Sample records for drinking water set

  1. Tribal Set-Aside Program of the Drinking Water Infrastructure Grant

    EPA Pesticide Factsheets

    The Safe Drinking Water Act (SWDA), as amended in 1996, established the Drinking Water State Revolving Fund (DWSRF) to make funds available to drinking water systems to finance infrastructure improvements.

  2. [Study on the optimization of monitoring indicators of drinking water quality during health supervision].

    PubMed

    Ye, Bixiong; E, Xueli; Zhang, Lan

    2015-01-01

    To optimize non-regular drinking water quality indices (except Giardia and Cryptosporidium) of urban drinking water. Several methods including drinking water quality exceed the standard, the risk of exceeding standard, the frequency of detecting concentrations below the detection limit, water quality comprehensive index evaluation method, and attribute reduction algorithm of rough set theory were applied, redundancy factor of water quality indicators were eliminated, control factors that play a leading role in drinking water safety were found. Optimization results showed in 62 unconventional water quality monitoring indicators of urban drinking water, 42 water quality indicators could be optimized reduction by comprehensively evaluation combined with attribute reduction of rough set. Optimization of the water quality monitoring indicators and reduction of monitoring indicators and monitoring frequency could ensure the safety of drinking water quality while lowering monitoring costs and reducing monitoring pressure of the sanitation supervision departments.

  3. Encouraging consumption of water in school and child care settings: access, challenges, and strategies for improvement.

    PubMed

    Patel, Anisha I; Hampton, Karla E

    2011-08-01

    Children and adolescents are not consuming enough water, instead opting for sugar-sweetened beverages (sodas, sports and energy drinks, milks, coffees, and fruit-flavored drinks with added sugars), 100% fruit juice, and other beverages. Drinking sufficient amounts of water can lead to improved weight status, reduced dental caries, and improved cognition among children and adolescents. Because children spend most of their day at school and in child care, ensuring that safe, potable drinking water is available in these settings is a fundamental public health measure. We sought to identify challenges that limit access to drinking water; opportunities, including promising practices, to increase drinking water availability and consumption; and future research, policy efforts, and funding needed in this area.

  4. Drinking water and health research: a look to the future in the United States and globally.

    PubMed

    Sobsey, Mark D

    2006-01-01

    Drinking water supplies continue to be a major source of human disease and death globally because many of them remain unsafe and vulnerable. Greater efforts are needed to address the key issues and questions which influence the provision of safe drinking water. Efforts are needed to re-evaluate and set new and better priorities for drinking water research and practice. More stakeholders need to be included in the processes of identifying key issues and setting priorities for safe drinking water. The overall approach to drinking water research and the provision of safe drinking water needs to become more rational and scientific, and become more visionary and anticipatory of the ever-present and emerging risks to drinking water safety. Collectively, we need to do a better job of making safe water available, accessible and affordable for all. One such approach to safe water for all is household water treatment and safe storage, which is being promoted globally by the World Health Organization and many other stakeholders and partners to reduce the global burden of waterborne disease.

  5. Drinking Water Contaminants -- Standards and Regulations

    MedlinePlus

    ... Labs and Research Centers Contact Us Share Drinking Water Contaminants – Standards and Regulations EPA identifies contaminants to regulate in drinking water to protect public health. The Agency sets regulatory ...

  6. Encouraging Consumption of Water in School and Child Care Settings: Access, Challenges, and Strategies for Improvement

    PubMed Central

    Hampton, Karla E.

    2011-01-01

    Children and adolescents are not consuming enough water, instead opting for sugar-sweetened beverages (sodas, sports and energy drinks, milks, coffees, and fruit-flavored drinks with added sugars), 100% fruit juice, and other beverages. Drinking sufficient amounts of water can lead to improved weight status, reduced dental caries, and improved cognition among children and adolescents. Because children spend most of their day at school and in child care, ensuring that safe, potable drinking water is available in these settings is a fundamental public health measure. We sought to identify challenges that limit access to drinking water; opportunities, including promising practices, to increase drinking water availability and consumption; and future research, policy efforts, and funding needed in this area. PMID:21680941

  7. Safe Drinking Water for Alaska: Curriculum for Grades 1-6.

    ERIC Educational Resources Information Center

    South East Regional Resource Center, Juneau, AK.

    Presented is a set of 10 lessons on safe drinking water in Alaska for use by elementary school teachers. The aim is to provide students with an understanding of the sources of the water they drink, how drinking water can be made safe, and the health threat that unsafe water represents. Although this curriculum relates primarily to science, health,…

  8. 76 FR 5691 - Cyprodinil; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-02

    ....'' This includes exposure through drinking water and in residential settings, but does not include... exposure from drinking water. The Agency used screening level water exposure models in the dietary exposure analysis and risk assessment for cyprodinil in drinking water. These simulation models take into account...

  9. 75 FR 17579 - Aminopyralid; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-07

    ... exposure through drinking water and in residential settings, but does not include occupational exposure... from drinking water. The Agency used screening level water exposure models in the dietary exposure analysis and risk assessment for aminopyralid in drinking water. These simulation models take into account...

  10. 75 FR 8500 - 1,2,3-Propanetriol, Homopolymer Diisooctadecanoate; Exemption from the Requirement of a Tolerance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-25

    ....'' This includes exposure through drinking water and in residential settings, but does not include..., EPA examines exposure to the pesticide through food, drinking water, and through other exposures that... other non-occupational exposures, including drinking water from ground water or surface water and...

  11. 78 FR 3328 - Fluroxypyr; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-16

    ... drinking water and in residential settings, but does not include occupational exposure. Section 408(b)(2)(C... from drinking water. The Agency used screening level water exposure models in the dietary exposure analysis and risk assessment for fluroxypyr in drinking water. These simulation models take into account...

  12. Setting action levels for drinking water: are we protecting our health or our economy (or our backs!)?

    PubMed

    Reimann, Clemens; Banks, David

    2004-10-01

    Clean and healthy drinking water is important for life. Drinking water can be drawn from streams, lakes and rivers, directly collected (and stored) from rain, acquired by desalination of ocean water and melting of ice or it can be extracted from groundwater resources. Groundwater may reach the earth's surface in the form of springs or can be extracted via dug or drilled wells; it also contributes significantly to river baseflow. Different water quality issues have to be faced when utilising these different water resources. Some of these are at present largely neglected in water quality regulations. This paper focuses on the inorganic chemical quality of natural groundwater. Possible health effects, the problems of setting meaningful action levels or maximum admissible concentrations (MAC-values) for drinking water, and potential shortcomings in current legislation are discussed. An approach to setting action levels based on transparency, toxicological risk assessment, completeness, and identifiable responsibility is suggested.

  13. U.S. DRINKING WATER REGULATIONS: TREATMENT TECHNOLOGIES AND COST.

    EPA Science Inventory

    The Safe Drinking Water Act and its Amendments have imposed a large number of new regulations on the U.S. drinking water industry. A major set of regulations currently under consideration will control disinfectants and disinfection by-products. Included in the development of th...

  14. 75 FR 9527 - Trichoderma asperellum strain ICC 012; Exemption from the Requirement of a Tolerance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-03

    ... reliable information.'' This includes exposure through drinking water and in residential settings, but does... food, drinking water, and through other exposures that occur as a result of pesticide use in... residue in food and all other non-occupational exposures, including drinking water from ground water or...

  15. 77 FR 745 - Bacillus Amyloliquefaciens Strain D747; Exemption From the Requirement of a Tolerance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-06

    ... drinking water and in residential settings, but does not include occupational exposure. Pursuant to section... examines exposure to the pesticide through food, drinking water, and through other exposures that occur as... residue in food and all other non-occupational exposures, including drinking water from ground water or...

  16. Investigation of drinking water quality in Kosovo.

    PubMed

    Berisha, Fatlume; Goessler, Walter

    2013-01-01

    In the recent years, not much environmental monitoring has been conducted in the territory of Kosovo. This study represents the first comprehensive monitoring of the drinking water situation throughout most of the territory of Kosovo. We present the distribution of major and minor trace elements in drinking water samples from Kosovo. During our study we collected 951 samples from four different sources: private-bored wells; naturally flowing artesian water; pumped-drilled wells; and public water sources (tap water). The randomly selected drinking water samples were investigated by routine water analyses using inductively coupled plasma mass spectrometry (ICPMS) for 32 elements (Li, Be, B, Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Rb, Sr, Mo, Ag, Cd, Sn, Sb, Te, Ba, Tl, Pb, Bi, Th, U). Even though there are set guidelines for elemental exposure in drinking water worldwide, in developing countries, such as Kosovo, the lack of monitoring drinking water continues to be an important health concern. This study reports the concentrations of major and minor elements in the drinking water in Kosovo. Additionally, we show the variation of the metal concentration within different sources. Of the 15 regulated elements, the following five elements: Mn, Fe, Al, Ni, As, and U were the elements which most often exceeded the guidelines set by the EU and/or WHO.

  17. 77 FR 3621 - Rimsulfuron; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-25

    ... drinking water and in residential settings, but does not include occupational exposure. Section 408(b)(2)(C... PCT were assumed for all food commodities. 2. Dietary exposure from drinking water. The Agency used... in drinking water. These simulation models take into account data on the physical, chemical, and fate...

  18. REMOVAL OF ORGANIC CCL CONTAMINANTS FROM DRINKING WATERS BY GAC, AIR STRIPPING, AND MEMBRANE PROCESSES

    EPA Science Inventory

    The 1996 amendments to the Safe Drinking Water Act (SWDA) require the US Environmental Protection Agency (USEPA) to establish a list of unregulated microbiological and chemical contaminants to aid in priority-setting for the Agency's drinking water program. This list, known as t...

  19. 76 FR 5687 - Isobutane; Exemption From the Requirement of a Tolerance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-02

    ....'' This includes exposure through drinking water and in residential settings, but does not include... the inert ingredient through food, drinking water, and through other exposures that occur as a result... Assessment No hazard was identified for the acute and chronic dietary assessment (food and drinking water...

  20. Standard setting processes and regulations for environmental contaminants in drinking water: State versus federal needs and viewpoints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sidhu, K.S.

    1991-06-01

    The primary objective of a standard setting process is to arrive at a drinking water concentration at which exposure to a contaminant would result in no known or potential adverse health effect on human health. The drinking water standards also serve as guidelines to prevent pollution of water sources and may be applicable in some cases as regulatory remediation levels. The risk assessment methods along with various decision making parameters are used to establish drinking water standards. For carcinogens classified in Groups A and B by the United States Environmental Protection Agency (USEPA) the standards are set by using nonthresholdmore » cancer risk models. The linearized multistage model is commonly used for computation of potency factors for carcinogenic contaminants. The acceptable excess risk level may vary from 10(-6) to 10(-4). For noncarcinogens, a threshold model approach based on application of an uncertainty factor is used to arrive at a reference dose (RfD). The RfD approach may also be used for carcinogens classified in Group C by the USEPA. The RfD approach with an additional uncertainty factory of 10 for carcinogenicity has been applied in the formulation of risk assessment for Group C carcinogens. The assumptions commonly used in arriving at drinking water standards are human life expectancy, 70 years; average human body weight, 70 kg; human daily drinking water consumption, 2 liters; and contribution of exposure to the contaminant from drinking water (expressed as a part of the total environmental exposure), 20%. Currently, there are over 80 USEPA existing or proposed primary standards for organic and inorganic contaminants in drinking water. Some of the state versus federal needs and viewpoints are discussed.« less

  1. Investigation of Drinking Water Quality in Kosovo

    PubMed Central

    Berisha, Fatlume; Goessler, Walter

    2013-01-01

    In the recent years, not much environmental monitoring has been conducted in the territory of Kosovo. This study represents the first comprehensive monitoring of the drinking water situation throughout most of the territory of Kosovo. We present the distribution of major and minor trace elements in drinking water samples from Kosovo. During our study we collected 951 samples from four different sources: private-bored wells; naturally flowing artesian water; pumped-drilled wells; and public water sources (tap water). The randomly selected drinking water samples were investigated by routine water analyses using inductively coupled plasma mass spectrometry (ICPMS) for 32 elements (Li, Be, B, Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Rb, Sr, Mo, Ag, Cd, Sn, Sb, Te, Ba, Tl, Pb, Bi, Th, U). Even though there are set guidelines for elemental exposure in drinking water worldwide, in developing countries, such as Kosovo, the lack of monitoring drinking water continues to be an important health concern. This study reports the concentrations of major and minor elements in the drinking water in Kosovo. Additionally, we show the variation of the metal concentration within different sources. Of the 15 regulated elements, the following five elements: Mn, Fe, Al, Ni, As, and U were the elements which most often exceeded the guidelines set by the EU and/or WHO. PMID:23509472

  2. REMOVAL OF ORGANIC CCL CONTAMINANTS FROM DRINKING WATERS BY ENHANCED COAGULATION, POWDERED ACTIVATED CARBON, CHEMICAL SOFTENING, AND OXIDATION

    EPA Science Inventory

    The 1996 amendments to the Safe Drinking Water Act (SWDA) require the US Environmental Protection Agency (USEPA) to establish a list of unregulated microbiological and chemical contaminants to aid in priority-setting for the Agency's drinking water program. This list, known as t...

  3. 77 FR 19109 - Bacillus Pumilus Strain GHA 180; Exemption From the Requirement of a Tolerance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-30

    ... Organization, Bacillus species are often detected in drinking water even after going through disinfection... exposure through drinking water and in residential settings, but does not include occupational exposure... exposure to the pesticide through food, drinking water, and through other exposures that occur as a result...

  4. 75 FR 34045 - Sodium 1,4-Dialkyl Sulfosuccinates; Exemption from the Requirement of a Tolerance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-16

    ....'' This includes exposure through drinking water and in residential settings, but does not include... the inert ingredient through food, drinking water, and through other exposures that occur as a result.... Dietary exposure from food and feed uses and drinking water. Since an endpoint for risk assessment was not...

  5. Evaluation and Refinement of a Field-Portable Drinking Water Toxicity Sensor Utilizing Electric Cell-Substrate Impedance Sensing and a Fluidic Biochip

    DTIC Science & Technology

    2014-01-01

    Potential interferences tested were chlorine and chloramine (commonly used for drinking water disinfection ), geosmin and 2-methyl-isoborneol (MIB...Protection Agency maximum residual disinfectant level for chlorine and chloramine is set at 4 mg l1 under the Safe Drinking Water Act and thus would...Evaluation and refinement of a field-portable drinking water toxicity sensor utilizing electric cell–substrate impedance sensing and a fluidic

  6. Trihalomethanes in drinking water and the risk of death from rectal cancer: does hardness in drinking water matter?

    PubMed

    Kuo, Hsin-Wei; Chen, Pei-Shih; Ho, Shu-Chen; Wang, Li-Yu; Yang, Chun-Yuh

    2010-01-01

    The objectives of this study were (1) to examine the relationship between total trihalomethanes (TTHM) levels in public water supplies and risk of rectal cancer development and (2) to determine whether calcium (Ca) and magnesium (Mg) levels in drinking water might modify the effects of TTHM on risk of developing rectal cancer. A matched cancer case-control study was used to investigate the relationship between the risk of death attributed to rectal cancer and exposure to TTHM in drinking water in 53 municipalities in Taiwan. All rectal cancer deaths in the 53 municipalities from 1998 through 2007 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to cancer cases by gender, year of birth, and year of death. Each matched control was selected randomly from the set of possible controls for each cancer case. Data on TTHM levels in drinking water were collected from the Taiwan Environmental Protection Administration. Information on the levels of Ca and Mg in drinking water was obtained from the Taiwan Water Supply Corporation. The municipality of residence for cancer cases and controls was presumed to be the source of the subject's TTHM, Ca, and Mg exposure via drinking water. Relative to individuals whose TTHM exposure level was <4.9 ppb, the adjusted OR (95% CI) for rectal cancer occurrence was 1.04 (0.88-1.22) for individuals who resided in municipalities served by drinking water with a TTHM exposure >or=4.9 ppb. There was no evidence of an interaction of drinking-water TTHM levels with low Ca intake via drinking water. However, evidence of an interaction was noted between drinking-water TTHM concentrations and Mg intake via drinking water. Our findings showed that the correlation between TTHM exposure and risk of rectal cancer is influenced by Mg in drinking water. Increased knowledge of the interaction between Mg and TTHM in reducing rectal cancer risk will aid in public policymaking and standard setting.

  7. 75 FR 61485 - Regulatory Training Session With Air Carriers, EPA Regional Partners and Other Interested Parties...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-05

    ... Regional Partners and Other Interested Parties for Implementation of the Aircraft Drinking Water Rule... Agency (EPA) will hold a two-day training session on the regulatory requirements of the Aircraft Drinking... water systems'' under the Safe Drinking Water Act (SDWA) must meet the first set of requirements of the...

  8. Safety of packaged water distribution limited by household recontamination in rural Cambodia.

    PubMed

    Holman, Emily J; Brown, Joe

    2014-06-01

    Packaged water treatment schemes represent a growing model for providing safer water in low-income settings, yet post-distribution recontamination of treated water may limit this approach. This study evaluates drinking water quality and household water handling practices in a floating village in Tonlé Sap Lake, Cambodia, through a pilot cross-sectional study of 108 households, approximately half of which used packaged water as the main household drinking water source. We hypothesized that households purchasing drinking water from local packaged water treatment plants would have microbiologically improved drinking water at the point of consumption. We found no meaningful difference in microbiological drinking water quality between households using packaged, treated water and those collecting water from other sources, including untreated surface water, however. Households' water storage and handling practices and home hygiene may have contributed to recontamination of drinking water. Further measures to protect water quality at the point-of-use may be required even if water is treated and packaged in narrow-mouthed containers.

  9. Effect modification of the association between trihalomethanes and pancreatic cancer by drinking water hardness: evidence from an ecological study.

    PubMed

    Chiu, Hui-Fen; Tsai, Shang-Shyue; Wu, Trong-Neng; Yang, Chun-Yuh

    2010-07-01

    The objective of this study was to examine the relationship between total trihalomethanes (TTHM) levels in public water supplies and risk of pancreatic cancer and to determine whether calcium (Ca) and magnesium (Mg) levels in drinking water modify the effects of TTHM on risk to develop pancreatic cancer. A matched case-control study was used to investigate the relationship between the risk of death attributed to pancreatic cancer and exposure to TTHM in drinking water in 53 municipalities in Taiwan. All pancreatic cancer deaths in the 53 municipalities from 1998 through 2007 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair matched to the cancer cases by gender, year of birth, and year of death. Each matched control was selected randomly from the set of possible controls for each cancer case. Data on TTHM levels in drinking water were collected from Taiwan Environmental Protection Administration. Information on the levels of Ca and Mg in drinking water was obtained from the Taiwan Water Supply Corporation. The municipality of residence for cancer cases and controls was presumed to be the source of the subject's TTHM, Ca, and Mg exposure via drinking water. Relative to individuals whose TTHM exposure level < 4.9ppb, the adjusted OR (95% CI) for pancreatic cancer was 1.01 (0.85-1.21) for individuals who resided in municipalities served by drinking water with a TTHM exposure > 4.9ppb. There was no evidence of an interaction of drinking water TTHM levels with low Ca intake via drinking water. However, we observed evidence of an interaction between drinking water TTHM concentrations and Mg intake via drinking water. Our findings showed that the correlation between TTHM exposure and risk of pancreatic cancer is influenced by Mg in drinking water. Increased knowledge of the interaction between Mg and TTHM in reducing pancreatic cancer risk will aid in public policy making and standard setting. 2010 Elsevier Inc. All rights reserved.

  10. Trihalomethanes in drinking water and the risk of death from esophageal cancer: does hardness in drinking water matter?

    PubMed

    Tsai, Shang-Shyue; Chiu, Hui-Fen; Yang, Chun-Yuh

    2013-01-01

    The objectives of this study were to (1) examine the relationship between total trihalomethanes (TTHM) levels in public water supplies and risk of esophageal cancer occurrence and (2) determine whether calcium (Ca) and magnesium (Mg) levels in drinking water modify the effects of TTHM on risk to develop esophageal cancer. A matched case-control study was used to investigate the relationship between the risk of death attributed to esophageal cancer and exposure to TTHM in drinking water in 53 municipalities in Taiwan. All esophageal cancer deaths in the 53 municipalities from 2006 through 2010 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to the cancer cases by gender, year of birth, and year of death. Each matched control was selected randomly from the set of possible controls for each cancer case. Data on TTHM levels in drinking water were collected from Taiwan Environmental Protection Administration. Information on the levels of Ca and Mg in drinking water was obtained from the Taiwan Water Supply Corporation. The municipality of residence for cancer cases and controls was presumed to be the source of the subject's TTHM, Ca, and Mg exposure via drinking water. Relative to individuals whose TTHM exposure level <4.9 ppb, the adjusted odds ratio (OR) with 95% confidence interval (CI) for esophageal cancer was 1.02 (0.84-1.23) for individuals who resided in municipalities served by drinking water with a TTHM exposure ≥4.9 ppb. There was evidence of an interaction between drinking-water TTHM levels and low Ca and Mg intake. Our findings showed that the correlation between TTHM exposure and risk of esophageal cancer development was influenced by Ca and Mg levels in drinking water. This is the first study to report effect modification by Ca and Mg intake from drinking water on the correlation between TTHM exposure and risk of esophageal cancer occurrence. Increased knowledge of the interaction between Ca, Mg, and TTHM in reducing risk of esophageal cancer development will aid in public policymaking and standard setting for drinking water.

  11. 40 CFR 142.1 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... amended by the Safe Drinking Water Act, Public Law 93-523, regulations for the implementation and... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS IMPLEMENTATION General Provisions § 142.1 Applicability. This part sets...

  12. 40 CFR 142.1 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... amended by the Safe Drinking Water Act, Public Law 93-523, regulations for the implementation and... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS IMPLEMENTATION General Provisions § 142.1 Applicability. This part sets...

  13. Use of the Threshold of Toxicological Concern (TTC) approach for deriving target values for drinking water contaminants.

    PubMed

    Mons, M N; Heringa, M B; van Genderen, J; Puijker, L M; Brand, W; van Leeuwen, C J; Stoks, P; van der Hoek, J P; van der Kooij, D

    2013-03-15

    Ongoing pollution and improving analytical techniques reveal more and more anthropogenic substances in drinking water sources, and incidentally in treated water as well. In fact, complete absence of any trace pollutant in treated drinking water is an illusion as current analytical techniques are capable of detecting very low concentrations. Most of the substances detected lack toxicity data to derive safe levels and have not yet been regulated. Although the concentrations in treated water usually do not have adverse health effects, their presence is still undesired because of customer perception. This leads to the question how sensitive analytical methods need to become for water quality screening, at what levels water suppliers need to take action and how effective treatment methods need to be designed to remove contaminants sufficiently. Therefore, in the Netherlands a clear and consistent approach called 'Drinking Water Quality for the 21st century (Q21)' has been developed within the joint research program of the drinking water companies. Target values for anthropogenic drinking water contaminants were derived by using the recently introduced Threshold of Toxicological Concern (TTC) approach. The target values for individual genotoxic and steroid endocrine chemicals were set at 0.01 μg/L. For all other organic chemicals the target values were set at 0.1 μg/L. The target value for the total sum of genotoxic chemicals, the total sum of steroid hormones and the total sum of all other organic compounds were set at 0.01, 0.01 and 1.0 μg/L, respectively. The Dutch Q21 approach is further supplemented by the standstill-principle and effect-directed testing. The approach is helpful in defining the goals and limits of future treatment process designs and of analytical methods to further improve and ensure the quality of drinking water, without going to unnecessary extents. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Swim drink study: a randomised controlled trial of during-exercise rehydration and swimming performance.

    PubMed

    Briars, Graham L; Gordon, Gillian Suzanne; Lawrence, Andrew; Turner, Andrew; Perry, Sharon; Pillbrow, Dan; Walston, Florence Einstein; Molyneux, Paul

    2017-01-01

    To determine whether during-exercise rehydration improves swimming performance and whether sports drink or water have differential effects on performance. Randomised controlled multiple crossover trial. A UK competitive swimming club. 19 club-level competitive swimmers, median age (range) 13 (11-17) years. Subjects were scheduled to drink ad libitum commercial isotonic sports drink (3.9 g sugars and 0.13 g salt per 100 mL) or water (three sessions each) or no drink (six sessions) in the course of twelve 75 min training sessions, each of which was followed by a 30 min test set of ten 100 m maximum-effort freestyle sprints each starting at 3 min intervals. Times for the middle 50 m of each sprint measured using electronic timing equipment in a Federation Internationale de Natation (FINA)-compliant six-lane 25 m competition swimming pool. Software-generated individual random session order in sealed envelopes. Analysis subset of eight sessions randomly selected by software after data collection completed. Participants blind to drink allocation until session start. In the analysis data set of 1118 swims, there was no significant difference between swim times for drinking and not drinking nor between drinking water or a sports drink. Mean (SEM) 50 m time for no-drink swims was 38.077 (0.128) s and 38.105 (0.131) s for drink swims, p=0.701. Mean 50 m times were 38.031 (0.184) s for drinking sports drink and 38.182 (0.186) s for drinking water, p=0.073. Times after not drinking were 0.027 s faster than after drinking (95% CI 0.186 s faster to 0.113 s slower). Times after drinking sports drink were 0.151 s faster than after water (95% CI 0.309 s faster to 0.002 s slower). Mean (SEM) dehydration from exercise was 0.42 (0.11)%. Drinking water or sports drink over 105 min of sustained effort swimming training does not improve swimming performance. ISRCTN: 49860006.

  15. Organochlorine pesticides residues in bottled drinking water from Mexico City.

    PubMed

    Díaz, Gilberto; Ortiz, Rutilio; Schettino, Beatriz; Vega, Salvador; Gutiérrez, Rey

    2009-06-01

    This work describes concentrations of organochlorine pesticides in bottled drinking water (BDW) in Mexico City. The results of 36 samples (1.5 and 19 L presentations, 18 samples, respectively) showed the presence of seven pesticides (HCH isomers, heptachlor, aldrin, and p,p'-DDE) in bottled water compared with the drinking water standards set by NOM-127-SSA1-1994, EPA, and World Health Organization. The concentrations of the majority of organochlorine pesticides were within drinking water standards (0.01 ng/mL) except for beta-HCH of BW 3, 5, and 6 samples with values of 0.121, 0.136, and 0.192 ng/mL, respectively. It is important monitoring drinking bottled water for protecting human health.

  16. REMOVAL OF ALACHLOR FROM DRINKING WATER

    EPA Science Inventory

    Alachlor (Lasso) is a pre-emergent herbicide used in the production of corn and soybeans. U.S. EPA has studied control of alachlor in drinking water treatment processes to define treatability before setting maximum contaminant levels and to assist water utilities in selecting con...

  17. Formative Research to Design a Promotional Campaign to Increase Drinking Water among Central American Latino Youth in an Urban Area.

    PubMed

    Barrett, Nicole; Colón-Ramos, Uriyoán; Elkins, Allison; Rivera, Ivonne; Evans, W Douglas; Edberg, Mark

    2017-06-01

    Latinos consume more sugary drinks and less water than other demographic groups. Our objective was to understand beverage choice motivations and test promotional concepts that can encourage Central American Latino urban youth to drink more water. Two rounds of focus group discussions were conducted (n = 10 focus groups, 61 participants, 6-18 years old). Data were transcribed verbatim and analyzed using inductive and deductive coding approaches. Youth motivations for drinking water were shaped by level of thirst, weather, energy, and perceptions of health benefits. Youth were discouraged from drinking water due to its taste and perceptions of the safety and cleanliness of tap water. Youth beverage preference depended on what their friends were drinking. Availability of water versus other beverages at home and other settings influenced their choice. Promotional materials that included mixed language, informative messages about the benefits of drinking water, and celebrities or athletes who were active, energized, and drinking water were preferred. A promotional campaign to increase water consumption among these Latino youth should include bicultural messages to underscore the power of water to quench true thirst, highlight the health benefits of drinking water, and address the safety of tap water.

  18. Away-from-home drinking water consumption practices and the microbiological quality of water consumed in rural western Kenya.

    PubMed

    Onyango-Ouma, W; Gerba, Charles P

    2011-12-01

    A cross-sectional descriptive study was conducted to examine away-from-home drinking water consumption practices and the microbiological quality of water consumed in rural western Kenya. The study involved adults and schoolchildren. Data were collected using focus group discussions, questionnaire survey, observations, diaries and interviews. The findings suggest that away-from-home drinking water consumption is a common practice in the study area; however, the microbiological quality of the water consumed is poor. While some respondents perceive the water to be safe for drinking mainly because of the clear colour of the water, others are forced by circumstances to drink the water as it is owing to a lack of alternative safe sources. It is concluded that there is a need for new innovative approaches to address away-from-home drinking water consumption in resource-poor settings in order to complement and maximize the benefits of point-of-use water treatment at the household level.

  19. [Examination of drinking water used in livestock production. Microbiological and physico-chemical methods. Ready to use test kits in field experiments].

    PubMed

    Sassen, J

    2000-08-01

    Livestock health care service is very much involved and interested in surveillance of the drinking water as well. However, in order to examine the water immediately "on the fly", test kits have to be provided, which offer results comparable to these obtained in the laboratories according to official prescription. The German Army was confronted with a similar situation during the secently performed mission in crisis regions. At the early state of a mission usually laboratory equipment is not yet established. Therefore a set of test kits was compiled suitable for mobile microbiological examination of drinking water. This set was excessively examined comparison with reference methods. In conclusion it is shown, that the mobile set gains equal or even better results compared to those obtained according to legally prescribed standard procedures.

  20. Learn About the Unregulated Contaminant Monitoring Rule

    EPA Pesticide Factsheets

    EPA uses the Unregulated Contaminant Monitoring program to collect data for contaminants suspected to be present in drinking water, but that do not have health-based standards set under the Safe Drinking Water Act (SDWA)

  1. The Dependence of Chlorine Decay and DBP Formation Kinetics On Pipe Flow Properties in Drinking Water Distribution

    EPA Science Inventory

    Simultaneous chlorine decay and disinfection byproduct (DBP) formation has long been discussed because of its regulatory and operational significance. This study further examines the water quality changes under hydrodynamic settings during drinking water distribution. Comparative...

  2. Occurrence of perfluorinated compounds (PFCs) in drinking water of North Rhine-Westphalia, Germany and new approach to assess drinking water contamination by shorter-chained C4-C7 PFCs.

    PubMed

    Wilhelm, Michael; Bergmann, Sabine; Dieter, Hermann H

    2010-06-01

    After detection of perfluorooctanoate (PFOA) in drinking water at concentrations up to 0.64 microg/l in Arnsberg, Sauerland, Germany, the German Drinking Water Commission (TWK) assessed perfluorinated compounds (PFCs) in drinking water and set for the first time worldwide in June 2006 a health-based guide value for safe lifelong exposure at 0.3 microg/l (sum of PFOA and perfluorooctanesulfonate, PFOS). PFOA and PFOS can be effectively removed from drinking water by percolation over granular activated carbon. Additionally, recent EU-regulations require phasing out use of PFOS and ask to voluntarily reduce the one of PFOA. New and shorter-chained PFCs (C4-C7) and their mixtures are being introduced as replacements. We assume that some of these "new" compounds could be main contributors to total PFC levels in drinking water in future, especially since short-chained PFCs are difficult to remove from drinking water by common treatment techniques and also by filtration over activated carbon. The aims of the study were to summarize the data from the regularly measured PFC levels in drinking water and in the drinking water resources in North Rhine-Westphalia (NRW) for the sampling period 2008-2009, to give an overview on the general approach to assess PFC mixtures and to assess short-chained PFCs by using toxicokinetic instead of (sub)chronic data. No general increase of substitutes for PFOS and PFOA in wastewater and surface water was detected. Present findings of short-chained PFC in drinking waters in NRW were due to extended analysis and caused by other impacts. Additionally, several PFC contamination incidents in drinking water resources (groundwater and rivers) have been reported in NRW. The new approach to assess short-chained PFCs is based on a ranking of their estimated half-lives for elimination from the human body. Accordingly, we consider the following provisional health-related indication values (HRIV) as safe in drinking water for lifelong exposure: perfluorobutanoate (PFBA) 7 microg/l, perfluoropentanoate (PFPA) 3 microg/l, perfluorohexanoate (PFHxA) 1 microg/l, perfluoroheptanoate (PFHpA) 0.3 microg/l, perfluorobutanesulfonate (PFBS) 3 microg/l, perfluoropentanesulfonate (PFPS) 1 microg/l, perfluorohexanesulfonate (PFHxS) 0.3 microg/l and perfluoroheptanesulfonate (PFHpS) 0.3 microg/l. For all PFCs the long-term lowest maximal quality goal (general precautionary value, PVg) in drinking water is set to -0.1 microg/l.

  3. Early warning risk assessment for drinking water production: decoding subtle evidence

    NASA Astrophysics Data System (ADS)

    Merz, Christoph; Lischeid, Gunnar; Böttcher, Steven

    2016-04-01

    Due to increasing demands for high quality water for drinking water supply all over the world there is acute need for methods to detect possible threats to groundwater resources early. Especially drinking water production in complex geologic settings has a particularly high risk for unexpected degradation of the groundwater quality due to the unknown interplay between anthropogenically induced hydraulic changes and geochemical processes. This study investigates the possible benefit of the Principal Component Analysis (PCA) for groundwater and drinking water management using common sets of physicochemical monitoring data. The approach was used to identify the prevailing processes driving groundwater quality shifts and related threats, which might be masked in anthropogenically impacted aquifer systems. The approach was applied to a data set from a waterworks located in the state of Brandenburg, NE Germany, which has been operating since nearly four decades. The region faces confronting and increasing demands due to rising peri-urban settlements. The PCA subdivided the data set according to different strengths of effects induced by differing geochemical processes at different sites in the capture zone of the waterworks and varying in time. Thus a spatial assessment of these processes could be performed as well as a temporal assessment of long-term groundwater quality shifts in the extracted water. The analysis revealed that over the period of 16 years of water withdrawal the geochemistry of the extracted groundwater had become increasingly more dissimilar compared to the characteristics found at the majority of observation wells. This component could be identified as highly mineralized CaSO4 dominated water from unexamined deeper zones of the aquifer system. Due to the complex geochemical and hydraulic interactions in the system, this process was masked and was not evident in the data set without validation by the applied statistical analysis. The findings give a clear indication of a potential threat to the groundwater resources in this region with danger for drinking water contamination in a medium-term period.

  4. The Safe Drinking Water Act of 1974 and Its Role in Providing Access to Safe Drinking Water in the United States.

    PubMed

    Weinmeyer, Richard; Norling, Annalise; Kawarski, Margaret; Higgins, Estelle

    2017-10-01

    In 1974, President Gerald Ford signed into law the Safe Drinking Water Act, the first piece of legislation of its kind to provide a comprehensive regulatory framework for overseeing the nation's drinking water supply. The law has proven instrumental in setting standards for ensuring that the US population can access drinking water that is safe. However, the law delegates much of its monitoring requirements to states, creating, at times, a confusing and complicated system of standards that must be adhered to and enforced. Although it has proven valuable in the safety standards it specifies, the law's administration and enforcement poses tremendous challenges. © 2017 American Medical Association. All Rights Reserved.

  5. Integration of population census and water point mapping data-A case study of Cambodia, Liberia and Tanzania.

    PubMed

    Yu, Weiyu; Wardrop, Nicola A; Bain, Robert; Wright, Jim A

    2017-07-01

    Sustainable Development Goal (SDG) 6 has expanded the Millennium Development Goals' focus from improved drinking-water to safely managed water services. This expanded focus to include issues such as water quality requires richer monitoring data and potentially integration of datasets from different sources. Relevant data sets include water point mapping (WPM), the survey of boreholes, wells and other water points, census and household survey data. This study examined inconsistencies between population census and WPM datasets for Cambodia, Liberia and Tanzania, and identified potential barriers to integrating the two datasets to meet monitoring needs. Literatures on numbers of people served per water point were used to convert WPM data to population served by water source type per area and compared with census reports. For Cambodia and Tanzania, discrepancies with census data suggested incomplete WPM coverage. In Liberia, where the data sets were consistent, WPM-derived data on functionality, quantity and quality of drinking water were further combined with census area statistics to generate an enhanced drinking-water access measure for protected wells and springs. The process revealed barriers to integrating census and WPM data, including exclusion of water points not used for drinking by households, matching of census and WPM source types; temporal mismatches between data sources; data quality issues such as missing or implausible data values, and underlying assumptions about population served by different water point technologies. However, integration of these two data sets could be used to identify and rectify gaps in WPM coverage. If WPM databases become more complete and the above barriers are addressed, it could also be used to develop more realistic measures of household drinking-water access for monitoring. Copyright © 2017 Elsevier GmbH. All rights reserved.

  6. Occurrence Data for the Unregulated Contaminant Monitoring Rule

    EPA Pesticide Factsheets

    EPA uses the Unregulated Contaminant Monitoring Rule (UCMR) to collect data for contaminants suspected to be present in drinking water, but that do not have health-based standards set under the Safe Drinking Water Act (SDWA)

  7. Dangerous Elements.

    ERIC Educational Resources Information Center

    Pinkham, Jim

    1994-01-01

    Discusses legislation currently under consideration that sets standards for the amount of radon, aluminum, and arsenic allowable in drinking water. Considers the economic impact of the legislation and traces the status of the Safe Drinking Water Act Regulations from 1989-92. (MDH)

  8. Amendments to the Drinking Water Infrastructure Grants Program as Required by the Water Infrastructure Improvements for the Nation Act

    EPA Pesticide Factsheets

    The WIIN Act has expanded the activities that qualify for Drinking Water Infrastructure Grant Tribal Set-Aside (DWIG-TSA) funding to include training and operator certification for operators of PWSs serving American Indians and Alaskan Natives.

  9. Quality of Kelantan drinking water and knowledge, attitude and practice among the population of Pasir Mas, Malaysia.

    PubMed

    Ab Razak, N H; Praveena, S M; Aris, A Z; Hashim, Z

    2016-02-01

    Information about the quality of drinking water, together with analysis of knowledge, attitude and practice (KAP) analysis and health risk assessment (HRA) remain limited. The aims of this study were: (1) to ascertain the level of KAP regarding heavy metal contamination of drinking water in Pasir Mas; (2) to determine the concentration of heavy metals (Al, Cr, Cu, Fe, Ni, Pb, Zn and Cd) in drinking water in Pasir Mas; and (3) to estimate the health risks (non-carcinogenic and carcinogenic) caused by heavy metal exposure through drinking water using hazard quotient and lifetime cancer risk. Information on KAP was collected using a standardized questionnaire. Heavy metal analysis of drinking water samples was performed using graphite furnace atomic absorption spectrophotometry. The population of Pasir Mas has good knowledge (80%), a less positive attitude (93%) and good practice (81%) towards heavy metal contamination of drinking water. The concentrations of heavy metals analysed in this study were found to be below the permissible limits for drinking water set by the Malaysian Ministry of Health and the World Health Organization. The HRA showed no potential non-carcinogenic and carcinogenic risks from the intake of heavy metal through drinking water. By investigating the quality of drinking water, KAP and HRA, the results of this study will provide authorities with the knowledge and resources to improve the management of drinking water quality in the future. Copyright © 2015 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  10. Ambient-temperature incubation for the field detection of Escherichia coli in drinking water.

    PubMed

    Brown, J; Stauber, C; Murphy, J L; Khan, A; Mu, T; Elliott, M; Sobsey, M D

    2011-04-01

     Escherichia coli is the pre-eminent microbiological indicator used to assess safety of drinking water globally. The cost and equipment requirements for processing samples by standard methods may limit the scale of water quality testing in technologically less developed countries and other resource-limited settings, however. We evaluate here the use of ambient-temperature incubation in detection of E. coli in drinking water samples as a potential cost-saving and convenience measure with applications in regions with high (>25°C) mean ambient temperatures.   This study includes data from three separate water quality assessments: two in Cambodia and one in the Dominican Republic. Field samples of household drinking water were processed in duplicate by membrane filtration (Cambodia), Petrifilm™ (Cambodia) or Colilert® (Dominican Republic) on selective media at both standard incubation temperature (35–37°C) and ambient temperature, using up to three dilutions and three replicates at each dilution. Matched sample sets were well correlated with 80% of samples (n = 1037) within risk-based microbial count strata (E. coli CFU 100 ml−1 counts of <1, 1–10, 11–100, 101–1000, >1000), and a pooled coefficient of variation of 17% (95% CI 15–20%) for paired sample sets across all methods.   These results suggest that ambient-temperature incubation of E. coli in at least some settings may yield sufficiently robust data for water safety monitoring where laboratory or incubator access is limited.

  11. NATIONAL ENVIRONMENTAL LABORATORY ACCREDITATION PROGRAM (NELAP) SUPPORT

    EPA Science Inventory

    The nation has long suffered from the inefficiencies and inconsistencies of the current multiple environmental laboratory accreditation programs. In the 1970's, EPA set minimum standards for a drinking water certification program. The drinking water program was adopted by the s...

  12. A decision tree approach to screen drinking water contaminants for multiroute exposure potential in developing guideline values.

    PubMed

    Krishnan, Kannan; Carrier, Richard

    2017-07-03

    The consideration of inhalation and dermal routes of exposures in developing guideline values for drinking water contaminants is important. However, there is no guidance for determining the eligibility of a drinking water contaminant for its multiroute exposure potential. The objective of the present study was to develop a 4-step framework to screen chemicals for their dermal and inhalation exposure potential in the process of developing guideline values. The proposed framework emphasizes the importance of considering basic physicochemical properties prior to detailed assessment of dermal and inhalation routes of exposure to drinking water contaminants in setting guideline values.

  13. [Experience of the implementation of the method of the integral assessment of drinking water on indicators of chemical harmlessness in St. Petersburg].

    PubMed

    Mel'tser, A V; Erastova, N V; Kiselev, A V

    2013-01-01

    Providing population with quality drinking water--one of the priority tasks of the state policy aimed at maintaining the health of citizens. Hygienic rating of the drinking water quality envisages requirements to assurance its safety in the epidemiological and radiation relations, harmlessness of chemical composition and good organoleptic properties. There are numerous data proving the relationship between the chemical composition of drinking water and human health, and therefore the issue of taking a hygienically sound measures to improve the efficiency of water treatment has more and more priority. High water quality--the result of complex solution of tasks, including an integral approach to assessment of the quality of drinking water the use of hygienically sound decisions in the modernization of water treatment systems. The results of the integral assessment of drinking water on the properties of harmlessness have shown its actuality in the development and implementation of management decisions. The use of the spatial characteristics of integrated indices permits to visualize changes in the quality of drinking water in all stages of production and transportation from the position of health risks, evaluate the effectiveness of technological solutions and set priorities for investing.

  14. Water filtration using plant xylem.

    PubMed

    Boutilier, Michael S H; Lee, Jongho; Chambers, Valerie; Venkatesh, Varsha; Karnik, Rohit

    2014-01-01

    Effective point-of-use devices for providing safe drinking water are urgently needed to reduce the global burden of waterborne disease. Here we show that plant xylem from the sapwood of coniferous trees--a readily available, inexpensive, biodegradable, and disposable material--can remove bacteria from water by simple pressure-driven filtration. Approximately 3 cm(3) of sapwood can filter water at the rate of several liters per day, sufficient to meet the clean drinking water needs of one person. The results demonstrate the potential of plant xylem to address the need for pathogen-free drinking water in developing countries and resource-limited settings.

  15. Assessing the Consistency and Microbiological Effectiveness of Household Water Treatment Practices by Urban and Rural Populations Claiming to Treat Their Water at Home: A Case Study in Peru

    PubMed Central

    Rosa, Ghislaine; Huaylinos, Maria L.; Gil, Ana; Lanata, Claudio; Clasen, Thomas

    2014-01-01

    Background Household water treatment (HWT) can improve drinking water quality and prevent disease if used correctly and consistently by vulnerable populations. Over 1.1 billion people report treating their water prior to drinking it. These estimates, however, are based on responses to household surveys that may exaggerate the consistency and microbiological performance of the practice—key factors for reducing pathogen exposure and achieving health benefits. The objective of this study was to examine how HWT practices are actually performed by households identified as HWT users, according to international monitoring standards. Methods and Findings We conducted a 6-month case study in urban (n = 117 households) and rural (n = 115 households) Peru, a country in which 82.8% of households report treating their water at home. We used direct observation, in-depth interviews, surveys, spot-checks, and water sampling to assess water treatment practices among households that claimed to treat their drinking water at home. While consistency of reported practices was high in both urban (94.8%) and rural (85.3%) settings, availability of treated water (based on self-report) at time of collection was low, with 67.1% and 23.0% of urban and rural households having treated water at all three sampling visits. Self-reported consumption of untreated water in the home among adults and children <5 was common and this was corroborated during home observations. Drinking water of self-reported users was significantly better than source water in the urban setting and negligible but significantly better in the rural setting. However, only 46.3% and 31.6% of households had drinking water <1 CFU/100 mL at all follow-up visits. Conclusions Our results raise questions about the usefulness of current international monitoring of HWT practices and their usefulness as a proxy indicator for drinking water quality. The lack of consistency and sub-optimal microbiological effectiveness also raises questions about the potential of HWT to prevent waterborne diseases. PMID:25522371

  16. Assessing the consistency and microbiological effectiveness of household water treatment practices by urban and rural populations claiming to treat their water at home: a case study in Peru.

    PubMed

    Rosa, Ghislaine; Huaylinos, Maria L; Gil, Ana; Lanata, Claudio; Clasen, Thomas

    2014-01-01

    Household water treatment (HWT) can improve drinking water quality and prevent disease if used correctly and consistently by vulnerable populations. Over 1.1 billion people report treating their water prior to drinking it. These estimates, however, are based on responses to household surveys that may exaggerate the consistency and microbiological performance of the practice-key factors for reducing pathogen exposure and achieving health benefits. The objective of this study was to examine how HWT practices are actually performed by households identified as HWT users, according to international monitoring standards. We conducted a 6-month case study in urban (n = 117 households) and rural (n = 115 households) Peru, a country in which 82.8% of households report treating their water at home. We used direct observation, in-depth interviews, surveys, spot-checks, and water sampling to assess water treatment practices among households that claimed to treat their drinking water at home. While consistency of reported practices was high in both urban (94.8%) and rural (85.3%) settings, availability of treated water (based on self-report) at time of collection was low, with 67.1% and 23.0% of urban and rural households having treated water at all three sampling visits. Self-reported consumption of untreated water in the home among adults and children <5 was common and this was corroborated during home observations. Drinking water of self-reported users was significantly better than source water in the urban setting and negligible but significantly better in the rural setting. However, only 46.3% and 31.6% of households had drinking water <1 CFU/100 mL at all follow-up visits. Our results raise questions about the usefulness of current international monitoring of HWT practices and their usefulness as a proxy indicator for drinking water quality. The lack of consistency and sub-optimal microbiological effectiveness also raises questions about the potential of HWT to prevent waterborne diseases.

  17. U. S. drinking-water regulations: Treatment technologies and cost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lykins, B.W. Jr.; Clark, R.M.

    The Safe Drinking Water Act and its Amendments have imposed a large number of new regulations on the US drinking-water industry. A major set of regulations currently under consideration will control disinfectants and disinfection by-products. Included in the development of these regulations is an Information Collection Rule and an Enhanced Surface Water Treatment Rule. These rules will require monitoring for microorganisms such as Giardia, Cryptosporidium, and viruses. Certain surface-water systems may be required to remove microbiological contaminants above levels currently required by the Surface Water Treatment Rule. Also included in these rules will be monitoring requirements for disinfection by-products andmore » evaluation of precursor removal technologies. As various regulations are promulgated, regulators and those associated with the drinking-water industry need to be cognizant of the potential impact of treatment to control one contaminant or group of contaminants on control of other contaminants. Compliance with drinking-water regulations mandated under the Safe Drinking Water Act and its amendments has been estimated to cost about $1.6 billion.« less

  18. Estimating Inorganic Arsenic Exposure from U.S. Rice and Total Water Intakes.

    PubMed

    Mantha, Madhavi; Yeary, Edward; Trent, John; Creed, Patricia A; Kubachka, Kevin; Hanley, Traci; Shockey, Nohora; Heitkemper, Douglas; Caruso, Joseph; Xue, Jianping; Rice, Glenn; Wymer, Larry; Creed, John T

    2017-05-30

    Among nonoccupationally exposed U.S. residents, drinking water and diet are considered primary exposure pathways for inorganic arsenic (iAs). In drinking water, iAs is the primary form of arsenic (As), while dietary As speciation techniques are used to differentiate iAs from less toxic arsenicals in food matrices. Our goal was to estimate the distribution of iAs exposure rates from drinking water intakes and rice consumption in the U.S. population and ethnic- and age-based subpopulations. The distribution of iAs in drinking water was estimated by population, weighting the iAs concentrations for each drinking water utility in the Second Six-Year Review data set. To estimate the distribution of iAs concentrations in rice ingested by U.S. consumers, 54 grain-specific, production-weighted composites of rice obtained from U.S. mills were extracted and speciated using both a quantitative dilute nitric acid extraction and speciation (DNAS) and an in vitro gastrointestinal assay to provide an upper bound and bioaccessible estimates, respectively. Daily drinking water intake and rice consumption rate distributions were developed using data from the What We Eat in America (WWEIA) study. Using these data sets, the Stochastic Human Exposure and Dose Simulation (SHEDS) model estimated mean iAs exposures from drinking water and rice were 4.2 μg/day and 1.4 μg/day, respectively, for the entire U.S. population. The Tribal, Asian, and Pacific population exhibited the highest mean daily exposure of iAs from cooked rice (2.8 μg/day); the mean exposure rate for children between ages 1 and 2 years in this population is 0.104 μg/kg body weight (BW)/day. An average consumer drinking 1.5 L of water daily that contains between 2 and 3 ng iAs/mL is exposed to approximately the same amount of iAs as a mean Tribal, Asian, and Pacific consumer is exposed to from rice. https://doi.org/10.1289/EHP418. Among nonoccupationally exposed U.S. residents, drinking water and diet are considered primary exposure pathways for inorganic arsenic (iAs). In drinking water, iAs is the primary form of arsenic (As), while dietary As speciation techniques are used to differentiate iAs from less toxic arsenicals in food matrices. Our goal was to estimate the distribution of iAs exposure rates from drinking water intakes and rice consumption in the U.S. population and ethnic- and age-based subpopulations. The distribution of iAs in drinking water was estimated by population, weighting the iAs concentrations for each drinking water utility in the Second Six-Year Review data set. To estimate the distribution of iAs concentrations in rice ingested by U.S. consumers, 54 grain-specific, production-weighted composites of rice obtained from U.S. mills were extracted and speciated using both a quantitative dilute nitric acid extraction and speciation (DNAS) and an in vitro gastrointestinal assay to provide an upper bound and bioaccessible estimates, respectively. Daily drinking water intake and rice consumption rate distributions were developed using data from the What We Eat in America (WWEIA) study. Using these data sets, the Stochastic Human Exposure and Dose Simulation (SHEDS) model estimated mean iAs exposures from drinking water and rice were [Formula: see text] and [Formula: see text], respectively, for the entire U.S. population. The Tribal, Asian, and Pacific population exhibited the highest mean daily exposure of iAs from cooked rice ([Formula: see text]); the mean exposure rate for children between ages 1 and 2 years in this population is [Formula: see text] body weight (BW)/day. An average consumer drinking 1.5 L of water daily that contains between 2 and [Formula: see text] is exposed to approximately the same amount of iAs as a mean Tribal, Asian, and Pacific consumer is exposed to from rice. https://doi.org/10.1289/EHP418.

  19. DISTRIBUTION SYSTEM EVALUATIONS OF THE CONTAMINANT CANDIDATE LIST

    EPA Science Inventory

    The Safe Drinking Water Act (SDWA), as amended in 1996, requires EPA to establish a list of unregulated microbiological and chemical contaminants to aid in priority setting for the Agency's drinking water program. The list is referred to as the Contaminant Candidate List (CCL). A...

  20. BACTERIAL PATHOGENIC RESEARCH IN RESPONSE TO CONTAMINANT CANDIDATE LIST NEEDS

    EPA Science Inventory

    The Safe Drinking Water Act, as amended in 1996, requires EPA to establish a Contaminant Candidate List (CCL) of unregulated microbiological and chemical contaminants to aid in priority setting for the Agency's drinking water program. At predetermined intervals the Agency must s...

  1. An Investigation of Bioaccessibility of Arsenic in Rice using IC-ICP-MS

    EPA Science Inventory

    Arsenic exposure occurs mainly through drinking water and food; therefore, both aspects should be incorporated into any aggregate exposure assessment. Drinking water exposures are predominately inorganic arsenic while dietary exposures are made up of a diverse set of arsenicals w...

  2. [Spatial and seasonal characterization of the drinking water from various sources in a peri-urban town of Salta].

    PubMed

    Rodriguez-Alvarez, María S; Moraña, Liliana B; Salusso, María M; Seghezzo, Lucas

    Drinking water monitoring plans are important to characterize both treated and untreated water used for drinking purposes. Access to drinking water increased in recent years as a response to the Millennium Development Goals set for 2015. The new Sustainable Development Goals aim to ensure universal access to safe drinking water by 2030. Within the framework of these global goals, it is crucial to monitor local drinking water systems. In this paper, treated and untreated water from different sources currently consumed in a specific town in Salta, northern Argentina, was thoroughly assessed. Monitoring extended along several seasons and included the physical, chemical and microbiological variables recommended by the Argentine Food Code. On the one hand, treated water mostly complies with these standards, with some non-compliances detected during the rainy season. Untreated water, on the other hand, never meets microbiological standards and is unfit for human consumption. Monitoring seems essential to detect anomalies and help guarantee a constant provision of safe drinking water. New treatment plants are urgently needed to expand the water grid to the entire population. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Water pollution in Pakistan and its impact on public health--a review.

    PubMed

    Azizullah, Azizullah; Khattak, Muhammad Nasir Khan; Richter, Peter; Häder, Donat-Peter

    2011-02-01

    Water pollution is one of the major threats to public health in Pakistan. Drinking water quality is poorly managed and monitored. Pakistan ranks at number 80 among 122 nations regarding drinking water quality. Drinking water sources, both surface and groundwater are contaminated with coliforms, toxic metals and pesticides throughout the country. Various drinking water quality parameters set by WHO are frequently violated. Human activities like improper disposal of municipal and industrial effluents and indiscriminate applications of agrochemicals in agriculture are the main factors contributing to the deterioration of water quality. Microbial and chemical pollutants are the main factors responsible exclusively or in combination for various public health problems. This review discusses a detailed layout of drinking water quality in Pakistan with special emphasis on major pollutants, sources of pollution and the consequent health problems. The data presented in this review are extracted from various studies published in national and international journals. Also reports released by the government and non-governmental organizations are included. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Water Filtration Using Plant Xylem

    PubMed Central

    Chambers, Valerie; Venkatesh, Varsha; Karnik, Rohit

    2014-01-01

    Effective point-of-use devices for providing safe drinking water are urgently needed to reduce the global burden of waterborne disease. Here we show that plant xylem from the sapwood of coniferous trees – a readily available, inexpensive, biodegradable, and disposable material – can remove bacteria from water by simple pressure-driven filtration. Approximately 3 cm3 of sapwood can filter water at the rate of several liters per day, sufficient to meet the clean drinking water needs of one person. The results demonstrate the potential of plant xylem to address the need for pathogen-free drinking water in developing countries and resource-limited settings. PMID:24587134

  5. REMOVING ORGANIC CONTAMINANTS OF REGULATORY INTEREST WITH MEMBRANE PROCESSES: USEPA'S SCREENING STUDIES

    EPA Science Inventory

    The 1996 amendments to the Safe Drinking Water Act require the US Environmental Protection Agency (USEPA) to establish a list of unregulated microbiological and chemical contaminants to aid in priority-setting for the Agency's drinking water program. This list, known as the Cont...

  6. Faecal contamination of household drinking water in Rwanda: A national cross-sectional study.

    PubMed

    Kirby, Miles A; Nagel, Corey L; Rosa, Ghislaine; Iyakaremye, Laurien; Zambrano, Laura Divens; Clasen, Thomas F

    2016-11-15

    Unsafe drinking water is a leading cause of morbidity and mortality, especially among young children in low-income settings. We conducted a national survey in Rwanda to determine the level of faecal contamination of household drinking water and risk factors associated therewith. Drinking water samples were collected from a nationally representative sample of 870 households and assessed for thermotolerant coliforms (TTC), a World Health Organization (WHO)-approved indicator of faecal contamination. Potential household and community-level determinants of household drinking water quality derived from household surveys, the 2012 Rwanda Population and Housing Census, and a precipitation dataset were assessed using multivariate logistic regression. Widespread faecal contamination was present, and only 24.9% (95% CI 20.9-29.4%, n=217) of household samples met WHO Guidelines of having no detectable TTC contamination, while 42.5% (95% CI 38.0-47.1%, n=361) of samples had >100TTC/100mL and considered high risk. Sub-national differences were observed, with poorer water quality in rural areas and Eastern province. In multivariate analyses, there was evidence for an association between detectable contamination and increased open waste disposal in a sector, lower elevation, and water sources other than piped to household or rainwater/bottled. Risk factors for intermediate/high risk contamination (>10TTC/100mL) included low population density, increased open waste disposal, lower elevation, water sources other than piped to household or rainwater/bottled, and occurrence of an extreme rain event the previous day. Modelling suggests non-household-based risk factors are determinants of water quality in this setting, and these results suggest a substantial proportion of Rwanda's population are exposed to faecal contamination through drinking water. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. New policies and measures for saving a great manmade reservoir providing drinking water for 20 million people in the Republic of Korea.

    PubMed

    Ahn, K H

    2000-01-01

    Water quality of the Paldang reservoir, the largest drinking water supply source in the Republic Korea provides raw water for about 20 million people living in Seoul Metropolitan area. Water quality has been deteriorating mainly due to improperly treated livestock waste and domestic wastewater discharged from motels, restaurants, and private homes. A recent survey conducted by the Ministry of Environment (MOE) showed that the water quality of this reservoir has been identified as Class III must contain less than 6 ppm of BOD, which will require advanced purification treatment before it can be used as drinking water. The MOE also announced that this water source would no longer be potable unless wastewater in the catchment is treated efficiently. To protect drinking water resources, the MOE has set up comprehensive management. These programmes include new regulations, measures, land use planning and economic incentives.

  8. An assessment of drinking-water quality post-Haiyan.

    PubMed

    Magtibay, Bonifacio; Anarna, Maria Sonabel; Fernando, Arturo

    2015-01-01

    Access to safe drinking-water is one of the most important public health concerns in an emergency setting. This descriptive study reports on an assessment of water quality in drinking-water supply systems in areas affected by Typhoon Haiyan immediately following and 10 months after the typhoon. Water quality testing and risk assessments of the drinking-water systems were conducted three weeks and 10 months post-Haiyan. Portable test kits were used to determine the presence of Escherichia coli and the level of residual chlorine in water samples. The level of risk was fed back to the water operators for their action. Of the 121 water samples collected three weeks post-Haiyan, 44% were contaminated, while 65% (244/373) of samples were found positive for E. coli 10 months post-Haiyan. For the three components of drinking-water systems - source, storage and distribution - the proportions of contaminated systems were 70%, 67% and 57%, respectively, 10 months after Haiyan. Vulnerability to faecal contamination was attributed to weak water safety programmes in the drinking-water supply systems. Poor water quality can be prevented or reduced by developing and implementing a water safety plan for the systems. This, in turn, will help prevent waterborne disease outbreaks caused by contaminated water post-disaster.

  9. An assessment of drinking-water quality post-Haiyan

    PubMed Central

    Anarna, Maria Sonabel; Fernando, Arturo

    2015-01-01

    Introduction Access to safe drinking-water is one of the most important public health concerns in an emergency setting. This descriptive study reports on an assessment of water quality in drinking-water supply systems in areas affected by Typhoon Haiyan immediately following and 10 months after the typhoon. Methods Water quality testing and risk assessments of the drinking-water systems were conducted three weeks and 10 months post-Haiyan. Portable test kits were used to determine the presence of Escherichia coli and the level of residual chlorine in water samples. The level of risk was fed back to the water operators for their action. Results Of the 121 water samples collected three weeks post-Haiyan, 44% were contaminated, while 65% (244/373) of samples were found positive for E. coli 10 months post-Haiyan. For the three components of drinking-water systems – source, storage and distribution – the proportions of contaminated systems were 70%, 67% and 57%, respectively, 10 months after Haiyan. Discussion Vulnerability to faecal contamination was attributed to weak water safety programmes in the drinking-water supply systems. Poor water quality can be prevented or reduced by developing and implementing a water safety plan for the systems. This, in turn, will help prevent waterborne disease outbreaks caused by contaminated water post-disaster. PMID:26767136

  10. Monitoring radionuclides in subsurface drinking water sources near unconventional drilling operations: a pilot study.

    PubMed

    Nelson, Andrew W; Knight, Andrew W; Eitrheim, Eric S; Schultz, Michael K

    2015-04-01

    Unconventional drilling (the combination of hydraulic fracturing and horizontal drilling) to extract oil and natural gas is expanding rapidly around the world. The rate of expansion challenges scientists and regulators to assess the risks of the new technologies on drinking water resources. One concern is the potential for subsurface drinking water resource contamination by naturally occurring radioactive materials co-extracted during unconventional drilling activities. Given the rate of expansion, opportunities to test drinking water resources in the pre- and post-fracturing setting are rare. This pilot study investigated the levels of natural uranium, lead-210, and polonium-210 in private drinking wells within 2000 m of a large-volume hydraulic fracturing operation--before and approximately one-year following the fracturing activities. Observed radionuclide concentrations in well waters tested did not exceed maximum contaminant levels recommended by state and federal agencies. No statistically-significant differences in radionuclide concentrations were observed in well-water samples collected before and after the hydraulic fracturing activities. Expanded monitoring of private drinking wells before and after hydraulic fracturing activities is needed to develop understanding of the potential for drinking water resource contamination from unconventional drilling and gas extraction activities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Occurrence assessment for disinfectants and disinfection by-products (phase 6A) in public drinking water. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The EPA Office of Ground Water and Drinking Water is developing national primary drinking water regulations for disinfectant and disinfection by-product contaminants. Thirteen contaminants are being considered to be regulated under Phase 6. These contaminants, referred to as Phase 6a, are the subject of the report. The information is important for setting the Maximum Contaminant Level Goal for a contaminant. The exposure information also is used to estimate the baseline health impact assessment of current levels and for evaluation of the health benefits of the regulatory alternatives.

  12. GIS-based analysis of drinking-water supply structures: a module for microbial risk assessment.

    PubMed

    Kistemann, T; Herbst, S; Dangendorf, F; Exner, M

    2001-05-01

    Water-related infections constitute an important health impact world-wide. A set of tools serving for Microbial Risk Assessment (MRA) of waterborne diseases should comprise the entire drinking-water management system and take into account the Hazard Analysis and Critical Control Point (HACCP) concept which provides specific Critical Control Points (CCPs) reflecting each step of drinking-water provision. A Geographical Information System (GIS) study concerning water-supply structure (WSS) was conducted in the Rhein-Berg District (North Rhine-Westphalia, Germany). As a result, suitability of the existing water databases HYGRIS (hydrological basis geo-information system) and TEIS (drinking-water recording and information system) for the development of a WSS-GIS module could be demonstrated. Spatial patterns within the integrated raw and drinking-water data can easily be uncovered by GIS-specific options. The application of WSS-GIS allows a rapid visualization and analysis of drinking-water supply structure and offers huge advantages concerning microbial monitoring of raw and drinking water as well as recognition and investigation of incidents and outbreaks. Increasing requests regarding health protection and health reporting, demands for a better outbreak management and water-related health impacts of global climate change are major challenges of future water management to be tackled with methods including spatial analysis. GIS is assumed to be a very useful tool to meet these requirements.

  13. Sanitary survey of the drinking water supply of Kombinati suburb-Tirana, Albania.

    PubMed

    Angjeli, V; Reme, B; Leno, L; Bukli, R; Bushati, G

    2000-01-01

    Microbiological pollution of drinking water is a major health problem in the suburbs of the Albanian capital. Intermittent supply and contamination, resulting in several gastrointestinal manifestations, are the main concerns for the population and health workers. The risk of outbreaks of water-borne diseases is high. Pollution originates from contamination of drinking water with domestic sewage. This research investigated the drinking water cycle from its natural source to the consumer, analysing samples and verifying pollution levels in the microbiological and chemical setting. The most important pollution sources were found in the distribution network, due to cross-contamination with sewers and illegal connections. The second pollution source was found around the extraction wells. This is related to abusive constructions within the sanitary zone around the wells and maybe the highly sewage-contaminated river water which feeds the aquifer.

  14. An unusual and persistent contamination of drinking water by cutting oil.

    PubMed

    Rella, R; Sturaro, A; Parvoli, G; Ferrara, D; Doretti, L

    2003-02-01

    Drinking water contamination by materials, such as cutting oil, used to set up pipelines is an uncommon but possible event. This paper describes the analytical procedures used to identify the components of that contaminant in drinking water. Volatile and semi-volatile chemical species, responsible for an unpleasant taste and odour, were recognised by solid phase microextraction and GC/MS techniques. Among the volatile compounds, the presence of xylenes, bornyl acetate and diphenyl ether was confirmed by certificate standards and quantified in the most contaminated samples.

  15. Health risks due to radon in drinking water

    USGS Publications Warehouse

    Hopke, P.K.; Borak, T.B.; Doull, J.; Cleaver, J.E.; Eckerman, K.F.; Gundersen, L.C.S.; Harley, N.H.; Hess, C.T.; Kinner, N.E.; Kopecky, K.J.; Mckone, T.E.; Sextro, R.G.; Simon, S.L.

    2000-01-01

    Following more than a decade of scientific debate about the setting of a standard for 222Rn in drinking water, Congress established a timetable for the promulgation of a standard in the 1996 Amendments to the Safe Drinking Water Act. As a result of those Amendments, the EPA contracted with the National Academy of Sciences to undertake a risk assessment for exposure to radon in drinking water. In addition, the resulting committee was asked to address several other scientific issues including the national average ambient 222Rn concentration and the increment of 222Rn to the indoor- air concentration arising from the use of drinking water in a home. A new dosimetric analysis of the cancer risk to the stomach from ingestion was performed. The recently reported risk estimates developed by the BEIR VI Committee for inhalation of radon decay products were adopted. Because the 1996 Amendments permit states to develop programs in which mitigation of air- producing health-risk reductions equivalent to that which would be achieved by treating the drinking water, the scientific issues involved in such 'multimedia mitigation programs' were explored.

  16. Health risk assessment to fluoride in drinking water of rural residents living in the Poldasht city, Northwest of Iran.

    PubMed

    Yousefi, Mahmood; Ghoochani, Mahboobeh; Hossein Mahvi, Amir

    2018-02-01

    This study analyzes the concentrations and health risks of fluoride in 112 drinking water samples collected from 28 villages of the Poldasht city, West Azerbaijan province in Iran. Results indicated that fluoride content in drinking water ranged from0.27 to 10.3mgL -1 (average 1.70mgL -1 ). The 57% of samples analyzed exceeded the limit set for fluoride in drinking water. Based on findings from health risk assessment this study, the highest fluoride exposure for different regions of Poldasht city was observed in young consumers, children and teenager's groups. Also, most of the rural residents suffered from fluoride contaminated drinking water. The calculated HQ value was > 1 for all groups of residents in Agh otlogh and Sari soo areas. Therefore, it is imperative to take measures to reduce fluoride concentration in drinking water and control of fluorosis. Action should be implemented to enhance monitoring of fluoride levels to avoid the potential risk to the population. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Nitrates in drinking water and risk of death from rectal cancer in Taiwan.

    PubMed

    Kuo, Hsin-Wei; Wu, Trong-Neng; Yang, Chun-Yuh

    2007-10-01

    The relationship between nitrate levels in drinking water and rectal cancer development has been inconclusive. A matched case-control and nitrate ecology study was used to investigate the association between mortality attributed to rectal cancer and drinking-water nitrate exposure in Taiwan. All deaths due to rectal cancer of Taiwan residents from 1999 through 2003 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair matched to the cancer cases by gender, year of birth, and year of death. Each matched control was selected randomly from the set of possible controls for each case. Data on nitrate-nitrogen (NO3-N) levels in drinking water throughout Taiwan were collected from Taiwan Water Supply Corporation (TWSC). The municipality of residence for cancer cases and controls was assumed to be the source of the subject's nitrate exposure via drinking water. The adjusted odds ratios for rectal cancer death for those with high nitrate levels in their drinking water, as compared to the lowest tertile, were 1.22 (0.98-1.52) and 1.36 (1.08-1.70), respectively. The findings of this study warrant further investigation of the role of nitrates in drinking water in the etiology of rectal cancer in Taiwan.

  18. Influence of alkalinity, hardness and dissolved solids on drinking water taste: A case study of consumer satisfaction.

    PubMed

    Lou, Jie-Chung; Lee, Wei-Li; Han, Jia-Yun

    2007-01-01

    Two surveys of consumer satisfaction with drinking water conducted by Taiwan Water Supply Corp. are presented in this study. The study results show that although a lot of money was invested to modify traditional treatment processes, over 60% of local residents still avoided drinking tap water. Over half of the respondents felt that sample TT (from the traditional treatment process) was not a good drinking water, whether in the first or second survey, whereas almost 60% of respondents felt that samples PA, PB, CCL and CT (from advanced treatment processes) were good to drink. For all drinking water samples, respondent satisfaction with a sample primarily depended on it having no unpleasant flavors. Taiwan Environmental Protection Administration plans to revise the drinking water quality standards for TH and TDS in the near future. The new standards require a lower TH concentration (from currently 400mg/L (as CaCO(3)) to 150mg/L (as CaCO(3))), and a lower TDS maximum admissible concentration from the current guideline of 600 to 250mg/L. Therefore, this study also evaluated the impacts on drinking water tastes caused by variations in TH and TDS concentrations, and assessed the need to issue more strict drinking water quality standards for TH and TDS. The research results showed that most respondents could not tell the difference in water taste among water samples with different TDS, TH and alkalinity. Furthermore, hardness was found to be inversely associated with cardiovascular diseases and cancers, and complying with more strict standards would lead most water facilities to invest billions of dollars to upgrade their treatment processes. Consequently, in terms of drinking water tastes alone, this study suggested that Taiwan Environmental Protection Administration should conduct more thorough reviews of the scientific literature that provides the rationale for setting standards and reconsider if it is necessary to revise drinking water quality standards for TH and TDS.

  19. Economic assessments of small-scale drinking-water interventions in pursuit of MDG target 7C.

    PubMed

    Cameron, John; Jagals, Paul; Hunter, Paul R; Pedley, Steve; Pond, Katherine

    2011-12-01

    This paper uses an applied rural case study of a safer water intervention in South Africa to illustrate how three levels of economic assessment can be used to understand the impact of the intervention on people's well-being. It is set in the context of Millennium Development Goal 7 which sets a target (7C) for safe drinking-water provision and the challenges of reaching people in remote rural areas with relatively small-scale schemes. The assessment moves from cost efficiency to cost effectiveness to a full social cost-benefit analysis (SCBA) with an associated sensitivity test. In addition to demonstrating techniques of analysis, the paper brings out many of the challenges in understanding how safer drinking-water impacts on people's livelihoods. The SCBA shows the case study intervention is justified economically, though the sensitivity test suggests 'downside' vulnerability. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Nitrates in drinking water and the risk of death from rectal cancer: does hardness in drinking water matter?

    PubMed

    Chang, Chih-Ching; Chen, Chih-Cheng; Wu, Deng-Chuang; Yang, Chun-Yuh

    2010-01-01

    The objectives of this study were to (1) examine the relationship between nitrate levels in public water supplies and increased risk of death from rectal cancer and (2) determine whether calcium (Ca) and magnesium (Mg) levels in drinking water might modify the effects of nitrate on development of rectal cancer. A matched case-control study was used to investigate the relationship between the risk of death from rectal cancer and exposure to nitrate in drinking water in Taiwan. All rectal cancer deaths of Taiwan residents from 2003 through 2007 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to the cases by gender, year of birth, and year of death. Information on the levels of nitrate-nitrogen (NO(3)-N), Ca, and Mg in drinking water was collected from Taiwan Water Supply Corporation (TWSC). The municipality of residence for cancer cases and controls was presumed to be the source of the subject's NO(3)-N, Ca, and Mg exposure via drinking water. Relative to individuals whose NO(3)-N exposure level was <0.38 ppm, the adjusted odds ratio (OR) (95% CI) for rectal cancer occurrence was 1.15 (1.01-1.32) for individuals who resided in municipalities served by drinking water with a NO(3)-N exposure > or =0.38 ppm. There was no apparent evidence of an interaction between drinking water NO(3)-N levels with low Mg intake via drinking water. However, evidence of a significant interaction was noted between drinking-water NO(3)-N concentrations and Ca intake via drinking water. Our findings showed that the correlation between NO(3)-N exposure and risk of rectal cancer development was influenced by Ca in drinking water. This is the first study to report effect modification by Ca intake from drinking water on the association between NO(3)-N exposure and risk of rectal cancer occurrence. Increased knowledge of the mechanistic interaction between Ca and NO(3)-N in reducing rectal cancer risk will aid in public policymaking and setting threshold standards.

  1. Spatial-Temporal Survey and Occupancy-Abundance Modeling To Predict Bacterial Community Dynamics in the Drinking Water Microbiome

    PubMed Central

    Pinto, Ameet J.; Schroeder, Joanna; Lunn, Mary; Sloan, William

    2014-01-01

    ABSTRACT Bacterial communities migrate continuously from the drinking water treatment plant through the drinking water distribution system and into our built environment. Understanding bacterial dynamics in the distribution system is critical to ensuring that safe drinking water is being supplied to customers. We present a 15-month survey of bacterial community dynamics in the drinking water system of Ann Arbor, MI. By sampling the water leaving the treatment plant and at nine points in the distribution system, we show that the bacterial community spatial dynamics of distance decay and dispersivity conform to the layout of the drinking water distribution system. However, the patterns in spatial dynamics were weaker than those for the temporal trends, which exhibited seasonal cycling correlating with temperature and source water use patterns and also demonstrated reproducibility on an annual time scale. The temporal trends were driven by two seasonal bacterial clusters consisting of multiple taxa with different networks of association within the larger drinking water bacterial community. Finally, we show that the Ann Arbor data set robustly conforms to previously described interspecific occupancy abundance models that link the relative abundance of a taxon to the frequency of its detection. Relying on these insights, we propose a predictive framework for microbial management in drinking water systems. Further, we recommend that long-term microbial observatories that collect high-resolution, spatially distributed, multiyear time series of community composition and environmental variables be established to enable the development and testing of the predictive framework. PMID:24865557

  2. Drink Availability is Associated with Enhanced Examination Performance in Adults

    ERIC Educational Resources Information Center

    Pawson, Chris; Gardner, Mark R.; Doherty, Sarah; Martin, Laura; Soares, Rute; Edmonds, Caroline J.

    2013-01-01

    While dehydration has negative effects on memory and attention, few studies have investigated whether drinking water can enhance cognitive performance, and none have addressed this in a real-world setting. In this study we explored the potential benefits of the availability of water for undergraduates. The exam performance of students who brought…

  3. An experimental study on the influence of water stagnation and temperature change on water quality in a full-scale domestic drinking water system.

    PubMed

    Zlatanović, Lj; van der Hoek, J P; Vreeburg, J H G

    2017-10-15

    The drinking water quality changes during the transport through distribution systems. Domestic drinking water systems (DDWSs), which include the plumbing between the water meter and consumer's taps, are the most critical points in which water quality may be affected. In distribution networks, the drinking water temperature and water residence time are regarded as indicators of the drinking water quality. This paper describes an experimental research on the influence of stagnation time and temperature change on drinking water quality in a full-scale DDWS. Two sets of stagnation experiments, during winter and summer months, with various stagnation intervals (up to 168 h of stagnation) were carried out. Water and biofilms were sampled at two different taps, a kitchen and a shower tap. Results from this study indicate that temperature and water stagnation affect both chemical and microbial quality in DDWSs, whereas microbial parameters in stagnant water appear to be driven by the temperature of fresh water. Biofilm formed in the shower pipe contained more total and intact cells than the kitchen pipe biofilm. Alphaproteobacteria were found to dominate in the shower biofilm (78% of all Proteobacteria), while in the kitchen tap biofilm Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria were evenly distributed. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Stability of florfenicol in drinking water.

    PubMed

    Hayes, John M; Eichman, Jonathan; Katz, Terry; Gilewicz, Rosalia

    2003-01-01

    Florfenicol, a broad-spectrum antibiotic, is being developed for veterinary application as an oral concentrate intended for dilution with drinking water. When a drug product is dosed via drinking water in a farm setting, a number of variables, including pH, chlorine content, hardness of the water used for dilution, and container material, may affect its stability, leading to a decrease in drug potency. The stability of florfenicol after dilution of Florfenicol Drinking Water Concentrate Oral Solution, 23 mg/mL, with drinking water was studied. A stability-indicating, validated liquid chromatographic method was used to evaluate florfenicol stability at 25 degrees C at 5, 10, and 24 h after dilution. The results indicate that florfenicol is stable under a range of simulated field conditions, including various pipe materials and conditions of hard or soft and chlorinated or nonchlorinated water at low or high pH. Significant degradation (> 10%) was observed only for isolated combinations in galvanized pipes. Analysis indicated that the florfenicol concentration in 8 of the 12 water samples stored in galvanized pipes remained above 90% of the initial concentration (100 mg/L) for 24 h after dilution.

  5. Assessment of the contamination of drinking water supply wells by pesticides from surface water resources using a finite element reactive transport model and global sensitivity analysis techniques

    NASA Astrophysics Data System (ADS)

    Malaguerra, Flavio; Albrechtsen, Hans-Jørgen; Binning, Philip John

    2013-01-01

    SummaryA reactive transport model is employed to evaluate the potential for contamination of drinking water wells by surface water pollution. The model considers various geologic settings, includes sorption and degradation processes and is tested by comparison with data from a tracer experiment where fluorescein dye injected in a river is monitored at nearby drinking water wells. Three compounds were considered: an older pesticide MCPP (Mecoprop) which is mobile and relatively persistent, glyphosate (Roundup), a newer biodegradable and strongly sorbing pesticide, and its degradation product AMPA. Global sensitivity analysis using the Morris method is employed to identify the dominant model parameters. Results show that the characteristics of clay aquitards (degree of fracturing and thickness), pollutant properties and well depths are crucial factors when evaluating the risk of drinking water well contamination from surface water. This study suggests that it is unlikely that glyphosate in streams can pose a threat to drinking water wells, while MCPP in surface water can represent a risk: MCPP concentration at the drinking water well can be up to 7% of surface water concentration in confined aquifers and up to 10% in unconfined aquifers. Thus, the presence of confining clay aquitards may not prevent contamination of drinking water wells by persistent compounds in surface water. Results are consistent with data on pesticide occurrence in Denmark where pesticides are found at higher concentrations at shallow depths and close to streams.

  6. [Presence of Legionella spp. in household drinking water reservoirs in Resistencia, Chaco, Argentina. Preliminary report].

    PubMed

    Lösch, Liliana S; Merino, Luis A

    Legionella spp. is an environmental bacterium that can survive in a wide range of physicochemical conditions and may colonize distribution systems of drinking water and storage tanks. Legionella pneumophila is the major waterborne pathogen that can cause 90% of Legionnaires' disease cases. The aim of this study was to detect the presence of Legionella spp. in household drinking water tanks in the city of Resistencia, Chaco. The detection of Legionella in water samples was performed by culture methods as set out in ISO 11731:1998. Thirty two water samples were analyzed and Legionella spp. was recovered in 12 (37.5%) of them. The monitoring of this microorganism in drinking water is the first step towards addressing the control of its spread to susceptible hosts. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. [Caries and fluorine: role of water factor, problems and solutions].

    PubMed

    Rakhmanin, Iu A; Kir'ianova, L F; Mikhaĭlova, R I; Sevost'ianova, E M

    2001-01-01

    The epidemiological studies of the severity and spread of caries of deciduous and permanent teeth in Moscow schoolchildren (n = > 20,000) aged 7-17 years in relation to the content of fluoride in the drinking water, to the use of fluorine-containing tablets and varnishes have provided evidence for the high efficiency of drinking water fluorination for the primary prevention of caries as compared with other preventive alternatives. Based on sanitary studies, two main lines are now under way in solving the problem connected with low dietary fluoride intake: the introduction of routine water-purifying fluorine generators (based on a new technology of fluorination of limited water volumes for drinking and cooking) and the setting-up of plants manufacturing bottled drinking waters containing the optimum or higher fluorine levels for provision of different population groups, primarily children and pregnant women in particular.

  8. Estimating Inorganic Arsenic Exposure from U.S. Rice and Total Water Intakes

    PubMed Central

    Mantha, Madhavi; Yeary, Edward; Trent, John; Creed, Patricia A.; Kubachka, Kevin; Hanley, Traci; Shockey, Nohora; Heitkemper, Douglas; Caruso, Joseph; Xue, Jianping; Rice, Glenn; Wymer, Larry

    2017-01-01

    Background: Among nonoccupationally exposed U.S. residents, drinking water and diet are considered primary exposure pathways for inorganic arsenic (iAs). In drinking water, iAs is the primary form of arsenic (As), while dietary As speciation techniques are used to differentiate iAs from less toxic arsenicals in food matrices. Objectives: Our goal was to estimate the distribution of iAs exposure rates from drinking water intakes and rice consumption in the U.S. population and ethnic- and age-based subpopulations. Methods: The distribution of iAs in drinking water was estimated by population, weighting the iAs concentrations for each drinking water utility in the Second Six-Year Review data set. To estimate the distribution of iAs concentrations in rice ingested by U.S. consumers, 54 grain-specific, production-weighted composites of rice obtained from U.S. mills were extracted and speciated using both a quantitative dilute nitric acid extraction and speciation (DNAS) and an in vitro gastrointestinal assay to provide an upper bound and bioaccessible estimates, respectively. Daily drinking water intake and rice consumption rate distributions were developed using data from the What We Eat in America (WWEIA) study. Results: Using these data sets, the Stochastic Human Exposure and Dose Simulation (SHEDS) model estimated mean iAs exposures from drinking water and rice were 4.2μg/day and 1.4μg/day, respectively, for the entire U.S. population. The Tribal, Asian, and Pacific population exhibited the highest mean daily exposure of iAs from cooked rice (2.8μg/day); the mean exposure rate for children between ages 1 and 2 years in this population is 0.104μg/kg body weight (BW)/day. Conclusions: An average consumer drinking 1.5 L of water daily that contains between 2 and 3 ng iAs/mL is exposed to approximately the same amount of iAs as a mean Tribal, Asian, and Pacific consumer is exposed to from rice. https://doi.org/10.1289/EHP418 PMID:28572075

  9. The Savannah River Site`s groundwater monitoring program. Third quarter 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-05-06

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During third quarter 1990 (July through September) EPD/EMS conducted routine sampling of monitoring wells and drinking water locations. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. All analytical results from third quarter 1990 are listed in thismore » report, which is distributed to all site custodians. One or more analytes exceeded Flag 2 in 87 monitoring well series. Analytes exceeded Flat 2 for the first since 1984 in 14 monitoring well series. In addition to groundwater monitoring, EPD/EMS collected drinking water samples from SRS drinking water systems supplied by wells. The drinking water samples were analyzed for radioactive constituents.« less

  10. The Savannah River Site's groundwater monitoring program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-05-06

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During third quarter 1990 (July through September) EPD/EMS conducted routine sampling of monitoring wells and drinking water locations. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. All analytical results from third quarter 1990 are listed in thismore » report, which is distributed to all site custodians. One or more analytes exceeded Flag 2 in 87 monitoring well series. Analytes exceeded Flat 2 for the first since 1984 in 14 monitoring well series. In addition to groundwater monitoring, EPD/EMS collected drinking water samples from SRS drinking water systems supplied by wells. The drinking water samples were analyzed for radioactive constituents.« less

  11. Dataset of producing and curing concrete using domestic treated wastewater

    PubMed Central

    Asadollahfardi, Gholamreza; Delnavaz, Mohammad; Rashnoiee, Vahid; Fazeli, Alireza; Gonabadi, Navid

    2015-01-01

    We tested the setting time of cement, slump and compressive and tensile strength of 54 triplicate cubic samples and 9 cylindrical samples of concrete with and without a Super plasticizer admixture. We produced concrete samples made with drinking water and treated domestic wastewater containing 300, 400 kg/m3 of cement before chlorination and then cured concrete samples made with drinking water and treated wastewater. Second, concrete samples made with 350 kg/m3 of cement with a Superplasticizer admixture made with drinking water and treated wastewater and then cured with treated wastewater. The compressive strength of all the concrete samples made with treated wastewater had a high coefficient of determination with the control concrete samples. A 28-day tensile strength of all the samples was 96–100% of the tensile strength of the control samples and the setting time was reduced by 30 min which was consistent with a ASTMC191 standard. All samples produced and cured with treated waste water did not have a significant effect on water absorption, slump and surface electrical resistivity tests. However, compressive strength at 21 days of concrete samples using 300 kg/m3 of cement in rapid freezing and thawing conditions was about 11% lower than concrete samples made with drinking water. PMID:26862577

  12. Dataset of producing and curing concrete using domestic treated wastewater.

    PubMed

    Asadollahfardi, Gholamreza; Delnavaz, Mohammad; Rashnoiee, Vahid; Fazeli, Alireza; Gonabadi, Navid

    2016-03-01

    We tested the setting time of cement, slump and compressive and tensile strength of 54 triplicate cubic samples and 9 cylindrical samples of concrete with and without a Super plasticizer admixture. We produced concrete samples made with drinking water and treated domestic wastewater containing 300, 400 kg/m(3) of cement before chlorination and then cured concrete samples made with drinking water and treated wastewater. Second, concrete samples made with 350 kg/m(3) of cement with a Superplasticizer admixture made with drinking water and treated wastewater and then cured with treated wastewater. The compressive strength of all the concrete samples made with treated wastewater had a high coefficient of determination with the control concrete samples. A 28-day tensile strength of all the samples was 96-100% of the tensile strength of the control samples and the setting time was reduced by 30 min which was consistent with a ASTMC191 standard. All samples produced and cured with treated waste water did not have a significant effect on water absorption, slump and surface electrical resistivity tests. However, compressive strength at 21 days of concrete samples using 300 kg/m(3) of cement in rapid freezing and thawing conditions was about 11% lower than concrete samples made with drinking water.

  13. Assessing the impact of drinking water and sanitation on diarrhoeal disease in low- and middle-income settings: systematic review and meta-regression.

    PubMed

    Wolf, Jennyfer; Prüss-Ustün, Annette; Cumming, Oliver; Bartram, Jamie; Bonjour, Sophie; Cairncross, Sandy; Clasen, Thomas; Colford, John M; Curtis, Valerie; De France, Jennifer; Fewtrell, Lorna; Freeman, Matthew C; Gordon, Bruce; Hunter, Paul R; Jeandron, Aurelie; Johnston, Richard B; Mäusezahl, Daniel; Mathers, Colin; Neira, Maria; Higgins, Julian P T

    2014-08-01

    To assess the impact of inadequate water and sanitation on diarrhoeal disease in low- and middle-income settings. The search strategy used Cochrane Library, MEDLINE & PubMed, Global Health, Embase and BIOSIS supplemented by screening of reference lists from previously published systematic reviews, to identify studies reporting on interventions examining the effect of drinking water and sanitation improvements in low- and middle-income settings published between 1970 and May 2013. Studies including randomised controlled trials, quasi-randomised trials with control group, observational studies using matching techniques and observational studies with a control group where the intervention was well defined were eligible. Risk of bias was assessed using a modified Ottawa-Newcastle scale. Study results were combined using meta-analysis and meta-regression to derive overall and intervention-specific risk estimates. Of 6819 records identified for drinking water, 61 studies met the inclusion criteria, and of 12,515 records identified for sanitation, 11 studies were included. Overall, improvements in drinking water and sanitation were associated with decreased risks of diarrhoea. Specific improvements, such as the use of water filters, provision of high-quality piped water and sewer connections, were associated with greater reductions in diarrhoea compared with other interventions. The results show that inadequate water and sanitation are associated with considerable risks of diarrhoeal disease and that there are notable differences in illness reduction according to the type of improved water and sanitation implemented. © 2014 John Wiley & Sons Ltd The World Health Organization retains copyright and all other rights in the manuscript of this article as submitted for publication.

  14. Nitrates in municipal drinking water and non-Hodgkin lymphoma: an ecological cancer case-control study in Taiwan.

    PubMed

    Chang, Chih-Ching; Tsai, Shang-Shyue; Wu, Trong-Neng; Yang, Chun-Yuh

    2010-01-01

    The relationship between nitrate levels in drinking water and increased risk of non-Hodgkin lymphoma (NHL) development has been inconclusive. A matched cancer case-control and a nitrate ecology study was used to investigate the association between mortality attributed to NHL and nitrate exposure from Taiwan's drinking water. All deaths due to NHL in Taiwan residents from 2000 through 2006 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to the cases by gender, year of birth, and year of death. Each matched control was selected randomly from the set of possible controls for each case. Data on nitrate-nitrogen (NO(3)-N) levels of drinking water throughout Taiwan were collected from the Taiwan Water Supply Corporation (TWSC). The municipality of residence for cancer cases and controls was presumed to be the source of the subject's nitrate exposure via drinking water. The adjusted odds ratios (OR) for NHL death for those with high nitrate levels in their drinking water, as compared to the lowest tertile, were 1.02 (0.87-1.2) and 1.05 (0.89-1.24), respectively. The results of the present study show that there was no statistically significant association between nitrates in drinking water at levels in this investigation and increased risk of death attributed to NHL.

  15. Nitrate in drinking water and risk of death from pancreatic cancer in Taiwan.

    PubMed

    Yang, Chun-Yuh; Tsai, Shang-Shyue; Chiu, Hui-Fen

    2009-01-01

    The relationship between nitrate levels in drinking water and risk of pancreatic cancer development remains inconclusive. A matched case-control and nitrate ecology study was used to investigate the association between mortality attributed to pancreatic cancer and nitrate exposure from Taiwan's drinking water. All pancreatic cancer deaths of Taiwan residents from 2000 through 2006 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to the cases by gender, year of birth, and year of death. Each matched control was selected randomly from the set of possible controls for each case. Data on nitrate-nitrogen (NO(3)-N) levels of drinking water throughout Taiwan were collected from Taiwan Water Supply Corporation (TWSC). The municipality of residence for cancer cases and controls was assumed to be the source of the subject's nitrate exposure via drinking water. The adjusted odds ratios and confidence limits for pancreatic cancer death for those with high nitrate levels in their drinking water, as compared to the lowest tertile, were 1.03 (0.9-1.18) and 1.1 (0.96-1.27), respectively. The results of the present study show that there was no statistically significant association between the levels of nitrate in drinking water and increased risk of death from pancreatic cancer.

  16. Nitrate in drinking water and risk of death from bladder cancer: an ecological case-control study in Taiwan.

    PubMed

    Chiu, Hui-Fen; Tsai, Shang-Shyue; Yang, Chun-Yuh

    2007-06-01

    The relationship between nitrate levels in drinking water and bladder cancer development is controversial. A matched cancer case-control with nitrate ecology study was used to investigate the association between bladder cancer mortality occurrence and nitrate exposure from Taiwan drinking water. All bladder cancer deaths of Taiwan residents from 1999 through 2003 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to the cases by gender, year of birth,and year of death. Each matched control was selected randomly from the set of possible controls for each cancer case. Data on nitrate-nitrogen (NO3-N) levels in drinking water throughout Taiwan were collected from Taiwan Water Supply Corporation (TWSC). The municipality of residence for cancer cases and controls was assumed to be the source of the subject's nitrate exposure via drinking water. The adjusted odds ratios for bladder cancer death for those with high nitrate levels in their drinking water were 1.76 (1.28-2.42) and 1.96 (1.41-2.72) as compared to the lowest tertile. The results of the present study show that there was a significant positive relationship between the levels of nitrate in drinking water and risk of death from bladder cancer.

  17. Lead and tap water

    MedlinePlus

    ... EPA) to set and enforce standards to protect public drinking water systems. The Agency requires water suppliers to produce annual water quality reports. These reports include information about lead amounts. The reports are available to ...

  18. Water as consumed and its impact on the consumer--do we understand the variables?

    PubMed

    Bates, A J

    2000-01-01

    Water is the most important natural resource in the world, without it life cannot exist. In 1854 a cholera outbreak in London caused 10, 000 deaths and positively linked enteric disease with bacterial contamination of drinking water by sewage pollution. Since then, adequate water hygiene standards and sewage purification have played the most significant role in disease eradication and public health improvements everywhere. Standards for drinking water have become an extensive range of microbiological and chemical parametric values. Which has not increased consumer, if the media is to be believed. Customers rightly expect that the water they drink is safe and wholesome. Standard setting is perceived as a precise science and meaningful to health. Is this justified and do scientists and regulators who derive and set the standards understand the uncertainties in the system? Water is the universal solvent, therefore it will never be pure; it will contain impurities prior to and after treatment. Knowledge of its potential to become contaminated is necessary to understand the epidemiology associated with waterborne contaminants and their effects. Water use patterns vary considerably and affect assumptions based on toxicology derived from laboratory studies under tightly controlled conditions. Consideration must be given to the model systems used to assess toxicity and translate results from the laboratory to the real world, if sensible scientifically-based water quality standards are to be set and achieved cost effectively.

  19. Identification and Assessment of Potential Water Quality Impact Factors for Drinking-Water Reservoirs

    PubMed Central

    Gu, Qing; Deng, Jinsong; Wang, Ke; Lin, Yi; Li, Jun; Gan, Muye; Ma, Ligang; Hong, Yang

    2014-01-01

    Various reservoirs have been serving as the most important drinking water sources in Zhejiang Province, China, due to the uneven distribution of precipitation and severe river pollution. Unfortunately, rapid urbanization and industrialization have been continuously challenging the water quality of the drinking-water reservoirs. The identification and assessment of potential impacts is indispensable in water resource management and protection. This study investigates the drinking water reservoirs in Zhejiang Province to better understand the potential impact on water quality. Altogether seventy-three typical drinking reservoirs in Zhejiang Province encompassing various water storage levels were selected and evaluated. Using fifty-two reservoirs as training samples, the classification and regression tree (CART) method and sixteen comprehensive variables, including six sub-sets (land use, population, socio-economy, geographical features, inherent characteristics, and climate), were adopted to establish a decision-making model for identifying and assessing their potential impacts on drinking-water quality. The water quality class of the remaining twenty-one reservoirs was then predicted and tested based on the decision-making model, resulting in a water quality class attribution accuracy of 81.0%. Based on the decision rules and quantitative importance of the independent variables, industrial emissions was identified as the most important factor influencing the water quality of reservoirs; land use and human habitation also had a substantial impact on water quality. The results of this study provide insights into the factors impacting the water quality of reservoirs as well as basic information for protecting reservoir water resources. PMID:24919129

  20. Identification and assessment of potential water quality impact factors for drinking-water reservoirs.

    PubMed

    Gu, Qing; Deng, Jinsong; Wang, Ke; Lin, Yi; Li, Jun; Gan, Muye; Ma, Ligang; Hong, Yang

    2014-06-10

    Various reservoirs have been serving as the most important drinking water sources in Zhejiang Province, China, due to the uneven distribution of precipitation and severe river pollution. Unfortunately, rapid urbanization and industrialization have been continuously challenging the water quality of the drinking-water reservoirs. The identification and assessment of potential impacts is indispensable in water resource management and protection. This study investigates the drinking water reservoirs in Zhejiang Province to better understand the potential impact on water quality. Altogether seventy-three typical drinking reservoirs in Zhejiang Province encompassing various water storage levels were selected and evaluated. Using fifty-two reservoirs as training samples, the classification and regression tree (CART) method and sixteen comprehensive variables, including six sub-sets (land use, population, socio-economy, geographical features, inherent characteristics, and climate), were adopted to establish a decision-making model for identifying and assessing their potential impacts on drinking-water quality. The water quality class of the remaining twenty-one reservoirs was then predicted and tested based on the decision-making model, resulting in a water quality class attribution accuracy of 81.0%. Based on the decision rules and quantitative importance of the independent variables, industrial emissions was identified as the most important factor influencing the water quality of reservoirs; land use and human habitation also had a substantial impact on water quality. The results of this study provide insights into the factors impacting the water quality of reservoirs as well as basic information for protecting reservoir water resources.

  1. Human Health Risk Assessment Applied to Rural Populations Dependent on Unregulated Drinking Water Sources: A Scoping Review.

    PubMed

    Ford, Lorelei; Bharadwaj, Lalita; McLeod, Lianne; Waldner, Cheryl

    2017-07-28

    Safe drinking water is a global challenge for rural populations dependent on unregulated water. A scoping review of research on human health risk assessments (HHRA) applied to this vulnerable population may be used to improve assessments applied by government and researchers. This review aims to summarize and describe the characteristics of HHRA methods, publications, and current literature gaps of HHRA studies on rural populations dependent on unregulated or unspecified drinking water. Peer-reviewed literature was systematically searched (January 2000 to May 2014) and identified at least one drinking water source as unregulated (21%) or unspecified (79%) in 100 studies. Only 7% of reviewed studies identified a rural community dependent on unregulated drinking water. Source water and hazards most frequently cited included groundwater (67%) and chemical water hazards (82%). Most HHRAs (86%) applied deterministic methods with 14% reporting probabilistic and stochastic methods. Publications increased over time with 57% set in Asia, and 47% of studies identified at least one literature gap in the areas of research, risk management, and community exposure. HHRAs applied to rural populations dependent on unregulated water are poorly represented in the literature even though almost half of the global population is rural.

  2. Human Health Risk Assessment Applied to Rural Populations Dependent on Unregulated Drinking Water Sources: A Scoping Review

    PubMed Central

    Ford, Lorelei; Bharadwaj, Lalita; McLeod, Lianne; Waldner, Cheryl

    2017-01-01

    Safe drinking water is a global challenge for rural populations dependent on unregulated water. A scoping review of research on human health risk assessments (HHRA) applied to this vulnerable population may be used to improve assessments applied by government and researchers. This review aims to summarize and describe the characteristics of HHRA methods, publications, and current literature gaps of HHRA studies on rural populations dependent on unregulated or unspecified drinking water. Peer-reviewed literature was systematically searched (January 2000 to May 2014) and identified at least one drinking water source as unregulated (21%) or unspecified (79%) in 100 studies. Only 7% of reviewed studies identified a rural community dependent on unregulated drinking water. Source water and hazards most frequently cited included groundwater (67%) and chemical water hazards (82%). Most HHRAs (86%) applied deterministic methods with 14% reporting probabilistic and stochastic methods. Publications increased over time with 57% set in Asia, and 47% of studies identified at least one literature gap in the areas of research, risk management, and community exposure. HHRAs applied to rural populations dependent on unregulated water are poorly represented in the literature even though almost half of the global population is rural. PMID:28788087

  3. 40 CFR 35.3535 - Authorized set-aside activities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... demonstrate how the purchase of land or easements will protect the source water of the system from... ASSISTANCE STATE AND LOCAL ASSISTANCE Drinking Water State Revolving Funds § 35.3535 Authorized set-aside... DWSRF program and to provide technical assistance to public water systems. (c) Small systems technical...

  4. 40 CFR 35.3535 - Authorized set-aside activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... demonstrate how the purchase of land or easements will protect the source water of the system from... ASSISTANCE STATE AND LOCAL ASSISTANCE Drinking Water State Revolving Funds § 35.3535 Authorized set-aside... DWSRF program and to provide technical assistance to public water systems. (c) Small systems technical...

  5. Evaluation of available data sources to prioritize parishes for arsenic monitoring and outreach related to private well drinking water.

    PubMed

    Katner, Adrienne; Lackovic, Michelle; Streva, Kate; Paul, Vanessa; Trachtman, William Clay

    2015-01-01

    The objective of this assessment was to identify and evaluate data sets for use in the surveillance of arsenic hazards and private well drinking water use in Louisiana. Features, strengths, and limitations of the data sets are described, and prioritization criteria are applied to identify areas in need of further monitoring or outreach. Recent efforts have been made by the Environmental Public Health Tracking Network to evaluate the quality of private well water data for the purpose of supporting state and national surveillance activities. Like most states, Louisiana does not collect or mandate reporting of private well water quality data. Therefore, responding to public concerns about private well water quality requires an identification and evaluation of existing data. Data evaluated include measures of arsenic in groundwater and soil, private well water use, and biomonitoring results. The Environmental Protection Agency's Safe Drinking Water Information System and the US Geological Survey's Water Use data set were the most informative, nationally available data sets for conducting private well water arsenic surveillance. Three priority parishes were identified on the basis of a selection criteria, although all parishes require more private well sampling data. While the data reviewed enabled preliminary identification of parishes in need of monitoring and outreach, data limitations (particularly, a lack of statewide well water quality data) prevent a comprehensive evaluation of well water arsenic hazards and private well water use. A large number of unregistered wells further impede risk determination. Reliance on existing data sources is necessary, but development of metadata documentation is essential to prevent data misinterpretation. Increased outreach and policies to promote or mandate private well testing and reporting are needed to enable a comprehensive private well water tracking system.

  6. Appropriate technology for rural India - solar decontamination of water for emergency settings and small communities.

    PubMed

    Kang, Gagandeep; Roy, Sheela; Balraj, Vinohar

    2006-09-01

    A commercial solar water heating system was evaluated for its effectiveness in decontaminating drinking water with a view to use in emergency situations. A total of 18 seeding experiments carried out over 6 months with 10(5) to 10(7)Escherichia coli/ml showed that the solar heater produced 125 l of bacteriologically safe water in 4 h when the ambient temperature was above 30 degrees C, with a holding time of at least 2 h. The solar water heating system is inexpensive, easy to transport and set up and could provide safer drinking water for 50 people a day. It would be effective in the decrease and prevention of waterborne disease in emergency situations, and is appropriate for use in small communities.

  7. Human exposure assessment to antibiotic-resistant Escherichia coli through drinking water.

    PubMed

    O'Flaherty, E; Borrego, C M; Balcázar, J L; Cummins, E

    2018-03-01

    Antibiotic-resistant bacteria (ARB) are a potential threat to human health through drinking water with strong evidence of ARB presence in post treated tap water around the world. This study examines potential human exposure to antibiotic-resistant (AR) Escherichia coli (E. coli) through drinking water, the effect of different drinking water treatments on AR E. coli and the concentration of AR E. coli required in the source water for the EU Drinking Water Directive (DWD) (Council Directive 98/83/EC, 0CFU/100ml of E. coli in drinking water) to be exceeded. A number of scenarios were evaluated to examine different water treatment combinations and to reflect site specific conditions at a study site in Europe. A literature search was carried out to collate data on the effect of environmental conditions on AR E. coli, the effect of different water treatments on AR E. coli and typical human consumption levels of tap water. A human exposure assessment model was developed with probability distributions used to characterise uncertainty and variability in the input data. Overall results show the mean adult human exposure to AR E. coli from tap water consumption ranged between 3.44×10 -7 and 2.95×10 -1 cfu/day for the scenarios tested and varied depending on the water treatments used. The level of AR E. coli required in the source water pre-treatment to exceed the DWD varied between 1 and 5logcfu/ml, depending on the water treatments used. This can be used to set possible monitoring criteria in pre-treated water for potential ARB exposure in drinking water. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. [Drinking water supply in the Russian Federation: problems and ways of their solution].

    PubMed

    Onishchenko, G G

    2007-01-01

    Russia having a fifth of the worldwide drinking water resources is faced with considerable difficulties in solving the problems associated with the safe and rational attitude towards water resources, in improving the technologies of drinking water purification and conditioning, in introducing new universal forms of supplying the population with high-quality portable water. Particular emphasis has been recently placed on the setting-up of an effective legal and normative base for the sanitary protection of water sources and the upgrading of the quality of drinking water. Regional (republican, territorial) drinking water supply programs have been worked out up to the period 2010 in 47 subjects of the Russian Federation, with the participation of sanitary-and-epidemiological surveillance systems and approved in accordance with the established procedures. The majority of administrative areas have district and town programs to implement high-priority measures for improving the water supple system. Safe drinking water supply is one of the major components of Russia's national security. Under the established conditions, even in case of the favorable financial position, this cannot be achieved by only engineering decisions (construction and modernization of water-supply networks, use of new equipment and breakthrough technologies). Water service as a type of water consumption is based on the general principles of natural resource management. Its safety should be combined with the strategic objective of water resources utilization and conservation in the catchment basins in the country as a whole.

  9. Evaluation of drinking quality of groundwater through multivariate techniques in urban area.

    PubMed

    Das, Madhumita; Kumar, A; Mohapatra, M; Muduli, S D

    2010-07-01

    Groundwater is a major source of drinking water in urban areas. Because of the growing threat of debasing water quality due to urbanization and development, monitoring water quality is a prerequisite to ensure its suitability for use in drinking. But analysis of a large number of properties and parameter to parameter basis evaluation of water quality is not feasible in a regular interval. Multivariate techniques could streamline the data without much loss of information to a reasonably manageable data set. In this study, using principal component analysis, 11 relevant properties of 58 water samples were grouped into three statistical factors. Discriminant analysis identified "pH influence" as the most distinguished factor and pH, Fe, and NO₃⁻ as the most discriminating variables and could be treated as water quality indicators. These were utilized to classify the sampling sites into homogeneous clusters that reflect location-wise importance of specific indicator/s for use to monitor drinking water quality in the whole study area.

  10. 78 FR 65561 - D-Glucopyranose, oligomeric, decyl octyl glycosides; Exemption from the Requirement of a Tolerance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-01

    ... exposure through drinking water and in residential settings, but does not include occupational exposure... ingredient through food, drinking water, and through other exposures that occur as a result of pesticide use... observed at the dose levels of 1,500 and 3,000 mg/kg/day, these effects are likely attributable to stress...

  11. What's Wrong with Bribery? An Example Utilizing Access to Safe Drinking Water

    ERIC Educational Resources Information Center

    Dhooge, Lucien J.

    2013-01-01

    This case study examines the role of bribery in the global marketplace through an example involving access to safe drinking water in the developing world. Parts II and III set out the objectives and methods of classroom delivery for the case study. Part IV is the background reading relating to bribery with particular emphasis on the Foreign…

  12. Inequities in access to and use of drinking water services in Latin America and the Caribbean.

    PubMed

    Soares, Luiz Carlos Rangel; Griesinger, Marilena O; Dachs, J Norberto W; Bittner, Marta A; Tavares, Sonia

    2002-01-01

    To identify and evaluate inequities in access to drinking water services as reflected in household per capita expenditure on water, and to determine what proportion of household expenditures is spent on water in 11 countries of Latin America and the Caribbean. Using data from multi-purpose household surveys (such as the Living Standards Measurement Survey Study) conducted in 11 countries from 1995 to 1999, the availability of drinking water as well as total and per capita household expenditures on drinking water were analyzed in light of socioeconomic parameters, such as urban vs. rural setting, household income, type and regularity of water supply service, time spent obtaining water in homes not served by running water, and type of water-purifying treatment, if any. Access to drinking water as well as total and per capita household expenditures on drinking water show an association with household income, economic conditions of the household, and location. The access of the rural population to drinking water services is much more restricted than that of the urban population for groups having similar income. The proportion of families having a household water supply system is comparable in the higher-income rural population and the lower-income urban population. Families without a household water supply system spend a considerable amount of time getting water. For poorer families, this implies additional costs. Low-income families that lack a household water supply spend as much money on water as do families with better income. Access to household water disinfection methods is very limited among poor families due to its relatively high cost, which results in poorer drinking water quality in the lower-income population. Multi-purpose household surveys conducted from the consumer's point of view are important tools for research on equity and health, especially when studying unequal access to, use of, and expenditures on drinking water. It is recommended that countries improve their portion of the surveys that deals with water and sanitation in order to facilitate national health assessments and the establishment of more equitable subsidy programs.

  13. Trihalomethanes in drinking water and the risk of death from kidney cancer: does hardness in drinking water matter?

    PubMed

    Liao, Yen-Hsiung; Chen, Chih-Cheng; Chang, Chih-Ching; Peng, Chiung-Yu; Chiu, Hui-Fen; Wu, Trong-Neng; Yang, Chun-Yuh

    2012-01-01

    The objectives of this study were to (1) examine the relationship between total trihalomethanes (TTHM) levels in public water supplies and risk of development of kidney cancer and (2) determine whether hardness levels in drinking water modify the effects of TTHM on risk of kidney cancer induction. A matched case-control study was used to investigate the relationship between the risk of death attributed to kidney cancer and exposure to TTHM in drinking water in 53 municipalities in Taiwan. All kidney cancer deaths in the 53 municipalities from 1998 through 2007 were obtained. Controls were deaths from other causes and were pair-matched to the cancer cases by gender, year of birth, and year of death. Each matched control was selected randomly from the set of possible controls for each cancer case. Data on TTHM levels and levels of hardness in drinking water were also collected. The municipality of residence for cancer cases and controls was presumed to be the source of the subject's TTHM and hardness exposure via drinking water. Relative to individuals whose TTHM exposure level was <4.9 ppb, the adjusted OR (95% CI) for kidney cancer was 0.98 (0.77-1.25) for individuals who resided in municipalities served by drinking water with a TTHM exposure ≥4.9 ppb. However, evidence of an interaction was noted between the use of soft water and drinking water TTHM concentrations. Increased knowledge of the interaction between hardness and TTHM levels in reducing risk of kidney cancer development will aid in public policy decision and establishing standards to prevent disease occurrence.

  14. Water quality associated public health risk in Bo, Sierra Leone.

    PubMed

    Jimmy, David H; Sundufu, Abu J; Malanoski, Anthony P; Jacobsen, Kathryn H; Ansumana, Rashid; Leski, Tomasz A; Bangura, Umaru; Bockarie, Alfred S; Tejan, Edries; Lin, Baochuan; Stenger, David A

    2013-01-01

    Human health depends on reliable access to safe drinking water, but in many developing countries only a limited number of wells and boreholes are available. Many of these water resources are contaminated with biological or chemical pollutants. The goal of this study was to examine water access and quality in urban Bo, Sierra Leone. A health census and community mapping project in one neighborhood in Bo identified the 36 water sources used by the community. A water sample was taken from each water source and tested for a variety of microbiological and physicochemical substances. Only 38.9% of the water sources met World Health Organization (WHO) microbial safety requirements based on fecal coliform levels. Physiochemical analysis indicated that the majority (91.7%) of the water sources met the requirements set by the WHO. In combination, 25% of these water resources met safe drinking water criteria. No variables associated with wells were statistically significant predictors of contamination. This study indicated that fecal contamination is the greatest health risk associated with drinking water. There is a need to raise hygiene awareness and implement inexpensive methods to reduce fecal contamination and improve drinking water safety in Bo, Sierra Leone.

  15. IN VITRO DETERMINATION OF KINETIC CONSTANTS FOR 1,3-DICHLOROPROPANE, 2,2-DICHLOROPROPANE, AND 1,1-DICHLOROPROPENE IN RAT LIVER MICROSOMES AND CYTOSOL

    EPA Science Inventory

    The Safe Drinking Water Act requires the U.S. EPA to establish a list of contaminants to aid in priority setting for the Agency's drinking water program. The 1998 Contaminant Candidate List (CCL) designated 1,3-Dichloropropane (1,3-DCP), 2,2-dichloropropane (2,2-DCP), and 1,1-...

  16. Standards for arsenic in drinking water: Implications for policy in Mexico

    PubMed Central

    Fisher, Andrew T.; López-Carrillo, Lizbeth; Gamboa-Loira, Brenda; Cebrián, Mariano E.

    2017-01-01

    Global concern about arsenic in drinking water and its link to numerous diseases make translation of evidence-based research into national policy a priority. Delays in establishing a maximum contaminant level (MCL) to preserve health have increased the burden of disease and caused substantial and avoidable loss of life. The current Mexican MCL for arsenic in drinking water is 25 μg/l (2.5 times higher than the World Health Organization (WHO) recommendation from 1993). Mexico’s struggles to set its arsenic MCL offer a compelling example of shortcomings in environmental health policy. We explore factors that might facilitate policy change in Mexico: scientific evidence, risk communication and public access to information, economic and technological resources, and politics. To raise awareness of the health, societal, and economic implications of arsenic contamination of drinking water in Mexico, we suggest action steps for attaining environmental policy change and better protect population health. PMID:28808298

  17. The Savannah River Site`s Groundwater Monitoring Program, third quarter 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site`s Groundwater Monitoring Program. During third quarter 1989 (July--September), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, backgroundmore » levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the third quarter is presented in the Flagging Criteria section of this document. All analytical results from third quarter 1989 are listed in this report, which is distributed to all waste-site custodians.« less

  18. The Savannah River Site's Groundwater Monitoring Program, third quarter 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During third quarter 1989 (July--September), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, backgroundmore » levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the third quarter is presented in the Flagging Criteria section of this document. All analytical results from third quarter 1989 are listed in this report, which is distributed to all waste-site custodians.« less

  19. Standards for arsenic in drinking water: Implications for policy in Mexico.

    PubMed

    Fisher, Andrew T; López-Carrillo, Lizbeth; Gamboa-Loira, Brenda; Cebrián, Mariano E

    2017-11-01

    Global concern about arsenic in drinking water and its link to numerous diseases make translation of evidence-based research into national policy a priority. Delays in establishing a maximum contaminant level (MCL) to preserve health have increased the burden of disease and caused substantial and avoidable loss of life. The current Mexican MCL for arsenic in drinking water is 25 μg/l (2.5 times higher than the World Health Organization (WHO) recommendation from 1993). Mexico's struggles to set its arsenic MCL offer a compelling example of shortcomings in environmental health policy. We explore factors that might facilitate policy change in Mexico: scientific evidence, risk communication and public access to information, economic and technological resources, and politics. To raise awareness of the health, societal, and economic implications of arsenic contamination of drinking water in Mexico, we suggest action steps for attaining environmental policy change and better protect population health.

  20. Improved water resource management for a highly complex environment using three-dimensional groundwater modelling

    NASA Astrophysics Data System (ADS)

    Moeck, Christian; Affolter, Annette; Radny, Dirk; Dressmann, Horst; Auckenthaler, Adrian; Huggenberger, Peter; Schirmer, Mario

    2018-02-01

    A three-dimensional groundwater model was used to improve water resource management for a study area in north-west Switzerland, where drinking-water production is close to former landfills and industrial areas. To avoid drinking-water contamination, artificial groundwater recharge with surface water is used to create a hydraulic barrier between the contaminated sites and drinking-water extraction wells. The model was used for simulating existing and proposed water management strategies as a tool to ensure the utmost security for drinking water. A systematic evaluation of the flow direction between existing observation points using a developed three-point estimation method for a large number of scenarios was carried out. It is demonstrated that systematically applying the developed methodology helps to identify vulnerable locations which are sensitive to changing boundary conditions such as those arising from changes to artificial groundwater recharge rates. At these locations, additional investigations and protection are required. The presented integrated approach, using the groundwater flow direction between observation points, can be easily transferred to a variety of hydrological settings to systematically evaluate groundwater modelling scenarios.

  1. On-line detection of Escherichia coli intrusion in a pilot-scale drinking water distribution system.

    PubMed

    Ikonen, Jenni; Pitkänen, Tarja; Kosse, Pascal; Ciszek, Robert; Kolehmainen, Mikko; Miettinen, Ilkka T

    2017-08-01

    Improvements in microbial drinking water quality monitoring are needed for the better control of drinking water distribution systems and for public health protection. Conventional water quality monitoring programmes are not always able to detect a microbial contamination of drinking water. In the drinking water production chain, in addition to the vulnerability of source waters, the distribution networks are prone to contamination. In this study, a pilot-scale drinking-water distribution network with an on-line monitoring system was utilized for detecting bacterial intrusion. During the experimental Escherichia coli intrusions, the contaminant was measured by applying a set of on-line sensors for electric conductivity (EC), pH, temperature (T), turbidity, UV-absorbance at 254 nm (UVAS SC) and with a device for particle counting. Monitored parameters were compared with the measured E. coli counts using the integral calculations of the detected peaks. EC measurement gave the strongest signal compared with the measured baseline during the E. coli intrusion. Integral calculations showed that the peaks in the EC, pH, T, turbidity and UVAS SC data were detected corresponding to the time predicted. However, the pH and temperature peaks detected were barely above the measured baseline and could easily be mixed with the background noise. The results indicate that on-line monitoring can be utilized for the rapid detection of microbial contaminants in the drinking water distribution system although the peak interpretation has to be performed carefully to avoid being mixed up with normal variations in the measurement data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Effect modification by drinking water hardness of the association between nitrate levels and gastric cancer: evidence from an ecological study.

    PubMed

    Chiu, Hui-Fen; Kuo, Chao-Hung; Tsai, Shang-Shyue; Chen, Chih-Cheng; Wu, Deng-Chuang; Wu, Trong-Neng; Yang, Chun-Yuh

    2012-01-01

    The objectives of this study were to (1) examine the relationship between nitrate levels in public water supplies and risk of death from gastric cancer and (2) determine whether calcium (Ca) and magnesium (Mg) levels in drinking water might modify the effects of nitrate on the risk of gastric cancer development. A matched cancer case-control study was used to investigate the relationship between the risk of death attributed to gastric cancer and exposure to nitrate in drinking water in Taiwan. All deaths due to gastric cancer in Taiwan residents from 2006 through 2010 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Deaths from other causes served as controls and were pair-matched to cancer cases by gender, year of birth, and year of death. Information on the levels of nitrate-nitrogen (NO(3)-N), Ca, and Mg in drinking water were collected from Taiwan Water Supply Corporation (TWSC). The municipality of residence for cancer cases and controls was presumed to be the source of the subject's NO(3)-N, Ca, and Mg exposure via drinking water. Relative to individuals whose NO(3)-N exposure levels were <0.38 ppm, the adjusted odds ratio (OR) and 95% confidence interval (CI) for gastric cancer occurrence was 1.16 (1.05-1.29) for individuals who resided in municipalities served by drinking water with a NO(3)-N exposure ≥ 0.38 ppm. There was apparent evidence of an interaction between drinking water NO(3)-N levels and low Ca and Mg intake via drinking water. Our findings showed that the correlation between NO(3)-N exposure and risk of gastric cancer development was influenced by Ca and Mg levels in drinking water. This is the first study to report effects modification by Ca and Mg intake from drinking water on the relationship between NO(3)-N exposure and risk of gastric cancer occurrence. Increased knowledge of the mechanistic interactions between Ca, Mg, and NO(3)-N in reducing risk of gastric cancer development will aid in public policy decisions and setting threshold standards.

  3. Role of mafic and ultramafic rocks in drinking water quality and its potential health risk assessment, Northern Pakistan.

    PubMed

    Begum, Shaheen; Shah, Mohammad Tahir; Muhammad, Said; Khan, Sardar

    2015-12-01

    This study investigates the drinking water (groundwater and surface water) quality and potential risk assessment along mafic and ultramafic rocks in the Swat district of Khyber Pakhtunkhwa Provence, Pakistan. For this purpose, 82 groundwater and 33 surface water samples were collected and analyzed for physico-chemical parameters. Results showed that the majority of the physico-chemical parameters were found to be within the drinking water guidelines set by the World Health Organization. However, major cationic metals such as magnesium (Mg), and trace metals (TM) including iron (Fe), manganese (Mn), nickel (Ni), chromium (Cr) and cobalt (Co) showed exceeded concentrations in 13%, 4%, 2%, 20%, 20% and 55% of water samples, respectively. Health risk assessment revealed that the non-carcinogenic effects or hazard quotient values through the oral ingestion pathway of water consumption for the TM (viz., Fe, Cr and Mn) were found to be greater than 1, could result in chronic risk to the exposed population. Results of statistical analyses revealed that mafic and ultramafic rocks are the main sources of metal contamination in drinking water, especially Ni and Cr. Both Ni and Cr have toxic health effects and therefore this study suggests that contaminated sites should be avoided or treated for drinking and domestic purposes.

  4. Tool-use for drinking water by immature chimpanzees of Mahale: prevalence of an unessential behavior.

    PubMed

    Matsusaka, Takahisa; Nishie, Hitonaru; Shimada, Masaki; Kutsukake, Nobuyuki; Zamma, Koichiro; Nakamura, Michio; Nishida, Toshisada

    2006-04-01

    Use of leaves or sticks for drinking water has only rarely been observed during long-term study of wild chimpanzees (Pan troglodytes schweinfurthii) at Mahale. Recently, however, we observed 42 episodes of tool-use for drinking water (73 tools and two cases of using "tool-sets") between 1999 and 2004. Interestingly, all of the performers were immature chimpanzees aged from 2 to 10 years. Immature chimpanzees sometimes observed the tool-using performance of others and subsequently reproduced the behavior, while adults usually paid no attention to the performance. This tool-use did not seem to occur out of necessity: (1) chimpanzees often used tools along streams where they could drink water without tools, (2) they used tools for drinking water from tree holes during the wet season when they could easily obtain water from many streams, and (3) the tool-using performance sometimes contained playful aspects. Between-site comparisons revealed that chimpanzees at drier habitats used tools for drinking water more frequently and in a more "conventional" manner. However, some variations could not be explained by ecological conditions. Such variations and the increase in this tool-use in recent years at Mahale strongly suggest that social learning plays an important role in the process of acquiring the behavior. We should note here that such behaviors that lack obvious benefits or necessity can be prevalent in a group.

  5. Assessing the microbiological performance and potential cost of boiling drinking water in urban Zambia.

    PubMed

    Psutka, Rebecca; Peletz, Rachel; Michelo, Sandford; Kelly, Paul; Clasen, Thomas

    2011-07-15

    Boiling is the most common method of disinfecting water in the home and the benchmark against which other point-of-use water treatment is measured. In a six-week study in peri-urban Zambia, we assessed the microbiological effectiveness and potential cost of boiling among 49 households without a water connection who reported "always" or "almost always" boiling their water before drinking it. Source and household drinking water samples were compared weekly for thermotolerant coliforms (TTC), an indicator of fecal contamination. Demographics, costs, and other information were collected through surveys and structured observations. Drinking water samples taken at the household (geometric mean 7.2 TTC/100 mL, 95% CI, 5.4-9.7) were actually worse in microbiological quality than source water (geometric mean 4.0 TTC/100 mL, 95% CI, 3.1-5.1) (p < 0.001), although both are relatively low levels of contamination. Only 60% of drinking water samples were reported to have actually been boiled at the time of collection from the home, suggesting over-reporting and inconsistent compliance. However, these samples were of no higher microbiological quality. Evidence suggests that water quality deteriorated after boiling due to lack of residual protection and unsafe storage and handling. The potential cost of fuel or electricity for boiling was estimated at 5% and 7% of income, respectively. In this setting where microbiological water quality was relatively good at the source, safe-storage practices that minimize recontamination may be more effective in managing the risk of disease from drinking water at a fraction of the cost of boiling.

  6. Hydraulic optimization and modeling of hydro-cyclone-systems for treatment and purification of any kind of waters

    NASA Astrophysics Data System (ADS)

    Spangemacher, Lars; Fröhlich, Siegmund; Buse, Hauke

    2017-11-01

    Water is an indispensable resource for many purposes and good drinking water quality is essential for mankind. This article is supposed to show the need for mobile water treatment systems and therefore to give an overview of different mobile drinking water systems and the technologies available for obtaining good water quality. The aim is to develop a simple to operate water treatment system with few processing stages such as multi-cyclone-cartridge and reverse osmosis with energy recuperation, while the focus is set on modeling and optimizing of hydrocyclone systems as the first treatment stage.

  7. Drinking water quality assessment.

    PubMed

    Aryal, J; Gautam, B; Sapkota, N

    2012-09-01

    Drinking water quality is the great public health concern because it is a major risk factor for high incidence of diarrheal diseases in Nepal. In the recent years, the prevalence rate of diarrhoea has been found the highest in Myagdi district. This study was carried out to assess the quality of drinking water from different natural sources, reservoirs and collection taps at Arthunge VDC of Myagdi district. A cross-sectional study was carried out using random sampling method in Arthunge VDC of Myagdi district from January to June,2010. 84 water samples representing natural sources, reservoirs and collection taps from the study area were collected. The physico-chemical and microbiological analysis was performed following standards technique set by APHA 1998 and statistical analysis was carried out using SPSS 11.5. The result was also compared with national and WHO guidelines. Out of 84 water samples (from natural source, reservoirs and tap water) analyzed, drinking water quality parameters (except arsenic and total coliform) of all water samples was found to be within the WHO standards and national standards.15.48% of water samples showed pH (13) higher than the WHO permissible guideline values. Similarly, 85.71% of water samples showed higher Arsenic value (72) than WHO value. Further, the statistical analysis showed no significant difference (P<0.05) of physico-chemical parameters and total coliform count of drinking water for collection taps water samples of winter (January, 2010) and summer (June, 2010). The microbiological examination of water samples revealed the presence of total coliform in 86.90% of water samples. The results obtained from physico-chemical analysis of water samples were within national standard and WHO standards except arsenic. The study also found the coliform contamination to be the key problem with drinking water.

  8. The relevance of "non-relevant metabolites" from plant protection products (PPPs) for drinking water: the German view.

    PubMed

    Dieter, Hermann H

    2010-03-01

    "Non-relevant metabolites" are those degradation products of plant protection products (PPPs), which are devoid of the targeted toxicities of the PPP and devoid of genotoxicity. Most often, "non-relevant metabolites" have a high affinity to the aquatic environment, are very mobile within this environment, and, usually, are also persistent. Therefore, from the point of drinking water hygiene, they must be characterized as "relevant for drinking water" like many other hydrophilic/polar environmental contaminants of different origins. "Non-relevant metabolites" may therefore penetrate to water sources used for abstraction of drinking water and may thus ultimately be present in drinking water. The presence of "non-relevant metabolites" and similar trace compounds in the water cycle may endanger drinking water quality on a long-term scale. During oxidative drinking water treatment, "non-relevant metabolites" may also serve as the starting material for toxicologically relevant transformation products similar to processes observed by drinking water disinfection with chlorine. This hypothesis was recently confirmed by the detection of the formation of N-nitroso-dimethylamine from ozone and dimethylsulfamide, a "non-relevant metabolite" of the fungicide tolylfluanide. In order to keep drinking water preferably free of "non-relevant metabolites", the German drinking water advisory board of the Federal Ministry of Health supports limiting their penetration into raw and drinking water to the functionally (agriculturally) unavoidable extent. On this background, the German Federal Environment Agency (UBA) recently has recommended two health related indication values (HRIV) to assess "non-relevant metabolites" from the view of drinking water hygiene. Considering the sometimes incomplete toxicological data base for some "non-relevant metabolites", HRIV also have the role of health related precautionary values. Depending on the completeness and quality of the toxicological evaluation of a "non-relevant metabolite", its HRIV is either set as 1.0 microg/l (HRIV(a)) or as 3.0 microg/l (HRIV(b)) for lifelong exposure. In case a HRIV would be exceeded, UBA recommends to keep on a precautionary action value (PAV) of 10 microg/l for each "non-relevant metabolite". The HRIV(b) is similar to the maximal value derived by application of the TTC-concept for Cramer Class III (4.5 microg/l). The HRIV(a) and the PAV are similar to values in the EU-guidance document for assessing "non-relevant metabolites" in ground water, with the important difference that the drinking water PAV is not intended to be tolerated for permanent exposure. Drinking water containing "non-relevant metabolites" below the respective HRIVs can also be considered as being sufficiently protective against toxicologically relevant oxidative transformation products which may be formed from "non-relevant metabolites" during drinking water treatment with ozone. However, even drinking water where one or several "non-relevant metabolites" are detected above substance-specific HRIVs is suited for human consumption without health risks. Only in special cases (relatively high "non-relevant metabolite" - concentrations), it could be indicated to examine the finished water for transformation products after treatment with ozone if there are no further treatment steps to eliminate or degrade polar compounds. UBA's "non-relevant metabolite-Recommendation" from April 2008 was positively picked up in 2009 by four important stakeholders in the domain of drinking water management as part of a voluntary cooperation agreement. The aim of such cooperation is to limit the transport of "non-relevant metabolites" into the drinking water to the functionally (and agriculturally) unavoidable extent and insofar to meet special precautionary demands. (c) 2009 Elsevier Inc. All rights reserved.

  9. Issues in access to safe drinking water and basic hygiene for persons with physical disabilities in rural Cambodia.

    PubMed

    MacLeod, Marin; Pann, Mala; Cantwell, Ray; Moore, Spencer

    2014-12-01

    An estimated 1.6 million people die from diarrheal diseases each year due to lack of access to safe water and sanitation, and persons with physical disabilities face additional barriers. In Cambodia, approximately 5% of the population is disabled, presenting substantial obstacles in accessing these basic services. The purpose of this study was twofold: first, to identify the challenges facing persons with physical disabilities in accessing safe household water and basic hygiene in rural Cambodia; and, second, to use these results to generate policy and practice recommendations for the water and sanitation hygiene sector implementing water treatment system interventions in rural settings. Fifteen field interviews were conducted with persons with physical disabilities. Thematic analysis was used to identify six main themes. The results indicated that environmental barriers to access were greater in the workplace than household settings and those persons with disabilities had greater awareness about safe drinking water compared to basic hygiene. Additionally, lack of physical strength, distance to water, and lack of financial means were noted as common access barriers. The findings support ongoing research and offer insight into the particular challenges facing persons with physical disabilities in rural areas in accessing safe drinking water and basic hygiene.

  10. Comparison and cost analysis of drinking water quality monitoring requirements versus practice in seven developing countries.

    PubMed

    Crocker, Jonny; Bartram, Jamie

    2014-07-18

    Drinking water quality monitoring programs aim to support provision of safe drinking water by informing water quality management. Little evidence or guidance exists on best monitoring practices for low resource settings. Lack of financial, human, and technological resources reduce a country's ability to monitor water supply. Monitoring activities were characterized in Cambodia, Colombia, India (three states), Jordan, Peru, South Africa, and Uganda according to water sector responsibilities, monitoring approaches, and marginal cost. The seven study countries were selected to represent a range of low resource settings. The focus was on monitoring of microbiological parameters, such as E. coli, coliforms, and H2S-producing microorganisms. Data collection involved qualitative and quantitative methods. Across seven study countries, few distinct approaches to monitoring were observed, and in all but one country all monitoring relied on fixed laboratories for sample analysis. Compliance with monitoring requirements was highest for operational monitoring of large water supplies in urban areas. Sample transport and labor for sample collection and analysis together constitute approximately 75% of marginal costs, which exclude capital costs. There is potential for substantive optimization of monitoring programs by considering field-based testing and by fundamentally reconsidering monitoring approaches for non-piped supplies. This is the first study to look quantitatively at water quality monitoring practices in multiple developing countries.

  11. Assessing the Association between Thermotolerant Coliforms in Drinking Water and Diarrhea: An Analysis of Individual-Level Data from Multiple Studies.

    PubMed

    Hodge, James; Chang, Howard H; Boisson, Sophie; Collin, Simon M; Peletz, Rachel; Clasen, Thomas

    2016-10-01

    Fecally contaminated drinking water is believed to be a major contributor to the global burden of diarrheal disease and a leading cause of mortality among young children. However, recent systematic reviews and results from blinded studies of water quality interventions have raised questions about the risk associated with fecally contaminated water, particularly as measured by thermotolerant coliform (TTC) bacteria, a WHO-approved indicator of drinking water quality. We investigated the association between TTC in drinking water and diarrhea using data from seven previous studies. We obtained individual-level data from available field studies that measured TTC levels in household-drinking water and reported prevalence of diarrhea among household members during the days prior to the visit. The combined data set included diarrhea prevalence for 26,518 individuals and 8,000 water samples from 4,017 households, yielding 45,052 observations. The odds of diarrhea increased for each log10 increase in TTC/100 mL by 18% (95% CI: 11, 26%) for children < 5 years old and 12% (95% CI: 8, 18%) for all ages. For all ages, the odds of diarrhea increased by 21%, 35% and 49% for those whose household water samples were from 11-100, 101-1,000, and > 1,000 TTC/100 mL, respectively compared to < 1 TTC/100 mL. We found no evidence of increased odds of diarrhea with contamination levels below 11 TTC/100 mL, either in adults or children. Our analysis of individual-level data shows increased risk of diarrhea with increasing levels of TTC in drinking water. These results suggest an association between fecally contaminated water and diarrheal disease and provides support for health-based targets for levels of TTC in drinking water and for interventions to improve drinking water quality to prevent diarrhea. Hodge J, Chang HH, Boisson S, Collin SM, Peletz R, Clasen T. 2016. Assessing the association between thermotolerant coliforms in drinking water and diarrhea: an analysis of individual level data from multiple studies. Environ Health Perspect 124:1560-1567; http://dx.doi.org/10.1289/EHP156.

  12. Assessing the Association between Thermotolerant Coliforms in Drinking Water and Diarrhea: An Analysis of Individual–Level Data from Multiple Studies

    PubMed Central

    Hodge, James; Chang, Howard H.; Boisson, Sophie; Collin, Simon M.; Peletz, Rachel; Clasen, Thomas

    2016-01-01

    Background: Fecally contaminated drinking water is believed to be a major contributor to the global burden of diarrheal disease and a leading cause of mortality among young children. However, recent systematic reviews and results from blinded studies of water quality interventions have raised questions about the risk associated with fecally contaminated water, particularly as measured by thermotolerant coliform (TTC) bacteria, a WHO-approved indicator of drinking water quality. Objectives: We investigated the association between TTC in drinking water and diarrhea using data from seven previous studies. Methods: We obtained individual-level data from available field studies that measured TTC levels in household-drinking water and reported prevalence of diarrhea among household members during the days prior to the visit. Results: The combined data set included diarrhea prevalence for 26,518 individuals and 8,000 water samples from 4,017 households, yielding 45,052 observations. The odds of diarrhea increased for each log10 increase in TTC/100 mL by 18% (95% CI: 11, 26%) for children < 5 years old and 12% (95% CI: 8, 18%) for all ages. For all ages, the odds of diarrhea increased by 21%, 35% and 49% for those whose household water samples were from 11–100, 101–1,000, and > 1,000 TTC/100 mL, respectively compared to < 1 TTC/100 mL. We found no evidence of increased odds of diarrhea with contamination levels below 11 TTC/100 mL, either in adults or children. Conclusions: Our analysis of individual-level data shows increased risk of diarrhea with increasing levels of TTC in drinking water. These results suggest an association between fecally contaminated water and diarrheal disease and provides support for health-based targets for levels of TTC in drinking water and for interventions to improve drinking water quality to prevent diarrhea. Citation: Hodge J, Chang HH, Boisson S, Collin SM, Peletz R, Clasen T. 2016. Assessing the association between thermotolerant coliforms in drinking water and diarrhea: an analysis of individual level data from multiple studies. Environ Health Perspect 124:1560–1567; http://dx.doi.org/10.1289/EHP156 PMID:27164618

  13. [Testing the efficacy of disinfectants during drinking water treatment. A new experimental set-up at the German EPA (Umweltbundesamt - UBA)].

    PubMed

    Grützmacher, G; Bartel, H; Althoff, H W; Clemen, S

    2007-03-01

    A set-up for experiments in the flow-through mode was constructed in order to test the efficacy of substances used for disinfecting water during drinking water treatment. A flow-through mode - in contrast to experiments under stationary conditions (so-called batch experiments) - was chosen, because this experimental design allows experiments to be carried out under constant conditions for an extended time (up to one week) and because efficacy testing is possible repeatedly, simultaneously and under exactly the same conditions for short (about 0.5 min) and also longer (about 47 min) contact times. With this experimental design the effect of biofilms along the inner pipe surfaces can be included in the observations. The construction of the experimental set-up is based on experience with laboratory flow-through systems that were installed by the UBA's drinking water department (formerly Institute for Water-, Soil- and Air Hygiene (WaBoLu) Institute) for testing disinfection with chlorine. In the first step, a test pipe for the simulation of a water works situation was installed. Water of different qualities can be mixed in large volumes beforehand so that the experimental procedure can be run with constant water quality for a minimum of one week. The kinetics of the disinfection reaction can be observed by extracting samples from eight sampling ports situated along the test pipe. In order to assign exact residence times to each of the sampling ports, tracer experiments were performed prior to testing disinfectant efficacy. This paper gives the technical details of the experimental set-up and presents the results of the tracer experiments to provide an introduction with respect to its potential.

  14. Prevalence of household drinking-water contamination and of acute diarrhoeal illness in a periurban community in Myanmar.

    PubMed

    Myint, Su Latt Tun; Myint, Thuzar; Aung, Wah Wah; Wai, Khin Thet

    2015-01-01

    A major health consequence of rapid population growth in urban areas is the increased pressure on existing overstretched water and sanitation services. This study of an expanding periurban neighbourhood of Yangon Region, Myanmar, aimed to ascertain the prevalence of acute diarrhoea in children under 5 years; to identify household sources of drinking-water; to describe purification and storage practices; and to assess drinking-water contamination at point-of-use. A survey of the prevalence of acute diarrhoea in children under 5 years was done in 211 households in February 2013; demographic data were also collected, along with data and details of sources of drinking water, water purification, storage practices and waste disposal. During March-August, a subset of 112 households was revisited to collect drinking water samples. The samples were analysed by the multiple tube fermentation method to count thermotolerant (faecal) coliforms and there was a qualitative determination of the presence of Escherichia coli. Acute diarrhoea in children under 5 years was reported in 4.74% (10/211, 95% CI: 3.0-9.0) of households within the past two weeks. More than half of the households used insanitary pit latrines and 36% disposed of their waste into nearby streams and ponds. Improved sources of drinking water were used, mainly the unchlorinated ward reservoir, a chlorinated tube well or purified bottled water. Nearly a quarter of households never used any method for drinking-water purification. Ninety-four per cent (105/112) of water samples were contaminated with thermotolerant (faecal) coliforms, ranging from 2.2 colony-forming units (CFU)/100 mL (21.4%) to more than 1000 CFU/100 mL (60.7%). Of faecal (thermotolerant)-coliform-positive water samples, 70% (47/68) grew E. coli. The prevalence of acute diarrhoea reported for children under 5 years was high and a high level of drinking-water contamination was detected, though it was unclear whether this was due to contamination at source or at point-of-use. Maintenance of drinking-water quality in study households is complex. Further research is crucial to prove the cost effectiveness in quality improvement of drinking water at point-of-use in resource-limited settings. In addition, empowerment of householders to use measures of treating water by boiling, filtration or chlorination, and safe storage with proper handling is essential.

  15. 40 CFR 35.3540 - Requirements for funding set-aside activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... workplan describing how it will expend funds needed to provide technical assistance to public water systems... OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Drinking Water State Revolving Funds § 35.3540 Requirements for funding set-aside activities. (a) General. If a State makes a grant or enters into a...

  16. 40 CFR 35.3540 - Requirements for funding set-aside activities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... workplan describing how it will expend funds needed to provide technical assistance to public water systems... OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Drinking Water State Revolving Funds § 35.3540 Requirements for funding set-aside activities. (a) General. If a State makes a grant or enters into a...

  17. Flow cytometry for immediate follow-up of drinking water networks after maintenance.

    PubMed

    Van Nevel, Sam; Buysschaert, Benjamin; De Roy, Karen; De Gusseme, Bart; Clement, Lieven; Boon, Nico

    2017-03-15

    Drinking water networks need maintenance every once in a while, either planned interventions or emergency repairs. When this involves opening of the water pipes, precautionary measures need to be taken to avoid contamination of the drinking water at all time. Drinking water suppliers routinely apply plating for faecal indicator organisms as quality control in such a situation. However, this takes at least 21 h of waiting time, which can be crucial when dealing with major supply pipes. A combination of flow cytometric (FCM) bacterial cell counts with FCM fingerprinting techniques is proposed in this study as a fast and sensitive additional technique. In three full scale situations, major supply pipes with 400-1050 mm diameter were emptied for maintenance, shock-chlorinated and flushed with large amounts of clean drinking water before taking back in operation. FCM measurements of the discharged flushing water revealed fast lowering and stabilizing bacterial concentrations once flushing is initiated. Immediate comparison with clean reference drinking water used for flushing was done, and the moment when both waters had similar bacterial concentrations was considered as the endpoint of the necessary flushing works. This was usually after 2-4 h of flushing. FCM fingerprinting, based on both bacteria and FCM background, was used as additional method to verify how similar flushing and reference samples were and yielded similar results. The FCM approved samples were several hours later approved as well by the drinking water supplier after plating and incubation for total Coliforms and Enterococci. These were used as decisive control to set the pipes back in operation. FCM proved to be a more conservative test than plating, yet it yielded immediate results. Application of these FCM methods can therefore avoid long unnecessary waiting times and large drinking water losses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Medical Hydrogeology of Asian Deltas: Status of Groundwater Toxicants and Nutrients, and Implications for Human Health

    PubMed Central

    Hoque, Mohammad A.; Butler, Adrian P.

    2015-01-01

    Drinking water, a fluid primarily for human hydration, is also a source of mineral nutrients. Groundwater, a drinking water source for more than 70% of inhabitants living in Asian deltas, has received much attention because of its naturally occurring arsenic, but the linkage of arsenic toxicity with other water constituents has not been studied. In addition, although nutrients are generally provided by food, in under developed rural settings, where people subsist on low nutrient diets, drinking-water-nutrients may supply quantities vital to human health thereby preventing diseases. Here, we show, using augmented datasets from three Asian deltas (Bengal, Mekong, and Red River), that the chemical content of groundwater is such that in some areas individuals obtain up to 50% or more of the recommended daily intake (RDI) of some nutrients (e.g., calcium, magnesium, iron) from just two litres of drinking water. We also show some indications of a spatial association of groundwater nutrients and health outcome using demographic health data from Bangladesh. We therefore suggest that an understanding of the association of non-communicable disease and poor nutrition cannot be developed, particularly in areas with high levels of dissolved solids in water sources, without considering the contribution of drinking water to nutrient and mineral supply. PMID:26712780

  19. Extended-Spectrum beta (β)-Lactamases and Antibiogram in Enterobacteriaceae from Clinical and Drinking Water Sources from Bahir Dar City, Ethiopia.

    PubMed

    Abera, Bayeh; Kibret, Mulugeta; Mulu, Wondemagegn

    2016-01-01

    The spread of Extended-Spectrum beta (β)-Lactamases (ESBL)-producing Enterobacteriaceae has become a serious global problem. ESBL-producing Enterobacteriaceae vary based on differences in antibiotic use, nature of patients and hospital settings. This study was aimed at determining ESBL and antibiogram in Enterobacteriaceae isolates from clinical and drinking water sources in Bahir Dar City, Northwest Ethiopia. Enterobacteriaceae species were isolated from clinical materials and tap water using standard culturing procedures from September 2013 to March 2015. ESBL-producing-Enterobacteriaceae were detected using double-disk method by E-test Cefotaxim/cefotaxim+ clavulanic acid and Ceftazidime/ceftazidime+ clavulanic acid (BioMerieux SA, France) on Mueller Hinton agar (Oxoid, UK). Overall, 274 Enterobacteriaceae were isolated. Of these, 210 (44%) were from patients and 64 (17.1%) were from drinking water. The median age of the patients was 28 years. Urinary tract infection and blood stream infection accounted for 60% and 21.9% of Enterobacteriaceae isolates, respectively. Klebsiella pneumoniae was isolated from 9 (75%) of neonatal sepsis. The overall prevalence of ESBL-producing Enterobacteriaceae in clinical and drinking water samples were 57.6% and 9.4%, respectively. The predominant ESBL-producers were K. pneumoniae 34 (69.4%) and Escherichia coli 71 (58.2%). Statistically significant associations were noted between ESBL-producing and non- producing Enterobacteriaceae with regard to age of patients, infected body sites and patient settings (P = 0.001). ESBL-producing Enterobacteriaceae showed higher levels of resistance against chloramphenicol, ciprofloxacin and cotrimoxazole than non-ESBL producers (P = 0.001). ESBL-producing Enterobacteriaceae coupled with high levels of other antimicrobials become a major concern for treatment of patients with invasive infections such as blood stream infections, neonatal sepsis and urinary tract infections. ESBL-producing Enterobacteriaceae were also detected in drinking water sources.

  20. Characterizing the concentration of Cryptosporidium in Australian surface waters for setting health-based targets for drinking water treatment.

    PubMed

    Petterson, S; Roser, D; Deere, D

    2015-09-01

    It is proposed that the next revision of the Australian Drinking Water Guidelines will include 'health-based targets', where the required level of potable water treatment quantitatively relates to the magnitude of source water pathogen concentrations. To quantify likely Cryptosporidium concentrations in southern Australian surface source waters, the databases for 25 metropolitan water supplies with good historical records, representing a range of catchment sizes, land use and climatic regions were mined. The distributions and uncertainty intervals for Cryptosporidium concentrations were characterized for each site. Then, treatment targets were quantified applying the framework recommended in the World Health Organization Guidelines for Drinking-Water Quality 2011. Based on total oocyst concentrations, and not factoring in genotype or physiological state information as it relates to infectivity for humans, the best estimates of the required level of treatment, expressed as log10 reduction values, ranged among the study sites from 1.4 to 6.1 log10. Challenges associated with relying on historical monitoring data for defining drinking water treatment requirements were identified. In addition, the importance of quantitative microbial risk assessment input assumptions on the quantified treatment targets was investigated, highlighting the need for selection of locally appropriate values.

  1. Detection of adenoviruses and rotaviruses in drinking water sources used in rural areas of Benin, West Africa.

    PubMed

    Verheyen, Jens; Timmen-Wego, Monika; Laudien, Rainer; Boussaad, Ibrahim; Sen, Sibel; Koc, Aynur; Uesbeck, Alexandra; Mazou, Farouk; Pfister, Herbert

    2009-05-01

    Diseases associated with viruses also found in environmental samples cause major health problems in developing countries. Little is known about the frequency and pattern of viral contamination of drinking water sources in these resource-poor settings. We established a method to analyze 10 liters of water from drinking water sources in a rural area of Benin for the presence of adenoviruses and rotaviruses. Overall, 541 samples from 287 drinking water sources were tested. A total of 12.9% of the sources were positive for adenoviruses and 2.1% of the sources were positive for rotaviruses at least once. Due to the temporary nature of viral contamination in drinking water sources, the probability of virus detection increased with the number of samples taken at one test site over time. No seasonal pattern for viral contaminations was found after samples obtained during the dry and wet seasons were compared. Overall, 3 of 15 surface water samples (20%) and 35 of 247 wells (14.2%) but also 2 of 25 pumps (8%) tested positive for adenoviruses or rotaviruses. The presence of latrines within a radius of 50 m in the vicinity of pumps or wells was identified as being a risk factor for virus detection. In summary, viral contamination was correlated with the presence of latrines in the vicinity of drinking water sources, indicating the importance of appropriate decision support systems in these socioeconomic prospering regions.

  2. [Exposure to fluorides from drinking water in the city of Aguascalientes, Mexico].

    PubMed

    Trejo-Vázquez, R; Bonilla-Petriciolet, A

    2001-08-01

    Determine the fluoride content in all the wells that supply drinking water to the city of Aguascalientes, Mexico, in order to establish the population's degree of exposure. The fluoride content of the 126 wells that supply drinking water to the city of Aguascalientes was determined, using the SPADNS method, in accordance with two Mexican regulations, NMX-AA-77-1982 and NMX-014-SSAI-1993. Using that data, we created fluoride isopleth maps showing the distribution of fluoride concentrations in the water supplies for the city of Aguascalientes. We also estimated exposure doses for the city's inhabitants. The mean analysis uncertainty was 3.9%. Seventy-three wells had a fluoride concentration of" 1.5 mg/L, which was the maximum permissible value set by the Mexican standards then in effect. All the maximum exposure doses surpassed the minimum risk level set by Agency for Toxic Substances and Disease Registry (ATSDR) of the Department of Health and Human Services of the United States of America. In the children under 1 year of age, even the minimum does was slightly higher than the ATSDR risk level. From estimating the fluoride exposure doses caused by water consumption in the city of Aguascalientes and comparing those doses with ones from other states in Mexico, we concluded that the fluoride intake in Aguascalientes represents a potential risk for inhabitants' health. The fluoride content of the city's drinking water should be reduced to 0.69 mg/L.

  3. 49 CFR 228.307 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... contain the same acoustic energy as the time-varying sound level during the same time period. Nonwater... Agency's National Primary Drinking Water Standards set forth in 40 CFR part 141. Potable water system...

  4. 49 CFR 228.307 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... contain the same acoustic energy as the time-varying sound level during the same time period. Nonwater... Agency's National Primary Drinking Water Standards set forth in 40 CFR part 141. Potable water system...

  5. 49 CFR 228.307 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... contain the same acoustic energy as the time-varying sound level during the same time period. Nonwater... Agency's National Primary Drinking Water Standards set forth in 40 CFR part 141. Potable water system...

  6. BREATH MEASUREMENT AND MODELS TO ASSESS VOC DERMAL ABSORPTION IN WATER

    EPA Science Inventory

    Dermal exposure to volatile organic compounds (VOCs) in water results from environmental contamination of surface, ground-, and drinking waters. This exposure occurs both in occupational and residential settings. Compartmental models incorporating body burden measurements have ...

  7. Feasibility of the Hydrogen Sulfide Test for the Assessment of Drinking Water Quality in Post-Earthquake Haiti

    PubMed Central

    Weppelmann, Thomas A.; Alam, Meer T.; Widmer, Jocelyn; Morrissey, David; Rashid, Mohammed H.; Beau De Rochars, Valery M.; Morris, J. Glenn; Ali, Afsar; Johnson, Judith A.

    2014-01-01

    In 2010 a magnitude 7.0 earthquake struck Haiti, severely damaging the drinking and waste water infrastructure and leaving millions homeless. Compounding this problem, the introduction of Vibrio cholera resulted in a massive cholera outbreak that infected over 700,000 people and threatened the safety of Haiti’s drinking water. To mitigate this public health crisis, non-government organizations installed thousands of wells to provide communities with safe drinking water. However, despite increased access, Haiti currently lacks the monitoring capacity to assure the microbial safety of any of its water resources. For these reasons, this study was designed to assess the feasibility of using a simple, low cost method to detect indicators of fecal contamination of drinking water that could be implemented at the community level. Water samples from 358 sources of drinking water in the Léogâne flood basin were screened with a commercially available hydrogen sulfide test and a standard membrane method for the enumeration of thermotolerant coliforms. When compared with the gold standard method, the hydrogen sulfide test had a sensitivity of 65% and a specificity of 93%. While the sensitivity of the assay increased at higher fecal coliform concentrations, it never exceeded 88%, even with fecal coliform concentrations greater than 100 colony forming units per 100 milliliters. While its simplicity makes the hydrogen sulfide test attractive for assessing water quality in low resource settings, the low sensitivity raises concerns about its use as the sole indicator of the presence or absence of fecal coliforms in individual or community water sources. PMID:25182685

  8. The risk of cancer as a result of elevated levels of nitrate in drinking water and vegetables in Central India.

    PubMed

    Taneja, Pinky; Labhasetwar, Pawan; Nagarnaik, Pranav; Ensink, Jeroen H J

    2017-08-01

    The objective of the present study was to determine the effect of nitrates on the incidence of gastrointestinal (GI) cancer development. Nitrate converted to nitrite under reducing conditions of gut results in the formation of N-nitrosamines which are linked to an increased gastric cancer risk. A population of 234 individuals with 78 cases of GI cancer and 156 controls residing at urban and rural settings in Nagpur and Bhandara districts of India were studied for 2 years using a case-control study. A detailed survey of 16 predictor variables using Formhub software was carried out. Nitrate concentrations in vegetables and primary drinking water supplies were measured. The logistic regression model showed that nitrate was statistically significant in predicting increasing risk of cancer when potential confounders were kept at base level (P value of 0.001 nitrate in drinking water; 0.003 for nitrate in vegetable) at P < 0.01. Exposure to nitrate in drinking water at >45 mg/L level of nitrate was associated with a higher risk of GI cancers. Analysis suggests that nitrate concentration in drinking water was found statistically significant in predicting cancer risk with an odds ratio of 1.20.

  9. Development of California Public Health Goals (PHGs) for chemicals in drinking water.

    PubMed

    Howd, R A; Brown, J P; Morry, D W; Wang, Y Y; Bankowska, J; Budroe, J D; Campbell, M; DiBartolomeis, M J; Faust, J; Jowa, L; Lewis, D; Parker, T; Polakoff, J; Rice, D W; Salmon, A G; Tomar, R S; Fan, A M

    2000-01-01

    As part of a program for evaluation of environmental contaminants in drinking water, risk assessments are being conducted to develop Public Health Goals (PHGs) for chemicals in drinking water, based solely on public health considerations. California's Safe Drinking Water Act of 1996 mandated the development of PHGs for over 80 chemicals by 31 December 1999. The law allowed these levels to be set higher or lower than federal maximum contaminant levels (MCLs), including a level of zero if data are insufficient to determine a specific level. The estimated safe levels and toxicological rationale for the first 26 of these chemicals are described here. The chemicals include alachlor, antimony, benzo[a]pyrene, chlordane, copper, cyanide, dalapon, 1,2-dichlorobenzene, 1,4-dichlorobenzene, 2,4-D, diethylhexylphthalate, dinoseb, endothall, ethylbenzene, fluoride, glyphosate, lead, nitrate, nitrite, oxamyl, pentachlorophenol, picloram, trichlorofluoromethane, trichlorotrifluoroethane, uranium and xylene(s). These risk assessments are to be considered by the State of California in revising and developing state MCLs for chemicals in drinking water (which must not exceed federal MCLs). The estimates are also notable for incorporation or consideration of newer guidelines and principles for risk assessment extrapolations.

  10. US EPA'S SUPERSITES PROGRAM

    EPA Science Inventory

    Dermal exposure to volatile organic compounds (VOCs) in water results from environmental contamination of surface, ground-, and drinking waters. This exposure occurs both in occupational and residential settings. Compartmental models incorporating body burden measurements have ...

  11. Interventions to improve water quality for preventing diarrhoea: systematic review and meta-analysis

    PubMed Central

    Schmidt, Wolf-Peter; Rabie, Tamer; Roberts, Ian; Cairncross, Sandy

    2007-01-01

    Objective To assess the effectiveness of interventions to improve the microbial quality of drinking water for preventing diarrhoea. Design Systematic review. Data sources Cochrane Infectious Diseases Group's trials register, CENTRAL, Medline, Embase, LILACS; hand searching; and correspondence with experts and relevant organisations. Study selection Randomised and quasirandomised controlled trials of interventions to improve the microbial quality of drinking water for preventing diarrhoea in adults and in children in settings with endemic disease. Data extraction Allocation concealment, blinding, losses to follow-up, type of intervention, outcome measures, and measures of effect. Pooled effect estimates were calculated within the appropriate subgroups. Data synthesis 33 reports from 21 countries documenting 42 comparisons were included. Variations in design, setting, and type and point of intervention, and variations in defining, assessing, calculating, and reporting outcomes limited the comparability of study results and pooling of results by meta-analysis. In general, interventions to improve the microbial quality of drinking water are effective in preventing diarrhoea. Effectiveness was not conditioned on the presence of improved water supplies or sanitation in the study setting and was not enhanced by combining the intervention with instructions on basic hygiene, a water storage vessel, or improved sanitation or water supplies—other common environmental interventions intended to prevent diarrhoea. Conclusion Interventions to improve water quality are generally effective for preventing diarrhoea in all ages and in under 5s. Significant heterogeneity among the trials suggests that the level of effectiveness may depend on a variety of conditions that research to date cannot fully explain. PMID:17353208

  12. Fecal contamination of drinking-water in low- and middle-income countries: a systematic review and meta-analysis.

    PubMed

    Bain, Robert; Cronk, Ryan; Wright, Jim; Yang, Hong; Slaymaker, Tom; Bartram, Jamie

    2014-05-01

    Access to safe drinking-water is a fundamental requirement for good health and is also a human right. Global access to safe drinking-water is monitored by WHO and UNICEF using as an indicator "use of an improved source," which does not account for water quality measurements. Our objectives were to determine whether water from "improved" sources is less likely to contain fecal contamination than "unimproved" sources and to assess the extent to which contamination varies by source type and setting. Studies in Chinese, English, French, Portuguese, and Spanish were identified from online databases, including PubMed and Web of Science, and grey literature. Studies in low- and middle-income countries published between 1990 and August 2013 that assessed drinking-water for the presence of Escherichia coli or thermotolerant coliforms (TTC) were included provided they associated results with a particular source type. In total 319 studies were included, reporting on 96,737 water samples. The odds of contamination within a given study were considerably lower for "improved" sources than "unimproved" sources (odds ratio [OR] = 0.15 [0.10-0.21], I2 = 80.3% [72.9-85.6]). However over a quarter of samples from improved sources contained fecal contamination in 38% of 191 studies. Water sources in low-income countries (OR = 2.37 [1.52-3.71]; p<0.001) and rural areas (OR = 2.37 [1.47-3.81] p<0.001) were more likely to be contaminated. Studies rarely reported stored water quality or sanitary risks and few achieved robust random selection. Safety may be overestimated due to infrequent water sampling and deterioration in quality prior to consumption. Access to an "improved source" provides a measure of sanitary protection but does not ensure water is free of fecal contamination nor is it consistent between source types or settings. International estimates therefore greatly overstate use of safe drinking-water and do not fully reflect disparities in access. An enhanced monitoring strategy would combine indicators of sanitary protection with measures of water quality.

  13. Feasibility of the hydrogen sulfide test for the assessment of drinking water quality in post-earthquake Haiti.

    PubMed

    Weppelmann, Thomas A; Alam, Meer T; Widmer, Jocelyn; Morrissey, David; Rashid, Mohammed H; De Rochars, Valery M Beau; Morris, J Glenn; Ali, Afsar; Johnson, Judith A

    2014-12-01

    In 2010, a magnitude 7.0 earthquake struck Haiti, severely damaging the drinking and wastewater infrastructure and leaving millions homeless. Compounding this problem, the introduction of Vibrio cholerae resulted in a massive cholera outbreak that infected over 700,000 people and threatened the safety of Haiti's drinking water. To mitigate this public health crisis, non-government organizations installed thousands of wells to provide communities with safe drinking water. However, despite increased access, Haiti currently lacks the monitoring capacity to assure the microbial safety of any of its water resources. For these reasons, this study was designed to assess the feasibility of using a simple, low-cost method to detect indicators of fecal contamination of drinking water that could be implemented at the community level. Water samples from 358 sources of drinking water in the Léogâne flood basin were screened with a commercially available hydrogen sulfide test and a standard membrane method for the enumeration of thermotolerant coliforms. When compared with the gold standard method, the hydrogen sulfide test had a sensitivity of 65 % and a specificity of 93 %. While the sensitivity of the assay increased at higher fecal coliform concentrations, it never exceeded 88 %, even with fecal coliform concentrations greater than 100 colony-forming units per 100 ml. While its simplicity makes the hydrogen sulfide test attractive for assessing water quality in low-resource settings, the low sensitivity raises concerns about its use as the sole indicator of the presence or absence of fecal coliforms in individual or community water sources.

  14. Effects of a behavior change campaign on household drinking water disinfection in the Lake Chad basin using the RANAS approach.

    PubMed

    Lilje, Jonathan; Mosler, Hans-Joachim

    2018-04-01

    Worldwide, an estimated 700 million people rely on unimproved drinking water sources; even more consume water that is not safe to drink. Inadequate drinking water quality constitutes a major risk factor for cholera and other diarrheal diseases around the globe, especially for young children in developing countries. Household water treatment and safe storage systems represent an intermediate solution for settings that lack infrastructure supplying safe drinking water. However, the correct and consistent usage of such treatment technologies rely almost exclusively on the consumer's behavior. This study targeted at evaluating effects of a behavior change campaign promoting the uptake of household drinking water chlorination in communities along the Chari and Logone rivers in Chad. The campaign was based on formative research using health psychological theory and targeted several behavioral factors identified as relevant. A total of 220 primary caregivers were interviewed concerning their household water treatment practices and mindset related to water treatment six months after the campaign. The Risks, Attitudes, Norms, Abilities, and Self-regulation (RANAS) model was used to structure the interviews as the RANAS approach had been used for designing the campaign. Results show significantly higher self-reported drinking water chlorination among participants of the intervention. Significant differences from a control group were identified regarding several behavioral factors. Mediation analysis revealed that the intervention positively affected participants' individual risk estimation for diarrheal disease, health knowledge, perceived efforts and benefits of water treatment, social support strategies, knowledge of how to perform chlorination, and perceived ability to do so. The campaign's effect on water treatment was mainly mediated through differences in health knowledge, changes in norms, and self-efficacy convictions. The findings imply that water treatment behavior can be successfully promoted using health psychological theory. However, they also indicate opportunities for improvement in the campaign design and implementation. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The quality of raw water for drinking water unit in Jakarta-Indonesia

    NASA Astrophysics Data System (ADS)

    Sidabutar, Noni Valeria; Hartono, Djoko M.; Soesilo, Tri Edhi Budhi; Hutapea, Reynold C.

    2017-03-01

    Water problems, i.e quality, quantity, continuity of clean water faced by the mostly urban area. Jakarta also faces similar issues, because the needs of society higher than the number of water fulfilled by the government. Moreover, Jakarta's water quality does not meet the standard set by the Government and heavily polluted by anthropogenic activities along its rivers. This research employs a quantitative research approach with the mix-method. It examines the raw water quality status for drinking water in West Tarum Canalin 2011-2015. The research results show water quality with this research, using water quality of with the water categorized as heavily-polluted category based on the Ministry of Environment's Decree No 115/2003 regarding the Guidelines for Determination of Water Quality Status. This present research also shown the water quality (parameters pH, temperature, Dissolved Oxygen (DO), Chemical Oxygen Demand (COD), and Biochemical Oxygen Demand (BOD)) from Jatiluhur Dam to the intake drinking water unit. In thirteen points of sampling also, the results obtained the parameters DO, COD, and BOD are fluctuating and exceed the standard.

  16. The Savannah River Site`s Groundwater Monitoring Program, first quarter 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site`s Groundwater Monitoring Program. During first quarter 1989 (January--March), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking watermore » standards. An explanation of flagging criteria for the first quarter is presented in the Flagging Criteria section of this document. All analytical results from first quarter 1989 are listed in this report, which is distributed to all waste-site custodians.« less

  17. The Savannah River Site's Groundwater Monitoring Program, first quarter 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During first quarter 1989 (January--March), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking watermore » standards. An explanation of flagging criteria for the first quarter is presented in the Flagging Criteria section of this document. All analytical results from first quarter 1989 are listed in this report, which is distributed to all waste-site custodians.« less

  18. Estimating Cryptosporidium and Giardia disease burdens for children drinking untreated groundwater in a rural population in India.

    PubMed

    Daniels, Miles E; Smith, Woutrina A; Jenkins, Marion W

    2018-01-01

    In many low-income settings, despite improvements in sanitation and hygiene, groundwater sources used for drinking may be contaminated with enteric pathogens such as Cryptosporidium and Giardia, which remain important causes of childhood morbidity. In this study, we examined the contribution of diarrhea caused by Cryptosporidium and Giardia found in groundwater sources used for drinking to the total burden of diarrheal disease among children < 5 in rural India. We studied a population of 3,385 children < 5 years of age in 100 communities of Puri District, Odisha, India. We developed a coupled quantitative microbial risk assessment (QMRA) and susceptible-infected-recovered (SIR) population model based on observed levels of Cryptosporidium and Giardia in improved groundwater sources used for drinking and compared the QMRA-SIR estimates with independently measured all-cause (i.e., all fecal-oral enteric pathogens and exposure pathways) child diarrhea prevalence rates observed in the study population during two monsoon seasons (2012 and 2013). We used site specific and regional studies to inform assumptions about the human pathogenicity of the Cryptosporidium and Giardia species present in local groundwater. In all three human pathogenicity scenarios evaluated, the mean daily risk of Cryptosporidium or Giardia infection (0.06-1.53%), far exceeded the tolerable daily risk of infection from drinking water in the US (< 0.0001%). Depending on which protozoa species were present, median estimates of daily child diarrhea prevalence due to either Cryptosporidium or Giardia infection from drinking water was as high as 6.5% or as low as < 1% and accounted for at least 2.9% and as much as 65.8% of the all-cause diarrhea disease burden measured in children < 5 during the study period. Cryptosporidium tended to account for a greater share of estimated waterborne protozoa infections causing diarrhea than did Giardia. Diarrhea prevalence estimates for waterborne Cryptosporidium infection appeared to be most sensitive to assumptions about the probability of infection from ingesting a single parasite (i.e. the rate parameter in dose-response model), while Giardia infection was most sensitive to assumptions about the viability of parasites detected in groundwater samples. Protozoa in groundwater drinking sources in rural India, even at low concentrations, especially for Cryptosporidium, may account for a significant portion of child diarrhea morbidity in settings were tubewells are used for drinking water and should be more systematically monitored. Preventing diarrheal disease burdens in Puri District and similar settings will benefit from ensuring water is microbiologically safe for consumption and consistent and effective household water treatment is practiced.

  19. Urban community perception towards intermittent water supply system.

    PubMed

    Joshi, M W; Talkhande, A V; Andey, S P; Kelkar, P S

    2002-04-01

    While evaluating intermittent and continuous water supply systems, consumers opinion survey was undertaken for critical appraisal of both modes of operation. With the help of a pre-designed set of questions relating to various aspects of water supply and the opinion of consumers regarding degree of service, a house to house survey was conducted in the study area of Ghaziabad and Jaipur. The consumer opinion survey clearly indicated a satisfactory degree of service wherever adequate quantity of water was made available irrespective of the mode of water supply. Number of complaints regarding quality of water supplied, timings of supply, low pressures and breakdowns in supply were reported during intermittent water supply. Every family stored water for drinking and other uses. Most of the families discard drinking water once the fresh water supply is resumed next day. Discarded drinking water is usually used in kitchen for washing and gardening. Storage for other purposes depends on economic status and availability of other sources like open dug well in the house. While most of the respondents had no complaints on water tariff, all of them were in favour of continuous water supply.

  20. A national cross-sectional study on effects of fluoride-safe water supply on the prevalence of fluorosis in China

    PubMed Central

    Wang, Cheng; Gao, Yanhui; Wang, Wei; Zhao, Lijun; Zhang, Wei; Han, Hepeng; Shi, Yuxia; Yu, Guangqian; Sun, Dianjun

    2012-01-01

    Objective To assess the effects of provided fluoride-safe drinking-water for the prevention and control of endemic fluorosis in China. Design A national cross-sectional study in China. Setting In 1985, randomly selected villages in 27 provinces (or cities and municipalities) in 5 geographic areas all over China. Participants Involved 81 786 children aged from 8 to 12 and 594 698 adults aged over 16. Main outcome measure The prevalence of dental fluorosis and clinical skeletal fluorosis, the fluoride concentrations in the drinking-water in study villages and in the urine of subjects. Results The study showed that in the villages where the drinking-water fluoride concentrations were higher than the government standard of 1.2 mg/l, but no fluoride-safe drinking-water supply scheme was provided (FNB areas), the prevalence rate and index of dental fluorosis in children, and prevalence rate of clinical skeletal fluorosis in adults were all significantly higher than those in the historical endemic fluorosis villages after the fluoride-safe drinking-water were provided (FSB areas). Additionally, the prevalence rate of dental fluorosis as well as clinical skeletal fluorosis, and the concentration of fluoride in urine were found increased with the increase of fluoride concentration in drinking-water, with significant positive correlations in the FNB areas. While, the prevalence rate of dental fluorosis and clinical skeletal fluorosis in different age groups and their degrees of prevalence were significantly lower in the FSB areas than those in the FNB areas. Conclusions The provision of fluoride-safe drinking-water supply schemes had significant effects on the prevention and control of dental fluorosis and skeletal fluorosis. The study also indicated that the dental and skeletal fluorosis is still prevailing in the high-fluoride drinking-water areas in China. PMID:23015601

  1. NHEXAS PHASE I ARIZONA STUDY--METALS IN WATER ANALYTICAL RESULTS

    EPA Science Inventory

    The Metals in Water data set contains analytical results for measurements of up to 11 metals in 314 water samples over 211 households. Sample collection was undertaken at the tap and any additional drinking water source used extensively within each residence. The primary metals...

  2. Application of bimodal distribution to the detection of changes in uranium concentration in drinking water collected by random daytime sampling method from a large water supply zone.

    PubMed

    Garboś, Sławomir; Święcicka, Dorota

    2015-11-01

    The random daytime (RDT) sampling method was used for the first time in the assessment of average weekly exposure to uranium through drinking water in a large water supply zone. Data set of uranium concentrations determined in 106 RDT samples collected in three runs from the water supply zone in Wroclaw (Poland), cannot be simply described by normal or log-normal distributions. Therefore, a numerical method designed for the detection and calculation of bimodal distribution was applied. The extracted two distributions containing data from the summer season of 2011 and the winter season of 2012 (nI=72) and from the summer season of 2013 (nII=34) allowed to estimate means of U concentrations in drinking water: 0.947 μg/L and 1.23 μg/L, respectively. As the removal efficiency of uranium during applied treatment process is negligible, the effect of increase in uranium concentration can be explained by higher U concentration in the surface-infiltration water used for the production of drinking water. During the summer season of 2013, heavy rains were observed in Lower Silesia region, causing floods over the territory of the entire region. Fluctuations in uranium concentrations in surface-infiltration water can be attributed to releases of uranium from specific sources - migration from phosphate fertilizers and leaching from mineral deposits. Thus, exposure to uranium through drinking water may increase during extreme rainfall events. The average chronic weekly intakes of uranium through drinking water, estimated on the basis of central values of the extracted normal distributions, accounted for 3.2% and 4.1% of tolerable weekly intake. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. The association between campylobacteriosis, agriculture and drinking water: a case-case study in a region of British Columbia, Canada, 2005-2009.

    PubMed

    Galanis, E; Mak, S; Otterstatter, M; Taylor, M; Zubel, M; Takaro, T K; Kuo, M; Michel, P

    2014-10-01

    We studied the association between drinking water, agriculture and sporadic human campylobacteriosis in one region of British Columbia (BC), Canada. We compared 2992 cases of campylobacteriosis to 4816 cases of other reportable enteric diseases in 2005-2009 using multivariate regression. Cases were geocoded and assigned drinking water source, rural/urban environment and socioeconomic status (SES) according to the location of their residence using geographical information systems analysis methods. The odds of campylobacteriosis compared to enteric disease controls were higher for individuals serviced by private wells than municipal surface water systems (odds ratio 1·4, 95% confidence interval 1·1-1·8). In rural settings, the odds of campylobacteriosis were higher in November (P = 0·014). The odds of campylobacteriosis were higher in individuals aged ⩾15 years, especially in those with higher SES. In this region of BC, campylobacteriosis risk, compared to other enteric diseases, seems to be mediated by vulnerable drinking water sources and rural factors. Consideration should be given to further support well-water users and to further study the microbiological impact of agriculture on water.

  4. [Physicochemical composition of bottled drinking water marketed in Ouagadougou (Burkina Faso)].

    PubMed

    Some, Issa Touridomon; Banao, Issouf; Gouado, Inocent; Tapsoba, Théophile Lincoln

    2009-01-01

    The bottled drinking water marketed in urban areas includes natural mineral water, spring water, and treated drinking water. Their physicochemical qualities depend on the type and quantity of their components and define their safe use. Bottled water is widely consumed in Ouagadougou (Burkina Faso), and many brand names exist. Although many publications have examined the microbiological qualities of such water, no study has examined the physicochemical quality of water from Burkina Faso. This study, conducted from March 2005 through January 2006, aimed to assess the physicochemical composition of drinking water sold in Ouagadougou to facilitate better choices and use by consumers. Results showed that all the water analyzed in Ouagadougou is soft (TH < 50 ppm) or moderately soft (50 < TH < 200 ppm) and weakly mineralized (total dissolved solid content < 500 mg/L, sulfates [SO(2-)(4)] < 200 mg/L, [Ca(++)] < 150 mg/L, [Mg(2+)] < 50 mg/L, and [HCO(3)-] < 600 mg/l). Some imported water, however, is hard and highly mineralized. French standards do not set limit values for the natural mineral water parameters described above, and much of the water sold in Ouagadougou was natural mineral water. The spring water met potability standards, except for the Montagne d'Arrée brand, which had a pH value of 5.8, below the WHO standards of 6.5 < pH 8.5.

  5. Arsenic: bioaccessibility from seaweed and rice, dietary exposure calculations and risk assessment.

    PubMed

    Brandon, Esther F A; Janssen, Paul J C M; de Wit-Bos, Lianne

    2014-01-01

    Arsenic is a metalloid that occurs in food and the environment in different chemical forms. Inorganic arsenic is classified as a class I carcinogen. The inorganic arsenic intake from food and drinking water varies depending on the geographic arsenic background. Non-dietary exposure to arsenic is likely to be of minor importance for the general population within the European Union. In Europe, arsenic in drinking water is on average low, but food products (e.g. rice and seaweed) are imported from all over the world including from regions with naturally high arsenic levels. Therefore, specific populations living in Europe could also have a high exposure to inorganic arsenic due to their consumption pattern. Current risk assessment is based on exposure via drinking water. For a good estimation of the risks of arsenic in food, it is important to investigate if the bioavailability of inorganic arsenic from food is different from drinking water. The present study further explores the issue of European dietary exposure to inorganic arsenic via rice and seaweed and its associated health risks. The bioavailability of inorganic arsenic was measured in in vitro digestion experiments. The data indicate that the bioavailability of inorganic arsenic is similar for rice and seaweed compared with drinking water. The calculated dietary intake for specific European Union populations varied between 0.44 and 4.51 µg kg⁻¹ bw day⁻¹. The margins of exposure between the inorganic intake levels and the BMDL0.5 values as derived by JECFA are low. Decreasing the intake of inorganic arsenic via Hijiki seaweed could be achieved by setting legal limits similar to those set for rice by the Codex Alimentarius Commission in July 2014.

  6. Comparison and Cost Analysis of Drinking Water Quality Monitoring Requirements versus Practice in Seven Developing Countries

    PubMed Central

    Crocker, Jonny; Bartram, Jamie

    2014-01-01

    Drinking water quality monitoring programs aim to support provision of safe drinking water by informing water quality management. Little evidence or guidance exists on best monitoring practices for low resource settings. Lack of financial, human, and technological resources reduce a country’s ability to monitor water supply. Monitoring activities were characterized in Cambodia, Colombia, India (three states), Jordan, Peru, South Africa, and Uganda according to water sector responsibilities, monitoring approaches, and marginal cost. The seven study countries were selected to represent a range of low resource settings. The focus was on monitoring of microbiological parameters, such as E. coli, coliforms, and H2S-producing microorganisms. Data collection involved qualitative and quantitative methods. Across seven study countries, few distinct approaches to monitoring were observed, and in all but one country all monitoring relied on fixed laboratories for sample analysis. Compliance with monitoring requirements was highest for operational monitoring of large water supplies in urban areas. Sample transport and labor for sample collection and analysis together constitute approximately 75% of marginal costs, which exclude capital costs. There is potential for substantive optimization of monitoring programs by considering field-based testing and by fundamentally reconsidering monitoring approaches for non-piped supplies. This is the first study to look quantitatively at water quality monitoring practices in multiple developing countries. PMID:25046632

  7. Osteo-dental fluorosis in relation to chemical constituents of drinking waters.

    PubMed

    Choubisa, S L

    2012-01-01

    Study was conducted in 17 fluoride endemic villages to find out association between the prevalence and severity of osteo-dental fluorosis with different chemical constituents of drinking waters. These villages were arranged in 7 sets, each containing 2 to 3 villages with identical mean fluoride (F) concentrations in the range 1.0 to 5.8 mg/L but having different mean values of total hardness, alkalinity and nitrate (NO3) content in drinking water sources. A close association or relationship was found between the prevalence of fluorosis and the total hardness and alkalinity of potable waters. A low prevalence of fluorosis was found at low alkalinity and at high total hardness. But no specific association was observed between the prevalence figures of fluorosis with pH and NO3 levels which is also discussed in the present communication.

  8. Parental and Home Environmental Facilitators of Sugar-Sweetened Beverage Consumption among Overweight and Obese Latino Youth

    PubMed Central

    Bogart, Laura M.; Cowgill, Burt O.; Sharma, Andrea J.; Uyeda, Kimberly; Sticklor, Laurel A.; Alijewicz, Katie E.; Schuster, Mark A.

    2013-01-01

    Objective To explore parental and home environmental facilitators of sugar-sweetened beverage (SSB) and water consumption among obese/overweight Latino youth. Methods Semi-structured interviews were conducted with 55 overweight/obese Latino youth aged 10-18 and 55 parents, recruited from school-based clinics and a school in one West-coast district. All youth consumed SSBs regularly and lived in a home where SSBs were available. We used qualitative methods to examine key themes around beliefs about SSBs and water, facilitators of SSB and water consumption, and barriers to reducing SSB consumption. Results A few parents and youth believed that sports drinks are healthy. Although nearly all felt that water is healthy, most parents and about half of youth thought that tap water is unsafe. About half of parent-child dyads had discordant beliefs regarding their perceptions of tap water. About half of parents believed that home-made culturally relevant drinks (e.g., aguas frescas), which typically contain sugar, fruit, and water, were healthy due to their “natural” ingredients. Participants cited home availability as a key factor in SSB consumption. About half of parents set no rules about SSB consumption at home. Among those with rules, most parent-child pairs differed on their beliefs about the content of the rules, and youth reported few consequences for breaking rules. Conclusions Obesity programs for Latino youth should address misconceptions around water, and discuss culturally relevant drinks and sports drinks as potential sources of weight gain. Healthcare providers can help parents set appropriate rules by educating about the risks of keeping SSBs at home. PMID:23680295

  9. Pond bank access as an approach for managing toxic cyanobacteria in beef cattle pasture drinking water ponds.

    PubMed

    Wilson, Alan E; Chislock, Michael F; Yang, Zhen; Barros, Mário U G; Roberts, John F

    2018-03-25

    Forty-one livestock drinking water ponds in Alabama beef cattle pastures during were surveyed during the late summer to generally understand water quality patterns in these important water resources. Since livestock drinking water ponds are prone to excess nutrients that typically lead to eutrophication, which can promote blooms of toxigenic phytoplankton such as cyanobacteria, we also assessed the threat of exposure to the hepatotoxin, microcystin. Eighty percent of the ponds studied contained measurable microcystin, while three of these ponds had concentrations above human drinking water thresholds set by the US Environmental Protection Agency (i.e., 0.3 μg/L). Water quality patterns in the livestock drinking water ponds contrasted sharply with patterns typically observed for temperate freshwater lakes and reservoirs. Namely, we found several non-linear relationships between phytoplankton abundance (measured as chlorophyll) and nutrients or total suspended solids. Livestock had direct access to all the study ponds. Consequently, the proportion of inorganic suspended solids (e.g., sediment) increased with higher concentrations of total suspended solids, which underlies these patterns. Unimodal relationships were also observed between microcystin and phytoplankton abundance or nutrients. Euglenoids were abundant in the four ponds with chlorophyll concentrations > 250 μg/L (and dominated three of these ponds), which could explain why ponds with high chlorophyll concentrations would have low microcystin concentrations. Based on observations made during sampling events and available water quality data, livestock-mediated bioturbation is causing elevated total suspended solids that lead to reduced phytoplankton abundance and microcystin despite high concentrations of nutrients, such as phosphorus and nitrogen. Thus, livestock could be used to manage algal blooms, including toxic secondary metabolites, in their drinking water ponds by allowing them to walk in the ponds to increase turbidity.

  10. The Perspective of Riverbank Filtration in China

    NASA Astrophysics Data System (ADS)

    Li, J.; Teng, Y.; Zhai, Y.; Zuo, R.

    2014-12-01

    Sustainable drinking water supply can affect the health of people, and the surrounding ecosystems. According to statistics of the monitoring program of drinking water sources in 309 at or above prefecture level of China in 2013, the major pollutants index were total phosphorus, ammonia and manganese in surface drinking water sources, respectively, iron, ammonia and manganese in groundwater drinking water sources, respectively. More than 150 drinking water emergency environmental accidents happened since 2006, 52 of these accidents led to the disruption of water supply in waterworks, and a population of over ten million were affected. It indicated that there is a potential risk for people's health by the use of river water directly and it is necessary to require alternative techniques such as riverbank filtration for improving the drinking water quality. Riverbank filtration is an inexpensive natural process, not only smoothing out normal pollutant concentration found in surface water but also significantly reducing the risk from such emergency events as chemical spill into the river. Riverbank filtration technique has been used in many countries more than 100 years, including China. In China, in 1950s, the bank infiltration technique was first applied in northeast of China. Extensive bank infiltration application was conducted in 1980s, and more than 300 drinking water sources utilities bank infiltration established mainly near the Songhua River Basin, the Yellow River Basin, Haihe River Basin. However, the comparative lack of application and researches on riverbank filtration have formed critical scientific data gap in China. As the performance of riverbank filtration technique depend on not only the design and setting such as well type, pumping rate, but also the local hydrogeology and environmental properties. We recommend more riverbank filtration project and studies to be conducted to collect related significant environmental geology data in China. Additionally, the experience has demonstrated a number of water quality improvements associated with riverbank filtration. It is important to stress that the fate and behavior of emerging organic contaminants during riverbank filtration should be taken into special consideration.

  11. U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--METALS IN WATER ANALYTICAL RESULTS

    EPA Science Inventory

    The Metals in Water data set contains analytical results for measurements of up to 11 metals in 98 water samples over 61 households. Sample collection was undertaken at the tap and any additional drinking water source used extensively within each residence. The primary metals o...

  12. Variability in the chemistry of private drinking water supplies and the impact of domestic treatment systems on water quality.

    PubMed

    Ander, E L; Watts, M J; Smedley, P L; Hamilton, E M; Close, R; Crabbe, H; Fletcher, T; Rimell, A; Studden, M; Leonardi, G

    2016-12-01

    Tap water from 497 properties using private water supplies, in an area of metalliferous and arsenic mineralisation (Cornwall, UK), was measured to assess the extent of compliance with chemical drinking water quality standards, and how this is influenced by householder water treatment decisions. The proportion of analyses exceeding water quality standards were high, with 65 % of tap water samples exceeding one or more chemical standards. The highest exceedances for health-based standards were nitrate (11 %) and arsenic (5 %). Arsenic had a maximum observed concentration of 440 µg/L. Exceedances were also high for pH (47 %), manganese (12 %) and aluminium (7 %), for which standards are set primarily on aesthetic grounds. However, the highest observed concentrations of manganese and aluminium also exceeded relevant health-based guidelines. Significant reductions in concentrations of aluminium, cadmium, copper, lead and/or nickel were found in tap waters where households were successfully treating low-pH groundwaters, and similar adventitious results were found for arsenic and nickel where treatment was installed for iron and/or manganese removal, and successful treatment specifically to decrease tap water arsenic concentrations was observed at two properties where it was installed. However, 31 % of samples where pH treatment was reported had pH < 6.5 (the minimum value in the drinking water regulations), suggesting widespread problems with system maintenance. Other examples of ineffectual treatment are seen in failed responses post-treatment, including for nitrate. This demonstrates that even where the tap waters are considered to be treated, they may still fail one or more drinking water quality standards. We find that the degree of drinking water standard exceedances warrant further work to understand environmental controls and the location of high concentrations. We also found that residents were more willing to accept drinking water with high metal (iron and manganese) concentrations than international guidelines assume. These findings point to the need for regulators to reinforce the guidance on drinking water quality standards to private water supply users, and the benefits to long-term health of complying with these, even in areas where treated mains water is widely available.

  13. Review of Selected References and Data sets on Ambient Ground- and Surface-Water Quality in the Metedeconk River, Toms River, and Kettle Creek Basins, New Jersey, 1980-2001

    USGS Publications Warehouse

    Nicholson, Robert S.; Hunchak-Kariouk, Kathryn; Cauller, Stephen J.

    2003-01-01

    Surface water and ground water from unconfined aquifers are the primary sources of drinking water for much of the population, about 391,000, in the Metedeconk River, Toms River, and Kettle Creek watersheds in the New Jersey Coastal Plain. The quality of these sources of drinking water is a concern because they are vulnerable to contamination. Indications of the occurrence, distribution, and likely sources and transport mechanisms of certain contaminants were obtained from 48 selected reports and 2 selected data sets on water quality in or near the watersheds (1980-2001). These indications are described and briefly summarized in this report. The findings of studies on ground-water quality indicate that shallow ground water within the study area generally meets primary drinking-water standards, with notable exceptions. Volatile organic compounds, mercury, arsenic, radionuclides, nitrate, and coliform bacteria have been detected in shallow ground water in some areas at levels that exceed Federal and State drinking-water standards. For example, results of analyses of untreated samples collected from more than 13,000 private wells during 1983-99 indicated that concentrations of volatile organic compounds in samples from 7.3 percent of the wells exceeded at least 1 of 11 drinking-water standards, according to records maintained by the Ocean County Health Department. In cases of exceedances, however, water treatment, well replacement, and (or) retesting assured that applicable drinking-water standards were being met at the tap. Reported concentrations of the pesticide chlordane in some areas exceeded the drinking-water standard; few data are available on the occurrence of other pesticides. Studies of nearby areas, however, indicate that pesticide concentrations generally could be expected to be below drinking-water standards. The combination of low pH and low dissolved solids in many areas results in shallow ground water that is highly corrosive and, if untreated, able to leach trace elements and release asbestos fibers from plumbing materials. Reported concentrations of nitrate, volatile organic compounds, trace elements, and pesticides in samples from the monitored mainstem and tributary streams within the study area generally are below maximum contaminant levels for drinking water or below detection limits. Results of studies in other areas indicate that pesticide concentrations in surface water could be considerably higher during high flows soon after the application of pesticides to crops than during low flows. Fecal coliform bacteria counts in streams vary considerably. Concentrations or counts of these classes of surface-water-quality constituents likely are functions of the intensity and type of upstream development. Results of limited monitoring for radionuclide concentrations reported by the Brick Township Municipal Utilities Authority of the Metedeconk River indicate that radionuclide concentrations or activities do not exceed maximum contaminant levels for drinking water. As a consequence of organic matter in surface water, the formati ultraviolet absorbance in samples from the Metedeconk River and the Toms River exceeded the alternative compliance criteria for source water (2.0 milligrams per liter for total organic carbon and 0.02 absorbance units-liters per milligram-centimeter for specific ultraviolet absorbance) with respect to treatment requirements for preventing elevated concentrations of disinfection by-products in treated water. Water-quality and treatment issues associated with use of ground and surface water for potable supply in the study area are related to human activities and naturally occurring factors. Additional monitoring and analysis of ground and surface water would be needed to determine conclusively the occurrence and distribution of some contaminants and the relative importance of various potential contaminant sources, transport and attenuation mechanisms, and transport pathways.

  14. Presence of Cryptosporidium spp. and Giardia duodenalis in Drinking Water Samples in the North of Portugal

    PubMed Central

    Moreira, Maria João; Soares, Sónia; de Lurdes Delgado, Maria; Figueiredo, João; Silva, Elisabete; Castro, António; Cosa, José Manuel Correida Da

    2010-01-01

    Cryptosporidium and Giardia are 2 protozoan parasites responsible for waterborne diseases outbreaks worldwide. In order to assess the prevalence of these protozoans in drinking water samples in the northern part of Portugal and the risk of human infection, we have established a long term program aiming at pinpointing the sources of surface water, drinking water, and environmental contamination, working with the water-supply industry. Total 43 sources of drinking water samples were selected, and a total of 167 samples were analyzed using the Method 1623. Sensitivity assays regarding the genetic characterization by PCR and sequencing of the genes, 18S SSU rRNA, for Cryptosporidium spp. and β,-giardin for G. duodenalis were set in the laboratory. According to the defined criteria, molecular analysis was performed over 4 samples. Environmental stages of the protozoa were detected in 25.7% (43 out of 167) of the water samples, 8.4% (14 out of 167) with cysts of Giardia, 10.2% (17 out of 167) with oocysts of Cryptosporidium and 7.2% (12 out of 167) for both species. The mean concentrations were 0.1-12.7 oocysts of Cryptosporidium spp. per 10 L and 0.1-108.3 cysts of Giardia duodenalis per 10 L. Our results suggest that the efficiency in drinking water plants must be ameliorated in their efficiency in reducing the levels of contamination. We suggest the implementation of systematic monitoring programs for both protozoa. To authors' knowledge, this is the first report evaluating the concentration of environmental stages of Cryptosporidium and Giardia in drinking water samples in the northern part of Portugal. PMID:20333284

  15. Quality of Drinking Water Treated at Point of Use in Residential Healthcare Facilities for the Elderly

    PubMed Central

    Sacchetti, Rossella; De Luca, Giovanna; Guberti, Emilia; Zanetti, Franca

    2015-01-01

    Municipal tap water is increasingly treated at the point of use (POU) to improve the acceptability and palatability of its taste. The aim of this study was to assess the bacteriologic and nutritional characteristics of tap water treated at the point of use in residential healthcare facilities for the elderly. Two types of POU devices were used: microfiltered water dispensers (MWDs) and reverse-osmosis water dispensers (ROWDs). All samples of water entering the devices and leaving them were tested for the bacteriological parameters set by Italian regulations for drinking water and for opportunistic pathogens associated with various infections in healthcare settings; in addition, the degree of mineralization of the water was assessed. The results revealed widespread bacterial contamination in the POU treatment devices, particularly from potentially pathogenic species. As expected, the use of ROWDs led to a decrease in the saline content of the water. In conclusion, the use of POU treatment in healthcare facilities for the elderly can be considered advisable only if the devices are constantly and carefully maintained. PMID:26371025

  16. Quality of Drinking Water Treated at Point of Use in Residential Healthcare Facilities for the Elderly.

    PubMed

    Sacchetti, Rossella; De Luca, Giovanna; Guberti, Emilia; Zanetti, Franca

    2015-09-09

    Municipal tap water is increasingly treated at the point of use (POU) to improve the acceptability and palatability of its taste. The aim of this study was to assess the bacteriologic and nutritional characteristics of tap water treated at the point of use in residential healthcare facilities for the elderly. Two types of POU devices were used: microfiltered water dispensers (MWDs) and reverse-osmosis water dispensers (ROWDs). All samples of water entering the devices and leaving them were tested for the bacteriological parameters set by Italian regulations for drinking water and for opportunistic pathogens associated with various infections in healthcare settings; in addition, the degree of mineralization of the water was assessed. The results revealed widespread bacterial contamination in the POU treatment devices, particularly from potentially pathogenic species. As expected, the use of ROWDs led to a decrease in the saline content of the water. In conclusion, the use of POU treatment in healthcare facilities for the elderly can be considered advisable only if the devices are constantly and carefully maintained.

  17. The Savannah River Site's Groundwater Monitoring Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-01-01

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During fourth quarter 1989 (October--December), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. An explanation of flagging criteria for the fourth quarter is presented in the Flagging Criteria sectionmore » of this document. All analytical results from fourth quarter 1989 are listed in this report, which is distributed to all waste-site custodians.« less

  18. The Savannah River Site`s Groundwater Monitoring Program. Fourth quarter, 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-12-31

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site`s Groundwater Monitoring Program. During fourth quarter 1989 (October--December), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. An explanation of flagging criteria for the fourth quarter is presented in the Flagging Criteria sectionmore » of this document. All analytical results from fourth quarter 1989 are listed in this report, which is distributed to all waste-site custodians.« less

  19. Hierarchical distance-based fuzzy approach to evaluate urban water supply systems in a semi-arid region.

    PubMed

    Yekta, Tahereh Sadeghi; Khazaei, Mohammad; Nabizadeh, Ramin; Mahvi, Amir Hossein; Nasseri, Simin; Yari, Ahmad Reza

    2015-01-01

    Hierarchical distance-based fuzzy multi-criteria group decision making was served as a tool to evaluate the drinking water supply systems of Qom, a semi-arid city located in central part of Iran. A list of aspects consisting of 6 criteria and 35 sub-criteria were evaluated based on a linguistic term set by five decision-makers. Four water supply alternatives including "Public desalinated distribution system", "PET Bottled Drinking Water", "Private desalinated water suppliers" and "Household desalinated water units" were assessed based on criteria and sub-criteria. Data were aggregated and normalized to apply Performance Ratings of Alternatives. Also, the Performance Ratings of Alternatives were aggregated again to achieve the Aggregate Performance Ratings. The weighted distances from ideal solution and anti-ideal solution were calculated after secondary normalization. The proximity of each alternative to the ideal solution was determined as the final step. The alternatives were ranked based on the magnitude of ideal solutions. Results showed that "Public desalinated distribution system" was the most appropriate alternative to supply the drinking needs of Qom population. Also, "PET Bottled Drinking Water" was the second acceptable option. A novel classification of alternatives to satisfy the drinking water requirements was proposed which is applicable for the other cities located in semi-arid regions of Iran. The health issues were considered as independent criterion, distinct from the environmental issues. The constraints of high-tech alternatives were also considered regarding to the level of dependency on overseas.

  20. Impact of Past Land Use Changes on Drinking Water Quantity and Quality in Ljubljana Aquifer

    NASA Astrophysics Data System (ADS)

    Bracic Zeleznik, Branka; Cencur Curk, Barbara

    2010-05-01

    Most of the practical problems that we face today with the on-site management of drinking water sources and distribution of healthy drinking water, originate from past actions, interventions and political decisions. In Ljubljana, the capital of the Republic of Slovenia, underlying groundwater is the main drinking water source. The main threat to drinking water sources is constant input of pollutant loads from roads, roofs, sewers, industry and agricultural areas. The main problems are directly and indirectly related to the significant decrease of groundwater level and deterioration of groundwater quality observed in the last decades as an effect of land use practices under varying climate conditions. The Vodovod-Kanalizacija Public Utility is responsible for water supply of the city residents as well as for management of the water supply system, its surveillance and maintenance. In the past, the Ljubljana Municipality was responsible for the protection of water resources and the first delineation of groundwater protection areas was issued in Decree in 1955. In 2004 a Decree on the water protection zones for the aquifer of Ljubljansko polje on the state level was issued and passed the competences of proclamation of the water protection zones to the state. Spatial planning is a domain of The Municipality and land use is limited according to water protection legislation. For several observation wells long-time data sets about groundwater levels and quality are available, which enable us to analyse changes in groundwater quantity and quality parameters. From the data it is obvious that climate variations are affecting groundwater recharge. In addition, changing of land use affects groundwater quality. In spite of the Decree on the water protection there is a heavy pressure of investors to change land use plans and regulations on protection zones, which causes every day problems in managing the drinking water source. Groundwater management in Ljubljana demands strong and effective co-operation between state, municipality, public water supply company and consumers.

  1. Does nitrite and nitrate levels in drinking water impact the health of people in Dakahlia governorate, Egypt?

    PubMed

    Mortada, Wael I; Shokeir, Ahmed A

    2018-05-07

    A total of 1291 drinking water samples were examined for nitrite and nitrate during 6 months from December, 2015 to May, 2016 at 17 cities of Dakahlia governorate (Nile Delta, north of Egypt), and the results were utilized for assessment of health risk of the exposure from drinking water by calculating average daily intake (ADI), hazard quotient (HQ), and the hazard index (HI). The nitrite and nitrate in drinking water had a concentration range of 0.030-0.113 and 2.41-8.70 mg L -1 , with mean values of 0.059 ± 0.014 and 5.25 ± 1.61 mg L -1 , respectively. Nitrite and nitrate levels in rural areas and ground water samples were significantly higher than that in the urban ones. None of the analyzed samples exceeded WHO guideline values that set out to prevent methemoglobinemia. The values of HQ and HI for all age groups do not exceed unity indicating a low risk of methaemoglobinaemia for the population in this area. Results of the present study indicate that there is no health risk of residents from nitrite and nitrate through drinking water in the studied area. However, the other sources of exposure to nitrite and nitrate should be investigated in further studies.

  2. Overview of environmental and hydrogeologic conditions at McGrath, Alaska

    USGS Publications Warehouse

    Dorava, J.M.

    1994-01-01

    The remote village of McGrath along the Kuskokwim River in southwestern Alaska has long cold winters and short summers. The village is located on the flood plain of the Kuskokwim River and obtains drinking water for its 533 residents from the Kuskokwim River. Surface spills and disposal of hazardous materials combined with frequent flooding of the Kuskokwim River could affect the quality of the drinking water. Alternative drinking-water sources are available but at greater cost than existing supplies. The Federal Aviation Administration (FAA) owns or operates airport support facilities in McGrath and wishes to consider the subsistence lifestyle of the residents and the quality of the current environ- ment when evaluating options for remediation of environmental contamination at their facilities. This report describes the history, socioeconomics, physical setting, ground- and surface-water hydrology, geology, climate, vegetation, soils, and flood potential of the areas surrounding the FAA facilities near McGrath.

  3. Development of a Web-based tool to collect and display water system customer service areas for public health action.

    PubMed

    Wong, Michelle; Wolff, Craig; Collins, Natalie; Guo, Liang; Meltzer, Dan; English, Paul

    2015-01-01

    Significant illness is associated with biological contaminants in drinking water, but little is known about health effects from low levels of chemical contamination in drinking water. To examine these effects in epidemiological studies, the sources of drinking water of study populations need to be known. The California Environmental Health Tracking Program developed an online application that would collect data on the geographic location of public water system (PWS) customer service areas in California, which then could be linked to demographic and drinking water quality data. We deployed the Water Boundary Tool (WBT), a Web-based geospatial crowdsourcing application that can manage customer service boundary data for each PWS in California and can track changes over time. We also conducted a needs assessment for expansion to other states. The WBT was designed for water system operators, local and state regulatory agencies, and government entities. Since its public launch in 2012, the WBT has collected service area boundaries for about 2300 individual PWS, serving more than 90% of the California population. Results of the needs assessment suggest interest and utility for deploying such a tool among states lacking statewide PWS service area boundary data. Although the WBT data set is incomplete, it has already been used for a variety of applications, including fulfilling legislatively mandated reporting requirements and linking customer service areas to drinking water quality data to better understand local water quality issues. Development of this tool holds promise to assist with outbreak investigations and prevention, environmental health monitoring, and emergency preparedness and response.

  4. 7 CFR 1778.3 - Objective.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... quantity or quality of water, or in which such a decline is considered imminent, to obtain or maintain adequate quantities of water that meets the standards set by the Safe Drinking Water Act (42 U.S.C. 300f et... (CONTINUED) EMERGENCY AND IMMINENT COMMUNITY WATER ASSISTANCE GRANTS § 1778.3 Objective. The objective of the...

  5. Extended-Spectrum beta (β)-Lactamases and Antibiogram in Enterobacteriaceae from Clinical and Drinking Water Sources from Bahir Dar City, Ethiopia

    PubMed Central

    Abera, Bayeh; Kibret, Mulugeta; Mulu, Wondemagegn

    2016-01-01

    Background The spread of Extended-Spectrum beta (β)-Lactamases (ESBL)-producing Enterobacteriaceae has become a serious global problem. ESBL-producing Enterobacteriaceae vary based on differences in antibiotic use, nature of patients and hospital settings. This study was aimed at determining ESBL and antibiogram in Enterobacteriaceae isolates from clinical and drinking water sources in Bahir Dar City, Northwest Ethiopia. Methods Enterobacteriaceae species were isolated from clinical materials and tap water using standard culturing procedures from September 2013 to March 2015. ESBL-producing-Enterobacteriaceae were detected using double-disk method by E-test Cefotaxim/cefotaxim+ clavulanic acid and Ceftazidime/ceftazidime+ clavulanic acid (BioMerieux SA, France) on Mueller Hinton agar (Oxoid, UK). Results Overall, 274 Enterobacteriaceae were isolated. Of these, 210 (44%) were from patients and 64 (17.1%) were from drinking water. The median age of the patients was 28 years. Urinary tract infection and blood stream infection accounted for 60% and 21.9% of Enterobacteriaceae isolates, respectively. Klebsiella pneumoniae was isolated from 9 (75%) of neonatal sepsis. The overall prevalence of ESBL-producing Enterobacteriaceae in clinical and drinking water samples were 57.6% and 9.4%, respectively. The predominant ESBL-producers were K. pneumoniae 34 (69.4%) and Escherichia coli 71 (58.2%). Statistically significant associations were noted between ESBL-producing and non- producing Enterobacteriaceae with regard to age of patients, infected body sites and patient settings (P = 0.001). ESBL-producing Enterobacteriaceae showed higher levels of resistance against chloramphenicol, ciprofloxacin and cotrimoxazole than non-ESBL producers (P = 0.001) Conclusions ESBL-producing Enterobacteriaceae coupled with high levels of other antimicrobials become a major concern for treatment of patients with invasive infections such as blood stream infections, neonatal sepsis and urinary tract infections. ESBL-producing Enterobacteriaceae were also detected in drinking water sources. PMID:27846254

  6. Consistency of Use and Effectiveness of Household Water Treatment Practices among Urban and Rural Populations Claiming to Treat Their Drinking Water at Home: A Case Study in Zambia

    PubMed Central

    Rosa, Ghislaine; Kelly, Paul; Clasen, Thomas

    2016-01-01

    Household water treatment (HWT) can improve drinking water quality and prevent disease, if used correctly and consistently. While international monitoring suggests that 1.8 billion people practice HWT, these estimates are based on household surveys that may overstate the level of consistent use and do not address microbiological effectiveness. We sought to examine how HWT is practiced among households identified as HWT users according to international monitoring standards. Case studies were conducted in urban and rural Zambia. After a baseline survey (urban: 203 households, rural: 276 households) to identify HWT users, 95 urban and 82 rural households were followed up for 6 weeks. Consistency of HWT reporting was low; only 72.6% of urban and 50.0% of rural households reported to be HWT users in the subsequent visit. Similarly, availability of treated water was low, only 23.3% and 4.2% of urban and rural households, respectively, had treated water on all visits. Drinking water was significantly worse than source water in both settings. Only 19.6% of urban and 2.4% of rural households had drinking water free of thermotolerant coliforms on all visits. Our findings raise questions about the value of the data gathered through the international monitoring of HWT practices as predictors of water quality in the home. PMID:26572868

  7. Inactivation of Microbiological Contaminants in Drinking Water by Ultraviolet Light Technology: NeoTech Aqua Solutions, Inc.; Ultraviolet Water Treatment System, NeoTech D438™ (Report and VS)

    EPA Science Inventory

    The NeoTech Aqua Solutions, Inc. D438™ UV Water Treatment System was tested to validate the UV dose delivered by the system using biodosimetry and a set line approach. The set line for 40 mJ/cm2 measured Reduction Equivalent Dose (RED) was based on validation testing at three (3)...

  8. The effect of interactions between a bacterial strain isolated from drinking water and a pathogen surrogate on biofilms formation diverged under static vs flow conditions.

    PubMed

    Dai, D; Raskin, L; Xi, C

    2017-12-01

    Interactions with water bacteria affect the incorporation of pathogens into biofilms and thus pathogen control in drinking water systems. This study was to examine the impact of static vs flow conditions on interactions between a pathogen and a water bacterium on pathogen biofilm formation under laboratory settings. A pathogen surrogate Escherichia coli and a drinking water isolate Stenotrophomonas maltophilia was selected for this study. Biofilm growth was examined under two distinct conditions, in flow cells with continuous medium supply vs in static microtitre plates with batch culture. E. coli biofilm was greatly stimulated (c. 2-1000 times faster) with the presence of S. maltophilia in flow cells, but surprisingly inhibited (c. 65-95% less biomass) in microtitre plates. These divergent effects were explained through various aspects including surface attachment, cellular growth, extracellular signals and autoaggregation. Interactions with the same water bacterium resulted in different effects on E. coli biofilm formation when culture conditions changed from static to flow. This study highlights the complexity of species interactions on biofilm formation and suggests that environmental conditions such as the flow regime can be taken into consideration for the management of microbial contamination in drinking water systems. © 2017 The Society for Applied Microbiology.

  9. Assessing Drinking Water Quality and Water Safety Management in Sub-Saharan Africa Using Regulated Monitoring Data.

    PubMed

    Kumpel, Emily; Peletz, Rachel; Bonham, Mateyo; Khush, Ranjiv

    2016-10-18

    Universal access to safe drinking water is prioritized in the post-2015 Sustainable Development Goals. Collecting reliable and actionable water quality information in low-resource settings, however, is challenging, and little is known about the correspondence between water quality data collected by local monitoring agencies and global frameworks for water safety. Using 42 926 microbial water quality test results from 32 surveillance agencies and water suppliers in seven sub-Saharan African countries, we determined the degree to which water sources were monitored, how water quality varied by source type, and institutional responses to results. Sixty-four percent of the water samples were collected from piped supplies, although the majority of Africans rely on nonpiped sources. Piped supplies had the lowest levels of fecal indicator bacteria (FIB) compared to any other source type: only 4% of samples of water piped to plots and 2% of samples from water piped to public taps/standpipes were positive for FIB (n = 14 948 and n = 12 278, respectively). Among other types of improved sources, samples from harvested rainwater and boreholes were less often positive for FIB (22%, n = 167 and 31%, n = 3329, respectively) than protected springs or protected dug wells (39%, n = 472 and 65%, n = 505). When data from different settings were aggregated, the FIB levels in different source types broadly reflected the source-type water safety framework used by the Joint Monitoring Programme. However, the insufficient testing of nonpiped sources relative to their use indicates important gaps in current assessments. Our results emphasize the importance of local data collection for water safety management and measurement of progress toward universal safe drinking water access.

  10. Fecal Contamination of Drinking-Water in Low- and Middle-Income Countries: A Systematic Review and Meta-Analysis

    PubMed Central

    Bain, Robert; Cronk, Ryan; Wright, Jim; Yang, Hong; Slaymaker, Tom; Bartram, Jamie

    2014-01-01

    Background Access to safe drinking-water is a fundamental requirement for good health and is also a human right. Global access to safe drinking-water is monitored by WHO and UNICEF using as an indicator “use of an improved source,” which does not account for water quality measurements. Our objectives were to determine whether water from “improved” sources is less likely to contain fecal contamination than “unimproved” sources and to assess the extent to which contamination varies by source type and setting. Methods and Findings Studies in Chinese, English, French, Portuguese, and Spanish were identified from online databases, including PubMed and Web of Science, and grey literature. Studies in low- and middle-income countries published between 1990 and August 2013 that assessed drinking-water for the presence of Escherichia coli or thermotolerant coliforms (TTC) were included provided they associated results with a particular source type. In total 319 studies were included, reporting on 96,737 water samples. The odds of contamination within a given study were considerably lower for “improved” sources than “unimproved” sources (odds ratio [OR] = 0.15 [0.10–0.21], I2 = 80.3% [72.9–85.6]). However over a quarter of samples from improved sources contained fecal contamination in 38% of 191 studies. Water sources in low-income countries (OR = 2.37 [1.52–3.71]; p<0.001) and rural areas (OR = 2.37 [1.47–3.81] p<0.001) were more likely to be contaminated. Studies rarely reported stored water quality or sanitary risks and few achieved robust random selection. Safety may be overestimated due to infrequent water sampling and deterioration in quality prior to consumption. Conclusion Access to an “improved source” provides a measure of sanitary protection but does not ensure water is free of fecal contamination nor is it consistent between source types or settings. International estimates therefore greatly overstate use of safe drinking-water and do not fully reflect disparities in access. An enhanced monitoring strategy would combine indicators of sanitary protection with measures of water quality. Please see later in the article for the Editors' Summary PMID:24800926

  11. Estimating Cryptosporidium and Giardia disease burdens for children drinking untreated groundwater in a rural population in India

    PubMed Central

    2018-01-01

    Background In many low-income settings, despite improvements in sanitation and hygiene, groundwater sources used for drinking may be contaminated with enteric pathogens such as Cryptosporidium and Giardia, which remain important causes of childhood morbidity. In this study, we examined the contribution of diarrhea caused by Cryptosporidium and Giardia found in groundwater sources used for drinking to the total burden of diarrheal disease among children < 5 in rural India. Methodology/Principal findings We studied a population of 3,385 children < 5 years of age in 100 communities of Puri District, Odisha, India. We developed a coupled quantitative microbial risk assessment (QMRA) and susceptible-infected-recovered (SIR) population model based on observed levels of Cryptosporidium and Giardia in improved groundwater sources used for drinking and compared the QMRA-SIR estimates with independently measured all-cause (i.e., all fecal-oral enteric pathogens and exposure pathways) child diarrhea prevalence rates observed in the study population during two monsoon seasons (2012 and 2013). We used site specific and regional studies to inform assumptions about the human pathogenicity of the Cryptosporidium and Giardia species present in local groundwater. In all three human pathogenicity scenarios evaluated, the mean daily risk of Cryptosporidium or Giardia infection (0.06–1.53%), far exceeded the tolerable daily risk of infection from drinking water in the US (< 0.0001%). Depending on which protozoa species were present, median estimates of daily child diarrhea prevalence due to either Cryptosporidium or Giardia infection from drinking water was as high as 6.5% or as low as < 1% and accounted for at least 2.9% and as much as 65.8% of the all-cause diarrhea disease burden measured in children < 5 during the study period. Cryptosporidium tended to account for a greater share of estimated waterborne protozoa infections causing diarrhea than did Giardia. Diarrhea prevalence estimates for waterborne Cryptosporidium infection appeared to be most sensitive to assumptions about the probability of infection from ingesting a single parasite (i.e. the rate parameter in dose-response model), while Giardia infection was most sensitive to assumptions about the viability of parasites detected in groundwater samples. Conclusions/Significance Protozoa in groundwater drinking sources in rural India, even at low concentrations, especially for Cryptosporidium, may account for a significant portion of child diarrhea morbidity in settings were tubewells are used for drinking water and should be more systematically monitored. Preventing diarrheal disease burdens in Puri District and similar settings will benefit from ensuring water is microbiologically safe for consumption and consistent and effective household water treatment is practiced. PMID:29377884

  12. Monitoring microbiological changes in drinking water systems using a fast and reproducible flow cytometric method.

    PubMed

    Prest, E I; Hammes, F; Kötzsch, S; van Loosdrecht, M C M; Vrouwenvelder, J S

    2013-12-01

    Flow cytometry (FCM) is a rapid, cultivation-independent tool to assess and evaluate bacteriological quality and biological stability of water. Here we demonstrate that a stringent, reproducible staining protocol combined with fixed FCM operational and gating settings is essential for reliable quantification of bacteria and detection of changes in aquatic bacterial communities. Triplicate measurements of diverse water samples with this protocol typically showed relative standard deviation values and 95% confidence interval values below 2.5% on all the main FCM parameters. We propose a straightforward and instrument-independent method for the characterization of water samples based on the combination of bacterial cell concentration and fluorescence distribution. Analysis of the fluorescence distribution (or so-called fluorescence fingerprint) was accomplished firstly through a direct comparison of the raw FCM data and subsequently simplified by quantifying the percentage of large and brightly fluorescent high nucleic acid (HNA) content bacteria in each sample. Our approach enables fast differentiation of dissimilar bacterial communities (less than 15 min from sampling to final result), and allows accurate detection of even small changes in aquatic environments (detection above 3% change). Demonstrative studies on (a) indigenous bacterial growth in water, (b) contamination of drinking water with wastewater, (c) household drinking water stagnation and (d) mixing of two drinking water types, univocally showed that this FCM approach enables detection and quantification of relevant bacterial water quality changes with high sensitivity. This approach has the potential to be used as a new tool for application in the drinking water field, e.g. for rapid screening of the microbial water quality and stability during water treatment and distribution in networks and premise plumbing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Water use on nonirrigated pasture-based dairy farms: Combining detailed monitoring and modeling to set benchmarks.

    PubMed

    Higham, C D; Horne, D; Singh, R; Kuhn-Sherlock, B; Scarsbrook, M R

    2017-01-01

    Water use in intensively managed, confinement dairy systems has been widely studied, but few reports exist regarding water use on pasture-based dairy farms. The objective of this study was to quantify the seasonal pattern of water use to develop a prediction model of water use for pasture-based dairy farms. Stock drinking, milking parlor, and total water use was measured on 35 pasture-based, seasonal calving dairy farms in New Zealand over 2 yr. Average stock drinking water was 60 L/cow per day, with peak use in summer. We estimated that, on average, 26% of stock drinking water was lost through leakage from water-distribution systems. Average corrected stock drinking water (equivalent to voluntary water intake) was 36 L/cow per day, and peak water consumption was 72 L/cow per day in summer. Milking parlor water use increased sharply at the start of lactation (July) and plateaued (August) until summer (February), after which it decreased with decreasing milk production. Average milking parlor water use was 58 L/cow per day (between September and February). Water requirements were affected by parlor type, with rotary milking parlor water use greater than herringbone parlor water use. Regression models were developed to predict stock drinking and milking parlor water use. The models included a range of climate, farm, and milk production variables. The main drivers of stock drinking water use were maximum daily temperature, potential evapotranspiration, radiation, and yield of milk and milk components. The main drivers for milking parlor water use were average per cow milk production and milking frequency. These models of water use are similar to those used in confinement dairy systems, where milk yield is commonly used as a variable. The models presented fit the measured data more accurately than other published models and are easier to use on pasture-based dairy farms, as they do not include feed and variables that are difficult to measure on pasture-based farms. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Drinking water vulnerability to climate change and alternatives for adaptation in coastal South and South East Asia.

    PubMed

    Hoque, M A; Scheelbeek, P F D; Vineis, P; Khan, A E; Ahmed, K M; Butler, A P

    Drinking water in much of Asia, particularly in coastal and rural settings, is provided by a variety of sources, which are widely distributed and frequently managed at an individual or local community level. Coastal and near-inland drinking water sources in South and South East (SSE) Asia are vulnerable to contamination by seawater, most dramatically from tropical cyclone induced storm surges. This paper assesses spatial vulnerabilities to salinisation of drinking water sources due to meteorological variability and climate change along the (ca. 6000 km) coastline of SSE Asia. The risks of increasing climatic stresses are first considered, and then maps of relative vulnerability along the entire coastline are developed, using data from global scale land surface models, along with an overall vulnerability index. The results show that surface and near-surface drinking water in the coastal areas of the mega-deltas in Vietnam and Bangladesh-India are most vulnerable, putting more than 25 million people at risk of drinking 'saline' water. Climate change is likely to exacerbate this problem, with adverse consequences for health, such as prevalence of hypertension and cardiovascular diseases. There is a need for identifying locations that are most at risk of salinisation in order for policy makers and local officials to implement strategies for reducing these health impacts. To counter the risks associated with these vulnerabilities, possible adaptation measures are also outlined. We conclude that detailed and fine scale vulnerability assessments may become crucial for planning targeted adaptation programmes along these coasts.

  15. Pregnant women in Timis County, Romania are exposed primarily to low-level (<10 μg/L) arsenic through residential drinking water consumption

    PubMed Central

    Neamtiu, Iulia; Bloom, Michael S.; Gati, Gabriel; Goessler, Walter; Surdu, Simona; Pop, Cristian; Braeuer, Simone; Fitzgerald, Edward F.; Baciu, Calin; Lupsa, Ioana Rodica; Anastasiu, Doru; Gurzau, Eugen

    2015-01-01

    Excessive arsenic content in drinking water poses health risks to millions of people worldwide. Inorganic arsenic (iAs) in groundwater exceeding the 10 μg/l maximum contaminant level (MCL) set by the World Health Organization (WHO) is characteristic for intermediate-depth aquifers over large areas of the Pannonian Basin in Central Europe. In western Romania, near the border with Hungary, Arad, Bihor, and Timis counties use drinking water coming partially or entirely from iAs contaminated aquifers. In nearby Arad and Bihor counties, more than 45,000 people are exposed to iAs over 10 μg/l via public drinking water sources. However, comparable data are unavailable for Timis County. To begin to address this data gap, we determined iAs in 124 public and private Timis County drinking water sources, including wells and taps, used by pregnant women participating in a case-control study of spontaneous loss. Levels in water sources were low overall (median = 3.0; range = < 0.5–175 μg/l), although higher in wells (median = 3.1, range = < 0.5–175) than in community taps (median = 2.7, range = < 0.5–36.4). In a subsample of 20 control women we measured urine biomarkers of iAs exposure, including iAs (arsenite and arsenate), dimethylarsinic acid (DMA), and methylarsonic acid (MMA). Median values were higher among 10 women using iAs contaminated drinking water sources compared to 10 women using uncontaminated sources for urine total iAs (6.6 vs. 5.0 μg/l, P = 0.24) and DMA (5.5 vs. 4.2 μg/l, P = 0.31). The results suggested that the origin of urine total iAs (r = 0.35, P = 0.13) and DMA (r = 0.31, P = 0.18) must have been not only iAs in drinking-water but also some other source. Exposure of pregnant women to arsenic via drinking water in Timis County appears to be lower than for surrounding counties; however, it deserves a more definitive investigation as to its origin and the regional distribution of its risk potential. PMID:25697081

  16. 77 FR 21670 - Acibenzolar-S-

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    .../Exposure Analysis Modeling System and Screening Concentration in Ground Water (SCI-GROW) models, the... Classification System (NAICS) codes have been provided to assist you and others in determining whether this... reliable information.'' This includes exposure through drinking water and in residential settings, but does...

  17. Elucidation of Taste- and Odor-Producing Bacteria and Toxigenic Cyanobacteria in a Midwestern Drinking Water Supply Reservoir by Shotgun Metagenomic Analysis.

    PubMed

    Otten, Timothy G; Graham, Jennifer L; Harris, Theodore D; Dreher, Theo W

    2016-09-01

    While commonplace in clinical settings, DNA-based assays for identification or enumeration of drinking water pathogens and other biological contaminants remain widely unadopted by the monitoring community. In this study, shotgun metagenomics was used to identify taste-and-odor producers and toxin-producing cyanobacteria over a 2-year period in a drinking water reservoir. The sequencing data implicated several cyanobacteria, including Anabaena spp., Microcystis spp., and an unresolved member of the order Oscillatoriales as the likely principal producers of geosmin, microcystin, and 2-methylisoborneol (MIB), respectively. To further demonstrate this, quantitative PCR (qPCR) assays targeting geosmin-producing Anabaena and microcystin-producing Microcystis were utilized, and these data were fitted using generalized linear models and compared with routine monitoring data, including microscopic cell counts, sonde-based physicochemical analyses, and assays of all inorganic and organic nitrogen and phosphorus forms and fractions. The qPCR assays explained the greatest variation in observed geosmin (adjusted R(2) = 0.71) and microcystin (adjusted R(2) = 0.84) concentrations over the study period, highlighting their potential for routine monitoring applications. The origin of the monoterpene cyclase required for MIB biosynthesis was putatively linked to a periphytic cyanobacterial mat attached to the concrete drinking water inflow structure. We conclude that shotgun metagenomics can be used to identify microbial agents involved in water quality deterioration and to guide PCR assay selection or design for routine monitoring purposes. Finally, we offer estimates of microbial diversity and metagenomic coverage of our data sets for reference to others wishing to apply shotgun metagenomics to other lacustrine systems. Cyanobacterial toxins and microbial taste-and-odor compounds are a growing concern for drinking water utilities reliant upon surface water resources. Specific identification of the microorganism(s) responsible for water quality degradation is often complicated by the presence of co-occurring taxa capable of producing these undesirable metabolites. Here we present a framework for how shotgun metagenomics can be used to definitively identify problematic microorganisms and how these data can guide the development of rapid genetic assays for routine monitoring purposes. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  18. Elucidation of Taste- and Odor-Producing Bacteria and Toxigenic Cyanobacteria in a Midwestern Drinking Water Supply Reservoir by Shotgun Metagenomic Analysis

    PubMed Central

    Graham, Jennifer L.; Harris, Theodore D.

    2016-01-01

    ABSTRACT While commonplace in clinical settings, DNA-based assays for identification or enumeration of drinking water pathogens and other biological contaminants remain widely unadopted by the monitoring community. In this study, shotgun metagenomics was used to identify taste-and-odor producers and toxin-producing cyanobacteria over a 2-year period in a drinking water reservoir. The sequencing data implicated several cyanobacteria, including Anabaena spp., Microcystis spp., and an unresolved member of the order Oscillatoriales as the likely principal producers of geosmin, microcystin, and 2-methylisoborneol (MIB), respectively. To further demonstrate this, quantitative PCR (qPCR) assays targeting geosmin-producing Anabaena and microcystin-producing Microcystis were utilized, and these data were fitted using generalized linear models and compared with routine monitoring data, including microscopic cell counts, sonde-based physicochemical analyses, and assays of all inorganic and organic nitrogen and phosphorus forms and fractions. The qPCR assays explained the greatest variation in observed geosmin (adjusted R2 = 0.71) and microcystin (adjusted R2 = 0.84) concentrations over the study period, highlighting their potential for routine monitoring applications. The origin of the monoterpene cyclase required for MIB biosynthesis was putatively linked to a periphytic cyanobacterial mat attached to the concrete drinking water inflow structure. We conclude that shotgun metagenomics can be used to identify microbial agents involved in water quality deterioration and to guide PCR assay selection or design for routine monitoring purposes. Finally, we offer estimates of microbial diversity and metagenomic coverage of our data sets for reference to others wishing to apply shotgun metagenomics to other lacustrine systems. IMPORTANCE Cyanobacterial toxins and microbial taste-and-odor compounds are a growing concern for drinking water utilities reliant upon surface water resources. Specific identification of the microorganism(s) responsible for water quality degradation is often complicated by the presence of co-occurring taxa capable of producing these undesirable metabolites. Here we present a framework for how shotgun metagenomics can be used to definitively identify problematic microorganisms and how these data can guide the development of rapid genetic assays for routine monitoring purposes. PMID:27342564

  19. Fecal contamination of food, water, hands, and kitchen utensils at the household level in rural areas of Peru.

    PubMed

    Gil, Ana I; Lanata, Claudio F; Hartinger, Stella M; Mäusezahl, Daniel; Padilla, Beatriz; Ochoa, Theresa J; Lozada, Michelle; Pineda, Ines; Verastegui, Hector

    2014-01-01

    The study described in this article evaluated sources of contamination of children's food and drinking water in rural households in the highlands of Peru. Samples from children's meals, drinking water, kitchen utensils, and caregivers' and children's hands were analyzed for total coliforms and E. coli counts using Petrifilm EC. Thermotolerant coliforms in water were measured using DelAgua test kits while diarrheagenic E. coli was identified using polymerase chain reaction methods (PCR). Thermotolerant coliforms were found in 48% of all water samples. E. coli was found on 23% of hands, 16% of utensils, and 4% of meals. Kitchen cloths were the item most frequently contaminated with total coliforms (89%) and E. coli (42%). Diarrheagenic E. coli was found in 33% of drinking water, 27% of meals, and on 23% of kitchen utensils. These findings indicate a need to develop hygiene interventions that focus on specific kitchen utensils and hand washing practices, to reduce the contamination of food, water, and the kitchen environment in these rural settings.

  20. Drinking water quality, feeding practices, and diarrhea among children under 2 years of HIV-positive mothers in peri-urban Zambia.

    PubMed

    Peletz, Rachel; Simuyandi, Michelo; Sarenje, Kelvin; Baisley, Kathy; Kelly, Paul; Filteau, Suzanne; Clasen, Thomas

    2011-08-01

    In low-income settings, human immunodeficiency virus (HIV)-positive mothers must choose between breastfeeding their infants and risking transmission of HIV or replacement feeding their infants and risking diarrheal disease from contaminated water. We conducted a cross-sectional study of children < 2 years of age of 254 HIV-positive mothers in peri-urban Zambia to assess their exposure to waterborne fecal contamination. Fecal indicators were found in 70% of household drinking water samples. In a multivariable analysis, factors associated with diarrhea prevalence in children < 2 years were mother having diarrhea (adjusted odds ratio [aOR] = 5.18, 95% confidence interval [CI] = 1.65-16.28), child given water in the past 2 days (aOR = 4.08, 95% CI = 1.07-15.52), child never being breastfed (aOR = 2.67, 95% CI = 1.06-6.72), and rainy (versus dry) season (aOR = 4.60, 95% CI = 1.29-16.42). Children born to HIV-positive mothers were exposed to contaminated water through direct intake of drinking water, indicating the need for interventions to ensure microbiological water quality.

  1. Human health risk assessment of the mixture of pharmaceuticals in Dutch drinking water and its sources based on frequent monitoring data.

    PubMed

    Houtman, Corine J; Kroesbergen, Jan; Lekkerkerker-Teunissen, Karin; van der Hoek, Jan Peter

    2014-10-15

    The presence of pharmaceuticals in drinking water is a topic of concern. Previous risk assessments indicate that their low concentrations are very unlikely to pose risks to human health, however often conclusions had to be based on small datasets and mixture effects were not included. The objectives of this study were to a) investigate if pharmaceuticals in surface and polder water penetrate in drinking water, b) assess the lifelong exposure of consumers to pharmaceuticals via drinking water and c) assess the possible individual and mixture health risks associated with this exposure. To fulfill these aims, a 2-year set of 4-weekly monitoring data of pharmaceuticals was used from three drinking water production plants. The 42 pharmaceuticals that were monitored were selected according to their consumption volume, earlier detection, toxicity and representation of the most relevant therapeutic classes. Lifelong exposures were calculated from concentrations and compared with therapeutic doses. Health risks were assessed by benchmarking concentrations with provisional guideline values. Combined risks of mixtures of pharmaceuticals were estimated using the concept of Concentration Addition. The lifelong exposure to pharmaceuticals via drinking water was calculated to be extremely low, i.e. a few mg, in total corresponding to <10% of the dose a patient is administered on one day. The risk of adverse health effects appeared to be negligibly low. Application of Concentration Addition confirmed this for the mixture of pharmaceuticals simultaneously present. The investigated treatment plants appeared to reduce the (already negligible) risk up to 80%. The large available monitoring dataset enabled the performance of a realistic risk assessment. It showed that working with maximum instead of average concentrations may overestimate the risk considerably. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Differences in Field Effectiveness and Adoption between a Novel Automated Chlorination System and Household Manual Chlorination of Drinking Water in Dhaka, Bangladesh: A Randomized Controlled Trial

    PubMed Central

    Pickering, Amy J.; Crider, Yoshika; Amin, Nuhu; Bauza, Valerie; Unicomb, Leanne; Davis, Jennifer; Luby, Stephen P.

    2015-01-01

    The number of people served by networked systems that supply intermittent and contaminated drinking water is increasing. In these settings, centralized water treatment is ineffective, while household-level water treatment technologies have not been brought to scale. This study compares a novel low-cost technology designed to passively (automatically) dispense chlorine at shared handpumps with a household-level intervention providing water disinfection tablets (Aquatab), safe water storage containers, and behavior promotion. Twenty compounds were enrolled in Dhaka, Bangladesh, and randomly assigned to one of three groups: passive chlorinator, Aquatabs, or control. Over a 10-month intervention period, the mean percentage of households whose stored drinking water had detectable total chlorine was 75% in compounds with access to the passive chlorinator, 72% in compounds receiving Aquatabs, and 6% in control compounds. Both interventions also significantly improved microbial water quality. Aquatabs usage fell by 50% after behavioral promotion visits concluded, suggesting intensive promotion is necessary for sustained uptake. The study findings suggest high potential for an automated decentralized water treatment system to increase consistent access to clean water in low-income urban communities. PMID:25734448

  3. Differences in field effectiveness and adoption between a novel automated chlorination system and household manual chlorination of drinking water in Dhaka, Bangladesh: a randomized controlled trial.

    PubMed

    Pickering, Amy J; Crider, Yoshika; Amin, Nuhu; Bauza, Valerie; Unicomb, Leanne; Davis, Jennifer; Luby, Stephen P

    2015-01-01

    The number of people served by networked systems that supply intermittent and contaminated drinking water is increasing. In these settings, centralized water treatment is ineffective, while household-level water treatment technologies have not been brought to scale. This study compares a novel low-cost technology designed to passively (automatically) dispense chlorine at shared handpumps with a household-level intervention providing water disinfection tablets (Aquatab), safe water storage containers, and behavior promotion. Twenty compounds were enrolled in Dhaka, Bangladesh, and randomly assigned to one of three groups: passive chlorinator, Aquatabs, or control. Over a 10-month intervention period, the mean percentage of households whose stored drinking water had detectable total chlorine was 75% in compounds with access to the passive chlorinator, 72% in compounds receiving Aquatabs, and 6% in control compounds. Both interventions also significantly improved microbial water quality. Aquatabs usage fell by 50% after behavioral promotion visits concluded, suggesting intensive promotion is necessary for sustained uptake. The study findings suggest high potential for an automated decentralized water treatment system to increase consistent access to clean water in low-income urban communities.

  4. A Summary Catalogue of Microbial Drinking Water Tests for Low and Medium Resource Settings

    PubMed Central

    Bain, Robert; Bartram, Jamie; Elliott, Mark; Matthews, Robert; McMahan, Lanakila; Tung, Rosalind; Chuang, Patty; Gundry, Stephen

    2012-01-01

    Microbial drinking-water quality testing plays an essential role in measures to protect public health. However, such testing remains a significant challenge where resources are limited. With a wide variety of tests available, researchers and practitioners have expressed difficulties in selecting the most appropriate test(s) for a particular budget, application and setting. To assist the selection process we identified the characteristics associated with low and medium resource settings and we specified the basic information that is needed for different forms of water quality monitoring. We then searched for available faecal indicator bacteria tests and collated this information. In total 44 tests have been identified, 18 of which yield a presence/absence result and 26 of which provide enumeration of bacterial concentration. The suitability of each test is assessed for use in the three settings. The cost per test was found to vary from $0.60 to $5.00 for a presence/absence test and from $0.50 to $7.50 for a quantitative format, though it is likely to be only a small component of the overall costs of testing. This article presents the first comprehensive catalogue of the characteristics of available and emerging low-cost tests for faecal indicator bacteria. It will be of value to organizations responsible for monitoring national water quality, water service providers, researchers and policy makers in selecting water quality tests appropriate for a given setting and application. PMID:22754460

  5. A summary catalogue of microbial drinking water tests for low and medium resource settings.

    PubMed

    Bain, Robert; Bartram, Jamie; Elliott, Mark; Matthews, Robert; McMahan, Lanakila; Tung, Rosalind; Chuang, Patty; Gundry, Stephen

    2012-05-01

    Microbial drinking-water quality testing plays an essential role in measures to protect public health. However, such testing remains a significant challenge where resources are limited. With a wide variety of tests available, researchers and practitioners have expressed difficulties in selecting the most appropriate test(s) for a particular budget, application and setting. To assist the selection process we identified the characteristics associated with low and medium resource settings and we specified the basic information that is needed for different forms of water quality monitoring. We then searched for available faecal indicator bacteria tests and collated this information. In total 44 tests have been identified, 18 of which yield a presence/absence result and 26 of which provide enumeration of bacterial concentration. The suitability of each test is assessed for use in the three settings. The cost per test was found to vary from $0.60 to $5.00 for a presence/absence test and from $0.50 to $7.50 for a quantitative format, though it is likely to be only a small component of the overall costs of testing. This article presents the first comprehensive catalogue of the characteristics of available and emerging low-cost tests for faecal indicator bacteria. It will be of value to organizations responsible for monitoring national water quality, water service providers, researchers and policy makers in selecting water quality tests appropriate for a given setting and application.

  6. EVALUATING THE IMPACT OF WATER CHEMISTRY ON CUPROSOLVENCY AND COPPER CORROSION BY-PRODUCT USING A SIMPLE COPPER PIPE RECIRCULATING LOOP SYSTEM

    EPA Science Inventory

    1991, EPA publicized the Lead and Copper Rule (LCR),which set regulations to minimize the amount of lead copper in drinking water. The LCR set the copper action level at 1.3 mg/L in more then 10% of customer’s first-draw taps sampled. Potential health effects of copper include vo...

  7. Challenges in setting up a potable water supply system in a United Nations peacekeeping mission: the South Sudan experience.

    PubMed

    Hazra, Aniruddha

    2013-01-01

    A United Nations peacekeeping contingent was deployed in the conflict affected areas of South Sudan with inadequate environmental sanitation, lack of clean drinking water and a heightened risk of water-borne diseases. In the immediate post-deployment phase, the contingent-owned water purification system was pressed into service. However, laboratory analyses of processed water revealed its unsuitability for human consumption. A systematic, sanitary survey was conducted to identify the shortcomings in the water supply system's ability to provide potable water. Under field conditions, the 'H2S method' was used to detect faecal contamination of drinking water. The raw water from the only available source, the White Nile River, was highly turbid and contaminated by intestinal and other pathogens due to an unprotected watershed. Water sterilizing powder was not readily available in the local area to replenish the existing stocks that had deteriorated during the long transit period from the troop contributing country. The water pipelines that had been laid along the ground, under water-logged conditions, were prone to microbial recontamination due to leakages in the network. The critical evaluation of the water supply system and necessary modifications in the purification process, based upon locally available options, yielded safe drinking water. Provision of safe drinking water in the mission area requires an in-depth analysis of prevailing conditions and appropriate planning in the pre-deployment phase. The chemicals for water purification should be procured through UN sources via a 'letter of assist' request from the troop contributor. Copyright © 2012 Elsevier GmbH. All rights reserved.

  8. Assessment of a membrane drinking water filter in an emergency setting.

    PubMed

    Ensink, Jeroen H J; Bastable, Andy; Cairncross, Sandy

    2015-06-01

    The performance and acceptability of the Nerox(TM) membrane drinking water filter were evaluated among an internally displaced population in Pakistan. The membrane filter and a control ceramic candle filter were distributed to over 3,000 households. Following a 6-month period, 230 households were visited and filter performance and use were assessed. Only 6% of the visited households still had a functioning filter, and the removal performance ranged from 80 to 93%. High turbidity in source water (irrigation canals), together with high temperatures and large family size were likely to have contributed to poor performance and uptake of the filters.

  9. EVALUATION OF A MATRIX INTERFERENCE IN GROUND WATER ARSENIC MEASUREMENT BY ICP-OES

    EPA Science Inventory

    Arsenic enters ground water systems by either the weathering of naturally occurring subsurface materials or human activities such as mining and pesticide manufacturing. The current EPA drinking water limit for arsenic is set at 50 ug/L, with the reduction to 10 ug/L in 2006. The...

  10. Bacteriological and Physical Quality of Locally Packaged Drinking Water in Kampala, Uganda

    PubMed Central

    Halage, Abdullah Ali; Ssemugabo, Charles; Ssemwanga, David K.; Musoke, David; Mugambe, Richard K.; Guwatudde, David; Ssempebwa, John C.

    2015-01-01

    Objective. To assess the bacteriological and physical quality of locally packaged drinking water sold for public consumption. Methods. This was cross-sectional study where a total of 60 samples of bottled water from 10 brands and 30 samples of sachet water from 15 brands purchased randomly were analyzed for bacteriological contamination (total coliform and faecal coliform per 100 mL) using membrane filtrate method and reported in terms of cfu/100 mL. Results. Both bottled water and sachet water were not contaminated with faecal coliform. Majority (70%, 21/30) of the sachet water analyzed exceeded acceptable limits of 0 total coliforms per 100 mL set by WHO and the national drinking water standards. The physical quality (turbidity and pH) of all the packaged water brands analyzed was within the acceptable limits. There was statistically significant difference between the median count of total coliform in both sachet water and bottled water brands (U(24) = 37.0, p = 0.027). Conclusion. Both bottled water and sachet water were not contaminated with faecal coliforms; majority of sachet water was contaminated with total coliform above acceptable limits. Government and other stakeholders should consider intensifying surveillance activities and enforcing strict hygienic measures in this rapidly expanding industry to improve packaged water quality. PMID:26508915

  11. Bacteriological and physical quality of locally packaged drinking water in Kampala, Uganda.

    PubMed

    Halage, Abdullah Ali; Ssemugabo, Charles; Ssemwanga, David K; Musoke, David; Mugambe, Richard K; Guwatudde, David; Ssempebwa, John C

    2015-01-01

    To assess the bacteriological and physical quality of locally packaged drinking water sold for public consumption. This was cross-sectional study where a total of 60 samples of bottled water from 10 brands and 30 samples of sachet water from 15 brands purchased randomly were analyzed for bacteriological contamination (total coliform and faecal coliform per 100 mL) using membrane filtrate method and reported in terms of cfu/100 mL. Both bottled water and sachet water were not contaminated with faecal coliform. Majority (70%, 21/30) of the sachet water analyzed exceeded acceptable limits of 0 total coliforms per 100 mL set by WHO and the national drinking water standards. The physical quality (turbidity and pH) of all the packaged water brands analyzed was within the acceptable limits. There was statistically significant difference between the median count of total coliform in both sachet water and bottled water brands (U(24) = 37.0, p = 0.027). Both bottled water and sachet water were not contaminated with faecal coliforms; majority of sachet water was contaminated with total coliform above acceptable limits. Government and other stakeholders should consider intensifying surveillance activities and enforcing strict hygienic measures in this rapidly expanding industry to improve packaged water quality.

  12. Water-drinking test in primary angle-closure suspect before and after laser peripheral iridotomy.

    PubMed

    Waisbourd, Michael; Savant, Shravan V; Sun, Yi; Martinez, Patricia; Myers, Jonathan S

    2016-03-01

    This study aimed to investigate whether performing a laser peripheral iridotomy in primary angle-closure suspects had an effect on the intraocular pressure response during the water-drinking test. Prospective study in a hospital setting. Primary angle-closure suspects scheduled for a laser peripheral iridotomy. Primary angle-closure suspects were evaluated before the laser peripheral iridotomy and 2 weeks after. On each visit, subjects underwent the water-drinking test. Intraocular pressure was measured every 15 min within a 1-h period. Intraocular pressure fluctuations during the water drinking test. Twenty patients were enrolled. The mean age was 58.1 years (±10.2 SD), predominantly female (n = 14, 70%). Average intraocular pressure range (maximum-minimum) during the water-drinking test increased significantly from 2.6 ± 1.1 mmHg before the laser peripheral iridotomy to 3.5 ± 1.5 mmHg after (P = 0.04). The mean difference between peak and last intraocular pressure measurements increased after the laser peripheral iridotomy was performed, from 2.5 mmHg (±1.27 SD) to 3.3 mmHg (±1.66 SD), (P = 0.057). There was no change in mean peak intraocular pressure (maximum-baseline) before and after the laser peripheral iridotomy (P = 0.87). Primary angle-closure suspects who underwent the water-drinking test had a slightly more pronounced recovery of intraocular pressure after the laser peripheral iridotomy was performed, which may be attributed to increase in the area of exposed trabecular meshwork following treatment. Differences in intraocular pressure curves before and after laser peripheral iridotomy were minimal, and therefore, the water-drinking test had limited value as a provocative test in this patient population. © 2015 Royal Australian and New Zealand College of Ophthalmologists.

  13. Maternal exposure to carbamazepine at environmental concentrations can cross intestinal and placental barriers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaushik, Gaurav, E-mail: kausgaur@isu.edu; Department of Medical Pathology and Laboratory Medicine, University of California at Davis, Davis, CA 95817; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Northern California, 2425 Stockton Boulevard, Sacramento, CA 95817

    Psychoactive pharmaceuticals have been found as teratogens at clinical dosage during pregnancy. These pharmaceuticals have also been detected in minute (ppb) concentrations in drinking water in the US, and are environmental contaminants that may be complicit in triggering neurological disorders in genetically susceptible individuals. Previous studies have determined that psychoactive pharmaceuticals (fluoxetine, venlafaxine and carbamazepine) at environmentally relevant concentrations enriched sets of genes regulating development and function of the nervous system in fathead minnows. Altered gene sets were also associated with potential neurological disorders, including autism spectrum disorders (ASD). Subsequent in vitro studies indicated that psychoactive pharmaceuticals altered ASD-associated synaptic proteinmore » expression and gene expression in human neuronal cells. However, it is unknown if environmentally relevant concentrations of these pharmaceuticals are able to cross biological barriers from mother to fetus, thus potentially posing risks to nervous system development. The main objective of this study was to test whether psychoactive pharmaceuticals (fluoxetine, venlafaxine, and carbamazepine) administered through the drinking water at environmental concentrations to pregnant mice could reach the brain of the developing embryo by crossing intestinal and placental barriers. We addressed this question by adding {sup 2}H-isotope labeled pharmaceuticals to the drinking water of female mice for 20 days (10 pre-and 10 post–conception days), and quantifying {sup 2}H-isotope enrichment signals in the dam liver and brain of developing embryos using isotope ratio mass spectrometry. Significant levels of {sup 2}H enrichment was detected in the brain of embryos and livers of carbamazepine-treated mice but not in those of control dams, or for fluoxetine or venlafaxine application. These results provide the first evidence that carbamazepine in drinking water and at typical environmental concentrations is transmitted from mother to embryo. Our results, combined with previous evidence that carbamazepine may be associated with ASD in infants, warrant the closer examination of psychoactive pharmaceuticals in drinking water and their potential association with neurodevelopmental disorders.« less

  14. Designing water supplies: Optimizing drinking water composition for maximum economic benefit.

    PubMed

    Rygaard, M; Arvin, E; Bath, A; Binning, P J

    2011-06-01

    It is possible to optimize drinking water composition based on a valuation of the impacts of changed water quality. This paper introduces a method for assessing the potential for designing an optimum drinking water composition by the use of membrane desalination and remineralization. The method includes modeling of possible water quality blends and an evaluation of corrosion indices. Based on concentration-response relationships a range of impacts on public health, material lifetimes and consumption of soap have been valued for Perth, Western Australia and Copenhagen, Denmark. In addition to water quality aspects, costs of water production, fresh water abstraction and CO(2)-emissions are integrated into a holistic economic assessment of the optimum share of desalinated water in water supplies. Results show that carefully designed desalination post-treatment can have net benefits up to €0.3 ± 0.2 per delivered m(3) for Perth and €0.4(±0.2) for Copenhagen. Costs of remineralization and green house gas emission mitigation are minor when compared to the potential benefits of an optimum water composition. Finally, a set of optimum water quality criteria is proposed for the guidance of water supply planning and management. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Study of water supply & sanitation practices in India using geographic information systems: some design & other considerations in a village setting.

    PubMed

    Gopal, Srila; Sarkar, Rajiv; Banda, Kalyan; Govindarajan, Jeyanthi; Harijan, B B; Jeyakumar, M B; Mitta, Philip; Sadanala, M E; Selwyn, Tryphena; Suresh, C R; Thomas, V A; Devadason, Pethuru; Kumar, Ranjit; Selvapandian, David; Kang, Gagandeep; Balraj, Vinohar

    2009-03-01

    Availability of clean water and adequate sanitation facilities are of prime importance for limiting diarrhoeal diseases. We examined the water and sanitation facilities of a village in southern India using geographic information system (GIS) tools. Places of residence, water storage and distribution, sewage and places where people in the village defaecated were mapped and drinking water sources were tested for microbial contamination in Nelvoy village, Vellore district, Tamil Nadu. Water in the village was found to be microbiologically unfit for consumption. Analysis using direct observations supplemented by GIS maps revealed poor planning, poor engineering design and lack of policing of the water distribution system causing possible contamination of drinking water from sewage at multiple sites. Until appropriate engineering designs for water supply and sewage disposal to suit individual village needs are made available, point-of-use water disinfection methods could serve as an interim solution.

  16. Consistency of Use and Effectiveness of Household Water Treatment Practices Among Urban and Rural Populations Claiming to Treat Their Drinking Water at Home: A Case Study in Zambia.

    PubMed

    Rosa, Ghislaine; Kelly, Paul; Clasen, Thomas

    2016-02-01

    Household water treatment (HWT) can improve drinking water quality and prevent disease, if used correctly and consistently. While international monitoring suggests that 1.8 billion people practice HWT, these estimates are based on household surveys that may overstate the level of consistent use and do not address microbiological effectiveness. We sought to examine how HWT is practiced among households identified as HWT users according to international monitoring standards. Case studies were conducted in urban and rural Zambia. After a baseline survey (urban: 203 households, rural: 276 households) to identify HWT users, 95 urban and 82 rural households were followed up for 6 weeks. Consistency of HWT reporting was low; only 72.6% of urban and 50.0% of rural households reported to be HWT users in the subsequent visit. Similarly, availability of treated water was low, only 23.3% and 4.2% of urban and rural households, respectively, had treated water on all visits. Drinking water was significantly worse than source water in both settings. Only 19.6% of urban and 2.4% of rural households had drinking water free of thermotolerant coliforms on all visits. Our findings raise questions about the value of the data gathered through the international monitoring of HWT practices as predictors of water quality in the home. © The American Society of Tropical Medicine and Hygiene.

  17. Expression of a plant-derived peptide harboring water-cleaning and antimicrobial activities.

    PubMed

    Suarez, M; Entenza, J M; Doerries, C; Meyer, E; Bourquin, L; Sutherland, J; Marison, I; Moreillon, P; Mermod, N

    2003-01-05

    Drinking water is currently a scarce world resource, the preparation of which requires complex treatments that include clarification of suspended particles and disinfection. Seed extracts of Moringa oleifera Lam., a tropical tree, have been proposed as an environment-friendly alternative, due to their traditional use for the clarification of drinking water. However, the precise nature of the active components of the extract and whether they may be produced in recombinant form are unknown. Here we show that recombinant or synthetic forms of a cationic seed polypeptide mediate efficient sedimentation of suspended mineral particles and bacteria. Unexpectedly, the polypeptide was also found to possesses a bactericidal activity capable of disinfecting heavily contaminated water. Furthermore, the polypeptide has been shown to efficiently kill several pathogenic bacteria, including antibiotic-resistant isolates of Staphylococcus, Streptococcus, and Legionella species. Thus, this polypeptide displays the unprecedented feature of combining water purification and disinfectant properties. Identification of an active principle derived from the seed extracts points to a range of potential for drinking water treatment or skin and mucosal disinfection in clinical settings. Copyright 2002 Wiley Periodicals, Inc.

  18. 77 FR 10962 - Flazasulfuron; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-24

    .../water/index.htm . Based on the Pesticide Root Zone Model/Exposure Analysis Modeling System (PRZM/EXAMS... Classification System (NAICS) codes have been provided to assist you and others in determining whether this... reliable information.'' This includes exposure through drinking water and in residential settings, but does...

  19. Social disparities in nitrate-contaminated drinking water in California's San Joaquin Valley.

    PubMed

    Balazs, Carolina; Morello-Frosch, Rachel; Hubbard, Alan; Ray, Isha

    2011-09-01

    Research on drinking water in the United States has rarely examined disproportionate exposures to contaminants faced by low-income and minority communities. This study analyzes the relationship between nitrate concentrations in community water systems (CWSs) and the racial/ethnic and socioeconomic characteristics of customers. We hypothesized that CWSs in California's San Joaquin Valley that serve a higher proportion of minority or residents of lower socioeconomic status have higher nitrate levels and that these disparities are greater among smaller drinking water systems. We used water quality monitoring data sets (1999-2001) to estimate nitrate levels in CWSs, and source location and census block group data to estimate customer demographics. Our linear regression model included 327 CWSs and reported robust standard errors clustered at the CWS level. Our adjusted model controlled for demographics and water system characteristics and stratified by CWS size. Percent Latino was associated with a 0.04-mg nitrate-ion (NO3)/L increase in a CWS's estimated NO3 concentration [95% confidence interval (CI), -0.08 to 0.16], and rate of home ownership was associated with a 0.16-mg NO3/L decrease (95% CI, -0.32 to 0.002). Among smaller systems, the percentage of Latinos and of homeownership was associated with an estimated increase of 0.44 mg NO3/L (95% CI, 0.03-0.84) and a decrease of 0.15 mg NO3/L (95% CI, -0.64 to 0.33), respectively. Our findings suggest that in smaller water systems, CWSs serving larger percentages of Latinos and renters receive drinking water with higher nitrate levels. This suggests an environmental inequity in drinking water quality.

  20. Social Disparities in Nitrate-Contaminated Drinking Water in California’s San Joaquin Valley

    PubMed Central

    Morello-Frosch, Rachel; Hubbard, Alan; Ray, Isha

    2011-01-01

    Background: Research on drinking water in the United States has rarely examined disproportionate exposures to contaminants faced by low-income and minority communities. This study analyzes the relationship between nitrate concentrations in community water systems (CWSs) and the racial/ethnic and socioeconomic characteristics of customers. Objectives: We hypothesized that CWSs in California’s San Joaquin Valley that serve a higher proportion of minority or residents of lower socioeconomic status have higher nitrate levels and that these disparities are greater among smaller drinking water systems. Methods: We used water quality monitoring data sets (1999–2001) to estimate nitrate levels in CWSs, and source location and census block group data to estimate customer demographics. Our linear regression model included 327 CWSs and reported robust standard errors clustered at the CWS level. Our adjusted model controlled for demographics and water system characteristics and stratified by CWS size. Results: Percent Latino was associated with a 0.04-mg nitrate-ion (NO3)/L increase in a CWS’s estimated NO3 concentration [95% confidence interval (CI), –0.08 to 0.16], and rate of home ownership was associated with a 0.16-mg NO3/L decrease (95% CI, –0.32 to 0.002). Among smaller systems, the percentage of Latinos and of homeownership was associated with an estimated increase of 0.44 mg NO3/L (95% CI, 0.03–0.84) and a decrease of 0.15 mg NO3/L (95% CI, –0.64 to 0.33), respectively. Conclusions: Our findings suggest that in smaller water systems, CWSs serving larger percentages of Latinos and renters receive drinking water with higher nitrate levels. This suggests an environmental inequity in drinking water quality. PMID:21642046

  1. Elucidation of taste- and odor-producing bacteria and toxigenic cyanobacteria in a Midwestern drinking water supply reservoir by shotgun metagenomics analysis

    USGS Publications Warehouse

    Otten, Timothy; Graham, Jennifer L.; Harris, Theodore D.; Dreher, Theo

    2016-01-01

    While commonplace in clinical settings, DNA-based assays for identification or enumeration of drinking water pathogens and other biological contaminants remain widely unadopted by the monitoring community. In this study, shotgun metagenomics was used to identify taste-and-odor producers and toxin-producing cyanobacteria over a 2-year period in a drinking water reservoir. The sequencing data implicated several cyanobacteria, including Anabaena spp.,Microcystis spp., and an unresolved member of the order Oscillatoriales as the likely principal producers of geosmin, microcystin, and 2-methylisoborneol (MIB), respectively. To further demonstrate this, quantitative PCR (qPCR) assays targeting geosmin-producing Anabaena and microcystin-producing Microcystis were utilized, and these data were fitted using generalized linear models and compared with routine monitoring data, including microscopic cell counts, sonde-based physicochemical analyses, and assays of all inorganic and organic nitrogen and phosphorus forms and fractions. The qPCR assays explained the greatest variation in observed geosmin (adjusted R2 = 0.71) and microcystin (adjusted R2 = 0.84) concentrations over the study period, highlighting their potential for routine monitoring applications. The origin of the monoterpene cyclase required for MIB biosynthesis was putatively linked to a periphytic cyanobacterial mat attached to the concrete drinking water inflow structure. We conclude that shotgun metagenomics can be used to identify microbial agents involved in water quality deterioration and to guide PCR assay selection or design for routine monitoring purposes. Finally, we offer estimates of microbial diversity and metagenomic coverage of our data sets for reference to others wishing to apply shotgun metagenomics to other lacustrine systems.

  2. [Harmonization of microbiologicaland parasitological indices of epidemic safety of drinking water with the international requirements].

    PubMed

    Ivanova, L V; Artemova, T Z; Gipp, E K; Zagaĭnova, A V; Maksimkina, T N; Krasniak, A V; Korneĭchuk, S S; Shustova, S S

    2013-01-01

    For the purpose of harmonization of microbiological and parasitological indices and benchmarks there was performed the comparative analysis of the requirements for the quality of drinking water in respect of the epidemic safety on the basic regulations of Russia, the Directive Council of the European Union EU, WHO, the United States, Canada, Australia, Finland, Sweden, Brazil, France, Japan and China. As a result, there were revealed the priority bacteriological, virological and parasitological parameters: E. coli--indicator of recent fecal contamination, coliforms, heterotrophic bacteria colony count (Heterotrophic plate count), which is in the water legislation of the Russian Federation is characterized as total bacterial count (TBC), being an integral index of the quality of wastewater treatment technologies and hygienic condition of the water supply systems, coliphages as an indicator of viral contamination. In the Guidelines for drinking-water quality control, WHO and a set of countries there is recommended a more wide range of indicators: enterococci, Clostridium perfringens, Pseudomonas aeruginosa, enteroviruses, parasitological indices. With aim of harmonization of the requirements for the quality of drinking water in the Russian Federation with international approaches to the revision of the Sanitary Regulations and Norms (SanPin) 2.1.4.1074 into the project there are introduced priority indicator parameters of bacterial, viral and parasitic contamination of water, evidence-based guidelines.

  3. Physicochemical and bacteriological quality of bottled drinking water in three sites of Amhara Regional State, Ethiopia.

    PubMed

    Biadglegne, Fantahun; Tessema, Belay; Kibret, Mulugeta; Abera, Bayeh; Huruy, Kahsay; Anagaw, Belay; Mulu, Andargachew

    2009-10-01

    The consumption of bottled drinking water is becoming increasing in Ethiopia. As a result there has been a growing concern about the chemical, physical and bacteriological quality of this product. Studies on the chemical, physical and bacteriological quality of bottled water is quite scarce in Ethiopia. This study was therefore aimed to assess the physicochemical and bacteriological qualities of three factories of bottled drinking water products produced in Amhara region. A Laboratory based comparative study was conducted to evaluate the physicochemical and bacteriological quality of three factories of bottled drinking water produced in Amhara region. Analysis on the quality of bottled drinking water from the sources, wholesalers and retailers were made with World Health Organization and Quality and Standards Authority of Ethiopia recommendations. Triplicate samples from three types of bottled drinking water were randomly collected and analyzed from June, 2006 to December, 2006. A total of 108 commercial bottled drinking water samples were analyzed. The result showed that except pH of factory A all the physicochemical parameters analyzed were with in the recommended limits. The pH value of factory A tested from sources is 5.3 and from wholesalers and retailers is 5.5 and 5.3, respectively, which is below the normal value set by World Health Organization (6.5-8.0) and Quality and Standards Authority of Ethiopia (6.0-8.5). Our analyses also demonstrated that 2 (16.7%) of the samples tested from sources and 1 (8.3%) from wholesalers of factory B were contaminated with total coliforms, where as 2 (16.7%) samples from retailers were also contaminated with total coliforms. On the other hand, 1 (8.3%) of the samples tested from wholesalers and 2 (16.7%) of the samples tested from retailers of factory A were also contaminated with total coliforms. Total coliforms were not detected from all samples of factory C, fecal coliforms were not also isolated from all samples. Percent of coefficient of variation showed that variations in total coliforms counts were significant with in the samples of both factory A and B (CV > 10%). Based on the recommended limit of World Health Organization and Quality and Standards Authority of Ethiopia, 7.4% of bottled drinking water sold commercially could be considered unfit for human consumption. Consumers of bottled water should be aware of this.

  4. Simplification and validation of a large volume polyurethane foam sampler for the analysis of persistent hydrophobic compounds in drinking water.

    PubMed

    Choi, J W; Lee, J H; Moon, B S; Kannan, K

    2008-08-01

    The use of a large volume polyurethane foam (PUF) sampler was validated for rapid extraction of persistent organic pollutants (POPs), such as polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), in raw water and treated water from drinking water plants. To validate the recovery of target compounds in the sampling process, a (37)Cl-labeled standard was spiked into the 1st PUF plug prior to filtration. An accelerated solvent extraction method, as a pressurized liquid extractor (PLE), was optimized to extract the PUF plug. For sample preparation, tandem column chromatography (TCC) clean-up was used for rapid analysis. The recoveries of labeled compounds in the analytical method were 80-110% (n = 9). The optimized PUF-PLE-TCC method was applied in the analysis of raw water and treated potable water from seven drinking water plants in South Korea. The sample volume used was between 18 and 102 L for raw water at a flow rate of 0.4-2 L min(-1), 95 and 107 L for treated water at a flow rate of 1.5-2.2 L min(-1). Limit of quantitation (LOQ) was a function of sample volume and it decreased with increasing sample volume. The LOQ of PCDD/Fs in raw waters analyzed by this method was 3-11 times lower than that described using large-size disk-type solid phase extraction (SPE) method. The LOQ of PCDD/F congeners in raw water and treated water were 0.022-3.9 ng L(-1) and 0.018-0.74 ng L(-1), respectively. Octachlorinated dibenzo-p-dioxin (OCDD) was found in some raw water samples, while their concentrations were well below the tentative criterion set by the Japanese Environmental Ministry for drinking water. OCDD was below the LOQ in the treated drinking water.

  5. Preface to volume 1: status and trends of water quality worldwide

    USGS Publications Warehouse

    Larsen, Matthew C.; Ahuja, Satinder; Eimers, Jo Leslie; Edited by Ahuja, Satinder

    2013-01-01

    Water quality and water quantity are closely linked. In all regions of the world, the quality and quantity of water must be considered together in order to sustain abundant water of the quality needed for drinking, irrigation, environmental health, industry, power generation, and recreation. Protecting and managing water to meet water needs requires comprehensive information and understanding of the impacts of natural settings and anthropogenic activities on water quality.

  6. Hydrogeologic framework and sampling design for an assessment of agricultural pesticides in ground water in Pennsylvania

    USGS Publications Warehouse

    Lindsey, Bruce D.; Bickford, Tammy M.

    1999-01-01

    State agencies responsible for regulating pesticides are required by the U.S. Environmental Protection Agency to develop state management plans for specific pesticides. A key part of these management plans includes assessing the potential for contamination of ground water by pesticides throughout the state. As an example of how a statewide assessment could be implemented, a plan is presented for the Commonwealth of Pennsylvania to illustrate how a hydrogeologic framework can be used as a basis for sampling areas within a state with the highest likelihood of having elevated pesticide concentrations in ground water. The framework was created by subdividing the state into 20 areas on the basis of physiography and aquifer type. Each of these 20 hydrogeologic settings is relatively homogeneous with respect to aquifer susceptibility and pesticide use—factors that would be likely to affect pesticide concentrations in ground water. Existing data on atrazine occurrence in ground water was analyzed to determine (1) which areas of the state already have sufficient samples collected to make statistical comparisons among hydrogeologic settings, and (2) the effect of factors such as land use and aquifer characteristics on pesticide occurrence. The theoretical vulnerability and the results of the data analysis were used to rank each of the 20 hydrogeologic settings on the basis of vulnerability of ground water to contamination by pesticides. Example sampling plans are presented for nine of the hydrogeologic settings that lack sufficient data to assess vulnerability to contamination. Of the highest priority areas of the state, two out of four have been adequately sampled, one of the three areas of moderate to high priority has been adequately sampled, four of the nine areas of moderate to low priority have been adequately sampled, and none of the three low priority areas have been sampled.Sampling to date has shown that, even in the most vulnerable hydrogeologic settings, pesticide concentrations in ground water rarely exceed U.S. Environmental Protection Agency Drinking Water Standards or Health Advisory Levels. Analyses of samples from 1,159 private water supplies reveal only 3 sites for which samples with concentrations of pesticides exceeded drinking-water standards. In most cases, samples with elevated concentrations could be traced to point sources at pesticide loading or mixing areas. These analyses included data from some of the most vulnerable areas of the state, indicating that it is highly unlikely that pesticide concentrations in water from wells in other areas of the state would exceed the drinking-water standards unless a point source of contamination were present. Analysis of existing data showed that water from wells in areas of the state underlain by carbonate (limestone and dolomite) bedrock, which commonly have a high percentage of corn production, was much more likely to have pesticides detected. Application of pesticides to the land surface generally has not caused concentrations of the five state priority pesticides in ground water to exceed health standards; however, this study has not evaluated the potential human health effects of mixtures of pesticides or pesticide degradation products in drinking water. This study also has not determined whether concentrations in ground water are stable, increasing, or decreasing.

  7. Prevalence, characteristics and correlates of enteric pathogenic protozoa in drinking water sources in Molyko and Bomaka, Cameroon: a cross-sectional study.

    PubMed

    Nsoh, Fuh Anold; Wung, Buh Amos; Atashili, Julius; Benjamin, Pokam Thumamo; Marvlyn, Eba; Ivo, Keumami Katte; Nguedia, Assob Jules Clément

    2016-11-08

    Access to potable water remains a major challenge particularly in resource-limited settings. Although the potential contaminants of water are varied, enteric pathogenic protozoa are known to cause waterborne diseases greatly. This study aimed at investigating the prevalence, characteristics and correlates of enteric pathogenic protozoa in drinking water sources in Buea, Cameroon. A cross-sectional study was conducted using 155 water samples collected from various drinking sources (boreholes, springs, taps and wells). Each sample was subjected to physicochemical examinations (pH, turbidity, odour and sliminess) and parasitological analysis (wet mount, modified Ziehl-Neelsen stain) to determine the presence of enteric pathogenic protozoa. A data collection tool was used to note characteristics of collected samples and the data was analysed using EPI-INFO Version 3.5.3. The overall prevalence of enteric pathogenic protozoa in water sources was 62.6 %. Eight species of enteric protozoa were observed with Cryptosporidium parvum being the most predominant (45.8 %). Spring water was the most contaminated source with enteric protozoa (85.7 %) while pipe borne water had all eight species of protozoa identified. A pH of 6 was the only significant factor associated with the prevalence of these pathogens in water sources. The prevalence of enteric protozoa in water sources in Molyko and Bomaka is high, spring water is the most contaminated water source and Cryptosporidium parvum is the most common protozoa contaminating water. A water pH of 6 is associated to the prevalence of protozoa. Community members need to be educated to treat water before drinking to avoid infection by enteric protozoa in water and further studies with larger samples of water need to be conducted to find other correlates of the presence of protozoa in water.

  8. Drinking-Water Standards and Regulations. Volume 2. Manual for 1982-88

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, L.K.; Wang, M.H.S.

    1988-04-10

    The following 11 important documents are compiled for Drinking Water Standards and Regulations: (1) U.S. Environmental Agency Water Programs, National Interim Primary Drinking Water Regulations; (2) New Jersey Safe Drinking Water Act; (3) Summary of New Jersey Drinking Water Standards; (4) U.S. Environmental Protection Agency Safe Drinking Water Act of 1986 Amendments; (5) U.S. Environmental Protection Agency National Primary Drinking Water Standards; (6) Canadian National Health and Welfare Drinking Water Quality Guidelines--Maximum Acceptable Concentrations; (7) U.S. Environmental Protection Agency, National Primary Drinking Water Regulations, Filtration and Disinfection Turbidity, Giardia Lamblia, Viruses, Legionella, and Heterotrophic Bacteria; (8) Public Water Supply Manual--Guidemore » to the Safe Drinking Water Program; (9) Public Water Supply Manual--Emergency Response; (10) U.S. EPA Approved Krofta Chemicals; (11) NY-DOH Approved Krofta Chemicals.« less

  9. 77 FR 4248 - Cyazofamid; Pesticide Tolerances for Emergency Exemptions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-27

    .../water/index.htm . Based on the Pesticide Root Zone Model/Exposure Analysis Modeling System (PRZM/EXAMS... Classification System (NAICS) codes have been provided to assist you and others in determining whether this... reliable information.'' This includes exposure through drinking water and in residential settings, but does...

  10. A qualitative study of the factors that influence mothers when choosing drinks for their young children.

    PubMed

    Hoare, Alexandria; Virgo-Milton, Monica; Boak, Rachel; Gold, Lisa; Waters, Elizabeth; Gussy, Mark; Calache, Hanny; Smith, Michael; de Silva, Andrea M

    2014-07-05

    The consumption of sweetened beverages is a known common risk factor for the development of obesity and dental caries in children and children consume sweet drinks frequently and in large volumes from an early age. The aim of this study was to examine factors that influence mothers when choosing drinks for their children. Semi-structured interviews (n = 32) were conducted with a purposive sample of mothers of young children from Victoria's Barwon South Western Region (selected from a larger cohort study to include families consuming different types of water, and different socioeconomic status and size). Inductive thematic analysis was conducted on transcribed interviews. Several themes emerged as influencing child drink choice. Child age: Water was the main beverage for the youngest child however it was seen as more acceptable to give older children sweetened beverages. Child preference and temperament: influencing when and if sweet drinks were given; Family influences such as grandparents increased children's consumption of sweet drinks, often providing children drinks such as fruit juice and soft drinks regardless of maternal disapproval. The Setting: children were more likely to be offered sweetened drinks either as a reward or treat for good behaviour or when out shopping, out for dinner or at parties. Limiting intake of sweet drinks is considered an important step for child general and oral health. However, the choice of drinks for children has influences from social, environmental and behavioural domains, indicating that a multi-strategy approach is required to bring about this change.

  11. Assessing the viability of bacterial species in drinking water by combined cellular and molecular analyses.

    PubMed

    Kahlisch, Leila; Henne, Karsten; Gröbe, Lothar; Brettar, Ingrid; Höfle, Manfred G

    2012-02-01

    The question which bacterial species are present in water and if they are viable is essential for drinking water safety but also of general relevance in aquatic ecology. To approach this question we combined propidium iodide/SYTO9 staining ("live/dead staining" indicating membrane integrity), fluorescence-activated cell sorting (FACS) and community fingerprinting for the analysis of a set of tap water samples. Live/dead staining revealed that about half of the bacteria in the tap water had intact membranes. Molecular analysis using 16S rRNA and 16S rRNA gene-based single-strand conformation polymorphism (SSCP) fingerprints and sequencing of drinking water bacteria before and after FACS sorting revealed: (1) the DNA- and RNA-based overall community structure differed substantially, (2) the community retrieved from RNA and DNA reflected different bacterial species, classified as 53 phylotypes (with only two common phylotypes), (3) the percentage of phylotypes with intact membranes or damaged cells were comparable for RNA- and DNA-based analyses, and (4) the retrieved species were primarily of aquatic origin. The pronounced difference between phylotypes obtained from DNA extracts (dominated by Betaproteobacteria, Bacteroidetes, and Actinobacteria) and from RNA extracts (dominated by Alpha-, Beta-, Gammaproteobacteria, Bacteroidetes, and Cyanobacteria) demonstrate the relevance of concomitant RNA and DNA analyses for drinking water studies. Unexpected was that a comparable fraction (about 21%) of phylotypes with membrane-injured cells was observed for DNA- and RNA-based analyses, contradicting the current understanding that RNA-based analyses represent the actively growing fraction of the bacterial community. Overall, we think that this combined approach provides an interesting tool for a concomitant phylogenetic and viability analysis of bacterial species of drinking water.

  12. Factors associated with post-treatment E. coli contamination in households practising water treatment: a study of rural Cambodia.

    PubMed

    Benwic, Aaron; Kim, Erin; Khema, Cinn; Phanna, Chet; Sophary, Phan; Cantwell, Raymond E

    2018-04-01

    The purpose of this study was to assess factors associated with Escherichia coli (E. coli) contamination in rural households in Cambodia that have adopted household water treatment. The following factors were significantly associated (α < 0.05) with apparent E. coli contamination: cleaning the drinking vessel with untreated water, not drying the cup (with a cloth), accessing treated water by the use of a scoop (ref: using a tap), having more than one untreated water storage container, having an untreated water storage container that appeared dirty on the outside, and cows living within 10 m of the household. This study provides further evidence confirming previous studies reporting an association between inadequate cleanliness of water storage containers and household drinking water contamination, and identifies practical recommendations statistically associated with reduced post-treatment E. coli contamination in the household setting in rural Cambodia.

  13. New England's Drinking Water | Drinking Water in New ...

    EPA Pesticide Factsheets

    2017-07-06

    Information on Drinking Water in New England. Major Topics covered include: Conservation, Private Wells, Preventing Contamination, Drinking Water Sources, Consumer Confidence Reports, and Drinking Water Awards.

  14. Consumption of low-moderate level arsenic contaminated water does not increase spontaneous pregnancy loss: a case control study.

    PubMed

    Bloom, Michael S; Neamtiu, Iulia A; Surdu, Simona; Pop, Cristian; Lupsa, Ioana Rodica; Anastasiu, Doru; Fitzgerald, Edward F; Gurzau, Eugen S

    2014-10-13

    Previous work suggests an increased risk for spontaneous pregnancy loss linked to high levels of inorganic arsenic (iAs) in drinking water sources (>10 μg/L). However, there has been little focus to date on the impact of low-moderate levels of iAs in drinking water (<10 μg/L). To address this data gap we conducted a hospital-based case-control study in Timis County, Romania. We recruited women with incident spontaneous pregnancy loss of 5-20 weeks completed gestation as cases (n = 150), and women with ongoing pregnancies matched by gestational age (±1 week) as controls (n = 150). Participants completed a physician-administered questionnaire and we collected water samples from residential drinking sources. We reconstructed residential drinking water exposure histories using questionnaire data weighted by iAs determined using hydride generation-atomic absorption spectrometry (HG-AAS). Logistic regression models were used to generate odds ratios (OR) and 95% confidence intervals (CI) for associations between iAs exposure and loss, conditioned on gestational age and adjusted for maternal age, cigarette smoking, education and prenatal vitamin use. We explored potential interactions in a second set of models. Drinking water arsenic concentrations ranged from 0.0 to 175.1 μg/L, with median 0.4 μg/L and 90th%tile 9.4 μg/L. There were no statistically significant associations between loss and average or peak drinking water iAs concentrations (OR 0.98, 95% CI 0.96-1.01), or for daily iAs intake (OR 1.00, 95% CI 0.98-1.02). We detected modest evidence for an interaction between average iAs concentration and cigarette smoking during pregnancy (P = 0.057) and for daily iAs exposure and prenatal vitamin use (P = 0.085). These results suggest no increased risk for spontaneous pregnancy loss in association with low to moderate level drinking water iAs exposure. Though imprecise, our data also raise the possibility for increased risk among cigarette smokers. Given the low exposures overall, these data should reassure pregnant women and policy makers with regard to the potential effect of drinking water iAs on early pregnancy, though a larger more definitive study to investigate the potential risk increase in conjunction with cigarette smoking is merited.

  15. Pregnant women in Timis County, Romania are exposed primarily to low-level (<10μg/l) arsenic through residential drinking water consumption.

    PubMed

    Neamtiu, Iulia; Bloom, Michael S; Gati, Gabriel; Goessler, Walter; Surdu, Simona; Pop, Cristian; Braeuer, Simone; Fitzgerald, Edward F; Baciu, Calin; Lupsa, Ioana Rodica; Anastasiu, Doru; Gurzau, Eugen

    2015-06-01

    Excessive arsenic content in drinking water poses health risks to millions of people worldwide. Inorganic arsenic (iAs) in groundwater exceeding the 10μg/l maximum contaminant level (MCL) set by the World Health Organization (WHO) is characteristic for intermediate-depth aquifers over large areas of the Pannonian Basin in Central Europe. In western Romania, near the border with Hungary, Arad, Bihor, and Timis counties use drinking water coming partially or entirely from iAs contaminated aquifers. In nearby Arad and Bihor counties, more than 45,000 people are exposed to iAs over 10μg/l via public drinking water sources. However, comparable data are unavailable for Timis County. To begin to address this data gap, we determined iAs in 124 public and private Timis County drinking water sources, including wells and taps, used by pregnant women participating in a case-control study of spontaneous loss. Levels in water sources were low overall (median=3.0; range=<0.5-175μg/l), although higher in wells (median=3.1, range=<0.5-1.75) than in community taps (median=2.7, range=<0.5-36.4). In a subsample of 20 control women we measured urine biomarkers of iAs exposure, including iAs (arsenite and arsenate), dimethylarsinic acid (DMA), and methylarsonic acid (MMA). Median values were higher among 10 women using iAs contaminated drinking water sources compared to 10 women using uncontaminated sources for urine total iAs (6.6 vs. 5.0μg/l, P=0.24) and DMA (5.5 vs. 4.2μg/l, P=0.31). The results suggested that the origin of urine total iAs (r=0.35, P=0.13) and DMA (r=0.31, P=0.18) must have been not only iAs in drinking-water but also some other source. Exposure of pregnant women to arsenic via drinking water in Timis County appears to be lower than for surrounding counties; however, it deserves a more definitive investigation as to its origin and the regional distribution of its risk potential. Copyright © 2015 Elsevier GmbH. All rights reserved.

  16. Quantitative method to determine the regional drinking water odorant regulation goals based on odor sensitivity distribution: illustrated using 2-MIB.

    PubMed

    Yu, Jianwei; An, Wei; Cao, Nan; Yang, Min; Gu, Junong; Zhang, Dong; Lu, Ning

    2014-07-01

    Taste and odor (T/O) in drinking water often cause consumer complaints and are thus regulated in many countries. However, people in different regions may exhibit different sensitivities toward T/O. This study proposed a method to determine the regional drinking water odorant regulation goals (ORGs) based on the odor sensitivity distribution of the local population. The distribution of odor sensitivity to 2-methylisoborneol (2-MIB) by the local population in Beijing, China was revealed by using a normal distribution function/model to describe the odor complaint response to a 2-MIB episode in 2005, and a 2-MIB concentration of 12.9 ng/L and FPA (flavor profile analysis) intensity of 2.5 was found to be the critical point to cause odor complaints. Thus the Beijing ORG for 2-MIB was determined to be 12.9 ng/L. Based on the assumption that the local FPA panel can represent the local population in terms of sensitivity to odor, and that the critical FPA intensity causing odor complaints was 2.5, this study tried to determine the ORGs for seven other cities of China by performing FPA tests using an FPA panel from the corresponding city. ORG values between 12.9 and 31.6 ng/L were determined, showing that a unified ORG may not be suitable for drinking water odor regulations. This study presents a novel approach for setting drinking water odor regulations. Copyright © 2014. Published by Elsevier B.V.

  17. Environmental quality assessment of groundwater resources in Al Jabal Al Akhdar, Sultanate of Oman

    NASA Astrophysics Data System (ADS)

    Al-Kalbani, Mohammed Saif; Price, Martin F.; Ahmed, Mushtaque; Abahussain, Asma; O'Higgins, Timothy

    2017-11-01

    The research was conducted to assess the quality of groundwater resources of Al Jabal Al Akhdar, Oman. 11 drinking water sources were sampled during summer and winter seasons during 2012-2013 to evaluate their physico-chemical quality indicators; and assess their suitability for drinking and other domestic purposes. Sample collection, handling and processing followed the standard methods recommended by APHA and analyzed in quality assured laboratories using appropriate analytical methods and instrumental techniques. The results show that the quality parameters in all drinking water resources are within the permissible limits set by Omani and WHO standards; and the drinking water quality index is good or medium in quality based on NFS-WQI classification criteria, indicating their suitability for human consumption. There is an indication of the presence of high nitrate concentrations in some groundwater wells, which require more investigations and monitoring program to be conducted on regular basis to ensure good quality water supply for the residents in the mountain. The trilinear Piper diagram shows that most of the drinking water resources of the study area fall in the field of calcium and bicarbonate type with some magnesium bicarbonate type indicating that most of the major ions are natural in origin due to the geology of the region. This study is a first step towards providing indicators on groundwater quality of this fragile mountain ecosystem, which will be the basis for future planning decisions on corrective demand management measures to protect groundwater resources of Al Jabal Al Akhdar.

  18. Determination of toxic metals in drinking water sources in the Chief Albert Luthuli Local Municipality in Mpumalanga, South Africa

    NASA Astrophysics Data System (ADS)

    Nthunya, Lebea N.; Masheane, Monaheng L.; Malinga, Soraya P.; Nxumalo, Edward N.; Mamba, Bhekie B.; Mhlanga, Sabelo D.

    2017-08-01

    This study was conducted to determine the presence and levels of toxic metals on selected water sources in a rural community in Lochiel, South Africa. Collection of water samples from identified drinking water sources (open wells, community tanks, water treatment works and boreholes) was done in all seasons of the year (winter, spring, summer and autumn) between 2014 and 2015. The concentrations of identified toxic metals (cobalt, chromium, copper, lead, zinc, manganese and iron) were measured using ICP-OES. Some water sources were found to contain concentrations of toxic metals at levels slightly higher than USEPA, WHO and SANS241 set limits (e.g. manganese and cobalt), while others were found to be within the acceptable limits. This suggested that the residents residing in locations that have water sources containing toxic metals at the concentrations above the set limits are at risk and susceptible to suffer diseases caused by these toxic metals. The side effects of the metals may not be acute; however prolonged exposure to the toxic metals may result in detrimental effects since they are known to bioaccumulate in the body.

  19. Arsenic and heavy metals contamination, risk assessment and their source in drinking water of the Mardan District, Khyber Pakhtunkhwa, Pakistan.

    PubMed

    Gul, Nida; Shah, Mohammad Tahir; Khan, Sardar; Khattak, Nimat Ullah; Muhammad, Said

    2015-12-01

    The present study was conducted to investigate the physico-chemical characteristics in drinking water of Mardan District, Pakistan. Furthermore, water quality was evaluated for the risk assessment of arsenic and heavy metals (HMs) and their contamination sources. Representative groundwater samples of shallow and deep sources were collected in the study area. These samples were analyzed for physical parameters, anions, light metals (LMs) and HMs. Results were compared with the drinking water guideline values set by the World Health Organization and the US Environmental Protection Agency. Average concentrations of anions, LMs and HMs were found within the maximum allowable contaminant levels except for bicarbonates, Fe, Cu, and Pb. Results revealed that hazard quotients >1 were observed for shallow groundwater for 10% samples only, suggesting potential health risk from water consumption. Correlation analysis and principal component analysis showed a relationship among various physico-chemical parameters in both shallow and deep groundwater. Statistical analyses suggested the geogenic and anthropogenic sources for possible enhancement of various physico-chemical parameters in the aquifer system of the study area.

  20. Drinking Water Quality, Feeding Practices, and Diarrhea among Children under 2 Years of HIV-Positive Mothers in Peri-Urban Zambia

    PubMed Central

    Peletz, Rachel; Simuyandi, Michelo; Sarenje, Kelvin; Baisley, Kathy; Kelly, Paul; Filteau, Suzanne; Clasen, Thomas

    2011-01-01

    In low-income settings, human immunodeficiency virus (HIV)-positive mothers must choose between breastfeeding their infants and risking transmission of HIV or replacement feeding their infants and risking diarrheal disease from contaminated water. We conducted a cross-sectional study of children < 2 years of age of 254 HIV-positive mothers in peri-urban Zambia to assess their exposure to waterborne fecal contamination. Fecal indicators were found in 70% of household drinking water samples. In a multivariable analysis, factors associated with diarrhea prevalence in children < 2 years were mother having diarrhea (adjusted odds ratio [aOR] = 5.18, 95% confidence interval [CI] = 1.65–16.28), child given water in the past 2 days (aOR = 4.08, 95% CI = 1.07–15.52), child never being breastfed (aOR = 2.67, 95% CI = 1.06–6.72), and rainy (versus dry) season (aOR = 4.60, 95% CI = 1.29–16.42). Children born to HIV-positive mothers were exposed to contaminated water through direct intake of drinking water, indicating the need for interventions to ensure microbiological water quality. PMID:21813854

  1. Water quality at points-of-use in the Galapagos Islands.

    PubMed

    Gerhard, William A; Choi, Wan Suk; Houck, Kelly M; Stewart, Jill R

    2017-04-01

    Piped drinking water is often considered a gold standard for protecting public health but research is needed to explicitly evaluate the effect of centralized treatment systems on water quality in developing world settings. This study examined the effect of a new drinking water treatment plant (DWTP) on microbial drinking water quality at the point-of-use on San Cristobal Island, Galapagos using fecal indicator bacteria total coliforms and Escherichia coli. Samples were collected during six collection periods before and after operation of the DWTP began from the freshwater sources (n=4), the finished water (n=6), and 50 sites throughout the distribution system (n=287). This study found that there was a significant decrease in contamination by total coliforms (two orders of magnitude) and E. coli (one order of magnitude) after DWTP operation began (p<0.001). However, during at least one post-construction collection cycle, total coliforms and E. coli were still found at 66% and 28% of points-of-use (n=50), respectively. During the final collection period, conventional methods were augmented with human-specific Bacteroides assays - validated herein - with the goal of elucidating possible microbial contamination sources. Results show that E. coli contamination was not predictive of contamination by human wastes and suggests that observed indicator bacteria contamination may have environmental origins. Together these findings highlight the necessity of a holistic approach to drinking water infrastructure improvements in order to deliver high quality water through to the point-of-use. Copyright © 2017 Elsevier GmbH. All rights reserved.

  2. Concentration of heavy metals in drinking water of different localities in district east Karachi.

    PubMed

    Jaleel, M A; Noreen, R; Baseer, A

    2001-01-01

    Several heavy metals are present in drinking water that play important roles in the body provided their level remains within the specified range recommended by WHO. But now due to the industrialization and rapid urbanization, the problems of pollution have surfaced. This study was designed to ascertain the contents of some heavy metals and then their variations if any in drinking water in different localities of district East of Karachi, Pakistan. Drinking water samples were collected from different sources and localities of district East of Karachi. The concentration of the heavy metals i.e. Lead, Arsenic, Copper, Iron, Mercury, Chromium, Manganese, Nickel, Cadmium and Zinc were determined by Atomic Absorption Spectrophotometry. PH was estimated by pH meter. Total dissolved solids (TDS) were calculated by formula. These concentrations of heavy metals, pH and TDS were compared with the standards set by WHO. Concentrations of lead and nickel were found to be significantly elevated as compared to WHO recommended levels in all the three sources of water (Piped water, Hand pump water and Tanker water supply). Chromium was found to be raised in hand pump water. Arsenic and Mercury were not detected in any source of water. Copper, iron, manganese, cadmium and zinc were found to be within the safe limits in all the three sources of water. pH was found to be within the range of WHO recommended level in all the three sources of water. TDS was found to be elevated in hand pump water and tanker water. Concentrations of lead and nickel were found to be significantly elevated as compared to WHO recommended levels in all the three sources of water in district East of Karachi.

  3. NHEXAS PHASE I ARIZONA STUDY--QA ANALYTICAL RESULTS FOR METALS IN REPLICATE SAMPLES

    EPA Science Inventory

    The Metals in Replicate Samples data set contains the analytical results of measurements of up to 27 metals in 133 replicate (duplicate) samples from 62 households. Measurements were made in samples of soil, blood, tap water, and drinking water. Duplicate samples for a small pe...

  4. DOES MICRO LC/MS OFFER ADVANTAGES OVER CONVENTIONAL LC/MS IN IDENTIFYING DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    Lower maximum contaminant levels (MCLs) of disinfection by-products were set for drinking water municipalities by the Stage 1 DBP Rule in November, 1998. With these new regulations, additional water treatment plants are expected to choose alternative disinfectants to chlorine. Al...

  5. Information Technology Support in the 8000 Directorate

    NASA Technical Reports Server (NTRS)

    2004-01-01

    My summer internship was spent supporting various projects within the Environmental Management Office and Glenn Safety Office. Mentored by Eli Abumeri, I was trained in areas of Information Technology such as: Servers, printers, scanners, CAD systems, Web, Programming, and Database Management, ODIN (networking, computers, and phones). I worked closely with the Chemical Sampling and Analysis Team (CSAT) to redesign a database to more efficiently manage and maintain data collected for the Drinking Water Program. This Program has been established for over fifteen years here at the Glenn Research Center. It involves the continued testing and retesting of all drinking water dispensers. The quality of the drinking water is of great importance and is determined by comparing the concentration of contaminants in the water with specifications set forth by the Environmental Protection Agency (EPA) in the Safe Drinking Water Act (SDWA) and its 1986 and 1991 amendments. The Drinking Water Program consists of periodic testing of all drinking water fountains and sinks. Each is tested at least once every 2 years for contaminants and naturally occurring species. The EPA's protocol is to collect an initial and a 5 minute draw from each dispenser. The 5 minute draw is what is used for the maximum contaminant level. However, the CS&AT has added a 30 second draw since most individuals do not run the water 5 minutes prior to drinking. This data is then entered into a relational Microsoft Access database. The database allows for the quick retrieval of any test@) done on any dispenser. The data can be queried by building number, date or test type, and test results are documented in an analytical report for employees to read. To aid with the tracking of recycled materials within the lab, my help was enlisted to create a database that could make this process less cumbersome and more efficient. The date of pickup, type of material, weight received, and unit cost per recyclable. This information could then calculate the dollar amount generated by the recycling of certain materials. This database will ultimately prove useful in determining the amounts of materials consumed by the lab and will help serve as an indicator potential overuse.

  6. 29 CFR 24.104 - Investigation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROVISIONS OF SIX ENVIRONMENTAL STATUTES AND SECTION 211 OF THE ENERGY REORGANIZATION ACT OF 1974, AS AMENDED... paragraph sets forth the procedures applicable to investigations under the Safe Drinking Water Act; Federal... Energy Reorganization Act. In addition to the investigative procedures set forth in §§ 24.104(a), (b), (c...

  7. 29 CFR 24.104 - Investigation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROVISIONS OF SIX ENVIRONMENTAL STATUTES AND SECTION 211 OF THE ENERGY REORGANIZATION ACT OF 1974, AS AMENDED... paragraph sets forth the procedures applicable to investigations under the Safe Drinking Water Act; Federal... Energy Reorganization Act. In addition to the investigative procedures set forth in §§ 24.104(a), (b), (c...

  8. 29 CFR 24.104 - Investigation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROVISIONS OF SIX ENVIRONMENTAL STATUTES AND SECTION 211 OF THE ENERGY REORGANIZATION ACT OF 1974, AS AMENDED... paragraph sets forth the procedures applicable to investigations under the Safe Drinking Water Act; Federal... Energy Reorganization Act. In addition to the investigative procedures set forth in §§ 24.104(a), (b), (c...

  9. 29 CFR 24.104 - Investigation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROVISIONS OF SIX ENVIRONMENTAL STATUTES AND SECTION 211 OF THE ENERGY REORGANIZATION ACT OF 1974, AS AMENDED... paragraph sets forth the procedures applicable to investigations under the Safe Drinking Water Act; Federal... Energy Reorganization Act. In addition to the investigative procedures set forth in §§ 24.104(a), (b), (c...

  10. Assessment of average exposure to organochlorine pesticides in southern Togo from water, maize (Zea mays) and cowpea (Vigna unguiculata).

    PubMed

    Mawussi, G; Sanda, K; Merlina, G; Pinelli, E

    2009-03-01

    Drinking water, cowpea and maize grains were sampled in some potentially exposed agro-ecological areas in Togo and analysed for their contamination by some common organochlorine pesticides. A total of 19 organochlorine pesticides were investigated in ten subsamples of maize, ten subsamples of cowpea and nine subsamples of drinking water. Analytical methods included solvent extraction of the pesticide residues and their subsequent quantification using gas chromatography-mass spectrometry (GC/MS). Estimated daily intakes (EDIs) of pesticides were also determined. Pesticides residues in drinking water (0.04-0.40 microg l(-1)) were higher than the maximum residue limit (MRL) (0.03 microg l(-1)) set by the World Health Organization (WHO). Dieldrin, endrin, heptachlor epoxide and endosulfan levels (13.16-98.79 microg kg(-1)) in cowpea grains exceeded MRLs applied in France (10-50 microg kg(-1)). Contaminants' levels in maize grains (0.53-65.70 microg kg(-1)) were below the MRLs (20-100 microg kg(-1)) set by the Food and Agriculture Organization (FAO) and the WHO. EDIs of the tested pesticides ranged from 0.02% to 162.07% of the acceptable daily intakes (ADIs). Population exposure levels of dieldrin and heptachlor epoxide were higher than the FAO/WHO standards. A comprehensive national monitoring programme on organochlorine pesticides should be undertaken to include such other relevant sources like meat, fish, eggs and milk.

  11. Water and sanitation hygiene knowledge attitude practice in urban slum settings.

    PubMed

    Joshi, Ashish; Prasad, Satish; Kasav, Jyoti B; Segan, Mehak; Singh, Awnish K

    2013-11-18

    Access to improved drinking water, sanitation and hygiene is one of the prime concerns around the globe. This study aimed at assessing water and sanitation hygiene-related attitude and practices, and quality of water in urban slums of south Delhi, India. This pilot cross sectional study was performed during July 2013 across four urban slums of South Delhi. A convenient sample of 40 participants was enrolled. A modified version of previously validated questionnaire was used to gather information on socio-demographics, existing water and sanitation facilities and water treatment practices. Water quality testing was additionally performed using hydrogen sulphide (H2S) vials. Average age of participants was 36 years (SD=10). 83% of the participants perceived gastrointestinal tract infection as the most important health problem. 75% of the participants did not use any method for drinking water treatment. 45% of the participants consumed water from privately-owned tube well/ bore well. Water shortage lasted two days or more (50%) at a stretch with severe scarcity occurring twice a year (40%). Females aged 15 years and above were largely responsible (93%) for fetching water from water source. 45% of the participants had toilets within their households. 53% of drinking water samples collected from storage containers showed positive bacteriological contamination. There is an urgent need to develop family centered educational programs that would enhance awareness about water treatment methods that are cost effective and easily accessible.

  12. Drinking Water Salinity and Raised Blood Pressure: Evidence from a Cohort Study in Coastal Bangladesh

    PubMed Central

    Chowdhury, Muhammad A.H.; Haines, Andy; Alam, Dewan S.; Hoque, Mohammad A.; Butler, Adrian P.; Khan, Aneire E.; Mojumder, Sontosh K.; Blangiardo, Marta A.G.; Elliott, Paul; Vineis, Paolo

    2017-01-01

    Background: Millions of coastal inhabitants in Southeast Asia have been experiencing increasing sodium concentrations in their drinking-water sources, likely partially due to climate change. High (dietary) sodium intake has convincingly been proven to increase risk of hypertension; it remains unknown, however, whether consumption of sodium in drinking water could have similar effects on health. Objectives: We present the results of a cohort study in which we assessed the effects of drinking-water sodium (DWS) on blood pressure (BP) in coastal populations in Bangladesh. Methods: DWS, BP, and information on personal, lifestyle, and environmental factors were collected from 581 participants. We used generalized linear latent and mixed methods to model the effects of DWS on BP and assessed the associations between changes in DWS and BP when participants experienced changing sodium levels in water, switched from “conventional” ponds or tube wells to alternatives [managed aquifer recharge (MAR) and rainwater harvesting] that aimed to reduce sodium levels, or experienced a combination of these changes. Results: DWS concentrations were highly associated with BP after adjustments for confounding factors. Furthermore, for each 100mg/L reduction in sodium in drinking water, systolic/diastolic BP was lower on average by 0.95/0.57mmHg, and odds of hypertension were lower by 14%. However, MAR did not consistently lower sodium levels. Conclusions: DWS is an important source of daily sodium intake in salinity-affected areas and is a risk factor for hypertension. Considering the likely increasing trend in coastal salinity, prompt action is required. Because MAR showed variable effects, alternative technologies for providing reliable, safe, low-sodium fresh water should be developed alongside improvements in MAR and evaluated in “real-life” salinity-affected settings. https://doi.org/10.1289/EHP659 PMID:28599268

  13. Drinking Water Salinity and Raised Blood Pressure: Evidence from a Cohort Study in Coastal Bangladesh.

    PubMed

    Scheelbeek, Pauline FD; Chowdhury, Muhammad A H; Haines, Andy; Alam, Dewan S; Hoque, Mohammad A; Butler, Adrian P; Khan, Aneire E; Mojumder, Sontosh K; Blangiardo, Marta A G; Elliott, Paul; Vineis, Paolo

    2017-05-30

    Millions of coastal inhabitants in Southeast Asia have been experiencing increasing sodium concentrations in their drinking-water sources, likely partially due to climate change. High (dietary) sodium intake has convincingly been proven to increase risk of hypertension; it remains unknown, however, whether consumption of sodium in drinking water could have similar effects on health. We present the results of a cohort study in which we assessed the effects of drinking-water sodium (DWS) on blood pressure (BP) in coastal populations in Bangladesh. DWS, BP, and information on personal, lifestyle, and environmental factors were collected from 581 participants. We used generalized linear latent and mixed methods to model the effects of DWS on BP and assessed the associations between changes in DWS and BP when participants experienced changing sodium levels in water, switched from "conventional" ponds or tube wells to alternatives [managed aquifer recharge (MAR) and rainwater harvesting] that aimed to reduce sodium levels, or experienced a combination of these changes. DWS concentrations were highly associated with BP after adjustments for confounding factors. Furthermore, for each 100 mg/L reduction in sodium in drinking water, systolic/diastolic BP was lower on average by 0.95/0.57 mmHg, and odds of hypertension were lower by 14%. However, MAR did not consistently lower sodium levels. DWS is an important source of daily sodium intake in salinity-affected areas and is a risk factor for hypertension. Considering the likely increasing trend in coastal salinity, prompt action is required. Because MAR showed variable effects, alternative technologies for providing reliable, safe, low-sodium fresh water should be developed alongside improvements in MAR and evaluated in "real-life" salinity-affected settings. https://doi.org/10.1289/EHP659.

  14. A new approach to data evaluation in the non-target screening of organic trace substances in water analysis.

    PubMed

    Müller, Alexander; Schulz, Wolfgang; Ruck, Wolfgang K L; Weber, Walter H

    2011-11-01

    Non-target screening via high performance liquid chromatography-mass spectrometry (HPLC-MS) has gained increasingly in importance for monitoring organic trace substances in water resources targeted for the production of drinking water. In this article a new approach for evaluating the data from non-target HPLC-MS screening in water is introduced and its advantages are demonstrated using the supply of drinking water as an example. The crucial difference between this and other approaches is the comparison of samples based on compounds (features) determined by their full scan data. In so doing, we take advantage of the temporal, spatial, or process-based relationships among the samples by applying the set operators, UNION, INTERSECT, and COMPLEMENT to the features of each sample. This approach regards all compounds, detectable by the used analytical method. That is the fundamental meaning of non-target screening, which includes all analytical information from the applied technique for further data evaluation. In the given example, in just one step, all detected features (1729) of a landfill leachate sample could be examined for their relevant influences on water purification respectively drinking water. This study shows that 1721 out of 1729 features were not relevant for the water purification. Only eight features could be determined in the untreated water and three of them were found in the final drinking water after ozonation. In so doing, it was possible to identify 1-adamantylamine as contamination of the landfill in the drinking water at a concentration in the range of 20 ng L(-1). To support the identification of relevant compounds and their transformation products, the DAIOS database (Database-Assisted Identification of Organic Substances) was used. This database concept includes some functions such as product ion search to increase the efficiency of the database query after the screening. To identify related transformation products the database function "transformation tree" was used. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Optimizing disinfection by-product monitoring points in a distribution system using cluster analysis.

    PubMed

    Delpla, Ianis; Florea, Mihai; Pelletier, Geneviève; Rodriguez, Manuel J

    2018-06-04

    Trihalomethanes (THMs) and Haloacetic Acids (HAAs) are the main groups detected in drinking water and are consequently strictly regulated. However, the increasing quantity of data for disinfection byproducts (DBPs) produced from research projects and regulatory programs remains largely unexploited, despite a great potential for its use in optimizing drinking water quality monitoring to meet specific objectives. In this work, we developed a procedure to optimize locations and periods for DBPs monitoring based on a set of monitoring scenarios using the cluster analysis technique. The optimization procedure used a robust set of spatio-temporal monitoring results on DBPs (THMs and HAAs) generated from intensive sampling campaigns conducted in a residential sector of a water distribution system. Results shows that cluster analysis allows for the classification of water quality in different groups of THMs and HAAs according to their similarities, and the identification of locations presenting water quality concerns. By using cluster analysis with different monitoring objectives, this work provides a set of monitoring solutions and a comparison between various monitoring scenarios for decision-making purposes. Finally, it was demonstrated that the data from intensive monitoring of free chlorine residual and water temperature as DBP proxy parameters, when processed using cluster analysis, could also help identify the optimal sampling points and periods for regulatory THMs and HAAs monitoring. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Assessing the microbial quality of improved drinking water sources: results from the Dominican Republic.

    PubMed

    Baum, Rachel; Kayser, Georgia; Stauber, Christine; Sobsey, Mark

    2014-01-01

    Millennium Development Goal Target 7c (to halve between 1990 and 2015 the proportion of the global population without sustainable access to safe drinking water), was celebrated as achieved in 2012. However, new studies show that we may be prematurely celebrating. Access to safe drinking water may be overestimated if microbial water quality is considered. The objective of this study was to examine the relationship between microbial drinking water quality and drinking water source in the Puerto Plata region of the Dominican Republic. This study analyzed microbial drinking water quality data from 409 households in 33 communities. Results showed that 47% of improved drinking water sources were of high to very-high risk water quality, and therefore unsafe for drinking. This study provides evidence that the current estimate of safe water access may be overly optimistic, and microbial water quality data are needed to reliably assess the safety of drinking water.

  17. Assessing the Microbial Quality of Improved Drinking Water Sources: Results from the Dominican Republic

    PubMed Central

    Baum, Rachel; Kayser, Georgia; Stauber, Christine; Sobsey, Mark

    2014-01-01

    Millennium Development Goal Target 7c (to halve between 1990 and 2015 the proportion of the global population without sustainable access to safe drinking water), was celebrated as achieved in 2012. However, new studies show that we may be prematurely celebrating. Access to safe drinking water may be overestimated if microbial water quality is considered. The objective of this study was to examine the relationship between microbial drinking water quality and drinking water source in the Puerto Plata region of the Dominican Republic. This study analyzed microbial drinking water quality data from 409 households in 33 communities. Results showed that 47% of improved drinking water sources were of high to very-high risk water quality, and therefore unsafe for drinking. This study provides evidence that the current estimate of safe water access may be overly optimistic, and microbial water quality data are needed to reliably assess the safety of drinking water. PMID:24218411

  18. Glacial sediment causing regional-scale elevated arsenic in drinking water.

    PubMed

    Erickson, Melinda L; Barnes, Randal J

    2005-01-01

    In the upper Midwest, USA, elevated arsenic concentrations in public drinking water systems are associated with the lateral extent of northwest provenance late Wisconsin-aged drift. Twelve percent of public water systems located within the footprint of this drift (212 of 1764) exceed 10 microg/L arsenic, which is the U.S. EPA's drinking water standard. Outside of the footprint, only 2.4% of public water systems (52 of 2182) exceed 10 microg/L arsenic. Both glacial drift aquifers and shallow bedrock aquifers overlain by northwest provenance late Wisconsin-aged sediment are affected by arsenic contamination. Evidence suggests that the distinct physical characteristics of northwest provenance late Wisconsin-aged drift--its fine-grained matrix and entrained organic carbon that fosters biological activity--cause the geochemical conditions necessary to mobilize arsenic via reductive mechanisms such as reductive desorption and reductive dissolution of metal oxides. This study highlights an important and often unrecognized phenomenon: high-arsenic sediment is not necessary to cause arsenic-impacted ground water--when "impacted" is now defined as >10 microg/L. This analysis also demonstrates the scientific and economic value of using existing large but imperfect statewide data sets to observe and characterize regional-scale environmental problems.

  19. Inorganic arsenic levels in rice milk exceed EU and US drinking water standards.

    PubMed

    Meharg, Andrew A; Deacon, Claire; Campbell, Robert C J; Carey, Anne-Marie; Williams, Paul N; Feldmann, Joerg; Raab, Andrea

    2008-04-01

    Under EU legislation, total arsenic levels in drinking water should not exceed 10 microg l(-1), while in the US this figure is set at 10 microg l(-1) inorganic arsenic. All rice milk samples analysed in a supermarket survey (n = 19) would fail the EU limit with up to 3 times this concentration recorded, while out of the subset that had arsenic species determined (n = 15), 80% had inorganic arsenic levels above 10 microg l(-1), with the remaining 3 samples approaching this value. It is a point for discussion whether rice milk is seen as a water substitute or as a food, there are no EU or US food standards highlighting the disparity between water and food regulations in this respect.

  20. HACCP (Hazard Analysis and Critical Control Points) to guarantee safe water reuse and drinking water production--a case study.

    PubMed

    Dewettinck, T; Van Houtte, E; Geenens, D; Van Hege, K; Verstraete, W

    2001-01-01

    To obtain a sustainable water catchment in the dune area of the Flemish west coast, the integration of treated domestic wastewater in the existing potable water production process is planned. The hygienic hazards associated with the introduction of treated domestic wastewater into the water cycle are well recognised. Therefore, the concept of HACCP (Hazard Analysis and Critical Control Points) was used to guarantee hygienically safe drinking water production. Taking into account the literature data on the removal efficiencies of the proposed advanced treatment steps with regard to enteric viruses and protozoa and after setting high quality limits based on the recent progress in quantitative risk assessment, the critical control points (CCPs) and points of attention (POAs) were identified. Based on the HACCP analysis a specific monitoring strategy was developed which focused on the control of these CCPs and POAs.

  1. The effect of drinking water salinity on blood pressure in young adults of coastal Bangladesh.

    PubMed

    Talukder, Mohammad Radwanur Rahman; Rutherford, Shannon; Phung, Dung; Islam, Mohammad Zahirul; Chu, Cordia

    2016-07-01

    More than 35 million people in coastal Bangladesh are vulnerable to increasing freshwater salinization. This will continue to affect more people and to a greater extent as climate change projections are realised in this area in the future. However the evidence for health effects of consuming high salinity water is limited. This research examined the association between drinking water salinity and blood pressure in young adults in coastal Bangladesh. We conducted a cross-sectional study during May-June 2014 in a rural coastal sub-district of Bangladesh. Data on blood pressure (BP) and salinity of potable water sources was collected from 253 participants aged 19-25 years. A linear regression method was used to examine the association between water salinity exposure categories and systolic BP (SBP) and diastolic BP (DBP) level. Sixty five percent of the study population were exposed to highly saline drinking water above the Bangladesh standard (600 mg/L and above). Multivariable linear regression analyses identified that compared to the low water salinity exposure category (<600 mg/L), those in the high water salinity category (>600 mg/L), had statistically significantly higher SBP (B 3.46, 95% CI 0.75, 6.17; p = 0.01) and DBP (B 2.77, 95% CI 0.31, 5.24; p = 0.03). Our research shows that elevated salinity in drinking water is associated with higher BP in young coastal populations. Blood pressure is an important risk factor of hypertension and cardiovascular diseases. Given the extent of salinization of freshwater in many low-lying countries including in Bangladesh, and the likely exacerbation related to climate change-induced sea level rise, implementation of preventative strategies through dietary interventions along with promotion of low saline drinking water must be a priority in these settings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. A qualitative study of the factors that influence mothers when choosing drinks for their young children

    PubMed Central

    2014-01-01

    Background The consumption of sweetened beverages is a known common risk factor for the development of obesity and dental caries in children and children consume sweet drinks frequently and in large volumes from an early age. The aim of this study was to examine factors that influence mothers when choosing drinks for their children. Method Semi-structured interviews (n = 32) were conducted with a purposive sample of mothers of young children from Victoria’s Barwon South Western Region (selected from a larger cohort study to include families consuming different types of water, and different socioeconomic status and size). Inductive thematic analysis was conducted on transcribed interviews. Results Several themes emerged as influencing child drink choice. Child age: Water was the main beverage for the youngest child however it was seen as more acceptable to give older children sweetened beverages. Child preference and temperament: influencing when and if sweet drinks were given; Family influences such as grandparents increased children’s consumption of sweet drinks, often providing children drinks such as fruit juice and soft drinks regardless of maternal disapproval. The Setting: children were more likely to be offered sweetened drinks either as a reward or treat for good behaviour or when out shopping, out for dinner or at parties. Conclusions Limiting intake of sweet drinks is considered an important step for child general and oral health. However, the choice of drinks for children has influences from social, environmental and behavioural domains, indicating that a multi-strategy approach is required to bring about this change. PMID:24997015

  3. 30 CFR 71.603 - Drinking water; dispensing requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drinking water; dispensing requirements. 71.603... COAL MINES Drinking Water § 71.603 Drinking water; dispensing requirements. (a) Water shall be dispensed through a drinking fountain or from a water storage container with an adequate supply of single...

  4. 30 CFR 71.603 - Drinking water; dispensing requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; dispensing requirements. 71.603... COAL MINES Drinking Water § 71.603 Drinking water; dispensing requirements. (a) Water shall be dispensed through a drinking fountain or from a water storage container with an adequate supply of single...

  5. 76 FR 38158 - Meeting of the National Drinking Water Advisory Council; Notice of Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-29

    ... water supplies. The Council will also receive updates about several on-going drinking water program... ENVIRONMENTAL PROTECTION AGENCY [FRL-9425-8] Meeting of the National Drinking Water Advisory... meeting of the National Drinking Water Advisory Council (NDWAC), established under the Safe Drinking Water...

  6. 30 CFR 71.603 - Drinking water; dispensing requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drinking water; dispensing requirements. 71.603... COAL MINES Drinking Water § 71.603 Drinking water; dispensing requirements. (a) Water shall be dispensed through a drinking fountain or from a water storage container with an adequate supply of single...

  7. 30 CFR 71.603 - Drinking water; dispensing requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drinking water; dispensing requirements. 71.603... COAL MINES Drinking Water § 71.603 Drinking water; dispensing requirements. (a) Water shall be dispensed through a drinking fountain or from a water storage container with an adequate supply of single...

  8. 30 CFR 71.603 - Drinking water; dispensing requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drinking water; dispensing requirements. 71.603... COAL MINES Drinking Water § 71.603 Drinking water; dispensing requirements. (a) Water shall be dispensed through a drinking fountain or from a water storage container with an adequate supply of single...

  9. Lead and Drinking Water from Private Wells

    MedlinePlus

    ... Drinking Water Policy & Recommendations History of Drinking Water Treatment Drinking Water FAQ Fast Facts Healthy Water Sites Healthy Water ... if needed. You may also wish to consider water treatment methods such as reverse osmosis, distillation, and carbon ...

  10. MODELING WATER QUALITY IN DRINKING WATER DISTRIBUTION SYSTEMS: SELECTED CASE STUDIES

    EPA Science Inventory

    The SDWA of 1974 and its' Amendments of 1986 require that the USEPA establish maximum contaminant level goals (MCLGs) for each contaminant which may have an adverse effect on the health of persons. Each goal must be set at a level at which no known or anticipated adverse effects ...

  11. OUTCROP-BASED LITHOFACIES AND DEPOSITIONAL SETTING OF ARSENIC-BEARING PERMIAN RED BEDS IN THE CENTRAL OKLAHOMA AQUIFER (COA), CLEVELAND COUNTY, OKLAHOMA

    EPA Science Inventory

    In January 2001, the Environmental Protection Agency established safe drinking water standards for arsenic at a maximum concentration of 10 mg/L. Results from the National Water-Quality Assessment Program (USGS), however, document the occurrence of arsenic concentrations in drin...

  12. Set of new draft methods for the analysis of organic disinfection by-products, including 551 and 552. Draft report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-01-01

    The set of documents discusses the new draft methods (EPA method 551, EPA method 552) for the analysis of disinfection byproducts contained in drinking water. The methods use the techniques of liquid/liquid extraction and gas chromatography with electron capture detection.

  13. 40 CFR 35.3560 - General payment and cash draw rules.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ASSISTANCE STATE AND LOCAL ASSISTANCE Drinking Water State Revolving Funds § 35.3560 General payment and cash... for set-asides. A State may draw cash through the ACH for the full amount of costs incurred for set... proportionate Federal share of eligible incurred project costs. A State need not have disbursed funds for...

  14. 40 CFR 35.3560 - General payment and cash draw rules.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ASSISTANCE STATE AND LOCAL ASSISTANCE Drinking Water State Revolving Funds § 35.3560 General payment and cash... for set-asides. A State may draw cash through the ACH for the full amount of costs incurred for set... proportionate Federal share of eligible incurred project costs. A State need not have disbursed funds for...

  15. 40 CFR 35.3560 - General payment and cash draw rules.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ASSISTANCE STATE AND LOCAL ASSISTANCE Drinking Water State Revolving Funds § 35.3560 General payment and cash... for set-asides. A State may draw cash through the ACH for the full amount of costs incurred for set... proportionate Federal share of eligible incurred project costs. A State need not have disbursed funds for...

  16. Fast, rugged and sensitive ultra high pressure liquid chromatography tandem mass spectrometry method for analysis of cyanotoxins in raw water and drinking water--First findings of anatoxins, cylindrospermopsins and microcystin variants in Swedish source waters and infiltration ponds.

    PubMed

    Pekar, Heidi; Westerberg, Erik; Bruno, Oscar; Lääne, Ants; Persson, Kenneth M; Sundström, L Fredrik; Thim, Anna-Maria

    2016-01-15

    Freshwater blooms of cyanobacteria (blue-green algae) in source waters are generally composed of several different strains with the capability to produce a variety of toxins. The major exposure routes for humans are direct contact with recreational waters and ingestion of drinking water not efficiently treated. The ultra high pressure liquid chromatography tandem mass spectrometry based analytical method presented here allows simultaneous analysis of 22 cyanotoxins from different toxin groups, including anatoxins, cylindrospermopsins, nodularin and microcystins in raw water and drinking water. The use of reference standards enables correct identification of toxins as well as precision of the quantification and due to matrix effects, recovery correction is required. The multi-toxin group method presented here, does not compromise sensitivity, despite the large number of analytes. The limit of quantification was set to 0.1 μg/L for 75% of the cyanotoxins in drinking water and 0.5 μg/L for all cyanotoxins in raw water, which is compliant with the WHO guidance value for microcystin-LR. The matrix effects experienced during analysis were reasonable for most analytes, considering the large volume injected into the mass spectrometer. The time of analysis, including lysing of cell bound toxins, is less than three hours. Furthermore, the method was tested in Swedish source waters and infiltration ponds resulting in evidence of presence of anatoxin, homo-anatoxin, cylindrospermopsin and several variants of microcystins for the first time in Sweden, proving its usefulness. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Determinants of epidemiologic transition in rural Africa: the role of socioeconomic status and drinking water source.

    PubMed

    Engelaer, Frouke M; Koopman, Jacob J E; van Bodegom, David; Eriksson, Ulrika K; Westendorp, Rudi G J

    2014-06-01

    Many African countries experience a protracted epidemiologic transition, different from the classical transition in western societies. The factors driving this protracted transition are largely unknown. In northeast Ghana, we studied an ongoing epidemiologic transition and investigated the effects of socioeconomic status and drinking water source on the transition. During a 9-year period, we followed a cohort of almost 30 000 individuals and collected information on mortality and fertility rates. In addition, using the standards set out by the WHO, we obtained the causes of death by verbal autopsy. Individuals were stratified according to their socioeconomic status and the households' use of an improved or unimproved drinking water source. Mortality rates decreased by -5.0% annually (p<0.001) and the main cause of death shifted from infectious to non-infectious diseases (p=0.014). General fertility rates and child-women ratios decreased annually by -12.7% (p<0.001) and -11.9% (p<0.001), respectively. There was no difference in the decline of mortality and fertility depending on socioeconomic status or drinking water source. Factors other than socioeconomic status and drinking water source are responsible for the observed declines in mortality and fertility observed during the protracted epidemiologic transition. Identifying the specific determinants of the ongoing transition is of importance, as they could be targeted in order to further improve public health in rural African countries. © The Author 2014. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Drinking Water Quality Status and Contamination in Pakistan

    PubMed Central

    Nafees, Muhammad; Rizwan, Muhammad; Bajwa, Raees Ahmad; Shakoor, Muhammad Bilal; Arshad, Muhammad Umair; Chatha, Shahzad Ali Shahid; Deeba, Farah; Murad, Waheed; Malook, Ijaz

    2017-01-01

    Due to alarming increase in population and rapid industrialization, drinking water quality is being deteriorated day by day in Pakistan. This review sums up the outcomes of various research studies conducted for drinking water quality status of different areas of Pakistan by taking into account the physicochemical properties of drinking water as well as the presence of various pathogenic microorganisms. About 20% of the whole population of Pakistan has access to safe drinking water. The remaining 80% of population is forced to use unsafe drinking water due to the scarcity of safe and healthy drinking water sources. The primary source of contamination is sewerage (fecal) which is extensively discharged into drinking water system supplies. Secondary source of pollution is the disposal of toxic chemicals from industrial effluents, pesticides, and fertilizers from agriculture sources into the water bodies. Anthropogenic activities cause waterborne diseases that constitute about 80% of all diseases and are responsible for 33% of deaths. This review highlights the drinking water quality, contamination sources, sanitation situation, and effects of unsafe drinking water on humans. There is immediate need to take protective measures and treatment technologies to overcome unhygienic condition of drinking water supplies in different areas of Pakistan. PMID:28884130

  19. Drinking Water Quality Status and Contamination in Pakistan.

    PubMed

    Daud, M K; Nafees, Muhammad; Ali, Shafaqat; Rizwan, Muhammad; Bajwa, Raees Ahmad; Shakoor, Muhammad Bilal; Arshad, Muhammad Umair; Chatha, Shahzad Ali Shahid; Deeba, Farah; Murad, Waheed; Malook, Ijaz; Zhu, Shui Jin

    2017-01-01

    Due to alarming increase in population and rapid industrialization, drinking water quality is being deteriorated day by day in Pakistan. This review sums up the outcomes of various research studies conducted for drinking water quality status of different areas of Pakistan by taking into account the physicochemical properties of drinking water as well as the presence of various pathogenic microorganisms. About 20% of the whole population of Pakistan has access to safe drinking water. The remaining 80% of population is forced to use unsafe drinking water due to the scarcity of safe and healthy drinking water sources. The primary source of contamination is sewerage (fecal) which is extensively discharged into drinking water system supplies. Secondary source of pollution is the disposal of toxic chemicals from industrial effluents, pesticides, and fertilizers from agriculture sources into the water bodies. Anthropogenic activities cause waterborne diseases that constitute about 80% of all diseases and are responsible for 33% of deaths. This review highlights the drinking water quality, contamination sources, sanitation situation, and effects of unsafe drinking water on humans. There is immediate need to take protective measures and treatment technologies to overcome unhygienic condition of drinking water supplies in different areas of Pakistan.

  20. The association between drinking water turbidity and gastrointestinal illness: a systematic review

    PubMed Central

    Mann, Andrea G; Tam, Clarence C; Higgins, Craig D; Rodrigues, Laura C

    2007-01-01

    Background Studies suggest that routine variations in public drinking water turbidity may be associated with endemic gastrointestinal illness. We systematically reviewed the literature on this topic. Methods We searched databases and websites for relevant studies in industrialized countries. Studies investigating the association between temporal variations in drinking water turbidity and incidence of acute gastrointestinal illness were assessed for quality. We reviewed good quality studies for evidence of an association between increased turbidity and gastrointestinal illness. Results We found six relevant good quality studies. Of five studies investigating effluent water turbidity, two found no association. Two studies from Philadelphia reported increased paediatric and elderly hospital use on specific days after increased turbidity. A fifth study reported more telephone health service calls on specific days after peak turbidity. There were differences between studies affecting their comparability, including baseline turbidity and adjustment for seasonal confounders. Conclusion It is likely that an association between turbidity and GI illness exists in some settings or over a certain range of turbidity. A pooled analysis of available data using standard methods would facilitate interpretation. PMID:17888154

  1. The association between drinking water turbidity and gastrointestinal illness: a systematic review.

    PubMed

    Mann, Andrea G; Tam, Clarence C; Higgins, Craig D; Rodrigues, Laura C

    2007-09-21

    Studies suggest that routine variations in public drinking water turbidity may be associated with endemic gastrointestinal illness. We systematically reviewed the literature on this topic. We searched databases and websites for relevant studies in industrialized countries. Studies investigating the association between temporal variations in drinking water turbidity and incidence of acute gastrointestinal illness were assessed for quality. We reviewed good quality studies for evidence of an association between increased turbidity and gastrointestinal illness. We found six relevant good quality studies. Of five studies investigating effluent water turbidity, two found no association. Two studies from Philadelphia reported increased paediatric and elderly hospital use on specific days after increased turbidity. A fifth study reported more telephone health service calls on specific days after peak turbidity. There were differences between studies affecting their comparability, including baseline turbidity and adjustment for seasonal confounders. It is likely that an association between turbidity and GI illness exists in some settings or over a certain range of turbidity. A pooled analysis of available data using standard methods would facilitate interpretation.

  2. Handbook for the Institutional and Financial Implementation of Water Utilities.

    DTIC Science & Technology

    1984-05-01

    water . From a public health standpoint, water is necessary for drinking and sanitation. While public drinking water use aver- ages approximately 5 pints a... water . Domestic water includes that water furnished to homes, hotels, apartments, etc., for sanitary, drinking , washing, and other purposes. This use...with establishing Primary Drinking Water Standards under the Safe Drinking Water Act of 1974 (Public Law 93-523) for all public

  3. Drinking water quality in the Ethiopian section of the East African Rift Valley I--data and health aspects.

    PubMed

    Reimann, Clemens; Bjorvatn, Kjell; Frengstad, Bjørn; Melaku, Zenebe; Tekle-Haimanot, Redda; Siewers, Ulrich

    2003-07-20

    Drinking water samples were collected throughout the Ethiopian part of the Rift Valley, separated into water drawn from deep wells (deeper than 60 m), shallow wells (<60 m deep), hot springs (T>36 degrees C), springs (T<32 degrees C) and rivers. A total of 138 samples were analysed for 70 parameters (Ag, Al, As, B, Ba, Be, Bi, Br, Ca, Cd, Ce, Cl, Co, Cr, Cs, Cu, Dy, Er, Eu, F, Fe, Ga, Gd, Ge, Hf, Hg, Ho, I, In, K, La, Li, Lu, Mg, Mn, Mo, Na, Nb, Nd, Ni, NO(2), NO(3), Pb, Pr, Rb, Sb, Se, Si, Sm, Sn, SO(4), Sr, Ta, Tb, Te, Th, Ti, Tl, Tm, U, V, W, Y, Yb, Zn, Zr, temperature, pH, conductivity and alkalinity) with ion chromatography (anions), spectrometry (ICP-OES and ICP-MS, cations) and parameter-specific (e.g. titration) techniques. In terms of European water directives and WHO guidelines, 86% of all wells yield water that fails to pass the quality standards set for drinking water. The most problematic element is fluoride (F), for which 33% of all samples returned values above 1.5 mg/l and up to 11.6 mg/l. The incidence of dental and skeletal fluorosis is well documented in the Rift Valley. Another problematic element may be uranium (U)-47% of all wells yield water with concentrations above the newly suggested WHO maximum acceptable concentration (MAC) of 2 microg/l. Fortunately, only 7% of the collected samples are above the 10 microg/l EU-MAC for As in drinking water.

  4. Relationship between drinking water and toenail arsenic concentrations among a cohort of Nova Scotians.

    PubMed

    Yu, Zhijie M; Dummer, Trevor J B; Adams, Aimee; Murimboh, John D; Parker, Louise

    2014-01-01

    Consumption of arsenic-contaminated drinking water is associated with increased cancer risk. The relationship between arsenic body burden, such as concentrations in human toenails, and arsenic in drinking water is not fully understood. We evaluated the relationship between arsenic concentrations in drinking water and toenail clippings among a cohort of Nova Scotians. A total of 960 men and women aged 35 to 69 years provided home drinking water and toenail clipping samples. Information on water source and treatment use and covariables was collected through questionnaires. Arsenic concentrations in drinking water and toenail clippings and anthropometric indices were measured. Private drilled water wells had higher arsenic concentrations compared with other dug wells and municipal drinking water sources (P<0.001). Among participants with drinking water arsenic levels ≥1 μg/l, there was a significant relationship between drinking water and toenail arsenic concentrations (r=0.46, P<0.0001). Given similar levels of arsenic exposure from drinking water, obese individuals had significantly lower concentrations of arsenic in toenails compared with those with a normal weight. Private drilled water wells were an important source of arsenic exposure in the study population. Body weight modifies the relationship between drinking water arsenic exposure and toenail arsenic concentrations.

  5. [Geographic distribution and exposure population of drinking water with high concentration of arsenic in China].

    PubMed

    Zhang, L; Chen, C

    1997-09-01

    According to the data obtained from the "National Survey on Drinking Water Quality and Waterborne Diseases", the geographic distribution and exposure population of high arsenic drinking water were reported. From the data of more than 28,800 water samples, we found 9.02 million people drinking the water with As concentration of 0.030-0.049 mg/L, 3.34 million people having their water of 0.050-0.099 mg/L and 2.29 million people having water of > 0.1 mg/L. A total of 14.6 million people, about 1.5% of the surveyed population was exposed to As (> 0.030 mg/L) from drinking water. 80% of high-As-drinking water was groundwater. The situation of As in drinking water in provinces, autonomous regions and municipalities were listed. The locations of sampling site where water As exceeded the national standard for drinking water were illustrated.

  6. Perchlorate Contamination of Drinking Water: Regulatory Issues and Legislative Actions

    DTIC Science & Technology

    2008-10-16

    and water treatment costs, both of which are driven by federal and state standards. (California and Massachusetts have set standards.) EPA has spent... Hypothyroidism , Newborn Thyroid Function, and Environmental Perchlorate Exposure Among Residents of a Southern California Community,” Journal of Occupational... treatment technologies and for collecting occurrence data. In 1999, EPA required water systems to monitor for perchlorate under the Unregulated

  7. Water Quality Index for measuring drinking water quality in rural Bangladesh: a cross-sectional study.

    PubMed

    Akter, Tahera; Jhohura, Fatema Tuz; Akter, Fahmida; Chowdhury, Tridib Roy; Mistry, Sabuj Kanti; Dey, Digbijoy; Barua, Milan Kanti; Islam, Md Akramul; Rahman, Mahfuzar

    2016-02-09

    Public health is at risk due to chemical contaminants in drinking water which may have immediate health consequences. Drinking water sources are susceptible to pollutants depending on geological conditions and agricultural, industrial, and other man-made activities. Ensuring the safety of drinking water is, therefore, a growing problem. To assess drinking water quality, we measured multiple chemical parameters in drinking water samples from across Bangladesh with the aim of improving public health interventions. In this cross-sectional study conducted in 24 randomly selected upazilas, arsenic was measured in drinking water in the field using an arsenic testing kit and a sub-sample was validated in the laboratory. Water samples were collected to test water pH in the laboratory as well as a sub-sample of collected drinking water was tested for water pH using a portable pH meter. For laboratory testing of other chemical parameters, iron, manganese, and salinity, drinking water samples were collected from 12 out of 24 upazilas. Drinking water at sample sites was slightly alkaline (pH 7.4 ± 0.4) but within acceptable limits. Manganese concentrations varied from 0.1 to 5.5 mg/L with a median value of 0.2 mg/L. The median iron concentrations in water exceeded WHO standards (0.3 mg/L) at most of the sample sites and exceeded Bangladesh standards (1.0 mg/L) at a few sample sites. Salinity was relatively higher in coastal districts. After laboratory confirmation, arsenic concentrations were found higher in Shibchar (Madaripur) and Alfadanga (Faridpur) compared to other sample sites exceeding WHO standard (0.01 mg/L). Of the total sampling sites, 33 % had good-quality water for drinking based on the Water Quality Index (WQI). However, the majority of the households (67 %) used poor-quality drinking water. Higher values of iron, manganese, and arsenic reduced drinking water quality. Awareness raising on chemical contents in drinking water at household level is required to improve public health.

  8. Ammonia pollution characteristics of centralized drinking water sources in China.

    PubMed

    Fu, Qing; Zheng, Binghui; Zhao, Xingru; Wang, Lijing; Liu, Changming

    2012-01-01

    The characteristics of ammonia in drinking water sources in China were evaluated during 2005-2009. The spatial distribution and seasonal changes of ammonia in different types of drinking water sources of 22 provinces, 5 autonomous regions and 4 municipalities were investigated. The levels of ammonia in drinking water sources follow the order of river > lake/reservoir > groundwater. The levels of ammonia concentration in river sources gradually decreased from 2005 to 2008, while no obvious change was observed in the lakes/reservoirs and groundwater drinking water sources. The proportion of the type of drinking water sources is different in different regions. In river drinking water sources, the ammonia level was varied in different regions and changed seasonally. The highest value and wide range of annual ammonia was found in South East region, while the lowest value was found in Southwest region. In lake/reservoir drinking water sources, the ammonia levels were not varied obviously in different regions. In underground drinking water sources, the ammonia levels were varied obviously in different regions due to the geological permeability and the natural features of regions. In the drinking water sources with higher ammonia levels, there are enterprises and wastewater drainages in the protected areas of the drinking water sources.

  9. Effects of drinking water quality on urinary parameters in men with and without urinary tract stones.

    PubMed

    Mirzazadeh, Majid; Nouran, Mina Ghadimi; Richards, Kyle A; Zare, Mariam

    2012-03-01

    There is some controversy regarding the impact of water hardness on stone risk. Our study addresses this issue in a controlled setting. Fifteen stone-former (SF) and 14 non-stone-former (NSF) males participated in this study in 3 intervals of 2 days each. Subjects collected a 24-hour urine sample while consuming a self-selected diet. They were then administered controlled diets. During the first 2 days, patients consumed water of minimal hardness (WMH), followed by tap water (TW) with moderate hardness on days 3 and 4, and mineral water (MW) on the final 2 days. Calcium (Ca), phosphorus, uric acid, oxalate, citrate, magnesium (Mg), sodium, potassium, and creatinine (Cr) content were measured in 24-hour urine samples on days 2, 4, and 6. Differences in water hardness and analytes were statistically significant among the different water types (P < .05). Urinary output in both groups increased during intervention with all 3 varieties of water (P < .05). Specific gravity of urine decreased in both groups drinking WMH and TW (P < .05) but not with MW. Mg/g Cr level was higher in NSF at baseline (P < .01), WMH (P < .05), and TW (P < .05). With the increase in drinking water hardness, Ca/g Cr ratio increased in SF but not in NSF (P < .05). NSF had significantly higher urinary Mg/g Cr excretion rate before intervention than SF (P < .01). Increasing drinking water hardness while controlling for all other factors increased Ca/g Cr ratio in SF, rendering them at least theoretically more inclined to stone formation. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Small Drinking Water System Initiative | Drinking Water in New ...

    EPA Pesticide Factsheets

    2017-07-06

    Reliable, safe, high quality drinking water is essential to sustaining our communities. Approximately 90% of New England's drinking water systems - about 10,000 systems - are small and most use ground water sources.

  11. Basic Information about Lead in Drinking Water

    MedlinePlus

    ... Water and Drinking Water Contact Us Share Basic Information about Lead in Drinking Water Have a question ... Related Information from Other Federal Government Agencies General Information about Lead in Drinking Water How Lead Gets ...

  12. Secondary Drinking Water Standards: Guidance for Nuisance Chemicals

    EPA Pesticide Factsheets

    Learn about Secondary Drinking Water Regulations for nuisance chemicals contained in some drinking water. They are established only as guidelines to assist public water systems in managing their drinking water for aesthetic considerations.

  13. White Sands Missile Range 2011 Drinking Water Quality Report

    DTIC Science & Technology

    2012-01-01

    This Annual Drinking Water Quality Report, or the Consumer Confi dence Report, is required by the Safe Drinking Water Act (SDWA). The SDWA ensures...public drinking water systems meet national standards for the protection of your health. This report provides details about where your water comes...NMED). WSMR tap water meets all EPA and NMED drinking water standards. What is This Water Quality Report? Este informe contiene informacion importante

  14. New England Drinking Water Program | US EPA

    EPA Pesticide Factsheets

    2017-07-06

    Information on Drinking Water in New England. Major Topics covered include: Conservation, Private Wells, Preventing Contamination, Drinking Water Sources, Consumer Confidence Reports, and Drinking Water Awards.

  15. Quality of Water from Public-Supply Wells in the United States, 1993-2007Overview of Major Findings

    USGS Publications Warehouse

    Toccalino, Patricia L.; Hopple, Jessica A.

    2010-01-01

    Summary of Major Findings and Implications About 105 million people in the United States-more than one-third of the Nation's population-receive their drinking water from about 140,000 public water systems that use groundwater as their source. Although the quality of finished drinking water (after treatment and before distribution) from these public water systems is regulated by the U.S. Environmental Protection Agency (USEPA) under the Safe Drinking Water Act (SDWA), long-term protection and management of groundwater, a vital source of drinking water, requires an understanding of the occurrence of contaminants in untreated source water. Sources of drinking water are potentially vulnerable to a wide range of man-made and naturally occurring contaminants, including many that are not regulated in drinking water under the SDWA. In this study by the National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey (USGS), chemical water-quality conditions were assessed in source (untreated) groundwater from 932 public-supply wells, hereafter referred to as public wells, and in source and finished water from a subset of 94 wells. The public wells are located in selected parts of 41 states and withdraw water from parts of 30 regionally extensive water-supply aquifers, which constitute about one-half of the principal aquifers in the United States. Although the wells sampled in this study represent less than 1 percent of all groundwater-supplied public water systems in the United States, they are widely distributed nationally and were randomly selected within the sampled hydrogeologic settings to represent typical aquifer conditions. All source-water samples were collected prior to any treatment or blending that potentially could alter contaminant concentrations. As a result, the sampled groundwater represents the quality of the source water and not necessarily the quality of finished water ingested by the people served by these public wells. A greater number of chemical contaminants-as many as 337-both naturally occurring and man-made, were assessed in this study than in any previous national study of public wells (Appendixes 1 and 2). Consistent with the terminology used in the SDWA, all constituents analyzed in water samples in this study are referred to as 'contaminants,' regardless of their source, concentration, or potential for health effects (see sidebar on page 3). Eighty-three percent (279) of the contaminants analyzed in this study are not regulated in drinking water under the SDWA. The USEPA uses USGS data on the occurrence of unregulated contaminants to fulfill part of the SDWA requirements for determining whether specific contaminants should be regulated in drinking water in the future. By focusing primarily on source-water quality, and by analyzing many contaminants that are not regulated in drinking water by USEPA, this study complements the extensive sampling of public water systems that is routinely conducted for the purposes of regulatory compliance monitoring by federal, state, and local drinking-water programs. The objectives of this study were to evaluate (1) the occurrence of contaminants in source water from public wells and their potential significance to human health, (2) whether contaminants that occur in source water also occur in finished water after treatment, and (3) the occurrence and characteristics of contaminant mixtures. To evaluate the potential significance of contaminant occurrence to human health, contaminant concentrations were compared to regulatory Maximum Contaminant Levels (MCLs) or non-regulatory Health-Based Screening Levels (HBSLs)-collectively referred to as human-health benchmarks in this study (see sidebars on pages 4 and 19). The major findings and implications of this study are summarized below and the results are described in greater detail in the remainder of the report. These findings build upon water-quality data from previous public-well studies and

  16. Consumers' choice of drinking water: Is it dependent upon perceived quality, convenience, price and attitude?

    NASA Astrophysics Data System (ADS)

    Wahid, Nabsiah Abdul; Cheng, Patrick Tan Foon; Abustan, Ismail; Nee, Goh Yen

    2017-10-01

    Tap water is one of the many sources of water that the public as consumers can choose for drinking. This study hypothesized that perceived quality, convenience, price and environmental attitude would determine consumers's choice of drinking water following the Attribution Theory as the underlying model. A survey was carried out on Malaysia's public at large. From 301 usable data, the PLS analysis revealed that only perceived quality, convenience and price attributed towards the public's choice of drinking water while attitude was not significant. The findings are beneficial for the water sector industry, particularly for drinking water operators, state governments, and alternative drinking water manufacturers like bottled water companies. The ability to identify factors for why consumers in the marketplace choose the source of their drinking water would enable the operators to plan and strategize tactics that can disseminate accurate knowledge about the product that can motivate marketability of drinking water in Malaysia.

  17. REGULATED CONTAMINANTS IN DRINKING WATER

    EPA Science Inventory

    Safe drinking water is critical to protecting human health. More than 260 million Americans rely on the safety of tap water provided by water systems that comply with national drinking water standards. EPA's strategy for ensuring safe drinking water includes four key elements, ...

  18. An examination of the potential added value of water safety plans to the United States national drinking water legislation.

    PubMed

    Baum, Rachel; Amjad, Urooj; Luh, Jeanne; Bartram, Jamie

    2015-11-01

    National and sub-national governments develop and enforce regulations to ensure the delivery of safe drinking water in the United States (US) and countries worldwide. However, periodic contamination events, waterborne endemic illness and outbreaks of waterborne disease still occur, illustrating that delivery of safe drinking water is not guaranteed. In this study, we examined the potential added value of a preventive risk management approach, specifically, water safety plans (WSPs), in the US in order to improve drinking water quality. We undertook a comparative analysis between US drinking water regulations and WSP steps to analyze the similarities and differences between them, and identify how WSPs might complement drinking water regulations in the US. Findings show that US drinking water regulations and WSP steps were aligned in the areas of describing the water supply system and defining monitoring and controls. However, gaps exist between US drinking water regulations and WSPs in the areas of team procedures and training, internal risk assessment and prioritization, and management procedures and plans. The study contributes to understanding both required and voluntary drinking water management practices in the US and how implementing water safety plans could benefit water systems to improve drinking water quality and human health. Copyright © 2015 Elsevier GmbH. All rights reserved.

  19. Overview of environmental and hydrogeologic conditions at Dillingham, Alaska

    USGS Publications Warehouse

    Palcsak, Betty B.; Dorava, Joseph M.

    1994-01-01

    The remote city of Dillingham is at the northern end of Bristol Bay in southwestern Alaska. The hydrology of the area is strongly affected by the mild maritime climate and local geologic conditions. Dillingham residents obtain drinking water from both deep and shallow aquifers composed of gravels and sands and separated by layers of clay underlying the community. Alternative sources of drinking water are limited to the development of new wells because surface-water sources are of inadequate quantity or quality or are located at too great a distance from the population. The Federal Aviation Administration owns or operates airway support facilities in Dillingham and wishes to consider the severity of contamination and the current environmental setting when they evaluate options for compliance with environmental regulations at their facilities. This report describes the climate. vegetation, geology, soils, ground-water and surface-water hydrology, and flood potential of the areas surrounding the Federal Aviation Administration facilities near Dillingham.

  20. Impacts of a flash flood on drinking water quality: case study of areas most affected by the 2012 Beijing flood.

    PubMed

    Sun, Rubao; An, Daizhi; Lu, Wei; Shi, Yun; Wang, Lili; Zhang, Can; Zhang, Ping; Qi, Hongjuan; Wang, Qiang

    2016-02-01

    In this study, we present a method for identifying sources of water pollution and their relative contributions in pollution disasters. The method uses a combination of principal component analysis and factor analysis. We carried out a case study in three rural villages close to Beijing after torrential rain on July 21, 2012. Nine water samples were analyzed for eight parameters, namely turbidity, total hardness, total dissolved solids, sulfates, chlorides, nitrates, total bacterial count, and total coliform groups. All of the samples showed different degrees of pollution, and most were unsuitable for drinking water as concentrations of various parameters exceeded recommended thresholds. Principal component analysis and factor analysis showed that two factors, the degree of mineralization and agricultural runoff, and flood entrainment, explained 82.50% of the total variance. The case study demonstrates that this method is useful for evaluating and interpreting large, complex water-quality data sets.

  1. World Health Organization discontinues its drinking-water guideline for manganese.

    PubMed

    Frisbie, Seth H; Mitchell, Erika J; Dustin, Hannah; Maynard, Donald M; Sarkar, Bibudhendra

    2012-06-01

    The World Health Organization (WHO) released the fourth edition of Guidelines for Drinking-Water Quality in July 2011. In this edition, the 400-µg/L drinking-water guideline for manganese (Mn) was discontinued with the assertion that because "this health-based value is well above concentrations of manganese normally found in drinking water, it is not considered necessary to derive a formal guideline value." In this commentary, we review the WHO guideline for Mn in drinking water--from its introduction in 1958 through its discontinuation in 2011. For the primary references, we used the WHO publications that documented the Mn guidelines. We used peer-reviewed journal articles, government reports, published conference proceedings, and theses to identify countries with drinking water or potential drinking-water supplies exceeding 400 µg/L Mn and peer-reviewed journal articles to summarize the health effects of Mn. Drinking water or potential drinking-water supplies with Mn concentrations > 400 µg/L are found in a substantial number of countries worldwide. The drinking water of many tens of millions of people has Mn concentrations > 400 µg/L. Recent research on the health effects of Mn suggests that the earlier WHO guideline of 400 µg/L may have been too high to adequately protect public health. The toxic effects and geographic distribution of Mn in drinking-water supplies justify a reevaluation by the WHO of its decision to discontinue its drinking-water guideline for Mn.

  2. Public perception of drinking water safety in South Africa 2002–2009: a repeated cross-sectional study

    PubMed Central

    2012-01-01

    Background In low and middle income countries, public perceptions of drinking water safety are relevant to promotion of household water treatment and to household choices over drinking water sources. However, most studies of this topic have been cross-sectional and not considered temporal variation in drinking water safety perceptions. The objective of this study is to explore trends in perceived drinking water safety in South Africa and its association with disease outbreaks, water supply and household characteristics. Methods This repeated cross-sectional study draws on General Household Surveys from 2002–2009, a series of annual nationally representative surveys of South African households, which include a question about perceived drinking water safety. Trends in responses to this question were examined from 2002–2009 in relation to reported cholera cases. The relationship between perceived drinking water safety and organoleptic qualities of drinking water, supply characteristics, and socio-economic and demographic household characteristics was explored in 2002 and 2008 using hierarchical stepwise logistic regression. Results The results suggest that perceived drinking water safety has remained relatively stable over time in South Africa, once the expansion of improved supplies is controlled for. A large cholera outbreak in 2000–02 had no apparent effect on public perception of drinking water safety in 2002. Perceived drinking water safety is primarily related to water taste, odour, and clarity rather than socio-economic or demographic characteristics. Conclusion This suggests that household perceptions of drinking water safety in South Africa follow similar patterns to those observed in studies in developed countries. The stability over time in public perception of drinking water safety is particularly surprising, given the large cholera outbreak that took place at the start of this period. PMID:22834485

  3. Public perception of drinking water safety in South Africa 2002-2009: a repeated cross-sectional study.

    PubMed

    Wright, Jim A; Yang, Hong; Rivett, Ulrike; Gundry, Stephen W

    2012-07-27

    In low and middle income countries, public perceptions of drinking water safety are relevant to promotion of household water treatment and to household choices over drinking water sources. However, most studies of this topic have been cross-sectional and not considered temporal variation in drinking water safety perceptions. The objective of this study is to explore trends in perceived drinking water safety in South Africa and its association with disease outbreaks, water supply and household characteristics. This repeated cross-sectional study draws on General Household Surveys from 2002-2009, a series of annual nationally representative surveys of South African households, which include a question about perceived drinking water safety. Trends in responses to this question were examined from 2002-2009 in relation to reported cholera cases. The relationship between perceived drinking water safety and organoleptic qualities of drinking water, supply characteristics, and socio-economic and demographic household characteristics was explored in 2002 and 2008 using hierarchical stepwise logistic regression. The results suggest that perceived drinking water safety has remained relatively stable over time in South Africa, once the expansion of improved supplies is controlled for. A large cholera outbreak in 2000-02 had no apparent effect on public perception of drinking water safety in 2002. Perceived drinking water safety is primarily related to water taste, odour, and clarity rather than socio-economic or demographic characteristics. This suggests that household perceptions of drinking water safety in South Africa follow similar patterns to those observed in studies in developed countries. The stability over time in public perception of drinking water safety is particularly surprising, given the large cholera outbreak that took place at the start of this period.

  4. The effect of drinking water quality on the health and longevity of people-A case study in Mayang, Hunan Province, China

    NASA Astrophysics Data System (ADS)

    Lu, J.; Yuan, F.

    2017-08-01

    Drinking water is an important source for trace elements intake into human body. Thus, the drinking water quality has a great impact on people’s health and longevity. This study aims to study the relationship between drinking water quality and human health and longevity. A longevity county Mayang in Hunan province, China was chosen as the study area. The drinking water and hair of local centenarians were collected and analyzed the chemical composition. The drinking water is weak alkaline and rich in the essential trace elements. The daily intakes of Ca, Cu, Fe, Se, Sr from drinking water for residents in Mayang were much higher than the national average daily intake from beverage and water. There was a positive correlation between Ni and Pb in drinking water and Ni and Pb in hair. There were significant correlations between Cu, K in drinking water and Ba, Ca, Mg, Sr in the hair at the 0.01 level. The concentrations of Mg, Sr, Se in drinking water showed extremely significant positive relation with two centenarian index 100/80% and 100/90% correlation. Essential trace elements in drinking water can be an important factor for local health and longevity.

  5. Hot Topics/New Initiatives | Drinking Water in New England ...

    EPA Pesticide Factsheets

    2017-07-06

    Information on Drinking Water in New England. Major Topics covered include: Conservation, Private Wells, Preventing Contamination, Drinking Water Sources, Consumer Confidence Reports, and Drinking Water Awards.

  6. Drinking water quality management: a holistic approach.

    PubMed

    Rizak, S; Cunliffe, D; Sinclair, M; Vulcano, R; Howard, J; Hrudey, S; Callan, P

    2003-01-01

    A growing list of water contaminants has led to some water suppliers relying primarily on compliance monitoring as a mechanism for managing drinking water quality. While such monitoring is a necessary part of drinking water quality management, experiences with waterborne disease threats and outbreaks have shown that compliance monitoring for numerical limits is not, in itself, sufficient to guarantee the safety and quality of drinking water supplies. To address these issues, the Australian National Health and Medical Research Council (NHMRC) has developed a Framework for Management of Drinking Water Quality (the Framework) for incorporation in the Australian Drinking Water Guidelines, the primary reference on drinking water quality in Australia. The Framework was developed specifically for drinking water supplies and provides a comprehensive and preventive risk management approach from catchment to consumer. It includes holistic guidance on a range of issues considered good practice for system management. The Framework addresses four key areas: Commitment to Drinking Water Quality Management, System Analysis and System Management, Supporting Requirements, and Review. The Framework represents a significantly enhanced approach to the management and regulation of drinking water quality and offers a flexible and proactive means of optimising drinking water quality and protecting public health. Rather than the primary reliance on compliance monitoring, the Framework emphasises prevention, the importance of risk assessment, maintaining the integrity of water supply systems and application of multiple barriers to assure protection of public health. Development of the Framework was undertaken in collaboration with the water industry, regulators and other stakeholder, and will promote a common and unified approach to drinking water quality management throughout Australia. The Framework has attracted international interest.

  7. [Arsenic levels in drinking water supplies from underground sources in the community of Madrid].

    PubMed

    Aragonés Sanz, N; Palacios Diez, M; Avello de Miguel, A; Gómez Rodríguez, P; Martínez Cortés, M; Rodríguez Bernabeu, M J

    2001-01-01

    In 1998, arsenic concentrations of more than 50 micrograms/l were detected in some drinking water supplies from underground sources in the Autonomous Community of Madrid, which is the maximum permissible concentration for drinking water in Spain. These two facts have meant the getting under way of a specific plan for monitoring arsenic in the drinking water in the Autonomous Community of Madrid. The results of the first two sampling processes conducted in the arsenic level monitoring plan set out are presented. In the initial phase, water samples from 353 water supplies comprised within the census of the Public Health Administration of the Autonomous Community of Madrid were analyzed. A water supply risk classification was made based on these initial results. In a second phase, six months later, the analyses were repeated on those 35 water supplies which were considered to possibly pose a risk to public health. Seventy-four percent (74%) of the water supplies studied in the initial phase were revealed to have an arsenic concentration of less than 10 micrograms/l, 22.6% containing levels of 10 micrograms/l-50 micrograms/l, and 3.7% over 50 micrograms/l. Most of the water supplies showing arsenic levels of more than 10 micrograms/l are located in the same geographical area. In the second sampling process (six months later), the 35 water supplies classified as posing a risk were included. Twenty-six (26) of these supplies were revealed to have the same arsenic level ((10-50 micrograms/l), and nine changed category, six of which had less than 10 micrograms/l and three more than 50 micrograms/l. In the Autonomous Community of Madrid, less than 2% of the population drinks water coming from supplies which are from underground sources. The regular water quality monitoring conducted by the Public Health Administration has led to detecting the presence of more than 50 micrograms/l of arsenic in sixteen drinking water supplies from underground sources, which is the maximum permissible level under the laws currently in force in Spain. Measures have been taken to prevent water from being used from these water supplies. Around 20% of the water supplies studies must take measures in the near future to lower the arsenic concentration to below 10 micrograms/l when the water directive which is currently in the process of being written into Spanish law enters into effect.

  8. A Watershed Cooperative Addresses Short and Long-Term Perspectives for the Management of Harmful Algae at a Southwestern Ohio Drinking Water Reservoir

    EPA Science Inventory

    The multi-agency East Fork Watershed Cooperative (EFWCoop) has focused discussion and consequent leveraged monitoring efforts to understand how to ensure water safety in the short term. The EFWCoop is also collecting the dense data sets required to consider potential options for...

  9. Pollution of water sources and removal of pollutants by advanced drinking-water treatment in China.

    PubMed

    Wang, L; Wang, B

    2000-01-01

    The pollution of water resources and drinking water sources in China is described in this paper with basic data. About 90% of surface waters and over 60% of drinking water sources in urban areas have been polluted to different extents. The main pollutants present in drinking water sources are organic substances, ammonia nitrogen, phenols, pesticides and pathogenic micro-organisms, some of which cannot be removed effectively by the traditional water treatment processes like coagulation, sedimentation, filtration and chlorination, and the product water usually does not meet Chinese national drinking water standards, when polluted source water is treated. In some drinking-water plants in China, advanced treatment processes including activated carbon filtration and adsorption, ozonation, biological activated carbon and membrane separation have been employed for further treatment of the filtrate from a traditional treatment system producing unqualified drinking water, to make final product water meet the WHO guidelines and some developed countries' standards, as well as the Chinese national standards for drinking water. Some case studies of advanced water treatment plants are described in this paper as well.

  10. Toxicological risk assessment and prioritization of drinking water relevant contaminants of emerging concern.

    PubMed

    Baken, Kirsten A; Sjerps, Rosa M A; Schriks, Merijn; van Wezel, Annemarie P

    2018-06-13

    Toxicological risk assessment of contaminants of emerging concern (CEC) in (sources of) drinking water is required to identify potential health risks and prioritize chemicals for abatement or monitoring. In such assessments, concentrations of chemicals in drinking water or sources are compared to either (i) health-based (statutory) drinking water guideline values, (ii) provisional guideline values based on recent toxicity data in absence of drinking water guidelines, or (iii) generic drinking water target values in absence of toxicity data. Here, we performed a toxicological risk assessment for 163 CEC that were selected as relevant for drinking water. This relevance was based on their presence in drinking water and/or groundwater and surface water sources in downstream parts of the Rhine and Meuse, in combination with concentration levels and physicochemical properties. Statutory and provisional drinking water guideline values could be derived from publically available toxicological information for 142 of the CEC. Based on measured concentrations it was concluded that the majority of substances do not occur in concentrations which individually pose an appreciable human health risk. A health concern could however not be excluded for vinylchloride, trichloroethene, bromodichloromethane, aniline, phenol, 2-chlorobenzenamine, mevinphos, 1,4-dioxane, and nitrolotriacetic acid. For part of the selected substances, toxicological risk assessment for drinking water could not be performed since either toxicity data (hazard) or drinking water concentrations (exposure) were lacking. In absence of toxicity data, the Threshold of Toxicological Concern (TTC) approach can be applied for screening level risk assessment. The toxicological information on the selected substances was used to evaluate whether drinking water target values based on existing TTC levels are sufficiently protective for drinking water relevant CEC. Generic drinking water target levels of 37 μg/L for Cramer class I substances and 4 μg/L for Cramer class III substances in drinking water were derived based on these CEC. These levels are in line with previously reported generic drinking water target levels based on original TTC values and are shown to be protective for health effects of the majority of contaminants of emerging concern evaluated in the present study. Since the human health impact of many chemicals appearing in the water cycle has been studied insufficiently, generic drinking water target levels are useful for early warning and prioritization of CEC with unknown toxicity in drinking water and its sources for future monitoring. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Your Drinking Water Source | Drinking Water in New England ...

    EPA Pesticide Factsheets

    2017-07-06

    Local communities are responsible for protecting their community's drinking water, and as a citizen, you can directly affect the success or failure of your community's drinking water protection efforts.

  12. Drinking cholera: salinity levels and palatability of drinking water in coastal Bangladesh.

    PubMed

    Grant, Stephen Lawrence; Tamason, Charlotte Crim; Hoque, Bilqis Amin; Jensen, Peter Kjaer Mackie

    2015-04-01

    To measure the salinity levels of common water sources in coastal Bangladesh and explore perceptions of water palatability among the local population to investigate the plausibility of linking cholera outbreaks in Bangladesh with ingestion of saline-rich cholera-infected river water. Hundred participants took part in a taste-testing experiment of water with varying levels of salinity. Salinity measurements were taken of both drinking and non-drinking water sources. Informal group discussions were conducted to gain an in-depth understanding of water sources and water uses. Salinity levels of non-drinking water sources suggest that the conditions for Vibrio cholerae survival exist 7-8 days within the local aquatic environment. However, 96% of participants in the taste-testing experiment reported that they would never drink water with salinity levels that would be conducive to V. cholerae survival. Furthermore, salinity levels of participant's drinking water sources were all well below the levels required for optimal survival of V. cholerae. Respondents explained that they preferred less salty and more aesthetically pleasing drinking water. Theoretically, V. cholerae can survive in the river systems in Bangladesh; however, water sources which have been contaminated with river water are avoided as potential drinking water sources. Furthermore, there are no physical connecting points between the river system and drinking water sources among the study population, indicating that the primary driver for cholera cases in Bangladesh is likely not through the contamination of saline-rich river water into drinking water sources. © 2015 John Wiley & Sons Ltd.

  13. Drinking Water Management and Governance in Canada: An Innovative Plan-Do-Check-Act (PDCA) Framework for a Safe Drinking Water Supply

    NASA Astrophysics Data System (ADS)

    Bereskie, Ty; Rodriguez, Manuel J.; Sadiq, Rehan

    2017-08-01

    Drinking water management in Canada is complex, with a decentralized, three-tiered governance structure responsible for safe drinking water throughout the country. The current approach has been described as fragmented, leading to governance gaps, duplication of efforts, and an absence of accountability and enforcement. Although there have been no major waterborne disease outbreaks in Canada since 2001, a lack of performance improvement, especially in small drinking water systems, is evident. The World Health Organization water safety plan approach for drinking water management represents an alternative preventative management framework to the current conventional, reactive drinking water management strategies. This approach has seen successful implementation throughout the world and has the potential to address many of the issues with drinking water management in Canada. This paper presents a review and strengths-weaknesses-opportunities-threats analysis of drinking water management and governance in Canada at the federal, provincial/territorial, and municipal levels. Based on this analysis, a modified water safety plan (defined as the plan-do-check-act (PDCA)-WSP framework) is proposed, established from water safety plan recommendations and the principles of PDCA for continuous performance improvement. This proposed framework is designed to strengthen current drinking water management in Canada and is designed to fit within and incorporate the existing governance structure.

  14. Drinking Water Management and Governance in Canada: An Innovative Plan-Do-Check-Act (PDCA) Framework for a Safe Drinking Water Supply.

    PubMed

    Bereskie, Ty; Rodriguez, Manuel J; Sadiq, Rehan

    2017-08-01

    Drinking water management in Canada is complex, with a decentralized, three-tiered governance structure responsible for safe drinking water throughout the country. The current approach has been described as fragmented, leading to governance gaps, duplication of efforts, and an absence of accountability and enforcement. Although there have been no major waterborne disease outbreaks in Canada since 2001, a lack of performance improvement, especially in small drinking water systems, is evident. The World Health Organization water safety plan approach for drinking water management represents an alternative preventative management framework to the current conventional, reactive drinking water management strategies. This approach has seen successful implementation throughout the world and has the potential to address many of the issues with drinking water management in Canada. This paper presents a review and strengths-weaknesses-opportunities-threats analysis of drinking water management and governance in Canada at the federal, provincial/territorial, and municipal levels. Based on this analysis, a modified water safety plan (defined as the plan-do-check-act (PDCA)-WSP framework) is proposed, established from water safety plan recommendations and the principles of PDCA for continuous performance improvement. This proposed framework is designed to strengthen current drinking water management in Canada and is designed to fit within and incorporate the existing governance structure.

  15. Protecting health from metal exposures in drinking water.

    PubMed

    Armour, Margaret-Ann

    2016-03-01

    Drinking water is essential to us as human beings. According to the World Health Organization "The quality of drinking-water is a powerful environmental determinant of health" (http://www.who.int/water_sanitation_health/dwq/en/), but clean drinking water is a precious commodity not always readily available. Surface and ground water are the major sources of drinking water. Both can be contaminated, surface water with bacteria while ground water frequently contains salts of metals that occur naturally or are introduced by human activity. This paper will briefly review the metallic salts found in drinking water in areas around the world, as well as list some of the methods used to reduce or remove them. It will then discuss our research on reducing the risk of pollution of drinking water by removal of metal ions from wastewater.

  16. Helicobacter pylori determination in non-municipal drinking water and epidemiological findings.

    PubMed

    Krumbiegel, Peter; Lehmann, Irina; Alfreider, Albin; Fritz, Gisela J; Boeckler, David; Rolle-Kampczyk, Ulrike; Richter, Matthias; Jorks, Siegfried; Müller, Lutz; Richter, Mattias W; Herbarth, Olf

    2004-03-01

    Studies conducted in Europe as well as in North and South America have tried to link Helicobacter pylori colonization with the drinking water supply, especially since H. pylori is known to survive quite well in water. In 2000, a cohort of 1884 grade-two children from two rural counties surrounding the city of Leipzig, Germany (77.4% of the 1991/1992 birth cohort) were tested for H. pylori colonization using the [13C]urea breath test. A parent-completed questionnaire elicited details on living conditions and lifestyle habits including questions on the children's drinking water from sources other than public water supplies, swimming in natural waters, etc. In a second independent study, samples of well water, taken from 157 private wells still used in the two counties, were being tested for the presence of H. pylori, using polymerase chain reaction (PCR) method to determine relevant target DNA fragments of H. pylori. In county I, 5.7% of the children and in county II 6.6% tested H. pylori-positive. Cluster analyses of the questionnaire data in both counties pointed to 'drinking water from other than municipal sources', as the closest H. pylori-associated cluster variable. The cluster estimations were supported by odds ratio (OR) calculations with an OR=16.4 (95% confidence interval (CI) 3.1,...,88.5) for county I and OR=4.0 (95% CI 1.3,...,12.4) for county II. The PCR analyses showed H. pylori DNA fragments in 10.8% of the wells in county I and 9.2% in county II. The detection limit was set at 10 DNA copies corresponding to 125 bacteria/L, the average infestation of these wells was 931 bacteria/L. Despite the fact that the microbiological and epidemiological data do not correspond except that both studies were conducted in the same geographical areas, the independent findings of H. pylori in well water in the same general areas where children do seem to drink water other than from the public water supply suggests that water may be an important source of H. pylori infection.

  17. Source Water Protection Basics

    EPA Pesticide Factsheets

    Defines drinking water sources (source water), identifies drinking water sources, and describes source water assessments and protection, roles of government and organizations in drinking water source protection

  18. Modelling of THM formation potential and DOM removal based on drinking water catchment characteristics.

    PubMed

    Awad, John; Fisk, Claire A; Cox, Jim W; Anderson, Sharolyn J; van Leeuwen, John

    2018-09-01

    Catchment properties influence the character and concentration of dissolved organic matter (DOM). Surface and subsurface runoff from discrete catchments were collected and DOM was measured and assessed in terms of its treatability by Enhanced Coagulation and potential for disinfection by-product (trihalomethane, THMFP) formation potential. Models were developed of [1] DOM character [i.e. SUVA and SpCoL] and concentration (measured as dissolved organic carbon), [2] treatability of DOM by coagulation/flocculation processes and [3] specific THMFP based on the catchment features including: (a) surface and sub-surface soil texture (% clay: 5-25%), (b) topography (% slope: 5-15%) and (c) vegetation cover [i.e. high photosynthetic vegetation, low photosynthetic vegetation and bare soil] extracted from RapidEye satellite imagery using spectral mixture analysis. From these models, a catchment management decision support tool was designed for application by catchment managers to support decision-making of land-use and expected water quality related to water resources for drinking water supply. Data sets used for models developing presented in this paper have been published in Research Data Australia (RDA) under the title of "Impacts of catchment properties on DOM and nutrients in waters from drinking water catchments". 1 These data sets are available in open access and published in June 2017. A catchment management decision support model (CMDSM) tool was developed. Macros created using Visual Basic for Applications in Excel 2010. Excel 2010 or higher is required to open the CMDSM tool. The tool is provided by the University of South Australia (UniSA) and is not currently available on-line so please contact the corresponding author for access or further information. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  19. The State of U.S. Urban Water: Data and the Energy-Water Nexus

    NASA Astrophysics Data System (ADS)

    Chini, Christopher M.; Stillwell, Ashlynn S.

    2018-03-01

    Data on urban water resources are scarce, despite a majority of the U.S. population residing in urban environments. Further, information on the energy required to facilitate the treatment, distribution, and collection of urban water are even more limited. In this study, we evaluate the energy-for-water component of the energy-water nexus by providing and analyzing a unique primary database consisting of drinking water and wastewater utility flows and energy. These anthropogenic fluxes of water through the urban environment are used to assess the state of the U.S. urban energy-water nexus at over 160 utilities. The average daily per person water flux is estimated at 560 L of drinking water and 500 L of wastewater. Drinking water and wastewater utilities require 340 kWh/1,000 m3 and 430 kWh/1,000 m3 of energy, respectively, to treat these resources. The total national energy demand for water utilities accounts for 1.0% of the total annual electricity consumption of the United States. Additionally, the water and embedded energy loss associated with non-revenue water accounts for 9.1 × 109 m3 of water and 3,100 GWh, enough electricity to power 300,000 U.S. households annually. Finally, the water flux and embedded energy fluctuated monthly in many cities. As the nation's water resources become increasingly scarce and unpredictable, it is essential to have a set of empirical data for continuous evaluation and updates on the state of the U.S. urban energy-water nexus.

  20. Drinking water salinity and risk of hypertension: A systematic review and meta-analysis.

    PubMed

    Talukder, Mohammad Radwanur Rahman; Rutherford, Shannon; Huang, Cunrui; Phung, Dung; Islam, Mohammad Zahirul; Chu, Cordia

    2017-05-04

    We summarized epidemiological studies assessing sodium in drinking water and changes in blood pressure or hypertension published in English from 1960 to 2015 from PubMed, Scopus, and Web of Science. We extracted data on blood pressure level or prevalence of hypertension and calculated pooled estimates using an inverse variance weighted random-effects model. The pooled standardized mean difference (SMD) in 7 studies (12 data sets) comparing the low and high water sodium exposure groups for systolic blood pressure (SBP) was 0.08 (95% CI, -0.17 to 0.34) and for diastolic blood pressure (DBP) was 0.23 (95% CI, 0.09-0.36). Of the 3 studies that assessed the association between high water sodium and odds of hypertension, 2 recent studies showed consistent findings of higher risk of hypertension. Our systematic review suggests an association between water sodium and human blood pressure (more consistently for DBP) but remain inconclusive because of the small number of studies (largely in young populations) and the cross-sectional design and methodological drawbacks. In the context of climate-change-related sea level rise and increasing saltwater intrusion into drinking water sources, further research is urgently warranted to investigate and guide intervention in this increasingly widespread problem.

  1. Effects of Forest and Grassland Management On Drinking Water Quality for Public Water Supplies:A Review And Synthesis of the Scientific Literature - Review Draft

    Treesearch

    George E. Dissmeyer

    1999-01-01

    The Importance of Safe Public Drinking Water The United States Congress justified passing the Safe Drinking Water Amendments (SDWA) of 1996 (P. L. 104-182) by stating "safe drinking water is essential to the protection of public health".For 50 years the basic axiom for public health protection has been safe drinking water...

  2. Children’s Environmental Health 2005 - A Summary of EPA Activities

    EPA Pesticide Factsheets

    Children may not be sufficiently protected by regulatory standards set based on risks to adults. EPA has forged partnerships and taken steps to protect children's health from contaminants and pollutants in air, drinking water, and food.

  3. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 71.600 shall meet the applicable minimum health requirements for drinking water established by the...

  4. 30 CFR 71.602 - Drinking water; distribution.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drinking water; distribution. 71.602 Section 71... Drinking Water § 71.602 Drinking water; distribution. (a) Water shall be piped or transported in sanitary containers. Water systems and appurtenances thereto shall be constructed and maintained in accordance with...

  5. 30 CFR 71.602 - Drinking water; distribution.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; distribution. 71.602 Section 71... Drinking Water § 71.602 Drinking water; distribution. (a) Water shall be piped or transported in sanitary containers. Water systems and appurtenances thereto shall be constructed and maintained in accordance with...

  6. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 71.600 shall meet the applicable minimum health requirements for drinking water established by the...

  7. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 71.600 shall meet the applicable minimum health requirements for drinking water established by the...

  8. 30 CFR 71.602 - Drinking water; distribution.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drinking water; distribution. 71.602 Section 71... Drinking Water § 71.602 Drinking water; distribution. (a) Water shall be piped or transported in sanitary containers. Water systems and appurtenances thereto shall be constructed and maintained in accordance with...

  9. 30 CFR 71.602 - Drinking water; distribution.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drinking water; distribution. 71.602 Section 71... Drinking Water § 71.602 Drinking water; distribution. (a) Water shall be piped or transported in sanitary containers. Water systems and appurtenances thereto shall be constructed and maintained in accordance with...

  10. 30 CFR 71.602 - Drinking water; distribution.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drinking water; distribution. 71.602 Section 71... Drinking Water § 71.602 Drinking water; distribution. (a) Water shall be piped or transported in sanitary containers. Water systems and appurtenances thereto shall be constructed and maintained in accordance with...

  11. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 71.600 shall meet the applicable minimum health requirements for drinking water established by the...

  12. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 71.600 shall meet the applicable minimum health requirements for drinking water established by the...

  13. 75 FR 48329 - Tribal Drinking Water Operator Certification Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-10

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9186-8] Tribal Drinking Water Operator Certification Program... details of EPA's voluntary Tribal Drinking Water Operator Certification Program, effective October 1, 2010. The program enables qualified drinking water operators at public water systems in Indian country to be...

  14. Uncertainty characterization approaches for risk assessment of DBPs in drinking water: a review.

    PubMed

    Chowdhury, Shakhawat; Champagne, Pascale; McLellan, P James

    2009-04-01

    The management of risk from disinfection by-products (DBPs) in drinking water has become a critical issue over the last three decades. The areas of concern for risk management studies include (i) human health risk from DBPs, (ii) disinfection performance, (iii) technical feasibility (maintenance, management and operation) of treatment and disinfection approaches, and (iv) cost. Human health risk assessment is typically considered to be the most important phase of the risk-based decision-making or risk management studies. The factors associated with health risk assessment and other attributes are generally prone to considerable uncertainty. Probabilistic and non-probabilistic approaches have both been employed to characterize uncertainties associated with risk assessment. The probabilistic approaches include sampling-based methods (typically Monte Carlo simulation and stratified sampling) and asymptotic (approximate) reliability analysis (first- and second-order reliability methods). Non-probabilistic approaches include interval analysis, fuzzy set theory and possibility theory. However, it is generally accepted that no single method is suitable for the entire spectrum of problems encountered in uncertainty analyses for risk assessment. Each method has its own set of advantages and limitations. In this paper, the feasibility and limitations of different uncertainty analysis approaches are outlined for risk management studies of drinking water supply systems. The findings assist in the selection of suitable approaches for uncertainty analysis in risk management studies associated with DBPs and human health risk.

  15. Presence and importance of organochlorine solvents and other compounds in Germany's groundwater and drinking water.

    PubMed

    Dieter, H H; Kerndorff, H

    1993-01-01

    Organochlorine compounds are widely used in Germany although the inland production of chlorinated solvents has greatly decreased since 1985. Data on groundwater contamination are incomplete, but there are some regional data sets from the States (Länder). Approximately 25% of the groundwater samples contain more than 1 microgram/l of a single solvent, the most prominent ones being tri- and tetrachloroethene, 1,1,1-trichloroethane and dichloromethane, but also chloroform. The most important causes for contaminations of the groundwater are unprotected storage and leaking sewage systems. Abandoned waste sites are, besides chlorinated compounds, also a source of many other contaminants. A ranking procedure according to their exposure potential (concentration, incidence, toxicology) is proposed. The compound of greatest concern is vinyl chloride, which is formed from tri- and tetrachloroethene under reducing conditions in the subsoil. The most important contaminant in drinking water is tetrachloroethene followed by 1,1,1-trichloroethane and trichloroethane. Chlorobenzene may also be present on occasion, while only about 20% of the finished drinking waters contain more chloroform after treatment than before. Only about 10% of all analyses of drinking water derived from groundwater shows the presence of organochlorine solvents and most of these show total concentrations less than 2 micrograms/l. The degradation product, vinyl chloride, was found up to now only in different groundwaters. To stabilize and to improve the situation, which still is much more favorable for drinking than for groundwater, precautions are going to be taken which should assure that these and other problematic substances which endanger water are used only in closed systems and rigid safety measures be imposed on their disposal and transport.

  16. The impact of water intake on energy intake and weight status: a systematic review

    PubMed Central

    Daniels, Melissa C.; Popkin, Barry M.

    2010-01-01

    The effects of consuming water with meals rather than drinking no beverage or various other beverages remains under-studied. This systematic review of English language studies compared the effects of drinking water and various beverage alternatives on energy intake and/or weight status. We collected relevant clinical trials, epidemiologic, and intervention studies and summarized findings across the literature. Using clinical trials, average differences in total energy intake at test meals (ΔTEI) were calculated across studies for each of several beverage categories compared to water. The literature for these comparisons is sparse and somewhat inconclusive. One of the most consistent sets of findings comes from comparing adults drinking sugar-sweetened beverages (SSB’s) vs. water before a single meal. Total energy intakes were increased 7.8% (ΔTEI range −7.5 to 18.9) when SSBs were consumed. Studies comparing nonnutritive sweeteners with water were also relatively consistent and found no impact on energy intake among adults (ΔTEI = −1.3, range −9 to13.8). Much less conclusive evidence replacing water with milk and juice estimated increases in TEI of 14.9% (range 10.9 to 23.9). These findings, along with epidemiologic and intervention studies suggested a potentially important role for water in reducing energy intakes, and by this means a role in obesity prevention. A need for randomized-controlled trials exists. PMID:20796216

  17. Vulnerability of drinking water supplies to engineered nanoparticles.

    PubMed

    Troester, Martin; Brauch, Heinz-Juergen; Hofmann, Thilo

    2016-06-01

    The production and use of engineered nanoparticles (ENPs) inevitably leads to their release into aquatic environments, with the quantities involved expected to increase significantly in the future. Concerns therefore arise over the possibility that ENPs might pose a threat to drinking water supplies. Investigations into the vulnerability of drinking water supplies to ENPs are hampered by the absence of suitable analytical methods that are capable of detecting and quantifiying ENPs in complex aqueous matrices. Analytical data concerning the presence of ENPs in drinking water supplies is therefore scarce. The eventual fate of ENPs in the natural environment and in processes that are important for drinking water production are currently being investigated through laboratory based-experiments and modelling. Although the information obtained from these studies may not, as yet, be sufficient to allow comprehensive assessment of the complete life-cycle of ENPs, it does provide a valuable starting point for predicting the significance of ENPs to drinking water supplies. This review therefore addresses the vulnerability of drinking water supplies to ENPs. The risk of ENPs entering drinking water is discussed and predicted for drinking water produced from groundwater and from surface water. Our evaluation is based on reviewing published data concerning ENP production amounts and release patterns, the occurrence and behavior of ENPs in aquatic systems relevant for drinking water supply and ENP removability in drinking water purification processes. Quantitative predictions are made based on realistic high-input case scenarios. The results of our synthesis of current knowledge suggest that the risk probability of ENPs being present in surface water resources is generally limited, but that particular local conditions may increase the probability of raw water contamination by ENPs. Drinking water extracted from porous media aquifers are not generally considered to be prone to ENP contamination. In karstic aquifers, however, there is an increased probability that if any ENPs enter the groundwater system they will reach the extraction point of a drinking water treatment plant (DWTP). The ability to remove ENPs during water treatment depends on the specific design of the treatment process. In conventional DWTPs with no flocculation step a proportion of ENPs, if present in the raw water, may reach the final drinking water. The use of ultrafiltration techniques improves drinking water safety with respect to ENP contamination. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Human Health Benchmarks for Pesticides

    EPA Pesticide Factsheets

    Advanced testing methods now allow pesticides to be detected in water at very low levels. These small amounts of pesticides detected in drinking water or source water for drinking water do not necessarily indicate a health risk. The EPA has developed human health benchmarks for 363 pesticides to enable our partners to better determine whether the detection of a pesticide in drinking water or source waters for drinking water may indicate a potential health risk and to help them prioritize monitoring efforts.The table below includes benchmarks for acute (one-day) and chronic (lifetime) exposures for the most sensitive populations from exposure to pesticides that may be found in surface or ground water sources of drinking water. The table also includes benchmarks for 40 pesticides in drinking water that have the potential for cancer risk. The HHBP table includes pesticide active ingredients for which Health Advisories or enforceable National Primary Drinking Water Regulations (e.g., maximum contaminant levels) have not been developed.

  19. Assessment and management of the first German case of a contamination with perfluorinated compounds (PFC) in the Region Sauerland, North Rhine-Westphalia.

    PubMed

    Wilhelm, Michael; Kraft, Martin; Rauchfuss, Knut; Hölzer, Jürgen

    2008-01-01

    In May 2006 the first serious German perfluorinated compounds (PFC) case of contamination became evident. Industrial waste with high concentrations of PFC was manufactured into a soil improver by a recycling company and spread by farmers on agricultural land of the rural area Sauerland, and led to substantial environmental pollution. In parts of the affected area, perfluorooctanoic acid (PFOA) concentrations in drinking water were > 0.5 microg/L. The German Drinking Water Commission assessed PFC in drinking water and set a health-based guidance value for safe lifelong exposure of all population groups at 0.3 microg/L (sum of perfluorooctane sulfonate [PFOS] and PFOA). The Ministry of Environment together with regional institutions initiated monitoring measurements and actions to minimize further contamination. A human biomonitoring study with mother-child pairs and men revealed that increased PFOA exposure via drinking water led to about four- to eightfold higher PFOA levels in plasma compared to nonexposed groups. Analysis of PFC in breast milk showed comparatively low levels, which seemed not to pose a risk for lactating infants. Due to high levels of PFOS in fish from contaminated lakes and rivers, recommendations for anglers to reduce fish consumption were initiated. Remediation of the affected area is ongoing and PFC levels in various matrices are still above background levels.

  20. Detection of Escherichia coli in drinking water using T7 bacteriophage-conjugated magnetic probe.

    PubMed

    Chen, Juhong; Alcaine, Samuel D; Jiang, Ziwen; Rotello, Vincent M; Nugen, Sam R

    2015-09-01

    In this study, we demonstrate a bacteriophage (phage)-based magnetic separation scheme for the rapid detection of Escherichia coli (E. coli) in drinking water. T7 phage is a lytic phage with a broad host range specificity for E. coli. Our scheme was as follows: (1) T7 bacteriophage-conjugated magnetic beads were used to capture and separate E. coli BL21 from drinking water; (2) subsequent phage-mediated lysis was used to release endemic β-galactosidase (β-gal) from the bound bacterial cells; (3) the release of β-gal was detected using chlorophenol red-β-d-galactopyranoside (CRPG), a colorimetric substrate which changes from yellow to red in the presence of β-gal. Using this strategy, we were able to detect E. coli at a concentration of 1 × 10(4) CFU·mL(-1) within 2.5 h. The specificity of the proposed magnetic probes toward E. coli was demonstrated against a background of competing bacteria. By incorporating a pre-enrichment step in Luria-Bertani (LB) broth supplemented with isopropyl β-d-thiogalactopyranoside (IPTG), we were able to detect 10 CFU·mL(-1) in drinking water after 6 h of pre-enrichment. The colorimetric change can be determined either by visual observation or with a reader, allowing for a simple, rapid quantification of E. coli in resource-limited settings.

  1. Occurrence of microbial indicators and Clostridium perfringens in wastewater, water column samples, sediments, drinking water, and Weddell seal feces collected at McMurdo Station, Antarctica

    USGS Publications Warehouse

    Lisle, J.T.; Smith, J.J.; Edwards, D.D.; McFeters, G.A.

    2004-01-01

    McMurdo Station, Antarctica, has discharged untreated sewage into McMurdo Sound for decades. Previous studies delineated the impacted area, which included the drinking water intake, by using total coliform and Clostridium perfringens concentrations. The estimation of risk to humans in contact with the impacted and potable waters may be greater than presumed, as these microbial indicators may not be the most appropriate for this environment. To address these concerns, concentrations of these and additional indicators (fecal coliforms, Escherichia coli, enterococci, coliphage, and enteroviruses) in the untreated wastewater, water column, and sediments of the impacted area and drinking water treatment facility and distribution system at McMurdo Station were determined. Fecal samples from Weddell seals in this area were also collected and analyzed for indicators. All drinking water samples were negative for indicators except for a single total coliform-positive sample. Total coliforms were present in water column samples at higher concentrations than other indicators. Fecal coliform and enterococcus concentrations were similar to each other and greater than those of other indicators in sediment samples closer to the discharge site. C. perfringens concentrations were higher in sediments at greater distances from the discharge site. Seal fecal samples contained concentrations of fecal coliforms, E. coli, enterococci, and C. perfringens similar to those found in untreated sewage. All samples were negative for enteroviruses. A wastewater treatment facility at McMurdo Station has started operation, and these data provide a baseline data set for monitoring the recovery of the impacted area. The contribution of seal feces to indicator concentrations in this area should be considered.

  2. World Health Organization Discontinues Its Drinking-Water Guideline for Manganese

    PubMed Central

    Frisbie, Seth H.; Mitchell, Erika J.; Dustin, Hannah; Maynard, Donald M.

    2012-01-01

    Background: The World Health Organization (WHO) released the fourth edition of Guidelines for Drinking-Water Quality in July 2011. In this edition, the 400-µg/L drinking-water guideline for manganese (Mn) was discontinued with the assertion that because “this health-based value is well above concentrations of manganese normally found in drinking water, it is not considered necessary to derive a formal guideline value.” Objective: In this commentary, we review the WHO guideline for Mn in drinking water—from its introduction in 1958 through its discontinuation in 2011. Methods: For the primary references, we used the WHO publications that documented the Mn guidelines. We used peer-reviewed journal articles, government reports, published conference proceedings, and theses to identify countries with drinking water or potential drinking-water supplies exceeding 400 µg/L Mn and peer-reviewed journal articles to summarize the health effects of Mn. Discussion: Drinking water or potential drinking-water supplies with Mn concentrations > 400 µg/L are found in a substantial number of countries worldwide. The drinking water of many tens of millions of people has Mn concentrations > 400 µg/L. Recent research on the health effects of Mn suggests that the earlier WHO guideline of 400 µg/L may have been too high to adequately protect public health. Conclusions: The toxic effects and geographic distribution of Mn in drinking-water supplies justify a reevaluation by the WHO of its decision to discontinue its drinking-water guideline for Mn. PMID:22334150

  3. [Knowledge, attitude and practice on drinking water of primary and secondary students in Shenzhen].

    PubMed

    Liu, Jiaxin; Hu, Xiaoqi; Zhang, Qian; Du, Songming; Pan, Hui; Dai, Xingbi; Ma, Guansheng

    2014-05-01

    To investigate the status on drinking water related knowledge, attitude and practice of primary and secondary students in Shenzhen. All 832 primary and secondary students from three schools in Shenzhen were selected by using multi-stage random sampling method. The information of drinking water related knowledge, time of drinking water and the type of drink chose in different situations were collected by questionnaires. 87.3% of students considered plain water being the healthiest drink in daily life, and the percent in girls (90.6%) was significantly higher than that in boys (84.4% ) (chi2 = 7.13, P = 0.0089). The awareness percent of the harm of dehydration was 84.5%. The percent in high school students (96.4%) was significantly higher than that in primary (73.9%) and middle school students (94.2%) (chi2 = 73.77, P < 0.0001). 63.7% of students considered that the healthiest time of drinking water was in the morning with an empty stomach, and 46.3% chose when they felt thirsty. However, 63.7% drank water when they felt thirsty, and 50.6% drank water in the morning with an empty stomach. The percent of drinking plain water at school was the highest (83.4%), followed by at home (64.1%) and in public (26.2%). There were 45.2% and 53.3% of students, respectively, choosing sugary drinks as their favorite drink and most frequently drinking in public places. Primary and secondary students in Shenzhen have a good awareness of drinking water, which is inconsistent with their practice. Meanwhile, a considerable proportion of students towards choosing drinks have many misconceptions. The education of healthy drinking water should be strengthened.

  4. [Analysis on current status of drinking water quality in rural areas of China].

    PubMed

    Zhang, L; Chen, Y; Chen, C; Wang, H; Yan, H Z; Zhao, Y C

    1997-01-01

    An investigation on drinking water quality in rural areas of 180 counties in 26 provinces, municipalities and autonomous regions of China was carried out. The population surveyed was 89.39 million. 69.6% of which was supplied with ground water. Central water supply systems served 47.1% of population. Quality of drinking water was graded according to the "Guidelines for Implementation of the 'Sanitary Standard for Drinking Water' in Rural Areas". The rate of population supplied with unqualified drinking water was 42.7%. The bacteriological indices of drinking water exceeded the standard seriously. Organic pollution occurred extensively. Some regions supplied with water of high concentration of fluoride.

  5. Water drinking as a treatment for orthostatic syndromes

    NASA Technical Reports Server (NTRS)

    Shannon, John R.; Diedrich, Andre; Biaggioni, Italo; Tank, Jens; Robertson, Rose Marie; Robertson, David; Jordan, Jens

    2002-01-01

    PURPOSE: Water drinking increases blood pressure in a substantial proportion of patients who have severe orthostatic hypotension due to autonomic failure. We tested the hypothesis that water drinking can be used as a practical treatment for patients with orthostatic and postprandial hypotension, as well as those with orthostatic tachycardia. SUBJECTS AND METHODS: We studied the effect of drinking water on seated and standing blood pressure and heart rate in 11 patients who had severe orthostatic hypotension due to autonomic failure and in 9 patients who had orthostatic tachycardia due to idiopathic orthostatic intolerance. We also tested the effect of water drinking on postprandial hypotension in 7 patients who had autonomic failure. Patients drank 480 mL of tap water at room temperature in less than 5 minutes. RESULTS: In patients with autonomic failure, mean (+/- SD) blood pressure after 1 minute of standing was 83 +/- 6/53 +/- 3.4 mm Hg at baseline, which increased to 114 +/- 30/66 +/- 18 mm Hg (P <0.01) 35 minutes after drinking. After a meal, blood pressure decreased by 43 +/- 36/20 +/- 13 mm Hg without water drinking, compared with 22 +/- 10/12 +/- 5 mm Hg with drinking (P <0.001). In patients with idiopathic orthostatic intolerance, water drinking attenuated orthostatic tachycardia (123 +/- 23 beats per minute) at baseline to 108 +/- 21 beats per minute after water drinking ( P <0.001). CONCLUSION: Water drinking elicits a rapid pressor response in patients with autonomic failure and can be used to treat orthostatic and postprandial hypotension. Water drinking moderately reduces orthostatic tachycardia in patients with idiopathic orthostatic intolerance. Thus, water drinking may serve as an adjunctive treatment in patients with impaired orthostatic tolerance.

  6. [A novel vapor dynamic headspace enrichment equipment for nontarget screening of volatile organic compounds in drinking water].

    PubMed

    Ma, Huilian; Zhang, Haijun; Tian, Yuzeng; Wang, Longxing; Chen, Jiping

    2011-09-01

    A novel vapor dynamic headspace enrichment device was set up for nontarget screening of volatile organic compounds (VOCs) in drinking water. The main operating parameters of this device, such as length of distillation tube, volume of collected condensate, and choice of absorbent, were optimized. In this device, vapor was utilized as a purge gas and water was utilized as a absorbent. With the help of the device, one liter of water sample could be concentrated to 5 mL and the sensitivity of traditional purge and trap-gas chromatography-mass spectrometry (P&T-GC-MS) could be improved 1-2 orders of magnitude. Source and disinfected water samples from a water treatment plant were analyzed with this method. Compared with the traditional P&T-GC-MS analysis without pre-enrichment, the numbers of identified VOCs were improved from 0 to 16 for source water and 5 to 35 for disinfected water samples. It is also shown that there are many halide compounds in VOCs in disinfected water which do not exist in source water.

  7. [Research and development of a vehicle-mounted drinking water installation and its purification effect].

    PubMed

    Gao, Junhong; Wan, Hong; Kong, Wei; Yue, Hong

    2012-01-01

    To provide a suitable vehicle-mounted installation to solve the problem of drinking water in the wild. The vehicle-mounted drinking water installation, made up of pre-treatment unit, purification unit, box and VECU, was used to storage, transport and purify water in the wild. The effect of purification was detected by assembling the installation in the wild and observing the change of water turbidity, TDS, the number of total bacteria and coliform bacteria before and after the treatment of water sources. The wild water sources, such as river water, rainwater, well water and spring water could be purified, and the quality of the treated water could meet the requirement of Drinking Water Quality Standard of CJ94-2005. The vehicle-mounted drinking water installation is suitable for purifying water sources in the wild for drinking use.

  8. Fluoride and bacterial content of bottled drinking water versus municipal tap water.

    PubMed

    Mythri, H; Chandu, G N; Prashant, G M; Subba Reddy, V V

    2010-01-01

    Water is a divine gift. People quench their thirst without questioning the source of water. But, apprehension about contaminants in municipal water supplies along with increased fear of fluorosis made bottled drinking water as one of the important tradable commodities. The objectives of the study were to determine and compare the fluoride and bacterial contents of commercially available bottled drinking water and municipal tap water in Davangere city, Karnataka. Fifty samples of 10 categories of bottled drinking water with different batch numbers were purchased and municipal water from different sources were collected. Fluoride levels were determined by an ion-selective electrode. Water was cultured quantitatively and levels of bacteria were calculated as colony-forming units (CFUs) per milliliter. Descriptive analysis of water samples for fluoride concentration was in the range of 0.07-0.33 for bottled drinking water, Bisleri showing the highest of 0.33. A comparison of the mean values of microbial count for bottled drinking water with that of municipal tap water showed no statistically significant difference, but was more than the standard levels along with the presence of fungus and maggots. The fluoride concentration was below the optimal level for both municipal tap water and bottled drinking water. CFUs were more than the recommended level in both municipal tap water and bottled drinking water.

  9. THE EPIDEMIOLOGY OF CHEMICAL CONTAMINANTS OF DRINKING WATER

    EPA Science Inventory



    A number of chemical contaminants have been identified in drinking water. These contaminants reach drinking water supplies from various sources, including municipal and industrial discharges, urban and rural run-off, natural geological formations, drinking water distrib...

  10. Prevalence of exposure of heavy metals and their impact on health consequences.

    PubMed

    Rehman, Kanwal; Fatima, Fiza; Waheed, Iqra; Akash, Muhammad Sajid Hamid

    2018-01-01

    Even in the current era of growing technology, the concentration of heavy metals present in drinking water is still not within the recommended limits as set by the regulatory authorities in different countries of the world. Drinking water contaminated with heavy metals namely; arsenic, cadmium, nickel, mercury, chromium, zinc, and lead is becoming a major health concern for public and health care professionals. Occupational exposure to heavy metals is known to occur by the utilization of these metals in various industrial processes and/or contents including color pigments and alloys. However, the predominant source resulting in measurable human exposure to heavy metals is the consumption of contaminated drinking water and the resulting health issues may include cardiovascular disorders, neuronal damage, renal injuries, and risk of cancer and diabetes. The general mechanism involved in heavy metal-induced toxicity is recognized to be the production of reactive oxygen species resulting oxidative damage and health related adverse effects. Thus utilization of heavy metal-contaminated water is resulting in high morbidity and mortality rates all over the world. Thereby, feeling the need to raise the concerns about contribution of different heavy metals in various health related issues, this article has discussed the global contamination of drinking water with heavy metals to assess the health hazards associated with consumption of heavy metal-contaminated water. A relationship between exposure limits and ultimate responses produced as well as the major organs affected have been reviewed. Acute and chronic poisoning symptoms and mechanisms responsible for such toxicities have also been discussed. © 2017 Wiley Periodicals, Inc.

  11. Water-induced thermogenesis reconsidered: the effects of osmolality and water temperature on energy expenditure after drinking.

    PubMed

    Brown, Clive M; Dulloo, Abdul G; Montani, Jean-Pierre

    2006-09-01

    A recent study reported that drinking 500 ml of water causes a 30% increase in metabolic rate. If verified, this previously unrecognized thermogenic property of water would have important implications for weight-loss programs. However, the concept of a thermogenic effect of water is controversial because other studies have found that water drinking does not increase energy expenditure. The objective of the study was to test whether water drinking has a thermogenic effect in humans and, furthermore, determine whether the response is influenced by osmolality or by water temperature. This was a randomized, crossover design. The study was conducted at a university physiology laboratory. Participants included healthy young volunteer subjects. Intervention included drinking 7.5 ml/kg body weight (approximately 518 ml) of distilled water or 0.9% saline or 7% sucrose solution (positive control) on different days. In a subgroup of subjects, responses to cold water (3 C) were tested. Resting energy expenditure, assessed by indirect calorimetry for 30 min before and 90 min after the drinks, was measured. Energy expenditure did not increase after drinking either distilled water (P = 0.34) or 0.9% saline (P = 0.33). Drinking the 7% sucrose solution significantly increased energy expenditure (P < 0.0001). Drinking water that had been cooled to 3 C caused a small increase in energy expenditure of 4.5% over 60 min (P < 0.01). Drinking distilled water at room temperature did not increase energy expenditure. Cooling the water before drinking only stimulated a small thermogenic response, well below the theoretical energy cost of warming the water to body temperature. These results cast doubt on water as a thermogenic agent for the management of obesity.

  12. Evaluation of ATP measurements to detect microbial ingress by wastewater and surface water in drinking water.

    PubMed

    Vang, Óluva K; Corfitzen, Charlotte B; Smith, Christian; Albrechtsen, Hans-Jørgen

    2014-11-01

    Fast and reliable methods are required for monitoring of microbial drinking water quality in order to protect public health. Adenosine triphosphate (ATP) was investigated as a potential real-time parameter for detecting microbial ingress in drinking water contaminated with wastewater or surface water. To investigate the ability of the ATP assay in detecting different contamination types, the contaminant was diluted with non-chlorinated drinking water. Wastewater, diluted at 10(4) in drinking water, was detected with the ATP assay, as well as 10(2) to 10(3) times diluted surface water. To improve the performance of the ATP assay in detecting microbial ingress in drinking water, different approaches were investigated, i.e. quantifying microbial ATP or applying reagents of different sensitivities to reduce measurement variations; however, none of these approaches contributed significantly in this respect. Compared to traditional microbiological methods, the ATP assay could detect wastewater and surface water in drinking water to a higher degree than total direct counts (TDCs), while both heterotrophic plate counts (HPC 22 °C and HPC 37 °C) and Colilert-18 (Escherichia coli and coliforms) were more sensitive than the ATP measurements, though with much longer response times. Continuous sampling combined with ATP measurements displays definite monitoring potential for microbial drinking water quality, since microbial ingress in drinking water can be detected in real-time with ATP measurements. The ability of the ATP assay to detect microbial ingress is influenced by both the ATP load from the contaminant itself and the ATP concentration in the specific drinking water. Consequently, a low ATP concentration of the specific drinking water facilitates a better detection of a potential contamination of the water supply with the ATP assay. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. 78 FR 33744 - Sedaxane; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-05

    .... The following list of North American Industrial Classification System (NAICS) codes is not intended to... the data supporting the petition, EPA has corrected commodity definitions and recommended additional... exposure through drinking water and in residential settings, but does not include occupational exposure...

  14. 29 CFR 24.104 - Investigation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... paragraph sets forth the procedures applicable to investigations under the Safe Drinking Water Act; Federal... protected activity. (e) Investigation under the Energy Reorganization Act. In addition to the investigative... only to investigations under the Energy Reorganization Act. (1) A complaint of alleged violation will...

  15. Molecular assessment of bacterial pathogens - a contribution to drinking water safety.

    PubMed

    Brettar, Ingrid; Höfle, Manfred G

    2008-06-01

    Human bacterial pathogens are considered as an increasing threat to drinking water supplies worldwide because of the growing demand of high-quality drinking water and the decreasing quality and quantity of available raw water. Moreover, a negative impact of climate change on freshwater resources is expected. Recent advances in molecular detection technologies for bacterial pathogens in drinking water bear the promise in improving the safety of drinking water supplies by precise detection and identification of the pathogens. More importantly, the array of molecular approaches allows understanding details of infection routes of waterborne diseases, the effects of changes in drinking water treatment, and management of freshwater resources.

  16. 76 FR 72703 - Meeting of the National Drinking Water Advisory Council-Notice of Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-25

    ... small water systems and efforts underway to address nutrient pollution of drinking water supplies. The... ENVIRONMENTAL PROTECTION AGENCY [FRL-9496-4] Meeting of the National Drinking Water Advisory... meeting. SUMMARY: Notice is hereby given of a meeting of the National Drinking Water Advisory Council...

  17. 76 FR 33756 - Notice of Approval of the Primacy Application for National Primary Drinking Water Regulations for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-09

    ... Primacy Application for National Primary Drinking Water Regulations for the State of Missouri AGENCY... Department of Natural Resources, Public Drinking Water Branch, 1101 Riverside Drive, Jefferson City, MO 65101. (2) Environmental Protection Agency-Region 7, Water Wetlands and Pesticides Division, Drinking Water...

  18. Persistence of pharmaceuticals and other organic compounds in chlorinated drinking water as a function of time

    USGS Publications Warehouse

    Gibs, J.; Stackelberg, P.E.; Furlong, E.T.; Meyer, M.; Zaugg, S.D.; Lippincott, R.L.

    2007-01-01

    Ninety eight pharmaceuticals and other organic compounds (POOCs) that were amended to samples of chlorinated drinking-water were extracted and analyzed 1, 3, 6, 8, and 10 days after amendment to determine whether the total chlorine residual reacted with the amended POOCs in drinking water in a time frame similar to the residence time of drinking water in a water distribution system. Results indicated that if all 98 were present in the finished drinking water from a drinking-water treatment plant using free chlorine at 1.2??mg/L as the distribution system disinfectant residual, 52 POOCs would be present in the drinking water after 10??days at approximately the same concentration as in the newly finished drinking water. Concentrations of 16 POOCs would be reduced by 32% to 92%, and 22 POOCs would react completely with residual chlorine within 24??h. Thus, the presence of free chlorine residual is an effective means for transforming some POOCs during distribution. ?? 2006 Elsevier B.V. All rights reserved.

  19. Persistence of pharmaceuticals and other organic compounds in chlorinated drinking water as a function of time.

    PubMed

    Gibs, Jacob; Stackelberg, Paul E; Furlong, Edward T; Meyer, Michael; Zaugg, Steven D; Lippincott, Robert Lee

    2007-02-01

    Ninety eight pharmaceuticals and other organic compounds (POOCs) that were amended to samples of chlorinated drinking-water were extracted and analyzed 1, 3, 6, 8, and 10 days after amendment to determine whether the total chlorine residual reacted with the amended POOCs in drinking water in a time frame similar to the residence time of drinking water in a water distribution system. Results indicated that if all 98 were present in the finished drinking water from a drinking-water treatment plant using free chlorine at 1.2 mg/L as the distribution system disinfectant residual, 52 POOCs would be present in the drinking water after 10 days at approximately the same concentration as in the newly finished drinking water. Concentrations of 16 POOCs would be reduced by 32% to 92%, and 22 POOCs would react completely with residual chlorine within 24 h. Thus, the presence of free chlorine residual is an effective means for transforming some POOCs during distribution.

  20. Effects of human placental S9 and induced rat liver S9 on the mutagenicity of drinking waters processed from humus-rich surface waters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vartiainen, T.; Lampelo, S.

    The mutagenicity of chlorinated drinking waters processed from humus-rich surface waters has been shown to be very high. The effect of placental S9 on the mutagenicity of drinking waters has not been studied previously. The purpose of this study was to compare the effects of human placental and rat liver microsomal fractions on the mutagenicity of drinking waters processed from humus-rich surface waters. The samples of 34 drinking and two raw waters from 26 localities in Finland were tested for mutagenicity in Ames Salmonella typhimurium tester strain TA100 with and without metabolic activations. Between the drinking water samples, clear differencesmore » were recorded in the presence of placental and rat liver S9, suggesting different mutagens in the drinking waters. Rat liver S9 decreased the mutagenicities of drinking water concentrates, but placental S9 increased, decreased, or had no effect. It is not known if placental mutagenicity enhancing system might cause any health hazard to a developing fetus.« less

  1. THE DRINKING WATER TREATABILITY DATABASE (Slides)

    EPA Science Inventory

    The Drinking Water Treatability Database (TDB) assembles referenced data on the control of contaminants in drinking water, housed on an interactive, publicly-available, USEPA web site (www.epa.gov/tdb). The TDB is of use to drinking water utilities, treatment process design engin...

  2. Middle School Student Attitudes about School Drinking Fountains and Water Intake

    PubMed Central

    Patel, Anisha I.; Bogart, Laura M.; Klein, David J.; Cowgill, Burt; Uyeda, Kimberly E.; Hawes-Dawson, Jennifer; Schuster, Mark A.

    2014-01-01

    Objective Describe middle school student attitudes about school drinking fountains, investigate whether such attitudes are associated with intentions to drink water at school, and determine how intentions relate to overall water intake. Methods Students (n=3,211) in 9 California middle schools completed surveys between 2009–2011. We used multivariate linear regression, adjusting for school sociodemographic characteristics, to examine how attitudes about fountains (5-point scale; higher scores indicating more positive attitudes) were associated with intentions to drink water at school and how intentions to drink water at school were related to overall water intake. Results Mean age of students was 12.3 (SD=0.7) years; 75% were Latino, 89% low-income, and 39% foreign-born. Fifty-two percent reported lower than recommended overall water intake (<3 glasses/day), and 30% reported that they were unlikely or extremely unlikely to drink water at school. Fifty-nine percent reported that school fountains were unclean, 48% that fountain water does not taste good, 33% that fountains could make them sick, 31% that it was not okay to drink from fountains, and 24% that fountain water is contaminated. In adjusted analyses, attitudes about school drinking fountains were related to intentions to drink water at school (B=0.41; p-value <0.001); intentions to drink water at school were also associated with overall water intake (B=0.20; p-value <0.001). Conclusions and Relevance Students have negative attitudes about school fountains. To increase overall water intake, it may be important to promote and improve drinking water sources not only at school, but also at home and in other community environments. What’s New Although most schools provide water via fountains, little is known about student attitudes about fountains. In this study, middle school students had negative attitudes about fountains; such attitudes were associated with lower intentions to drink water at school. PMID:25169158

  3. [Determination of barium in natural curative waters by ICP-OES technique. Part I. Waters taken on the area of health resorts in Poland].

    PubMed

    Garboś, Sławomir; Swiecicka, Dorota

    2011-01-01

    Maximum admissible concentration level (MACL) of barium in natural mineral waters, natural spring waters and potable waters was set at the level of 1 mg/l, while MACL of this element in natural curative waters intended for drinking therapies and inhalations were set at the levels of 1.0 mg/l and 10.0 mg/l, respectively. Those requirements were related to therapies which are applied longer than one month. Above mentioned maximum admissible concentration levels of barium in consumed waters were established after taking into account actual criteria of World Health Organization which determined the guidelines value for this element in water intended for human consumption at the level of 0.7 mg/l. In this work developed and validated method of determination of barium by inductively coupled plasma emission spectrometry technique was applied for determination of this element in 45 natural curative waters sampled from 24 spa districts situated on the area of Poland. Concentrations of barium determined were in the range from 0.0036 mg/l to 24.0 mg/l. Natural curative waters characterized by concentrations of barium in the ranges of 0.0036 - 0.073 mg/l, 0.0036 - 1.31 mg/l and 0.0036 - 24.0 mg/l, were applied to drinking therapy, inhalations and balneotherapy, respectively (some of waters analyzed were simultaneously applied to drinking therapy, inhalations and balneotherapy). In the cases of 11 natural curative waters exceeding limit of 1 mg/l were observed, however they were classified mainly as waters applied to balneotherapy and in two cases to inhalation therapies (concentrations of barium - 1.08 mg/l and 1.31 mg/l). The procedure of classification of curative waters for adequate therapies based among other things on barium concentrations meets requirements of the Decree of Minister of Health from 13 April 2006 on the range of studies indispensable for establishing medicinal properties of natural curative materials and curative properties of climate, criteria of their assessment and a specimen of certificate confirmed those properties.

  4. Increasing water availability during afterschool snack: evidence, strategies, and partnerships from a group randomized trial.

    PubMed

    Giles, Catherine M; Kenney, Erica L; Gortmaker, Steven L; Lee, Rebekka M; Thayer, Julie C; Mont-Ferguson, Helen; Cradock, Angie L

    2012-09-01

    Providing drinking water to U.S. children during school meals is a recommended health promotion strategy and part of national nutrition policy. Urban school systems have struggled with providing drinking water to children, and little is known about how to ensure that water is served, particularly in afterschool settings. To assess the effectiveness of an intervention designed to promote water as the beverage of choice in afterschool programs. The Out of School Nutrition and Physical Activity Initiative (OSNAP) used a community-based collaboration and low-cost strategies to provide water after school. A group RCT was used to evaluate the intervention. Data were collected in 2010-2011 and analyzed in 2011. Twenty afterschool programs in Boston were randomized to intervention or control (delayed intervention). Intervention sites participated in learning collaboratives focused on policy and environmental changes to increase healthy eating, drinking, and physical activity opportunities during afterschool time (materials available at www.osnap.org). Collaboration between Boston Public Schools Food and Nutrition Services, afterschool staff, and researchers established water-delivery systems to ensure children were served water during snack time. Average ounces of water served to children per day was recorded by direct observation at each program at baseline and 6-month follow-up over 5 consecutive school days. Secondary measures directly observed included ounces of other beverages served, other snack components, and water-delivery system. Participation in the intervention was associated with an increased average volume of water served (+3.6 ounces/day; p=0.01) during snack. On average, the intervention led to a daily decrease of 60.9 kcals from beverages served during snack (p=0.03). This study indicates the OSNAP intervention, including strategies to overcome structural barriers and collaboration with key actors, can increase offerings of water during afterschool snack. OSNAP appears to be an effective strategy to provide water in afterschool settings that can be helpful in implementing new U.S. Department of Agriculture guidelines regarding water availability during lunch and afterschool snack. Copyright © 2012 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  5. Simultaneous detection of perchlorate and bromate using rapid high-performance ion exchange chromatography-tandem mass spectrometry and perchlorate removal in drinking water.

    PubMed

    West, Danielle M; Mu, Ruipu; Gamagedara, Sanjeewa; Ma, Yinfa; Adams, Craig; Eichholz, Todd; Burken, Joel G; Shi, Honglan

    2015-06-01

    Perchlorate and bromate occurrence in drinking water causes health concerns due to their effects on thyroid function and carcinogenicity, respectively. The purpose of this study was threefold: (1) to advance a sensitive method for simultaneous rapid detection of perchlorate and bromate in drinking water system, (2) to systematically study the occurrence of these two contaminants in Missouri drinking water treatment systems, and (3) to examine effective sorbents for minimizing perchlorate in drinking water. A rapid high-performance ion exchange chromatography-tandem mass spectrometry (HPIC-MS/MS) method was advanced for simultaneous detection of perchlorate and bromate in drinking water. The HPIC-MS/MS method was rapid, required no preconcentration of the water samples, and had detection limits for perchlorate and bromate of 0.04 and 0.01 μg/L, respectively. The method was applied to determine perchlorate and bromate concentrations in total of 23 selected Missouri drinking water treatment systems during differing seasons. The water systems selected include different source waters: groundwater, lake water, river water, and groundwater influenced by surface water. The concentrations of perchlorate and bromate were lower than or near to method detection limits in most of the drinking water samples monitored. The removal of perchlorate by various adsorbents was studied. A cationic organoclay (TC-99) exhibited effective removal of perchlorate from drinking water matrices.

  6. Different Choices of Drinking Water Source and Different Health Risks in a Rural Population Living Near a Lead/Zinc Mine in Chenzhou City, Southern China.

    PubMed

    Huang, Xiao; He, Liping; Li, Jun; Yang, Fei; Tan, Hongzhuan

    2015-11-12

    This study aimed to describe the households' choices of drinking water sources, and evaluate the risk of human exposure to heavy metals via different drinking water sources in Chenzhou City of Hunan Province, Southern China. A cross-sectional face-to-face survey of 192 householders in MaTian and ZhuDui village was conducted. The concentrations of heavy metals in their drinking water sources were analyzed. Carcinogenic and non-carcinogenic risk assessment was performed according to the method recommended by the United States Environmental Protection Agency. In total, 52.60% of the households used hand-pressed well water, and 34.89% used barreled water for drinking. In total, 6.67% of the water samples exceeded the Chinese drinking water standards. The total health risk of five metals is 5.20 × 10(-9)~3.62 × 10(-5). The total health risk of five metals was at acceptable levels for drinking water sources. However, the total risk of using hand-pressed well water's highest value is 6961 times higher than the risk of using tap water. Household income level was significantly associated with drinking water choices. Arsenic (As) and lead (Pb) are priority controlled pollutants in this region. Using safe drinking water (tap water, barreled water and so on) can remarkably reduce the risk of ingesting heavy metals.

  7. 76 FR 71560 - Notice of a Public Meeting on Long Term 2 Enhanced Surface Water Treatment Rule: Initiate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-18

    ... Management Division, Office of Ground Water and Drinking Water (MC 4607M), Environmental Protection Agency... drinking water. The 1996 Amendments to the Safe Drinking Water Act (SDWA) require EPA to review its existing drinking water regulations every six years. SDWA specifies that any revision to a national primary...

  8. Health risks associated with heavy metals in the drinking water of Swat, northern Pakistan.

    PubMed

    Lu, Yonglong; Khan, Hizbullah; Zakir, Shahida; Ihsanullah; Khan, Sardar; Khan, Akbar Ali; Wei, Luo; Wang, Tieyu

    2013-10-01

    The concentrations of heavy metals such as Cd, Cr, Cu, Mn, Ni, Pb and Zn were investigated in drinking water sources (surface and groundwater) collected from Swat valley, Khyber Pakhtunkhwa, Pakistan. The potential health risks of heavy metals to the local population and their possible source apportionment were also studied. Heavy metal concentrations were analysed using atomic absorption spectrometer and compared with permissible limits set by Pakistan Environmental Protection Agency and World Health Organization. The concentrations of Cd, Cr, Ni and Pb were higher than their respective permissible limits, while Cu, Mn and Zn concentrations were observed within their respective limits. Health risk indicators such as chronic daily intake (CDI) and health risk index (HRI) were calculated for adults and children separately. CDIs and HRIs of heavy metals were found in the order of Cr > Mn > Ni > Zn > Cd > Cu > Pb and Cd > Ni > Mn > Cr > Cu > Pb > Zn, respectively. HRIs of selected heavy metals in the drinking water were less than 1, indicating no health risk to the local people. Multivariate and univariate statistical analyses showed that geologic and anthropogenic activities were the possible sources of water contamination with heavy metals in the study area.

  9. Nitrate and ammonia contaminations in drinking water and the affecting factors in Hailun, northeast China.

    PubMed

    Zhao, Xinfeng; Chen, Liding; Zhang, Haiping

    2013-03-01

    Drinking water samples (N = 228) from domestic tube wells (DTWs) and seven samples from public water supply wells (PWSWs) were collected and tested in Hailun, northeast China. The percentage of samples with nitrate and ammonia concentrations above the maximum acceptable concentration of nitrate, 10 mg N/L, and the maximum ensure concentration of ammonia, 1.5 mg/L, for the DTWs were significantly higher than for the PWSWs. Of the DTWs, an important observation was that the occurrence of groundwater nitrate contamination was directly related to well tube material with different joint pathways. Nitrate in seamless-tube wells was lower statistically significantly than those in multiple-section-tube wells (p < .001). Furthermore, well depth and hydrogeological setting might have some impacts on nitrogen contamination and the major sources of inorganic nitrogen contamination may be nitrogenous chemical fertilizer. Therefore, PWSWs built for all families are the best way to ensure the drinking water safety in villages. For DTWs it is necessary to use seamless tubes and to dig deep enough according to the depth of groundwater level. Improving the efficiency of chemical fertilizer use would also reduce the risk of groundwater contamination.

  10. Pyrosequence Analysis of the hsp65 Genes of Nontuberculous Mycobacterium Communities in Unchlorinated Drinking Water in the Netherlands

    PubMed Central

    Heijnen, Leo; van der Kooij, Dick

    2013-01-01

    Studies have shown that certain opportunistic pathogenic species of nontuberculous mycobacteria (NTM) can be present in distributed drinking water. However, detailed information about NTM population composition in drinking water is lacking. Therefore, NTM communities in unchlorinated drinking water from the distribution system of five treatment plants in the Netherlands were characterized using 454 pyrosequencing of the hsp65 gene. Results showed high diversities in unchlorinated drinking water, with up to 28 different NTM operational taxonomic units (OTUs) in a single sample. Each drinking water sample had a unique NTM community, and most (81.1%) OTUs were observed only once. One OTU was observed in 14 of 16 drinking water samples, indicating that this NTM species is well adapted to unchlorinated drinking water conditions. A clear influence of season, source type (groundwater, surface water), easily assimilable organic carbon (AOC) concentration, biofilm formation rate, and active biomass in treated water on the establishment of an NTM community in drinking water was not observed. Apparently, local conditions are more important for the development of a specific NTM community in the drinking water distribution system. A low (4.2%) number of hsp65 gene sequences showed more than 97% similarity to sequences of the opportunistic pathogens M. avium, M. genavense, and M. gordonae. However, most (95.8%) NTM hsp65 gene sequences were related to not-yet-described NTM species that have not been linked to disease, indicating that most NTM species in unchlorinated drinking water from distribution systems in the Netherlands have a low public health significance. PMID:23913420

  11. Pyrosequence analysis of the hsp65 genes of nontuberculous mycobacterium communities in unchlorinated drinking water in the Netherlands.

    PubMed

    van der Wielen, Paul W J J; Heijnen, Leo; van der Kooij, Dick

    2013-10-01

    Studies have shown that certain opportunistic pathogenic species of nontuberculous mycobacteria (NTM) can be present in distributed drinking water. However, detailed information about NTM population composition in drinking water is lacking. Therefore, NTM communities in unchlorinated drinking water from the distribution system of five treatment plants in the Netherlands were characterized using 454 pyrosequencing of the hsp65 gene. Results showed high diversities in unchlorinated drinking water, with up to 28 different NTM operational taxonomic units (OTUs) in a single sample. Each drinking water sample had a unique NTM community, and most (81.1%) OTUs were observed only once. One OTU was observed in 14 of 16 drinking water samples, indicating that this NTM species is well adapted to unchlorinated drinking water conditions. A clear influence of season, source type (groundwater, surface water), easily assimilable organic carbon (AOC) concentration, biofilm formation rate, and active biomass in treated water on the establishment of an NTM community in drinking water was not observed. Apparently, local conditions are more important for the development of a specific NTM community in the drinking water distribution system. A low (4.2%) number of hsp65 gene sequences showed more than 97% similarity to sequences of the opportunistic pathogens M. avium, M. genavense, and M. gordonae. However, most (95.8%) NTM hsp65 gene sequences were related to not-yet-described NTM species that have not been linked to disease, indicating that most NTM species in unchlorinated drinking water from distribution systems in the Netherlands have a low public health significance.

  12. Perception of drinking water safety and factors influencing acceptance and sustainability of a water quality intervention in rural southern India.

    PubMed

    Francis, Mark Rohit; Nagarajan, Guru; Sarkar, Rajiv; Mohan, Venkata Raghava; Kang, Gagandeep; Balraj, Vinohar

    2015-07-30

    Acceptance and long-term sustainability of water quality interventions are pivotal to realizing continued health benefits. However, there is limited research attempting to understand the factors that influence compliance to or adoption of such interventions. Eight focus group discussions with parents of young children--including compliant and not compliant households participating in an intervention study, and three key-informant interviews with village headmen were conducted between April and May 2014 to understand perceptions on the effects of unsafe water on health, household drinking water treatment practices, and the factors influencing acceptance and sustainability of an ongoing water quality intervention in a rural population of southern India. The ability to recognize health benefits from the intervention, ease of access to water distribution centers and the willingness to pay for intervention maintenance were factors facilitating acceptance and sustainability of the water quality intervention. On the other hand, faulty perceptions on water treatment, lack of knowledge about health hazards associated with drinking unsafe water, false sense of protection from locally available water, resistance to change in taste or odor of water and a lack of support from male members of the household were important factors impeding acceptance and long term use of the intervention. This study highlights the need to effectively involve communities at important stages of implementation for long term success of water quality interventions. Timely research on the factors influencing uptake of water quality interventions prior to implementation will ensure greater acceptance and sustainability of such interventions in low income settings.

  13. Physicochemical properties and the concentration of anions, major and trace elements in groundwater, treated drinking water and bottled drinking water in Najran area, KSA

    NASA Astrophysics Data System (ADS)

    Brima, Eid I.

    2017-03-01

    Basic information about major elements in bottled drinking water is provided on product labels. However, more information is needed about trace elements in bottled drinking water and other sources of drinking water to assess its quality and suitability for drinking. This is the first such study to be carried out in Najran city in the Kingdom of Saudi Arabia (KSA). A total of 48 water samples were collected from different sources comprising wells, stations for drinking water treatment and bottled drinking water (purchased from local supermarkets). The concentrations of 24 elements [aluminum (Al), arsenic (As), barium (Ba), calcium (Ca), cadmium (Cd), cobalt (Co), chromium (Cr), cesium (Cs), copper (Cu), iron (Fe), potassium (K), magnesium (Mg), manganese (Mn), molydenum (Mo), sodium (Na), nickel (Ni), lead (Pb), rubidium (Rb), selenium (Se), strontium (Sr), titanium (Ti), vanadium (V), uranium (U) and zinc (Zn)] were determined by inductively coupled plasma-mass spectrometry (ICP-MS). Anions (chlorine (Cl-), fluoride (F-), sulfate (SO4 2-) and nitrate (NO3 -) were determined by ion chromatography (IC). Electrical conductivity (EC), pH, total dissolved salts (TDS) and total hardness (TH) were also measured. All parameters of treated drinking water and bottled drinking water samples did not exceed the World Health Organization (WHO) 2008, US Environmental Protection Agency (USEPA 2009), Gulf Cooperation Council Standardization Organization (GSO) 2008 and Saudi Arabian Standards Organization (SASO) 1984 recommended guidelines. It is noteworthy that groundwater samples were not used for drinking purpose. This study is important to raise public knowledge about drinking water, and to promote public health.

  14. The genetic basis of novel water utilisation and drinking behaviour traits and their relationship with biological performance in turkeys.

    PubMed

    Rusakovica, Julija; Kremer, Valentin D; Plötz, Thomas; Rohlf, Paige; Kyriazakis, Ilias

    2017-09-29

    There is increasing interest in the definition, measurement and use of traits associated with water use and drinking behaviour, mainly because water is a finite resource and its intake is an important part of animal health and well-being. Analysis of such traits has received little attention, due in part to the lack of appropriate technology to measure drinking behaviour. We exploited novel equipment to collect water intake data in two lines of turkey (A: 27,415 and B: 12,956 birds). The equipment allowed continuous recording of individual visits to the water station in a group environment. Our aim was to identify drinking behaviour traits of biological relevance, to estimate their genetic parameters and their genetic relationships with performance traits, and to identify drinking behaviour strategies among individuals. Visits to the drinkers were clustered into bouts, i.e. time intervals spent in drinking-related activity. Based on this, biologically relevant traits were defined: (1) number of visits per bout, (2) water intake per bout, (3) drinking time per bout, (4) drinking rate, (5) daily bout frequency, (6) daily bout duration, (7) daily drinking time and (8) daily water intake. Heritability estimates for most drinking behaviour traits were moderate to high and the most highly heritable traits were drinking rate (0.49 and 0.50) and daily drinking time (0.35 and 0.46 in lines A and B, respectively). Genetic correlations between drinking behaviour and performance traits were low except for moderate correlations between daily water intake and weight gain (0.46 and 0.47 in lines A and B, respectively). High estimates of breeding values for weight gain were found across the whole range of estimated breeding values for daily water intake, daily drinking time and water intake per bout. We show for the first time that drinking behaviour traits are moderately to highly heritable. Low genetic and phenotypic correlations with performance traits suggest that current breeding goals have not and will not affect normal water drinking behaviour. Birds express a wide range of different drinking behaviour strategies, which can be suitable to a wide range of environments and production systems.

  15. THE DRINKING WATER TREATABILITY DATABASE (Conference Paper)

    EPA Science Inventory

    The Drinking Water Treatability Database (TDB) assembles referenced data on the control of contaminants in drinking water, housed on an interactive, publicly-available, USEPA web site (www.epa.gov/tdb). The TDB is of use to drinking water utilities, treatment process design engin...

  16. 40 CFR 141.201 - General public notification requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Public Notification of Drinking... violations of national primary drinking water regulations (NPDWR) and for other situations, as listed in... required by the drinking water regulations. (iv) Failure to comply with testing procedures as prescribed by...

  17. BOOK REVIEW OF "DRINKING WATER REGULATION AND HEALTH"

    EPA Science Inventory

    Since the enactment of the Safe Drinking Water Act (SDWA) in 1974, several amendments and other new regulations have been developed for drinking water. The book, "Drinking Water Regulation and Health", explains these regulations and provides background on why they were developed ...

  18. Solid-phase microextraction of organophosphate pesticides in source waters for drinking water treatment facilities.

    PubMed

    Flynt, Elizabeth; Dupuy, Aubry; Kennedy, Charles; Bennett, Shanda

    2006-09-01

    The rapid detection of contaminants in our nation's drinking water has become a top homeland security priority in this time of increased national vigilance. Real-time monitoring of drinking water for deliberate or accidental contamination is key to national security. One method that can be employed for the rapid screening of pollutants in water is solid-phase microextraction (SPME). SPME is a rapid, sensitive, solvent-free system that can be used to screen for contaminants that have been accidentally or intentionally introduced into a water system. A method using SPME has been developed and optimized for the detection of seven organophosphate pesticides in drinking water treatment facility source waters. The method is tested in source waters for drinking water treatment facilities in Mississippi and Alabama. Water is collected from a deepwater well at Stennis Space Center (SSC), MS, the drinking water source for SSC, and from the Converse Reservoir, the main drinking water supply for Mobile, AL. Also tested are samples of water collected from the Mobile Alabama Water and Sewer System drinking water treatment plant prior to chlorination. The method limits of detection for the seven organophosphates were comparable to those described in several Environmental Protection Agency standard methods. They range from 0.25 to 0.94 microg/L.

  19. Pesticides and their breakdown products in Lake Waxahachie, Texas, and in finished drinking water from the lake

    USGS Publications Warehouse

    Ging, Patricia B.

    2002-01-01

    Since 1991, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program has collected pesticide data from streams and aquifers throughout the Nation (Gilliom and others, 1995). However, little published information on pesticides in public drinking water is available. The NAWQA Program usually collects data on the sources of drinking water but not on the finished drinking water. Therefore, the U.S. Environmental Protection Agency (USEPA), in conjunction with the NAWQA Program, has initiated a nationwide pilot project to collect information on concentrations of pesticides and their breakdown products in finished drinking water, in source waters such as reservoirs, and in the basins that contribute water to the reservoirs. The pilot project was designed to collect water samples from finished drinking-water supplies and the associated source water from selected reservoirs that receive runoff from a variety of land uses. Lake Waxahachie, in Ellis County in north-central Texas, was chosen to represent a reservoir receiving water that includes runoff from cotton cropland. This fact sheet presents the results of pesticide sampling of source water from Lake Waxahachie and in finished drinking water from the lake. Analyses are compared to indicate differences in pesticide detections and concentrations between lake water and finished drinking water.

  20. Oxygenated drinking water enhances immune activity in broiler chicks and increases survivability against Salmonella Gallinarum in experimentally infected broiler chicks.

    PubMed

    Jung, Bock-Gie; Lee, Jin-A; Nam, Kyoung-Woo; Lee, Bong-Joo

    2012-03-01

    It has been suggested that drinking oxygenated water may improve oxygen availability, which may increase vitality and improving immune activity. The present study evaluated the immune enhancing effects of oxygenated drinking water in broiler chicks and demonstrated the protective efficacy of oxygenated drinking water against Salmonella Gallinarum in experimentally infected broiler chicks. Continuous drinking of oxygenated water markedly increased serum lysozyme activity, peripheral blood mononuclear cell proliferation and the CD4(+)/CD8(+) splenocyte ratio in broiler chicks. In the chicks experimentally infected with S. Gallinarum, oxygenated drinking water alleviated symptoms and increased survival. These findings suggest that oxygenated drinking water enhances immune activity in broiler chicks, and increases survivability against S. Gallinarum in experimentally infected broiler chicks.

  1. Problems with provision: barriers to drinking water quality and public health in rural Tasmania, Australia.

    PubMed

    Whelan, Jessica J; Willis, Karen

    2007-01-01

    Access to safe drinking water is essential to human life and wellbeing, and is a key public health issue. However, many communities in rural and regional parts of Australia are unable to access drinking water that meets national standards for protecting human health. The aim of this research was to identify the key issues in and barriers to the provision and management of safe drinking water in rural Tasmania, Australia. Semi-structured interviews were conducted with key local government employees and public health officials responsible for management of drinking water in rural Tasmania. Participants were asked about their core public health duties, regulatory responsibilities, perceptions and management of risk, as well as the key barriers that may be affecting the provision of safe drinking water. This research highlights the effect of rural locality on management and safety of fresh water in protecting public health. The key issues contributing to problems with drinking water provision and quality identified by participants included: poor and inadequate water supply infrastructure; lack of resources and staffing; inadequate catchment monitoring; and the effect of competing land uses, such as forestry, on water supply quality. This research raises issues of inequity in the provision of safe drinking water in rural communities. It highlights not only the increasing need for greater funding by state and commonwealth government for basic services such as drinking water, but also the importance of an holistic and integrated approach to managing drinking water resources in rural Tasmania.

  2. [Total drinking water intake and sources of children and adolescent in one district of Shenzhen].

    PubMed

    Du, Songming; Hu, Xiaoqi; Zhang, Qian; Wang, Xiaojun; Liu, Ailing; Pan, Hui; He, Shuang; Ma, Guansheng

    2013-05-01

    To describe total drinking water intake among primary and middle school students in one district of Shenzhen and to provide scientific evidence for adequate intakes of drinking water for different people in China. A total of 816 students from three primary and middle schools of Shenzhen was selected using three-stage random sampling method. The information on amounts and types of daily drinking water was recorded by subjects for seven consecutive days using a 24 hours measurement. The amounts and types of daily drinking water among different ages and between boys and girls were analyzed. The average total drinking water of subjects was (1225+/-557) ml/d, and the consumption of total drinking water in boys ((1303+/-639) ml/d) was significantly higher than that in girls ((1134+/-478) ml/d, P<0.01). The consumption of total drinking water of secondary school students ((1389+/-541) ml/d) and high school student ((1318+/-641) ml/d) was no statistically difference, but was higher than primary school students ((1097+/-525) ml/d, P<0.01). The average plain water and beverages of the subjects was (818+/-541) ml/d and (407+/-294) ml/d respectively. Major of fluid intake comes from drinking water in children and adolescenct of Shenzhen. The knowledge of drinking water of primary school students is need to comprehensive enough.

  3. Drinking Water Turbidity and Emergency Department Visits for Gastrointestinal Illness in New York City, 2002-2009

    PubMed Central

    Hsieh, Jennifer L.; Nguyen, Trang Quyen; Matte, Thomas; Ito, Kazuhiko

    2015-01-01

    Background Studies have examined whether there is a relationship between drinking water turbidity and gastrointestinal (GI) illness indicators, and results have varied possibly due to differences in methods and study settings. Objectives As part of a water security improvement project we conducted a retrospective analysis of the relationship between drinking water turbidity and GI illness in New York City (NYC) based on emergency department chief complaint syndromic data that are available in near-real-time. Methods We used a Poisson time-series model to estimate the relationship of turbidity measured at distribution system and source water sites to diarrhea emergency department (ED) visits in NYC during 2002-2009. The analysis assessed age groups and was stratified by season and adjusted for sub-seasonal temporal trends, year-to-year variation, ambient temperature, day-of-week, and holidays. Results Seasonal variation unrelated to turbidity dominated (~90% deviance) the variation of daily diarrhea ED visits, with an additional 0.4% deviance explained with turbidity. Small yet significant multi-day lagged associations were found between NYC turbidity and diarrhea ED visits in the spring only, with approximately 5% excess risk per inter-quartile-range of NYC turbidity peaking at a 6 day lag. This association was strongest among those aged 0-4 years and was explained by the variation in source water turbidity. Conclusions Integrated analysis of turbidity and syndromic surveillance data, as part of overall drinking water surveillance, may be useful for enhanced situational awareness of possible risk factors that can contribute to GI illness. Elucidating the causes of turbidity-GI illness associations including seasonal and regional variations would be necessary to further inform surveillance needs. PMID:25919375

  4. Residues of organochlorine pesticides in surface water of a megacity in central China: seasonal-spatial distribution and fate in Wuhan.

    PubMed

    Cui, Lili; Wei, Liangfu; Wang, Jun

    2017-01-01

    Surface water quality closely correlating with human health suffered increasing organochlorine pesticide (OCP) pollution due to the intensive anthropogenic activities in megacities. In the present study, 112 water samples collected from 14 lakes and 11 drinking water source sites in Wuhan were detected for the residues of OCPs in November 2013 and July 2014, respectively. The ΣOCPs ranged from 5.61 to 13.62 ng L -1 in summer with the maximum value in Yezhi Lake and 3.18 to 7.73 ng L -1 in winter with the highest concentration in Yandong Lake. Except dichlorodiphenyltrichloroethanes (DDTs), OCP concentrations in summer were significantly higher than those in winter mostly due to the non-point source pollution including land runoff in summer. Source apportionment of hexachlorocyclohexanes (HCHs) and DDTs revealed the historical use of technical HCH and lindane and the new input of DDT, respectively. The spatial distribution of OCPs was not uniform in the surface water of Wuhan because of the significant influence of land development and fishery. The risk assessments showed the heptachlor, and heptachlor epoxide in most sampling sites exceeded the threshold set by the European Union, indicating the possible adverse effects for aquatic lives. Negligible non-carcinogenic risks for drinking and bathing as well as carcinogenic risks for bathing were found in the surface water. However, the total carcinogenic risks of all OCPs (∑Rs) caused by drinking in summer were higher than the safe level of 10 -7 in all sampling sites. It was implied that the surface water in Wuhan was not safe for directly drinking without effective purification.

  5. Drinking water turbidity and emergency department visits for gastrointestinal illness in New York City, 2002-2009.

    PubMed

    Hsieh, Jennifer L; Nguyen, Trang Quyen; Matte, Thomas; Ito, Kazuhiko

    2015-01-01

    Studies have examined whether there is a relationship between drinking water turbidity and gastrointestinal (GI) illness indicators, and results have varied possibly due to differences in methods and study settings. As part of a water security improvement project we conducted a retrospective analysis of the relationship between drinking water turbidity and GI illness in New York City (NYC) based on emergency department chief complaint syndromic data that are available in near-real-time. We used a Poisson time-series model to estimate the relationship of turbidity measured at distribution system and source water sites to diarrhea emergency department (ED) visits in NYC during 2002-2009. The analysis assessed age groups and was stratified by season and adjusted for sub-seasonal temporal trends, year-to-year variation, ambient temperature, day-of-week, and holidays. Seasonal variation unrelated to turbidity dominated (~90% deviance) the variation of daily diarrhea ED visits, with an additional 0.4% deviance explained with turbidity. Small yet significant multi-day lagged associations were found between NYC turbidity and diarrhea ED visits in the spring only, with approximately 5% excess risk per inter-quartile-range of NYC turbidity peaking at a 6 day lag. This association was strongest among those aged 0-4 years and was explained by the variation in source water turbidity. Integrated analysis of turbidity and syndromic surveillance data, as part of overall drinking water surveillance, may be useful for enhanced situational awareness of possible risk factors that can contribute to GI illness. Elucidating the causes of turbidity-GI illness associations including seasonal and regional variations would be necessary to further inform surveillance needs.

  6. Small Drinking Water Systems Communication and Outreach ...

    EPA Pesticide Factsheets

    As part of our small drinking water systems efforts, this poster highlights several communications and outreach highlights that EPA's Office of Research and Development and Office of Water have been undertaking in collaboration with states and the Association of State Drinking Water Administrators. To share information at EPA's annual small drinking water systems workshop

  7. Metabolic profiles in serum of mouse after chronic exposure to drinking water.

    PubMed

    Zhang, Yan; Wu, Bing; Zhang, Xuxiang; Li, Aimin; Cheng, Shupei

    2011-08-01

    The toxicity of Nanjing drinking water on mouse (Mus musculus) was detected by (1)H nuclear magnetic resonance (NMR)-based metabonomic method. Three groups of mice were fed with drinking water (produced by Nanjing BHK Water Plant), 3.8 μg/L benzo(a)pyrene as contrast, and clean water as control, respectively, for 90 days. It was observed that the levels of lactate, alanine, and creatinine in the mice fed with drinking water were increased and that of valine was decreased. The mice of drinking water group were successfully separated from control. The total concentrations of polycyclic aromatic hydrocarbons (PAHs), phthalates (PAEs), and other organic pollutants in the drinking water were 0.23 μg/L, 4.57 μg/L, and 0.34 μg/L, respectively. In this study, Nanjing drinking water was found to induce distinct perturbations of metabolic profiles on mouse including disorders of glucose-alanine cycle, branched-chain amino acid and energy metabolism, and dysfunction of kidney. This study suggests that metabonomic method is feasible and sensitive to evaluate potential toxic effects of drinking water.

  8. Fecal contamination of drinking water within peri-urban households, Lima, Peru.

    PubMed

    Oswald, William E; Lescano, Andrés G; Bern, Caryn; Calderon, Maritza M; Cabrera, Lilia; Gilman, Robert H

    2007-10-01

    We assessed fecal contamination of drinking water in households in 2 peri-urban communities of Lima, Peru. We measured Escherichia coli counts in municipal source water and, within households, water from principal storage containers, stored boiled drinking water, and water in a serving cup. Source water was microbiologically clean, but 26 (28%) of 93 samples of water stored for cooking had fecal contamination. Twenty-seven (30%) of 91 stored boiled drinking water samples grew E. coli. Boiled water was more frequently contaminated when served in a drinking cup than when stored (P < 0.01). Post-source contamination increased successively through the steps of usage from source water to the point of consumption. Boiling failed to ensure safe drinking water at the point of consumption because of easily contaminated containers and poor domestic hygiene. Hygiene education, better point-of-use treatment and storage options, and in-house water connections are urgently needed.

  9. Increasing the availability and consumption of drinking water in middle schools: a pilot study.

    PubMed

    Patel, Anisha I; Bogart, Laura M; Elliott, Marc N; Lamb, Sheila; Uyeda, Kimberly E; Hawes-Dawson, Jennifer; Klein, David J; Schuster, Mark A

    2011-05-01

    Although several studies suggest that drinking water may help prevent obesity, no US studies have examined the effect of school drinking water provision and promotion on student beverage intake. We assessed the acceptability, feasibility, and outcomes of a school-based intervention to improve drinking water consumption among adolescents. The 5-week program, conducted in a Los Angeles middle school in 2008, consisted of providing cold, filtered drinking water in cafeterias; distributing reusable water bottles to students and staff; conducting school promotional activities; and providing education. Self-reported consumption of water, nondiet soda, sports drinks, and 100% fruit juice was assessed by conducting surveys among students (n = 876), preintervention and at 1 week and 2 months postintervention, from the intervention school and the comparison school. Daily water (in gallons) distributed in the cafeteria during the intervention was recorded. After adjusting for sociodemographic characteristics and baseline intake of water at school, the odds of drinking water at school were higher for students at the intervention school than students at the comparison school. Students from the intervention school had higher adjusted odds of drinking water from fountains and from reusable water bottles at school than students from the comparison school. Intervention effects for other beverages were not significant. Provision of filtered, chilled drinking water in school cafeterias coupled with promotion and education is associated with increased consumption of drinking water at school. A randomized controlled trial is necessary to assess the intervention's influence on students' consumption of water and sugar-sweetened beverages, as well as obesity-related outcomes.

  10. Contribution of Drinking Water Softeners to Daily Phosphate Intake in Slovenia

    PubMed Central

    Jereb, Gregor; Poljšak, Borut; Eržen, Ivan

    2017-01-01

    The cumulative phosphate intake in a typical daily diet is high and, according to several studies, already exceeds recommended values. The exposure of the general population to phosphorus via drinking water is generally not known. One of the hidden sources of phosphorus in a daily diet is sodium polyphosphate, commonly used as a drinking water softener. In Slovenia, softening of drinking water is carried out exclusively within the internal (household) drinking water supply systems to prevent the accumulation of limescale. The aim of the study was to determine the prevalence of sodium phosphates in the drinking water in Slovenia in different types of buildings, to determine residents’ awareness of the presence of chemical softeners in their drinking water, and to provide an exposure assessment on the phosphorus intake from drinking water. In the current study, the presence of phosphates in the samples of drinking water was determined using a spectrophotometric method with ammonium molybdate. In nearly half of the samples, the presence of phosphates as water softeners was confirmed. The measured concentrations varied substantially from 0.2 mg PO4/L to 24.6 mg PO4/L. Nearly 70% of the respondents were not familiar with the exact data on water softening in their buildings. It follows that concentrations of added phosphates should be controlled and the consumers should be informed of the added chemicals in their drinking water. The health risks of using sodium polyphosphate as a drinking water softener have not been sufficiently investigated and assessed. It is highly recommended that proper guidelines and regulations are developed and introduced to protect human health from adverse effects of chemicals in water intended for human consumption. PMID:28984825

  11. Contribution of Drinking Water Softeners to Daily Phosphate Intake in Slovenia.

    PubMed

    Jereb, Gregor; Poljšak, Borut; Eržen, Ivan

    2017-10-06

    The cumulative phosphate intake in a typical daily diet is high and, according to several studies, already exceeds recommended values. The exposure of the general population to phosphorus via drinking water is generally not known. One of the hidden sources of phosphorus in a daily diet is sodium polyphosphate, commonly used as a drinking water softener. In Slovenia, softening of drinking water is carried out exclusively within the internal (household) drinking water supply systems to prevent the accumulation of limescale. The aim of the study was to determine the prevalence of sodium phosphates in the drinking water in Slovenia in different types of buildings, to determine residents' awareness of the presence of chemical softeners in their drinking water, and to provide an exposure assessment on the phosphorus intake from drinking water. In the current study, the presence of phosphates in the samples of drinking water was determined using a spectrophotometric method with ammonium molybdate. In nearly half of the samples, the presence of phosphates as water softeners was confirmed. The measured concentrations varied substantially from 0.2 mg PO4/L to 24.6 mg PO4/L. Nearly 70% of the respondents were not familiar with the exact data on water softening in their buildings. It follows that concentrations of added phosphates should be controlled and the consumers should be informed of the added chemicals in their drinking water. The health risks of using sodium polyphosphate as a drinking water softener have not been sufficiently investigated and assessed. It is highly recommended that proper guidelines and regulations are developed and introduced to protect human health from adverse effects of chemicals in water intended for human consumption.

  12. Behaviors and attitudes associated with low drinking water intake among US adults, Food Attitudes and Behaviors Survey, 2007.

    PubMed

    Goodman, Alyson B; Blanck, Heidi M; Sherry, Bettylou; Park, Sohyun; Nebeling, Linda; Yaroch, Amy L

    2013-04-11

    Water is vital for life, and plain water is a calorie-free option for hydration. Increasing consumption of drinking water is a strategy to reduce energy intake and lose or maintain weight; however, information on the characteristics of consumers who drink water is limited. Our objective was to describe the characteristics of people who have a low intake of drinking water and to determine associations between their behaviors and attitudes and their intake of water. We analyzed data from a nationally representative sample of 3,397 US adults who participated in the National Cancer Institute's 2007 Food Attitudes and Behaviors Survey. Multivariable logistic regression was used to identify sociodemographic characteristics and health-related behaviors and attitudes associated with self-reported drinking water intake of less than 4 cups per day. Overall, 7% of adults reported no daily consumption of drinking water, 36% reported drinking 1 to 3 cups, 35% reported drinking 4 to 7 cups, and 22% reported drinking 8 cups or more. The likelihood of drinking less than 4 cups of water daily was significantly higher among participants aged 55 years or older than among those aged 18 to 34 (adjusted odds ratio [AOR], 1.3), among residents of the Northeast than among residents of the South (AOR, 1.4), among participants who consumed 1 cup or less of fruits or vegetables per day than among those who consumed 4.5 cups or more (AOR, 3.0), among participants who did not exercise than among those who exercised 150 minutes or more per week (AOR, 1.7), and among participants who were neither trying to gain nor lose weight than among those trying to lose weight (AOR, 1.3). Low drinking water intake was associated with age, region of residence, and several unhealthful behaviors and attitudes. Understanding characteristics associated with low drinking water intake may help to identify populations that could benefit from interventions to help adults drink more water.

  13. Drinking induced by angiotensin II in fishes.

    PubMed

    Kobayashi, H; Uemura, H; Takei, Y; Itatsu, N; Ozawa, M; Ichinohe, K

    1983-02-01

    Among 20 species of freshwater fishes examined, Pseudorasbora parva, Rhodeus ocellatus, Cobitis anguillicaudatus, Carassius auratus, Oryzias latipes, Gambusia affinis, and Gyrinocheilus anymonieri were found to drink water like seawater fishes, while 13 remaining species did not drink. For fish species found exclusively in fresh water, angiotensin II (AII) treatment did not induce drinking. In contrast, those freshwater fishes which survive in estuarine brackish water (Leuciscus hakonensis, C. carassius, Parasilurus asotus, G. affinis, Chaenogobius annularis, Tridentiger obscurus, and G. anymonieri responded to AII by drinking. Furthermore, some freshwater fishes which survive either in hypertonic water (C. auratus) or in sea water (Anguilla japonica and O. latipes) also responded to AII by drinking. Of 17 seawater fishes examined, Eptatretus burgeri, Triakis scyllia, and Heterodontus japonicus failed to drink water, and for Trachurus japonicus, Platichthys bicoloratus, and Glossogobius giuris fasciatopunctatus, water intake was minor (similar to freshwater fishes). The 11 remaining seawater fishes drank water. AII did not induce drinking in fishes living exclusively in sea water. However, seawater fishes which survive either in tide pools (Chasmichthys dolichognathus gulosus) or in brackish water (Sillago japonica, Mugil cephalus, G. giuris fasciatopunctatus) responded to AII by drinking. P. bicoloratus, Acanthopagrus schlegeli, and Fugu niphobles were exceptional, in that they survive in brackish water, but did not respond to AII. Although some exceptions exist, it is generally concluded that a drinking response to AII is characteristic of fishes which encounter water more hypertonic than that in which they typically reside. Accordingly, a drinking mechanism induced by AII may be a compensatory emergency reaction to dehydration stress.

  14. 78 FR 48158 - Meeting of the National Drinking Water Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-07

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9843-4] Meeting of the National Drinking Water Advisory....S. Environmental Protection Agency is announcing a meeting of the National Drinking Water Advisory Council (Council), established under the Safe Drinking Water Act (SDWA). This meeting is scheduled for...

  15. EPA’s Drinking Water Treatability Database: A Tool for All Drinking Water Professionals

    EPA Science Inventory

    The Drinking Water Treatability Database (TDB) is being developed by the USEPA Office of Research and Development to allow drinking water professionals and others to access referenced information gathered from thousands of literature sources and assembled on one site. Currently, ...

  16. DEVELOPMENT OF WATER SUPPLY TECHNOLOGY TO MEET THE REQUIREMENTS OF THE SAFE DRINKING WATER ACT OF 1996: TRENDS AND PROSPECTS.

    EPA Science Inventory

    The passage of the U.S. Safe Drinking Water Act (SDWA) in 1974 has had a major impact on the way water is treated and delivered in the U.S. The Act established national drinking water regulations for more than 170,000 public drinking water systems serving over 250 million people ...

  17. An assessment of drinking-water supplies on the Hanford site: an evaluation conducted at a federal nuclear facility in southeastern Washington state.

    PubMed

    Hanf, R William; Kelly, Lynn M

    2005-03-01

    Drinking water is supplied to most U.S. Department of Energy (DOE) facilities on the Hanford Site by DOE-owned, contractor-operated pumping and distribution systems. Water is primarily obtained from the Columbia River, but some facilities use water from on-site groundwater wells. Because of the large amount of radioactive and chemical waste produced, stored, and disposed of at Hanford, some people are concerned that waste materials are contaminating on-site drinking-water supplies. This paper describes the drinking-water facilities and treatment requirements on the Hanford Site and summarizes radiological and non-radiological water quality data obtained from water samples collected from each drinking-water system in use during 2001 and 2002. Monitoring data show that Hanford-produced radionuclides are measurable in some drinking-water samples. The only non-radiological contaminants detected either were by-products of the chlorination process or came from off-site agricultural activities. Contaminant level values were, in all cases, below state and federal drinking-water limits. This information will provide assurance to current employees and future site developers that drinking water on the Hanford Site is safe for public consumption.

  18. The challenges of sustainable access to safe drinking water in rural areas of developing countries: case of Zawtar El-Charkieh, Southern Lebanon.

    PubMed

    Massoud, May A; Al-Abady, Abdolmonim; Jurdi, Mey; Nuwayhid, Iman

    2010-06-01

    Adequate and safe water is important for human health and well-being, economic production, and sustainable development. Failure to ensure the safety of drinking water may expose the community to the risk of outbreaks of waterborne and infectious diseases. Although drinking water is a basic human right, many people do not have access to safe and adequate drinking water or proper sanitation facilities. The authors conducted a study to assess the quantity, cost, continuity, coverage, and quality of drinking water in the village of Zawtar El-Charkieh, Lebanon. Their aim was to identify the challenges of sustainable access to safe drinking water in order to determine the short-term management actions and long-term strategies to improve water quality. Results revealed that contamination of the source, absence of any disinfection method or insufficient dose, poor maintenance operations, and aging of the networks are significant factors contributing to water contamination during the storage and distribution process. Establishing a comprehensive drinking water system that integrates water supply, quality, and management as well as associated educational programs in order to ensure the safety and sustainability of drinking water supplies is essential.

  19. Prediction of drinking water intake by dairy cows.

    PubMed

    Appuhamy, J A D R N; Judy, J V; Kebreab, E; Kononoff, P J

    2016-09-01

    Mathematical models that predict water intake by drinking, also known as free water intake (FWI), are useful in understanding water supply needed by animals on dairy farms. The majority of extant mathematical models for predicting FWI of dairy cows have been developed with data sets representing similar experimental conditions, not evaluated with modern cows, and often require dry matter intake (DMI) data, which may not be routinely available. The objectives of the study were to (1) develop a set of new empirical models for predicting FWI of lactating and dry cows with and without DMI using literature data, and (2) evaluate the new and the extant models using an independent set of FWI measurements made on modern cows. Random effect meta-regression analyses were conducted using 72 and 188 FWI treatment means with and without dietary electrolyte and daily mean ambient temperature (TMP) records, respectively, for lactating cows, and 19 FWI treatment means for dry cows. Milk yield, DMI, body weight, days in milk, dietary macro-nutrient contents, an aggregate milliequivalent concentration of dietary sodium and potassium (NaK), and TMP were used as potential covariates to the models. A model having positive relationships of DMI, dietary dry matter (DM%), and CP (CP%) contents, NaK, and TMP explained 76% of variability in FWI treatment means of lactating cows. When challenged on an independent data set (n=261), the model more accurately predicted FWI [root mean square prediction error as a percentage of average observed value (RMSPE%)=14.4%] compared with a model developed without NaK and TMP (RMSPE%=17.3%), and all extant models (RMSPE%≥15.7%). A model without DMI included positive relationships of milk yield, DM%, NaK, TMP, and days in milk, and explained 63% of variability in the FWI treatment means and performed well (RMSPE%=17.9%), when challenged on the independent data. New models for dry cows included positive relationships of DM% and TMP along with DMI or body weight. The new models with and without DMI explained 75 and 54% of the variability in FWI treatment means of dry cows and had RMSPE% of 12.8 and 15.2%, respectively, when evaluated with the literature data. The study offers a set of empirical models that can assist in determining drinking water needs of dairy farms. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. The South Australian Safe Drinking Water Act: summary of the first year of operation.

    PubMed

    Froscio, Suzanne M; Bolton, Natalie; Cooke, Renay; Wittholz, Michelle; Cunliffe, David

    2016-06-01

    The Safe Drinking Water Act 2011 was introduced in South Australia to provide clear direction to drinking water providers on how to achieve water safety. The Act requires drinking water providers to register with SA Health and develop a risk management plan (RMP) for their water supply that includes operational and verification monitoring plans and an incident notification and communication protocol. During the first year of operation, 212 drinking water providers registered under the Act, including one major water utility and a range of small to medium sized providers in regional and remote areas of the State. Information was captured on water source(s) used and water treatment. Rainwater was the most frequently reported drinking water source (66%), followed by bore water (13%), on-supply or carting of mains water (13%), mixed source (rainwater with bore water backup) (6%) and surface water (3%). The majority of providers (91%) treated the water supply, 87% used disinfection. During the first year of operation, 16 water quality incidents were formally reported to SA Health. These included both microbial and chemical incidents. Case studies presented highlight how the RMPs are assisting drinking water providers to identify incidents of potential health concern and implement corrective actions.

  1. Rural drinking water issues in India’s drought-prone area: a case of Maharashtra state

    NASA Astrophysics Data System (ADS)

    Udmale, Parmeshwar; Ichikawa, Yutaka; Nakamura, Takashi; Shaowei, Ning; Ishidaira, Hiroshi; Kazama, Futaba

    2016-07-01

    Obtaining sufficient drinking water with acceptable quality under circumstances of lack, such as droughts, is a challenge in drought-prone areas of India. This study examined rural drinking water availability issues during a recent drought (2012) through 22 focus group discussions (FGDs) in a drought-prone catchment of India. Also, a small chemical water quality study was undertaken to evaluate the suitability of water for drinking purpose based on Bureau of Indian Standards (BIS). The drought that began in 2011 and further deteriorated water supplies in 2012 caused a rapid decline in reservoir storages and groundwater levels that led, in turn, to the failure of the public water supply systems in the Upper Bhima Catchment. Dried up and low-yield dug wells and borewells, tanker water deliveries from remote sources, untimely water deliveries, and degraded water quality were the major problems identified in the FGDs. In addition to severe drinking water scarcity during drought, the quality of the drinking water was found to be a major problem, and it apparently was neglected by local governments and users. Severe contamination of the drinking water with nitrate-nitrogen, ammonium-nitrogen, and chlorides was found in the analyzed drinking water samples. Hence, in addition to the water scarcity, the results of this study point to an immediate need to investigate the problem of contaminated drinking water sources while designing relief measures for drought-prone areas of India.

  2. Contamination levels of human pharmaceutical compounds in French surface and drinking water.

    PubMed

    Mompelat, S; Thomas, O; Le Bot, B

    2011-10-01

    The occurrence of 20 human pharmaceutical compounds and metabolites from 10 representative therapeutic classes was analysed from resource and drinking water in two catchment basins located in north-west France. 98 samples were analysed from 63 stations (surface water and drinking water produced from surface water). Of the 20 human pharmaceutical compounds selected, 16 were quantified in both the surface water and drinking water, with 22% of the values above the limit of quantification for surface water and 14% for drinking water). Psychostimulants, non-steroidal anti-inflammatory drugs, iodinated contrast media and anxiolytic drugs were the main therapeutic classes of human pharmaceutical compounds detected in the surface water and drinking water. The results for surface water were close to results from previous studies in spite of differences in prescription rates of human pharmaceutical compounds in different countries. The removal rate of human pharmaceutical compounds at 11 water treatment units was also determined. Only caffeine proved to be resistant to drinking water treatment processes (with a minimum rate of 5%). Other human pharmaceutical compounds seemed to be removed more efficiently (average elimination rate of over 50%) by adsorption onto activated carbon and oxidation/disinfection with ozone or chlorine (not taking account of the disinfection by-products). These results add to the increasing evidence of the occurrence of human pharmaceutical compounds in drinking water that may represent a threat to human beings exposed to a cocktail of human pharmaceutical compounds and related metabolites and by-products in drinking water.

  3. Management of source and drinking-water quality in Pakistan.

    PubMed

    Aziz, J A

    2005-01-01

    Drinking-water quality in both urban and rural areas of Pakistan is not being managed properly. Results of various investigations provide evidence that most of the drinking-water supplies are faecally contaminated. At places groundwater quality is deteriorating due to the naturally occurring subsoil contaminants or to anthropogenic activities. The poor bacteriological quality of drinking-water has frequently resulted in high incidence of waterborne diseases while subsoil contaminants have caused other ailments to consumers. This paper presents a detailed review of drinking-water quality in the country and the consequent health impacts. It identifies various factors contributing to poor water quality and proposes key actions required to ensure safe drinking-water supplies to consumers.

  4. Improved water resource management using three dimensional groundwater modelling for a highly complex environmental

    NASA Astrophysics Data System (ADS)

    Moeck, Christian; Affolter, Annette; Radny, Dirk; Auckenthaler, Adrian; Huggenberger, Peter; Schirmer, Mario

    2017-04-01

    Proper allocation and management of groundwater is an important and critical challenge under rising water demands of various environmental sectors but good groundwater quality is often limited because of urbanization and contamination of aquifers. Given the predictive capability of groundwater models, they are often the only viable means of providing input to water management decisions. However, modelling flow and transport processes can be difficult due to their unknown subsurface heterogeneity and typically unknown distribution of contaminants. As a result water resource management tasks are based on uncertain assumption on contaminants patterns and this uncertainty is typically not incorporated into the assessment of risks associated with different proposed management scenarios. A three-dimensional groundwater model was used to improve water resource management for a study area, where drinking water production is close to different former landfills and industrial areas. To avoid drinking water contamination, artificial groundwater recharge with surface water into the gravel aquifer is used to create a hydraulic barrier between contaminated sites and drinking water extraction wells. The model was used for simulating existing and proposed water management strategies as a tool to ensure the utmost security for drinking water. A systematic evaluation of the flow direction and magnitude between existing observation points using a newly developed three point estimation method for a large amount of scenarios was carried out. Due to the numerous observation points 32 triangles (three-points) were created which cover the entire area around the Hardwald. We demonstrated that systematically applying our developed methodology helps to identify important locations which are sensitive to changing boundary conditions and where additional protection is required without highly computational demanding transport modelling. The presented integrated approach using the flow direction between observation points can be easily transferred to a variety of hydrological settings to evaluate systematically groundwater modelling scenarios.

  5. 76 FR 55799 - Mandipropamid; Pesticide Tolerances for Emergency Exemptions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-09

    ... affected. The North American Industrial Classification System (NAICS) codes have been provided to assist....'' This includes exposure through drinking water and in residential settings, but does not include... are being approved under emergency conditions, EPA has not made any decisions about whether...

  6. 77 FR 26462 - Dimethomorph; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-04

    ... affected. The North American Industrial Classification System (NAICS) codes have been provided to assist... review of the data supporting the petitions, EPA has revised the proposed tolerance level and commodity....'' This includes exposure through drinking water and in residential settings, but does not include...

  7. Diagnostic Sampling to Reveal Hidden Lead and Copper Health Risks

    EPA Science Inventory

    Lead, copper and other metallic contamination sources in premise drinking water plumbing systems, are unevenly distributed and are usually hidden from thought, view, or both. Many sampling protocols exist, each with some set of implicit assumptions governing its applicability to...

  8. Effect of disopyramide on bacterial diversity in drinking water

    NASA Astrophysics Data System (ADS)

    Wu, Qing; Zhao, Xiaofei; Tian, Qi; Wang, Lei; Zhao, Xinhua

    2018-02-01

    Disopyramide was detected in drinking water by LC-MS/MS and the microbial diversity was investigated by PCR and high-throughput sequencing. The results showed that bacteria community structure in drinking water changed a lot when added different concentrations of disopyramide. The results of Shannon index showed that the total number and abundance of bacterial community species in drinking water samples decreased significantly after the addition of disopyramide. However, the number and abundance of community structure did not change with the concentration of disopyramide. Disopyramide inhibits the activity of bacterial community in drinking water and also can reduce the bacterial community diversity in drinking water.

  9. Water Quality on the Prairie Band Potawatomi Reservation, Northeastern Kansas, June 1996 through August 2006

    USGS Publications Warehouse

    Schmidt, Heather C. Ross; Mehl, Heidi E.; Pope, Larry M.

    2007-01-01

    This report describes surface- and ground-water-quality data collected on the Prairie Band Potawatomi Reservation in northeastern Kansas from November 2003 through August 2006 (hereinafter referred to as the 'current study period'). Data from this study period are compared to results from June 1996 through August 2003, which are published in previous reports as part of a multiyear cooperative study with the Prairie Band Potawatomi Nation. Surface and ground water are valuable resources to the Prairie Band Potawatomi Nation as tribal members currently (2007) use area streams to fulfill subsistence hunting and fishing needs and because ground water potentially could support expanding commercial enterprise and development. Surface-water-quality samples collected from November 2003 through August 2006 were analyzed for physical properties, dissolved solids, major ions, nutrients, trace elements, pesticides, fecal-indicator bacteria, suspended-sediment concentration, and total suspended solids. Ground-water samples were analyzed for physical properties, dissolved solids, major ions, nutrients, trace elements, pesticides, and fecal-indicator bacteria. Chemical oxygen demand and volatile organic compounds were analyzed in all three samples from one monitoring well located near a construction and demolition landfill on the reservation, and in one sample from another well in the Soldier Creek drainage basin. Previous reports published as a part of this ongoing study identified total phosphorus, triazine herbicides, and fecal coliform bacteria as exceeding their respective water-quality criteria in surface water on the reservation. Previous ground-water assessments identified occasional sample concentrations of dissolved solids, sodium, sulfate, boron, iron, and manganese as exceeding their respective water-quality criteria. Fifty-six percent of the 55 surface-water samples collected during the current study period and analyzed for total phosphorus exceeded the goal of 0.1 mg/L (milligram per liter) established by the U.S. Environmental Protection Agency (USEPA) to limit cultural eutrophication in flowing water. Concentrations of dissolved solids frequently exceeded the USEPA Secondary Drinking-Water Regulation (SDWR) of 500 mg/L in samples from two sites. Concentrations of sodium exceeded the Drinking-Water Advisory of 20 mg/L set by USEPA in almost 50 percent of the surface-water samples. All four samples analyzed for atrazine concentrations showed some concentration of the pesticide, but none exceeded the Maximum Contaminant Level (MCL) established for drinking water by USEPA of 3.0 ?g/L (micrograms per liter) as an annual average. A triazine herbicide screen was used on 55 surface-water samples, and triazine compounds were frequently detected. Triazine herbicides and their degradates are listed on the USEPA Contaminant Candidate List. In 41 percent of surface-water samples, densities of Escherichia coli (E. coli) bacteria exceeded the primary contact, single-sample maximum in public-access bodies of water (1,198 colonies per 100 milliliters of water for samples collected between April 1 and October 31) set by the Kansas Department of Health and Environment (KDHE). Nitrite plus nitrate concentrations in all three water samples from 1 of 10 monitoring wells exceeded the MCL of 10 mg/L established by USEPA for drinking water. Arsenic concentrations in all three samples from one well exceeded the proposed MCL of 10 ?g/L established by USEPA for drinking water. Boron also exceeded the drinking-water advisory in three samples from one well, and iron concentrations were higher than the SDWR in water from four wells. There was some detection of pesticides in ground-water samples from three of the wells, and one detection of the volatile organic compound diethyl ether in one well. Concentrations of dissolved solids exceeded the SDWR in 20 percent of ground-water samples collected during the current study period, and concentration

  10. Water hyacinth removes arsenic from arsenic-contaminated drinking water.

    PubMed

    Misbahuddin, Mir; Fariduddin, Atm

    2002-01-01

    Water hyacinth (Eichhornia crassipes) removes arsenic from arsenic-contaminated drinking water. This effect depends on several factors, such as the amount of water hyacinth, amount of arsenic present in the water, duration of exposure, and presence of sunlight and air. On the basis of the present study, the authors suggest that water hyacinth is useful for making arsenic-contaminated drinking water totally arsenic free. Water hyacinth provides a natural means of removing arsenic from drinking water at the household level without monetary cost.

  11. 78 FR 65981 - Meeting of the National Drinking Water Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-04

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9902-32-OW] Meeting of the National Drinking Water Advisory....S. Environmental Protection Agency (EPA) is announcing a meeting of the National Drinking Water Advisory Council (Council), established under the Safe Drinking Water Act (SDWA). The meeting is scheduled...

  12. 33 CFR 214.9 - Requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... SUPPLIES OF DRINKING WATER § 214.9 Requirements. Providing emergency supplies of clean drinking water... met. (b) The extent of state and local efforts to provide clean drinking water and their capability to do so. Corps efforts to provide temporary supplies of drinking water must be limited to measures...

  13. 33 CFR 214.9 - Requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SUPPLIES OF DRINKING WATER § 214.9 Requirements. Providing emergency supplies of clean drinking water... met. (b) The extent of state and local efforts to provide clean drinking water and their capability to do so. Corps efforts to provide temporary supplies of drinking water must be limited to measures...

  14. 33 CFR 214.9 - Requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SUPPLIES OF DRINKING WATER § 214.9 Requirements. Providing emergency supplies of clean drinking water... met. (b) The extent of state and local efforts to provide clean drinking water and their capability to do so. Corps efforts to provide temporary supplies of drinking water must be limited to measures...

  15. 33 CFR 214.9 - Requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SUPPLIES OF DRINKING WATER § 214.9 Requirements. Providing emergency supplies of clean drinking water... met. (b) The extent of state and local efforts to provide clean drinking water and their capability to do so. Corps efforts to provide temporary supplies of drinking water must be limited to measures...

  16. Water Treatment: Can You Purify Water for Drinking?

    ERIC Educational Resources Information Center

    Harris, Mary E.

    1996-01-01

    Presents a three-day mini unit on purification of drinking water that uses the learning cycle approach. Demonstrates the typical technology that water companies use to provide high-quality drinking water. (JRH)

  17. Sachet drinking water in Ghana’s Accra-Tema metropolitan area: past, present, and future

    PubMed Central

    Weeks, John R.; Fink, Günther

    2013-01-01

    Population growth in West Africa has outpaced local efforts to expand potable water services, and private sector sale of packaged drinking water has filled an important gap in household water security. Consumption of drinking water packaged in plastic sachets has soared in West Africa over the last decade, but the long-term implications of these changing consumption patterns remain unclear and unstudied. This paper reviews recent shifts in drinking water, drawing upon data from the 2003 and 2008 Demographic and Health Surveys, and provides an overview of the history, economics, quality, and regulation of sachet water in Ghana’s Accra-Tema Metropolitan Area. Given the pros and cons of sachet water, we suggest that a more holistic understanding of the drinking water landscape is necessary for municipal planning and sustainable drinking water provision. PMID:24294481

  18. Sachet drinking water in Ghana's Accra-Tema metropolitan area: past, present, and future.

    PubMed

    Stoler, Justin; Weeks, John R; Fink, Günther

    2012-01-01

    Population growth in West Africa has outpaced local efforts to expand potable water services, and private sector sale of packaged drinking water has filled an important gap in household water security. Consumption of drinking water packaged in plastic sachets has soared in West Africa over the last decade, but the long-term implications of these changing consumption patterns remain unclear and unstudied. This paper reviews recent shifts in drinking water, drawing upon data from the 2003 and 2008 Demographic and Health Surveys, and provides an overview of the history, economics, quality, and regulation of sachet water in Ghana's Accra-Tema Metropolitan Area. Given the pros and cons of sachet water, we suggest that a more holistic understanding of the drinking water landscape is necessary for municipal planning and sustainable drinking water provision.

  19. Jarrib Baleha--a pilot nutrition intervention to increase water intake and decrease soft drink consumption among school children in Beirut.

    PubMed

    Abi Haidar, Gina; Lahham Salameh, Nina; Afifi, Rema A

    2011-01-01

    The Global School-based Student Health Survey (2005) indicated that in Lebanon, 33% of students in grades 7-9 drink carbonated soft drinks two or more times per day. Observational evidence suggests that students do not drink enough water. A pilot project called Jarrib Baleha ['try without it'] was implemented with 110 students in grades 3 and 4 in two schools in Lebanon to promote drinking water instead of soft drinks. Specific objectives included increasing knowledge about the benefits of water and the harms of soft drinks, increasing confidence in choosing water over soft drinks, and increasing actual water drinking behavior while decreasing soft drink consumption. Four 50-minute theory-informed, interactive and participatory sessions were implemented --by a graduate student in partial fulfillment of requirements for a MPH degree--over a period of two weeks. The intervention sessions--based on the Health Belief Model--took place during a class period. Process evaluation measured satisfaction of the students with the sessions. Impact evaluation measured changes in knowledge, attitudes including self-efficacy, and behavior, using a self-administered questionnaire completed prior to and after the intervention. Bivariate analysis using crosstabs was carried out to compare pretest and posttest scores on knowledge, attitudes, and behavior. Comparison of the knowledge index between pretest and posttest indicated that, overall, knowledge increased from 6.0769 to 9.1500 (p = 0.000). Compared to pretest, students at posttest also felt more confident to drink less soft drinks and more water (p < 0.05), to drink water when thirsty (p < 0.05), and to choose water over soft drinks when going to a restaurant (p < 0.05). The percentage of students drinking 6 or more cups of water increased from 27.7% to 59.1% (p = 0.000); and those drinking less than one can of soft drink/day increased from 25.5% to 57.6% (p = 0.000). These results are encouraging and suggest the Jarrib Baleha intervention could be implemented on a wider scale with students from both public and private schools. A more robust evaluation design is recommended. A comprehensive approach to school-based nutrition is also suggested.

  20. MEETING THE REQUIREMENTS OF THE U.S. SAFE DRINKING WATER ACT: THE ROLE OF TECHNOLOGY

    EPA Science Inventory

    The passage of the U.S. Safe Drinking Water Act (SDWA) in 1974 has had a major impact on the way water is treated and delivered in the United States. The Act established national drinking water regulations for more than 170,000 public drinking water systems serving over 250 mill...

  1. Drinking Water Training

    EPA Pesticide Factsheets

    The Drinking Water Academy provides online training and information to ensure that water professionals, public officials, and involved citizens have the knowledge and skills necessary to protect our drinking water supply.

  2. Utilisation of drinking water treatment sludge for the manufacturing of ceramic products

    NASA Astrophysics Data System (ADS)

    Kizinievič, O.; Kizinievič, V.

    2017-10-01

    The influence of the additive of drinking water treatment sludge on the physical and mechanical properties, structural parameters, microstructure of the ceramic products is analysed in the research. Drinking water treatment sludge is renewable, environmentally-friendly, economical additive saving expensive natural raw materials when introduced into the ceramic products. The main drinking water treatment sludge component is amorphous Fe2O3 (70%). Formation masses are prepared by incorporating from 5 % to 60 % of drinking water treatment additive and by burning out at the temperature 1000 °C. Investigation showed that the physical and mechanical properties, microstructure of the ceramic bodies vary depending on the amount of drinking water treatment additive incorporated. In addition, drinking water treatment additive affects the ceramic body as a pigment that dyes the ceramic body in darker red colour.

  3. What's Wrong with the Tap? Examining Perceptions of Tap Water and Bottled Water at Purdue University

    NASA Astrophysics Data System (ADS)

    Saylor, Amber; Prokopy, Linda Stalker; Amberg, Shannon

    2011-09-01

    The environmental impacts of bottled water prompted us to explore drinking water choices at Purdue University, located in West Lafayette, IN. A random sample of 2,045 Purdue University students, staff, and faculty was invited to participate in an online survey. The survey assessed current behaviors as well as perceived barriers and benefits to drinking tap water versus bottled water. 677 surveys were completed for a response rate of 33.1%. We then conducted qualitative interviews with a purposive sample of university undergraduates ( n = 21) to obtain contextual insights into the survey results and the beliefs of individuals with a variety of drinking water preferences. This study revealed that women drink disproportionately more bottled water then men while undergraduate students drink more than graduate students, staff and faculty. The study also uncovered a widespread belief that recycling eliminates the environmental impacts of bottled water. Important barriers to drinking tap water at Purdue include: perceived risks from tap water and the perceived safety of bottled water, preferring the taste of bottled water, and the convenience of drinking bottled water. The qualitative interviews revealed that drinking water choices can be influenced by several factors—especially whether individuals trust tap water to be clean—but involve varying levels of complexity. The implications of these results for social marketing strategies to promote tap water are discussed.

  4. What's wrong with the tap? Examining perceptions of tap water and bottled water at Purdue University.

    PubMed

    Saylor, Amber; Prokopy, Linda Stalker; Amberg, Shannon

    2011-09-01

    The environmental impacts of bottled water prompted us to explore drinking water choices at Purdue University, located in West Lafayette, IN. A random sample of 2,045 Purdue University students, staff, and faculty was invited to participate in an online survey. The survey assessed current behaviors as well as perceived barriers and benefits to drinking tap water versus bottled water. 677 surveys were completed for a response rate of 33.1%. We then conducted qualitative interviews with a purposive sample of university undergraduates (n = 21) to obtain contextual insights into the survey results and the beliefs of individuals with a variety of drinking water preferences. This study revealed that women drink disproportionately more bottled water then men while undergraduate students drink more than graduate students, staff and faculty. The study also uncovered a widespread belief that recycling eliminates the environmental impacts of bottled water. Important barriers to drinking tap water at Purdue include: perceived risks from tap water and the perceived safety of bottled water, preferring the taste of bottled water, and the convenience of drinking bottled water. The qualitative interviews revealed that drinking water choices can be influenced by several factors-especially whether individuals trust tap water to be clean-but involve varying levels of complexity. The implications of these results for social marketing strategies to promote tap water are discussed.

  5. Geographical distribution of drinking-water with high iodine level and association between high iodine level in drinking-water and goitre: a Chinese national investigation.

    PubMed

    Shen, Hongmei; Liu, Shoujun; Sun, Dianjun; Zhang, Shubin; Su, Xiaohui; Shen, Yanfeng; Han, Hepeng

    2011-07-01

    Excessive iodine intake can cause thyroid function disorders as can be caused by iodine deficiency. There are many people residing in areas with high iodine levels in drinking-water in China. The main aim of the present study was to map the geographical distribution of drinking-water with high iodine level in China and to determine the relationship between high iodine level in drinking-water and goitre prevalence. Iodine in drinking-water was measured in 1978 towns of eleven provinces in China, with a total of 28,857 water samples. We randomly selected children of 8-10 years old, examined the presence of goitre and measured their urinary iodine in 299 towns of nine provinces. Of the 1978 towns studied, 488 had iodine levels between 150 and 300 μg/l in drinking-water, and in 246 towns, the iodine level was >300 μg/l. These towns are mainly distributed along the original Yellow River flood areas, the second largest river in China. Of the 56 751 children examined, goitre prevalence was 6.3 % in the areas with drinking-water iodine levels of 150-300 μg/l and 11.0 % in the areas with drinking-water iodine >300 μg/l. Goitre prevalence increased with water and urinary iodine levels. For children with urinary iodine >1500 μg/l, goitre prevalence was 3.69 times higher than that for those with urinary iodine levels of 100-199 μg/l. The present study suggests that drinking-water with high iodine levels is distributed in eleven provinces of China. Goitre becomes more prevalent with the increase in iodine level in drinking-water. Therefore, it becomes important to prevent goitre through stopping the provision of iodised salt and providing normal drinking-water iodine through pipelines in these areas in China.

  6. Human health impacts of drinking water (surface and ground) pollution Dakahlyia Governorate, Egypt

    NASA Astrophysics Data System (ADS)

    Mandour, R. A.

    2012-09-01

    This study was done on 30 drinking tap water samples (surface and ground) and 30 urine samples taken from patients who attended some of Dakahlyia governorate hospitals. These patients were complaining of poor-quality tap water in their houses, which was confirmed by this study that drinking water is contaminated with trace elements in some of the studied areas. The aim of this study was to determine the relationship between the contaminant drinking water (surface and ground) in Dakahlyia governorate and its impact on human health. This study reports the relationship between nickel and hair loss, obviously shown in water and urine samples. Renal failure cases were related to lead and cadmium contaminated drinking water, where compatibilities in results of water and urine samples were observed. Also, liver cirrhosis cases were related to iron-contaminated drinking water. Studies of these diseases suggest that abnormal incidence in specific areas is related to industrial wastes and agricultural activities that have released hazardous and toxic materials in the drinking water and thereby led to its contamination in these areas. We conclude that trace elements should be removed from drinking water for human safety.

  7. Nitrate in drinking water and colorectal cancer risk: A nationwide population-based cohort study.

    PubMed

    Schullehner, Jörg; Hansen, Birgitte; Thygesen, Malene; Pedersen, Carsten B; Sigsgaard, Torben

    2018-07-01

    Nitrate in drinking water may increase risk of colorectal cancer due to endogenous transformation into carcinogenic N-nitroso compounds. Epidemiological studies are few and often challenged by their limited ability of estimating long-term exposure on a detailed individual level. We exploited population-based health register data, linked in time and space with longitudinal drinking water quality data, on an individual level to study the association between long-term drinking water nitrate exposure and colorectal cancer (CRC) risk. Individual nitrate exposure was calculated for 2.7 million adults based on drinking water quality analyses at public waterworks and private wells between 1978 and 2011. For the main analyses, 1.7 million individuals with highest exposure assessment quality were included. Follow-up started at age 35. We identified 5,944 incident CRC cases during 23 million person-years at risk. We used Cox proportional hazards models to estimate hazard ratios (HRs) of nitrate exposure on the risk of CRC, colon and rectal cancer. Persons exposed to the highest level of drinking water nitrate had an HR of 1.16 (95% CI: 1.08-1.25) for CRC compared with persons exposed to the lowest level. We found statistically significant increased risks at drinking water levels above 3.87 mg/L, well below the current drinking water standard of 50 mg/L. Our results add to the existing evidence suggesting increased CRC risk at drinking water nitrate concentrations below the current drinking water standard. A discussion on the adequacy of the drinking water standard in regards to chronic effects is warranted. © 2018 UICC.

  8. Perfluorooctanoic acid (PFOA), an emerging drinking water contaminant: a critical review of recent literature.

    PubMed

    Post, Gloria B; Cohn, Perry D; Cooper, Keith R

    2012-07-01

    Perfluorooctanoic acid (PFOA) is an anthropogenic contaminant that differs in several ways from most other well-studied organic chemicals found in drinking water. PFOA is extremely resistant to environmental degradation processes and thus persists indefinitely. Unlike most other persistent and bioaccumulative organic pollutants, PFOA is water-soluble, does not bind well to soil or sediments, and bioaccumulates in serum rather than in fat. It has been detected in finished drinking water and drinking water sources impacted by releases from industrial facilities and waste water treatment plants, as well as in waters with no known point sources. However, the overall occurrence and population exposure from drinking water is not known. PFOA persists in humans with a half-life of several years and is found in the serum of almost all U.S. residents and in populations worldwide. Exposure sources include food, food packaging, consumer products, house dust, and drinking water. Continued exposure to even relatively low concentrations in drinking water can substantially increase total human exposure, with a serum:drinking water ratio of about 100:1. For example, ongoing exposures to drinking water concentrations of 10 ng/L, 40 ng/L, 100 ng/L, or 400 ng/L are expected to increase mean serum levels by about 25%, 100%, 250%, and 1000%, respectively, from the general population background serum level of about 4 ng/mL. Infants are potentially a sensitive subpopulation for PFOA's developmental effects, and their exposure through breast milk from mothers who use contaminated drinking water and/or from formula prepared with contaminated drinking water is higher than in adults exposed to the same drinking water concentration. Numerous health endpoints are associated with human PFOA exposure in the general population, communities with contaminated drinking water, and workers. As is the case for most such epidemiology studies, causality for these effects is not proven. Unlike most other well-studied drinking water contaminants, the human dose-response curve for several effects appears to be steepest at the lower exposure levels, including the general population range, with no apparent threshold for some endpoints. There is concordance in animals and humans for some effects, while humans and animals appear to react differently for other effects such as lipid metabolism. PFOA was classified as "likely to be carcinogenic in humans" by the USEPA Science Advisory Board. In animal studies, developmental effects have been identified as more sensitive endpoints for toxicity than carcinogenicity or the long-established hepatic effects. Notably, exposure to an environmentally relevant drinking water concentration caused adverse effects on mammary gland development in mice. This paper reviews current information relevant to the assessment of PFOA as an emerging drinking water contaminant. This information suggests that continued human exposure to even relatively low concentrations of PFOA in drinking water results in elevated body burdens that may increase the risk of health effects. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Detection of enteroviruses in untreated and treated drinking water supplies in South Africa.

    PubMed

    Ehlers, M M; Grabow, W O K; Pavlov, D N

    2005-06-01

    Enteric viruses have been detected in many drinking water supplies all over the world. A meaningful number of these supplies were treated and disinfected according to internationally acceptable methods. In addition, counts of bacterial indicators (coliform bacteria and heterotrophic plate count organisms) in these water supplies were within limits generally recommended for treated drinking water and these findings have been supported by epidemiological data on infections associated with drinking water. The shortcomings of conventional treatment methods and indicator organisms to confirm the absence of enteric viruses from drinking water, was generally ascribed to the exceptional resistance of these viruses. In this study, the prevalence of enteroviruses detected from July 2000 to June 2002 in sewage, river-, borehole-, spring- and dam water as well as drinking water supplies treated and disinfected according to international specifications for the production of safe drinking water was analysed. A glass wool adsorption-elution technique was used to recover viruses from 10--20 l of sewage as well as environmental water samples, in the case of drinking water from more than 100 l. Recovered enteroviruses were inoculated onto two cell culture types (BGM and PLC/PRF/5 cells) for amplification of viral RNA with nested-PCR being used to detect the amplified viral RNA. Results from the study demonstrated the presence of enteroviruses in 42.5% of sewage and in 18.7% of treated drinking water samples. Furthermore, enteroviruses were detected in 28.5% of river water, in 26.7% of dam/spring water and in 25.3% of borehole water samples. The high prevalence of coxsackie B viruses found in this study suggested, that a potential health risk and a burden of disease constituted by these viruses might be meaningful. These findings indicated that strategies, other than end-point analysis of treated and disinfected drinking water supplies, may be required to ensure the production of drinking water that does not exceed acceptable health risks. More reliable approaches to ensure acceptable safety of drinking water supplies may be based on control by multiple-barrier principles from catchment to tap using hazard assessment and critical control point (HACCP) principles.

  10. 30 CFR 75.1718 - Drinking water.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drinking water. 75.1718 Section 75.1718 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718 Drinking water. [Statutory Provisions] An adequate supply of potable water shall be provided for drinking purposes in the active workings of the mine...

  11. 30 CFR 75.1718 - Drinking water.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water. 75.1718 Section 75.1718 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718 Drinking water. [Statutory Provisions] An adequate supply of potable water shall be provided for drinking purposes in the active workings of the mine...

  12. MODELING CHLORINE DECAY AND THE FORMATION OF DISINFECTION BY-PRODUCTS (DBPS) IN DRINKING WATER

    EPA Science Inventory

    A major objective of drinking water treatment is to provide microbiologically safe drinking water. The combination of conventional drinking water treatment and disinfection has proved to be one of the major public health advances in modern times. In the US, chlorine is most often...

  13. 30 CFR 75.1718 - Drinking water.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drinking water. 75.1718 Section 75.1718 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718 Drinking water. [Statutory Provisions] An adequate supply of potable water shall be provided for drinking purposes in the active workings of the mine...

  14. 30 CFR 75.1718 - Drinking water.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drinking water. 75.1718 Section 75.1718 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718 Drinking water. [Statutory Provisions] An adequate supply of potable water shall be provided for drinking purposes in the active workings of the mine...

  15. 30 CFR 75.1718 - Drinking water.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drinking water. 75.1718 Section 75.1718 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718 Drinking water. [Statutory Provisions] An adequate supply of potable water shall be provided for drinking purposes in the active workings of the mine...

  16. Improved but unsustainable: accounting for sachet water in post-2015 goals for global safe water.

    PubMed

    Stoler, Justin

    2012-12-01

    The advent and rapid spread of sachet drinking water in West Africa presents a new challenge for providing sustainable access to global safe water. Sachet water has expanded drinking water access and is often of sufficient quality to serve as an improved water source for Millennium Development Goals (MDG) monitoring purposes, yet sachets are an unsustainable water delivery vehicle due to their overwhelming plastic waste burden. Monitoring of primary drinking water sources in West Africa generally ignores sachet water, despite its growing ubiquity. Sub-Saharan Africa as a region is unlikely to meet the MDG Target for drinking water provision, and post-2015 monitoring activities may depend upon rapid adaptability to local drinking water trends. © 2012 Blackwell Publishing Ltd.

  17. Does calcium in drinking water modify the association between nitrate in drinking water and risk of death from colon cancer?

    PubMed

    Chiu, Hui-Fen; Tsai, Shang-Shyue; Chen, Pei-Shih; Wu, Trong-Neng; Yang, Chun-Yuh

    2011-09-01

    The objective of this study was to explore whether calcium (Ca) levels in drinking water modified the effects of nitrate on colon cancer risk. A matched case-control study was used to investigate the relationship between the risk of death from colon cancer and exposure to nitrate in drinking water in Taiwan. All colon cancer deaths of Taiwan residents from 2003 through 2007 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to the cases by gender, year of birth and year of death. Information on the levels of nitrate-nitrogen (NO(3)-N) and Ca in drinking water have been collected from Taiwan Water Supply Corporation (TWSC). The municipality of residence for cases and controls was assumed to be the source of the subject's NO(3)-N and Ca exposure via drinking water. We observed evidence of an interaction between drinking water NO(3)-N and Ca intake via drinking water. This is the first study to report effect modification by Ca intake from drinking water on the association between NO(3)-N exposure and risk of colon cancer mortality.

  18. Extent of Fecal Contamination of Household Drinking Water in Nepal: Further Analysis of Nepal Multiple Indicator Cluster Survey 2014.

    PubMed

    Kandel, Pragya; Kunwar, Ritu; Lamichhane, Prabhat; Karki, Surendra

    2017-02-08

    Water sources classified as "improved" may not necessarily provide safe drinking water for householders. We analyzed data from Nepal Multiple Indicator Cluster Survey 2014 to explore the extent of fecal contamination of household drinking water. Fecal contamination was detected in 81.2% (95% confidence interval [CI]: 77.9-84.2) household drinking water from improved sources and 89.6% (95% CI: 80.4-94.7) in water samples from unimproved sources. In adjusted analysis, there was no difference in odds of fecal contamination of household drinking water between improved and unimproved sources. We observed significantly lower odds of fecal contamination of drinking water in households in higher wealth quintiles, where soap and water were available for handwashing and in households employing water treatment. The extent of contamination of drinking water as observed in this study highlights the huge amount of effort required to ensure the provision of safely managed water in Nepal by 2030 as aimed in sustainable development goals. © The American Society of Tropical Medicine and Hygiene.

  19. Extent of Fecal Contamination of Household Drinking Water in Nepal: Further Analysis of Nepal Multiple Indicator Cluster Survey 2014

    PubMed Central

    Kandel, Pragya; Kunwar, Ritu; Lamichhane, Prabhat; Karki, Surendra

    2017-01-01

    Water sources classified as “improved” may not necessarily provide safe drinking water for householders. We analyzed data from Nepal Multiple Indicator Cluster Survey 2014 to explore the extent of fecal contamination of household drinking water. Fecal contamination was detected in 81.2% (95% confidence interval [CI]: 77.9–84.2) household drinking water from improved sources and 89.6% (95% CI: 80.4–94.7) in water samples from unimproved sources. In adjusted analysis, there was no difference in odds of fecal contamination of household drinking water between improved and unimproved sources. We observed significantly lower odds of fecal contamination of drinking water in households in higher wealth quintiles, where soap and water were available for handwashing and in households employing water treatment. The extent of contamination of drinking water as observed in this study highlights the huge amount of effort required to ensure the provision of safely managed water in Nepal by 2030 as aimed in sustainable development goals. PMID:27821687

  20. Different Choices of Drinking Water Source and Different Health Risks in a Rural Population Living Near a Lead/Zinc Mine in Chenzhou City, Southern China

    PubMed Central

    Huang, Xiao; He, Liping; Li, Jun; Yang, Fei; Tan, Hongzhuan

    2015-01-01

    This study aimed to describe the households’ choices of drinking water sources, and evaluate the risk of human exposure to heavy metals via different drinking water sources in Chenzhou City of Hunan Province, Southern China. A cross-sectional face-to-face survey of 192 householders in MaTian and ZhuDui village was conducted. The concentrations of heavy metals in their drinking water sources were analyzed. Carcinogenic and non-carcinogenic risk assessment was performed according to the method recommended by the United States Environmental Protection Agency. In total, 52.60% of the households used hand-pressed well water, and 34.89% used barreled water for drinking. In total, 6.67% of the water samples exceeded the Chinese drinking water standards. The total health risk of five metals is 5.20 × 10−9~3.62 × 10−5. The total health risk of five metals was at acceptable levels for drinking water sources. However, the total risk of using hand-pressed well water’s highest value is 6961 times higher than the risk of using tap water. Household income level was significantly associated with drinking water choices. Arsenic (As) and lead (Pb) are priority controlled pollutants in this region. Using safe drinking water (tap water, barreled water and so on) can remarkably reduce the risk of ingesting heavy metals. PMID:26569281

  1. The future of urban water services in Latin America.

    PubMed

    Wade, Jeffry S

    2012-01-01

    In recent decades, problems with the provision of drinking water and sanitation services around the world have increasingly been addressed by attempts at privatisation, recasting clean water as an essentially economic, rather than public, good. This approach gained particular acceptance in Latin America, but with limited success. In order to address the full range of social, economic and environmental values necessary to sustain water resources over time, public and governmental involvement in establishing integrated water management, pursuing ‘soft path’ approaches, assuring stakeholder input and setting policy will be essential to the process.

  2. [A case-control study on the relationship of crocidolite pollution in drinking water with the risk of gastrointestinal cancer in Dayao County].

    PubMed

    Mi, Jing; Peng, Wenjia; Jia, Xianjie; Wei, Binggan; Yang, Linsheng; Hu, Liming; Lu, Rong'an

    2015-01-01

    To explore the relationship of crocidolite pollution in drinking water with the risk of gastrointestinal cancer's death in Dayao County. A 1:2 matched case-control study involving 54 death cases of gastrointestinal cancer from a population-based cohort of twenty-seven years and 108 controls matched by age, gender, death time, etc was conducted to analyze the effect of local water condition on the risk of gastrointestinal cancer in Dayao County. Results from logistic regression analysis suggested the longer of asbestos furnace use over time, the higher the mortality risk of gastrointestinal cancer (6 - 10 years: OR = 2.920, 95% CI 1.501 - 5.604. 11 - 15 years: OR = 3.966, 95% CI 2.156 -7.950. Over 15 years: OR = 4.122, 95% CI 1.211 - 7. 584). Drinking unboiled water leaded to an increased risk of gastrointestinal cancer (OR = 1.43, 95% CI 1.07 - 1.88). Type of drinking water was associated with gastrointestinal cancer. When compared with drinking tap water, OR for drinking well water was 1.770 (95% CI 1.001 - 2.444), 2.442 for drinking river water (95% CI 0.956 - 3.950), 2.554 for drinking house and field ditch water (95% CI 1.961 - 6.584), and 3.121 for drinking pond water (95% CI 1.872 - 6.566). Related factors of drinking water in crocidolite-contaminated area in Dayao County were significantly associated with the mortality of gastrointestinal cancer.

  3. Concentration of ions in selected bottled water samples sold in Malaysia

    NASA Astrophysics Data System (ADS)

    Aris, Ahmad Zaharin; Kam, Ryan Chuan Yang; Lim, Ai Phing; Praveena, Sarva Mangala

    2013-03-01

    Many consumers around the world, including Malaysians, have turned to bottled water as their main source of drinking water. The aim of this study is to determine the physical and chemical properties of bottled water samples sold in Selangor, Malaysia. A total of 20 bottled water brands consisting of `natural mineral (NM)' and `packaged drinking (PD)' types were randomly collected and analyzed for their physical-chemical characteristics: hydrogen ion concentration (pH), electrical conductivity (EC) and total dissolved solids (TDS), selected major ions: calcium (Ca), potassium (K), magnesium (Mg) and sodium (Na), and minor trace constituents: copper (Cu) and zinc (Zn) to ascertain their suitability for human consumption. The results obtained were compared with guideline values recommended by World Health Organization (WHO) and Malaysian Ministry of Health (MMOH), respectively. It was found that all bottled water samples were in accordance with the guidelines set by WHO and MMOH except for one sample (D3) which was below the pH limit of 6.5. Both NM and PD bottled water were dominated by Na + K > Ca > Mg. Low values for EC and TDS in the bottled water samples showed that water was deficient in essential elements, likely an indication that these were removed by water treatment. Minerals like major ions were present in very low concentrations which could pose a risk to individuals who consume this water on a regular basis. Generally, the overall quality of the supplied bottled water was in accordance to standards and guidelines set by WHO and MMOH and safe for consumption.

  4. Overview of results from the WaterTox intercalibration and environmental testing phase II program: part 2, ecotoxicological evaluation of drinking water supplies.

    PubMed

    Diaz-Baez, M C; Sánchez, W A; Dutka, B J; Ronco, A; Castillo, G; Pica-Granados, Y; Castillo, L E; Ridal, J; Arkhipchuk, V; Srivastava, R C

    2002-01-01

    Because of rapid population growth, industrial development, and intensified agricultural production increasing amounts of chemicals are being released into the environment, polluting receiving water bodies around the world. Given the potential health risk associated with the presence of toxicants in water sources used for drinking yet the scarcity of available data, there is a need to evaluate these waters and develop strategies to reduce and prevent their contamination. The present study examined the applicability of a battery of simple, inexpensive bioassays in environmental management and the relevance of the test results in establishing the toxicological quality of water sources and drinking water within the framework of the eight-country WaterTox Network, sponsored by the International Development Research Centre, Ottawa, Canada. Seventy-six samples were collected from surface and groundwater sources and seven samples from drinking water treatment plants. Each sample was tested with a core battery of bioassays (Daphnia magna, Hydra attenuata, and Lactuca sativa root inhibition tests) and a limited set of physical and chemical parameters. In addition, three labs included the Selenastrum capricornutum test. When no toxic effects were found with the battery, samples were concentrated 10x using a solid-phase extraction (SPE) procedure. Nonconcentrated natural water samples produced a toxic response in 24% of cases with all three core bioassays. When all bioassays are considered, the percentage of raw samples showing toxicity with at least one bioassay increased to 60%. Of seven treated drinkingwater samples, four showed toxicity with at least one bioassay, raising the possibility that treatment processes in these instances were unable to remove toxic contaminants. The Daphnia magna and Hydra attenuata tests indicated a high level of sensitivity overall. Although only three of the eight countries used S. capricornutum, it proved to be an efficient and reliable bioassay for toxicity assessment. Copyright 2002 Wiley Periodicals, Inc.

  5. Reduction of Microbial Contaminants in Drinking Water by Ultraviolet Light Technology: ETS UV MODEL UVL-200-4 (Report and Statement)

    EPA Science Inventory

    Final technical report provides test methods used and verification results to be published on ETV web sites. The ETS UV System Model UVL-200-4 was tested to validate the UV dose delivered by the system using biodosimetry and a set line approach. The set line for 40 mJ/cm2 Red...

  6. Reducing diarrhoea in Guatemalan children: randomized controlled trial of flocculant-disinfectant for drinking-water.

    PubMed

    Chiller, Tom M; Mendoza, Carlos E; Lopez, M Beatriz; Alvarez, Maricruz; Hoekstra, Robert M; Keswick, Bruce H; Luby, Stephen P

    2006-01-01

    To examine the effect of a new point-of-use treatment for drinking-water, a commercially developed flocculant-disinfectant, on the prevalence of diarrhoea in children. We conducted a randomized controlled trial among 514 rural Guatemalan households, divided into 42 neighbourhood clusters, for 13 weeks, from 4 November 2002 through 31 January 2003. Clusters assigned to water treatment with the flocculant-disinfectant were compared with those using their usual water-handling practices. The longitudinal prevalence of diarrhoea was calculated as the proportion of total days with diarrhoea divided by the total number of days of observation. The prevalence of diarrhoea was compared using the Wilcoxon rank-sum test. The 1702 people in households receiving the disinfectant had a prevalence of diarrhoea that was 40% lower than that among the 1699 people using standard water-handling practices (0.9% versus 1.5%; P = 0.001). In households using the flocculant-disinfectant, children < 1 year of age had a 39% lower prevalence of diarrhoea than those in households using their standard practices (3.7% versus 6.0%; P = 0.005). In settings where families rarely treat drinking-water, we introduced a novel flocculant-disinfectant that reduced the longitudinal prevalence of diarrhoea, especially among children aged < 1 year, among whom diarrhoea has been strongly associated with mortality. Successful introduction and use of this product could contribute to preventing diarrhoeal disease globally.

  7. Elevated Lead in Drinking Water in Washington, DC, 2003–2004: The Public Health Response

    PubMed Central

    Guidotti, Tee L.; Calhoun, Thomas; Davies-Cole, John O.; Knuckles, Maurice E.; Stokes, Lynette; Glymph, Chevelle; Lum, Garret; Moses, Marina S.; Goldsmith, David F.; Ragain, Lisa

    2007-01-01

    Background In 2003, residents of the District of Columbia (DC) experienced an abrupt rise in lead levels in drinking water, which followed a change in water-disinfection treatment in 2001 and which was attributed to consequent changes in water chemistry and corrosivity. Objectives To evaluate the public health implications of the exceedance, the DC Department of Health expanded the scope of its monitoring programs for blood lead levels in children. Methods From 3 February 2004 to 31 July 2004, 6,834 DC residents were screened to determine their blood lead levels. Results Children from 6 months to 6 years of age constituted 2,342 of those tested; 65 had blood lead levels > 10 μg/dL (the “level of concern” defined by the Centers for Disease Control and Prevention), the highest with a level of 68 μg/dL. Investigation of their homes identified environmental sources of lead exposure other than tap water as the source, when the source was identified. Most of the children with elevated blood lead levels (n = 46; 70.8%) lived in homes without lead drinking-water service lines, which is the principal source of lead in drinking water in older cities. Although residents of houses with lead service lines had higher blood lead levels on average than those in houses that did not, this relationship is confounded. Older houses that retain lead service lines usually have not been rehabilitated and are more likely to be associated with other sources of exposure, particularly lead paint. None of 96 pregnant women tested showed blood lead levels > 10 μg/dL, but two nursing mothers had blood lead levels > 10 μg/dL. Among two data sets of 107 and 71 children for whom paired blood and water lead levels could be obtained, there was no correlation (r2 = –0.03142 for the 107). Conclusions The expanded screening program developed in response to increased lead levels in water uncovered the true dimensions of a continuing problem with sources of lead in homes, specifically lead paint. This study cannot be used to correlate lead in drinking water with blood lead levels directly because it is based on an ecologic rather than individualized exposure assessment; the protocol for measuring lead was based on regulatory requirements rather than estimating individual intake; numerous interventions were introduced to mitigate the effect; exposure from drinking water is confounded with other sources of lead in older houses; and the period of potential exposure was limited and variable. PMID:17520055

  8. Safe and Affordable Drinking Water for Developing Countries

    NASA Astrophysics Data System (ADS)

    Gadgil, Ashok

    2008-09-01

    Safe drinking water remains inaccessible for about 1.2 billion people in the world, and the hourly toll from biological contamination of drinking water is 200 deaths mostly among children under five years of age. This chapter summarizes the need for safe drinking water, the scale of the global problem, and various methods tried to address it. Then it gives the history and current status of an innovation ("UV Waterworks™") developed to address this major public health challenge. It reviews water disinfection technologies applicable to achieve the desired quality of drinking water in developing countries, and specifically, the limitations overcome by one particular invention: UV Waterworks. It then briefly describes the business model and financing option than is accelerating its implementation for affordable access to safe drinking water to the unserved populations in these countries. Thus this chapter describes not only the innovation in design of a UV water disinfection system, but also innovation in the delivery model for safe drinking water, with potential for long term growth and sustainability.

  9. Emerging pollutants in sewage, surface and drinking water in Galicia (NW Spain).

    PubMed

    Rodil, Rosario; Quintana, José Benito; Concha-Graña, Estefanía; López-Mahía, Purificación; Muniategui-Lorenzo, Soledad; Prada-Rodríguez, Darío

    2012-03-01

    A monitoring programme was carried out on wastewater, surface and drinking water on the NW area of Spain during the four seasons of a year period (November 2007-September 2008). This study covered a series of emerging pollutants of different classes, including pharmaceuticals, neutral and acidic organophosphorus flame retardant/plasticizers (OPs), triclosan, phenoxy-herbicides, insect repellents and UV filters. From the total set of 53 compounds, 19 were found in raw wastewater with median concentrations higher than 0.1 μg L(-1). Among them, salicylic acid, ibuprofen and the UV filter benzophenone-4 (BP-4) were the most concentrated, exceeding the 1 μg L(-1) median value. Subsequently, 11 of these contaminants are not efficiently enough removed in the small WWTPs tested and their median concentrations in effluents still surpassed the 0.1 μg L(-1), so that they can spread through surface water. These chemicals are the pharmaceuticals naproxen, diclofenac and atenolol; the OPs tri(2-chloroethyl) phosphate (TCEP), tri(chloropropyl) phosphate (TCPP), tri-n-butyl phosphate (TnBP), diphenyl phosphate (DPhP) and diethylhexyl phosphate (DEHP); and the sulphonate UV filters BP-4 and 2-phenylbenzimidazole-5-sulphonic acid (PBSA). These OPs were then the dominant emerging pollutants occurring in surface and drinking water, where they are detected in the 20-200 ng L(-1) range. Pharmaceuticals and UV filters are typically below the 10 ng L(-1) level. Finally, herbicides were only detected in the last sampling campaign under the 100 ng L(-1) drinking water European Union limit. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. [Bacteriological quality of drinking water in the City of Merida, Mexico].

    PubMed

    Flores-Abuxapqui, J J; Suárez-Hoil, G J; Puc-Franco, M A; Heredia-Navarrete, M R; Vivas-Rosel, M D; Franco-Monsreal, J

    1995-01-01

    With the aim of knowing the microbiological quality of drinking water in Merida, Yucatan, 383 paired samples of drinking water (two per house) were studied. Three hundred sixty four (95%) city water system samples and 283 (73.89%) tap water samples met the microbiological standards for drinking water. It was concluded that microbiological quality of drinking water from the city water system is satisfactory, except for the water system district Merida III, which has a significant aerobic plate count contamination level (21.7% of the samples). Domestic storage systems preserve water quality, with the exception of district Merida I, which has the highest level of contamination (4.8% of the samples) possibly from sewage water and fecal sources.

  11. An Assessment of Potential Exposure and Risk from Estrogens in Drinking Water

    PubMed Central

    Caldwell, Daniel J.; Mastrocco, Frank; Nowak, Edward; Johnston, James; Yekel, Harry; Pfeiffer, Danielle; Hoyt, Marilyn; DuPlessie, Beth M.; Anderson, Paul D.

    2010-01-01

    Background Detection of estrogens in the environment has raised concerns in recent years because of their potential to affect both wildlife and humans. Objectives We compared exposures to prescribed and naturally occurring estrogens in drinking water to exposures to naturally occurring background levels of estrogens in the diet of children and adults and to four independently derived acceptable daily intakes (ADIs) to determine whether drinking water intakes are larger or smaller than dietary intake or ADIs. Methods We used the Pharmaceutical Assessment and Transport Evaluation (PhATE) model to predict concentrations of estrogens potentially present in drinking water. Predicted drinking water concentrations were combined with default water intake rates to estimate drinking water exposures. Predicted drinking water intakes were compared to dietary intakes and also to ADIs. We present comparisons for individual estrogens as well as combined estrogens. Results In the analysis we estimated that a child’s exposures to individual prescribed estrogens in drinking water are 730–480,000 times lower (depending upon estrogen type) than exposure to background levels of naturally occurring estrogens in milk. A child’s exposure to total estrogens in drinking water (prescribed and naturally occurring) is about 150 times lower than exposure from milk. Adult margins of exposure (MOEs) based on total dietary exposure are about 2 times smaller than those for children. Margins of safety (MOSs) for an adult’s exposure to total prescribed estrogens in drinking water vary from about 135 to > 17,000, depending on ADI. MOSs for exposure to total estrogens in drinking water are about 2 times lower than MOSs for prescribed estrogens. Depending on the ADI that is used, MOSs for young children range from 28 to 5,120 for total estrogens (including both prescribed and naturally occurring sources) in drinking water. Conclusions The consistently large MOEs and MOSs strongly suggest that prescribed and total estrogens that may potentially be present in drinking water in the United States are not causing adverse effects in U.S. residents, including sensitive subpopulations. PMID:20194073

  12. Drinking water microbial myths.

    PubMed

    Allen, Martin J; Edberg, Stephen C; Clancy, Jennifer L; Hrudey, Steve E

    2015-01-01

    Accounts of drinking water-borne disease outbreaks have always captured the interest of the public, elected and health officials, and the media. During the twentieth century, the drinking water community and public health organizations have endeavored to craft regulations and guidelines on treatment and management practices that reduce risks from drinking water, specifically human pathogens. During this period there also evolved misunderstandings as to potential health risk associated with microorganisms that may be present in drinking waters. These misunderstanding or "myths" have led to confusion among the many stakeholders. The purpose of this article is to provide a scientific- and clinically-based discussion of these "myths" and recommendations for better ensuring the microbial safety of drinking water and valid public health decisions.

  13. Risk Assessment and effect of Penicillin-G on bacterial diversity in drinking water

    NASA Astrophysics Data System (ADS)

    Wu, Qing; Zhao, Xiaofei; Peng, Sen; Wang, Lei; Zhao, Xinhua

    2018-02-01

    Penicillin-G was detected in drinking water by LC-MS/MS and the bacterial diversity was investigated by PCR and high-throughput sequencing. The results showed that bacteria community structure in drinking water has undergone major changes when added different concentrations of penicillin-G. The diversity index of each sample was calculated. The results showed that the total number and abundance of bacterial community species in drinking water samples decreased significantly after the addition of penicillin-G. However, the number and abundance of community structure did not change with the concentration. Penicillin-G inhibits the activity of bacterial community in drinking water and can reduce the bacterial diversity in drinking water.

  14. 77 FR 58045 - Clopyralid; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-19

    ... Classification System (NAICS) codes have been provided to assist you and others in determining whether this... data supporting the petition, EPA has determined that the proposed tolerance on rapeseed subgroup 20A... exposure through drinking water and in residential settings, but does not include occupational exposure...

  15. 78 FR 20461 - Flumioxazin; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-05

    ..., or pesticide manufacturer. The following list of North American Industrial Classification System... response to the notice of filing. Based upon review of the data supporting the petition, EPA has modified... drinking water and in residential settings, but does not include occupational exposure. Section 408(b)(2)(C...

  16. 77 FR 26467 - Fluoxastrobin; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-04

    ... could also be affected. The North American Industrial Classification System (NAICS) codes have been... to the notice of filing. Based upon review of the data supporting the petition, EPA has corrected the....'' This includes exposure through drinking water and in residential settings, but does not include...

  17. 78 FR 71523 - Quinclorac; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-29

    ... pesticide manufacturer. The following list of North American Industrial Classification System (NAICS) codes....'' This includes exposure through drinking water and in residential settings, but does not include... information in support of this action. EPA has sufficient data to assess the hazards of and to make a...

  18. Single particle ICP-MS characterization of titanium dioxide, silver, and gold nanoparticles during drinking water treatment.

    PubMed

    Donovan, Ariel R; Adams, Craig D; Ma, Yinfa; Stephan, Chady; Eichholz, Todd; Shi, Honglan

    2016-02-01

    One of the most direct means for human exposure to nanoparticles (NPs) released into the environment is drinking water. Therefore, it is critical to understand the occurrence and fate of NPs in drinking water systems. The objectives of this study were to develop rapid and reliable analytical methods and apply them to investigate the fate and transportation of NPs during drinking water treatments. Rapid single particle ICP-MS (SP-ICP-MS) methods were developed to characterize and quantify titanium-containing, titanium dioxide, silver, and gold NP concentration, size, size distribution, and dissolved metal element concentration in surface water and treated drinking water. The effectiveness of conventional drinking water treatments (including lime softening, alum coagulation, filtration, and disinfection) to remove NPs from surface water was evaluated using six-gang stirrer jar test simulations. The selected NPs were nearly completely (97 ± 3%) removed after lime softening and alum coagulation/activated carbon adsorption treatments. Additionally, source and drinking waters from three large drinking water treatment facilities utilizing similar treatments with the simulation test were collected and analyzed by the SP-ICP-MS methods. Ti-containing particles and dissolved Ti were present in the river water samples, but Ag and Au were not present. Treatments used at each drinking water treatment facility effectively removed over 93% of the Ti-containing particles and dissolved Ti from the source water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. The healthy men study: design and recruitment considerations for environmental epidemiologic studies in male reproductive health

    EPA Science Inventory

    Study Objective: To describe study conduct and response and participant characteristics. Design: Prospective cohort study. Setting: Participants were male partners of women enrolled in a community-based study of drinking water disinfection by-products and pregnancy healt...

  20. Selection of representative emerging micropollutants for drinking water treatment studies: a systematic approach.

    PubMed

    Jin, Xiaohui; Peldszus, Sigrid

    2012-01-01

    Micropollutants remain of concern in drinking water, and there is a broad interest in the ability of different treatment processes to remove these compounds. To gain a better understanding of treatment effectiveness for structurally diverse compounds and to be cost effective, it is necessary to select a small set of representative micropollutants for experimental studies. Unlike other approaches to-date, in this research micropollutants were systematically selected based solely on their physico-chemical and structural properties that are important in individual water treatment processes. This was accomplished by linking underlying principles of treatment processes such as coagulation/flocculation, oxidation, activated carbon adsorption, and membrane filtration to compound characteristics and corresponding molecular descriptors. A systematic statistical approach not commonly used in water treatment was then applied to a compound pool of 182 micropollutants (identified from the literature) and their relevant calculated molecular descriptors. Principal component analysis (PCA) was used to summarize the information residing in this large dataset. D-optimal onion design was then applied to the PCA results to select structurally representative compounds that could be used in experimental treatment studies. To demonstrate the applicability and flexibility of this selection approach, two sets of 22 representative micropollutants are presented. Compounds in the first set are representative when studying a range of water treatment processes (coagulation/flocculation, oxidation, activated carbon adsorption, and membrane filtration), whereas the second set shows representative compounds for ozonation and advanced oxidation studies. Overall, selected micropollutants in both lists are structurally diverse, have wide-ranging physico-chemical properties and cover a large spectrum of applications. The systematic compound selection approach presented here can also be adjusted to fit individual research needs with respect to type of micropollutants, treatment processes and number of compounds selected. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Perceptions about availability and adequacy of drinking water in a large California school district.

    PubMed

    Patel, Anisha I; Bogart, Laura M; Uyeda, Kimberly E; Rabin, Alexa; Schuster, Mark A

    2010-03-01

    Concerns about the influence of sugar-sweetened beverage consumption on obesity have led experts to recommend that water be freely available in schools. We explored perceptions about the adequacy of drinking water provision in a large California school district to develop policies and programs to encourage student water consumption. From March to September 2007, we used semistructured interviews to ask 26 California key stakeholders - including school administrators and staff, health and nutrition agency representatives, and families - about school drinking water accessibility; attitudes about, facilitators of, and barriers to drinking water provision; and ideas for increasing water consumption. Interviews were analyzed to determine common themes. Although stakeholders said that water was available from school drinking fountains, they expressed concerns about the appeal, taste, appearance, and safety of fountain water and worried about the affordability and environmental effect of bottled water sold in schools. Stakeholders supported efforts to improve free drinking water availability in schools, but perceived barriers (eg, cost) and mistaken beliefs that regulations and beverage contracts prohibit serving free water may prevent schools from doing so. Some schools provide water through cold-filtered water dispensers and self-serve water coolers. This is the first study to explore stakeholder perceptions about the adequacy of drinking water in US schools. Although limited in scope, our study suggests that water available in at least some schools may be inadequate. Collaborative efforts among schools, communities, and policy makers are needed to improve school drinking water provision.

  2. 76 FR 67187 - National Drinking Water Advisory Council; Notice of a Public Teleconference Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-31

    ... requirements of the National Drinking Water Regulations for Lead and Copper. DATES: The public teleconference... and Copper: EPA is developing proposed revisions to the Lead and Copper Rule (LCR), which is the National Primary Drinking Water Regulation for controlling lead and copper in drinking water supplied by...

  3. Copper in household drinking water in the city of Zagreb, Croatia.

    PubMed

    Pizent, Alica; Butković, Sanja

    2010-09-01

    Copper concentration was estimated in tap water samples obtained from 70 households in Zagreb, serviced by a public water supply system. First-draw and flushed samples of tap water were collected in the morning and total copper concentration was determined by graphite furnace atomic absorption spectrometry with Zeeman-effect background correction. We also estimated the contribution of plumbing material to copper concentrations in tap water. In households with copper pipes, median and range copper values were 310 μg L-1 [(27 to 632) μg L-1] in first-draw samples and 16 μg L-1 [(5 to 52) μg L-1] in flushed samples. Corresponding values for households with galvanised pipes were 140 μg L-1 [(11 to 289) μg L-1] and 8 μg L-1 [(1 to 42) μg L-1], respectively. Copper concentrations in household tap water in Zagreb were far below the proposed safe limits set by the Croatian and WHO regulations and EPA standards, and drinking water in Zagreb is not a significant source of copper exposure.

  4. Social knowledge and the construction of drinking water preference.

    PubMed

    Soares, Ana Carolina Cordeiro; Carmo, Rose Ferraz; Bevilacqua, Paula Dias

    2017-10-01

    The analytical categories of Health Surveillance territorialization and daily life guided the design of this study, which aimed to understand from the methodological framework of qualitative research the factors involved in the use of individual supply solutions (ISS) as drinking water sources. We conducted semi-structured interviews with residents of 22 households set at a municipality in the Zona da Mata Mineira. Statements were fully transcribed, processed through content analysis and interpreted based on the psychosocial theory of social representations. It was possible to apprehend the social and affective components of social representations. The social component characterized by the representation of water from IWSS ISS water as clean and of good quality seemed to drive or justify the "resistance" of individuals to use water from public supply. The affective component referred to the use of IWSS water from ISS as a return to and protection of individuals' origins, a way to strengthen respondents' identity. The results pointed out that people's perceptions and demands might guide actions aimed to stimulate trust in the use of public system water and the choice of this source of supply, contributing to health protection.

  5. Boiling over: A Descriptive Analysis of Drinking Water Advisories in First Nations Communities in Ontario, Canada

    PubMed Central

    Galway, Lindsay P.

    2016-01-01

    Access to safe and reliable drinking water is commonplace for most Canadians. However, the right to safe and reliable drinking water is denied to many First Nations peoples across the country, highlighting a priority public health and environmental justice issue in Canada. This paper describes trends and characteristics of drinking water advisories, used as a proxy for reliable access to safe drinking water, among First Nations communities in the province of Ontario. Visual and statistical tools were used to summarize the advisory data in general, temporal trends, and characteristics of the drinking water systems in which advisories were issued. Overall, 402 advisories were issued during the study period. The number of advisories increased from 25 in 2004 to 75 in 2013. The average advisory duration was 294 days. Most advisories were reported in summer months and equipment malfunction was the most commonly reported reason for issuing an advisory. Nearly half of all advisories occurred in drinking water systems where additional operator training was needed. These findings underscore that the prevalence of drinking water advisories in First Nations communities is a problem that must be addressed. Concerted and multi-faceted efforts are called for to improve the provision of safe and reliable drinking water First Nations communities. PMID:27196919

  6. Boiling over: A Descriptive Analysis of Drinking Water Advisories in First Nations Communities in Ontario, Canada.

    PubMed

    Galway, Lindsay P

    2016-05-17

    Access to safe and reliable drinking water is commonplace for most Canadians. However, the right to safe and reliable drinking water is denied to many First Nations peoples across the country, highlighting a priority public health and environmental justice issue in Canada. This paper describes trends and characteristics of drinking water advisories, used as a proxy for reliable access to safe drinking water, among First Nations communities in the province of Ontario. Visual and statistical tools were used to summarize the advisory data in general, temporal trends, and characteristics of the drinking water systems in which advisories were issued. Overall, 402 advisories were issued during the study period. The number of advisories increased from 25 in 2004 to 75 in 2013. The average advisory duration was 294 days. Most advisories were reported in summer months and equipment malfunction was the most commonly reported reason for issuing an advisory. Nearly half of all advisories occurred in drinking water systems where additional operator training was needed. These findings underscore that the prevalence of drinking water advisories in First Nations communities is a problem that must be addressed. Concerted and multi-faceted efforts are called for to improve the provision of safe and reliable drinking water First Nations communities.

  7. Defense Management: Further Analysis Needed to Identify Guam’s Public Infrastructure Requirements and Costs for DOD’s Realignment Plan

    DTIC Science & Technology

    2013-12-01

    Safe Drinking Water Act28 and the Clean Water Act.29 • Potable water : According to Waterworks officials, Guam’s potable water system currently is in...noncompliance with the Safe Drinking Water Act. The unreliable drinking water distribution system has historically resulted in bacterial...Protection Consolidated Grants program, provided Guam with almost $6.8 million in fiscal year 2012 to fund drinking water and wastewater system

  8. The chemical quality of self-supplied domestic well water in the United States

    USGS Publications Warehouse

    Focazio, M.J.; Tipton, D.; Dunkle, Shapiro S.; Geiger, L.H.

    2006-01-01

    Existing water quality data collected from domestic wells were summarized to develop the first national-scale retrospective of self-supplied drinking water sources. The contaminants evaluated represent a range of inorganic and organic compounds, and although the data set was not originally designed to be a statistical representation of national occurrence, it encompasses large parts of the United States including at least some wells sampled in every state and Puerto Rico. Inorganic contaminants were detected in many of the wells, and concentrations exceeded the U.S. EPA maximum contaminant levels (MCLs; federal drinking water standards used to regulate public drinking water quality) more often than organic contaminants. Of the inorganic constituents evaluated, arsenic concentrations exceeded the MCL (10 ??g/L) in ???11% of the 7580 wells evaluated, nitrate exceeded the MCL (10 mg/L) in ???8% of the 3465 wells evaluated, uranium-238 exceeded the MCL (30 ??g/L) in ???4% of the wells, and radon-222 exceeded 300 and 4000 pCi/L (potential drinking water standards currently under review by the U.S. EPA) in ???75% and 9% of the wells, respectively. The MCLs for total mercury and fluoride were each exceeded in <1% of the wells evaluated. The MCL was exceeded in <1% of all wells for all anthropogenically derived organic contaminants evaluated and was not exceeded for many contaminants. In addition, 10 contaminants evaluated do not currently have an MCL. Atrazine, however, was detected in 24% of the wells evaluated and was the most frequently detected organic contaminant of the 28 organic contaminants evaluated in this study. Simazine and metolachlor each were detected in ???9% of all wells and tied for second in frequency of detection for organic contaminants. The third and fourth most frequently detected organic contaminants were methyl tert-butyl ether (MTBE) (6%) and chloroform (5%), respectively. Because the water quality of domestic wells is not federally regulated or nationally monitored, this study provides a unique, previously nonexistent, perspective on the quality of the self-supplied drinking water resources used by ???45 million Americans in the United States. Copyright ?? 2006 The Author(s).

  9. Long-Term Neurotoxic Effects of Early Life Exposure to Tetrachloroethylene-contaminated Drinking Water

    PubMed Central

    Aschengrau, Ann; Janulewicz, Patricia A.; White, Roberta F.; Vieira, Veronica M.; Gallagher, Lisa G.; Getz, Kelly D.; Webster, Thomas F.; Ozonoff, David M.

    2016-01-01

    Background Tetrachloroethene (PCE) is a common environmental and occupational contaminant and an acknowledged neurotoxicant. From 1968 through 1983 widespread contamination of public drinking water supplies with PCE occurred in the Cape Cod region of Massachusetts. The source of the contamination was a vinyl liner applied to the inner surface of water distribution pipes. Objectives A retrospective cohort study (“the Cape Cod Health Study”) was undertaken to examine possible health consequences of early life exposure to PCE-contaminated drinking water. This review describes the study methods and findings regarding the impact of prenatal and childhood exposure on neurological outcomes during early adulthood, including vision, neuropsychological functioning, brain structure, risky behaviors, and mental illness. The review also describes the strengths and challenges of conducting population-based epidemiological research in this unique setting. Methods Subjects were identified by cross-matching birth certificate and water system data. Information on health outcomes and confounding variables was collected from self-administered surveys (N= 1,689), neuropsychological tests (N=63), vision exam (N=63), and magnetic resonance imaging (N=42). Early life exposure to PCE was estimated using a leaching and transport model. The data analysis compared the occurrence of each health outcome among subjects with prenatal and early childhood PCE exposure to unexposed subjects while considering the impact of confounding variables. Results The study found evidence that early life exposure to PCE-contaminated drinking water has long-term neurotoxic effects. The strongest associations were seen with illicit drug use, bipolar disorder, and post-traumatic stress disorder. Key strengths of the study were availability of historical data on affected water systems, a relatively high exposure prevalence and wide range of exposure levels, and little confounding. Challenges arose mainly from the historical nature of the exposure assessments. Conclusions The Cape Cod Health Study demonstrates how scientists can take advantage of unique “natural experiments” to learn about the health effects of environmental pollution. This body of work has improved our understanding of the long-term health effects of early life exposure to this common environmental contaminant and will help risk assessors and policy makers ensure that U.S. drinking water supplies are safe for vulnerable populations. PMID:27325074

  10. Drinking Water Maximum Contaminant Levels (MCLs)

    EPA Pesticide Factsheets

    National Primary Drinking Water Regulations (NPDWRs or primary standards) are legally enforceable standards that apply to public water systems. Primary standards protect public health by limiting the levels of contaminants in drinking water.

  11. Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water.

    PubMed

    Mompelat, S; Le Bot, B; Thomas, O

    2009-07-01

    Among all emerging substances in water, pharmaceutical products (PPs) and residues are a lot of concern. These last two years, the number of studies has increased drastically, however much less for water resources and drinking water than for wastewater. This literature review based on recent works, deals with water resources (surface or groundwater), focusing on characteristics, occurrence and fate of numerous PPs studied, and drinking water including water quality. Through this review, it appears that the pharmaceutical risk must be considered even in drinking water where concentrations are very low. Moreover, there is a lack of research for by-products (metabolites and transformation products) characterization, occurrence and fate in all water types and especially in drinking water.

  12. Bacterial community structure in the drinking water microbiome is governed by filtration processes.

    PubMed

    Pinto, Ameet J; Xi, Chuanwu; Raskin, Lutgarde

    2012-08-21

    The bacterial community structure of a drinking water microbiome was characterized over three seasons using 16S rRNA gene based pyrosequencing of samples obtained from source water (a mix of a groundwater and a surface water), different points in a drinking water plant operated to treat this source water, and in the associated drinking water distribution system. Even though the source water was shown to seed the drinking water microbiome, treatment process operations limit the source water's influence on the distribution system bacterial community. Rather, in this plant, filtration by dual media rapid sand filters played a primary role in shaping the distribution system bacterial community over seasonal time scales as the filters harbored a stable bacterial community that seeded the water treatment processes past filtration. Bacterial taxa that colonized the filter and sloughed off in the filter effluent were able to persist in the distribution system despite disinfection of finished water by chloramination and filter backwashing with chloraminated backwash water. Thus, filter colonization presents a possible ecological survival strategy for bacterial communities in drinking water systems, which presents an opportunity to control the drinking water microbiome by manipulating the filter microbial community. Grouping bacterial taxa based on their association with the filter helped to elucidate relationships between the abundance of bacterial groups and water quality parameters and showed that pH was the strongest regulator of the bacterial community in the sampled drinking water system.

  13. Party Characteristics, Drinking Settings, and College Students’ Risk of Intoxication: A Multi-Campus Study

    PubMed Central

    Marzell, Miesha; Bavarian, Niloofar; Paschall, Mallie J.; Mair, Christina; Saltz, Robert F.

    2015-01-01

    We examined party characteristics across different college drinking settings, associations between party characteristics and likelihood of drinking to intoxication, and the mediating role of perceived prevalence of intoxicated partygoers. Students (N = 6903) attending 14 public universities in California during the 2010 and 2011 fall semesters completed surveys on individual and party characteristics in six unique settings (e.g., residence hall). We used descriptive statistics to examine party characteristics by setting. We estimated multilevel logistic regression models to identify party characteristics associated with drinking to intoxication, and we used RMediation to determine significance of mediating effects. Individual and party characteristics varied by drinking context. Greater time at a party was associated with drinking to intoxication at five of six settings, while larger party size was significant only for outdoor settings. Enforcing the legal drinking age and refusing to serve intoxicated patrons were associated with lower likelihood of intoxication at Greek and off-campus parties. The presence of a keg was associated with drinking to intoxication at Greek, off-campus and outdoor parties; at bars, cover charges and drink promotions were positively associated with drinking to intoxication. In four of six settings, we found evidence of significant mediating effects through perceived prevalence of intoxicated partygoers. Findings highlight risk and protective characteristics of parties by drinking setting, and have prevention implications. PMID:25976418

  14. Party Characteristics, Drinking Settings, and College Students' Risk of Intoxication: A Multi-Campus Study.

    PubMed

    Marzell, Miesha; Bavarian, Niloofar; Paschall, Mallie J; Mair, Christina; Saltz, Robert F

    2015-08-01

    We examined party characteristics across different college drinking settings, associations between party characteristics and likelihood of drinking to intoxication, and the mediating role of perceived prevalence of intoxicated partygoers. Students (N = 6903) attending 14 public universities in California during the 2010 and 2011 fall semesters completed surveys on individual and party characteristics in six unique settings (e.g., residence hall). We used descriptive statistics to examine party characteristics by setting. We estimated multilevel logistic regression models to identify party characteristics associated with drinking to intoxication, and we used RMediation to determine significance of mediating effects. Individual and party characteristics varied by drinking context. Greater time at a party was associated with drinking to intoxication at five of six settings, while larger party size was significant only for outdoor settings. Enforcing the legal drinking age and refusing to serve intoxicated patrons were associated with lower likelihood of intoxication at Greek and off-campus parties. The presence of a keg was associated with drinking to intoxication at Greek, off-campus and outdoor parties; at bars, cover charges and drink promotions were positively associated with drinking to intoxication. In four of six settings, we found evidence of significant mediating effects through perceived prevalence of intoxicated partygoers. Findings highlight risk and protective characteristics of parties by drinking setting, and have prevention implications.

  15. Does drinking water influence hospital-admitted sialolithiasis on an epidemiological level in Denmark?

    PubMed Central

    Schrøder, Stine; Homøe, Preben; Wagner, Niels; Vataire, Anne-Lise; Lundager Madsen, Hans Erik; Bardow, Allan

    2015-01-01

    Objectives Sialolithiasis, or salivary stones, is not a rare disease of the major salivary glands. However, the aetiology and incidence remain largely unknown. Since sialoliths are comprised mainly of calcium phosphate salts, we hypothesise that drinking water calcium levels and other elements in drinking water could play a role in sialolithiasis. Owing to substantial intermunicipality differences in drinking water composition, Denmark constitutes a unique environment for testing such relations. Design An epidemiological study based on patient data extracted from the National Patient Registry and drinking water data from the Geological Survey of Denmark and Greenland retrieved as weighted data on all major drinking water constituents for each of the 3364 waterworks in Denmark. All patient cases with International Statistical Classification of Diseases 10th Revision (ICD-10) codes for sialolithiasis registered between the years 2000 and 2010 were included in the study (n=3014) and related to the drinking water composition on a municipality level (n=98). Primary and secondary outcome measures Multiple regression analysis using iterative search and testing among all demographic and drinking water variables with sialolithiasis incidence as the outcome in search of possible relations among the variables tested. Results The nationwide incidence of hospital-admitted sialolithiasis was 5.5 cases per 100 000 citizens per year in Denmark. Strong relations were found between the incidence of sialolithiasis and the drinking water concentration of calcium, magnesium and hydrogen carbonate, however, in separate models (p<0.001). Analyses also confirmed correlations between drinking water calcium and magnesium and their concentration in saliva whereas this was not the case for hydrogen carbonate. Conclusions Differences in drinking water calcium and magnesium may play a role in the incidence of sialolithiasis. These findings are of interest because many countries have started large-scale desalination programmes of drinking water. PMID:25941183

  16. Behaviors and Attitudes Associated With Low Drinking Water Intake Among US Adults, Food Attitudes and Behaviors Survey, 2007

    PubMed Central

    Blanck, Heidi M.; Sherry, Bettylou; Park, Sohyun; Nebeling, Linda; Yaroch, Amy L.

    2013-01-01

    Introduction Water is vital for life, and plain water is a calorie-free option for hydration. Increasing consumption of drinking water is a strategy to reduce energy intake and lose or maintain weight; however, information on the characteristics of consumers who drink water is limited. Our objective was to describe the characteristics of people who have a low intake of drinking water and to determine associations between their behaviors and attitudes and their intake of water. Methods We analyzed data from a nationally representative sample of 3,397 US adults who participated in the National Cancer Institute’s 2007 Food Attitudes and Behaviors Survey. Multivariable logistic regression was used to identify sociodemographic characteristics and health-related behaviors and attitudes associated with self-reported drinking water intake of less than 4 cups per day. Results Overall, 7% of adults reported no daily consumption of drinking water, 36% reported drinking 1 to 3 cups, 35% reported drinking 4 to 7 cups, and 22% reported drinking 8 cups or more. The likelihood of drinking less than 4 cups of water daily was significantly higher among participants aged 55 years or older than among those aged 18 to 34 (adjusted odds ratio [AOR], 1.3), among residents of the Northeast than among residents of the South (AOR, 1.4), among participants who consumed 1 cup or less of fruits or vegetables per day than among those who consumed 4.5 cups or more (AOR, 3.0), among participants who did not exercise than among those who exercised 150 minutes or more per week (AOR, 1.7), and among participants who were neither trying to gain nor lose weight than among those trying to lose weight (AOR, 1.3). Conclusion Low drinking water intake was associated with age, region of residence, and several unhealthful behaviors and attitudes. Understanding characteristics associated with low drinking water intake may help to identify populations that could benefit from interventions to help adults drink more water. PMID:23578399

  17. Drinking Water State Revolving Fund (DWSRF)

    EPA Pesticide Factsheets

    This website provides information on financial assistance to water systems needing capitalization grants and/or technical assistance to improve the quality of drinking water and for the delivery of safe drinking water to consumers.

  18. Chloramines in Drinking Water

    EPA Pesticide Factsheets

    Chloramines are disinfectants used to treat drinking water. Chloramines are most commonly formed when ammonia is added to chlorine to treat drinking water. Chloramines provide longer-lasting disinfection as the water moves through pipes to consumers.

  19. [The occurrence of aeromonads in a drinking water supply system].

    PubMed

    Stelzer, W; Jacob, J; Feuerpfeil, I; Schulze, E

    1992-01-01

    This study concerns with the occurrence of aeromonads, coliforms and colony counts in a drinking water supply. Aeromonas contents were detected in the range of 15.0 to greater than 2,400/100 ml in the raw water samples of the man made lake. After the drinking water treatment process including fast sand filtration and chlorination aeromonads indicated in comparison to total coliforms and colony counts early and significant an after-growth of maximal 240 aeromonads/100 ml in the peripheric drinking water supply. Drinking water samples characterized by a higher water temperature resulted in the highest contents of aeromonads. The Aeromonas-Species Aeromonas sobria and Aeromonas hydrophila were isolated most frequently with 56.9 and 37.4 percent, respectively. The role of aeromonads as an indicator of after-growth in drinking water supplies is discussed.

  20. How important is drinking water exposure for the risks of engineered nanoparticles to consumers?

    PubMed

    Tiede, Karen; Hanssen, Steffen Foss; Westerhoff, Paul; Fern, Gordon J; Hankin, Steven M; Aitken, Robert J; Chaudhry, Qasim; Boxall, Alistair B A

    2016-01-01

    This study explored the potential for engineered nanoparticles (ENPs) to contaminate the UK drinking water supplies and established the significance of the drinking water exposure route compared to other routes of human exposure. A review of the occurrence and quantities of ENPs in different product types on the UK market as well as release scenarios, their possible fate and behaviour in raw water and during drinking water treatment was performed. Based on the available data, all the ENPs which are likely to reach water sources were identified and categorized. Worst case concentrations of ENPs in raw water and treated drinking water, using a simple exposure model, were estimated and then qualitatively compared to available estimates for human exposure through other routes. A range of metal, metal oxide and organic-based ENPs were identified that have the potential to contaminate drinking waters. Worst case predicted concentrations in drinking waters were in the low- to sub-µg/l range and more realistic estimates were tens of ng/l or less. For the majority of product types, human exposure via drinking water was predicted to be less important than exposure via other routes. The exceptions were some clothing materials, paints and coatings and cleaning products containing Ag, Al, TiO2, Fe2O3 ENPs and carbon-based materials.

  1. Impact of Hydraulic Well Restoration on Native Bacterial Communities in Drinking Water Wells

    PubMed Central

    Karwautz, Clemens; Lueders, Tillmann

    2014-01-01

    The microbial monitoring of drinking water production systems is essential to assure water quality and minimize possible risks. However, the comparative impact of microbes from the surrounding aquifer and of those established within drinking water wells on water parameters remains poorly understood. High pressure jetting is a routine method to impede well clogging by fine sediments and also biofilms. In the present study, bacterial communities were investigated in a drinking water production system before, during, and after hydraulic purging. Variations were observed in bacterial communities between different wells of the same production system before maintenance, despite them having practically identical water chemistries. This may have reflected the distinct usage practices of the different wells, and also local aquifer heterogeneity. Hydraulic jetting of one well preferentially purged a subset of the dominating taxa, including lineages related to Diaphorobacter, Nitrospira, Sphingobium, Ralstonia, Alkanindiges, Janthinobacterium, and Pseudomonas spp, suggesting their tendency for growth in well-associated biofilms. Lineages of potential drinking water concern (i.e. Legionellaceae, Pseudomonadaceae, and Acinetobacter spp.) reacted distinctly to hydraulic jetting. Bacterial diversity was markedly reduced in drinking water 2 weeks after the cleaning procedure. The results of the present study provide a better understanding of drinking water wells as a microbial habitat, as well as their role in the microbiology of drinking water systems. PMID:25273229

  2. Neonicotinoid pesticides in drinking water in agricultural regions of southern Ontario, Canada.

    PubMed

    Sultana, Tamanna; Murray, Craig; Kleywegt, Sonya; Metcalfe, Chris D

    2018-07-01

    Because of the persistence and solubility of neonicotinoid insecticides (NNIs), there is concern that these compounds may contaminate sources of drinking water. The objective of this project was to evaluate the distribution of NNIs in raw and treated drinking water from selected municipalities that draw their water from the lower Great Lakes in areas of southern Ontario, Canada where there is high intensity agriculture. Sites were monitored using Polar Organic Chemical Integrative Samplers (POCIS) and by collecting grab samples at six drinking water treatment plants. Thiamethoxam, clothianidin and imidacloprid were detected in both POCIS and grab samples of raw water. The frequency of detection of NNIs was much lower in treated drinking water, but some compounds were still detected at estimated concentrations in the low ng L -1 range. Thiamethoxam was detected in one grab sample of raw drinking water at a mean concentration of 0.28 μg L -1 , which is above the guidelines for drinking water recommended in some jurisdictions, including the European Union directive on pesticide levels <0.1 μg L -1 in water intended for human consumption. Further work is required to determine whether contamination of sources of drinking water with this class of insecticides is a global problem in agricultural regions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Impact of hydraulic well restoration on native bacterial communities in drinking water wells.

    PubMed

    Karwautz, Clemens; Lueders, Tillmann

    2014-01-01

    The microbial monitoring of drinking water production systems is essential to assure water quality and minimize possible risks. However, the comparative impact of microbes from the surrounding aquifer and of those established within drinking water wells on water parameters remains poorly understood. High pressure jetting is a routine method to impede well clogging by fine sediments and also biofilms. In the present study, bacterial communities were investigated in a drinking water production system before, during, and after hydraulic purging. Variations were observed in bacterial communities between different wells of the same production system before maintenance, despite them having practically identical water chemistries. This may have reflected the distinct usage practices of the different wells, and also local aquifer heterogeneity. Hydraulic jetting of one well preferentially purged a subset of the dominating taxa, including lineages related to Diaphorobacter, Nitrospira, Sphingobium, Ralstonia, Alkanindiges, Janthinobacterium, and Pseudomonas spp, suggesting their tendency for growth in well-associated biofilms. Lineages of potential drinking water concern (i.e. Legionellaceae, Pseudomonadaceae, and Acinetobacter spp.) reacted distinctly to hydraulic jetting. Bacterial diversity was markedly reduced in drinking water 2 weeks after the cleaning procedure. The results of the present study provide a better understanding of drinking water wells as a microbial habitat, as well as their role in the microbiology of drinking water systems.

  4. Health implications of PAH release from coated cast iron drinking water distribution systems in The Netherlands.

    PubMed

    Blokker, E J Mirjam; van de Ven, Bianca M; de Jongh, Cindy M; Slaats, P G G Nellie

    2013-05-01

    Coal tar and bitumen have been historically used to coat the insides of cast iron drinking water mains. Polycyclic aromatic hydrocarbons (PAHs) may leach from these coatings into the drinking water and form a potential health risk for humans. We estimated the potential human cancer risk from PAHs in coated cast iron water mains. In a Dutch nationwide study, we collected drinking water samples at 120 locations over a period of 17 days under various operational conditions, such as undisturbed operation, during flushing of pipes, and after a mains repair, and analyzed these samples for PAHs. We then estimated the health risk associated with an exposure scenario over a lifetime. During flushing, PAH levels frequently exceeded drinking water quality standards; after flushing, these levels dropped rapidly. After the repair of cast iron water mains, PAH levels exceeded the drinking water standards for up to 40 days in some locations. The estimated margin of exposure for PAH exposure through drinking water was > 10,000 for all 120 measurement locations, which suggests that PAH exposure through drinking water is of low concern for consumer health. However, factors that differ among water systems, such as the use of chlorination for disinfection, may influence PAH levels in other locations.

  5. Health Implications of PAH Release from Coated Cast Iron Drinking Water Distribution Systems in the Netherlands

    PubMed Central

    van de Ven, Bianca M.; de Jongh, Cindy M.

    2013-01-01

    Background: Coal tar and bitumen have been historically used to coat the insides of cast iron drinking water mains. Polycyclic aromatic hydrocarbons (PAHs) may leach from these coatings into the drinking water and form a potential health risk for humans. Objective: We estimated the potential human cancer risk from PAHs in coated cast iron water mains. Method: In a Dutch nationwide study, we collected drinking water samples at 120 locations over a period of 17 days under various operational conditions, such as undisturbed operation, during flushing of pipes, and after a mains repair, and analyzed these samples for PAHs. We then estimated the health risk associated with an exposure scenario over a lifetime. Results: During flushing, PAH levels frequently exceeded drinking water quality standards; after flushing, these levels dropped rapidly. After the repair of cast iron water mains, PAH levels exceeded the drinking water standards for up to 40 days in some locations. Conclusions: The estimated margin of exposure for PAH exposure through drinking water was > 10,000 for all 120 measurement locations, which suggests that PAH exposure through drinking water is of low concern for consumer health. However, factors that differ among water systems, such as the use of chlorination for disinfection, may influence PAH levels in other locations. PMID:23425894

  6. Quality of drinking water from ponds in villages of Kolleru Lake region.

    PubMed

    Rao, A S; Rao, P R; Rao, N S

    2001-01-01

    Kolleru Lake is the largest natural freshwater lake in the districts of East and West Godavari of Andhra Pradesh. The major population centres in the Kolleru Lake region are the 148 villages of which 50 bed villages and 98 belt villages. All bed and belt villages in lake region have at least one drinking water pond. Drinking water ponds are filled with lake water during monsoon season and directly supplied to the public throughout the year. The water samples were collected from village drinking water ponds in a year by covering three seasons and analysed for different physico-chemical parameters to assess the quality of drinking water.

  7. Drinking Water Quality Governance: A Comparative Case Study of Brazil, Ecuador, and Malawi.

    PubMed

    Kayser, Georgia L; Amjad, Urooj; Dalcanale, Fernanda; Bartram, Jamie; Bentley, Margaret E

    2015-04-01

    Human health is greatly affected by inadequate access to sufficient and safe drinking water, especially in low and middle-income countries. Drinking water governance improvements may be one way to better drinking water quality. Over the past decade, many projects and international organizations have been dedicated to water governance; however, water governance in the drinking water sector is understudied and how to improve water governance remains unclear. We analyze drinking water governance challenges in three countries-Brazil, Ecuador, and Malawi-as perceived by government, service providers, and civil society organizations. A mixed methods approach was used: a clustering model was used for country selection and qualitative semi-structured interviews were used with direct observation in data collection. The clustering model integrated political, economic, social and environmental variables that impact water sector performance, to group countries. Brazil, Ecuador and Malawi were selected with the model so as to enhance the generalizability of the results. This comparative case study is important because similar challenges are identified in the drinking water sectors of each country; while, the countries represent diverse socio-economic and political contexts, and the selection process provides generalizability to our results. We find that access to safe water could be improved if certain water governance challenges were addressed: coordination and data sharing between ministries that deal with drinking water services; monitoring and enforcement of water quality laws; and sufficient technical capacity to improve administrative and technical management of water services at the local level. From an analysis of our field research, we also developed a conceptual framework that identifies policy levers that could be used to influence governance of drinking water quality on national and sub-national levels, and the relationships between these levers.

  8. Drinking Water Quality Governance: A Comparative Case Study of Brazil, Ecuador, and Malawi

    PubMed Central

    Kayser, Georgia L.; Amjad, Urooj; Dalcanale, Fernanda; Bartram, Jamie; Bentley, Margaret E.

    2015-01-01

    Human health is greatly affected by inadequate access to sufficient and safe drinking water, especially in low and middle-income countries. Drinking water governance improvements may be one way to better drinking water quality. Over the past decade, many projects and international organizations have been dedicated to water governance; however, water governance in the drinking water sector is understudied and how to improve water governance remains unclear. We analyze drinking water governance challenges in three countries—Brazil, Ecuador, and Malawi—as perceived by government, service providers, and civil society organizations. A mixed methods approach was used: a clustering model was used for country selection and qualitative semi-structured interviews were used with direct observation in data collection. The clustering model integrated political, economic, social and environmental variables that impact water sector performance, to group countries. Brazil, Ecuador and Malawi were selected with the model so as to enhance the generalizability of the results. This comparative case study is important because similar challenges are identified in the drinking water sectors of each country; while, the countries represent diverse socio-economic and political contexts, and the selection process provides generalizability to our results. We find that access to safe water could be improved if certain water governance challenges were addressed: coordination and data sharing between ministries that deal with drinking water services; monitoring and enforcement of water quality laws; and sufficient technical capacity to improve administrative and technical management of water services at the local level. From an analysis of our field research, we also developed a conceptual framework that identifies policy levers that could be used to influence governance of drinking water quality on national and sub-national levels, and the relationships between these levers. PMID:25798068

  9. Fluoride concentration in community water and bottled drinking water: a dilemma today.

    PubMed

    Dhingra, S; Marya, C M; Jnaneswar, A; Kumar, H

    2013-01-01

    Because of the potential for contamination of municipal water supplies, people appear to be turning to alternative sources for their pure drinking water. The present study analyzed the fluoride concentration in community water and bottled drinking water sold in Faridabad city. A comparative evaluation of fluoride content in community water supply and bottled drinking water was done using ion-selective electrode method. The community water samples were collected from six different areas (i.e. north zone, south zone, east zone, west zone and central zone) in the city from public health water supply taps while bottled drinking water samples were randomly picked from grocery shops or supermarkets. The fluoride concentration in the community water supply in this study ranges from 0.11 to 0.26 mg/L with mean fluoride concentration of 0.17 mg/L. The mean concentration of fluoride in bottled drinking water was 0.06 mg/L. The differences observed between mean of two water samples was statistically significant. The results obtained from the present study clearly state that the fluoride concentration was insufficient in community water supply from all the areas and also was deficient in bottled drinking water sold in Faridabad city. So, Alternative sources of fluorides should be supplemented for optimal dental benefits from the use of fluoride.

  10. Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries.

    PubMed

    Chowdhury, Shakhawat; Mazumder, M A Jafar; Al-Attas, Omar; Husain, Tahir

    2016-11-01

    Heavy metals in drinking water pose a threat to human health. Populations are exposed to heavy metals primarily through water consumption, but few heavy metals can bioaccumulate in the human body (e.g., in lipids and the gastrointestinal system) and may induce cancer and other risks. To date, few thousand publications have reported various aspects of heavy metals in drinking water, including the types and quantities of metals in drinking water, their sources, factors affecting their concentrations at exposure points, human exposure, potential risks, and their removal from drinking water. Many developing countries are faced with the challenge of reducing human exposure to heavy metals, mainly due to their limited economic capacities to use advanced technologies for heavy metal removal. This paper aims to review the state of research on heavy metals in drinking water in developing countries; understand their types and variability, sources, exposure, possible health effects, and removal; and analyze the factors contributing to heavy metals in drinking water. This study identifies the current challenges in developing countries, and future research needs to reduce the levels of heavy metals in drinking water. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Colon cancer and content of nitrates and magnesium in drinking water.

    PubMed

    Chiu, Hui-Fen; Tsai, Shang-Shyue; Wu, Trong-Neng; Yang, Chun-Yuh

    2010-06-01

    The objective of this study was to explore whether magnesium levels (Mg) in drinking water modify the effects of nitrate on colon cancer risk. A matched case-control study was used to investigate the relationship between the risk of death from colon cancer and exposure to nitrate in drinking water in Taiwan. All colon cancer deaths of Taiwan residents from 2003 through 2007 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to the cases by gender, year-of-birth, and year-of-death. Information on the levels of nitrate-nitrogen (NO3-N) and Mg in drinking water were collected from Taiwan Water Supply Corporation (TWSC). The municipality of residence for cases and controls was assumed to be the source of the subject's NO3-N and Mg exposure via drinking water. The results of our study show that there is a significant trend towards an elevated risk of death from colon cancer with increasing nitrate levels in drinking water. Furthermore, we observed evidence of an interaction between drinking water NO3-N and Mg intake via drinking water. This is the first study to report effect modification by Mg intake from drinking water on the association between NO3-N exposure and colon cancer risk.

  12. Solid-phase extraction combined with high-performance liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry analysis of pesticides in water: method performance and application in a reconnaissance survey of residues in drinking water in Greater Cairo, Egypt.

    PubMed

    Potter, Thomas L; Mohamed, Mahmoud A; Ali, Hannah

    2007-01-24

    Monitoring of water resources for pesticide residues is often needed to ensure that pesticide use does not adversely impact the quality of public water supplies or the environment. In many rural areas and throughout much of the developing world, monitoring is often constrained by lack of testing facilities; thus, collection of samples and shipment to centralized laboratories for analysis is required. The portability, ease of use, and potential to enhance analyte stability make solid-phase extraction (SPE) an attractive technique for handling water samples prior to their shipment. We describe performance of an SPE method targeting a structurally diverse mixture of 25 current-use pesticides and two common degradates in samples of raw and filtered drinking water collected in Greater Cairo, Egypt. SPE was completed in a field laboratory in Egypt, and cartridges were shipped to the United States for elution and high-performance liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry analysis. Quantitative and reproducible recovery of 23 of 27 compounds (average = 96%; percent relative standard deviation = 21%) from matrix spikes (1 microg L-1 per component) prepared in the field and from deionized water fortified similarly in the analytical laboratory was obtained. Concurrent analysis of unspiked samples identified four parent compounds and one degradate in drinking water samples. No significant differences were observed between raw and filtered samples. Residue levels in all cases were below drinking water and "harm to aquatic-life" thresholds, indicating that human and ecological risks of pesticide contamination were relatively small; however, the study was limited in scale and scope. Further monitoring is needed to define spatial and temporal variation in residue concentrations. The study has demonstrated the feasibility of performing studies of this type using SPE to extract and preserve samples in the field. The approach should be broadly applicable in many settings.

  13. Changes in Escherichia coli to Cryptosporidium ratios for various fecal pollution sources and drinking water intakes.

    PubMed

    Lalancette, Cindy; Papineau, Isabelle; Payment, Pierre; Dorner, Sarah; Servais, Pierre; Barbeau, Benoit; Di Giovanni, George D; Prévost, Michèle

    2014-05-15

    Assessing the presence of human pathogenic Cryptosporidium oocysts in surface water remains a significant water treatment and public health challenge. Most drinking water suppliers rely on fecal indicators, such as the well-established Escherichia coli (E. coli), to avoid costly Cryptosporidium assays. However, the use of E. coli has significant limitations in predicting the concentration, the removal and the transport of Cryptosporidium. This study presents a meta-analysis of E. coli to Cryptosporidium concentration paired ratios to compare their complex relationships in eight municipal wastewater sources, five agricultural fecal pollution sources and at 13 drinking water intakes (DWI) to a risk threshold based on US Environmental Protection Agency (USEPA) regulations. Ratios lower than the USEPA risk threshold suggested higher concentrations of oocysts in relation to E. coli concentrations, revealing an underestimed risk for Cryptosporidium based on E. coli measurements. In raw sewage (RS), high ratios proved E. coli (or fecal coliforms) concentrations were a conservative indicator of Cryptosporidium concentrations, which was also typically true for secondary treated wastewater (TWW). Removals of fecal indicator bacteria (FIB) and parasites were quantified in WWTPs and their differences are put forward as a plausible explanation of the sporadic ratio shift. Ratios measured from agricultural runoff surface water were typically lower than the USEPA risk threshold and within the range of risk misinterpretation. Indeed, heavy precipitation events in the agricultural watershed led to high oocyst concentrations but not to E. coli or enterococci concentrations. More importantly, ratios established in variously impacted DWI from 13 Canadian drinking water plants were found to be related to dominant fecal pollution sources, namely municipal sewage. In most cases, when DWIs were mainly influenced by municipal sewage, E. coli or fecal coliforms concentrations agreed with Cryptosporidium concentrations as estimated by the meta-analysis, but when DWIs were influenced by agricultural runoff or wildlife, there was a poor relationship. Average recovery values were available for 6 out of 22 Cryptosporidium concentration data sets and concomitant analysis demonstrated no changes in trends, with and without correction. Nevertheless, recovery assays performed along with every oocyst count would have enhanced the precision of this work. Based on our findings, the use of annual averages of E. coli concentrations as a surrogate for Cryptosporidium concentrations can result in an inaccurate estimate of the Cryptosporidium risk for agriculture impacted drinking water intakes or for intakes with more distant wastewater sources. Studies of upstream fecal pollution sources are recommended for drinking water suppliers to improve their interpretation of source water quality data. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. MINI PILOT PLANT FOR DRINKING WATER RESEARCH

    EPA Science Inventory

    The Water Supply & Water Resources Division (WSWRD) has constructed 2 mini-pilot plant systems used to conduct drinking water research. These two systems each have 2 parallel trains for comparative research. The mini-pilot plants are small conventional drinking water treatment ...

  15. Piloting water quality testing coupled with a national socioeconomic survey in Yogyakarta province, Indonesia, towards tracking of Sustainable Development Goal 6.

    PubMed

    Cronin, Aidan A; Odagiri, Mitsunori; Arsyad, Bheta; Nuryetty, Mariet Tetty; Amannullah, Gantjang; Santoso, Hari; Darundiyah, Kristin; Nasution, Nur 'Aisyah

    2017-10-01

    There remains a pressing need for systematic water quality monitoring strategies to assess drinking water safety and to track progress towards the Sustainable Development Goals (SDG). This study incorporated water quality testing into an existing national socioeconomic survey in Yogyakarta province, Indonesia; the first such study in Indonesia in terms of SDG tracking. Multivariate regression analysis assessed the association between faecal and nitrate contamination and drinking water sources household drinking water adjusted for wealth, education level, type of water sources and type of sanitation facilities. The survey observed widespread faecal contamination in both sources for drinking water (89.2%, 95%CI: 86.9-91.5%; n=720) and household drinking water (67.1%, 95%CI: 64.1-70.1%; n=917) as measured by Escherichia coli. This was despite widespread improved drinking water source coverage (85.3%) and commonly self-reported boiling practices (82.2%). E.coli concentration levels in household drinking water were associated with wealth, education levels of a household head, and type of water source (i.e. vender water or local sources). Following the proposed SDG definition for Target 6.1 (water) and 6.2 (sanitation), the estimated proportion of households with access to safely managed drinking water and sanitation was 8.5% and 45.5%, respectively in the study areas, indicating substantial difference from improved drinking water (82.2%) and improved sanitation coverage (70.9%) as per the MDGs targets. The greatest contamination and risk factors were found in the poorest households indicating the urgent need for targeted and effective interventions here. There is suggested evidence that sub-surface leaching from on-site sanitation adversely impacts on drinking water sources, which underscores the need for further technical assistance in promoting latrine construction. Urgent action is still needed to strengthen systematic monitoring efforts towards tracking SDG Goal 6. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. Chloramination of Concentrated Drinking Water for ...

    EPA Pesticide Factsheets

    Abstract for presentation on chloraminated drinking water concentrates to create whole DBP mixtures Abstract for presentation on chloraminating drinking water concentrates to create whole DBP mixtures

  17. 21 CFR 520.2325a - Sulfaquinoxaline drinking water.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sulfaquinoxaline drinking water. 520.2325a Section... Sulfaquinoxaline drinking water. (a) Sponsor. See § 510.600(c) of this chapter for identification of the sponsors... tolerances. See § 556.685 of this chapter. (c) Conditions of use. It is used in drinking water as follows: (1...

  18. 21 CFR 520.2325a - Sulfaquinoxaline drinking water.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sulfaquinoxaline drinking water. 520.2325a Section... Sulfaquinoxaline drinking water. (a) Sponsor. See § 510.600(c) of this chapter for identification of the sponsors... tolerances. See § 556.685 of this chapter. (c) Conditions of use. It is used in drinking water as follows: (1...

  19. 77 FR 14425 - Notice of Lodging of Consent Decree Under the Safe Drinking Water Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ... DEPARTMENT OF JUSTICE Notice of Lodging of Consent Decree Under the Safe Drinking Water Act Notice... penalties under the Safe Drinking Water Act (``SDWA''), 42 U.S.C. 300f-300j-26, resulting from violations of the National Primary Drinking Water Regulations (``NPDWRs'') at two trailer courts that Stricklin owns...

  20. 77 FR 40382 - Notice of Lodging of Consent Decree Under the Safe Drinking Water Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-09

    ... DEPARTMENT OF JUSTICE Notice of Lodging of Consent Decree Under the Safe Drinking Water Act Notice... civil penalties for alleged violations of the Safe Drinking Water Act (``SDWA''), 42 U.S.C. 300f through 300j-26, including violations of the National Primary Drinking Water Regulations (``NPDWRs''), at...

Top