 0.86-0.90, p < 0.001) as compared to those subjects belonging to LE area. A toxicity risk assessment was calculated as hazard quotient (HQ), which indicates that the study subjects of HE area have significantly higher values of HQ than LE. The population of As exposed areas is at high risk of non-carcinogenic and carcinogenesis effects.
Longitudinal investigation of exposure to arsenic, cadmium, and lead in drinking water.
Ryan, P B; Huet, N; MacIntosh, D L
2000-08-01
Arsenic, cadmium, and lead have been associated with various forms of cancer, nephrotoxicity, central nervous system effects, and cardiovascular disease in humans. Drinking water is a well-recognized pathway of exposure to these metals. To improve understanding of the temporal dimension of exposure to As, Cd, and Pb in drinking water, we obtained 381 samples of tap and/or tap/filtered water and self-reported rates of drinking water consumption from 73 members of a stratified random sample in Maryland. Data were collected at approximately 2-month intervals from September 1995 through September 1996. Concentrations of As (range < 0.2-13.8 microg/L) and Pb (< 0.1-13.4 microg/L) were within the ranges reported for the United States, as were the rates of drinking water consumption (median < 0.1-4.1 L/day). Cd was present at a detectable level in only 8.1% of the water samples. Mean log-transformed concentrations and exposures for As and Pb varied significantly among sampling cycles and among respondents, as did rates of drinking water consumption, according to a generalized linear model that accounted for potential correlation among repeated measures from the same respondent. We used the intraclass correlation coefficient of reliability to attribute the total variance observed for each exposure metric to between-person and within-person variability. Between-person variability was estimated to account for 67, 81, and 55% of the total variance in drinking water consumption, As exposure (micrograms per day), and Pb exposure (micrograms per day), respectively. We discuss these results with respect to their implications for future exposure assessment research, quantitative risk assessment, and environmental epidemiology.
Taneja, Pinky; Labhasetwar, Pawan; Nagarnaik, Pranav
2017-06-06
The study focuses on the estimation of health risk from nitrate present in the drinking water and vegetables in Nagpur and Bhandara districts in the state of Maharashtra, India. Drinking water samples from 77 locations from the rural as well as urban areas and 22 varieties of vegetable were collected and analyzed for the presence of nitrate for a period of 1 year (two seasons). The daily intake of nitrate from these water and vegetable samples was then computed and compared with standard acceptable intake levels to assess the associated health risk. The mean nitrate concentration of 59 drinking water samples exceeded the Bureau of Indian Standards limit of 45 mg/L in drinking water. The rural and urban areas were found to have mean nitrate concentration in drinking water as 45.69 ± 2.08 and 22.53 ± 1.97 mg/L, respectively. The estimated daily intake of drinking water samples from 55 study sites had nitrate concentration far below the safety margin indicating serious health risk. The sanitation survey conducted in 12 households reported contaminated source with positive E. coli count in 20 samples as the major factor of health risk. The average nitrate concentration was maximum in beetroot (1349.38 mg/kg) followed by spinach (1288.75 mg/kg) and amaranthus (1007.64 mg/kg). Among the samples, four varieties of the vegetables exceeded the acceptable daily intake (ADI) with an assumption of 0.5 kg consumption of vegetables for an average of a 60-kg individual. Therefore, irrigation of these locally grown vegetables should be monitored periodically for nitrogen accumulation by the crop above the ADI limit. The application of nitrogenous fertilizers should also be minimized in the rural areas to help protect the nitrate contamination in groundwater sources.
Jeong, Clara H.; Wagner, Elizabeth D.; Siebert, Vincent R.; Anduri, Sridevi; Richardson, Susan D.; Daiber, Eric J.; McKague, A. Bruce; Kogevinas, Manolis; Villanueva, Cristina M.; Goslan, Emma H.; Luo, Wentai; Isabelle, Lorne M.; Pankow, James F.; Grazuleviciene, Regina; Cordier, Sylvaine; Edwards, Susan C.; Righi, Elena; Nieuwenhuijsen, Mark J.; Plewa, Michael J.
2012-01-01
The HIWATE (Health Impacts of long-term exposure to disinfection byproducts in drinking WATEr) project was a systematic analysis that combined the epidemiology on adverse pregnancy outcomes and other health effects with long term exposure to low levels of drinking water disinfection byproducts (DBPs) in the European Union. The present study focused on the relationship of the occurrence and concentration of DBPs with in vitro mammalian cell toxicity. Eleven drinking water samples were collected from 5 European countries. Each sampling location corresponded with an epidemiological study for the HIWATE program. Over 90 DBPs were identified; the range in the number of DBPs and their levels reflected the diverse collection sites, different disinfection processes, and the different characteristics of the source waters. For each sampling site, chronic mammalian cell cytotoxicity correlated highly with the numbers of DBPs identified and the levels of DBP chemical classes. Although there was a clear difference in the genotoxic responses among the drinking waters, these data did not correlate as well with the chemical analyses. Thus, the agents responsible for the genomic DNA damage observed in the HIWATE samples may be due to unresolved associations of combinations of identified DBPs, unknown emerging DBPs that were not identified, or other toxic water contaminants. This study represents the first to integrate quantitative in vitro toxicological data with analytical chemistry and human epidemiologic outcomes for drinking water DBPs. PMID:22958121
The Savannah River Site`s Groundwater Monitoring Program, third quarter 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site`s Groundwater Monitoring Program. During third quarter 1989 (July--September), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, backgroundmore » levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the third quarter is presented in the Flagging Criteria section of this document. All analytical results from third quarter 1989 are listed in this report, which is distributed to all waste-site custodians.« less
The Savannah River Site's Groundwater Monitoring Program, third quarter 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During third quarter 1989 (July--September), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, backgroundmore » levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the third quarter is presented in the Flagging Criteria section of this document. All analytical results from third quarter 1989 are listed in this report, which is distributed to all waste-site custodians.« less
Effect of home-used water purifier on fluoride concentration of drinking water in southern Iran
Jaafari-Ashkavandi, Zohreh; Kheirmand, Mehdi
2013-01-01
Background: Fluoride in drinking water plays a key role in dental health. Due to the increasing use of water-purifier, the effect of these devices on fluoride concentration of drinking water was evaluated. Materials and Methods: Drinking water samples were collected before and after passing through a home water-purifier, from four different water sources. The fluoride, calcium and magnesium concentration of the samples were measured using the quantitative spectrophotometery technique. Data were analyzed by the Wilcoxon test. P value < 0.1 was considered as significant. Results: The result showed that the concentration of fluoride was 0.05-0.61 ppm before purification and was removed completely afterward. Furthermore, other ions reduced significantly after treatment by the water purifier. Conclusion: This study revealed that this device decreases the fluoride content of water, an issue which should be considered in low and high-fluoridated water sources. PMID:24130584
[Outbreak of gastroenteritis caused by Campylobacter jejuni transmitted through drinking water].
Godoy, Pere; Artigues, Antoni; Nuín, Carmen; Aramburu, Jesús; Pérez, Montse; Domínguez, Angela; Salleras, Lluís
2002-11-23
The aim of this study was to conduct a clinical-epidemiological and microbiological investigation into an outbreak of waterborne disease caused by Campylobacter jejuni due to the consumption of drinking water. A historical cohort study was carried out among 237 residents of Torres de Segre (Lleida, Spain) who were selected using a systematic sample. We conducted a telephone interview about water consumption, symptoms and the onset of disease. We investigated samples of drinking water and stools from 14 patients. The risk associated with each water source was assessed by applying relative risk (RR) analysis at 95% confidence (CI) intervals. The overall attack rate was 18.3% (43/237). The symptoms were: diarrhoea, 93.0% (18/43); abdominal pain, 80.9% (34/42); nausea; 56,1% (23/41); vomits, 42.9% (18/42), and fever, 11.9% (5/42). Only 5.8% of patients contact with his physician. The consumption of drinking water was statistically associated with the disease (RR = 3.0; 95% CI, 1.7-5.3), while the consumption of bottled water (RR = 0.6; 95% CI 0.3-1.0) and water from other villages (RR = 0.3; 95% CI, 0.1-1.1) were a protection factor. The day of outbreak notification we did not detect any residual chlorine in the drinking water: it was qualified as no potable and we isolated Campylobacter jejuni in 8 samples stools. This research highlights the potential importance of waterborne outbreaks of gastroenteritis due to Campylobacter jejuni transmitted through untreated drinking water and suggests to need systematic controls over drinking water and the proper register of their results.
Shrestha, Akina; Sharma, Subodh; Gerold, Jana; Erismann, Séverine; Sagar, Sanjay; Koju, Rajendra; Schindler, Christian; Odermatt, Peter; Utzinger, Jürg; Cissé, Guéladio
2017-01-18
This study assessed drinking water quality, sanitation, and hygiene (WASH) conditions among 708 schoolchildren and 562 households in Dolakha and Ramechhap districts of Nepal. Cross-sectional surveys were carried out in March and June 2015. A Delagua water quality testing kit was employed on 634 water samples obtained from 16 purposively selected schools, 40 community water sources, and 562 households to examine water quality. A flame atomic absorption spectrophotometer was used to test lead and arsenic content of the same samples. Additionally, a questionnaire survey was conducted to obtain WASH predictors. A total of 75% of school drinking water source samples and 76.9% point-of-use samples (water bottles) at schools, 39.5% water source samples in the community, and 27.4% point-of-use samples at household levels were contaminated with thermo-tolerant coliforms. The values of water samples for pH (6.8-7.6), free and total residual chlorine (0.1-0.5 mg/L), mean lead concentration (0.01 mg/L), and mean arsenic concentration (0.05 mg/L) were within national drinking water quality standards. The presence of domestic animals roaming inside schoolchildren's homes was significantly associated with drinking water contamination (adjusted odds ratio: 1.64; 95% confidence interval: 1.08-2.50; p = 0.02). Our findings call for an improvement of WASH conditions at the unit of school, households, and communities.
Shrestha, Akina; Sharma, Subodh; Gerold, Jana; Erismann, Séverine; Sagar, Sanjay; Koju, Rajendra; Schindler, Christian; Odermatt, Peter; Utzinger, Jürg; Cissé, Guéladio
2017-01-01
This study assessed drinking water quality, sanitation, and hygiene (WASH) conditions among 708 schoolchildren and 562 households in Dolakha and Ramechhap districts of Nepal. Cross-sectional surveys were carried out in March and June 2015. A Delagua water quality testing kit was employed on 634 water samples obtained from 16 purposively selected schools, 40 community water sources, and 562 households to examine water quality. A flame atomic absorption spectrophotometer was used to test lead and arsenic content of the same samples. Additionally, a questionnaire survey was conducted to obtain WASH predictors. A total of 75% of school drinking water source samples and 76.9% point-of-use samples (water bottles) at schools, 39.5% water source samples in the community, and 27.4% point-of-use samples at household levels were contaminated with thermo-tolerant coliforms. The values of water samples for pH (6.8–7.6), free and total residual chlorine (0.1–0.5 mg/L), mean lead concentration (0.01 mg/L), and mean arsenic concentration (0.05 mg/L) were within national drinking water quality standards. The presence of domestic animals roaming inside schoolchildren’s homes was significantly associated with drinking water contamination (adjusted odds ratio: 1.64; 95% confidence interval: 1.08–2.50; p = 0.02). Our findings call for an improvement of WASH conditions at the unit of school, households, and communities. PMID:28106779
Degradation of specific aromatic compounds migrating from PEX pipes into drinking water.
Ryssel, Sune Thyge; Arvin, Erik; Lützhøft, Hans-Christian Holten; Olsson, Mikael Emil; Procházková, Zuzana; Albrechtsen, Hans-Jørgen
2015-09-15
Nine specific compounds identified to migrate from polyethylene (PE) and cross-linked polyethylene (PEX) to drinking water were investigated for their degradation in drinking water. Three sample types were studied: field samples (collected at consumer taps), PEX pipe water extractions, and water samples spiked with target compounds. Four compounds were quantified in field samples at concentrations of 0.15-8.0 μg/L. During PEX pipe water extraction 0.42 ± 0.20 mg NVOC/L was released and five compounds quantified (0.5-6.1 μg/L). The degradation of these compounds was evaluated in PEX-pipe water extractions and spiked samples. 4-ethylphenol was degraded within 22 days. Eight compounds were, however, only partially degradable under abiotic and biotic conditions within the timeframe of the experiments (2-4 weeks). Neither inhibition nor co-metabolism was observed in the presence of acetate or PEX pipe derived NVOC. Furthermore, the degradation in drinking water from four different locations with three different water works was similar. In conclusion, eight out of the nine compounds studied would - if being released from the pipes - reach consumers with only minor concentration decrease during water distribution. Copyright © 2015 Elsevier Ltd. All rights reserved.
Evans, T M; LeChevallier, M W; Waarvick, C E; Seidler, R J
1981-01-01
The species of total coliform bacteria isolated from drinking water and untreated surface water by the membrane filter (MF), the standard most-probable-number (S-MPN), and modified most-probable-number (M-MPN) techniques were compared. Each coliform detection technique selected for a different profile of coliform species from both types of water samples. The MF technique indicated that Citrobacter freundii was the most common coliform species in water samples. However, the fermentation tube techniques displayed selectivity towards the isolation of Escherichia coli and Klebsiella. The M-MPN technique selected for more C. freundii and Enterobacter spp. from untreated surface water samples and for more Enterobacter and Klebsiella spp. from drinking water samples than did the S-MPN technique. The lack of agreement between the number of coliforms detected in a water sample by the S-MPN, M-MPN, and MF techniques was a result of the selection for different coliform species by the various techniques. PMID:7013706
Exposure of children to arsenic in drinking water in the Tharparkar region of Sindh, Pakistan.
Brahman, Kapil Dev; Kazi, Tasneem Gul; Afridi, Hassan Imran; Baig, Jameel Ahmed; Arain, Sadaf Sadia; Talpur, Farah Naz; Kazi, Atif Gul; Ali, Jamshed; Panhwar, Abdul Haleem; Arain, Muhammad Balal
2016-02-15
Humans can be exposed to arsenic (As) through air, drinking water, and food. The aim of this study was to calculate the hazard quotient (HQ) of As, based on its concentration in drinking water and the scalp hair of children (males) belonging to two age groups (5-10 and 11-14 years) who consumed water contaminated with different concentrations of As. The water samples were collected from As-exposed and nonexposed areas, which were classified as low-exposed (LE), high-exposed (HE), and nonexposed (NE) areas. The total concentration of inorganic As (iAs) and its species (As(III) and As(V)) in water samples of all selected areas was determined by advanced extraction methods. For purposes of comparison, the total As level was also determined in all water samples. The resulting data indicated that the predominant inorganic As species in groundwater samples was arsenate (As(V)). The As concentrations in drinking water of LE and HE areas were found to be 2.6-230-fold higher than the permissible limit for drinking water established by the World Health Organization (2004). However, the As levels in drinking water of the NE area was within the permissible limit (<10 μg/L). The As levels in the scalp hair samples from boys of NE, LE, and HE areas ranged from 0.16 to 0.36, 0.36 to 0.83, and 11.5 to 31.9 mg/kg, respectively. A significant, positive correlation was observed between the As levels in drinking water and scalp hair samples of children from the HE area, compared with the other two groups (p>0.01). The As toxicity risk assessment based on HQ for the NE, LE, and HE areas corresponded to <10, ≥ 10, and >10, respectively. These HQ values indicated the noncarcinogenic, less carcinogenic, and highly carcinogenic exposure risks faced by children from the NE, LE, and HE areas, respectively. It can be concluded that children consuming the groundwater of the LE (Khairpur Mir's) and HE (Tharparkar) areas of Pakistan are at a potential risk of chronic As toxicity. Copyright © 2015 Elsevier B.V. All rights reserved.
Han, Jiarui; Zhang, Xiangru; Liu, Jiaqi; Zhu, Xiaohu; Gong, Tingting
2017-08-01
Chlorine dioxide (ClO 2 ) is a widely used alternative disinfectant due to its high biocidal efficiency and low-level formation of trihalomethanes and haloacetic acids. A major portion of total organic halogen (TOX), a collective parameter for all halogenated DBPs, formed in ClO 2 -treated drinking water is still unknown. A commonly used pretreatment method for analyzing halogenated DBPs in drinking water is one-time liquid-liquid extraction (LLE), which may lead to a substantial loss of DBPs prior to analysis. In this study, characterization and identification of polar halogenated DBPs in a ClO 2 -treated drinking water sample were conducted by pretreating the sample with multiple extractions. Compared to one-time LLE, the combined four-time LLEs improved the recovery of TOX by 2.3 times. The developmental toxicity of the drinking water sample pretreated with the combined four-time LLEs was 1.67 times higher than that pretreated with one-time LLE. With the aid of ultra-performance liquid chromatography/electrospray ionization-triple quadrupole mass spectrometry, a new group of polar halogenated DBPs, trihalomethanols, were detected in the drinking water sample pretreated with multiple extractions; two of them, trichloromethanol and bromodichloromethanol, were identified with synthesized standard compounds. Moreover, these trihalomethanols were found to be the transformation products of trihalomethanes formed during ClO 2 disinfection. The results indicate that multiple LLEs can significantly improve extraction efficiencies of polar halogenated DBPs and is a better pretreatment method for characterizing and identifying new polar halogenated DBPs in drinking water. Copyright © 2017. Published by Elsevier B.V.
Fernando, Dinesh M.; Tun, Hein Min; Poole, Jenna; Patidar, Rakesh; Li, Ru; Mi, Ruidong; Amarawansha, Geethani E. A.; Fernando, W. G. Dilantha; Khafipour, Ehsan; Farenhorst, Annemieke
2016-01-01
ABSTRACT Access to safe drinking water is now recognized as a human right by the United Nations. In developed countries like Canada, access to clean water is generally not a matter of concern. However, one in every five First Nations reserves is under a drinking water advisory, often due to unacceptable microbiological quality. In this study, we analyzed source and potable water from a First Nations community for the presence of coliform bacteria as well as various antibiotic resistance genes. Samples, including those from drinking water sources, were found to be positive for various antibiotic resistance genes, namely, ampC, tet(A), mecA, β-lactamase genes (SHV-type, TEM-type, CTX-M-type, OXA-1, and CMY-2-type), and carbapenemase genes (KPC, IMP, VIM, NDM, GES, and OXA-48 genes). Not surprisingly, substantial numbers of total coliforms, including Escherichia coli, were recovered from these samples, and this result was also confirmed using Illumina sequencing of the 16S rRNA gene. These findings deserve further attention, as the presence of coliforms and antibiotic resistance genes potentially puts the health of the community members at risk. IMPORTANCE In this study, we highlight the poor microbiological quality of drinking water in a First Nations community in Canada. We examined the coliform load as well as the presence of antibiotic resistance genes in these samples. This study examined the presence of antibiotic-resistant genes in drinking water samples from a First Nations Community in Canada. We believe that our findings are of considerable significance, since the issue of poor water quality in First Nations communities in Canada is often ignored, and our findings will help shed some light on this important issue. PMID:27235436
Fernando, Dinesh M; Tun, Hein Min; Poole, Jenna; Patidar, Rakesh; Li, Ru; Mi, Ruidong; Amarawansha, Geethani E A; Fernando, W G Dilantha; Khafipour, Ehsan; Farenhorst, Annemieke; Kumar, Ayush
2016-08-01
Access to safe drinking water is now recognized as a human right by the United Nations. In developed countries like Canada, access to clean water is generally not a matter of concern. However, one in every five First Nations reserves is under a drinking water advisory, often due to unacceptable microbiological quality. In this study, we analyzed source and potable water from a First Nations community for the presence of coliform bacteria as well as various antibiotic resistance genes. Samples, including those from drinking water sources, were found to be positive for various antibiotic resistance genes, namely, ampC, tet(A), mecA, β-lactamase genes (SHV-type, TEM-type, CTX-M-type, OXA-1, and CMY-2-type), and carbapenemase genes (KPC, IMP, VIM, NDM, GES, and OXA-48 genes). Not surprisingly, substantial numbers of total coliforms, including Escherichia coli, were recovered from these samples, and this result was also confirmed using Illumina sequencing of the 16S rRNA gene. These findings deserve further attention, as the presence of coliforms and antibiotic resistance genes potentially puts the health of the community members at risk. In this study, we highlight the poor microbiological quality of drinking water in a First Nations community in Canada. We examined the coliform load as well as the presence of antibiotic resistance genes in these samples. This study examined the presence of antibiotic-resistant genes in drinking water samples from a First Nations Community in Canada. We believe that our findings are of considerable significance, since the issue of poor water quality in First Nations communities in Canada is often ignored, and our findings will help shed some light on this important issue. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Funk, Jason M.; Reutter, David C.; Rowe, Gary L.
2003-01-01
In 1999 and 2000, the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program conducted a national pilot study of pesticides and degradates in drinking-water supplies, in cooperation with the U.S. Environmental Protection Agency (USEPA). William H. Harsha Lake, which provides drinking water for several thousand people in southwestern Ohio, was selected as one of the drinking-water supplies for this study. East Fork Little Miami River is the main source of water to Harsha Lake and drains a predominantly agricultural basin. Samples were collected from the East Fork Little Miami River upstream from Harsha Lake, at the drinking-water intake at Harsha Lake, at the outfall just below Harsha Lake, and from treated water at the Bob McEwen Treatment Plant. These samples were analyzed using standardized methods developed for the NAWQA Program. In all, 42 pesticide compounds (24 herbicides, 4 insecticides, 1 fungicide, and 13 degradates) were detected at least once in samples collected during this study. No compound in the treated water samples exceeded any drinking-water standard, although atrazine concentrations in untreated water exceeded the USEPA Maximum Contaminant Level (MCL) for drinking water (3 ?g/L) on four occasions. At least eight compounds were detected with greater than 60 percent frequency at each sampling location. Herbicides, such as atrazine, alachlor, acetochlor, cyanazine, metolachlor, and simazine, were detected most frequently. Rainfall affected the pesticide concentrations in surface waters of the East Fork Little Miami River Basin. Drought conditions from May through November 1999 led to lower streamflow and pesticide concentrations throughout southwestern Ohio. More normal climate conditions during 2000 resulted in higher streamflows and seasonally higher concentrations in the East Fork Little Miami River and Harsha Lake for some pesticides Comparison of pesticide concentrations in untreated lake water and treated drinking water supplied by the Bob McEwen Treatment Plant suggests that treatment processes employed by the plant (chlorination, activated carbon) reduced pesticide concentrations to levels well below USEPA drinking-water standards. In particular, the percentage of pesticides remaining in treated water samples decreased significantly for several frequently occurring pesticides when the plant replaced the use of powdered activated carbon with granular activated carbon in November 1999. For example, the median percentage of atrazine remaining after treatment that included powdered activated carbon was 63 percent, whereas the median percentage of atrazine remaining after the switch to granular activated carbon was 2.4 percent.
Siti Farizwana, M R; Mazrura, S; Zurahanim Fasha, A; Ahmad Rohi, G
2010-01-01
The study was to determine the concentration of aluminium (Al) and study the physicochemical parameters (pH, total dissolved solids (TDS), turbidity, and residual chlorine) in drinking water supply in selected palm oil estates in Kota Tinggi, Johor. Water samples were collected from the estates with the private and the public water supplies. The sampling points were at the water source (S), the treatment plant outlet (TPO), and at the nearest houses (H1) and the furthest houses (H2) from the TPO. All estates with private water supply failed to meet the NSDWQ for Al with mean concentration of 0.99 ± 1.52 mg/L. However, Al concentrations in all public water supply estates were well within the limit except for one estate. The pH for all samples complied with the NSDWQ except from the private estates for the drinking water supply with an acidic pH (5.50 ± 0.90). The private water supply showed violated turbidity value in the drinking water samples (14.2 ± 24.1 NTU). Insufficient amount of chlorination was observed in the private water supply estates (0.09 ± 0.30 mg/L). Private water supplies with inefficient water treatment served unsatisfactory drinking water quality to the community which may lead to major health problems.
Muddying the Waters: A New Area of Concern for Drinking Water Contamination in Cameroon
Healy Profitós, Jessica M.; Mouhaman, Arabi; Lee, Seungjun; Garabed, Rebecca; Moritz, Mark; Piperata, Barbara; Tien, Joe; Bisesi, Michael; Lee, Jiyoung
2014-01-01
In urban Maroua, Cameroon, improved drinking water sources are available to a large majority of the population, yet this water is frequently distributed through informal distribution systems and stored in home containers (canaries), leaving it vulnerable to contamination. We assessed where contamination occurs within the distribution system, determined potential sources of environmental contamination, and investigated potential pathogens. Gastrointestinal health status (785 individuals) was collected via health surveys. Drinking water samples were collected from drinking water sources and canaries. Escherichia coli and total coliform levels were evaluated and molecular detection was performed to measure human-associated faecal marker, HF183; tetracycline-resistance gene, tetQ; Campylobacter spp.; and Staphylococcus aureus. Statistical analyses were performed to evaluate the relationship between microbial contamination and gastrointestinal illness. Canari samples had higher levels of contamination than source samples. HF183 and tetQ were detected in home and source samples. An inverse relationship was found between tetQ and E. coli. Presence of tetQ with lower E. coli levels increased the odds of reported diarrhoeal illness than E. coli levels alone. Further work is warranted to better assess the relationship between antimicrobial-resistant bacteria and other pathogens in micro-ecosystems within canaries and this relationship’s impact on drinking water quality. PMID:25464137
Muddying the waters: a new area of concern for drinking water contamination in Cameroon.
Profitós, Jessica M Healy; Mouhaman, Arabi; Lee, Seungjun; Garabed, Rebecca; Moritz, Mark; Piperata, Barbara; Tien, Joe; Bisesi, Michael; Lee, Jiyoung
2014-11-28
In urban Maroua, Cameroon, improved drinking water sources are available to a large majority of the population, yet this water is frequently distributed through informal distribution systems and stored in home containers (canaries), leaving it vulnerable to contamination. We assessed where contamination occurs within the distribution system, determined potential sources of environmental contamination, and investigated potential pathogens. Gastrointestinal health status (785 individuals) was collected via health surveys. Drinking water samples were collected from drinking water sources and canaries. Escherichia coli and total coliform levels were evaluated and molecular detection was performed to measure human-associated faecal marker, HF183; tetracycline-resistance gene, tetQ; Campylobacter spp.; and Staphylococcus aureus. Statistical analyses were performed to evaluate the relationship between microbial contamination and gastrointestinal illness. Canari samples had higher levels of contamination than source samples. HF183 and tetQ were detected in home and source samples. An inverse relationship was found between tetQ and E. coli. Presence of tetQ with lower E. coli levels increased the odds of reported diarrhoeal illness than E. coli levels alone. Further work is warranted to better assess the relationship between antimicrobial-resistant bacteria and other pathogens in micro-ecosystems within canaries and this relationship's impact on drinking water quality.
Genuino, Homer C; Espino, Maria Pythias B
2012-04-01
Significant levels of potentially carcinogenic bromate were measured in chlorinated tap drinking water in Metropolitan Manila, Philippines, using an optimized ion-chromatographic method. This method can quantify bromate in water down to 4.5 μg l⁻¹ by employing a postcolumn reaction with acidic fuchsin and subsequent spectrophotometric detection. The concentration of bromate in tap drinking water samples collected from 21 locations in cities and municipalities within the 9-month study period ranged from 7 to 138 μg l⁻¹. The average bromate concentration of all tap drinking water samples was 66 μg l⁻¹ (n = 567), almost seven times greater than the current regulatory limit in the country. The levels of bromate in other water types were also determined to identify the sources of bromate found in the distribution lines and to further uncover contaminated sites. The concentration of bromate in water sourced from two rivers and two water treatment plants ranged from 15 to 80 and 12 to 101 μg l⁻¹, respectively. Rainwater did not contribute bromate in rivers but decreased bromate level by dilution. Groundwater and wastewater samples showed bromate concentrations as high as 246 and 342 μg l⁻¹, respectively. Bromate presence in tap drinking water can be linked to pollution in natural water bodies and the practice of using hypochlorite chemicals in addition to gaseous chlorine for water disinfection. This study established the levels, occurrence, and possible sources of bromate in local drinking water supplies.
Rao, Koppula Yadav; Anjum, Mohammad Shakeel; Reddy, Peddireddy Parthasarathi; Monica, Mocherla; Hameed, Irram Abbass
2016-01-01
Introduction Humanity highly depends on water and its proper utilization and management. Water has various uses and its use as thirst quenching fluid is the most significant one. Aim To assess physical, chemical, trace metal and bacterial parameters of various public and packaged drinking water samples collected from villages of Vikarabad mandal. Materials and Methods Public and packaged drinking water samples collected were analysed for various parameters using American Public Health Association (APHA 18th edition 1992) guidelines and the results obtained were compared with bureau of Indian standards for drinking water. Statistical Analysis Descriptive statistics and Pearson’s correlations were done. Results Among bottled water samples, magnesium in 1 sample was >30mg/litre, nickel in 2 samples was >0.02mg/litre. Among sachet water samples, copper in 1 sample was >0.05mg/litre, nickel in 2 samples was >0.02mg/litre. Among canned water samples, total hardness in 1 sample was >200mg/litre, magnesium in 3 samples was >30mg/litre. In tap water sample, calcium was >75mg/litre, magnesium was >30mg/litre, nickel was >0.02mg/litre. Among public bore well water samples, pH in 1 sample was >8.5, total dissolved solids in 17 samples was >500mg/litre, total alkalinity in 9 samples was >200mg/litre, total hardness in 20 samples was >200mg/litre, calcium in 14 samples was >75mg/litre, fluoride in 1 sample was >1mg/litre, magnesium in 14 samples was >30mg/litre. Total coliform was absent in bottled water, sachet water, canned water, tap water samples. Total Coliform was present but E. coli was absent in 4 public bore well water samples. The MPN per 100 ml in those 4 samples of public bore well water was 50. Conclusion Physical, chemical, trace metal and bacterial parameters tested in present study showed values greater than acceptable limit for some samples, which can pose serious threat to consumers of that region. PMID:27437248
Groundwater quality assessment for drinking and agriculture purposes in Abhar city, Iran.
Jafari, Khadijeh; Asghari, Farzaneh Baghal; Hoseinzadeh, Edris; Heidari, Zahra; Radfard, Majid; Saleh, Hossein Najafi; Faraji, Hossein
2018-08-01
The main objective of this study is to assess the quality of groundwater for drinking consume and agriculture purposes in abhar city. The analytical results shows higher concentration of electrical conductivity (100%), total hardness (66.7%), total dissolved solids (40%), magnesium (23%), Sulfate (13.3%) which indicates signs of deterioration as per WHO and Iranian standards for drinking consume. Agricultural index, in terms of the hardness index, 73.3% of the samples in hard water category and 73.3% in sodium content were classified as good. Therefore, the main problem in the agricultural sector was the total hardness Water was estimated. For the RSC index, all 100% of the samples were desirable. In the physicochemical parameters of drinking water, 100% of the samples were undesirable in terms of electrical conductivity and 100% of the samples were desirable for sodium and chlorine parameters. Therefore, the main water problem in Abhar is related to electrical conductivity and water total hardness.
Monteverde, Malena; Cipponeri, Marcos; Angelaccio, Carlos; Gianuzzi, Leda
2013-04-01
The aim of this study is to analyze the origin and quality of water used for consumption in a sample of households in Matanza-Riachuelo river basin area in Greater Buenos Aires, Argentina. The results of drinking water by source indicated that 9% of water samples from the public water system, 45% of bottled water samples and 80% of well water samples were not safe for drinking due to excess content of coliforms, Escherichia coli or nitrates. Individuals living in households where well water is the main source of drinking water have a 55% higher chance of suffering a water-borne disease; in the cases of diarrheas, the probability is 87% higher and in the case of dermatitis, 160% higher. The water for human consumption in this region should be provided by centralized sources that assure control over the quality of the water.
Fluoride concentration in drinking water samples in Fiji.
Prasad, Neha; Pushpaangaeli, Bernadette; Ram, Anumala; Maimanuku, Leenu
2018-04-26
The main aim of this study was to determine the content of fluoride in drinking water from sources within the sampling areas for the National Oral Health Survey (NOHS) 2011 from the Central, Northern, Western and Eastern Divisions in the Fiji Islands. Drinking water samples were collected from taps, a waterfall, wells, creeks, streams, springs, rivers, boreholes and rain water tanks in a diverse range of rural and urban areas across the Fiji Islands. A total of 223 areas were sampled between December 2014 and June 2015. Samples were analysed for fluoride using a colorimetric assay with the Zirconyl-SPADNS Reagent. The samples were pre-treated with sodium arsenite solution prior to analysis to eliminate interference from chlorine. Measured fluoride concentrations ranged from 0.01 to 0.35 ppm, with a mean concentration across all samples of 0.03 + 0.04 ppm. No samples achieved the optimal level for caries prevention (0.7 ppm). The Western Division had the highest fluoride levels compared to the other Divisions. The highest single fluoride concentration was found in Valase. The drinking water for this rural area located in the Western Division is from a borehole. The lowest concentrations of fluoride were in reticulated water samples from rural areas in the Central Division, which were consistently less than those recorded in the Northern, Eastern and Western Divisions. All samples had fluoride concentrations below the optimum level required to prevent dental caries. Implications for public health: This research forms part of the objectives of the 2011 National Oral Health Survey in Fiji. At present, Fiji lacks water fluoridation and therefore a baseline of the fluoride content in drinking water supplies is essential before water fluoridation is implemented. The results from this study would be beneficial in designing caries-preventive strategies through water fluoridation and for comparing those strategies with caries prevalence overtime. © 2018 The Authors.
Artificial sweetener sucralose in U.S. drinking water systems.
Mawhinney, Douglas B; Young, Robert B; Vanderford, Brett J; Borch, Thomas; Snyder, Shane A
2011-10-15
The artificial sweetener sucralose has recently been shown to be a widespread of contaminant of wastewater, surface water, and groundwater. In order to understand its occurrence in drinking water systems, water samples from 19 United States (U.S.) drinking water treatment plants (DWTPs) serving more than 28 million people were analyzed for sucralose using liquid chromatography tandem mass spectrometry (LC-MS/MS). Sucralose was found to be present in source water of 15 out of 19 DWTPs (47-2900 ng/L), finished water of 13 out of 17 DWTPs (49-2400 ng/L) and distribution system water of 8 out of the 12 DWTPs (48-2400 ng/L) tested. Sucralose was only found to be present in source waters with known wastewater influence and/or recreational usage, and displayed low removal (12% average) in the DWTPs where finished water was sampled. Further, in the subset of DWTPs with distribution system water sampled, the compound was found to persist regardless of the presence of residual chlorine or chloramines. In order to understand intra-DWTP consistency, sucralose was monitored at one drinking water treatment plant over an 11 month period from March 2010 through January 2011, and averaged 440 ng/L in the source water and 350 ng/L in the finished water. The results of this study confirm that sucralose will function well as an indicator compound for anthropogenic influence on source, finished drinking and distribution system (i.e., tap) water, as well as an indicator compound for the presence of other recalcitrant compounds in finished drinking water in the U.S.
The method for extracting and preparing a drinking water sample for analysis of atrazine is summarized in this SOP. It covers the extraction and concentration of samples that are to be analyzed by gas chromatography/ mass spectrometry.
Ens, Waldemar; Senner, Frank; Gygax, Benjamin; Schlotterbeck, Götz
2014-05-01
A new method for the simultaneous determination of iodated X-ray contrast media (ICM) and artificial sweeteners (AS) by liquid chromatography-tandem mass spectrometry (LC-MS/MS) operated in positive and negative ionization switching mode was developed. The method was validated for surface, ground, and drinking water samples. In order to gain higher sensitivities, a 10-fold sample enrichment step using a Genevac EZ-2 plus centrifugal vacuum evaporator that provided excellent recoveries (90 ± 6 %) was selected for sample preparation. Limits of quantification below 10 ng/L were obtained for all compounds. Furthermore, sample preparation recoveries and matrix effects were investigated thoroughly for all matrix types. Considerable matrix effects were observed in surface water and could be compensated by the use of four stable isotope-labeled internal standards. Due to their persistence, fractions of diatrizoic acid, iopamidol, and acesulfame could pass the whole drinking water production process and were observed also in drinking water. To monitor the fate and occurrence of these compounds, the validated method was applied to samples from different stages of the drinking water production process of the Industrial Works of Basel (IWB). Diatrizoic acid was found as the most persistent compound which was eliminated by just 40 % during the whole drinking water treatment process, followed by iopamidol (80 % elimination) and acesulfame (85 % elimination). All other compounds were completely restrained and/or degraded by the soil and thus were not detected in groundwater. Additionally, a direct injection method without sample preparation achieving 3-20 ng/L limits of quantification was compared to the developed method.
Quality of drinking water from ponds in villages of Kolleru Lake region.
Rao, A S; Rao, P R; Rao, N S
2001-01-01
Kolleru Lake is the largest natural freshwater lake in the districts of East and West Godavari of Andhra Pradesh. The major population centres in the Kolleru Lake region are the 148 villages of which 50 bed villages and 98 belt villages. All bed and belt villages in lake region have at least one drinking water pond. Drinking water ponds are filled with lake water during monsoon season and directly supplied to the public throughout the year. The water samples were collected from village drinking water ponds in a year by covering three seasons and analysed for different physico-chemical parameters to assess the quality of drinking water.
Background: Current evidence suggests that drinking water, soil, and produce are potential sources of Mycobacterium avium infections, a pathogen not known to be transmitted person-to-person.
Methods: We sampled water during 2000 - 2002 from a large municipal drinking wate...
46 CFR 160.026-6 - Sampling, inspection, and tests of production lots.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Bacteriological limits and salt content MIL-W-15117 and U.S. Public Health “Drinking Water Standards.” (e) Lot..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Water, Emergency Drinking (In... lots. (a) General. Containers of emergency drinking water must be tested in accordance with the...
46 CFR 160.026-6 - Sampling, inspection, and tests of production lots.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Bacteriological limits and salt content MIL-W-15117 and U.S. Public Health “Drinking Water Standards.” (e) Lot..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Water, Emergency Drinking (In... lots. (a) General. Containers of emergency drinking water must be tested in accordance with the...
46 CFR 160.026-6 - Sampling, inspection, and tests of production lots.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Bacteriological limits and salt content MIL-W-15117 and U.S. Public Health “Drinking Water Standards.” (e) Lot..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Water, Emergency Drinking (In... lots. (a) General. Containers of emergency drinking water must be tested in accordance with the...
46 CFR 160.026-6 - Sampling, inspection, and tests of production lots.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Bacteriological limits and salt content MIL-W-15117 and U.S. Public Health “Drinking Water Standards.” (e) Lot..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Water, Emergency Drinking (In... lots. (a) General. Containers of emergency drinking water must be tested in accordance with the...
46 CFR 160.026-6 - Sampling, inspection, and tests of production lots.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Bacteriological limits and salt content MIL-W-15117 and U.S. Public Health “Drinking Water Standards.” (e) Lot..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Water, Emergency Drinking (In... lots. (a) General. Containers of emergency drinking water must be tested in accordance with the...
Groundwater quality in the Genesee River Basin, New York, 2010
Reddy, James E.
2012-01-01
Water samples collected from eight production wells and eight private residential wells in the Genesee River Basin from September through December 2010 were analyzed to characterize the groundwater quality in the basin. Eight of the wells were completed in sand and gravel aquifers, and eight were finished in bedrock aquifers. Three of the 16 wells were sampled in the first Genesee River Basin study during 2005-2006. Water samples from the 2010 study were analyzed for 147 physiochemical properties and constituents that included major ions, nutrients, trace elements, radionuclides, pesticides, volatile organic compounds (VOCs), and indicator bacteria. Results of the water-quality analyses are presented in tabular form for individual wells, and summary statistics for specific constituents are presented by aquifer type. The results are compared with Federal and New York State drinking-water standards, which typically are identical. The results indicate that groundwater generally is of acceptable quality, although concentrations of the following constituents exceeded current or proposed Federal or New York State drinking-water standards at each of the 16 wells sampled: color (one sample), sodium (three samples), sulfate (three samples), total dissolved solids (four samples), aluminum (one sample), arsenic (two samples), copper (one sample), iron (nine samples), manganese (eight samples), radon-222 (nine samples), and total coliform bacteria (six samples). Existing drinking-water standards for pH, chloride, fluoride, nitrate, nitrite, antimony, barium, beryllium, cadmium, chromium, lead, mercury, selenium, silver, thallium, zinc, gross alpha radioactivity, uranium, fecal coliform, Escherichia coli, and heterotrophic bacteria were not exceeded in any of the samples collected. None of the pesticides and VOCs analyzed exceeded existing drinking-water standards.
Groundwater quality in western New York, 2011
Reddy, James E.
2013-01-01
Water samples collected from 16 production wells and 15 private residential wells in western New York from July through November 2011 were analyzed to characterize the groundwater quality. Fifteen of the wells were finished in sand and gravel aquifers, and 16 were finished in bedrock aquifers. Six of the 31 wells were sampled in a previous western New York study, which was conducted in 2006. Water samples from the 2011 study were analyzed for 147 physiochemical properties and constituents that included major ions, nutrients, trace elements, radionuclides, pesticides, volatile organic compounds (VOCs), and indicator bacteria. Results of the water-quality analyses are presented in tabular form for individual wells, and summary statistics for specific constituents are presented by aquifer type. The results are compared with Federal and New York State drinking-water standards, which typically are identical. The results indicate that groundwater generally is of acceptable quality, although at 30 of the 31 wells sampled, at least one of the following constituents was detected at a concentration that exceeded current or proposed Federal or New York State drinking-water standards: pH (two samples), sodium (eight samples), sulfate (three samples), total dissolved solids (nine samples), aluminum (two samples), arsenic (one sample), iron (ten samples), manganese (twelve samples), radon-222 (sixteen samples), benzene (one sample), and total coliform bacteria (nine samples). Existing drinking-water standards for color, chloride, fluoride, nitrate, nitrite, antimony, barium, beryllium, cadmium, chromium, copper, lead, mercury, selenium, silver, thallium, zinc, gross alpha radioactivity, uranium, fecal coliform, Escherichia coli, and heterotrophic bacteria were not exceeded in any of the samples collected. None of the pesticides analyzed exceeded existing drinking-water standards.
Results of the Level-1 Water-Quality Inventory at the Pinnacles National Monument, June 2006
Borchers, James W.; Lyttge, Michael S.
2007-01-01
To help define baseline water quality of key water resources at Pinnacles National Monument, California, the U.S. Geological Survey collected and analyzed ground water from seven springs sampled during June 2006. During the dry season, seeps and springs are the primary source of water for wildlife in the monument and provide habitat for plants, amphibians, and aquatic life. Water samples were analyzed for dissolved concentrations of major ions, trace elements, nutrients, stable isotopes of hydrogen and oxygen, and tritium. In most cases, the concentrations of measured water-quality constituents in spring samples were lower than California threshold standards for drinking water and Federal threshold standards for drinking water and aquatic life. The concentrations of dissolved arsenic in three springs were above the Federal Maximum Contaminant Level for drinking water (10 g/L). Water-quality information for samples collected from the springs will provide a reference point for comparison of samples collected from future monitoring networks and hydrologic studies in the Pinnacles National Monument, and will help National Park Service managers assess relations between water chemistry, geology, and land use.
Kaboré, Hermann A; Vo Duy, Sung; Munoz, Gabriel; Méité, Ladji; Desrosiers, Mélanie; Liu, Jinxia; Sory, Traoré Karim; Sauvé, Sébastien
2018-03-01
In the last decade or so, concerns have arisen with respect to the widespread occurrence of perfluoroalkyl acids (PFAAs) in the environment, food, drinking water, and humans. In this study, the occurrence and levels of a large range of perfluoroalkyl and polyfluoroalkyl substances (PFASs) were investigated in drinking water (bottled and tap water samples) from various locations around the world. Automated off-line solid phase extraction followed by ultra-high-performance liquid chromatography coupled to high-resolution mass spectrometry was used to analyze PFASs of various chain lengths and functional groups. In total, 29 target and 104 suspect-target PFASs were screened in drinking water samples (n=97) from Canada and other countries (Burkina Faso, Chile, Ivory Coast, France, Japan, Mexico, Norway, and the USA) in 2015-2016. Out of the 29 PFASs quantitatively analyzed, perfluorocarboxylates (PFCAs: C 4/14 ), perfluoroalkane sulfonates (PFSAs: C 4 , C 6 , C 8 ), and perfluoroalkyl acid precursors (e.g., 5:3 fluorotelomer carboxylate (5:3 FTCA)) were recurrently detected in drinking water samples (concentration range:
Rahman, Aminur; Hashem, Abul; Nur-A-Tomal, Shahruk
2016-12-01
Safe potable water is essential for good health. Worldwide, school-aged children especially in the developing countries are suffering from various water-borne diseases. In the study, drinking water supplies for primary school children were monitored at Magura district, Bangladesh, to ensure safe potable water. APHA standard analytical methods were applied for determining the physicochemical parameters of the water samples. For determination of the essential physicochemical parameters, the samples were collected from 20 randomly selected tube wells of primary schools at Magura. The metal contents, especially arsenic (As), iron (Fe), and manganese (Mn), in the water samples were analyzed by atomic absorption spectroscopy. The range of physicochemical parameters found in water samples were as follows: pH 7.05-9.03, electrical conductivity 400-2340 μS/cm, chloride 10-640 mg/L, hardness 200-535 mg/L as CaCO 3 , and total dissolved solids 208-1216 mg/L. The level of metals in the tube well water samples were as follows: As 1 to 55 μg/L, Fe 40 to 9890 μg/L, and Mn 10 to 370 μg/L. Drinking water parameters of Magura district did not meet the requirement of the World Health Organization drinking water quality guideline, or the Drinking Water Quality Standards of Bangladesh.
Puzon, Geoffrey J; Lancaster, James A; Wylie, Jason T; Plumb, Iason J
2009-09-01
Rapid detection of pathogenic Naegleria fowler in water distribution networks is critical for water utilities. Current detection methods rely on sampling drinking water followed by culturing and molecular identification of purified strains. This culture-based method takes an extended amount of time (days), detects both nonpathogenic and pathogenic species, and does not account for N. fowleri cells associated with pipe wall biofilms. In this study, a total DNA extraction technique coupled with a real-time PCR method using primers specific for N. fowleri was developed and validated. The method readily detected N. fowleri without preculturing with the lowest detection limit for N. fowleri cells spiked in biofilm being one cell (66% detection rate) and five cells (100% detection rate). For drinking water, the detection limit was five cells (66% detection rate) and 10 cells (100% detection rate). By comparison, culture-based methods were less sensitive for detection of cells spiked into both biofilm (66% detection for <10 cells) and drinking water (0% detection for <10 cells). In mixed cultures of N. fowleri and nonpathogenic Naegleria, the method identified N. fowleri in 100% of all replicates, whereastests with the current consensus primers detected N. fowleri in only 5% of all replicates. Application of the new method to drinking water and pipe wall biofilm samples obtained from a distribution network enabled the detection of N. fowleri in under 6 h, versus 3+ daysforthe culture based method. Further, comparison of the real-time PCR data from the field samples and the standard curves enabled an approximation of N. fowleri cells in the biofilm and drinking water. The use of such a method will further aid water utilities in detecting and managing the persistence of N. fowleri in water distribution networks.
Liou, Saou-Hsing; Yang, Gordon C C; Wang, Chih-Lung; Chiu, Yu-Han
2014-07-30
This 5-month study contains two parts: (1) to monitor the concentrations of 11 phthalate esters metabolites (PAEMs) and two beta-agonists in human urine samples collected from a small group of consented participants including 16 females and five males; and (2) to analyze the residues of phthalate esters (PAEs) and beta-agonists in various categories of drinking water consumed by the same group of subjects. Each category of human urine and drinking water had 183 samples of its own. The analytical results showed that nine PAEMs were detected in human urine and eight PAEs were detected in drinking water samples. It was found that average concentrations of PAEMs increased as the age increased, but no significant difference between sexes. Further, using the principal component analysis, the loadings of age effect were found to be two times greater than that of gender effect in terms of four DEHP metabolites. Regarding beta-agonists of concern (i.e., ractopamine and salbutamol), they were neither detected in human urine nor drinking water samples in this study. Copyright © 2014 Elsevier B.V. All rights reserved.
Uranium in Kosovo's drinking water.
Berisha, Fatlume; Goessler, Walter
2013-11-01
The results of this paper are an initiation to capture the drinking water and/or groundwater elemental situation in the youngest European country, Kosovo. We aim to present a clear picture of the natural uranium concentration in drinking water and/or groundwater as it is distributed to the population of Kosovo. Nine hundred and fifty-one (951) drinking water samples were analyzed by inductively coupled plasma mass spectrometry (ICPMS). The results are the first countrywide interpretation of the uranium concentration in drinking water and/or groundwater, directly following the Kosovo war of 1999. More than 98% of the samples had uranium concentrations above 0.01 μg L(-1), which was also our limit of quantification. Concentrations up to 166 μg L(-1) were found with a mean of 5 μg L(-1) and median 1.6 μg L(-1) were found. Two point six percent (2.6%) of the analyzed samples exceeded the World Health Organization maximum acceptable concentration of 30 μg L(-1), and 44.2% of the samples exceeded the 2 μg L(-1) German maximum acceptable concentrations recommended for infant food preparations. Copyright © 2013 Elsevier Ltd. All rights reserved.
Antonijevic, Evica; Mandinic, Zoran; Curcic, Marijana; Djukic-Cosic, Danijela; Milicevic, Nemanja; Ivanovic, Mirjana; Carevic, Momir; Antonijevic, Biljana
2016-06-01
This study explores relation between dental fluorosis occurrence in schoolchildren, residents of Ritopek, a small local community near Belgrade, and fluoride exposure via drinking water. Additionally, fluoride levels were determined in children's urine and hair samples, and efforts were made to correlate them with dental fluorosis. Dental fluorosis and caries prevalence were examined in a total of 52 schoolchildren aged 7-15 years (29 boys and 23 girls). Fluoride levels in three types of samples were analyzed using composite fluoride ion-selective electrode. Results showed high prevalence of dental fluorosis (34.6 %) and low prevalence of dental caries (23.1 %, mean DMFT 0.96) among children exposed to wide range of water fluoride levels (0.11-4.14 mg/L, n = 27). About 11 % of water samples exceeded 1.5 mg/L, a drinking-water quality guideline value for fluoride given by the World Health Organization (2006). Fluoride levels in urine and hair samples ranged between 0.07-2.59 (n = 48) and 1.07-19.83 mg/L (n = 33), respectively. Severity of dental fluorosis was positively and linearly correlated with fluoride levels in drinking water (r = 0.79). Fluoride levels in urine and hair were strongly and positively correlated with levels in drinking water (r = 0.92 and 0.94, respectively). Fluoride levels in hair samples appeared to be a potentially promising biomarker of fluoride intake via drinking water on one hand, and severity of dental fluorosis on the other hand. Based on community fluorosis index value of 0.58, dental fluorosis revealed in Ritopek can be considered as "borderline" public health issue.
Chandra, Amar K; Tripathy, Smritiratan; Debnath, Arijit; Ghosh, Dishari
2007-04-01
Endemic goitre has been reported from the ecologically diverse Sundarban delta of West Bengal (India). To study the etiological factors for the persistence of endemic goitre, bioavailability of iodine and hardness of water used for drinking in the region were evaluated because these common environmental factors are inversely and directly related with goitre prevalence in several geographical regions. For the present study from 19 Community Development Blocks of Sundarban delta, 19 areas were selected at random. From each area at least 8 drinking water samples were collected and analyzed for iodine and the hardness (calcium and magnesium salt content). Iodine content in the drinking water samples was found in the range from 21 to 119 mg/L and total hardness of drinking water was found to range from 50 to 480 ppm. Presence of magnesium salt was found higher than the calcium salts in most of the samples. These findings suggest that the entire delta region is environmentally iodine sufficient but water is relatively hard and thus possibility of hardness of water for the persistence of endemic goitre may not be ruled out.
A brief overview on radon measurements in drinking water.
Jobbágy, Viktor; Altzitzoglou, Timotheos; Malo, Petya; Tanner, Vesa; Hult, Mikael
2017-07-01
The aim of this paper is to present information about currently used standard and routine methods for radon analysis in drinking waters. An overview is given about the current situation and the performance of different measurement methods based on literature data. The following parameters are compared and discussed: initial sample volume and sample preparation, detection systems, minimum detectable activity, counting efficiency, interferences, measurement uncertainty, sample capacity and overall turnaround time. Moreover, the parametric levels for radon in drinking water from the different legislations and directives/guidelines on radon are presented. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Evaluation of Polymerase Chain Reaction for Detecting Coliform Bacteria in Drinking Water Sources.
Isfahani, Bahram Nasr; Fazeli, Hossein; Babaie, Zeinab; Poursina, Farkhondeh; Moghim, Sharareh; Rouzbahani, Meisam
2017-01-01
Coliform bacteria are used as indicator organisms for detecting fecal pollution in water. Traditional methods including microbial culture tests in lactose-containing media and enzyme-based tests for the detection of β-galactosidase; however, these methods are time-consuming and less specific. The aim of this study was to evaluate polymerase chain reaction (PCR) for detecting coliform. Totally, 100 of water samples from Isfahan drinking water source were collected. Coliform bacteria and Escherichia coli were detected in drinking water using LacZ and LamB genes in PCR method performed in comparison with biochemical tests for all samples. Using phenotyping, 80 coliform isolates were found. The results of the biochemical tests illustrated 78.7% coliform bacteria and 21.2% E. coli . PCR results for LacZ and LamB genes were 67.5% and 17.5%, respectively. The PCR method was shown to be an effective, sensitive, and rapid method for detecting coliform and E. coli in drinking water from the Isfahan drinking water sources.
Does quality of drinking water matter in kidney stone disease: A study in West Bengal, India.
Mitra, Pubali; Pal, Dilip Kumar; Das, Madhusudan
2018-05-01
The combined interaction of epidemiology, environmental exposure, dietary habits, and genetic factors causes kidney stone disease (KSD), a common public health problem worldwide. Because a high water intake (>3 L daily) is widely recommended by physicians to prevent KSD, the present study evaluated whether the quantity of water that people consume daily is associated with KSD and whether the quality of drinking water has any effect on disease prevalence. Information regarding residential address, daily volume of water consumption, and source of drinking water was collected from 1,266 patients with kidney stones in West Bengal, India. Drinking water was collected by use of proper methods from case (high stone prevalence) and control (zero stone prevalence) areas thrice yearly. Water samples were analyzed for pH, alkalinity, hardness, total dissolved solutes, electrical conductivity, and salinity. Average values of the studied parameters were compared to determine if there were any statistically significant differences between the case and control areas. We observed that as many as 53.6% of the patients consumed <3 L of water daily. Analysis of drinking water samples from case and control areas, however, did not show any statistically significant alterations in the studied parameters. All water samples were found to be suitable for consumption. It is not the quality of water, rather the quantity of water consumed that matters most in the occurrence of KSD.
Bacteria associated with granular activated carbon particles in drinking water.
Camper, A K; LeChevallier, M W; Broadaway, S C; McFeters, G A
1986-01-01
A sampling protocol was developed to examine particles released from granular activated carbon filter beds. A gauze filter/Swinnex procedure was used to collect carbon fines from 201 granular activated carbon-treated drinking water samples over 12 months. Application of a homogenization procedure (developed previously) indicated that 41.4% of the water samples had heterotrophic plate count bacteria attached to carbon particles. With the enumeration procedures described, heterotrophic plate count bacteria were recovered at an average rate of 8.6 times higher than by conventional analyses. Over 17% of the samples contained carbon particles colonized with coliform bacteria as enumerated with modified most-probable-number and membrane filter techniques. In some instances coliform recoveries were 122 to 1,194 times higher than by standard procedures. Nearly 28% of the coliforms attached to these particles in drinking water exhibited the fecal biotype. Scanning electron micrographs of carbon fines from treated drinking water showed microcolonies of bacteria on particle surfaces. These data indicate that bacteria attached to carbon fines may be an important mechanism by which microorganisms penetrate treatment barriers and enter potable water supplies. PMID:3767356
Momtaz, Hassan; Dehkordi, Farhad Safarpoor; Rahimi, Ebrahim; Asgarifar, Amin
2013-06-07
The quality of drinking water has an important role in human infection and disease. This study was aimed at comparing polymerase chain reaction and culture in detecting Escherichia coli, Salmonella species and Vibrio cholera in tape water and bottled drinking water in various seasons in Isfahan province, Iran. A total of 448 water samples from tap water and bottled mineral water were taken over 6 months, from July 2010 to December 2010, and after filtration, samples were examined by culture and polymerase chain reaction methods for detection of Escherichia coli, Salmonella species, and Vibrio cholerae. The culture method showed that 34 (7.58%), 4 (0.89%) and 3 (0.66%) of all 448 water samples were positive for Escherichia coli, Salmonella species, and Vibrio cholera, respectively. The uidA gene from Escherichia coli, IpaB gene from Salmonella species, and epsM gene from Vibrio cholera were detected in 38 (26.38%), 5 (3.47%), and 3 (2.08%) of 144 tap-water samples, respectively. Escherichia coli was detected in 8 (2.63%) of 304 samples of bottled drinking water from 5 companies. The water of southern part of Isfahan and company 5 had the highest prevalence of bacteria. The Escherichia coli water contamination was significantly higher (P < 0.05) in the hot seasons (July-August) than cold (November-December) seasons and in company 5 than other companies. There were significant differences (P < 0.05) for the prevalence of bacteria between the tap waters of southern part and tap waters of central part of Isfahan. This study showed that the polymerase chain reaction assays can be an extremely accurate, fast, safe, sensitive and specific approach to monitor drinking water quality from purification facilities and bottled water companies. Also, our study confirmed the presence of Escherichia coli, Salmonella species, and Vibrio cholerae as water-borne pathogens in tap water and bottled drinking water of Isfahan, Iran. The present study showed the important public health problem in Isfahan, Iran.
2013-01-01
Background The quality of drinking water has an important role in human infection and disease. This study was aimed at comparing polymerase chain reaction and culture in detecting Escherichia coli, Salmonella species and Vibrio cholera in tape water and bottled drinking water in various seasons in Isfahan province, Iran. Methods A total of 448 water samples from tap water and bottled mineral water were taken over 6 months, from July 2010 to December 2010, and after filtration, samples were examined by culture and polymerase chain reaction methods for detection of Escherichia coli, Salmonella species, and Vibrio cholerae. Results The culture method showed that 34 (7.58%), 4 (0.89%) and 3 (0.66%) of all 448 water samples were positive for Escherichia coli, Salmonella species, and Vibrio cholera, respectively. The uidA gene from Escherichia coli, IpaB gene from Salmonella species, and epsM gene from Vibrio cholera were detected in 38 (26.38%), 5 (3.47%), and 3 (2.08%) of 144 tap-water samples, respectively. Escherichia coli was detected in 8 (2.63%) of 304 samples of bottled drinking water from 5 companies. The water of southern part of Isfahan and company 5 had the highest prevalence of bacteria. The Escherichia coli water contamination was significantly higher (P < 0.05) in the hot seasons (July-August) than cold (November-December) seasons and in company 5 than other companies. There were significant differences (P < 0.05) for the prevalence of bacteria between the tap waters of southern part and tap waters of central part of Isfahan. Conclusions This study showed that the polymerase chain reaction assays can be an extremely accurate, fast, safe, sensitive and specific approach to monitor drinking water quality from purification facilities and bottled water companies. Also, our study confirmed the presence of Escherichia coli, Salmonella species, and Vibrio cholerae as water-borne pathogens in tap water and bottled drinking water of Isfahan, Iran. The present study showed the important public health problem in Isfahan, Iran. PMID:23742181
Water quality and management of private drinking water wells in Pennsylvania.
Swistock, Bryan R; Clemens, Stephanie; Sharpe, William E; Rummel, Shawn
2013-01-01
Pennsylvania has over three million rural residents using private water wells for drinking water supplies but is one of the few states that lack statewide water well construction or management standards. The study described in this article aimed to determine the prevalence and causes of common health-based pollutants in water wells and evaluate the need for regulatory management along with voluntary educational programs. Water samples were collected throughout Pennsylvania by Master Well Owner Network volunteers trained by Penn State Extension. Approximately 40% of the 701 water wells sampled failed at least one health-based drinking water standard. The prevalence of most water quality problems was similar to past studies although both lead and nitrate-N were reduced over the last 20 years. The authors' study suggests that statewide water well construction standards along with routine water testing and educational programs to assist water well owners would result in improved drinking water quality for private well owners in Pennsylvania.
Ferrell, G.M.
2009-01-01
Samples of treated effluent and treated and untreated water were collected at 20 municipal wastewater and drinkingwater treatment facilities in the Tar and Cape Fear River basins of North Carolina during 2003 and 2005. The samples were analyzed for a variety of prescription and nonprescription pharmaceutical compounds and a suite of organic compounds considered indicative of wastewater. Concentrations of these compounds generally were less than or near the detection limits of the analytical methods used during this investigation. None of these compounds were detected at concentrations that exceeded drinking-water standards established by the U.S. Environmental Protection Agency. Bromoform, a disinfection byproduct, was the only compound detected at a concentration that exceeded regulatory guidelines. The concentration of bromoform in one finished drinking-water sample, 26 micrograms per liter, exceeded North Carolina water-quality criteria. Drinking-water treatment practices were effective at removing many of the compounds detected in untreated water. Disinfection processes used in wastewater treatment - chlorination or irradiation with ultraviolet light - did not seem to substantially degrade the organic compounds evaluated during this study.
Seasonal Variation of Groundwater Quality in Erode District, Tamil Nadu, India.
Kavidha, R; Elangovan, K
2014-07-01
In recent years, the recurring environmental issues regarding hazardous waste, global climate change, stratospheric ozone depletion, groundwater contamination, disaster mitigation and removal of pollutant have become the focus of environmental attention. In the management of water resources, quality of water is just as important as its quantity. In order to assess the quality and/or suitability of groundwater for drinking and irrigation in Erode District, 144 water samples each in post-monsoon and pre-monsoon during the year 2007 were collected and analyzed for various parameters. These parameters were compared with IS: 10500-1991 drinking water standards. Out of 144 samples, 29 samples exceeded the permissible limit for both the monsoons, 71 samples were within the permissible limit for both the monsoons and the remaining samples exceeded the permissible limit for any one of the monsoon. During both monsoons, except some samples, most of the samples were suitable for drinking and irrigation.
Determination of six iodotrihalomethanes in drinking water in Korea.
Woo, Bomi; Park, Ju-Hyun; Kim, Seungki; Lee, Jeongae; Choi, Jong-Ho; Pyo, Heesoo
2018-06-02
Trihalomethanes (THMs) are chemicals regulated by Environmental Protection Agency's first drinking water regulation issued after the passage of the Safe Drinking Water Act. Among THMs, iodotrihalomethanes (I-THMs) are produced by treating water containing iodides ion with chlorine or ozone. I-THMs are more carcinogenic and biotoxic than chlorinated or brominated THMs. The purpose of this study was to analyze of I-THMs in drinking water using the liquid-liquid extraction (LLE) method with various extraction solvents. The calibration curves ranged from 0.01 to 20 ng/mL and the correlation coefficient showed a good linearity of 0.99 or more. The method detection limit ranged from 0.01 to 0.10 ng/mL. The accuracy of the LLE method ranged from 99.43 to 112.40%, and its precision ranged from 1.10 to 10.36%. Good recoveries (71.35-118.60%) were obtained for spiked drinking water samples, demonstrating that the LLE method is suitable for the analysis of drinking water samples. Dichloroiodomethane, bromochloroiodomethane, and dibromoiodomethane were identified in drinking water collected from 70 places of water purification plants in Korea. The samples were classified by disinfection systems, regions, seasons, and water sources. The concentration of I-THMs in pre-/postchlorination facilities owing to excess chlorine usage was higher than in ozonization/postchlorination facilities. Moreover, the concentrations of I-THMs were high in the coastal region, because of the large amount of halide ions from the sea. There was no seasonal difference; however, the concentration of I-THMs in pre-/postchlorination facilities increased in spring and summer. The concentration of I-THMs in water sources was high in samples from the Geum River and the Yeongsan and Sumjin River. The concentration and detection frequency of I-THMs in Han River and Nakdong River were high in the coastal region, because of numerous pre-/postchlorination facilities and the abundance of halide ions from the ocean. Copyright © 2018 Elsevier B.V. All rights reserved.
Yang, Jin-Young; Lee, Eun-Sook; Kim, Se-Chul; Cha, So-Yang; Kim, Sung-Tek; Lee, Man-Ho; Han, Sun-Hee; Park, Young-Sang
2013-01-01
From May to June 2012, a waterborne outbreak of 124 cases of cryptosporidiosis occurred in the plumbing systems of an older high-rise apartment complex in Seoul, Republic of Korea. The residents of this apartment complex had symptoms of watery diarrhea and vomiting. Tap water samples in the apartment complex and its adjacent buildings were collected and tested for 57 parameters under the Korean Drinking Water Standards and for additional 11 microbiological parameters. The microbiological parameters included total colony counts, Clostridium perfringens, Enterococcus, fecal streptococcus, Salmonella, Shigella, Pseudomonas aeruginosa, Cryptosporidium oocysts, Giardia cysts, total culturable viruses, and Norovirus. While the tap water samples of the adjacent buildings complied with the Korean Drinking Water Standards for all parameters, fecal bacteria and Cryptosporidium oocysts were detected in the tap water samples of the outbreak apartment complex. It turned out that the agent of the disease was Cryptosporidium parvum. The drinking water was polluted with sewage from a septic tank in the apartment complex. To remove C. parvum oocysts, we conducted physical processes of cleaning the water storage tanks, flushing the indoor pipes, and replacing old pipes with new ones. Finally we restored the clean drinking water to the apartment complex after identification of no oocysts. PMID:24039290
Cho, Eun-Joo; Yang, Jin-Young; Lee, Eun-Sook; Kim, Se-Chul; Cha, So-Yang; Kim, Sung-Tek; Lee, Man-Ho; Han, Sun-Hee; Park, Young-Sang
2013-08-01
From May to June 2012, a waterborne outbreak of 124 cases of cryptosporidiosis occurred in the plumbing systems of an older high-rise apartment complex in Seoul, Republic of Korea. The residents of this apartment complex had symptoms of watery diarrhea and vomiting. Tap water samples in the apartment complex and its adjacent buildings were collected and tested for 57 parameters under the Korean Drinking Water Standards and for additional 11 microbiological parameters. The microbiological parameters included total colony counts, Clostridium perfringens, Enterococcus, fecal streptococcus, Salmonella, Shigella, Pseudomonas aeruginosa, Cryptosporidium oocysts, Giardia cysts, total culturable viruses, and Norovirus. While the tap water samples of the adjacent buildings complied with the Korean Drinking Water Standards for all parameters, fecal bacteria and Cryptosporidium oocysts were detected in the tap water samples of the outbreak apartment complex. It turned out that the agent of the disease was Cryptosporidium parvum. The drinking water was polluted with sewage from a septic tank in the apartment complex. To remove C. parvum oocysts, we conducted physical processes of cleaning the water storage tanks, flushing the indoor pipes, and replacing old pipes with new ones. Finally we restored the clean drinking water to the apartment complex after identification of no oocysts.
Yang, Gordon C C; Yen, Chia-Heng; Wang, Chih-Lung
2014-07-30
This study monitored the occurrence and removal efficiencies of 8 phthalate esters (PAEs) and 13 pharmaceuticals present in the drinking water of Kaohsiung City, Taiwan. The simultaneous electrocoagulation and electrofiltration (EC/EF) process was used to remove the contaminants. To this end, a monitoring program was conducted and a novel laboratory-prepared tubular carbon nanofiber/carbon/alumina composite membrane (TCCACM) was incorporated into the EC/EF treatment module (collectively designated as "TCCACM-EC/EF treatment module") to remove the abovementioned compounds from water samples. The monitoring results showed that the concentrations of PAEs were lower in water samples from drinking fountains as compared with tap water samples. No significant differences were found between the concentrations of pharmaceuticals in the two types of water samples. Under optimal operating conditions, the TCCACM-EC/EF treatment module yielded the lowest residual concentrations, ranging from not detected (ND) to 52ng/L for PAEs and pharmaceuticals of concern in the tap water samples. Moreover, the performance of the TCCACM-EC/EF treatment module is comparable with a series of treatment units employed for the drinking fountain water treatment system. The relevant removal mechanisms involved in the TCCACM-EC/EF treatment module were also discussed in this work. Copyright © 2014 Elsevier B.V. All rights reserved.
Effect of turbidity on chlorination efficiency and bacterial persistence in drinking water.
LeChevallier, M W; Evans, T M; Seidler, R J
1981-01-01
To define interrelationships between elevated turbidities and the efficiency of chlorination in drinking water, experiments were performed to measure bacterial survival, chlorine demand, and interference with microbiological determinations. Experiments were conducted on the surface water supplies for communities which practice chlorination as the only treatment. Therefore, the conclusions of this study apply only to such systems. Results indicated that disinfection efficiency (log10 of the decrease in coliform numbers) was negatively correlated with turbidity and was influenced by season, chlorine demand of the samples, and the initial coliform level. Total organic carbon was found to be associated with turbidity and was shown to interfere with maintenance of a free chlorine residual by creating a chlorine demand. Interference with coliform detection in turbid waters could be demonstrated by the recovery of typical coliforms from apparently negative filters. The incidence of coliform masking in the membrane filter technique was found to increase as the turbidity of the chlorinated samples increased. the magnitude of coliform masking in the membrane filter technique increased from less than 1 coliform per 100 ml in water samples of less than 5 nephelometric turbidity units to greater than 1 coliform per 100 ml in water samples of greater than 5 nephelometric turbidity units. Statistical models were developed to predict the impact of turbidity on drinking water quality. The results justify maximum contaminant levels for turbidity in water entering a distribution system as stated in the National Primary Drinking Water Regulations of the Safe Drinking Water Act. Images PMID:7259162
Graham, Jay P; VanDerslice, James
2007-06-01
Many communities along the US-Mexico border remain without infrastructure for water and sewage. Residents in these communities often collect and store their water in open 55-gallon drums. This study evaluated changes in drinking water quality resulting from an intervention that provided large closed water storage tanks (2,500-gallons) to individual homes lacking a piped water supply. After the intervention, many of the households did not change the source of their drinking water to the large storage tanks. Therefore, water quality results were first compared based on the source of the household's drinking water: store or vending machine, large tank, or collected from a public supply and transported by the household. Of the households that used the large storage tank as their drinking water supply, drinking water quality was generally of poorer quality. Fifty-four percent of samples collected prior to intervention had detectable levels of total coliforms, while 82% of samples were positive nine months after the intervention (p < 0.05). Exploratory analyses were also carried out to measure water quality at different points between collection by water delivery trucks and delivery to the household's large storage tank. Thirty percent of the samples taken immediately after water was delivered to the home had high total coliforms (> 10 CFU/100 ml). Mean free chlorine levels dropped from 0.43 mg/l, where the trucks filled their tanks, to 0.20 mg/l inside the household's tank immediately after delivery. Results of this study have implications for interventions that focus on safe water treatment and storage in the home, and for guidelines regarding the level of free chlorine required in water delivered by water delivery trucks.
Drinking Water Intake Is Associated with Higher Diet Quality among French Adults
Gazan, Rozenn; Sondey, Juliette; Maillot, Matthieu; Guelinckx, Isabelle; Lluch, Anne
2016-01-01
This study aimed to examine the association between drinking water intake and diet quality, and to analyse the adherence of French men and women to the European Food Safety Authority 2010 Adequate Intake (EFSA AI). A representative sample of French adults (≥18) from the Individual and National Survey on Food Consumption (INCA2) was classified, by sex, into small, medium, and large drinking water consumers. Diet quality was assessed with several nutritional indices (mean adequacy ratio (MAR), mean excess ratio (MER), probability of adequate intakes (PANDiet), and solid energy density (SED)). Of the total sample, 72% of men and 46% of women were below the EFSA AI. This percentage of non-adherence decreased from the small to the large drinking water consumers (from 95% to 34% in men and from 81% to 9% in women). For both sexes, drinking water intake was associated with higher diet quality (greater MAR and PANDiet). This association remained significant independently of socio-economic status for women only. Low drinking water consumers did not compensate with other sources (beverages and food moisture) and a high drinking water intake was not a guarantee for reaching the EFSA AI, meaning that increasing consumption of water should be encouraged in France. PMID:27809236
Drinking Water Intake Is Associated with Higher Diet Quality among French Adults.
Gazan, Rozenn; Sondey, Juliette; Maillot, Matthieu; Guelinckx, Isabelle; Lluch, Anne
2016-10-31
This study aimed to examine the association between drinking water intake and diet quality, and to analyse the adherence of French men and women to the European Food Safety Authority 2010 Adequate Intake (EFSA AI). A representative sample of French adults (≥18) from the Individual and National Survey on Food Consumption (INCA2) was classified, by sex, into small, medium, and large drinking water consumers. Diet quality was assessed with several nutritional indices (mean adequacy ratio (MAR), mean excess ratio (MER), probability of adequate intakes (PANDiet), and solid energy density (SED)). Of the total sample, 72% of men and 46% of women were below the EFSA AI. This percentage of non-adherence decreased from the small to the large drinking water consumers (from 95% to 34% in men and from 81% to 9% in women). For both sexes, drinking water intake was associated with higher diet quality (greater MAR and PANDiet). This association remained significant independently of socio-economic status for women only. Low drinking water consumers did not compensate with other sources (beverages and food moisture) and a high drinking water intake was not a guarantee for reaching the EFSA AI, meaning that increasing consumption of water should be encouraged in France.
Ueno, Y; Nagata, S; Tsutsumi, T; Hasegawa, A; Watanabe, M F; Park, H D; Chen, G C; Chen, G; Yu, S Z
1996-06-01
An epidemiological survey for the causes of a high incidence of primary liver cancer (PLC) in Haimen city, Jian-Su province and Fusui county, Guangxi province in China, found a close correlation between the incidence of PLC and the drinking of pond and ditch water. With an aim to clarify whether microcystins (MC), a hepatotoxic peptide produced by water bloom algae, contaminate the drinking water in the endemic areas of PLC in China, a highly sensitive enzyme-linked immunosorbent assay with a detection limit of 50 pg/ml, was introduced to monitor the MC. Three trials to survey the drinking water were carried out in 1993-1994. Samples, 1135 in total, were collected from different sources such as: ponds, ditches, rivers, shallow wells and deep wells in Haimen city. The first survey in September 1993 found that three out of 14 ditch water specimens were positive for MC, with a range of 90-460 pg/ml. Several toxic algae such as Oscillatoria agardhii were present in some of the ditches. In the second trial, samples were collected from five ponds/ditches, two rivers, two shallow wells and two deep wells monthly for the whole year of 1994. These data showed that MC was highest in June to September, with a range of 62-296 pg/ml. A third trial on the 989 different water samples collected from the different types of water sources in July 1994 revealed that 17% of the pond/ditch water, 32% of the river water, and 4% of the shallow-well water were positive for MC, with averages of 101, 160 and 68 pg/ml respectively. No MC was detected in deep well water. A similar survey on 26 drinking water samples in Fusui, Guangxi province, demonstrated a high contamination frequency of MC in the water of ponds/ditches and rivers but no MC in shallow and deep wells. These data support a hypothesis that the blue-green algal toxin MC in the drinking water of ponds/ditches and rivers, or both, is one of the risk factors for the high incidence of PLC in China. Based on previous findings on the epidemiology of PLC and the present results from the mass screening of MC in the drinking water, an advisory level of MC in drinking water was proposed to below 0.01 microg/l. The combined effect of a potent hepatocarcinogen AFB1 and an intermittent intake of MC in drinking water in the summer season was discussed as an etiology of PLC.
Sampaio, Fábio Correia; Silva, Fábia Danielle; Silva, Andréa Cristina; Machado, Ana Thereza; de Araújo, Demétrius Antônio; de Sousa, Erik Melo
2010-01-01
The aim of the present study was to determine the natural fluoride levels in the drinking water supplies of a tropical area of Brazil to identify the cities at risk of high prevalence of dental fluorosis and to provide data for future water fluoridation projects in the region. The present study was carried out in Paraíba, in the north-eastern region of Brazil. A total of 223 cities were selected, and local health workers were instructed to collect three samples of drinking water: one from the main public water supply and the other two from a public or residential tap with the same water source. Fluoride analyses were carried out in duplicate using a fluoride-specific electrode coupled to an ion analyser. A total of 167 cities (75%) provided water samples for analysis. Fluoride levels ranged from 0.1 to 1.0 ppm (mg/l). Samples from most of the cities (n = 163, 73%) presented low levels of fluoride (< 0.5 mg/l). Samples from three cities (a total estimate of 28,222 inhabitants exposed) presented 'optimum' fluoride levels (0.6 to 0.8 mg/l). Samples from one city (16,724 inhabitants) with 1.0 mg/l of fluoride in the water were above the recommended level (0.7 mg/l) for the local temperature. It can be concluded that the cities in this area of Brazil presented low natural fluoride levels in the drinking water and could implement controlled water fluoridation projects when technical requirements are accomplished. A high or a moderate prevalence of dental fluorosis due to the intake of natural fluoride in the drinking water is likely to take place in one city only.
Faecal contamination of household drinking water in Rwanda: A national cross-sectional study.
Kirby, Miles A; Nagel, Corey L; Rosa, Ghislaine; Iyakaremye, Laurien; Zambrano, Laura Divens; Clasen, Thomas F
2016-11-15
Unsafe drinking water is a leading cause of morbidity and mortality, especially among young children in low-income settings. We conducted a national survey in Rwanda to determine the level of faecal contamination of household drinking water and risk factors associated therewith. Drinking water samples were collected from a nationally representative sample of 870 households and assessed for thermotolerant coliforms (TTC), a World Health Organization (WHO)-approved indicator of faecal contamination. Potential household and community-level determinants of household drinking water quality derived from household surveys, the 2012 Rwanda Population and Housing Census, and a precipitation dataset were assessed using multivariate logistic regression. Widespread faecal contamination was present, and only 24.9% (95% CI 20.9-29.4%, n=217) of household samples met WHO Guidelines of having no detectable TTC contamination, while 42.5% (95% CI 38.0-47.1%, n=361) of samples had >100TTC/100mL and considered high risk. Sub-national differences were observed, with poorer water quality in rural areas and Eastern province. In multivariate analyses, there was evidence for an association between detectable contamination and increased open waste disposal in a sector, lower elevation, and water sources other than piped to household or rainwater/bottled. Risk factors for intermediate/high risk contamination (>10TTC/100mL) included low population density, increased open waste disposal, lower elevation, water sources other than piped to household or rainwater/bottled, and occurrence of an extreme rain event the previous day. Modelling suggests non-household-based risk factors are determinants of water quality in this setting, and these results suggest a substantial proportion of Rwanda's population are exposed to faecal contamination through drinking water. Copyright © 2016 Elsevier B.V. All rights reserved.
Klanicova, Barbora; Seda, Jaromir; Slana, Iva; Slany, Michal; Pavlik, Ivo
2013-12-01
Mycobacteria are widely present in diverse aquatic habitats, where they can survive for months or years while some species can even proliferate. The resistance of different mycobacterial species to disinfection methods like chlorination or ozonation could result in their presence in the final tap water of consumers. In this study, the culture method, Mycobacterium tuberculosis complex conventional duplex PCR for detection of non-tuberculous mycobacteria (NTM) and quantitative real-time PCR (qPCR) to detect three subspecies of M. avium species (M. a. avium, M. a. hominissuis, and M. a. paratuberculosis) were used to trace their possible path of transmission from the watershed through the reservoir and drinking water plant to raw drinking water and finally to households. A total of 124 samples from four drinking water supply systems in the Czech Republic, 52 dam sediments, 34 water treatment plant sludge samples, and 38 tap water household sediments, were analyzed. NTM of 11 different species were isolated by culture from 42 (33.9 %) samples; the most prevalent were M. gordonae (16.7 %), M. triplex (14.3 %), M. lentiflavum (9.5 %), M. a. avium (7.1 %), M. montefiorenase (7.1 %), and M. nonchromogenicum (7.1 %). NTM DNA was detected in 92 (76.7 %) samples. By qPCR analysis a statistically significant decrease (P < 0.01) was observed along the route from the reservoir (dam sediments), through water treatment sludge and finally to household sediments. The concentrations ranged from 10(0) to 10(4) DNA cells/g. It was confirmed that drinking water supply systems (watershed-reservoir-drinking water treatment plant-household) might be a potential transmission route for mycobacteria.
Gobelius, Laura; Hedlund, Johanna; Dürig, Wiebke; Tröger, Rikard; Lilja, Karl; Wiberg, Karin; Ahrens, Lutz
2018-04-03
The aim of this study was to assess per- and polyfluoroalkyl substances (PFASs) in the Swedish aquatic environment, identify emission sources, and compare measured concentrations with environmental quality standards (EQS) and (drinking) water guideline values. In total, 493 samples were analyzed in 2015 for 26 PFASs (∑ 26 PFASs) in surface water, groundwater, landfill leachate, sewage treatment plant effluents and reference lakes, focusing on hot spots and drinking water sources. Highest ∑ 26 PFAS concentrations were detected in surface water (13 000 ng L -1 ) and groundwater (6400 ng L -1 ). The dominating fraction of PFASs in surface water were perfluoroalkyl carboxylates (PFCAs; 64% of ∑ 26 PFASs), with high contributions from C 4 -C 8 PFCAs (94% of ∑PFCAs), indicating high mobility of shorter chain PFCAs. In inland surface water, the annual average (AA)-EQS of the EU Water Framework Directive of 0.65 ng L -1 for ∑PFOS (linear and branched isomers) was exceeded in 46% of the samples. The drinking water guideline value of 90 ng L -1 for ∑ 11 PFASs recommended by the Swedish EPA was exceeded in 3% of the water samples from drinking water sources ( n = 169). The branched isomers had a noticeable fraction in surface- and groundwater for perfluorooctanesulfonamide, perfluorohexanesulfonate, and perfluorooctanesulfonate, highlighting the need to include branched isomers in future guidelines.
Nitrate, sulphate and chloride contents in public drinking water supplies in Sicily, Italy.
D'Alessandro, Walter; Bellomo, Sergio; Parello, Francesco; Bonfanti, Pietro; Brusca, Lorenzo; Longo, Manfredi; Maugeri, Roberto
2012-05-01
Water samples collected from public drinking water supplies in Sicily were analysed for electric conductivity and for their chloride, sulphate and nitrate contents. The samples were collected as uniformly as possible from throughout the Sicilian territory, with an average sampling density of about one sample for every 7,600 inhabitants. Chloride contents that ranged from 5.53 to 1,302 mg/l were correlated strongly with electric conductivity, a parameter used as a proxy for water salinity. The highest values are attributable to seawater contamination along the coasts of the island. High chloride and sulphate values attributable to evaporitic rock dissolution were found in the central part of Sicily. The nitrate concentrations ranged from 0.05 to 296 mg/l, with 31 samples (4.7% of the total) exceeding the maximum admissible concentration of 50 mg/l. Anomalous samples always came from areas of intensive agricultural usage, indicating a clear anthropogenic origin. The same parameters were also measured in bottled water sold in Sicily, and they all were within the ranges for public drinking water supplies. The calculated mean nitrate intake from consuming public water supplies (16.1 mg/l) did not differ significantly from that of bottled water (15.2 mg/l). Although the quality of public water supplies needs to be improved by eliminating those that do not comply with the current drinking water limits, at present it does not justify the high consumption of bottled water (at least for nitrate contents).
Voutchkova, Denitza Dimitrova; Ernstsen, Vibeke; Hansen, Birgitte; Sørensen, Brian Lyngby; Zhang, Chaosheng; Kristiansen, Søren Munch
2014-09-15
Iodine is essential for human health. Many countries have therefore introduced universal salt iodising (USI) programmes to ensure adequate intake for the populations. However, little attention has been paid to subnational differences in iodine intake from drinking water caused by naturally occurring spatial variations. To address this issue, we here present the results of a Danish nationwide study of spatial trends of iodine in drinking water and the relevance of these trends for human dietary iodine intake. The data consist of treated drinking water samples from 144 waterworks, representing approx. 45% of the groundwater abstraction for drinking water supply in Denmark. The samples were analysed for iodide, iodate, total iodine (TI) and other major and trace elements. The spatial patterns were investigated with Local Moran's I. TI ranges from <0.2 to 126 μg L(-1) (mean 14.4 μg L(-1), median 11.9 μg L(-1)). Six speciation combinations were found. Half of the samples (n = 71) contain organic iodine; all species were detected in approx. 27% of all samples. The complex spatial variation is attributed both to the geology and the groundwater treatment. TI >40 μg L(-1) originates from postglacial marine and glacial meltwater sand and from Campanian-Maastrichtian chalk aquifers. The estimated drinking water contribution to human intake varies from 0% to >100% of the WHO recommended daily iodine intake for adults and from 0% to approx. 50% for adolescents. The paper presents a new conceptual model based on the observed clustering of high or low drinking-water iodine concentrations, delimiting zones with potentially deficient, excessive or optimal iodine status. Our findings suggest that the present coarse-scale nationwide programme for monitoring the population's iodine status may not offer a sufficiently accurate picture. Local variations in drinking-water iodine should be mapped and incorporated into future adjustment of the monitoring and/or the USI programmes. Copyright © 2014 Elsevier B.V. All rights reserved.
Yu, Zhijie M; Dummer, Trevor J B; Adams, Aimee; Murimboh, John D; Parker, Louise
2014-01-01
Consumption of arsenic-contaminated drinking water is associated with increased cancer risk. The relationship between arsenic body burden, such as concentrations in human toenails, and arsenic in drinking water is not fully understood. We evaluated the relationship between arsenic concentrations in drinking water and toenail clippings among a cohort of Nova Scotians. A total of 960 men and women aged 35 to 69 years provided home drinking water and toenail clipping samples. Information on water source and treatment use and covariables was collected through questionnaires. Arsenic concentrations in drinking water and toenail clippings and anthropometric indices were measured. Private drilled water wells had higher arsenic concentrations compared with other dug wells and municipal drinking water sources (P<0.001). Among participants with drinking water arsenic levels ≥1 μg/l, there was a significant relationship between drinking water and toenail arsenic concentrations (r=0.46, P<0.0001). Given similar levels of arsenic exposure from drinking water, obese individuals had significantly lower concentrations of arsenic in toenails compared with those with a normal weight. Private drilled water wells were an important source of arsenic exposure in the study population. Body weight modifies the relationship between drinking water arsenic exposure and toenail arsenic concentrations.
Flores Ribeiro, Angela; Bodilis, Josselin; Alonso, Lise; Buquet, Sylvaine; Feuilloley, Marc; Dupont, Jean-Paul; Pawlak, Barbara
2014-08-15
Aquatic environments could play a role in the spread of antibiotic resistance genes by enabling antibiotic-resistant bacteria transferred through wastewater inputs to connect with autochthonous bacteria. Consequently, drinking water could be a potential pathway to humans and animals for antibiotic resistance genes. The aim of this study was to investigate occurrences of Escherichia coli and Pseudomonas spp. in drinking water produced from a karst, a vulnerable aquifer with frequent increases in water turbidity after rainfall events and run-offs. Water samples were collected throughout the system from the karstic springs to the drinking water tap during three non-turbid periods and two turbid events. E. coli densities in the springs were 10- to 1000-fold higher during the turbid events than during the non-turbid periods, indicating that, with increased turbidity, surface water had entered the karstic system and contaminated the spring water. However, no E. coli were isolated in the drinking water. In contrast, Pseudomonas spp. were isolated from the drinking water only during turbid events, while the densities in the springs were from 10- to 100-fold higher than in the non-turbid periods. All the 580 Pseudomonas spp. isolates obtained from the sampling periods were resistant (to between 1 and 10 antibiotics), with similar resistance patterns. Among all the Pseudomonas isolated throughout the drinking water production system, between 32% and 86% carried the major resistance pattern: ticarcillin, ticarcillin-clavulanic acid, cefsulodin, and/or aztreonam, and/or sulfamethoxazol-trimethoprim, and/or fosfomycin. Finally, 8 Pseudomonas spp. isolates, related to the Pseudomonas putida and Pseudomonas fluorescens species, were isolated from the drinking water. Thus, Pseudomonas could be involved in the dissemination of antibiotic resistance via drinking water during critical periods. Copyright © 2014 Elsevier B.V. All rights reserved.
Vesga, Fidson-Juarismy; Moreno, Yolanda; Ferrús, María Antonia; Campos, Claudia; Trespalacios, Alba Alicia
2018-05-01
Helicobacter pylori is one of the most common causes of chronic bacterial infection in humans, and a predisposing factor for peptic ulcer and gastric cancer. The infection has been consistently associated with lack of access to clean water and proper sanitation. H. pylori has been detected in surface water, wastewater and drinking water. However, its ability to survive in an infectious state in the environment is hindered because it rapidly loses its cultivability. The aim of this study was to determine the presence of cultivable and therefore viable H. pylori in influent and effluent water from drinking water treatment plants (DWTP). A total of 310 influent and effluent water samples were collected from three drinking water treatment plants located at Bogotá city, Colombia. Specific detection of H. pylori was achieved by culture, qPCR and FISH techniques. Fifty-six positive H. pylori cultures were obtained from the water samples. Characteristic colonies were covered by the growth of a large number of other bacteria present in the water samples, making isolation difficult to perform. Thus, the mixed cultures were submitted to Fluorescent in situ Hybridization (FISH) and qPCR analysis, followed by sequencing of the amplicons for confirmation. By qPCR, 77 water samples, both from the influent and the effluent, were positive for the presence of H. pylori. The results of our study demonstrate that viable H. pylori cells were present in both, influent and effluent water samples obtained from drinking water treatment plants in Bogotá and provide further evidence that contaminated water may act as a transmission vehicle for H. pylori. Moreover, FISH and qPCR methods result rapid and specific techniques to identify H. pylori from complex environmental samples such as influent water. Copyright © 2018 Elsevier GmbH. All rights reserved.
Choi, J W; Lee, J H; Moon, B S; Kannan, K
2008-08-01
The use of a large volume polyurethane foam (PUF) sampler was validated for rapid extraction of persistent organic pollutants (POPs), such as polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), in raw water and treated water from drinking water plants. To validate the recovery of target compounds in the sampling process, a (37)Cl-labeled standard was spiked into the 1st PUF plug prior to filtration. An accelerated solvent extraction method, as a pressurized liquid extractor (PLE), was optimized to extract the PUF plug. For sample preparation, tandem column chromatography (TCC) clean-up was used for rapid analysis. The recoveries of labeled compounds in the analytical method were 80-110% (n = 9). The optimized PUF-PLE-TCC method was applied in the analysis of raw water and treated potable water from seven drinking water plants in South Korea. The sample volume used was between 18 and 102 L for raw water at a flow rate of 0.4-2 L min(-1), 95 and 107 L for treated water at a flow rate of 1.5-2.2 L min(-1). Limit of quantitation (LOQ) was a function of sample volume and it decreased with increasing sample volume. The LOQ of PCDD/Fs in raw waters analyzed by this method was 3-11 times lower than that described using large-size disk-type solid phase extraction (SPE) method. The LOQ of PCDD/F congeners in raw water and treated water were 0.022-3.9 ng L(-1) and 0.018-0.74 ng L(-1), respectively. Octachlorinated dibenzo-p-dioxin (OCDD) was found in some raw water samples, while their concentrations were well below the tentative criterion set by the Japanese Environmental Ministry for drinking water. OCDD was below the LOQ in the treated drinking water.
Al-Herrawy, Ahmad Z; Gad, Mahmoud A
2017-01-01
The aim of this study was to compare between slow and rapid sand filters for the removal of free-living amoebae during drinking water treatment production. Overall, 48 water samples were collected from two drinking water treatment plants having two different filtration systems (slow and rapid sand filters) and from inlet and outlet of each plant. Water samples were collected from Fayoum Drinking Water and Wastewater Holding Company, Egypt, during the year 2015. They were processed for detection of FLAs using non-nutrient agar (NNA). The isolates of FLAs were microscopically identified to the genus level based on the morphologic criteria and molecularly confirmed by the aid of PCR using genus-specific primers. The percentage of removal for FLAs through different treatment processes reached its highest rate in the station using slow sand filters (83%), while the removal by rapid sand filter system was 71.4%. Statistically, there was no significant difference ( P =0.55) for the removal of FLAs between the two different drinking water treatment systems. Statistically, seasons had no significant effect on the prevalence of FLAs in the two different drinking water treatment plants. Morphological identification of the isolated FLAs showed the presence of 3 genera namely Acanthamoeba , Naegleria , and Vermamoeba ( Hartmannella ) confirmed by PCR. The appearance of FLAs especially pathogenic amoebae in completely treated drinking water may cause potential health threat although there is no statistical difference between the two examined drinking water filtration systems.
Environmental Survey of Drinking Water Sources in Kampala, Uganda, during a Typhoid Fever Outbreak.
Murphy, J L; Kahler, A M; Nansubuga, I; Nanyunja, E M; Kaplan, B; Jothikumar, N; Routh, J; Gómez, G A; Mintz, E D; Hill, V R
2017-12-01
In 2015, a typhoid fever outbreak began in downtown Kampala, Uganda, and spread into adjacent districts. In response, an environmental survey of drinking water source types was conducted in areas of the city with high case numbers. A total of 122 samples was collected from 12 source types and tested for Escherichia coli , free chlorine, and conductivity. An additional 37 grab samples from seven source types and 16 paired large volume (20 liter) samples from wells and springs were also collected and tested for the presence of Salmonella enterica serovar Typhi. Escherichia coli was detected in 60% of kaveras (drinking water sold in plastic bags) and 80% of refilled water bottles; free chlorine was not detected in either source type. Most jerry cans (68%) contained E. coli and had free chlorine residuals below the WHO-recommended level of 0.5 mg/liter during outbreaks. Elevated conductivity readings for kaveras, refilled water bottles, and jerry cans (compared to treated surface water supplied by the water utility) suggested that they likely contained untreated groundwater. All unprotected springs and wells and more than 60% of protected springs contained E. coli Water samples collected from the water utility were found to have acceptable free chlorine levels and no detectable E. coli While S Typhi was not detected in water samples, Salmonella spp. were detected in samples from two unprotected springs, one protected spring, and one refilled water bottle. These data provided clear evidence that unregulated vended water and groundwater represented a risk for typhoid transmission. IMPORTANCE Despite the high incidence of typhoid fever globally, relatively few outbreak investigations incorporate drinking water testing. During waterborne disease outbreaks, measurement of physical-chemical parameters, such as free chlorine residual and electrical conductivity, and of microbiological parameters, such as the presence of E. coli or the implicated etiologic agent, in drinking water samples can identify contaminated sources. This investigation indicated that unregulated vended water and groundwater sources were contaminated and were therefore a risk to consumers during the 2015 typhoid fever outbreak in Kampala. Identification of contaminated drinking water sources and sources that do not contain adequate disinfectant levels can lead to rapid targeted interventions. Copyright © 2017 American Society for Microbiology.
Tracking persistent pharmaceutical residues from municipal sewage to drinking water
NASA Astrophysics Data System (ADS)
Heberer, Thomas
2002-09-01
In urban areas such as Berlin (Germany) with high municipal sewage water discharges and low surface water flows there is a potential risk of drinking water contamination by polar organic compounds when groundwater recharge is used in drinking water production. Thus, some pharmaceutically active compounds (PhACs) are not eliminated completely in the municipal sewage treatment plants (STPs) and they are discharged as contaminants into the receiving waters. In terms of several monitoring studies carried out in Berlin between 1996 and 2000, PhACs such as clofibric acid, diclofenac, ibuprofen, propyphenazone, primidone and carbamazepine were detected at individual concentrations up to the μg/l-level in influent and effluent samples from STPs and in all surface water samples collected downstream from the STPs. Under recharge conditions, several compounds were also found at individual concentrations up to 7.3 μg/l in samples collected from groundwater aquifers near to contaminated water courses. A few of the PhACs were also identified at the ng/l-level in Berlin tap water samples.
Yousefi, Mahmood; Ghoochani, Mahboobeh; Hossein Mahvi, Amir
2018-02-01
This study analyzes the concentrations and health risks of fluoride in 112 drinking water samples collected from 28 villages of the Poldasht city, West Azerbaijan province in Iran. Results indicated that fluoride content in drinking water ranged from0.27 to 10.3mgL -1 (average 1.70mgL -1 ). The 57% of samples analyzed exceeded the limit set for fluoride in drinking water. Based on findings from health risk assessment this study, the highest fluoride exposure for different regions of Poldasht city was observed in young consumers, children and teenager's groups. Also, most of the rural residents suffered from fluoride contaminated drinking water. The calculated HQ value was > 1 for all groups of residents in Agh otlogh and Sari soo areas. Therefore, it is imperative to take measures to reduce fluoride concentration in drinking water and control of fluorosis. Action should be implemented to enhance monitoring of fluoride levels to avoid the potential risk to the population. Copyright © 2017 Elsevier Inc. All rights reserved.
[Waterborne outbreak of gastroenteritis caused by Norovirus transmitted through drinking water].
Godoy, P; Nuín, C; Alsedà, M; Llovet, T; Mazana, R; Domínguez, A
2006-10-01
The aim of this study was to conduct an investigation into an outbreak of waterborne disease caused by Norovirus due to the consumption of contaminated drinking water. The first week after the school summer holidays we detected an outbreak of gastroenteritis at a school in Borges Blanques (Lleida, Spain). A retrospective cohort study was carried out to investigate: water consumption and food (six items). We assessed RNA Norovirus by RT-PCR in 6 stool samples. The risk of gastroenteritis was assessed by applying adjusted risk ratio (RRa) analysis at 95% confidence intervals (CI). The overall attack rate was 45% (96/213). The main symptoms were: abdominal pain, 88.4% (84/95); nausea, 65.9% (62/94), and vomiting, 64.6% (62/96). The consumption of school drinking water was statistically associated with the disease (RRa: 2.8; 95% CI: 1.3-6.2). The school water tank was dirty, but this drinking water was qualified as potable. Six stool samples gave positive results for Norovirus. Norovirus caused this waterborne outbreak of gastroenteritis transmitted through treated drinking water. It should be obligatory to regularly clean school drinking water deposit tanks, especially after the summer holidays.
Perfluoroalkyl substances assessment in drinking waters from Brazil, France and Spain.
Schwanz, Thiago G; Llorca, Marta; Farré, Marinella; Barceló, Damià
2016-01-01
Human exposure to perfluoroalkyl substances (PFASs) occurs primarily via dietary intake and drinking water. In this study, 16 PFASs have been assessed in 96 drinking waters (38 bottled waters and 58 samples of tap water) from Brazil, France and Spain. The total daily intake and the risk index (RI) of 16 PFASs through drinking water in Brazil, France and Spain have been estimated. This study was carried out using an analytical method based on an online sample enrichment followed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The quality parameters of the analytical method were satisfactory for the analysis of the 16 selected compounds in drinking waters. Notably, the method limits of detection (MLOD) and method limits of quantification (MLOQ) were in the range of 0.15 to 8.76ng/l and 0.47 to 26.54ng/l, respectively. The results showed that the highest PFASs concentrations were found in tap water samples and the more frequently found compound was perfluorooctanesulfonic acid (PFOS), with mean concentrations of 7.73, 15.33 and 15.83ng/l in French, Spanish and Brazilian samples, respectively. In addition, PFOS was detected in all tap water samples from Brazil. The highest level of PFASs contamination in a single sample was 140.48ng/l in a sample of Spanish tap water. In turn, in bottled waters the highest levels were detected in a French sample with 116ng/l as the sum of PFASs. Furthermore, the most frequent compounds and those at higher concentrations were perfluoroheptanoic acid (PFHpA) with a mean of frequencies in the three countries of 51.3%, followed by perfluorobutanesulfonic acid (PFBS) (27.2%) and perfluorooctanoic acid (PFOA) (23.0%). Considering that bottled water is approximately 38% of the total intake, the total PFASs exposure through drinking water intake for an adult man was estimated to be 54.8, 58.0 and 75.6ng/person per day in Spain, France and Brazil, respectively. However, assuming that the water content in other beverages has at least the same levels of contamination as in bottled drinking water, these amounts were increased to 72.2, 91.4 and 121.0ng/person per day for an adult man in Spain, France and Brazil, respectively. The results of total daily intake in different gender/age groups showed that children are the most exposed population group through hydration with maximum values in Brazil of 2.35 and 2.01ng/kg body weight (BW)/day for male and female, respectively. Finally, the RI was calculated. In spite of the highest values being found in Brazil, it was demonstrated that, in none of the investigated countries, drinking water pose imminent risk associated with PFASs contamination. Copyright © 2015 Elsevier B.V. All rights reserved.
Whitmore, Roy W; Chen, Wenlin
2013-12-04
The ability to infer human exposure to substances from drinking water using monitoring data helps determine and/or refine potential risks associated with drinking water consumption. We describe a survey sampling approach and its application to an atrazine groundwater monitoring study to adequately characterize upper exposure centiles and associated confidence intervals with predetermined precision. Study design and data analysis included sampling frame definition, sample stratification, sample size determination, allocation to strata, analysis weights, and weighted population estimates. Sampling frame encompassed 15 840 groundwater community water systems (CWS) in 21 states throughout the U. S. Median, and 95th percentile atrazine concentrations were 0.0022 and 0.024 ppb, respectively, for all CWS. Statistical estimates agreed with historical monitoring results, suggesting that the study design was adequate and robust. This methodology makes no assumptions regarding the occurrence distribution (e.g., lognormality); thus analyses based on the design-induced distribution provide the most robust basis for making inferences from the sample to target population.
Komorowicz, Izabela; Barałkiewicz, Danuta
2016-09-01
Arsenic is a ubiquitous element which may be found in surface water, groundwater, and drinking water. In higher concentrations, this element is considered genotoxic and carcinogenic; thus, its level must be strictly controlled. We investigated the concentration of total arsenic and arsenic species: As(III), As(V), MMA, DMA, and AsB in drinking water, surface water, wastewater, and snow collected from the provinces of Wielkopolska, Kujawy-Pomerania, and Lower Silesia (Poland). The total arsenic was analyzed by inductively coupled plasma mass spectrometry (ICP-MS), and arsenic species were analyzed with use of high-performance liquid chromatography inductively coupled plasma mass spectrometry (HPLC/ICP-MS). Obtained results revealed that maximum total arsenic concentration determined in drinking water samples was equal to 1.01 μg L(-1). The highest concentration of total arsenic in surface water, equal to 3778 μg L(-1) was determined in Trująca Stream situated in the area affected by geogenic arsenic contamination. Total arsenic concentration in wastewater samples was comparable to those determined in drinking water samples. However, significantly higher arsenic concentration, equal to 83.1 ± 5.9 μg L(-1), was found in a snow sample collected in Legnica. As(V) was present in all of the investigated samples, and in most of them, it was the sole species observed. However, in snow sample collected in Legnica, more than 97 % of the determined concentration, amounting to 81 ± 11 μg L(-1), was in the form of As(III), the most toxic arsenic species.
Physical, chemical and microbial analysis of bottled drinking water.
Sasikaran, S; Sritharan, K; Balakumar, S; Arasaratnam, V
2012-09-01
People rely on the quality of the bottled drinking water, expecting it to be free of microbial contamination and health hazards. To evaluate the quality of bottled drinking water sold in Jaffna peninsula by analysing the physical, chemical and microbial contents and comparing with the recommended Sri Lankan Standard (SLS) values. All bottled water samples sold in Jaffna peninsula were collected. Electrical conductivity, total dissolved solid, pH, calcium, nitrate, total aerobic and anaerobic count, coliform bacterial count and faecal contamination were checked. These are 22 brands of bottled drinking water sold in Jaffna peninsula. The sample had very low electrical conductivity when compared with SLS (750 μS/ cm) and varied from 19 to 253 μS/cm with the mean of 80.53 (±60.92) μS/cm. The pH values of the bottled drinking water brands varied from 4.11 to 7.58 with a mean of 6.2 (±0.75). The total dissolved solid content of the bottled drinking water brands varied from 9 to 123.67 mg/l with a mean of 39.5 (±30.23) mg/l. The calcium content of the bottled drinking water brands varied from 6.48 to 83.77 mg/l with a mean of 49.9 (±25.09) mg/l. The nitrate content of the bottled drinking water brands varied from 0.21 to 4.19 mg/l with the mean of 1.26 (±1.08) mg/l. Aerobic bacterial count varied from 0 to 800 colony forming unit per ml (cfu/ml) with a mean of 262.6 (±327.50) cfu/ml. Among the 22 drinking bottled water brands 14 and 9% of bottled drinking water brands showed fungal and coliform bacterial contaminants respectively. The water brands which contained faecal contamination had either Escherichia coli or Klebsiella spp. The bottled drinking water available for sale do not meet the standards stipulated by SLS.
Bilung, Lesley Maurice; Tahar, Ahmad Syatir; Yunos, Nur Emyliana; Apun, Kasing; Lim, Yvonne Ai-Lian; Nillian, Elexson; Hashim, Hashimatul Fatma
2017-01-01
Cryptosporidiosis and cyclosporiasis are caused by waterborne coccidian protozoan parasites of the genera Cryptosporidium and Cyclospora, respectively. This study was conducted to detect Cryptosporidium and Cyclospora oocysts from environmental water abstracted by drinking water treatment plants and recreational activities in Sarawak, Malaysia. Water samples (12 each) were collected from Sungai Sarawak Kanan in Bau and Sungai Sarawak Kiri in Batu Kitang, respectively. In addition, 6 water samples each were collected from Ranchan Recreational Park and UNIMAS Lake at Universiti Malaysia Sarawak, Kota Samarahan, respectively. Water physicochemical parameters were also recorded. All samples were concentrated by the iron sulfate flocculation method followed by the sucrose floatation technique. Cryptosporidium and Cyclospora were detected by modified Ziehl-Neelsen technique. Correlation of the parasites distribution with water physicochemical parameters was analysed using bivariate Pearson correlation. Based on the 24 total samples of environmental water abstracted by drinking water treatment plants, all the samples (24/24; 100%) were positive with Cryptosporidium , and only 2 samples (2/24; 8.33%) were positive with Cyclospora . Based on the 12 total samples of water for recreational activities, 4 samples (4/12; 33%) were positive with Cryptosporidium , while 2 samples (2/12; 17%) were positive with Cyclospora . Cryptosporidium oocysts were negatively correlated with dissolved oxygen (DO).
Tahar, Ahmad Syatir; Yunos, Nur Emyliana; Apun, Kasing; Nillian, Elexson; Hashim, Hashimatul Fatma
2017-01-01
Cryptosporidiosis and cyclosporiasis are caused by waterborne coccidian protozoan parasites of the genera Cryptosporidium and Cyclospora, respectively. This study was conducted to detect Cryptosporidium and Cyclospora oocysts from environmental water abstracted by drinking water treatment plants and recreational activities in Sarawak, Malaysia. Water samples (12 each) were collected from Sungai Sarawak Kanan in Bau and Sungai Sarawak Kiri in Batu Kitang, respectively. In addition, 6 water samples each were collected from Ranchan Recreational Park and UNIMAS Lake at Universiti Malaysia Sarawak, Kota Samarahan, respectively. Water physicochemical parameters were also recorded. All samples were concentrated by the iron sulfate flocculation method followed by the sucrose floatation technique. Cryptosporidium and Cyclospora were detected by modified Ziehl-Neelsen technique. Correlation of the parasites distribution with water physicochemical parameters was analysed using bivariate Pearson correlation. Based on the 24 total samples of environmental water abstracted by drinking water treatment plants, all the samples (24/24; 100%) were positive with Cryptosporidium, and only 2 samples (2/24; 8.33%) were positive with Cyclospora. Based on the 12 total samples of water for recreational activities, 4 samples (4/12; 33%) were positive with Cryptosporidium, while 2 samples (2/12; 17%) were positive with Cyclospora. Cryptosporidium oocysts were negatively correlated with dissolved oxygen (DO). PMID:29234679
Watanabe, Yuko; Kimura, Kenji; Yang, Cheng-Hsiung; Ooi, Hong-Kean
2005-12-01
A survey on the presence of Cryptosporidium oocyst and Giardia cyst in livestock drinking water as well as the urban tap water throughout Taiwan was carried out. Water examination for the presence of the protozoa was conducted by filtering through a PTFE membrane followed by immunomagnetic separation (IMS) and immunostaining the sediment with commercially available monoclonal antibody against Cryptosporidium and Giardia. Of the 55 different water samples from various sources examined, 2 were found to contain both of Cryptosporidium oocyst and Giardia cyst, 1 was found to contain Cryptosporidium oocyst only. These protozoa-positive water samples, originating from underground well and from the mountain spring, were also used as drinking water for livestock. However, no Cryptosporidium oocyst was found in the city tap water. This is the first report of Cryptosporidium oocyst and Giardia cyst being found in the drinking water for livestock.
Li, Na; Jiang, Weiwei; Rao, Kaifeng; Ma, Mei; Wang, Zijian; Kumaran, Satyanarayanan Senthik
2011-01-01
Environmental chemicals in drinking water can impact human health through nuclear receptors. Additionally, estrogen-related receptors (ERRs) are vulnerable to endocrine-disrupting effects. To date, however, ERR disruption of drinking water potency has not been reported. We used ERRgamma two-hybrid yeast assay to screen ERRgamma disrupting activities in a drinking water treatment plant (DWTP) located in north China and in source water from a reservoir, focusing on agonistic, antagonistic, and inverse agonistic activity to 4-hydroxytamoxifen (4-OHT). Water treatment processes in the DWTP consisted of pre-chlorination, coagulation, coal and sand filtration, activated carbon filtration, and secondary chlorination processes. Samples were extracted by solid phase extraction. Results showed that ERRgamma antagonistic activities were found in all sample extracts, but agonistic and inverse agonistic activity to 4-OHT was not found. When calibrated with the toxic equivalent of 4-OHT, antagonistic effluent effects ranged from 3.4 to 33.1 microg/L. In the treatment processes, secondary chlorination was effective in removing ERRgamma antagonists, but the coagulation process led to significantly increased ERRgamma antagonistic activity. The drinking water treatment processes removed 73.5% of ERRgamma antagonists. To our knowledge, the occurrence of ERRgamma disruption activities on source and drinking water in vitro had not been reported previously. It is vital, therefore, to increase our understanding of ERRy disrupting activities in drinking water.
Gibs, J.; Stackelberg, P.E.; Furlong, E.T.; Meyer, M.; Zaugg, S.D.; Lippincott, R.L.
2007-01-01
Ninety eight pharmaceuticals and other organic compounds (POOCs) that were amended to samples of chlorinated drinking-water were extracted and analyzed 1, 3, 6, 8, and 10 days after amendment to determine whether the total chlorine residual reacted with the amended POOCs in drinking water in a time frame similar to the residence time of drinking water in a water distribution system. Results indicated that if all 98 were present in the finished drinking water from a drinking-water treatment plant using free chlorine at 1.2??mg/L as the distribution system disinfectant residual, 52 POOCs would be present in the drinking water after 10??days at approximately the same concentration as in the newly finished drinking water. Concentrations of 16 POOCs would be reduced by 32% to 92%, and 22 POOCs would react completely with residual chlorine within 24??h. Thus, the presence of free chlorine residual is an effective means for transforming some POOCs during distribution. ?? 2006 Elsevier B.V. All rights reserved.
Gibs, Jacob; Stackelberg, Paul E; Furlong, Edward T; Meyer, Michael; Zaugg, Steven D; Lippincott, Robert Lee
2007-02-01
Ninety eight pharmaceuticals and other organic compounds (POOCs) that were amended to samples of chlorinated drinking-water were extracted and analyzed 1, 3, 6, 8, and 10 days after amendment to determine whether the total chlorine residual reacted with the amended POOCs in drinking water in a time frame similar to the residence time of drinking water in a water distribution system. Results indicated that if all 98 were present in the finished drinking water from a drinking-water treatment plant using free chlorine at 1.2 mg/L as the distribution system disinfectant residual, 52 POOCs would be present in the drinking water after 10 days at approximately the same concentration as in the newly finished drinking water. Concentrations of 16 POOCs would be reduced by 32% to 92%, and 22 POOCs would react completely with residual chlorine within 24 h. Thus, the presence of free chlorine residual is an effective means for transforming some POOCs during distribution.
Aristizabal-Ciro, Carolina; Botero-Coy, Ana María; López, Francisco J; Peñuela, Gustavo A
2017-03-01
In this work, the presence of selected emerging contaminants has been investigated in two reservoirs, La Fe (LF) and Rio Grande (RG), which supply water to two drinking water treatment plants (DWTPs) of Medellin, one of the most populated cities of Colombia. An analytical method based on solid-phase extraction (SPE) of the sample followed by measurement by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was developed and validated for this purpose. Five monitoring campaigns were performed in each reservoir, collecting samples from 7 sites (LF) and 10 sites (RG) at 3 different depths of the water column. In addition, water samples entering in the DWTPs and treated water samples from these plans were also analysed for the selected compounds. Data from this work showed that parabens, UV filters and the pharmaceutical ibuprofen were commonly present in most of the reservoir samples. Thus, methyl paraben was detected in around 90% of the samples collected, while ibuprofen was found in around 60% of the samples. Water samples feeding the DWTPs also contained these two compounds, as well as benzophenone at low concentrations, which was in general agreement with the results from the reservoir samples. After treatment in the DWTPs, these three compounds were still present in the samples although at low concentrations (<40 ng/L), which evidenced that they were not completely removed after the conventional treatment applied. The potential effects of the presence of these compounds at the ppt levels in drinking water are still unknown. Further research is needed to evaluate the effect of chronic exposure to these compounds via consumption of drinking water.
A concurrent exposure to arsenic and fluoride from drinking water in Chihuahua, Mexico.
González-Horta, Carmen; Ballinas-Casarrubias, Lourdes; Sánchez-Ramírez, Blanca; Ishida, María C; Barrera-Hernández, Angel; Gutiérrez-Torres, Daniela; Zacarias, Olga L; Saunders, R Jesse; Drobná, Zuzana; Mendez, Michelle A; García-Vargas, Gonzalo; Loomis, Dana; Stýblo, Miroslav; Del Razo, Luz M
2015-04-24
Inorganic arsenic (iAs) and fluoride (F-) are naturally occurring drinking water contaminants. However, co-exposure to these contaminants and its effects on human health are understudied. The goal of this study was examined exposures to iAs and F- in Chihuahua, Mexico, where exposure to iAs in drinking water has been associated with adverse health effects. All 1119 eligible Chihuahua residents (>18 years) provided a sample of drinking water and spot urine samples. iAs and F- concentrations in water samples ranged from 0.1 to 419.8 µg As/L and from 0.05 to 11.8 mg F-/L. Urinary arsenic (U-tAs) and urinary F- (U-F-) levels ranged from 0.5 to 467.9 ng As/mL and from 0.1 to 14.4 µg F-/mL. A strong positive correlation was found between iAs and F- concentrations in drinking water (rs = 0.741). Similarly, U-tAs levels correlated positively with U-F- concentrations (rs = 0.633). These results show that Chihuahua residents exposed to high iAs concentrations in drinking water are also exposed to high levels of F-, raising questions about possible contribution of F- exposure to the adverse effects that have so far been attributed only to iAs exposure. Thus, investigation of possible interactions between iAs and F- exposures and its related health risks deserves immediate attention.
Varughese, Eunice A; Brinkman, Nichole E; Anneken, Emily M; Cashdollar, Jennifer L; Fout, G Shay; Furlong, Edward T; Kolpin, Dana W; Glassmeyer, Susan T; Keely, Scott P
2018-04-01
Drinking water treatment plants rely on purification of contaminated source waters to provide communities with potable water. One group of possible contaminants are enteric viruses. Measurement of viral quantities in environmental water systems are often performed using polymerase chain reaction (PCR) or quantitative PCR (qPCR). However, true values may be underestimated due to challenges involved in a multi-step viral concentration process and due to PCR inhibition. In this study, water samples were concentrated from 25 drinking water treatment plants (DWTPs) across the US to study the occurrence of enteric viruses in source water and removal after treatment. The five different types of viruses studied were adenovirus, norovirus GI, norovirus GII, enterovirus, and polyomavirus. Quantitative PCR was performed on all samples to determine presence or absence of these viruses in each sample. Ten DWTPs showed presence of one or more viruses in source water, with four DWTPs having treated drinking water testing positive. Furthermore, PCR inhibition was assessed for each sample using an exogenous amplification control, which indicated that all of the DWTP samples, including source and treated water samples, had some level of inhibition, confirming that inhibition plays an important role in PCR-based assessments of environmental samples. PCR inhibition measurements, viral recovery, and other assessments were incorporated into a Bayesian model to more accurately determine viral load in both source and treated water. Results of the Bayesian model indicated that viruses are present in source water and treated water. By using a Bayesian framework that incorporates inhibition, as well as many other parameters that affect viral detection, this study offers an approach for more accurately estimating the occurrence of viral pathogens in environmental waters. Published by Elsevier B.V.
Ye, Bixiong; Yang, Linsheng; Li, Yonghua; Wang, Wuyi; Li, Hairong
2013-01-01
Bacterial contamination of drinking water is a major public health problem in rural China. To explore bacterial contamination in rural areas of Beijing and identify possible causes of bacteria in drinking water samples, water samples were collected from wells in ten rural districts of Beijing, China. Total bacterial count, total coliforms and Escherichia coli in drinking water were then determined and water source and wellhead protection were investigated. The bacterial contamination in drinking water was serious in areas north of Beijing, with the total bacterial count, total coliforms and Escherichia coli in some water samples reaching 88,000 CFU/mL, 1,600 MPN/100 mL and 1,600 MPN/100 mL, respectively. Water source types, well depth, whether the well was adequately sealed and housed, and whether wellhead is above or below ground were the main factors influencing bacterial contamination levels in drinking water. The bacterial contamination was serious in the water of shallow wells and wells that were not closed, had no well housing or had a wellhead below ground level. The contamination sources around wells, including village dry toilets and livestock farms, were well correlated with bacterial contamination. Total bacterial counts were affected by proximity to sewage ditches and polluting industries, however, proximity to landfills did not influence the microbial indicators. PMID:23462436
Siti Farizwana, M. R.; Mazrura, S.; Zurahanim Fasha, A.; Ahmad Rohi, G.
2010-01-01
The study was to determine the concentration of aluminium (Al) and study the physicochemical parameters (pH, total dissolved solids (TDS), turbidity, and residual chlorine) in drinking water supply in selected palm oil estates in Kota Tinggi, Johor. Water samples were collected from the estates with the private and the public water supplies. The sampling points were at the water source (S), the treatment plant outlet (TPO), and at the nearest houses (H1) and the furthest houses (H2) from the TPO. All estates with private water supply failed to meet the NSDWQ for Al with mean concentration of 0.99 ± 1.52 mg/L. However, Al concentrations in all public water supply estates were well within the limit except for one estate. The pH for all samples complied with the NSDWQ except from the private estates for the drinking water supply with an acidic pH (5.50 ± 0.90). The private water supply showed violated turbidity value in the drinking water samples (14.2 ± 24.1 NTU). Insufficient amount of chlorination was observed in the private water supply estates (0.09 ± 0.30 mg/L). Private water supplies with inefficient water treatment served unsatisfactory drinking water quality to the community which may lead to major health problems. PMID:21461348
Chicago Lead in Drinking Water Study
EPA Region 5 and the Chicago Department of Water Management conducted a study on field sampling protocols for lead in drinking water. The purpose of the study was to evaluate the method used by public water systems to monitor lead levels.
Mohajeri, Parviz; Yazdani, Laya; Shahraki, Abdolrazagh Hashemi; Alvandi, Amirhoshang; Atashi, Sara; Farahani, Abbas; Almasi, Ali; Rezaei, Mansour
2017-04-01
Nontuberculous mycobacteria are habitants of environment, especially in aquatic systems. Some of them cause problems in immunodeficient patients. Over the last decade, 16S rRNA gene sequencing was established in 45 novel species of nontuberculous mycobacteria. Experiences revealed that this method underestimates the diversity, but does not distinguish between some of mycobacterium subsp. To recognize emerging rapidly growing mycobacteria and identify their subsp, rpoB gene sequencing has been developed. To better understand the transmission of nontuberculous mycobacterial species from drinking water and preventing the spread of illness with these bacteria, the aim of this study was to detect the presence of bacteria by PCR-sequencing techniques. Drinking water samples were collected from different areas of Kermanshah city in west of IRAN. After decontamination with cetylpyridinium chloride, samples were filtered with 0.45-micron filters, the filter transferred directly on growth medium waiting to appear in colonies, then DNA extraction and PCR were performed, and products were sent to sequencing. We found 35/110 (32%) nontuberculous mycobacterial species in drinking water samples, isolates included Mycobacterium goodii, Mycobacterium aurum, and Mycobacterium gastri with the most abundance (11.5%), followed by Mycobacterium smegmatis, Mycobacterium porcinum, Mycobacterium peregrinum, Mycobacterium mucogenicum, and Mycobacterium chelonae (8%). In this study, we recognized the evidence of contamination by nontuberculous mycobacteria in corroded water pipes. As a result of the high prevalence of these bacteria in drinking water in Kermanshah, this is important evidence of transmission through drinking water. This finding can also help public health policy makers control these isolates in drinking water supplies in Kermanshah.
Grøndahl-Rosado, Ricardo C; Yarovitsyna, Ekaterina; Trettenes, Elin; Myrmel, Mette; Robertson, Lucy J
2014-12-01
Enteric viruses transmitted via the faecal-oral route occur in high concentrations in wastewater and may contaminate drinking water sources and cause disease. In order to quantify enteric adenovirus and norovirus genotypes I and II (GI and GII) impacting a drinking source in Norway, samples of surface water (52), wastewater inlet (64) and outlet (59) were collected between January 2011 and April 2012. Samples were concentrated in two steps, using an electropositive disc filter and polyethylene glycol precipitation, followed by nucleic acid extraction and analysis by quantitative polymerase chain reaction. Virus was detected in 47/52 (90.4%) of surface water, 59/64 (92%) of wastewater inlet and 55/59 (93%) of wastewater outlet samples. Norovirus GI occurred in the highest concentrations in surface water (2.51e + 04) and adenovirus in wastewater (2.15e + 07). While adenovirus was the most frequently detected in all matrices, norovirus GI was more frequently detected in surface water and norovirus GII in wastewater. This study is the first in Norway to monitor both sewage and a drinking water source in parallel, and confirms the year-round presence of norovirus and adenovirus in a Norwegian drinking water source.
Liew, Deborah; Linge, Kathryn L; Joll, Cynthia A; Heitz, Anna; Charrois, Jeffrey W A
2012-06-08
Simultaneous quantitation of 6 halonitromethanes (HNMs) and 5 haloacetamides (HAAms) was achieved with a simplified liquid-liquid extraction (LLE) method, followed by gas chromatography-mass spectrometry. Stability tests showed that brominated tri-HNMs immediately degraded in the presence of ascorbic acid, sodium sulphite and sodium borohydride, and also reduced in samples treated with ammonium chloride, or with no preservation. Both ammonium chloride and ascorbic acid were suitable for the preservation of HAAms. Ammonium chloride was most suitable for preserving both HNMs and HAAms, although it is recommended that samples be analysed as soon as possible after collection. While groundwater samples exhibited a greater analytical bias compared to other waters, the good recoveries (>90%) of most analytes in tap water suggest that the method is very appropriate for determining these analytes in treated drinking waters. Application of the method to water from three drinking water treatment plants in Western Australia indicating N-DBP formation did occur, with increased detections after chlorination. The method is recommended for low-cost, rapid screening of both HNMs and HAAms in drinking water. Copyright © 2012 Elsevier B.V. All rights reserved.
Gibson, Kristen E; Schwab, Kellogg J
2011-01-01
Tangential-flow ultrafiltration was optimized for the recovery of Escherichia coli, Enterococcus faecalis, Clostridium perfringens spores, bacteriophages MS2 and PRD1, murine norovirus, and poliovirus seeded into 100-liter surface water (SW) and drinking water (DW) samples. SW and DW collected from two drinking water treatment plants were then evaluated for human enteric viruses.
McCarthy, Kathleen A.; Alvarez, David A.
2014-01-01
The Eugene Water & Electric Board (EWEB) supplies drinking water to approximately 200,000 people in Eugene, Oregon. The sole source of this water is the McKenzie River, which has consistently excellent water quality relative to established drinking-water standards. To ensure that this quality is maintained as land use in the source basin changes and water demands increase, EWEB has developed a proactive management strategy that includes a combination of conventional point-in-time discrete water sampling and time‑integrated passive sampling with a combination of chemical analyses and bioassays to explore water quality and identify where vulnerabilities may lie. In this report, we present the results from six passive‑sampling deployments at six sites in the basin, including the intake and outflow from the EWEB drinking‑water treatment plant (DWTP). This is the first known use of passive samplers to investigate both the source and finished water of a municipal DWTP. Results indicate that low concentrations of several polycyclic aromatic hydrocarbons and organohalogen compounds are consistently present in source waters, and that many of these compounds are also present in finished drinking water. The nature and patterns of compounds detected suggest that land-surface runoff and atmospheric deposition act as ongoing sources of polycyclic aromatic hydrocarbons, some currently used pesticides, and several legacy organochlorine pesticides. Comparison of results from point-in-time and time-integrated sampling indicate that these two methods are complementary and, when used together, provide a clearer understanding of contaminant sources than either method alone.
Effect of arsenic contaminated drinking water on human chromosome: a case study.
Singh, Asha Lata; Singh, Vipin Kumar; Srivastava, Anushree
2013-10-01
Arsenic contamination of ground water has become a serious problem all over the world. Large number of people from Uttar Pradesh, Bihar and West Bengal of India are suffering due to consumption of arsenic contaminated drinking water. Study was carried out on 30 individuals residing in Ballia District, UP where the maximum concentration of arsenic was observed around 0.37 ppm in drinking water. Blood samples were collected from them to find out the problem related with arsenic. Cytogenetic study of the blood samples indicates that out of 30, two persons developed Klinefelter syndrome.
Liu, Yongjian; Mou, Shifen; Heberling, Shawn
2002-05-17
A simple sample preconcentration technique employing microwave-based evaporation for the determination of trace level bromate and perchlorate in drinking water with ion chromatography is presented. With a hydrophilic anion-exchange column and a sodium hydroxide eluent in linear gradient, bromate and perchlorate can be determined in one injection within 35 min. Prior to ion chromatographic analysis, the drinking water sample was treated with an OnGuard-Ag cartridge to remove the superfluous chloride and concentrated 20-fold using a PTFE beaker in a domestic microwave oven for 15 min. The recoveries of the anions ranged from 94.6% for NO2- to 105.2% for F-. The detection limits for bromate, perchlorate, iodate and chlorate were 0.1, 0.2, 0.1 and 0.2 microg/l, respectively. The developed method is applicable for the quantitation of bromate and perchlorate in drinking water samples.
NASA Astrophysics Data System (ADS)
Barakat, Ahmed; Meddah, Redouane; Afdali, Mustapha; Touhami, Fatima
2018-04-01
The present study was conducted to examine the water quality of karst springs located along the Piedmont of Béni-Mellal Atlas (Morocco) for drinking purposes. Twenty-five water samples were collected from seven springs in June, July, August and September 2013, and May 2016 have been analyzed for their physicochemical and microbial characteristics. The analytical data of temperature, pH, DO, TAC, TH, oxidizability and NH4+ showed that all sampled springs are suitable as drinking water according to Moroccan and the World Health Organization (WHO) standards. Nevertheless, EC, turbidity, and NO3- were sometimes noted higher than the allowable limits, what would be ascribed to erosion and leaching of soil and karstic rocks. The microbial analysis revealed the presence of fecal contamination (total coliforms, E. coli, and intestinal enterococci) in all springs at various times. The water quality index (WQI) calculated based on physicochemical and microbial data reveled that water quality categorization for all sampling springs was found to be 'medium' to 'good' for drinking uses in the National Sanitation Foundation WQI (NSF-WQI), and ''necessary treatment becoming more extensive'' to ''purification not necessary'' in the Dinius' Second Index (D-WQI). The Aine Asserdoune and Foum el Anceur springs showed the good quality of drinking water. According to Moroccan standards for water used for drinking purposes, the waters belong to category A1 that requires becoming drinkable a simple physical treatment and disinfection. From the type of parameters present in quantities exceeding drinking water limits, it is very obvious that these water resources are under the influence of anthropogenic activities such as sewage, waste disposal, deforestation and agricultural activities, caused land degradation and nonpoint pollution sources. Environmental attention, such as systematic quality control and adequate treatment before being used for drinking use and access to sewage sanitation, are required to guarantee sufficient protection of the studied springs.
Galván, Ana Luz; Magnet, Angela; Izquierdo, Fernando; Fenoy, Soledad; Rueda, Cristina; Fernández Vadillo, Carmen; Henriques-Gil, Nuno
2013-01-01
Recent studies suggest the involvement of water in the epidemiology of Cyclospora cayetanensis and some microsporidia. A total of 223 samples from four drinking water treatment plants (DWTPs), seven wastewater treatment plants (WWTPs), and six locations of influence (LI) on four river basins from Madrid, Spain, were analyzed from spring 2008 to winter 2009. Microsporidia were detected in 49% of samples (109/223), Cyclospora spp. were detected in 9% (20/223), and both parasites were found in 5.4% (12/223) of samples. Human-pathogenic microsporidia were detected, including Enterocytozoon bieneusi (C, D, and D-like genotypes), Encephalitozoon intestinalis, Encephalitozoon cuniculi (genotypes I and III), and Anncaliia algerae. C. cayetanensis was identified in 17 of 20 samples. To our knowledge, this is the first study that shows a year-long longitudinal study of C. cayetanensis in drinking water treatment plants. Additionally, data about the presence and molecular characterization of the human-pathogenic microsporidia in drinking water, wastewater, and locations of influence during 1 year in Spain are shown. It is noteworthy that although the DWTPs and WWTPs studied meet European and national regulations on water sanitary quality, both parasites were found in water samples from these plants, supporting the idea that new and appropriate controls and regulations for drinking water, wastewater, and recreational waters should be proposed to avoid health risks from these pathogens. PMID:23124243
In vitro bioanalysis of drinking water from source to tap.
Rosenmai, Anna Kjerstine; Lundqvist, Johan; le Godec, Théo; Ohlsson, Åsa; Tröger, Rikard; Hellman, Björn; Oskarsson, Agneta
2018-08-01
The presence of chemical pollutants in sources of drinking water is a key environmental problem threatening public health. Efficient removal of pollutants in drinking water treatment plants (DWTPs) is needed as well as methods for assessment of the total impact of all present chemicals on water quality. In the present study we have analyzed the bioactivity of water samples from source to tap, including effects of various water treatments in a DWTP, using a battery of cell-based bioassays, covering health-relevant endpoints. Reporter gene assays were used to analyze receptor activity of the aryl hydrocarbon receptor (AhR), estrogen receptor (ER), androgen receptor (AR), peroxisome proliferator-activated receptor alpha (PPARα) and induction of oxidative stress by the nuclear factor erythroid 2-related factor 2 (Nrf2). DNA damage was determined by Comet assay. Grab water samples were concentrated by HLB or ENV solid phase extraction and the water samples assayed at a relative enrichment factor of 50. The enrichment procedure did not induce any bioactivity. No bioactivity was detected in Milli-Q water or drinking water control samples. Induction of AhR, ER and Nrf2 activities was revealed in source to tap water samples. No cytotoxicity, PPARα or AR antagonist activity, or DNA damage were observed in any of the water samples. A low AR agonist activity was detected in a few samples of surface water, but not in the samples from the DWTP. The treatment steps at the DWTP, coagulation, granulated activated carbon filtration, UV disinfection and NH 2 Cl dosing had little or no effect on the AhR, Nrf2 and ER bioactivity. However, nanofiltration and passage through the distribution network drastically decreased AhR activity, while the effect on Nrf2 activity was more modest and no apparent effect was observed on ER activity. The present results suggest that bioassays are useful tools for evaluation of the efficiency of different treatment steps in DWTPs in reducing toxic activities. Bioassays of AhR and Nrf2 are useful for screening of effects of a broad range of chemicals in drinking water and ER activity can be monitored with a high sensitivity. Copyright © 2018 Elsevier Ltd. All rights reserved.
Volatile organic compounds in samples from domestic and public wells, 1985-2002
Rowe, Barbara L.; Zogorski, John S.; Valder, Joshua F.
2006-01-01
The U.S. Geological Survey's (USGS) National Water-Quality Assessment (NAWQA) Program recently completed a national study of volatile organic compounds (VOCs) in the Nation's ground water (Zogorski and others, 2006). Part of this assessment emphasizes the occurrence of 55 VOCs in samples from 2,401 domestic wells and 1,096 public wells during 1985-2002. Samples were collected prior to any treatment or blending of water. Domestic wells are privately owned, self-supplied sources used for drinking water and household use (Moran and others, 2002). Public wells are privately or publicly owned and supply water to public water systems (PWSs). Samples from public wells in this assessment characterize the quality of water captured by wells that supply drinking water to PWSs. These systems supply drinking water to at least 15 service connections or regularly serve at least 25 individuals daily at least 60 days a year (U.S. Environmental Protection Agency, 2005). For a screening-level assessment, VOC concentrations were compared to human-health benchmarks. Concentrations greater than the U.S. Environmental Protection Agency's (USEPA) Maximum Contamination Levels (MCLs) (U.S. Environmental Protection Agency, 2004) or the USGS's Health-Based Screening Levels (HBSLs) (Zogorski and others, 2006) were considered of potential human-health concern. The findings from the well samples provide an important perspective on the quality of the Nation's ground water used for drinking-water supplies. More information about this national assessment of VOCs is available (http://water.usgs.gov/nawqa/vocs/national_assessment).
Report: Progress Report on Drinking Water Protection Efforts
Report #2005-P-00021, August 22, 2005. EPA and the States in this sample are making progress at helping water systems better reach Congress’ goal of protecting drinking water from its source to the consumer.
40 CFR 141.802 - Coliform sampling plan.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Section 141.802 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Aircraft Drinking Water Rule § 141.802 Coliform... aircraft water system owned or operated by the air carrier that identifies the following: (1) Coliform...
40 CFR 141.802 - Coliform sampling plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Section 141.802 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Aircraft Drinking Water Rule § 141.802 Coliform... aircraft water system owned or operated by the air carrier that identifies the following: (1) Coliform...
40 CFR 141.802 - Coliform sampling plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Section 141.802 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Aircraft Drinking Water Rule § 141.802 Coliform... aircraft water system owned or operated by the air carrier that identifies the following: (1) Coliform...
The Savannah River Site`s Groundwater Monitoring Program, first quarter 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site`s Groundwater Monitoring Program. During first quarter 1989 (January--March), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking watermore » standards. An explanation of flagging criteria for the first quarter is presented in the Flagging Criteria section of this document. All analytical results from first quarter 1989 are listed in this report, which is distributed to all waste-site custodians.« less
The Savannah River Site's Groundwater Monitoring Program, first quarter 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During first quarter 1989 (January--March), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking watermore » standards. An explanation of flagging criteria for the first quarter is presented in the Flagging Criteria section of this document. All analytical results from first quarter 1989 are listed in this report, which is distributed to all waste-site custodians.« less
Lienemann, Taru; Pitkänen, Tarja; Antikainen, Jenni; Mölsä, Elina; Miettinen, Ilkka; Haukka, Kaisa; Vaara, Martti; Siitonen, Anja
2011-04-01
In November 2007, 450 m(3) of treated wastewater leaked into the drinking water distribution system contaminating the drinking water of over 10,000 inhabitants of Nokia, Southern Finland. Nearly 1,000 people visited the health centre because of gastroenteritis during the following 5 weeks. A wide range of enteric pathogens was found in the patients. The authors used the 16-plex PCR to investigate whether the five major diarrheagenic Escherichia coli pathotypes (EPEC, ETEC, STEC, EIEC or EAEC) were present in the contaminated drinking water and in the patients' stool samples. The contaminated drinking water was positive for genes characteristic of various E. coli pathotypes: pic, invE, hlyA, ent, escV, eae, aggR, stx(2) , estIa and astA. These genes, except stx(2), hlyA and invE, were also detected in the stool samples of the patients linked to this outbreak. A sorbitol positive, streptomycin resistant STEC strain was isolated from the drinking water, and belonged to the serotype O100:H(-), produced Stx2 toxin (titre 1:8 by reversed-passive latex agglutination method), and carried the genes stx(2e), estIa and irp2.
Radioactivity in drinking water supplies in Western Australia.
Walsh, M; Wallner, G; Jennings, P
2014-04-01
Radiochemical analysis was carried out on 52 drinking water samples taken from public outlets in the southwest of Western Australia. All samples were analysed for Ra-226, Ra-228 and Pb-210. Twenty five of the samples were also analysed for Po-210, and 23 were analysed for U-234 and U-238. Ra-228 was found in 45 samples and the activity ranged from <4.000 to 296.1 mBq L(-1). Ra-226 was detected in all 52 samples and the activity ranged from 3.200 to 151.1 mBq L(-1). Po-210 was detected in 24 samples and the activity ranged from 0.000 to 114.2 mBq L(-1). These data were used to compute the annual radiation dose that persons of different age groups and also for pregnant and lactating females would receive from drinking this water. The estimated doses ranged from 0.001 to 2.375 mSv y(-1) with a mean annual dose of 0.167 mSv y(-1). The main contributing radionuclides to the annual dose were Ra-228, Po-210 and Ra-226. Of the 52 drinking water samples tested, 94% complied with the current Australian Drinking Water Guidelines, while 10% complied with the World Health Organization's radiological guidelines which many other countries use. It is likely that these results provide an overestimate of the compliance, due to limitations, in the sampling technique and resource constraints on the analysis. Because of the increasing reliance of the Western Australian community on groundwater for domestic and agricultural purposes, it is likely that the radiological content of the drinking water will increase in the future. Therefore there is a need for further monitoring and analysis in order to identify problem areas. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
A national scale survey of 251 chemical contaminants in source and finished drinking water was conducted at 25 drinking water treatment plants across the U.S. To address the necessity of using multiple methods in determining a broad array of CECs, we designed a quality assurance/...
Groundwater arsenic in Chimaltenango, Guatemala.
Lotter, Jason T; Lacey, Steven E; Lopez, Ramon; Socoy Set, Genaro; Khodadoust, Amid P; Erdal, Serap
2014-09-01
In the Municipality of Chimaltenango, Guatemala, we sampled groundwater for total inorganic arsenic. In total, 42 samples were collected from 27 (43.5%) of the 62 wells in the municipality, with sites chosen to achieve spatial representation throughout the municipality. Samples were collected from household faucets used for drinking water, and sent to the USA for analysis. The only site found to have a concentration above the 10 μg/L World Health Organization provisional guideline for arsenic in drinking water was Cerro Alto, where the average concentration was 47.5 μg/L. A health risk assessment based on the arsenic levels found in Cerro Alto showed an increase in noncarcinogenic and carcinogenic risks for residents as a result of consuming groundwater as their primary drinking water source. Using data from the US Geological Survey and our global positioning system data of the sample locations, we found Cerro Alto to be the only site sampled within the tertiary volcanic rock layer, a known source of naturally occurring arsenic. Recommendations were made to reduce the levels of arsenic found in the community's drinking water so that the health risks can be managed.
Does quality of drinking water matter in kidney stone disease: A study in West Bengal, India
Mitra, Pubali; Pal, Dilip Kumar
2018-01-01
Purpose The combined interaction of epidemiology, environmental exposure, dietary habits, and genetic factors causes kidney stone disease (KSD), a common public health problem worldwide. Because a high water intake (>3 L daily) is widely recommended by physicians to prevent KSD, the present study evaluated whether the quantity of water that people consume daily is associated with KSD and whether the quality of drinking water has any effect on disease prevalence. Materials and Methods Information regarding residential address, daily volume of water consumption, and source of drinking water was collected from 1,266 patients with kidney stones in West Bengal, India. Drinking water was collected by use of proper methods from case (high stone prevalence) and control (zero stone prevalence) areas thrice yearly. Water samples were analyzed for pH, alkalinity, hardness, total dissolved solutes, electrical conductivity, and salinity. Average values of the studied parameters were compared to determine if there were any statistically significant differences between the case and control areas. Results We observed that as many as 53.6% of the patients consumed <3 L of water daily. Analysis of drinking water samples from case and control areas, however, did not show any statistically significant alterations in the studied parameters. All water samples were found to be suitable for consumption. Conclusions It is not the quality of water, rather the quantity of water consumed that matters most in the occurrence of KSD. PMID:29744472
Household safe water management in Kisii County, Kenya.
Misati, A G
2016-11-01
Contaminated drinking water can lead to the risk of intestinal and other infectious diseases that lead to high morbidity. Therefore, determining household safe water management practices will benefit billions of people by ensuring there is no recontamination. A cross-sectional study design was used and a sample of 346 households was selected through systematic random sampling. A questionnaire was then used which was based on the core questions on drinking water and sanitation for household surveys and descriptive analyses were performed for the collected data using SPSS. Springs were predominantly used as the main source of water (97 %). Approximately, over half (58 %) of the sampled households never treated their drinking water to ensure that it was safe for drinking. Mostly (56 %), the households used jerricans for the storage of water with a majority of the households (95 %) covering their containers which were elevated from the reach of children in 52 % of the households. The risks included lack of water treatment, not covering the water container, risk of permitting dipping for those containers, lacking narrow neck and the risk of container being accessible to children. Basic treatment of the water at the household level by use of chemicals, filtration and boiling may have a great impact on the drinking water quality and health of the inhabitants of Kisii County. Also, creation of awareness on the possibilities of spring water being contaminated should be carried because of the assumption that spring water is safe and does not need to be treated.
Haramoto, Eiji; Kitajima, Masaaki; Kishida, Naohiro; Katayama, Hiroyuki; Asami, Mari; Akiba, Michihiro
2012-09-01
A nationwide survey of viruses, protozoa, and indicator microorganisms in drinking water sources of Japan was conducted. Among 64 surface water samples collected from 16 drinking water treatment plants, 51 (80 %) samples were positive for at least one of the 11 pathogen types tested, including noroviruses of genogroups I (positive rate, 13 %) and II (2 %), human sapoviruses (5 %), human adenoviruses of serotypes 40 and 41 (39 %), Cryptosporidium oocysts (41 %), and Giardia cysts (36 %). Total coliforms, Escherichia coli, and F-specific coliphages were detected in 63 (98 %), 33 (52 %), and 17 (27 %) samples, respectively, and E. coli was judged to be the most suitable indicator of pathogen contamination of drinking water sources. Genogroup-specific real-time PCR for F-specific coliphages revealed the presence of F-specific RNA coliphages of animal genogroup I and human genogroups II and III in 13 (41 %), 12 (39 %), and 1 (3 %), respectively, of 31 plaques isolated.
Trace Chemical Analysis Methodology
1980-04-01
oxidation of nitrite-containing species. Calibration studies were then made in preparation for the analysis of unknown samples of nitrate in urine and...the procedure for nitrate determination was made on two types of samples : human urine , and drinking water from a city water supply. Five samples of...AND URINE Concentration Standard Sample type of NO3, ppm deviation Drinking water 1.29 ±0 04 1.20 ±0.09 1.29 ±0.14 1.15 ±0.08 0.88 ±0.07 Human urine
Ivahnenko, Tamara; Zogorski, J.S.
2006-01-01
Chloroform and three other trihalomethanes (THMs)--bromodichloromethane, dibromochloromethane, and bromoform--are disinfection by-products commonly produced during the chlorination of water and wastewater. Samples of untreated ground water from drinking-water supply wells (1,096 public and 2,400 domestic wells) were analyzed for THMs and other volatile organic compounds (VOCs) during 1986-2001, or compiled, as part of the U.S. Geological Survey's National Water-Quality Assessment Program. This report provides a summary of potential sources of THMs and of the occurrence and geographical distribution of THMs in samples from public and domestic wells. Evidence for an anthropogenic source of THMs and implications for future research also are presented. Potential sources of THMs to both public and domestic wells include the discharge of chlorinated drinking water and wastewater that may be intentional or inadvertent. Intentional discharge includes the use of municipally supplied chlorinated water to irrigate lawns, golf courses, parks, gardens, and other areas; the use of septic systems; or the regulated discharge of chlorinated wastewater to surface waters or ground-water recharge facilities. Inadvertent discharge includes leakage of chlorinated water from swimming pools, spas, or distribution systems for drinking water or wastewater sewers. Statistical analyses indicate that population density, the percentage of urban land, and the number of Resource Conservation and Recovery Act hazardous-waste facilities near sampled wells are significantly associated with the probability of detection of chloroform, especially for public wells. Domestic wells may have several other sources of THMs, including the practice of well disinfection through shock chlorination, laundry wastewater containing bleach, and septic system effluent. Chloroform was the most frequently detected VOC in samples from drinking-water supply wells (public and domestic wells) in the United States. Although chloroform was detected frequently in samples from public and domestic wells and the other THMs were detected in some samples, no concentrations in samples from either well type exceeded the U.S. Environmental Protection Agency's Maximum Contaminant Level of 80 micrograms per liter for total THMs. Chloroform was detected in public well samples almost twice as frequently (11 percent) as in domestic well samples (5 percent). The other three THMs also were detected more frequently in public well samples than in domestic well samples. This detection pattern may be attributed to public wells having a higher pumping capacity than domestic wells. The higher capacity wells create a larger capture zone that potentially intercepts more urban and other land uses and associated point and nonpoint sources of contamination than the smaller capacity domestic wells. THM detection frequencies in domestic well samples show a pattern of decreasing frequency with increasing bromide content, that is in the order: chloroform > bromodichloromethane >= dibromochloromethane >= bromoform. This same pattern has been documented in studies of water chlorination, indicating that an important source of chloroform and other THMs in drinking-water supply wells may be the recycling of chlorinated water and wastewater. Mixtures of THMs commonly occur in public well samples, and the most frequently occurring are combinations of the brominated THMs. These THMs have limited industrial production, few natural sources, and small or no reported direct releases to the environment. Therefore, industrial, commercial, or natural sources are not likely sources of the brominated THMs in public and domestic well samples. The THM detection frequency pattern, the co-occurrence of brominated THMs, and other lines of evidence indicate that the recycling of water with a history of chlorination is an important source of these compounds in samples from drinking-water supply wells.
Molecular Analysis of Bacterial Communities in Biofilms of a Drinking Water Clearwell
Zhang, Minglu; Liu, Wenjun; Nie, Xuebiao; Li, Cuiping; Gu, Junnong; Zhang, Can
2012-01-01
Microbial community structures in biofilms of a clearwell in a drinking water supply system in Beijing, China were examined by clone library, terminal restriction fragment length polymorphism (T-RFLP) and 454 pyrosequencing of the amplified 16S rRNA gene. Six biofilm samples (designated R1–R6) collected from six locations (upper and lower sites of the inlet, middle and outlet) of the clearwell revealed similar bacterial patterns by T-RFLP analysis. With respect to the dominant groups, the phylotypes detected by clone library and T-RFLP generally matched each other. A total of 9,543 reads were obtained from samples located at the lower inlet and the lower outlet sites by pyrosequencing. The bacterial diversity of the two samples was compared at phylum and genus levels. Alphaproteobacteria dominated the communities in both samples and the genus of Sphingomonas constituted 75.1%–99.6% of this phylum. A high level of Sphingomonas sp. was first observed in the drinking water biofilms with 0.6–1.0 mg L−1 of chlorine residual. Disinfectant-resistant microorganisms deserve special attention in drinking water management. This study provides novel insights into the microbial populations in drinking water systems and highlights the important role of Sphingomonas species in biofilm formation. PMID:23059725
Vingerhoeds, Monique H; Nijenhuis-de Vries, Mariska A; Ruepert, Nienke; van der Laan, Harmen; Bredie, Wender L P; Kremer, Stefanie
2016-05-01
Membrane filtration of ground, surface, or sea water by reverse osmosis results in permeate, which is almost free from minerals. Minerals may be added afterwards, not only to comply with (legal) standards and to enhance chemical stability, but also to improve the taste of drinking water made from permeate. Both the nature and the concentrations of added minerals affect the taste of the water and in turn its acceptance by consumers. The aim of this study was to examine differences in taste between various remineralised drinking waters. Samples selected varied in mineral composition, i.e. tap water, permeate, and permeate with added minerals (40 or 120 mg Ca/L, added as CaCO3, and 4 or 24 mg Mg/L added as MgCl2), as well as commercially available bottled drinking waters, to span a relevant product space in which the remineralised samples could be compared. All samples were analysed with respect to their physical-chemical properties. Sensory profiling was done by descriptive analysis using a trained panel. Significant attributes included taste intensity, the tastes bitter, sweet, salt, metal, fresh and dry mouthfeel, bitter and metal aftertaste, and rough afterfeel. Total dissolved solids (TDS) was a major determinant of the taste perception of water. In general, lowering mineral content in drinking water in the range examined (from <5 to 440 mg/L) shifted the sensory perception of water from fresh towards bitter, dry, and rough sensations. In addition, perceived freshness of the waters correlated positively with calcium concentration. The greatest fresh taste was found for water with a TDS between 190 and 350 mg/L. Remineralisation of water after reverse osmosis can improve drinking quality significantly. Copyright © 2016 Elsevier Ltd. All rights reserved.
Barnes, Amber N; Anderson, John D; Mumma, Jane; Mahmud, Zahid Hayat; Cumming, Oliver
2018-01-01
Household drinking water can be contaminated by diarrheagenic enteropathogens at numerous points between the source and actual consumption. Interventions to prevent this contamination have focused on preventing exposure to human waste through interventions to improve drinking water, sanitation and hygiene (WASH). In many cases though, the infectious agent may be of zoonotic rather than human origin suggesting that unsafely managed animal waste may contribute to the contamination of household drinking water and the associated diarrheal disease burden. A cross-sectional household survey of 800 households was conducted across three informal peri-urban neighborhoods of Kisumu, Kenya, collecting stored drinking water samples, administering a household survey including water, sanitation and hygiene infrastructure and behaviors, and recording domestic animal presence and ownership. We used multivariate logistic regression to assess the association of traditional WASH factors and domestic animal presence and ownership on microbial contamination of household drinking water. The majority of households sampled had fecally contaminated drinking water (67%), defined by the presence of any colony forming units of the fecal indicator bacteria enterococci. After adjustment for potential confounders, including socio-economic status and water and sanitation access, both household animal ownership (aOR 1.31; CI 1.00-1.73, p = 0.05) and the presence of animal waste in the household compound (aOR 1.38; CI 1.01, 1.89, p = 0.04) were found to be significantly associated with household drinking water contamination. None of the conventional WASH variables were found to be significantly associated with household drinking water contamination in the study population. Water, sanitation, and hygiene strategies to reduce diarrheal disease should consider the promotion of safe animal contact alongside more traditional interventions focusing on the management of human waste. Future research on fecal contamination of unsafe household drinking water should utilize host-specific markers to determine whether the source is human or animal to prepare targeted public health messages.
Mumma, Jane; Mahmud, Zahid Hayat
2018-01-01
Introduction Household drinking water can be contaminated by diarrheagenic enteropathogens at numerous points between the source and actual consumption. Interventions to prevent this contamination have focused on preventing exposure to human waste through interventions to improve drinking water, sanitation and hygiene (WASH). In many cases though, the infectious agent may be of zoonotic rather than human origin suggesting that unsafely managed animal waste may contribute to the contamination of household drinking water and the associated diarrheal disease burden. Methods A cross-sectional household survey of 800 households was conducted across three informal peri-urban neighborhoods of Kisumu, Kenya, collecting stored drinking water samples, administering a household survey including water, sanitation and hygiene infrastructure and behaviors, and recording domestic animal presence and ownership. We used multivariate logistic regression to assess the association of traditional WASH factors and domestic animal presence and ownership on microbial contamination of household drinking water. Results The majority of households sampled had fecally contaminated drinking water (67%), defined by the presence of any colony forming units of the fecal indicator bacteria enterococci. After adjustment for potential confounders, including socio-economic status and water and sanitation access, both household animal ownership (aOR 1.31; CI 1.00–1.73, p = 0.05) and the presence of animal waste in the household compound (aOR 1.38; CI 1.01, 1.89, p = 0.04) were found to be significantly associated with household drinking water contamination. None of the conventional WASH variables were found to be significantly associated with household drinking water contamination in the study population. Conclusions Water, sanitation, and hygiene strategies to reduce diarrheal disease should consider the promotion of safe animal contact alongside more traditional interventions focusing on the management of human waste. Future research on fecal contamination of unsafe household drinking water should utilize host-specific markers to determine whether the source is human or animal to prepare targeted public health messages. PMID:29874284
Assessment of ground water quality for drinking purpose, District Nainital, Uttarakhand, India.
Jain, C K; Bandyopadhyay, A; Bhadra, A
2010-07-01
The ground water quality of District Nainital (Uttarakhand, India) has been assessed to see the suitability of ground water for drinking and irrigation applications. This is a two-part series paper and this paper examines the suitability of ground water including spring water for drinking purposes. Forty ground water samples (including 28 spring samples) were collected during pre- and post-monsoon seasons and analyzed for various water quality constituents. The hydrochemical and bacteriological data was analyzed with reference to BIS and WHO standards and their hydrochemical facies were determined. The concentration of total dissolved solids exceeds the desirable limit of 500 mg/L in about 10% of the samples, alkalinity values exceed the desirable limit of 200 mg/L in about 30% of the samples, and total hardness values exceed the desirable limit of 300 mg/L in 15% of the samples. However, no sample crosses the maximum permissible limit for TDS, alkalinity, hardness, calcium, magnesium, chloride, sulfate, nitrate, and fluoride. The concentration of chloride, sulfate, nitrate, and fluoride are well within the desirable limit at all the locations. The bacteriological analysis of the samples does not show any sign of bacterial contamination in hand pump and tube-well water samples. However, in the case of spring water samples, six samples exceed the permissible limit of ten coliforms per 100 ml of sample. It is recommended that water drawn from such sources should be properly disinfected before being used for drinking and other domestic applications. Among the metal ions, the concentration of iron and lead exceeds the permissible limit at one location whereas the concentration of nickel exceeds the permissible limit in 60 and 32.5% of the samples during pre- and post-monsoon seasons, respectively. The grouping of samples according to their hydrochemical facies indicates that majority of the samples fall in Ca-Mg-HCO(3) hydrochemical facies.
Bacteriological quality of drinks from vending machines.
Hunter, P. R.; Burge, S. H.
1986-01-01
A survey on the bacteriological quality of both drinking water and flavoured drinks from coin-operated vending machines is reported. Forty-four per cent of 25 drinking water samples examined contained coliforms and 84% had viable counts of greater than 1000 organisms ml at 30 degrees C. Thirty-one flavoured drinks were examined; 6% contained coliforms and 39% had total counts greater than 1000 organisms ml. It is suggested that the D.H.S.S. code of practice on coin-operated vending machines is not being followed. It is also suggested that drinking water alone should not be dispensed from such machines. PMID:3794325
Kato, Masashi; Azimi, Mohammad Daud; Fayaz, Said Hafizullah; Shah, Muhammad Dawood; Hoque, Md Zahirul; Hamajima, Nobuyuki; Ohnuma, Shoko; Ohtsuka, Tomomi; Maeda, Masao; Yoshinaga, Masafumi
2016-12-01
Toxic elements in drinking water have great effects on human health. However, there is very limited information about toxic elements in drinking water in Afghanistan. In this study, levels of 10 elements (chromium, nickel, copper, arsenic, cadmium, antimony, barium, mercury, lead and uranium) in 227 well drinking water samples in Kabul, Afghanistan were examined for the first time. Chromium (in 0.9% of the 227 samples), arsenic (7.0%) and uranium (19.4%) exceeded the values in WHO health-based guidelines for drinking-water quality. Maximum chromium, arsenic and uranium levels in the water samples were 1.3-, 10.4- and 17.2-fold higher than the values in the guidelines, respectively. We next focused on uranium, which is the most seriously polluted element among the 10 elements. Mean ± SD (138.0 ± 1.4) of the 238 U/ 235 U isotopic ratio in the water samples was in the range of previously reported ratios for natural source uranium. We then examined the effect of our originally developed magnesium (Mg)-iron (Fe)-based hydrotalcite-like compounds (MF-HT) on adsorption for uranium. All of the uranium-polluted well water samples from Kabul (mean ± SD = 190.4 ± 113.9 μg/L; n = 11) could be remediated up to 1.2 ± 1.7 μg/L by 1% weight of our MF-HT within 60 s at very low cost (<0.001 cents/day/family) in theory. Thus, we demonstrated not only elevated levels of some toxic elements including natural source uranium but also an effective depurative for uranium in well drinking water from Kabul. Since our depurative is effective for remediation of arsenic as shown in our previous studies, its practical use in Kabul may be encouraged. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wyatt, C J; Lopez Quiroga, V; Olivas Acosta, R T; Olivia Méndez, R
1998-07-01
Arsenic (As) is a common element in the environment with many industrial uses, but it also can be a contaminant in drinking water and present serious health concerns. Earlier studies on the quality of drinking water in the city of Hermosillo, Sonora, México, showed high levels of As (> 0.05 ppm) in water from wells located in the northern part of the city. Additionally a high positive correlation between the levels of Fluoride (F) and As in the same wells was found. Therefore, the objective of this study was to determine the excretion of As in children, 7-11 years of age, that had been exposed to elevated levels of As in their drinking water. Twenty-four-hour urine samples and a water sample taken directly in the home were collected from school age children living in two different areas with known high levels of As in their drinking water. A control group with normal levels of As in their water was also included. As was determined by an atomic absorption-hydride generator, verified with the use of NBS certified standards (SRM 1643a and SRM 2670). None of the water samples exceeded the limit established for drinking water; however, there was a significant difference between the intake of As and the As in drinking water among the three areas of the study. Average As in water was 0.009 +/- 0.002 and 0.030 +/- 0.011 micrograms/ml between the control and high areas. Intake (in micrograms/day) was 15 +/- 3 and 54 +/- 18. In the group consuming water with high levels of As, 65% of the children exceeded the recommended dose of < 1 micrograms/kg/day (EPA, 1988). Several children in this study also had high levels of As in their urine. Even though As levels in the drinking water are within the norms, it appears that children exposed to high levels of As in their drinking water may have a health risk.
The microbial community structure was investigated from bulk phase water samples of multiple collection sites from two service areas within the Cincinnati drinking water distribution system (DWDS). Each area is associated with a different primary source of water (i.e., groundwat...
Reported care giver strategies for improving drinking water for young children.
McLennan, John D; Farrelly, Ashley
2010-11-01
Care givers may engage in a variety of strategies to try and improve drinking water for children. However, the pattern of these efforts is not well known, particularly for young children in high-risk situations. The objective of this study was to determine care giver-reported strategies for young children with (1) undernutrition and (2) living in an unplanned poor peri-urban community in the Dominican Republic. Practices reported by care givers of young children from a community and clinic group were extracted from interviews conducted between 2004 and 2008 (n = 563). These results were compared to two previous similar samples interviewed in 1997 (n = 341). Bottled water is currently the most prevalent reported strategy for improving drinking water for young children. Its use increased from 6% to 69% in the community samples over the last decade and from 13% to 79% in the clinic samples. Boiling water continues to be a common strategy, particularly for the youngest children, though its overall use has decreased over time. Household-level chlorination is infrequently used and has dropped over time. Care givers are increasingly turning to bottled water in an attempt to provide safe drinking water for their children. While this may represent a positive trend for protecting children from water-transmitted diseases, it may represent an inefficient approach to safe drinking water provision that may place a financial burden on low-income families.
Occurrence and hygienic relevance of fungi in drinking water.
Kanzler, D; Buzina, W; Paulitsch, A; Haas, D; Platzer, S; Marth, E; Mascher, F
2008-03-01
Fungi, above all filamentous fungi, can occur almost everywhere, even in water. They can grow in such a quantity in water that they can affect the health of the population or have negative effects on food production. There are several reports of fungal growth in water from different countries, but to our knowledge none from Austria so far. The aim of this study was to gain an overview of the spectrum of filamentous fungi and yeasts in drinking water systems. Thirty-eight water samples from drinking water and groundwater were analysed. Fungi were isolated by using membrane filtration and plating method with subsequent cultivation on agar plates. The different taxa of fungi were identified using routine techniques as well as molecular methods. Fungi were isolated in all water samples examined. The mean value for drinking water was 9.1 CFU per 100 ml and for groundwater 5400 CFU per 100 ml. Altogether 32 different taxa of fungi were found. The taxa which occurred most frequently were Cladosporium spp., Basidiomycetes and Penicillium spp. (74.6%, 56.4% and 48.7%, respectively). This study shows that drinking water can be a reservoir for fungi, among them opportunists, which can cause infections in immunosuppressed patients.
Lösch, Liliana S; Merino, Luis A
Legionella spp. is an environmental bacterium that can survive in a wide range of physicochemical conditions and may colonize distribution systems of drinking water and storage tanks. Legionella pneumophila is the major waterborne pathogen that can cause 90% of Legionnaires' disease cases. The aim of this study was to detect the presence of Legionella spp. in household drinking water tanks in the city of Resistencia, Chaco. The detection of Legionella in water samples was performed by culture methods as set out in ISO 11731:1998. Thirty two water samples were analyzed and Legionella spp. was recovered in 12 (37.5%) of them. The monitoring of this microorganism in drinking water is the first step towards addressing the control of its spread to susceptible hosts. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.
Neisi, Akazem; Mirzabeygi Radfard, Majid; Zeyduni, Ghader; Hamzezadeh, Asghar; Jalili, Davoud; Abbasnia, Abbas; Yousefi, Mahmood; Khodadadi, Rouhollah
2018-06-01
The need for fluoride in drinking water to the extent that reduces the amount of tooth decay and the other hand does not cause dental fluorosis, has been well documented as an important fact. The aim of this research is to survey values of fluoride in drinking water in Sistan and Baluchestan. In this descriptive and analytical study, the number of 551 samples during 4 seasons of 2013 year from rural drinking water sources via rural water and Wastewater Company has been taken. The concentration of fluoride in water samples was measured using SPADNS method. Results shows that the average concentration of fluoride in drinking water supplies for the rural region of Khash, Sarbaz, Iranshahr, Saravan, Nickshahr city are 0.72 (±0.31), 0.55(±0.21), 0.33 (±0.127), 0.6 (±0.24), 0.435 (±0.23) respectively.
Sarvaiya, B U; Bhayya, D; Arora, R; Mehta, D N
2012-01-01
To estimate the prevalence of dental fluorosis in relation with different fluoride levels in drinking water among school going children of 6-12 years age group. Dental fluorosis was recorded using Dean's index in school children of selected villages. The drinking water samples of all the selected villages were collected in polyethylene bottles and the fluoride content of these samples was determined by fluoride ion selective method using Orion microprocessor analyser. The overall prevalence of dental fluorosis was found to be 69.84%. An increase in the community fluorosis index (CFI) with corresponding increase in water fluoride content was found. There was an increase in prevalence of dental fluorosis with a corresponding increase in water fluoride content from 0.8 ppm to 4.1 ppm. A significantly strong positive correlation was found between CFI and fluoride concentration in drinking water.
Grimmett, Paul E; Munch, Jean W
2009-01-01
1,4-Dioxane has been identified as a probable human carcinogen and an emerging contaminant in drinking water. The United States Environmental Protection Agency's (U.S. EPA) National Exposure Research Laboratory (NERL) has developed a method for the analysis of 1,4-dioxane in drinking water at ng/L concentrations. The method consists of an activated carbon solid-phase extraction of 500-mL or 100-mL water samples using dichloromethane as the elution solvent. The extracts are analyzed by gas chromatography-mass spectrometry (GC-MS) in selected ion monitoring (SIM) mode. In the NERL laboratory, recovery of 1,4-dioxane ranged from 94-110% in fortified laboratory reagent water and recoveries of 96-102% were demonstrated for fortified drinking water samples. The relative standard deviations for replicate analyses were less than 6% at concentrations exceeding the minimum reporting level.
MYCOBACTERIUM AVIUM AND DRINKING WATER WHAT ARE THE CONNECTIONS?
Background: Human Mycobacterium avium infections are only known to be acquired from environmental sources such as water and soil. We compared M. avium isolates from clinical and drinking water sources using molecular tools. Methods: M. avium was isolated from water samples colle...
Nagarajan, R; Rajmohan, N; Mahendran, U; Senthamilkumar, S
2010-12-01
As groundwater is a vital source of water for domestic and agricultural activities in Thanjavur city due to lack of surface water resources, groundwater quality and its suitability for drinking and agricultural usage were evaluated. In this study, 102 groundwater samples were collected from dug wells and bore wells during March 2008 and analyzed for pH, electrical conductivity, temperature, major ions, and nitrate. Results suggest that, in 90% of groundwater samples, sodium and chloride are predominant cation and anion, respectively, and NaCl and CaMgCl are major water types in the study area. The groundwater quality in the study site is impaired by surface contamination sources, mineral dissolution, ion exchange, and evaporation. Nitrate, chloride, and sulfate concentrations strongly express the impact of surface contamination sources such as agricultural and domestic activities, on groundwater quality, and 13% of samples have elevated nitrate content (>45 mg/l as NO(3)). PHREEQC code and Gibbs plots were employed to evaluate the contribution of mineral dissolution and suggest that mineral dissolution, especially carbonate minerals, regulates water chemistry. Groundwater suitability for drinking usage was evaluated by the World Health Organization and Indian standards and suggests that 34% of samples are not suitable for drinking. Integrated groundwater suitability map for drinking purposes was created using drinking water standards based on a concept that if the groundwater sample exceeds any one of the standards, it is not suitable for drinking. This map illustrates that wells in zones 1, 2, 3, and 4 are not fit for drinking purpose. Likewise, irrigational suitability of groundwater in the study region was evaluated, and results suggest that 20% samples are not fit for irrigation. Groundwater suitability map for irrigation was also produced based on salinity and sodium hazards and denotes that wells mostly situated in zones 2 and 3 are not suitable for irrigation. Both integrated suitability maps for drinking and irrigation usage provide overall scenario about the groundwater quality in the study area. Finally, the study concluded that groundwater quality is impaired by man-made activities, and proper management plan is necessary to protect valuable groundwater resources in Thanjavur city.
Wang, Alice; McMahan, Lanakila; Rutstein, Shea; Stauber, Christine; Reyes, Jorge; Sobsey, Mark D
2017-04-01
AbstractThe Joint Monitoring Program relies on household surveys to classify access to improved water sources instead of measuring microbiological quality. The aim of this research was to pilot a novel test for Escherichia coli quantification of household drinking water in the 2011 Demographic and Health Survey (DHS) in Peru. In the Compartment Bag Test (CBT), a 100-mL water sample is supplemented with chromogenic medium to support the growth of E. coli , poured into a bag with compartments, and incubated. A color change indicates E. coli growth, and the concentration of E. coli /100 mL is estimated as a most probable number. Triplicate water samples from 704 households were collected; one sample was analyzed in the field using the CBT, another replicate sample using the CBT was analyzed by reference laboratories, and one sample using membrane filtration (MF) was analyzed by reference laboratories. There were no statistically significant differences in E. coli concentrations between the field and laboratory CBT results, or when compared with MF results. These results suggest that the CBT for E. coli is an effective method to quantify fecal bacteria in household drinking water. The CBT can be incorporated into DHS and other national household surveys as a direct measure of drinking water safety based on microbial quality to better document access to safe drinking water.
Wang, Alice; McMahan, Lanakila; Rutstein, Shea; Stauber, Christine; Reyes, Jorge; Sobsey, Mark D.
2017-01-01
The Joint Monitoring Program relies on household surveys to classify access to improved water sources instead of measuring microbiological quality. The aim of this research was to pilot a novel test for Escherichia coli quantification of household drinking water in the 2011 Demographic and Health Survey (DHS) in Peru. In the Compartment Bag Test (CBT), a 100-mL water sample is supplemented with chromogenic medium to support the growth of E. coli, poured into a bag with compartments, and incubated. A color change indicates E. coli growth, and the concentration of E. coli/100 mL is estimated as a most probable number. Triplicate water samples from 704 households were collected; one sample was analyzed in the field using the CBT, another replicate sample using the CBT was analyzed by reference laboratories, and one sample using membrane filtration (MF) was analyzed by reference laboratories. There were no statistically significant differences in E. coli concentrations between the field and laboratory CBT results, or when compared with MF results. These results suggest that the CBT for E. coli is an effective method to quantify fecal bacteria in household drinking water. The CBT can be incorporated into DHS and other national household surveys as a direct measure of drinking water safety based on microbial quality to better document access to safe drinking water. PMID:28500818
Santiago, Paula; Moreno, Yolanda; Ferrús, M Antonía
2015-08-01
Helicobacter pylori is one of the most common causes of chronic bacterial infection in humans, directly related to peptic ulcer and gastric cancer. It has been suggested that H. pylori can be acquired through different transmission routes, including water. In this study, culture and qPCR were used to detect and identify the presence of H. pylori in drinking water. Furthermore, the combined techniques PMA-qPCR and DVC-FISH were applied for detection of viable cells of H. pylori. Among 24 drinking water samples, 16 samples were positive for the presence of H. pylori, but viable cells were only detected in six samples. Characteristic colonies, covered by a mass of bacterial unspecific growth, were observed on selective agar plates from an only sample, after enrichment. The mixed culture was submitted to DVC-FISH and qPCR analysis, followed by sequencing of the amplicons. Molecular techniques confirmed the growth of H. pylori on the agar plate. Our results demonstrate for the first time that H. pylori can survive and be potentially infective in drinking water, showing that water distribution systems could be a potential route for H. pylori transmission. © 2015 John Wiley & Sons Ltd.
Evaluation of Polymerase Chain Reaction for Detecting Coliform Bacteria in Drinking Water Sources
Isfahani, Bahram Nasr; Fazeli, Hossein; Babaie, Zeinab; Poursina, Farkhondeh; Moghim, Sharareh; Rouzbahani, Meisam
2017-01-01
Background: Coliform bacteria are used as indicator organisms for detecting fecal pollution in water. Traditional methods including microbial culture tests in lactose-containing media and enzyme-based tests for the detection of β-galactosidase; however, these methods are time-consuming and less specific. The aim of this study was to evaluate polymerase chain reaction (PCR) for detecting coliform. Materials and Methods: Totally, 100 of water samples from Isfahan drinking water source were collected. Coliform bacteria and Escherichia coli were detected in drinking water using LacZ and LamB genes in PCR method performed in comparison with biochemical tests for all samples. Results: Using phenotyping, 80 coliform isolates were found. The results of the biochemical tests illustrated 78.7% coliform bacteria and 21.2% E. coli. PCR results for LacZ and LamB genes were 67.5% and 17.5%, respectively. Conclusion: The PCR method was shown to be an effective, sensitive, and rapid method for detecting coliform and E. coli in drinking water from the Isfahan drinking water sources. PMID:29142893
Simazaki, Dai; Kubota, Reiji; Suzuki, Toshinari; Akiba, Michihiro; Nishimura, Tetsuji; Kunikane, Shoichi
2015-06-01
The present study was performed to determine the occurrence of 64 pharmaceuticals and metabolites in source water and finished water at 6 drinking water purification plants and 2 industrial water purification plants across Japan. The analytical methods employed were sample concentration using solid-phase extraction cartridges and instrumental analysis by liquid chromatography with tandem mass spectrometry (LC-MS/MS), liquid chromatography with mass spectrometry (LC/MS), or trimethylsilyl derivatization followed by gas chromatography with mass spectrometry (GC/MS). Thirty-seven of the 64 target substances were detected in the source water samples. The maximum concentrations in the source water were mostly below 50 ng/L except for 13 substances. In particular, residual concentrations of iopamidol (contrast agent) exceeded 1000 ng/L at most facilities. Most of the residual pharmaceuticals and metabolites in the source water samples were removed in the course of conventional and/or advanced drinking water treatments, except for 7 pharmaceuticals and 1 metabolite, i.e., amantadine, carbamazepine, diclofenac, epinastine, fenofibrate, ibuprofen, iopamidol, and oseltamivir acid. The removal ratios of the advanced water treatment processes including ozonation and granular activated carbon filtration were typically much higher than those of the conventional treatment processes. The margins of exposure estimated by the ratio of daily minimum therapeutic dose to daily intake via drinking water were substantial, and therefore the pharmacological and physiological impacts of ingesting those residual substances via drinking water would be negligible. Copyright © 2015 Elsevier Ltd. All rights reserved.
Leusch, Frederic D L; Neale, Peta A; Arnal, Charlotte; Aneck-Hahn, Natalie H; Balaguer, Patrick; Bruchet, Auguste; Escher, Beate I; Esperanza, Mar; Grimaldi, Marina; Leroy, Gaela; Scheurer, Marco; Schlichting, Rita; Schriks, Merijn; Hebert, Armelle
2018-08-01
The aquatic environment can contain numerous micropollutants and there are concerns about endocrine activity in environmental waters and the potential impacts on human and ecosystem health. In this study a complementary chemical analysis and in vitro bioassay approach was applied to evaluate endocrine activity in treated wastewater, surface water and drinking water samples from six countries (Germany, Australia, France, South Africa, the Netherlands and Spain). The bioassay test battery included assays indicative of seven endocrine pathways, while 58 different chemicals, including pesticides, pharmaceuticals and industrial compounds, were analysed by targeted chemical analysis. Endocrine activity was below the limit of quantification for most water samples, with only two of six treated wastewater samples and two of six surface water samples exhibiting estrogenic, glucocorticoid, progestagenic and/or anti-mineralocorticoid activity above the limit of quantification. Based on available effect-based trigger values (EBT) for estrogenic and glucocorticoid activity, some of the wastewater and surface water samples were found to exceed the EBT, suggesting these environmental waters may pose a potential risk to ecosystem health. In contrast, the lack of bioassay activity and low detected chemical concentrations in the drinking water samples do not suggest a risk to human endocrine health, with all samples below the relevant EBTs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Occurrence of Pepper Mild Mottle Virus in Drinking Water Sources in Japan
Kitajima, Masaaki; Kishida, Naohiro; Konno, Yoshiaki; Katayama, Hiroyuki; Asami, Mari; Akiba, Michihiro
2013-01-01
Pepper mild mottle virus (PMMoV) is a plant virus that has been recently proposed as a potential indicator of human fecal contamination of environmental waters; however, information on its geographical occurrence in surface water is still limited. We aimed to determine the seasonal and geographic occurrence of PMMoV in drinking water sources all over Japan. Between July 2008 and February 2011, 184 source water samples were collected from 30 drinking water treatment plants (DWTPs); viruses from 1 to 2 liters of each sample were concentrated by using an electronegative membrane, followed by RNA extraction and reverse transcription. Using quantitative PCR, PMMoV was detected in 140 (76%) samples, with a concentration ranging from 2.03 × 103 to 2.90 × 106 copies/liter. At least one of the samples from 27 DWTPs (n = 4 or 8) was positive for PMMoV; samples from 10 of these DWTPs were always contaminated. There was a significant difference in the occurrence of PMMoV among geographical regions but not a seasonal difference. PMMoV was frequently detected in samples that were negative for human enteric virus or Escherichia coli. A phylogenetic analysis based on the partial nucleotide sequences of the PMMoV coat protein gene in 12 water samples from 9 DWTPs indicated that there are genetically diverse PMMoV strains present in drinking water sources in Japan. To our knowledge, this is the first study to demonstrate the occurrence of PMMoV in environmental waters across wide geographical regions. PMID:24056461
Characterization of bacterial community dynamics in a full-scale drinking water treatment plant.
Li, Cuiping; Ling, Fangqiong; Zhang, Minglu; Liu, Wen-Tso; Li, Yuxian; Liu, Wenjun
2017-01-01
Understanding the spatial and temporal dynamics of microbial communities in drinking water systems is vital to securing the microbial safety of drinking water. The objective of this study was to comprehensively characterize the dynamics of microbial biomass and bacterial communities at each step of a full-scale drinking water treatment plant in Beijing, China. Both bulk water and biofilm samples on granular activated carbon (GAC) were collected over 9months. The proportion of cultivable cells decreased during the treatment processes, and this proportion was higher in warm season than cool season, suggesting that treatment processes and water temperature probably had considerable impact on the R2A cultivability of total bacteria. 16s rRNA gene based 454 pyrosequencing analysis of the bacterial community revealed that Proteobacteria predominated in all samples. The GAC biofilm harbored a distinct population with a much higher relative abundance of Acidobacteria than water samples. Principle coordinate analysis and one-way analysis of similarity indicated that the dynamics of the microbial communities in bulk water and biofilm samples were better explained by the treatment processes rather than by sampling time, and distinctive changes of the microbial communities in water occurred after GAC filtration. Furthermore, 20 distinct OTUs contributing most to the dissimilarity among samples of different sampling locations and 6 persistent OTUs present in the entire treatment process flow were identified. Overall, our findings demonstrate the significant effects that treatment processes have on the microbial biomass and community fluctuation and provide implications for further targeted investigation on particular bacteria populations. Copyright © 2016. Published by Elsevier B.V.
Quality assessment of commercially supplied drinking jar water in Chittagong City, Bangladesh
NASA Astrophysics Data System (ADS)
Mina, Sohana Akter; Marzan, Lolo Wal; Sultana, Tasrin; Akter, Yasmin
2018-03-01
Chittagong is the second most populated city in Bangladesh where drinking water is supplied using small jar. Water quality is an important concern for the consumers and, therefore, the present study was done by collecting 38 drinking jar water samples from Chittagong City, Bangladesh to determine the microbial contamination and physiochemical properties. Molecular study was done by the PCR amplification of 16SrDNA, LacZ and uidA gene for the identification of bacteria, coliform and fecal coliform. TVC, MPN and different biochemical test were done for enumeration and identification. TDS, pH, and metals (Fe, As, Pb and Cr) concentration were also measured. No heavy metal (As, Pb and Cr) was found in any of the water samples but Fe was detected in low concentrations (0.02-0.05 mg/l). TDS and pH level were normal in all samples. But microbial contaminations were (60.53 and 50%) recorded in molecular and biochemical test, respectively. The range of total bacterial count was (1.5 × 102-1.6 × 104) cfu/ml. The total coliform count (TCCm) was recorded (14-40) in 100 ml of water samples. The presence of total coliform and fecal coliform was 26.32 and 18.42%, respectively, in PCR analysis but in biochemical test those were 18.42 and 15.78%, respectively. A total of 11 bacterial species: Enterobacter aerogenes, Escherrichia coli, Aeromonas, Bacillus sp., Cardiobacterium, Corynebacterium, Clostridium, Klebsiella sp., Lactobacillus, Micrococcus sp., Pseudomonas sp. were found. This study indicates that some of the drinking jar water samples were of poor quality which may increase the risk of water-borne disease. Hence, the producer of drinking jar water has to implement necessary quality control steps.
Kish, G.R.; Macy, J.A.; Mueller, R.T.
1987-01-01
The U.S. Geological Survey analyzed trace metal concentrations in tap water from domestic wells in newly constructed homes in Berkeley Township, Ocean County and Galloway Township, Atlantic County, N. J. The potable water distribution systems in all of the homes sampled are constructed primarily of copper with lead-based solder points. Home water treatment is used in Berkeley Township but not in Galloway Township. Tap water was collected after the water had been standing in the pipes overnight. In Berkeley, 6 to 11 samples exceeded both the U.S. Environmental Protection Agency 's primary drinking water regulation (DWR) for lead (50 microgram/L) and the secondary drinking water regulation (SDWR) for copper (1,000 microgram/L). In Galloway, 12 of 14 samples exceeded the DWR for lead and 13 of 14 exceeded the SDWR for copper. After collecting the standing-water samples, the water was left running for 15 minutes and a second sample was collected. None of the running-water samples exceeded the regulations for lead or copper. Available data suggest a correlation between the residence time of soft, acidic groundwater in new home plumbing systems and elevated trace-metal concentrations in drinking water derived from domestic wells within the New Jersey Coastal Plain. (USGS)
Kelly, John J; Minalt, Nicole; Culotti, Alessandro; Pryor, Marsha; Packman, Aaron
2014-01-01
Pipes that transport drinking water through municipal drinking water distribution systems (DWDS) are challenging habitats for microorganisms. Distribution networks are dark, oligotrophic and contain disinfectants; yet microbes frequently form biofilms attached to interior surfaces of DWDS pipes. Relatively little is known about the species composition and ecology of these biofilms due to challenges associated with sample acquisition from actual DWDS. We report the analysis of biofilms from five pipe samples collected from the same region of a DWDS in Florida, USA, over an 18 month period between February 2011 and August 2012. The bacterial abundance and composition of biofilm communities within the pipes were analyzed by heterotrophic plate counts and tag pyrosequencing of 16S rRNA genes, respectively. Bacterial numbers varied significantly based on sampling date and were positively correlated with water temperature and the concentration of nitrate. However, there was no significant relationship between the concentration of disinfectant in the drinking water (monochloramine) and the abundance of bacteria within the biofilms. Pyrosequencing analysis identified a total of 677 operational taxonomic units (OTUs) (3% distance) within the biofilms but indicated that community diversity was low and varied between sampling dates. Biofilms were dominated by a few taxa, specifically Methylomonas, Acinetobacter, Mycobacterium, and Xanthomonadaceae, and the dominant taxa within the biofilms varied dramatically between sampling times. The drinking water characteristics most strongly correlated with bacterial community composition were concentrations of nitrate, ammonium, total chlorine and monochloramine, as well as alkalinity and hardness. Biofilms from the sampling date with the highest nitrate concentration were the most abundant and diverse and were dominated by Acinetobacter.
Nationwide Drinking Water Sampling Campaign for Exposure Assessments in Denmark
Voutchkova, Denitza Dimitrova; Hansen, Birgitte; Ernstsen, Vibeke; Kristiansen, Søren Munch
2018-01-01
Nationwide sampling campaign of treated drinking water of groundwater origin was designed and implemented in Denmark in 2013. The main purpose of the sampling was to obtain data on the spatial variation of iodine concentration and speciation in treated drinking water, which was supplied to the majority of the Danish population. This data was to be used in future exposure and epidemiologic studies. The water supply sector (83 companies, owning 144 waterworks throughout Denmark) was involved actively in the planning and implementation process, which reduced significantly the cost and duration of data collection. The dataset resulting from this collaboration covers not only iodine species (I−, IO3−, TI), but also major elements and parameters (pH, electrical conductivity, DOC, TC, TN, F−, Cl−, NO3−, SO42−, Ca2+, Mg2+, K+, Na+) and a long list of trace elements (n = 66). The water samples represent 144 waterworks abstracting about 45% of the annual Danish groundwater abstraction for drinking water purposes, which supply about 2.5 million Danes (45% of all Danish residents). This technical note presents the design, implementation, and limitations of such a sampling design in detail in order (1) to facilitate the future use of this dataset, (2) to inform future replication studies, or (3) to provide an example for other researchers. PMID:29518987
Wu, Qihua; Shi, Honglan; Ma, Yinfa; Adams, Craig; Eichholz, Todd; Timmons, Terry; Jiang, Hua
2015-01-01
N-Nitrosamines are potent mutagenic and carcinogenic emerging water disinfection by-products (DBPs). The most effective strategy to control the formation of these DBPs is minimizing their precursors from source water. Secondary and tertiary amines are dominating precursors of N-nitrosamines formation during drinking water disinfection process. Therefore, the screening and removal of these amines in source water are very essential for preventing the formation of N-nitrosamines. A rapid, simple, and sensitive ultrafast liquid chromatography-tandem mass spectrometry (UFLC-MS/MS) method has been developed in this study to determine seven amines, including dimethylamine, ethylmethylamine, diethylamine, dipropylamine, trimethylamine, 3-(dimethylaminomethyl)indole, and 4-dimethylaminoantipyrine, as major precursors of N-nitrosamines in drinking water system. No sample preparation process is needed except a simple filtration. Separation and detection can be achieved in 11 min per sample. The method detection limits of selected amines are ranging from 0.02 μg/L to 1 μg/L except EMA (5 μg/L), and good calibration linearity was achieved. The developed method was applied to determine the selected precursors in source water and drinking water samples collected from Midwest area of the United States. In most of water samples, the concentrations of selected precursors of N-nitrosamines were below their method detection limits. Dimethylamine was detected in some of water samples at the concentration up to 25.4 μg/L. Copyright © 2014 Elsevier B.V. All rights reserved.
Guérin, Nicolas; Dai, Xiongxin
2014-06-17
Polonium-210 ((210)Po) can be rapidly determined in drinking water and urine samples by alpha spectrometry using copper sulfide (CuS) microprecipitation. For drinking water, Po in 10 mL samples was directly coprecipitated onto the filter for alpha counting without any purification. For urine, 10 mL of sample was heated, oxidized with KBrO3 for a short time (∼5 min), and subsequently centrifuged to remove the suspended organic matter. The CuS microprecipitation was then applied to the supernatant. Large batches of samples can be prepared using this technique with high recoveries (∼85%). The figures of merit of the methods were determined, and the developed methods fulfill the requirements for emergency and routine radioassays. The efficiency and reliability of the procedures were confirmed using spiked samples.
Assessment of radionuclide contents in food in Hong Kong
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, K.N.; Mao, S.Y.
1999-12-01
Baseline values of concentrations of the natural radionuclides ({sup 238}U, {sup 226}Ra, {sup 228}Ra/{sup 232}Th, {sup 210}Pb) and artificial radionuclides ({sup 137}Cs, {sup 60}Co) in food and drinks (tap water, milk, and water-based drinks) were determined by gamma spectroscopy. All food and drinks were found to contain detectable {sup 40}K contents: 0.1 to 160 Bq Kg{sup {minus}1} for food and 0.006 to 61 Bq L{sup {minus}1} for drinks. Most of the other natural radionuclides in solid food were found to have contents below the minimum detectable activities (MDA). More samples in the leafy vegetable, tomato, carrot and potato categories containedmore » detectable amounts of {sup 228}Ra than the meat, cereal, and fish categories, with concentrations up to 1.2 Bq kg{sup {minus}1} for the former categories and 0.35 Bq kg{sup {minus}1} for the latter categories. The {sup 238}U and {sup 226}Ra radionuclides were detectable in most of the water-based drink samples, and the {sup 228}Ra and {sup 210}Pb radionuclides were detectable in fewer water-based drink samples. The {sup 137}Cs contents in solid food were detectable in most of the solid food samples (reaching 0.59 Bq kg{sup {minus}1}), but in drinks the {sup 137}Cs contents were very low and normally lower than the MDA values. Nearly all the {sup 60}Co contents in food and drinks were below the MDA values and their contents were below those of {sup 137}Cs.« less
Prest, E I; Hammes, F; Kötzsch, S; van Loosdrecht, M C M; Vrouwenvelder, J S
2013-12-01
Flow cytometry (FCM) is a rapid, cultivation-independent tool to assess and evaluate bacteriological quality and biological stability of water. Here we demonstrate that a stringent, reproducible staining protocol combined with fixed FCM operational and gating settings is essential for reliable quantification of bacteria and detection of changes in aquatic bacterial communities. Triplicate measurements of diverse water samples with this protocol typically showed relative standard deviation values and 95% confidence interval values below 2.5% on all the main FCM parameters. We propose a straightforward and instrument-independent method for the characterization of water samples based on the combination of bacterial cell concentration and fluorescence distribution. Analysis of the fluorescence distribution (or so-called fluorescence fingerprint) was accomplished firstly through a direct comparison of the raw FCM data and subsequently simplified by quantifying the percentage of large and brightly fluorescent high nucleic acid (HNA) content bacteria in each sample. Our approach enables fast differentiation of dissimilar bacterial communities (less than 15 min from sampling to final result), and allows accurate detection of even small changes in aquatic environments (detection above 3% change). Demonstrative studies on (a) indigenous bacterial growth in water, (b) contamination of drinking water with wastewater, (c) household drinking water stagnation and (d) mixing of two drinking water types, univocally showed that this FCM approach enables detection and quantification of relevant bacterial water quality changes with high sensitivity. This approach has the potential to be used as a new tool for application in the drinking water field, e.g. for rapid screening of the microbial water quality and stability during water treatment and distribution in networks and premise plumbing. Copyright © 2013 Elsevier Ltd. All rights reserved.
Suspect screening and non-targeted analysis of drinking water using point-of-use filters.
Newton, Seth R; McMahen, Rebecca L; Sobus, Jon R; Mansouri, Kamel; Williams, Antony J; McEachran, Andrew D; Strynar, Mark J
2018-03-01
Monitored contaminants in drinking water represent a small portion of the total compounds present, many of which may be relevant to human health. To understand the totality of human exposure to compounds in drinking water, broader monitoring methods are imperative. In an effort to more fully characterize the drinking water exposome, point-of-use water filtration devices (Brita ® filters) were employed to collect time-integrated drinking water samples in a pilot study of nine North Carolina homes. A suspect screening analysis was performed by matching high resolution mass spectra of unknown features to molecular formulas from EPA's DSSTox database. Candidate compounds with those formulas were retrieved from the EPA's CompTox Chemistry Dashboard, a recently developed data hub for approximately 720,000 compounds. To prioritize compounds into those most relevant for human health, toxicity data from the US federal collaborative Tox21 program and the EPA ToxCast program, as well as exposure estimates from EPA's ExpoCast program, were used in conjunction with sample detection frequency and abundance to calculate a "ToxPi" score for each candidate compound. From ∼15,000 molecular features in the raw data, 91 candidate compounds were ultimately grouped into the highest priority class for follow up study. Fifteen of these compounds were confirmed using analytical standards including the highest priority compound, 1,2-Benzisothiazolin-3-one, which appeared in 7 out of 9 samples. The majority of the other high priority compounds are not targets of routine monitoring, highlighting major gaps in our understanding of drinking water exposures. General product-use categories from EPA's CPCat database revealed that several of the high priority chemicals are used in industrial processes, indicating the drinking water in central North Carolina may be impacted by local industries. Published by Elsevier Ltd.
Zhu, Cansheng; Bai, Guanglu; Liu, Xiaoli; Li, Yue
2006-09-01
The objectives of this study were to screen high-fluoride and high-arsenic drinking waters, to evaluate the effectiveness of fluoride-reducing projects and to assess the present condition of endemic fluorosis and arsenism in Shaanxi province in western China. For screening high-fluoride drinking waters, five water samples were collected from each selected village where dental fluorosis patients were detected in 8-12 year-old children. For evaluating the effectiveness of fluoride-reducing projects, four water samples were collected from each project at end-user level. Fluoride concentrations in water samples were measured by fluoride-selective electrode method or spectrophotometry. Dental fluorosis in children aging 8-12 years was examined according to Horowitz's Tooth Surface Index of Fluorosis. Skeletal fluorosis in adults was detected clinically and radiologically according to Chinese Criteria of Clinical Diagnosis of Skeletal Fluorosis. For screening high-arsenic waters, 20 water samples were collected from each village which was selected from areas characterized by the geographic features to induce high-arsenic underground water, i.e., alluvial plains, ore mining or smelting areas, geothermal artesians, and thermal springs. Arsenic concentrations in water samples were determined by spectrophotometry or arsine generation atomic fluorospectrophotometry. Arsenism in adults aging 40-89 years was examined in villages with arsenic concentrations in drinking water above 0.05 mg/l according to Chinese Criteria for Classification of Endemic Arsenism Areas and Clinical Diagnoses of Endemic Arsenism. The results showed that the fluoride level of 7144 water samples was 1.17 +/- 0.93 mg/l. There were 3396 (47.6%) high-fluoride waters (fluoride level was above 1.0 mg/l) distributing in 786 (45.1%) villages, where about 0.8 million (50.0%) people inhabited. Additionally, the 1315 fluoride-reducing projects were studied. The fluoride level of the projects was 2.79 +/- 1.09 and 0.98 +/- 0.47 mg/l before and after building the projects, which remained at relatively lower level (1.03 +/- 0.47 mg/l). But there were still 58.0% of the projects providing drinking waters with fluoride concentrations beyond 1.0mg/l. The rates of dental fluorosis and skeletal fluorosis were 38.2% and 11.8%, respectively. The arsenic level of 1732 water samples was 0.010 +/- 0.082 mg/l. There were 174 (14.9%) high-arsenic waters (arsenic level was above 0.010 mg/l) being detected, distributing in 41 (38.7%) villages. The arsenic level in 53 (4.5%) water samples was beyond 0.025 mg/l. There were 3 villages with arsenic level in drinking water beyond Chinese National Permissible Limits (0.050 mg/l), and the prevalence rate of arsenism reached 37.0% in these three villages, 3.7%, 22.2%, and 11.1% of subjects suffering from mild, moderate, and severe arsenism, respectively. Conclusively, the wide distribution of high-fluoride drinking waters contributes to the prevalence of dental and skeletal fluorosis in Shaanxi province and the quality of fluoride-reducing projects should be further improved. Ore mining and smelting induces high-arsenic drinking waters, resulting in arsenism prevalence in Shang-luo city. Proper measures should be taken to deal with water pollution in the ore mining and smelting areas in order to solve the high-arsenic water problem in Shaanxi province.
Water, sanitation and hygiene infrastructure and quality in rural healthcare facilities in Rwanda.
Huttinger, Alexandra; Dreibelbis, Robert; Kayigamba, Felix; Ngabo, Fidel; Mfura, Leodomir; Merryweather, Brittney; Cardon, Amelie; Moe, Christine
2017-08-03
WHO and UNICEF have proposed an action plan to achieve universal water, sanitation and hygiene (WASH) coverage in healthcare facilities (HCFs) by 2030. The WASH targets and indicators for HCFs include: an improved water source on the premises accessible to all users, basic sanitation facilities, a hand washing facility with soap and water at all sanitation facilities and patient care areas. To establish viable targets for WASH in HCFs, investigation beyond 'access' is needed to address the state of WASH infrastructure and service provision. Patient and caregiver use of WASH services is largely unaddressed in previous studies despite being critical for infection control. The state of WASH services used by staff, patients and caregivers was assessed in 17 rural HCFs in Rwanda. Site selection was non-random and predicated upon piped water and power supply. Direct observation and semi-structured interviews assessed drinking water treatment, presence and condition of sanitation facilities, provision of soap and water, and WASH-related maintenance and record keeping. Samples were collected from water sources and treated drinking water containers and analyzed for total coliforms, E. coli, and chlorine residual. Drinking water treatment was reported at 15 of 17 sites. Three of 18 drinking water samples collected met the WHO guideline for free chlorine residual of >0.2 mg/l, 6 of 16 drinking water samples analyzed for total coliforms met the WHO guideline of <1 coliform/100 mL and 15 of 16 drinking water samples analyzed for E. coli met the WHO guideline of <1 E. coli/100 mL. HCF staff reported treating up to 20 L of drinking water per day. At all sites, 60% of water access points (160 of 267) were observed to be functional, 32% of hand washing locations (46 of 142) had water and soap and 44% of sanitary facilities (48 of 109) were in hygienic condition and accessible to patients. Regular maintenance of WASH infrastructure consisted of cleaning; no HCF had on-site capacity for performing repairs. Quarterly evaluations of HCFs for Rwanda's Performance Based Financing system included WASH indicators. All HCFs met national policies for water access, but WHO guidelines for environmental standards including water quality were not fully satisfied. Access to WASH services at the HCFs differed between staff and patients and caregivers.
Eckner, Karl F.
1998-01-01
A total of 338 water samples, 261 drinking water samples and 77 bathing water samples, obtained for routine testing were analyzed in duplicate by Swedish standard methods using multiple-tube fermentation or membrane filtration and by the Colilert and/or Enterolert methods. Water samples came from a wide variety of sources in southern Sweden (Skåne). The Colilert method was found to be more sensitive than Swedish standard methods for detecting coliform bacteria and of equal sensitivity for detecting Escherichia coli when all drinking water samples were grouped together. Based on these results, Swedac, the Swedish laboratory accreditation body, approved for the first time in Sweden use of the Colilert method at this laboratory for the analysis of all water sources not falling under public water regulations (A-krav). The coliform detection study of bathing water yielded anomalous results due to confirmation difficulties. E. coli detection in bathing water was similar by both the Colilert and Swedish standard methods as was fecal streptococcus and enterococcus detection by both the Enterolert and Swedish standard methods. PMID:9687478
Tryland, Ingun; Eregno, Fasil Ejigu; Braathen, Henrik; Khalaf, Goran; Sjølander, Ingrid; Fossum, Marie
2015-02-04
The fully automated Colifast ALARM™ has been used for two years for daily monitoring of the presence/absence of Escherichia coli in 100 mL raw water at Oset drinking water treatment plant in Oslo, Norway. The raw water is extracted from 35 m depth from the Lake Maridalsvannet. E. coli was detected in 18% of the daily samples. In general, most samples positive for E. coli were observed during the autumn turnover periods, but even in some samples taken during warm and dry days in July, with stable temperature stratification in the lake, E. coli was detected. The daily samples gave useful additional information compared with the weekly routine samples about the hygienic raw water quality and the hygienic barrier efficiency of the lake under different weather conditions and seasons. The winter 2013/2014 was much warmer than the winter 2012/2013. The monitoring supported the hypothesis that warmer winters with shorter periods with ice cover on lakes, which may be a consequence of climate changes, may reduce the hygienic barrier efficiency in deep lakes used as drinking water sources.
Davis, William E; Li, Yongtao
2008-07-15
A new isotope dilution gas chromatography/chemical ionization/tandem mass spectrometric method was developed for the analysis of carcinogenic hydrazine in drinking water. The sample preparation was performed by using the optimized derivatization and multiple liquid-liquid extraction techniques. Using the direct aqueous-phase derivatization with acetone, hydrazine and isotopically labeled hydrazine-(15)N2 used as the surrogate standard formed acetone azine and acetone azine-(15)N2, respectively. These derivatives were then extracted with dichloromethane. Prior to analysis using methanol as the chemical ionization reagent gas, the extract was dried with anhydrous sodium sulfate, concentrated through evaporation, and then fortified with isotopically labeled N-nitrosodimethylamine-d6 used as the internal standard to quantify the extracted acetone azine-(15)N2. The extracted acetone azine was quantified against the extracted acetone azine-(15)N2. The isotope dilution standard calibration curve resulted in a linear regression correlation coefficient (R) of 0.999. The obtained method detection limit was 0.70 ng/L for hydrazine in reagent water samples, fortified at a concentration of 1.0 ng/L. For reagent water samples fortified at a concentration of 20.0 ng/L, the mean recoveries were 102% with a relative standard deviation of 13.7% for hydrazine and 106% with a relative standard deviation of 12.5% for hydrazine-(15)N2. Hydrazine at 0.5-2.6 ng/L was detected in 7 out of 13 chloraminated drinking water samples but was not detected in the rest of the chloraminated drinking water samples and the studied chlorinated drinking water sample.
A Concurrent Exposure to Arsenic and Fluoride from Drinking Water in Chihuahua, Mexico
González-Horta, Carmen; Ballinas-Casarrubias, Lourdes; Sánchez-Ramírez, Blanca; Ishida, María C.; Barrera-Hernández, Angel; Gutiérrez-Torres, Daniela; Zacarias, Olga L.; Saunders, R. Jesse; Drobná, Zuzana; Mendez, Michelle A.; García-Vargas, Gonzalo; Loomis, Dana; Stýblo, Miroslav; Del Razo, Luz M.
2015-01-01
Inorganic arsenic (iAs) and fluoride (F−) are naturally occurring drinking water contaminants. However, co-exposure to these contaminants and its effects on human health are understudied. The goal of this study was examined exposures to iAs and F− in Chihuahua, Mexico, where exposure to iAs in drinking water has been associated with adverse health effects. All 1119 eligible Chihuahua residents (>18 years) provided a sample of drinking water and spot urine samples. iAs and F− concentrations in water samples ranged from 0.1 to 419.8 µg As/L and from 0.05 to 11.8 mg F−/L. Urinary arsenic (U-tAs) and urinary F− (U-F−) levels ranged from 0.5 to 467.9 ng As/mL and from 0.1 to 14.4 µg F−/mL. A strong positive correlation was found between iAs and F− concentrations in drinking water (rs = 0.741). Similarly, U-tAs levels correlated positively with U-F− concentrations (rs = 0.633). These results show that Chihuahua residents exposed to high iAs concentrations in drinking water are also exposed to high levels of F−, raising questions about possible contribution of F− exposure to the adverse effects that have so far been attributed only to iAs exposure. Thus, investigation of possible interactions between iAs and F− exposures and its related health risks deserves immediate attention. PMID:25918912
Health risk assessment of fluoride in drinking water from Anhui Province in China.
Gao, Hong-jian; Jin, You-qian; Wei, Jun-ling
2013-05-01
This study analyzes the concentrations and health risks of fluoride in 249 drinking water samples collected from different regions of Anhui Province in China. Results indicated that fluoride content in drinking water ranged from 0.12 to 1.94 mg L(-1) (mean = 0.57 mg L(-1)) in the following order: Huaibei plain region > Jianghuai hill region ≈ Dabieshan mountainous region > plain along the Yangtze River region > southern Anhui mountainous region. The fluoride contents were less than 0.50 mg L(-1) in 66.66 % of the drinking water samples, 0.51-1.0 mg L(-1) in 23.29 %, and higher than 1.0 mg L(-1) in 12.04 %. The fluoride levels in some samples were lower than the recommended values for controlling dental caries (0.50-1.0 mg L(-1)). The total fluoride intake from drinking water was between 0.14 and 2.33 mg per day in different regions of the province, supposing an individual consumes 1.2 L of water per day. Therefore, measures should be taken to increase fluoride intake in the Jianghuai hill region, Dabieshan mountainous region, plain along the Yangtze River, and southern Anhui mountainous region to control dental caries. On the other hand, the fluoride levels must be reduced in the Huaibei plain region to decrease endemic fluorosis. The results serve as crucial guidelines for managing fluoride safety in drinking water and controlling endemic fluorosis in different regions of Anhui Province.
Drinking water regulations under the Final Coliform Rule require that total coliform-positive drinking water samples be examined for the presence of Escherichia coli or fecal coliforms. The current U.S. Environmental Protection Agency-approved membrane filter (MF) method for E. c...
Kumpel, Emily; Albert, Jeff; Peletz, Rachel; de Waal, Dominick; Hirn, Maximilian; Danilenko, Alexander; Uhl, Vincent; Daw, Ashish; Khush, Ranjiv
2016-07-06
Establishing and maintaining public water services in fragile states is a significant development challenge. In anticipation of water infrastructure investments, this study compares drinking water sources and quality between Port Harcourt, Nigeria, and Monrovia, Liberia, two cities recovering from political and economic instability. In both cities, access to piped water is low, and residents rely on a range of other private and public water sources. In Port Harcourt, geographic points for sampling were randomly selected and stratified by population density, whereas in Monrovia, locations for sampling were selected from a current inventory of public water sources. In Port Harcourt, the sampling frame demonstrated extensive reliance on private boreholes and a preference, in both planned and unplanned settlements, for drinking bottled and sachet water. In Monrovia, sample collection focused on public sources (predominantly shallow dug wells). In Port Harcourt, fecal indicator bacteria (FIB) were detected in 25% of sources (N = 566), though concentrations were low. In Monrovia, 57% of sources contained FIB and 22% of sources had nitrate levels that exceeded standards (N = 204). In Monrovia, the convenience of piped water may promote acceptance of the associated water tariffs. However, in Port Harcourt, the high prevalence of self-supply and bottled and sachet drinking water suggests that the consumer's willingness to pay for ongoing municipal water supply improvements may be determined by service reliability and perceptions of water quality. © The American Society of Tropical Medicine and Hygiene.
Kumpel, Emily; Albert, Jeff; Peletz, Rachel; de Waal, Dominick; Hirn, Maximilian; Danilenko, Alexander; Uhl, Vincent; Daw, Ashish; Khush, Ranjiv
2016-01-01
Establishing and maintaining public water services in fragile states is a significant development challenge. In anticipation of water infrastructure investments, this study compares drinking water sources and quality between Port Harcourt, Nigeria, and Monrovia, Liberia, two cities recovering from political and economic instability. In both cities, access to piped water is low, and residents rely on a range of other private and public water sources. In Port Harcourt, geographic points for sampling were randomly selected and stratified by population density, whereas in Monrovia, locations for sampling were selected from a current inventory of public water sources. In Port Harcourt, the sampling frame demonstrated extensive reliance on private boreholes and a preference, in both planned and unplanned settlements, for drinking bottled and sachet water. In Monrovia, sample collection focused on public sources (predominantly shallow dug wells). In Port Harcourt, fecal indicator bacteria (FIB) were detected in 25% of sources (N = 566), though concentrations were low. In Monrovia, 57% of sources contained FIB and 22% of sources had nitrate levels that exceeded standards (N = 204). In Monrovia, the convenience of piped water may promote acceptance of the associated water tariffs. However, in Port Harcourt, the high prevalence of self-supply and bottled and sachet drinking water suggests that the consumer's willingness to pay for ongoing municipal water supply improvements may be determined by service reliability and perceptions of water quality. PMID:27114291
Wang, Shuo; Li, Shuming; Zhang, Xiangming; Wei, Yunfang; Zhang, Meiyun; Zhang, Jing
2015-07-01
To develop a comprehensive method for simultaneous analysis of sulfonamides and their metabolites in drinking water by high performance liquid chromatography tandem mass spectrometry (LC-MS/MS). Different solid-phase extraction columns were compared with respect to the recovery of target drugs from drinking water. The drinking water samples were adjusted to 3 by HCl and purified by a mix mode cation-ion exchange solid-phase extraction (SPE), following determination using LG-MS/MS. A total of 21 sulfonamides were separated by a C15 column (2.1 mm x 100 mm, 1.7 µm) and analyzed under positive ion mode with multi-reaction monitoring. The matrix-matched external standard calibration was used for quantification. The method quantification limits for 21 analytes were 0.03-0.63 ng/L with overall recoveries of 50.1%-114.9%, and the relative standard deviations less than 20%. The method was finally used to analyze sulfonamides in drinking water in Beijing, and 5 target compounds (sulfadiazine, sulfathiazole, sulfapyridine, trimethoprim and sulfamethazine) were detected at a concentration range of 0.08-32.54 ng/L. This method could be applied in simultaneous analysis of sulfonamides and their metabolites in drinking water samples.
Alqahtani, Jobran M; Asaad, Ahmed M; Ahmed, Essam M; Qureshi, Mohamed A
2015-01-01
The aim was to investigate the bacteriological quality of drinking water, and explore the factors involved in the knowledge of the public about the quality of drinking water in Najran region, Saudi Arabia. A cross-sectional descriptive study. A total of 160 water samples were collected. Total coliforms, fecal coliform, and fecal streptococci were counted using Most Probable Number method. The bacterial genes lacZ and uidA specific to total coliforms and Escherichia coli, respectively, were detected using multiplex polymerase chain reaction. An interview was conducted with 1200 residents using a questionnaire. Total coliforms were detected in 8 (20%) of 40 samples from wells, 13 (32.5%) of 40 samples from tankers, and 55 (68.8%) of 80 samples from roof tanks. Twenty (25%) and 8 (10%) samples from roof tanks were positive for E. coli and Streptococcus faecalis, respectively. Of the 1200 residents participating in the study, 10%, 45.5%, and 44.5% claimed that they depended on municipal water, bottled water, and well water, respectively. The majority (95.5%) reported the use of roof water tanks as a source of water supply in their homes. Most people (80%) believed that drinking water transmitted diseases. However, only 25% of them participated in educational programs on the effect of polluted water on health. Our results could help health authorities consider a proper regular monitoring program and a sustainable continuous assessment of the quality of well water. In addition, this study highlights the importance of the awareness and educational programs for residents on the effect of polluted water on public health.
Surveillance of bacteriological quality of drinking water in Chandigarh, northern India.
Goel, Naveen K; Pathak, Rambha; Gulati, Sangeeta; Balakrishnan, S; Singh, Navpreet; Singh, Hardeep
2015-09-01
The study was carried out in Chandigarh, India with the following objectives: (1) to monitor the bacteriological quality of drinking water; (2) to collect data on bacteriological contamination of water collected at point of use; (3) to test both groundwater being supplied through hand pumps and pre-treated water; and (4) to determine the pattern of seasonal variations in quality of water. The community-based longitudinal study was carried out from 2002 to 2007. Water samples from hand pumps and tap water were collected from different areas of Chandigarh following a simple random sampling strategy. The time trends and seasonal variations in contamination of water according to area and season were analysed. It was found that the contamination of water was higher during the pre-monsoon period compared with the rest of the year. The water being used in slums and rural areas for drinking purposes also had higher contamination levels than urban areas, with highest levels in rural areas. This study found that drinking water supply in Chandigarh is susceptible to contamination especially in rural areas and during pre-monsoon. Active intervention from public health and the health department along with raising people's awareness regarding water hygiene are required for improving the quality of drinking water.
Kandel, Pragya; Kunwar, Ritu; Lamichhane, Prabhat; Karki, Surendra
2017-02-08
Water sources classified as "improved" may not necessarily provide safe drinking water for householders. We analyzed data from Nepal Multiple Indicator Cluster Survey 2014 to explore the extent of fecal contamination of household drinking water. Fecal contamination was detected in 81.2% (95% confidence interval [CI]: 77.9-84.2) household drinking water from improved sources and 89.6% (95% CI: 80.4-94.7) in water samples from unimproved sources. In adjusted analysis, there was no difference in odds of fecal contamination of household drinking water between improved and unimproved sources. We observed significantly lower odds of fecal contamination of drinking water in households in higher wealth quintiles, where soap and water were available for handwashing and in households employing water treatment. The extent of contamination of drinking water as observed in this study highlights the huge amount of effort required to ensure the provision of safely managed water in Nepal by 2030 as aimed in sustainable development goals. © The American Society of Tropical Medicine and Hygiene.
Kandel, Pragya; Kunwar, Ritu; Lamichhane, Prabhat; Karki, Surendra
2017-01-01
Water sources classified as “improved” may not necessarily provide safe drinking water for householders. We analyzed data from Nepal Multiple Indicator Cluster Survey 2014 to explore the extent of fecal contamination of household drinking water. Fecal contamination was detected in 81.2% (95% confidence interval [CI]: 77.9–84.2) household drinking water from improved sources and 89.6% (95% CI: 80.4–94.7) in water samples from unimproved sources. In adjusted analysis, there was no difference in odds of fecal contamination of household drinking water between improved and unimproved sources. We observed significantly lower odds of fecal contamination of drinking water in households in higher wealth quintiles, where soap and water were available for handwashing and in households employing water treatment. The extent of contamination of drinking water as observed in this study highlights the huge amount of effort required to ensure the provision of safely managed water in Nepal by 2030 as aimed in sustainable development goals. PMID:27821687
Identification of fecal contamination sources in water using host-associated markers.
Krentz, Corinne A; Prystajecky, Natalie; Isaac-Renton, Judith
2013-03-01
In British Columbia, Canada, drinking water is tested for total coliforms and Escherichia coli, but there is currently no routine follow-up testing to investigate fecal contamination sources in samples that test positive for indicator bacteria. Reliable microbial source tracking (MST) tools to rapidly test water samples for multiple fecal contamination markers simultaneously are currently lacking. The objectives of this study were (i) to develop a qualitative MST tool to identify fecal contamination from different host groups, and (ii) to evaluate the MST tool using water samples with evidence of fecal contamination. Singleplex and multiplex polymerase chain reaction (PCR) were used to test (i) water from polluted sites and (ii) raw and drinking water samples for presence of bacterial genetic markers associated with feces from humans, cattle, seagulls, pigs, chickens, and geese. The multiplex MST assay correctly identified suspected contamination sources in contaminated waterways, demonstrating that this test may have utility for heavily contaminated sites. Most raw and drinking water samples analyzed using singleplex PCR contained at least one host-associated marker. Singleplex PCR was capable of detecting host-associated markers in small sample volumes and is therefore a promising tool to further analyze water samples submitted for routine testing and provide information useful for water quality management.
Garboś, Sławomir; Święcicka, Dorota
2015-11-01
The random daytime (RDT) sampling method was used for the first time in the assessment of average weekly exposure to uranium through drinking water in a large water supply zone. Data set of uranium concentrations determined in 106 RDT samples collected in three runs from the water supply zone in Wroclaw (Poland), cannot be simply described by normal or log-normal distributions. Therefore, a numerical method designed for the detection and calculation of bimodal distribution was applied. The extracted two distributions containing data from the summer season of 2011 and the winter season of 2012 (nI=72) and from the summer season of 2013 (nII=34) allowed to estimate means of U concentrations in drinking water: 0.947 μg/L and 1.23 μg/L, respectively. As the removal efficiency of uranium during applied treatment process is negligible, the effect of increase in uranium concentration can be explained by higher U concentration in the surface-infiltration water used for the production of drinking water. During the summer season of 2013, heavy rains were observed in Lower Silesia region, causing floods over the territory of the entire region. Fluctuations in uranium concentrations in surface-infiltration water can be attributed to releases of uranium from specific sources - migration from phosphate fertilizers and leaching from mineral deposits. Thus, exposure to uranium through drinking water may increase during extreme rainfall events. The average chronic weekly intakes of uranium through drinking water, estimated on the basis of central values of the extracted normal distributions, accounted for 3.2% and 4.1% of tolerable weekly intake. Copyright © 2015 Elsevier Ltd. All rights reserved.
Radon Concentrations in Drinking Water in Beijing City, China and Contribution to Radiation Dose
Wu, Yun-Yun; Ma, Yong-Zhong; Cui, Hong-Xing; Liu, Jian-Xiang; Sun, Ya-Ru; Shang, Bing; Su, Xu
2014-01-01
222Rn concentrations in drinking water samples from Beijing City, China, were determined based on a simple method for the continuous monitoring of radon using a radon-in-air monitor coupled to an air-water exchanger. A total of 89 water samples were sampled and analyzed for their 222Rn content. The observed radon levels ranged from detection limit up to 49 Bq/L. The calculated arithmetic and geometric means of radon concentrations in all measured samples were equal to 5.87 and 4.63 Bq/L, respectively. The average annual effective dose from ingestion of radon in drinking water was 2.78 μSv, and that of inhalation of water-borne radon was 28.5 μSv. It is concluded that it is not the ingestion of waterborne radon, but inhalation of the radon escaping from water that is a substantial part of the radiological hazard. Radon in water is a big concern for public health, especially for consumers who directly use well water with very high radon concentration. PMID:25350007
Middleton, D R S; Watts, M J; Hamilton, E M; Fletcher, T; Leonardi, G S; Close, R M; Exley, K S; Crabbe, H; Polya, D A
2016-05-18
Chronic exposure to arsenic (As) in drinking water is an established cause of cancer and other adverse health effects. Arsenic concentrations >10 μg L(-1) were previously measured in 5% of private water supplies (PWS) in Cornwall, UK. The present study investigated prolongued exposure to As by measuring biomarkers in hair and toenail samples from 212 volunteers and repeated measurements of As in drinking water from 127 households served by PWS. Strong positive Pearson correlations (rp = 0.95) indicated stability of water As concentrations over the time period investigated (up to 31 months). Drinking water As concentrations were positively correlated with toenail (rp = 0.53) and hair (rp = 0.38) As concentrations - indicative of prolonged exposure. Analysis of washing procedure solutions provided strong evidence of the effective removal of exogenous As from toenail samples. Significantly higher As concentrations were measured in hair samples from males and smokers and As concentrations in toenails were negatively associated with age. A positive association between seafood consumption and toenail As and a negative association between home-grown vegetable consumption and hair As was observed for volunteers exposed to <1 As μg L(-1) in drinking water. These findings have important implications regarding the interpretation of toenail and hair biomarkers. Substantial variation in biomarker As concentrations remained unaccounted for, with soil and dust exposure as possible explanations.
This project is a collaborative drinking water research study. EPA is evaluating water samples collected by PWS operators in order to investigate relationships between bromide in source water and the formation of brominated DBPs in finished drinking water. This study will includ...
[Study on effect of 3 types of drinking water emergent disinfection models in flood/waterlog areas].
Ban, Haiqun; Li, Jin; Li, Xinwu; Zhang, Liubo
2010-09-01
To establish 3 drinking water emergent disinfection processing models, separated medicate dispensing, specific duty medicate dispensing, and centralized filtering, in flood/waterlog areas, and compare the effects of these 3 models on the drinking water disinfection processing. From October to December, 2008, 18 villages were selected as the trial field in Yanglinwei town, Xiantao city, Hubei province, which were divided into three groups, separated medicate dispensing, specific duty medicate dispensing, and centralized filtering. Every 2 weeks, drinking water source water, yielding water of emergency central filtrate water equipment (ECFWE) and container water in the kitchen were sampled and microbe indices of the water sample, standard plate-count bacteria, total coliforms, thermotolerant coliform bacteria, Escherichia coli were measured. The microbe pollution of the water of these 3 water source groups are heavy, all failed. The eliminating rate of the standard plate-count bacteria of the drinking water emergent centralized processing equipment is 99.95%; those of the separate medicate dispensing, specific duty medicate dispensing and centralized filtering are 81.93%, 99.67%, and 98.28%, respectively. The passing rates of the microbe indice of the resident contained water are 13.33%, 70.00%, and 43.33%, respectively. The difference has statistical significance. The drinking water disinfection effects of the centralized filtering model and of the specific duty medicate dispensing model are better than that of the separated medicate dispensing model in the flood/waterlog areas.
Li, Ting; Yu, Dian; Xian, Qiming; Li, Aimin; Sun, Cheng
2015-08-01
We surveyed the occurrence of nine N-nitrosamine species in ten bottled drinking waters from supermarket and other water samples including raw waters, finished waters, and distribution system waters from nine municipal drinking water treatment plants in eight cities of Jiangsu Province, East China. N-nitrosodimethylamine (NDMA) was detected in one of ten bottled drinking water samples at concentration of 4.8 ng/L and N-nitrosomorpholine (NMor) was detected in four of the ten bottles with an average concentration and a standard deviation of 16 ± 15 ng/L. The levels of nitrosamines in the distribution system water samples collected during summer season ranged from below detection limit (BDL) to 5.4 ng/L for NDMA, BDL to 9.5 ng/L for N-nitrosomethylethylamine (NMEA), BDL to 2.7 ng/L for N-nitrosodiethylamine (NDEA) and BDL to 8.5 ng/L for N-nitrosopyrrolidine (NPyr). Samples of distribution system waters collected in winter season had levels of nitrosamines ranged from BDL to 45 ng/L for NDMA, BDL to 5.2 ng/L for NPyr, and BDL to 309 ng/L for N-nitrosopiperidine (NPip). A positive correlation of the concentration of NDMA as well as the total nine N-nitrosamines between finished waters and distribution system waters was observed. Both dissolved organic carbon and nitrite were found to correlate linearly with N-nitrosamine levels in raw waters.
Toxicological investigation and evaluation of drinking-water pollution caused by chemical wastes.
Dési, I; Somosi, G
1984-08-01
Acute, subacute, in vitro, and animal experiments were performed in the spring and fall of 1981. In the course of these investigations, samples from bank-filtered drinking-water wells of Vác, a town along the Danube; from three neighboring observation wells; from water transported from the opposite side of the Danube; from a drinking-water well of a town farther northward; and from Danube water were examined. The aim of the study was to detect whether any of the water samples became contaminated by toxic chemicals. The most severe changes were found in two observation wells (G4 and G2). The drinking-water samples of the wells in Vác (Nos. 1-5) proved to be contaminated, and toxic effects of different degrees were also induced by other wells of Vác. The Danube water caused changes in some tests only; the control drinking-water well, the samples of the K3 observation well, and of the well on the opposite side of the Danube examined in the fall only did not cause any alterations. The toxicity was confirmed by the elevated hemolysis by the genotoxic effects on human erythrocytes and leukocytes, by the functional changes observed in the nervous system of rats, by alterations detected in the electric activity of the rats' brains, in the learning ability and the behavior of the rats, by the increase in the cytochrome P-450 enzyme level of the liver, and by the chromosome aberrations emerging in mice. The changes were caused by different compounds of low and high boiling points escaping with water vapor or with organic solvents. On the basis of the investigations, the water proved to be inappropriate for human consumption.
Lu, Zhibo; Lu, Rong; Zheng, Hongyuan; Yan, Jing; Song, Luning; Wang, Juan; Yang, Haizhen; Cai, Minghong
2018-04-01
We examined per- and polyfluoroalkyl substances (PFASs) in air from eight cities, and in water from six drinking-water treatment plants (DWTPs), in central eastern China. We analyzed raw and treated water samples from the DWTPs for 17 ionic PFASs with high-performance liquid chromatography/negative-electrospray-ionization tandem mass spectrometry (HPLC/(-)ESI-MS/MS), and analyzed the gas and particle phases of atmospheric samples for 12 neutral PFASs by gas chromatography-mass spectrometry (GC-MS). Perfluorooctanoic acid (PFOA) and perfluorohexanoic acid (PFHxA) were the dominant compounds in drinking water, and fluorotelomer alcohols (FTOHs) dominated in atmospheric samples. Of all the compounds in the treated water samples, the concentration of PFOA, at 51.0 ng L -1 , was the highest. Conventional treatments such as coagulation (COA), flocculation (FOC), sedimentation (SED), and sand filtration (SAF) did not remove PFASs. Advanced treatments, however, including ultrafiltration (UF) and activated carbon (AC), removed the majority of PFASs except for shorter-chain PFASs such as perfluorobutanoic acid (PFBA) and perfluoropentanoic acid (PFPA). We also investigated human exposure to PFASs via drinking water and the atmosphere and found that the mean daily intake of PFASs was 0.43 ng kg -1 day -1 .
DeSilva, M B; Schafer, S; Kendall Scott, M; Robinson, B; Hills, A; Buser, G L; Salis, K; Gargano, J; Yoder, J; Hill, V; Xiao, L; Roellig, D; Hedberg, K
2016-01-01
Cryptosporidium, a parasite known to cause large drinking and recreational water outbreaks, is tolerant of chlorine concentrations used for drinking water treatment. Human laboratory-based surveillance for enteric pathogens detected a cryptosporidiosis outbreak in Baker City, Oregon during July 2013 associated with municipal drinking water. Objectives of the investigation were to confirm the outbreak source and assess outbreak extent. The watershed was inspected and city water was tested for contamination. To determine the community attack rate, a standardized questionnaire was administered to randomly sampled households. Weighted attack rates and confidence intervals (CIs) were calculated. Water samples tested positive for Cryptosporidium species; a Cryptosporidium parvum subtype common in cattle was detected in human stool specimens. Cattle were observed grazing along watershed borders; cattle faeces were observed within watershed barriers. The city water treatment facility chlorinated, but did not filter, water. The community attack rate was 28·3% (95% CI 22·1-33·6), sickening an estimated 2780 persons. Watershed contamination by cattle probably caused this outbreak; water treatments effective against Cryptosporidium were not in place. This outbreak highlights vulnerability of drinking water systems to pathogen contamination and underscores the need for communities to invest in system improvements to maintain multiple barriers to drinking water contamination.
Luo, Qian; Chen, Xichao; Wei, Zi; Xu, Xiong; Wang, Donghong; Wang, Zijian
2014-10-24
When iodide and natural organic matter are present in raw water, the formation of iodo-trihalomethanes (Iodo-THMs), haloacetonitriles (HANs), and halonitromethanes (HNMs) pose a potential health risk because they have been reported to be more toxic than their brominated or chlorinated analogs. In the work, simultaneous analysis of Iodo-THMs, HANs, and HNMs in drinking water samples in a single cleanup and chromatographic analysis was proposed. The DVB/CAR/PDMS fiber was found to be the most suitable for all target compounds, although 75μm CAR/PDMS was better for chlorinated HANs and 65μm PDMS/DVB for brominated HNMs. After optimization of the SPME parameters (DVB/CAR/PDMS fiber, extraction time of 30min at 40°C, addition of 40% w/v of salt, (NH4)2SO4 as a quenching agent, and desorption time of 3min at 170°C), detection limits ranged from 1 to 50ng/L for different analogs, with a linear range of at least two orders of magnitude. Good recoveries (78.6-104.7%) were obtained for spiked samples of a wide range of treated drinking waters, demonstrating that the method is applicable for analysis of real drinking water samples. Matrix effects were negligible for the treated water samples with total organic carbon concentration of less than 2.9mg/L. An effective survey conducted by two drinking water treatment plants showed the highest proportion of Iodo-THMs, HANs, and HNMs occurred in treated water, and concentrations of 13 detected compounds ranged between the ng/L and the μg/L levels. Copyright © 2014 Elsevier B.V. All rights reserved.
Quality of Water from Public-Supply Wells in the United States, 1993-2007Overview of Major Findings
Toccalino, Patricia L.; Hopple, Jessica A.
2010-01-01
Summary of Major Findings and Implications About 105 million people in the United States-more than one-third of the Nation's population-receive their drinking water from about 140,000 public water systems that use groundwater as their source. Although the quality of finished drinking water (after treatment and before distribution) from these public water systems is regulated by the U.S. Environmental Protection Agency (USEPA) under the Safe Drinking Water Act (SDWA), long-term protection and management of groundwater, a vital source of drinking water, requires an understanding of the occurrence of contaminants in untreated source water. Sources of drinking water are potentially vulnerable to a wide range of man-made and naturally occurring contaminants, including many that are not regulated in drinking water under the SDWA. In this study by the National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey (USGS), chemical water-quality conditions were assessed in source (untreated) groundwater from 932 public-supply wells, hereafter referred to as public wells, and in source and finished water from a subset of 94 wells. The public wells are located in selected parts of 41 states and withdraw water from parts of 30 regionally extensive water-supply aquifers, which constitute about one-half of the principal aquifers in the United States. Although the wells sampled in this study represent less than 1 percent of all groundwater-supplied public water systems in the United States, they are widely distributed nationally and were randomly selected within the sampled hydrogeologic settings to represent typical aquifer conditions. All source-water samples were collected prior to any treatment or blending that potentially could alter contaminant concentrations. As a result, the sampled groundwater represents the quality of the source water and not necessarily the quality of finished water ingested by the people served by these public wells. A greater number of chemical contaminants-as many as 337-both naturally occurring and man-made, were assessed in this study than in any previous national study of public wells (Appendixes 1 and 2). Consistent with the terminology used in the SDWA, all constituents analyzed in water samples in this study are referred to as 'contaminants,' regardless of their source, concentration, or potential for health effects (see sidebar on page 3). Eighty-three percent (279) of the contaminants analyzed in this study are not regulated in drinking water under the SDWA. The USEPA uses USGS data on the occurrence of unregulated contaminants to fulfill part of the SDWA requirements for determining whether specific contaminants should be regulated in drinking water in the future. By focusing primarily on source-water quality, and by analyzing many contaminants that are not regulated in drinking water by USEPA, this study complements the extensive sampling of public water systems that is routinely conducted for the purposes of regulatory compliance monitoring by federal, state, and local drinking-water programs. The objectives of this study were to evaluate (1) the occurrence of contaminants in source water from public wells and their potential significance to human health, (2) whether contaminants that occur in source water also occur in finished water after treatment, and (3) the occurrence and characteristics of contaminant mixtures. To evaluate the potential significance of contaminant occurrence to human health, contaminant concentrations were compared to regulatory Maximum Contaminant Levels (MCLs) or non-regulatory Health-Based Screening Levels (HBSLs)-collectively referred to as human-health benchmarks in this study (see sidebars on pages 4 and 19). The major findings and implications of this study are summarized below and the results are described in greater detail in the remainder of the report. These findings build upon water-quality data from previous public-well studies and
Nationwide reconnaissance of contaminants of emerging ...
Mobile and persistent chemicals that are present in urban wastewater, such as pharmaceuticals, may survive on-site or municipal wastewater treatment and post-discharge environmental processes. These pharmaceuticals have the potential to reach surface and groundwaters, essential drinking-water sources. A joint, two-phase U.S. Geological Survey-U.S. Environmental Protection Agency study examined source and treated waters from 25 drinking-water treatment plants from across the United States. Treatment plants that had probable wastewater inputs to their source waters were selected to assess the prevalence of pharmaceuticals in such source waters, and to identify which pharmaceuticals persist through drinking-water treatment. All samples were analyzed for 24 pharmaceuticals in Phase I and for 118 in Phase II. In Phase I, 11 pharmaceuticals were detected in all source-water samples, with a maximum of nine pharmaceuticals detected in any one sample. The median number of pharmaceuticals for all 25 samples was five. Quantifiable pharmaceutical detections were fewer, with a maximum of five pharmaceuticals in any one sample and a median for all samples of two. In Phase II, 47 different pharmaceuticals were detected in all source-water samples, with a maximum of 41 pharmaceuticals detected in any one sample. The median number of pharmaceuticals for all 25 samples was eight. For 37 quantifiable pharmaceuticals in Phase II, median concentrations in source water were below 11
Wang, Xiaofeng; Lou, Xiaoming; Zhang, Nianhua; Ding, Gangqiang; Chen, Zhijian; Xu, Peiwei; Wu, Lizhi; Cai, Jianmin; Han, Jianlong; Qiu, Xueting
2015-10-01
To evaluate the distributions and health risks of phthalate esters in the main source water and corresponding drinking water of Zhejiang Province, the concentrations of 16 phthalate esters in water samples from 19 sites were measured from samples taken in the dry season and wet season. The concentration of the total phthalate ester congeners in source water ranged from 1.07 μg/L to 7.12 μg/L in the wet season, from 0.01 μg/L to 1.58 μg/L in the dry season, from 1.18 μg/L to 15.28 μg/L from drinking water in the wet season, and from 0.16 μg/L to 1.86 μg/L from drinking water in the dry season. Of the 16 phthalate esters, dimethyl phthalate, dibutyl phthalate, di-(2-ethyl-hexyl) phthalate, di-iso-butyl phthalate, bis-2-n-butoxyethyl phthalate, and dicyclohexyl phthalate were present in the samples analyzed, dominated by di-iso-butyl phthalate and di-(2-ethyl-hexyl) phthalate. The concentrations of phthalate esters in the wet season were all relatively higher than those in the dry season, and the drinking water had higher concentrations of phthalate esters than source water. The phthalate ester congeners studied pose little health risk to nearby citizens. Environ Toxicol Chem 2015;34:2205-2212. © 2015 SETAC. © 2015 SETAC.
Even minimally or moderately corrosive water can cause unacceptable and dangerous lead contamination to be released from common plumbing materials and devices into drinking water. Designing sampling programs to uncover the potential for ingestion of lead in water and to protect ...
Bain, Robert E.S.; Cronk, Ryan; Wright, Jim A.; Bartram, Jamie
2015-01-01
Background Access to safe drinking water is essential for health. Monitoring access to drinking water focuses on water supply type at the source, but there is limited evidence on whether quality differences at the source persist in water stored in the household. Objectives We assessed the extent of fecal contamination at the source and in household stored water (HSW) and explored the relationship between contamination at each sampling point and water supply type. Methods We performed a bivariate random-effects meta-analysis of 45 studies, identified through a systematic review, that reported either the proportion of samples free of fecal indicator bacteria and/or individual sample bacteria counts for source and HSW, disaggregated by supply type. Results Water quality deteriorated substantially between source and stored water. The mean percentage of contaminated samples (noncompliance) at the source was 46% (95% CI: 33, 60%), whereas mean noncompliance in HSW was 75% (95% CI: 64, 84%). Water supply type was significantly associated with noncompliance at the source (p < 0.001) and in HSW (p = 0.03). Source water (OR = 0.2; 95% CI: 0.1, 0.5) and HSW (OR = 0.3; 95% CI: 0.2, 0.8) from piped supplies had significantly lower odds of contamination compared with non-piped water, potentially due to residual chlorine. Conclusions Piped water is less likely to be contaminated compared with other water supply types at both the source and in HSW. A focus on upgrading water services to piped supplies may help improve safety, including for those drinking stored water. Citation Shields KF, Bain RE, Cronk R, Wright JA, Bartram J. 2015. Association of supply type with fecal contamination of source water and household stored drinking water in developing countries: a bivariate meta-analysis. Environ Health Perspect 123:1222–1231; http://dx.doi.org/10.1289/ehp.1409002 PMID:25956006
Flynt, Elizabeth; Dupuy, Aubry; Kennedy, Charles; Bennett, Shanda
2006-09-01
The rapid detection of contaminants in our nation's drinking water has become a top homeland security priority in this time of increased national vigilance. Real-time monitoring of drinking water for deliberate or accidental contamination is key to national security. One method that can be employed for the rapid screening of pollutants in water is solid-phase microextraction (SPME). SPME is a rapid, sensitive, solvent-free system that can be used to screen for contaminants that have been accidentally or intentionally introduced into a water system. A method using SPME has been developed and optimized for the detection of seven organophosphate pesticides in drinking water treatment facility source waters. The method is tested in source waters for drinking water treatment facilities in Mississippi and Alabama. Water is collected from a deepwater well at Stennis Space Center (SSC), MS, the drinking water source for SSC, and from the Converse Reservoir, the main drinking water supply for Mobile, AL. Also tested are samples of water collected from the Mobile Alabama Water and Sewer System drinking water treatment plant prior to chlorination. The method limits of detection for the seven organophosphates were comparable to those described in several Environmental Protection Agency standard methods. They range from 0.25 to 0.94 microg/L.
Clasen, T; Brown, J; Suntura, O; Collin, S
2004-01-01
A randomised controlled field trial was conducted to evaluate the effectiveness of ceramic drip filters to improve the microbiological quality of drinking water in a low-income community in rural Bolivia. In four rounds of water sampling over five months, 100% of the samples were free of thermotolerant (faecal) coliforms (TTC) compared to an arithmetic mean TTC count of 1517, 406, 167 and 245 among control households which continued to use their customary sources of drinking water. The filter systems produced water that consistently met WHO drinking-water standards despite levels of turbidity that presented a challenge to other low-cost POU treatment methods. The filter systems also demonstrated an ability to maintain the high quality of the treated water against subsequent re-contamination in the home.
A national-scale survey of 247 contaminants of emerging concern (CECs), including organic and inorganic chemical compounds, and microbial contaminants, was conducted in source and treated drinking water samples from 25 treatment plants across the United States. Multiple methods w...
Ambient-temperature incubation for the field detection of Escherichia coli in drinking water.
Brown, J; Stauber, C; Murphy, J L; Khan, A; Mu, T; Elliott, M; Sobsey, M D
2011-04-01
Escherichia coli is the pre-eminent microbiological indicator used to assess safety of drinking water globally. The cost and equipment requirements for processing samples by standard methods may limit the scale of water quality testing in technologically less developed countries and other resource-limited settings, however. We evaluate here the use of ambient-temperature incubation in detection of E. coli in drinking water samples as a potential cost-saving and convenience measure with applications in regions with high (>25°C) mean ambient temperatures. This study includes data from three separate water quality assessments: two in Cambodia and one in the Dominican Republic. Field samples of household drinking water were processed in duplicate by membrane filtration (Cambodia), Petrifilm™ (Cambodia) or Colilert® (Dominican Republic) on selective media at both standard incubation temperature (35–37°C) and ambient temperature, using up to three dilutions and three replicates at each dilution. Matched sample sets were well correlated with 80% of samples (n = 1037) within risk-based microbial count strata (E. coli CFU 100 ml−1 counts of <1, 1–10, 11–100, 101–1000, >1000), and a pooled coefficient of variation of 17% (95% CI 15–20%) for paired sample sets across all methods. These results suggest that ambient-temperature incubation of E. coli in at least some settings may yield sufficiently robust data for water safety monitoring where laboratory or incubator access is limited.
Shields, Katherine F; Bain, Robert E S; Cronk, Ryan; Wright, Jim A; Bartram, Jamie
2015-12-01
Access to safe drinking water is essential for health. Monitoring access to drinking water focuses on water supply type at the source, but there is limited evidence on whether quality differences at the source persist in water stored in the household. We assessed the extent of fecal contamination at the source and in household stored water (HSW) and explored the relationship between contamination at each sampling point and water supply type. We performed a bivariate random-effects meta-analysis of 45 studies, identified through a systematic review, that reported either the proportion of samples free of fecal indicator bacteria and/or individual sample bacteria counts for source and HSW, disaggregated by supply type. Water quality deteriorated substantially between source and stored water. The mean percentage of contaminated samples (noncompliance) at the source was 46% (95% CI: 33, 60%), whereas mean noncompliance in HSW was 75% (95% CI: 64, 84%). Water supply type was significantly associated with noncompliance at the source (p < 0.001) and in HSW (p = 0.03). Source water (OR = 0.2; 95% CI: 0.1, 0.5) and HSW (OR = 0.3; 95% CI: 0.2, 0.8) from piped supplies had significantly lower odds of contamination compared with non-piped water, potentially due to residual chlorine. Piped water is less likely to be contaminated compared with other water supply types at both the source and in HSW. A focus on upgrading water services to piped supplies may help improve safety, including for those drinking stored water.
Evaluation of drinking quality of groundwater through multivariate techniques in urban area.
Das, Madhumita; Kumar, A; Mohapatra, M; Muduli, S D
2010-07-01
Groundwater is a major source of drinking water in urban areas. Because of the growing threat of debasing water quality due to urbanization and development, monitoring water quality is a prerequisite to ensure its suitability for use in drinking. But analysis of a large number of properties and parameter to parameter basis evaluation of water quality is not feasible in a regular interval. Multivariate techniques could streamline the data without much loss of information to a reasonably manageable data set. In this study, using principal component analysis, 11 relevant properties of 58 water samples were grouped into three statistical factors. Discriminant analysis identified "pH influence" as the most distinguished factor and pH, Fe, and NO₃⁻ as the most discriminating variables and could be treated as water quality indicators. These were utilized to classify the sampling sites into homogeneous clusters that reflect location-wise importance of specific indicator/s for use to monitor drinking water quality in the whole study area.
Wu, Qing; Zhao, Xinhua; Yu, Qing; Li, Jun
2008-07-01
To understand the corrosion of different material water supply pipelines and bacterium in drinking water and biofilms. A pilot distribution network was built and water quality detection was made on popular pipelines of galvanized iron pipe, PPR and ABS plastic pipes by ESEM (environmental scanning electron microscopy). Bacterium in drinking water and biofilms were identified by API Bacteria Identification System 10s and 20E (Biomerieux, France), and pathogenicity of bacterium were estimated. Galvanized zinc pipes were seriously corroded; there were thin layers on inner face of PPR and ABS plastic pipes. 10 bacterium (got from water samples) were identified by API10S, in which 7 bacterium were opportunistic pathogens. 21 bacterium (got from water and biofilms samples) were identified by API20E, in which 5 bacterium were pathogens and 11 bacterium were opportunistic pathogens and 5 bacteria were not reported for their pathogenicities to human beings. The bacterial water quality of drinking water distribution networks were not good. Most bacterium in drinking water and biofilms on the inner face of pipeline of the drinking water distribution network were opportunistic pathogens, it could cause serious water supply accident, if bacteria spread in suitable conditions. In the aspect of pipe material, old pipelines should be changed by new material pipes.
Klarich, Kathryn L.; Pflug, Nicholas C.; DeWald, Eden M.; Hladik, Michelle L.; Kolpin, Dana W.; Cwiertny, David M.; LeFevre, Gergory H.
2017-01-01
Neonicotinoid insecticides are widespread in surface waters across the agriculturally-intensive Midwestern US. We report for the first time the presence of three neonicotinoids in finished drinking water and demonstrate their general persistence during conventional water treatment. Periodic tap water grab samples were collected at the University of Iowa over seven weeks in 2016 (May-July) after maize/soy planting. Clothianidin, imidacloprid, and thiamethoxam were ubiquitously detected in finished water samples and ranged from 0.24-57.3 ng/L. Samples collected along the University of Iowa treatment train indicate no apparent removal of clothianidin and imidacloprid, with modest thiamethoxam removal (~50%). In contrast, the concentrations of all neonicotinoids were substantially lower in the Iowa City treatment facility finished water using granular activated carbon (GAC) filtration. Batch experiments investigated potential losses. Thiamethoxam losses are due to base-catalyzed hydrolysis at high pH conditions during lime softening. GAC rapidly and nearly completely removed all three neonicotinoids. Clothianidin is susceptible to reaction with free chlorine and may undergo at least partial transformation during chlorination. Our work provides new insights into the persistence of neonicotinoids and their potential for transformation during water treatment and distribution, while also identifying GAC as an effective management tool to lower neonicotinoid concentrations in finished drinking water.
Augustsson, A; Uddh Söderberg, T; Jarsjö, J; Åström, M; Olofsson, B; Balfors, B; Destouni, G
2016-10-01
This study investigates metal contamination patterns and exposure to Sb, As, Ba, Cd and Pb via intake of drinking water in a region in southeastern Sweden where the production of artistic glass has resulted in a large number of contaminated sites. Despite high total concentrations of metals in soil and groundwater at the glassworks sites properties, all drinking water samples from households with private wells, located at a 30-640m distance from a glassworks site, were below drinking water criteria from the WHO for Sb, As, Ba and Cd. A few drinking water samples showed concentrations of Pb above the WHO guideline, but As was the only element found in concentrations that could result in human exposure near toxicological reference values. An efficient retention of metals in the natural soil close to the source areas, which results in a moderate impact on local drinking water, is implied. Firstly, by the lack of significant difference in metal concentrations when comparing households located upstream and downstream of the main waste deposits, and secondly, by the lack of correlation between the metal concentration in drinking water and distance to the nearest glassworks site. However, elevated Pb and Cd concentrations in drinking water around glassworks sites when compared to regional groundwater indicate that diffuse contamination of the soils found outside the glassworks properties, and not only the glass waste landfills, may have a significant impact on groundwater quality. We further demonstrate that different mobilization patterns apply to different metals. Regarding the need to use reliable data to assess drinking water contamination and human exposure, we finally show that the conservative modelling approaches that are frequently used in routine risk assessments may result in exposure estimates many times higher than those based on measured concentrations in the drinking water that is actually being used for consumption. Copyright © 2016 Elsevier B.V. All rights reserved.
Methyl tert-butyl ether (MTBE) in finished drinking water in Germany.
Kolb, Axel; Püttmann, Wilhelm
2006-03-01
In the present study 83 finished drinking water samples from 50 cities in Germany were analyzed for methyl tert-butyl ether (MTBE) content with a detection limit of 10 ng/L. The detection frequency was 46% and the concentrations ranged between 17 and 712 ng/L. Highest concentrations were found in the community water systems (CWSs) of Leuna and Spergau in Saxony-Anhalt. These CWSs are supplied with water possibly affected by MTBE contaminated groundwater. MTBE was detected at concentrations lower than 100 ng/L in drinking water supplied by CWSs using bank filtered water from Rhine and Main Rivers. The results from Leuna and Spergau show that large groundwater contaminations in the vicinity of CWSs pose the highest risk for MTBE contamination in drinking water. CWSs using bank filtered water from Rhine and Main Rivers are susceptible to low MTBE contaminations in finished drinking water. All measured MTBE concentrations were below proposed limit values for drinking water.
Stubleski, Jordan; Salihovic, Samira; Lind, P Monica; Lind, Lars; Dunder, Linda; McCleaf, Philip; Eurén, Karin; Ahrens, Lutz; Svartengren, Magnus; van Bavel, Bert; Kärrman, Anna
2017-11-01
In 2012, drinking water contaminated with per- and polyfluoroalkyl substances (PFASs), foremost perfluorooctanesulfonic acid (PFOS) and perfluorohexanesulfonic acid (PFHxS) at levels over 20ng/L and 40ng/L, respectively, was confirmed in Uppsala, Sweden. We assessed how a longitudinally sampled cohort's temporal trend in PFAS plasma concentration was influenced by their residential location and determined the plausible association or disparity between the PFASs detected in the drinking water and the trend in the study cohort. The Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) cohort provided plasma samples three times from 2001 to 2014. Individuals maintaining the same zip code throughout the study (n = 399) were divided into a reference (no known PFAS exposure), low, intermediate and high exposure area depending on the proportion of contaminated drinking water received. Eight PFASs detected in the majority (75%) of the cohort's plasma samples were evaluated for significant changes in temporal PFAS concentrations using a random effects (mixed) model. PFHxS plasma concentrations continued to significantly increase in individuals living in areas receiving the largest percentage of contaminated drinking water (p < 0.0001), while PFOS showed an overall decrease. The temporal trend of other PFAS plasma concentrations did not show an association to the quality of drinking water received. The distribution of contaminated drinking water had a direct effect on the trend in PFHxS plasma levels among the different exposure groups, resulting in increased concentrations over time, especially in the intermediate and high exposure areas. PFOS and the remaining PFASs did not show the same relationship, suggesting other sources of exposure influenced these PFAS plasma trends. Copyright © 2017 Elsevier Inc. All rights reserved.
The purpose of this SOP is to describe the collection, storage, and shipment of tap and drinking water samples for analysis by EPA method 524.2 (revision 4.0) for the NHEXAS Arizona project. This SOP provides a brief description of the sample containers, collection, preservation...
Stüken, Anke; Haverkamp, Thomas H A; Dirven, Hubert A A M; Gilfillan, Gregor D; Leithaug, Magnus; Lund, Vidar
2018-03-20
Copper-silver ionization (CSI) is an in-house water disinfection method primarily installed to eradicate Legionella bacteria from drinking water distribution systems (DWDS). Its effect on the abundance of culturable Legionella and Legionella infections has been documented in several studies. However, the effect of CSI on other bacteria in DWDS is largely unknown. To investigate these effects, we characterized drinking water and biofilm communities in a hospital using CSI, in a neighboring building without CSI, and in treated drinking water at the local water treatment plant. We used 16S rDNA amplicon sequencing and Legionella culturing. The sequencing results revealed three distinct water groups: (1) cold-water samples (no CSI), (2) warm-water samples at the research institute (no CSI), and (3) warm-water samples at the hospital (after CSI; ANOSIM, p < 0.001). Differences between the biofilm communities exposed and not exposed to CSI were less clear (ANOSIM, p = 0.022). No Legionella were cultured, but limited numbers of Legionella sequences were recovered from all 25 water samples (0.2-1.4% relative abundance). The clustering pattern indicated local selection of Legionella types (Kruskal-Wallis, p < 0.001). Furthermore, one unclassified Betaproteobacteria OTU was highly enriched in CSI-treated warm water samples at the hospital (Kruskal-Wallis, p < 0.001).
Grigorescu, A S; Hozalski, R M; Lapara, T M
2012-04-01
To characterize the HAA-degrading bacteria in drinking water systems. Haloacetic acid (HAA)-degrading bacteria were analysed in drinking water systems by cultivation and by a novel application of terminal restriction fragment length polymorphism (tRFLP). Substantial similarities were observed among the tRFLP patterns of dehI and dehII gene fragments in drinking water samples obtained from three different cities (Minneapolis, MN; St Paul, MN; Bucharest, Romania) and from one biologically active granular activated carbon filter (Hershey, PA). The dominant fragment in the tRFLP profiles of dehI genes from the drinking water samples matched the pattern from an Afipia sp. that was previously isolated from drinking water. In contrast, the dominant fragment in the tRFLP profiles of dehII genes did not match any previously characterized dehII gene fragment. PCR cloning was used to characterize this gene fragment, which had <65% nucleotide sequence identity with any previously characterized dehII gene. Afipia spp. are an appropriate model organism for studying the biodegradation of HAAs in drinking water distribution systems as encoded by dehI genes; the organism that harbours the most prominent dehII gene in drinking water has yet to be cultivated and identified. The development of a novel application of tRFLP targeting dehI and dehII genes could be broadly useful in understanding HAA-degrading bacteria in numerous environments. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.
Presence of polychlorinated biphenyls (PCBs) in bottled drinking water in Mexico City.
Salinas, Rutilio Ortiz; Bermudez, Beatriz Schettino; Tolentino, Rey Gutiérrez; Gonzalez, Gilberto Díaz; Vega y León, Salvador
2010-10-01
This paper describes the concentrations of seven polychlorinated biphenyls (PCBs) in bottled drinking water samples that were collected over 1 year from Mexico City in two sizes (1.5 and 19 L), using gas chromatography with an electron capture detector. PCBs 28 (0.018-0.042 μg/L), 52 (0.006-0.015 μg/L) and 101 (0.001-0.039 μg/L) were the most commonly found and were present in the majority of the samples. However, total concentrations of PCBs in bottled drinking water (0.035-0.039 μg/L) were below the maximum permissible level of 0.50 μg/L stated in Mexican regulations and probably do not represent a hazard to human health. PCBs were detectable in all samples and we recommend a monitoring program be established to better understand the quality of drinking bottled water over time; this may help in producing solutions for reducing the presence of organic contaminants.
Health Effects and Environmental Justice Concerns of Exposure to Uranium in Drinking Water.
Corlin, Laura; Rock, Tommy; Cordova, Jamie; Woodin, Mark; Durant, John L; Gute, David M; Ingram, Jani; Brugge, Doug
2016-12-01
We discuss the recent epidemiologic literature regarding health effects of uranium exposure in drinking water focusing on the chemical characteristics of uranium. While there is strong toxicologic evidence for renal and reproductive effects as well as DNA damage, the epidemiologic evidence for these effects in people exposed to uranium in drinking water is limited. Further, epidemiologic evidence is lacking for cardiovascular and oncogenic effects. One challenge in characterizing health effects of uranium in drinking water is the paucity of long-term cohort studies with individual level exposure assessment. Nevertheless, there are environmental justice concerns due to the substantial exposures for certain populations. For example, we present original data suggesting that individuals living in the Navajo Nation are exposed to high levels of uranium in unregulated well water used for drinking. In 10 out of 185 samples (5.4 %), concentrations of uranium exceeded standards under the Safe Drinking Water Act. Therefore, efforts to mitigate exposure to toxic elements in drinking water are warranted and should be prioritized.
Drinking water: a risk factor for high incidence of esophageal cancer in Anyang, China.
Cao, Wenbo; Han, Jianying; Yuan, Yi; Xu, Zhixiang; Yang, Shengli; He, Weixin
2016-06-01
Anyang is known to be a high-incidence area of esophageal cancer (EC) in China. Among a long list of risk factors, the quality of drinking water was evaluated. We have selected 3806 individuals and collected 550 drinking water samples correspondent with this not-matched case-control survey. There are 531 EC patients included based on Population Cancer Registry from 92 townships, of which 3275 controls with long-lived aged over 90 years and free from EC are used as controls in the same regions. Our result suggests that the quality of drinking water is a highly associated risk factor for EC. The residential ecological environment and the quality of water resource positively link with each other. The analysis of water samples also demonstrated that the concentrations of methyl ethylamine, morpholine, N-methylbenzylamine, nitrate and chloride in water from springs and rivers are higher than those in well and tap water (P = 0.001). Micronuclei formation tests show that well water and tap water in these regions have no mutagenicity.
The Savannah River Site's Groundwater Monitoring Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-01-01
The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During fourth quarter 1989 (October--December), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. An explanation of flagging criteria for the fourth quarter is presented in the Flagging Criteria sectionmore » of this document. All analytical results from fourth quarter 1989 are listed in this report, which is distributed to all waste-site custodians.« less
The Savannah River Site`s Groundwater Monitoring Program. Fourth quarter, 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-12-31
The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site`s Groundwater Monitoring Program. During fourth quarter 1989 (October--December), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. An explanation of flagging criteria for the fourth quarter is presented in the Flagging Criteria sectionmore » of this document. All analytical results from fourth quarter 1989 are listed in this report, which is distributed to all waste-site custodians.« less
Barnes, Kimberlee K.; Kolpin, Dana W.; Focazio, Michael J.; Furlong, Edward T.; Meyer, Michael T.; Zaugg, Steven D.; Haack, Sheridan K.; Barber, Larry B.; Thurman, E. Michael
2008-01-01
The five most frequently detected compounds in samples collected from ambient ground-water sites are N,N-diethyltoluamide (35 percent, insect repellant), bisphenol A (30 percent, plasticizer), tri(2-chloroethy) phosphate (30 percent, fire retardant), sulfamethoxazole (23 percent, veterinary and human antibiotic), and 4-octylphenol monoethoxylate (19 percent, detergent metabolite). The five most frequently detected organic wastewater contaminants in samples of untreated drinking water from surface-water sources are cholesterol (59 percent, natural sterol), metolachlor (53 percent, herbicide), cotinine (51 percent, nicotine metabolite), β-sitosterol (37 percent, natural plant sterol), and 1,7-dimethylxanthine (27 percent, caffeine metabolite). The five most frequently detected organic wastewater contaminants in samples of untreated drinking water from ground-water sources are tetrachloroethylene (24 percent, solvent), carbamazepine (20 percent, pharmaceutical), bisphenol A (20 percent, plasticizer), 1,7-dimethylxanthine (16 percent, caffeine metabolite), and tri(2-chloroethyl) phosphate (12 percent, fire retardant).
Evaluation of the Solar Water Disinfection Method Using an Ultraviolet Measurement Device
NASA Astrophysics Data System (ADS)
Leung, H.
2015-12-01
Drinking water security is a growing problem for the population of planet Earth. According to WHO, more than 750 million people on our planet lack access to safe drinking water, resulting in approximately 502,000 diarrhoea deaths in 2012. In order to solve this problem, the Swiss water research institute, Eawag, has developed a method of solar water disinfection, called, "SODIS" The theory of SODIS is simple to understand: a clear plastic bottle filled with water is placed under full sunlight for at least 6 hours. The ultraviolet radiation kills the pathogens in the water, making the originally contaminated water safe for drinking. In order to improve this method, Helioz, an Austrian social enterprise, has created the WADI, a UV measurement device which determines when water is safe for drinking using the SODIS method. When using the WADI, the device should be placed under the sun and surrounded with bottles of water that need to be decontaminated. There is a UV sensor on the WADI, and since the bottles of water and the WADI will have equal exposure to sunlight, the WADI will be able to measure the impact of the sunlight on the contaminated water. This experiment tests the accuracy of the WADI device regarding the time interval needed for contaminated water to be disinfected. The experiment involves using the SODIS method to purify bottles of water contaminated with controlled samples of E. coli. Samples of the water are taken at different time intervals, and the E. coli levels are determined by growing the bacteria from the water samples on agar plates. Ultimately, this helps determine when the water is safe for drinking, and are compared against the WADI's measurements to test the reliability of the device.
Abbasnia, Abbas; Alimohammadi, Mahmood; Mahvi, Amir Hossein; Nabizadeh, Ramin; Yousefi, Mahmood; Mohammadi, Ali Akbar; Pasalari, Hassan; Mirzabeigi, Majid
2018-02-01
The aims of this study were to assess and analysis of drinking water quality of Chabahar villages in Sistan and Baluchistan province by water quality index (WQI) and to investigate the water stability in subjected area. The results illustrated that the average values of LSI, RSI, PSI, LS, and AI was 0.5 (±0.34), 6.76 (±0.6), 6.50 (±0.99), 2.71 (±1.59), and 12.63 (±0.34), respectively. The calculation of WQI for groundwater samples indicated that 25% of the samples could be considered as excellent water, 50% of the samples were classified as good water category and 25% of the samples showed poor water category.
Huang, Xiao; He, Liping; Li, Jun; Yang, Fei; Tan, Hongzhuan
2015-11-12
This study aimed to describe the households' choices of drinking water sources, and evaluate the risk of human exposure to heavy metals via different drinking water sources in Chenzhou City of Hunan Province, Southern China. A cross-sectional face-to-face survey of 192 householders in MaTian and ZhuDui village was conducted. The concentrations of heavy metals in their drinking water sources were analyzed. Carcinogenic and non-carcinogenic risk assessment was performed according to the method recommended by the United States Environmental Protection Agency. In total, 52.60% of the households used hand-pressed well water, and 34.89% used barreled water for drinking. In total, 6.67% of the water samples exceeded the Chinese drinking water standards. The total health risk of five metals is 5.20 × 10(-9)~3.62 × 10(-5). The total health risk of five metals was at acceptable levels for drinking water sources. However, the total risk of using hand-pressed well water's highest value is 6961 times higher than the risk of using tap water. Household income level was significantly associated with drinking water choices. Arsenic (As) and lead (Pb) are priority controlled pollutants in this region. Using safe drinking water (tap water, barreled water and so on) can remarkably reduce the risk of ingesting heavy metals.
Lisle, J.T.; Smith, J.J.; Edwards, D.D.; McFeters, G.A.
2004-01-01
McMurdo Station, Antarctica, has discharged untreated sewage into McMurdo Sound for decades. Previous studies delineated the impacted area, which included the drinking water intake, by using total coliform and Clostridium perfringens concentrations. The estimation of risk to humans in contact with the impacted and potable waters may be greater than presumed, as these microbial indicators may not be the most appropriate for this environment. To address these concerns, concentrations of these and additional indicators (fecal coliforms, Escherichia coli, enterococci, coliphage, and enteroviruses) in the untreated wastewater, water column, and sediments of the impacted area and drinking water treatment facility and distribution system at McMurdo Station were determined. Fecal samples from Weddell seals in this area were also collected and analyzed for indicators. All drinking water samples were negative for indicators except for a single total coliform-positive sample. Total coliforms were present in water column samples at higher concentrations than other indicators. Fecal coliform and enterococcus concentrations were similar to each other and greater than those of other indicators in sediment samples closer to the discharge site. C. perfringens concentrations were higher in sediments at greater distances from the discharge site. Seal fecal samples contained concentrations of fecal coliforms, E. coli, enterococci, and C. perfringens similar to those found in untreated sewage. All samples were negative for enteroviruses. A wastewater treatment facility at McMurdo Station has started operation, and these data provide a baseline data set for monitoring the recovery of the impacted area. The contribution of seal feces to indicator concentrations in this area should be considered.
Drinking water: a major source of lead exposure in Karachi, Pakistan.
Ul-Haq, N; Arain, M A; Badar, N; Rasheed, M; Haque, Z
2011-11-01
Excess lead in drinking water is a neglected source of lead toxicity in Pakistan. A cross-sectional survey in 2007/08 was made of water samples from drinking water sources in Karachi, a large industrial city. This study aimed to compare lead levels between untreated ground water and treated surface (tap) water in 18 different districts. Of 216 ground and surface water samples collected, 86% had lead levels higher than the World Health Organization maximum acceptable concentration of l0 ppb. Mean lead concentration in ground water [146 (SD 119) ppb] was significantly higher than in surface water [77.1 (SD 54) ppb]. None of the 18 districts had a mean lead level of ground or surface water below the WHO cut-off and ground water sources in 9 districts had a severe level of contamination (>150 ppb). Urgent action is needed to eliminate sources of contamination.
Assessment of microbiological quality of drinking water from household tanks in Bermuda.
Lévesque, B; Pereg, D; Watkinson, E; Maguire, J S; Bissonnette, L; Gingras, S; Rouja, P; Bergeron, M G; Dewailly, E
2008-06-01
Bermuda residents collect rainwater from rooftops to fulfil their freshwater needs. The objective of this study was to assess the microbiological quality of drinking water in household tanks throughout Bermuda. The tanks surveyed were selected randomly from the electoral register. Governmental officers visited the selected household (n = 102) to collect water samples and administer a short questionnaire about the tank characteristics, the residents' habits in terms of water use, and general information on the water collecting system and its maintenance. At the same time, water samples were collected for analysis and total coliforms and Escherichia coli were determined by 2 methods (membrane filtration and culture on chromogenic media, Colilert kit). Results from the 2 methods were highly correlated and showed that approximately 90% of the samples analysed were contaminated with total coliforms in concentrations exceeding 10 CFU/100 mL, and approximately 66% of samples showed contamination with E. coli. Tank cleaning in the year prior to sampling seems to protect against water contamination. If rainwater collection from roofs is the most efficient mean for providing freshwater to Bermudians, it must not be considered a source of high quality drinking water because of the high levels of microbial contamination.
Studies on urban drinking water quality in a tropical zone.
Mudiam, Mohana Krishna Reddy; Pathak, S P; Gopal, K; Murthy, R C
2012-01-01
Anthropogenic activities associated with industrialization, agriculture and urbanization have led to the deterioration in water quality due to various contaminants. To assess the status of urban drinking water quality, samples were collected from the piped supplies as well as groundwater sources from different localities of residential, commercial and industrial areas of Lucknow City in a tropical zone of India during pre-monsoon for estimation of coliform and faecal coliform bacteria, organochlorine pesticides (OCPs) and heavy metals. Bacterial contamination was found to be more in the samples from commercial areas than residential and industrial areas. OCPs like α,γ-hexachlorocyclohexane and 1,1 p,p-DDE {dichloro-2, 2-bis(p-chlorophenyl) ethene)} were found to be present in most of the samples from study area. The total organochlorine pesticide levels were found to be within the European Union limit (0.5 μg/L) in most of the samples. Most of the heavy metals estimated in the samples were also found to be within the permissible limits as prescribed by World Health Organization for drinking water. Thus, these observations show that contamination of drinking water in urban areas may be mainly due to municipal, industrial and agricultural activities along with improper disposal of solid waste. This is an alarm to safety of public health and aquatic environment in tropics.
LABORATORY ANALYSIS FOR ARSENIC IN DRINKING WATER SAMPLES
The U.S. Environmental Protection Agency (USEPA) has established maximum contaminant levels ( MCLs ), for many inorganic contaminants found in drinking water, to protect the health of consumers. Some of these chemicals occur naturally in source waters while some are the result o...
Groundwater quality in central New York, 2012
Reddy, James E.
2014-01-01
Water samples were collected from 14 production wells and 15 private wells in central New York from August through December 2012 in a study conducted by the U.S. Geological Survey in cooperation with the New York State Department of Environmental Conservation. The samples were analyzed to characterize the groundwater quality in unconsolidated and bedrock aquifers in this area. Fifteen of the wells are finished in sand-and-gravel aquifers, and 14 are finished in bedrock aquifers. Six of the 29 wells were sampled in a previous central New York study, which was conducted in 2007. Water samples from the 2012 study were analyzed for 147 physiochemical properties and constituents, including major ions, nutrients, trace elements, radionuclides, pesticides, volatile organic compounds, dissolved gases (argon, carbon dioxide, methane, nitrogen, oxygen), and indicator bacteria. Results of the water-quality analyses are presented in tabular form for individual wells, and summary statistics for specific constituents are presented by aquifer type. The results are compared with Federal and New York State drinking-water standards, which typically are identical. The results indicate that the groundwater generally is of acceptable quality, although for all of the wells sampled, at least one of the following constituents was detected at a concentration that exceeded current or proposed Federal or New York State drinking-water standards: color (2 samples), pH (7 samples), sodium (9 samples), chloride (2 samples), fluoride (2 samples), sulfate (2 samples), dissolved solids (8 samples), aluminum (4 samples), arsenic (1 sample), iron (9 samples), manganese (13 samples), radon-222 (13 samples), total coliform bacteria (6 samples), and heterotrophic bacteria (2 samples). Drinking-water standards for nitrate, nitrite, antimony, barium, beryllium, cadmium, chromium, copper, lead, mercury, selenium, silver, thallium, zinc, gross alpha radioactivity, uranium, fecal coliform, and Escherichia coliwere not exceeded in any of the samples collected. None of the pesticides or volatile organic compounds analyzed exceeded drinking-water standards. Methane was detected in 11 sand-and-gravel wells and 9 bedrock wells. Five of the 14 bedrock wells had water with methane concentrations approaching 10 mg/L; water in one bedrock well had 37 mg/L of methane.
Neelam, Taneja; Malkit, Singh; Pooja, Rao; Manisha, Biswal; Shiva, Priya; Ram, Chander; Meera, Sharma
2012-12-01
Acute gastroenteritis due to Vibrio cholerae and Enterotoxigenic E. coli is a common problem faced in the hot and humid summer months in north India. The study was undertaken to evaluate drinking water supplies for fecal coliforms, V. cholerae and Enterotoxigenic E. coli in urban, semiurban and rural areas in and around Chandigarh and correlate with occurrence of acute gastroenteritis occurring from the same region. Drinking water sample were collected from various sources from April to October 2004 from a defined area. Samples were tested for fecal coliforms and E. coli count. E. coli were screened for heat labile toxin (LT) also. Stool samples from cases of acute gastroenteritis from the same region and time were collected and processed for V. cholerae, Enterotoxigenic E. coli (ETEC) and others like Salmonella, Shigella and Aeromonas spp. A total of 364 water samples were collected, (251 semi urban, 41 rural and 72 from urban areas). 116 (31.8%) samples were contaminated with fecal coliforms (58.5% rural, 33.4% semiurban and 11.1% of samples from urban areas). E. coli were grown from 58 samples. Ninety two isolates of E. coli were tested for enterotoxins of which 8 and 24 were positive for LT and ST respectively. V. cholerae were isolated from 2 samples during the outbreak investigation. Stored water samples showed a significantly higher level of contamination and most of Enterotoxigenic E. coli were isolated from stored water samples. A total of 780 acute gastroenteritis cases occurred; 445 from semiurban, 265 rural and 70 from urban areas. Out of 189 stool samples submitted, ETEC were the commonest (30%) followed by V. cholerae (19%), Shigellae (8.4%), Salmonellae (2.1%) and Aeromonas (2.6%). ST-ETEC (40/57) were commoner than LT-ETEC (17/57). In the present study, high levels of contamination of drinking water supplies (32.1%) correlated well with cases of acute gastroenteritis. Majority of cases of acute gastroenteritis occurred in the semi urban corresponding with high level of contamination (33.4%). The highest level of water contamination was seen in rural areas (58.5%) but the number of acute gastroenteritis cases were lesser (33.9%) as ponds were infrequently used for drinking purpose. Safer household water storage and treatment is recommended to prevent acute gastroenteritis, together with point-of-use water quality monitoring.
Kelly, John J.; Minalt, Nicole; Culotti, Alessandro; Pryor, Marsha; Packman, Aaron
2014-01-01
Pipes that transport drinking water through municipal drinking water distribution systems (DWDS) are challenging habitats for microorganisms. Distribution networks are dark, oligotrophic and contain disinfectants; yet microbes frequently form biofilms attached to interior surfaces of DWDS pipes. Relatively little is known about the species composition and ecology of these biofilms due to challenges associated with sample acquisition from actual DWDS. We report the analysis of biofilms from five pipe samples collected from the same region of a DWDS in Florida, USA, over an 18 month period between February 2011 and August 2012. The bacterial abundance and composition of biofilm communities within the pipes were analyzed by heterotrophic plate counts and tag pyrosequencing of 16S rRNA genes, respectively. Bacterial numbers varied significantly based on sampling date and were positively correlated with water temperature and the concentration of nitrate. However, there was no significant relationship between the concentration of disinfectant in the drinking water (monochloramine) and the abundance of bacteria within the biofilms. Pyrosequencing analysis identified a total of 677 operational taxonomic units (OTUs) (3% distance) within the biofilms but indicated that community diversity was low and varied between sampling dates. Biofilms were dominated by a few taxa, specifically Methylomonas, Acinetobacter, Mycobacterium, and Xanthomonadaceae, and the dominant taxa within the biofilms varied dramatically between sampling times. The drinking water characteristics most strongly correlated with bacterial community composition were concentrations of nitrate, ammonium, total chlorine and monochloramine, as well as alkalinity and hardness. Biofilms from the sampling date with the highest nitrate concentration were the most abundant and diverse and were dominated by Acinetobacter. PMID:24858562
Beversdorf, Lucas J; Rude, Kayla; Weirich, Chelsea A; Bartlett, Sarah L; Seaman, Mary; Kozik, Christine; Biese, Peter; Gosz, Timothy; Suha, Michael; Stempa, Christopher; Shaw, Christopher; Hedman, Curtis; Piatt, Joseph J; Miller, Todd R
2018-04-16
Freshwater cyanobacterial blooms are becoming increasingly problematic in regions that rely on surface waters for drinking water production. Microcystins (MCs) are toxic peptides produced by multiple cyanobacterial genera with a global occurrence. Cyanobacteria also produce a variety of other toxic and/or otherwise bioactive peptides (TBPs) that have gained less attention including cyanopeptolins (Cpts), anabaenopeptins (Apts), and microginins (Mgn). In this study, we compared temporal and spatial trends of four MCs (MCLR, MCRR, MCYR, MCLA), three Cpts (Cpt1020, Cpt1041, Cpt1007), two Apts (AptF, AptB), and Mgn690 in raw drinking water and at six surface water locations above these drinking water intakes in a eutrophic lake. All four MC congeners and five of six TBPs were detected in lake and raw drinking water. Across all samples, MCLR was the most frequently detected metabolite (100% of samples) followed by MCRR (97%) > Cpt1007 (74%) > MCYR (69%) > AptF (67%) > MCLA (61%) > AptB (54%) > Mgn690 (29%) and Cpt1041 (15%). Mean concentrations of MCs, Apts, and Cpts into two drinking water intakes were 3.9 ± 4.7, 0.14 ± 0.21, and 0.38 ± 0.92, respectively. Mean concentrations in surface water were significantly higher (p < 0.05) than in drinking water intakes for MCs but not for Cpts and Apts. Temporal trends in MCs, Cpts, and Apts in the two raw drinking water intakes were significantly correlated (p < 0.05) with measures of cell abundance (chlorophyll-a, Microcystis cell density), UV absorbance, and turbidity in surface water. This study expands current information about cyanobacterial TBPs that occur in lakes and that enter drinking water treatment plants and underscores the need to determine the fate of less studied cyanobacterial metabolites during drinking water treatment that may exacerbate toxicity of more well-known cyanobacterial toxins. Copyright © 2018 Elsevier Ltd. All rights reserved.
Deng, Ying; Wei, Jianrong; E, Xueli; Wang, Wuyi; et al
2008-03-01
To find the distribution level and geographical variations of disinfection by-products (DBPs) in drinking water. The samples were selected from water utilities in six cities (Daqing, Beijing, Tianjin, Zhengzhou, Changsha and Shenzhen) of China. The water source and technology of water treatment were investigated and the indices including trihalomethanes (THMs) and haloacetic acids (HAAs) in main DBPs and natural organic materials (NOM), pH, chlorine dosage and temperature were determined. In six cities the highest concentrations of TTHMs and THAAs in the distribution system were 92.8 microg/L and 40.0 microg/L, respectively. The concentration of every compound of THMs and HAAs was under the limit of standards for drinking water quality, but the concentrations of 'TTHMs at some samples were higher than the maximum acceptable level (MAC) defined by standards for drinking water quality. The geographical variations of THMs and HAAs in six cities were Zhengzhou > Tianjin > Daqing > Beijing > Shenzhen > Changsha and Changsha > Tianjin > Shenzhen > Daqing > Zhengzhou > Beijing, respectively. The levels of THMs of drinking water at Tianjin and Zhengzhou were higher than the others and the levels of HAAs of drinking water at Changsha, Tianjin and Shenzhen were higher than the others. The seasonal variations of both groups of THMs and HAAs were high in summer and low in winter. The pollution level of DBPs in drinking water from Chinese six cities were low. The concentration of DBPs related to seasonal. THMs distributed mainly to the North and HAAs distributed mainly to the South.
Genotoxicity and cytotoxicity assessment in lake drinking water produced in a treatment plant.
Buschini, Annamaria; Carboni, Pamela; Frigerio, Silvia; Furlini, Mariangela; Marabini, Laura; Monarca, Silvano; Poli, Paola; Radice, Sonia; Rossi, Carlo
2004-09-01
Chemical analyses and short-term mutagenicity bioassays have revealed the presence of genotoxic disinfection by-products in drinking water. In this study, the influence of the different steps of surface water treatment on drinking water mutagen content was evaluated. Four different samples were collected at a full-scale treatment plant: raw lake water (A), water after pre-disinfection with chlorine dioxide and coagulation (B), water after pre-disinfection, coagulation and granular activated carbon filtration (C) and tap water after post-disinfection with chlorine dioxide just before its distribution (D). Water samples, concentrated by solid phase adsorption on silica C18 columns, were tested in human leukocytes and HepG2 hepatoma cells using the comet assay and in HepG2 cells in the micronuclei test. A significant increase in DNA migration was observed in both cell types after 1 h treatment with filtered and tap water, and, to a lesser extent, chlorine dioxide pre-disinfected water. Similar findings were observed for the induction of "ghost" cells. Overloading of the carbon filter, with a consequent peak release, might explain the high genotoxicity found in water samples C and D. Cell toxicity and DNA damage increases were also detected in metabolically competent HepG2 cells treated with a lower concentration of tap water extract for a longer exposure time (24 h). None of the water extracts significantly increased micronuclei frequencies. Our monitoring approach appears to be able to detect contamination related to the different treatment stages before drinking water consumption and the results suggest the importance of improving the technologies for drinking water treatment to prevent human exposure to potential genotoxic compounds.
[Waterborne outbreak of gastroenteritis transmitted through the public water supply].
Godoy, P; Borrull, C; Palà, M; Caubet, I; Bach, P; Nuín, C; Espinet, L; Torres, J; Mirada, G
2003-01-01
The chlorination of public water supplies has led researchers to largely discard drinking water as a potential source of gastroenteritis outbreaks. The aim of this study was to investigate an outbreak of waterborne disease associated with drinking water from public supplies. A historical cohort study was carried out following notification of a gastroenteritis outbreak in Baqueira (Valle de Arán, Spain). We used systematic sampling to select 87 individuals staying at hotels and 67 staying in apartments in the target area. Information was gathered on four factors (consumption of water from the public water supply, sandwiches, water and food in the ski resorts) as well as on symptoms. We assessed residual chlorine in drinking water, analyzed samples of drinking water, and studied stool cultures from 4 patients. The risk associated with each water source and food type was assessed by means of relative risk (RR) and 95% confidence intervals (CI). The overall attack rate was 51.0% (76/149). The main symptoms were diarrhea 87.5%, abdominal pain 80.0%, nausea 50.7%, vomiting 30.3%, and fever 27.0%. The only factor associated with a statistically significant risk of disease was consumption of drinking water (RR = 11.0; 95% CI, 1.6-74.7). No residual chlorine was detected in the drinking water, which was judged acceptable. A problem associated with the location of the chlorinator was observed and corrected. We also recommended an increase in chlorine levels, which was followed by a reduction in the number of cases. The results of stool cultures of the four patients were negative for enterobacteria. This study highlights the potential importance of waterborne outbreaks of gastroenteritis transmitted through drinking water considered acceptable and suggests the need to improve microbiological research into these outbreaks (viruses and protozoa detection).
[Total drinking water intake and sources of children and adolescent in one district of Shenzhen].
Du, Songming; Hu, Xiaoqi; Zhang, Qian; Wang, Xiaojun; Liu, Ailing; Pan, Hui; He, Shuang; Ma, Guansheng
2013-05-01
To describe total drinking water intake among primary and middle school students in one district of Shenzhen and to provide scientific evidence for adequate intakes of drinking water for different people in China. A total of 816 students from three primary and middle schools of Shenzhen was selected using three-stage random sampling method. The information on amounts and types of daily drinking water was recorded by subjects for seven consecutive days using a 24 hours measurement. The amounts and types of daily drinking water among different ages and between boys and girls were analyzed. The average total drinking water of subjects was (1225+/-557) ml/d, and the consumption of total drinking water in boys ((1303+/-639) ml/d) was significantly higher than that in girls ((1134+/-478) ml/d, P<0.01). The consumption of total drinking water of secondary school students ((1389+/-541) ml/d) and high school student ((1318+/-641) ml/d) was no statistically difference, but was higher than primary school students ((1097+/-525) ml/d, P<0.01). The average plain water and beverages of the subjects was (818+/-541) ml/d and (407+/-294) ml/d respectively. Major of fluid intake comes from drinking water in children and adolescenct of Shenzhen. The knowledge of drinking water of primary school students is need to comprehensive enough.
Shi, Peng; Ma, Rong; Zhou, Qing; Li, Aimin; Wu, Bing; Miao, Yu; Chen, Xun; Zhang, Xuxiang
2015-03-21
This study aimed to compare the toxicity reduction performance of conventional drinking water treatment (CT) and a treatment (NT) with quaternized magnetic microspheres (NDMP) based on chemical analyses. Fluorescence excitation-emission-matrix combined with parallel factor analysis identified four components in source water of different rivers or lake, and the abundance of each component differed greatly among the different samples. Compared with the CT, the NT evidently reduced the concentrations of dissolved organic carbon, adsorbable organic halogens (AOX), bromide and disinfection by-products. Toxicological evaluation indicated that the NT completely eliminated the cytotoxicity, and greatly reduced the genotoxicity and oxidative stress of all raw water. In contrast, the CT increased the cytotoxicity of Taihu Lake and the Zhongshan River water, genotoxicity of Taihu Lake and the Mangshe River water, as well as the levels of superoxide dismutase and malondialdehyde of the Mangshe River water. Correlation analysis indicated that the AOX of the treated samples was significantly correlated with the genotoxicity and glutathione concentration, but exhibited no correlation with either of them for all the samples. As it can effectively reduce pollutant levels and the toxicities of drinking water, NDMP might be widely used for drinking water treatment in future. Copyright © 2014 Elsevier B.V. All rights reserved.
Colin, Adeline; Bach, Cristina; Rosin, Christophe; Munoz, Jean-François; Dauchy, Xavier
2014-01-01
The main objective of this study was to evaluate potential exposure of a significant part of the French population to alkylphenol and bisphenol contaminants due to water consumption. The occurrence of 11 alkylphenols and bisphenols was studied in raw water and treated water samples from public water systems. One sampling campaign was performed from October 2011 to May 2012. Sampling was equally distributed across 100 French departments. In total, 291 raw water samples and 291 treated water samples were analyzed in this study, representing approximately 20 % of the national water supply flow. The occurrence of the target compounds was also determined for 29 brands of bottled water (polyethylene terephthalate [PET] bottles, polycarbonate [PC] reusable containers, and aluminum cans [ACs]) and in 5 drinking water networks where epoxy resin has been used as coating for pipes. In raw water samples, the highest individual concentration was 1,430 ng/L for bisphenol A (BPA). Of the investigated compounds, nonylphenol (NP), nonylphenol 1-carboxylic acid (NP1EC), BPA, and nonylphenol 2-ethoxylate (NP2EO) predominated (detected in 18.6, 18.6, 14.4, and 10 % of samples, respectively). Geographical variability was observed with departments crossed by major rivers or with high population densities being more affected by contamination. In treated water samples, the highest individual concentration was 505 ng/L for NP. Compared with raw water, target compounds were found in lower amounts in treated water. This difference suggests a relative effectiveness of certain water treatments for the elimination of these pollutants; however, there is also their possible transformation by reaction with chlorine. No target compounds were found in drinking water pipes coated with epoxy resin, in PET bottled water, or in water from ACs. However, levels of BPA in PC bottled water ranged from 70 to 4,210 ng/L with greater level observed in newly manufactured bottles. 4-Tert-butylphenol was only detected in recently manufactured bottles. The values observed for the monitored compounds indicate that drinking water is most likely not the main source of exposure.
Assessment of Drinking Water Quality from Bottled Water Coolers
FARHADKHANI, Marzieh; NIKAEEN, Mahnaz; AKBARI ADERGANI, Behrouz; HATAMZADEH, Maryam; NABAVI, Bibi Fatemeh; HASSANZADEH, Akbar
2014-01-01
Abstract Background Drinking water quality can be deteriorated by microbial and toxic chemicals during transport, storage and handling before using by the consumer. This study was conducted to evaluate the microbial and physicochemical quality of drinking water from bottled water coolers. Methods A total of 64 water samples, over a 5-month period in 2012-2013, were collected from free standing bottled water coolers and water taps in Isfahan. Water samples were analyzed for heterotrophic plate count (HPC), temperature, pH, residual chlorine, turbidity, electrical conductivity (EC) and total organic carbon (TOC). Identification of predominant bacteria was also performed by sequence analysis of 16S rDNA. Results The mean HPC of water coolers was determined at 38864 CFU/ml which exceeded the acceptable level for drinking water in 62% of analyzed samples. The HPC from the water coolers was also found to be significantly (P < 0.05) higher than that of the tap waters. The statistical analysis showed no significant difference between the values of pH, EC, turbidity and TOC in water coolers and tap waters. According to sequence analysis eleven species of bacteria were identified. Conclusion A high HPC is indicative of microbial water quality deterioration in water coolers. The presence of some opportunistic pathogens in water coolers, furthermore, is a concern from a public health point of view. The results highlight the importance of a periodic disinfection procedure and monitoring system for water coolers in order to keep the level of microbial contamination under control. PMID:26060769
Alqahtani, Jobran M.; Asaad, Ahmed M.; Ahmed, Essam M.; Qureshi, Mohamed A.
2015-01-01
Aim of the Study: The aim was to investigate the bacteriological quality of drinking water, and explore the factors involved in the knowledge of the public about the quality of drinking water in Najran region, Saudi Arabia. Study Design: A cross-sectional descriptive study. Materials and Methods: A total of 160 water samples were collected. Total coliforms, fecal coliform, and fecal streptococci were counted using Most Probable Number method. The bacterial genes lacZ and uidA specific to total coliforms and Escherichia coli, respectively, were detected using multiplex polymerase chain reaction. An interview was conducted with 1200 residents using a questionnaire. Results: Total coliforms were detected in 8 (20%) of 40 samples from wells, 13 (32.5%) of 40 samples from tankers, and 55 (68.8%) of 80 samples from roof tanks. Twenty (25%) and 8 (10%) samples from roof tanks were positive for E. coli and Streptococcus faecalis, respectively. Of the 1200 residents participating in the study, 10%, 45.5%, and 44.5% claimed that they depended on municipal water, bottled water, and well water, respectively. The majority (95.5%) reported the use of roof water tanks as a source of water supply in their homes. Most people (80%) believed that drinking water transmitted diseases. However, only 25% of them participated in educational programs on the effect of polluted water on health. Conclusions: Our results could help health authorities consider a proper regular monitoring program and a sustainable continuous assessment of the quality of well water. In addition, this study highlights the importance of the awareness and educational programs for residents on the effect of polluted water on public health. PMID:25657607
Stackelberg, Paul E; Furlong, Edward T; Meyer, Michael T; Zaugg, Steven D; Henderson, Alden K; Reissman, Dori B
2004-08-15
In a study conducted by the US Geological Survey and the Centers for Disease Control and Prevention, 24 water samples were collected at selected locations within a drinking-water-treatment (DWT) facility and from the two streams that serve the facility to evaluate the potential for wastewater-related organic contaminants to survive a conventional treatment process and persist in potable-water supplies. Stream-water samples as well as samples of raw, settled, filtered, and finished water were collected during low-flow conditions, when the discharge of effluent from upstream municipal sewage-treatment plants accounted for 37-67% of flow in stream 1 and 10-20% of flow in stream 2. Each sample was analyzed for 106 organic wastewater-related contaminants (OWCs) that represent a diverse group of extensively used chemicals. Forty OWCs were detected in one or more samples of stream water or raw-water supplies in the treatment plant; 34 were detected in more than 10% of these samples. Several of these compounds also were frequently detected in samples of finished water; these compounds include selected prescription and non-prescription drugs and their metabolites, fragrance compounds, flame retardants and plasticizers, cosmetic compounds, and a solvent. The detection of these compounds suggests that they resist removal through conventional water-treatment processes. Other compounds that also were frequently detected in samples of stream water and raw-water supplies were not detected in samples of finished water; these include selected prescription and non-prescription drugs and their metabolites, disinfectants, detergent metabolites, and plant and animal steroids. The non-detection of these compounds indicates that their concentrations are reduced to levels less than analytical detection limits or that they are transformed to degradates through conventional DWT processes. Concentrations of OWCs detected in finished water generally were low and did not exceed Federal drinking-water standards or lifetime health advisories, although such standards or advisories have not been established for most of these compounds. Also, at least 11 and as many as 17 OWCs were detected in samples of finished water. Drinking-water criteria currently are based on the toxicity of individual compounds and not combinations of compounds. Little is known about potential human-health effects associated with chronic exposure to trace levels of multiple OWCs through routes such as drinking water. The occurrence in drinking-water supplies of many of the OWCs analyzed for during this study is unregulated and most of these compounds have not been routinely monitored for in the Nation's source- or potable-water supplies. This study provides the first documentation that many of these compounds can survive conventional water-treatment processes and occur in potable-water supplies. It thereby provides information that can be used in setting research and regulatory priorities and in designing future monitoring programs. The results of this study also indicate that improvements in water-treatment processes may benefit from consideration of the response of OWCs and other trace organic contaminants to specific physical and chemical treatments.
Stackelberg, P.E.; Furlong, E.T.; Meyer, M.T.; Zaugg, S.D.; Henderson, A.K.; Reissman, D.B.
2004-01-01
In a study conducted by the US Geological Survey and the Centers for Disease Control and Prevention, 24 water samples were collected at selected locations within a drinking-water-treatment (DWT) facility and from the two streams that serve the facility to evaluate the potential for wastewater-related organic contaminants to survive a conventional treatment process and persist in potable-water supplies. Stream-water samples as well as samples of raw, settled, filtered, and finished water were collected during low-flow conditions, when the discharge of effluent from upstream municipal sewage-treatment plants accounted for 37-67% of flow in stream 1 and 10-20% of flow in stream 2. Each sample was analyzed for 106 organic wastewater-related contaminants (OWCs) that represent a diverse group of extensively used chemicals. Forty OWCs were detected in one or more samples of stream water or raw-water supplies in the treatment plant; 34 were detected in more than 10% of these samples. Several of these compounds also were frequently detected in samples of finished water; these compounds include selected prescription and non-prescription drugs and their metabolites, fragrance compounds, flame retardants and plasticizers, cosmetic compounds, and a solvent. The detection of these compounds suggests that they resist removal through conventional water-treatment processes. Other compounds that also were frequently detected in samples of stream water and raw-water supplies were not detected in samples of finished water; these include selected prescription and non-prescription drugs and their metabolites, disinfectants, detergent metabolites, and plant and animal steroids. The non-detection of these compounds indicates that their concentrations are reduced to levels less than analytical detection limits or that they are transformed to degradates through conventional DWT processes. Concentrations of OWCs detected in finished water generally were low and did not exceed Federal drinking-water standards or lifetime health advisories, although such standards or advisories have not been established for most of these compounds. Also, at least 11 and as many as 17 OWCs were detected in samples of finished water. Drinking-water criteria currently are based on the toxicity of individual compounds and not combinations of compounds. Little is known about potential human-health effects associated with chronic exposure to trace levels of multiple OWCs through routes such as drinking water. The occurrence in drinking-water supplies of many of the OWCs analyzed for during this study is unregulated and most of these compounds have not been routinely monitored for in the Nation's source- or potable-water supplies. This study provides the first documentation that many of these compounds can survive conventional water-treatment processes and occur in potable-water supplies. It thereby provides information that can be used in setting research and regulatory priorities and in designing future monitoring programs. The results of this study also indicate that improvements in water-treatment processes may benefit from consideration of the response of OWCs and other trace organic contaminants to specific physical and chemical treatments. ?? 2004 Elsevier B.V. All rights reserved.
King, Dawn N.; Donohue, Maura J.; Vesper, Stephen J.; Villegas, Eric N.; Ware, Michael W.; Vogel, Megan E.; Furlong, Edward; Kolpin, Dana W.; Glassmeyer, Susan T.; Pfaller, Stacy
2016-01-01
An occurrence survey was conducted on selected pathogens in source and treated drinking water collected from 25 drinking water treatment plants (DWTPs) in the United States. Water samples were analyzed for the protozoa Giardia and Cryptosporidium (EPA Method 1623); the fungi Aspergillus fumigatus, Aspergillus niger and Aspergillus terreus (quantitative PCR [qPCR]); and the bacteria Legionella pneumophila (qPCR), Mycobacterium avium, M. avium subspecies paratuberculosis, and Mycobacterium intracellulare (qPCR and culture). Cryptosporidium and Giardia were detected in 25% and in 46% of the source water samples, respectively (treated waters were not tested). Aspergillus fumigatus was the most commonly detected fungus in source waters (48%) but none of the three fungi were detected in treated water. Legionella pneumophila was detected in 25% of the source water samples but in only 4% of treated water samples. M. avium and M. intracellulare were both detected in 25% of source water, while all three mycobacteria were detected in 36% of treated water samples. Five species of mycobacteria, Mycobacterium mucogenicum, Mycobacterium phocaicum, Mycobacterium triplex, Mycobacterium fortuitum, and Mycobacterium lentiflavum were cultured from treated water samples. Although these DWTPs represent a fraction of those in the U.S., the results suggest that many of these pathogens are widespread in source waters but that treatment is generally effective in reducing them to below detection limits. The one exception is the mycobacteria, which were commonly detected in treated water, even when not detected in source waters.
[Nitrate concentrations in tap water in Spain].
Vitoria, Isidro; Maraver, Francisco; Sánchez-Valverde, Félix; Armijo, Francisco
2015-01-01
To determine nitrate concentrations in drinking water in a sample of Spanish cities. We used ion chromatography to analyze the nitrate concentrations of public drinking water in 108 Spanish municipalities with more than 50,000 inhabitants (supplying 21,290,707 potential individuals). The samples were collected between January and April 2012. The total number of samples tested was 324. The median nitrate concentration was 3.47 mg/L (range: 0.38-66.76; interquartile range: 4.51). The water from 94% of the municipalities contained less than 15 mg/L. The concentration was higher than 25mg/L in only 3 municipalities and was greater than 50mg/L in one. Nitrate levels in most public drinking water supplies in municipalities inhabited by almost half of the Spanish population are below 15 mg/L. Copyright © 2014 SESPAS. Published by Elsevier Espana. All rights reserved.
Zhang, Yuanyuan; Ng, Ding-Quan; Lin, Yi-Pin
2012-07-01
Lead and its compounds are toxic and can harm human health, especially the intelligence development in children. Accurate measurement of total lead present in drinking water is crucial in determining the extent of lead contamination and human exposure due to drinking water consumption. The USEPA method for total lead measurement (no. 200.8) is often used to analyze lead levels in drinking water. However, in the presence of high concentration of the tetravalent lead corrosion product PbO(2), the USEPA method was not able to fully recover particulate lead due to incomplete dissolution of PbO(2) particles during strong acid digestion. In this study, a new procedure that integrates membrane separation, iodometric PbO(2) measurement, strong acid digestion and ICP-MS measurement was proposed and evaluated for accurate total lead measurement and quantification of different lead fractions including soluble Pb(2+), particulate Pb(II) carbonate and PbO(2) in drinking water samples. The proposed procedure was evaluated using drinking water reconstituted with spiked Pb(2+), spiked particulate Pb(II) carbonate and in situ formed or spiked PbO(2). Recovery tests showed that the proposed procedure and the USEPA method can achieve 93-112% and 86-103% recoveries respectively for samples containing low PbO(2) concentrations (0.018-0.076 mg Pb per L). For samples containing higher concentrations of PbO(2) (0.089-1.316 mg Pb per L), the USEPA method failed to meet the recovery requirement for total lead (85-115%) while the proposed method can achieve satisfactory recoveries (91-111%) and differentiate the soluble Pb(2+), particulate Pb(II) carbonate and PbO(2).
Pogorzelec, Marta; Piekarska, Katarzyna
2018-08-01
The primary goal of the presented study was the investigation of occurrence and concentration of sixteen selected polycyclic aromatic hydrocarbons in samples from various stages of water treatment and verification of the applicability of semi-permeable membrane devices in the monitoring of drinking water. Another objective was to verify if weather seasons affect the concentration and complexity of PAHs. For these purposes, semipermeable membrane devices were installed in a surface water treatment plant located in Lower Silesia (Poland). Samples were collected monthly over a period of one year. To determine the effect of water treatment on PAH concentrations, four sampling sites were selected: raw water input, a stream of water in the pipe just before ozonation, treated water output and water after passing through the distribution system. After each month of sampling, SPMDs were exchanged for fresh ones and prepared for instrumental analysis. Concentrations of polycyclic aromatic hydrocarbons were determined by high-performance liquid chromatography (HPLC). The presented study indicates that semipermeable membrane devices can be an effective tool for the analysis of drinking water, in which organic micropollutants occur at very low concentrations. Copyright © 2018 Elsevier B.V. All rights reserved.
Drinking water system treatment and contamination in Shatila Refugee Camp in Beirut, Lebanon.
Khoury, S; Graczyk, T; Burnham, G; Jurdi, M; Goldman, L
2016-11-02
Drinking water at Shatila Palestinian Refugee Camp in Beirut, Lebanon is of poor quality and unpredictably intermittent quantity. We aimed to characterize drinking water sources and contamination at Shatila and determine how drinking water can be managed to reduce community health burdens. We interviewed the Popular Committee, well owners, water vendors, water shopkeepers and preschool administrators about drinking water sources, treatment methods and the population served. Water samples from the sources and intermediaries were analysed for thermotolerant faecal coliforms (FCs), Giardia lamblia, Cryptosporidium parvum and microsporidia, using immunofluorescent antibody detection for G. lamblia and C. parvum, and chromotrope-2 stain for microsporidia. All drinking water sources were contaminated with FCs and parasites. FC counts (cfu/mL) were as follows: wells (35-300), water vendors (2-178), shops (30-300) and preschools (230-300). Responsible factors identified included: unskilled operators; improper maintenance of wells and equipment; lack of proper water storage and handling; and misperception of water quality. These factors must be addressed to improve water quality at Shatila and other refugee camps.
Fytianos, Konstantinos; Christophoridis, Christophoros
2004-01-01
The general profile of the pollution of drinking water, originating from groundwater, by nitrates, chloride and arsenic, in the Prefecture of Thessaloniki, was studied in this project. Samples (tap water) were collected from 52 areas-villages of the Prefecture, during a period of 6 months. The analytical results were related to certain points on the map of the area, thus producing coloured representations of the Prefecture, according to the concentration of the corresponding pollutant. The statistical analysis of the data led to some conclusions concerning the causes of pollution and the relation of the concentrations to certain physico-chemical parameters. Nitrate concentration of samples collected from two specific regions were especially high, sometimes above the highest permitted level. A limited number of samples (13.5%) contained arsenic concentrations above the imminent EC drinking water limit (10 ppb). The majority of the tap water samples, collected from areas along the seashore contained increased concentrations of chloride ions, which is a clear indication of seawater intrusion into the related aquifers.
Holding effects on coliform enumeration in drinking water samples.
McDaniels, A E; Bordner, R H; Gartside, P S; Haines, J R; Brenner, K P; Rankin, C C
1985-01-01
Standard procedures for analyzing drinking water stress the need to adhere to the time and temperature conditions recommended for holding samples collected for microbiological testing. The National Drinking Water Laboratory Certification Program requires compliance with these holding limits, but some investigators have reported difficulties in meeting them. Research was conducted by standard analytical methods to determine if changes occurred when samples were held at 5 and 22 degrees C and analyzed at 0, 24, 30, and 48 h. Samples were analyzed for coliforms by the membrane filter and fermentation-tube procedures and for heterotrophs by the pour plate method. A total of 17 treated water samples were collected from a large municipal distribution system from August to December 1981, and 12 samples were collected from January to May 1983. The samples were dosed with coliforms previously isolated from the water system, Enterobacter cloacae in 1981 and Citrobacter freundii in 1983. The coliform counts declined linearly over time, and the rates of decline were significant at both 5 and 22 degrees C. Within 24 h at 22 degrees C, levels of E. cloacae and C. freundii decreased by 47 and 26%, respectively, and at 5 degrees C, E. cloacae numbers declined by 23%. Results from these representative laboratory-grown coliforms reinforced those previously obtained with naturally occurring coliforms under the same experimental conditions. Significantly, some samples with initially unacceptable counts (greater than 4/100 ml) met the safe drinking water limits after storage at 24 h at 5 and 22 degrees C and would have been classified as satisfactory.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:4083877
Irwin, G.A.; Hull, Robert W.
1979-01-01
Virtually all treated public water supplies sampled in Florida meet the National Interim Primary and Proposed Secondary Drinking Water Regulations. These findings are based on a water-quality reconnaissance of 129 treated public supplies throughout the State during the period November 1977 through February 1978. While primary drinking water regulation exceedences were infrequent, lead, selenium, and gross alpha radioactivity in a very few water supplies were above established maximum contaminant levels. Additionally, the secondary drinking water regulation parameters--dissolved solids , chloride, sulfate, iron, color, and pH--were occasionally detected in excess of the proposed Federal regulations. The secondary regulations, however, pertain mainly to the aesthetic quality of drinking water and not directly to public health aspects. (Woodard-USGS)
Spatial and temporal analogies in microbial communities in natural drinking water biofilms.
Douterelo, I; Jackson, M; Solomon, C; Boxall, J
2017-03-01
Biofilms are ubiquitous throughout drinking water distribution systems (DWDS), playing central roles in system performance and delivery of safe clean drinking water. However, little is known about how the interaction of abiotic and biotic factors influence the microbial communities of these biofilms in real systems. Results are presented here from a one-year study using in situ sampling devices installed in two operational systems supplied with different source waters. Independently of the characteristics of the incoming water and marked differences in hydraulic conditions between sites and over time, a core bacterial community was observed in all samples suggesting that internal factors (autogenic) are central in shaping biofilm formation and composition. From this it is apparent that future research and management strategies need to consider the specific microorganisms found to be able to colonise pipe surfaces and form biofilms, such that it might be possible to exclude these and hence protect the supply of safe clean drinking water. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Ab Razak, N H; Praveena, S M; Aris, A Z; Hashim, Z
2016-02-01
Information about the quality of drinking water, together with analysis of knowledge, attitude and practice (KAP) analysis and health risk assessment (HRA) remain limited. The aims of this study were: (1) to ascertain the level of KAP regarding heavy metal contamination of drinking water in Pasir Mas; (2) to determine the concentration of heavy metals (Al, Cr, Cu, Fe, Ni, Pb, Zn and Cd) in drinking water in Pasir Mas; and (3) to estimate the health risks (non-carcinogenic and carcinogenic) caused by heavy metal exposure through drinking water using hazard quotient and lifetime cancer risk. Information on KAP was collected using a standardized questionnaire. Heavy metal analysis of drinking water samples was performed using graphite furnace atomic absorption spectrophotometry. The population of Pasir Mas has good knowledge (80%), a less positive attitude (93%) and good practice (81%) towards heavy metal contamination of drinking water. The concentrations of heavy metals analysed in this study were found to be below the permissible limits for drinking water set by the Malaysian Ministry of Health and the World Health Organization. The HRA showed no potential non-carcinogenic and carcinogenic risks from the intake of heavy metal through drinking water. By investigating the quality of drinking water, KAP and HRA, the results of this study will provide authorities with the knowledge and resources to improve the management of drinking water quality in the future. Copyright © 2015 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.
A collaborative project commenced in August 2013 with the aim of demonstrating a range of techniques that can be used in tackling the problems of lead in drinking water. The main project was completed in March 2014, with supplementary sampling exercises in mid-2014. It involved t...
The bacterial composition of chlorinated drinking water was analyzed using 16S rRNA gene clone libraries derived from DNA extracts of 12 samples and compared to clone libraries previously generated using RNA extracts from the same samples. Phylogenetic analysis of 761 DNA-based ...
Luo, Kunli; Liu, Yonglin; Li, Huijie
2012-02-01
For study, the fluoride (F) content and distribution pattern in groundwater of eastern Yunnan and western Guizhou fluorosis area in southwestern China, the F content of 93 water samples [groundwater (fissure water, cool spring, and hot springs), rivers water] and 60 rock samples were measured. The result shows the F content of the fissure water and cold spring water is 0.027-0.47 mg/L, and river water is 0.048-0.224 mg/L. The F content of hot spring water is 1.02-6.907 mg/L. The drinking water supplied for local resident is mainly from fissure water, cool spring, and river water. And the F content in all of them is much lower than the Chinese National Standard (1.0 mg/L), which is the safe intake of F in drinking water. The infected people in eastern Yunnan and western Guizhou fluorosis area have very little F intake from the drinking water. The hot spring water in fluorosis area of eastern Yunnan and western Guizhou, southwest China has high F content, which is not suitable for drinking. © Springer Science+Business Media B.V. 2011
The purpose of this SOP is to describe the collection, storage, and shipment of tap and drinking water samples for analysis by EPA method 524.2 (revision 4.0). This SOP provides a brief description of the sample containers, collection, preservation, storage, shipping, and custod...
The purpose of this SOP is to describe how to collect, store, and ship tap and drinking water samples for analysis by EPA Method 200.8 (revision 4.4) for the NHEXAS Arizona project. This SOP provides a brief description of the sample containers, collection, preservation, storage...
AFM Structural Characterization of Drinking Water Biofilm ...
Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air and aqueous solution. Operating parameters were optimized to improve imaging of structural details for a mature biofilm in liquid. By using a soft cantilever (0.03 N/m) and slow scan rate (0.5 Hz), biofilm and individual bacterial cell’s structural topography were resolved and continuously imaged in liquid without loss of spatial resolution or sample damage. The developed methodology will allow future in situ investigations to temporally monitor mixed culture drinking water biofilm structural changes during disinfection treatments. Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air and aqueous solution. Operating parameters were optimized to improve imaging of structural details for a mature biofilm in liquid. By using a soft cantilever (0.03 N/m) and slow scan rate (0.5 Hz), biofilm and individual bacterial cell’s structural topography were resolved and continuously imaged in liquid without loss of spatial resolution or sample damage. The developed methodo
Chatziefthimiou, Aspassia D; Metcalf, James S; Glover, W Broc; Banack, Sandra A; Dargham, Soha R; Richer, Renee A
2016-05-01
Desert environments and drylands experience a drastic scarcity of water resources. To alleviate dependence on freshwater for drinking water needs, countries have invested in infrastructure development of desalination plants. Collectively, the countries of the Arabian Gulf produce 45% of the world's desalinated water, which is stored in dams, mega-reservoirs and secondary house water tanks to secure drinking water beyond daily needs. Improper storage practices of drinking water in impoundments concomitant with increased temperatures and light penetration may promote the growth of cyanobacteria and accumulation of cyanotoxins. To shed light on this previously unexplored research area in desert environments, we examined drinking and irrigation water of urban and rural environments to determine whether cyanobacteria and cyanotoxins are present, and what are the storage and transportation practices as well as the environmental parameters that best predict their presence. Cyanobacteria were present in 80% of the urban and 33% of the rural water impoundments. Neurotoxins BMAA, DAB and anatoxin-a(S) were not detected in any of the water samples, although they have been found to accumulate in the desert soils, which suggests a bioaccumulation potential if they are leached into the aquifer. A toxic BMAA isomer, AEG, was found in 91.7% of rural but none of the urban water samples and correlated with water-truck transportation, light exposure and chloride ions. The hepatotoxic cyanotoxin microcystin-LR was present in the majority of all sampled impoundments, surpassing the WHO provisional guideline of 1 μg/l in 30% of the urban water tanks. Finally, we discuss possible management strategies to improve storage and transportation practices in order to minimize exposure to cyanobacteria and cyanotoxins, and actions to promote sustainable use of limited water resources. Copyright © 2016 Elsevier Ltd. All rights reserved.
Küsters, Markus; Gerhartz, Michael
2010-04-01
For the determination of glyphosate, aminomethylphosphonic acid and glufosinate in drinking water, different procedures of enrichment and cleanup were examined using anion exchange or SPE. In many cases interactions of, e.g. alkaline earth metal ions especially calcium could be observed during enrichment and cleanup resulting in loss of analytes. For that reason, a novel cleanup and enrichment procedure for the determination of these phosphonic acid herbicides has been developed in drinking water using cation-exchange resin. In summary, the cleanup procedure with cation-exchange resin developed in this study avoids interactions as described above and is applicable to calcium-rich drinking water samples. After derivatization with 9-fluorenylmethylchloroformate followed by LC with fluorescence detection, LOD of 12, 14 and 12 ng/L and mean recoveries from real-world drinking water samples of 98+/-9, 100+/-16 and 101+/-11% were obtained for glyphosate, aminomethylphosphonic acid and glufosinate, respectively. The low LODs and the high precision permit the analysis of these phosphonic acid herbicides according to the guidelines of the European Commission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Ajay, E-mail: ajay782@rediffmail.com; Sharma, Sumit, E-mail: sumitshrm210@gmail.com
The study of radon concentration was measured in some areas of Pathankot district, Punjab, India, from the health hazard point of view due to radon. The exposure to radon through drinking water is largely by inhalation and ingestion. RAD 7, an electronic solid state silicon detector (Durridgeco., USA) was used to measure the radon concentration in drinking water samples of the study area. The recorded values of radon concentration in these water samples are below the recommended limit by UNSCEAR and European commission. The recommended limit of radon concentration in water samples is 4 to 40 Bq/l given by UNSCEARmore » [1] and European commission has recommended the safe limit for radon concentration in water sample is 100 Bq/l [2].« less
NASA Astrophysics Data System (ADS)
Kumar, Ajay; Sharma, Sumit
2015-08-01
The study of radon concentration was measured in some areas of Pathankot district, Punjab, India, from the health hazard point of view due to radon. The exposure to radon through drinking water is largely by inhalation and ingestion. RAD 7, an electronic solid state silicon detector (Durridgeco., USA) was used to measure the radon concentration in drinking water samples of the study area. The recorded values of radon concentration in these water samples are below the recommended limit by UNSCEAR and European commission. The recommended limit of radon concentration in water samples is 4 to 40 Bq/l given by UNSCEAR [1] and European commission has recommended the safe limit for radon concentration in water sample is 100 Bq/l [2].
Schmidt, Heather C. Ross; Mehl, Heidi E.; Pope, Larry M.
2007-01-01
This report describes surface- and ground-water-quality data collected on the Prairie Band Potawatomi Reservation in northeastern Kansas from November 2003 through August 2006 (hereinafter referred to as the 'current study period'). Data from this study period are compared to results from June 1996 through August 2003, which are published in previous reports as part of a multiyear cooperative study with the Prairie Band Potawatomi Nation. Surface and ground water are valuable resources to the Prairie Band Potawatomi Nation as tribal members currently (2007) use area streams to fulfill subsistence hunting and fishing needs and because ground water potentially could support expanding commercial enterprise and development. Surface-water-quality samples collected from November 2003 through August 2006 were analyzed for physical properties, dissolved solids, major ions, nutrients, trace elements, pesticides, fecal-indicator bacteria, suspended-sediment concentration, and total suspended solids. Ground-water samples were analyzed for physical properties, dissolved solids, major ions, nutrients, trace elements, pesticides, and fecal-indicator bacteria. Chemical oxygen demand and volatile organic compounds were analyzed in all three samples from one monitoring well located near a construction and demolition landfill on the reservation, and in one sample from another well in the Soldier Creek drainage basin. Previous reports published as a part of this ongoing study identified total phosphorus, triazine herbicides, and fecal coliform bacteria as exceeding their respective water-quality criteria in surface water on the reservation. Previous ground-water assessments identified occasional sample concentrations of dissolved solids, sodium, sulfate, boron, iron, and manganese as exceeding their respective water-quality criteria. Fifty-six percent of the 55 surface-water samples collected during the current study period and analyzed for total phosphorus exceeded the goal of 0.1 mg/L (milligram per liter) established by the U.S. Environmental Protection Agency (USEPA) to limit cultural eutrophication in flowing water. Concentrations of dissolved solids frequently exceeded the USEPA Secondary Drinking-Water Regulation (SDWR) of 500 mg/L in samples from two sites. Concentrations of sodium exceeded the Drinking-Water Advisory of 20 mg/L set by USEPA in almost 50 percent of the surface-water samples. All four samples analyzed for atrazine concentrations showed some concentration of the pesticide, but none exceeded the Maximum Contaminant Level (MCL) established for drinking water by USEPA of 3.0 ?g/L (micrograms per liter) as an annual average. A triazine herbicide screen was used on 55 surface-water samples, and triazine compounds were frequently detected. Triazine herbicides and their degradates are listed on the USEPA Contaminant Candidate List. In 41 percent of surface-water samples, densities of Escherichia coli (E. coli) bacteria exceeded the primary contact, single-sample maximum in public-access bodies of water (1,198 colonies per 100 milliliters of water for samples collected between April 1 and October 31) set by the Kansas Department of Health and Environment (KDHE). Nitrite plus nitrate concentrations in all three water samples from 1 of 10 monitoring wells exceeded the MCL of 10 mg/L established by USEPA for drinking water. Arsenic concentrations in all three samples from one well exceeded the proposed MCL of 10 ?g/L established by USEPA for drinking water. Boron also exceeded the drinking-water advisory in three samples from one well, and iron concentrations were higher than the SDWR in water from four wells. There was some detection of pesticides in ground-water samples from three of the wells, and one detection of the volatile organic compound diethyl ether in one well. Concentrations of dissolved solids exceeded the SDWR in 20 percent of ground-water samples collected during the current study period, and concentration
Orem, W.H.; Tatu, C.A.; Lerch, H.E.; Rice, C.A.; Bartos, T.T.; Bates, A.L.; Tewalt, S.; Corum, M.D.
2007-01-01
The organic composition of produced water samples from coalbed natural gas (CBNG) wells in the Powder River Basin, WY, sampled in 2001 and 2002 are reported as part of a larger study of the potential health and environmental effects of organic compounds derived from coal. The quality of CBNG produced waters is a potential environmental concern and disposal problem for CBNG producers, and no previous studies of organic compounds in CBNG produced water have been published. Organic compounds identified in the produced water samples included: phenols, biphenyls, N-, O-, and S-containing heterocyclic compounds, polycyclic aromatic hydrocarbons (PAHs), aromatic amines, various non-aromatic compounds, and phthalates. Many of the identified organic compounds (phenols, heterocyclic compounds, PAHs) are probably coal-derived. PAHs represented the group of organic compounds most commonly observed. Concentrations of total PAHs ranged up to 23 ??g/L. Concentrations of individual compounds ranged from about 18 to <0.01 ??g/L. Temporal variability of organic compound concentrations was documented, as two wells with relatively high organic compound contents in produced water in 2001 had much lower concentrations in 2002. In many areas, including the PRB, coal strata provide aquifers for drinking water wells. Organic compounds observed in produced water are also likely present in drinking water supplied from wells in the coal. Some of the organic compounds identified in the produced water samples are potentially toxic, but at the levels measured in these samples are unlikely to have acute health effects. The human health effects of low-level, chronic exposure to coal-derived organic compounds in drinking water are currently unknown. Continuing studies will evaluate possible toxic effects from low level, chronic exposure to coal-derived organic compounds in drinking water supplies.
Tryland, Ingun; Eregno, Fasil Ejigu; Braathen, Henrik; Khalaf, Goran; Sjølander, Ingrid; Fossum, Marie
2015-01-01
The fully automated Colifast ALARMTM has been used for two years for daily monitoring of the presence/absence of Escherichia coli in 100 mL raw water at Oset drinking water treatment plant in Oslo, Norway. The raw water is extracted from 35 m depth from the Lake Maridalsvannet. E. coli was detected in 18% of the daily samples. In general, most samples positive for E. coli were observed during the autumn turnover periods, but even in some samples taken during warm and dry days in July, with stable temperature stratification in the lake, E. coli was detected. The daily samples gave useful additional information compared with the weekly routine samples about the hygienic raw water quality and the hygienic barrier efficiency of the lake under different weather conditions and seasons. The winter 2013/2014 was much warmer than the winter 2012/2013. The monitoring supported the hypothesis that warmer winters with shorter periods with ice cover on lakes, which may be a consequence of climate changes, may reduce the hygienic barrier efficiency in deep lakes used as drinking water sources. PMID:25658685
Comammox in drinking water systems.
Wang, Yulin; Ma, Liping; Mao, Yanping; Jiang, Xiaotao; Xia, Yu; Yu, Ke; Li, Bing; Zhang, Tong
2017-06-01
The discovery of complete ammonia oxidizer (comammox) has fundamentally upended our perception of the global nitrogen cycle. Here, we reported four metagenome assembled genomes (MAGs) of comammox Nitrospira that were retrieved from metagenome datasets of tap water in Singapore (SG-bin1 and SG-bin2), Hainan province, China (HN-bin3) and Stanford, CA, USA (ST-bin4). Genes of phylogenetically distinct ammonia monooxygenase subunit A (amoA) and hydroxylamine dehydrogenase (hao) were identified in these four MAGs. Phylogenetic analysis based on ribosomal proteins, AmoA, hao and nitrite oxidoreductase (subunits nxrA and nxrB) sequences indicated their close relationships with published comammox Nitrospira. Canonical ammonia-oxidizing microbes (AOM) were also identified in the three tap water samples, ammonia-oxidizing bacteria (AOB) in Singapore's and Stanford's samples and ammonia-oxidizing archaea (AOA) in Hainan's sample. The comammox amoA-like sequences were also detected from some other drinking water systems, and even outnumbered the AOA and AOB amoA-like sequences. The findings of MAGs and the occurrences of AOM in different drinking water systems provided a significant clue that comammox are widely distributed in drinking water systems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Increase in Lead Concentration in the Drinking Water of an Animal Care Facility.
Davidowitz, Bradley; Boehm, Kirk; Banovetz, Sandra; Binkley, Neil
1998-01-01
We report here the unexpected detection, and subsequent correction, of a problem that resulted in an increase in lead concentration in the drinking water of an animal research facility. At the initiation of a study, analysis of a water sample obtained from the drinking spout of an animal cage revealed a lead concentration nearly twice the Environmental Protection Agency's maximum acceptable concentration. Because the municipal water supply routinely had been tested and found to be free of lead, it was assumed that this contamination was within the animal care facility. It was hypothesized that the brass fitting connecting the drinking spout to a polyvinyl chloride (PVC) pipe was the source of contamination. Water samples were obtained hourly from 0700 to 1600 hours before and after replacement of the brass fitting with a PVC fitting. After this change, lead concentrations in all samples were within acceptable limits. Although blood lead concentrations were undetectable in 47 rhesus monkeys (Macaca mulatta) housed in the facility, subclinical lead toxicosis could have resulted and potentially complicated studies in which these monkeys were used. We recommend that the water supply of research facilities be monitored periodically.
[Knowledge, attitude and practice on drinking water of primary and secondary students in Shenzhen].
Liu, Jiaxin; Hu, Xiaoqi; Zhang, Qian; Du, Songming; Pan, Hui; Dai, Xingbi; Ma, Guansheng
2014-05-01
To investigate the status on drinking water related knowledge, attitude and practice of primary and secondary students in Shenzhen. All 832 primary and secondary students from three schools in Shenzhen were selected by using multi-stage random sampling method. The information of drinking water related knowledge, time of drinking water and the type of drink chose in different situations were collected by questionnaires. 87.3% of students considered plain water being the healthiest drink in daily life, and the percent in girls (90.6%) was significantly higher than that in boys (84.4% ) (chi2 = 7.13, P = 0.0089). The awareness percent of the harm of dehydration was 84.5%. The percent in high school students (96.4%) was significantly higher than that in primary (73.9%) and middle school students (94.2%) (chi2 = 73.77, P < 0.0001). 63.7% of students considered that the healthiest time of drinking water was in the morning with an empty stomach, and 46.3% chose when they felt thirsty. However, 63.7% drank water when they felt thirsty, and 50.6% drank water in the morning with an empty stomach. The percent of drinking plain water at school was the highest (83.4%), followed by at home (64.1%) and in public (26.2%). There were 45.2% and 53.3% of students, respectively, choosing sugary drinks as their favorite drink and most frequently drinking in public places. Primary and secondary students in Shenzhen have a good awareness of drinking water, which is inconsistent with their practice. Meanwhile, a considerable proportion of students towards choosing drinks have many misconceptions. The education of healthy drinking water should be strengthened.
Nsoh, Fuh Anold; Wung, Buh Amos; Atashili, Julius; Benjamin, Pokam Thumamo; Marvlyn, Eba; Ivo, Keumami Katte; Nguedia, Assob Jules Clément
2016-11-08
Access to potable water remains a major challenge particularly in resource-limited settings. Although the potential contaminants of water are varied, enteric pathogenic protozoa are known to cause waterborne diseases greatly. This study aimed at investigating the prevalence, characteristics and correlates of enteric pathogenic protozoa in drinking water sources in Buea, Cameroon. A cross-sectional study was conducted using 155 water samples collected from various drinking sources (boreholes, springs, taps and wells). Each sample was subjected to physicochemical examinations (pH, turbidity, odour and sliminess) and parasitological analysis (wet mount, modified Ziehl-Neelsen stain) to determine the presence of enteric pathogenic protozoa. A data collection tool was used to note characteristics of collected samples and the data was analysed using EPI-INFO Version 3.5.3. The overall prevalence of enteric pathogenic protozoa in water sources was 62.6 %. Eight species of enteric protozoa were observed with Cryptosporidium parvum being the most predominant (45.8 %). Spring water was the most contaminated source with enteric protozoa (85.7 %) while pipe borne water had all eight species of protozoa identified. A pH of 6 was the only significant factor associated with the prevalence of these pathogens in water sources. The prevalence of enteric protozoa in water sources in Molyko and Bomaka is high, spring water is the most contaminated water source and Cryptosporidium parvum is the most common protozoa contaminating water. A water pH of 6 is associated to the prevalence of protozoa. Community members need to be educated to treat water before drinking to avoid infection by enteric protozoa in water and further studies with larger samples of water need to be conducted to find other correlates of the presence of protozoa in water.
A number of drinking water treatment plants on Lake Erie have supplied water samples on a monthly basis for analysis related to the occurrence of harmful algal blooms (HABs). General water quality parameters including total organic carbon (TOC), orthophosphate, and chlorophyll-A ...
40 CFR 141.202 - Tier 1 Public Notice-Form, manner, and frequency of notice.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Detection of E. coli, enterococci, or coliphage in source water samples as specified in § 141.402(a) and... (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Public Notification of Drinking Water Violations § 141.202 Tier 1 Public Notice—Form, manner, and frequency of notice. (a) Which...
Methods for detecting total coliform bacteria in drinking water were compared using 1483 different drinking water samples from 15 small community water systems in Vermont and New Hampshire. The methods included the membrane filter (MF) technique, a ten tube fermentation tube tech...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wyatt, C.J.; Quiroga, V.L.; Acosta, R.T.O.
1998-07-01
Arsenic (As) is a common element in the environment with many industrial uses, but it also can be a contaminant in drinking water and present serious health concerns. Earlier studies on the quality of drinking water in the city of Hermosillo, Sonora, Mexico, showed high levels of As in water from wells located in the northern part of the city. Additionally a high positive correlation between the levels of Fluoride (F) and As in the same wells was found. Therefore, the objective of this study was to determine the excretion of As in children, 7--11 years of age, that hadmore » been exposed to elevated levels of As in their drinking water. Twenty-four-hour urine samples and a water sample taken directly in the home were collected from school age children living in two different areas with known high levels of As in their drinking water. A control group with normal levels of As in their water was also included.« less
Rural drinking water issues in India’s drought-prone area: a case of Maharashtra state
NASA Astrophysics Data System (ADS)
Udmale, Parmeshwar; Ichikawa, Yutaka; Nakamura, Takashi; Shaowei, Ning; Ishidaira, Hiroshi; Kazama, Futaba
2016-07-01
Obtaining sufficient drinking water with acceptable quality under circumstances of lack, such as droughts, is a challenge in drought-prone areas of India. This study examined rural drinking water availability issues during a recent drought (2012) through 22 focus group discussions (FGDs) in a drought-prone catchment of India. Also, a small chemical water quality study was undertaken to evaluate the suitability of water for drinking purpose based on Bureau of Indian Standards (BIS). The drought that began in 2011 and further deteriorated water supplies in 2012 caused a rapid decline in reservoir storages and groundwater levels that led, in turn, to the failure of the public water supply systems in the Upper Bhima Catchment. Dried up and low-yield dug wells and borewells, tanker water deliveries from remote sources, untimely water deliveries, and degraded water quality were the major problems identified in the FGDs. In addition to severe drinking water scarcity during drought, the quality of the drinking water was found to be a major problem, and it apparently was neglected by local governments and users. Severe contamination of the drinking water with nitrate-nitrogen, ammonium-nitrogen, and chlorides was found in the analyzed drinking water samples. Hence, in addition to the water scarcity, the results of this study point to an immediate need to investigate the problem of contaminated drinking water sources while designing relief measures for drought-prone areas of India.
Contamination levels of human pharmaceutical compounds in French surface and drinking water.
Mompelat, S; Thomas, O; Le Bot, B
2011-10-01
The occurrence of 20 human pharmaceutical compounds and metabolites from 10 representative therapeutic classes was analysed from resource and drinking water in two catchment basins located in north-west France. 98 samples were analysed from 63 stations (surface water and drinking water produced from surface water). Of the 20 human pharmaceutical compounds selected, 16 were quantified in both the surface water and drinking water, with 22% of the values above the limit of quantification for surface water and 14% for drinking water). Psychostimulants, non-steroidal anti-inflammatory drugs, iodinated contrast media and anxiolytic drugs were the main therapeutic classes of human pharmaceutical compounds detected in the surface water and drinking water. The results for surface water were close to results from previous studies in spite of differences in prescription rates of human pharmaceutical compounds in different countries. The removal rate of human pharmaceutical compounds at 11 water treatment units was also determined. Only caffeine proved to be resistant to drinking water treatment processes (with a minimum rate of 5%). Other human pharmaceutical compounds seemed to be removed more efficiently (average elimination rate of over 50%) by adsorption onto activated carbon and oxidation/disinfection with ozone or chlorine (not taking account of the disinfection by-products). These results add to the increasing evidence of the occurrence of human pharmaceutical compounds in drinking water that may represent a threat to human beings exposed to a cocktail of human pharmaceutical compounds and related metabolites and by-products in drinking water.
Nephrotoxic contaminants in drinking water and urine, and chronic kidney disease in rural Sri Lanka.
Rango, Tewodros; Jeuland, Marc; Manthrithilake, Herath; McCornick, Peter
2015-06-15
Chronic kidney disease of unknown ("u") cause (CKDu) is a growing public health concern in Sri Lanka. Prior research has hypothesized a link with drinking water quality, but rigorous studies are lacking. This study assesses the relationship between nephrotoxic elements (namely arsenic (As), cadmium (Cd), lead (Pb), and uranium (U)) in drinking water, and urine samples collected from individuals with and/or without CKDu in endemic areas, and from individuals without CKDu in nonendemic areas. All water samples - from a variety of source types (i.e. shallow and deep wells, springs, piped and surface water) - contained extremely low concentrations of nephrotoxic elements, and all were well below drinking water guideline values. Concentrations in individual urine samples were higher than, and uncorrelated with, those measured in drinking water, suggesting potential exposure from other sources. Mean urinary concentrations of these elements for individuals with clinically diagnosed CKDu were consistently lower than individuals without CKDu both in endemic and nonendemic areas. This likely stems from the inability of the kidney to excrete these toxic elements via urine in CKDu patients. Urinary concentrations of individuals were also found to be within the range of reference values measured in urine of healthy unexposed individuals from international biomonitoring studies, though these reference levels may not be safe for the Sri Lankan population. The results suggest that CKDu cannot be clearly linked with the presence of these contaminants in drinking water. There remains a need to investigate potential interactions of low doses of these elements (particularly Cd and As) with other risk factors that appear linked to CKDu, prior to developing public health strategies to address this illness. Copyright © 2015 Elsevier B.V. All rights reserved.
Significance of bacteria associated with invertebrates in drinking water distribution networks.
Wolmarans, E; du Preez, H H; de Wet, C M E; Venter, S N
2005-01-01
The implication of invertebrates found in drinking water distribution networks to public health is of concern to water utilities. Previous studies have shown that the bacteria associated with the invertebrates could be potentially pathogenic to humans. This study investigated the level and identity of bacteria commonly associated with invertebrates collected from the drinking water treatment systems as well as from the main pipelines leaving the treatment works. On all sampling occasions bacteria were isolated from the invertebrate samples collected. The highest bacterial counts were observed for the samples taken before filtration as was expected. There were, however, indications that optimal removal of invertebrates from water did not always occur. During the investigation, 116 colonies were sampled for further identification. The isolates represent several bacterial genera and species that are pathogenic or opportunistic pathogens of humans. Diarrhoea, meningitis, septicaemia and skin infections are among the diseases associated with these organisms. The estimated number of bacteria that could be associated with a single invertebrate (as based on average invertebrate numbers) could range from 10 to 4000 bacteria per organism. It can, therefore, be concluded that bacteria associated with invertebrates might under the worst case scenario pose a potential health risk to water users. In the light of the above findings it is clear that invertebrates in drinking water should be controlled at levels as low as technically and economically feasible.
Incidence of heavy metal contamination in water supplies in northern Mexico.
Wyatt, C J; Fimbres, C; Romo, L; Méndez, R O; Grijalva, M
1998-02-01
Contaminants in drinking water present public health risks. The objective of this study was to analyze water samples taken from wells or storage tanks, direct sources for domestic water in Northern Mexico, for the presence of lead (Pb), copper (Cu), cadmium (Cd), arsenic (As), and mercury (Hg). The samples were analyzed by atomic absorption coupled with a hydride generator or a graphite furnace. High levels of Pb (0.05-0.12 ppm) were found in Hermosillo, Guaymas, and Nacozari. Forty-three percent of the samples in Sonora exceeded the action level (0.015 ppm) established by the EPA for Pb. For As, 8.92% exceeded the limit with a range of 0.002-0.305 ppm. Several studies have indicated a possible link between As and fluoride (F) in drinking water. This study showed a positive correlation between F and As (r = 0.53, P = 0.01, and n = 116). One location in Hermosillo had 7.36 ppm of F and 0.117 ppm of As, 3.5 times the recommended F levels in drinking water and 2 times higher than the level permitted for As. Hg contamination was found in 42% of the samples. Based on the results of this study, it appears that As, Hg, and Pb contamination in the drinking water for some areas of the state of Sonora is a major concern.
Donovan, Ariel R; Adams, Craig D; Ma, Yinfa; Stephan, Chady; Eichholz, Todd; Shi, Honglan
2016-07-01
Nanoparticles (NPs) entering water systems are an emerging concern as NPs are more frequently manufactured and used. Single particle inductively coupled plasma-mass spectrometry (SP-ICP-MS) methods were validated to detect Zn- and Ce-containing NPs in surface and drinking water using a short dwell time of 0.1 ms or lower, ensuring precision in single particle detection while eliminating the need for sample preparation. Using this technique, information regarding NP size, size distribution, particle concentration, and dissolved ion concentrations was obtained simultaneously. The fates of Zn- and Ce-NPs, including those found in river water and added engineered NPs, were evaluated by simulating a typical drinking water treatment process. Lime softening, alum coagulation, powdered activated carbon sorption, and disinfection by free chlorine were simulated sequentially using river water. Lime softening removed 38-53 % of Zn-containing and ZnO NPs and >99 % of Ce-containing and CeO2 NPs. Zn-containing and ZnO NP removal increased to 61-74 % and 77-79 % after alum coagulation and disinfection, respectively. Source and drinking water samples were collected from three large drinking water treatment facilities and analyzed for Zn- and Ce-containing NPs. Each facility had these types of NPs present. In all cases, particle concentrations were reduced by a minimum of 60 % and most were reduced by >95 % from source water to finished drinking water. This study concludes that uncoated ZnO and CeO2 NPs may be effectively removed by conventional drinking water treatments including lime softening and alum coagulation.
Mortada, Wael I; Shokeir, Ahmed A
2018-05-07
A total of 1291 drinking water samples were examined for nitrite and nitrate during 6 months from December, 2015 to May, 2016 at 17 cities of Dakahlia governorate (Nile Delta, north of Egypt), and the results were utilized for assessment of health risk of the exposure from drinking water by calculating average daily intake (ADI), hazard quotient (HQ), and the hazard index (HI). The nitrite and nitrate in drinking water had a concentration range of 0.030-0.113 and 2.41-8.70 mg L -1 , with mean values of 0.059 ± 0.014 and 5.25 ± 1.61 mg L -1 , respectively. Nitrite and nitrate levels in rural areas and ground water samples were significantly higher than that in the urban ones. None of the analyzed samples exceeded WHO guideline values that set out to prevent methemoglobinemia. The values of HQ and HI for all age groups do not exceed unity indicating a low risk of methaemoglobinaemia for the population in this area. Results of the present study indicate that there is no health risk of residents from nitrite and nitrate through drinking water in the studied area. However, the other sources of exposure to nitrite and nitrate should be investigated in further studies.
Radon concentrations in ground and drinking water in the state of Chihuahua, Mexico.
Villalba, L; Colmenero Sujo, L; Montero Cabrera, M E; Cano Jiménez, A; Rentería Villalobos, M; Delgado Mendoza, C J; Jurado Tenorio, L A; Dávila Rangel, I; Herrera Peraza, E F
2005-01-01
This paper reports (222)Rn concentrations in ground and drinking water of nine cities of Chihuahua State, Mexico. Fifty percent of the 114 sampled wells exhibited (222)Rn concentrations exceeding 11Bq/L, the maximum contaminant level (MCL) recommended by the USEPA. Furthermore, around 48% (123 samples) of the tap-water samples taken from 255 dwellings showed radon concentrations over the MCL. There is an apparent correlation between total dissolved solids and radon concentration in ground-water. The high levels of (222)Rn found may be entirely attributed to the nature of aquifer rocks.
Modeled De Facto Reuse and Contaminants of Emerging Concern in Drinking Water Source Waters
De facto reuse is the percentage of drinking water treatment plant (DWTP) intake potentially composed of effluent discharged from upstream wastewater treatment plants (WWTPs). Results from grab samples and a De Facto Reuse in our Nation's Consumable Supply (DRINCS) geospatial wat...
Occurrence, Monitoring and Treatment of Cyanobacterial Toxins in Drinking Water
In the summer of 2014 a number of drinking water treatment plants (DWTPs) on Lake Erie supplied water samples on a monthly basis for analysis. Chlorophyll-a measurements, LC/MS/MS and ELISA techniques specific to microcystins were employed to measure potential harmful algal bloom...
The description of microorganisms inhabiting drinking water distribution systems has commonly been performed using techniques that are biased towards easy to culture bacterial populations. As most environmental microorganisms cannot be grown on artificial media, our understanding...
Lino, C M; Costa, I M; Pena, A; Ferreira, R; Cardoso, S M
2008-11-01
In a survey of levels of acesulfame-K and aspartame in soft drinks and in light nectars, the intake of these intense sweeteners was estimated for a group of teenage students. Acesulfame-K was detected in 72% of the soft drinks, with a mean concentration of 72 mg l(-1) and aspartame was found in 92% of the samples with a mean concentration of 89 mg l(-1). When data on the content of these sweeteners in soft drinks were analysed according to flavour, cola drinks had the highest mean levels for both sweeteners with 98 and 103 mg l(-1) for acesulfame-K and aspartame, respectively. For soft drinks based on mineral water, aspartame was found in 62% of the samples, with a mean concentration of 82 mg l(-1) and acesulfame-K was found in 77%, with a mean level of 48 mg l(-1). All samples of nectars contained acesulfame-K, with a mean concentration of 128 mg l(-1) and aspartame was detected in 80% of the samples with a mean concentration of 73 mg l(-1). A frequency questionnaire, designed to identify adolescents having high consumption of these drinks, was completed by a randomly selected sample of teenagers (n = 65) living in the city of Coimbra, in 2007. The estimated daily intakes (EDI) of acesulfame-K and aspartame for the average consumer were below the acceptable daily intakes (ADIs). For acesulfame-K, the EDI was 0.7 mg kg(-1) bw day(-1) for soft drinks, 0.2 mg kg(-1) bw day(-1) for soft drinks based on mineral waters, and 0.5 mg kg(-1) bw day(-1) for nectars, representing 8.0%, 2.2%, and 5.8% of the ADI, respectively. A similar situation was observed for aspartame. In this way, the EDI for soft drinks was 1.1 mg kg(-1) day(-1), representing only 2.9% of the ADI. In respect of nectars, the EDI was 0.2 mg kg(-1) bw day(-1), representing 0.5% of the ADI. Soft drinks based on mineral waters showed the lowest EDI values of 0.3 mg kg(-1) bw day(-1), accounting for 0.7% of the ADI.
Abdul, Rasheed M; Mutnuri, Lakshmi; Dattatreya, Patil J; Mohan, Dayal A
2012-03-01
A total of 16 people died and over 500 people were hospitalized due to diarrhoeal illness in the Bholakpur area of Hyderabad, India on 6th May 2009. A study was conducted with immediate effect to evaluate the quality of municipal tap water of the Bholakpur locality. The study consists of the determination of physico-chemical properties, trace metals, heavy metals, rare earth elements and microbiological quality of drinking water. The data showed the variation of the investigated parameters in samples as follows: pH 7.14 to 8.72, EC 455 to 769 μS/cm, TDS 303.51 to 515.23 ppm and DO 1.01 to 6.83 mg/L which are within WHO guidelines for drinking water quality. The water samples were analyzed for 27 elements (Li, Be, B, Na, Mg, Al, Si, K, Ca, V, Cr, Mn, Fe, Ni, Co, Cu, Zn, As, Se, Rb, Sr, Mo, Ag, Cd, Sb, Ba and Pb) using inductively coupled plasma-mass spectrometry (ICP-MS). The concentrations of Fe (0.12 to 1.13 mg/L), Pb (0.01 to 0.07 mg/L), Cu (0.01 to 0.19 mg/L), Ni (0.01 to 0.15 mg/L), Al (0.16 to 0.49 mg/L), and Na (38.36 to 68.69 mg/L) were obtained, which exceed the permissible limits of the World Health Organization (WHO) for drinking water quality guidelines. The remaining elements were within the permissible limits. The microbiological quality of water was tested using standard plate count, membrane filtration technique, thermotolerant coliform (TTC), and most probable number (MPN) methods. The total heterotrophic bacteria ranged from 1.0 × 10(5) to 18 × 10(7 )cfu/ml. Total viable bacteria in all the water samples were found to be too numerable to count and total number of coliform bacteria in all water samples were found to be of order of 1,100 to >2,400 MPN index/100 ml. TTC tested positive for coliform bacteria at 44.2°C. All the water samples of the study area exceeded the permissible counts of WHO and that (zero and minimal counts) of the control site (National Geophysical Research Institute) water samples. Excessively high colony numbers indicate that the water is highly contaminated with microorganisms and is hazardous for drinking purposes. Bacteriological pollution of drinking water supplies caused diarrhoeal illness in Bholakpur, which is due to the infiltration of contaminated water (sewage) through cross connection, leakage points, and back siphoning.
ALTERNATIVE DISINFECTANTS FOR DRINKING WATER TREATMENT
During a one-year study at Jefferson Parish, Louisiana the chemical, microbiological, and mutagenic effects of using the major drinking water disinfectants (chlorine, chlorine dioxide, chloramine, ozone) were evaluated. ests were performed on samples collected from various treatm...
Thabayneh, Khalil M
2015-09-01
Radon concentration and annual effective doses were measured in drinking water in the Southern Part of West Bank - Palestine, by using both passive and active techniques. 184 samples were collected from various sources i.e. tap water, groundwater, rain waters and mineral waters. It is found that the annual effective dose resulting from inhalation and ingestion of radon emanated from all types of drinking water is negligible compared to the total annual effective dose from indoor radon in the region. Results reveal that there is no significant public health risk from radon ingested and inhalation with drinking water in the study region. Copyright © 2015. Published by Elsevier Ltd.
Fluoride contamination sensor based on optical fiber grating technology
NASA Astrophysics Data System (ADS)
Jadhav, Mangesh S.; Laxmeshwar, Lata S.; Akki, Jyoti F.; Raikar, P. U.; Kumar, Jitendra; Prakash, Om; Raikar, U. S.
2017-11-01
A number of distinct advantages of the optical fiber technology in the field of sensors and communications which leads to enormous applications. Fiber Bragg grating (FBG) developed from the fabrication of photosensitive fiber through phase mask technique is used in the present report. The designed fiber sensor used for the detection and determination of contaminants in drinking water at ppm & ppb level and it is considered as a special type of concentration sensor. The test samples of drinking water have been collected from different regions. In this paper we have calibrated the FBG sensor to detect Flouride concentration in drinking water in the range of 0.05-8 ppm. According to WHO, the normal range of fluoride content in drinking water is about 0.7 ppm to 1.5 ppm. The results for resultant spectral shifts for test samples are closely agree with standard values.
Paull, Brett; Barron, Leon
2004-08-13
A review of the application of ion chromatography to the determination of haloacetic acids in drinking water is given. As it requires no sample derivatisation, ion chromatography in its various modes, such as ion-exchange, ion-interaction and ion-exclusion chromatography, is increasingly being investigated as a simpler alternative to gas chromatographic methods for the determination of polar disinfection by-products (DBPs) in drinking waters. Detection limits quoted for the regulated haloacetic acids (HAA5), are commonly in the mid to low microg/L range, however, in most cases analyte preconcentration is still necessary for detection at concentrations commonly found in actual drinking water samples. The coupling of ion chromatography to electrospray mass spectrometry provides a potential future direction, with improved sensitivity and selectivity compared to conductivity based detection, however associated cost and complexity for routine analysis is currently relatively high.
Vang, Óluva K; Corfitzen, Charlotte B; Smith, Christian; Albrechtsen, Hans-Jørgen
2014-11-01
Fast and reliable methods are required for monitoring of microbial drinking water quality in order to protect public health. Adenosine triphosphate (ATP) was investigated as a potential real-time parameter for detecting microbial ingress in drinking water contaminated with wastewater or surface water. To investigate the ability of the ATP assay in detecting different contamination types, the contaminant was diluted with non-chlorinated drinking water. Wastewater, diluted at 10(4) in drinking water, was detected with the ATP assay, as well as 10(2) to 10(3) times diluted surface water. To improve the performance of the ATP assay in detecting microbial ingress in drinking water, different approaches were investigated, i.e. quantifying microbial ATP or applying reagents of different sensitivities to reduce measurement variations; however, none of these approaches contributed significantly in this respect. Compared to traditional microbiological methods, the ATP assay could detect wastewater and surface water in drinking water to a higher degree than total direct counts (TDCs), while both heterotrophic plate counts (HPC 22 °C and HPC 37 °C) and Colilert-18 (Escherichia coli and coliforms) were more sensitive than the ATP measurements, though with much longer response times. Continuous sampling combined with ATP measurements displays definite monitoring potential for microbial drinking water quality, since microbial ingress in drinking water can be detected in real-time with ATP measurements. The ability of the ATP assay to detect microbial ingress is influenced by both the ATP load from the contaminant itself and the ATP concentration in the specific drinking water. Consequently, a low ATP concentration of the specific drinking water facilitates a better detection of a potential contamination of the water supply with the ATP assay. Copyright © 2014 Elsevier Ltd. All rights reserved.
Outbreak of giardiasis associated with a community drinking-water source.
Daly, E R; Roy, S J; Blaney, D D; Manning, J S; Hill, V R; Xiao, L; Stull, J W
2010-04-01
Giardiasis is a common waterborne gastrointestinal illness. In 2007, a community giardiasis outbreak occurred in New Hampshire, USA. We conducted a cohort study to identify risk factors for giardiasis, and stool and environmental samples were analysed. Consuming tap water was significantly associated with illness (risk ratio 4.7, 95% confidence interval 1.5-14.4). Drinking-water samples were coliform-contaminated and a suspect Giardia cyst was identified in a home water filter. One well was coliform-contaminated, and testing indicated that it was potentially under the influence of surface water. The well was located 12.5 m from a Giardia-contaminated brook, although the genotype differed from clinical specimens. Local water regulations require well placement at least 15 m from surface water. This outbreak, which caused illness in 31 persons, represents the largest community drinking-water-associated giardiasis outbreak in the USA in 10 years. Adherence to well placement regulations might have prevented this outbreak.
Sehar, Shama; Naz, Iffat; Ali, Naeem; Ahmed, Safia
2013-02-01
The present study was conducted to investigate drinking water quality (groundwater) from water samples taken from Qasim Abad, a locality of approximately 5,000 population, situated between twin cities Rawalpindi and Islamabad in Pakistan. The main sources of drinking water in this area are water bores which are dug upto the depth of 250-280 ft in almost every house. The study consists of the determination of physico-chemical properties, trace metals, heavy metals, rare earth elements and microbiological quality of drinking water. The data showed the variation of the investigated parameters in samples as follows: pH 6.75 to 8.70, electrical conductivity 540 to 855 μS/cm, total dissolved solids 325.46 to 515.23 ppm and dissolved oxygen 1.50 to 5.64 mg/L which are within the WHO guidelines for drinking water quality. The water samples were analysed for 30 elements (aluminium, iron, magnesium, manganese, silicon, zinc, molybdenum, titanium, chromium, nickel, tungsten, silver, arsenic, boron, barium, beryllium, cadmium, cobalt, copper, gallium, mercury, lanthanum, niobium, neodymium, lead, selenium, samarium, tin, vanadium and zirconium) by using inductively coupled plasma atomic emission spectroscopy. The organic contamination was detected in terms of most probable number (MPN) of faecal coliforms. Overall, elemental levels were lower than the recommended values but three water bores (B-1, B-6, B-7) had higher values of iron (1.6, 2.206, 0.65 ppm), two water bores (B-1, B-6) had higher values of aluminium (0.95, 1.92 ppm), respectively, and molybdenum was higher by 0.01 ppm only in one water bore (B-11). The total number of coliforms present in water samples was found to be within the prescribed limit of the WHO except for 5 out of 11 bore water samples (B-2, B-3, B-4, B-8, B-11), which were found in the range 5-35 MPN/100 mL, a consequence of infiltration of contaminated water (sewage) through cross connection, leakage points and back siphoning.
Begum, Shaheen; Shah, Mohammad Tahir; Muhammad, Said; Khan, Sardar
2015-12-01
This study investigates the drinking water (groundwater and surface water) quality and potential risk assessment along mafic and ultramafic rocks in the Swat district of Khyber Pakhtunkhwa Provence, Pakistan. For this purpose, 82 groundwater and 33 surface water samples were collected and analyzed for physico-chemical parameters. Results showed that the majority of the physico-chemical parameters were found to be within the drinking water guidelines set by the World Health Organization. However, major cationic metals such as magnesium (Mg), and trace metals (TM) including iron (Fe), manganese (Mn), nickel (Ni), chromium (Cr) and cobalt (Co) showed exceeded concentrations in 13%, 4%, 2%, 20%, 20% and 55% of water samples, respectively. Health risk assessment revealed that the non-carcinogenic effects or hazard quotient values through the oral ingestion pathway of water consumption for the TM (viz., Fe, Cr and Mn) were found to be greater than 1, could result in chronic risk to the exposed population. Results of statistical analyses revealed that mafic and ultramafic rocks are the main sources of metal contamination in drinking water, especially Ni and Cr. Both Ni and Cr have toxic health effects and therefore this study suggests that contaminated sites should be avoided or treated for drinking and domestic purposes.
Katiyar, Shashwat; Singh, Dharam
2014-05-01
An investigation was carried out to ascertain the effect of arsenic in the blocks of Ballia district in Uttar Pradesh in the upper and middle Ganga plain, India. Analysis of 100 drinking water samples revealed that arsenic concentration was below 10 μg l⁻¹ in 60% samples, 10-50 μg l⁻¹ in 6%, 100 μg l⁻¹ in 24% and 200 μg l⁻¹ in 10% samples, respectively. The arsenic concentration in drinking water ranged from 12.8 to 132.2 μg l⁻¹. The depth of source of drinking water (10-60 m) was also found with a mean of 36.12 ± 13.61 μg l⁻¹ arsenic concentration. Observations revealed that at depth ranging from 10 to 20 m, the mean level of arsenic concentration was 17.398 ± 21.796 μg l⁻¹, while at 21 to 40 m depth As level was 39.685 ± 40.832 μg l⁻¹ and at 41 to 60 m As level was 46.89 ± 52.80 μg l⁻¹, respectively. These observations revealed a significant positive correlation (r = 0.716, t = 4.215, P < 0.05) between depth and arsenic concentration in drinking water. The age of water sources were ranged from zero to 30 years. The study indicates that the older sources of drinking water showed higher chance of contamination. Results showed that group 21-30 years having maximum arsenic concentration with mean value of 52.57 ± 53.79 μg l⁻¹. Correlation analysis also showed a significant positive correlation (r = 0.801, t = 5.66, P < 0.05) between age of drinking water sources and their respective arsenic concentration (μg l⁻¹). Arsenic concentration in blood with mean value 0.226 ± 0.177 μg dl⁻¹ significantly increased as compared to control. The blood arsenic content correlated significantly (r = 0.6823, t = 3.93, P < 0.05) with drinking water arsenic level and exposure time (r = 0.545, t = 3.101 & *P < 0.05) for populations residing in Ballia districts. Observations and correlation analysis revealed that individuals having depth of drinking water sources 20-30 m were less affected with arsenic exposure.
Bautista-de Los Santos, Quyen Melina; Schroeder, Joanna L; Blakemore, Oliver; Moses, Jonathan; Haffey, Mark; Sloan, William; Pinto, Ameet J
2016-03-01
High-throughput and deep DNA sequencing, particularly amplicon sequencing, is being increasingly utilized to reveal spatial and temporal dynamics of bacterial communities in drinking water systems. Whilst the sampling and methodological biases associated with PCR and sequencing have been studied in other environments, they have not been quantified for drinking water. These biases are likely to have the greatest effect on the ability to characterize subtle spatio-temporal patterns influenced by process/environmental conditions. In such cases, intra-sample variability may swamp any underlying small, systematic variation. To evaluate this, we undertook a study with replication at multiple levels including sampling sites, sample collection, PCR amplification, and high throughput sequencing of 16S rRNA amplicons. The variability inherent to the PCR amplification and sequencing steps is significant enough to mask differences between bacterial communities from replicate samples. This was largely driven by greater variability in detection of rare bacteria (relative abundance <0.01%) across PCR/sequencing replicates as compared to replicate samples. Despite this, we captured significant changes in bacterial community over diurnal time-scales and find that the extent and pattern of diurnal changes is specific to each sampling location. Further, we find diurnal changes in bacterial community arise due to differences in the presence/absence of the low abundance bacteria and changes in the relative abundance of dominant bacteria. Finally, we show that bacterial community composition is significantly different across sampling sites for time-periods during which there are typically rapid changes in water use. This suggests hydraulic changes (driven by changes in water demand) contribute to shaping the bacterial community in bulk drinking water over diurnal time-scales. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hodge, James; Chang, Howard H; Boisson, Sophie; Collin, Simon M; Peletz, Rachel; Clasen, Thomas
2016-10-01
Fecally contaminated drinking water is believed to be a major contributor to the global burden of diarrheal disease and a leading cause of mortality among young children. However, recent systematic reviews and results from blinded studies of water quality interventions have raised questions about the risk associated with fecally contaminated water, particularly as measured by thermotolerant coliform (TTC) bacteria, a WHO-approved indicator of drinking water quality. We investigated the association between TTC in drinking water and diarrhea using data from seven previous studies. We obtained individual-level data from available field studies that measured TTC levels in household-drinking water and reported prevalence of diarrhea among household members during the days prior to the visit. The combined data set included diarrhea prevalence for 26,518 individuals and 8,000 water samples from 4,017 households, yielding 45,052 observations. The odds of diarrhea increased for each log10 increase in TTC/100 mL by 18% (95% CI: 11, 26%) for children < 5 years old and 12% (95% CI: 8, 18%) for all ages. For all ages, the odds of diarrhea increased by 21%, 35% and 49% for those whose household water samples were from 11-100, 101-1,000, and > 1,000 TTC/100 mL, respectively compared to < 1 TTC/100 mL. We found no evidence of increased odds of diarrhea with contamination levels below 11 TTC/100 mL, either in adults or children. Our analysis of individual-level data shows increased risk of diarrhea with increasing levels of TTC in drinking water. These results suggest an association between fecally contaminated water and diarrheal disease and provides support for health-based targets for levels of TTC in drinking water and for interventions to improve drinking water quality to prevent diarrhea. Hodge J, Chang HH, Boisson S, Collin SM, Peletz R, Clasen T. 2016. Assessing the association between thermotolerant coliforms in drinking water and diarrhea: an analysis of individual level data from multiple studies. Environ Health Perspect 124:1560-1567; http://dx.doi.org/10.1289/EHP156.
Hodge, James; Chang, Howard H.; Boisson, Sophie; Collin, Simon M.; Peletz, Rachel; Clasen, Thomas
2016-01-01
Background: Fecally contaminated drinking water is believed to be a major contributor to the global burden of diarrheal disease and a leading cause of mortality among young children. However, recent systematic reviews and results from blinded studies of water quality interventions have raised questions about the risk associated with fecally contaminated water, particularly as measured by thermotolerant coliform (TTC) bacteria, a WHO-approved indicator of drinking water quality. Objectives: We investigated the association between TTC in drinking water and diarrhea using data from seven previous studies. Methods: We obtained individual-level data from available field studies that measured TTC levels in household-drinking water and reported prevalence of diarrhea among household members during the days prior to the visit. Results: The combined data set included diarrhea prevalence for 26,518 individuals and 8,000 water samples from 4,017 households, yielding 45,052 observations. The odds of diarrhea increased for each log10 increase in TTC/100 mL by 18% (95% CI: 11, 26%) for children < 5 years old and 12% (95% CI: 8, 18%) for all ages. For all ages, the odds of diarrhea increased by 21%, 35% and 49% for those whose household water samples were from 11–100, 101–1,000, and > 1,000 TTC/100 mL, respectively compared to < 1 TTC/100 mL. We found no evidence of increased odds of diarrhea with contamination levels below 11 TTC/100 mL, either in adults or children. Conclusions: Our analysis of individual-level data shows increased risk of diarrhea with increasing levels of TTC in drinking water. These results suggest an association between fecally contaminated water and diarrheal disease and provides support for health-based targets for levels of TTC in drinking water and for interventions to improve drinking water quality to prevent diarrhea. Citation: Hodge J, Chang HH, Boisson S, Collin SM, Peletz R, Clasen T. 2016. Assessing the association between thermotolerant coliforms in drinking water and diarrhea: an analysis of individual level data from multiple studies. Environ Health Perspect 124:1560–1567; http://dx.doi.org/10.1289/EHP156 PMID:27164618
Using Naturally Occurring Radionuclides To Determine Drinking Water Age in a Community Water System.
Waples, James T; Bordewyk, Jason K; Knesting, Kristina M; Orlandini, Kent A
2015-08-18
Drinking water quality in a community water system is closely linked to the age of water from initial treatment to time of delivery. However, water age is difficult to measure with conventional chemical tracers; particularly in stagnant water, where the relationship between disinfectant decay, microbial growth, and water age is poorly understood. Using radionuclides that were naturally present in source water, we found that measured activity ratios of (90)Y/(90)Sr and (234)Th/(238)U in discrete drinking water samples of known age accurately estimated water age up to 9 days old (σest: ± 3.8 h, P < 0.0001, r(2) = 0.998, n = 11) and 25 days old (σest: ± 13.3 h, P < 0.0001, r(2) = 0.996, n = 12), respectively. Moreover, (90)Y-derived water ages in a community water system (6.8 × 10(4) m(3) d(-1) capacity) were generally consistent with water ages derived from an extended period simulation model. Radionuclides differ from conventional chemical tracers in that they are ubiquitous in distribution mains and connected premise plumbing. The ability to measure both water age and an analyte (e.g., chemical or microbe) in any water sample at any time allows for new insight into factors that control drinking water quality.
Huang, Xiao; He, Liping; Li, Jun; Yang, Fei; Tan, Hongzhuan
2015-01-01
This study aimed to describe the households’ choices of drinking water sources, and evaluate the risk of human exposure to heavy metals via different drinking water sources in Chenzhou City of Hunan Province, Southern China. A cross-sectional face-to-face survey of 192 householders in MaTian and ZhuDui village was conducted. The concentrations of heavy metals in their drinking water sources were analyzed. Carcinogenic and non-carcinogenic risk assessment was performed according to the method recommended by the United States Environmental Protection Agency. In total, 52.60% of the households used hand-pressed well water, and 34.89% used barreled water for drinking. In total, 6.67% of the water samples exceeded the Chinese drinking water standards. The total health risk of five metals is 5.20 × 10−9~3.62 × 10−5. The total health risk of five metals was at acceptable levels for drinking water sources. However, the total risk of using hand-pressed well water’s highest value is 6961 times higher than the risk of using tap water. Household income level was significantly associated with drinking water choices. Arsenic (As) and lead (Pb) are priority controlled pollutants in this region. Using safe drinking water (tap water, barreled water and so on) can remarkably reduce the risk of ingesting heavy metals. PMID:26569281
Xiao, Sanhua; Lv, Xuemin; Zeng, Yifan; Jin, Tao; Luo, Lan; Zhang, Binbin; Zhang, Gang; Wang, Yanhui; Feng, Lin; Zhu, Yuan; Tang, Fei
2017-10-01
Public concern was aroused by frequently reported water pollution incidents in Taihu Lake and the Yangtze River. The pollution also caught and sustained the attention of the scientific community. From 2010 to 2016, raw water and drinking water samples were continually collected at Waterworks A and B (Taihu Lake) and Waterworks C (Yangtze River). The non-volatile organic pollutants in the water samples were extracted by solid phase extraction. Ames tests and yeast estrogen screen (YES) assays were conducted to evaluate the respective mutagenic and estrogenic effects. Water samples from the Yangtze River-based Waterworks C possessed higher mutagenicity than those from Taihu Lake-based Waterworks A (P<0.001) and Waterworks B (P = 0.026). Water treatment enhanced the direct mutagenicity (P = 0.022), and weakened the estrogenicity of the raw water (P<0.001) with a median removal rate of 100%. In fact, very few of the finished samples showed estrogenic activity. Raw water samples from Waterworks A showed weaker estrogenicity than those from Waterworks B (P = 0.034) and Waterworks C (P = 0.006). In summary, mutagenic effects in drinking water and estrogenic effects in raw water merited sustained attention. The Yangtze River was more seriously polluted by mutagenic and estrogenic chemicals than Taihu Lake was. Copyright © 2017 Elsevier Ltd. All rights reserved.
[Health Risk Assessment of Drinking Water Quality in Tianjin Based on GIS].
Fu, Gang; Zeng, Qiang; Zhao, Liang; Zhang, Yue; Feng, Bao-jia; Wang, Rui; Zhang, Lei; Wang, Yang; Hou, Chang-chun
2015-12-01
This study intends to assess the potential health hazards of drinking water quality and explore the application of geographic information system( GIS) in drinking water safety in Tianjin. Eight hundred and fifty water samples from 401 sampling points in Tianjin were measured according to the national drinking water standards. The risk assessment was conducted using the environmental health risk assessment model recommended by US EAP, and GIS was combined to explore the information visualization and risk factors simultaneously. The results showed that the health risks of carcinogens, non-carcinogens were 3.83 x 10⁻⁵, 5.62 x 10⁻⁹ and 3.83 x 10⁻⁵ for total health risk respectively. The rank of health risk was carcinogen > non-carcinogen. The rank of carcinogens health risk was urban > new area > rural area, chromium (VI) > cadmium > arsenic > trichlormethane > carbon tetrachloride. The rank of non-carcinogens health risk was rural area > new area > urban, fluoride > cyanide > lead > nitrate. The total health risk level of drinking water in Tianjin was lower than that of ICRP recommended level (5.0 x 10⁻⁵), while was between US EPA recommended level (1.0 x 10⁻⁴-1.0 x 10⁻⁶). It was at an acceptable level and would not cause obvious health hazards. The main health risks of drinking water came from carcinogens. More attentions should be paid to chromium (VI) for carcinogens and fluoride for non-carcinogens. GIS can accomplish information visualization of drinking water risk assessment and further explore of risk factors.
Simonich, Staci Massey; Sun, Ping; Casteel, Ken; Dyer, Scott; Wernery, Dave; Garber, Kevin; Carr, Gregory; Federle, Thomas
2013-10-01
The risks of 1,4-dioxane (dioxane) concentrations in wastewater treatment plant (WWTP) effluents, receiving primarily domestic wastewater, to downstream drinking water intakes was estimated using distributions of measured dioxane concentrations in effluents from 40 WWTPs and surface water dilution factors of 1323 drinking water intakes across the United States. Effluent samples were spiked with a d8 -1,4-dioxane internal standard in the field immediately after sample collection. Dioxane was extracted with ENVI-CARB-Plus solid phase columns and analyzed by GC/MS/MS, with a limit of quantification of 0.30 μg/L. Measured dioxane concentrations in domestic wastewater effluents ranged from <0.30 to 3.30 μg/L, with a mean concentration of 1.11 ± 0.60 μg/L. Dilution of upstream inputs of effluent were estimated for US drinking water intakes using the iSTREEM model at mean flow conditions, assuming no in-stream loss of dioxane. Dilution factors ranged from 2.6 to 48 113, with a mean of 875. The distributions of dilution factors and dioxane concentration in effluent were then combined using Monte Carlo analysis to estimate dioxane concentrations at drinking water intakes. This analysis showed the probability was negligible (p = 0.0031) that dioxane inputs from upstream WWTPs could result in intake concentrations exceeding the USEPA drinking water advisory concentration of 0.35 μg/L, before any treatment of the water for drinking use. © 2013 SETAC.
Jovanovic, Dragana; Jakovljević, Branko; Rašić-Milutinović, Zorica; Paunović, Katarina; Peković, Gordana; Knezević, Tanja
2011-02-01
Vojvodina, a northern region of Serbia, belongs to the Pannonian Basin, whose aquifers contain high concentrations of arsenic. This study represents arsenic levels in drinking water in ten municipalities in Serbia. Around 63% of all water samples exceeded Serbian and European standards for arsenic in drinking water. Large variations in arsenic were observed among supply systems. Arsenic concentrations in public water supply systems in Vojvodina were much higher than in other countries in the Pannonian Basin. Copyright © 2010 Elsevier Inc. All rights reserved.
A survey of ²²²Rn in drinking water in Mexico City.
Vázquez-López, C; Zendejas-Leal, B E; Golzarri, J I; Espinosa, G
2011-05-01
In Mexico City there are more than 22 millions of inhabitants (10 in the metropolitan area and 12 in the suburban zone) exposed to drinking water. The local epidemiological authorities recognised that exposure to radon contaminated drinking water is a potential health hazard, as has been considered worldwide. The United States Environmental Protection Agency has proposed a limit of 11.1 Bq l(-1) for the radon level in drinking water. In Mexico a maximum contamination level of radon in drinking water has not yet even considered. In this work, a (222)Rn study of drinking water in Mexico City has revealed a range of concentrations from background level to 3.8 Bq l(-1). (222)Rn was calculated using a portable degassing system (AquaKIT) associated with an AlphaGUARD measuring system. Samples from 70 wells of the water system of the south of the Valley Basin of Mexico City and from houses of some other political administrative divisions of Mexico City were taken.
Beumer, Amy; King, Dawn; Donohue, Maura; Mistry, Jatin; Covert, Terry; Pfaller, Stacy
2010-01-01
It has been suggested that Mycobacterium avium subspecies paratuberculosis has a role in Crohn's disease. The organism may be acquired but is difficult to culture from the environment. We describe a quantitative PCR (qPCR) method to detect M. avium subsp. paratuberculosis in drinking water and the results of its application to drinking water and faucet biofilm samples collected in the United States. PMID:20817803
Furlong, Edward T; Batt, Angela L; Glassmeyer, Susan T; Noriega, Mary C; Kolpin, Dana W; Mash, Heath; Schenck, Kathleen M
2017-02-01
Mobile and persistent chemicals that are present in urban wastewater, such as pharmaceuticals, may survive on-site or municipal wastewater treatment and post-discharge environmental processes. These pharmaceuticals have the potential to reach surface and groundwaters, essential drinking-water sources. A joint, two-phase U.S. Geological Survey-U.S. Environmental Protection Agency study examined source and treated waters from 25 drinking-water treatment plants from across the United States. Treatment plants that had probable wastewater inputs to their source waters were selected to assess the prevalence of pharmaceuticals in such source waters, and to identify which pharmaceuticals persist through drinking-water treatment. All samples were analyzed for 24 pharmaceuticals in Phase I and for 118 in Phase II. In Phase I, 11 pharmaceuticals were detected in all source-water samples, with a maximum of nine pharmaceuticals detected in any one sample. The median number of pharmaceuticals for all 25 samples was five. Quantifiable pharmaceutical detections were fewer, with a maximum of five pharmaceuticals in any one sample and a median for all samples of two. In Phase II, 47 different pharmaceuticals were detected in all source-water samples, with a maximum of 41 pharmaceuticals detected in any one sample. The median number of pharmaceuticals for all 25 samples was eight. For 37 quantifiable pharmaceuticals in Phase II, median concentrations in source water were below 113ng/L. For both Phase I and Phase II campaigns, substantially fewer pharmaceuticals were detected in treated water samples than in corresponding source-water samples. Seven different pharmaceuticals were detected in all Phase I treated water samples, with a maximum of four detections in any one sample and a median of two pharmaceuticals for all samples. In Phase II a total of 26 different pharmaceuticals were detected in all treated water samples, with a maximum of 20 pharmaceuticals detected in any one sample and a median of 2 pharmaceuticals detected for all 25 samples. Source-water type influences the presence of pharmaceuticals in source and treated water. Treatment processes appear effective in reducing concentrations of most pharmaceuticals. Pharmaceuticals more consistently persisting through treatment include carbamazepine, bupropion, cotinine, metoprolol, and lithium. Pharmaceutical concentrations and compositions from this study provide an important base data set for further sublethal, long-term exposure assessments, and for understanding potential effects of these and other contaminants of emerging concern upon human and ecosystem health. Copyright © 2016. Published by Elsevier B.V.
Fungi from a Groundwater-Fed Drinking Water Supply System in Brazil
Oliveira, Helena M.B.; Santos, Cledir; Paterson, R. Russell M.; Gusmão, Norma B.; Lima, Nelson
2016-01-01
Filamentous fungi in drinking water distribution systems are known to (a) block water pipes; (b) cause organoleptic biodeterioration; (c) act as pathogens or allergens and (d) cause mycotoxin contamination. Yeasts might also cause problems. This study describes the occurrence of several fungal species in a water distribution system supplied by groundwater in Recife—Pernambuco, Brazil. Water samples were collected from four sampling sites from which fungi were recovered by membrane filtration. The numbers in all sampling sites ranged from 5 to 207 colony forming units (CFU)/100 mL with a mean value of 53 CFU/100 mL. In total, 859 isolates were identified morphologically, with Aspergillus and Penicillium the most representative genera (37% and 25% respectively), followed by Trichoderma and Fusarium (9% each), Curvularia (5%) and finally the species Pestalotiopsis karstenii (2%). Ramichloridium and Leptodontium were isolated and are black yeasts, a group that include emergent pathogens. The drinking water system in Recife may play a role in fungal dissemination, including opportunistic pathogens. PMID:27005653
Fungi from a Groundwater-Fed Drinking Water Supply System in Brazil.
Oliveira, Helena M B; Santos, Cledir; Paterson, R Russell M; Gusmão, Norma B; Lima, Nelson
2016-03-09
Filamentous fungi in drinking water distribution systems are known to (a) block water pipes; (b) cause organoleptic biodeterioration; (c) act as pathogens or allergens and (d) cause mycotoxin contamination. Yeasts might also cause problems. This study describes the occurrence of several fungal species in a water distribution system supplied by groundwater in Recife-Pernambuco, Brazil. Water samples were collected from four sampling sites from which fungi were recovered by membrane filtration. The numbers in all sampling sites ranged from 5 to 207 colony forming units (CFU)/100 mL with a mean value of 53 CFU/100 mL. In total, 859 isolates were identified morphologically, with Aspergillus and Penicillium the most representative genera (37% and 25% respectively), followed by Trichoderma and Fusarium (9% each), Curvularia (5%) and finally the species Pestalotiopsis karstenii (2%). Ramichloridium and Leptodontium were isolated and are black yeasts, a group that include emergent pathogens. The drinking water system in Recife may play a role in fungal dissemination, including opportunistic pathogens.
The purpose of this SOP is to describe how to collect, store, and ship tap and drinking water samples for analysis by EPA Method 200.8 (revision 4.4) for the NHEXAS Arizona project. This SOP provides a brief description of the sample containers, collection, preservation, storage...
40 CFR 141.71 - Criteria for avoiding filtration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Filtration and Disinfection § 141.71... developed under section 1428 of the Safe Drinking Water Act may be used, if the State deems it appropriate... representative sample of the source water immediately prior to the first or only point of disinfection...
Lv, Shengmin; Zhao, Jun; Xu, Dong; Chong, Zhenshui; Chong, Zhengshui; Jia, Lihui; Du, Yonggui; Ma, Jing; Rutherford, Shannon
2012-07-01
To identify children's iodine nutrition and goitre status in areas with mildly excessive iodine in drinking water. A cross-sectional survey. Probability proportional to size sampling was employed to randomly select children from thirty townships where the median iodine content in drinking water ranged from 150 to 300 μg/l; their urinary iodine concentrations were determined and their thyroid volumes were measured by ultrasound. Drinking water samples and salt samples from the villages where the children lived were collected using a systematic sampling method. Hebei Province of China. A total of 1259 children aged 8-10 years (621 boys and 638 girls). Children's median urinary iodine concentration was found to be 418·8 μg/l, and the iodine concentration was >300 μg/l for 68·3 % (248/363) of the urine samples. Children's median urinary iodine concentration in villages with median salt iodine >10 mg/kg was significantly higher than that in villages with median salt iodine <5 mg/kg (442·9 μg/l v. 305·4 μg/l, P ≈ 0). The goitre rate of 1259 children examined by ultrasound was 10·96 %. The iodine intake of children living in areas with mildly excessive iodine in drinking water in Hebei Province was found to be excessive. The measured iodine excess in the sampled children is exacerbated by consumption of iodized salt. Goitre was identified in these areas; however, due to the limitation of the current criteria for children's thyroid volume, a comprehensive assessment of the prevalence of goitre in these regions could not be made and further study is required.
Levels of exposure from drinking water.
van Dijk-Looijaard, A M; van Genderen, J
2000-01-01
The relative exposure from drinking water is generally small, although there is a lack of information on total daily intake of individual organic micropollutants. There are, however, a few exceptions. Materials used in domestic distribution systems (lead, copper and plastics) may cause a deterioration of the water quality, especially in stagnant water. The relative exposure to the related compounds may increase considerably. Monitoring data from the tap (with defined sampling techniques) are needed. Also, disinfection/oxidation by-products (bromate, trihalomethanes) can be present in drinking water in considerable amounts and the relative exposure from drinking water may even approach 100%. Especially for volatile organic micropollutants, exposure routes from drinking water other than ingestion must be taken into account (inhalation, percutaneous uptake). When there is a need for detection of substances at very low levels it is important that the measurements are reliable. International interlaboratory comparisons for organic micropollutants are lacking at the moment.
Tokajian, Sima T; Hashwa, Fuad A; Hancock, Ian C; Zalloua, Pierre A
2005-04-01
Determination of a heterotrophic plate count (HPC) for drinking-water samples alone is not enough to assess possible health hazards associated with sudden changes in the bacterial count. Speciation is very crucial to determine whether the population includes pathogens and (or) opportunistic pathogens. Most of the isolates recovered from drinking water samples could not be allocated to a specific phylogenetic branch based on the use of conventional diagnostic methods. The present study had to use phylogenetic analysis, which was simplified by determining and using the first 500-bp sequence of the 16S rDNA, to successfully identify the type and species of bacteria found in the samples. Gram-positive bacteria alpha-, beta-, and gamma-Proteobacteria were found to be the major groups representing the heterotrophic bacteria in drinking water. The study also revealed that the presence of sphingomonads in drinking water supplies may be much more common than has been reported so far and thus further studies are merited. The intermittent mode of supply, mainly characterized by water stagnation and flow interruption associated possibly with biofilm detachment, raised the possibility that the studied bacterial populations in such systems represented organisms coming from 2 different niches, the biofilm and the water column.
Smith, Kirk P.
2017-09-12
The source water area for the drinking-water supply of the city of Cambridge, Massachusetts, encompasses major transportation corridors, as well as large areas of light industrial, commercial, and residential land use. Because of the large amount of roadway in the drinking-water source area, the Cambridge water supply is affected by the usage of deicing compounds and by other constituents that are flushed from such impervious areas. The U.S. Geological Survey (USGS) has monitored surface-water quality in the Cambridge Reservoir and Stony Brook Reservoir Basins, which compose the drinking-water source area, since 1997 (water year 1998) through continuous monitoring and the collection of stream-flow samples.In a study conducted by the USGS, in cooperation with the City of Cambridge Water Department, concentrations and loads of calcium (Ca), chloride (Cl), magnesium (Mg), sodium (Na), and sulfate (SO4) were estimated from continuous records of specific conductance and streamflow for streams and tributaries at 10 continuous water-quality monitoring stations. These data were used to characterize current (2015) water-quality conditions, estimate loads and yields, and describe trends in Cl and Na in the tributaries and main-stem streams in the Cambridge Reservoir and Stony Brook Reservoir Basins. These data also were used to describe how stream-water quality is related to various basin characteristics and provide information to guide future management of the drinking-water source area.Water samples from 2009–15 were analyzed for physical properties and concentrations of Ca, Cl, Mg, Na, potassium (K), SO4, and total phosphorus (TP). Values of physical properties and constituent concentrations varied widely, particularly in composite samples of stormflow from tributaries that have high percentages of constructed impervious areas. Median concentrations of Ca, Cl, Mg, Na, and K in samples collected from the tributaries in the Cambridge Reservoir Basin (27.2, 273, 4.7, 154.5, and 2.8 milligrams per liter (mg/L), respectively) were higher than those for the Stony Brook Reservoir Basin (22.2, 128, 4.3, 77.1, and 2.5, respectively). Differences between tributary samples for concentrations of Cl and Na were related to the percentage of developed land and constructed impervious area in the drinking-water source area. Median concentrations of SO4 in samples collected from the tributaries in the Cambridge Reservoir Basin (10.7 mg/L) were lower than those for the Stony Brook Reservoir Basin (18.0 mg/L).Concentrations of dissolved Cl and Na in samples and those concentrations estimated from continuous records of specific conductance (particularly during base flow) often were greater than the U.S. Environmental Protection Agency (EPA) secondary drinking-water standard for Cl (250 mg/L), the chronic aquatic-life guideline for Cl (230 mg/L), and the Massachusetts Department of Environmental Protection drinking-water guideline for Na (20 mg/L). Concentrations of TP (range from 0.008 to 0.69 mg/L in all subbasins) in tributary samples did not differ substantially between the Cambridge Reservoir and Stony Brook Reservoir Basins. About one-half of the concentrations of TP in samples collected during water years 2013–15 exceeded the EPA proposed reference concentration of 0.024 mg/L.For most tributaries, about 70 percent of the annual loads of Ca, Cl, Mg, Na, and SO4 were associated with base flow. Concentrations of major ions were negatively correlated with streamflow, indicating that these constituents were diluted during stormflow and tend to increase during the summer when streamflow is low. In contrast, between 57 and 92 percent of the annual load for TP was transported during stormflows.Mean annual yields of Ca, Cl, Mg, Na, and SO4 in the drinking-water source area were 13, 75, 2.6, 40, and 6.9 metric tons per square kilometer, respectively, for water years 2009–15. The mean annual yield of TP in the drinking-water source area for water years 2013–15 was 0.012 metric tons per square kilometer. Yields for major ions and TP were highest in tributary subbasins adjacent to Interstate 95.Temporal trends in mean annual concentrations for Cl and Na were not significant for water years 1998‒2015 (period of record by the USGS) for the outlet of the Cambridge Reservoir and for the main stem of Stony Brook downstream from the reservoir. Median values of base-flow concentrations of TP at three stations were higher for samples collected during base-flow conditions during water years 2005–7 than for samples collected during water years 2013–15. However, the results were not significant for statistical tests between concentrations in samples collected during storms for the same periods, indicating that the quality of stormwater remains similar.
N-nitrosamines in drinking water and beer: Detection and risk assessment.
Fan, Chun-Cheng; Lin, Tsair-Fuh
2018-06-01
Occurrence and risk related to nitrosamines, a group of carcinogenic compounds found in some drinking waters and beer, are studied. An analytical method using a solid-phase micro-extraction (SPME) along with gas chromatography (GC) and mass spectrometry (MS) was developed to determine seven N-nitrosamines in drinking water and beer, including N-nitrosomethylamine (NMEA), N-nitrosodiethylamine (NDEA), N-nitrosodimethylamine (NDMA), N-nitrosodi-n-propylamine (NDPA), N-nitrosopyrrolidine (NPyr), N-nitrosopiperidine (NPip), and N-nitrosodinbutylamine (NDBA). The analysis can be completed in 70 min, and only a 4 mL sample is required, with a detection limit of 0.1-0.8 ng/L for the seven nitrosamines in water and 6-15.7 ng/L in beer. The method was applied to analyze water samples collected from 11 reservoirs and their associated drinking water treatment plants in Taiwan and 10 beer samples from 6 brands with factories located in 6 countries. In the drinking water samples, all seven N-nitrosamines were detected, with NDMA having the highest level at 10.2 ng/L. In the beer samples, NDMA was detected at much lower concentrations (0.12-0.23 μg/L) than the 5 μg/L US standard, while NPip was detected at much higher concentrations (4.1-5.3 μg/L) compared to NDMA. The risk assessment indicates that the risk associated with NDMA is the highest among the studied N-nitrosamines in Taiwan's drinking water, with an average cancer risk of 6.4 × 10 -06 . For other nitrosamines, the risks are all below 10 -6 . For the risks associated with N-nitrosamines in beer, NDMA, NDEA, NDPA, and NPip are in the range of 1.5 × 10 -05 to 4.6 × 10 -04 , while that for other nitrosamines are much lower. As for beer, no information for NPip and no modern information for NDEA and NDPA have previously been available, more studies about nitrosamines in beer are suggested for better estimation and control of the risks associated with consumption of beer. Copyright © 2018 Elsevier Ltd. All rights reserved.
Smith, Kirk P.
2008-01-01
Records of water quantity, water quality, and meteorological parameters were continuously collected from three reservoirs, two primary streams, and four subbasin tributaries in the Cambridge, Massachusetts, drinking-water source area during water year 2006 (October 2005 through September 2006). Water samples were collected during base-flow conditions and storms in the subbasins of the Cambridge Reservoir and Stony Brook Reservoir drainage areas and analyzed for dissolved calcium, sodium, chloride, and sulfate; total nitrogen and phosphorus; and polar pesticides and metabolites. These data were collected to assist watershed administrators in managing the drinking-water source area and to identify potential sources of contaminants and trends in contaminant loading to the water supply. Monthly reservoir contents for the Cambridge Reservoir varied from about 59 to 98 percent of capacity during water year 2006, while monthly reservoir contents for the Stony Brook Reservoir and the Fresh Pond Reservoir was maintained at greater than 83 and 94 percent of capacity, respectively. If water demand is assumed to be 15 million gallons per day by the city of Cambridge, the volume of water released from the Stony Brook Reservoir to the Charles River during the 2006 water year is equivalent to an annual water surplus of about 127 percent. Recorded precipitation in the source area was about 16 percent greater for the 2006 water year than for the previous water year and was between 12 and 73 percent greater than for any recorded amount since water year 2002. The monthly mean specific-conductance values for all continuously monitored stations within the drinking-water source area were generally within the range of historical data collected since water year 1997, and in many cases were less than the historical medians. The annual mean specific conductance of 738 uS/cm (microsiemens per centimeter) for water discharged from the Cambridge Reservoir was nearly identical to the annual mean specific conductance for water year 2005 which was 737 uS/cm. However, the annual mean specific conductance at Stony Brook near Route 20 in Waltham (U.S. Geological Survey (USGS) station 01104460), on the principal tributary to the Stony Brook Reservoir, and at USGS station 01104475 on a smaller tributary to the Stony Brook Reservoir were about 15 and 13 percent lower, respectively, than the previous annual mean specific conductances of 538 and 284 uS/cm, respectively for water year 2005. The annual mean specific conductance for Fresh Pond Reservoir decreased from 553 uS/cm in the 2005 water year to 514 uS/cm in the 2006 water year. Water samples were collected in nearly all of the subbasins in the Cambridge drinking-water source area and from Fresh Pond during water year 2006. Discrete water samples were collected during base-flow conditions with an antecedent dry period of at least 4 days. Composite samples, consisting of as many as 100 subsamples, were collected by automatic samplers during storms. Concentrations of most dissolved constituents were generally lower in samples of stormwater than in samples collected during base flow; however, the average concentration of total phosphorus in samples of stormwater were from 160 to 1,109 percent greater than the average concentration in water samples collected during base-flow conditions. Concentrations of total nitrogen in water samples collected during base-flow conditions and composite samples of stormwater at USGS stations 01104415, 01104460, and 01104475 were similar, but mean concentrations of total nitrogen in samples of stormwater differed by about 0.5 mg/L (milligrams per liter) from those in water samples collected during base-flow conditions at U.S. Geological Survey stations 01104433 and 01104455. In six water samples, measurements of pH were lower than the U.S. Environmental Protection Agency (USEPA) national recommended freshwater quality criteria and the USEPA secondary drinking water-standa
Mora, Abrahan; Mac-Quhae, César; Calzadilla, Malvis; Sánchez, Luzmila
2009-02-01
To ascertain the water quality for human consumption, chemical parameters such as pH, conductivity and total dissolved calcium, magnesium, iron, aluminum, zinc, copper and manganese were measured during four sampling periods (November 2002; March, May and July 2003) in drinking water wells which supply several forest camps and rural populations located in the eastern Llanos of Venezuela. Copper levels in drinking water in November 2002 were found to be significantly higher (P<0.05) than the other assessed periods. Temporal variations of the other parameters considered were not statistically significant. Calcium and magnesium concentrations were found to be extremely low (mean concentration+/-S.D. of 0.27+/-0.25mg/l for Ca and 0.219+/-0.118 for Mg) during the four sampling periods, probably because of the carbonate bearing scarcity in the soils lithic component. The rest of the metals complied with the Venezuelan and International guidelines of quality criteria for drinking water.
Polycyclic Aromatic Hydrocarbons in drinking water of Tehran, Iran
2013-01-01
Distribution and seasonal variation of sixteen priority polycyclic aromatic hydrocarbons (PAHs) were investigated in the drinking water of Tehran, the capital of Iran. Detected single and total PAHs concentrations were in the range of 2.01-38.96 and 32.45-733.10 ng/L, respectively, which were quite high compared to the values recorded in other areas of the world. The average occurrence of PAHs with high molecular weights was 79.55%; for example, chrysene occurred in 60.6% of the samples, with a maximum concentration of 438.96 ng/L. In addition, mean carcinogen to non-carcinogen PAHs ratio was 63.84. Although the concentration of benzo[a]pyrene, as an indicator of water pollution to PAHs, was lower than the guideline value proposed by World Health Organization (WHO) as well as that of Iranian National Drinking Water Standards for all of the samples, the obtained results indicated that carcinogen PAHs present in the drinking water of Tehran can cause threats to human health. PMID:24499505
Al-Sulami, A A; Al-Taee, A M R; Wida'a, Q H
2012-03-01
This study aimed to determine the occurrence of Mycobacterium avium complex and other nontuberculous mycobacteria in drinking-water in Basra governorate, Iraq and their susceptibility to several antibiotics and the effect of 0.5 mg/L of chlorine on their survival. A total of 404 samples of drinking-water were collected from 33 different districts of the governorate from November 2006 to August 2007. Filtered samples were incubated for 7 days or less in a monophasic-biphasic culture setup of tuberculosis broth and Lowenstein-Jensen agar. The 252 isolates were identified as M. avium complex (21), M. marinum (15), M. kansasii (30), M. simiae (20), M. szulgai (19), M. xenopi (16), M. malmoense (11), M. fortuitum (37), M. chelonae (50) and M. abscessus (33). Isolates were tested for antibiotic susceptibility as well as their ability to tolerate chlorine at a concentration of 0.5 mg/L. The presence of these pathogenic bacteria in drinking-water renders the water unfit for human consumption.
Drinking of tap water is smart, but how do it better? - A tap water quality research
NASA Astrophysics Data System (ADS)
Mika, Anna; Sekuła, Klaudia; Dendys, Marta; Ptaszek, Weronika; Postawa, Adam
2018-02-01
Drinking tap water has recently become popular. It is a way to fight with the tons of garbage (disposable, plastic bottles). However, many people are afraid of water quality. The research was performed in December 2015 in Krakow, during one week. 56 samples were collected. The samples were taken in different times of the day and in the two types of building (old one with installation from the 80s and new one with installation built in past few years). Samples were taken by two qualified operators. The first sample was collected at the morning at 6 a.m., before anyone uses the tap. The second one after the tap was flushed and then the third one after 30 minutes stagnation. At the evening was taken one sample (after using the tap all day).The aim of the research was to check the quality of drinking water in the end-user. The results show that quality of tap water in Krakow is good, also in the end-user, but the concentration of chemical elements are changing during the flushing and using of the tap.
Gebbink, Wouter A; van Asseldonk, Laura; van Leeuwen, Stefan P J
2017-10-03
The present study investigated the presence of legacy and emerging per- and polyfluoroalkyl substances (PFASs) in river water collected in 2016 up- and downstream from a fluorochemical production plant, as well as in river water from control sites, in The Netherlands. Additionally, drinking water samples were collected from municipalities in the vicinity from the production plant, as well as in other regions in The Netherlands. The PFOA replacement chemical GenX was detected at all downstream river sampling sites with the highest concentration (812 ng/L) at the first sampling location downstream from the production plant, which was 13 times higher than concentrations of sum perfluoroalkylcarboxylic acids and perfluoroalkanesulfonates (∑PFCA+∑PFSA). Using high resolution mass spectrometry, 11 polyfluoroalkyl acids belonging to the C 2n H 2n F 2n O 2 , C 2n H 2n+2 F 2n SO 4 or C 2n+1 H 2n F 2n+4 SO 4 homologue series were detected, but only in downstream water samples. These emerging PFASs followed a similar distribution as GenX among the downstream sampling sites, suggesting the production plant as the source. Polyfluoroalkyl sulfonates (C 2n H 2 F 4n SO 3 ) were detected in all collected river water samples, and therefore appear to be ubiquitous contaminants in Dutch rivers. GenX was also detected in drinking water collected from 3 out of 4 municipalities in the vicinity of the production plant, with highest concentration at 11 ng/L. Drinking water containing the highest level of GenX also contained two C 2n H 2n F 2n O 2 homologues.
2017-01-01
The present study investigated the presence of legacy and emerging per- and polyfluoroalkyl substances (PFASs) in river water collected in 2016 up- and downstream from a fluorochemical production plant, as well as in river water from control sites, in The Netherlands. Additionally, drinking water samples were collected from municipalities in the vicinity from the production plant, as well as in other regions in The Netherlands. The PFOA replacement chemical GenX was detected at all downstream river sampling sites with the highest concentration (812 ng/L) at the first sampling location downstream from the production plant, which was 13 times higher than concentrations of sum perfluoroalkylcarboxylic acids and perfluoroalkanesulfonates (∑PFCA+∑PFSA). Using high resolution mass spectrometry, 11 polyfluoroalkyl acids belonging to the C2nH2nF2nO2, C2nH2n+2F2nSO4 or C2n+1H2nF2n+4SO4 homologue series were detected, but only in downstream water samples. These emerging PFASs followed a similar distribution as GenX among the downstream sampling sites, suggesting the production plant as the source. Polyfluoroalkyl sulfonates (C2nH2F4nSO3) were detected in all collected river water samples, and therefore appear to be ubiquitous contaminants in Dutch rivers. GenX was also detected in drinking water collected from 3 out of 4 municipalities in the vicinity of the production plant, with highest concentration at 11 ng/L. Drinking water containing the highest level of GenX also contained two C2nH2nF2nO2 homologues. PMID:28853567
Donovan, Ariel R; Adams, Craig D; Ma, Yinfa; Stephan, Chady; Eichholz, Todd; Shi, Honglan
2016-02-01
One of the most direct means for human exposure to nanoparticles (NPs) released into the environment is drinking water. Therefore, it is critical to understand the occurrence and fate of NPs in drinking water systems. The objectives of this study were to develop rapid and reliable analytical methods and apply them to investigate the fate and transportation of NPs during drinking water treatments. Rapid single particle ICP-MS (SP-ICP-MS) methods were developed to characterize and quantify titanium-containing, titanium dioxide, silver, and gold NP concentration, size, size distribution, and dissolved metal element concentration in surface water and treated drinking water. The effectiveness of conventional drinking water treatments (including lime softening, alum coagulation, filtration, and disinfection) to remove NPs from surface water was evaluated using six-gang stirrer jar test simulations. The selected NPs were nearly completely (97 ± 3%) removed after lime softening and alum coagulation/activated carbon adsorption treatments. Additionally, source and drinking waters from three large drinking water treatment facilities utilizing similar treatments with the simulation test were collected and analyzed by the SP-ICP-MS methods. Ti-containing particles and dissolved Ti were present in the river water samples, but Ag and Au were not present. Treatments used at each drinking water treatment facility effectively removed over 93% of the Ti-containing particles and dissolved Ti from the source water. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mulamattathil, Suma George; Bezuidenhout, Carlos; Mbewe, Moses
2015-12-01
Mafikeng, the capital of the North West Province, receives water from two sources, namely the Molopo eye and the Modimola dam. Once treated, the potable water is mixed and supplied to the city via distribution systems. This study was designed to assess the quality of drinking water in Mafikeng and also to determine whether the water from the two sources has an impact on the mixed water quality. Physico-chemical parameters and bacteriological quality (faecal coliforms (FCs), total coliforms (TCs), heterotrophic bacteria and Peudomonas spp.) was monitored at three drinking water sites weekly for 4 months. The results revealed that the physico-chemical quality of the water was generally acceptable. The pH ranged from 5.7 ± 0.18 to 8.6 ± 0.14, the temperature ranged from 18.3 ± 0.69 to 25.1 ± 0.69 °C and the total dissolved solids (TDS) ranged from 159.9 ± 22.44 to 364.4 ± 12.44 mg/l. These values are within the target water quality range for drinking water as prescribed by WHO, Department of Water Affairs and SANS 241. What is of concern was the microbial quality of the water. FCs, TCs, heterotrophic bacteria and Pseudomonas spp. were present in some of the treated water samples. The most significant finding of this study is that all drinking water samples were positive for Pseudomonas spp. (>100/100 ml).
Ground-water quality in selected areas of Wisconsin
Hindall, S.M.
1979-01-01
Analysis of 2,071 ground-water samples from 970 wells throughout Wisconsin indicate large variations in ground-water quality. Ground water in Wisconsin is generally suitable for most uses, but in some areas concentrations of chemical constituents exceed recommended drinking-water standards. Iron, manganese, and nitrate commonly exceed recommended drinking-water standards and dissolved solids, sulfate, heavy metals, and phenolic materials may present local problems. (USGS)
Flow cytometry for immediate follow-up of drinking water networks after maintenance.
Van Nevel, Sam; Buysschaert, Benjamin; De Roy, Karen; De Gusseme, Bart; Clement, Lieven; Boon, Nico
2017-03-15
Drinking water networks need maintenance every once in a while, either planned interventions or emergency repairs. When this involves opening of the water pipes, precautionary measures need to be taken to avoid contamination of the drinking water at all time. Drinking water suppliers routinely apply plating for faecal indicator organisms as quality control in such a situation. However, this takes at least 21 h of waiting time, which can be crucial when dealing with major supply pipes. A combination of flow cytometric (FCM) bacterial cell counts with FCM fingerprinting techniques is proposed in this study as a fast and sensitive additional technique. In three full scale situations, major supply pipes with 400-1050 mm diameter were emptied for maintenance, shock-chlorinated and flushed with large amounts of clean drinking water before taking back in operation. FCM measurements of the discharged flushing water revealed fast lowering and stabilizing bacterial concentrations once flushing is initiated. Immediate comparison with clean reference drinking water used for flushing was done, and the moment when both waters had similar bacterial concentrations was considered as the endpoint of the necessary flushing works. This was usually after 2-4 h of flushing. FCM fingerprinting, based on both bacteria and FCM background, was used as additional method to verify how similar flushing and reference samples were and yielded similar results. The FCM approved samples were several hours later approved as well by the drinking water supplier after plating and incubation for total Coliforms and Enterococci. These were used as decisive control to set the pipes back in operation. FCM proved to be a more conservative test than plating, yet it yielded immediate results. Application of these FCM methods can therefore avoid long unnecessary waiting times and large drinking water losses. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tissier, Adeline; Denis, Martine; Hartemann, Philippe; Gassilloud, Benoît
2012-02-01
Investigations of Campylobacter jejuni and Campylobacter coli in samples of drinking water suspected of being at the origin of an outbreak very often lead to negative results. One of the reasons for this failure is the small volume of water typically used for detecting these pathogens (10 to 1,000 ml). The efficiencies of three microfilters and different elution procedures were determined using real-time quantitative PCR to propose a procedure allowing detection of Campylobacter in 20 liters of drinking water or low-turbidity water samples. The results showed that more than 80% of the bacteria inoculated in 1 liter of drinking water were retained on each microfilter. An elution with a solution containing 3% beef extract, 0.05 M glycine at pH 9, combined with direct extraction of the bacterial genomes retained on the cellulose ester microfilter, allowed recovery of 87.3% (±22% [standard deviation]) of Campylobacter per 1 liter of tap water. Recoveries obtained from 20-liter volumes of tap water spiked with a C. coli strain were 69.5% (±10.3%) and 78.5% (±15.1%) for 91 CFU and 36 CFU, respectively. Finally, tests performed on eight samples of 20 liters of groundwater collected from an alluvial well used for the production of drinking water revealed the presence of C. jejuni and C. coli genomes, whereas no bacteria were detected with the normative culture method in volumes ranging from 10 to 1,000 ml. In the absence of available epidemiological data and information on bacterial viability, these last results indicate only that the water resource is not protected from contamination by Campylobacter.
Tissier, Adeline; Denis, Martine; Hartemann, Philippe
2012-01-01
Investigations of Campylobacter jejuni and Campylobacter coli in samples of drinking water suspected of being at the origin of an outbreak very often lead to negative results. One of the reasons for this failure is the small volume of water typically used for detecting these pathogens (10 to 1,000 ml). The efficiencies of three microfilters and different elution procedures were determined using real-time quantitative PCR to propose a procedure allowing detection of Campylobacter in 20 liters of drinking water or low-turbidity water samples. The results showed that more than 80% of the bacteria inoculated in 1 liter of drinking water were retained on each microfilter. An elution with a solution containing 3% beef extract, 0.05 M glycine at pH 9, combined with direct extraction of the bacterial genomes retained on the cellulose ester microfilter, allowed recovery of 87.3% (±22% [standard deviation]) of Campylobacter per 1 liter of tap water. Recoveries obtained from 20-liter volumes of tap water spiked with a C. coli strain were 69.5% (±10.3%) and 78.5% (±15.1%) for 91 CFU and 36 CFU, respectively. Finally, tests performed on eight samples of 20 liters of groundwater collected from an alluvial well used for the production of drinking water revealed the presence of C. jejuni and C. coli genomes, whereas no bacteria were detected with the normative culture method in volumes ranging from 10 to 1,000 ml. In the absence of available epidemiological data and information on bacterial viability, these last results indicate only that the water resource is not protected from contamination by Campylobacter. PMID:22138985
King, Dawn N; Donohue, Maura J; Vesper, Stephen J; Villegas, Eric N; Ware, Michael W; Vogel, Megan E; Furlong, Edward F; Kolpin, Dana W; Glassmeyer, Susan T; Pfaller, Stacy
2016-08-15
An occurrence survey was conducted on selected pathogens in source and treated drinking water collected from 25 drinking water treatment plants (DWTPs) in the United States. Water samples were analyzed for the protozoa Giardia and Cryptosporidium (EPA Method 1623); the fungi Aspergillus fumigatus, Aspergillus niger and Aspergillus terreus (quantitative PCR [qPCR]); and the bacteria Legionella pneumophila (qPCR), Mycobacterium avium, M. avium subspecies paratuberculosis, and Mycobacterium intracellulare (qPCR and culture). Cryptosporidium and Giardia were detected in 25% and in 46% of the source water samples, respectively (treated waters were not tested). Aspergillus fumigatus was the most commonly detected fungus in source waters (48%) but none of the three fungi were detected in treated water. Legionella pneumophila was detected in 25% of the source water samples but in only 4% of treated water samples. M. avium and M. intracellulare were both detected in 25% of source water, while all three mycobacteria were detected in 36% of treated water samples. Five species of mycobacteria, Mycobacterium mucogenicum, Mycobacterium phocaicum, Mycobacterium triplex, Mycobacterium fortuitum, and Mycobacterium lentiflavum were cultured from treated water samples. Although these DWTPs represent a fraction of those in the U.S., the results suggest that many of these pathogens are widespread in source waters but that treatment is generally effective in reducing them to below detection limits. The one exception is the mycobacteria, which were commonly detected in treated water, even when not detected in source waters. Published by Elsevier B.V.
40 CFR 141.202 - Tier 1 Public Notice-Form, manner, and frequency of notice.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., or coliphage in source water samples as specified in § 141.402(a) and § 141.402(b); (9) Other... (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Public Notification of Drinking Water Violations § 141.202 Tier 1 Public Notice—Form, manner, and frequency of notice. (a) Which...
40 CFR 141.202 - Tier 1 Public Notice-Form, manner, and frequency of notice.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., or coliphage in source water samples as specified in § 141.402(a) and § 141.402(b); (9) Other... (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Public Notification of Drinking Water Violations § 141.202 Tier 1 Public Notice—Form, manner, and frequency of notice. (a) Which...
The presence of estrogenic compounds in environmental water samples and their potential impact on fish, wildlife and human reproductive health has been of concern for some time. In vitro assays have been successfully used to screen for estrogenic activity in many types of water s...
Ehsan, Amimul; Geurden, Thomas; Casaert, Stijn; Paulussen, Jef; De Coster, Lut; Schoemaker, Toon; Chalmers, Rachel; Grit, Grietje; Vercruysse, Jozef; Claerebout, Edwin
2015-02-01
Human wastewater and livestock can contribute to contamination of surface water with Cryptosporidium and Giardia. In countries where a substantial proportion of drinking water is produced from surface water, e.g., Belgium, this poses a constant threat on drinking water safety. Our objective was to monitor the presence of Cryptosporidium and Giardia in different water catchment sites in Belgium and to discriminate between (oo)cysts from human or animal origin using genotyping. Monthly samples were collected from raw water and purified drinking water at four catchment sites. Cryptosporidium and Giardia were detected using USEPA method 1623 and positive samples were genotyped. No contamination was found in purified water at any site. In three catchments, only low numbers of (oo)cysts were recovered from raw water samples (<1/liter), but raw water samples from one catchment site were frequently contaminated with Giardia (92 %) and Cryptosporidium (96 %), especially in winter and spring. Genotyping of Giardia in 38 water samples identified the presence of Giardia duodenalis assemblage AI, AII, BIV, BIV-like, and E. Cryptosporidium andersoni, Cryptosporidium suis, Cryptosporidium horse genotype, Cryptosporidium parvum, and Cryptosporidium hominis were detected. The genotyping results suggest that agriculture may be a more important source of surface water contamination than human waste in this catchment. In catchment sites with contaminated surface water, such as the Blankaart, continuous monitoring of treated water for the presence of Cryptosporidium and Giardia would be justified and (point) sources of surface water contamination should be identified.
Centralized Drinking Water Treatment Operations Shape Bacterial and Fungal Community Structure.
Ma, Xiao; Vikram, Amit; Casson, Leonard; Bibby, Kyle
2017-07-05
Drinking water microbial communities impact opportunistic pathogen colonization and corrosion of water distribution systems, and centralized drinking water treatment represents a potential control for microbial community structure in finished drinking water. In this article, we examine bacterial and fungal abundance and diversity, as well as the microbial community taxonomic structure following each unit operation in a conventional surface water treatment plant. Treatment operations drove the microbial composition more strongly than sampling time. Both bacterial and fungal abundance and diversity decreased following sedimentation and filtration; however, only bacterial abundance and diversity was significantly impacted by free chlorine disinfection. Similarly, each treatment step was found to shift bacterial and fungal community beta-diversity, with the exception of disinfection on the fungal community structure. We observed the enrichment of bacterial and fungal taxa commonly found in drinking water distribution systems through the treatment process, for example, Sphingomonas following filtration and Leptospirillium and Penicillium following disinfection. Study results suggest that centralized drinking water treatment processes shape the final drinking water microbial community via selection of community members and that the bacterial community is primarily driven by disinfection while the eukaryotic community is primarily controlled by physical treatment processes.
Marchese, Stefano; Perret, Daniela; Gentili, Alessandra; D'Ascenzo, Guiseppe; Faberi, Angelo
2002-01-01
An evaluation was made of the feasibility of using reversed-phase liquid chromatography/tandem mass spectrometry with an electrospray interface (LC/ESI-MS/MS) to measure traces of phenoxyacid herbicides and their metabolites in surface and drinking water samples. The procedure involved passing 0.5 L of river and drinking water samples through a 0.5 g graphitized carbon black (GCB) extraction cartridge. Recovery was higher than 85% irrespective of the aqueous matrix in which the analytes were dissolved. A conventional 4.6-mm i.d. reversed-phase LC C-18 column operating with a mobile phase flow rate of 1 mL/min was used to chromatograph the analytes. A flow of 200 microL/min of the column effluent was diverted to the ESI source. The limits of detection (signal-to-noise ratio = 3) of the method for the pesticides considered in drinking and surface water samples are less than 0.1 ng/L for phenoxyacid herbicides, and about 5-10 ng/L for their metabolites (2,4-dichlorophenol and 4-chloro-2-methylphenol). Copyright 2001 John Wiley & Sons, Ltd.
Müller, Alexander; Schulz, Wolfgang; Ruck, Wolfgang K L; Weber, Walter H
2011-11-01
Non-target screening via high performance liquid chromatography-mass spectrometry (HPLC-MS) has gained increasingly in importance for monitoring organic trace substances in water resources targeted for the production of drinking water. In this article a new approach for evaluating the data from non-target HPLC-MS screening in water is introduced and its advantages are demonstrated using the supply of drinking water as an example. The crucial difference between this and other approaches is the comparison of samples based on compounds (features) determined by their full scan data. In so doing, we take advantage of the temporal, spatial, or process-based relationships among the samples by applying the set operators, UNION, INTERSECT, and COMPLEMENT to the features of each sample. This approach regards all compounds, detectable by the used analytical method. That is the fundamental meaning of non-target screening, which includes all analytical information from the applied technique for further data evaluation. In the given example, in just one step, all detected features (1729) of a landfill leachate sample could be examined for their relevant influences on water purification respectively drinking water. This study shows that 1721 out of 1729 features were not relevant for the water purification. Only eight features could be determined in the untreated water and three of them were found in the final drinking water after ozonation. In so doing, it was possible to identify 1-adamantylamine as contamination of the landfill in the drinking water at a concentration in the range of 20 ng L(-1). To support the identification of relevant compounds and their transformation products, the DAIOS database (Database-Assisted Identification of Organic Substances) was used. This database concept includes some functions such as product ion search to increase the efficiency of the database query after the screening. To identify related transformation products the database function "transformation tree" was used. Copyright © 2011 Elsevier Ltd. All rights reserved.
Arsenic exposure in drinking water: an unrecognized health threat in Peru.
George, Christine Marie; Sima, Laura; Arias, M Helena Jahuira; Mihalic, Jana; Cabrera, Lilia Z; Danz, David; Checkley, William; Gilman, Robert H
2014-08-01
To assess the extent of arsenic contamination of groundwater and surface water in Peru and, to evaluate the accuracy of the Arsenic Econo-Quick(™) (EQ) kit for measuring water arsenic concentrations in the field. Water samples were collected from 151 water sources in 12 districts of Peru, and arsenic concentrations were measured in the laboratory using inductively-coupled plasma mass spectrometry. The EQ field kit was validated by comparing a subset of 139 water samples analysed by laboratory measurements and the EQ kit. In 86% (96/111) of the groundwater samples, arsenic exceeded the 10 µg/l arsenic concentration guideline given by the World Health Organization (WHO) for drinking water. In 56% (62/111) of the samples, it exceeded the Bangladeshi threshold of 50 µg/l; the mean concentration being 54.5 µg/l (range: 0.1-93.1). In the Juliaca and Caracoto districts, in 96% (27/28) of groundwater samples arsenic was above the WHO guideline; and in water samples collected from the section of the Rímac river running through Lima, all had arsenic concentrations exceeding the WHO limit. When validated against laboratory values, the EQ kit correctly identified arsenic contamination relative to the guideline in 95% (106/111) of groundwater and in 68% (19/28) of surface water samples. In several districts of Peru, drinking water shows widespread arsenic contamination, exceeding the WHO arsenic guideline. This poses a public health threat requiring further investigation and action. For groundwater samples, the EQ kit performed well relative to the WHO arsenic limit and therefore could provide a vital tool for water arsenic surveillance.
Varol, Simge; Davraz, Aysen
2016-06-01
Isparta city center is selected as a work area in this study because the public believes that the tap water is dirty and harmful. In this study, the city's drinking water in the distribution system and other spring waters which are used as drinking water in this region were investigated from the point of water quality and health risk assessment. Water samples were collected from major drinking water springs, tap waters, treatment plants and dam pond in the Isparta province center. Ca-Mg-HCO3, Mg-Ca-HCO3, Ca-Na-HCO3, Ca-HCO3, Ca-HCO3-SO4 and Ca-Mg-HCO3-SO4 are dominant water types. When compared to drinking water guidelines established by World Health Organization and Turkey, much greater attention should be paid to As, Br, Fe, F, NH4, PO4 through varied chemicals above the critical values. The increases of As, Fe, F, NH4 and PO4 are related to water-rock interaction. In tap waters, the increases of As and Fe are due to corrosion of pipes in drinking water distribution systems. The major toxic and carcinogenic chemicals within drinking water are As and Br for both tap water and spring water. Also, F is the non-carcinogenic chemical for only spring waters in the study area.
Diaz-Baez, M C; Sánchez, W A; Dutka, B J; Ronco, A; Castillo, G; Pica-Granados, Y; Castillo, L E; Ridal, J; Arkhipchuk, V; Srivastava, R C
2002-01-01
Because of rapid population growth, industrial development, and intensified agricultural production increasing amounts of chemicals are being released into the environment, polluting receiving water bodies around the world. Given the potential health risk associated with the presence of toxicants in water sources used for drinking yet the scarcity of available data, there is a need to evaluate these waters and develop strategies to reduce and prevent their contamination. The present study examined the applicability of a battery of simple, inexpensive bioassays in environmental management and the relevance of the test results in establishing the toxicological quality of water sources and drinking water within the framework of the eight-country WaterTox Network, sponsored by the International Development Research Centre, Ottawa, Canada. Seventy-six samples were collected from surface and groundwater sources and seven samples from drinking water treatment plants. Each sample was tested with a core battery of bioassays (Daphnia magna, Hydra attenuata, and Lactuca sativa root inhibition tests) and a limited set of physical and chemical parameters. In addition, three labs included the Selenastrum capricornutum test. When no toxic effects were found with the battery, samples were concentrated 10x using a solid-phase extraction (SPE) procedure. Nonconcentrated natural water samples produced a toxic response in 24% of cases with all three core bioassays. When all bioassays are considered, the percentage of raw samples showing toxicity with at least one bioassay increased to 60%. Of seven treated drinkingwater samples, four showed toxicity with at least one bioassay, raising the possibility that treatment processes in these instances were unable to remove toxic contaminants. The Daphnia magna and Hydra attenuata tests indicated a high level of sensitivity overall. Although only three of the eight countries used S. capricornutum, it proved to be an efficient and reliable bioassay for toxicity assessment. Copyright 2002 Wiley Periodicals, Inc.
Walia, Tarun; Abu Fanas, Salem; Akbar, Madiha; Eddin, Jamal; Adnan, Mohamad
2017-07-01
To assess fluoride concentration in drinking water which include tap water of 4 emirates - Abu Dhabi, Dubai, Sharjah and Ajman plus bottled water, commonly available soft drinks & juices in United Arab Emirates. Five different samples of tap water collected from each of the four emirates of UAE: Ajman, Sharjah, Abu Dhabi and Dubai; twenty-two brands of bottled water and fifteen brands of popular cold beverages, purchased from different supermarkets in U.A.E were tested using ion selective electrode method and the fluoride concentration was determined. The mean fluoride content of tap water samples was 0.14 mg F/L with a range of 0.04-0.3 mg F/L; with Ajman tap water samples showing the highest mean fluoride content of 0.3 mg F/L. The mean fluoride content for both bottled drinking water and beverages was 0.07 mg F/L with a range of 0.02-0.50 mg F/L and 0.04-0.1 mg F/L respectively. Majority (68.2%) of the bottled water are produced locally within U.A.E while a few (31.8%) are imported. The tap water, bottled water and beverages available in U.A.E show varying concentrations of fluoride, however none showed the optimal level necessary to prevent dental caries. Dental professionals in U.A.E should be aware of the fluoride concentrations before prescribing fluoride supplements to children.
Rufener, Simonne; Mäusezahl, Daniel; Mosler, Hans-Joachim; Weingartner, Rolf
2010-02-01
In-house contamination of drinking-water is a persistent problem in developing countries. This study aimed at identifying critical points of contamination and determining the extent of recontamination after water treatment. In total, 81 households were visited, and 347 water samples from their current sources of water, transport vessels, treated water, and drinking vessels were analyzed. The quality of water was assessed using Escherichia coli as an indicator for faecal contamination. The concentration of E. coli increased significantly from the water source [median=0 colony-forming unit (CFU)/100 mL, interquartile range (IQR: 0-13)] to the drinking cup (median=8 CFU/100 mL; IQR: 0-550; n=81, z=-3.7, p<0.001). About two-thirds (34/52) of drinking vessels were contaminated with E. coli. Although boiling and solar disinfection of water (SODIS) improved the quality of drinking-water (median=0 CFU/100 mL; IQR: 0-0.05), recontamination at the point-of-consumption significantly reduced the quality of water in the cups (median=8, IQR: 0-500; n=45, z=-2.4, p=0.015). Home-based interventions in disinfection of water may not guarantee health benefits without complementary hygiene education due to the risk of posttreatment contamination.