DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, R.A.; Cron, J.
This design analysis has shown that, on a conceptual level, the emplacement of drip shields is feasible with current technology and equipment. A plan for drip shield emplacement was presented using a Drip Shield Transporter, a Drip Shield Emplacement Gantry, a locomotive, and a Drip Shield Gantry Carrier. The use of a Drip Shield Emplacement Gantry as an emplacement concept results in a system that is simple, reliable, and interfaces with the numerous other exising repository systems. Using the Waste Emplacement/Retrieval System design as a basis for the drip shield emplacement concept proved to simplify the system by using existingmore » equipment, such as the gantry carrier, locomotive, Electrical and Control systems, and many other systems, structures, and components. Restricted working envelopes for the Drip Shield Emplacement System require further consideration and must be addressed to show that the emplacement operations can be performed as the repository design evolves. Section 6.1 describes how the Drip Shield Emplacement System may use existing equipment. Depending on the length of time between the conclusion of waste emplacement and the commencement of drip shield emplacement, this equipment could include the locomotives, the gantry carrier, and the electrical, control, and rail systems. If the exisiting equipment is selected for use in the Drip Shield Emplacement System, then the length of time after the final stages of waste emplacement and start of drip shield emplacement may pose a concern for the life cycle of the system (e.g., reliability, maintainability, availability, etc.). Further investigation should be performed to consider the use of existing equipment for drip shield emplacement operations. Further investigation will also be needed regarding the interfaces and heat transfer and thermal effects aspects. The conceptual design also requires further design development. Although the findings of this analysis are accurate for the assumptions made, further refinements of this analysis are needed as the project parameters change. The designs of the drip shield, the Emplacement Drift, and the other drip shield emplacement equipment all have a direct effect on the overall design feasibility.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. Gross
2004-09-01
The purpose of this scientific analysis is to define the sampled values of stochastic (random) input parameters for (1) rockfall calculations in the lithophysal and nonlithophysal zones under vibratory ground motions, and (2) structural response calculations for the drip shield and waste package under vibratory ground motions. This analysis supplies: (1) Sampled values of ground motion time history and synthetic fracture pattern for analysis of rockfall in emplacement drifts in nonlithophysal rock (Section 6.3 of ''Drift Degradation Analysis'', BSC 2004 [DIRS 166107]); (2) Sampled values of ground motion time history and rock mechanical properties category for analysis of rockfall inmore » emplacement drifts in lithophysal rock (Section 6.4 of ''Drift Degradation Analysis'', BSC 2004 [DIRS 166107]); (3) Sampled values of ground motion time history and metal to metal and metal to rock friction coefficient for analysis of waste package and drip shield damage to vibratory motion in ''Structural Calculations of Waste Package Exposed to Vibratory Ground Motion'' (BSC 2004 [DIRS 167083]) and in ''Structural Calculations of Drip Shield Exposed to Vibratory Ground Motion'' (BSC 2003 [DIRS 163425]). The sampled values are indices representing the number of ground motion time histories, number of fracture patterns and rock mass properties categories. These indices are translated into actual values within the respective analysis and model reports or calculations. This report identifies the uncertain parameters and documents the sampled values for these parameters. The sampled values are determined by GoldSim V6.04.007 [DIRS 151202] calculations using appropriate distribution types and parameter ranges. No software development or model development was required for these calculations. The calculation of the sampled values allows parameter uncertainty to be incorporated into the rockfall and structural response calculations that support development of the seismic scenario for the Total System Performance Assessment for the License Application (TSPA-LA). The results from this scientific analysis also address project requirements related to parameter uncertainty, as specified in the acceptance criteria in ''Yucca Mountain Review Plan, Final Report'' (NRC 2003 [DIRS 163274]). This document was prepared under the direction of ''Technical Work Plan for: Regulatory Integration Modeling of Drift Degradation, Waste Package and Drip Shield Vibratory Motion and Seismic Consequences'' (BSC 2004 [DIRS 170528]) which directed the work identified in work package ARTM05. This document was prepared under procedure AP-SIII.9Q, ''Scientific Analyses''. There are no specific known limitations to this analysis.« less
76 FR 7513 - Airworthiness Directives; The Boeing Company Model 747-400 and -400F Series Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-10
.... Cracking in the MEC drip shield and exhaust plenum has been identified as part of the water leak path into the MEC. This condition, if not corrected, could result in water penetration into the MEC, which could... of cracked MEC drip shields. We are proposing this AD to prevent water penetration into the MEC...
NASA Astrophysics Data System (ADS)
Buscheck, T.; Glascoe, L.; Sun, Y.; Gansemer, J.; Lee, K.
2003-12-01
For the proposed Yucca Mountain geologic repository for high-level nuclear waste, the planned method of disposal involves the emplacement of cylindrical packages containing the waste inside horizontal tunnels, called emplacement drifts, bored several hundred meters below the ground surface. The emplacement drifts reside in highly fractured, partially saturated volcanic tuff. An important phenomenological consideration for the licensing of the proposed repository at Yucca Mountain is the generation of decay heat by the emplaced waste and the consequences of this decay heat. Changes in temperature will affect the hydrologic and chemical environment at Yucca Mountain. A thermohydrologic-modeling tool is necessary to support the performance assessment of the Engineered Barrier System (EBS) of the proposed repository. This modeling tool must simultaneously account for processes occurring at a scale of a few tens of centimeters around individual waste packages, for processes occurring around the emplacement drifts themselves, and for processes occurring at the multi-kilometer scale of the mountain. Additionally, many other features must be considered including non-isothermal, multiphase-flow in fractured porous rock of variable liquid-phase saturation and thermal radiation and convection in open cavities. The Multiscale Thermohydrologic Model (MSTHM) calculates the following thermohydrologic (TH) variables: temperature, relative humidity, liquid-phase saturation, evaporation rate, air-mass fraction, gas-phase pressure, capillary pressure, and liquid- and gas-phase fluxes. The TH variables are determined as a function of position along each of the emplacement drifts in the repository and as a function of waste-package (WP) type. These variables are determined at various generic locations within the emplacement drifts, including the waste package and drip-shield surfaces and in the invert; they are also determined at various generic locations in the adjoining host rock; these variables are determined every 20 m for each emplacement drift in the repository. The MSTHM accounts for 3-D drift-scale and mountain-scale heat flow and captures the influence of the key engineering-design variables and natural-system factors affecting TH conditions in the emplacement drifts and adjoining host rock. Presented is a synopsis of recent MSTHM calculations conducted to support the Total System Performance Assessment for the License Application (TSPA-LA). This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
Chan, Edwin; Maa, Yuh-Fun; Overcashier, David; Hsu, Chung C
2011-01-01
This study is to investigate the effect of headspace air pressure in pre-filled syringes on liquid leak (dripping) from the syringe needle upon needle shield removal. Drip tests to measure drip quantity were performed on syringes manually filled with 0.5 or 1.0 mL of various aqueous solutions. Parameters assessed included temperature (filling and test), bulk storage conditions (tank pressure and the type of the pressurized gas), solution composition (pure water, 0.9% sodium chloride, and a monoclonal antibody formulation), and testing procedures. A headspace pressure analyzer was used to verify the drip test method. Results suggested that leakage is indeed caused by headspace pressure increase, and the temperature effect (ideal gas expansion) is a major, but not the only, factor. The dissolved gases in the liquid bulk prior to or during filling may contribute to leakage, as these gases could be released into the headspace due to solubility changes (in response to test temperature and pressure conditions) and cause pressure increase. Needle shield removal procedures were found to cause dripping, but liquid composition played little role. Overall, paying attention to the processing history (pressure and temperature) of the liquid bulk is the key to minimize leakage. The headspace pressure could be reduced by decreasing liquid bulk storage pressure, filling at a higher temperature, or employing lower solubility gas (e.g., helium) for bulk transfer and storage. Leakage could also be mitigated by simply holding the syringe needle pointing upward during needle shield removal. Substantial advances in pre-filled syringe technology development, particularly in syringe filling accuracy, have been made. However, there are factors, as subtle as how the needle shield (or tip cap) is removed, that may affect dosing accuracy. We recently found that upon removal of the tip cap from a syringe held vertically with needle pointed downwards, a small amount of solution, up to 3-4% of the 1 mL filled volume or higher for filled volume of <1 mL, leaked out from the needle. This paper identified the root causes of this problem and offered solutions from the perspectives of the syringe fill process and the end user procedure. The readers will benefit from this paper by understanding how each process step prior to and during syringe filling may affect delivery performance of the pre-filled syringe device.
ADVANTG Shielding Analysis for Closure Operations in an Open-Mode Repository
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bevill, Aaron M; Radulescu, Georgeta; Scaglione, John M
2013-01-01
en-mode repository concepts could require worker entry into access drifts after placement of fuel casks in order to perform activities related to backfill, plug emplacement, routine maintenance, or performance confirmation. An ideal emplacement-drift shielding configuration would minimize dose to workers while maximizing airflow through the emplacement drifts. This paper presents a preliminary investigation of the feasibility and effectiveness of radiation shielding concepts that could be employed to facilitate worker operations in an open-mode repository. The repository model for this study includes pressurized-water reactor fuel assemblies (60 GWd/MTU burnup, 40 year post-irradiation cooldown) in packages of 32 assemblies. The closest fuelmore » packages are 5 meters from dosimetry voxels in the access drift. The unshielded dose to workers in the access drift is 73.7 rem/hour. Prior work suggests that open-mode repository concepts similar to this one would require 15 m3/s of ventilation airflow. Shielding concepts considered here include partial concrete plugs, labyrinthine shields, and stainless steel photon attenuator grids. Maximum dose to workers in the access drift was estimated for each shielding concept using MCNP5 with variance reduction parameters generated by ADVANTG. Because airflow through the shielding is important for open-mode repositories, a semi-empirical estimate of the head loss due to each shielding configuration was also calculated. Airflow and shielding performance vary widely among the proposed shielding configurations. Although the partial plug configuration had the best airflow performance, it allowed dose rates 1500 greater than the specified target. Labyrinthine shielding concepts yield doses on the order of 1 mrem/hour with configurations that impose 3 to 11 J/kg head loss. Adding 1 cm lead lining to the airflow channels of labyrinthine designs further reduces the worker dose by 65% to 95%. Photon-attenuator concepts may reduce worker dose to as low as 29 mrem/hour with head loss on the order of 1.9 J/kg.« less
10 CFR 963.17 - Postclosure suitability criteria.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) Near field geochemical environment—for example, the chemical reactions and products resulting from... probability and potential consequences of a self-sustaining nuclear reaction as a result of chemical or..., drip shields, backfill, coatings, or chemical modifications, and (ii) Waste package degradation—for...
10 CFR 963.17 - Postclosure suitability criteria.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) Near field geochemical environment—for example, the chemical reactions and products resulting from... probability and potential consequences of a self-sustaining nuclear reaction as a result of chemical or..., drip shields, backfill, coatings, or chemical modifications, and (ii) Waste package degradation—for...
10 CFR 963.17 - Postclosure suitability criteria.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Near field geochemical environment—for example, the chemical reactions and products resulting from... probability and potential consequences of a self-sustaining nuclear reaction as a result of chemical or..., drip shields, backfill, coatings, or chemical modifications, and (ii) Waste package degradation—for...
10 CFR 963.17 - Postclosure suitability criteria.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) Near field geochemical environment—for example, the chemical reactions and products resulting from... probability and potential consequences of a self-sustaining nuclear reaction as a result of chemical or..., drip shields, backfill, coatings, or chemical modifications, and (ii) Waste package degradation—for...
10 CFR 963.17 - Postclosure suitability criteria.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) Near field geochemical environment—for example, the chemical reactions and products resulting from... probability and potential consequences of a self-sustaining nuclear reaction as a result of chemical or..., drip shields, backfill, coatings, or chemical modifications, and (ii) Waste package degradation—for...
10 CFR 63.133 - Design testing.
Code of Federal Regulations, 2010 CFR
2010-01-01
... design, such as, for example, borehole and shaft seals, backfill, and drip shields, as well as the... placement is begun. (d) Tests must be conducted to evaluate the effectiveness of borehole, shaft, and ramp seals before full-scale operation proceeds to seal boreholes, shafts, and ramps. ...
10 CFR 63.133 - Design testing.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Design testing. 63.133 Section 63.133 Energy NUCLEAR... MOUNTAIN, NEVADA Performance Confirmation Program § 63.133 Design testing. (a) During the early or... design, such as, for example, borehole and shaft seals, backfill, and drip shields, as well as the...
78 FR 21571 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-11
...-400, -400D, and -400F series airplanes. This proposed AD was prompted by a report of water leakage into the main deck cargo wire integration unit (WIU). The water flowed from the drip shield through... water penetration into the MEC, which could result in the loss of flight critical systems. DATES: We...
Waste Package Component Design Methodology Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
D.C. Mecham
2004-07-12
This Executive Summary provides an overview of the methodology being used by the Yucca Mountain Project (YMP) to design waste packages and ancillary components. This summary information is intended for readers with general interest, but also provides technical readers a general framework surrounding a variety of technical details provided in the main body of the report. The purpose of this report is to document and ensure appropriate design methods are used in the design of waste packages and ancillary components (the drip shields and emplacement pallets). The methodology includes identification of necessary design inputs, justification of design assumptions, and usemore » of appropriate analysis methods, and computational tools. This design work is subject to ''Quality Assurance Requirements and Description''. The document is primarily intended for internal use and technical guidance for a variety of design activities. It is recognized that a wide audience including project management, the U.S. Department of Energy (DOE), the U.S. Nuclear Regulatory Commission, and others are interested to various levels of detail in the design methods and therefore covers a wide range of topics at varying levels of detail. Due to the preliminary nature of the design, readers can expect to encounter varied levels of detail in the body of the report. It is expected that technical information used as input to design documents will be verified and taken from the latest versions of reference sources given herein. This revision of the methodology report has evolved with changes in the waste package, drip shield, and emplacement pallet designs over many years and may be further revised as the design is finalized. Different components and analyses are at different stages of development. Some parts of the report are detailed, while other less detailed parts are likely to undergo further refinement. The design methodology is intended to provide designs that satisfy the safety and operational requirements of the YMP. Four waste package configurations have been selected to illustrate the application of the methodology during the licensing process. These four configurations are the 21-pressurized water reactor absorber plate waste package (21-PWRAP), the 44-boiling water reactor waste package (44-BWR), the 5 defense high-level radioactive waste (HLW) DOE spent nuclear fuel (SNF) codisposal short waste package (5-DHLWDOE SNF Short), and the naval canistered SNF long waste package (Naval SNF Long). Design work for the other six waste packages will be completed at a later date using the same design methodology. These include the 24-boiling water reactor waste package (24-BWR), the 21-pressurized water reactor control rod waste package (21-PWRCR), the 12-pressurized water reactor waste package (12-PWR), the 5 defense HLW DOE SNF codisposal long waste package (5-DHLWDOE SNF Long), the 2 defense HLW DOE SNF codisposal waste package (2-MC012-DHLW), and the naval canistered SNF short waste package (Naval SNF Short). This report is only part of the complete design description. Other reports related to the design include the design reports, the waste package system description documents, manufacturing specifications, and numerous documents for the many detailed calculations. The relationships between this report and other design documents are shown in Figure 1.« less
77 FR 13043 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-05
... to the top surface of the MEC drip shield. That NPRM was prompted by a report of a multi-power system loss in flight of 1, 2, and 3 alternating current electrical power systems located in the MEC. This... current electrical power systems located in the main equipment center (MEC). We are issuing this AD to...
Applications in the Nuclear Industry for Thermal Spray Amorphous Metal and Ceramic Coatings
NASA Astrophysics Data System (ADS)
Blink, J.; Farmer, J.; Choi, J.; Saw, C.
2009-06-01
Amorphous metal and ceramic thermal spray coatings have been developed with excellent corrosion resistance and neutron absorption. These coatings, with further development, could be cost-effective options to enhance the corrosion resistance of drip shields and waste packages, and limit nuclear criticality in canisters for the transportation, aging, and disposal of spent nuclear fuel. Iron-based amorphous metal formulations with chromium, molybdenum, and tungsten have shown the corrosion resistance believed to be necessary for such applications. Rare earth additions enable very low critical cooling rates to be achieved. The boron content of these materials and their stability at high neutron doses enable them to serve as high efficiency neutron absorbers for criticality control. Ceramic coatings may provide even greater corrosion resistance for waste package and drip shield applications, although the boron-containing amorphous metals are still favored for criticality control applications. These amorphous metal and ceramic materials have been produced as gas-atomized powders and applied as near full density, nonporous coatings with the high-velocity oxy-fuel process. This article summarizes the performance of these coatings as corrosion-resistant barriers and as neutron absorbers. This article also presents a simple cost model to quantify the economic benefits possible with these new materials.
NASA Astrophysics Data System (ADS)
Hassan, M.; Abu-Alam, T. S.; Hauzenberger, C.; Stüwe, K.
2016-10-01
Late Precambrian intrusive rocks in the Arabian-Nubian Shield emplaced within and around the Najd Fault System of Saudi Arabia feature a great compositional diversity and a variety of degrees of deformation (i.e. pre-shearing deformed, sheared mylonitized, and post-shearing undeformed) that allows placing them into a relative time order. It is shown here that the degree of deformation is related to compositional variations where early, usually pre-shearing deformed rocks are of dioritic, tonalitic to granodioritic, and later, mainly post-shearing undeformed rocks are mostly of granitic composition. Correlation of the geochemical signature and time of emplacement is interpreted in terms of changes in the source region of the produced melts due to the change of the stress regime during the tectonic evolution of the Arabian-Nubian Shield. The magma of the pre-shearing rocks has tholeiitic and calc-alkaline affinity indicating island arc or continental arc affinity. In contrast, the syn- and post-shearing rocks are mainly potassium rich peraluminous granites which are typically associated with post-orogenic uplift and collapse. This variation in geochemical signature is interpreted to reflect the change of the tectonic regime from a compressional volcanic arc nature to extensional within-plate setting of the Arabian-Nubian Shield. Within the context of published geochronological data, this change is likely to have occurred around 605-580 Ma.
Rifts of deeply eroded Hawaiian basaltic shields: A structural analog for large Martian volcanoes
NASA Technical Reports Server (NTRS)
Knight, Michael D.; Walker, G. P. L.; Mouginis-Mark, P. J.; Rowland, Scott K.
1988-01-01
Recently derived morphologic evidence suggests that intrusive events have not only influenced the growth of young shield volcanoes on Mars but also the distribution of volatiles surrounding these volcanoes: in addition to rift zones and flank eruptions on Arsia Mons and Pavonis Mons, melt water channels were identified to the northwest of Hecates Tholus, to the south of Hadriaca Patera, and to the SE of Olympus Mons. Melt water release could be the surface expression of tectonic deformation of the region or, potentially, intrusive events associated with dike emplacement from each of these volcanoes. In this study the structural properties of Hawaiian shield volcanoes were studied where subaerial erosion has removed a sufficient amount of the surface to enable a direct investigation of the internal structure of the volcanoes. The field investigation of dike morphology and magma flow characteristics for several volcanoes in Hawaii is reported. A comprehensive investigation was made of the Koolau dike complex that passes through the summit caldera. A study of two other dissected Hawaiian volcanoes, namely Waianae and East Molokai, was commenced. The goal is not only to understand the emplacement process and magma flow within these terrestrial dikes, but also to explore the possible role that intrusive events may have played in volcano growth and the distribution of melt water release on Mars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daemen, Jaak J.K.; Ma, Lumin; Zhao, Guohua
The study of the long term mechanical behavior of Yucca Mountain tuffs is important for several reasons. Long term stability of excavations will affect accessibility (e.g. for inspection purposes), and retrievability. Long term instabilities may induce loading of drip shields and/or emplaced waste, thus affecting drip shield and/or waste package corrosion. Failure of excavations will affect airflow, may affect water flow, and may affect temperature distributions. The long term mechanical behavior of rocks remains an elusive topic, loaded with uncertainties. A variety of approaches have been used to improve the understanding of this complex subject, but it is doubtful thatmore » it has reached a stage where firm predictions can be considered feasible. The long term mechanical behavior of "soft" rocks, especially evaporites, and in particular rock salt, has been the subject of numerous investigations (e.g. Cristescu and Hunsche, 1998, Cristescu et al, 2002), and basic approaches towards engineering taking into account the long term behavior of such materials have long been well established (e.g. Dreyer, 1972, 1982). The same is certainly not true of "hard" rocks. While it long has been recognized that the long term strength of ?hard? rocks almost certainly is significantly less than that measured during "short", i.e. standard (ASTM D 2938), ISRM suggested (Bieniawski et al, 1978) and conventionally used test procedures (e.g. Bieniawski, 1970, Wawersik, 1972, Hoek and Brown, 1980, p. 150), what limited approaches have been taken to develop strategies toward determining the long term mechanical behavior of "hard" rock remain in the early research and investigation stage, at best. One early model developed specifically for time dependent analysis of underground "hard" rock structures is the phenomenological model by Kaiser and Morgenstern (1981). Brady and Brown (1985, p. 93) state that over a wide range of strain rates, from 10^-8 to 10^2/s the difference in strength is only a factor of 2, and that "the observed behavior of rock is not significantly influenced by varying the strain rate within the range that is convenient to use in quasi-static laboratory compression tests." While this is undoubtedly true, it does not really address the question as to whether or not strengths thus measured can be considered appropriate for estimating long term strengths. One objective of this investigation was to evaluate the applicability of the approaches by Cruden (e.g. Cruden, 1971, 1974, 1983, 1987) and by Lajtai (e.g. Lajtai and Schmidtke, 1986, 1987) to the prediction of the long term mechanical behavior of the investigated tuffs. This involves in particular static fatigue testing, by conducting uniaxial, triaxial, and indirect splitting (Brazilian) tests over a wide range of strain (or stress, or displacement) rates.« less
A lunar/Martian anchor emplacement system
NASA Astrophysics Data System (ADS)
Clinton, Dustin; Holt, Andrew; Jantz, Erik; Kaufman, Teresa; Martin, James; Weber, Reed
On the Moon or Mars, it is necessary to have an anchor, or a stable, fixed point able to support the forces necessary to rescue a stuck vehicle, act as a stake for a tent in a Martian gale, act as a fulcrum in the erection of general construction poles, or support tent-like regolith shields. The anchor emplacement system must be highly autonomous. It must supply the energy and stability for anchor deployment. The goal of the anchor emplacement system project is to design and build a prototype anchor and to design a conceptual anchor emplacement system. Various anchors were tested in a 1.3 cubic meter test bed containing decomposed granite. A simulated lunar soil was created by adjusting the moisture and compaction characteristics of the soil. We conducted tests on emplacement torque, amount of force the anchor could withstand before failure, anchor pull out force at various angles, and soil disturbances caused by placing the anchor. A single helix auger anchor performed best in this test bed based on energy to emplace, and the ultimate holding capacity. The anchor was optimized for ultimate holding capacity, minimum emplacement torque, and minimum soil disturbance in sandy soils yielding the following dimensions: helix diameter (4.45 cm), pitch (1.27 cm), blade thickness (0.15 cm), total length (35.56 cm), shaft diameter (0.78 cm), and a weight of 212.62 g. The experimental results showed that smaller diameter, single-helix augers held more force than larger diameter augers for a given depth. The emplacement system consists of a flywheel and a motor for power, sealed in a protective box supported by four legs. The flywheel system was chosen over a gear system based on its increased reliability in the lunar environment.
A lunar/Martian anchor emplacement system
NASA Technical Reports Server (NTRS)
Clinton, Dustin; Holt, Andrew; Jantz, Erik; Kaufman, Teresa; Martin, James; Weber, Reed
1993-01-01
On the Moon or Mars, it is necessary to have an anchor, or a stable, fixed point able to support the forces necessary to rescue a stuck vehicle, act as a stake for a tent in a Martian gale, act as a fulcrum in the erection of general construction poles, or support tent-like regolith shields. The anchor emplacement system must be highly autonomous. It must supply the energy and stability for anchor deployment. The goal of the anchor emplacement system project is to design and build a prototype anchor and to design a conceptual anchor emplacement system. Various anchors were tested in a 1.3 cubic meter test bed containing decomposed granite. A simulated lunar soil was created by adjusting the moisture and compaction characteristics of the soil. We conducted tests on emplacement torque, amount of force the anchor could withstand before failure, anchor pull out force at various angles, and soil disturbances caused by placing the anchor. A single helix auger anchor performed best in this test bed based on energy to emplace, and the ultimate holding capacity. The anchor was optimized for ultimate holding capacity, minimum emplacement torque, and minimum soil disturbance in sandy soils yielding the following dimensions: helix diameter (4.45 cm), pitch (1.27 cm), blade thickness (0.15 cm), total length (35.56 cm), shaft diameter (0.78 cm), and a weight of 212.62 g. The experimental results showed that smaller diameter, single-helix augers held more force than larger diameter augers for a given depth. The emplacement system consists of a flywheel and a motor for power, sealed in a protective box supported by four legs. The flywheel system was chosen over a gear system based on its increased reliability in the lunar environment.
Sherrod, D.R.; Murai, T.; Tagami, Takahiro
2007-01-01
Thirty-seven new K-Ar ages from West Maui volcano, Hawai'i, are used to define the waning stages of shield growth and a brief episode of postshield volcanism. All but two samples from shield-stage strata have reversed polarity magnetization, so conceivably the exposed shield is not much older than the Olduvai Normal-Polarity subchron, or about 1.8 Ma. The oldest ages obtained are in the range 1.9-2.1 Ma but have large analytical error. Shield volcanism ended about 1.35 Ma, and postshield volcanism followed soon thereafter, persisting until about 1.2 Ma. Exposed shield-stage strata were emplaced at a rate of about 0.001 km3 per year, a rate smaller than historic Hawaiian magmatic rates by a factor of 100. Stratigraphic accumulation rates are similar to those measured previously at Wai'anae volcano (O'ahu) or the upper part of the Mauna Kea shield sequence (Hilo drill core, Hawai'i). These rates diminish sharply during the final 0.3-0.5 m.y. of the shield stage. Hawaiian shield volcanoes begin waning well before their last 0.5 m.y. of life, then end quickly, geologically speaking, if West Maui is representative. ?? Springer-Verlag 2006.
NASA Astrophysics Data System (ADS)
Sherrod, David R.; Murai, Takashi; Tagami, Takahiro
2007-04-01
Thirty-seven new K Ar ages from West Maui volcano, Hawai‘i, are used to define the waning stages of shield growth and a brief episode of postshield volcanism. All but two samples from shield-stage strata have reversed polarity magnetization, so conceivably the exposed shield is not much older than the Olduvai Normal-Polarity subchron, or about 1.8 Ma. The oldest ages obtained are in the range 1.9 2.1 Ma but have large analytical error. Shield volcanism ended about 1.35 Ma, and postshield volcanism followed soon thereafter, persisting until about 1.2 Ma. Exposed shield-stage strata were emplaced at a rate of about 0.001 km3 per year, a rate smaller than historic Hawaiian magmatic rates by a factor of 100. Stratigraphic accumulation rates are similar to those measured previously at Wai‘anae volcano (O‘ahu) or the upper part of the Mauna Kea shield sequence (Hilo drill core, Hawai‘i). These rates diminish sharply during the final 0.3 0.5 m.y. of the shield stage. Hawaiian shield volcanoes begin waning well before their last 0.5 m.y. of life, then end quickly, geologically speaking, if West Maui is representative.
Jones, A Kyle; Pasciak, Alexander S; Wagner, Louis K
2018-03-01
Use standardized methods to determine how assessment of protective value of radiation-protective garments changes under conditions employing standard beam qualities, scatter-mimicking primary beams, and a modified H p (10) measurement. The shielding properties of radiation-protective garments depend on the spectrum of beam energies striking the garment and the attenuation properties of materials used to construct the garment, including x-ray fluorescence produced by these materials. In this study the primary beam spectra employed during clinical interventional radiology and cardiology procedures (clinical primary beams, CPB) were identified using radiation dose structured reports (RDSR) and fluoroscope log data. Monte Carlo simulation was used to determine the scattered radiation spectra produced by these CPB during typical clinical application. For these scattered spectra, scatter-mimicking primary beams (SMPB) were determined using numerical optimization-based spectral reconstruction that adjusted kV and filtration to produce the SMPB that optimally matched the scattered spectrum for each CPB. The penetration of a subset of SMPB through four radiation-protective garments of varying compositions and nominal thicknesses was measured using a geometry specified by the International Electrotechnical Commission (IEC). The diagnostic radiological index of protection (DRIP), which increases with increasing penetration through a garment, was calculated using these measurements. Penetration through the same garments was measured for standard beams specified by the American Society of Testing and Materials (ASTM). Finally, 10 mm of PMMA was affixed to the inside of each garment and the DRIP remeasured in this configuration to simulate H p (10). The SMPB based on actual CPB were in general characterized by lower kV (range 60-76) and higher half-value layer (HVL, range 3.44-4.89 mm Al) than standard beam qualities specified by ASTM (kV range 70-85; HVL range 3.4-4.0 mm Al). A lead garment of nominal thickness 0.5 mm (D) had a DRIP of 0.8%, two lead-free garments of 0.5 mm nominal thickness had DRIPs of 1.2% (A) and 2.2% (B), and a lead-free bilayer (C) had a DRIP of 1.4%. When standard beam qualities specified by the ASTM were used, the DRIP for D was 2.2%, 175% higher than the DRIP measured using SMPB, and for A, B, and C was 2.8%, 3.2%, and 2.9%, respectively. This was 133%, 45%, and 107% higher than the DRIP measured using SMPB. Differences between the DRIP of lead-alternative garments and the lead garment were reduced when measured with 10 mm of PMMA. Using this method, the measured DRIPs were 2.2% (A), 3.1% (B), 2.5% (C), and 2.3% (D). Penetration of radiation through radiation-protective garments depended strongly on the methods and X-ray spectra used for evaluation. The DRIP was higher (i.e., protective value was lower) for lead-alternative garments than for lead garments in this evaluation. The DRIP was lower for all garments when SMPB based on actual clinical beam quality data were used to measure penetration compared to ASTM standard beams. Differences in penetration between lead-alternative and lead garments were less when the DRIP was measured with 10 mm of PMMA between the garment and the chamber. © 2018 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Nelson, W. R.; Furman, T.; Elkins-Tanton, L. T.
2015-12-01
The East African Rift System (EARS) is the archetypal active continental rift. The rift branches cut through the elevated Ethiopian and Kenyan domes and are accompanied by a >40 Myr volcanic record. This record is often used to understand changing mantle dynamics, but this approach is complicated by the diversity of spatio-temporally constrained, geochemically unique volcanic provinces. Various sources have been invoked to explain the geochemical variability across the EARS (e.g. mantle plume(s), both enriched and depleted mantle, metasomatized or pyroxenitic lithosphere, continental crust). Mantle contributions are often assessed assuming adiabatic melting of mostly peridotitic material due to extension or an upwelling thermal plume. However, metasomatized lithospheric mantle does not behave like fertile or depleted peridotite mantle, so this model must be modified. Metasomatic lithologies (e.g. pyroxenite) are unstable compared to neighboring peridotite and can founder into the underlying asthenosphere via ductile dripping. As such a drip descends, the easily fusible metasomatized lithospheric mantle heats conductively and melts at increasing T and P; the subsequent volcanic products in turn record this drip magmatism. We re-evaluated existing data of major mafic volcanic episodes throughout the EARS to investigate potential evidence for lithospheric drip foundering that may be an essential part of the rifting process. The data demonstrate clearly that lithospheric drip melting played an important role in pre-flood basalt volcanism in Turkana (>35 Ma), high-Ti "mantle plume-derived" flood basalts and picrites (HT2) from NW Ethiopia (~30 Ma), Miocene shield volcanism on the E Ethiopian Plateau and in Turkana (22-26 Ma), and Quaternary volcanism in Virunga (Western Rift) and Chyulu Hills (Eastern Rift). In contrast, there is no evidence for drip melting in "lithosphere-derived" flood basalts (LT) from NW Ethiopia, Miocene volcanism in S Ethiopia, or Quaternary within-rift lavas in Ethiopia, Turkana or Kivu. The evidence for widespread lithospheric removal across eastern Africa coincides with the timing of dome uplift (e.g. Gani et al., 2007; Wichura et al., 2015) and further demonstrates the controls of lithospheric mantle on volcano-tectonic processes throughout the evolving EARS.
Aquarius, a reusable water-based interplanetary human spaceflight transport
NASA Astrophysics Data System (ADS)
Adamo, Daniel R.; Logan, James S.
2016-11-01
Attributes of a reusable interplanetary human spaceflight transport are proposed and applied to example transits between the Earth/Moon system and Deimos, the outer moon of Mars. Because the transport is 54% water by mass at an interplanetary departure, it is christened Aquarius. In addition to supporting crew hydration/hygiene, water aboard Aquarius serves as propellant and as enhanced crew habitat radiation shielding during interplanetary transit. Key infrastructure and technology supporting Aquarius operations include pre-emplaced consumables and subsurface habitat at Deimos with crew radiation shielding equivalent to sea level on Earth, resupply in a selenocentric distant retrograde orbit, and nuclear thermal propulsion.
NASA Astrophysics Data System (ADS)
Piper, John D. A.; Jiasheng, Zhang; Huang, Baochung; Roberts, Andrew P.
2011-06-01
The North China Shield (NCS) is cut by a laterally-extensive dyke swarm emplaced at 1.78-1.76 Ga when an extensional regime succeeded regional metamorphism and completion of cratonisation by ˜1.85 Ga. Palaeomagnetic study of these dykes and adjoining metamorphic country rocks identifies a dominant shallow axis comprising a contiguous population with NE to N declinations and rare opposite polarity. Dykes with NE shallow magnetic declination (A1, D/ I = 36/-1°) recognised from previous study and emplaced in granulite terranes in the north are displaced by more northerly declinations (A2, D/ I = 8/2°) in lower grade metamorphic terranes to the south. Contact tests indicate a primary cooling-related origin to these magnetisations although tests are in part ambiguous because magnetisations in the granulite basement are comparable. Petrologic and rock magnetic considerations imply that magnetisation of the dykes occurred during uplift from depths as deep as 20 km following the peak of metamorphism at ˜1.85 Ga. A temporal migration A2 → A1 is implied by the higher crustal level and earlier acquisition of the former, and the deeper source and later acquisition of the latter. A third population of dyke magnetisations (A3, D/ I = 18/43°) is distributed towards steeper inclinations and close to the Mesozoic-Recent palaeofield. These are either partial or complete overprints of A1-A2 magnetisations with greater degrees of alteration indicated by demagnetisation and thermomagenetic spectra, or are much younger dykes of Mesozoic-Tertiary age. A minority fourth (later Precambrian but presently undated) dual polarity population has a magnetisation (11 dykes, D/ I = 108/7°) with contact tests indicating a primary cooling-related origin. The ˜1.78-1.76 Ga time of emplacement of the dominant dyke swarms in this study is widely represented by contemporaneous igneous rocks in other major shields linked to major Large Igneous Province (LIP)-related events. The new definition of a ˜1.83-1.76 Ga APW swathe from the North China Shield permits a comparison with other shields and yields a constraint to continental configurations during the late Palaeoproterozoic. A quasi-integral reconstruction of Palaeopangaea is tested here and supported by conformity of predominantly of uplift-related palaeopoles from the ˜1.90-1.70 Ga tectono-thermal belts and from SW → NE trending APW implied by the distribution of poles from the ˜1.80 Ga igneous suites including the LIP events. This trend incorporates the A2 → A1 migration and the granulite terrane cooling polar swathe from North China. The reconstruction indicates that continental crust consolidated in Palaeoproterozoic times by accretion of ˜2.3-1.7 Ga orogenic belts around a hemispheric and crescent-shape core already established by Late Archaean times. The North China Shield is interpreted to have bordered the western cratonic margin of the Indian Shield in a proximity supported by correlation of geological features and suggested by a number of previous workers. The Central Orogenic Zone of the North China shield characterised by tectono-thermal activity prior to ˜1.85 Ga was then contiguous with a comparable zone running through the centre of the Indian Shield and continuing into the Capricorn Belt of Western Australia. The ˜1.78-1.76 Ga dykes in North China continue into dyke swarms in the South India Shield and may have been sourced in a plume-related LIP focussed near the continental margin in the Xiong'er Aulacogen.
NASA Astrophysics Data System (ADS)
Azzouni-Sekkal, Abla; Liégeois, Jean-Paul; Bechiri-Benmerzoug, Faten; Belaidi-Zinet, Safia; Bonin, Bernard
2003-10-01
The Tuareg Shield, located between the Archaean to Palaeoproterozoic Saharan metacraton and the West African craton, is composed of 23 recognized terranes that welded together during the Neoproterozoic Pan-African orogeny (750-520 Ma). Final convergence occurred mainly during the 620-580 Ma period with the emplacement of high-K calc-alkaline batholiths, but continued until 520 Ma with the emplacement of alkali-calcic and alkaline high-level complexes. The last plutons emplaced in central Hoggar at 539-523 Ma are known as the "Taourirt" province. This expression is redefined and three geographical groups are identified: the Silet-, Laouni- and Tamanrasset-Taourirts. The Silet-Taourirts are cross-cutting Pan-African island arc assemblages while the two others intrude the Archaean-Palaeoproterozoic LATEA metacraton. The Taourirts are high-level subcircular often nested alkali-calcic, sometimes alkaline, complexes. They are aligned along mega-shear zones often delimiting terranes. Mainly granitic, they comprise highly differentiated varieties such as alaskite (Silet-Taourirts) and topaz-albite leucogranite (Tamanrasset-Taourirts). Different subgroups were defined on the basis of REE patterns and major and other trace elements. The Taourirt province displays a wide transition from dominant alkali-calcic to minor alkaline granite varieties. Sr isotopes indicate that these complexes were affected by fluid circulation during the Ordovician along shear zones probably contemporaneous to the beginning of the Tassilis sandstone deposition. Nd isotope systematic indicates a major interaction with the upper crust during the emplacement of highly differentiated melts, particularly in samples showing seagull wing-shaped REE patterns. On the other hand, all Taourirt plutons are strongly contaminated by the lower crust: ɛNd vary from -2 to -8 and TDM from 1200 to 1700 Ma. This implies the presence of an old crust at depth, also below the Silet-Taourirts, which are emplaced within Pan-African island arc assemblages. A model is proposed for the genesis of the Taourirt province where reworking of the mega-shear zones, which dissected the LATEA metacraton, provoked a linear delamination of the lithospheric mantle, asthenosphere uprise and partial melting of the lower crust (or strong interaction with), giving rise to a mixed source.
Stacey, J.S.; Agar, R.A.
1986-01-01
U-Pb zircon age determinations show that this "Andean" continental margin developed before about 720 Ma, and emplacement of calc-alkaline plutonic rocks continued until about 690 Ma. During the period 690-640 Ma, the continental Afif microplate collided with the Asir terrane as part of the Nabitah orogeny. At approximately 640 Ma ago, the Najd strike-slip orogen commenced with a dextral phase that controlled the emplacement of granitic plutons as well as the development of a series of large pull-apart grabens. Some of these grabens were floored by new oceanic crust and were filled with volcano-sedimentary rocks of the Bani Ghayy group. Subsequently, the Najd fault system changed to sinistral strike slip motion at about 620 Ma ago.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroener, A.; Eyal, M.; Eyal, Y.
1990-06-01
The authors report {sup 207}Pb/{sup 206}Pb single-zircon evaporation ages for early Pan-African rocks from southern Israel and the northeastern Sinai Peninsula, the northernmost extension of the Arabian-Nubian shield. The oldest rocks are metamorphic schists of presumed island-arc derivation; detrital zircons date the source terrain at ca. 800-820 Ma. A major phase of tonalite-trondhjemite plutonism occurred at ca. 760-780 Ma; more evolved granitic rocks were emplaced at about 745 Ma. A metagabbro-metadiorite complex reflects the youngest igneous phase at ca. 640 Ma. We find no evidence for pre-Pan-African crust, and our data document important crust-forming events that correlate with similar episodesmore » elsewhere in the shield. The widespread presence of early Pan-African juvenile rocks (i.e., ca. 760-850 Ma) in many parts of the Arabian-Nubian shield makes this period the most important in the magmatic history of the shield and supports earlier suggestions for unusually high crust-production rates.« less
The Storage, Transportation, and Disposal of Nuclear Waste
NASA Astrophysics Data System (ADS)
Younker, J. L.
2002-12-01
The U.S. Congress established a comprehensive federal policy to dispose of wastes from nuclear reactors and defense facilities, centered on deep geologic disposal of high-level radioactive waste. Site screening led to selection of three potential sites and in 1987, Congress directed the Secretary of Energy to characterize only one site: Yucca Mountain in Nevada. For more than 20 years, teams of scientists and engineers have been evaluating the potential suitability of the site. On the basis of their work, the U.S. Secretary of Energy, Spencer Abraham, concluded in February 2002 that a safe repository can be sited at Yucca Mountain. On July 23, 2002, President Bush signed Joint Resolution 87 approving the site at Yucca Mountain for development of a repository, which allows the U.S. Department of Energy (DOE) to prepare and submit a license application to the U.S. Nuclear Regulatory Commission (NRC). Concerns have been raised relative to the safe transportation of nuclear materials. The U.S. history of transportation of nuclear materials demonstrates that high-level nuclear materials can be safely transported. Since the 1960s, over 1.6 million miles have been traveled by more than 2,700 spent nuclear fuel shipments, and there has never been an accident severe enough to cause a release of radioactive materials. The DOE will use NRC-certified casks that must be able to withstand very stringent tests. The same design features that allow the casks to survive severe accidents also limit their vulnerability to sabotage. In addition, the NRC will approve all shipping routes and security plans. With regard to long-term safety, the Yucca Mountain disposal system has five key attributes. First, the arid climate and geology of Yucca Mountain combine to ensure that limited water will enter the emplacement tunnels. Second, the DOE has designed a waste package and drip shield that are expected to have very long lifetimes in the repository environment. Third, waste form solubilities limit radionuclide releases, and the invert material below the package would further delay radionuclide movement. Fourth, rock units in the unsaturated and saturated zone at Yucca Mountain will delay and dilute any radionuclides that have migrated away from the emplacement tunnels. Fifth, disruptions due to volcanism, seismic events, or nuclear criticality have been evaluated and all are shown to have very low likelihood of causing unacceptable doses. Volcanism could result in a small, but calculable, dose during the regulatory period of 10,000 years.
Formation of the Archean crust of the ancient Vodlozero domain (Baltic shield)
NASA Astrophysics Data System (ADS)
Arestova, N. A.; Chekulaev, V. P.; Lobach-Zhuchenko, S. B.; Kucherovskii, G. A.
2015-03-01
The available geological, petrological, and isotopic data on Archean rocks of the Baltic shield are used to analyze the formation of the crust of the ancient Vodlozero domain. This made it possible to reveal the succession of endogenic processes in different parts of the domain and correlate them between each other. Several stages of magmatic processes reflecting changes in magma-generation environments are definable in the crust formation. The earliest stages of magmatism (3.24 and 3.13-3.15 Ga) are mostly represented by rocks of the tonalite-trondhjemite-granodiorite association. The next stage of endogenic activity (3020-2900 Ma) was marked by the formation of volcanics of the komatiite-basalt and andesite-dacite associations constituting greenstone belts in marginal parts of the Vodlozero domain and basic dikes accompanied by layered pyroxenite-norite-diorite intrusion in its central part. These basic bodies crossing earlier tonalities were formed in extension settings related to the formation of the mantle plume, which is confirmed by the rock composition. This stage culminated in the formation of trondhjemites at margins of greenstone structure. The next stage of endogenic activity commenced at 2890-2840 Ma by the emplacement of high-magnesian gabbro and diorite dikes in the western margin of the domain, where they cross rocks of the tonalitetrondhjemite association. This stage was marked by the formation of intermediate-acid subvolcanic bodies and dikes as well as basite intrusions including the layered and differentiated Semch intrusion, the largest one in the Vodlozero domain. The stage culminated at approximately 2850 Ma in the emplacement of tonalities of the limited distribution being represented by the Shilos massif in the north of the domain and Shal'skii massif on the eastern shore of Lake Onega. The important stage in the geological history of the Vodlozero domain is the formation of the intracratonic Matkalakhta greenstone belt at approximately 2.8 Ga, which includes arenite quartzite and graywackes and polymictic conglomerates developed in the Lake Oster area in addition to volcanics. These rocks indicate a stable tectonic regime, which resulted in deep erosion of the crust. The emplacement of sanukitoids (2.73-2.74 Ga) as well as subsequent two-feldspar granites (2.68-2.70 Ga) and basite dikes (2.61-2.65 Ga) may be considered as resulting from the plume influence on the relatively stabilized sialic crust of the Baltic shield.
Feasibility of Lateral Emplacement in Very Deep Borehole Disposal of High Level Nuclear Waste
2010-06-01
superior isolation of the waste (mitigating proliferation, terrorist and human intrusion concerns), the impermeability of available geologic formations ...Continental U.S. (Courtesy “The Future of Geothermal Energy” by MIT)7 2. Age of the granitic formation (Figure 1-4) 3. Proximity to rail, barge, and...state are of particular interest with their access to the ancient and stable Canadian granite shield, but access to suitable formations is found in
Stacey, J.S.; Agar, R.A.
1985-01-01
This area includes three of the main tectonic units of the Arabian Shield: the Afif continental terrain, the Nabitah suture with its associated mobile belt, and the Asir ensimatic arc terrain. U/Pb zircon data from a pelitic garnet-sillimanite gneiss show that the Kabib formation in the S of the Afif terrain may be as old as 1770 m.y. Pb and Rb/Sr isotopic data in the Zalm region reveal a change in the nature of the underlying crust, from continental basement in the NE to less radiogenic marginal arc rocks in the SW. Miogeosynclinal continental shelf facies of the Siham group lie unconformably over the Kabid formation. U/Pb zircon age determinations show that this 'Andean' continental margin developed before approx 720 m.y. and the emplacement of calc-alkaline plutonic rocks continued until approx 690 m.y. During the period 685-640 m.y. the continental Afif microplate collided with the Asir terrain as part of the Nabitah orogeny. At approx 640 m.y. age the Najd strike-slip faulting commenced, with a dextral phase that controlled emplacement of granite plutons as well as the development of large pull-apart grabens. Some of the latter were floored by new oceanic crust and filled with volcanosedimentary rocks of the Bani Ghayy group.-R.A.H.
CONCEPTUAL DESIGN OF A LUNAR REGOLITH CLUSTERED-REACTOR SYSTEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
John Darrell Bess
2009-06-01
It is proposed that a fast-fission, heatpipe-cooled, lunar-surface power reactor system be divided into subcritical units that could be launched safely without the incorporation of additional spectral shift absorbers or other complex means of control. The reactor subunits are to be emplaced directly into the lunar regolith utilizing the regolith not just for shielding but as the reflector material to increase the neutron economy of the system. While a single subunit cannot achieve criticality by itself, coordinated placement of additional subunits will provide a critical reactor system for lunar surface power generation. A lunar regolith clustered-reactor system promotes reliability, safety,more » and ease of manufacture and testing at the cost of a slight increase in launch mass per rated power level and an overall reduction in neutron economy when compared to a single-reactor system. Additional subunits may be launched with future missions to increase the cluster size and power according to desired lunar base power demand and lifetime. The results address the potential uncertainties associated with the lunar regolith material and emplacement of the subunit systems. Physical distance between subunits within the clustered emplacement exhibits the most significant feedback regarding changes in overall system reactivity. Narrow, deep holes will be the most effective in reducing axial neutron leakage from the core. The variation in iron concentration in the lunar regolith can directly influence the overall system reactivity although its effects are less than the more dominant factors of subunit emplacement.« less
Lodato, Luigi; Harris, A.; Spampinato, L.; Calvari, Sonia; Dehn, J.; Patrick, M.
2007-01-01
The use of a hand-held thermal camera during the 2002–2003 Stromboli effusive eruption proved essential in tracking the development of flow field structures and in measuring related eruption parameters, such as the number of active vents and flow lengths. The steep underlying slope on which the flow field was emplaced resulted in a characteristic flow field morphology. This comprised a proximal shield, where flow stacking and inflation caused piling up of lava on the relatively flat ground of the vent zone, that fed a medial–distal lava flow field. This zone was characterized by the formation of lava tubes and tumuli forming a complex network of tumuli and flows linked by tubes. Most of the flow field was emplaced on extremely steep slopes and this had two effects. It caused flows to slide, as well as flow, and flow fronts to fail frequently, persistent flow front crumbling resulted in the production of an extensive debris field. Channel-fed flows were also characterized by development of excavated debris levees in this zone (Calvari et al. 2005). Collapse of lava flow fronts and inflation of the upper proximal lava shield made volume calculation very difficult. Comparison of the final field volume with that expecta by integrating the lava effusion rates through time suggests a loss of ~70% erupted lava by flow front crumbling and accumulation as debris flows below sea level. Derived relationships between effusion rate, flow length, and number of active vents showed systematic and correlated variations with time where spreading of volume between numerous flows caused an otherwise good correlation between effusion rate, flow length to break down. Observations collected during this eruption are useful in helping to understand lava flow processes on steep slopes, as well as in interpreting old lava–debris sequences found in other steep-sided volcanoes subject to effusive activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Voris, P.; Cataldo, D.A.; Burton, F.G.
Through the unique combination of polymers with a herbicidally active dinitroaniline, a cylinderical pellet (9mm long and 9mm in diameter) was developed that continuously releases a herbicide for a period of up to 100 years. Equilibrium concentration of the herbicide in soil adjacent to the pellet and the bioactive lifetime of the device cam be adjusted by changing the size of the pellet; the type of polymer; the type, quality, and quantity of carrier; and/or the concentration and type of dinitroaniline used. Commercial products that have been developed under a Federal Technology Transfer Program that utilize this technology include: (1)more » ROOT-SHIELD, a root repelling sewer gasket for concrete, clay, and PVC sewer lines, (2) BIOBARRIER, a spun-bonded polypropylene geotextile fabric developed to prevent root growth from invading septic tanks; penetrating under roadways, and along the edge of sidewalks, airport runways, and tennis courts, and for landscaped areas; and (3) ROOT-GUARD, a plastic drip irrigation emitter designed to protect buried drip irrigation systems from being plugged by roots. 17 refs., 4 figs., 6 tabs.« less
Energy efficient skylight construction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jentoft, A.P.; Couture, P.A.
1978-02-14
An energy efficient skylight construction is described. A skylight cover is secured by a frame to a curbing comprised of an insulating core, the interior and exterior surfaces of which are covered by non-combustible shields separated along the upper and lower surfaces of the curbing by a gap which serves as a ''thermal break'' between the highly conductive inner and outer shields. The frame is pierced by drain openings the exterior of which are covered by a filter type material such as foam or glass fibers that is both absorbtive of moisture and resistant to the passage of air. Themore » frame is secured to the outward portion of the curbing and includes a flange extending inward across the gap between the shields, which serves as a gutter to collect condensation which drips off the glazing. The inward portion of the flange is covered with an insulating gasket which prevents condensation from forming on the flange and which prevents the warmer, more moisture laden, inside air from reaching the cold underside of the gutter flange or the edge of the outerskin. The core insulation is inserted, without adhesives, into the assembled inside skin, and then the exposed surface of the insulation is bonded to the inside surface of the outer skin.« less
Quick, J.E.
1991-01-01
The longest proposed suture zone in Saudi Arabia, the Nabitah suture, can be traced as a string of ophiolite complexes for 1200 km along the north-south axis of the Arabian Shield. Results of a field study in the north-central shield between 23?? and 26??N indicate that the Nabitah suture is indeed a major crustal discontinuity across which hundreds of kilometers of displacement may have occurred on north-south trending, subvertical faults of the Nabitah fault system. Although not a unique solution, many structures within and near these faults can be reconciled with transpression, i.e., convergent strike-slip, and syntectonic emplacement of calc-alkaline plutonic rocks. Transcurrent motion on the Nabitah fault system appears to have began prior to 710 Ma, was active circa 680 Ma, and terminated prior to significant left-lateral, strike slip on the Najd fault system, which began sometime after 650 Ma. Northwest-directed subduction in the eastern shield could have produced the observed association of calc-alkaline magmatism and left-lateral transpressive strike slip, and is consistent with interpretation of the Abt schist and sedimentary rocks of the Murdama group as relics of the associated accretionary wedge and fore-arc basin. ?? 1991.
Visualizing lava flow interiors with LiDAR
NASA Astrophysics Data System (ADS)
Whelley, P.; Garry, W. B.; Young, K.; Kruse, S.; Esmaeili, S.; Bell, E.; Paylor, R.
2017-12-01
Lava tube caves provide unprecedented access to the shallow (meters to tens of meters) interiors of lava flows. Surveying tube geometry and morphology can illuminate lava flow thermal history and emplacement mechanics. In an expedition to Lava Beds National Monument, California, our team collected ultra-high-resolution (< 10 cm) topography from the interiors of four lava tubes using a terrestrial laser scanner (TLS). More than 78 GB of point data (latitude, longitude, elevation) of the surface and interiors of Hercules Leg, Skull, Valentine and, Indian Well Caves were collected. For example, our point cloud for 50 m of Valentine Cave contains 748 million points (interior: 478 million, exterior: 270 million) from 28 TLS scans. The tubes visited range in diameter from < 1 m to > 10 m, and from 1 m to < 20 m of overburden. The interior morphology of the tubes remain pristine (i.e., un-eroded) after more than 10,000 years. The TLS data illuminate fresh-looking lava tube flow features (e.g., lava-coils, pillars, benches, and ropes) and post-emplacement deformation features (e.g., fractures, lava-drips, molded ceilings, and drop-blocks). Furthermore, the data provide context for geochemical and geophysical observations made in conjunction with the TLS survey. Lava tube morphology, observable in the TLS data, informs each tube's emplacement history. Skull cave is the largest ( 20 m in diameter) requiring a comparatively high lava discharge rate and suggesting this cave formed by roofing over a lava channel. In contrast, Valentine, Hercules Leg, and Indian Well Caves are narrower, (1 to 4 m) and have many branches, some of which rejoin the "main passage", suggesting they formed by developing a network of pathways within the lava flow. We will showcase video fly-throughs for these lava tubes, plus manipulable point clouds. The interactive eLighning presentation will encourage hands-on exploration of these unique data. We will guide them on a tour of the underground to discover and compare different morphologies of lava tubes.
Dike emplacement on Venus and on earth
NASA Technical Reports Server (NTRS)
Mckenzie, Dan; Mckenzie, James M.; Saunders, R. S.
1992-01-01
Attention is given to long linear features visible in SAR images of the surface of Venus. They are shallow graben a few kilometers across. Calculations show that dike emplacement can account for such features if the top of the dikes is a few kilometers below the surface of the planet. The dikes are often curved near their probable sources, and the magnitude of the regional stress field estimated from this curvature is about 3 MPa, or similar to that of earth. On both Venus and earth, dikes often form intersecting patterns. Two-dimensional calculations show that this behavior can occur only if the stress field changes with time. Transport of melt over distances as large as 2000 km in dikes whose width is 30 m or more occurs in some continental shields on earth and can also account for linear features on Venus that extend for comparable distances. Such transport is possible because the viscosity and thermal conductivity of both the melt and the wall rock are small.
Chadwick, W.W.; Howard, K.A.
1991-01-01
Maps of the eruptive vents on the active shield volcanoes of Fernandina and Isabela islands, Galapagos, made from aerial photographs, display a distinctive pattern that consists of circumferential eruptive fissures around the summit calderas and radial fissures lower on the flanks. On some volcano flanks either circumferential or radial eruptions have been dominant in recent time. The location of circumferential vents outside the calderas is independent of caldera-related normal faults. The eruptive fissures are the surface expression of dike emplacement, and the dike orientations are interpreted to be controlled by the state of stress in the volcano. Very few subaerial volcanoes display a pattern of fissures similar to that of the Galapagos volcanoes. Some seamounts and shield volcanoes on Mars morphologically resemble the Galapagos volcanoes, but more specific evidence is needed to determine if they also share common structure and eruptive style. ?? 1991 Springer-Verlag.
NASA Technical Reports Server (NTRS)
Sylvester, P. J.; Attoh, K.; Schulz, K. J.
1986-01-01
Rhyolitic rocks often are the dominant felsic end member of the biomodal volcanic suites that characterize many late Archean greenstone belts of the Canadian Shield. The rhyolites primarily are pyroclastic flows (ash flow tuffs) emplaced following plinian eruptions, although deposits formed by laval flows and phreatomagmatic eruptions also are presented. Based both on measured tectono-stratigraphic sections and provenance studies of greenstone belt sedimentary sequences, the rhyolites are believed to have been equal in abundance to associated basaltic rocks. In many recent discussions of the tectonic setting of late Archean Canadian greenstone belts, rhyolites have been interpreted as products of intracontinental rifting . A study of the tectono-stratigraphic relationships, rock associations and chemical characteristics of the particularly ell-exposed late Archean rhyolites of the Michipicoten greenstone belt, suggests that convergent plate margin models are more appropriate.
Deep magmatism alters and erodes lithosphere and facilitates decoupling of Rwenzori crustal block
NASA Astrophysics Data System (ADS)
Wallner, Herbert; Schmeling, Harro
2013-04-01
The title is the answer to the initiating question "Why are the Rwenzori Mountains so high?" posed at the EGU 2008. Our motivation origins in the extreme topography of the Rwenzori Mountains. The strong, cold proterozoic crustal horst is situated between rift segments of the western branch of the East African Rift System. Ideas of rift induced delamination (RID) and melt induced weakening (MIW) have been tested with one- and two-phase flow physics. Numerical model parameter variations and new observations lead to a favoured model with simple and plausible definitions. Results coincide in the scope of their comparability with different observations or vice versa reduce ambiguity and uncertainties in model input. Principle laws of the thermo-mechanical physics are the equations of conservation of mass, momentum, energy and composition for a two-phase (matrix-melt) system with nonlinear rheology. A simple solid solution model determines melting and solidification under consideration of depletion and enrichment. The Finite Difference Method with markers is applied to visco-plastic flow using the streamfunction in an Eulerian formulation in 2D. The Compaction Boussinesq and the high Prandtl number Approximation are employed. Lateral kinematic boundary conditions provide long-wavelength asthenospheric upwelling and extensional stress conditions. Partial melts are generated in the asthenosphere, extracted above a critical fraction, and emplaced into a given intrusion level. Temperature anomalies positioned beneath the future rifts, the sole specialization to the Rwenzori situation, localize melts which are very effective in weakening the lithosphere. Convection patterns tend to generate dripping instabilities at the lithospheric base; multiple slabs detach and distort uprising asthenosphere; plumes migrate, join and split. In spite of appearing chaotic flow behaviour a characteristic recurrence time of high velocity events (drips, plumes) emerges. Chimneys of increased enrichment develop above the anomalies and evolve to narrow low viscous mechanical decoupling zones. Deep rooting dynamic forces then affect the surface, showing a vigorous topography. A geodynamic model, linking magmatism. mantle dynamics and lithospheric extension, qualitatively explains most of observed phenomena. Depending on physical model parameters we cover the whole spectrum from dripping lithospheric base instabilities to the full break off of the mantle lithosphere block below the Rwenzoris.
NASA Astrophysics Data System (ADS)
Robinson, F. A.; Foden, J. D.; Collins, A. S.
2015-04-01
The Arabian Shield preserves a protracted magmatic record of repeated amalgamation of juvenile subduction terranes that host granite intrusions ranging in age from the early Neoproterozoic to the Cambrian, which were emplaced into convergent and within-plate settings. Geochronology and whole-rock geochemistry of sampled Saudi Arabian granitoids define and distinguish four discrete age groups: 1) ~ 845-700 Ma island arc and synorogenic granitoids (IA + Syn), 2) ~ 640-610 Ma granitoids from the Nabitah and Halaban Suture (NHSG), 3) ~ 610-600 Ma post-orogenic perthitic (hypersolvus) granitoids (POPG), and 4) < 600 Ma anorogenic aegirine-bearing perthitic (hypersolvus) granitoids (AAPG). Groups 1, 2 and 3 include suites ranging from I-S- to A-type granites that have REE signatures typical of volcanic arc settings and show intra-suite variation that could be controlled by a combination of crustal assimilation and fractional crystallisation. Their mafic parental magmas have N-MORB-, or arc-tholeiite-like geochemistry. By contrast, group 4 A-type granites are more enriched in HREE and in incompatible elements such as Nb, Rb, Ga, Nd, Zr and Y and have lower Ce/Yb and higher Y/Nb ratios. These granitoids are interpreted to have been emplaced into within-plate and back-arc settings. Granitoid data also provide evidence that there may be two distinct mantle sources to the mafic parents of the granite suites. These are distinguished as contaminated and enriched mantle using Nb and Y and Nd isotopes. All granitoid suites are isotopically juvenile (ɛNd + 3 to + 6) and fall between the upper field crustal values of the Paleoproterozoic Khida terrane (ɛNd + 1) and contemporary depleted mantle. However, Nd isotopes distinguish contamination in group 1-3 mafic end-members beneath sutures which are interpreted to be derived from the contemporary MORB-type mantle wedge with subsequent crustal assimilation and fractionation to I- and A-type granitoids. The youngest (after 600 Ma) A-types (group 4) emplaced into extensional within-plate and back-arc settings require a new enriched mantle source that this study interprets to be associated with delamination.
NASA Technical Reports Server (NTRS)
Chase, Z. A. J.; Sakimoto, S. E. H.
2003-01-01
The Cerberus region of Mars has numerous geologically recent fluvial and volcanic features superimposed spatially, with some of them using the same flow channels and apparent vent structures. Lava-water interaction landforms such as psuedocraters suggest some interaction of emplacing lava flows with underlying ground ice or water. This study investigates a related interaction type a region where the emplaced lava might have melted underlying ice in the regolith, as there are small outflow channel networks emerging from the flank flows of a lava shield over a portion of the Eastern Cerberus Rupes. Specifically, we use high-resolution Mars Orbiter Laser Altimeter (MOLA) topography to constrain channel and flow dimensions, and thus estimate the thermal pulse from the emplaced lava into the substrate and the resulting melting durations and refreezing intervals. These preliminary thermal models indicate that the observed flows could easily create thermal pulse(s) sufficient to melt enough ground ice to fill the observed fluvial small outflow channels. Depending on flow eruption timing and hydraulic recharge times, this system could easily have produced multiple thermal pulses and fluvial releases. This specific case suggests that regional small water releases from similar cases may be more common than suspected, and that there is a possibility for future fluvial releases if ground ices are currently present and future volcanic eruptions in this young region are possible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-07-01
In 1990, EPA promulgated listings for wastes from wood preserving processes. Many of these wastes are generated by allowing preservative to drip from wood onto concrete pads, called drip pads. To facilitate proper handling of these wastes, EPA developed design and operating standards for drip pads used to manage hazardous wastes. This module explains these standards. It defines a drip pad and summarizes the design and operating standards for drip pads. It describes the relationship between generator accumulation provisions and drip pads.
Lu, Ming-Xing; Pan, Dan-Dan; Xu, Jing; Liu, Yang; Wang, Gui-Rong; Du, Yu-Zhou
2018-01-01
Aquaporins are integral membrane proteins some of which form high capacity water-selective channels, promoting water permeation across cell membranes. In this study, we isolated the aquaporin transcript (CsDrip1) of Chilo suppressalis, one of the important rice pests. CsDrip1 included two variants, CsDrip1_v1 and CsDrip1_v2. Although CsDrip1_v2 sequence (>409 bp) was longer than CsDrip1_v1, they possessed the same open reading frame (ORF). Protein structure and topology of CsDrip1 was analyzed using a predicted model, and the results demonstrated the conserved properties of insect water-specific aquaporins, including 6 transmembrane domains, 2 NPA motifs, ar/R constriction region (Phe69, His194, Ser203, and Arg209) and the C-terminal peptide sequence ending in “SYDF.” Our data revealed that the Xenopus oocytes expressing CsDrip1 indicated CsDrip1 could transport water instead of glycerol, trehalose and urea. Further, the transcript of CsDrip1 expressed ubiquitously but differentially in different tissues or organs and developmental stages of C. suppressalis. CsDrip1 mRNA exhibited the highest level of expression within hindgut and the third instar larvae. Regardless of pupae and adults, there were significantly different expression levels of CsDrip1 gene between male and female. Different from at low temperature, the transcript of CsDrip1 in larvae exposed to high temperature was increased significantly. Moreover, the mRNA levels of CsDrip1 in the third instar larvae, the fifth instar larvae, pupae (male and female), and adults (male and female) under different humidities were investigated. However, the mRNA levels of CsDrip1 of only female and male adults were changed remarkably. In conclusions, CsDrip1 plays important roles in maintaining water homeostasis in this important rice pest. PMID:29467668
Drip irrigation research update at NPRL
USDA-ARS?s Scientific Manuscript database
Drip irrigation research has been conducted since 1998 at NPRL. Systems include deep subsurface drip irrigation (SSDI), surface drip irrigation (SDI), and shallow subsurface drip irrigation (S3DI). Results have shown that SDI and S3DI are more economical to install than SSDI. SDI systems have more r...
ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. Jarek
2005-08-29
The purpose of this model report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The resulting seepage evaporation and gas abstraction models are used in the total system performance assessment for the license application (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input,more » which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2005 [DIRS 173782], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports. To be consistent with other project documents that address features, events, and processes (FEPs), Table 6.14.1 of the current report includes updates to FEP numbers and FEP subjects for two FEPs identified in the technical work plan (TWP) governing this report (BSC 2005 [DIRS 173782]). FEP 2.1.09.06.0A (Reduction-oxidation potential in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.06.0B (Reduction-oxidation potential in Drifts; see Table 6.14-1). FEP 2.1.09.07.0A (Reaction kinetics in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.07.0B (Reaction kinetics in Drifts; see Table 6.14-1). These deviations from the TWP are justified because they improve integration with FEPs documents. The updates have no impact on the model developed in this report.« less
Longevity of shallow subsurface drip irrigation tubing under three tillage practices
USDA-ARS?s Scientific Manuscript database
Shallow Sub-Surface drip irrigation (S3DI) has drip tubing buried about 2-in below the soil surface. It is unknown how long drip tubing would be viable at this shallow soil depth using strip- or no-tillage systems. The objectives were to determine drip tube longevity, resultant crop yield, and parti...
Modeling Geodynamic Mobility of Anisotropic Lithosphere
NASA Astrophysics Data System (ADS)
Perry-Houts, J.; Karlstrom, L.
2016-12-01
The lithosphere is often idealized as a linear, or plastic layer overlying a Newtonian half-space. This approach has led to many insights into lithospheric foundering that include Rayligh-Taylor drips, slab-style delaminations, and small scale convection in the asthenosphere. More recent work has begun to quantify the effect of anisotropic lithosphere viscosity on these same phenomena. Anisotropic viscosity may come about due to stratigraphic deposition in the upper crust, dike/sill emplacement in the mid crust, or volcanic underplating at the Moho related to arcs or plumes. Anisotropic viscosity is also observed in the mantle, due to preferential orientation of olivine grains during flow. Here we extend the work of Lev & Hager (2008) on modeling anisotropic lithospheric foundering to investigate the effects of anisotropic regions which vary in size, magnitude, and orientation. We have extended Aspect, a modern geodynamic finite element code with a large developer and user base, to model exotic constitutive laws with an arbitrary fourth order tensor in place of the viscosity term. We further implement a material model to represent a transverse isotropic medium, such as is expected in a layered, or fractured lithosphere. We have validated our implementation against previous results, and analytic solutions, reproducing the result that horizontally oriented anisotropy tends to inhibit drips, and produce longer-wavelength instabilities. We expect that increased lateral extent of anisotropic regions will exaggerate this effect, to a limit at which the effect will plateau. Varying lithosphere thickness, and mantle anisotropy anisotropy may produce similar behavior. The implications of this effect are significant to lithospheric foundering beneath arcs and hotspots, possibly influencing the recycling of eclogite, production of silicic magmas, and dynamic topography.
Hydraulic tests with direct-push equipment
Butler, J.J.; Healey, J.M.; McCall, G.W.; Garnett, E.J.; Loheide, Steven P.
2002-01-01
The potential of direct-push technology for hydraulic characterization of saturated flow systems was investigated at a field site with a considerable degree of subsurface control. Direct-push installations were emplaced by attaching short lengths of screen (shielded and unshielded) to the bottom end of a tool string that was then advanced into the unconsolidated sediments. A series of constant-rate pumping tests were performed in a coarse sand and gravel aquifer using direct-push tool strings as observation wells. Very good agreement (within 4%) was found between hydraulic conductivity (K) estimates from direct-push installations and those from conventional wells. A program of slug tests was performed in direct-push installations using small-diameter adaptations of solid-slug and pneumatic methods. In a sandy silt interval of moderate hydraulic conductivity, K values from tests in a shielded screen tool were in excellent agreement (within 2%) with those from tests in a nearby well. In the coarse sand and gravel aquifer, K values were within 12% of those from multilevel slug tests at a nearby well. However, in the more permeable portions of the aquifer (K > 70 m/day), the smaller-diameter direct-push rods (0.016 m inner diameter [I.D.]) attenuated test responses, leading to an underprediction of K. In those conditions, use of larger-diameter rods (e.g., 0.038 m I.D.) is necessary to obtain K values representative of the formation. This investigation demonstrates that much valuable information can be obtained from hydraulic tests in direct-push installations. As with any type of hydraulic test, K estimates are critically dependent on use of appropriate emplacement and development procedures. In particular, driving an unshielded screen through a heterogeneous sequence will often lead to a buildup of low-K material that can be difficult to remove with standard development procedures.
NASA Technical Reports Server (NTRS)
Magee-Roberts, K.; Head, James W., III; Lancaster, M. G.
1992-01-01
Large-volume lava flow fields have been identified on Venus, the most areally extensive of which are known as fluctus and have been subdivided into six morphologic types. Sheetlike flow fields (Type 1) lack the numerous, closely spaced, discrete lava flow lobes that characterize digitate flow fields. Transitional flow fields (Type 2) are similar to sheetlike flow fields but contain one or more broad flow lobes. Digitate flow fields are divided further into divergent (Types 3-5) and subparallel (Type 6) classes on the basis of variations in the amount of downstream flow divergence. As a result of our previous analysis of the detailed morphology, stratigraphy, and tectonic associations of Mylitta Fluctus, we have formulated a number of questions to apply to all large flow fields on Venus. In particular, we would like to address the following: (1) eruption conditions and style of flow emplacement (effusion rate, eruption duration), (2) the nature of magma storage zones (presence of neutral buoyancy zones, deep or shallow crustal magma chambers), (3) the origin of melt and possible link to mantle plumes, and (4) the importance of large flow fields in plains evolution. To answer these questions we have begun to examine variations in flow field dimension and morphology; the distribution of large flow fields in terms of elevation above the mean planetary radius; links to regional tectonic or volcanic structures (e.g., associations with large shield edifices, coronae, or rift zones); statigraphic relationships between large flow fields, volcanic plains, shields, and coronae; and various models of flow emplacement in order to estimate eruption parameters. In this particular study, we have examined the proximal elevations and topographic slopes of 16 of the most distinctive flow fields that represent each of the 6 morphologic types.
Comparative Corrosion Behavior of Two Palladium Containing Titanium Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lian, T; Yashiki, T; Nakayama, T
2006-02-05
The ASTM standard B 265 provides the requirements for the chemical composition of titanium (Ti) alloys. It is planned to use corrosion resistant and high strength titanium alloys to fabricate the drip shield at the proposed Yucca Mountain Repository. Titanium grade (Gr) 7 (R52400) and other Ti alloys are currently being characterized for this application. Ti Gr 7 contains 0.15% Palladium (Pd) to increase its corrosion performance. In this article we report results on the comparative short term corrosion behavior of Ti Gr 7 and a Ruthenium (Ru) containing alloy (Ti Gr 33). Ti Gr 33 also contains a smallmore » amount of Pd. Limited electrochemical testing such as polarization resistance and cyclic potentiodynamic curves showed that both alloys have a similar corrosion behavior in the tested environments.« less
COMPARATIVE CORROSION BEHAVIOR OF TWO PALLADIUM CONTAINING TITANIUM ALLOYS
DOE Office of Scientific and Technical Information (OSTI.GOV)
T. Lian, T. Yashiki, T. Nakayama, T. Nakanishi, R. B. Rebak
2006-07-23
The ASTM standard B 265 provides the requirements for the chemical composition of titanium (Ti) alloys. It is planned to use corrosion resistant and high strength titanium alloys to fabricate the drip shield at the proposed Yucca Mountain Repository. Titanium grade (Gr) 7 (R52400) and other Ti alloys are currently being characterized for this application. Ti Gr 7 contains 0.15% Palladium (Pd) to increase its corrosion performance. In this article we report results on the comparative short term corrosion behavior of Ti Gr 7 and a Ruthenium (Ru) containing alloy (Ti Gr 33). Ti Gr 33 also contains a smallmore » amount of Pd. Limited electrochemical testing such as polarization resistance and cyclic potentiodynamic curves showed that both alloys have a similar corrosion behavior in the tested environments.« less
Evaporative cooling of speleothem drip water
Cuthbert, M. O.; Rau, G. C.; Andersen, M. S.; Roshan, H.; Rutlidge, H.; Marjo, C. E.; Markowska, M.; Jex, C. N.; Graham, P. W.; Mariethoz, G.; Acworth, R. I.; Baker, A.
2014-01-01
This study describes the first use of concurrent high-precision temperature and drip rate monitoring to explore what controls the temperature of speleothem forming drip water. Two contrasting sites, one with fast transient and one with slow constant dripping, in a temperate semi-arid location (Wellington, NSW, Australia), exhibit drip water temperatures which deviate significantly from the cave air temperature. We confirm the hypothesis that evaporative cooling is the dominant, but so far unattributed, control causing significant disequilibrium between drip water and host rock/air temperatures. The amount of cooling is dependent on the drip rate, relative humidity and ventilation. Our results have implications for the interpretation of temperature-sensitive, speleothem climate proxies such as δ18O, cave microecology and the use of heat as a tracer in karst. Understanding the processes controlling the temperature of speleothem-forming cave drip waters is vital for assessing the reliability of such deposits as archives of climate change. PMID:24895139
Elizabeth Keppeler
2007-01-01
Within the second-growth redwood forest of the Caspar Creek watershed, fog drip was measured in 1998 at 12 sites where heavy fog drip was expected. The following year, two one-ha plots were each instrumented with six randomly sited 1.35 m2 fog-drip collectors and one additional collector in a nearby clearcut. Fog-drip totals were highly variable...
NASA Astrophysics Data System (ADS)
Lorenzo-Merino, A.; Guilbaud, M.-N.; Roberge, J.
2018-03-01
Pelado volcano is a typical example of an andesitic Mexican shield with a summital scoria cone. It erupted ca. 10 ka in the central part of an elevated plateau in what is today the southern part of Mexico City. The volcano forms a roughly circular, 10-km wide lava shield with two summital cones, surrounded by up to 2.7-m thick tephra deposits preserved up to a distance of 3 km beyond the shield. New cartographic, stratigraphic, granulometric, and componentry data indicate that Pelado volcano was the product of a single, continuous eruption marked by three stages. In the early stage, a > 1.5-km long fissure opened and was active with mild explosive activity. Intermediate and late stages were mostly effusive and associated with the formation of a 250-m high lava shield. Nevertheless, during these stages, the emission of lava alternated and/or coexisted with highly explosive events that deposited a widespread tephra blanket. In the intermediate stage, multiple vents were active along the fissure, but activity was centered at the main cone during the late stage. The final activity was purely effusive. The volcano emitted > 0.9 km3 dense-rock equivalent (DRE) of tephra and up to 5.6 km3 DRE of lavas. Pelado shares various features with documented "violent Strombolian" eruptions, including a high fragmentation index, large dispersal area, occurrence of plate tephra, high eruptive column, and simultaneous explosive and effusive activity. Our results suggest that the associated hazards (mostly tephra fallout and emplacement of lava) would seriously affect areas located up to 25 km from the vent for fallout and 5 km from the vent for lava, an important issue for large cities built near or on potentially active zones, such as Mexico City.
Doctor, Daniel H.; Alexander, E. Calvin; Jameson, Roy A.; Alexander, Scott C.
2015-01-01
Caves provide direct access to flows through the vadose zone that recharge karst aquifers. Although many recent studies have documented the highly dynamic processes associated with vadose zone flows in karst settings, few have been conducted in mantled karst settings, such as that of southeastern Minnesota. Here we present some results of a long-term program of cave drip monitoring conducted within Mystery Cave, Minnesota. In this study, two perennial ceiling drip sites were monitored between 1997 and 2001. The sites were located about 90 m (300 ft) apart along the same cave passage approximately 18 m (60 ft) below the surface; 7 to 9 m (20 to 30 ft) of loess and 12 m (40 ft) of flat-lying carbonate bedrock strata overlie the cave. Records of drip rate, electrical conductivity, and water temperature were obtained at 15 minute intervals, and supplemented with periodic sampling for major ion chemistry and water stable isotopes. Patterns in flow and geochemistry emerged at each of the two drip sites that were repeated year after year. Although one site responded relatively quickly (within 2-7 hours) to surface recharge events while the other responded more slowly (within 2-5 days), thresholds of antecedent moisture needed to be overcome in order to produce a discharge response at both sites. The greatest amount of flow was observed at both sites during the spring snowmelt period. Rainfall events less than 10 mm (0.4 in) during the summer months generally did not produce a drip discharge response, yet rapid drip responses were observed following intense storm events after periods of prolonged rainfall. The chemical data from both sites indicate that reservoirs of vadose zone water with distinct chemical signatures mixed during recharge events, and drip chemistry returned to a baseline composition during low flow periods. A reservoir with elevated chloride and sulfate concentrations impacts the slow-response drip site with each recharge event, but does not similarly affect the fast-response drip site. Nitrate concentrations in drip waters were generally less than 4.0 mg/L as NO3- (or less than 1 mg/L as N). Nitrate was either stable or slightly increased with drip rate at the fast-response drip site; in contrast, nitrate concentrations decreased with drip rate at the slow-response drip site.
E-Cigarettes and "Dripping" Among High-School Youth.
Krishnan-Sarin, Suchitra; Morean, Meghan; Kong, Grace; Bold, Krysten W; Camenga, Deepa R; Cavallo, Dana A; Simon, Patricia; Wu, Ran
2017-03-01
Electronic cigarettes (e-cigarettes) electrically heat and vaporize e-liquids to produce inhalable vapors. These devices are being used to inhale vapors produced by dripping e-liquids directly onto heated atomizers. The current study conducts the first evaluation of the prevalence rates and reasons for using e-cigarettes for dripping among high school students. In the spring of 2015, students from 8 Connecticut high schools ( n = 7045) completed anonymous surveys that examined tobacco use behaviors and perceptions. We assessed prevalence rates of ever using e-cigarettes for dripping, reasons for dripping, and predictors of dripping behaviors among those who reported ever use of e-cigarettes. Among 1080 ever e-cigarette users, 26.1% of students reported ever using e-cigarettes for dripping. Reasons for dripping included produced thicker clouds of vapor (63.5%), made flavors taste better (38.7%), produced a stronger throat hit (27.7%), curiosity (21.6%), and other (7.5%). Logistic regression analyses indicated that male adolescents (odds ratio [OR] = 1.64), whites (OR = 1.46), and those who had tried multiple tobacco products (OR = 1.34) and had greater past-month e-cigarette use frequency (OR = 1.07) were more likely to use dripping ( P s < .05). These findings indicate that a substantial portion (∼1 in 4) of high school adolescents who had ever used e-cigarettes also report using the device for dripping. Future efforts must examine the progression and toxicity of the use of e-cigarettes for dripping among youth and educate them about the potential dangers of these behaviors. Copyright © 2017 by the American Academy of Pediatrics.
Water and nitrogen requirements of subsurface drip irrigated pomegranate
USDA-ARS?s Scientific Manuscript database
Surface drip irrigation is a well-developed practice for both annual and perennial crops. The use of subsurface drip is a well-established practice in many annual row crops, e.g. tomatoes, strawberries, lettuce. However, the use of subsurface drip on perennial crops has been slow to develop. With th...
7 CFR 2902.60 - Turbine drip oils.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 15 2011-01-01 2011-01-01 false Turbine drip oils. 2902.60 Section 2902.60... Items § 2902.60 Turbine drip oils. (a) Definition. Products that are lubricants for use in drip lubrication systems for water well line shaft bearings, water turbine bearings for irrigation pumps, and other...
7 CFR 3201.60 - Turbine drip oils.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Designated Items § 3201.60 Turbine drip oils. (a) Definition. Products that are lubricants for use in drip lubrication systems for water well line shaft bearings, water turbine bearings for irrigation pumps, and other... 7 Agriculture 15 2013-01-01 2013-01-01 false Turbine drip oils. 3201.60 Section 3201.60...
7 CFR 3201.60 - Turbine drip oils.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Designated Items § 3201.60 Turbine drip oils. (a) Definition. Products that are lubricants for use in drip lubrication systems for water well line shaft bearings, water turbine bearings for irrigation pumps, and other... 7 Agriculture 15 2012-01-01 2012-01-01 false Turbine drip oils. 3201.60 Section 3201.60...
7 CFR 3201.60 - Turbine drip oils.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Designated Items § 3201.60 Turbine drip oils. (a) Definition. Products that are lubricants for use in drip lubrication systems for water well line shaft bearings, water turbine bearings for irrigation pumps, and other... 7 Agriculture 15 2014-01-01 2014-01-01 false Turbine drip oils. 3201.60 Section 3201.60...
NASA Astrophysics Data System (ADS)
Azer, Mokhles Kamal; Stern, Robert J.; Kimura, Jun-Ichi
2010-03-01
New geochemical, isotopic, and geochronological data and interpretations are presented for late Neoproterozoic intrusive carbonates and related rocks of southern Sinai, Egypt (northernmost Arabian-Nubian Shield). The Tarr carbonates are coarsely crystalline and related to explosive emplacement of hypabyssal and volcanic albitite at 605 ± 13 Ma. The carbonates associated with the albitites are divisible into two types: primary dolomitite and secondary breunneritite (Fe-rich magnesite). The dolomitite was clearly intrusive but differs from classic igneous carbonatites, containing much lower abundances of incompatible elements, such as REE, U, Th, Rb, Nb, Y, P, Sr, Zr, Ba, and total alkalies. The breunneritite is a secondary replacement of dolomitite, probably marking the roots of a vigorous hydrothermal system. Albitites show pristine abundances of major and trace elements and were not subjected to a major metamorphic overprint. They are relatively more fractionated, alkaline and related to within-plate A-type magmas, were emplaced in an extensional or non-compressive tectonic regime in the cupola of high-level A-type granite. Tarr albitites may represent residual magma remaining after near-total crystallization of an A-type granite pluton at depth, forcibly emplaced into the roof above the cooling pluton. The intrusive dolomitite exsolved from highly differentiated albitite melt, in the apical regions of a still-buried alkaline “A-type” granite pluton that was rich in CO2; these volatiles migrated upwards and towards the cooler margins of the magma body. Late NNE-SSW extension allowed a shallow-level cupola to form, into which albitite melts and carbonate fluids migrated, culminating in explosive emplacement of albitite breccia and intrusive carbonate. Isotopic compositions of Tarr dolomitite and albitite indicate these are consanguineous and ultimately of mantle origin. Magmatic volatiles fenitized the wall rock, while submarine hydrothermal activity transformed some of the dolomitite into breunneritite. Recognition of Tarr-type should encourage similar hypabyssal complex intrusions to be sought for in association with A-type granitic plutons elsewhere.
Geology of the Ishmas gold district, Kingdom of Saudi Arabia
Doebrich, Jeff L.; White, Willis M.
1991-01-01
The Ishmas gold district was mapped at 1:25,000 scale to place auriferous mineralization into geologic perspective, to assist in creating an ore-deposit model, and to aid in devising a strategy for subsequent exploration elsewhere in the Jabal Ishmas-Wadi Tathlith gold belt. The precratonic evolution of the district began with the deposition of a tholeiitic mafic volcanic and volcaniclastic sequence that was intruded by diabase and gabbro. Basaltic to rhyodacitic volcanism following a calc-alkaline evolutionary trend ensued. Subsequent deposition of a thick wacke and sandstone unit represented the final phase in the volcano sedimentary accumulation. The emplacement of a large lopolithic layered-gabbro complex marked the end of the precratonic evolutionary cycle. The district coincides with the boundary of two allochthonous terranes. The collisional Nabitah orogeny represents the suturing of the two terranes. The effects of this event are manifested by numerous north-trending, steeply dipping faults, shear zones, and mylonite belts, as well as diapiric serpentinite. During the waning stages of the orogeny, auriferous quartz pods were precipitated in dilatant structures within the north-trending shear zones by deep-seated circulating fluids. The emplacement of a tonalite stock was closely followed by the formation of N. 20°-35° W. -trending faults. These faults influenced the emplacement of dacite porphyry stocks and associated auriferous quartz veins. The auriferous veins are massive, tabular open-fracture fillings that are spatially, temporally, and genetically related to the dacite porphyry. The emplacement of a quartz monzodiorite stock was responsible for additional auriferous quartz vein mineralization that is almost exclusively hosted by the intrusion. A nearly random orientation of the veins indicates that no regional structure influenced their formation. The formation of a series of N. 60°-80° W -trending faults represents the final episode in the district's geologic history and corresponds to the cratonic reactivation that affected a large part of the Arabian Shield (that is, the Najd faulting event).
Pierce, Eric T; Kumar, Vikram; Zheng, Hui; Peterfreund, Robert A
2013-03-01
Gravity-driven micro-drip infusion sets allow control of medication dose delivery by adjusting drops per minute. When the roller clamp is fully open, flow in the drip chamber can be a continuous fluid column rather than discrete, countable, drops. We hypothesized that during this "wide-open" state, drug delivery becomes dependent on factors extrinsic to the micro-drip set and is therefore difficult to predict. We conducted laboratory experiments to characterize volume delivery under various clinically relevant conditions of wide-open flow in an in vitro laboratory model. A micro-drip infusion set, plugged into a bag of normal saline, was connected to a high-flow stopcock at the distal end. Vertically oriented IV catheters (gauges 14-22) were connected to the stopcock. The fluid meniscus height in the bag was fixed (60-120 cm) above the outflow point. The roller clamp on the infusion set was in fully open position for all experiments resulting in a continuous column of fluid in the drip chamber. Fluid volume delivered in 1 minute was measured 4 times with each condition. To model resistive effects of carrier flow, volumetric infusion pumps were used to deliver various flow rates of normal saline through a carrier IV set into which a micro-drip infusion was "piggybacked." We also compared delivery by micro-drip infusion sets from 3 manufacturers. The volume of fluid delivered by gravity-driven infusion under wide-open conditions (continuous fluid column in drip chamber) varied 2.9-fold (95% confidence interval, 2.84-2.96) depending on catheter size and fluid column height. Total model resistance of the micro-drip with stopcock and catheter varied with flow rate. Volume delivered by the piggybacked micro-drip decreased up to 29.7% ± 0.8% (mean ± SE) as the carrier flow increased from 0 to 1998 mL/min. Delivery characteristics of the micro-drip infusion sets from 3 different manufacturers were similar. Laboratory simulation of clinical situations with gravity-driven micro-drip infusion sets under wide-open flow conditions revealed that infusion rate (drug and/or volume delivery) can vary widely depending on extrinsic factors including catheter size, fluid column height, and carrier flow. The variable resistance implies nonlaminar flow in the micro-drip model that cannot be easily predicted mathematically. These findings support the use of mechanical pumps instead of gravity-driven micro-drips to enhance the precision and safety of IV infusions, especially for vasoactive drugs.
USDA-ARS?s Scientific Manuscript database
The effects of nitrogen (N) fertigation using conventional drip and alternative micro irrigation systems were evaluated in six cultivars of northern highbush blueberry. The drip system consisted of two laterals of drip tubing, with 2 L/h in-line emitters (point source) spaced every 0.45 m, on each s...
NASA Astrophysics Data System (ADS)
Sherif, Mahmoud I.; Ghoneim, Mohamed F.; Heikal, Mohamed Th. S.; El Dosuky, Bothina T.
2013-10-01
Precambrian granites of the Sharm El-Sheikh area in south Sinai, Egypt belong to collisional and post-collisional Magmatism (610-580 Ma). The granites are widely distributed in the northern part of the Neoproterozoic Arabian-Nubian Shield. South Sinai includes important components of successive multiple stages of upper crust granitic rocks. The earliest stages include monzogranite and syenogranites while the later stages produced alkali feldspar granites and riebeckite-bearing granites. Numerous felsic, mafic dikes and quartz veins traverse the study granites. Petrographically, the granitic rocks consist mainly of perthite, plagioclase, quartz, biotite and riebeckite. Analysis results portray monzogranites displaying calc-alkaline characteristics and emplaced in island-arc tectonic settings, whereas the syenogranites, alkali-feldspar granites and the riebeckite bearing-granites exhibit an alkaline nature and are enriched in HFSEs similar to granites within an extensional regime. Multi-element variation diagrams and geochemical characteristics reinforce a post-collision tectonic setting. REEs geochemical modeling reveals that the rocks were generated as a result of partial melting and fractionation of lower crust basaltic magma giving rise to A1 and A2 subtype granites. They were subsequently emplaced within an intraplate environment at the end of the Pan-African Orogeny.
McGlone, J J; Stansbury, W F; Tribble, L F
1988-04-01
Two experiments using 120 sows were conducted to determine the effects during heat stress of two floor types, snout coolers or a water drip system, and a high energy-density diet. During both studies, air temperature was maintained at or above 29 degrees C. Floor types included partially slotted concrete and plastic-coated, expanded metal. In Exp. 1, in addition to floor-type treatments, snout coolers were on or off and the water drip was on for 3 min each 10 min or off. Snout coolers increased (P less than .05) sow feed intake and decreased (P less than .05) sow lactation weight loss. Water drip increased (P less than .002) sow feed intake and reduced lactation weight loss. The drip X floor-type interaction was significant for most measures of piglet performance. Drip was beneficial for piglet weights when piglets were on plastic, whereas drip was detrimental to piglet performance while they were housed on concrete. In Exp. 2, two floor types, drip or no-drip and a high energy-density diet or control diet were examined during heat stress. The high energy-density diet reduced (P less than .01) sow feed intake but provided no measurable increase in piglet performance during heat stress. We conclude that water drip is an effective cooling technique for heat-stressed sows, especially when floors are plastic. Snout coolers, partial concrete slots and high energy-density diets provided only minor benefits to heat-stressed sows and were not of benefit to piglets nursing heat-stressed sows.
Aleinikoff, John Nicholas; Stoeser, D.B.
1988-01-01
The U-Pb zircon method was used to determine the ages of seven metaluminous-to-peralkaline post-orogenic granites located throughout the Late Proterozoic Arabian Shield of Saudi Arabia. Zircons from the metaluminous rocks are prismatic, with length-to-width ratios of about 2-4:1 and small pyramidal terminations. In contrast, zircons from three of the four peralkaline complexes either lack well developed prismatic faces (are pseudo-octahedral) or are anhedral. Some of the zircons from the peralkaline granites contain inherited radiogenic lead. This complicates interpretation of the isotopic data and. in many cases, may make the U-Pb method unsuitable for determining the age of a peralkaline granite. Zircons in the metaluminous granites do not contain inheritance and thus, best-fit chords calculated through the data have upper concordia intercepts that indicate the age of intrusion, and lower intercepts that indicate simple episodic lead loss. The results show that these granites were emplaced during multiple intrusive episodes from 670 to 510 Ma (Late Proterozoic to Cambrian).
The geology of the northern tip of the Arabian-Nubian Shield
NASA Astrophysics Data System (ADS)
Beyth, M.; Eyal, Y.; Garfunkel, Z.
2014-11-01
Recently, a detailed (1:50,000) geological map of the Elat area, southern Israel was published. Attached to this map is a stratigraphic table of the Neoproterozoic metamorphic-magmatic complex of the study area. The Neoproterozoic basement in the Elat area encapsulates the Arabian Nubian Shield (ANS) geologic evolution. Uranium-Lead and Lead-Lead zircon ages, included in previous studies and referred to in this paper, reveal that these rocks were formed during more than 300 million years of Neoproterozoic time. The major process controlling the formation of the ANS as part of the East African Orogen is the closure of the Mozambique Ocean. The first orogenic phase in the Elat area, represented by the metamorphic rocks, includes the development of an island arc, erosion of the islands and deposition, and metamorphism. This event took place between ∼950 Ma and 780-790 Ma. Elat Schist, the oldest metamorphic rock in the area, was deformed and then intruded by quartz dioritic and granitic plutons that were later deformed and metamorphosed. The amphibolite metamorphic rock facies indicate metamorphic conditions of up to 650 °C and between 4 and 5 kbar. The peak of the metamorphic event was most probably before 750 Ma. A gradual change from compressional to extensional stress regime is evidenced by emplacement andesitic magnesium-rich dykes dated to 705 Ma that were later metamorphosed to schistose dykes at a greenschist metamorphic facies. The second orogenic phase (terrane amalgamation, main shaping of crust) was associated with the emplacement of large volumes (>50% of area) of calc-alkaline intrusions in a post-collision setting. These very last stages of metamorphism and deformation are characterized by intrusion of ∼630 Ma granitoids exhibiting some foliation. Pluton emplacement continued also after the end of deformation. Exhumation and transition to an extensional regime is recorded by the intrusion of shallow alkaline granites in ∼608 Ma which were accompanied in ∼609 Ma by rhyolite, andesite and composite dykes. The last magmatic event in the Elat area is represented by the volcano-conglomeratic series comprising rhyolites, basalts, andesites, hypabyssal intrusions of monzonite and syenite and conglomerates. The conglomerates, dated to about 590 Ma, are the products of a major erosion phase in which about 12,000 m of the section were removed. These conglomerates were intruded by 585 Ma rhyolite, andesite and composite dykes. The Neoproterozoic basement is truncated by a peneplain whose age, post 532 Ma, is constrained by the age of the youngest eroded dolerite dykes. This Early Cambrian peneplain was associated with erosion of 2000 m of the section and by chemical weathering. Three major breaks in Neoproterozoic magmatic activity are recognized: the first, occurred in Cryogenian time, lasted ∼60 million years after the amphibolite facies metamorphism and before emplacement of the calc alkaline plutons, separating the first and the second orogenic phases; the second break between the orogenic and the extensional phases occurred in early Ediacaran time, encompassed ∼20 million years between the emplacement of the calc-alkaline and alkaline plutonic rocks and rhyolite, andesite and the composite dykes; and the third, ∼50 Ma break, occurred between the emplacement of the last felsic intrusions at ∼585 Ma and intrusion of the dolerite dykes in 532 Ma, before the Early Cambrian peneplain developed. The great lateral extension of the Cambrian to Eocene sedimentary rocks and their slow facies and thickness changes suggest a stable flat platform area at the northern tip of the ANS. Early Cambrian sedimentation began with fluviatile subarkoses of the Amudei Shlomo Formation. It was overlain by an Early to Middle Cambrian transgressive-regressive lagoonal cycle of dolostones, sandstones, and siltstones of the Timna Formation. Then Middle Cambrian subarkoses and siltstones of the Shehoret Formation and the quartz arenite of the Netafim Formation were deposited in a coastal, intertidal environment representing the southern transgression of a Cambrian ocean.
NASA Astrophysics Data System (ADS)
El-Fakharani, Abdelhamid; Hamimi, Zakaria
2013-04-01
Ain Shams area, Western Arabian Shield, Saudi Arabia, is occupied by four main rock units; gneisses, metavolcanics, metasediments and syn- to post-tectonic granitoids. Field and structural studies reveal that the area was subjected to at least three phases of deformation (D1, D2 and D3). The structural features of the D1 are represented by tight to isoclinal and intrafolial folds (F1), axial plane foliation (S1) and stretching lineations (L1). This phase is believed to be resulted from an early NW-SE contractional phase due to the amalgamation between Asir and Jeddah tectonic terranes. D2 deformation phase progressively overprinted D1 structures and was dominated by thrusts, minor and major F2 thrust-related overturned folds. These structures indicate a top-to-the-NW movement direction and compressional regime during the D2 phase. Emplacement of the syn-tectonic granitoids is likely to have occurred during this phase. D3 structures are manifested F3 folds, which are open with steep to subvertical axial planes and axes moderately to steeply plunging towards the E, ENE and ESE directions, L3 is represented by crenulation lineations and kink bands. These structures attest NE-SW contractional phase, concurrent with the accretion of the Arabian-Nubian Shield (ANS) to the Saharan Metacraton (SM) and the final assembly between the continental blocks of East and West Gondwana.
ENSO-cave drip water hydrochemical relationship: a 7-year dataset from south-eastern Australia
NASA Astrophysics Data System (ADS)
Tadros, Carol V.; Treble, Pauline C.; Baker, Andy; Fairchild, Ian; Hankin, Stuart; Roach, Regina; Markowska, Monika; McDonald, Janece
2016-11-01
Speleothems (cave deposits), used for palaeoenvironmental reconstructions, are deposited from cave drip water. Differentiating climate and karst processes within a drip-water signal is fundamental for the correct identification of palaeoenvironmental proxies and ultimately their interpretation within speleothem records. We investigate the potential use of trace element and stable oxygen-isotope (δ18O) variations in cave drip water as palaeorainfall proxies in an Australian alpine karst site. This paper presents the first extensive hydrochemical and δ18O dataset from Harrie Wood Cave, in the Snowy Mountains, south-eastern (SE) Australia. Using a 7-year long rainfall δ18O and drip-water Ca, Cl, Mg / Ca, Sr / Ca and δ18O datasets from three drip sites, we determined that the processes of mixing, dilution, flow path change, carbonate mineral dissolution and prior calcite precipitation (PCP) accounted for the observed variations in the drip-water geochemical composition. We identify that the three monitored drip sites are fed by fracture flow from a well-mixed epikarst storage reservoir, supplied by variable concentrations of dissolved ions from soil and bedrock dissolution. We constrained the influence of multiple processes and controls on drip-water composition in a region dominated by El Niño-Southern Oscillation (ENSO). During the El Niño and dry periods, enhanced PCP, a flow path change and dissolution due to increased soil CO2 production occurred in response to warmer than average temperatures in contrast to the La Niña phase, where dilution dominated and reduced PCP were observed. We present a conceptual model, illustrating the key processes impacting the drip-water chemistry. We identified a robust relationship between ENSO and drip-water trace element concentrations and propose that variations in speleothem Mg / Ca and Sr / Ca ratios may be interpreted to reflect palaeorainfall conditions. These findings inform palaeorainfall reconstruction from speleothems regionally and provide a basis for palaeoclimate studies globally, in regions where there is intermittent recharge variability.
Patient Selection for Drip and Ship Thrombolysis in Acute Ischemic Stroke
Lyerly, Michael J.; Albright, Karen C.; Boehme, Amelia K.; Shahripour, Reza Bavarsad; Donnelly, John P.; Houston, James T.; Rawal, Pawan V.; Kapoor, Niren; Alvi, Muhammad; Sisson, April; Alexandrov, Anne W.; Alexandrov, Andrei V.
2017-01-01
Objectives The drip and ship model is a method used to deliver thrombolysis to acute stroke patients in facilities lacking onsite neurology coverage. We sought to determine whether our drip and ship population differs from patients treated directly at our stroke center (direct presenters). Methods We retrospectively reviewed consecutive patients who received thrombolysis at an outside facility with subsequent transfer to our center between 2009 and 2011. Patients received thrombolysis after telephone consultation with a stroke specialist. We examined demographics, vascular risk factors, laboratory values, and stroke severity in drip and ship patients compared with direct presenters. Results Ninety-six patients were identified who received thrombolysis by drip and ship compared with 212 direct presenters. The two groups did not differ with respect to sex, ethnicity, vascular risk factors, or admission glucose. The odds ratio (OR) of arriving at our hospital as a drip and ship for someone 80 years or older was 0.31 (95% confidence interval [CI] 0.15–0.61, P < 0.001). Only 21% of drip and ship patients were black versus 38% of direct presenters (OR 0.434, 95% CI 0.25–0.76, P = 0.004). Even after stratifying by age (<80 vs ≥80), a smaller proportion of drip and ship patients were black (OR 0.44, 95% CI 0.24–0.81, P = 0.008). Furthermore, we found that fewer black patients with severe strokes arrived by drip and ship (OR 0.33, 95% CI 0.11–0.98, P = 0.0028). Conclusions Our study showed that a smaller proportion of blacks and older adults arrived at our center by the drip and ship model. This may reflect differences in how patients are selected for thrombolysis and transfer to a higher level of care. PMID:26192934
Patient Selection for Drip and Ship Thrombolysis in Acute Ischemic Stroke.
Lyerly, Michael J; Albright, Karen C; Boehme, Amelia K; Shahripour, Reza Bavarsad; Donnelly, John P; Houston, James T; Rawal, Pawan V; Kapoor, Niren; Alvi, Muhammad; Sisson, April; Alexandrov, Anne W; Alexandrov, Andrei V
2015-07-01
The drip and ship model is a method used to deliver thrombolysis to acute stroke patients in facilities lacking onsite neurology coverage. We sought to determine whether our drip and ship population differs from patients treated directly at our stroke center (direct presenters). We retrospectively reviewed consecutive patients who received thrombolysis at an outside facility with subsequent transfer to our center between 2009 and 2011. Patients received thrombolysis after telephone consultation with a stroke specialist. We examined demographics, vascular risk factors, laboratory values, and stroke severity in drip and ship patients compared with direct presenters. Ninety-six patients were identified who received thrombolysis by drip and ship compared with 212 direct presenters. The two groups did not differ with respect to sex, ethnicity, vascular risk factors, or admission glucose. The odds ratio (OR) of arriving at our hospital as a drip and ship for someone 80 years or older was 0.31 (95% confidence interval [CI] 0.15-0.61, P < 0.001). Only 21% of drip and ship patients were black versus 38% of direct presenters (OR 0.434, 95% CI 0.25-0.76, P = 0.004). Even after stratifying by age (<80 vs ≥80), a smaller proportion of drip and ship patients were black (OR 0.44, 95% CI 0.24-0.81, P = 0.008). Furthermore, we found that fewer black patients with severe strokes arrived by drip and ship (OR 0.33, 95% CI 0.11-0.98, P = 0.0028). Our study showed that a smaller proportion of blacks and older adults arrived at our center by the drip and ship model. This may reflect differences in how patients are selected for thrombolysis and transfer to a higher level of care.
NASA Astrophysics Data System (ADS)
Baltybaev, Shauket
2010-05-01
The Ladoga region, situated in the south-eastern part of the Fennoscandian shield, is subdivided into the Archean (ARD) and the Proterozoic (PRD) domains. The boundary between them is a wide shear-zone. The ARD consists mostly of AR-PR middle-low temperature gneisses and the PRD consists of turbidites, pelites, volcanics metamorphosed under HT-conditions (granulite facies). Metamorphism within the PRD is culminated at T= 800-900C and P=5-6 kbar. The peak of metamorphism of granulite facies is dated at 1881 Ma by Pb-Pb stepwise leaching method of rock-forming minerals of the granulites. Pb-Pb results are within error limits coeval with the U-Pb ages of metamorphic monazites. The same (1881Ma) age has gabbro-enderbites. Next stage of metamorphism lasts from 1881 to 1860 Ma under conditions of amphibolite facies. It was restricted with U-Pb, Pb-Pb, Sm-Nd data based on the closure temperature of zircon, monazite, garnet, sillimanite from gneisses, leucosomes of migmatites and synmetamorphic diorites and tonalites. The lowermost point of the trend shows P-T: ~3-4 kbar, 600C. By the time 1860 Ma K-rich granites were emplaced and the uppermost limit for granulite metamorphism comes from the ages of the aplitic/pegmatitic veins (1860-1850 Ma), which cut the K-rich granites. Thermal and tectonic settings can be described based on spatial and temporal changes during magma emplacement. The granulites of the PRD were produced by the emplacement of the extensive basic intrusion (gabbro-enderbites) into the lower-middle crust. A prolonged thermal flux over all area was supported by new generated dioritic and tonalitic melts, which were intruded into the middle crust. The final stage of tectono-metamorphic evolution was marked by emplacement of the K-rich granites. Numerical simulation of the process of magma emplacement (sequences: gabbro-enderbites, diorites and tonalites) and related heat production shows good correlation between intrusive activity and metamorphism of the surrounding rocks. Baltybaev Sh. K., Levchenkov O. A., Levsky L. K., Eklund O., Kilpeläinen T. 2006. Two metamorphic stages in the Svecofennian Domain: evidence from the isotopic geochronological study of the Ladoga and Sulkava metamorphic complexes. Petrology, 14(3), 247-261.
Mechanical Stimulation by Postnasal Drip Evokes Cough
Iwata, Toshiyuki; Ito, Isao; Niimi, Akio; Ikegami, Koji; Marumo, Satoshi; Tanabe, Naoya; Nakaji, Hitoshi; Kanemitsu, Yoshihiro; Matsumoto, Hisako; Kamei, Junzo; Setou, Mitsutoshi; Mishima, Michiaki
2015-01-01
Cough affects all individuals at different times, and its economic burden is substantial. Despite these widespread adverse effects, cough research relies on animal models, which hampers our understanding of the fundamental cause of cough. Postnasal drip is speculated to be one of the most frequent causes of chronic cough; however, this is a matter of debate. Here we show that mechanical stimuli by postnasal drip cause chronic cough. We distinguished human cough from sneezes and expiration reflexes by airflow patterns. Cough and sneeze exhibited one-peak and two-peak patterns, respectively, in expiratory airflow, which were also confirmed by animal models of cough and sneeze. Transgenic mice with ciliary dyskinesia coughed substantially and showed postnasal drip in the pharynx; furthermore, their cough was completely inhibited by nasal airway blockade of postnasal drip. We successfully reproduced cough observed in these mice by injecting artificial postnasal drip in wild-type mice. These results demonstrated that mechanical stimulation by postnasal drip evoked cough. The findings of our study can therefore be used to develop new antitussive drugs that prevent the root cause of cough. PMID:26581078
Remote-Sensing-Based Evaluation of Relative Consumptive Use Between Flood- and Drip-Irrigated Fields
NASA Astrophysics Data System (ADS)
Martinez Baquero, G. F.; Jordan, D. L.; Whittaker, A. T.; Allen, R. G.
2013-12-01
Governments and water authorities are compelled to evaluate the impacts of agricultural irrigation on economic development and sustainability as water supply shortages continue to increase in many communities. One of the strategies commonly used to reduce such impacts is the conversion of traditional irrigation methods towards more water-efficient practices. As part of a larger effort by the New Mexico Interstate Stream Commission to understand the environmental and economic impact of converting from flood irrigation to drip irrigation, this study evaluates the water-saving effectiveness of drip irrigation in Deming, New Mexico, using a remote-sensing-based technique combined with ground data collection. The remote-sensing-based technique used relative temperature differences as a proxy for water use to show relative differences in crop consumptive use between flood- and drip-irrigated fields. Temperature analysis showed that, on average, drip-irrigated fields were cooler than flood-irrigated fields, indicating higher water use. The higher consumption of water by drip-irrigated fields was supported by a determination of evapotranspiration (ET) from all fields using the METRIC Landsat-based surface energy balance model. METRIC analysis yielded higher instantaneous ET for drip-irrigated fields when compared to flood-irrigated fields and confirmed that drip-irrigated fields consumed more water than flood-irrigated fields planted with the same crop. More water use generally results in more biomass and hence higher crop yield, and this too was confirmed by greater relative Normalized Difference Vegetation Index for the drip irrigated fields. Results from this study confirm previous estimates regarding the impacts of increased efficiency of drip irrigation on higher water consumption in the area (Ward and Pulido-Velazquez, 2008). The higher water consumption occurs with drip because, with the limited water supplies and regulated maximum limits on pumping amounts, the higher efficiency of drip enables producers to convert larger percentages of pumped ground-water into evapotranspiration and reduces the ';return' of percolation ';losses' back to the ground-water system that previously re-recharged the aquifer. This study illustrates the usefulness of remote sensing techniques to evaluate spatial patterns of ET by different irrigation methods. These results illustrate a first-step quantitative tool that can be used by water resources managers in formulation of policy to limit net water consumption and maintain reliable water supply sources.
Control of Sediment Availability on the Path of Channel Recovery in Bedload-Dominated Rivers
NASA Astrophysics Data System (ADS)
Doyle, H.; Renshaw, C. E.; Magilligan, F. J.
2015-12-01
Following a disturbance, a channel can recover to an equilibrium form by adjusting its slope, width, depth, grain size, or some combination of these dimensions that define the recovery path. In this study we relate the channel recovery path to the quantity and caliber of sediment introduced due to dam construction/removal or erosion caused by flooding. We suggest that the recovery path of a channel depends on the availability of sediment of a size that is transported as bedload during bankfull flows (the "mobile fraction"). We define a ratio, S*, of the sediment volume added to the channel because of the disturbance to the average annual sediment flux. We compare S* values to the recovery path of New England gravel-bedded streams following two dam emplacements and removals and flooding related to Tropical Storm Irene. Pelham Dam in Pelham, MA (removed 2012) and Kendrick Dam in Pittsford, VT (removed 2014) were on similar streams: drainage areas ~25 km2, slopes 1-2%, and bankfull widths ~10 m. Sediment was excavated from both impoundments prior to removal, resulting in lower S* values. Irene-affected study sites are on ~10 gravel-bedded streams in VT, NH, and MA. Sediment input at these sites is due to bank failures and landslides, many of which continue to supply sediment to the channel four years after flooding. To track recovery we collected annual topographic and sediment size data and calculated Shields numbers to determine if channels had reached an equilibrium form. We define equilibrium for bedload rivers as Shields numbers at bankfull discharge equal to that required to initiate bedload transport. Following dam emplacements the channels failed to recover because mobile sediment was unavailable. Fining dominated the recovery at Irene-affected sites (~10% reduction in sediment size) and dam removal sites (up to 30-60% reduction) with little post-disturbance change in channel geometry, possibly due to the limited mobile fraction.
A Basic LEGO Reactor Design for the Provision of Lunar Surface Power
DOE Office of Scientific and Technical Information (OSTI.GOV)
John Darrell Bess
2008-06-01
A final design has been established for a basic Lunar Evolutionary Growth-Optimized (LEGO) Reactor using current and near-term technologies. The LEGO Reactor is a modular, fast-fission, heatpipe-cooled, clustered-reactor system for lunar-surface power generation. The reactor is divided into subcritical units that can be safely launched with lunar shipments from Earth, and then emplaced directly into holes drilled into the lunar regolith to form a critical reactor assembly. The regolith would not just provide radiation shielding, but serve as neutron-reflector material as well. The reactor subunits are to be manufactured using proven and tested materials for use in radiation environments, suchmore » as uranium-dioxide fuel, stainless-steel cladding and structural support, and liquid-sodium heatpipes. The LEGO Reactor system promotes reliability, safety, and ease of manufacture and testing at the cost of an increase in launch mass per overall rated power level and a reduction in neutron economy when compared to a single-reactor system. A single unshielded LEGO Reactor subunit has an estimated mass of approximately 448 kg and provides approximately 5 kWe. The overall envelope for a single subunit with fully extended radiator panels has a height of 8.77 m and a diameter of 0.50 m. Six subunits could provide sufficient power generation throughout the initial stages of establishing a lunar outpost. Portions of the reactor may be neutronically decoupled to allow for reduced power production during unmanned periods of base operations. During later stages of lunar-base development, additional subunits may be emplaced and coupled into the existing LEGO Reactor network, subject to lunar base power demand. Improvements in reactor control methods, fuel form and matrix, shielding, as well as power conversion and heat rejection techniques can help generate an even more competitive LEGO Reactor design. Further modifications in the design could provide power generative opportunities for use on other extraterrestrial surfaces.« less
NASA Astrophysics Data System (ADS)
Elisha, B.; Katzir, Y.; Kylander-Clark, A. R.
2017-12-01
Collision-related granitoid batholiths, like those of the Hercynian and Himalayan orogens, are mostly fed by magma derived from meta-sedimentary sources. However, in the late Neoproterozoic calc-alkaline batholiths of the Arabian Nubian Shield (ANS), which constitutes the northern half of the East African orogen, sedimentary contribution is obscured by the juvenile character of the crust and the scarcity of migmatites. Here we use paired in-situ measurements of U-Th-Pb isotope ratios and REE contents of monazite and xenotime by LASS to demonstrate direct linkage between granites and migmatites in the northernmost ANS. Our results indicate a single prolonged period of monazite growth, 640-600 Ma, in metapelites, migmatites and peraluminous granites of the Abu-Barqa (SW Jordan), Roded (S Israel) and Taba-Nuweiba (Sinai, Egypt) metamorphic suites. Distribution of monazite dates and age zoning in single monazite grains in migmatites suggest that peak thermal conditions and partial melting prevailed for 10 Myr, from 620 to 610 Ma. REE patterns of monazite are well correlated with age, recording garnet growth and garnet breakdown in association with the prograde and retrograde stages of the melting reactions, respectively. Xenotime dates (n=40) cluster at 600-580 Ma recording retrogression to greenschist-facies conditions as garnet continues to destabilize. Phase equilibrium modelling and mineral thermobarometry illustrate that melting occurred either by dehydration of muscovite or by water-fluxed melting at 650-680° and 5-7 kbar. The expected melt production is 8-14%, allowing melt connectivity network to form and eventually melt extraction and segregation. The crystallization time of peritectic melt retained in dia- and metataxites overlaps the emplacement time of a vast calc-alkaline granitic flux throughout the northern ANS, which was previously considered post-collisional. Similar monazite ages ( 620 Ma) of the amphilolite-facies non-anatectic Elat schist indicate that migmatites are the result of widespread regional, rather than local contact metamorphism, representing the climax of East African orogenesis.
NASA Astrophysics Data System (ADS)
Mahmud, Kashif; Mariethoz, Gregoire; Baker, Andy; Treble, Pauline C.
2018-02-01
Cave drip water response to surface meteorological conditions is complex due to the heterogeneity of water movement in the karst unsaturated zone. Previous studies have focused on the monitoring of fractured rock limestones that have little or no primary porosity. In this study, we aim to further understand infiltration water hydrology in the Tamala Limestone of SW Australia, which is Quaternary aeolianite with primary porosity. We build on our previous studies of the Golgotha Cave system and utilize the existing spatial survey of 29 automated cave drip loggers and a lidar-based flow classification scheme, conducted in the two main chambers of this cave. We find that a daily sampling frequency at our cave site optimizes the capture of drip variability with the least possible sampling artifacts. With the optimum sampling frequency, most of the drip sites show persistent autocorrelation for at least a month, typically much longer, indicating ample storage of water feeding all stalactites investigated. Drip discharge histograms are highly variable, showing sometimes multimodal distributions. Histogram skewness is shown to relate to the wetter-than-average 2013 hydrological year and modality is affected by seasonality. The hydrological classification scheme with respect to mean discharge and the flow variation can distinguish between groundwater flow types in limestones with primary porosity, and the technique could be used to characterize different karst flow paths when high-frequency automated drip logger data are available. We observe little difference in the coefficient of variation (COV) between flow classification types, probably reflecting the ample storage due to the dominance of primary porosity at this cave site. Moreover, we do not find any relationship between drip variability and discharge within similar flow type. Finally, a combination of multidimensional scaling (MDS) and clustering by k means is used to classify similar drip types based on time series analysis. This clustering reveals four unique drip regimes which agree with previous flow type classification for this site. It highlights a spatial homogeneity in drip types in one cave chamber, and spatial heterogeneity in the other, which is in agreement with our understanding of cave chamber morphology and lithology.
NASA Astrophysics Data System (ADS)
Kowalczk, A. J.; Froelich, P. N.; Gaffka, C.; Tremaine, D.
2008-12-01
Continuous high resolution (sub-hourly), long-term (Nov 2007-present) monitoring of cave air chemistry (Temperature, Relative Humidity, Barometric Pressure, Radon-222, CO2, Air flow, Wind speed and direction) in a shallow subtropical cave (Hollow Ridge) in N Florida reveals two major ventilation mechanisms: 1) ventilation driven by winds across the cave entrances, and 2) ventilation driven by density differences between atmospheric and cave air. The degree and type of ventilation strongly influence the 222Rn and CO2 of cave air, which in turn affects the timing and extent of calcite deposition in speleothems. The degree of ventilation is estimated using a cave air CO2-δ13CO2 Keeling Plot, or a simple radon deficiency model. Results show cave air has an atmospheric component ranging from 10-90%. During fall and winter, average CO2 (700 ppmv) and 222Rn (50-100 dpm/L) are lower than in spring and summer (CO2 = 1200 ppmv; 222Rn = 1000 dpm/L) due to increased winter ventilation. Decreased ventilation during the summer allows CO2 and 222Rn levels to rise. Winter daily ventilation is primarily a function of density gradients between cave air and atmospheric air, while summer daily ventilation is primarily a function of late morning NW-NE winds above the cave. Stable isotope analyses of drip water (fracture drip and pore flow drip) and aquifer water from Hollow Ridge agree with previous isotope studies of drip water at Florida Caverns State Park, 2 km to the NE. During summer, isotopic composition of pore flow drip water (δ18O -3.8 to -4.0 per mil; δD -17.3 to -20.2 per mil VSMOW) and aquifer water (δ18O -4.0 per mil; δD -18.0 to -21.1 per mil) are similar to average annual weighted isotopic composition of precipitation (δ18O -3.6 per mil) while fracture drip waters (δ18O -3 to -3.4 per mil; δD -11.9 to -14.3 per mil) likely reflect the isotopic composition of individual precipitation events. Pore flow drip waters δ18O are weakly correlated with drip rates (enriched δ18O during periods of higher drip rates) but show no correlation to precipitation amount. Knowledge of the type of drip flow is important when considering stalagmites for paleoclimate studies. A significant decrease in drip rate was observed from June (1034 drips/hour) through August 2008 (34 drips/hour). Higher water demands during summer months with increased evapotranspiration may be responsible for this decrease. A semi-diurnal drip rate cycle, negatively correlated with barometric pressure, is also observed throughout the period. This strong negative correlation is hypothesized to be controlled by atmospheric tidal oscillations. Observations into the fall and winter seasons should reveal seasonality, if any, and if there is an evapotranspiration effect present in the water cycle. High resolution studies of cave air chemistry and ventilation processes will enhance knowledge of the timing, extent, and isotopic and chemical composition of calcite deposition. When combined with drip water and precipitation isotope analyses, these studies will improve the understanding and interpretation of high- resolution (sub-annual) speleothem paleoclimate records.
NASA Astrophysics Data System (ADS)
Sherwin, Catherine M.; Baldini, James U. L.
2011-07-01
Hourly resolved cave air P and cave drip water hydrochemical data illustrate that calcite deposition on stalagmites can be modulated by prior calcite precipitation (PCP) on extremely short timescales. A very clear second-order covariation between cave air P and drip water Ca 2+ concentrations during the winter months demonstrates the effects of degassing-induced PCP on drip water chemistry. Estimating the strength of the cave air P control on PCP is possible because the PCP signal is so clear; at our drip site a one ppm shift in Ca 2+ concentrations requires a P shift of between 333 and 667 ppm. This value will undoubtedly vary from site to site, depending on drip water flow rate, residence time, drip water-cave air P differential, and availability of low P void spaces in the vadose zone above the cave. High-resolution cave environmental measurements were used to model calcite deposition on one stalagmite in Crag Cave, SW Ireland, and modelled growth over the study period (222 μm over 171 days) is extremely similar to the amount of actual calcite growth (240 μm) over the same time interval, strongly suggesting that equations used to estimate stalagmite growth rates are valid. Although cave air P appears to control drip water hydrochemistry in the winter, drip water dilution caused by rain events may have played a larger role during the summer, as evidenced by a series of sudden drops in Ca 2+ concentrations (dilution) followed by much more gradual increases in drip water Ca 2+ concentrations (slow addition of diffuse water). This research demonstrates that PCP on stalactites, cave ceilings, and void spaces within the karst above the cave partially controls drip water chemistry, and that thorough characterisation of this process at individual caves is necessary to most accurately interpret climate records from those sites.
Eakins, Barry W.; Robinson, Joel E.; Kanamatsu, Toshiya; Naka, Jiro; Smith, John R.; Takahashi, Eiichi; Clague, David A.
2003-01-01
Hawaiian volcanoes typically evolve in four stages as volcanism waxes and wanes: (1) early alkalic, when volcanism originates on the deep sea floor; (2) shield, when roughly 95 percent of a volcano's volume is emplaced; (3) post-shield alkalic, when small-volume eruptions build scattered cones that thinly cap the shield-stage lavas; and (4) rejuvenated, when lavas of distinct chemistry erupt following a lengthy period of erosion and volcanic quiescence. During the early alkalic and shield stages, two or more elongate rift zones may develop as flanks of the volcano separate. Mantle-derived magma rises through a vertical conduit and is temporarily stored in a shallow summit reservoir from which magma may erupt within the summit region or be injected laterally into the rift zones. The ongoing activity at Kilauea's Pu?u ?O?o cone that began in January 1983 is one such rift-zone eruption. The rift zones commonly extend deep underwater, producing submarine eruptions of bulbous pillow lava. Once a volcano has grown above sea level, subaerial eruptions produce lava flows of jagged, clinkery ?a?a or smooth, ropy pahoehoe. If the flows reach the ocean they are rapidly quenched by seawater and shatter, producing a steep blanket of unstable volcanic sediment that mantles the upper submarine slopes. Above sea level then, the volcanoes develop the classic shield profile of gentle lava-flow slopes, whereas below sea level slopes are substantially steeper. While the volcanoes grow rapidly during the shield stage, they may also collapse catastrophically, generating giant landslides and tsunami, or fail more gradually, forming slumps. Deformation and seismicity along Kilauea's south flank indicate that slumping is occurring there today. Loading of the underlying Pacific Plate by the growing volcanic edifices causes subsidence, forming deep basins at the base of the volcanoes. Once volcanism wanes and lava flows no longer reach the ocean, the volcano continues to submerge, while erosion incises deep river valleys, such as those on the Island of Kaua?i. The edges of the submarine terraces that ring the islands, thus, mark paleocoastlines that are now as much as 2,000 m underwater, many of which are capped by drowned coral reefs.
Safety and Time Course of Drip-and-Ship in Treatment of Acute Ischemic Stroke.
Ishihara, Hideyuki; Oka, Fumiaki; Oku, Takayuki; Shinoyama, Mizuya; Suehiro, Eiichi; Sugimoto, Kazutaka; Suzuki, Michiyasu
2017-11-01
The drip-and-ship approach allows intravenous tissue plasminogen activator therapy and adjuvant endovascular treatment in acute ischemic stroke, even in rural areas. Here, we examined the safety and time course of the drip-and-ship approach. Fifty consecutive cases treated with the drip-and-ship approach (drip-and-ship group) in June 2009 to March 2016 were retrospectively examined. Changes in mean blood pressure, systemic complications, and neurological complications were compared according to method of transportation. Time courses were compared between drip-and-ship and direct admission groups during the same period. In the drip-and-ship group, 33 and 17 patients were transferred to hospital by ambulance and helicopter, respectively. One patient suffered hemorrhagic infarction during transportation by ambulance. Mean blood pressure change was lower in patients transferred by helicopter than ambulance (<5 mmHg versus 12.2 mmHg, respectively). The mean onset-to-door times in the drip-and-ship and direct admission groups were 71 and 64 minutes, respectively, and mean door-to-needle times were 70 and 47 minutes, respectively (P =.002). Although mean transportation time from the primary stroke hospital to our hospital was 32 minutes, the entry-to-exit time from the primary stroke hospital was 113 minutes. Thereafter, there was an average delay of 100 minutes until reperfusion compared with the direct admission group. Drip-and-ship was relatively safe in this small series. Transportation by helicopter was less stressful for acute ischemic stroke patients. It is important to reduce door-to-needle time and needle-to-departure time in the primary stroke hospital to minimize the time until treatment in cases of acute ischemic stroke. Copyright © 2017. Published by Elsevier Inc.
Ou, Li-Tse; Thomas, John E; Allen, L Hartwell; Vu, Joseph C; Dickson, Donald W
2006-08-01
This study was conducted to examine the effects of three application methods of metam sodium (broadcast, single irrigation drip tape delivery, and double irrigation drip tape delivery) and two plastic covers (polyethylene film and virtually impermeable film) on volatilization and on horizontal and vertical distributions of the biologically active product of metam sodium, methyl isothiocyanate (MITC), in field plots in a Florida sandy soil. Volatilization of MITC from field beds lasted for about 20 hours after completion of metam sodium application regardless of application methods. Virtually impermeable film (VIF) was a better barrier to reduce volatilization loss than polyethylene film (PE). Since water was not applied during broadcast application, MITC was mainly retained in the shallow soil layer (0- to 20-cm depth) and downward movement of MITC was limited to about 30 cm. Large values of standard deviation indicated that initial spatial distribution of MITC in the root zone (10- and 20-cm depths) of the two broadcast applied beds covered with PE or VIF was variable. Twice more water was delivered through the single drip tape than through individual tapes of double drip tape treatments during drip application of metam sodium. More water from the single drip tape likely facilitated downward movement of MITC to at least 60-cm depth, but MITC did not penetrate to this depth in the double drip tape beds. On the other hand, horizontal distribution of MITC in the root zone (10- and 20-cm depths) in the double drip tape beds was more uniform than in the single drip tape beds. More MITC was retained in the subsurface of the VIF-covered beds regardless of application methods than in the PE-covered beds.
Ba'id al Jimalah tungsten prospect, Najd region, Kingdom of Saudi Arabia
NASA Astrophysics Data System (ADS)
Lofts, P. G.
The Ba'id al Jimalah tungsten prospect is located in the NE of the Arabian Shield, at 25°09'N, 42°41'E. Mineralization is associated with a late-Proterozoic, porphyritic microgranite emplaced in folded, fine-grained clastic rocks of the Murdama group, within an aureole of biotite-rich hornfels. The microgranite forms a 30 m-thick sill and numerous smaller sills and dikes cropping out along two low, sub-parallel ridges and several small hills in an area 700 m square. The form of the intrusion at depth is uncertain. It is slightly to intensely sericitized, in places greisenized, and is enriched in Li, F and Rb. Wolframite occurs with minor cassiterite, scheelite and sulfides in quartz veins cutting both microgranite and hornfelsed wall-rock. The veins have a dominant trend of 110-115°, and are thicker and more numerous in the microgranite. Gangue minerals include plagioclase and potassium feldspar, muscovite, sericite, fluorite and minor siderite. A major Najd fault trending 130-135° probably controlled magma emplacement and subsequent hydrothermal and pneumatolytic activity. A percussion drilling program, restricted to the outcrop of the sill on the north ridge, has outlined 800,000 tonnes grading 0.10% WO 3 and 0.01% Sn.
Daily Practice: Ethics in Leadership
ERIC Educational Resources Information Center
DePree, Chauncey M., Jr.; Jude, Rebecca K.
2010-01-01
The classic question, "Should business schools teach ethics?" is not often asked anymore given the drip, drip, drip of business corruption reported in the news. Even skeptics allow that business ethics education could not hurt and might improve the ethics of business leaders. Furthermore, universities, colleges, and business accrediting…
A comparison of precision mobile drip irrigation, LESA and LEPA
USDA-ARS?s Scientific Manuscript database
Precision mobile drip irrigation (PMDI) is a surface drip irrigation system fitted onto moving sprinkler systems that applies water through the driplines as they are dragged across the field. This application method can conserve water by limiting runoff, and reducing evaporative losses since the wat...
NASA Astrophysics Data System (ADS)
Duan, Wuhui; Ruan, Jiaoyang; Luo, Weijun; Li, Tingyong; Tian, Lijun; Zeng, Guangneng; Zhang, Dezhong; Bai, Yijun; Li, Jilong; Tao, Tao; Zhang, Pingzhong; Baker, Andy; Tan, Ming
2016-06-01
This study presents new stable isotope data for precipitation (δ18Op) and drip water (δ18Od) from eight cave sites in the monsoon regions of China (MRC), with monthly to bi-monthly sampling intervals from May-2011 to April-2014, to investigate the regional-scale climate forcing on δ18Op and how the isotopic signals are transmitted to various drip sites. The monthly δ18Op values show negative correlation with surface air temperature at all the cave sites except Shihua Cave, which is opposite to that expected from the temperature effect. In addition, although the monthly δ18Op values are negatively correlated with precipitation at all the cave sites, only three sites are significant at the 95% level. These indicate that, due to the various vapor sources, a large portion of variability in δ18Op in the MRC cannot be explained simply by either temperature or precipitation alone. All the thirty-four drip sites are classified into three types based on the δ18Od variability. About 82% of them are static drips with little discernable variation in δ18Od through the whole study period, but the drip rates of these drips are not necessary constant. Their discharge modes are site-specific and the oxygen isotopic composition of the stalagmites growing from them may record the average of multi-year climatic signals, which are modulated by the seasonality of recharge and potential effects of evaporation, and in some cases infiltration from large rainfall events. About 12% of the thirty-four drip sites are seasonal drips, although the amplitude of δ18Od is narrower than that of δ18Op, the monthly response of δ18Od to coeval precipitation is not completely damped, and some of them follow the seasonal trend of δ18Op very well. These drips may be mainly recharged by present-day precipitation, mixing with some stored water. Thus, the stalagmites growing under them may record portions of the seasonal climatic signals embedded in δ18Op. About 6% of the thirty-four drip sites are medium-variability drips, with constant and relatively low δ18Od values in the wet season, but with variable and relatively high δ18Od values in the dry season, reflecting flow switching in the karst or evaporation inside the cave.
NASA Astrophysics Data System (ADS)
Deschamps, A.; Van Vliet-Lanoe, B.; Soule, S. A.; Allemand, P.; Le Saout, M.; Delacourt, C.
2013-12-01
The summit of the East Pacific Rise (EPR), 16°N, is investigated based -among others- on high-resolution bathymetry acquired using the AUV Aster-X, and photos and videos collected using the submersible Nautile (Ifremer). HR bathymetry reveals submarine tumuli and inflated smooth lava flows at the summit of the ridge, emplaced on sub-horizontal terrains. They are primarily composed of jumbled and lobate flows with occurrences of sheet flows, and pillows close to the flow margins. They are 5 to 15 meters -high, and their surface ranges 0.2 to 1.5 km2. Their surface is either planar or depressed, likely due to lava topographic downdraining during eruption. At their margins, planar slabs of lava, few meters wide, slope down from the top of the flow, at angles ranging 40 to 80°. A series of cracks, 0,5 to 1.5 m deep, separate the horizontal surface of the flow from their inclined flanks. These cracks parallel the sinuous edges of the flows, suggesting the flow flanks tilted outward. Tumuli are also observed. Some of these smooth flows form 80 to 750 m -long sinuous ridges, suggesting the existence of lava tubes. Their morphology indicates that these flows experienced inflationary emplacement styles, but at a much larger scale than Pahoehoe lavas in Hawaii and La Réunion Islands. In these two islands, indeed, inflation structures are typically less than 2 meters high and only several tens of meters in length at maximum, suggesting that their mechanism of emplacement and inflation is significantly different. Conversely, we observe comparable inflation flows in Iceland and in Idaho and Oregon, also emplaced onto sub-horizontal terrains. We use high-resolution aerial photographs and lidar data to investigate their morphology. In the Eastern Snake River Plain (ESRP), quaternary basaltic plains volcanism produced monogenetic coalescent shields, and phreatomagmatic basaltic eruptions that are directly related to proximity of magmatism to the Snake River or Pleistocene lakes. For example, the Hells Half Acres Holocene lava flows, Idaho, display similar morphology as EPR flows, with sheet lavas, flow lobes 5-8 m high and approximately 100 m wide, and pressure ridges. Similar flows are observed in the ESRP: Craters of the Moon, Wapi, and Cerro Grande lava flows for example. In Oregon, Potholes, Devils Garden, Diamond Craters, Deschute River, Owyhee River, Jordan Crater flows are also strictly comparable. In Iceland, Lake Mytvan lava flows, for example, were emplaced in sublacustrine environments, and Budahraun flows in Snaefellness were emplaced at the coast below the sea level. The common point of these presently "aerial" lava flow is their emplacement in lakes, paleo-lakes and river beds, thus in "wet" environment, often controlled by rivers and their tributaries. A more efficient cooling of the lava lobes in wet environment probably triggers the development of strong and plastic margins due to cooling, which resists continued movement of the flow, whereas a thinner margin developing in aerial environment may favor lobe break out when internal pressure rises above the tensile strength of the crust. We propose a theoretical model for these lava flow emplacement on sub-horizontal basement.
Corn yield and economic return with nitrogen applied through drip tubing
USDA-ARS?s Scientific Manuscript database
A two year project was established to determine corn (Zea mays, L) yield response to subsurface (SSDI) and surface (SDI) drip irrigation systems at various nitrogen fertilizer rates. Nitrogen was applied through the drip system at two nitrogen levels in three split applications. Supplemental dry N ...
NASA Astrophysics Data System (ADS)
Chen, Chao-Jun; Li, Ting-Yong
2018-06-01
The scientific explanation of speleothem δ18O in Chinese monsoon region is a greatly debated issue. Modern cave monitoring combined with instrument observation maybe is an essential solution to deal with this issue. During the period from 2011 to 2016, we monitored local precipitation, soil water in three soil profiles, and six drip water sites in Yangkou Cave, which is located in Chongqing City, Southwest China. This article presents measurements about δ18O, δD and Mg/Ca ratios of drip water and compared these geochemical proxies with contemporaneous atmospheric circulations. The main conclusions are: (1) As water migrates from precipitation to soil water to cave drip water, the amplitudes of seasonal variations in δD and δ18O decreased gradually. Due to the existence of complex hydrogeological conditions, the range of variation and the seasonal characteristics of δD and δ18O differ among the drip sites where samples were collected, but the interannual variability is nearly the same. The drip water Mg/Ca ratios are mainly regulated by changes in hydrological conditions in the epikarst zone, with higher values during winter months than that during summer months. (2) When an El Niño event occurs, the Western Pacific Subtropical High (WPSH) is migrated westward, and the production of near-source water vapor from the western Pacific and the South China Sea increases, leading to higher δ18O values in the precipitation and the cave drip water. The drip water Mg/Ca ratios were significantly lower with increased summer precipitation. On the other hand, during La Niña events, the WPSH is migrated eastward, and inputs of water vapor that has traveled greater distances (from the Indian Ocean) become comparatively important, resulting in lower δ18O values in the precipitation and the cave drip water. The drip water Mg/Ca ratios were higher with decreased summer precipitation. In summary, the interannual variability of δ18O in the drip waters of Yangkou Cave reflects changes in water vapor sources caused by atmospheric circulation patterns. Mg/Ca ratios respond to changes of precipitation and CO2 in soil and can be used to reconstruct abnormal drought or flood events.
Albedo Neutron Dosimetry in a Deep Geological Disposal Repository for High-Level Nuclear Waste.
Pang, Bo; Becker, Frank
2017-04-28
Albedo neutron dosemeter is the German official personal neutron dosemeter in mixed radiation fields where neutrons contribute to personal dose. In deep geological repositories for high-level nuclear waste, where neutrons can dominate the radiation field, it is of interest to investigate the performance of albedo neutron dosemeter in such facilities. In this study, the deep geological repository is represented by a shielding cask loaded with spent nuclear fuel placed inside a rock salt emplacement drift. Due to the backscattering of neutrons in the drift, issues concerning calibration of the dosemeter arise. Field-specific calibration of the albedo neutron dosemeter was hence performed with Monte Carlo simulations. In order to assess the applicability of the albedo neutron dosemeter in a deep geological repository over a long time scale, spent nuclear fuel with different ages of 50, 100 and 500 years were investigated. It was found out, that the neutron radiation field in a deep geological repository can be assigned to the application area 'N1' of the albedo neutron dosemeter, which is typical in reactors and accelerators with heavy shielding. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Petrogenesis of selected A-type granitic intrusions from Central Eastern Desert of Egypt
NASA Astrophysics Data System (ADS)
Hassan, Tharwat; Asran, Asran; Amron, Taha; Hauzenberger, Christoph
2014-05-01
The Pan-African orogeny in the Arabian-Nubian Shield was terminated by intrusion of A-type granites (~ 595 Ma; Greenberg, 1981) and its volcanic equivalents. Subsequent to the intrusions of these granitic bodies the shield was exhumed. Eroded A-type granite pebbles were found in the molasse sediments that were deposited in intermountain basins. Therefore the A-type granites provide information about the last stage of the Pan-African geochemical system. Preliminary whole-rock geochemical data of three granitic intrusions (Kadabora, Um Naggat and El shiekh Salem) from the Central Eastern Desert of Egypt; indicate that all of them are peraluminous and with A-type characteristics. These intrusions show low CaO content (average 0.43 %wt), high FeOT/MgO ratio (10.46-121.88), high Na2O+K2O (average 8.04 %wt), marked enrichment of high field strength elements (Y, Nb and Ga except Zr), depletion in MgO (0.01-0.11 %wt) and with low concentration of Sr and Ba. The studied granitoids were emplaced in within plate tectonic regime. References: Greenberg, J.K. (1981): Characteristic and origin of Egyptian younger granites. Bull. Geol. Soc. Am. Part 1, v.92: 224-232.
SP-100 reactor with Brayton conversion for lunar surface applications
NASA Technical Reports Server (NTRS)
Mason, Lee S.; Rodriguez, Carlos D.; Mckissock, Barbara I.; Hanlon, James C.; Mansfield, Brian C.
1992-01-01
Examined here is the potential for integrating Brayton-cycle power conversion with the SP-100 reactor for lunar surface power system applications. Two designs were characterized and modeled. The first design integrates a 100-kWe SP-100 Brayton power system with a lunar lander. This system is intended to meet early lunar mission power needs while minimizing on-site installation requirements. Man-rated radiation protection is provided by an integral multilayer, cylindrical lithium hydride/tungsten (LiH/W) shield encircling the reactor vessel. Design emphasis is on ease of deployment, safety, and reliability, while utilizing relatively near-term technology. The second design combines Brayton conversion with the SP-100 reactor in a erectable 550-kWe powerplant concept intended to satisfy later-phase lunar base power requirements. This system capitalizes on experience gained from operating the initial 100-kWe module and incorporates some technology improvements. For this system, the reactor is emplaced in a lunar regolith excavation to provide man-rated shielding, and the Brayton engines and radiators are mounted on the lunar surface and extend radially from the central reactor. Design emphasis is on performance, safety, long life, and operational flexibility.
Linkage between canopy water storage and drop size distributions of leaf drips
NASA Astrophysics Data System (ADS)
Nanko, Kazuki; Watanabe, Ai; Hotta, Norifumi; Suzuki, Masakazu
2013-04-01
Differences in drop size distribution (DSD) of leaf drips among tree species have been estimated and physically interpreted to clarify the leaf drip generation process. Leaf drip generation experiments for nine species were conducted in an indoor location without foliage vibration using an automatic mist spray. Broad-leaved species produced a similar DSD among species whose leaves had a matte surface and a second similar DSD among species whose leaves had a coated surface. The matte broad leaves produced a larger and wider range of DSDs than the coated broad leaves. Coated coniferous needles had a wider range of DSDs than the coated broad leaves and different DSDs were observed for different species. The species with shorter dense needles generated a larger DSD. The leaf drip diameter was calculated through the estimation of a state of equilibrium of a hanging drop on the leaves based on physical theory. The calculations indicated that the maximum diameter of leaf drips was determined by the contact angle, and the range of DSDs was determined by the variation in contact length and the contact diameter at the hanging points. The results revealed that leaf drip DSD changed due to variations in leaf hydrophobicity, leaf roughness, leaf geometry and leaf inclination among the different tree species. This study allows the modelization of throughfall DSD. Furthermore, it indicates the possibility of interpreting canopy water processes from canopy water storage to drainage through the contact angle and leaf drip DSD. The part of this study is published in Nanko et al. (2013, Agric. Forest. Meteorol. 169, 74-84).
USDA-ARS?s Scientific Manuscript database
Southern California strawberries are planted in raised-beds covered by polyethylene (PE) film and typically are irrigated with two drip lines placed near the bed surface. To control soil-borne pests, fumigants are commonly applied through the drip lines prior to transplanting strawberries, but effic...
USDA-ARS?s Scientific Manuscript database
Drip fumigation is commonly used for controlling soilborne pests in raised-bed strawberry production systems in California. However, the high emission loss and poor pest control indicate that the current fumigation practice with two drip tapes and polyethylene film (PE) covering need to be improved....
40 CFR 63.1007 - Pumps in light liquid service standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... inspection each calendar week for indications of liquids dripping from the pump seal. The owner or operator... indications of liquids dripping from the pump seal, a leak is detected. Unless the owner or operator... indications of liquids dripping. (e) Special provisions for pumps—(1) Dual mechanical seal pumps. Each pump...
40 CFR 63.1007 - Pumps in light liquid service standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... inspection each calendar week for indications of liquids dripping from the pump seal. The owner or operator... indications of liquids dripping from the pump seal, a leak is detected. Unless the owner or operator... indications of liquids dripping. (e) Special provisions for pumps—(1) Dual mechanical seal pumps. Each pump...
40 CFR 63.1007 - Pumps in light liquid service standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... inspection each calendar week for indications of liquids dripping from the pump seal. The owner or operator... indications of liquids dripping from the pump seal, a leak is detected. Unless the owner or operator... indications of liquids dripping. (e) Special provisions for pumps—(1) Dual mechanical seal pumps. Each pump...
40 CFR 265.442 - Design and installation of new drip pads.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Design and installation of new drip pads. 265.442 Section 265.442 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Drip Pads §...
Performance of precision mobile drip irrigation in the Texas High Plains region
USDA-ARS?s Scientific Manuscript database
Mobile drip irrigation (MDI) technology adapts driplines to the drop hoses of moving sprinkler systems to apply water as the drip lines are pulled across the field. There is interest in this technology among farmers in the Texas High Plains region to help sustain irrigated agriculture. However, info...
A remote drip infusion monitoring system employing Bluetooth.
Amano, Hikaru; Ogawa, Hidekuni; Maki, Hiromichi; Tsukamoto, Sosuke; Yonezawa, Yoshiharu; Caldwell, W Morton
2012-01-01
We have developed a remote drip infusion monitoring system for use in hospitals. The system consists of several infusion monitoring devices and a central monitor. The infusion monitoring device employing a Bluetooth module can detect the drip infusion rate and an empty infusion solution bag, and then these data are sent to the central monitor placed at the nurses' station via the Bluetooth. The central monitor receives the data from several infusion monitoring devices and then displays graphically them. Therefore, the developed system can monitor intensively the drip infusion situation of the several patients at the nurses' station.
He, Jiangtao; Zhou, Lijuan; Yao, Qiang; Liu, Bo; Xu, Hanhong; Huang, Jiguang
2018-01-01
The two-spotted spider mite, Tetranychus urticae Koch is an important pest of cotton. We investigated the efficacy of dimethoate in controlling T. urticae by drip irrigation. Greenhouse and field experiments were carried out to determine the efficacy of dimethoate to T. urticae and the absorption and distribution of dimethoate in cotton. Greenhouse results showed that cotton leaves received higher amounts of dimethoate compared with cotton roots and stems, with higher amounts in young leaves compared with old leaves and cotyledon having the lowest amounts among leaves. Field results showed the efficacy of dimethoate to T. urticae by drip irrigation varied by volume of dripping water, soil pH and dimethoate dosage. Dimethoate applied at 3.00 kg ha -1 with 200 m 3 ha -1 water at weak acidic soil pH (5.70-6.70) through drip irrigation can obtain satisfactory control efficacy (81.49%, 7 days) to T. urticae, without negatively impacting on its natural enemy Neoseiulus cucumeris. The residue of dimethoate in all cotton seed samples were not detectable. These results demonstrate the effectiveness of applying dimethoate by drip irrigation for control of T. urticae on cotton. This knowledge could aid in the applicability of dimethoate by drip irrigation for field management of T. urticae populations. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Hurricane Impact on Seepage Water in Larga Cave, Puerto Rico
NASA Astrophysics Data System (ADS)
Vieten, Rolf; Warken, Sophie; Winter, Amos; Schröder-Ritzrau, Andrea; Scholz, Denis; Spötl, Christoph
2018-03-01
Hurricane-induced rainfall over Puerto Rico has characteristic δ18O values which are more negative than local rainfall events. Thus, hurricanes may be recorded in speleothems from Larga cave, Puerto Rico, as characteristic oxygen isotope excursions. Samples of 84 local rainfall events between 2012 and 2013 ranged from -6.2 to +0.3‰, whereas nine rainfall samples belonging to a rainband of hurricane Isaac (23-24 August 2012) ranged from -11.8 to -7.1‰. Cave monitoring covered the hurricane season of 2014 and investigated the impact of hurricane rainfall on drip water chemistry. δ18O values were measured in cumulative monthly rainwater samples above the cave. Inside the cave, δ18O values of instantaneous drip water samples were analyzed and drip rates were recorded at six drip sites. Most effective recharge appears to occur during the wet months (April-May and August-November). δ18O values of instantaneous drip water samples ranged from -3.5 to -2.4‰. In April 2014 and April 2015 some drip sites showed more negative δ18O values than the effective rainfall (-2.9‰), implying an influence of hurricane rainfall reaching the cave via stratified seepage flow months to years after the event. Speleothems from these drip sites in Larga cave have a high potential for paleotempestology studies.
Liu, Xiaogang; Li, Fusheng; Yang, Qiliang; Wang, Xinle
2016-07-01
To obtain optimal irrigation management for young coffee tree, the effects of alternate drip irrigation (ADI) and superabsorbent polymers on physiology, growth, dry mass accumulation and water use on one-year old Coffea arabica L. tree were investigated. This experiment had three drip irrigation methods, i.e., conventional drip irrigation (CDI), alternate drip irrigation (ADI) and fixed drip irrigation (FDI), and two levels of superabsorbent polymers, i.e., no superabsorbent polymers (NSAP) and added superabsorbent polymers (SAP). Compared to CDI, ADI saved irrigation water by 32.1% and increased water use efficiency (WUE) by 29.9%. SAP increased root-shoot ratio, total dry mass and WUE by 20.3, 24.9 and 33.0%, respectively, when compared to NSAP. Compared to CDI with NSAP treatment, ADI with SAP treatment increased total dry mass by 13.8% and saved irrigation water by 34.4%, thus increased WUE by 73.4%, and it increased root activity, the contents of chlorophyll and soluble sugar in leaves by 162.4, 38.0 and 8.5%, but reduced the contents of proline and malondialdehyde in leaves by 7.2 and 9.7%, respectively. Thus, alternate drip irrigation with superabsorbent polymers increased the growth and WUE of young Coffea arabica L. tree and was optimal irrigation management for young coffee tree.
Usage of drip drops as stimuli in an auditory P300 BCI paradigm.
Huang, Minqiang; Jin, Jing; Zhang, Yu; Hu, Dewen; Wang, Xingyu
2018-02-01
Recently, many auditory BCIs are using beeps as auditory stimuli, while beeps sound unnatural and unpleasant for some people. It is proved that natural sounds make people feel comfortable, decrease fatigue, and improve the performance of auditory BCI systems. Drip drop is a kind of natural sounds that makes humans feel relaxed and comfortable. In this work, three kinds of drip drops were used as stimuli in an auditory-based BCI system to improve the user-friendness of the system. This study explored whether drip drops could be used as stimuli in the auditory BCI system. The auditory BCI paradigm with drip-drop stimuli, which was called the drip-drop paradigm (DP), was compared with the auditory paradigm with beep stimuli, also known as the beep paradigm (BP), in items of event-related potential amplitudes, online accuracies and scores on the likability and difficulty to demonstrate the advantages of DP. DP obtained significantly higher online accuracy and information transfer rate than the BP ( p < 0.05, Wilcoxon signed test; p < 0.05, Wilcoxon signed test). Besides, DP obtained higher scores on the likability with no significant difference on the difficulty ( p < 0.05, Wilcoxon signed test). The results showed that the drip drops were reliable acoustic materials as stimuli in an auditory BCI system.
40 CFR 264.572 - Design and installation of new drip pads.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Design and installation of new drip pads. 264.572 Section 264.572 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Drip Pads § 264.572 Design...
USDA-ARS?s Scientific Manuscript database
Characterization of soil water dynamics in the root zone under subsurface drip irrigated (SDI) is complicated by the three dimensional nature of water fluxes from drip emitters plus the fluxes, if any, of water from precipitation. In addition, soil water sensing systems may differ in their operating...
NASA Astrophysics Data System (ADS)
Carlson, P.; Banner, J. L.; Casteel, R. C.; Breecker, D.
2013-12-01
The cave at Westcave Preserve, in central Texas, is a unique location to study karst processes due to its low, nearly atmospheric cave-air CO2 levels and seasonally variable temperature. The source of water that drips into the cave, however, has not been constrained, limiting interpretation of climate proxies in the cave. It is possible that a nearby spring and the cave drip-waters share a common source. Alternatively, the drip-waters could represent precipitation that has infiltrated the host rock. These hypotheses should be tested using Sr isotope ratios and/or other tracers. If they do share a common source, analysis of dissolved inorganic carbon (DIC) concentration , δ13CDIC, and cation concentrations of the two waters could provide insight into epikarst processes such as CO2 degassing and prior calcite precipitation (PCP) that are otherwise difficult to constrain. Westcave Preserve includes outcrops of the Hensell Sand, the Cow Creek Limestone, and the Hammett Shale, with a small cave at the contact between the Cow Creek and Hammett formations. The overlying Hensell Sand contains water that emerges at the surface as a spring near the cave. Water also drips directly into the cave, forming speleothems. Previous research has established that although δ18O values of rainfall in the area vary seasonally, between -10.5 and 1.1‰ with a weighted mean of -6.5‰ (VSMOW), the drip-water varies only between -4.7 and -4.3‰ with a weighted mean of -4.5‰ (Feng et al., in review). This suggests a large well-mixed reservoir above the cave. The soils above the cave have high CO2 of up to 17,500 ppmv, but because the cave is shallow with multiple large openings, cave CO2 levels are near-atmospheric (Casteel and Banner, in review). This creates a steep CO2 gradient between the soil and the cave air. The spring water DIC is nearly in carbon-isotope equilibrium with the soil CO2, suggesting that soil respiration, here controlled by C3 plants, is the primary source of CO2 for this reservoir. The drip water δ13CDIC is higher than the spring water (-10.3‰ versus -13.0‰). Although the spring water has higher DIC concentration than the drip water, with mean values of 128 mg/L C versus 113 mg/L C, respectively, preliminary data suggest that for some drips, the drip water DIC concentrations and δ13CDIC may vary with spring DIC values. We propose that if the spring and the drip water prove to be derived from the same source, the differences in DIC and δ13CDIC between spring and drip water are due to epikarst CO2 degassing as the water percolates down the CO2 gradient toward the cave ceiling. If the spring represents the source of the drip water, the calculated δ13 value of degassed CO2 is -33.3‰, assuming no PCP. PCP may occur, leading to a δ13C of degassed CO2 lower than calculated, but would result in a decrease or no change in δ13CDIC and therefore does not explain the observed difference between spring water and drip water.
Drip tectonics and the enigmatic uplift of the Central Anatolian Plateau.
Göğüş, Oğuz H; Pysklywec, Russell N; Şengör, A M C; Gün, Erkan
2017-11-16
Lithospheric drips have been interpreted for various regions around the globe to account for the recycling of the continental lithosphere and rapid plateau uplift. However, the validity of such hypothesis is not well documented in the context of geological, geophysical and petrological observations that are tested against geodynamical models. Here we propose that the folding of the Central Anatolian (Kırşehir) arc led to thickening of the lithosphere and onset of "dripping" of the arc root. Our geodynamic model explains the seismic data showing missing lithosphere and a remnant structure characteristic of a dripping arc root, as well as enigmatic >1 km uplift over the entire plateau, Cappadocia and Galatia volcanism at the southern and northern plateau margins since ~10 Ma, respectively. Models show that arc root removal yields initial surface subsidence that inverts >1 km of uplift as the vertical loading and crustal deformation change during drip evolution.
He, Hao; Zhang, Qixing; Tu, Ran; Zhao, Luyao; Liu, Jia; Zhang, Yongming
2016-12-15
The dripping behavior of the molten thermoplastic insulation of copper wire, induced by flame spread under overload currents, was investigated for a better understanding of energized electrical wire fires. Three types of sample wire, with the same polyethylene insulation thickness and different core diameters, were used in this study. First, overload current effects on the transient one-dimensional wire temperature profile were predicted using simplified theoretical analysis; the heating process and equilibrium temperature were obtained. Second, experiments on the melting characteristics were conducted in a laboratory environment, including drop formation and frequency, falling speed, and combustion on the steel base. Third, a relationship between molten mass loss and volume variation was proposed to evaluate the dripping time and frequency. A strong current was a prerequisite for the wire dripping behavior and the averaged dripping frequency was found to be proportional to the square of the current based on the theoretical and experimental results. Finally, the influence of dripping behavior on the flame propagation along the energized electrical wire was discussed. The flame width, bright flame height and flame spreading velocity presented different behaviors. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ramalho, Ricardo S.; Brum da Silveira, António; Fonseca, Paulo E.; Madeira, José; Cosca, Michael; Cachão, Mário; Fonseca, Maria M.; Prada, Susana N.
2015-02-01
The transition from seamount to oceanic island typically involves surtseyan volcanism. However, the geological record at many islands in the NE Atlantic—all located within the slow-moving Nubian plate—does not exhibit evidence for an emergent surtseyan phase but rather an erosive unconformity between the submarine basement and the overlying subaerial shield sequences. This suggests that the transition between seamount and island may frequently occur by a relative fall of sea level through uplift, eustatic changes, or a combination of both, and may not involve summit volcanism. In this study, we explore the consequences for island evolutionary models using Madeira Island (Portugal) as a case study. We have examined the geologic record at Madeira using a combination of detailed fieldwork, biostratigraphy, and
Hotspot evolution and Venusian tectonic style
NASA Technical Reports Server (NTRS)
Mcgill, George E.
1994-01-01
Because hotspots represent an important manifestation of heat loss on Venus, their geological evolution is of fundamental importance for any attempt to understand Venusian tectonics. Eistla Regio is an approximately 7500-km-long, moderately elevated region inferred to overlie one or more large mantle upwellings or hotspots. It also contains many shield volcanoes and coronae believed due to the rise of thermal plumes in the mantle. Central Eistla Regio includes two large volcanoes, Sappho and Anala, and several coronae in close proximity. Detailed mapping in this region results in two conclusions of tectonic significance: (1) Sappho and Anala occur near the intersection of two major extensional deformation zones, and (2) the coronae are older than the large volcanoes. Several of the coronae occur as a chain along Guor Linea, one of the major extensional deformation zones. Stratigraphic relationships indicate that the coronae began forming very soon after the emplacement of the widespread regional plains materials. Thus Central Eistla Regio was the site of a swarm of plumes that first formed coronae and then later formed shield volcanoes. The expected result of such a swarm would be thermal thinning of the elastic lithosphere with time. However, model results, geological observations, and gravity data suggest that the change from coronae to shield volcanoes was accompanied by a thickening of the lithosphere with time. This thickening is interpreted to be the result of global cooling of the lithosphere following the most recent episode of near-global resurfacing. The global cooling must have occurred faster than local heating of the lithosphere due to the impingement of thermal plumes.
Ramalho, Ricardo; da Silveira, António Brum; Fonseca, Paulo; Madeira, Jose; Cosca, Michael A.; Cachão, Mário; Fonseca, Maria M.; Prada, Susana
2015-01-01
The transition from seamount to oceanic island typically involves surtseyan volcanism. However, the geological record at many islands in the NE Atlantic—all located within the slow-moving Nubian plate—does not exhibit evidence for an emergent surtseyan phase but rather an erosive unconformity between the submarine basement and the overlying subaerial shield sequences. This suggests that the transition between seamount and island may frequently occur by a relative fall of sea level through uplift, eustatic changes, or a combination of both, and may not involve summit volcanism. In this study, we explore the consequences for island evolutionary models using Madeira Island (Portugal) as a case study. We have examined the geologic record at Madeira using a combination of detailed fieldwork, biostratigraphy, and 40Ar/39Ar geochronology in order to document the mode, timing, and duration of edifice emergence above sea level. Our study confirms that Madeira's subaerial shield volcano was built upon the eroded remains of an uplifted seamount, with shallow marine sediments found between the two eruptive sequences and presently located at 320–430 m above sea level. This study reveals that Madeira emerged around 7.0–5.6 Ma essentially through an uplift process and before volcanic activity resumed to form the subaerial shield volcano. Basal intrusions are a likely uplift mechanism, and their emplacement is possibly enhanced by the slow motion of the Nubian plate relative to the source of partial melting. Alternating uplift and subsidence episodes suggest that island edifice growth may be governed by competing dominantly volcanic and dominantly intrusive processes.
NASA Astrophysics Data System (ADS)
Piper, J. D. A.; Thomas, D. N.; Share, S.; Rui, Zhang Qi
1999-03-01
The Eriksfjord Group comprises ~3000 m of lavas and sediments rapidly deposited in a rift which developed within an Andean-type batholith in juxtaposition to the southern margin of the Laurentian Shield in South Greenland at ca. 1300 Ma. The lavas have been shown to preserve a detailed record of the geomagnetic field at the time of eruption, incorporating normal, reversed and transitional directions. This study has examined the magnetic properties of the intervening red sediments. They are found to possess a diagenetic remanence imparted by mediating fluids at later times. The impact of diagenesis is stratigraphically controlled: the base of the rift infill has magnetizations partially resident in magnetite which are either unstable to thermal cleaning or record a single polarity `B' magnetization (D/I = 284/67°, 31 samples, α95 = 5.5°, palaeopole at 244.1°E, 47.5°N, dp/dm = 7.5/9.1° ). This corresponds in polarity, and closely in direction, to remanence observed in mid-Gardar gabbro giant dykes and dyke swarms emplaced along the axis of the rift system at ca. 1160 Ma the causative diagenetic magnetite appears to have grown from hydrothermal systems motivated by this magmatism in a sealed reservoir setting within the lower part of the rift infill. The Ilímaussaq alkaline igneous complex was emplaced into the southern extension of the rift at ca. 1130 Ma and possesses a dual polarity magnetization (D/I = 327/81°, α95 = 6.4°, 10 sites). Eriksfjord lavas within the thermal aureole are overprinted to varying degrees by comparable magnetizations with steep inclinations. The mean pole position (283°E, 71°N, dp/dm = 12/12° ) lies near the apex of an apparent polar wander loop incorporating the Gardar Track (ca. 1300-1140 Ma) and the Keweenawan Track (ca. 1115-1050 Ma). Magnetizations in the Eriksfjord sedimentary succession have not been significantly reset by emplacement of the Ilímaussaq complex, but higher levels of the rift infill are dominated by an `A' magnetization (D/I = 305/34°, α95 = 4.3°, 57 samples, palaeopole at 202.1°E, 32.4°N, dp/dm = 2.8/4.9° ) resident in haematite. The pole position does not correspond with any part of the Gardar Track, but does correlate with the return Keweenawan Track at ca. 1090 Ma, close to the time of Grenville orogenesis along the bordering southeastern margin of the Laurentian Shield. This remanence is attributed to diagenesis during extensional tectonism linked to the collapse of the Grenville Orogen formerly sited 100-200 km to the south.
Mass measurement of ^80Y by β-γ coincidence spectroscopy
NASA Astrophysics Data System (ADS)
Brenner, Daeg; Zamfir, Victor; Berant, Zvi; Wolf, Alex; Barton, Charles; Caprio, Mark; Casten, Rick; Beausang, Con; Krücken, Reiner; Pietralla, Norbert; Cooper, Jeff; Novak, John; Aprahamian, Ani; Shawcross, Mark; Teymurazyan, Artur; Wiescher, Michael; Gill, Ron
2002-10-01
The rp-process has been proposed to account for the nucleosynthesis and terrestrial isotopic abundances of proton-rich nuclei. The path and termination point for this process above ^56Ni is uncertain due to our limited knowledge of nuclear properties, especially masses, near the proton drip line. ^80Y, the β-decay daughter of the waiting-point nucleus ^80Zr, was produced by bombardment of a ^58Ni target with 115 MeV ^28Si at the WNSL, Yale University. Recoil atoms were collected and transported to a shielded environment were β-γ coincidence decay measurements were made using a planar array of 4 clover Ge γ-ray detectors and a plastic scintillator β-ray detector. β-spectrum end-point energies were used to determine a Q_EC value for decay to ^80Sr. Results for ^80Y will be compared with other measurements, that vary over a range of ˜2 MeV, and with Audi-Wapstra systematics. Implications for the rp-process will be discussed.
Kundu, Chanchal Kumar; Wang, Xin; Hou, Yanbei; Hu, Yuan
2018-02-01
Phosphorylated chitosan (PCS) was synthesized and grafted onto the surface of polyamide 6.6 (PA 6.6) fabrics via UV-induced grafting polymerization in order to improve the flame retardant properties. Subsequently, PCS grafted PA 6.6 fabrics were modified by (3-aminopropyl) triethoxysilane (APTES) through sol-gel process in order to form a cross-linking coating. The results obtained from the vertical burning test indicated that only the PCS grafted and simultaneously sol-gel treated fabrics could stop the melt dripping. A maximum reduction (30%) in the peak heat release rate was achieved for the PA6.6-PCS-4W-SG fabric sample. The optimal flame retardant effect was achieved for the PA6.6 fabrics treated by PCS and APTES simultaneously, which was attributed to the joint effect of thermal shielding exerted by the silica and char-forming effect derived from PCS. Copyright © 2017 Elsevier Ltd. All rights reserved.
Josephides, Dimitris N; Sajjadi, Shahriar
2015-01-27
Glass capillary based microfluidic devices are able to create extremely uniform droplets, when formed under the dripping regime, at low setup costs due to their ease of manufacture. However, as they are rarely parallelized, simple methods to increase droplet production from a single device are sought. Surfactants used to stabilize drops in such systems often limit the maximum flow rate that highly uniform drops can be produced due to the lowering interfacial tension causing jetting. In this paper we show that by simple design changes we can limit the interactions of surfactants and maximize uniform droplet production. Three flow-focused configurations are explored: a standard glass capillary device (consisting of a single round capillary inserted into a square capillary), a nozzle fed device, and a surfactant shielding device (both consisting of two round capillaries inserted into either end of a square capillary). In principle, the maximum productivity of uniform droplets is achieved if surfactants are not present. It was found that surfactants in the standard device greatly inhibit droplet production by means of interfacial tension lowering and tip-streaming phenomena. In the nozzle fed configuration, surfactant interactions were greatly limited, yielding flow rates comparable to, but lower than, a surfactant-free system. In the surfactant shielding configuration, flow rates were equal to that of a surfactant-free system and could make uniform droplets at rates an order of magnitude above the standard surfactant system.
Jun, Yi; Chunju, Yuan; Qi, Ai; Liuxia, Deng; Guolong, Yu
2014-04-01
The low frequency of survival of stem cells implanted in the myocardium after acute myocardial infarction may be caused by inflammation and oxidative stress in the myocardial microenvironment. We evaluated the effects of a traditional Chinese medicine, Compound Danshen Dripping Pills, on the cardiac microenvironment and cardiac function when used alone or in combination with human umbilical cord blood mononuclear cell transplant after acute myocardial infarction. After surgically induced acute myocardial infarction, rabbits were treated with Compound Danshen Dripping Pills alone or in combination with human umbilical cord blood mononuclear cell transplant. Evaluation included histology, measurement of left ventricular ejection fraction and fractional shortening, leukocyte count, count of green fluorescent protein positive cells, superoxide dismutase activity, and malondialdehyde content. Combination treatment with Compound Danshen Dripping Pills and human umbilical cord blood mononuclear cell transplant significantly increased the survival of implanted cells, inhibited cardiac cell apoptosis, decreased oxidative stress, decreased the inflammatory response, and improved cardiac function. Rabbits treated with either Compound Danshen Dripping Pills or human umbilical cord blood mononuclear cells alone had improvement in these effects compared with untreated control rabbits. Combination therapy with Compound Danshen Dripping Pills and human umbilical cord blood mononuclear cells may improve cardiac function and morphology after acute myocardial infarction.
Visible light exposure reduces the drip loss of fresh-cut watermelon.
Wang, Yubin; Li, Wu; Cai, Wenqian; Ma, Yue; Xu, Yong; Zhao, Xiaoyan; Zhang, Chao
2018-05-01
Drip loss of fresh-cut watermelon has become a concern for both producers and consumers. The effect of visible light exposure on the drip loss of fresh-cut watermelon was evaluated. Visible light treatments of 3000 and 10 Lux were applied to fresh-cut watermelon at 4 °C during the shelf life for 5 days, with light exposure of 150 Lux as the control. The drip loss of the fresh-cut watermelon at 3000 Lux was 74.8% of that at 150 Lux on the fifth day, and the moisture evaporation at 3000 Lux was 1.89 times that at 150 Lux. Moreover, the light exposure of 3000 Lux reduced the activity of polygalacturonase, which is a key hydrolase related to cell wall degradation. The cell wall degradation ratio of the fresh-cut watermelon at 3000 Lux was 81.7% of that at 150 Lux on the fifth day. Overall, light exposure of 3000 Lux reduced drip loss by accelerating moisture evaporation in fresh-cut watermelon, as well as by reducing the activity of polygalacturonase and the ratio of cell wall degradation. Hence, exposing the fresh-cut watermelon to visible light of 3000 Lux during the shelf life was a feasible way of reducing drip loss.
Project Luna Succendo: The Lunar Evolutionary Growth-Optimized (LEGO) Reactor
NASA Astrophysics Data System (ADS)
Bess, John Darrell
A final design has been established for a basic Lunar Evolutionary Growth-Optimized (LEGO) Reactor using current and near-term technologies. The LEGO Reactor is a modular, fast-fission, heatpipe-cooled, clustered-reactor system for lunar-surface power generation. The reactor is divided into subcritical units that can be safely launched within lunar shipments from the Earth, and then emplaced directly into holes drilled into the lunar regolith to form a critical reactor assembly. The regolith would not just provide radiation shielding, but serve as neutron-reflector material as well. The reactor subunits are to be manufactured using proven and tested materials for use in radiation environments, such as uranium-dioxide fuel, stainless-steel cladding and structural support, and liquid-sodium heatpipes. The LEGO Reactor system promotes reliability, safety, and ease of manufacture and testing at the cost of an increase in launch mass per overall rated power level and a reduction in neutron economy when compared to a single-reactor system. A single unshielded LEGO Reactor subunit has an estimated mass of approximately 448 kg and provides 5 kWe using a free-piston Stirling space converter. The overall envelope for a single unit with fully extended radiator panels has a height of 8.77 m and a diameter of 0.50 m. The subunits can be placed with centerline distances of approximately 0.6 m in a hexagonal-lattice pattern to provide sufficient neutronic coupling while allowing room for heat rejection and interstitial control. A lattice of six subunits could provide sufficient power generation throughout the initial stages of establishing a lunar outpost. Portions of the reactor may be neutronically decoupled to allow for reduced power production during unmanned periods of base operations. During later stages of lunar-base development, additional subunits may be emplaced and coupled into the existing LEGO Reactor network Future improvements include advances in reactor control methods, fuel form and matrix, determination of shielding requirements, as well as power conversion and heat rejection techniques to generate an even more competitive LEGO Reactor design. Further modifications in the design could provide power generative opportunities for use on other extraterrestrial surfaces such as Mars, other moons, and asteroids.
NASA Astrophysics Data System (ADS)
Lancelot, Joël R.; Bosch, Delphine
1991-12-01
Up to now the age of granulite gneisses intruded by the Zabargad mantle diapir has been an unsolved problem. These gneisses may represent either a part of the adjacent continental crust primarily differentiated during the Pan African orogeny, or new crust composed of Miocene clastic sediments deposited in a developing rift, crosscut by a diabase dike swarm and gabbroic intrusions, and finally metamorphosed and deformed by the mantle diapir. Previous geochronological results obtained on Zabargad island and Al Lith and Tihama-Asir complexes (Saudi Arabia) suggest an Early Miocene age of emplacement for the Zabargad mantle diapir during the early opening of the Red Sea rift. In contrast, Sm sbnd Nd and Rb sbnd Sr internal isochrons yield Pan African dates for felsic and basic granulites collected 500-600 m from the contact zone with the peridotites. Devoid of evidence for retrograde metamorphic, minerals from a felsic granulite provide well-defined Rb sbnd Sr and Sm sbnd Nd dates of 655 ± 8 and 699 ± 34 Ma for the HP-HT metamorphic event (10 kbar, 850°C). The thermal event related to the diapir emplacement is not recorded in the Sm sbnd Nd and Rb sbnd Sr systems of the studied gneisses; in contrast, the development of a retrograde amphibolite metamorphic paragenesis strongly disturbed the Rb sbnd Sr isotopic system of the mafic granulite. The initial 143Nd/ 144Nd ratio of the felsic granulite is higher than the contemporaneous value for CHUR and is in agreement with other Nd isotopic data for samples of upper crust from the Arabian shield. This result suggests that source rocks of the felsic granulite were derived at 1.0 to 1.2 Ga from either an average MORB-type mantle or a local 2.2 Ga LREE-depleted mantle. Zabargad gneisses represent a part of the disrupted lower continental crust of the Pan African Afro-Arabian shield. During early stages of the Red Sea rifting in the Miocene, these Precambrian granulites were intruded and dragged upwards by a rising peridotite diapir.
Blood drop size in passive dripping from weapons.
Kabaliuk, N; Jermy, M C; Morison, K; Stotesbury, T; Taylor, M C; Williams, E
2013-05-10
Passive dripping, the slow dripping of blood under gravity, is responsible for some bloodstains found at crime scenes, particularly drip trails left by a person moving through the scene. Previous work by other authors has established relationships, under ideal conditions, between the size of the stain, the number of spines and satellite stains, the roughness of the surface, the size of the blood droplet and the height from which it falls. To apply these relationships to infer the height of fall requires independent knowledge of the size of the droplet. This work aims to measure the size of droplets falling from objects representative of hand-held weapons. Pig blood was used, with density, surface tension and viscosity controlled to fall within the normal range for human blood. Distilled water was also tested as a reference. Drips were formed from stainless steel objects with different roughnesses including cylinders of diameter between 10 and 100 mm, and flat plates. Small radius objects including a knife and a wrench were also tested. High speed images of the falling drops were captured. The primary blood drop size ranged from 4.15±0.11 mm up to 6.15±0.15 mm (depending on the object), with the smaller values from sharper objects. The primary drop size correlated only weakly with surface roughness, over the roughness range studied. The number of accompanying droplets increased with the object size, but no significant correlation with surface texture was observed. Dripping of blood produced slightly smaller drops, with more accompanying droplets, than dripping water. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Evolution of the East African rift: Drip magmatism, lithospheric thinning and mafic volcanism
NASA Astrophysics Data System (ADS)
Furman, Tanya; Nelson, Wendy R.; Elkins-Tanton, Linda T.
2016-07-01
The origin of the Ethiopian-Yemeni Oligocene flood basalt province is widely interpreted as representing mafic volcanism associated with the Afar mantle plume head, with minor contributions from the lithospheric mantle. We reinterpret the geochemical compositions of primitive Oligocene basalts and picrites as requiring a far more significant contribution from the metasomatized subcontinental lithospheric mantle than has been recognized previously. This region displays the fingerprints of mantle plume and lithospheric drip magmatism as predicted from numerical models. Metasomatized mantle lithosphere is not dynamically stable, and heating above the upwelling Afar plume caused metasomatized lithosphere with a significant pyroxenite component to drip into the asthenosphere and melt. This process generated the HT2 lavas observed today in restricted portions of Ethiopia and Yemen now separated by the Red Sea, suggesting a fundamental link between drip magmatism and the onset of rifting. Coeval HT1 and LT lavas, in contrast, were not generated by drip melting but instead originated from shallower, dominantly anhydrous peridotite. Looking more broadly across the East African Rift System in time and space, geochemical data support small volume volcanic events in Turkana (N. Kenya), Chyulu Hills (S. Kenya) and the Virunga province (Western Rift) to be derived ultimately from drip melting. The removal of the gravitationally unstable, metasomatized portion of the subcontinental lithospheric mantle via dripping is correlated in each case with periods of rapid uplift. The combined influence of thermo-mechanically thinned lithosphere and the Afar plume together thus controlled the locus of continental rift initiation between Africa and Arabia and provide dynamic support for the Ethiopian plateau.
NASA Astrophysics Data System (ADS)
Cacho, Isabel; Cisneros, Mercé; Torner, Judit; Moreno, Ana; Stoll, Heather; Bladé, Ileana; Fornos, Joan
2016-04-01
In order to establish the potential connection between climatic conditions over Mallorca and the chemistry of speleothem growths, a still ongoing monitoring exercise is in development in Drac Cave in Mallorca (Spain) starting from April 2013. This location in the Western Mediterranean was selected to represent Mediterranean semi-arid climatic conditions within a wider monitoring plan covering a transect across the northern part of the Iberian Peninsula, from the Catabric realm, across the Pyrenees and Iberian ranges until the Mediterranean, within the framework of the OPERA research project. Drip waters have been recovered at weakly resolution and carbonate precipitates represent seasonal periods. This monitoring is complemented with drip water and carbonate collection at seasonal scale in another cave close to Drac Cave. This second cave was selected in order to represent comparable climatic conditions but far of any human land-intervention since the Drac cave is partially located under an urban developed area, although drip water and carbonate collection is performed in a location bellow autochthonous forest. First results show that drip flow has a rather constant rate along the year even though the large contrast on rain availability. In contrast, chemical signal of the drip waters shows a rapid response (few days) to changes in rain patterns but of relatively small magnitude. Isotopes in the carbonate precipitates present a seasonal signal and trend that reflect changes in the drip water composition. This data set, although preliminary, will be discussed in the context of the changing meteorological conditions of the last three years.
The impact of fire on the geochemistry of speleothem-forming drip water in a sub-alpine cave.
Coleborn, Katie; Baker, Andy; Treble, Pauline C; Andersen, Martin S; Baker, Andrew; Tadros, Carol V; Tozer, Mark; Fairchild, Ian J; Spate, Andy; Meehan, Sophia
2018-06-12
Fire dramatically modifies the surface environment by combusting vegetation and changing soil properties. Despite this well-documented impact on the surface environment, there has been limited research into the impact of fire events on karst, caves and speleothems. Here we report the first experiment designed to investigate the short-term impacts of a prescribed fire on speleothem-forming cave drip water geochemistry. Before and after the fire, water was collected on a bi-monthly basis from 18 drip sites in South Glory Cave, New South Wales, Australia. Two months post-fire, there was an increase in B, Si, Na, Fe and Pb concentrations at all drip sites. We conclude that this response is most likely due to the transport of soluble ash-derived elements from the surface to the cave drip water below. A significant deviation in stable water isotopic composition from the local meteoric water line was also observed at six of the sites. We hypothesise that this was due to partial evaporation of soil water resulting in isotopic enrichment of drip waters. Our results demonstrate that even low-severity prescribed fires can have an impact on speleothem-forming cave drip water geochemistry. These findings are significant because firstly, fires need to be considered when interpreting past climate from speleothem δ 18 O isotope and trace element records, particularly in fire prone regions such as Australia, North America, south west Europe, Russia and China. Secondly, it supports research that demonstrates speleothems could be potential proxy records for past fires. Copyright © 2017 Elsevier B.V. All rights reserved.
Incorporation of seawater into mid-ocean ridge lava flows during emplacement
Soule, S.A.; Fornari, D.J.; Perfit, M.R.; Ridley, W.I.; Reed, M.H.; Cann, J.R.
2006-01-01
Evidence for the interaction between seawater and lava during emplacement on the deep seafloor can be observed in solidified flows at a variety of scales including rapid quenching of their outer crusts and the formation of lava pillars through the body of the flow. Recently, an additional interaction, incorporation of heated seawater (vapor) into the body of a flow, has been proposed. Large voids and vesicles beneath the surface crusts of mid-ocean ridge crest lobate and sheet lava flows and lava drips found within those cavities have been cited as evidence for this interaction. The voids resulting from this interaction contribute to the high porosity of the shallow ocean crust and play an important role in crustal permeability and hydrothermal circulation at mid-ocean ridges, and thus it is important to understand their origin. We analyze lava samples from the fast-spreading East Pacific Rise and intermediate-spreading Galapagos Spreading Center to characterize this process, identify the source of the vapor, and investigate the implications this would have on submarine lava flow dynamics. We find that lava samples that have interacted with a vapor have a zone of increased vesicularity on the underside of the lava crust and a coating of precipitate minerals (i.e., crystal fringe) that are distinct in form and composition from those crystallized from the melt. We use thermochemical modeling to simulate the reaction between the lava and a vapor and find that only with seawater can we reproduce the phase assemblage we observe within the crystal fringes present in the samples. Model results suggest that large-scale contamination of the lava by mass exchange with the vapor is unlikely, but we observe local enrichment of the lava in Cl resulting from the incorporation of a brine phase separated from the seawater. We suggest that high eruption rates are necessary for seawater incorporation to occur, but the mechanism by which seawater enters the flow has yet to be resolved. A persistent vapor phase may be important in inhibiting the collapse of lava flow roofs during natural waxing and waning of lava levels during emplacement allowing lava pathways to be maintained during long lived eruptions. In addition, we illustrate the potential for a persistent vapor layer to increase local flow rates within submarine flows by up to a factor of three, thereby influencing how lava is distributed across the ridge crest. ?? 2006 Elsevier B.V. All rights reserved.
Basaltic ignimbrites in monogenetic volcanism: the example of La Garrotxa volcanic field
NASA Astrophysics Data System (ADS)
Martí, J.; Planagumà, L. l.; Geyer, A.; Aguirre-Díaz, G.; Pedrazzi, D.; Bolós, X.
2017-05-01
Ignimbrites are pyroclastic density current deposits common in explosive volcanism involving intermediate and silicic magmas and in less abundance in eruptions of basaltic central and shield volcanoes. However, they are not widely described in association with monogenetic volcanism, where typical products include lava flows, scoria and lapilli fall deposits, as well as various kinds of pyroclastic density current deposits and explosion breccias. In La Garrotxa basaltic monogenetic volcanic field, part of the Neogene-Quaternary European rift system located in the northeast of the Iberian Peninsula, we have identified a particular group of pyroclastic density current deposits that show similar textural characteristics to silicic ignimbrites, indicating an overlap in transport and depositional processes. These deposits can be clearly distinguished from other pyroclastic density current deposits generated during phreatomagmatic phases that typically correspond to thinly laminated units with planar-to-cross-bedded stratification. The monogenetic ignimbrite deposits correspond to a few meters to several tens of meters thick units rich in lithic- and lapilli scoria fragments, with an abundant ash matrix, and internally massive structure, emplaced along valleys and gullies, with run-out distances up to 6 km and individual volumes ranging from 106 to 1.5 × 107 m3. The presence of flattened scoria and columnar jointing in some of these deposits suggests relatively high emplacement temperatures, coinciding with available paleomagnetic data that suggests an emplacement temperature around 450-500 °C. In this work, we describe the main characteristics of these pyroclastic deposits that were generated by a number of phreatomagmatic episodes. Comparison with similar deposits from silicic eruptions and previous examples of ignimbrites associated with basaltic volcanism allows us to classify them as `basaltic ignimbrites'. The recognition in monogenetic volcanism of such pyroclastic products, which may extend several kilometres from source, has an important consequence for hazard assessment in these volcanic fields, which previously have been considered to present only minor hazards and risks.
Proterozoic deformation of the East Saharan Craton in Southeast Libya, South Egypt and North Sudan
NASA Astrophysics Data System (ADS)
Schandelmeier, H.; Richter, A.; Harms, U.
1987-09-01
The basement areas in Southeast Libya, South Egypt and North Sudan, west of the Nile, between Gebel Uweinat and the Bayuda Desert, are part of an approximately 1000-km-wide, complexly folded, polymetamorphic zone with a regional N-NNE-NE-ENE trend of foliation and fold axis. Since this belt extends southwestward into the area of Zalingei in the southern Darfur block (West Sudan), it is named the Northern Zalingei fold zone. Sr and Nd isotopic studies suggest that this zone is older than Pan-African and further indicate that, apart from Archean rocks in the Gebel Uweinat area, this belt is of Early-Middle Proterozoic age. An Early-Middle Proterozoic three-stage deformational and anatectic event established the present-day fold and fault geometry in the western parts of this zone in the Gebel Uweinat—Gebel Kamil area. The Pan-African tectono-thermal episode was most effective in the eastern part of the belt, near the boundary with the Nubian Shield volcano-sedimentary-ophiolite-granitoid assemblages. It caused migmatization, granite emplacement, mylonitization and large-scale wrench faulting which was related to Late Proterozoic accretionary and collisional events of the Arabian-Nubian Shield with the margin of the East Saharan Craton.
Petrogenesis of calcic plagioclase megacrysts in Archean rocks
NASA Technical Reports Server (NTRS)
Phinney, W. C.; Morrison, D. A.
1986-01-01
Anorthositic complexes with large equidimensional plagioclase grains of highly calcic composition occur in nearly all Archean cratons. Similar plagioclase occur as megacrysts in many Archean sills, dikes, and volcanic flows. In the Canadian Shield these units occur throughout the Archean portions of the entire shield and are particularly common as dikes over an area of a few 100,000 sq km in Ontario and Manitoba during a period of at least 100 m.y. in many different rock types and metamorphic grades. The plagioclase generally occurs in three modes: as inclusions in mafic intrusions at various stages of fractionation, as crystal segregations in anorthosite complexes, or as megacrysts in fractionated sills, dikes, and flows. Most occurrences suggest that the plagioclase was formed elsewhere before being transported to its present location. The evidence seems to be quite clear that occurrences of these types of calcic plagioclase require: (1) ponding of a relatively undifferentiated Archean tholeiitic melt at some depth; (2) isothermal crystallization of large, equidimensional homogeneous plagioclase crystals; (3) separation of the plagioclase crystals from any other crystalline phases; (4) further fractionation of melt; (5)transport of various combinations of individual plagioclase crystals and clusters of crystals by variously fractionated melts; and (6) emplacement as various types of igneous intrusions or flows.
NASA Astrophysics Data System (ADS)
Bierlein, F. P.; McKeag, S.; Reynolds, N.; Bargmann, C. J.; Bullen, W.; Murphy, F. C.; Al-Athbah, H.; Brauhart, C.; Potma, W.; Meffre, S.; McKnight, S.
2016-08-01
Ongoing exploration in the Red Sea Hills of NE Sudan has led to the identification of a large alteration-mineralization system within a relatively undeformed Neoproterozoic intrusive-extrusive succession centered on Jebel Ohier. The style of mineralization, presence of an extensive stockwork vein network within a zoned potassic-propylitic-argillic-advanced argillic-altered system, a mineralization assemblage comprising magnetite-pyrite-chalcopyrite-bornite (±gold, silver and tellurides), and the recurrence of fertile mafic to intermediate magmatism in a developing convergent plate setting all point to a porphyry copper-gold association, analogous to major porphyry Cu-Au-Mo deposits in Phanerozoic supra-subduction settings such as the SW Pacific. Preliminary U-Pb age dating yielded a maximum constraint of c. 730 Ma for the emplacement of the stockwork system into a significantly older ( c. 800 Ma) volcanic edifice. The mineralization formed prior to regional deformation and accretion of the host terrane to a stable continental margin at by c. 700 Ma, thus ensuring preservation of the deposit. The Jebel Ohier deposit is interpreted as a relatively well-preserved, rare example of a Neoproterozoic porphyry Cu-Au system and the first porphyry Cu-Au deposit to be identified in the Arabian-Nubian Shield.
Gravity field and nature of continent-continent collision along the Himalaya
NASA Astrophysics Data System (ADS)
Verma, R. K.
Gravity field (Bouguer) in the Himalaya is characterised by large negative-values ranging from nearly -180 mGal to over -450 mGal in Naga-Parbat/Haramosh massif which go up to -550 mGal in the Karakoram region. The observed Bouguer anomaly in NW Himalaya has been interpreted along a profile passing from Gujranwala (located at the edge of the Indian shield) to the Haramosh massif in terms of Moho depth and density contrast between the crust and the mantle. The Moho depth is interpreted to increase from nearly 35 km near the edge of Indian shield to 75 km (below sea level) underneath the Haramosh massif. A similar model is applicable to a profile passing to the west of Nanga Parbat massif, from Gujranwala to Ghizar, through the Kohistan region. However, along this profile high density lower crustal rocks appear to have been emplaced in the upper part along the Main Mantle thrust. The gravityanomalies in the Nepal-Tibet region hasbeen interpreted in terms of a northward sloping Moho which down faulted by about 15 km to attain a depth of 65 km around Tingri which corresponds to explosion seismology data. The nature of isostatic compensation prevailing underneath the Himalaya has been discussed.
Morris, Kelly A.; Langston, David B.; Davis, Richard F.; Noe, James P.; Dickson, Don W.; Timper, Patricia
2016-01-01
Fluensulfone is a new nematicide in the flouroalkenyl chemical group. A field experiment was conducted in 2012 and 2013 to evaluate the efficacy of various application methods of fluensulfone for control of Meloidogyne spp. in cucumber (Cucumis sativus). Treatments of fluensulfone (3.0 kg a.i./ha) were applied either as preplant incorporation (PPI) or via different drip irrigation methods: drip without pulse irrigation (Drip NP), pulse irrigation 1 hr after treatment (Drip +1P), and treatment at the same time as pulse irrigation (Drip =P). The experiment had eight replications per treatment and also included a PPI treatment of oxamyl (22.5 kg a.i./ha) and a nontreated control. Compared to the control, neither the oxamyl nor the fluensulfone PPI treatments reduced root galling by Meloidogyne spp. in cucumber. Among the drip treatments, Drip NP and Drip +1P reduced root galling compared to the control. Cucumber yield was greater in all fluensulfone treatments than in the control. In a growth-chamber experiment, the systemic activity and phytotoxicity of fluensulfone were also evaluated on tomato (Solanum lycopersicum), eggplant (Solanum melongena), cucumber, and squash (Curcurbita pepo). At the seedling stage, foliage of each crop was sprayed with fluensulfone at 3, 6, and 12 g a.i./liter, oxamyl at 4.8 g a.i./liter, or water (nontreated control). Each plant was inoculated with Meloidogyne incognita juveniles 2 d after treatment. There were six replications per treatment and the experiment was conducted twice. Foliar applications of fluensulfone reduced plant vigor and dry weight of eggplant and tomato, but not cucumber or squash; application of oxamyl had no effect on the vigor or weight of any of the crops. Typically, only the highest rate of fluensulfone was phytotoxic to eggplant and tomato. Tomato was the only crop tested in which there was a reduction in the number of nematodes or galls when fluensulfone or oxamyl was applied to the foliage compared to the nontreated control. This study demonstrates that control of Meloidogyne spp. may be obtained by drip and foliar applications of fluensulfone; however, the systemic activity of fluensulfone is crop specific and there is a risk of phytotoxicity with foliar applications. PMID:27418698
Stroke mimics under the drip-and-ship paradigm.
Mehta, Sonal; Vora, Nirav; Edgell, Randall C; Allam, Hesham; Alawi, Aws; Koehne, Jennifer; Kumar, Abhay; Feen, Eliahu; Cruz-Flores, Salvador; Alshekhlee, Amer
2014-01-01
Recent reports suggested better outcomes associated with the drip-and-ship paradigm for acute ischemic stroke (AIS) treated with thrombolysis. We hypothesized that a higher rate of stroke mimics (SM) among AIS treated in nonspecialized stroke centers that are transferred to comprehensive centers is responsible for such outcomes. Consecutive patients treated with thrombolysis according to the admission criteria were reviewed in a single comprehensive stroke center over 1 academic year (July 1, 2011 to June 30, 2012). Information on the basic demographic, hospital complications, psychiatric diagnoses, and discharge disposition was collected. We identified those patients who were treated at a facility and then transferred to the tertiary center (ie, drip-and-ship paradigm). In addition to comparative and adjusted analysis to identify predictors for SM, a stratified analysis by the drip-and-ship status was performed. One hundred twenty patients were treated with thrombolysis for AIS included in this analysis; 20 (16.7%) were discharged with the final diagnosis of SM; 14 of those had conversion syndrome and 6 patients had other syndromes (seizures, migraine, and hypoglycemia). Patients with SM were younger (55.6 ± 15.0 versus 69.4 ± 14.9, P = .0003) and more likely to harbor psychiatric diagnoses (45% versus 9%; P ≤ .0001). Eighteen of 20 SM patients (90%) had the drip-and-ship treatment paradigm compared with 65% of those with AIS (P = .02). None of the SM had hemorrhagic complications, and all were discharged to home. Predictors of SM on adjusted analysis included the drip-and-ship paradigm (odds ratio [OR] 12.8, 95% confidence interval [CI] 1.78, 92.1) and history of any psychiatric illness (OR 12.08; 95% CI 3.14, 46.4). Eighteen of 83 drip-and-ship patients (21.7%) were diagnosed with SM compared with 2 of 37 patients (5.4%) presented directly to the hub hospital (P = .02). The drip-and-ship paradigm and any psychiatric history predict the diagnosis of SM. None of the SM had thrombolysis-related complications, and all were discharged to home. These findings may explain the superior outcomes associated with the drip-and-ship paradigm in the treatment for AIS. Copyright © 2014 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Tonarelli, Silvina B; Tibbs, Michael; Vazquez, Gabriela; Lakshminarayan, Kamakshi; Rodriguez, Gustavo J; Qureshi, Adnan I
2012-02-01
A new International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) diagnosis code, V45.88, was approved by the Centers for Medicare and Medicaid Services (CMS) on October 1, 2008. This code identifies patients in whom intravenous (IV) recombinant tissue plasminogen activator (rt-PA) is initiated in one hospital's emergency department, followed by transfer within 24 hours to a comprehensive stroke center, a paradigm commonly referred to as "drip-and-ship." This study assessed the use and accuracy of the new V45.88 code for identifying ischemic stroke patients who meet the criteria for drip-and-ship at 2 advanced certified primary stroke centers. Consecutive patients over a 12-month period were identified by primary ICD-9-CM diagnosis codes related to ischemic stroke. The accuracy of V45.88 code utilization using administrative data provided by Health Information Management Services was assessed through a comparison with data collected in prospective stroke registries maintained at each hospital by a trained abstractor. Out of a total of 428 patients discharged from both hospitals with a diagnosis of ischemic stroke, 37 patients were given ICD-9-CM code V45.88. The internally validated data from the prospective stroke database demonstrated that a total of 40 patients met the criteria for drip-and-ship. A concurrent comparison found that 92% (sensitivity) of the patients treated with drip-and-ship were coded with V45.88. None of the non-drip-and-ship stroke cases received the V45.88 code (100% specificity). The new ICD-9-CM code for drip-and-ship appears to have high specificity and sensitivity, allowing effective data collection by the CMS. Copyright © 2012 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Cha, Jae-Kwan; Nah, Hyun-Wook; Kang, Myung-Jin; Kim, Dae-Hyun; Park, Hyun-Seok; Kim, Sang-Beom; Jeong, Eun Hwan; Huh, Jae-Taeck
2014-01-01
The drip and ship paradigm for stroke patients enhances the rate of using intravenous tissue plasminogen activator (IVT) in community hospitals. The safety and outcomes of patients treated with IVT for acute ischemic stroke (AIS) under the drip and ship paradigm were compared with patients directly treated at a comprehensive stroke center in the Busan metropolitan area of Korea. This was a retrospective study of patients with AIS treated with IVT between January 2009 and January 2012. Information on patients' baseline characteristics, neuroimaging, symptomatic intracerebral hemorrhage (sICH), and outcome 90 days after using IVT was obtained from our stroke registry. We surveyed stroke neurologists regarding their pattern of post-thrombolysis care. During the observation periods, we selected 317 patients using IVT. Among these, 239 patients received IVT at our stroke center, and 78 were treated at 21 community hospitals under the drip and ship paradigm. Initial neurologic deficits and the size of ischemic lesions on magnetic resonance imaging were much more severe in patients treated with IVT under the drip and ship paradigm compared with patients treated at our comprehensive stroke center. The prevalence of a poor outcome (modified Rankin Scale score 3-6) 90 days after IVT was much higher in patients treated with the drip and ship paradigm than in those treated at our comprehensive stroke center. Regarding the occurrence of sICH, there was no significant difference between the 2 groups. The clinical characteristics and outcomes after using IVT under the drip and ship paradigm may differ greatly among stroke care systems. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.
Meng, Fengqun; Cao, Rui; Yang, Dongmei; Niklas, Karl J; Sun, Shucun
2014-01-01
Species in high-rainfall regions have two major alternative approaches to quickly drain off water, i.e., increasing leaf inclination angles relative to the horizontal plane, or developing long leaf drip tips. We hypothesized that shade-adapted species will have more pronounced leaf drip tips but not greater inclination angles (which can reduce the ability to intercept light) compared to sun-adapted species and that length of leaf drip tips will be negatively correlated with photosynthetic capacity [characterized by light-saturated net photosynthetic rates (Amax), associated light compensation points (LCP), and light saturation points (LSP)]. We tested this hypothesis by measuring morphological and physiological traits that are associated with light-interception and water shedding for seven shade-adapted shrub species, ten sun-adapted understory shrub species, and 15 sun-adapted tree species in a subtropical Chinese rainforest, where mean annual precipitation is around 1,600 mm. Shade-adapted understory species had lower LMA, Amax, LSP, and LCP compared to understory or canopy sun-adapted species; their leaf and twig inclination angles were significantly smaller and leaf drip tips were significantly longer than those in sun-adapted species. This suggests that shade-adapted understory species tend to develop pronounced leaf drip tips but not large leaf inclination angles to shed water. The length of leaf drip tips was negatively correlated with leaf inclination angles and photosynthetic capacity. These relationships were consistent between ordinary regression and phylogenetic generalized least squares analyses. Our study illustrates the trade-offs between light interception and leaf water shedding and indicates that length of leaf drip tips can be used as an indicator of adaptation to shady conditions and overall photosynthetic performance of shrub species in subtropical rainforests.
Deep subsurface drip irrigation using coal-bed sodic water: part II. geochemistry
Bern, Carleton R.; Breit, George N.; Healy, Richard W.; Zupancic, John W.
2013-01-01
Waters with low salinity and high sodium adsorption ratios (SARs) present a challenge to irrigation because they degrade soil structure and infiltration capacity. In the Powder River Basin of Wyoming, such low salinity (electrical conductivity, EC 2.1 mS cm-1) and high-SAR (54) waters are co-produced with coal-bed methane and some are used for subsurface drip irrigation(SDI). The SDI system studied mixes sulfuric acid with irrigation water and applies water year-round via drip tubing buried 92 cm deep. After six years of irrigation, SAR values between 0 and 30 cm depth (0.5-1.2) are only slightly increased over non-irrigated soils (0.1-0.5). Only 8-15% of added Na has accumulated above the drip tubing. Sodicity has increased in soil surrounding the drip tubing, and geochemical simulations show that two pathways can generate sodic conditions. In soil between 45-cm depth and the drip tubing, Na from the irrigation water accumulates as evapotranspiration concentrates solutes. SAR values >12, measured by 1:1 water-soil extracts, are caused by concentration of solutes by factors up to 13. Low-EC (-1) is caused by rain and snowmelt flushing the soil and displacing ions in soil solution. Soil below the drip tubing experiences lower solute concentration factors (1-1.65) due to excess irrigation water and also contains relatively abundant native gypsum (2.4 ± 1.7 wt.%). Geochemical simulations show gypsum dissolution decreases soil-water SAR to 14 and decreasing EC in soil water to 3.2 mS cm-1. Increased sodicity in the subsurface, rather than the surface, indicates that deep SDI can be a viable means of irrigating with sodic waters.
Geology and tectonics of the Archean Superior Province, Canadian Shield
NASA Technical Reports Server (NTRS)
Card, K. D.
1986-01-01
Superior Province consists mainly of Late Archean rocks with Middle Archean gneisses in the south, and possibly in the north. The Late Archean supracrustal sequences are of island arc and interarc affinity and are cut by abundant plutonic rocks, including early arc-related intrusions, late synorogenic intrusions, and post-orogenic plutons that are possibly the product of crustal melting caused by thermal blanketing of newly-thickened continental crust combined with high mantle heat flux. The contemporaneity of magmatic and deformational events along the lengths of the belts is consistent with a subduction-dominated tectonic regime for assembly of the Kenoran Orogen. Successive addition of volcanic arcs accompanied and followed by voluminous plutonism resulted in crustal thickening and stabilization of the Superior craton prior to uplift of Kapuskasing granulites, emplacement of the Matachewan diabase dykes, and Early Proterozoic marginal rifting.
Zhuo, Limeng; Peng, Jingjing; Zhao, Yunli; Li, Dongxiang; Xie, Xiuman; Tong, Ling; Yu, Zhiguo
2017-10-01
Traditional Chinese medicine consists of complex phytochemical constituents. Selecting appropriate analytical markers of traditional Chinese medicine is a critical step in quality control. Currently, the combination of fingerprinting and efficacy evaluation is considered as a useful method for screening active ingredients in complex mixtures. This study was designed to develop an orthogonal partial least squares model for screening bioactive quality control markers of QishenYiqi dripping pills based on the fingerprint-efficacy relationship. First, the chemical fingerprints of 49 batches of QishenYiqi dripping pill samples were established by ultra-high performance liquid chromatography coupled with a photodiode array detector. Second, ultra-high performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry was exploited to systematically investigate the 36 copossessing fingerprint components in QishenYiqi dripping pills. The vascular protective activity of QishenYiqi dripping pills was determined by using a cell counting kit-8 assay. Finally, fingerprint-efficacy relationship was established by orthogonal partial least squares model. The results indicated that ten components exhibited strong correlation with vascular protective activity, and these were preliminarily screened as quality control markers. The present study provided a novel idea for the study of the pharmacodynamic material basis and quality evaluation of QishenYiqi dripping pills. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Commiskey, Patricia; Afshinnik, Arash; Cothren, Elizabeth; Gropen, Toby; Iwuchukwu, Ifeanyi; Jennings, Bethany; McGrade, Harold C; Mora-Guillot, Julia; Sabharwal, Vivek; Vidal, Gabriel A; Zweifler, Richard M; Gaines, Kenneth
2017-04-01
United States (US) and worldwide telestroke programs frequently focus only on emergency room hyper-acute stroke management. This article describes a comprehensive, telemedicine-enabled, stroke care delivery system that combines "drip and ship" and "drip and keep" models with a comprehensive stroke center primary hub at Ochsner Medical Center in New Orleans, advanced stroke-capable regional hubs, and geographically-aligned, "stroke-ready" spokes. The primary hub provides vascular neurology expertise via telemedicine and monitors care for patients remaining at regional hubs and spokes using a multidisciplinary team approach. By 2014, primary hub telestroke consults grew to ≈1000/year with 16 min average door to consult initiation and 20 min to completion, and 29% of ischemic stroke patients received recombinant tissue-type plasminogen activator (rtPA), increasing 275%. Most patients remained in hospitals close to home, but neurointensive care and interventional procedures were common reasons for primary hub transfer. Given the time sensitivity and expert consultation needed for complex acute stroke care delivery paradigms, telestroke programs are effective for fulfilling unmet care needs. Combining drip and ship and drip and keep management allows more patients to stay "local," limiting primary hub transfer unless more advanced services are required. Post admission telestroke management at spokes increases personnel efficiency and can positively impact stroke outcomes.
Application of the diagnostic radiological index of protection to protective garments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasciak, Alexander S.; Jones, A. Kyle, E-mail: kyle.jones@mdanderson.org; Wagner, Louis K.
2015-02-15
Purpose: Previously, the diagnostic radiological index of protection (DRIP) was proposed as a metric for quantifying the protective value of radioprotective garments. The DRIP is a weighted sum of the percent transmissions of different radiation beams through a garment. Ideally, the beams would represent the anticipated stray radiation encountered during clinical use. However, it is impractical to expect a medical physicist to possess the equipment necessary to accurately measure transmission of scattered radiation. Therefore, as a proof of concept, the authors tested a method that applied the DRIP to clinical practice. Methods: Primary beam qualities used in interventional cardiology andmore » radiology were observed and catalogued. Based on the observed range of beam qualities, five representative clinical primary beam qualities, specified by kV and added filtration, were selected for this evaluation. Monte Carlo simulations were performed using these primary beams as source definitions to generate scattered spectra from the clinical primary beams. Using numerical optimization, ideal scatter mimicking primary beams, specified by kV and added aluminum filtration, were matched to the scattered spectra according to half- and quarter-value layers and spectral shape. To within reasonable approximation, these theoretical scatter-mimicking primary beams were reproduced experimentally in laboratory x ray beams and used to measure transmission through pure lead and protective garments. For this proof of concept, the DRIP for pure lead and the garments was calculated by assigning equal weighting to percent transmission measurements for each of the five beams. Finally, the areal density of lead and garments was measured for consideration alongside the DRIP to assess the protective value of each material for a given weight. Results: The authors identified ideal scatter mimicking primary beams that matched scattered spectra to within 0.01 mm for half- and quarter-value layers in copper and within 5% for the shape function. The corresponding experimental scatter-mimicking primary beams matched the Monte Carlo generated scattered spectra with maximum deviations of 6.8% and 6.6% for half- and quarter-value layers. The measured DRIP for 0.50 mm lead sheet was 2.0, indicating that it transmitted, on average, 2% of incident radiation. The measured DRIP for a lead garment and one lead-alternative garment closely matched that for pure lead of 0.50 mm thickness. The DRIP for other garments was substantially higher than 0.50 mm lead (3.9–5.4), indicating they transmitted about twice as much radiation. When the DRIP was plotted versus areal density, it was clear that, of the garments tested, none were better than lead on a weight-by-weight basis. Conclusions: A method for measuring the DRIP for protective garments using scatter-mimicking primary beams was developed. There was little discernable advantage in protective value per unit weight for lead-alternative versus lead-only garments. Careful consideration must be given to the balance of protection and weight when choosing a lead-alternative protective garment with a lower specified “lead equivalence,” e.g., 0.35 mm. The DRIP has the potential to resolve this dilemma. Reporting the DRIP relative to areal density is an ideal metric for objective comparisons of protective garment performance, considering both protective value in terms of transmission of radiation and garment weight.« less
Magma deformation and emplacement in rhyolitic dykes
NASA Astrophysics Data System (ADS)
McGowan, Ellen; Tuffen, Hugh; James, Mike; Wynn, Peter
2016-04-01
Silicic eruption mechanisms are determined by the rheological and degassing behaviour of highly-viscous magma ascending within shallow dykes and conduits. However, we have little knowledge of how magmatic behaviour shifts during eruptions as dykes and conduits evolve. To address this we have analysed the micro- to macro-scale textures in shallow, dissected rhyolitic dykes at the Tertiary Húsafell central volcano in west Iceland. Dyke intrusion at ~3 Ma was associated with the emplacement of subaerial rhyolitic pyroclastic deposits following caldera formation[1]. The dykes are dissected to ~500 m depth, 2-3 m wide, and crop out in two stream valleys with 5-30 m-long exposures. Dykes intrude diverse country rock types, including a welded ignimbrite, basaltic lavas, and glacial conglomerate. Each of the six studied dykes is broadly similar, exhibiting obsidian margins and microcrystalline cores. Dykes within pre-fractured lava are surrounded by external tuffisite vein networks, which are absent from dykes within conglomerate, whereas dykes failed to penetrate the ignimbrite. Obsidian at dyke margins comprises layers of discrete colour. These display dramatic thickness variations and collapsed bubble structures, and are locally separated by zones of welded, brecciated and flow-banded obsidian. We use textural associations to present a detailed model of dyke emplacement and evolution. Dykes initially propagated with the passage of fragmented, gas-charged magma and generation of external tuffisite veins, whose distribution was strongly influenced by pre-existing fractures in the country rock. External tuffisites retained permeability throughout dyke emplacement due to their high lithic content. The geochemically homogenous dykes then evolved via incremental magma emplacement, with shear deformation localised along emplacement boundary layers. Shear zones migrated between different boundary layers, and bubble deformation promoted magma mobility. Brittle-ductile microtextures and bubble populations point towards multi-step and multi-rate magma decompression, and we propose that gas overpressure in bubbles created tensile micro-cracks, whose coalescence culminated in macroscopic fragmentation. Finally, we infer that bubble collapse was associated with both localised brittle magma failure at shallow levels and macroscopic magma fragmentation deeper within the magmatic system. Processes recorded by the Húsafell dyke exposures appear akin to those occurring in the shallow conduits of Chaitén and Cordón Caulle during recent rhyolitic eruptions[2,3]. The field evidence presented here therefore bridges the gap between eruption observations and the deeper geological record, and so provides new insight into conduit evolution during explosive-hybrid-effusive eruptive phases[2,3] and the influence of country rock. The parallels between intrusive dyke textures and those found in extruded silicic lavas suggest that processes recorded in the dykes, including bubble collapse, volatile resorption, thermally-induced vesiculation and the formation of brittle-ductile shear zones, also occur within extrusive flows, contributing to their extreme textural heterogeneity[4]. [1] Saemundsson K & Noll H (1974) Jökull 24, 40-59. [2] Schipper CI et al. (2013) JVGR, 262, 25-37. [3] Castro JC et al. (2014) EPSL, 405, 52-61. [4] Shields JK et al. (2016) JVGR, 310, 137-158.
Zhang, Hongzhi; Khan, Aziz; Tan, Daniel K. Y.; Luo, Honghai
2017-01-01
There is a need to optimize water-nitrogen (N) applications to increase seed cotton yield and water use efficiency (WUE) under a mulch drip irrigation system. This study evaluated the effects of four water regimes [moderate drip irrigation from the third-leaf to the boll-opening stage (W1), deficit drip irrigation from the third-leaf to the flowering stage and sufficient drip irrigation thereafter (W2), pre-sowing and moderate drip irrigation from the third-leaf to the boll-opening stage (W3), pre-sowing and deficit drip irrigation from the third-leaf to the flowering stage and sufficient drip irrigation thereafter (W4)] and N fertilizer at a rate of 520 kg ha-1 in two dressing ratios [7:3 (N1), 2:8 (N2)] on cotton root morpho-physiological attributes, yield, WUE and the relationship between root distribution and dry matter production. Previous investigations have shown a strong correlation between root activity and water consumption in the 40–120 cm soil layer. The W3 and especially W4 treatments significantly increased root length density (RLD), root volume density (RVD), root mass density (RMD), and root activity in the 40–120 cm soil layer. Cotton RLD, RVD, RMD was decreased by 13.1, 13.3, and 20.8%, respectively, in N2 compared with N1 at 70 days after planting (DAP) in the 0–40 cm soil layer. However, root activity in the 40–120 cm soil layer at 140 DAP was 31.6% higher in N2 than that in N1. Total RMD, RLD and root activity in the 40–120 cm soil were significantly and positively correlated with shoot dry weight. RLD and root activity in the 40–120 cm soil layer was highest in the W4N2 treatments. Therefore increased water consumption in the deep soil layers resulted in increased shoot dry weight, seed cotton yield and WUE. Our data can be used to develop a water-N management strategy for optimal cotton yield and high WUE. PMID:28611817
NASA Astrophysics Data System (ADS)
Zoheir, Basem; Emam, Ashraf
2012-05-01
The granitoid-greenstone belts of the Arabian-Nubian Shield are well-endowed with lode gold and massive sulfide ores. Although generally characterized by excellent outcrops and arid desert realm, poor accessibility and lack of finance have been always retardant to detailed geologic mapping of vast areas of the shield. Lack of comprehensive geological information and maps at appropriate scales would definitely hinder serious exploration programs. In this study, band ratioing, principal component analysis (PCA), false-color composition (FCC), and frequency filtering (FFT-RWT) of ASTER and ETM+ data have substantially improved visual interpretation for detailed mapping of the Gebel Egat area in South Eastern Desert of Egypt. By compiling field, petrographic and spectral data, controls on gold mineralization have been assessed in terms of association of gold lodes with particular lithological units and structures. Contacts between foliated island arc metavolcanics and ophiolites or diorite are likely to be favorable loci for auriferous quartz veins, especially where the NW-SE foliation is deflected into steeply dipping NNW-trending shear planes. High-resolution mapping of the greenstone belt, structures and alteration zones associated with gold lodes in the study area suggests that dilatation by foliation deflection was related to emplacement of the Egat granitic intrusion, attendant with a sinistral transpression regime (i.e., ˜640-550 Ma?). Gold mineralization associated with granitoid intrusions in transpression-induced pull-apart structures elsewhere in the Eastern Desert (e.g., Fawakhir, Sukari and Hangaliya mines) emphasize the reliability of this setting as a model for gold exploration targets in greenstone terrains of Egypt, and may be elsewhere in the Arabian-Nubian Shield.
NASA Astrophysics Data System (ADS)
Schimpf, Daniel; Kilian, Rolf; Kronz, Andreas; Simon, Klaus; Spötl, Christoph; Wörner, Gerhard; Deininger, Michael; Mangini, Augusto
2011-02-01
Stalagmites are important palaeo-climatic archives since their chemical and isotopic signatures have the potential to record high-resolution changes in temperature and precipitation over thousands of years. We present three U/Th-dated records of stalagmites (MA1-MA3) in the superhumid southern Andes, Chile (53°S). They grew simultaneously during the last five thousand years (ka BP) in a cave that developed in schist and granodiorite. Major and trace elements as well as the C and O isotope compositions of the stalagmites were analysed at high spatial and temporal resolution as proxies for palaeo-temperature and palaeo-precipitation. Calibrations are based on data from five years of monitoring the climate and hydrology inside and outside the cave and on data from 100 years of regional weather station records. Water-insoluble elements such as Y and HREE in the stalagmites indicate the amount of incorporated siliciclastic detritus. Monitoring shows that the quantity of detritus is controlled by the drip water rate once a threshold level has been exceeded. In general, drip rate variations of the stalagmites depend on the amount of rainfall. However, different drip-water pathways above each drip location gave rise to individual drip rate levels. Only one of the three stalagmites (MA1) had sufficiently high drip rates to record detrital proxies over its complete length. Carbonate-compatible element contents (e.g. U, Sr, Mg), which were measured up to sub-annual resolution, document changes in meteoric precipitation and related drip-water dilution. In addition, these soluble elements are controlled by leaching during weathering of the host rock and soils depending on the pH of acidic pore waters in the peaty soils of the cave's catchment area. In general, higher rainfall resulted in a lower concentration of these elements and vice versa. The Mg/Ca record of stalagmite MA1 was calibrated against meteoric precipitation records for the last 100 years from two regional weather stations. Carbonate-compatible soluble elements show similar patterns in the three stalagmites with generally high values when drip rates and detrital tracers were low and vice versa. δ 13C and δ 18O values are highly correlated in each stalagmite suggesting a predominantly drip rate dependent kinetic control by evaporation and/or outgassing. Only C and O isotopes from stalagmite MA1 that received the highest drip rates show a good correlation between detrital proxy elements and carbonate-compatible elements. A temperature-related change in rainwater isotope values modified the MA1 record during the Little Ice Age (˜0.7-0.1 ka BP) that was ˜1.5 °C colder than today. The isotopic composition of the stalagmites MA2 and MA3 that formed at lower drip rates shows a poor correlation with stalagmite MA1 and all other chemical proxies of MA1. 'Hendy tests' indicate that the degassing-controlled isotope fractionation of MA2 and MA3 had already started at the cave roof, especially when drip rates were low. Changing pathways and residence times of the seepage water caused a non-climatically controlled isotope fractionation, which may be generally important in ventilated caves during phases of low drip rates. Our proxies indicate that the Neoglacial cold phases from ˜3.5 to 2.5 and from ˜0.7 to 0.1 ka BP were characterised by 30% lower precipitation compared with the Medieval Warm Period from 1.2 to 0.8 ka BP, which was extremely humid in this region.
Intestinal Failure (Short Bowel Syndrome)
... given slowly by a feeding tube and a pump, sometimes just at night. Dripping the formula in ... the intestine more time to absorb nutrients. Portable pumps are available for children who also need drip ...
NASA Astrophysics Data System (ADS)
Bernardi, Mauro I.; Bertotto, Gustavo W.; Jalowitzki, Tiago L. R.; Orihashi, Yuji; Ponce, Alexis D.
2015-02-01
The El Corcovo lava flow, from the Huanul shield volcano in the southern Mendoza province (central-western Argentina) traveled a distance of 70 km and covered a minimum area of ~ 415 km2. The flow emplacement was controlled both by extrinsic (e.g., topography) and intrinsic (e.g., lava supply rate, lava physicochemical characteristics) factors. The distal portion of the lava flow reached the Colorado River Valley, in La Pampa Province, where it spread and then was confined by earlier river channels. Cross-sections through the flow surveyed at several localities show two vesicular layers surrounding a dense central section, where vesicles are absent or clustered in sheet-shaped and cylindrical-shaped structures. Lavas of the El Corcovo flow are alkaline basalts with low values of viscosity. The morphological and structural characteristics of the flow and the presence of landforms associated with lava accumulation are the evidence of inflation. This process involved the formation of a tabular sheet flow up to 4 m of thick with a large areal extent in the proximal sectors, while at terminal sectors frontal lobes reached inflation values up to 10 m. The numerous swelling structures present at these portions of the flow suggest the movement of lava in lava tubes. We propose that this aspect and the low viscosity of the lava allowed the flow travel to a great distance on a gentle slope relief.
NASA Astrophysics Data System (ADS)
Singh, S. P.; Bhattacharya, A. R.
2017-12-01
The Bundelkhand massif, located in the northern part of the Indian shield, is a poly-deformed and poly-metamorphic terrain. This paper reports a new shear system developed throughout the massif in the form of N-S trending quartz veins that are sometimes quartzo-feldspathic and rarely granitic in composition. The veins are vertical and commonly occur in conjugate sets. This tectono-magmatic event appears to represent the youngest shear system of the massif as it cross-cuts all the earlier shear systems (E-W, NE-SE and NW-SE). Emplacement of this N-S vein system may have taken place due to extensional processes that developed some cracks along which siliceous magma was vertically emplaced. The complete absence of signature of the N-S event from the surrounding sedimentary cover of Vindhyan Supergroup, Bijawar and Gwalior Groups suggests that this shear system is pre-tectonic to the nearly E-W trending passive basins developed at the margins of the Bundelkhand craton. Further, several workers have considered the Bundelkhand massif as a part of the Aravalli craton. However, due to the absence of N-S, as well as the other (i.e., E-W, NW-SE and NW-SE), tectonic fabrics of the Bundelkhand massif in other cratons of the Peninsular India, and vice versa, makes the Bundelkhand block a separate and unique craton of its own and is not part of the Aravalli craton.
NASA Technical Reports Server (NTRS)
Schenk, Paul M.; Moore, Jeffrey M.
1995-01-01
The morphology of volcanic features on Ganymede differs significantly from that on the terrestrial planets. Few if any major volcanic landforms, such as thick flows or shield volcanoes, have been identified to date. Using new stereo Voyager images, we have searched Ganymede for relief-generating volcanic constructs. We observed seven major types of volcanic structures, including several not previously recognized. The oldest are broad flat-topped domes partially filling many older craters in dark terrain. Similar domes occur on Enceladus. Together with smooth dark deposits, these domes indicate that the volcanic history of the dark terrain is complex. Bright terrain covers vast areas, although the style of emplacement remains unclear. Smooth bright materials embay and flood older terrains, and may have been emplaced as low- viscosity fluids. Associated with smooth bright material are a number of scalloped-shaped, semi- enclosed scarps that cut into preexisting terrain. In planform these structures resemble terrestrial calderas. The youngest volcanic materials identified are a series of small flows that may have flooded the floor of the multiring impact structure Gilgamesh, forming a broad dome, The identification of volcanic constructs up to I km thick is the first evidence for extrusion of moderate-to-high viscosity material on Ganymede. Viscosity and yield strength estimates for these materials span several orders of magnitude, indicating that volcanic materials on Ganymede have a range of compositions and/or were extruded under a wide range of conditions and/or eruptive styles.
Streamflow, Fog, and Fog-Drip in the California Coast Range
NASA Astrophysics Data System (ADS)
Sawaske, S. R.; Freyberg, D. L.
2013-12-01
The onshore movement of marine fog from coastal waters is a common occurrence during summer months along much of the contiguous U.S. Pacific Coast. Because the fog-season tends to occur during the precipitation-free dry-season, any additional input of moisture or reduction in loss of moisture through evapotranspiration provided by marine layer can be an important factor in localized hydrologic systems. In an effort to quantify some of the effects of fog on the regional dry-season hydrology, a study site within the Santa Cruz Mountains of central California was established. The fog-laden coastside and predominately fog-free San Francisco Bay-side of the study area provided an excellent opportunity to assess the impacts of the presence and absence of fog on ecohydrological processes. Streamflow, fog-drip, soil moisture, and weather conditions were measured from May-September. Bayside streams were found to be almost all intermittent, with much higher rates of baseflow recession compared to the predominately perennial coastside streams. Fog-drip was essentially nonexistent on the bayside, while highly variable amounts were recorded on the coastside. Maximum rates and seasonal totals of drip were found within stands of mature conifers (Sequoia sempervirens and Pseudotsuga menziesii) along exposed, often windy ridgelines. Rates of up to 19 in (48 cm)/month of fog-drip were recorded. Consequently, frequent infiltration events to depths of at least 9 in (23 cm) were also documented. Over the course of the study soil moisture levels at high fog-drip locations either increased, or were roughly equivalent to initial spring conditions from the onset of data collection. Increases of flow in coastside streams, under otherwise receding conditions, were found to coincide with fog and fog-drip events. These results indicate that the presence of fog can significantly affect dry-season hydrologic conditions of some coastal locations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bar-Matthews, M.; Ayalon, A.; Halicz, L.
1996-01-01
In a semiarid climatic zone, such as the Eastern Mediterranean region, annual rainfall variations and fractionation processes in the epikarst zone exert a profound influence on the isotopic compositions of waters seeping into a cave. Consequently, the isotopic compositions of speleothems depositing from cave waters may show complex variations that need to be understood if they are to be exploited for paleoclimate studies. This is confirmed by a four-year study of the active carbonate-water system in the Soreq cave (Israel). The {sigma}{sup 18}O (SMOW) values of cave waters range from -6.3 to - 3.5{per_thousand}. The highest {sigma}{sup 18}O values occurmore » at the end of the dry season in waters dripping from stalactites, and reflect evaporation processes in the epikarst zone, whereas the lowest values occur in rapidly dripping (fast-drip) waters at the peak of the rainy seasons. However, even fast-drip waters are about 1.5{per_thousand} heavier than the rainfall above the cave, which is taken to reflect the mixing of fresh with residual evaporated water in the epikarst zone. {sigma}{sup 13}C (PDB) values of dissolved inorganic carbon (DIC) vary from -15.6 to -5.4{per_thousand}, with fast-drip waters having lower {sigma}{sup 13}C values (mostly-15.6 to -12{per_thousand}) and higher DIC concentrations relative to pool and stalactite-drip water. The los {sigma}{sup 13}C values of fast-drip waters and their supersaturation with respect to calcium carbonate indicates that the seepage waters have dissolved both soil-CO{sub 2} derived from overlying C{sub 3}-type vegetation and marine dolomite host rock. The 10{per_thousand} variation in the {sigma}{sup 13}C values associated with contemporaneous speleothems in order to clarify the effects of degassing from those due to differing vegetation types. 55 refs., 10 figs., 1 tab.« less
13. Roadway and place of a thousand drips looking ESE. ...
13. Roadway and place of a thousand drips looking ESE. - Great Smoky Mountains National Park Roads & Bridges, Roaring Fork Motor Nature Trail, Between Cherokee Orchard Road & U.S. Route 321, Gatlinburg, Sevier County, TN
Effect of Storage Temperature on Quality of Frozen Horse-mackerel
NASA Astrophysics Data System (ADS)
Kozima, Tsuneo; Ohtaka, Tateo
Quality change of frozen horse-mackerel were studied under storage temperature at -18, -23, -30 and -40°C for 12 months. Quality were measured with K value (Freshness index of muscle, degradation ratio of ATP), amount of drip (free and expressible drip), water-holdiog capacity, weight ratio of cooking loss, organoleptic test, and histological feature of muscle. K value, a mount of free drip, w eight ratio of cooking loss, histological feature of muscle, and organoleptic test in color, form and flavor were not detected any changes during frozen storage for 12 months at various temperature. However expressible drip, water-holding capacity and score of taste in organoleptic test showed some changes after 8 or 12 months at -18 and/or -23°C, it was not serious change to-loss quality as food. Frozen horse-mackerel can store under below ~ 18°C for 12 months.
Pairing in exotic neutron-rich nuclei near the drip line and in the crust of neutron stars
NASA Astrophysics Data System (ADS)
Pastore, A.; Margueron, J.; Schuck, P.; Viñas, X.
2013-09-01
Exotic and drip-line nuclei as well as nuclei immersed in a low-density gas of neutrons in the inner crust of neutron stars are systematically investigated with respect to their neutron pairing properties. This is done using Skyrme density-functional and different pairing forces such as a density-dependent contact interaction and a separable form of a finite-range Gogny interaction. Hartree-Fock-Bogoliubov (HFB) and Bardeen-Cooper-Schrieffer (BCS) theories are compared. It is found that neutron pairing is reduced towards the drip line while overcast by strong shell effects. Furthermore, resonances in the continuum can have an important effect counterbalancing the tendency of reduction and leading to a persistence of pairing at the drip line. It is also shown that in these systems the difference between HFB and BCS approaches can be quantitatively large.
Cambrian nepheline syenite complex at Jabal Sawda, Midyan region, Kingdom of Saudi Arabia
Liddicoat, W.K.; Ramsay, C.R.; Hedge, C.E.
1986-01-01
The only nepheline syenite complex presently known in the Arabian Shield is at Jabal Sawda, about 30 km S of Haql in the extreme NW of Saudi Arabia. It is a post-tectonic, composite intrusion with a crudely concentric structure. A core of leuco-nepheline syenite, a partial ring of mela-nepheline syenite, and an almost complete outer ring of alkali-feldspar syenite are the main rock units. Several mega-inclusions of porphyritic nepheline syenite, nepheline monzosyenite, malignite and ijolite are present in the leuco-nepheline syenite. The chemical composition is notable for very high values of Al2O3, Na2O, Ba, La, Nb, Sr and Zr. U{single bond}Pb isotope dating indicates an emplacement age of 553 ?? 4 Ma, one of an increasing number of reliable Cambrian isotope dates in the northern Red Sea region. ?? 1986.
Cambrian nepheline syenite complex at Jabal Sawda, Midyan region, Kingdom of Saudi Arabia
NASA Astrophysics Data System (ADS)
Liddicoat, W. K.; Ramsay, C. R.; Hedge, C. E.
The only nepheline syenite complex presently known in the Arabian Shield is at Jabal Sawda, about 30 km S of Haql in the extreme NW of Saudi Arabia. It is a post-tectonic, composite intrusion with a crudely concentric structure. A core of leuco-nepheline syenite, a partial ring of mela-nepheline syenite, and an almost complete outer ring of alkali-feldspar syenite are the main rock units. Several mega-inclusions of porphyritic nepheline syenite, nepheline monzosyenite, malignite and ijolite are present in the leuco-nepheline syenite. The chemical composition is notable for very high values of Al 2O 3, Na 2O, Ba, La, Nb, Sr and Zr. U sbnd Pb isotope dating indicates an emplacement age of 553 ± 4 Ma, one of an increasing number of reliable Cambrian isotope dates in the northern Red Sea region.
Cosmic-ray exposure history at Taurus-Littrow
NASA Technical Reports Server (NTRS)
Drozd, R. J.; Hohenberg, C. M.; Morgan, C. J.; Podosek, F. A.; Wroge, M. L.
1977-01-01
Recent surface history at Taurus-Littrow is dominated by emplacement of the Central Cluster and Bright Mantle morphological units, both believed to have resulted from arrival of ejecta from a large primary crater, probably Tycho. This paper reports new noble gas data for eight Apollo 17 rocks. Kr-81 - Kr cosmic ray exposure ages for these rocks affirm the observation of a pronounced grouping of ages, reinforcing the photogeologic evidence for the site-wide nature of the Central Cluster event. The consequences of post-cratering shielding changes are considered and it is concluded that the differences can reasonably be attributed to these changes, particularly because of the greater likelihood of rollover and impact fragmentation of the relatively smaller rocks from which most age data have been obtained. These considerations also lead to a more refined age estimate of 109 plus or minus 4 m.y. for Central Cluster, the Bright Mantle, and Tycho.
Physical properties of lava flows on the southwest flank of Tyrrhena Patera, Mars
NASA Technical Reports Server (NTRS)
Crown, David A.; Porter, Tracy K.; Greeley, Ronald
1991-01-01
Tyrrhena Patera (TP) (22 degrees S, 253.5 degrees W), a large, low-relief volcano located in the ancient southern highlands of Mars, is one of four highland paterae thought to be structurally associated with the Hellas basin. The highland paterae are Hesperian in age and among the oldest central vent volcanoes on Mars. The morphology and distribution of units in the eroded shield of TP are consistent with the emplacement of pyroclastic flows. A large flank unit extending from TP to the SW contains well-defined lava flow lobes and leveed channels. This flank unit is the first definitive evidence of effusive volcanic activity associated with the highland paterae and may include the best preserved lava flows observed in the Southern Hemisphere of Mars. Flank flow unit averages, channelized flow, flow thickness, and yield strength estimates are discussed. Analysis suggests the temporal evolution of Martian magmas.
Halász, László; Karányi, Zsolt; Boros-Oláh, Beáta; Kuik-Rózsa, Tímea; Sipos, Éva; Nagy, Éva; Mosolygó-L, Ágnes; Mázló, Anett; Rajnavölgyi, Éva; Halmos, Gábor; Székvölgyi, Lóránt
2017-01-01
The impact of R-loops on the physiology and pathology of chromosomes has been demonstrated extensively by chromatin biology research. The progress in this field has been driven by technological advancement of R-loop mapping methods that largely relied on a single approach, DNA-RNA immunoprecipitation (DRIP). Most of the DRIP protocols use the experimental design that was developed by a few laboratories, without paying attention to the potential caveats that might affect the outcome of RNA-DNA hybrid mapping. To assess the accuracy and utility of this technology, we pursued an analytical approach to estimate inherent biases and errors in the DRIP protocol. By performing DRIP-sequencing, qPCR, and receiver operator characteristic (ROC) analysis, we tested the effect of formaldehyde fixation, cell lysis temperature, mode of genome fragmentation, and removal of free RNA on the efficacy of RNA-DNA hybrid detection and implemented workflows that were able to distinguish complex and weak DRIP signals in a noisy background with high confidence. We also show that some of the workflows perform poorly and generate random answers. Furthermore, we found that the most commonly used genome fragmentation method (restriction enzyme digestion) led to the overrepresentation of lengthy DRIP fragments over coding ORFs, and this bias was enhanced at the first exons. Biased genome sampling severely compromised mapping resolution and prevented the assignment of precise biological function to a significant fraction of R-loops. The revised workflow presented herein is established and optimized using objective ROC analyses and provides reproducible and highly specific RNA-DNA hybrid detection. PMID:28341774
Mansoor, Simin; Zand, Ramin; Al-Wafai, Ameer; Wahba, Mervat N; Giraldo, Elias A
2013-10-01
The "drip and ship" approach for intravenous thrombolysis (IVT) is becoming the standard of care for patients with acute ischemic stroke (AIS) in communities without direct access to a stroke specialist. We aimed to demonstrate the safety of our "drip and ship" IVT protocol. This was a retrospective study of patients with AIS treated with IVT between January 2003 and January 2011. Information on patients' baseline characteristics, neuroimaging, symptomatic intracerebral hemorrhage (sICH), and mortality was obtained from our stroke registry. A group of patients were treated with IVT by an emergency physician in phone consultation with a board-certified vascular neurologist (BCVN) at 1 of our 3 stroke network-affiliated hospitals (SNAHs). These patients were subsequently transferred to our Joint Commission-certified primary stroke center (CPSC) after completion of IVT ("drip and ship" protocol). The other patients were treated directly by a BCVN at the CPSC. We studied 201 patients treated with IVT. Of them, 14% received IVT at a SNAH ("drip and ship" protocol) and 86% were treated at the CPSC. There were no significant differences between the 2 groups with regard to age, National Institutes of Health Stoke Scale score, stroke symptom onset-to-needle time, sICH, or in-hospital mortality. Our "drip and ship" protocol for IVT is safe. The protocol was not associated with an excess of sICH or in-hospital mortality compared with patients who received IVT at the CPSC. Copyright © 2013 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Maruyama, Mariya; Kambara, Kohei; Naka, Hideshi; Azuma, Masaaki
2015-08-01
Egg formation in terrestrial insects is an absorptive process, accommodated not only by packing proteins and lipids into yolk but also by filling chorions with water. An osmotic swelling of ovarian follicles takes place during oocyte maturation. This study investigated the role of the aquaporin (AQP) water channel in the osmotic uptake of water during oogenesis in the silk moth Bombyx mori Linnaeus, 1758. Using the antibodies that specifically recognize previously characterized AQPs, two water-specific subtypes-AQP-Bom1 and AQP-Bom3-belonging to the Drosophila integral protein (DRIP) and Pyrocoelia rufa integral protein (PRIP) subfamilies of the insect AQP clade, respectively, were identified in the developing ovaries of B. mori. During oocyte growth, Bombyx PRIP was distributed at the oocyte plasma membrane, where it likely plays a role in water uptake and oocyte swelling, and may be responsible for oocyte hydration during fluid absorption by ovarian follicles. During the transition from vitellogenesis to choriogenesis during oocyte maturation, Bombyx DRIP expression became abundant in peripheral yolk granules underlying the oocyte plasma membrane. The restricted DRIP localization was not observed in non-diapause-destined follicles, where DRIP was evenly distributed in medullary yolk granules. There was no difference in PRIP distribution between diapause- and non-diapause-destined follicles. The diapause-destined oocytes encase DRIP protein in the peripheral yolk granules, where DRIP might be inert. This would be reflected in the metabolic arrest associated with diapause after fertilization and egg oviposition. © 2015 Marine Biological Laboratory.
Direct Measurements of Epikarst Percolation in a Dry Mediterranean Environment, Sif Cave, Israel
NASA Astrophysics Data System (ADS)
Sheffer, N. A.; Cohen, M.; Morin, E.; Grodek, T.; Gimburg, A.; Gvirtzman, H.; Frumkin, A.
2008-05-01
A study for monitoring water percolation in the epikarst is carried out at Sif cave in Wadi Sussi (Israel). The research is based on continuous direct measurement of the rainfall outside the cave and water percolation in the cave chamber. The water is collected by three large sheets which integrate the drips from three different areas (16 m2, 56 m2 and 42 m2) and channel the water into barrels equipped with pressure transducers recording the water height with a 5 minute temporal resolution. This gives the rate and volume of dripping for each of the three areas. The measured rainfall combined with the knowledge of the dripping in the cave allows the estimation of recharge into the epikarst. Measurements conducted over a period of two and a half years at the cave, show two distinct flow regimes. The first, termed "quick flow", is the percolation through preferable flow paths allowing water to penetrate rapidly through the karst. The dripping starts shortly after rain begins, and ends promptly with the rain; The second, termed "slow flow", is the matrix flow, conducting water in small cracks and fissures, initiating dripping 20-30 hours after the rain begins, and allowing water to drip weeks and even month after the rain stops. At any case, an accumulated 100 mm of rain at the beginning of the rainy season is needed to initiate dripping in the cave. Furthermore, the study shows that along the winter season, as the water content in the soil rises, the lag time between the rain event and the "slow flow" reaction decreases as expected. The lag time drops from 30 hours in the beginning of the winter (October) to a mere 4 hour lag towards the end of the winter (April). The overall annual recharge measured in the cave is approximately 25-30%, with the early events contributing mainly to the rise in soil water content allowing for the later events to percolate deeper through the soil and drip in the cave. This local data together with additional regional data allows us to model the recharge into the karst aquifer and to understand the overall water budget of the basin.
NASA Astrophysics Data System (ADS)
Holtzclaw, C. L.; Gordon, R. D.; Feng, W.; Allard, J.
2015-12-01
A two-year monitoring study at Raccoon Mountain Caverns near Chattanooga, Tennessee was carried out in an attempt to establish quantitative relationships between climate signals and drip water stable isotopes for interpreting speleothem paleoclimate records from the cave. Eight field trips were made from Jan. 2014 to Jun. 2015, during which cave meteorological conditions (RH, temperature and cave air CO2 concentration) and drip rate were measured for 5 sites inside the cave. 63 cave drip and pool water samples were collected and analyzed for oxygen and hydrogen isotope compositions (δ18O and δD values). Cave air temperature varied throughout the study period, the temporal variations ranged at different sites from 2 to 8.4 °C (the greatest variation was observed at sites that are closer to the entrance or surface). These are significantly less than outside temperatures range of 24 °C, but more than observed in other monitored caves. Elevated cave-air CO2 concentration (3200 ppm) and slow drip rate during the summer indicated slowed or stalled growth of calcite. The overall range of δ18O values were -7.1‰ to -4.5‰. A δD vs δ18O diagram yields a slope of 6.1, which falls within the normal range of 6-8 for local Meteoric Water Line. The value is slightly above Global Meteoric Water Line, indicating lack of evaporative effect. Throughout the study period, the δ18O values varied from 0.6 ‰ at some sites to 1.9‰ at others. The largest changes were likely due to the close proximity of collection sites to the surface precipitation. Spatially, for samples collected at each cave trip, different sites displayed variations of δ18O values from 0‰ to 1.7‰. The difference could be attributed to different type of drip sites with varying types of flow paths rainwater takes to the drip sites. The significant seasonal shift of drip water δ18O values and growth conditions indicate importance of consideration of seasonality in interpreting speleothem δ18O record from this cave.
NASA Astrophysics Data System (ADS)
Andriani, Y.; Dhahiyat, Y.; Zahidah; Subhan, U.; Iskandar; Zidni, I.; Mawardiani, T.
2018-03-01
This study aimed to understand Capsicum frutescens growth and plankton abundance in aquaponics culture. A Completely Randomized Design (CRD) with six treatments in triplicates comprising of treatment A (positive control using organic liquid fertilizer), B (negative control without fertilizer), C (drip irrigation aquaponics with a water debit of 100 ml/day/plant), D (drip irrigation aquaponics with a water debit of 150 ml/day/plant), E (drip irrigation with a water debit of 200 ml/day/plant), and F (drip irrigation aquaponics with a water debit of 250 ml/day/plant) was applied. The water used in treatments C, D, E, and F contained comet fish feces as fertilizer. C. frutescens growth and plankton abundance were observed. Analysis was conducted using analysis of variance for plant productivity and descriptive analysis for plankton abundance and water quality. The results of this study showed that the highest plant growth was seen in plants receiving F treatment with 50 ml/day drip irrigation. However, no significant difference was found when compared to the positive control with organic artificial fertilizer. Eleven types of phytoplankton and six types of zooplankton were found, with Stanieria sp. as the most abundant phytoplankton and Brachionus sp. and Epistylis sp. as the most abundant zooplanktons.
Helium Isotopes and Noble Gas Abundances of Cave Dripping Water in Three Caves in East Asia
NASA Astrophysics Data System (ADS)
Chen, A. T.; Shen, C. C.; Tan, M.; Li, T.; Uemura, R.; Asami, R.
2015-12-01
Paleo-temperature recorded in nature archives is a critical parameter to understand climate change in the past. With advantages of unique inert chemical characteristics and sensitive solubilities with temperature, dissolved noble gases in speleothem inclusion water were recently proposed to retrieve terrestrial temperature history. In order to accurately apply this newly-developed speleothem noble gas temperature (NGT) as a reliable proxy, a fundamental issue about behaviors of noble gases in the karst should be first clarified. In this study, we measured noble gas contents in air and dripping water to evaluate any ratio deviation between noble gases. Cave dripping water samples was collected from three selected caves, Shihua Cave in northern China, Furong Cave in southwestern, and Gyukusen Cave in an island located in the western Pacific. For these caves are characterized by a thorough mixing and long-term storage of waters in a karst aquifer by the absence of seasonal oxygen isotope shifts. Ratios of dripping water noble gases are statistically insignificant from air data. Helium isotopic ratios in the dripping water samples match air value. The results indicate that elemental and isotopic signatures of noble gases from air can be frankly preserved in the epikarst and support the fidelity of NGT techniques.
NASA Astrophysics Data System (ADS)
Moyo, Richard; Love, David; Mul, Marloes; Mupangwa, Walter; Twomlow, Steve
Resource-poor smallholder farmers in the semi-arid Gwanda and Beitbridge districts face food insecurity on an annual basis due to a combination of poor and erratic rainfall (average 500 mm/a and 345 mm/a, respectively, for the period 1970-2003) and technologies inappropriate to their resource status. This impacts on both household livelihoods and food security. In an attempt to improve food security in the catchment a number of drip kit distribution programmes have been initiated since 2003 as part of an on-going global initiative aimed at 2 million poor households per year. A number of recent studies have assessed the technical performance of the drip kits in-lab and in-field. In early 2005 a study was undertaken to assess the impacts and sustainability of the drip kit programme. Representatives of the NGOs, local government, traditional leadership and agricultural extension officers were interviewed. Focus group discussions with beneficiaries and other villagers were held at village level. A survey of 114 households was then conducted in two districts, using a questionnaire developed from the output of the interviews and focus group discussions. The results from the study showed that the NGOs did not specifically target the distribution of the drip kits to poor members of the community (defined for the purpose of the study as those not owning cattle). Poor households made up 54% of the beneficiaries. This poor targeting of vulnerable households could have been a result of conditions set by some implementing NGOs that beneficiaries must have an assured water source. On the other hand, only 2% of the beneficiaries had used the kit to produce the expected 5 harvests over the 2 years, owing to problems related to water shortage, access to water and also pests and diseases. About 51% of the respondents had produced at least 3 harvests and 86% produced at least 2 harvests. Due to water shortages during the dry season 61% of production with the drip kit occurred during the wet season. This suggests that most households use the drip kits as supplementary irrigation. Conflicts between beneficiaries and water point committees or other water users developed in some areas especially during the dry season. The main finding from this study was that low cost drip kit programs can only be a sustainable intervention if implemented as an integral part of a long-term development program, not short-term relief programs and the programme should involve a broad range of stakeholders. A first step in any such program, especially in water scarce areas such as Gwanda and Beitbridge, is a detailed analysis of the existing water resources to assess availability and potential conflicts, prior to distribution of drip kits.
NASA Astrophysics Data System (ADS)
Siebert, L.; Carrasco-Nunez, G.; Diaz-Castellon, R.; Rodriguez, J. L.
2007-12-01
Cofre de Perote volcano anchors the northern end of the easternmost of several volcanic chains orthogonal to the E-W trend of the Mexican Volcanic Belt (MVB). Its structure, geochemistry, and volcanic history diverge significantly from that of the large dominantly andesitic stratovolcanoes that have been the major focus of research efforts in the MVB. Andesitic-trachyandesitic to dacitic-trachydacitic effusive activity has predominated at Cofre de Perote, forming a massive low-angle compound shield volcano that dwarfs the more typical smaller shield volcanoes of the central and western MVB. The 4282-m-high volcano overlooking Xalapa, the capital city of the State of Veracruz, has a diameter of about 30 km and rises more than 3000 m above the coastal plain to the east. Repeated edifice collapse has left massive horseshoe-shaped scarps that truncate the eastern side of the edifice. Five major evolutionary stages characterize the growth of this compound volcano: 1) emplacement of a multiple-vent dome complex forming the basal structure of Cofre de Perote around 1.9-1.3 Ma; 2) construction of the basal part of the compound shield volcano from at least two main upper-edifice vents at about 400 ka; 3) effusion of the summit dome-like lavas through multiple vents at ca. 240 ka; 4) eruption of a large number of geochemically diverse, alkaline and calc-alkaline Pleistocene-to-Holocene monogenetic cones (likely related to regional volcanism) through the flanks of the Cofre de Perote edifice; 5) late-stage, large-volume edifice collapse on at least two occasions (ca. 40 ka and ca. 10 ka), producing long-runout debris avalanches that traveled to the east. An undated tephra layer from Cofre de Perote overlies deposits likely of the youngest collapse. Cofre de Perote is one of several volcanoes in the roughly N-S-trending chain that has undergone major edifice collapse. As with Citlaltepetl (Pico de Orizaba) and Las Cumbres volcanoes, Cofre de Perote was constructed at the eastern margin of the Altiplano, with pronounced differential relief and sloping substrate promoting failures toward the Gulf of Mexico coastal plain.
NASA Astrophysics Data System (ADS)
Walther, G.; Frese, I.; Di Muro, A.; Kueppers, U.; Michon, L.; Metrich, N.
2014-12-01
Shield volcanoes are a common feature of basaltic volcanism. Their volcanic activity is often confined to a summit crater area and rift systems, both characterized by constructive (scoria and cinder cones; lava flows) and destructive (pit craters; caldera collapse) phenomena. Piton de la Fournaise (PdF) shield volcano (La Réunion Island, Indian Ocean) is an ideal place to study these differences in eruptive behaviour. Besides the frequent eruptions in the central Enclos Fouqué caldera, hundreds of eruptive vents opened along three main rift zones cutting the edifice during the last 50 kyrs. Two short rift zones are characterized by weak seismicity and lateral magma transport at shallow depth (above sea level). Here we focus on the third and largest rift zone (15km wide, 20 km long), which extends in a north-westerly direction between PdF and nearby Piton des Neiges volcanic complex. It is typified by deep seismicity (up to 30 km), emitting mostly primitive magmas, testifying of high fluid pressures (up to 5 kbar) and large-volume eruptions. We present new field data (including stratigraphic logs, a geological map of the area, C-14 dating and geochemical analyses of the eruption products) on one of the youngest (~6kyrs) and largest lava field (Trous Blancs eruption). It extends for 24km from a height of 1800 m asl, passing Le Tampon and Saint Pierre cities, until reaching the coast. The source area of this huge lava flow has been identified in an alignment of four previously unidentified pit craters. The eruption initiated with intense fountaining activity, producing a m-thick bed of loose black scoria, which becomes densely welded in its upper part; followed by an alternation of volume rich lava effusions and strombolian activity, resulting in the emplacement of meter-thick, massive units of olivine-basalt alternating with coarse scoria beds in the proximal area. Activity ended with the emplacement of a dm-thick bed of glassy, dense scoria and a stratified lithic breccia, marking the pit crater foundering. Interestingly, this final stage compares well with the formation of pit craters on Kilauea volcano, Hawaii. Reoccurring of similar activity on the NW rift represents a major source of risk, for this now densely populated region (more than 150,000 people living in the affected area).
2013-01-01
Many of the increasing number of intranasal products available for either local or systemic action can be considered sub-optimal, most notably where nasal drip or run-off give rise to discomfort/tolerability issues or reduced/variable efficacy. PecSys, an in situ gelling technology, contains low methoxy (LM) pectin which gels due to interaction with calcium ions present in nasal fluid. PecSys is designed to spray readily, only forming a gel on contact with the mucosal surface. The present study employed two in vitro models to confirm that gelling translates into a reduced potential for drip/run-off: (i) Using an inclined TLC plate treated with a simulated nasal electrolyte solution (SNES), mean drip length [±SD, n = 10] was consistently much shorter for PecSys (1.5 ± 0.4 cm) than non-gelling control (5.8 ± 1.6 cm); (ii) When PecSys was sprayed into a human nasal cavity cast model coated with a substrate containing a physiologically relevant concentration of calcium, PecSys solution was retained at the site of initial deposition with minimal redistribution, and no evidence of run-off/drip anteriorly or down the throat. In contrast, non-gelling control was significantly more mobile and consistently redistributed with run-off towards the throat. Conclusion In both models PecSys significantly reduced the potential for run-off/drip ensuring that more solution remained at the deposition site. In vivo, this enhancement of retention will provide optimum patient acceptability, modulate drug absorption and maximize the ability of drugs to be absorbed across the nasal mucosa and thus reduce variability in drug delivery. PMID:22803832
Abalos, Diego; Sanchez-Martin, Laura; Garcia-Torres, Lourdes; van Groenigen, Jan Willem; Vallejo, Antonio
2014-08-15
Drip irrigation combined with split application of fertilizer nitrogen (N) dissolved in the irrigation water (i.e. drip fertigation) is commonly considered best management practice for water and nutrient efficiency. As a consequence, its use is becoming widespread. Some of the main factors (water-filled pore space, NH4(+) and NO3(-)) regulating the emissions of greenhouse gases (i.e. N2O, CO2 and CH4) and NO from agroecosystems can easily be manipulated by drip fertigation without yield penalties. In this study, we tested management options to reduce these emissions in a field experiment with a melon (Cucumis melo L.) crop. Treatments included drip irrigation frequency (weekly/daily) and type of N fertilizer (urea/calcium nitrate) applied by fertigation. Crop yield, environmental parameters, soil mineral N concentrations and fluxes of N2O, NO, CH4 and CO2 were measured during 85 days. Fertigation with urea instead of calcium nitrate increased N2O and NO emissions by a factor of 2.4 and 2.9, respectively (P<0.005). Daily irrigation reduced NO emissions by 42% (P<0.005) but increased CO2 emissions by 21% (P<0.05) compared with weekly irrigation. We found no relation between irrigation frequency and N2O emissions. Based on yield-scaled Global Warming Potential as well as NO cumulative emissions, we conclude that weekly fertigation with a NO3(-)-based fertilizer is the best option to combine agronomic productivity with environmental sustainability. Our study shows that adequate management of drip fertigation, while contributing to the attainment of water and food security, may provide an opportunity for climate change mitigation. Copyright © 2014 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the purposes of this subpart, means to take action for the purpose of stopping or reducing leakage of.... Liquids dripping means any visible leakage from the seal including dripping, spraying, misting, clouding... compounds based on a detection principle such as infra-red, photo ionization, or thermal conductivity...
Ryu, Jaehoon; Lee, Kisu; Yun, Juyoung; Yu, Haejun; Lee, Jungsup; Jang, Jyongsik
2017-10-01
Paintable carbon electrode-based perovskite solar cells (PSCs) are of particular interest due to their material and fabrication process costs, as well as their moisture stability. However, printing the carbon paste on the perovskite layer limits the quality of the interface between the perovskite layer and carbon electrode. Herein, an attempt to enhance the performance of the paintable carbon-based PSCs is made using a modified solvent dripping method that involves dripping of the carbon nanotubes (CNTs), which is dispersed in chlorobenzene solution. This method allows CNTs to penetrate into both the perovskite film and carbon electrode, facilitating fast hole transport between the two layers. Furthermore, this method is results in increased open circuit voltage (V oc ) and fill factor (FF), providing better contact at the perovskite/carbon interfaces. The best devices made with CNT dripping show 13.57% power conversion efficiency and hysteresis-free performance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wheeler, T A; Porter, D O; Archer, D; Mullinix, B G
2008-09-01
Plots naturally infested with Rotylenchulus reniformis were sampled in the spring of 2006 and 2007 at depths of 15 and 30 cm in the bed, furrow over the drip tape, and "dry" furrow, and at approximately 40 to 45 cm depth in the bed and dry furrow. Then, 1,3-dichloropropene (Telone EC) was injected into the subsurface drip irrigation at 46 kg a.i./ha, and 3 to 4 weeks later the plots were resampled and assayed for nematodes. The transformed values for nematode population density (IvLRr) before fumigation were higher at 30 and 40 cm depths than at a 15 cm depth. IvLRr before fumigation was higher in the soil over the drip lines than in the bed or dry furrow and was higher in the bed than the dry furrow. IvLRr was higher in the plots to be fumigated than the plots that were not to be fumigated for all depths and locations except at a 15 cm depth over the drip lines, where the values were similar. However, after fumigation, IvLRr was lower over the drip lines at a 30 cm depth in plots that were fumigated compared to samples in a similar location and depth that were not fumigated. There were no other location/depth combinations where the fumigation reduced IvLRr below that in the nonfumigated plots. Yield in 2006, which was a very hot and dry year, was predicted adequately (R(2) = 0.67) by a linear model based on the preplant population density of R. reniformis, with a very steep slope (-2.8 kg lint/ha per R. reniformis/100 cm(3) soil). However, no relationship between nematode density and yield was seen in 2007, which had cooler weather for most of the season. Yield was not significantly improved by fumigation through the drip irrigation system in either year compared to plots treated only with aldicarb (0.84 kg a.i./ha), indicating that the level of control with fumigation did not kill enough R. reniformis to be successful.
NASA Astrophysics Data System (ADS)
Jiao, Huiqing; Zhao, Chengyi; Sheng, Yu; Chen, Yan; Shi, Jianchu; Li, Baoguo
2017-04-01
Water shortage and soil salinization increasingly become the main constraints for sustainable development of agriculture in Southern Xinjiang, China. Mulched drip irrigation, as a high-efficient water-saving irrigation method, has been widely applied in Southern Xinjiang for cotton production. In order to analyze the reasonability of describing the three-dimensional soil water and salt transport processes under mulched drip irrigation with a relatively simple two-dimensional model, a field experiment was conducted from 2007 to 2015 at Aksu of Southern Xinjiang, and soil water and salt transport processes were simulated through the three-dimensional and two-dimensional models based on COMSOL. Obvious differences were found between three-dimensional and two-dimensional simulations for soil water flow within the early 12 h of irrigation event and for soil salt transport in the area within 15 cm away from drip tubes during the whole irrigation event. The soil water and salt contents simulated by the two-dimensional model, however, agreed well with the mean values between two adjacent emitters simulated by the three-dimensional model, and also coincided with the measurements as corresponding RMSE less than 0.037 cm3 cm-3 and 1.80 g kg-1, indicating that the two-dimensional model was reliable for field irrigation management. Subsequently, the two-dimensional model was applied to simulate the dynamics of soil salinity for five numerical situations and for a widely adopted irrigation pattern in Southern Xinjiang (about 350 mm through mulched drip irrigation during growing season of cotton and total 400 mm through flooding irrigations before sowing and after harvesting). The simulation results indicated that the contribution of transpiration to salt accumulation in root layer was about 75% under mulched drip irrigation. Moreover, flooding irrigations before sowing and after harvesting were of great importance for salt leaching of arable layer, especially in bare strip where drip irrigation water hardly reached, and thus providing suitable root zone environment for cotton. Nevertheless, flooding irrigation should be further optimized to enhance water use efficiency.
ERIC Educational Resources Information Center
Shea, Kevin P.
1975-01-01
A new means of irrigation, called the drip or trickle system, has been proven more efficient and less wasteful than the current system of flood irrigation. As a result of this drip system, fertilizer-use efficiency is improved and crop yield, though never decreased, is sometimes increased in some crops. (MA)
On-farm irrigatrion system design and operation
USDA-ARS?s Scientific Manuscript database
Most commercial blueberry fields are irrigated by overhead sprinklers or drip. Water is typically applied one to two times per week as needed with sprinklers, and every one to three days with drip. Sprinkler systems are relatively simple to install and maintain, and when designed properly, obtain re...
Song, Jieli; Zeng, Jinpei; Zhang, Yongxia; Li, Pengfei; Zhang, Lihong; Chen, Cibin
2014-08-01
To study the effect of compound Danshen dripping pills and atorvastatin on restenosis after abdominal aorta angioplasty in rabbits. Rabbit models of abdominal aorta restenosis after angioplasty were established and treated with saline (group A), compound Danshen dripping pills (group B), atorvastatin (group C), or compound Danshen dripping pills plus atorvastatin (group D). HE staining was used to determine the thickness of arterial intimal hyperplasia and assess the morphological changes of the narrowed artery. Immunohistochemistry was employed to detect the expression of nuclear factor-κB (NF-κB) and monocyte chemoattractant protein-1 (MCP-1). Compared with group A, the 3 treatment groups showed significant increased vascular cavity area and reduced intimal area and percentage of intimal hyperplasia (P<0.05). The vascular cavity area, intimal area and percentage of intimal hyperplasia levels differed significantly between group D and groups B and C (P<0.05). Immunohistochemistry showed a significant reduction of the expression rate of NF-κB and MCP-1 in the 3 treatment groups compared with group A (P<0.05), and the reduction was especially obvious in group D (P<0.05). Compound danshen dripping pills combined with atorvastatin produces better effects than the drugs used alone in inhibiting vascular smooth muscle cell proliferation in rabbits after abdominal aorta angioplasty possibly due to a decreased expression of MCP-1 as a result of NF-κB inhibition.
Xie, Qiyuan; Tu, Ran; Wang, Nan; Ma, Xin; Jiang, Xi
2014-02-28
The objective of this work is to quantitatively investigate the dripping-burning and flowing fire of thermoplastics. A new experimental setup is developed with a heating vessel and a T-trough. Hot thermoplastic liquids are generated in the vessel by electric heating. N2 gas is continuously injected into the vessel to avoid a sudden ignition of fuel in it. The detailed flowing burning behaviors of pool fire in the T-trough are analyzed through the measurements of the mass, heat flux and temperatures etc. The experimental results suggest that a continuous dripping of melted thermoplastic liquids in a nearly constant mass rate can be successfully made in the new setup. It also shows that the mass dripping rate of melted PS liquid is smaller than PP and PE since its large viscosity. In addition, the flame spread velocities of hot liquids of PS in the T-trough are also smaller than that of PP and PE because of its large viscosity. The mass burning rate of the PP and PE pool fire in T-trough are smaller than PS. Finally, considering the heating, melting, dripping and flowing burning behaviors of these polymers, it is suggested that the fire hazard of PE and PP are obviously higher than PS for their faster flowing burning. Copyright © 2013 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The influence of irrigation event frequency on water productivity, yield components, and berry maturity under two severities of sustained deficit irrigation was evaluated in field grown Malbec grapevines (Vitis vinifera L.) over three growing seasons. Above ground drip was used to supply vines with ...
Reducing water inputs with subsurface drip irrigation may improve alfalfa nutritive value
USDA-ARS?s Scientific Manuscript database
Irrigated alfalfa (Medicago sativa L.) is an important forage crop for western Kansas dairy producers. Concerns over decreasing groundwater supplies have prompted the need to develop more efficient methods of irrigation. We investigated the effects of a subsurface drip irrigation system at three lev...
Yield response and economics of shallow subsurface drip irrigation systems
USDA-ARS?s Scientific Manuscript database
Field tests were conducted using shallow subsurface drip irrigation (S3DI) on cotton (Gossypium hirsutum, L.), corn (Zea mays, L.), and peanut (Arachis hypogeae, L.) in rotation to investigate yield potential and economic sustainability of this irrigation system technique over a six year period. Dri...
Progress on field study with precision mobile drip irrigation technologly
USDA-ARS?s Scientific Manuscript database
Precision mobile drip irrigation (PMDI) is a technology that was developed in the 1970s that converts drop hoses on moving irrigation systems to dripline. Although this technology was developed more than 40 years ago, it was not widely implemented and few studies reported on its performance. Recentl...
Irrigation strategies using subsurface drip irrigation
USDA-ARS?s Scientific Manuscript database
Subsurface drip irrigation (SDI) is practiced on approximately 60,000 ha in the Texas High Plains region of the USA. Adoption of SDI continues to increase in the region. This has been attributed to record drought in Texas and the US Southwest in recent years, declining irrigation well yields, and ev...
Levels of polychlorinated biphenyls and pesticides in bluefish before and after cooking.
Trotter, W J; Corneliussen, P E; Laski, R R; Vannelli, J J
1989-01-01
Similar levels of polychlorinated biphenyls (PCBs), pesticides, and fat were found in 20 correlated uncooked and cooked (baked) bluefish fillets. Fillets averaged 2.5 ppm PCBs as Aroclor 1254 (whole basis) before cooking; after cooking, with the oil drippings and skin discarded, the average PCB level was 2.7 ppm. Although PCBs, lipophilic pesticides, and fat were lost along with oil drippings and skin that were discarded after cooking, the moisture loss in the fillets during cooking compensated for these weight losses almost completely. After the fillets were cooked and the oil drippings and skin were discarded, the PCB content of the fillets was 27% lower on the average.
Preface for DRIP X proceedings
NASA Astrophysics Data System (ADS)
Landesman (Chairman), Jean-Pierre; Montgomery (Co-Chairman), Paul C.
2004-07-01
This issue of the “European Physical Journal Applied Physics” contains the papers presented at the Tenth International Conference on Defects: Recognition, Imaging and Physics in Semiconductors (DRIP X), held in Batz-sur-Mer, France, from 29th September to 2nd October, 2003. The conference gathered 150 scientists from academic institutions and industry of 20 countries from around the world, showing the pertinence of the biennial series of DRIP conferences. A much appreciated aspect of DRIP X was the variety of the different backgrounds of the participants, leading to much fruitful exchange and stimulating discussion. Following the spirit of previous DRIP conferences, the main concern of DRIP X was the methodology and the physics of measurement procedures, together with specific developments in instrumentation, and their relationship with the structural, optical and electrical properties of semiconductor defects. The topics covered related to the different methods and techniques used for the recognition and imaging of defects in semiconductor materials (Si, III-V's including nitrides, SiC, IV-IV's, II-VI's, organic compounds, ...) and in semiconductor devices ranging from defects in the raw materials at the wafer level, through process-induced defects and defects that appear during operation (burn-in, aging tests, ...). One of the highlights of the social events of DRIP X was the awards ceremony as part of the celebrations for the Tenth meeting of DRIP. The founders of the DRIP series, Professor Jean-Pierre Fillard and Professor Tomoya Ogawa were both invited to be permanent members of the International Steering Committee and awarded with appropriately engraved trophies to mark the occasion. With help form Tomoya Ogawa, Jean-Pierre Fillard organized the first DRIP conference in 1985 in La Grande Motte, France. The amusing and thought provoking slide presentation by Jean-Pierre Fillard went a great way to remind us of the history of this conference series and to fill with enthusiasm the young and the not-so-young researchers alike to face up to the ever present challenges of defect analysis in semiconductors. We were reminded that with the large variety of imaging techniques available and the vast improvements in technology, there lies ahead tremendous potential for gaining a better understanding of defects in semiconductors by applying image processing techniques. DRIP X was arranged into 13 oral sessions, consisting of 12 invited talks and 59 contributed papers, and two poster sessions made up from 76 contributed papers. The Proceeding chapters reflect the oral sessions with the poster papers being added to the relevant sessions. The sessions covered the following topics: Sessions 1 and 2 were on nanostructures and near field probe techniques, with invited papers from F. Priolo on the luminescence properties of Si nanocrystals and L.K. Orlov on quantum wires in GaAs/GaInAs materials systems prepared by electrochemical etching. Session 3 was on defects in silicon, with an invited paper by Y. Mochizuki on the characterization of process induced defects in deep sub-micron transistors by electrically detected magnetic resonance and transmission electron microscopy. Session 4 was on electrical properties, with an invited paper by D. Roy on the electrical characteristics of advanced MOS structures with ultra-thin oxides. Sessions 5 and 6 were on defects in wide bandgap materials, with invited papers by S. Müller on the current status of the quality of SiC substrates and epitaxial layers, and by J.L Weyher on the characterization of defects in wide band gap semiconductors (mainly GaN) by defect-selective etching in combination with other standard methods (transmission electron microscopy, photo-luminescence, micro-Raman). Session 7 was on spectroscopic techniques, with an invited paper by V. Higgs on the use of photo-luminescence wafer mapping in the context of the production of Si or SiGe materials. Session 8 was on electron beam methods, with an invited paper by R. Balboni on strain mapping in deep sub-micron Si devices using convergent beam electron diffraction in STEM. Session 9 was a specific session on the issue of defect mapping over large area wafers, a new idea to the DRIP series, for investigating the possibilities of implementing different kinds of techniques having a potential for high lateral resolution over the very large areas required nowadays for semiconductor substrates and materials. This session was introduced by an invited talk by S. Ostapenko on defect mapping in multi-crystalline Si as well as SiC wafers. Session 10 on multi-techniques investigation, also new to the DRIP series, showed the importance of having access to a wide variety of techniques and managing such a “strategy” in an optimal way for solving certain defect problems present in today's semiconductor materials. The session was introduced by an invited talk by I. De Wolf, showing the importance of this approach to failure analysis in microelectronics. Session 11 was on X-ray based techniques, with an invited paper by U. Zeimer on the use of grazing incidence X-ray diffraction and X-ray spectroscopy (in the scanning or transmission electron microscope) for the study of epitaxial layers grown after lateral patterning at the nanometer scale of underlying layers. Session 12 was on defects in semiconductor lasers and other devices, with an invited paper by J. Jiménez on the use of spectroscopic techniques (cathodo-luminescence, micro-Raman...) for the assessment of defects in relation to aging behavior in high-power AlGaAs/GaAs laser diodes. Session 13, the final session, was on electronic properties through contactless characterization. We would like to thank all those involved in the local Organizing Committee, the International Steering Committee and the Scientific Committee for their hard work in helping with the organization of DRIP X, as well as all those who participated in the conference as delegates, speakers, invited speakers and chairpersons for contributing to such a successful conference. Thanks are also due to colleagues who served as referees for the papers. For its eleventh edition in 2005, DRIP XI will normally be organized by Professor Zhanguo Wang in Peking, China. Details of DRIP XI will be posted on the DRIP X website www.cnrs-imn.fr/dripx.
40 CFR 63.163 - Standards: Pumps in light liquid service.
Code of Federal Regulations, 2010 CFR
2010-07-01
... handling polymerizing monomers; (B) 2,000 parts per million or greater for pumps in food/medical service... visual inspection each calendar week for indications of liquids dripping from the pump seal. If there are... pump is checked by visual inspection each calendar week for indications of liquids dripping from the...
New proton drip-line nuclei relevant to nuclear astrophysics
NASA Astrophysics Data System (ADS)
Ferreira, L. S.
2018-02-01
We discuss recent results on decay of exotic proton rich nuclei at the proton drip line for Z < 50, that are of great importance for nuclear astrophysics models. From the interpretation of the data, we assign their properties, and impose a constraint on the separation energy which has strong implications in the network calculations.
Yield and economics of shallow subsurface drip irrigation (S3DI) and furrow diking
USDA-ARS?s Scientific Manuscript database
A shallow subsurface drip irrigation (S3DI) was installed yearly in conjunction with furrow diking to document yield and economic benefit of these techniques on peanut (Arachis hypogaea L.), cotton (Gossypium hirsutum L.), and corn (Zea mays L.). This research was conducted for three years from 2005...
Simplified Equations to Estimate Flushline Diameter for Subsurface Drip Irrigation Systems
USDA-ARS?s Scientific Manuscript database
A formulation of the Hazen-Williams equation is typically used to determine the diameter of the common flushline that is often used at the distal end of subsurface drip irrigation systems to aid in joint flushing of a group of driplines. Although this method is accurate, its usage is not intuitive a...
Shallow subsurface drip irrigation (S3DI) for small irregular-shaped fields in the southeast
USDA-ARS?s Scientific Manuscript database
Field tests were conducted using S3DI on cotton (Gossypium hirsutum, L.), corn (Zea mays, L.), and peanut (Arachis hypogeae, L.) rotations to investigate yield potential and economic sustainability of this irrigation system. Drip tubing was installed in alternate row middles, strip tillage was used ...
ERIC Educational Resources Information Center
Yarbro, Susan
A study examined the relationship between amount of television viewing and recognition of stereotypes. Subjects, 60 undergraduate students enrolled in mass media, advertising, and public relations classes at Indiana University, viewed movies produced by United States production companies but set in developing nations. After each movie, students…
46 CFR 58.10-5 - Gasoline engine installations.
Code of Federal Regulations, 2010 CFR
2010-10-01
.... Drip collectors shall be covered with flame screens. Note: It is recommended that drip collectors be...-inch asbestos board covered with not less than No. 22 USSG (U.S. standard gage) galvanized sheet iron... constructed of corrosion resisting material “at the hull penetration.” [CGFR 68-82, 33 FR 18878, Dec. 18, 1968...
Cabrera, J Alfonso; Wang, Dong; Schneider, Sally M; Hanson, Bradley D
2012-05-01
Many California grape growers use preplant fumigation to ensure uniform and healthy grapevine establishment in replant situations. A field study was conducted to evaluate the performance of subsurface drip-applied chemical alternatives to methyl bromide on plant-parasitic nematodes, plant vigor and fruit yield during the 6 year period following replanting. Subsurface drip fumigation with 1,3-dichloropropene plus chloropicrin and with iodomethane plus chloropicrin had generally similar nematicide activity as methyl bromide in three grape types, while sodium azide was less effective. The combination of 1,3-dichloropropene plus chloropicrin enhanced vine vigor similarly to methyl bromide. However, all plots treated with alternative fumigants produced less fruit yield than methyl bromide over the 4 years of evaluation. Subsurface drip fumigation with alternative chemicals to methyl bromide generally provided adequate management of plant-parasitic nematodes during the vine establishment period. However, further research is required to increase the performance of alternative chemicals against other components of the replant problem, as grape yield in vines grown in the alternative treatments was lower than in methyl bromide. Copyright © 2011 Society of Chemical Industry.
Martins, Evandro; Poncelet, Denis; Rodrigues, Ramila Cristiane; Renard, Denis
2017-09-01
In the first part of this article, it was described an innovative method of oil encapsulation from dripping-inverse gelation using water-in-oil (W/O) emulsions. It was noticed that the method of oil encapsulation was quite different depending on the emulsion type (W/O or oil-in-water (O/W)) used and that the emulsion structure (W/O or O/W) had a high impact on the dripping technique and the capsules characteristics. The objective of this article was to elucidate the differences between the dripping techniques using both emulsions and compare the capsule properties (mechanical resistance and release of actives). The oil encapsulation using O/W emulsions was easier to perform and did not require the use of emulsion destabilisers. However, capsules produced from W/O emulsions were more resistant to compression and showed the slower release of actives over time. The findings detailed here widened the knowledge of the inverse gelation and gave opportunities to develop new techniques of oil encapsulation.
Determination of pork quality attributes using hyperspectral imaging technique
NASA Astrophysics Data System (ADS)
Qiao, Jun; Wang, Ning; Ngadi, M. O.; Gunenc, Aynur
2005-11-01
Meat grading has always been a research topic because of large variations among meat products. Many subjective assessment methods with poor repeatability and tedious procedures are still widely used in meat industry. In this study, a hyperspectral-imaging-based technique was developed to achieve fast, accurate, and objective determination of pork quality attributes. The system was able to extract the spectral and spatial characteristics for simultaneous determination of drip loss and pH in pork meat. Two sets of six significant feature wavelengths were selected for predicting the drip loss (590, 645, 721, 752, 803 and 850 nm) and pH (430, 448, 470, 890, 980 and 999 nm). Two feed-forward neural network models were developed. The results showed that the correlation coefficient (r) between the predicted and actual drip loss and pH were 0.71, and 0.58, respectively, by Model 1 and 0.80 for drip loss and 0.67 for pH by Model 2. The color levels of meat samples were also mapped successfully based on a digitalized Meat Color Standard.
NASA Astrophysics Data System (ADS)
Wilson, Lionel; Head, James W.
2017-04-01
Volcanic eruptions on the Moon take place in conditions of low gravity and negligible atmospheric pressure, very different from those on Earth. These differences lead to characteristic lunar versions of hawaiian and strombolian explosive activity, and to the production of unusual eruption products neither predicted nor observed on Earth in the terminal stages of eruptions. These include the unusual mounds and rough (hummocky, blocky) floors of some small-shield summit pit crater floors, elongate depressions and mare flows (similar to those named ;irregular mare patches;, IMPs, by Braden et al., 2014). We examine the ascent and eruption of magma in the waning stages of the eruptive process in small-shield summit pit crater floors and show that many IMP characteristics can be plausibly explained by basaltic magma behavior as the rise rate of the ascending magma slows to zero, volatiles exsolve in the dike and lava lake to form a very vesicular foam, and the dike begins to close. Stresses in the very vesicular and porous lava lake crust produce fractures through which the foam extrudes at a rate determined by its non-Newtonian rheology. Waning-stage extrusion of viscous magmatic foams to the surface produces convex mounds whose physical properties inhibit typical impact crater formation and regolith development, creating an artificially young crater retention age. This mechanism for the production and extrusion of very vesicular magmatic foams is also applicable to waning-stage dike closure associated with pit craters atop dikes, and fissure eruptions in the lunar maria, providing an explanation for many irregular mare patches. This mechanism implies that IMPs and associated mare structures (small shields, pit craters and fissure flows) formed synchronously billions of years ago, in contrast to very young ages (less than 100 million years) proposed for IMPs by some workers.
Structural, compositional, and sensorial properties of United States commercial ice cream products.
Warren, Maya M; Hartel, Richard W
2014-10-01
Commercial vanilla ice cream products from the United States (full fat, low fat, and nonfat) were analyzed for their structural, behavioral (i.e., melt rate and drip-through), compositional, and sensorial attributes. Mean size distributions of ice crystals and air cells, drip-through rates, percent partially coalesced fat, percent overrun and total fat, and density were determined. A trained panel carried out sensory analyses in order to determine correlations between ice cream microstructure attributes and sensory properties using a Spectrum(TM) descriptive analysis. Analyses included melt rate, breakdown, size of ice particulates (iciness), denseness, greasiness, and overall creaminess. To determine relationships and interactions, principle component analysis and multivariate pairwise correlation were performed within and between the instrumental and sensorial data. Greasiness and creaminess negatively correlated with drip-through rate and creaminess correlated with percent total fat and percent fat destabilization. Percent fat did not determine the melt rate on a sensorial level. However, drip-through rate at ambient temperatures was predicted by total fat content of the samples. Based on sensory analysis, high-fat products were noted to be creamier than low and nonfat products. Iciness did not correlate with mean ice crystal size and drip-through rate did not predict sensory melt rate. Furthermore, on a sensorial level, greasiness positively correlated with total percent fat destabilization and mean air cell size positively correlated with denseness. These results indicate that commercial ice cream products vary widely in composition, structure, behavior, and sensory properties. There is a wide range of commercial ice creams in the United States market, ranging from full fat to nonfat. In this research we showed that these ice creams vary greatly in their microstructures, behaviors (the melt/drip-though, collapse, and/or stand up properties of ice cream products at ambient temperatures), and sensory properties. © 2014 Institute of Food Technologists®
Assessing the use of 3H-3He dating to determine the subsurface transit time of cave drip waters.
Kluge, Tobias; Wieser, Martin; Aeschbach-Hertig, Werner
2010-09-01
(3)H-(3)He measurements constitute a well-established method for the determination of the residence time of young groundwater. However, this method has rarely been applied to karstified aquifers and in particular to drip water in caves, despite the importance of the information which may be obtained. Besides the determination of transfer times of climate signals from the atmosphere through the epikarst to speleothems as climate archives, (3)H-(3)He together with Ne, Ar, Kr, Xe data may also help to give new insights into the local hydrogeology, e.g. the possible existence of a perched aquifer above a cave. In order to check the applicability of (3)H-(3)He dating to cave drips, we collected drip water samples from three adjacent caves in northwestern Germany during several campaigns. The noble gas data were evaluated by inverse modelling to obtain recharge temperature and excess air, supporting the calculation of the tritiogenic (3)He and hence the (3)H-(3)He age. Although atmospheric noble gases were often found to be close to equilibrium with the cave atmosphere, several drip water samples yielded an elevated (3)He/(4)He ratio, providing evidence for the accumulation of (3)He from the decay of (3)H. No significant contribution of radiogenic (4)He was found, corresponding to the low residence times mostly in the range of one to three years. Despite complications during sampling, conditions of a perched aquifer could be confirmed by replicate samples at one drip site. Here, the excess air indicator ΔNe was about 10 %, comparable to typical values found in aquifers in mid-latitudes. The mean (3)H-(3)He age of 2.1 years at this site presumably refers to the residence time in the perched aquifer and is lower than the entire transit time of 3.4 years estimated from the tritium data.
Seasonal variations in modern speleothem calcite growth in Central Texas, U.S.A
Banner, J.L.; Guilfoyle, A.; James, E.W.; Stern, L.A.; Musgrove, M.
2007-01-01
Variations in growth rates of speleothem calcite have been hypothesized to reflect changes in a range of paleoenvironmental variables, including atmospheric temperature and precipitation, drip-water composition, and the rate of soil CO2 delivery to the subsurface. To test these hypotheses, we quantified growth rates of modern speleothem calcite on artificial substrates and monitored concurrent environmental conditions in three caves across the Edwards Plateau in central Texas. Within each of two caves, different drip sites exhibit similar annual cycles in calcite growth rates, even though there are large differences between the mean growth rates at the sites. The growth-rate cycles inversely correlate to seasonal changes in regional air temperature outside the caves, with near-zero growth rates during the warmest summer months, and peak growth rates in fall through spring. Drip sites from caves 130 km apart exhibit similar temporal patterns in calcite growth rate, indicating a controlling mechanism on at least this distance. The seasonal variations in calcite growth rate can be accounted for by a primary control by regional temperature effects on ventilation of cave-air CO2 concentrations and/or drip-water CO2 contents. In contrast, site-to-site differences in the magnitude of calcite growth rates within an individual cave appear to be controlled principally by differences in drip rate. A secondary control by drip rate on the growth rate temporal variations is suggested by interannual variations. No calcite growth was observed in the third cave, which has relatively high values of and small seasonal changes in cave-air CO2. These results indicate that growth-rate variations in ancient speleothems may serve as a paleoenvironmental proxy with seasonal resolution. By applying this approach of monitoring the modern system, speleothem growth rate and geochemical proxies for paleoenviromnental change may be evaluated and calibrated. Copyright ?? 2007, SEPM (Society for Sedimentary Geology).
Evaluation of fumigation and surface seal methods on fumigant emissions in an orchard replant field.
Gao, Suduan; Trout, Thomas J; Schneider, Sally
2008-01-01
Soil fumigation is an important management practice for controlling soil pests and enabling successful replanting of orchards. Reducing emissions is required to minimize the possible worker and bystander risk and the contribution of fumigants to the atmosphere as volatile organic compounds that lead to the formation of ground-level ozone. A field trial was conducted in a peach orchard replant field to investigate the effects of fumigation method (shank-injection vs. subsurface drip-application treatments) and surface treatments (water applications and plastic tarps) on emissions of 1,3-dichloropropene (1,3-D) and chloropicrin (CP) from shank-injection of Telone C-35 and drip application of InLine. Treatments included control (no water or soil surface treatment); standard high-density polyethylene (HDPE) tarp, virtually impermeable film (VIF) tarp, and pre-irrigation, all over shank injection; and HDPE tarp over and irrigation with micro-sprinklers before and after the drip application. The highest 1,3-D and CP emission losses over a 2-wk monitoring period were from the control (36% 1,3-D and 30% CP) and HDPE tarp (43% 1,3-D and 17% CP) over shank injection. The pre-irrigation 4 d before fumigation and VIF tarp over shank injection had similar total emission losses (19% 1,3-D and 8-9% CP). The HDPE tarp and irrigations over subsurface drip-application treatments resulted in similar and the lowest emission losses (12-13% 1,3-D, and 2-3% CP). Lower fumigant concentrations in the soil-gas phase were observed with drip-application than in the shank-injection treatments; however, all treatments provided 100% kill to citrus nematodes in bags buried from 30 to 90 cm depth. Pre-irrigation and drip application seem to be effective to minimize emissions of 1,3-D and CP.
NASA Astrophysics Data System (ADS)
Pitcavage, E.; Furman, T.; Nelson, W. R.
2017-12-01
The East African Rift System (EARS) is earth's largest continental divergent boundary and an unparalleled natural laboratory for understanding magmatism related to successful continental rifting. Classic views of continental rifting suggest that faulting and extension are facilitated by ascending magmas that weaken the lithosphere thermally and structurally within basin-bounding accommodation zones. In the EARS Western Rift (WR), many volcanic fields are not aligned along rift-bounding faults, and magma compositions lack evidence for asthenospheric inputs expected along lithosphere-penetrating fault systems. We note that compositional input from the Cenozoic Afar mantle plume is not recognized convincingly in WR mafic alkaline lavas1. Rather, magma compositions demonstrate significant input from anciently metasomatized sub-continental lithospheric mantle (SCLM). Destabilization and foundering of metasomatized SCLM has an increasingly recognized role in continental magmatism worldwide, producing volatile-rich, alkaline volcanics when drips of foundered SCLM devolatilize and melt on descent. This magmatism can lead to faulting: the lithospheric thinning that results from this process may play a role in physical aspects of rifting, contrasting with faulting facilitated by asthenospheric melts. Geochemical and geophysical evidence indicates that drip magmatism has occurred in several EARS provinces, including Turkana, Chyulu Hills, and in Afar2 where it is geographically coincident with successful rifting. We present bulk geochemical data that suggest drip melting of metasomatized SCLM is occurring in several WR volcanic fields. We focus on Bufumbira (Uganda), where mafic lavas are derived from garnet+phlogopite+amphibole+zircon-bearing pyroxenite, indicating a deep metasomatized SCLM source. Isotopic and trace element data suggest that extent of melting increased with depth of melting, a signature of lithospheric drip. We propose that drip magmatism is an important driver of volcanism in the early history of these igneous provinces and may be fundamentally related to the onset of successful rifting. 1. Graham, D. et al. Goldschmidt Conference Abstracts (2011). 2. Furman, T., et al. Geochim. Cosmochim. Acta 185, 418-434 (2016).
Zhang, Ming Zhi; Niu, Wen Quan; Xu, Jian; Li, Yuan
2016-06-01
In order to explore the influences of micro-irrigation and subsoiling before planting on enzyme activity in soil rhizosphere and summer maize yield, an orthogonal experiment was carried out with three factors of micro-irrigation method, irrigation depth, and subsoiling depth. The factor of irrigation method included surface drip irrigation, subsurface drip irrigation, and moistube-irrigation; three levels of irrigation depth were obtained by controlling the lower limit of soil water content to 50%, 65%, and 80% of field holding capacity, respectively; and three depths of deep subsoiling were 20, 40, and 60 cm. The results showed that the activities of catalase and urease increased first and then decreased, while the activity of phosphatase followed an opposite trend in the growth season of summer maize. Compared with surface drip irrigation and moistube-irrigation, subsurface drip irrigation increased the average soil moisture of 0-80 cm layer by 6.3% and 1.8% in the growth season, respectively. Subsurface drip irrigation could significantly increase soil urease activity, roots volume, and yield of summer maize. With the increase of irrigation level, soil phosphatase activity decreased first and then increased, while urease activity and yield increased first and then decreased. The average soil moisture and root volume all increased in the growth season of summer maize. The increments of yield and root volume from subsoiling of 40 to 20 cm were greater than those from 60 to 40 cm. The highest enzyme activity was obtained with the treatment of subsoiling of 40 cm. In terms of improving water resource use efficiency, nitrogen use efficiency, and crop yield, the best management strategy of summer maize was the combination of subsurface drip irrigation, controlling the lower limit of soil water content to 65% of field holding capacity, and 40 cm subsoiling before planting.
Abuarab, Mohamed; Mostafa, Ehab; Ibrahim, Mohamed
2012-01-01
Subsurface drip irrigation (SDI) can substantially reduce the amount of irrigation water needed for corn production. However, corn yields need to be improved to offset the initial cost of drip installation. Air-injection is at least potentially applicable to the (SDI) system. However, the vertical stream of emitted air moving above the emitter outlet directly toward the surface creates a chimney effect, which should be avoided, and to ensure that there are adequate oxygen for root respiration. A field study was conducted in 2010 and 2011, to evaluate the effect of air-injection into the irrigation stream in SDI on the performance of corn. Experimental treatments were drip irrigation (DI), SDI, and SDI with air injection. The leaf area per plant with air injected was 1.477 and 1.0045 times greater in the aerated treatment than in DI and SDI, respectively. Grain filling was faster, and terminated earlier under air-injected drip system, than in DI. Root distribution, stem diameter, plant height and number of grains per plant were noticed to be higher under air injection than DI and SDI. Air injection had the highest water use efficiency (WUE) and irrigation water use efficiency (IWUE) in both growing seasons; with values of 1.442 and 1.096 in 2010 and 1.463 and 1.112 in 2011 for WUE and IWUE respectively. In comparison with DI and SDI, the air injection treatment achieved a significantly higher productivity through the two seasons. Yield increases due to air injection were 37.78% and 12.27% greater in 2010 and 38.46% and 12.5% in 2011 compared to the DI and SDI treatments, respectively. Data from this study indicate that corn yield can be improved under SDI if the drip water is aerated. PMID:25685457
NASA Astrophysics Data System (ADS)
Mahmud, K.; Mariethoz, G.; Baker, A.; Treble, P. C.; Markowska, M.; McGuire, E.
2016-01-01
Limestone aeolianites constitute karstic aquifers covering much of the western and southern Australian coastal fringe. They are a key groundwater resource for a range of industries such as winery and tourism, and provide important ecosystem services such as habitat for stygofauna. Moreover, recharge estimation is important for understanding the water cycle, for contaminant transport, for water management, and for stalagmite-based paleoclimate reconstructions. Caves offer a natural inception point to observe both the long-term groundwater recharge and the preferential movement of water through the unsaturated zone of such limestone. With the availability of automated drip rate logging systems and remote sensing techniques, it is now possible to deploy the combination of these methods for larger-scale studies of infiltration processes within a cave. In this study, we utilize a spatial survey of automated cave drip monitoring in two large chambers of Golgotha Cave, south-western Western Australia (SWWA), with the aim of better understanding infiltration water movement and the relationship between infiltration, stalactite morphology, and unsaturated zone recharge. By applying morphological analysis of ceiling features from Terrestrial LiDAR (T-LiDAR) data, coupled with drip time series and climate data from 2012 to 2014, we demonstrate the nature of the relationships between infiltration through fractures in the limestone and unsaturated zone recharge. Similarities between drip rate time series are interpreted in terms of flow patterns, cave chamber morphology, and lithology. Moreover, we develop a new technique to estimate recharge in large-scale caves, engaging flow classification to determine the cave ceiling area covered by each flow category and drip data for the entire observation period, to calculate the total volume of cave discharge. This new technique can be applied to other cave sites to identify highly focussed areas of recharge and can help to better estimate the total recharge volume.
NASA Astrophysics Data System (ADS)
Mahmud, K.; Mariethoz, G.; Baker, A.; Treble, P. C.; Markowska, M.; McGuire, E.
2015-09-01
Limestone aeolianites constitute karstic aquifers covering much of the western and southern Australian coastal fringe. They are a key groundwater resource for a range of industries such as winery and tourism, and provide important ecosystem services such as habitat for stygofauna. Moreover, recharge estimation is important for understanding the water cycle, for contaminant transport, for water management and for stalagmite-based paleoclimate reconstructions. Caves offer a natural inception point to observe both the long-term groundwater recharge and the preferential movement of water through the unsaturated zone of such limestone. With the availability of automated drip rate logging systems and remote sensing techniques, it is now possible to deploy the combination of these methods for larger scale studies of infiltration processes within a cave. In this study, we utilize a spatial survey of automated cave drip monitoring in two large chambers of the Golgotha Cave, South-West Western Australia (SWWA), with the aim of better understanding infiltration water movement and the relationship between infiltration, stalactite morphology and unsaturated zone recharge. By applying morphological analysis of ceiling features from Terrestrial LiDAR (T-LiDAR) data, coupled with drip time series and climate data from 2012-2014, we demonstrate the nature of the relationships between infiltration through fractures in the limestone and unsaturated zone recharge. Similarities between drip-rate time series are interpreted in terms of flow patterns, cave chamber morphology and lithology. Moreover, we develop a new technique to estimate recharge in large scale caves, engaging flow classification to determine the cave ceiling area covered by each flow category and drip data for the entire observation period, to calculate the total volume of cave discharge. This new technique can be applied to other cave sites to identify highly focused areas of recharge and can help to better estimate the total recharge volume.
Fault-controlled pluton emplacement in the Sevier fold-and-thrust belt of southwest Montana, USA
NASA Astrophysics Data System (ADS)
Kalakay, Thomas J.; John, Barbara E.; Lageson, David R.
2001-06-01
Problems associated with syncompressional pluton emplacement center on the need to make room for magma in environments where crustal shortening, not extension, occurs on a regional scale. New structural data from the Pioneer and Boulder batholiths of southwest Montana, USA, suggest emplacement at the top of frontal thrust ramps as composite tabular bodies at crustal depths between 1 and 10 km. Frontal thrust facilitated pluton emplacement was accommodated by: (1) a magma feeder zone created along the ramp interface; (2) providing 'releasing steps' at ramp tops that serve as initial points of emplacement and subsequent pluton growth; and (3) localizing antithetic back-thrusts that assist in pluton ascent. A model of magma emplacement is proposed that involves these elements. This model for syntectonic ramp-top emplacement of plutons helps explain how space is made for plutons within fold-and-thrust belts.
NASA Astrophysics Data System (ADS)
Yang, L. A., Jr.
2016-12-01
Trace elements demonstrate apparent seasonal variation in the lamina of speleothems in recent years, providing the possibility of studying the changing seasonality of the earth's climate in the past and attracting much extensive attention. As one of the most significant biological elements, the utilization of biology for phosphorus has a direct impact on the growth of animals and plants on the earth surface. The research revolves around standard recovery test of P drip water samples at HS4 drop site in different periods (four periods in total), and the quantitative analysis of phosphates in drip water samples of HS4 drop site within HeShang Cave, qingjiang river, Hubei province was made, recognizing the orthophosphate seasonal changes in karst system and its response to the environment of the earth's surface. The results manifest that the maximum concentration value of phosphorus in drip water samples from 2005 to 2012 is 12.1μg/L(2007-8-14), and the minimum concentration value is 0.1μg/L(2009-3-16), with the average value of 4.55μg/L. The P concentration in HeShang Cave is in accordance with the exclusively reported P data in Ernesto cave in Italy at present. The phosphorus concentration fluctuates seasonally by and large: high in summer and autumn while low in winter and spring, which has common in similar seasonal cycles with synchronous temperatures and drip water rates, also conforming to local temperature and precipitation changes. Plant productivity (determines the organic quality supplied to soil), microbiological effects (relate to temperature and humidity) and underground water permeability (relate to the precipitation and surrounding rock structure) can have an impact on the concentration of phosphorus in drip water. In winter and spring, organic phosphorus decomposition is slow and the phosphorus entering into the karst water is less as low temperature and less rainfall and weak biological process influence, resulting in the phosphorus concentration in drip water is low. With summer's approaching, temperatures rise and precipitations increase, and biological effects enhance, which cause a distinct elevation of the concentration of phosphorus. The value of phosphorus concentration reaches the peak since the turn of the summer - autumn.
Effect of irrigation techniques and strategies on water footprint of growing crops
NASA Astrophysics Data System (ADS)
Chukalla, A. D.; Krol, M. S.; Hoekstra, A. Y. Y.
2014-12-01
Reducing the water footprint (WF) of growing crops, the largest water user and a significant contributor to the WF of many consumer products, plays a significant role in integrated and sustainable water management. The water footprint for growing crop is accounted by relating the crop yield with the corresponding consumptive water use (CWU), which both can be adjusted by measures that affect the crop growth and root-zone soil water balance. This study explored the scope for reducing the water footprint of irrigated crops by experimenting set of field level technical and managerial measures: (i) irrigation technologies (Furrow, sprinkler, drip and sub-surface drip), (ii) irrigation strategies (full and a range of sustained and controlled deficit) and (iii) field management options (zero, organic and synthetic mulching). Ranges of cases were also considered: (a) Arid and semi-arid environment (b) Loam and Sandy-loam soil types and (c) for Potato, Wheat and Maize crops; under (c) wet, normal and dry years. AquaCrop, the water driven crop growth and soil water balance model, offered the opportunity to systematically experiment these measures on water consumption and yield. Further, the green and blue water footprints of growing crop corresponding to each measure were computed by separating the root zone fluxes of the AquaCrop output into the green and blue soil water stocks and their corresponding fluxes. Results showed that in arid environment reduction in irrigation supply, CWU and WF up to 300 mm, 80 mm and 75 m3/tonne respectively can be achieved for Maize by a combination of organic mulching and drip technology with controlled deficit irrigation strategies (10-20-30-40% deficit with reference to the full irrigation requirement). These reductions come with a yield drop of 0.54 tonne/ha. In the same environment under the absence of mulching practice, the sub-surface drip perform better in reducing CWU and WF of irrigated crops followed by drip and furrow irrigation technique. This rank though changes in non-moisture limiting condition (wet year) drip performing better in reducing the WF of growing crops than sub-surface drip. It was observed that with all range of irrigation techniques, strategies and field management practices there is more room in reducing the WF of growing crops in loam than sandy-loam soil.
Rainfall and cave water isotopic relationships in two South-France sites
NASA Astrophysics Data System (ADS)
Genty, D.; Labuhn, I.; Hoffmann, G.; Danis, P. A.; Mestre, O.; Bourges, F.; Wainer, K.; Massault, M.; Van Exter, S.; Régnier, E.; Orengo, Ph.; Falourd, S.; Minster, B.
2014-04-01
This article presents isotopic measurements (δ18O and δD) of precipitation and cave drip water from two sites in southern France in order to investigate the link between rainfall and seepage water, and to characterize regional rainfall isotopic variability. These data, which are among the longest series in France, come from two rainfall stations in south-west France (Le Mas 1996-2012, and Villars 1998-2012; typically under Atlantic influence), and from one station in the south-east (Orgnac 2000-2012; under both Mediterranean and Atlantic influence). Rainfall isotopic composition is compared to drip water collected under stalactites from the same sites: Villars Cave (four drip stations 1999-2012) in the south-west, and Chauvet Cave (two drip stations 2000-2012) in the south-east, near Orgnac. The study of these isotopic data sets allows the following conclusions to be drawn about the rainfall/drip water relationships and about rainfall variability: (1) the cave drip water isotopic composition does not show any significant changes since the beginning of measurements; in order to explain its isotopic signature it is necessary to integrate weighted rainfall δ18O of all months during several years, which demonstrates that, even at shallow depths (10-50 m), cave drip water is a mixture of rain water integrated over relatively long periods, which give an apparent time residence from several months to up to several years. These results have important consequences on the interpretation of proxies like speleothem fluid inclusions and tree-ring cellulose isotopic composition, which are used for paleoclimatic studies; (2) in the Villars Cave, where drip stations at two different depths were studied, lower δ18O values were observed in the lower galleries, which might be due to winter season overflows during infiltration and/or to older rain water with a different isotopic composition that reaches the lower galleries after years; (3) local precipitation is characterized by local meteoric water lines, LMWL, with δ18O/δD slopes close to 7 in both areas, and correlations between air temperature and precipitation δ18O are low at both monthly and annual scales, even with temperature weighted by the amount of precipitation; (4) the mesoscale climate model REMOiso, equipped with a water isotope module, allows the direct comparison of modeled and observed long term water isotope records. The model slightly overestimates rainfall δ18O at the respective sampling stations. However, it simulates very well not only the seasonal rainfall isotopic signal but also some intra-seasonal patterns such as a typical double-peak δ18O pattern in winter time.
Willingness to pay for more efficient irrigation techniques in the Lake Karla basin, Greece.
NASA Astrophysics Data System (ADS)
Mylopoulos, Nikitas; Fafoutis, Chrysostomos
2014-05-01
Thessaly, the second largest plain of Greece, is an intensively cultivated agricultural region. The intense and widespread agriculture of hydrophilic crops, such as cotton, has led to a remarkable water demand increase, which is usually covered by the overexploitation of groundwater resources. The Lake Karla basin is a prominent example of this unsustainable practice. Competition for the limited available freshwater resources in the Lake Karla basin is expected to increase in the near future as demand for irrigation water increases and drought years are expected to increase due to climate change. Together with the Unions of Agricultural Cooperatives, the Local Organizations of Land Reclamation is planning to introduce more efficient, water saving automated drip irrigation in the area among farmers who currently use non-automated drip irrigation, in order to ensure that these farmers can better cope with drought years and that water will be used more efficiently in crop production. Saving water use in irrigated agriculture is expected to be beneficial to both farmers and the restoration of Lake Karla and its wildlife like plants and birds. The aim of this study is to understand and record the farmers' opinions regarding the use of irrigation water and the restoration of Lake Karla, and to extract valuable conclusions and perform detailed analysis of the criteria for a new irrigation method. A general choice experiment with face-to-face interviews was conducted, using a random sample of 150 open field farmers from the study area. The farmers, who use the non-automated drip irrigation method and their farms are located within the watershed of Lake Karla, were interviewed regarding their willingness to switch to more efficient irrigation techniques, such as automated and controlled drip irrigation.The most important benefits of automated drip irrigation are an increase in crop yield, as plants are given water in a more precise way (based on their needs during the growing season) and a saving in water use. The choice experiment displays to the farmers two possible options for automated drip irrigation, described in terms of expected increase in crop yield, expected water saving, the duration of the restoration of Lake Karla to its original state before it was drained in the 1960s and the corresponding investment cost. The survey results show that socio-demographic factors and the average annual income influence the criteria and the views of farmers on a possible investment in the new method of automated drip irrigation. Moreover, there is a positive demand and willingness to pay for automated drip irrigation from the farmers in order to increase crop yield and speed up restoration of Lake Karla, considering that they are highly dependent on it.
NASA Astrophysics Data System (ADS)
Bleacher, Jacob E.; Orr, Tim R.; de Wet, Andrew P.; Zimbelman, James R.; Hamilton, Christopher W.; Brent Garry, W.; Crumpler, Larry S.; Williams, David A.
2017-08-01
The Tharsis Montes rift aprons are composed of outpourings of lava from chaotic terrains to the northeast and southwest flank of each volcano. Sinuous and branching channel networks that are present on the rift aprons suggest the possibility of fluvial processes in their development, or erosion by rapidly emplaced lavas, but the style of lava flow emplacement throughout rift apron development is not clearly understood. To better characterize the style of lava emplacement and role of fluvial processes in rift apron development, we conducted morphological mapping of the Pavonis Mons southwest rift apron and the eastern Tharsis plains using images from the High Resolution Imaging Science Experiment (HiRISE), Mars Orbiter Camera (MOC), Context Camera (CTX), Thermal Emission Imaging System (THEMIS), and High Resolution Stereo Camera (HRSC) along with the Mars Orbiter Laser Altimeter (MOLA) Precision Experiment Data Records (PEDRs) and gridded data. Our approach was to: (1) search for depositional fans at the slope break between the rift apron and adjacent low slope plains; (2) determine if there is evidence that previously formed deposits might have been buried by plains units; (3) characterize the Tharsis plains morphologies east of Pavonis Mons; and (4) assess their relationship to the rift apron units. We have not identified topographically significant depositional fans, nor did we observe evidence to suggest that plains units have buried older rift apron units. Flow features associated with the rift apron are observed to continue across the slope break onto the plains. In this area, the plains are composed of a variety of small fissures and low shield vents around which broad channel-fed and tube-fed flows have been identified. We also find broad, flat-topped plateaus and sinuous ridges mixed among the channels, tubes and vents. Flat-topped plateaus and sinuous ridges are morphologies that are analogous to those observed on the coastal plain of Hawai'i, where lava flows have advanced from the volcano's several degree flank onto the nearly zero degree coastal plain. When local volumetric flow rates are low, flow fronts tend to spread laterally and often thicken via endogenous growth, or inflation, of the sheet-like flow units. If flow advance is restricted by existing topography into narrow pathways, inflation can be focused into sinuous, elongate ridges. The presence of plateaus and ridges-emplaced from the rift zones, across the plains to the east of Pavonis Mons-and a lack of fan-like features, or evidence for their burial, are consistent with rift apron lavas crossing a slope break with low local volumetric flow rates that led to inflation of sheet-like and tube-fed lava flows.
Dating of Submarine Landslides and Their Tsunami Deposits Using Hawaii as an Example
NASA Astrophysics Data System (ADS)
McMurtry, G. M.; Herrero-Bervera, E.
2003-12-01
There have been several approaches to dating the initiation of submarine landslides and the tsunamis they inevitably produce. In Hawaii, the timing of flank failures of major volcanoes has been estimated by radiometric and paleomagnetic dating of the youngest shield-building flows and dikes, the apex ages of the volcanoes, which can also be constrained by the oldest flows of post-collapse volcanism. More precise age estimates can be obtained by direct dating of the landslide. These approaches include paleomagnetic and U-series stratigraphic dating of the overlying pelagic sediment cover upon and in front of the landslide, the latter method producing minimum ages of last landslide turbidite emplacement, e.g., the ca. 120 ka Alika phase 2 event. Elevated, detached landslide blocks make the best targets for such dating because it is assumed that smaller post-emplacement turbidites will not reach their summits. Catastrophic events such as the 1.0 Ma Wailau giant landslide have, however, been dated by turbidite deposition upon large, elevated blocks of the nearby 1.8 Ma Nuuanu giant landslide. Other direct methods for older events include use of thickness of ferromanganese crusts collected from steep, exposed rock scarps and cosmogenic Be-10 or U-series radiometric determination of the few mm/Ma rate of accumulation. In subtropical areas such as Hawaii, coral clast-bearing, elevated marine deposits on the southeastern islands have been identified as deposits from giant tsunamis. Among the key evidence are the great age and paleo-elevations of the coral clasts found in situ. Since modern coral clasts are relatively young, a few thousand years old or less, older analogs swept from the presently submerged reefs offshore can reliably date tsunamigenic depositional events within the late Quaternary using U-series methods. The age of the tsunami will date within these limits (and the analytical precisions) to the youngest in situ coral clast that was entrained by the waves. U-series dates approximately coeval with the Alika 2 giant landslide suggest a youngest 100 ka tsunami emplacement age from 100-137 ka corals collected on Lanai and Hawaii; likewise, older deposits on Molokai and Lanai suggest a 200 ka tsunami emplacement age from corals that range 200-258 ka in age, but interpretative care must be taken as open-system behavior upon weathering may produce apparently younger dates. Other promising methods for dating these deposits include cosmogenic Cl-36 exposure ages of cements and Cl-36 and He-3 exposure ages of the entrained volcanic rocks. Younger events can be dated by the above methods using C-14 or unsupported Pb-210.
NASA Technical Reports Server (NTRS)
Bleacher, Jacob E.; Orr, Tim R.; de Wet, Andrew P.; Zimbelman, James R.; Hamilton, Christopher W.; Garry, W. Brent; Crumpler, Larry S.; Williams, David A.
2017-01-01
The Tharsis Montes rift aprons are composed of outpourings of lava from chaotic terrains to the northeast and southwest flank of each volcano. Sinuous and branching channel networks that are present on the rift aprons suggest the possibility of fluvial processes in their development, or erosion by rapidly emplaced lavas, but the style of lava flow emplacement throughout rift apron development is not clearly understood. To better characterize the style of lava emplacement and role of fluvial processes in rift apron development, we conducted morphological mapping of the Pavonis Mons southwest rift apron and the eastern Tharsis plains using images from the High Resolution Imaging Science Experiment (HiRISE), Mars Orbiter Camera (MOC), Context Camera (CTX), Thermal Emission Imaging System (THEMIS), and High Resolution Stereo Camera (HRSC) along with the Mars Orbiter Laser Altimeter (MOLA) Precision Experiment Data Records (PEDRs) and gridded data. Our approach was to: (1) search for depositional fans at the slope break between the rift apron and adjacent low slope plains; (2) determine if there is evidence that previously formed deposits might have been buried by plains units; (3) characterize the Tharsis plains morphologies east of Pavonis Mons; and (4) assess their relationship to the rift apron units. We have not identified topographically significant depositional fans, nor did we observe evidence to suggest that plains units have buried older rift apron units. Flow features associated with the rift apron are observed to continue across the slope break onto the plains. In this area, the plains are composed of a variety of small fissures and low shield vents around which broad channel-fed and tube-fed flows have been identified. We also find broad, flat-topped plateaus and sinuous ridges mixed among the channels, tubes and vents. Flat-topped plateaus and sinuous ridges are morphologies that are analogous to those observed on the coastal plain of Hawai'i, where lava flows have advanced from the volcano's several degree flank onto the nearly zero degree coastal plain. When local volumetric flow rates are low, flow fronts tend to spread laterally and often thicken via endogenous growth, or inflation, of the sheet-like flow units. If flow advance is restricted by existing topography into narrow pathways, inflation can be focused into sinuous, elongate ridges. The presence of plateaus and ridges-emplaced from the rift zones, across the plains to the east of Pavonis Mons-and a lack of fan-like features, or evidence for their burial, are consistent with rift apron lavas crossing a slope break with low local volumetric flow rates that led to inflation of sheet-like and tube-fed lava flows.
Bleacher, Jacob E.; Orr, Tim R.; de Wet, Andrew P.; Zimbelman, James R.; Hamilton, Christopher W.; Garry, W. Brent; Crumpler, Larry S.; Williams, David A.
2017-01-01
The Tharsis Montes rift aprons are composed of outpourings of lava from chaotic terrains to the northeast and southwest flank of each volcano. Sinuous and branching channel networks that are present on the rift aprons suggest the possibility of fluvial processes in their development, or erosion by rapidly emplaced lavas, but the style of lava flow emplacement throughout rift apron development is not clearly understood. To better characterize the style of lava emplacement and role of fluvial processes in rift apron development, we conducted morphological mapping of the Pavonis Mons southwest rift apron and the eastern Tharsis plains using images from the High Resolution Imaging Science Experiment (HiRISE), Mars Orbiter Camera (MOC), Context Camera (CTX), Thermal Emission Imaging System (THEMIS), and High Resolution Stereo Camera (HRSC) along with the Mars Orbiter Laser Altimeter (MOLA) Precision Experiment Data Records (PEDRs) and gridded data. Our approach was to: (1) search for depositional fans at the slope break between the rift apron and adjacent low slope plains; (2) determine if there is evidence that previously formed deposits might have been buried by plains units; (3) characterize the Tharsis plains morphologies east of Pavonis Mons; and (4) assess their relationship to the rift apron units. We have not identified topographically significant depositional fans, nor did we observe evidence to suggest that plains units have buried older rift apron units. Flow features associated with the rift apron are observed to continue across the slope break onto the plains. In this area, the plains are composed of a variety of small fissures and low shield vents around which broad channel-fed and tube-fed flows have been identified. We also find broad, flat-topped plateaus and sinuous ridges mixed among the channels, tubes and vents. Flat-topped plateaus and sinuous ridges are morphologies that are analogous to those observed on the coastal plain of Hawai‘i, where lava flows have advanced from the volcano's several degree flank onto the nearly zero degree coastal plain. When local volumetric flow rates are low, flow fronts tend to spread laterally and often thicken via endogenous growth, or inflation, of the sheet-like flow units. If flow advance is restricted by existing topography into narrow pathways, inflation can be focused into sinuous, elongate ridges. The presence of plateaus and ridges—emplaced from the rift zones, across the plains to the east of Pavonis Mons—and a lack of fan-like features, or evidence for their burial, are consistent with rift apron lavas crossing a slope break with low local volumetric flow rates that led to inflation of sheet-like and tube-fed lava flows.
40 CFR 264.1052 - Standards: Pumps in light liquid service.
Code of Federal Regulations, 2010 CFR
2010-07-01
... indications of liquids dripping from the pump seal. (b)(1) If an instrument reading of 10,000 ppm or greater is measured, a leak is detected. (2) If there are indications of liquids dripping from the pump seal... each leak is detected. (d) Each pump equipped with a dual mechanical seal system that includes a...
40 CFR 63.1026 - Pumps in light liquid service standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... inspection each calendar week for indications of liquids dripping from the pump seal. The owner or operator... indications of liquids dripping from the pump seal at the time of the weekly inspection, the owner or operator...—(1) Dual mechanical seal pumps. Each pump equipped with a dual mechanical seal system that includes a...
40 CFR 63.1026 - Pumps in light liquid service standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... inspection each calendar week for indications of liquids dripping from the pump seal. The owner or operator... indications of liquids dripping from the pump seal at the time of the weekly inspection, the owner or operator...—(1) Dual mechanical seal pumps. Each pump equipped with a dual mechanical seal system that includes a...
40 CFR 63.1026 - Pumps in light liquid service standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... inspection each calendar week for indications of liquids dripping from the pump seal. The owner or operator... indications of liquids dripping from the pump seal at the time of the weekly inspection, the owner or operator...—(1) Dual mechanical seal pumps. Each pump equipped with a dual mechanical seal system that includes a...
USDA-ARS?s Scientific Manuscript database
Using laboratory soil chambers a non-scaled representation of an agricultural raised bed was constructed. For a sandy loam soil, a drip application of 1,3-dichloropropene (1,3-D) and chloropicrin (CP) under both high density polyethylene (HDPE) and virtually impermeable film (VIF) was performed at 5...
D-Area Drip Irrigation/Phytoremediation Project: SRTC Report on Phase 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilde, E.W.
2001-09-11
The overall objective of this project is to evaluate a novel drip irrigation-phytoremediation process for remediating volatile organic contaminants (VOCs), primarily trichloroethylene (TCE), from groundwater in D-Area at the Savannah River Site (SRS). The process is expected to be less expensive and more beneficial to the environment than alternative TCE remediation technologies.
Cotton, tomato, corn, and onion production with subsurface drip irrigation – a review
USDA-ARS?s Scientific Manuscript database
The usage of subsurface drip irrigation (SDI) has increased by 89% in the USA during the last ten years according to USDA NASS estimates and over 93% of the SDI land area is located in just ten states. Combining public entity and private industry perceptions of SDI in these ten states, the major cro...
USDA-ARS?s Scientific Manuscript database
Moisture content, drip loss, expressible fluid, and % salt-induced water gain are widely used to estimate water states and water-holding capacity of raw meat. However, the relationships between these four measurements of broiler pectoralis (p.) major muscle describe are not well described. The objec...
Machado, Morgana de Medeiros; Savi, Bruna Martinello; Perucchi, Mariana Borges; Benedetti, Alessandro; Oliveira, Luis Felipe Silva; Bernardin, Adriano Michael
2018-06-01
The aim of this work was to determine the effect of temperature, precursor and dripping time on the crystallite size of ZnO nanoparticles synthesized by controlled precipitation according a 2k full factorial design. ZnCl2, Zn(NO3)2 and NaOH were used as precursors. After synthesis, the nano crystalline powder was characterized by XRD (Cu Kα), UV-Vis, and HR-TEM. The nano ZnO particles presented a crystallite size between 210 and 260 Å (HR-TEM and XRD). The results show that the crystallite size depends on the type of precursor and temperature of synthesis, but not on the dripping time.
Searching for an Acidic Aquifer in the Rio Tinto Basin: First Geobiology Results of MARTE Project
NASA Technical Reports Server (NTRS)
Fernandez-Remolar, D. C.; Prieto-Ballesteros, O.; Stoker, C.
2004-01-01
Among the conceivable modern habitats to be explored for searching life on Mars are those potentially developed underground. Subsurface habitats are currently environments that, under certain physicochemical circumstances, have high thermal and hydrochemical stability [1, 2]. In planets like Mars lacking an atmospheric shield, such systems are obviously protected against radiation, which strongly alters the structure of biological macromolecules. Low porosity but fractured aquifers currently emplaced inside ancient volcano/sedimentary and hydrothermal systems act as excellent habitats [3] due to its thermal and geochemical properties. In these aquifers the temperature is controlled by a thermal balance between conduction and advection processes, which are driven by the rock composition, geological structure, water turnover of aquifers and heat generation from geothermal processes or chemical reactions [4]. Moreover, microbial communities based on chemolithotrophy can obtain energy by the oxidation of metallic ores that are currently associated to these environments. Such a community core may sustain a trophic web composed of non-autotrophic forms like heterotrophic bacteria, fungi and protozoa.
Deep Borehole Emplacement Mode Hazard Analysis Revision 0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sevougian, S. David
This letter report outlines a methodology and provides resource information for the Deep Borehole Emplacement Mode Hazard Analysis (DBEMHA). The main purpose is identify the accident hazards and accident event sequences associated with the two emplacement mode options (wireline or drillstring), to outline a methodology for computing accident probabilities and frequencies, and to point to available databases on the nature and frequency of accidents typically associated with standard borehole drilling and nuclear handling operations. Risk mitigation and prevention measures, which have been incorporated into the two emplacement designs (see Cochran and Hardin 2015), are also discussed. A key intent ofmore » this report is to provide background information to brief subject matter experts involved in the Emplacement Mode Design Study. [Note: Revision 0 of this report is concentrated more on the wireline emplacement mode. It is expected that Revision 1 will contain further development of the preliminary fault and event trees for the drill string emplacement mode.]« less
Prototype pushing robot for emplacing vitrified waste canisters into horizontal disposal drifts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Londe, L.; Seidler, W.K.; Bosgiraud, J.M.
2007-07-01
Within the French Underground Disposal concept, as described in ANDRA's (Agence Nationale pour la Gestion des Dechets Radioactifs) Dossier 2005, the Pushing Robot is an application envisaged for the emplacement (and the potential retrieval) of 'Vitrified waste packages', also called 'C type packages'. ANDRA has developed a Prototype Pushing Robot within the framework of the ESDRED Project (Engineering Studies and Demonstration of Repository Design) which is co-funded by the European Commission as part of the sixth EURATOM Research and Training Framework Programme (FP6) on nuclear energy (2002 - 2006). The Rationale of the Pushing Robot technology comes from various considerations,more » including the need for (1) a simple and robust system, capable of moving (and potentially retrieving) on up to 40 metres (m), a 2 tonne C type package (mounted on ceramic sliding runners) inside the carbon steel sleeve constituting the liner (and rock support) of a horizontal disposal cell, (2) small annular clearances between the package and the liner, (3) compactness of the device to be transferred from surface to underground, jointly with the package, inside a shielding cask, and (4) remote controlled operations for the sake of radioprotection. The initial design, based on gripping supports, has been replaced by a 'technical variant' based on inflatable toric jacks. It was then possible, using a test bench, to check that the Pushing Robot worked properly. Steps as high as 7 mm were successfully cleared by a dummy package pushed by the Prototype.. Based on the lessons learned by ANDRA's regarding the Prototype Pushing Robot, a new Scope of Work is being written for the Contract concerning an Industrial Scale Demonstrator. The Industrial Scale Demonstration should be completed by the end of the second Quarter of 2008. (authors)« less
Cellular model for induction of drip loss in meat.
Lambert, I H; Nielsen, J H; Andersen, H J; Ørtenblad, N
2001-10-01
Drip loss from porcine muscle (M. longissimus dorsi) contained high concentrations of K(+) ( approximately 135 mM) and organic osmolytes, for example, taurine ( approximately 15 mM), as well as significant amounts of protein ( approximately 125 mg.mL(-1)). Thus, the drip reflects release of intramuscular components. To simulate events taking place at the time of slaughter and leading to release of osmolytes and subsequent formation of drip loss, C2C12 myotubes were exposed to anoxia and reduction in pH (from 7.4 to 6.0). Anoxia and acidification increased the cellular Ca(2+) concentration ([Ca(2+)](i)) at a rate of 22-32 nM.min(-)(1). The anoxia-induced increase in [Ca(2+)](i) was mainly due to influx via sarcolemmal Na(+) channels. As mammalian cells swell and release lysophospholipids during anoxia, C2C12 cells and primary porcine muscle cells were exposed to either hypotonic shock or lysophosphatidylcholine (LPC) and the release of taurine was followed. The swelling-induced taurine efflux was blocked in the presence of the anion channel blocker (DIDS), the 5-lipooxygenase inhibitors (ETH 615-139 and NDGA) but unaffected by the presence of vitamin E. In contrast, the LPC-induced taurine release was unaffected by DIDS but abolished by antioxidants (butylated hydroxytoluene and vitamin E). Thus, stress-induced taurine release from muscles may precede by two different mechanisms, one being 5-lipooxygenase dependent and the other involving generation of reactive oxygen species. A model for the cellular events, preceding formation of drip in meat, is presented.
Amano, Hikaru; Ogawa, Hidekuni; Maki, Hiromichi; Tsukamoto, Sosuke; Yonezawa, Yoshiharu; Hahn, Allen W; Caldwell, W Morton
2011-01-01
We have been searching for a suitable frequency range for an electrical impedance measurement infusion solution drip monitoring system, which we have previously reported. This electrical impedance, which is formed between two electrodes wrapped around the infusion supply polyvinyl-chloride tube and around the drip chamber, is changed by the growth and fall of each drop of fluid. Thus, the drip rate can be detected by measuring this impedance. However, many different kinds of infusion solutions such as glucose, amino acid, soya oil, and lactated Ringers solution are used in hospitals and care facilities. Therefore, it was necessary to find a suitable frequency for driving the capacitance-change sensor with a wide range of infusion solutions. In this study, the sensor electrical impedance change of 16 infusion solutions was measured from 1 kHz up to 1 MHz. The drip impedance produced by 5% glucose solution, 10% glucose solution and soya oil indicated the maximum sensor output change at 10 kHz, 20 kHz, and 70 kHz, respectively. The other 13 infusion solutions increased up to 10 kHz, and were constant from 10 kHz to 1 MHz. However, the growth, fall, and drip rate of the drops of all the infusion solutions were monitored by measuring the impedance change from 10 kHz to 30 kHz. Our experimental results indicated that most suitable excitation range for the infusion monitoring system is from 10 kHz to 30 kHz. Thus, we can now fine-tune the system for optimal sensing.
Ice-lubricated gravity spreading of the Olympus Mons aureole deposits
Tanaka, K.L.
1985-01-01
Gravity sliding and spreading at low strain rates can account for the general morphology and structure of the aureoles and basal scarp of Olympus Mons. Detachment sliding could have occurred around the volcano if either pore-fluid pressures were exceptionally high (greater than 90%) or the rocks had very low resistance to shear (about 1 ?? 105 Pa or 1 bar). Because of the vast areal extent and probable shallow depth of the detachment zone, development of ubiquitous, high pore-fluid pressures beneath aureole-forming material was unlikely. However, a zone of sufficiently weak material consisting of about 10% interstitial or interbedded ice could have been present. If so, a simple rheologic model for the aureole deposits can be applied that consists of a thin ductile layer overlain by a thicker brittle layer. According to this model, extensional deformation would have occurred near the shield and compressional deformation in its distal parts. Proximal grabens and distal corrugations on aureole surfaces support this model. A submarine slide at Kitimat Arm, British Columbia, is a valid qualitative analogy for the observed features and inferred emplacement style of the aureole deposits. Ground-ice processes have been considered the cause of many geologic features on Mars; a 3% average concentration of ground ice in the regolith is predicted by theoretical models for the ice budget and cryosphere. Ice may have been deposited in higher concentrations below the aureole-forming material; the source of the ice could have been juvenile water circulated hydrothermally by Olympus Mons volcanism. The basal scarp of Olympus Mons apparently demarcates the transition between the upper, stable part of the shield and its lower part that decoupled and formed the aureole deposits. This transition may reflect a change in the bulk shear strength of the shield, caused either by a radial dependence in the abundance of ice or fluid in the shield materials or by the concentration of intrusive dikes within the volcano. Other Martian volcanoes exhibit virtually no evidence of similar large-scale gravity spreading and basal scarps. Perhaps such evidence, if it existed, has been buried by lava flows, or perhaps the smaller size of other volcanoes did not permit the development of these features. ?? 1985.
The Role of Cooling in Pahohoe Emplacement on Planetary Surfaces.
NASA Technical Reports Server (NTRS)
Glaze, L. S.; Baloga, S. M.
2015-01-01
Abundant evidence is emerging that many lavas on Mars were emplaced as slow-moving pahoehoe flows. Models for such scenarios contrast sharply with those for steep-sloped applications where gravity is the dominant force. The mode of flow emplacement on low slopes is characterized by toe formation and inflation. In the latter phase of pahoehoe flow emplacement, stagnation, inflation, and toe formation are most closely tied to the final topography, dimensions, and morphologic features. This mode of emplacement is particularly relevant to the low slopes of planetary surfaces such as the plains of Mars, Io and the Moon.
NASA Astrophysics Data System (ADS)
Baroud, Charles; Cordero, Maria-Luisa; Gallaire, Francois
2011-11-01
We study the breakup of drops in a co-flowing jet, within the confinement of a microfluidic channel. The breakup can occur right after the nozzle (dripping) or through the generation of a liquid jet that breaks up a long distance from the nozzle (jetting). Traditionally, these two regimes have been considered to reflect an absolutely unstable jet or a convectively unstable jet, respectively. We first provide measurements of the frequency of oscillation and breakup of the liquid jet; the dispersion relation thus obtained compares well with existing theories for convective instabilities in the case of the jetting regime. However, the theories in the absolutely unstable mode fail to predict the evolution of the frequency and drop size in the dripping regime. We also test the jet response to an external forcing, using a focused laser to locally heat the jet. The dripping regime is found to be insensitive to the perturbation and the frequency of drop formation remains unaltered. In contrast, the jetting regime locks to the external frequency, which translates into a modification of the drop size in agreement with the dispersion relations. This confirms the convective nature of the jetting regime. Permanent address: Universidad de Chile.
Wong, C.I.; Banner, J.L.; Musgrove, M.
2011-01-01
A 4-year study in a central Texas cave quantifies multiple mechanisms that control dripwater composition and how these mechanisms vary at different drip sites. We monitored cave-air compositions, in situ calcite growth, dripwater composition and drip rate every 4-6weeks. Three groups of drip sites are delineated (Groups 1-3) based on geochemical variations in dripwater composition. Quantitative modeling of mineral-solution reactions within the host carbonate rock and cave environments is used to identify mechanisms that can account for variations in dripwater compositions. The covariation of Mg/Ca (and Sr/Ca) and Sr isotopes is key in delineating whether Mg/Ca and Sr/Ca variations are dictated by water-rock interaction (i.e., calcite or dolomite recrystallization) or prior calcite precipitation (PCP). Group 1 dripwater compositions reflects a narrow range of the extent of water-rock interaction followed by varying amounts of prior calcite precipitation (PCP). Group 2 dripwater compositions are controlled by varying amounts of water-rock interaction with little to no PCP influence. Group 3 dripwater compositions are dictated by variable extents of both water-rock interaction and PCP. Group 1 drip sites show seasonal variations in dripwater Mg/Ca and Sr/Ca, whereas the other drip sites do not. In contrast to the findings of most previous dripwater Mg/Ca-Sr/Ca studies, these seasonal variations (at Group 1 drip sites) are independent of changes in water flux (i.e., rainfall and/or drip rate), and instead significantly correlate with changes in cave-air CO2 concentrations. These results are consistent with lower cave-air CO2, related to cool season ventilation of the cave atmosphere, enhancing calcite precipitation and leading to dripwater geochemical evolution via PCP. Group 1 dripwater Mg/Ca and Sr/Ca seasonality and evidence for PCP as a mechanism that can account for that seasonality, have two implications for many other regions where seasonal ventilation of caves is likely: (1) speleothem trace-element records may provide seasonal signals, and (2) such records may be biased toward recording climate conditions during the season when calcite is depositing. Additionally, we use our results to construct a forward model that illustrates the types of speleothem Mg/Ca and Sr/Ca variations that would result from varying controls on dripwater compositions. The model provides a basis for interpreting paleo-dripwater controls from high frequency Mg/Ca and Sr/Ca variations for speleothems from caves at which long term monitoring studies are not feasible. ?? 2011 Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Rodríguez-Sinobas, L.; Gil-Rodríguez, M.; Sánchez, R.; Losada, A.; Castañón, G.; Juana, L.; Laguna, F. V.; Benítez, J.
2010-05-01
Conventional drip irrigation is considered one of the most efficient irrigation systems. Alternatively to traditional surface drip irrigation systems (DI), laterals are deployed underneath the soil surface, as in subsurface drip irrigation (SDI), leading to a higher potential efficiency, which is of especial interest in places where water is a limited source. The design and management of DI and SDI systems involve selection of an appropriate combination of emitter discharge rate and spacing between emitters and the inlet pressure and irrigation time for any given set of soil, crop, and climatic conditions, as well as understanding the wetted zone pattern around the emitter. Likewise, water distribution is affected by soil hydraulic properties, initial water content, emitter discharge, irrigation frequency, evapotranspiration and root characteristics. However, complexity arousing of soil water properties and soil profile characteristics means that these are often not properly considered in the design and management of those systems. A better understanding of the infiltration process around the discharge point source should contribute to increase water use efficiency and thus to reduce the risk of environmental impact of irrigation. In this regard, numerical models have been proved to be a powerful tool to analyze the evolution of the wetting pattern during the distribution and redistribution processes, in order to explore irrigation management strategies, to set up the duration of irrigation, and finally to optimize water use efficiency. Also, irrigation design variables such as emitter spacing and discharge could also be assessed. In this study the suitability of the HYDRUS-2D to simulate infiltration process around an emitter during irrigation of a loamy soil with drip and SDI laterals has been addressed. The model was then applied in order to evaluate the main dimensions of the wetted soil volume surrounding the emitter during irrigation. Irrigation uniformity with DI and SDI laterals were determined by field evaluations at different inlet head pressures. Results were related with estimations made on water distribution within the soil that were simulated taking into account the emitter discharge at different lateral locations, initial soil water content, soil hydraulic properties and time of irrigation. Conclusions highlight the effect of emitter discharge, emitter spacing, and irrigation time on wetting patterns, and thus solute transport, in both drip and subsurface drip irrigation. The effect of emitter depth was also considered in SDI. Some recommendations for the design and management of these irrigation systems are also provided.
Review of potential subsurface permeable barrier emplacement and monitoring technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riggsbee, W.H.; Treat, R.L.; Stansfield, H.J.
1994-02-01
This report focuses on subsurface permeable barrier technologies potentially applicable to existing waste disposal sites. This report describes candidate subsurface permeable barriers, methods for emplacing these barriers, and methods used to monitor the barrier performance. Two types of subsurface barrier systems are described: those that apply to contamination.in the unsaturated zone, and those that apply to groundwater and to mobile contamination near the groundwater table. These barriers may be emplaced either horizontally or vertically depending on waste and site characteristics. Materials for creating permeable subsurface barriers are emplaced using one of three basic methods: injection, in situ mechanical mixing, ormore » excavation-insertion. Injection is the emplacement of dissolved reagents or colloidal suspensions into the soil at elevated pressures. In situ mechanical mixing is the physical blending of the soil and the barrier material underground. Excavation-insertion is the removal of a soil volume and adding barrier materials to the space created. Major vertical barrier emplacement technologies include trenching-backfilling; slurry trenching; and vertical drilling and injection, including boring (earth augering), cable tool drilling, rotary drilling, sonic drilling, jetting methods, injection-mixing in drilled holes, and deep soil mixing. Major horizontal barrier emplacement technologies include horizontal drilling, microtunneling, compaction boring, horizontal emplacement, longwall mining, hydraulic fracturing, and jetting methods.« less
Emplacement of Columbia River flood basalt
NASA Astrophysics Data System (ADS)
Reidel, Stephen P.
1998-11-01
Evidence is examined for the emplacement of the Umatilla, Wilbur Creek, and the Asotin Members of Columbia River Basalt Group. These flows erupted in the eastern part of the Columbia Plateau during the waning phases of volcanism. The Umatilla Member consists of two flows in the Lewiston basin area and southwestern Columbia Plateau. These flows mixed to form one flow in the central Columbia Plateau. The composition of the younger flow is preserved in the center and the composition of the older flow is at the top and bottom. There is a complete gradation between the two. Flows of the Wilbur Creek and Asotin Members erupted individually in the eastern Columbia Plateau and also mixed together in the central Columbia Plateau. Comparison of the emplacement patterns to intraflow structures and textures of the flows suggests that very little time elapsed between eruptions. In addition, the amount of crust that formed on the earlier flows prior to mixing also suggests rapid emplacement. Calculations of volumetric flow rates through constrictions in channels suggest emplacement times of weeks to months under fast laminar flow for all three members. A new model for the emplacement of Columbia River Basalt Group flows is proposed that suggests rapid eruption and emplacement for the main part of the flow and slower emplacement along the margins as the of the flow margin expands.
Paul Reeser; Wendy Sutton; Everett Hansen.
2011-01-01
Various Phytophthora species were recovered from tanoak trees, tanoak canopy drip, soils, and streams, which were sampled as part of a larger survey and management effort aimed at limiting the spread of Phytophthora ramorum Werres, De Cock & Man in't Veld (the causal agent of sudden oak death) in an epidemic area...
USDA-ARS?s Scientific Manuscript database
A field trial was conducted on a Cherryhill silt loam soil at The Dalles, OR from 2006 through 2008. The impacts of switching from the traditional micro sprinkler irrigation (MS) to double-lateral drip irrigation (DD) and from no ground cover with herbicide control of weeds (NC) to in-row wheat (Tri...
Maris, S C; Teira-Esmatges, M R; Arbonés, A; Rufat, J
2015-12-15
Drip irrigation combined with nitrogen (N) fertigation is applied in order to save water and improve nutrient efficiency. Nitrification inhibitors reduce greenhouse gas emissions. A field study was conducted to compare the emissions of nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4) associated with the application of N fertiliser through fertigation (0 and 50kgNha(-1)), and 50kgNha(-1)+nitrification inhibitor in a high tree density Arbequina olive orchard. Spanish Arbequina is the most suited variety for super intensive olive groves. This system allows reducing production costs and increases crop yield. Moreover its oil has excellent sensorial features. Subsurface drip irrigation markedly reduced N2O and N2O+N2 emissions compared with surface drip irrigation. Fertiliser application significantly increased N2O+N2, but not N2O emissions. Denitrification was the main source of N2O. The N2O losses (calculated as emission factor) ranging from -0.03 to 0.14% of the N applied, were lower than the IPCC (2007) values. The N2O+N2 losses were the largest, equivalent to 1.80% of the N applied, from the 50kgNha(-1)+drip irrigation treatment which resulted in water filled pore space >60% most of the time (high moisture). Nitrogen fertilisation significantly reduced CO2 emissions in 2011, but only for the subsurface drip irrigation strategies in 2012. The olive orchard acted as a net CH4 sink for all the treatments. Applying a nitrification inhibitor (DMPP), the cumulative N2O and N2O+N2 emissions were significantly reduced with respect to the control. The DMPP also inhibited CO2 emissions and significantly increased CH4 oxidation. Considering global warming potential, greenhouse gas intensity, cumulative N2O emissions and oil production, it can be concluded that applying DMPP with 50kgNha(-1)+drip irrigation treatment was the best option combining productivity with keeping greenhouse gas emissions under control. Copyright © 2015 Elsevier B.V. All rights reserved.
Liu, Tao; Liang, Yongchao; Chu, Guixin
2017-01-01
Nitrification inhibitors (NIs) have been used extensively to reduce nitrogen losses and increase crop nitrogen nutrition. However, information is still scant regarding the influence of NIs on nitrogen transformation, nitrous oxide (N2O) emission and nitrogen utilization in plastic-film-mulched calcareous soil under high frequency drip-fertigated condition. Therefore, a field trial was conducted to evaluate the effect of nitrapyrin (2-chloro-6-(trichloromethyl)-pyridine) on soil mineral nitrogen (N) transformation, N2O emission and nitrogen use efficiency (NUE) in a drip-fertigated cotton-growing calcareous field. Three treatments were established: control (no N fertilizer), urea (225 kg N ha-1) and urea+nitrapyrin (225 kg N ha-1+2.25 kg nitrapyrin ha-1). Compared with urea alone, urea plus nitrapyrin decreased the average N2O emission fluxes by 6.6-21.8% in June, July and August significantly in a drip-fertigation cycle. Urea application increased the seasonal cumulative N2O emission by 2.4 kg N ha-1 compared with control, and nitrapyrin addition significantly mitigated the seasonal N2O emission by 14.3% compared with urea only. During the main growing season, the average soil ammonium nitrogen (NH4+-N) concentration was 28.0% greater and soil nitrate nitrogen (NO3--N) concentration was 13.8% less in the urea+nitrapyrin treatment than in the urea treatment. Soil NO3--N and water-filled pore space (WFPS) were more closely correlated than soil NH4+-N with soil N2O fluxes under drip-fertigated condition (P<0.001). Compared with urea alone, urea plus nitrapyrin reduced the seasonal N2O emission factor (EF) by 32.4% while increasing nitrogen use efficiency by 10.7%. The results demonstrated that nitrapyrin addition significantly inhibited soil nitrification and maintained more NH4+-N in soil, mitigated N2O losses and improved nitrogen use efficiency in plastic-film-mulched calcareous soil under high frequency drip-fertigated condition.
Ma, Zhi Wen; Gao, Xiao Peng; Gui, Dong Wei; Kuang, Wen Nong; Wang, Xi He; Liu, Hua
2016-12-01
The effect of enhanced-efficiency nitrogen (N) fertilizers on emissions of nitrous oxide (N 2 O) from the grey desert agricultural soils of Xinjiang is uncertain. In this study, the enhanced-efficiency fertilizers, polymer-coated urea (ESN), and stabilized urea with urease and nitrification inhibitors (U+I) were compared to conventional urea (U) for N 2 O emissions from cotton under plastic mulch drip irrigation near Urumqi, Xinjiang. ESN was added once at planting but the other treatments were added multiple times with drip irrigation during the growing season. Gas samples were collected and analyzed twice per week during the growing season, using the static chamber-chromatography methodology. The results showed that generally, ESN significantly increased soil cumulative N 2 O emissions during the growing season by 47%-73% compared to other treatments. In the first four months after fertilization, soil ammonium (NH 4 + -N) and nitrate (NO 3 - -N) concentrations under ESN treatment were generally higher than under other treatments. Thereafter, NH 4 + -N and NO 3 - -N concentrations under all treatments gradually decreased to similar levels. ESN all added at planting was likely responsible for high NH 4 + -N and NO 3 - -N concentrations and highest N 2 O emissions. The U+I treatment reduced soil N 2 O emission by 9.9% in comparison with U, whereas the difference was not statistically significant. In addition, soil NO 3 - -N contents of the U+I treatments were generally lower than those of the ESN and the U treatments. The cumulative N 2 O emissionsover the growing season ranged from 300 to 500 g N 2 O-N·hm -2 , generally lower than emissions reported for other agricultural ecosystems. Drip irrigation successfully kept moisture conditions below levels for appreciable N 2 O emissions. Multiple applications of N via drip irrigation seemed to be effective to lower emissions than all N applied at planting. Therefore, for cotton field under plastic mulch drip irrigation in arid land of Northwest China, the benefit of enhanced efficiency N ferti-lizers on N 2 O mitigation is limited.
Liu, Tao; Chu, Guixin
2017-01-01
Nitrification inhibitors (NIs) have been used extensively to reduce nitrogen losses and increase crop nitrogen nutrition. However, information is still scant regarding the influence of NIs on nitrogen transformation, nitrous oxide (N2O) emission and nitrogen utilization in plastic-film-mulched calcareous soil under high frequency drip-fertigated condition. Therefore, a field trial was conducted to evaluate the effect of nitrapyrin (2-chloro-6-(trichloromethyl)-pyridine) on soil mineral nitrogen (N) transformation, N2O emission and nitrogen use efficiency (NUE) in a drip-fertigated cotton-growing calcareous field. Three treatments were established: control (no N fertilizer), urea (225 kg N ha-1) and urea+nitrapyrin (225 kg N ha-1+2.25 kg nitrapyrin ha-1). Compared with urea alone, urea plus nitrapyrin decreased the average N2O emission fluxes by 6.6–21.8% in June, July and August significantly in a drip-fertigation cycle. Urea application increased the seasonal cumulative N2O emission by 2.4 kg N ha-1 compared with control, and nitrapyrin addition significantly mitigated the seasonal N2O emission by 14.3% compared with urea only. During the main growing season, the average soil ammonium nitrogen (NH4+-N) concentration was 28.0% greater and soil nitrate nitrogen (NO3--N) concentration was 13.8% less in the urea+nitrapyrin treatment than in the urea treatment. Soil NO3--N and water-filled pore space (WFPS) were more closely correlated than soil NH4+-N with soil N2O fluxes under drip-fertigated condition (P<0.001). Compared with urea alone, urea plus nitrapyrin reduced the seasonal N2O emission factor (EF) by 32.4% while increasing nitrogen use efficiency by 10.7%. The results demonstrated that nitrapyrin addition significantly inhibited soil nitrification and maintained more NH4+-N in soil, mitigated N2O losses and improved nitrogen use efficiency in plastic-film-mulched calcareous soil under high frequency drip-fertigated condition. PMID:28481923
Wei, Daniel; Oxley, Thomas J; Nistal, Dominic A; Mascitelli, Justin R; Wilson, Natalie; Stein, Laura; Liang, John; Turkheimer, Lena M; Morey, Jacob R; Schwegel, Claire; Awad, Ahmed J; Shoirah, Hazem; Kellner, Christopher P; De Leacy, Reade A; Mayer, Stephan A; Tuhrim, Stanley; Paramasivam, Srinivasan; Mocco, J; Fifi, Johanna T
2017-12-01
Endovascular recanalization treatment for acute ischemic stroke is a complex, time-sensitive intervention. Trip-and-treat is an interhospital service delivery model that has not previously been evaluated in the literature and consists of a shared mobile interventional stroke team that travels to primary stroke centers to provide on-site interventional capability. We compared treatment times between the trip-and-treat model and the traditional drip-and-ship model. We performed a retrospective analysis on 86 consecutive eligible patients with acute ischemic stroke secondary to large vessel occlusion who received endovascular treatment at 4 hospitals in Manhattan. Patients were divided into 2 cohorts: trip-and-treat (n=39) and drip-and-ship (n=47). The primary outcome was initial door-to-puncture time, defined as the time between arrival at any hospital and arterial puncture. We also recorded and analyzed the times of last known well, IV-tPA (intravenous tissue-type plasminogen activator) administration, transfer, and reperfusion. Mean initial door-to-puncture time was 143 minutes for trip-and-treat and 222 minutes for drip-and-ship ( P <0.0001). Although there was a trend in longer puncture-to-recanalization times for trip-and-treat ( P =0.0887), initial door-to-recanalization was nonetheless 79 minutes faster for trip-and-treat ( P <0.0001). There was a trend in improved admission-to-discharge change in National Institutes of Health Stroke Scale for trip-and-treat compared with drip-and-ship ( P =0.0704). Compared with drip-and-ship, the trip-and-treat model demonstrated shorter treatment times for endovascular therapy in our series. The trip-and-treat model offers a valid alternative to current interhospital stroke transfers in urban environments. © 2017 American Heart Association, Inc.
Duda, Jeffrey J.; Wieferich, Daniel J.; Bristol, R. Sky; Bellmore, J. Ryan; Hutchison, Vivian B.; Vittum, Katherine M.; Craig, Laura; Warrick, Jonathan A.
2016-08-18
The removal of dams has recently increased over historical levels due to aging infrastructure, changing societal needs, and modern safety standards rendering some dams obsolete. Where possibilities for river restoration, or improved safety, exceed the benefits of retaining a dam, removal is more often being considered as a viable option. Yet, as this is a relatively new development in the history of river management, science is just beginning to guide our understanding of the physical and ecological implications of dam removal. Ultimately, the “lessons learned” from previous scientific studies on the outcomes dam removal could inform future scientific understanding of ecosystem outcomes, as well as aid in decision-making by stakeholders. We created a database visualization tool, the Dam Removal Information Portal (DRIP), to display map-based, interactive information about the scientific studies associated with dam removals. Serving both as a bibliographic source as well as a link to other existing databases like the National Hydrography Dataset, the derived National Dam Removal Science Database serves as the foundation for a Web-based application that synthesizes the existing scientific studies associated with dam removals. Thus, using the DRIP application, users can explore information about completed dam removal projects (for example, their location, height, and date removed), as well as discover sources and details of associated of scientific studies. As such, DRIP is intended to be a dynamic collection of scientific information related to dams that have been removed in the United States and elsewhere. This report describes the architecture and concepts of this “metaknowledge” database and the DRIP visualization tool.
Alarcón, A L; Cánovas, M; Senn, R; Correia, R
2005-01-01
Thiamethoxam, mainly sold under the trademark of Actara, is a neonicotinoid widely used in covered vegetables for the control of aphids and whiteflies. In these crops, and particularly in covered tomatoes, bumble-bees are used for cross-pollination as an alternative to labour intensive manual techniques. In this study, made on tomatoes grown in separated greenhouse plots in Murcia, Southern Spain, thiamethoxam was applied through drip irrigation at a rate of 200 g ai/ha, and as a split application of the same rate, to evaluate the effects on pollinating bumble bees compared to a foliar application of a toxic standard. The results showed that the toxic foliar standard had a clear effect on the pollination of tomato flowers, declining to zero pollination two weeks after application, whereas both the single and split drip irrigation applications of Actara had no effect on pollination when compared to the control plots. The count of dead adults and larvae did not show any differences between the treatments, whereas the measurement of sugar water consumption was shown to correlate well with pollination. The consumption of sugar water declined in the toxic standard plots by 69% with respect to the control, whilst the decline in lower dose drip irrigation application was only 3%. In regard to hive weight, and number of adults and brood after destructive sampling; there were no statistical differences between the treatments but a negative effect of the foliar treatment was observed. Based on these results we can conclude that a split application of Actara applied in drip irrigation to the soil/substrate has no effect on the bumble-bees used in tomatoes for pollination.
NASA Astrophysics Data System (ADS)
Puchtel, Igor S.; Brügmann, Gerhard E.; Hofmann, Albrecht W.
2001-04-01
The Re-Os data on Archean komatiites from the Kostomuksha greenstone belt in the Baltic Shield are presented. This greenstone belt has been previously interpreted to represent a former oceanic plateau formed by the emplacement of an ancient plume head [Puchtel et al., Earth Planet. Sci. Lett. 155 (1998) 57-74]. Samples of flowtop breccia, spinifex-textured and cumulate komatiites and a chromite separate, all collected from the core of a 300 m deep diamond drill hole, yielded a Re-Os isochron with an age of 2795±40 Ma and an initial 187Os/188Os of 0.1117±0.0011 (γ187Os=+3.6±1.0). The high positive γ187Os(T) implies that the komatiites were derived from a mantle source with a time-integrated suprachondritic Re/Os ratio. Recycling of oceanic lithosphere to produce the enriched 187Os isotope signature is considered unlikely, as 15-25% crustal component is required to be incorporated into the plume source as early as 3.5-4.3 Ga. Such a substantial proportion of mafic material in the source would likely destroy the major and trace element characteristics of the komatiites. Our tentative interpretation is that the 187Os-enrichment in the Kostomuksha plume represents an outer core signature. If confirmed by the ongoing Pt-Os isotope studies, the results would provide evidence for the existence of whole-mantle convection in the late Archean, and might place constraints on the timing of core differentiation in the early Earth.
Earth Observations taken by Expedition 38 crewmember
2014-01-21
ISS038-E-035123 (21 Jan. 2014) --- Apoyeque Volcano, Nicaragua is featured in this image photographed by an Expedition 38 crew member on the International Space Station. The Chiltepe Peninsula, highlighted in this photograph, extends into Lake Managua in west-central Nicaragua. The peninsula is formed from part of a large ignimbrite shield, a geologic structure created by deposition of primarily low density materials (such as pumice) ejected during violent, explosive eruptive activity. Ignimbrite deposits are most commonly emplaced during large pyroclastic flows - gravity-driven mixtures of rock, ash, and volcanic gases that can cover hundreds of kilometers at speeds of hundreds of kilometers per hour - with ignimbrite shields formed over geologic time by successive flows. The Apoyeque caldera, filled with a 2.8-kilometer-wide and 400-meter-deep lake, dominates the center of the peninsula. Geological evidence indicates that Apoyeque last erupted around 50 BCE (plus or minus 100 years). The Laguna Xiloa maar - a volcanic crater formed by the explosive interaction of magma and groundwater - is located immediately to the southeast of Apoyeque and is also filled with a lake. According to scientists, Laguna Xiloa last erupted approximately 6,100 years ago. More recently, a swarm of small earthquakes was detected near Apoyeque in 2012. These seismic swarms, when detected in volcanically active areas, may indicate movement of magma prior to an eruption. The capital city of Managua, not visible in the image, is located approximately 15 kilometers to the southeast of Apoyeque, while the town of Bosques de Xiloa is considerably closer (approximately four kilometers).
Solar-powered drip irrigation enhances food security in the Sudano–Sahel
Burney, Jennifer; Woltering, Lennart; Burke, Marshall; Naylor, Rosamond; Pasternak, Dov
2010-01-01
Meeting the food needs of Africa’s growing population over the next half-century will require technologies that significantly improve rural livelihoods at minimal environmental cost. These technologies will likely be distinct from those of the Green Revolution, which had relatively little impact in sub-Saharan Africa; consequently, few such interventions have been rigorously evaluated. This paper analyzes solar-powered drip irrigation as a strategy for enhancing food security in the rural Sudano–Sahel region of West Africa. Using a matched-pair comparison of villages in northern Benin (two treatment villages, two comparison villages), and household survey and field-level data through the first year of harvest in those villages, we find that solar-powered drip irrigation significantly augments both household income and nutritional intake, particularly during the dry season, and is cost effective compared to alternative technologies. PMID:20080616
Bern, Carleton R.; Boehlke, Adam R.; Engle, Mark A.; Geboy, Nicholas J.; Schroeder, K.T.; Zupancic, J.W.
2013-01-01
Disposal of produced waters, pumped to the surface as part of coalbed methane (CBM) development, is a significant environmental issue in the Wyoming portion of the Powder River Basin, USA. High sodium adsorption ratios (SAR) of the waters could degrade agricultural land, especially if directly applied to the soil surface. One method of disposing of CBM water, while deriving beneficial use, is subsurface drip irrigation (SDI), where acidified CBM waters are applied to alfalfa fields year-round via tubing buried 0.92 m deep. Effects of the method were studied on an alluvial terrace with a relatively shallow depth to water table (∼3 m). Excess irrigation water caused the water table to rise, even temporarily reaching the depth of drip tubing. The rise corresponded to increased salinity in some monitoring wells. Three factors appeared to drive increased groundwater salinity: (1) CBM solutes, concentrated by evapotranspiration; (2) gypsum dissolution, apparently enhanced by cation exchange; and (3) dissolution of native Na–Mg–SO4 salts more soluble than gypsum. Irrigation with high SAR (∼24) water has increased soil saturated paste SAR up to 15 near the drip tubing. Importantly though, little change in SAR has occurred at the surface.
NASA Astrophysics Data System (ADS)
Bern, C. R.; Boehlke, A. R.; Engle, M. A.; Geboy, N. J.; Schroeder, K. T.; Zupancic, J. W.
2013-12-01
Disposal of produced waters, pumped to the surface as part of coalbed methane (CBM) development, is a significant environmental issue in the Wyoming portion of the Powder River Basin, USA. High sodium adsorption ratios (SAR) of the waters could degrade agricultural land, especially if directly applied to the soil surface. One method of disposing of CBM water, while deriving beneficial use, is subsurface drip irrigation (SDI), where acidified CBM waters are applied to alfalfa fields year-round via tubing buried 0.92 m deep. Effects of the method were studied on an alluvial terrace with a relatively shallow depth to water table (˜3 m). Excess irrigation water caused the water table to rise, even temporarily reaching the depth of drip tubing. The rise corresponded to increased salinity in some monitoring wells. Three factors appeared to drive increased groundwater salinity: (1) CBM solutes, concentrated by evapotranspiration; (2) gypsum dissolution, apparently enhanced by cation exchange; and (3) dissolution of native Na-Mg-SO4 salts more soluble than gypsum. Irrigation with high SAR (˜24) water has increased soil saturated paste SAR up to 15 near the drip tubing. Importantly though, little change in SAR has occurred at the surface.
VIEW OF SOUTH GUN EMPLACEMENT. NOTE THE EXCAVATED EDGE OF ...
VIEW OF SOUTH GUN EMPLACEMENT. NOTE THE EXCAVATED EDGE OF THE GUN BLOCK IN THE FOREGROUND. VIEW FACING NORTH - U.S. Naval Base, Pearl Harbor, Ford Island 5-Inch Antiaircraft Battery, South Gun Emplacement, Ford Island, Pearl City, Honolulu County, HI
System-Level Logistics for Dual Purpose Canister Disposal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalinina, Elena A.
2014-06-03
The analysis presented in this report investigated how the direct disposal of dual purpose canisters (DPCs) may be affected by the use of standard transportation aging and disposal canisters (STADs), early or late start of the repository, and the repository emplacement thermal power limits. The impacts were evaluated with regard to the availability of the DPCs for emplacement, achievable repository acceptance rates, additional storage required at an interim storage facility (ISF) and additional emplacement time compared to the corresponding repackaging scenarios, and fuel age at emplacement. The result of this analysis demonstrated that the biggest difference in the availability ofmore » UNF for emplacement between the DPC-only loading scenario and the DPCs and STADs loading scenario is for a repository start date of 2036 with a 6 kW thermal power limit. The differences are also seen in the availability of UNF for emplacement between the DPC-only loading scenario and the DPCs and STADs loading scenario for the alternative with a 6 kW thermal limit and a 2048 start date, and for the alternatives with a 10 kW thermal limit and 2036 and 2048 start dates. The alternatives with disposal of UNF in both DPCs and STADs did not require additional storage, regardless of the repository acceptance rate, as compared to the reference repackaging case. In comparison to the reference repackaging case, alternatives with the 18 kW emplacement thermal limit required little to no additional emplacement time, regardless of the repository start time, the fuel loading scenario, or the repository acceptance rate. Alternatives with the 10 kW emplacement thermal limit and the DPCs and STADs fuel loading scenario required some additional emplacement time. The most significant decrease in additional emplacement time occurred in the alternative with the 6 kW thermal limit and the 2036 repository starting date. The average fuel age at emplacement ranges from 46 to 88 years. The maximum fuel age at emplacement ranges from 81 to 146 years. The difference in the average and maximum age of fuel at emplacement between the DPC-only and the DPCs and STADs fuel loading scenarios becomes less significant as the repository thermal limit increases and as the repository start date increases. In general, the role of STADs is to store young (30 year or younger) high burnup (45 GWD/MTU or higher) fuel. Recommendations for future study include detailed evaluation of the feasible alternatives with regard to the costs and factors not considered in this analysis, such as worker dose, dose to members of the public, and economic benefits to host entities. It is also recommended to conduct an additional analysis to evaluate the assumption regarding the transportability and disposability of DPCs for the next iteration of the direct disposal of DPCs study.« less
NASA Technical Reports Server (NTRS)
Parfitt, E. A.; Head, J. W., III
1993-01-01
Models of the emplacement of lateral dikes from magma chambers under constant (buffered) driving pressure conditions and declining (unbuffered) driving pressure conditions indicate that the two pressure scenarios lead to distinctly different styles of dike emplacement. In the unbuffered case, the lengths and widths of laterally emplaced dikes will be severely limited and the dike lengths will be highly dependent on chamber size; this dependence suggests that average dike length can be used to infer the dimensions of the source magma reservoir. On Earth, the characteristics of many mafic-dike swarms suggest that they were emplaced in buffered conditions (e.g., the Mackenzie dike swarm in Canada and some dikes within the Scottish Tertiary). On Venus, the distinctive radial fractures and graben surrounding circular to oval features and edifices on many size scales and extending for hundreds to over a thousand km are candidates for dike emplacement in buffered conditions.
Lava-substrate heat transfer: Laboratory experiments and thermodynamic modeling
NASA Astrophysics Data System (ADS)
Rumpf, M.; Fagents, S. A.; Hamilton, C. W.; Wright, R.; Crawford, I.
2012-12-01
We have performed laboratory experiments and numerical modeling to investigate the heat transfer from a lava flow into various substrate materials, focusing on the effects of the differing thermophysical properties of substrate materials. Initial motivation for this project developed from the desire to understand the loss of solar wind volatiles embedded in lunar regolith deposits that were subsequently covered by a lava flow. The Moon lacks a significant atmosphere and magnetosphere, leaving the surface regolith exposed to bombardment by solar flare and solar wind particles, and by the cosmogenic products of galactic cosmic rays. Preservation of particle-rich regolith deposits may have occurred by the emplacement of an active lava flow on top of the regolith layer, provided the embedded particles survive heating by the lava. During future expeditions to the lunar surface, ancient regolith deposits could be sampled through surface drilling to extract the extra-lunar particles, revealing a history of the solar activity and galactic events not available on the Earth. This project also has important implications for terrestrial lava flows, particularly in the prediction of lava flow hazards. Lava erupted on Earth may be emplaced on various substrates, including solid lava rock, volcanic tephra, sands, soils, etc. The composition, grain size, consolidation, moisture content, etc. of these materials will vary greatly and have different effects on the cooling of the flow. Accounting for specific properties of the substrate could be an important improvement in lava flow models We have performed laboratory experiments in collaboration with the Department of Art and Art History at the University of Hawaii at Manoa in which ~5-6 kg of basalt, collected at Kilauea Volcano, Hawaii, is melted to ~1200 °C. The lava is poured into a device constructed of calcium silicate sheeting that has been filled with a solid or particulate substrate material and embedded with thermocouples. Internal temperatures are monitored by the thermocouple array, while external temperatures are monitored by a Forward Looking Infrared Radiometer (FLIR) video camera. The experimental data thus describe the cooling rates of the system, and reveal the release of latent heat of crystallization within the cooling lava. These experiments have been conducted in conjunction with numerical simulations of the heat transfer from a lava flow into various substrates, to quantify the depth reached by the heat pulse as it penetrates the substrate. Models include material-specific, temperature-dependent thermophysical properties, including thermal conductivity, specific heat capacity, and latent heat of crystallization. We find that particulate materials, such as lunar regolith, sand, and soils will be heated to depths shallower than solid materials. In addition, the particulate materials will act as insulators, shielding the lava flow from basal cooling and maintaining high temperatures in the flow core. These results suggest that lava flows emplaced on a dry particulate terrain will remain above solidus for a longer duration, allowing the lava to flow further than when emplaced on a solid substrate.
Effect of soil-rock system on speleothems weathering in Bailong Cave, Yunnan Province, China*
Wang, Jing; Song, Lin-hua
2005-01-01
Bailong Cave with its well-developed Middle Triassic calcareous dolomite’s system was opened as a show cave for visitors in 1988. The speleothem scenery has been strongly weathered as white powder on the outer layers. Study of the cave winds, permeability of soil-rock system and the chemical compositions of the dripping water indicated: (1) The cave dimension structure distinctively affects the cave winds, which were stronger at narrow places. (2) Based on the different soil grain size distribution, clay was the highest in composition in the soil. The response sense of dripping water to the rainwater percolation was slow. The density of joints and other openings in dolomite make the dolomite as mesh seepage body forming piles of thin and high columns and stalactites. (3) Study of 9 dripping water samples by HYDROWIN computer program showed that the major mineral in the water was dolomite. PMID:15682505
D-Area Drip Irrigation-Phytoremediation Project: SRTC Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilde, E.W.
2003-01-14
Groundwater in D-Area at the Savannah River Site (SRS) is contaminated with trichloroethylene (TCE) and by-products resulting from discharges of this organic solvent during past operations. Several potential clean-up strategies are being or have been investigated, including a novel drip irrigation-phytoremediation process that is the focus of the treatability study described in this report. The contaminated groundwater in D-Area occurs primarily at depths of 30 to 50 feet below ground surface, well below the depths that are typically penetrated by plant roots. The system investigated in this study involved pumping water from the contaminated aquifer and discharging the water intomore » overlying test plots below the surface using drip irrigation. The test plots contained pines, cottonwoods, or no vegetation (controls). The primary objective was to determine the overall effectiveness of the process for TCE removal and to elucidate the biotic and abiotic pathways for its removal.« less
Effect of soil-rock system on speleothems weathering in Bailong Cave, Yunnan Province, China.
Wang, Jing; Song, Lin-Hua
2005-03-01
Bailong Cave with its well-developed Middle Triassic calcareous dolomite's system was opened as a show cave for visitors in 1988. The speleothem scenery has been strongly weathered as white powder on the outer layers. Study of the cave winds, permeability of soil-rock system and the chemical compositions of the dripping water indicated: (1) The cave dimension structure distinctively affects the cave winds, which were stronger at narrow places. (2) Based on the different soil grain size distribution, clay was the highest in composition in the soil. The response sense of dripping water to the rainwater percolation was slow. The density of joints and other openings in dolomite make the dolomite as mesh seepage body forming piles of thin and high columns and stalactites. (3) Study of 9 dripping water samples by HYDROWIN computer program showed that the major mineral in the water was dolomite.
VIEW OF EAST GUN EMPLACEMENT. NOTE THE STEEL REINFORCING RODS ...
VIEW OF EAST GUN EMPLACEMENT. NOTE THE STEEL REINFORCING RODS PROTRUDING FROM THE BROKEN TOP OF THE RETAINING WALL. VIEW FACING NORTHEAST - U.S. Naval Base, Pearl Harbor, Ford Island 5-Inch Antiaircraft Battery, East Gun Emplacement, Ford Island, Pearl City, Honolulu County, HI
2013-01-01
Background Actinobacillus pleuropneumoniae is the Gram-negative bacterium responsible for porcine pleuropneumonia. This respiratory infection is highly contagious and characterized by high morbidity and mortality. The objectives of our study were to study the transcriptome of A. pleuropneumoniae biofilms at different stages and to develop a protocol to grow an A. pleuropneumoniae biofilm in a drip-flow apparatus. This biofilm reactor is a system with an air-liquid interface modeling lung-like environment. Bacteria attached to a surface (biofilm) and free floating bacteria (plankton) were harvested for RNA isolation. Labelled cDNA was hybridized to a microarray to compare the expression profiles of planktonic cells and biofilm cells. Results It was observed that 47 genes were differentially expressed (22 up, 25 down) in a 4 h-static growing/maturing biofilm and 117 genes were differentially expressed (49 up, 68 down) in a 6h-static dispersing biofilm. The transcriptomes of a 4 h biofilm and a 6 h biofilm were also compared and 456 genes (235 up, 221 down) were identified as differently expressed. Among the genes identified in the 4 h vs 6h biofilm experiment, several regulators of stress response were down-regulated and energy metabolism associated genes were up-regulated. Biofilm bacteria cultured using the drip-flow apparatus differentially expressed 161 genes (68 up, 93 down) compared to the effluent bacteria. Cross-referencing of differentially transcribed genes in the different assays revealed that drip-flow biofilms shared few differentially expressed genes with static biofilms (4 h or 6 h) but shared several differentially expressed genes with natural or experimental infections in pigs. Conclusion The formation of a static biofilm by A. pleuropneumoniae strain S4074 is a rapid process and transcriptional analysis indicated that dispersal observed at 6 h is driven by nutritional stresses. Furthermore, A. pleuropneumoniae can form a biofilm under low-shear force in a drip-flow apparatus and analyses indicated that the formation of a biofilm under low-shear force requires a different sub-set of genes than a biofilm grown under static conditions. The drip-flow apparatus may represent the better in vitro model to investigate biofilm formation of A. pleuropneumoniae. PMID:23725589
de Castro, Therese C; Carr, Debra J; Taylor, Michael C; Kieser, Jules A; Duncan, Warwick
2016-09-01
The interaction of blood and fabrics is currently a 'hot topic', since the understanding and interpretation of these stains is still in its infancy. A recent simplified perpendicular impact experimental programme considering bloodstains generated on fabrics laid the foundations for understanding more complex scenarios. Blood rarely impacts apparel fabrics perpendicular; therefore a systematic study was conducted to characterise the appearance of drip stains on inclined fabrics. The final drip stain appearance for 45° and 15° impact angles on torso apparel fabrics (100% cotton plain woven, 100% polyester plain woven, a blend of polyester and cotton plain woven and 100% cotton single jersey knit) that had been laundered for six, 26 and 52 cycles prior to testing was investigated. The relationship between drop parameters (height and volume), angle and the stain characteristics (parent stain area, axis 1 and 2 and number of satellite stains) for each fabric was examined using analysis of variance. The appearance of the drip stains on these fabrics was distorted, in comparison to drip stains on hard-smooth surface. Examining the parent stain allowed for classification of stains occurring at an angle, however the same could not be said for the satellite stains produced. All of the dried stains visible on the surface of the fabric were larger than just after the impacting event, indicating within fabric spreading of blood due to capillary force (wicking). The cotton-containing fabrics spread the blood within the fabrics in all directions along the stain's circumference, while spreading within the polyester plain woven fabric occurred in only the weft (width of the fabric) and warp (length) directions. Laundering affected the formation of bloodstain on the blend plain woven fabric at both impact angles, although not all characteristics were significantly affected for the three impact conditions considered. The bloodstain characteristics varied due to the fibre content and fabric structure for both impact angles investigated. It is therefore necessary to consider the age of the fabric (which is fabric specific), the fibre type (including blends) and the fabric structure, before interpreting bloodstain patterns. An understanding of this simplified inclined drip stain interaction has been investigated to generate a basis for more complex interactions, such as spatter bloodstains. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Transpressional regime in southern Arabian Shield: Insights from Wadi Yiba Area, Saudi Arabia
NASA Astrophysics Data System (ADS)
Hamimi, Zakaria; El-Shafei, Mohamed; Kattu, Ghazi; Matsah, Mohammed
2013-10-01
Detailed field-structural mapping of Neoproterozoic basement rocks exposed in the Wadi Yiba area, southern Arabian Shield, Saudi Arabia illustrates an important episode of late Neoproterozoic transpression in the southern part of the Arabian-Nubian Shield (ANS). This area is dominated by five main basement lithologies: gneisses, metavolcanics, Ablah Group (meta-clastic and marble units) and syn- and post-tectonic granitoids. These rocks were affected by three phases of deformation (D1-D3). D1 formed tight to isoclinal and intrafolial folds (F1), penetrative foliation (S1), and mineral lineation (L1), which resulted from early E-W (to ENE-WSW) shortening. D2 deformation overprinted D1 structures and was dominated by transpression and top-to-the-W (-WSW) thrusting as shortening progressed. Stretching lineation trajectories, S-C foliations, asymmetric shear fabrics and related mylonitic foliation, and flat-ramp and duplex geometries further indicate the inferred transport direction. The N- to NNW-orientation of both “in-sequence piggy-back thrusts” and axial planes of minor and major F2 thrust-related overturned folds also indicates the same D2 compressional stress trajectories. The Wadi Yiba Shear Zone (WYSZ) formed during D2 deformation. It is one of several N-S trending brittle-ductile Late Neoproterozoic shear zones in the southern part of the ANS. Shear sense indicators reveal that shearing during D2 regional-scale transpression was dextral and is consistent with the mega-scale sigmoidal patterns recognized on Landsat images. The shearing led to the formation of the WYSZ and consequent F2 shear zone-related folds, as well as other unmappable shear zones in the deformed rocks. Emplacement of the syn-tectonic granitoids is likely to have occurred during D2 transpression and occupied space created during thrust propagation. D1 and D2 structures are locally overprinted by mesoscopic- to macroscopic-scale D3 structures (F3 folds, and L3 crenulation lineations and kink bands). F3 folds are frequently open and have steep to subvertical axial planes and axes that plunge ENE to ESE. This deformation may reflect progressive convergence between East and West Gondwana.
Magnetic Moment of Proton Drip-Line Nucleus (9)C
NASA Technical Reports Server (NTRS)
Matsuta, K.; Fukuda, M.; Tanigaki, M.; Minamisono, T.; Nojiri, Y.; Mihara, M.; Onishi, T.; Yamaguchi, T.; Harada, A.; Sasaki, M.
1994-01-01
The magnetic moment of the proton drip-line nucleus C-9(I(sup (pi)) = 3/2, T(sub 1/2) = 126 ms) has been measured for the first time, using the beta-NMR detection technique with polarized radioactive beams. The measure value for the magnetic moment is 1mu(C-9)! = 1.3914 +/- 0.0005 (mu)N. The deduced spin expectation value
Chen, Xiao; Li, Hongbing; Liu, Xiaoyan; Zhang, Xinying; Liang, Xia; He, Chiquan; Cao, Liya
2016-10-01
The in situ chemical oxidation technology (ISCO) and phytoremediation for PAHs have been studied respectively, but few focus on the feasibility of combining persulfate with ryegrass. This literature revealed the effect of persulfate oxidation on the growth of ryegrass and the removal ratios of pyrene in the couple system of persulfate oxidation and phytoremediation. The results demonstrated that half of pyrene in test soil was oxidized by persulfate in 7 days and then the residual pyrene concentration was decreased to a lower level by ryegrass in the following 2 months in oxidation treatment and drip washing and plants (OWP) and oxidation treatment and drip washing and plants and fertilization (OWFP) treatment. Ryegrass could grow well after persulfate oxidation with the oxidized soil washed by water. Ryegrass in OWP and OWFP treatments had higher ratios of overground and underground biomass. However, the seeds of ryegrass cannot germinate when drip washing was omitted. Pyrene together with residual persulfate changed soil enzyme activities. Drip washing and the growth of ryegrass made soil enzyme activities tend to returned to normal levels. Persulfate oxidation and phytoremediation were compatible to make contributions to the dissipation of pyrene. Persulfate oxidation activated by heat had higher removal efficiency of PAHs and phytoremediation could further decrease the pyrene concentration in spiked soil.
Li, Dong-wei; Li, Ming-si; Liu, Dong; Lyu, Mou-chao; Jia, Yan-hui
2015-08-01
Abstract: To explore the effects of soil wetting pattern on soil water-thermal environment and water consumption of cotton root under mulched drip irrigation, a field experiment with three drip intensities (1.69, 3.46 and 6.33 L · h(-1)), was carried out in Shihezi, Xinjiang Autonomous Region. The soil matric potential, soil temperature, cotton root distribution and water consumption were measured during the growing period of cotton. The results showed that the main factor influencing the soil temperature of cotton under plastic mulch was sunlight. There was no significant difference in the soil temperature and root water uptake under different treatments. The distribution of soil matrix suction in cotton root zone under plastic mulch was more homogeneous under ' wide and shallow' soil wetting pattern (W633). Under the 'wide and shallow' soil wetting pattern, the average difference of cotton root water consumption between inner row and outer row was 0.67 mm · d(-1), which was favorable to the cotton growing trimly at both inner and outer rows; for the 'narrow and deep' soil wetting pattern (W169), the same index was 0.88 mm · d(-1), which was unfavorable to cotton growing uniformly at both inner and outer rows. So, we should select the broad-shallow type soil wetting pattern in the design of drip irrigation under mulch.
Role of intrinsic search cues in the formation of consumer preferences and choice for pork chops.
Verbeke, Wim; De Smet, Stefaan; Vackier, Isabelle; Van Oeckel, Monique J; Warnants, Nathalie; Van Kenhove, Patrick
2005-02-01
This study investigates the role of drip, colour, marbling and fat cover as intrinsic search cues in the formation of pork chop preferences and individual determinants. Data are collected from a sample of 443 pork consumers in Belgium through using repeated selection of chops from randomised photobooks and questionnaires including socio-demographic, attitudinal and behavioural variables. Data analysis includes mixture regression analysis, bivariate descriptive statistics and the estimation of multivariate probit models. Consumers sampled in this study prefer pork chops without fat cover. Preference for fat cover is stronger among male, 35+ aged consumers with lower levels of awareness of the relation between food and health and who like pork for other reasons than taste and nutritional value (all p<0.05). Preference for colour is equally consistent within an individual, though fifty-fifty light-dark, with dark chops being more preferred by 35+ aged consumers (p<0.05). Preferences for marbling and drip are not consistent and not determined by joint socio-demographic, attitudinal and behavioural factors. Preferences for cue levels are not correlated, except a weak relation between preference for dark chops without drip (r=0.116). Preferences are apparently formed by deductions with the use of single cues as key information, mainly based on fat cover or colour, and random choice on marbling and drip.
Handling and Emplacement Options for Deep Borehole Disposal Conceptual Design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, John R.; Hardin, Ernest
2015-07-01
This report presents conceptual design information for a system to handle and emplace packages containing radioactive waste, in boreholes 16,400 ft deep or possibly deeper. Its intended use is for a design selection study that compares the costs and risks associated with two emplacement methods: drill-string and wireline emplacement. The deep borehole disposal (DBD) concept calls for siting a borehole (or array of boreholes) that penetrate crystalline basement rock to a depth below surface of about 16,400 ft (5 km). Waste packages would be emplaced in the lower 6,560 ft (2 km) of the borehole, with sealing of appropriate portionsmore » of the upper 9,840 ft (3 km). A deep borehole field test (DBFT) is planned to test and refine the DBD concept. The DBFT is a scientific and engineering experiment, conducted at full-scale, in-situ, without radioactive waste. Waste handling operations are conceptualized to begin with the onsite receipt of a purpose-built Type B shipping cask, that contains a waste package. Emplacement operations begin when the cask is upended over the borehole, locked to a receiving flange or collar. The scope of emplacement includes activities to lower waste packages to total depth, and to retrieve them back to the surface when necessary for any reason. This report describes three concepts for the handling and emplacement of the waste packages: 1) a concept proposed by Woodward-Clyde Consultants in 1983; 2) an updated version of the 1983 concept developed for the DBFT; and 3) a new concept in which individual waste packages would be lowered to depth using a wireline. The systems described here could be adapted to different waste forms, but for design of waste packaging, handling, and emplacement systems the reference waste forms are DOE-owned high- level waste including Cs/Sr capsules and bulk granular HLW from fuel processing. Handling and Emplacement Options for Deep Borehole Disposal Conceptual Design July 23, 2015 iv ACKNOWLEDGEMENTS This report has benefited greatly from review principally by Steve Pye, and also by Paul Eslinger, Dave Sevougian and Jiann Su.« less
NASA Astrophysics Data System (ADS)
Vye-Brown, C.; Self, S.; Barry, T. L.
2013-03-01
The physical features and morphologies of collections of lava bodies emplaced during single eruptions (known as flow fields) can be used to understand flood basalt emplacement mechanisms. Characteristics and internal features of lava lobes and whole flow field morphologies result from the forward propagation, radial spread, and cooling of individual lobes and are used as a tool to understand the architecture of extensive flood basalt lavas. The features of three flood basalt flow fields from the Columbia River Basalt Group are presented, including the Palouse Falls flow field, a small (8,890 km2, ˜190 km3) unit by common flood basalt proportions, and visualized in three dimensions. The architecture of the Palouse Falls flow field is compared to the complex Ginkgo and more extensive Sand Hollow flow fields to investigate the degree to which simple emplacement models represent the style, as well as the spatial and temporal developments, of flow fields. Evidence from each flow field supports emplacement by inflation as the predominant mechanism producing thick lobes. Inflation enables existing lobes to transmit lava to form new lobes, thus extending the advance and spread of lava flow fields. Minimum emplacement timescales calculated for each flow field are 19.3 years for Palouse Falls, 8.3 years for Ginkgo, and 16.9 years for Sand Hollow. Simple flow fields can be traced from vent to distal areas and an emplacement sequence visualized, but those with multiple-layered lobes present a degree of complexity that make lava pathways and emplacement sequences more difficult to identify.
Dripping from Rough Multi-Segmented Fracture Sets into Unsaturated Rock Underground Excavations
NASA Astrophysics Data System (ADS)
Cesano, D.; Bagtzoglou, A. C.
2001-05-01
The aim of this paper is to present a probabilistic analytical formulation of unsaturated flow through a single rough multi-segmented fracture, with the ultimate goal to provide a numerical platform with which to perform calculations on the dripping initiation time and to explain the fast flow-paths detected and reported by Fabryka-Martin et al. (1996). To accomplish this, an enhanced version of the Wang and Narasimhan model (Wang and Narasimhan, 1985; 1993), the Enhanced Wang and Narasimhan Model (EWNM), has been used. In the EWNM, a fracture is formed by a finite number of connected fracture segments of given strike and dip. These parameters are sampled from hypothetical probability density functions. Unsaturated water flow occurs in these fracture segments, and in order for dripping to occur it is assumed that local saturation conditions exist at the surface and the tunnel level, where dripping occurs. The current version of the EWNM ignores transient flow processes, and thus it assumes the flow system being at equilibrium. The fracture segments are considered as rough fractures, with their roughness characterized by an aperture distribution function that can be derived from real field data. The roughness along each fracture segment is considered to be constant, leading to a constant effective aperture, and it is randomly assigned. An effective flow area is also included in the model, which accounts for three-dimensional variations of the fracture area that can be possibly occupied by water. The model takes into account the possibility that the fracture crosses multiple layers, each of which can have a different configuration in the values of the input parameters. Monte Carlo simulations calculate average times for water to flow from the top to the bottom of the fracture for a specified number of random realizations. The random component of the realizations comprises the different geometric configurations of the fracture flow path, while the value of all the input parameters and the statistical distribution they honor are kept constant from realization to realization. This travel time, called the dripping initiation time, is the cumulative sum of the time it takes for the water to drip through all fracture segments and eventually reach the tunnel. Based on the results of a sensitivity analysis, three different scenarios of input parameters were used to test the validity of the model with the fast flow-paths detected and reported in the Fabryka-Martin et al. (1996) study. The three scenarios differed from each other for the response of the dripping initiation times. These three different parameter configurations were then tested at three different depths. Each depth represented a different location where fast-flow has been detected at Yucca Mountain and reported by Fabryka-Martin et al. (1996). The first depth is considered representative of a location in correspondence to the Bow Ridge Fault. The second location represents a network of steep fractures and cooling joints with large variability in dip reaching the ESF at a depth of 180 meters. The third location, which is probably connected to the Diabolous Ridge Fault, is 290 meters deep and the flow path is low-dipping. Monte Carlo simulations were run for each configuration at each depth to calculate average dripping initiation times, so that results from 9 scenarios were produced. The final conclusion is that the model is able to produce results quite consistent with the Fabryka-Martin et al. (1996) study.
NASA Astrophysics Data System (ADS)
Zhang, Z.; Tian, F.; Hu, H.
2013-12-01
A multi-scale, multi-technique study was conducted to measure evapotranspiration and its components in a cotton field under mulched drip irrigation conditions in northwestern China. Three measurement techniques at different scales were used: photosynthesis system (leaf scale), sap flow (plant scale), and eddy covariance (field scale). The experiment was conducted from July to September 2012. For upscaling the evapotranspiration from the leaf to the plant scale, an approach that incorporated the canopy structure and the relationships between sunlit and shaded leaves was proposed. For upscaling the evapotranspiration from the plant to the field scale, an approach based on the transpiration per unit leaf area was adopted and modified to incorporate the temporal variability in the relationships between the leaf area and the stem diameter. At the plant scale, the estimate of the transpiration based on the photosynthesis system with upscaling is slightly higher (18%) than that obtained by sap flow. At the field scale, the estimate of the transpiration obtained by upscaling the estimate based on sap flow measurements is also systematically higher (10%) compared to that obtained through eddy covariance during the cotton open boll growth stage when soil evaporation can be neglected. Nevertheless, the results derived from these three distinct methods show reasonable consistency at the field scale, which indicates that the upscaling approaches are reasonable and valid. Based on the measurements and the upscaling approaches, the evapotranspiration components were analyzed under mulched drip irrigation. During the cotton flower and bolling stages in July and August, the evapotranspiration are 3.94 and 4.53 mm day-1, respectively. The proportion of transpiration to evapotranspiration reaches 87.1% before drip irrigation and 82.3% after irrigation. The high water use efficiency is principally due to the mulched film above the drip pipe, the low soil water content in the inter-film zone,the well-closed canopy, and the high water requirement of the crop
Deep subsurface drip irrigation using coal-bed sodic water: part I. water and solute movement
Bern, Carleton R.; Breit, George N.; Healy, Richard W.; Zupancic, John W.; Hammack, Richard
2013-01-01
Water co-produced with coal-bed methane (CBM) in the semi-arid Powder River Basin of Wyoming and Montana commonly has relatively low salinity and high sodium adsorption ratios that can degrade soil permeability where used for irrigation. Nevertheless, a desire to derive beneficial use from the water and a need to dispose of large volumes of it have motivated the design of a deep subsurface drip irrigation (SDI) system capable of utilizing that water. Drip tubing is buried 92 cm deep and irrigates at a relatively constant rate year-round, while evapotranspiration by the alfalfa and grass crops grown is seasonal. We use field data from two sites and computer simulations of unsaturated flow to understand water and solute movements in the SDI fields. Combined irrigation and precipitation exceed potential evapotranspiration by 300-480 mm annually. Initially, excess water contributes to increased storage in the unsaturated zone, and then drainage causes cyclical rises in the water table beneath the fields. Native chloride and nitrate below 200 cm depth are leached by the drainage. Some CBM water moves upward from the drip tubing, drawn by drier conditions above. Chloride from CBM water accumulates there as root uptake removes the water. Year over year accumulations indicated by computer simulations illustrate that infiltration of precipitation water from the surface only partially leaches such accumulations away. Field data show that 7% and 27% of added chloride has accumulated above the drip tubing in an alfalfa and grass field, respectively, following 6 years of irrigation. Maximum chloride concentrations in the alfalfa field are around 45 cm depth but reach the surface in parts of the grass field, illustrating differences driven by crop physiology. Deep SDI offers a means of utilizing marginal quality irrigation waters and managing the accumulation of their associated solutes in the crop rooting zone.
Flow Classification and Cave Discharge Characteristics in Unsaturated Karst Formation
NASA Astrophysics Data System (ADS)
Mariethoz, G.; Mahmud, K.; Baker, A.; Treble, P. C.
2015-12-01
In this study we utilize the spatial array of automated cave drip monitoring in two large chambers of the Golgotha Cave, SW Australia, developed in Quaternary aeolianite (dune limestone), with the aim of understanding infiltration water movement via the relationships between infiltration, stalactite morphology and groundwater recharge. Mahmud et al. (2015) used the Terrestrial LiDAR measurements to analyze stalactite morphology and to characterize possible flow locations in this cave. Here we identify the stalactites feeding the drip loggers and classify each as matrix (soda straw or icicle), fracture or combined-flow. These morphology-based classifications are compared with flow characteristics from the drip logger time series and the discharge from each stalactite is calculated. The total estimated discharge from each area is compared with infiltration estimates to better understand flow from the surface to the cave ceilings of the studied areas. The drip discharge data agrees with the morphology-based flow classification in terms of flow and geometrical characteristics of cave ceiling stalactites. No significant relationships were observed between the drip logger discharge, skewness and coefficient of variation with overburden thickness, due to the possibility of potential vadose-zone storage volume and increasing complexity of the karst architecture. However, these properties can be used to characterize different flow categories. A correlation matrix demonstrates that similar flow categories are positively correlated, implying significant influence of spatial distribution. The infiltration water comes from a larger surface area, suggesting that infiltration is being focused to the studied ceiling areas of each chamber. Most of the ceiling in the cave site is dry, suggesting the possibility of capillary effects with water moving around the cave rather than passing through it. Reference:Mahmud et al. (2015), Terrestrial Lidar Survey and Morphological Analysis to Identify Infiltration Properties in the Tamala Limestone, Western Australia, IEEE JSTARS, DOI: 10.1109/JSTARS.2015.2451088, in Press.
NASA Astrophysics Data System (ADS)
Gasiorowski, M.; Hercman, H.
2012-04-01
The Niedźwiedzia Cave is located in Śnieżnik Massif (the Easter Sudetes, SW Poland) at 800 m a.s.l. The length of known passages is ~3000 m and denivelation is 69 m. The system is composed of 3 levels of passages and chambers. It is a show cave with ~80,000 visitors every year. In 2010 we started monitoring program of cave air temperature and humidity, drip rate, stable isotopes and Uranium and Polonium content in water in selected sites inside the cave and in its vicinity. Changes in dropping rate in upper level are well correlated with precipitation. However, a response of dripping to rainfall depends on former precipitation frequency and intensity - during the humid period the dripping reacts immediately and after long dry period dripping responses with two-weeks delay. There is not so direct correlation between precipitation and dripping in lower level of the system. Air temperature inside the cave is almost stable in lower level (mean annual ~5.3 °C, and annual variation up to 0.7 °C) and more dynamic in the middle level (mean annual ~6.4 °C, and mean annual amplitude up to 4 °C). Daily and weekly measured changes of cave air temperature demonstrate extremely well correlation with number of visitors. In show cave passages (the middle level of the system) temperature increase 0.1-0.2 °C during every day when the cave is open for tourists and such changes is not observed during days without visitors and in lower level of the system closed for tourists. But even short visits of 3-4 cavers are recorded by temperature sensors exposed in the lower level (~0.02 °C increase). It proves very high sensitivity of cave environment to human activity. This study is funded by the National Science Centre and Higher Education grant no. N N306 131038.
NASA Astrophysics Data System (ADS)
Nanko, K.; Levia, D. F., Jr.; Iida, S.; SUN, X.; Shinohara, Y.; Sakai, N.
2017-12-01
Scientists have been interested in throughfall drop size and its distribution because of its importance to soil erosion and the forest water balance. An indoor experiment was employed to deepen our understanding of throughfall drop generation processes to promote better management of forested ecosystems. The indoor experiment provides a unique opportunity to examine an array of constant rainfall intensities that are ideal conditions to pick up the effect of changing intensities and not found in the fields. Throughfall drop generation was examined for three species- Cryptomeria japonica D. Don (Japanese cedar), Chamaecyparis obtusa (Siebold & Zucc.) Endl. (Japanese cypress), and Zelkova serrata Thunb. (Japanese zelkova)- under both leafed and leafless conditions in the large-scale rainfall simulator in the National Research Institute for Earth Science and Disaster Resilience (Tsukuba, Japan) at varying rainfall intensities ranging from15 to 100 mm h-1. Drop size distributions of the applied rainfall and throughfall were measured simultaneously by 20 laser disdrometers. Utilizing the drop size dataset, throughfall was separated into three components: free throughfall, canopy drip, and splash throughfall. The temporal sequencing of the throughfall components were analyzed on a 1-min interval during each experimental run. The throughfall component percentage and drop size of canopy drip differed among tree species and rainfall intensities and by elapsed time from the beginning of the rainfall event. Preliminary analysis revealed that the time differences to produce branch drip as compared to leaf (or needle) drip was partly due to differential canopy wet-up processes and the disappearance of branch drips due to canopy saturation, leading to dissimilar throughfall drop size distributions beneath the various tree species examined. This research was supported by JSPS Invitation Fellowship for Research in Japan (Grant No.: S16088) and JSPS KAKENHI (Grant No.: JP15H05626).
Mechanisms Of Saucer-Shaped Sill Emplacement: Insight From Experimental Modeling
NASA Astrophysics Data System (ADS)
Galland, O.; Planke, S.; Malthe-Sørenssen, A.; Polteau, S.; Svensen, H.; Podladchikov, Y. Y.
2006-12-01
It has been recently demonstrated that magma intrusions in sedimentary basins had a strong impact on petroleum systems. Most of these intrusions are sills, and especially saucer-shaped sills. These features can be observed in many sedimentary basins (i.e. the Karoo basin, South Africa; the Norwegian and North Sea; the Tunguska basin, Siberia; the Neuquén basin in Argentina). The occurrence of such features in so various settings suggests that their emplacement results from fundamental processes. However, the mechanisms that govern their formation remain poorly constrained. Experiments were conducted to simulate the emplacement of saucer-shaped magma intrusions in sedimentary basins. The model rock and magma were fine-grained silica flour and molten vegetable oil, respectively. This modeling technique allows simultaneous simulation of magma emplacement and brittle deformation at a basin scale. For our purpose, we performed our experiments without external deformation. During the experiments, the oil was injected horizontally at constant flow rate within the silica flour. Then the oil initially emplaced in a sill, whereas the surface of the model inflated into a smooth dome. Subsequently, the oil propagated upwards along inclined sheets, finally reaching the surface at the edge of the dome. The resulting geometries of the intrusions were saucer-shaped sills. Then the oil solidified, and the model was cut in serial cross-sections through which the structures of the intrusive body and of the overburden can be observed. In order to constraint the processes governing the emplacement of such features, we performed a parametric study based on a set of experiments in which we systematically varied parameters such as the depth of emplacement and the injection flow rate of the oil. Our results showed that saucer diameters are larger at deeper level of emplacement. Opposite trend was obtained with varying injection flow rates. Based on our results, we conducted a detailed physical analysis that resulted in the definition of a dimensionless parameter that governs the emplacement of saucers.
NASA Astrophysics Data System (ADS)
Crown, D. A.; Ramsey, M.; Hon, K.
2010-12-01
Pahoehoe lava flows are compound features that consist of multiple overlapping and interfingering lobes and exhibit morphologically diverse surfaces characterized by channelized zones, smooth-surfaced sheets, and numerous, small toe networks. Previous work compiled detailed planform maps of solidified pahoehoe toe networks to document their morphology, morphometry and connective relationships in order to provide constraints on lava transport models. In order to expand this research to active flow emplacement, we observed slow-moving, tube-fed pahoehoe flows on the coastal plain near Kalapana, Hawaii in May, 2010. The evolution of pahoehoe toe and toe network characteristics over their emplacement history was examined and the role of small-scale flow inflation on the advance of pahoehoe lobes evaluated. We collected both visible video footage and high-speed, high-precision thermal infrared (TIR) data using a FLIR S-40 camera. The TIR data provide surface temperature maps that can be easily used to identify formation of new toes and track their growth and surface cooling. From these maps, lobe development, connective relationships, and frontal and lateral spreading rates can be analyzed. Preliminary results suggest that regular cycles of activity characterize the development of these pahoehoe lobes: 1) emplacement of new toes in local topographic lows at the front, margin, and within the interior of an active lobe forming small interconnected networks, 2) decline and sometimes temporary cessation in the production of new pahoehoe toes, 3) inflation of the recently emplaced flow surface, either partially or en masse depending on the rate of influx of new lava, the degree of irregularity of the pre-flow surface, and/or the slope across the recently emplaced lava surface, and 4) fracturing of the recently emplaced surface crust that feeds emplacement of new toes. Inflation fractures typically cut across several previously emplaced toes and can occur at the front, along the margins, or within the active lobe, even at significant distances behind the flow front.
NASA Astrophysics Data System (ADS)
Bogina, Maria; Zlobin, Valeriy; Sharkov, Evgenii; Chistyakov, Alexeii
2015-04-01
The Early Paleoproterozoic stage in the Earth's evolution was marked by the initiation of global rift systems, the tectonic nature of which was determined by plume geodynamics. These processes caused the voluminous emplacement of mantle melts with the formation of dike swarms, mafic-ultramafic layered intrusions, and volcanic rocks. All these rocks are usually considered as derivatives of SHMS (siliceous high-magnesian series). Within the Eastern Baltic Shield, the SHMS volcanic rocks are localized in the domains with different crustal history: in the Vodlozero block of the Karelian craton with the oldest (Middle Archean) crust, in the Central Block of the same craton with the Neoarchean crust, and in the Kola Craton with a heterogeneous crust. At the same time, these rocks are characterized by sufficiently close geochemical characteristics: high REE fractionation ((La/Yb)N = 4.9-11.7, (La/Sm)N=2.3-3.6, (Gd/Yb)N =1.66-2.74)), LILE enrichment, negative Nb anomaly, low to moderate Ti content, and sufficiently narrow variations in Nd isotope composition from -2.0 to -0.4 epsilon units. The tectonomagmatic interpretation of these rocks was ambiguous, because such characteristics may be produced by both crustal contamination of depleted mantle melts, and by generation from a mantle source metasomatized during previous subduction event. Similar REE patterns and overlapping Nd isotope compositions indicate that the studied basaltic rocks were formed from similar sources. If crustal contamination en route to the surface would play a significant role in the formation of the studied basalts, then almost equal amounts of contaminant of similar composition are required to produce the mafic rocks with similar geochemical signatures and close Nd isotopic compositions, which is hardly possible for the rocks spaced far apart in a heterogeneous crust. This conclusion is consistent with analysis of some relations between incompatible elements and their ratios. In particular, the rocks show no correlation between Th/Ta and La/Yb, (Nb/La)pm ratio and Th content, and eNd and (Nb/La)N ratio. At the same time, some correlation observed in the eNd-Mg# and (La/Sm)N-(Nb/La)N diagrams in combination with the presence of inherited zircons in the rocks does not allow us to discard completely the crustal contamination. Examination of Sm/Yb-La/Sm relations and the comparison with model melting curves for garnet and spinel lherzolites showed that the parental melts of the rocks were derived by 10-30% mantle melting at garnet-spinel facies transition. Two stage model can be proposed to explain such remarkable isotope-geochemical homogeneity of the mafic volcanic rocks over a large area: (1) ubiquitous emplacement of large volumes of sanukitoid melts in the lower crust of the shield at 2.7 Ga; (2) underplating of plume-derived DM melts at the crust-mantle boundary, melting of the lower crust of sanukitoid composition, and subsequent mixing of these melts with formation of SHMS melts at 2.4 Ga. A simple mixing model showed that in this case the Nd isotope composition of obtained melts remained practically unchanged at variable amounts of contaminant (up to 30%). This work was supported by the RFBR no. 14-05-00458.
In-Package Chemistry Abstraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
E. Thomas
2004-11-09
This report was developed in accordance with the requirements in ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA). The scope of this report is to describe the development and validation of the in-package chemistry model. The in-package model is a combination of two models, amore » batch reactor model that uses the EQ3/6 geochemistry-modeling tool, and a surface complexation model that is applied to the results of the batch reactor model. The batch reactor model considers chemical interactions of water with the waste package materials and the waste form for commercial spent nuclear fuel (CSNF) waste packages and codisposed waste packages that contain both high-level waste glass (HLWG) and DOE spent fuel. The surface complexation model includes the impact of fluid-surface interactions (i.e., surface complexation) on the resulting fluid composition. The model examines two types of water influx: (1) the condensation of water vapor that diffuses into the waste package, and (2) seepage water that enters the waste package from the drift as a liquid. (1) Vapor Influx Case: The condensation of vapor onto the waste package internals is simulated as pure H2O and enters at a rate determined by the water vapor pressure for representative temperature and relative humidity conditions. (2) Water Influx Case: The water entering a waste package from the drift is simulated as typical groundwater and enters at a rate determined by the amount of seepage available to flow through openings in a breached waste package. TSPA-LA uses the vapor influx case for the nominal scenario for simulations where the waste package has been breached but the drip shield remains intact, so all of the seepage flow is diverted from the waste package. The chemistry from the vapor influx case is used to determine the stability of colloids and the solubility of radionuclides available for transport by diffusion, and to determine the degradation rates for the waste forms. TSPA-LA uses the water influx case for the seismic scenario, where the waste package has been breached and the drip shield has been damaged such that seepage flow is actually directed into the waste package. The chemistry from the water influx case that is a function of the flow rate is used to determine the stability of colloids and the solubility of radionuclides available for transport by diffusion and advection, and to determine the degradation rates for the CSNF and HLW glass. TSPA-LA does not use this model for the igneous scenario. Outputs from the in-package chemistry model implemented inside TSPA-LA include pH, ionic strength, and total carbonate concentration. These inputs to TSPA-LA will be linked to the following principle factors: dissolution rates of the CSNF and HLWG, dissolved concentrations of radionuclides, and colloid generation.« less
Bagnardi, Marco; Amelung, Falk; Poland, Michael P.
2013-01-01
Space-geodetic measurements of surface deformation produced by the most recent eruptions at Fernandina – the most frequently erupting volcano in the Galápagos Archipelago – reveal that all have initiated with the intrusion of subhorizontal sills from a shallow magma reservoir. This includes eruptions from fissures that are oriented both radially and circumferentially with respect to the summit caldera. A Synthetic Aperture Radar (SAR) image acquired 1–2 h before the start of a radial fissure eruption in 2009 captures one of these sills in the midst of its propagation toward the surface. Galápagos eruptive fissures of all orientations have previously been presumed to be fed by vertical dikes, and this assumption has guided models of the origin of the eruptive fissure geometry and overall development of the volcanoes. Our findings allow us to reinterpret the internal structure and evolution of Galápagos volcanoes and of similar basaltic shields. Furthermore, we note that stress changes generated by the emplacement of subhorizontal sills feeding one type of eruption may control the geometry of subsequent eruptive fissures. Specifically, circumferential fissures tend to open within areas uplifted by sill intrusions that initiated previous radial fissure eruptions. This mechanism provides a possible explanation for the pattern of eruptive fissures that characterizes all the western Galápagos volcanoes, as well as the alternation between radial and circumferential fissure eruptions at Fernandina. The same model suggests that the next eruption of Fernandina will be from a circumferential fissure in the area uplifted by the 2009 sill intrusion, just southwest of the caldera rim.
Searching for evidence of hydrothermal activity at Apollinaris Mons, Mars
El Maarry, M.R.; Dohm, J.M.; Marzo, G.A.; Fergason, R.; Goetz, W.; Heggy, E.; Pack, A.; Markiewicz, W.J.
2012-01-01
A multidisciplinary approach involving various remote sensing instruments is used to investigate Apollinaris Mons, a prominent volcano on Mars, as well as the surrounding plains for signs of prolonged hydrologic and volcanic, and possibly hydrothermal activity. The main findings include (1) evidence from laser altimetry indicating the large thickness (1.5-2. km at some locations) of the fan deposits draping the southern flank contrary to previous estimates, coupled with possible layering which point to a significant emplacement phase at Apollinaris Mons, (2) corroboration of Robinson et al. (Robinson, M.S., Mouginis-Mark, P.J., Zimbelman, J.R., Wu, S.S.C., Ablin, K.K., Howington-Kraus, A.E. [1993]. Icarus 104, 301-323) hypothesis regarding the formation of incised valleys on the western flanks by density current erosion which would indicate magma-water interaction or, alternatively, volatile-rich magmas early in the volcano's history, (3) mounds of diverse geometric shapes, many of which display summit depressions and occur among faults and fractures, possibly marking venting, (4) strong indicators on the flanks of the volcano for lahar events, and possibly, a caldera lake, (5) ubiquitous presence of impact craters displaying fluidized ejecta in both shield-forming (flank and caldera) materials and materials that surround the volcano that are indicative of water-rich target materials at the time of impact, (6) long-term complex association in time among shield-forming materials and Medusae Fossae Formation.The findings point to a site of extensive volcanic and hydrologic activity with possibly a period of magma-water interaction and hydrothermal activity. Finally, we propose that the mound structures around Apollinaris should be prime targets for further in situ exploration and search for possible exobiological signatures. ?? 2011 Elsevier Inc..
Searching for evidence of hydrothermal activity at Apollinaris Mons, Mars
El Maarry, M. Ramy; Dohm, James M.; Marzo, Giuseppe A.; Fergason, Robin; Goetz, Walter; Heggy, Essam; Pack, Andreas; Markiewicz, Wojciech J.
2012-01-01
A multidisciplinary approach involving various remote sensing instruments is used to investigate Apollinaris Mons, a prominent volcano on Mars, as well as the surrounding plains for signs of prolonged hydrologic and volcanic, and possibly hydrothermal activity. The main findings include (1) evidence from laser altimetry indicating the large thickness (1.5–2 km at some locations) of the fan deposits draping the southern flank contrary to previous estimates, coupled with possible layering which point to a significant emplacement phase at Apollinaris Mons, (2) corroboration of Robinson et al. (Robinson, M.S., Mouginis-Mark, P.J., Zimbelman, J.R., Wu, S.S.C., Ablin, K.K., Howington-Kraus, A.E. [1993]. Icarus 104, 301–323) hypothesis regarding the formation of incised valleys on the western flanks by density current erosion which would indicate magma–water interaction or, alternatively, volatile-rich magmas early in the volcano’s history, (3) mounds of diverse geometric shapes, many of which display summit depressions and occur among faults and fractures, possibly marking venting, (4) strong indicators on the flanks of the volcano for lahar events, and possibly, a caldera lake, (5) ubiquitous presence of impact craters displaying fluidized ejecta in both shield-forming (flank and caldera) materials and materials that surround the volcano that are indicative of water-rich target materials at the time of impact, (6) long-term complex association in time among shield-forming materials and Medusae Fossae Formation. The findings point to a site of extensive volcanic and hydrologic activity with possibly a period of magma–water interaction and hydrothermal activity. Finally, we propose that the mound structures around Apollinaris should be prime targets for further in situ exploration and search for possible exobiological signatures.
The proximal part of the giant submarine Wailau landslide, Molokai, Hawaii
Clague, D.A.; Moore, J.G.
2002-01-01
The main break-in-slope on the northern submarine flank of Molokai at -1500 to -1250 m is a shoreline feature that has been only modestly modified by the Wailau landslide. Submarine canyons above the break-in-slope, including one meandering stream, were subaerially carved. Where such canyons cross the break-in-slope, plunge pools may form by erosion from bedload sediment carried down the canyons. West Molokai Volcano continued infrequent volcanic activity that formed a series of small coastal sea cliffs, now submerged, as the island subsided. Lavas exposed at the break-in-slope are subaerially erupted and emplaced tholeiitic shield lavas. Submarine rejuvenated-stage volcanic cones formed after the landslide took place and following at least 400-500 m of subsidence after the main break-in-slope had formed. The sea cliff on east Molokai is not the headwall of the landslide, nor did it form entirely by erosion. It may mark the location of a listric fault similar to the Hilina faults on present-day Kilauea Volcano. The Wailau landslide occurred about 1.5 Ma and the Kalaupapa Peninsula most likely formed 330??5 ka. Molokai is presently stable relative to sea level and has subsided no more than 30 m in the last 330 ka. At their peak, West and East Molokai stood 1.6 and 3 km above sea level. High rainfall causes high surface runoff and formation of canyons, and increases groundwater pressure that during dike intrusions may lead to flank failure. Active shield or postshield volcanism (with dikes injected along rift zones) and high rainfall appear to be two components needed to trigger the deep-seated giant Hawaiian landslides. ?? 2002 Elsevier Science B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bowles, J.; Jackson, M.; Lappe, S. C. L. L.; Solheid, P.; Stinton, A. J.
2014-12-01
Pumice blocks and ash matrix sampled from the 1980 pyroclastic flows at Mt. St. Helens and the 2010 flow at Soufrière Hills, Montserrat, display magnetic Curie temperatures (TC) that vary strongly with depth in the flow. We demonstrate that these TC variations result from variable degrees of cation ordering within Mg- and Al-bearing titanomagnetites, and that the degree of ordering is dependent on the emplacement temperature and post-emplacement thermal history of the sample. Curie temperatures are lowest at the tops of flows where rapid cooling has quenched in a relatively low degree of cation order. Samples that cooled more slowly at depth in the flow evolved towards a higher degree of cation order with a correspondingly higher TC. Isothermal annealing experiments in the laboratory have allowed us to document the time-temperature evolution of the cation ordering and Curie temperature, and we use this data in combination with conductive cooling calculations to forward model stratigraphic variations in TC as a function of emplacement temperature (e.g., Fig.1). Preliminary results show that modeled emplacement temperatures (Templ) are reasonably close to measured or estimated emplacement temperatures. Thermal demagnetization data from lithic clasts incorporated into some flows supports the modeled emplacement temperatures; a low-temperature overprint in the direction of the present-day field is removed at ~Templ. However, the documented variation of TC with thermal history means that care should be taken in interpreting this more traditional lithic-based paleomagnetic paleothermometry data. Modification of Curie and blocking temperatures both during natural cooling and during laboratory thermal treatments could affect lithic-based emplacement temperature estimates.
Roughness influence on human blood drop spreading and splashing
NASA Astrophysics Data System (ADS)
Smith, Fiona; Buntsma, Naomi; Brutin, David
2017-11-01
The impact behaviour of complex fluid droplets is a topic that has been extensively studied but with much debate. The Bloodstain Pattern Analysis (BPA) community is encountering this scientific problem with daily practical cases since they use bloodstains as evidence in crime scene reconstruction. We aim to provide fundamental explanations in the study of blood drip stains by investigating the influence of surface roughness and wettability on the splashing limit of droplets of blood, a non-Newtonian colloidal fluid. Droplets of blood impacting perpendicularly different surfaces at different velocities were recorded. The recordings were analysed as well as the surfaces characteristics in order to find an empirical solution since we found that roughness plays a major role in the threshold of the splashing/non-splashing behaviour of blood compared to the wettability. Moreover it appears that roughness alters the deformation of the drip stains. These observations are key in characterising features of drip stains with the impacting conditions, which would answer some forensic issues.
NASA Astrophysics Data System (ADS)
Liu, Hui-Hui; Xiong, Guo-Xin; Zhang, Li-Ping
2017-06-01
To investigate the therapeutic effect of the compound Danshen dripping pill combined with laser acupoint irradiation on early diabetic retinopathy, 19 patients with early diabetic retinopathy were randomly divided into a treatment group and a control group. The TaiYang, YangBai, YuYao and ZanZhu acupoints of patients in the treatment group were irradiated with a semiconductor laser combined with the oral compound Danshen dropping pills, while those in the control group only used the oral compound Danshen dropping pills. The indicators of vision, mean defect of light sensitivity in the visual field, renal function and fasting blood glucose, were examined to evaluate the efficacy. After treatment, the above indicators of patients in the two groups were significantly improved and there was a significant difference between the two groups. This showed that the compound Danshen dripping pills combined with the laser acupoint irradiation can improve the ischemic and anoxic state of early diabetic retinopathy and improve the visual field.
Evaluation of dripper clogging using magnetic water in drip irrigation
NASA Astrophysics Data System (ADS)
Khoshravesh, Mojtaba; Mirzaei, Sayyed Mohammad Javad; Shirazi, Pooya; Valashedi, Reza Norooz
2018-06-01
This study was performed to investigate the uniformity of distribution of water and discharge variations in drip irrigation using magnetic water. Magnetic water was achieved by transition of water using a robust permanent magnet connected to a feed pipeline. Two main factors including magnetic and non-magnetic water and three sub-factor of salt concentration including well water, addition of 150 and 300 mg L-1 calcium carbonate to irrigation water with three replications were applied. The result of magnetic water on average dripper discharge was significant at ( P ≤ 0.05). At the final irrigation, the average dripper discharge and distribution uniformity were higher for the magnetic water compared to the non-magnetic water. The magnetic water showed a significant effect ( P ≤ 0.01) on distribution uniformity of drippers. At the first irrigation, the water distribution uniformity was almost the same for both the magnetic water and the non-magnetic water. The use of magnetic water for drip irrigation is recommended to achieve higher uniformity.
Calvo, Luis; Toldrá, Fidel; Rodríguez, Ana I; López-Bote, Clemente; Rey, Ana I
2017-01-01
This study evaluates the effect of organic (Se-enriched yeast; SeY) versus inorganic selenium (sodium selenite; SeS) supplementation and the different response of selenium source according to muscle pH on pork meat quality characteristics. Pigs ( n = 30) were fed the Se-supplemented diets (0.3 mg/kg) for 65 days. Neither electric conductivity (EC) nor drip loss were affected by the selenium source. The SeY group had lower TBARS in muscle samples after day 7 of refrigerated storage and higher a * values on days 1 and 7 than the SeS group. The effect of dietary selenium source on some meat quality characteristics was affected by muscle pH. Hence, as the muscle pH increases, the drip loss decreases but this effect is more marked with the dietary organic Se enrichment. Muscle pH seems to modulate the action of selenium in pork, especially some meat characteristics such as drip loss.
VIEW OF GUN EMPLACEMENT AND THE TABLELIKE CAST CONCRETE STRUCTURE ...
VIEW OF GUN EMPLACEMENT AND THE TABLE-LIKE CAST CONCRETE STRUCTURE SHOWING THE SPALLED AREA ON ITS EAST SIDE (LEFT) WHERE THE SECOND PROJECTING ARM WAS BROKEN OFF. NOTE THE SLOPED CONCRETE PAD IN THE BACKGROUND. VIEW FACING SOUTHWEST - U.S. Naval Base, Pearl Harbor, Ford Island 5-Inch Antiaircraft Battery, East Gun Emplacement, Ford Island, Pearl City, Honolulu County, HI
Presentations - Lande, Lauren and others, 2015 | Alaska Division of
Details Title: A petrological model for emplacement of the ultramafic Ni-Cu-PGE Alpha complex, eastern , Newberry, R.J., and Twelker, Evan, 2015, A petrological model for emplacement of the ultramafic Ni-Cu-PGE Sheets Maps & Other Oversized Sheets Sheet 1 A petrological model for emplacement of the ultramafic
A historical overview of Moroccan magmatic events along northwest edge of the West African Craton
NASA Astrophysics Data System (ADS)
Ikenne, Moha; Souhassou, Mustapha; Arai, Shoji; Soulaimani, Abderrahmane
2017-03-01
Located along the northwestern edge of the West African Craton, Morocco exhibits a wide variety of magmatic events from Archean to Quaternary. The oldest magmatic rocks belong to the Archean Reguibat Shield outcrops in the Moroccan Sahara. Paleoproterozoic magmatism, known as the Anti-Atlas granitoids, is related to the Eburnean orogeny and initial cratonization of the WAC. Mesoproterozoic magmatism is represented by a small number of mafic dykes known henceforth as the Taghdout mafic volcanism. Massive Neoproterozoic magmatic activity, related to the Pan-African cycle, consists of rift-related Tonian magmatism associated with the Rodinia breakup, an Early Cryogenian convergent margin event (760-700 Ma), syn-collisional Bou-Azzer magmatism (680-640 Ma), followed by widespread Ediacaran magmatism (620-555 Ma). Each magmatic episode corresponded to a different geodynamic environment and produced different types of magma. Phanerozoic magmatism began with Early Cambrian basaltic (rift?) volcanism, which persisted during the Middle Cambrian, and into the Early Ordovician. This was succeeded by massive Late Devonian and Carboniferous, pre-Variscan tholeiitic and calc-alkaline (Central Morocco) volcanic flows in basins of the Moroccan Meseta. North of the Atlas Paleozoic Transform Zone, the Late Carboniferous Variscan event was accompanied by the emplacement of 330-300 Ma calc-alkaline granitoids in upper crustal shear zones. Post-Variscan alkaline magmatism was associated with the opening of the Permian basins. Mesozoic magmatism began with the huge volumes of magma emplaced around 200 Ma in the Central Atlantic Magmatic Province (CAMP) which was associated with the fragmentation of Pangea and the subsequent rifting of Central Atlantic. CAMP volcanism occurs in all structural domains of Morocco, from the Anti-Atlas to the External Rif domain with a peak activity around 199 Ma. A second Mesozoic magmatic event is represented by mafic lava flows and gabbroic intrusions in the Internal Maghrebian flysch nappes as well as in the external Mesorif. This event consists of Middle-Upper Jurassic MORB tholeiites emplaced during opening of the Alpine Tethys ocean. The Central High Atlas also records Early Cretaceous alpine Tethys magmatism associated with the aborted Atlas rift, or perhaps linked to plume activity on the edge of the WAC. Cenozoic magmatism is associated with Tertiary and Quaternary circum-Mediterranean alkaline provinces, and is characterized by an intermittent activity over 50 Ma from the Anti-Atlas to the Rif Mountain along a SW-NE volcanic lineament which underlines a thinned continental lithosphere.
Welzenbach, Julia; Neuhoff, Christiane; Looft, Christian; Schellander, Karl; Tholen, Ernst; Große-Brinkhaus, Christine
2016-01-01
The aim of this study was to elucidate the underlying biochemical processes to identify potential key molecules of meat quality traits drip loss, pH of meat 1 h post-mortem (pH1), pH in meat 24 h post-mortem (pH24) and meat color. An untargeted metabolomics approach detected the profiles of 393 annotated and 1,600 unknown metabolites in 97 Duroc × Pietrain pigs. Despite obvious differences regarding the statistical approaches, the four applied methods, namely correlation analysis, principal component analysis, weighted network analysis (WNA) and random forest regression (RFR), revealed mainly concordant results. Our findings lead to the conclusion that meat quality traits pH1, pH24 and color are strongly influenced by processes of post-mortem energy metabolism like glycolysis and pentose phosphate pathway, whereas drip loss is significantly associated with metabolites of lipid metabolism. In case of drip loss, RFR was the most suitable method to identify reliable biomarkers and to predict the phenotype based on metabolites. On the other hand, WNA provides the best parameters to investigate the metabolite interactions and to clarify the complex molecular background of meat quality traits. In summary, it was possible to attain findings on the interaction of meat quality traits and their underlying biochemical processes. The detected key metabolites might be better indicators of meat quality especially of drip loss than the measured phenotype itself and potentially might be used as bio indicators. PMID:26919205
Chang, J Y M; Michielsen, S
2016-05-01
Textiles may provide valuable bloodstain evidence to help piece together events or activities at violent crime scenes. However, in spite of over 75 years of research, there are still difficulties encountered in many cases in the interpretation and identification of bloodstains on textiles. In this study, we dripped porcine blood onto three types of fabric (plain woven, single jersey knit, and denim) that are supported in four different ways (hard, taut, loose, and semi-hard, i.e., fabric laid on denim). These four mounting methods represent different ways in which a textile may be present when blood from a violent act lands on it. This study investigates how the fabric mounting method and backing material affect the appearance of drip stains on textiles. We found that bloodstain patterns formed on fabric lying flat on a hard surface were very different from when the same fabric was suspended loosely. We also found that bloodstains formed on the technical back of single jersey knit were vastly different from those on the technical face. Interestingly, some drip stains showed blood passing through the textile and leaving a stain behind it that resembled insect stains. By observing, recording, and describing how a blood stained textile is found or presented at the scene, the analyst may be able to better understand bloodstains and bloodstain patterns on textiles, which could be useful to confirm or refute a witness's account of how blood came to be where it was found after a bloodshed event.
NASA Astrophysics Data System (ADS)
Oryaëlle Chevrel, Magdalena; Guilbaud, Marie-Noelle; Siebe, Claus
2016-04-01
Small to medium-sized shield volcanoes are an important component of many volcanic fields on Earth. The Trans-Mexican Volcanic Belt, one of the most complex and active continental arcs worldwide, displays a large number of such medium-sized volcanoes. In particular the Michoacán-Guanajuato Volcanic Field (MGVF) situated in central Mexico, is the largest monogenetic volcanic field in the world and includes more than 1000 scoria cones and about four hundred medium-sized volcanoes, also known as Mexican shields. The Mexican shields nevertheless represent nearly 70% of the total volume erupted since 1 Ma and hence played a considerable role in the formation of the MGVF. However, the source, storage, and transport as well as the physical properties (density, viscosity, volatile content, etc.) of the magmas involved in these eruptions remain poorly constrained. Here, we focus on Cerro El Metate, the youngest monogenetic andesite shield volcano of the field. New C14 dates for the eruption yield a young age (~AD 1250), which briefly precedes the initial rise of the Tarascan Empire (AD 1350-1521) in this region. This volcano has a minimum volume of ~9.2 km3 DRE, and its viscous lava flows were emplaced during a single eruption over a period of ~35 years covering an area of 103 km2. By volume, this is certainly the largest eruption during the Holocene in Mexico, and it is the largest andesitic effusive eruption known worldwide for this period. Such a large volume of lava erupted in a relatively short time had a significant impact on the environment (modification of the hydrological network, forest fires, etc.), and hence, nearby human populations probably had to migrate. Its eruptive history was reconstructed through detailed mapping, and geochemical and rheological analyses of its thick hornblende-bearing andesitic flows. Early and late flows have distinct morphologies, chemical and mineralogical compositions, and isotopic signatures which show that these lavas were fed by two separate magma batches that followed distinct differentiation paths during their ascent. The source for both batches was a subduction-modified heterogeneous lithospheric upper mantle. Mineral thermometry and barometry reveal that after initial ascent through the crust, the first batch became temporarily stalled at a depth of ~7-10 km, allowing for crystallization and fractionation. Then, the second hotter batch ascended, bypassed the first batch without significant mingling or mixing of the two magmas and erupted. Stratigraphic relations between the distinct lava units indicate that this first eruptive episode was followed directly by the eruption of the first batch. The entire eruption was then purely effusive and continuous. The explosive eruption of such a large magma volume was avoided due to efficient and constant passive open-degassing of the magma as it ascended through the uppermost crust and erupted at the surface.
Assessing modern climatic controls on southern Sierra Nevada precipitation and speleothem δ18O
NASA Astrophysics Data System (ADS)
McCabe-Glynn, S. E.; Johnson, K. R.; Berkelhammer, M. B.
2012-12-01
Precipitation in the southwestern United States (SW US) is highly seasonal and exhibits inter-annual to inter-decadal variability. A 1154-year δ18O time series obtained from a southwestern Sierra Nevada Mountain stalagmite from Crystal Cave, CRC-3, (36.58°N; 118.56°W; 1540 m) reveals substantial decadal to multi-decadal variability closely linked to the Pacific Decadal Oscillation (PDO), and more specifically, to sea surface temperatures (SSTs) in the Kuroshio Extension region, which impact the atmospheric trajectory and isotopic composition of moisture reaching the study site. The instrumental portion of the CRC-3 δ18O time series suggests that more negative precipitation δ18O values are delivered from higher latitudes during positive phases of the PDO and/or when SSTs in the Kuroshio Extension region are anomalously cool, such as during La Niña events. In order to improve our understanding of the controls on speleothem δ18O in this region, we have conducted a detailed modern study of the climate, hydrology, and stable isotopic composition of meteoric waters (precipitation and drip water) at the cave. Here we present Crystal Cave drip logger results from 2010 to 2012, the isotopic composition of North American Deposition Program precipitation samples collected from 2001 to 2012 from several locations near our site including Ash Mountain (ASM), Sequoia National Park-Giant Forest (Ca75), and Yosemite National Park (Ca99), and isotopic composition of cave drip water and glass plate calcite. We also compare the δ18O values in the precipitation to satellite imagery, NCAR/NCEP data, and NOAA Hysplit Model backward trajectories between the sites. Results indicate that this site is particularly sensitive to "Pineapple Express" type storms, a persistent flow of atmospheric moisture and heavy rainfall extending from near the Hawaiian Islands to the coast of North America, which average about twice as much precipitation as other storms in the Sierra Nevada during winter. Crystal Cave drip logger results indicate a low drip rate variability in the cave between July 2010 and July 2011, averaging between ~25 drips/hour but we observe a significant increase during three "Pineapple Express" type storms (PE) during the 2010-2011 winter. Analysis of the δ18O of precipitation samples collected during these storms events exhibit significantly more negative values which could complicate the interpretation of speleothem δ18O if the relative contribution of PE moisture varies on interannual to multi-decadal timescales.
NASA Astrophysics Data System (ADS)
Mattsson, Tobias; Burchardt, Steffi; Almqvist, Bjarne S. G.; Ronchin, Erika
2018-02-01
Felsic magma commonly pools within shallow mushroom-shaped magmatic intrusions, so-called laccoliths or cryptodomes, which can cause both explosive eruptions and collapse of the volcanic edifice. Deformation during laccolith emplacement is primarily considered to occur in the host rock. However, shallowly emplaced laccoliths (cryptodomes) show extensive internal deformation. While deformation of magma in volcanic conduits is an important process for regulating eruptive behavior, the effects of magma deformation on intrusion emplacement remain largely unexplored. In this study, we investigate the emplacement of the 0.57 km3 rhyolitic Sandfell laccolith, Iceland, which formed at a depth of 500 m in a single intrusive event. By combining field measurements, 3D modeling, anisotropy of magnetic susceptibility, microstructural analysis, and FEM modeling we examine deformation in the magma to constrain its influence on intrusion emplacement. Concentric flow bands and S-C fabrics reveal contact-parallel magma flow during the initial stages of laccolith inflation. The magma flow fabric is overprinted by strain-localization bands and more than one third of the volume of the Sandfell laccolith display concentric intensely fractured layers. A dominantly oblate magmatic fabric in the fractured areas and conjugate geometry of strain-localization bands, and fractures in the fracture layers demonstrate that the magma was deformed by intrusive stresses. This implies that a large volume of magma became viscously stalled and was unable to flow during intrusion. Fine-grained groundmass and vesicle-poor rock adjacent to the fracture layers point to that the interaction between the strain-localization bands and the flow bands at sub-solidus state caused the brittle-failure and led to decompression degassing and crystallization and rapid viscosity increase in the magma. The extent of syn-emplacement fracturing in the Sandfell laccolith further shows that strain-induced degassing limited the amount of eruptible magma by essentially solidifying the rim of the magma body. Our observations indicate that syn-emplacement changes in rheology, and the associated fracturing of intruding magma not only occur in volcanic conduits, but also play a major role in the emplacement of viscous magma intrusions in the upper kilometer of the crust.
Antaki, Elizabeth M; Vellidis, George; Harris, Casey; Aminabadi, Peiman; Levy, Karen; Jay-Russell, Michele T
2016-10-01
Studies have shown that irrigation water can be a vector for pathogenic bacteria. Due to this, the Food Safety Modernization Act's (FSMA) produce safety rule requires that agricultural water directly applied to produce be safe and of adequate sanitary quality for use, which may pose a challenge for some farmers. The purpose of this research was to assess the presence and concentration of Salmonella and generic Escherichia coli in irrigation water from distribution systems in a mixed produce production region of southern Georgia. Water samples were collected during three growing seasons at three farms irrigating crops with surface water (Pond 1, Pond 2) or groundwater (Well) during 2012-2013. Salmonella and generic E. coli populations were monitored by culture and Most Probable Number (MPN). Confirmed isolates were characterized by pulsed-field gel electrophoresis and serotyping. In Pond 1, Salmonella was detected in 2/21 surface, 5/26 subsurface, 10/50 center pivot, and 0/16 solid set sprinkler head water samples. In Pond 2, Salmonella was detected in 2/18 surface, 1/18 subsurface, 6/36 drip line start, and 8/36 drip line end water samples. Twenty-six well pumps and 64 associated drip line water samples were negative. The overall mean Salmonella concentration for positive water samples was 0.03 MPN/100 mL (range <0.0011-1.8 MPN/100 mL). Nine Salmonella serovars comprising 22 pulsotypes were identified. Identical serovars and subtypes were found three times on the same day and location: Pond 1-Pivot-Cantaloupe (serovar Rubislaw), Pond 1-Pivot-Peanut (serovar Saintpaul), and Pond 2-Drip Line Start-Drip Line End-Yellow Squash (serovar III_16z10:e,n,x,z15). Generic E. coli was detected in water from both farm ponds and irrigation distribution systems, but the concentrations met FSMA microbial water quality criteria. The results from this study will allow producers in southern Georgia to better understand how potential pathogens move through irrigation distribution systems.
NASA Astrophysics Data System (ADS)
Feltz, N.; Gaspart, F.; Vanclooster, M.
2015-12-01
In order to save agricultural water, the famous FAO's "more crop per drop" has been taken literally in many arid or semi-arid places around the world and policies that aim improving "efficiencies" (irrigation efficiency…) have been implemented, often leading to the promotion of water saving technologies. In 1865, studying coal consumption, W.S. Jevons highlighted that improving coal use efficiency could, as a paradox, lead to higher global coal use. Many economists later extended this idea to resource saving technologies in general, showing that, due to the "rebound effect", the adoption of more efficient technologies, in terms of use of resources, could lead to a higher global consumption of this resource if this adoption didn't go with adjustment measures. Regarding these considerations, the emerging question is to which extent water saving technologies (i.e. that aim improving water related efficiencies) are appropriate to save water at large scale. Our study addresses this question through the analysis of the conversion from surface to drip irrigation in Triffa's irrigated perimeter (Morocco). We aim addressing this question using the detailed analysis of two data sets. First, available data were collected for every farm within the study area from the local administrations. Second, interviews were conducted with farmers to complete the dataset and to characterize their behavior. This allowed assessing water related efficiencies at farm scale. Subsequently, models were implemented to link efficiencies with general attributes and thereby identify the main drivers of water related efficiencies in the study area. Finally, these models were used to upscale farm-scale assessment to the perimeter scale. Our results show that, under current conditions, moving from surface to drip irrigation leads to higher global water withdrawal. However, the aforementioned "rebound effect" does not allow explaining the higher pressure because of contextual specificities. Deeper analysis suggests that economic but also social and psychological issues need to be considered in this transition process. To fully achieve the expected results from moving to drip irrigation, those issues must be dealt with and the transition to drip irrigation must go hand in hand with stewardship programs and appropriate farmers capacity building.
Martinez-Taboada, Fernando; Redondo, José I
2017-03-01
To compare the running-drip and hanging-drop techniques for locating the epidural space in dogs. Prospective, randomized, clinical trial. Forty-five healthy dogs requiring epidural anaesthesia. Dogs were randomized into four groups and administered epidural anaesthesia in sternal (S) or lateral (L) recumbency. All blocks were performed by the same person using Tuohy needles with either a fluid-prefilled hub (HDo) or connected to a drip set attached to a fluid bag elevated 60 cm (RDi). The number of attempts, 'pop' sensation, clear drop aspiration or fluid dripping, time to locate the epidural space (TTLES) and presence of cerebrospinal fluid (CSF) were recorded. A morphine-bupivacaine combination was injected after positive identification. The success of the block was assessed by experienced observers based on perioperative usage of rescue analgesia. Data were checked for normality. Binomial variables were analysed with the chi-squared or Fisher's exact test as appropriate. Non-parametric data were analysed using Kruskal-Wallis and Mann-Whitney tests. Normal data were studied with an anova followed by a Tukey's means comparison for groups of the same size. A p-value of < 0.05 was considered to indicate statistical significance. Lateral recumbency HDo required more attempts (six of 11 dogs required more than one attempt) than SRDi (none of 11 dogs) (p = 0.0062). Drop aspiration was observed more often in SHDo (nine of 11 dogs) than in LHDo (two of 11 dogs) (p = 0.045). Mean (range) TTLES was longer in LHDo [47 (18-82) seconds] than in SHDo [20 (14-79) seconds] (p = 0.006) and SRDi [(34 (17-53) seconds] (p = 0.038). There were no differences in 'pop' sensation, presence of CSF, rescue analgesia or pain scores between the groups. The running-drip method is a useful and fast alternative technique for identifying the epidural space in dogs. The hanging-drop technique in lateral recumbency was more difficult to perform than the other methods, requiring more time and attempts. Copyright © 2017 Association of Veterinary Anaesthetists and American College of Veterinary Anesthesia and Analgesia. Published by Elsevier Ltd. All rights reserved.
Effects of Emulsifier, Overrun and Dasher Speed on Ice Cream Microstructure and Melting Properties.
Warren, Maya M; Hartel, Richard W
2018-03-01
Ice cream is a multiphase frozen food containing ice crystals, air cells, fat globules, and partially coalesced fat globule clusters dispersed in an unfrozen serum phase (sugars, proteins, and stabilizers). This microstructure is responsible for ice cream's melting characteristics. By varying both formulation (emulsifier content and overrun) and processing conditions (dasher speed), the effects of different microstructural elements, particularly air cells and fat globule clusters, on ice cream melt-down properties were studied. Factors that caused an increase in shear stress within the freezer, namely increasing dasher speed and overrun, caused a decrease in air cell size and an increase in extent of fat destabilization. Increasing emulsifier content, especially of polysorbate 80, caused an increase in extent of fat destabilization. Both overrun and fat destabilization influenced drip-through rates. Ice creams with a combination of low overrun and low fat destabilization had the highest drip-through rates. Further, the amount of remnant foam left on the screen increased with reduced drip-through rates. These results provide a better understanding of the effects of microstructure components and their interactions on drip-through rate. Manipulating operating and formulation parameters in ice cream manufacture influences the microstructure (air cells, ice crystals, and fat globule clusters). This work provides guidance on which parameters have most effect on air cell size and fat globule cluster formation. Further, the structural characteristics that reduce melt-down rate were determined. Ice cream manufacturers will use these results to tailor their products for the desired quality attributes. © 2018 Institute of Food Technologists®.
Efficacy of Fluensulfone in a Tomato–Cucumber Double Cropping System
Morris, Kelly A.; Langston, David B.; Dickson, Donald W.; Davis, Richard F.; Timper, Patricia; Noe, James P.
2015-01-01
Vegetable crops in the southeastern United States are commonly grown on plastic mulch with two crop cycles produced on a single mulch application. Field trials were conducted in 2013 and 2014 in two locations to evaluate the efficacy of fluensulfone for controlling Meloidogyne spp. when applied through drip irrigation to cucumber in a tomato–cucumber double-cropping system. In the spring tomato crop, 1,3-dichloropropene (1,3-D), fluensulfone, and a resistant cultivar significantly decreased root galling by 91%, 73%, and 97%, respectively, compared to the untreated control. Tomato plots from the spring were divided into split plots for the fall where the main plots were the spring treatment and the subplots were cucumber either treated with fluensulfone (3.0 kg a.i./ha. via drip irrigation) or left untreated. The fall application of fluensulfone improved cucumber vigor and reduced gall ratings compared to untreated subplots. Fluensulfone reduced damage from root-knot nematodes when applied to the first crop as well as provided additional protection to the second crop when it was applied through a drip system. PMID:26941459
Symptomatology and etiology of chronic pediatric rhinosinusitis.
Ilhan, Adem Emre; Karaman, Murat; Tekin, Arman
2012-01-01
This study aims to define symptoms and etiology and determine how to prevent chronic rhinosinusitis in children. Between February 2003 and February 2005, 50 pediatric patients (25 girls and 25 boys; mean age 8.22 years; range 4 to 14 years) with chronic rhinosinusitis were included in the study. The patients were questioned about anterior/posterior nasal dripping, night cough, headache, nausea, vomiting and nasal obstruction for symptomatology; about school condition, smoking behavior of parents and history of asthma for etiology. Hemogram, serum biochemistry, allergy test, nasal smear, chest and lateral neck radiography and sweat test were performed. Symptomatologic examination revealed that 48% had anterior nasal dripping, 62% with postnasal dripping, 70% with headache and 90% with nasal obstruction. Evaluation of etiological factors revealed that 68% were going to school, 48% of the parents had the history of smoking, 42% with allergy test-positivity and 60% with adenoid vegetation. Our study results indicated that environmental factors are important as etiological factors in rhinosinusitis. For prevention, we recommend restriction of close relationship at school, not to smoke at home and vaccination in each year with influenza and S. pneumonia vaccine.
Pygmy dipole mode in deformed neutron-rich Mg isotopes close to the drip line
NASA Astrophysics Data System (ADS)
Yoshida, Kenichi
2009-10-01
We investigate the microscopic structure of the low-lying isovector-dipole excitation mode in neutron-rich Mg36,38,40 close to the drip line by means of the deformed quasiparticle random-phase approximation employing the Skyrme and the local pairing energy-density functionals. It is found that the low-lying bump structure above the neutron emission-threshold energy develops when the drip line is approached, and that the isovector dipole strength at Ex<10 MeV exhausts about 6.0% of the classical Thomas-Reiche-Kuhn dipole sum rule in Mg40. We obtained the collective dipole modes at around 8-10 MeV in Mg isotopes, that consist of many two-quasiparticle excitations of the neutron. The transition density clearly shows an oscillation of the neutron skin against the isoscalar core. We found significant coupling effects between the dipole and octupole excitation modes due to the nuclear deformation. It is also found that the responses for the compressional dipole and isoscalar octupole excitations are much enhanced in the lower energy region.
NASA Astrophysics Data System (ADS)
Alex Brown, B.
The properties of the oxygen isotopes provide diverse examples of progress made in experiments and theory. This chain of isotopes has been studied from beyond the proton drip line in 12O to beyond the neutron drip line in 25,26O. This short survey starts with the microscopic G matrix approach for 18O of Kuo and Brown in the 1960's and shows how theory has evolved. The nuclear structure around the doubly-magic nucleus 24O is particularly simple in terms of the nuclear shell model. The nuclear structure around the doubly-magic nucleus 16O exhibits the coexistence of single-particle and collective structure.
The nuclear shell model toward the drip lines
NASA Astrophysics Data System (ADS)
Poves, A.; Caurier, E.; Nowacki, F.; Sieja, K.
2012-10-01
We describe the 'islands of inversion' that occur when approaching the neutron drip line around the magic numbers N=20, N=28 and N=40 in the framework of the interacting shell model in very large valence spaces. We explain these configuration inversions (and the associated shape transitions) as the result of the competition between the spherical mean field (monopole) that favors magicity and the correlations (multipole) that favor deformed intruder states. We also show that the N=20 and N=28 islands are in reality a single one, which for the magnesium isotopes is limited by N=18 and N=32.
McNeese, Nathan J; Cooke, Nancy J; Branaghan, Russell; Knobloch, Ashley; Taylor, Amanda
2017-04-01
Improvised Explosive Devices (IEDs) have become one of the deadliest threats to military personnel, resulting in over 50% of American combat casualties in Iraq and Afghanistan. Identification of IED emplacement is conducted by mission payload operators (MPOs). Yet, experienced MPOs are limited in number, making MPO training a critical intervention. In this article, we implement a Cognitive Engineering Based on Expert Skill methodology to better understand how experienced MPOs identify the emplacement of IEDs for the purposes of improving training. First, expert knowledge was elicited through interviews and questionnaires to identify the types of perceptual cues used and how these cues are cognitively processed. Results indicate that there are many different static and dynamic cues that interact with each other over time and space. Using data from the interviews and questionnaires, an empirically grounded framework is presented that explains the cognitive process of IED emplacement detection. Using the overall findings and the framework, IED emplacement training scenarios were developed and built into a simulation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Piggyback tectonics: Long-term growth of Kilauea on the south flank of Mauna Loa
Lipman, Peter W.; Sisson, Thomas W.; Coombs, Michelle L.; Calvert, Andrew T.; Kimura, Jun-Ichi
2006-01-01
Present-day Kilauea is the more dynamic edifice, but prior to inception of Kilauea and during its early growth, Mauna Loa is inferred to have undergone intense volcano spreading, involving the Kaoiki–Honuapo fault system (considered a geometric analog of the Hilina system on Kilauea). Cumulative deformation of Mauna Loa's south flank during growth of Kilauea since 200–300 ka is estimated to have involved > 10 km of seaward spreading, displacing the rift zones of Kīlauea while its deep plumbing system and summit magma reservoir remained nearly fixed in space. Kilauea's rift zones, rather than migrating southward with time solely due to dike emplacement preferentially on the mobile seaward side, alternatively are interpreted to have been transported passively southward, “piggyback” style, during shield-stage growth of Kilauea as a blister on the still-mobile south flank of Mauna Loa. Such an evolution of Kilauea accounts for the arcuate geometry of the present-day rift zones, proximity of the summit magma supply to the exposed flank of Mauna Loa, initial submarine growth of the ancestral edifice, and present-day location of Mauna Loa rocks at shallow depth beneath the south flank of Kilauea.
Lunar and Planetary Science XXXV: Venus
NASA Technical Reports Server (NTRS)
2004-01-01
The session "Venus" included the following reports:Preliminary Study of Laser-induced Breakdown Spectroscopy (LIBS) for a Venus Mission; Venus Surface Investigation Using VIRTIS Onboard the ESA/Venus Express Mission; Use of Magellan Images for Venus Landing Safety Assessment; Volatile Element Geochemistry in the Lower Atmosphere of Venus; Resurfacing Styles and Rates on Venus: Assessment of 18 Venusian Quadrangles; Stereo Imaging of Impact Craters in the Beta-Atla-Themis (BAT) Region, Venus; Depths of Extended Crater-related Deposits on Venus ; Potential Pyroclastic Deposit in the Nemesis Tessera (V14) Quadrangle of Venus; Relationship Between Coronae, Regional Plains and Rift Zones on Venus, Preliminary Results; Coronae of Parga Chasma, Venus; The Evolution of Four Volcano/Corona Hybrids on Venus; Calderas on Venus and Earth: Comparison and Models of Formation; Venus Festoon Deposits: Analysis of Characteristics and Modes of Emplacement; Topographic and Structural Analysis of Devana Chasma, Venus: A Propagating Rift System; Anomalous Radial Structures at Irnini Mons, Venus: A Parametric Study of Stresses on a Pressurized Hole; Analysis of Gravity and Topography Signals in Atalanta-Vinmara and Lavinia Planitiae Canali are Lava, Not River, Channels; and Formation of Venusian Channels in a Shield Paint Substrate.
Trillium 360 Seismometer Initial Test Results
NASA Astrophysics Data System (ADS)
Bainbridge, Geoffrey; Devanney, Peter; Upadhyaya, Sarvesh
2017-04-01
Test results for Trillium 360 show this seismometer can resolve the Peterson New Low Noise Model down to 300 seconds period. This has been confirmed at multiple sites: Pinon Flat (California), Albuquerque Seismological Laboratory (New Mexico) and Nanometrics (Ottawa, Canada). The Pinon Flat deployment captured the March 2, 2016 Mw=7.9 Indonesian event and showed a response coherent with reference sensors including an STS-1 at periods down to 0.0015 Hz. At frequencies below 0.0015 Hz the reference sensors showed a noncoherent spurious response, i.e. noise in the presence of signal, whereas the Trillium 360 was relatively unaffected. Magnetic sensitivity has been measured to be 0.01 m/s^2/T in two independent tests at ASL and Nanometrics. Temperature sensitivity is 3*10^-4 m/s^2/T. This combination of low sensitivity to both magnetic field and temperature is achieved through magnetic shielding which resolves the side effect of magnetic sensitivity in temperature-compensated ferromagnetic spring alloys. The T360 seismometer components are sufficiently miniaturized for deployment in a borehole. This enables low-noise performance even in an urban environment with thick sediments (at Nanometrics, Ottawa) since the seismometer can be emplaced in bedrock below surface sediments and away from surface noise.
Foundation, excavation and radiation shielding concepts for a 16-m large lunar telescope
NASA Technical Reports Server (NTRS)
Chua, Koon M.; Johnson, Stewart W.
1991-01-01
NASA is considering a 16-m diameter optical telescope on the moon as a part of the Space Exploration Initiative. Fundamental concepts of engineering activities on the moon and how they can be applied to the establishment of a 16-m large lunar telescope (LLT) are discussed. These fundamental concepts include the engineering response of lunar soils and how they affect construction activities, namely, drilling, blasting, ripping, digging and compaction. A mirror support structure and foundation design concept is proposed. The foundation considered is a multiple contact points spud-can type footing. It does not appear that a deep foundation or the presence of bedrock is required to achieve the telescope foundation stiffness. The LLT system will include a regolith covered housing, the size of a small room, which will contain sensitive electronic equipment including charge coupled devices which need protection from cosmic radiation effects. A brief discussion is made on radiation, radiation transport and radiation effects on electronics and on humans. Radiation protection techniques and the different emplacement schemes for the LLT instrument housing for radiation protection are suggested. A structural concept of an early lunar based telescope is also presented.
Geologic Map of the MTM -30262 and -30267 Quadrangles, Hadriaca Patera Region of Mars
Crown, David A.; Greeley, Ronald
2007-01-01
Introduction Mars Transverse Mercator (MTM) -30262 and -30267 quadrangles cover the summit region and east margin of Hadriaca Patera, one of the Martian volcanoes designated highland paterae. MTM -30262 quadrangle includes volcanic deposits from Hadriaca Patera and Tyrrhena Patera (summit northeast of map area) and floor deposits associated with the Dao and Niger Valles canyon systems (south of map area). MTM -30267 quadrangle is centered on the caldera of Hadriaca Patera. The highland paterae are among the oldest, central-vent volcanoes on Mars and exhibit evidence for explosive eruptions, which make a detailed study of their geology an important component in understanding the evolution of Martian volcanism. Photogeologic mapping at 1:500,000-scale from analysis of Viking Orbiter images complements volcanological studies of Hadriaca Patera, geologic investigations of the other highland paterae, and an analysis of the styles and evolution of volcanic activity east of Hellas Planitia in the ancient, cratered highlands of Mars. This photogeologic study is an extension of regional geologic mapping east of Hellas Planitia. The Martian highland paterae are low-relief, areally extensive volcanoes exhibiting central calderas and radial channels and ridges. Four of these volcanoes, Hadriaca, Tyrrhena, Amphitrites, and Peneus Paterae, are located in the ancient cratered terrains surrounding Hellas Planitia and are thought to be located on inferred impact basin rings or related fractures. Based on analyses of Mariner 9 images, Potter (1976), Peterson (1977), and King (1978) suggested that the highland paterae were shield volcanoes formed by eruptions of fluid lavas. Later studies noted morphologic similarities between the paterae and terrestrial ash shields and the lack of primary lava flow features on the flanks of the volcanoes. The degraded appearances of Hadriaca and Tyrrhena Paterae and the apparently easily eroded materials composing their low, broad shields further suggest that the highland paterae are composed predominantly of pyroclastic deposits. Analyses of eruption and flow processes indicate that the distribution of units at Hadriaca and Tyrrhena Paterae is consistent with emplacement by gravity-driven pyroclastic flows. Detailed geologic study of the summit caldera and flanks of Hadriaca Patera is essential to determine the types of volcanic materials exposed, the nature of the processes forming these deposits, and the role of volcanism in the evolution of the cratered highlands that are characteristic of the southern hemisphere of Mars.
Ted Irving and the Precambrian continental drift of (within?) the Canadian Shield
NASA Astrophysics Data System (ADS)
Hoffman, P. F.
2014-12-01
Ted Irving was no stranger to the Precambrian when he began paleomagnetic studies in the Canadian Shield (CS) that would dominate his research in the early and mid-1970's. Twenty years before, his graduate work on billion-year-old strata in Scotland established paleomagnetic methodologies applicable to sedimentary rocks generally. In 1958, he and Ronald Green presented an 'Upper Proterozoic' APW path from Australia as evidence for pre-Carboniferous drift relative to Europe and North America (the poles actually range in age from 1.2 to 2.7 Ga). His first published CS poles were obtained from the Franklin LIP of the Arctic platform and demonstrate igneous emplacement across the paleoequator. Characteristically, his 1971 poles are statistically indistinguishable from the most recent grand mean paleopole of 2009. His main focus, however, was on the question of Precambrian continental drift. He compared APW paths with respect to Laurentia with those obtained from other Precambrian shields, and he compared APW paths from different tectonic provinces within the CS. He was consistently antagonistic to the concept of a single long-lived Proterozoic supercontinent, but he was on less certain ground regarding motions within the CS due to inadequate geochronology. With Ron Emslie, he boldly proposed rapid convergence between parts of the Grenville Province and Interior Laurentia (IL) ~1.0 Ga. This was controversial given the uncertain ages of multiple magnetic components in high-grade metamorphic rocks. With John McGlynn and John Park, he developed a Paleoproterozoic APW path for the Slave Province from mafic dikes and red clastics, encompassing the time of consolidation of IL during 2.0-1.8 Ga orogenesis. Before 1980, he constructed Paleoproterozoic APW paths for IL as a whole, finding little evidence for significant internal displacement. He recognized that the Laurentian APW path describes a series of straight tracks linked by hairpins, the latter corresponding in age to major orogenic events. He did not ascribe any hairpin to collisional orogenesis within IL, outward facing margins excluded, nor any track to true polar wander. After 1980, however, he argued that existing poles were too poorly dated to rule out interior plate motions. Irving was a strict empiricist who fearlessly went where his data led him, and no farther.
NASA Astrophysics Data System (ADS)
Ashwal, L. D.
2012-12-01
Evidence for emplacement as crystal-laden mushes is abundant in mafic magma systems (i.e. products of broadly basaltic magmatism), including anorthosite complexes, layered mafic intrusions and a variety of sills and dikes. Some of the best examples involve the way feldspar becomes concentrated into anorthositic rocks. Proterozoic anorthosite massifs (e.g. Nain, Rogaland, Adirondacks), whose bulk compositions are characteristically hyperfeldspathic, are best interpreted as resulting from emplacement of plagioclase-rich mushes that ascended to shallow crustal emplacement sites from deep (~Moho) staging chambers in which ~An50 crystals floated due to density relations at high pressure. Supporting evidence includes large (up to ~1 m) grain size, compositional homogeneity of plagioclase with variable Mg# (caused by trapped liquid effects), and protoclastic textures. Isotopic disequilibrium between cumulus plagioclase and post-cumulus pyroxene result from progressive contamination with continental components. This is dramatically demonstrated at Nain (Labrador), where the anorthositic crystal mushes (~1.3 Ga) were emplaced into early Archean (~3.8 Ga) country rocks. High-Al, high-pressure orthopyroxene megacrysts are commonly dragged upward in feldspathic mushes to shallow emplacement sites, where they exsolved plagioclase lamellae (Bybee & Ashwal, this meeting). Archean calcic anorthosites (e.g. Fiskenaesset, W Greenland) and related sills, dikes and flows that contain homogeneous megacrysts up to 10s of cm across of ~An80 also must have formed by mush emplacement, although probably from shallower staging chambers in oceanic rather than continental crust. Many layered mafic intrusions (e.g. Bushveld, Stillwater, Dufek, Duluth) contain thick horizons of anorthosite in which plagioclase compositions are uniform, in some cases throughout >1000 m of stratigraphy. This is best interpreted as representing repeated emplacement of plagioclase-rich mushes from one or more deeper crystallizing magma chambers. In the Bushveld Complex, where deep drill cores have allowed near-continuous measurements of mineral compositions and geophysical properties, the results reveal a subtle cyclicity, invisible in outcrops, over scales of 50 - 100 m, commonly associated with broad reversals in mineral compositional trends. Each of these can be interpreted as a blending zone involving a new addition of crystal-laden magma. Much of Bushveld stratigraphy, and that of other layered intrusions contains plagioclase:pyroxene demonstrably higher than cotectic proportions, supporting overall construction by plagioclase-rich magmas. Isotopic disequilibrium effects, similar to those described above, have been detected in Bushveld cumulates, lending further support to mush emplacement models. Large layered intrusions were probably constructed by repeated emplacement of dozens of individual magmatic entities with variable crystal:melt ratios (Marsh, 2006, Elements). Even the properties of very small (~30 km2) layered intrusions like that at Doros, Namibia (Owen-Smith & Ashwal, this meeting) show abundant evidence for multiple mush emplacement. In plutonic magma bodies arising from mafic magmatism, therefore, the involvement of crystal mushes appears to be the rule rather than the exception.
NASA Astrophysics Data System (ADS)
Silva, André Luiz Barros de O.; Célia de Matos Pires, Regina; Yukitaka Pessinati Ohashi, Augusto; Vasconcelos Ribeiro, Rafael; Landell, Marcos Guimarães de Andrade; Aparecida Creste Dias de Souza, Silvana
2013-04-01
The biofuel production is a growing concern on modern society due to the agricultural sustainability, in which both food and energy supply should be taken into account. The agroclimatic zoning indicates that sugarcane expansion in Brazil can only take place in marginal lands, where water deficit occurs and irrigation is necessary. The use of subsurface drip irrigation (SDI) in sugarcane cultivation is an interesting cultural practice to improve production and allow cultivation in marginal lands due to water deficit conditions or to attain high yield and to increase longevity of plants. In this context it is necessary to investigate responses of different varieties to water supply. The aim of this work was to evaluate the plant development and yield of four sugarcane varieties irrigated by a subsurface drip irrigation system in Campinas, Brazil in the 1st cane ratoon cycle. The field experiment was carried out in Campinas SP Brazil, with IACSP95-5000, IACSP94-2094, IACSP94-2101 and SP79-1011 cultivars in the 1st cane ratoon cycle, from January (after the harvest of cane plant cycle) to October (harvest the 1st cane ratoon cycle). The plant spacing was 1.5 m between rows. Each cultivar was planted in an area of 0.4 hectares. The irrigation was done by a subsuperficial drip system with one drip line in each plant row installed at 0.25 m deep. During the 1st cane ratoon cycle the parameters were analysed on the 33rd, 123rd, 185th and 277th day. The analysed parameters were: plant yield (m), leaf area index (LAI) and yield (tons per hectare). According to the results from the second sampling (123rd day) the varieties IACSP95-5000 and IACSP94-2101 showed higher plant height when compared to the other varieties. However, from the third sampling (185th day) on the IACSP95-5000 variety grew considerably taller than the other varieties. The varieties SP79-1011and IACSP94-2101 presented lower values of LAI throughout the crop cycle when compared to other varieties. But on the third evaluation (185th day) DAP the LAI obtained in IACSP94-2101 variety reached a value close to that observed in IACSP94-2094. On the first two evaluations at 33rd and 123rd days the values achieved by varieties IACSP95-5000 and IACSP94-2094 were similar. On the last assessment the highest value of LAI was observed in IACSP95-5000 variety, reaching 6.47 LAI. From the second evaluation the highest value of yield were observed in IACSP95-5000 variety. On the last evaluation variety IACSP95-5000 yield reached over 140 tons per hectare. This productivity was 37%, 51% and 64% higher than the values obtained in the varieties SP79-1011, IACSP94-2101 and IACSP94-2094, respectively. This variety reached the greatest plant growth (height and LAI) and the highest yield in the first ratoon cane cycle under subsurface drip irrigation system. Based on the obtained results this variety has shown promise for cultivation under subsurface drip irrigation system.
NASA Astrophysics Data System (ADS)
Zhang, Z.; Tian, F.; Hu, H.; Yang, P.
2014-03-01
A multi-scale, multi-technique study was conducted to measure evapotranspiration and its components in a cotton field under mulched drip irrigation conditions in northwestern China. Three measurement techniques at different scales were used: a photosynthesis system (leaf scale), sap flow (plant scale), and eddy covariance (field scale). The experiment was conducted from July to September 2012. To upscale the evapotranspiration from the leaf to plant scale, an approach that incorporated the canopy structure and the relationships between sunlit and shaded leaves was proposed. To upscale the evapotranspiration from the plant to field scale, an approach based on the transpiration per unit leaf area was adopted and modified to incorporate the temporal variability in the relationship between leaf areas and stem diameter. At the plant scale, the estimate of the transpiration based on the photosynthesis system with upscaling was slightly higher (18%) than that obtained by sap flow. At the field scale, the estimates of transpiration derived from sap flow with upscaling and eddy covariance showed reasonable consistency during the cotton's open-boll growth stage, during which soil evaporation can be neglected. The results indicate that the proposed upscaling approaches are reasonable and valid. Based on the measurements and upscaling approaches, evapotranspiration components were analyzed for a cotton field under mulched drip irrigation. During the two analyzed sub-periods in July and August, evapotranspiration rates were 3.94 and 4.53 m day-1, respectively. The fraction of transpiration to evapotranspiration reached 87.1% before drip irrigation and 82.3% after irrigation. The high fraction of transpiration over evapotranspiration was principally due to the mulched film above the drip pipe, low soil water content in the inter-film zone, well-closed canopy, and high water requirement of the crop.
NASA Astrophysics Data System (ADS)
Zhang, Z.; Tian, F.; Hu, H. C.; Hu, H. P.
2013-11-01
A multi-scale, multi-technique study was conducted to measure evapotranspiration and its components in a cotton field under mulched drip irrigation conditions in northwestern China. Three measurement techniques at different scales were used: photosynthesis system (leaf scale), sap flow (plant scale), and eddy covariance (field scale). The experiment was conducted from July to September 2012. To upscale the evapotranspiration from the leaf to the plant scale, an approach that incorporated the canopy structure and the relationships between sunlit and shaded leaves was proposed. To upscale the evapotranspiration from the plant to the field scale, an approach based on the transpiration per unit leaf area was adopted and modified to incorporate the temporal variability in the relationships between leaf area and stem diameter. At the plant scale, the estimate of the transpiration based on the photosynthesis system with upscaling was slightly higher (18%) than that obtained by sap flow. At the field scale, the estimates of transpiration derived from sap flow with upscaling and eddy covariance shown reasonable consistency during the cotton open boll growth stage when soil evaporation can be neglected. The results indicate that the upscaling approaches are reasonable and valid. Based on the measurements and upscaling approaches, evapotranspiration components were analyzed under mulched drip irrigation. During the two analysis sub-periods in July and August, evapotranspiration rates were 3.94 and 4.53 mm day-1, respectively. The fraction of transpiration to evapotranspiration reached 87.1% before drip irrigation and 82.3% after irrigation. The high fraction of transpiration over evapotranspiration was principally due to the mulched film above drip pipe, low soil water content in the inter-film zone, well-closed canopy, and high water requirement of the crop.
NASA Astrophysics Data System (ADS)
Carlson, P. E.; Miller, N. R.; Banner, J.; Breecker, D.
2016-12-01
Speleothems that grow in well-ventilated zones of caves are typically avoided when selecting specimens for paleoclimate reconstruction, due to concerns about evaporation and kinetic isotope effects. Near-entrance cave environments are characterized by near-ambient CO2 concentrations year-round and are influenced by surface temperature fluctuations. At Westcave Preserve (Westcave), a shallow, well-ventilated cave in central Texas, we have found seasonal temperature differences recorded in both the oxygen isotope and trace element compositions of speleothem calcite. The seasonal nature of these records has been confirmed by monitoring the chemical composition of drip water and substrate calcite since 2009 (Feng et al., 2014; Casteel and Banner, 2015). We present an ultrahigh-resolution (weekly to monthly) record of δ18O, Mg, Sr, and Ba in Westcave stalagmite WC-3, as well as monthly measurements of drip water geochemistry. We find drip water δ18O and [Mg] are essentially invariant, while seasonal variations in stalagmite calcite δ18O and Mg compositions are in good agreement with predicted temperature-dependent fractionation between water and calcite. Both drip water and speleothem calcite Sr and Ba vary seasonally, which we hypothesize is due to seasonal changes in moisture conditions in the epikarst. We use each of these annual geochemical cycles as independent chronological controls in order to develop a single age model for the stalagmite. These independent chronological counts are consistent with each other, and with 14C bomb-peak and U-series evidence. We argue that the potential for this kind of multi-proxy, seasonally-resolved dating in near-entrance stalagmites makes them especially valuable paleoclimate archives that should not be ignored in speleothem studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, A; Pasciak, A; Wagner, L
Purpose: To evaluate the sensitivity of the Diagnostic Radiological Index of Protection (DRIP) to procedural factors in fluoroscopy in an effort to determine an appropriate set of scatter-mimicking primary beams (SMPB) to be used in measuring the DRIP. Methods: A series of clinical and factorial Monte Carlo simulations were conducted to determine the shape of the scattered X-ray spectra incident on the operator in different clinical fluoroscopy scenarios. Two clinical evaluations studied the sensitivity of the scattered spectrum to gantry angle and patient size while technical factors were varied according to measured automatic dose rate control (ADRC) data. Factorial evaluationsmore » studied the sensitivity of the scattered spectrum to gantry angle, field of view, patient size and beam quality for constant technical factors. Average energy was the figure of merit used to condense fluence in each energy bin to a single numerical index. Results: Beam quality had the strongest influence on the scattered spectrum in fluoroscopy. Many procedural factors affected the scattered spectrum indirectly through their effects on primary beam quality through ADRC, e.g., gantry angle and patient size. Lateral C-arm rotation, common in interventional cardiology, increased the energy of the scattered spectrum, regardless of the direction of rotation. The effect of patient size on scattered radiation depended on ADRC characteristics, patient size, and procedure type. Conclusion: The scattered spectrum striking the operator in fluoroscopy, and therefore the DRIP, is most strongly influenced by primary beam quality, particularly kV. Use cases for protective garments should be classified by typical procedural primary beam qualities, which are governed by the ADRC according to the impacts of patient size, anatomical location, and gantry angle. These results will help determine an appropriate set of SMPB to be used for measuring the DRIP.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moon, Chang-Bum, E-mail: cbmoon@hoseo.edu
This paper outlines the new physics possibilities that fall within the field of nuclear structure and astrophysics based on experiments with radioactive ion beams at the future Rare Isotope Beams Accelerator facility in Korea. This ambitious multi-beam facility has both an Isotope Separation On Line (ISOL) and fragmentation capability to produce rare isotopes beams (RIBs) and will be capable of producing and accelerating beams of wide range mass of nuclides with energies of a few to hundreds MeV per nucleon. The large dynamic range of reaccelerated RIBs will allow the optimization in each nuclear reaction case with respect to crossmore » section and channel opening. The low energy RIBs around Coulomb barrier offer nuclear reactions such as elastic resonance scatterings, one or two particle transfers, Coulomb multiple-excitations, fusion-evaporations, and direct capture reactions for the study of the very neutron-rich and proton-rich nuclides. In contrast, the high energy RIBs produced by in-flight fragmentation with reaccelerated ions from the ISOL enable to explore the study of neutron drip lines in intermediate mass regions. The proposed studies aim at investigating the exotic nuclei near and beyond the nucleon drip lines, and to explore how nuclear many-body systems change in such extreme regions by addressing the following topics: the evolution of shell structure in areas of extreme proton to neutron imbalance; the study of the weak interaction in exotic decay schemes such as beta-delayed two-neutron or two-proton emission; the change of isospin symmetry in isobaric mirror nuclei at the drip lines; two protons or two neutrons radioactivity beyond the drip lines; the role of the continuum states including resonant states above the particle-decay threshold in exotic nuclei; and the effects of nuclear reaction rates triggered by the unbound proton-rich nuclei on nuclear astrophysical processes.« less
Cloud shading and fog drip influence the metabolism of a coastal pine ecosystem.
Carbone, Mariah S; Park Williams, A; Ambrose, Anthony R; Boot, Claudia M; Bradley, Eliza S; Dawson, Todd E; Schaeffer, Sean M; Schimel, Joshua P; Still, Christopher J
2013-02-01
Assessing the ecological importance of clouds has substantial implications for our basic understanding of ecosystems and for predicting how they will respond to a changing climate. This study was conducted in a coastal Bishop pine forest ecosystem that experiences regular cycles of stratus cloud cover and inundation in summer. Our objective was to understand how these clouds impact ecosystem metabolism by contrasting two sites along a gradient of summer stratus cover. The site that was under cloud cover ~15% more of the summer daytime hours had lower air temperatures and evaporation rates, higher soil moisture content, and received more frequent fog drip inputs than the site with less cloud cover. These cloud-driven differences in environmental conditions translated into large differences in plant and microbial activity. Pine trees at the site with greater cloud cover exhibited less water stress in summer, larger basal area growth, and greater rates of sap velocity. The difference in basal area growth between the two sites was largely due to summer growth. Microbial metabolism was highly responsive to fog drip, illustrated by an observed ~3-fold increase in microbial biomass C with increasing summer fog drip. In addition, the site with more cloud cover had greater total soil respiration and a larger fractional contribution from heterotrophic sources. We conclude that clouds are important to the ecological functioning of these coastal forests, providing summer shading and cooling that relieve pine and microbial drought stress as well as regular moisture inputs that elevate plant and microbial metabolism. These findings are important for understanding how these and other seasonally dry coastal ecosystems will respond to predicted changes in stratus cover, rainfall, and temperature. © 2012 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Bouchez, Jean Luc; Diot, Herve
1990-10-01
The concentrically zoned Zaër pluton (Variscan Meseta of Morocco), previously modeled as the nesting of two magmas forming a ballooning pluton, is here subjected to a study of its internal magmatic and solid-state structures. The magmatic flow patterns, derived mainly from anisotropy of magnetic susceptibility measurements, together with structural observations down to thin-section scale, indicate that these two magmas have undergone totally independent kinematics of emplacement. This supports recent isotope geochemistry and geochronology data indicating independent origin of the magmas and diachronism of emplacement, respectively. Thus, we propose that a magma diapir, probably emplaced within a crustal fracture zone, cooled down to brittle conditions, before a likely flat-lying fracture was opened within the fracture zone and was filled with a new and compositionally different pulse of magma.
A Volume Flux Approach to Cryolava Dome Emplacement on Europa
NASA Technical Reports Server (NTRS)
Quick, Lynnae C.; Fagents, Sarah A.; Hurford, Terry A.; Prockter, Louise M.
2017-01-01
We previously modeled a subset of domes on Europa with morphologies consistent with emplacement by viscous extrusions of cryolava. These models assumed instantaneous emplacement of a fixed volume of fluid onto the surface, followed by relaxation to form domes. However, this approach only allowed for the investigation of late-stage eruptive processes far from the vent and provided little insight into how cryolavas arrived at the surface. Consideration of dome emplacement as cryolavas erupt at the surface is therefore pertinent. A volume flux approach, in which lava erupts from the vent at a constant rate, was successfully applied to the formation of steep-sided volcanic domes on Venus. These domes are believed to have formed in the same manner as candi-date cryolava domes on Europa. In order to gain a more complete understanding of the potential for the emplacement of Europa domes via extrusive volcanism, we have applied this new volume flux approach to the formation of putative cryovolcanic domes on Europa. Assuming as in that europan cryolavas are briny, aqueous solutions which may or may not contain some ice crystal fraction, we present the results of this modeling and explore theories for the formation of low-albedo moats that surround some domes.
16. Emplacement no. 1, door to small communication room (L), ...
16. Emplacement no. 1, door to small communication room (L), delivery table for projectile at right - Fort Wadsworth Battery Romeyn B. Ayers, South side of Ayers Road, Staten Island, Rosebank, Richmond County, NY
11. Battery Richmond, emplacement no. 1, showing (LR): sealed location ...
11. Battery Richmond, emplacement no. 1, showing (L-R): sealed location of delivery table for projectile hoist, recess for powder hoist - Forth Wadsworth Battery Richmond, Fort Wadsworth, Staten Island, New York County, NY
NASA Astrophysics Data System (ADS)
Brown, B. Alex
The properties of the oxygen isotopes provide diverse examples of progress made in experiments and theory. This chain of isotopes has been studied from beyond the proton drip line in 12O to beyond the neutron drip line in 25,26O. This short survey starts with the microscopic G matrix approach for 18O of Kuo and Brown in the 1960’s and shows how theory has evolved. The nuclear structure around the doubly-magic nucleus 24O is particularly simple in terms of the nuclear shell model. The nuclear structure around the doubly-magic nucleus 16O exhibits the coexistence of single-particle and collective structure.
Water Budget of East Maui, Hawaii
Shade, Patricia J.
1999-01-01
Ground-water recharge is estimated from six monthly water budgets calculated using long-term average rainfall and streamflow data, estimated pan-evaporation and fog-drip data, and soil characteristics. The water-budget components are defined seasonally, through the use of monthly data, and spatially by broad climatic and geohydrologic areas, through the use of a geographic information system model. The long-term average water budget for east Maui was estimated for natural land-use conditions. The average rainfall, fog-drip, runoff, evapotranspiration, and ground-water recharge volumes for the east Maui study area are 2,246 Mgal/d, 323 Mgal/d, 771 Mgal/d, 735 Mgal/d, and 1,064 Mgal/d, respectively.
Multi-Day Air Saturation at 20 and 22 FSW With Direct Ascent: Data Report on Project 92-09
2002-03-01
0802 0 air L/S; Divers 7, 8, 9, 10, 11, 12 0803 22 air R/B Feb 09 1919 22 air DMO entry, Diver 12 has scratchy throat and post-nasal drip, given aspirin...10,11, fsw 12 _ Galley is shipshape as is food. 1919 8 OK Robinson 12 describes scratchy throat & post nasal drip with ????? with purulent nasal...Ball 12 scratchy throat , sniffles, ASA 2 PO every 4 hrs 9 no c/o 7 no c/o 10 no c/o 11 mild congestion, Sudafed 60 mg Divers in good spirits 1250 8
Improvement of color and physiological properties of tuna-processing by-product by gamma irradiation
NASA Astrophysics Data System (ADS)
Choi, Jong-il; Kim, Hyun-Joo; Kim, Jae-Hun; Song, Beom-Seok; Chun, Byeong-Soo; Ahn, Dong-Hyun; Byun, Myung-Woo; Lee, Ju-Woon
2009-07-01
Although the by-products from fishery industry had many nutrients, it is being wasted or only used as bacteria media. In this study, the effect of a gamma irradiation on the cooking drips of Thunnus thynnus (CDT) was investigated to examine the possible use of the cooking drips as a functional material for food and cosmetic composition. Total aerobic bacteria, and yeasts/molds from CDT were detected at the level of 2.79 and 2.58 Log CFU/mL, respectively. But, CDT was efficiently sterilized by a gamma irradiation at a low dose of 1 kGy. The Hunter L* value of the gamma-irradiated ethanol extract of CDT was increased, and the a* and b* values were decreased compared to the non-irradiated extract, showing color improvement. Antioxidant activity of the ethanol extract of CDT was increased by a gamma irradiation depending on the irradiation dose. The increased contents of polyphenolic compounds and proteins in CDT extract by gamma irradiation may be the reason of the increased biological activity. These results suggested that the wasted cooking drips can be successfully used as functional components with gamma irradiation treatment.
Shen, Xiao-jun; Sun, Jing-sheng; Li, Ming-si; Zhang, Ji-yang; Wang, Jing-lei; Li, Dong-wei
2015-02-01
It is important to improve the real-time irrigation forecasting precision by predicting real-time water consumption of cotton mulched with plastic film under drip irrigation based on meteorological data and cotton growth status. The model parameters for calculating ET0 based on Hargreaves formula were determined using historical meteorological data from 1953 to 2008 in Shihezi reclamation area. According to the field experimental data of growing season in 2009-2010, the model of computing crop coefficient Kc was established based on accumulated temperature. On the basis of crop water requirement (ET0) and Kc, a real-time irrigation forecast model was finally constructed, and it was verified by the field experimental data in 2011. The results showed that the forecast model had high forecasting precision, and the average absolute values of relative error between the predicted value and measured value were about 3.7%, 2.4% and 1.6% during seedling, squaring and blossom-boll forming stages, respectively. The forecast model could be used to modify the predicted values in time according to the real-time meteorological data and to guide the water management in local film-mulched cotton field under drip irrigation.
Holck, Askild L; Pettersen, Marit K; Moen, Marie H; Sørheim, Oddvin
2014-07-01
Modified atmosphere packaging containing CO2 is widely used for extending the shelf life of chicken meat. Active packaging by adding CO2 emitter sachets to packages of meat is an alternative to traditional modified atmosphere packaging. The purpose of the study was to investigate the shelf life of chicken filets under different CO2 concentrations at 4°C storage. The inhibition of microbial growth was proportional to the CO2 concentration. Storage in 100% CO2 both with and without a CO2 emitter sachet gave a microbiological shelf-life extension of 7 days compared with 60% CO2. Carnobacterium divergens, Carnobacterium sp., and Lactococcus sp. were the dominating species at the end of the storage period. During storage in pure CO2, the carbon dioxide dissolved in the meat and caused the collapse of the packages. The resulting squeeze of the meat lead to a severe increase in drip loss. The drip loss was reduced profoundly by using the CO2 emitting sachet in the packages. The addition of CO2 emitters can easily be implemented at industrial packaging lines without reduction in production efficiency.
NASA Astrophysics Data System (ADS)
Suda, Ryutaro; Yagi, Mamiko; Kojima, Akira; Mentek, Romain; Mori, Nobuya; Shirakashi, Jun-ichi; Koshida, Nobuyoshi
2015-04-01
To enhance the usefulness of ballistic hot electron injection into solutions for depositing thin group-IV films, a dripping scheme is proposed. A very small amount of SiCl4 or GeCl4 solution was dripped onto the surface of a nanocrystalline Si (nc-Si) electron emitter, and then the emitter is driven without using any counter electrodes. It is shown that thin Si and Ge films are deposited onto the emitting surface. Spectroscopic surface and compositional analyses showed no extrinsic carbon contaminations in deposited thin films, in contrast to the results of a previous study using the dipping scheme. The availability of this technique for depositing thin SiGe films is also demonstrated using a mixture SiCl4+GeCl4 solution. Ballistic hot electrons injected into solutions with appropriate kinetic energies promote preferential reduction of target ions with no by-products leading to nuclei formation for the thin film growth. Specific advantageous features of this clean, room-temperature, and power-effective process is discussed in comparison with the conventional dry and wet processes.
Developing a Hybrid Solar/Wind Powered Drip Irrigation System for Dragon Fruit Yield
NASA Astrophysics Data System (ADS)
Widiastuti, I.; Wijayanto, D. S.
2017-03-01
Irrigation operations take a large amount of water and energy which impact to total costs of crop production. Development of an efficient irrigation supplying precise amount of water and conserving the use of energy can have benefits not only by reducing the operating costs but also by enhancing the farmland productivity. This article presents an irrigation method that promotes sustainable use of water and energy appropriate for a developing tropical country. It proposes a drip irrigation system supported by a combined solar-wind electric power generation system for efficient use of water in dragon fruit cultivation. The electric power generated is used to drive a water pump filling a storage tank for irrigating a 3000 m2 dragon fruit yield in Nguntoronadi, Wonogiri, Indonesia. In designing the irrigation system, the plant’s water requirement was identified based on the value of reference evapotranspiration of the area. A cost/benefit analysis was performed to evaluate the economic feasibility of the proposed scheme. The installation of this solar and wind drip irrigation helps provide sufficient quantity of water to each plant using renewable energy sources which reduce dependence on fossil fuel.
Dissolution of three insensitive munitions formulations.
Taylor, Susan; Park, Eileen; Bullion, Katherine; Dontsova, Katerina
2015-01-01
The US military fires live munitions during training. To save soldiers lives both during training and war, the military is developing insensitive munitions (IM) that minimize unintentional detonations. Some of the compounds in the IM formulation are, however, very soluble in water, raising environmental concerns about their fate and transport. We measured the dissolution of three of these IM formulations, IMX101, IMX104 and PAX21 using laboratory drip tests and studied the accompanying changes in particle structure using micro computed tomography. Our laboratory drip tests mimic conditions on training ranges, where spatially isolated particles of explosives scattered by partial detonations are dissolved by rainfall. We found that the constituents of these IM formulations dissolve sequentially and in the order predicted by their aqueous solubility. The order of magnitude differences in solubility among their constituents produce water solutions whose compositions and concentrations vary with time. For IMX101 and IMX104, that contain 3-nitro-1,2,4-triazol-5-one (NTO), the solutions also vary in pH. The good mass balances measured for the drip tests indicate that the formulations are not being photo-or bio-transformed under laboratory conditions. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Wassenburg, Jasper A.; Spoetl, Christoph; Cheng, Hai; Jochum, Klaus Peter; Niedermayr, Andrea; Richter, Detlev K.; Immenhauser, Adrian; Scholz, Denis
2016-04-01
Interpreting speleothem δ18O and δ13C records can be challenging. Although these proxies can be affected by various processes taking place within the cave environment, δ18O values commonly reflect local and regional atmospheric and hydrological processes, whereas δ13C values are rather controlled by local processes only, such as type of vegetation (C3 versus C4), soil CO2 production, cave air circulation, and drip rate. In order to relate speleothem stable isotope data to the exterior climate, monitoring of the local meteoric rainfall and drip water isotope composition, and temperature is necessary. In the case of δ18O values, it is important to assess whether the speleothem reflects the δ18O value of meteoric precipitation or whether there are significant isotope effects due to evapo-transpiration and/or other processes occurring within the karst environment. In addition, net infiltration is commonly restricted to a particular season, and speleothem growth may be seasonal. Hence speleothem δ18O values may be biased to a specific season. Here we present the results of two years (2011-2012) of monitoring of the δ18O values of spring water, meteoric rainfall and cave drip water in Grotte de Piste, NW Middle Atlas, Morocco. Watch glass experiments were performed at the monitored drip sites that correspond to an actively growing calcite stalagmite (GP7) and an actively growing aragonite stalagmite (GP5). This enabled us to assess the link between the δ18O values of the rainfall, the drip water, the associated CaCO3 precipitates and the stalagmite δ18O values of both polymorphs. In addition, δ18O and δ13C values of both stalagmites were analyzed at 5-year or higher resolution for the last 600 years. As expected, a systematic isotopic offset between the calcite and the aragonite stalagmite can be observed. This is approximately 0.86 ‰ for δ18O and 0.88 ‰ for δ13C. However, both stalagmites show similar trends in their δ18O and δ13C records, even though speleothem growth rates differ considerably. This replication test increases the confidence that these stalagmites recorded an environment signal.
Siegrist, Robert L; Parzen, Rebecca; Tomaras, Jill; Lowe, Kathryn S
2014-04-01
Drip dispersal of partially treated wastewater was investigated as an approach for onsite water reclamation and beneficial reuse of water and nutrients in a semi-arid climate. At the Mines Park Test Site in Golden, Colorado, a drip dispersal system (DDS) was installed at 20- to 30-cm depth in an Ascalon sandy loam soil profile. Two zones with the same layout were established to enable study of two different hydraulic loading rates. Zones 1 and 2 each had one half of the landscape surface with native vegetation and the other with Kentucky bluegrass sod. After startup activities, domestic septic tank effluent was dispersed five times a day at footprint loading rates of 5 L/m(2)/d for Zone 1 and 10 L/m(2)/d for Zone 2. Over a two-year period, monitoring included the frequency and volume of effluent dispersed and its absorption by the landscape. After the first year of operation in October a (15)N tracer test was completed in the sodded portion of Zone 1 and samples of vegetation and soil materials were collected and analyzed for water content, pH, nitrogen, (15)N, and bacteria. Research revealed that both zones were capable of absorbing the effluent water applied at 5 or 10 L/m(2)/d. Effluent water dispersed from an emitter infiltrates at the emitter and along the drip tubing and water movement is influenced by hydrologic conditions. Based on precipitation and evapotranspiration at the Test Site, only a portion of the effluent water dispersed migrated downward in the soil (approx. 34% or 64% for Zone 1 or 2, respectively). Sampling within Zone 1 revealed water filled porosities were high throughout the soil profile (>85%) and water content was most elevated along the drip tubing (17-22% dry wt.), which is also where soil pH was most depressed (pH 4.5) due to nitrification reactions. NH4(+) and NO3(-) retention occurred near the dispersal location for several days and approximately 51% of the N applied was estimated to be removed by plant uptake and denitrification. Heterotrophic bacteria levels were elevated (up to 1 log) in the subsurface within the DDS but there was effective elimination of effluent fecal coliform and Escherichia coli bacteria. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jin, M.; Chen, W.; Liang, X.
2016-12-01
Rational irrigation with brackish water can increase crop production, but irrational use may cause soil salinization. In order to understand the relationships among water, salt, and nutrient (including trace elements) and find rational schemes to manage water, salinity and nutrient in cotton fields, field and pot experiments were conducted in an arid area of southern Xinjiang, northwest China. Field experiments were performed from 2008 to 2015, and involved mulched drip irrigation during the growing season and flood irrigation afterwards. The average cotton yield of seven years varied between 3,575 and 5,095 kg/ha, and the irrigation water productivity between 0.91 and 1.16 kg/m3. With the progress of brackish water irrigation, Cu, Fe, Mn, and Na showed strong aggregation in topsoil at the narrow row, whereas the contents of Ca and K decreased in the order of inter-mulch gap, the wide inter row, and the narrow row. The contents of Cu, Fe, Mn, Ca and K in root soil reduced with cotton growth, whereas Na increased. Although mulched drip irrigation during the growing season resulted in an increase in salinity in the root zone, flood irrigation after harvesting leached the accumulated salts below background levels. Based on experiments a scheme for coordinating management of soil water, salt, and nutrient is proposed, that is, under the planting pattern of one mulch, two drip lines and four rows, the alternative irrigation plus a flood irrigation after harvesting or before seeding was the ideal scheme. Numerical simulations using solute transport model coupled with the root solute uptake based on the experiments and extended by another 20 years, suggest that the mulched drip irrigation using alternatively fresh and brackish water during the growing season and flood irrigation with fresh water after harvesting, is a sustainable irrigation practice that should not lead to soil salinization. Pot experiments with trace elements and different saline water showed significantly antagonistic effects on cotton growth and yield between NaCl and Mn or Zn or B. Zn concentration in irrigation water under salinity stress affected the uptake of nutrient elements and caused the different contents of nutrient elements in cotton, and influenced cotton growth and yields.
NASA Astrophysics Data System (ADS)
Chesley, J. T.; Halliday, A. N.; Snee, L. W.; Mezger, K.; Shepherd, T. J.; Scrivener, R. C.
1993-04-01
The metalliferous ore deposits of southwest England are associated with biotite-muscovite granites that intruded upper Paleozoic sediments and volcanic rocks at the end of the Hercynian Orogeny. The hydrothermal mineralization can be subdivided into four stages: (1) exoskarns (2) high-temperature tin and tungsten oxide-bearing sheeted greisen bordered veins and Sn-bearing tourmaline veins and breccias (3) polymetallic quartz-tourmaline-chlorite-sulfide-fluorite-bearing fissure veins, which represent the main episode of economic mineralization (4) late-stage, low-temperature polymetallic fluorite veins. U-Pb dating of monazite and xenotime and 40Ar /39Ar dating of muscovite were used to determine emplacement ages and cooling times for individual plutons within the Cornubian batholith, as well as separate intrusive phases within the plutons. In addition, 40Ar /39Ar ages from hornblende and secondary muscovite and Sm-Nd isochron ages from fluorite were employed to determine the relationship between pluton emplacement and different stages of mineralization. The U-Pb ages indicate that granite magmatism was protracted from ~300 Ma down to ~275 Ma with no evidence of a major hiatus. There is no systematic relation between the age of a pluton and its location within the batholith. The U-Pb ages for separate granite phases within a single pluton are resolvable and indicate that magma emplacement within individual plutons occurred over periods of as much as 4.5 myrs. Felsic porphyry dike emplacement was coeval with plutonism, but continued to ~270 Ma. The geochronologic data suggest that the Cornubian batholith originated from repeated melting events over 30 myrs and was formed by a series of small coalescing granitic bodies. Cooling rates of the main plutons are unrelated to emplacement age, but decrease from the southwest to the northeast from ~210°C myr -1 to ~60°C myr -1 with a mean of 100°C myr -1. These slow cooling rates appear to reflect the addition of heat from multiple intrusive episodes. The mineralization history is distinct for each pluton and ranges from coeval with, to up to 40 myrs younger than the cooling age for the host pluton. Stage 2 mineralization is broadly synchronous with the emplacement of granite magmas, is dominated by fluids expelled during crystallization, and may be repeated by the emplacement of younger magmas within the same pluton. Sm-Nd isochrons for fluorite from stage 3 polymetallic mineralization give ages of 259 ± 7, 266 ± 3 and 267 ± 12 Ma, postdating stage 2 mineralization by up to 25 myrs within the same deposit. The similarity in age of the main polymetallic mineralization hosted by the oldest and youngest plutons, suggests that this stage of mineralization is unlikely to be related to hydrothermal circulation driven by the emplacement and cooling of the host granite. The mineralization is more likely the product of regional hydrothermal circulation driven by heat from the emplacement and crystallization of younger buried pulses of magma.
Chesley, J.T.; Halliday, A.N.; Snee, L.W.; Mezger, K.; Shepherd, T.J.; Scrivener, R.C.
1993-01-01
The metalliferous ore deposits of southwest England are associated with biotite-muscovite granites that intruded upper Paleozoic sediments and volcanic rocks at the end of the Hercynian Orogeny. The hydrothermal mineralization can be subdivided into four stages: 1. (1) exoskarns 2. (2) high-temperature tin and tungsten oxide-bearing sheeted greisen bordered veins and Sn-bearing tourmaline veins and breccias 3. (3) polymetallic quartz-tourmaline-chlorite-sulfide-fluorite-bearing fissure veins, which represent the main episode of economic mineralization 4. (4) late-stage, low-temperature polymetallic fluorite veins. U-Pb dating of monazite and xenotime and 40Ar 39Ar dating of muscovite were used to determine emplacement ages and cooling times for individual plutons within the Cornubian batholith, as well as separate intrusive phases within the plutons. In addition, 40Ar 39Ar ages from hornblende and secondary muscovite and Sm-Nd isochron ages from fluorite were employed to determine the relationship between pluton emplacement and different stages of mineralization. The U-Pb ages indicate that granite magmatism was protracted from ~300 Ma down to ~275 Ma with no evidence of a major hiatus. There is no systematic relation between the age of a pluton and its location within the batholith. The U-Pb ages for separate granite phases within a single pluton are resolvable and indicate that magma emplacement within individual plutons occurred over periods of as much as 4.5 myrs. Felsic porphyry dike emplacement was coeval with plutonism, but continued to ~270 Ma. The geochronologic data suggest that the Cornubian batholith originated from repeated melting events over 30 myrs and was formed by a series of small coalescing granitic bodies. Cooling rates of the main plutons are unrelated to emplacement age, but decrease from the southwest to the northeast from ~210??C myr-1 to ~60??C myr-1 with a mean of 100??C myr-1. These slow cooling rates appear to reflect the addition of heat from multiple intrusive episodes. The mineralization history is distinct for each pluton and ranges from coeval with, to up to 40 myrs younger than the cooling age for the host pluton. Stage 2 mineralization is broadly synchronous with the emplacement of granite magmas, is dominated by fluids expelled during crystallization, and may be repeated by the emplacement of younger magmas within the same pluton. Sm-Nd isochrons for fluorite from stage 3 polymetallic mineralization give ages of 259 ?? 7, 266 ?? 3 and 267 ?? 12 Ma, postdating stage 2 mineralization by up to 25 myrs within the same deposit. The similarity in age of the main polymetallic mineralization hosted by the oldest and youngest plutons, suggests that this stage of mineralization is unlikely to be related to hydrothermal circulation driven by the emplacement and cooling of the host granite. The mineralization is more likely the product of regional hydrothermal circulation driven by heat from the emplacement and crystallization of younger buried pulses of magma. ?? 1993.
Extremely High Magma Emplacement Rates Recorded in the Golden Horn Batholith, WA
NASA Astrophysics Data System (ADS)
Eddy, M. P.; Bowring, S. A.; Tepper, J. H.; Miller, R. B.
2015-12-01
High SiO2 rhyolites emplaced during 'super-eruptions' demonstrate that large volumes of eruptible magma can exist in the upper crust. However, the timescale over which the magma reservoirs that source these eruptions are built remains controversial. Thermal models suggest that magma emplacement rates need to be > 0.005-0.01 km3/yr in order to accumulate enough eruptible magma to source a 'super-eruption'. Yet, these rates are higher than the time-averaged rates (< 0.001 km3/yr) for nearly all well-studied granitoid plutonic complexes. This disparity contradicts geologic evidence suggesting that the high SiO2 rhyolites emplaced during 'super-eruptions' are extracted from crystal rich magma chambers that should be preserved in the geologic record as granodioritic and granitic plutons. We quantify time-averaged magma emplacement rates for the upper crustal Golden Horn batholith, WA based on new geologic mapping and U-Pb zircon CA-IDTIMS geochronology. The batholith is exposed over 310 km3 and can be separated in the field into five intrusive units. High topography allows the 3D geometry of each phase to be constrained and their volumes range from < 100 km3 to > 400 km3. U-Pb zircon geochronology reveals that four of the five phases were assembled incrementally and distinct zircon populations from samples within these phases suggest that individual magmatic pulses had fully crystallized before the next arrived. However, six nearly identical U-Pb zircon dates from a > 400 km3 rapakivi granite show that this phase was built in ca. 50 kyr and that large portions may have been emplaced nearly simultaneously. The implied emplacement rate for this phase (≥ 0.008 km3/yr) is in agreement with those predicted for assembly of the upper crustal magma chambers that source 'super-eruptions', and it may provide a rare and unprecedented opportunity to study the processes that occur in such chambers.
Eruption and emplacement dynamics of a thick trachytic lava flow of the Sancy volcano (France)
NASA Astrophysics Data System (ADS)
Latutrie, Benjamin; Harris, Andrew; Médard, Etienne; Gurioli, Lucia
2017-01-01
A 70-m-thick, 2200-m-long (51 × 106 m3) trachytic lava flow unit underlies the Puy de Cliergue (Mt. Dore, France). Excellent exposure along a 400-m-long and 60- to 85-m-high section allows the flow interior to be accessed on two sides of a glacial valley that cuts through the unit. We completed an integrated morphological, structural, textural, and chemical analysis of the unit to gain insights into eruption and flow processes during emplacement of this thick silicic lava flow, so as to elucidate the chamber and flow dynamic processed that operate during the emplacement of such systems. The unit is characterized by an inverse chemical stratification, where there is primitive lava beneath the evolved lava. The interior is plug dominated with a thin basal shear zone overlying a thick basal breccia, with ramping affecting the entire flow thickness. To understand these characteristics, we propose an eruption model that first involves processes operating in the magma chamber whereby a primitive melt is injected into an evolved magma to create a mixed zone at the chamber base. The eruption triggered by this event first emplaced a trachytic dome, into which banded lava from the chamber base was injected. Subsequent endogenous dome growth led to flow down the shallow slope to the east on which the highly viscous (1012 Pa s) coulée was emplaced. The flow likely moved extremely slowly, being emplaced over a period of 4-10 years in a glacial manner, where a thick (>60-m) plug slid over a thin (5-m-thick) basal shear zone. Excellent exposure means that the Puy de Cliergue complex can be viewed as a case type location for understanding and defining the eruption and emplacement of thick, high-viscosity, silicic lava flow systems.
NASA Astrophysics Data System (ADS)
Hespenheide, M. A.
2002-12-01
The Big Hole Canyon pluton (BHCp) is a Late Cretaceous pluton emplaced within the Sevier fold-and-thrust belt of the western North American Cordillera. The pluton is exposed over 60km2 and a thickness of ~1400m. Combined anisotropy of magnetic susceptibility (AMS), structural, and field studies document a clear pattern of magmatic flow radiating from at least three subvertical conduits <100m wide and ~300 to ~800m long. Interpreted flow plunges change rapidly to subhorizontal fabrics across the rest of the pluton, matching the expected pattern for laccolithic emplacement. Ascent conduits within the Big Hole Canyon pluton are coincident with the fold axis of an anticline above a thrust ramp, suggesting that the magma ascended up the fault of the fault-bend-fold. Geobarometry and stratigraphic reconstructions indicate an emplacement depth of approximately ~3km. Preliminary thermal modeling indicates that the BHCp was emplaced in 250,000 years, likely between periods of regional shortening deformation. Rapid magma ascent rates calculated by dike flow modeling and implied by entrained wall-rock xenoliths may indicate sequential magma injection into the pluton; an absence of chill margins between phases within the pluton indicates that sequential injections must have taken place quickly enough that the magmas did not have time to cool below the solidus temperature. The geometry and location of the BHCp suggest that magma used a pre-existing fault as a mechanical discontinuity for both ascent and emplacement. Continued intrusion of magma had a sufficient amount of driving pressure to stretch, shear, and lift the roof of the pluton. Detailed field mapping, structural studies, AMS, and thermobarometry indicate that the Late Cretaceous Big Hole Canyon pluton was emplaced as a laccolith at the top of a pre-existing fault-bend-fold in the frontal portion of the Sevier fold-thrust belt.
NASA Technical Reports Server (NTRS)
Glaze, L. S.; Baloga, S. M.
2014-01-01
Pahoehoe lavas are recognized as an important landform on Earth, Mars and Io. Observations of such flows on Earth (e.g., Figure 1) indicate that the emplacement process is dominated by random effects. Existing models for lobate a`a lava flows that assume viscous fluid flow on an inclined plane are not appropriate for dealing with the numerous random factors present in pahoehoe emplacement. Thus, interpretation of emplacement conditions for pahoehoe lava flows on Mars requires fundamentally different models. A new model that implements a simulation approach has recently been developed that allows exploration of a variety of key influences on pahoehoe lobe emplacement (e.g., source shape, confinement, slope). One important factor that has an impact on the final topographic shape and morphology of a pahoehoe lobe is the volumetric flow rate of lava, where cooling of lava on the lobe surface influences the likelihood of subsequent breakouts.
Nummer, Alexis R; Machado, Rômulo; Dehler, Nolan M
2007-06-01
The Arrozal Granite, situated in the southwestern region of the State of Rio de Janeiro, has a granitic to granodioritic composition. It contains a strong mylonitic foliation along its border, passing gradually to a well-developed magmatic foliation towards its center. Structural analysis indicates that the Arrozal Granite was emplaced along the Além-Paraíba Shear Zone in a dextral transpressive tectonic regime. A regional shift of the trend along this shear zone from NE-SW to E-W, observed in the area, is interpreted to be casually related to the creation of space for the emplacement of the granite. Our data indicate that releasing bends may have played an important role for space generation during the emplacement of the Arrozal Granite and other plutons.
Waste Handling and Emplacement Options for Disposal of Radioactive Waste in Deep Boreholes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, John R.; Hardin, Ernest
2015-11-01
Traditional methods cannot be used to handle and emplace radioactive wastes in boreholes up to 16,400 feet (5 km) deep for disposal. This paper describes three systems that can be used for handling and emplacing waste packages in deep borehole: (1) a 2011 reference design that is based on a previous study by Woodward–Clyde in 1983 in which waste packages are assembled into “strings” and lowered using drill pipe; (2) an updated version of the 2011 reference design; and (3) a new concept in which individual waste packages would be lowered to depth using a wireline. Emplacement on coiled tubingmore » was also considered, but not developed in detail. The systems described here are currently designed for U.S. Department of Energy-owned high-level waste (HLW) including the Cesium- 137/Strontium-90 capsules from the Hanford Facility and bulk granular HLW from fuel processing in Idaho.« less
Regional stratigraphy and geologic history of Mare Crisium
NASA Technical Reports Server (NTRS)
Head, J. W., III; Adams, J. B.; Mccord, T. B.; Pieters, C.; Zisk, S.
1978-01-01
Remote sensing and Luna 24 sample data are used to develop a summary of the regional stratigraphy and geologic history of Mare Crisium. Laboratory spectra of Luna 24 samples, telescopic reflectance spectra in the 0.3 to 1.1 micron range and orbital X-ray data have identified three major basalt groups in the region. Group I soil is derived from iron- and magnesium-rich titaniferous basalts and was apparently emplaced over the majority of the basin, however is presently exposed as a shelf in the southwest part. Group II soils, derived from very low titanium ferrobasalts, were emplaced in two stages subsequent to Group I emplacement and now appear as part of the outer shelf and topographic annulus. Subsidence of the basin interior preceded and continued after the emplacement of the third basalt group, a soil derived from a low titanium ferrobasalt. The Luna 24 site is found to be within a patch of Group II material.
NASA Astrophysics Data System (ADS)
Stephens, T. L.; Walker, R. J.; Healy, D.; Bubeck, A.; England, R. W.; McCaffrey, K. J. W.
2017-11-01
Sill emplacement is typically associated with horizontally mechanically layered host rocks in a near-hydrostatic far-field stress state, where contrasting mechanical properties across the layers promote transitions from dykes, or inclined sheets, to sills. We used detailed field observations from the Loch Scridain Sill Complex (Isle of Mull, UK), and mechanical models to show that layering is not always the dominant control on sill emplacement. The studied sills have consistently shallow dips (1°-25°) and cut vertically bedded and foliated metamorphic basement rocks, and horizontally bedded cover sedimentary rocks and lavas. Horizontal and shallowly-dipping fractures in the host rock were intruded with vertical opening in all cases, whilst steeply-dipping discontinuities within the sequence (i.e. vertical fractures and foliation in the basement, and vertical polygonal joints in the lavas) were not intruded during sill emplacement. Mechanical models of slip tendency, dilation tendency, and fracture susceptibility for local and overall sill geometry data, support a radial horizontal compression during sill emplacement. Our models show that dykes and sills across Mull were emplaced during NW-SE horizontal shortening, related to a far-field tectonic stress state. The dykes generally accommodated phases of NE-SW horizontal tectonic extension, whereas the sills record the superposition of the far-field stress with a near-field stress state, imposed by emplacement of the Mull Central Volcano. We show that through detailed geometric characterisation coupled with mechanical modelling, sills may be used as an indication of fluctuations in the paleostress state.
Mapping the Sedna-Lavinia Region of Venus
NASA Technical Reports Server (NTRS)
Campbell, Bruce A.; Anderson, Ross F.
2008-01-01
Geologic mapping of Venus at 1:5 M scale has shown in great detail the flow complexes of volcanoes, coronae, and shield fields, and the varying structural patterns that differentiate tesserae from corona rims and isolated patches of densely lineated terrain. In most cases, however, the lower-elevation plains between the higher-standing landforms are discriminated only on the basis of potentially secondary features such as late-stage lava flooding or tectonic overprinting. This result, in which volcanoes and tesserae appear as "islands in the sea," places weak constraints on the relative age of large upland regions and the nature of the basement terrain. In this work, we focus on the spatial distribution and topography of densely lineated and tessera units over a large region of Venus, and their relationship to apparently later corona and shield flow complexes. The goal is to identify likely connections between patches of deformed terrain that suggest earlier features of regional extent, and to compare the topography of linked patches with other such clusters as a guide to whether they form larger tracts beneath the plains. Mapping Approach. We are mapping the region from 57S to 57N, 300E-60E. Since the 1:5 M quadrangles emphasize detail of tessera structure and corona/edifice flows, we simply adopt the outlines of these features as they relate to the outcrops of either "densely lineated terrain" or tessera (Fig. 1). The densely lineated material is mapped in many quadrangles based on pervasive structural deformation, typically with a single major axis (in contrast to the overlapping orthogonal patterns on tesserae). This unit definition is often extended to include material of corona rims. We do not at present differentiate between plains units, since earlier efforts show that their most defining attributes may be secondary to the original emplacement (e.g., lobate or sheet-like flooding by thin flow units, tectonic patterns related to regional and localized stress regimes) [1].
NASA Astrophysics Data System (ADS)
Oliveira, Diego Skieresz de; Sommer, Carlos Augusto; Philipp, Ruy Paulo; Lima, Evandro Fernandes de; Basei, Miguel Ângelo Stipp
2015-11-01
Neoproterozoic volcanic and subvolcanic rhyolitic systems in southernmost Brazil are correlated with acid magmatism linked to different petrotectonic associations of the Sul-Rio-Grandense Shield. A portion of this volcanism in the Dom Feliciano Belt is associated with the Pelotas Batholith, which resulted from magmatic episodes associated with the Ediacaran post-collisional evolution of southern Brazil. Ana Dias Rhyolite is the main subvolcanic occurrence of this volcanism that took place in the Quitéria region, in the central part of Rio Grande do Sul State. The acid magmatism has been commonly associated with the most differentiated granite suite phases during the final stages of emplacement of the Pelotas Batholith. The Ana Dias Rhyolite is characterized as an intrusive body with rocks that present a porphyritic to seriated texture and a gradational variation to fine-grained equigranular rocks. New zircon U-Pb dating indicates crystallization age of 581.9 ± 1.9 Ma for the Ana Dias Rhyolite. Geochemistry data characterize the rhyolites as belonging to the alkaline series; they present a metaluminous to peraluminous character; elevated SiO2 and alkali concentrations, high FeOt/FeOt + MgO ratios and agpaitic index; and low Al2O3, CaO, and MgO contents. The Zr, Rb, Y, Nb, and Ga concentrations are moderate when compared with the relatively low Ba and Sr contents. These geochemistry characteristics are common in acid magmas with alkaline affinity. The behavior of certain trace elements and REE demonstrate enrichment in more incompatible elements, in addition to the negative anomaly of Ba, the slight enrichment in Ce relative to adjacent elements, as well as the enrichment in K2O and Rb relative to Nb, suggesting magmas derived from mantle sources enriched in incompatible elements with some crustal contamination. The chemical characteristics are similar to those of A-type granites associated with Neoproterozoic post-collision magmatism in the Sul-Rio-Grandense Shield.
NASA Technical Reports Server (NTRS)
Werkheiser, Niki J.; Fiske, Michael R.; Edmunson, Jennifer E.; Khoshnevis, Berokh
2015-01-01
For long-duration missions on other planetary bodies, the use of in situ materials will become increasingly critical. As human presence on these bodies expands, so must the breadth of the structures required to accommodate them including habitats, laboratories, berms, radiation shielding for natural radiation and surface reactors, garages, solar storm shelters, greenhouses, etc. Planetary surface structure manufacturing and assembly technologies that incorporate in situ resources provide options for autonomous, affordable, pre-positioned environments with radiation shielding features and protection from micrometeorites, exhaust plume debris, and other hazards. The ability to use in-situ materials to construct these structures will provide a benefit in the reduction of up-mass that would otherwise make long-term Moon or Mars structures cost prohibitive. The ability to fabricate structures in situ brings with it the ability to repair these structures, which allows for the self-sufficiency and sustainability necessary for long-duration habitation. Previously, under the auspices of the MSFC In-Situ Fabrication and Repair (ISFR) project and more recently, under the jointly-managed MSFC/KSC Additive Construction with Mobile Emplacement (ACME) project, the MSFC Surface Structures Group has been developing materials and construction technologies to support future planetary habitats with in-situ resources. One such additive construction technology is known as Contour Crafting. This paper presents the results to date of these efforts, including development of novel nozzle concepts for advanced layer deposition using this process. Conceived initially for rapid development of cementitious structures on Earth, it also lends itself exceptionally well to the automated fabrication of planetary surface structures using minimally processed regolith as aggregate, and binders developed from in situ materials as well. This process has been used successfully in the fabrication of construction elements using lunar regolith simulant and Mars regolith simulant, both with various binder materials. Future planned activities will be discussed as well.
NASA Astrophysics Data System (ADS)
Fontana, G.; Mac Niocaill, C.; Brown, R.; Sparks, R. S.; Matthew, F.; Gernon, T. M.
2009-12-01
Kimberlites are complex, ultramafic and diamond-bearing volcanic rocks preserved in volcanic pipes, dykes and craters. The formation of kimberlite pipes is a strongly debated issue and two principal theories have been proposed to explain pipe formation: (1) the explosive degassing of magma, and (2) the interaction of rising magma with groundwater (phreatomagmatism). Progressive thermal demagnetization studies are a powerful tool for determining the emplacement temperatures of ancient volcanic deposits and we present the first application of such techniques to kimberlite deposits. Lithic clasts were sampled from a variety of lithofacies, from three pipes for which the internal geology is well constrained (A/K1 pipe, Orapa Mine, Botswana and the K1 and K2 pipes, Venetia Mine, South Africa). The sampled deposits included massive and layered vent-filling breccias with varying abundances of lithic inclusions and layered crater-filling pyroclastic deposits, talus breccias and volcaniclastic breccias. Lithic clasts sampled from layered and massive vent-filling pyroclastic deposits in A/K1 were emplaced at >590° C. Results from K1 and K2 provide a maximum emplacement temperature limit for vent-filling breccias of 420-460° C; and constrain equilibrium deposit temperatures at 300-340° C. Crater-filling volcaniclastic kimberlite breccias and talus deposits from A/K1 were emplaced at ambient temperatures, consistent with infilling of the pipe by post-eruption epiclastic processes. Identified within the epiclastic crater-fill succession is a laterally extensive 15-20 metre thick kimberlite pyroclastic flow deposit emplaced at temperatures of 220-440° C. It overlies the post-eruption epiclastic units and is considered an extraneous pyroclastic kimberlite deposit erupted from another kimberlite vent. The results provide important constraints on kimberlite emplacement mechanisms and eruption dynamics. Emplacement temperatures of >590°C for pipe-filling pyroclastic deposits are consistent with volatile-driven eruptions, and suggest phreatomagmatism did not play a major role in the generation of the deposits. The discovery of an extraneous pyroclastic flow deposit within the Orapa A/K1 epiclastic crater, which was erupted from another vent, suggests kimberlite eruptions are capable of producing sustained eruption columns and thick pyroclastic deposits involving significant transport away from source.
NASA Astrophysics Data System (ADS)
Giuliani, G.; Cheilletz, A.; Zimmermann, J. L.
New field, petrographic and geochemical data including REE, Rb-Sr, and K-Ar, are presented concerning the emplacement and petrogenesis of two calc-alkaline Moroccan Hercynian granites: the Zaër pluton and the Djebel Aouam stocks. Zonation in the Zaër pluton does not appear to result from simple fractional crystallization nor from hydrothermal alteration but is rather the diapiric intrusion of two interlocked bodies. REE geochemistry supports the interpretation that the biotite-granodiorite magma (301 ± 8.2 M.a.) and the Djebel Aouam stocks appear to have been derived by fusion of crustal materials with possible mantle contamination ( Initial87Sr/ 86Srratio = 0.70514 ). The second two-mica granitic magma (283.4 ± 6.2 M.a.) corresponds to a peraluminous granite (1.22 < A/ CNK < 1.33) generated by fusion of continental crust including mature sedimentarr materials (Initial 87Sr/ 86Sr ratio = 0.70836). These granites are compared to the Acadian granites of north Appalachian and classified in the «post-collision, uplift environmentå type. An illustrative four step model presenting the generation and emplacement of these two granites together with the associated W-Sn-Pb-Zn-Ag mineralizations is proposed: (1) first magma generation, (2) first melt emplacement, (3) second melt emplacement, (4) late convective flow.
Bern, Carleton R.; Engle, Mark A.; Boehlke, Adam R.; Zupancic, John W.; Brown, Adrian; Figueroa, Linda; Wolkersdorfer, Christian
2013-01-01
A subsurface drip irrigation system is being used in Wyoming’s Powder River Basin that treats high sodium, low salinity, coal bed methane (CBM) produced water with sulfuric acid and injects it into cropped fields at a depth of 0.92 m. Dissolution of native gypsum releases calcium that combats soil degradation that would otherwise result from high sodium water. Native selenium is leached from soil by application of the CBM water and traces native salt mobilization to groundwater. Resulting selenium concentrations in groundwater at this alluvial site were generally low (0.5–23 μg/L) compared to Wyoming’s agricultural use suitability standard (20 μg/L).
Decay properties and reaction dynamics of zirconium isotopes in the relativistic mean-field model
NASA Astrophysics Data System (ADS)
Panigrahi, M.; Panda, R. N.; Kumar, Bharat; Patra, S. K.
In the framework of relativistic mean-field theory, the ground state properties like binding energy, charge radius and quadrupole deformation parameter for various isotopes of zirconium from the valley of stability to drip-line region have been studied. The results are compared with the experimental data and we found reasonable agreement. The calculations are carried out for β-decay energy and β-decay half-life up to the drip-line. Total reaction and elastic differential cross-sections are also studied for few zirconium isotopes as projectiles with 12C as target, using different parameter sets namely NL3*, DD-ME2 and DD-PC1 in conjunction with Glauber model.
CONSTRUCTION PROGRESS PHOTO SHOWING EMPLACEMENT STEEL BEAMS FUEL STORAGE BUILDING ...
CONSTRUCTION PROGRESS PHOTO SHOWING EMPLACEMENT STEEL BEAMS FUEL STORAGE BUILDING (CPP-603) LOOKING EAST. INL PHOTO NUMBER NRTS-51-1371. Unknown Photographer, 1/31/1951 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
Relating Seismicity to Dike Emplacement, and the Conundrum of Dyke-Parallel Faulting
NASA Astrophysics Data System (ADS)
Dering, G.; Micklethwaite, S.; Cruden, A. R.; Barnes, S. J.; Fiorentini, M. L.
2016-12-01
Seismic monitoring shows that faulting and fracturing precede and accompany magma emplacement on timescales of hours and days. One outstanding problem is that the precision of earthquake hypocentre locations is typically limited to tens or hundreds of meters and cannot resolve whether the hypocentres relate to strain of wall rock fragments within the dikes, in a process zone around the intrusion or peripherally in the country rock. We examine a swarm of 19 dolerite dikes, near Albany, Western Australia using an unmanned aerial vehicle and Structure-from-Motion photogrammetry to obtain accurate, high resolution 3D reconstructions of outcrop and to digitally extract structural data. We find rare overprinting relationships indicate dike emplacement and faulting was coeval and that the number of faults/fractures increase into the dike swarm (2.2 ± 0.7 more fractures, per unit length in host rocks intruded by dikes relative to the background value). The faults are cataclasite-bearing and parallel to the dikes but intriguingly dike emplacement appears to have been accommodated by mode 1 extension. We further provide the first evidence that dike-parallel shear failure occurs in a damage zone associated with the dike swarm. These results support seismological observations of dike-parallel shear failure associated with some intrusion events, which contradict Mohr-Coulomb theory and numerical modelling of dike propagation in brittle-elastic rock, where shear failure is predicted to occur on faults oriented approximately 30° to the dyke plane. We suggest the dike swarm occupies a network of joints and fractures formed prior to swarm emplacement but then reactivated ahead of propagating dikes and remaining active during the early stages of emplacement.
Thermal Anomaly Engendered by the Emplacement of AN Au-DEPOSIT: Example from the Franciscan Complex
NASA Astrophysics Data System (ADS)
Lahfid, A.; Lacroix, B.; Delchini, S.; Hughes, J.
2016-12-01
The thermal history of the Lucia subterrane located within the Franciscan Complex (California, USA) has been previously proposed by Underwood et al. (1995). Based on both vitrinite reflectance (Rm) and illite cristallinity methods, these authors suggest that the Lucia subterrane is locally perturbed by a thermal anomaly (up to 300ºC), probably caused by the emplacement of an Au-deposit: the Los Burros Gold deposit. Although both the thermal anomaly and the deposit seem spatially correlated, their relationship is still poorly constrained. In order to better explain the anomalous temperatures recorded in the vicinity of the deposit and their possible link with mineralization processes, we first performed detailed geological and structural mapping within the Los Burros district coupled to a thermal study. The peak temperature reached by metasediments from the Lucia subterrane have been regionally investigated using Raman Spectroscopy of Carbonaceous Materials (RSCM) method. In addition, through a careful fluid-inclusion study of the deposit, the potential source and the temperature of the fluid responsible for the Los Burros Au-deposit emplacement are currently being investigated. Our preliminary results confirm the previous temperatures and the presence of the thermal anomaly in the range 260-320ºC as inferred by Underwood et al (1995). In addition, our structural interpretation shows that the Los Burros deposit was emplaced during a late tectonic event marked by local reorientation of the regional tectonic features and the emplacement of meter-wide, quartz-calcite-sulfide extension veins. The temperatures determined by both methods (RSCM thermometry and fluid inclusion microthermometry) are consistent and support that the thermal anomaly is likely generated by the emplacement of the Los Burros Au-deposit during a local tectonic event.
NASA Astrophysics Data System (ADS)
Hrouda, F.; Schulmann, K.; Chlupacova, M.; Aichler, J.; Mixa, P.; Pecina, V.; Zacek, V.; Kroener, A.
2003-04-01
The eastern Variscan front at the Czech and Polish border is characterised by oblique underthrusting of Neo-Proterozoic continental margin below thickened crustal root. The underthrust plate is subsequently imbricated and forms obliquely convergent crustal wedge which was further thrust over the foreland. Several granitic plutons of arc geochemical affinity are intruded during different stages of crustal thickening and exhumation. Analysis of anisotropy of magnetic susceptibility was carried out to study the relationships between host rock deformation and magma emplacement fabrics in different crustal levels and geographical positions with respect to crustal wedge and westerly orogenic root. Deep seated granodiorite sheets (Javornik intrusion 348 Ma, and Stare Mesto sill 340 Ma) are emplaced in the deepest and more internal high grade parts of the orogen along the margin of thickened crustal root. They show AMS fabrics entirely concordant with surrounding high grade gneisses and were emplaced during contractional (transpressive) regime.The Sumperk granodiorite is a more shallow intrusion emplaced in the central part of the crustal wedge. This sheet-like intrusion shows its AMS fabrics conformable to transpressional fabrics of surrounding mylonitised barovian schists and gneisses. The Zulova Pluton 330 Ma, representing the shallowest intrusion, intrudes the most external part of the crustal wedge. It shows the magnetic fabrics virtually perpendicular to compressional structures in the neighbouring areas. In addition, these fabrics are clearly concordant with large-scale detachment zone along which the Devonian meta-sedimentary cover slided to the west. The AMS fabrics of granitoids thus testify the progressive oblique convergence prograding to the east followed by collapse of external part of orogenic wedge. The AMS fabric data allow us to evaluate the mechanical role of arc magmas syntectonically emplaced during oblique convergence and finally during normal shearing perpendicular to the orogen.
NASA Astrophysics Data System (ADS)
Cengiz Cinku, M.; Karabulut, S.; Parlak, O.; Cabuk, B. S.; Ustaömer, T.; Hisarli, M. Z.
2016-12-01
Two E-W trending ophiolite belts crop out in SE Turkey, The southerly located ophiolites (Hatay, Koçali) were emplaced onto the Arabian Platform in Late Cretaceous whereas the northerly located ophiolites (Göksun, İspendere, Kömürhan, Guleman) were underthrust the S Tauride margin (i.e. Malatya-Keban Platform) in Late Cretaceous. Here we report our first paleomagnetic results from 155 different sites which was was focused on to the sheeted dyke complex, cumulate gabbros and extrusive sequences of each ophiolite from the N and S belts, while the cover units where sampled to distinguish emplacement related tectonic rotations from post-emplacement tectonic rotations. Rock magnetic experiments showed evidence of magnetite/titanomagnetite as the main magnetic carriers at the majority of sites. Progressive thermal and alternating demagnetization revealed that the characteristic remanent component is removed between 500 and 580 °C or 30-100 mT, respectively. Our new paleomagnetic results from the ophiolitic rocks emplaced in Arabian platform and the SE Anatolia show important implications to the spreading centre of the former ocean (s). Large counterclockwise rotations up to 100° are obtained from the sheeded dykes of the Hatay ophiolite in the Arabian plate with a paleolatitude of 16°, in contrast to the sheeded dykes of the Göksun ophiolite emplaced in the SE Anatolian with clockwise rotation of 90° and a paleolatitude of 22°. The relative movement of the ophiolitic series show their emplacement in the different zones. This study was financially supported by the project of the Scientific and Technical Research Council of Turkey (TUBITAK) with Project number 114R024.
Automated Irrigation System for Greenhouse Monitoring
NASA Astrophysics Data System (ADS)
Sivagami, A.; Hareeshvare, U.; Maheshwar, S.; Venkatachalapathy, V. S. K.
2018-06-01
The continuous requirement for the food needs the rapid improvement in food production technology. The economy of food production is mainly dependent on agriculture and the weather conditions, which are isotropic and thus we are not able to utilize the whole agricultural resources. The main reason is the deficiency of rainfall and paucity in land reservoir water. The continuous withdrawal water from the ground reduces the water level resulting in most of the land to come under the arid. In the field of cultivation, use of appropriate method of irrigation plays a vital role. Drip irrigation is a renowned methodology which is very economical and proficient. When the conventional drip irrigation system is followed, the farmer has to tag along the irrigation timetable, which is different for diverse crops. The current work makes the drip irrigation system an automated one, thereby the farmer doesn't want to follow any timetable since the sensor senses the soil moisture content and based on it supplies the water. Moreover the practice of economical sensors and the simple circuitry makes this project as an inexpensive product, which can be bought even by an underprivileged farmer. The current project is best suited for places where water is limited and has to be used in limited quantity.
Automated Irrigation System for Greenhouse Monitoring
NASA Astrophysics Data System (ADS)
Sivagami, A.; Hareeshvare, U.; Maheshwar, S.; Venkatachalapathy, V. S. K.
2018-03-01
The continuous requirement for the food needs the rapid improvement in food production technology. The economy of food production is mainly dependent on agriculture and the weather conditions, which are isotropic and thus we are not able to utilize the whole agricultural resources. The main reason is the deficiency of rainfall and paucity in land reservoir water. The continuous withdrawal water from the ground reduces the water level resulting in most of the land to come under the arid. In the field of cultivation, use of appropriate method of irrigation plays a vital role. Drip irrigation is a renowned methodology which is very economical and proficient. When the conventional drip irrigation system is followed, the farmer has to tag along the irrigation timetable, which is different for diverse crops. The current work makes the drip irrigation system an automated one, thereby the farmer doesn't want to follow any timetable since the sensor senses the soil moisture content and based on it supplies the water. Moreover the practice of economical sensors and the simple circuitry makes this project as an inexpensive product, which can be bought even by an underprivileged farmer. The current project is best suited for places where water is limited and has to be used in limited quantity.
Luo, Shengfeng; Xie, Qiyuan; Tang, Xinyi; Qiu, Rong; Yang, Yun
2017-05-05
The objective of this work is to investigate the distinctive mechanisms of downward flame spread for XPS foam. It was physically considered as a moving down of narrow pool fire instead of downward surface flame spread for normal solids. A method was developed to quantitatively analyze the accumulated liquid fuel based on the experimental measurement of locations of flame tips and burning rates. The results surprisingly showed that about 80% of the generated hot liquid fuel remained in the pool fire during a certain period. Most of the consumed solid XPS foam didn't really burn away but transformed as the liquid fuel in the downward moving pool fire, which might be an important promotion for the fast fire development. The results also indicated that the dripping propensity of the hot liquid fuel depends on the total amount of the hot liquid accumulated in the pool fire. The leading point of the flame front curve might be the breach of the accumulated hot liquid fuel if it is enough for dripping. Finally, it is suggested that horizontal noncombustible barriers for preventing the accumulation and dripping of liquid fuel are helpful for vertical confining of XPS fire. Copyright © 2017 Elsevier B.V. All rights reserved.
Guo, Wei; Feng, Jinfei; Li, Lanhai; Yang, Haishui; Wang, Xiaohua; Bian, Xinmin
2014-01-01
Drip irrigation is broadly extended in order to save water in the arid cotton production region of China. Biochar is thought to be a useful soil amendment to reduce greenhouse gas (GHG) emissions. Here, a field study was conducted to compare the emissions of nitrous oxide (N2O) and methane (CH4) under different irrigation methods (drip irrigation (D) and furrow irrigation (F)) and fertilization regimes (conventional fertilization (C) and conventional fertilization + biochar (B)) during the cotton growth season. The accumulated N2O emissions were significantly lower with FB, DC, and DB than with FC by 28.8%, 36.1%, and 37.6%, while accumulated CH4 uptake was 264.5%, 226.7%, and 154.2% higher with DC, DB, and FC than that with FB, respectively. Irrigation methods showed a significant effect on total global warming potential (GWP) and yield-scaled GWP (P < 0.01). DC and DB showed higher cotton yield, water use efficiency (WUE), and lower yield-scaled GWP, as compared with FC and FB. This suggests that in northwestern China mulched-drip irrigation should be a better approach to increase cotton yield with depressed GHG. In addition, biochar addition increased CH4 emissions while it decreased N2O emissions. PMID:25133229
Makkaew, P; Miller, M; Fallowfield, H J; Cromar, N J
This study assessed the contamination of Escherichia coli, in lettuce grown with treated domestic wastewater in four different irrigation configurations: open spray, spray under plastic sheet cover, open drip and drip under plastic sheet cover. Samples of lettuce from each irrigation configuration and irrigating wastewater were collected during the growing season. No E. coli was detected in lettuce from drip irrigated beds. All lettuce samples from spray beds were positive for E. coli, however, no statistical difference (p > 0.05) was detected between lettuces grown in open spray or covered spray beds. The results from the field experiment were also compared to a laboratory experiment which used submersion of lettuce in wastewater of known E. coli concentration as a surrogate method to assess contamination following irrigation. The microbial quality of spray bed lettuces was not significantly different from submersed lettuce when irrigated with wastewater containing 1,299.7 E. coli MPN/100 mL (p > 0.05). This study is significant since it is the first to validate that the microbial contamination of lettuce irrigated with wastewater in the field is comparable with a laboratory technique frequently applied in the quantitative microbial risk assessment of the consumption of wastewater irrigated salad crops.
CONSTRUCTION PROGRESS PHOTO REMOTE ANALYTICAL FACILITY (CPP627) SHOWING EMPLACEMENT OF ...
CONSTRUCTION PROGRESS PHOTO REMOTE ANALYTICAL FACILITY (CPP-627) SHOWING EMPLACEMENT OF ROOF SLABS. INL PHOTO NUMBER NRTS-54-13463. R.G. Larsen, Photographer, 12/20/1954 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
Multisensory Emplaced Learning: Resituating Situated Learning in a Moving World
ERIC Educational Resources Information Center
Fors, Vaike; Backstrom, Asa; Pink, Sarah
2013-01-01
This article outlines the implications of a theory of "sensory-emplaced learning" for understanding the interrelationships between the embodied and environmental in learning processes. Understanding learning as multisensory and contingent within everyday place-events, this framework analytically describes how people establish themselves as…
Multisensory Emplaced Learning: Resituating Situated Learning in a Moving World
ERIC Educational Resources Information Center
Fors, Vaike; Backstrom, Asa; Pink, Sarah
2013-01-01
This article outlines the implications of a theory of "sensory-emplaced learning" for understanding the interrelationships between the embodied and environmental in learning processes. Understanding learning as multisensory and contingent within everyday place-events, this framework analytically describes how people establish themselves…
Thermal-Hydrology Simulations of Disposal of High-Level Radioactive Waste in a Single Deep Borehole
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadgu, Teklu; Stein, Emily; Hardin, Ernest
2015-11-01
Simulations of thermal-hydrology were carried out for the emplacement of spent nuclear fuel canisters and cesium and strontium capsules using the PFLOTRAN simulator. For the cesium and strontium capsules the analysis looked at disposal options such as different disposal configurations and surface aging of waste to reduce thermal effects. The simulations studied temperature and fluid flux in the vicinity of the borehole. Simulation results include temperature and vertical flux profiles around the borehole at selected depths. Of particular importance are peak temperature increases, and fluxes at the top of the disposal zone. Simulations of cesium and strontium capsule disposal predictmore » that surface aging and/or emplacement of the waste at the top of the disposal zone reduces thermal effects and vertical fluid fluxes. Smaller waste canisters emplaced over a longer disposal zone create the smallest thermal effect and vertical fluid fluxes no matter the age of the waste or depth of emplacement.« less
NASA Astrophysics Data System (ADS)
Whattam, Scott A.; Malpas, John; Ali, Jason R.; Smith, Ian E. M.
2008-03-01
Various reconstructions of the SW Pacific for the Late Cretaceous and Cenozoic suggest that northeast dipping subduction began in the South Loyalty Basin (SLB) at 55-50 Ma and that subsequent closure of the SLB resulted in the diachronous emplacement of Cretaceous-Paleocene ophiolitic nappes onto the Norfolk Ridge in New Caledonia at 40-34 Ma and in Northland, New Zealand, around 24-21 Ma. A fundamental problem with these models is that they do not account for the fact that NE dipping subduction had already been established offshore Papua New Guinea by at least 65-60 Ma which resulted in the emplacement of the Papuan Ultramafic Belt (PUB) ophiolite at 59-58 Ma. A second issue is that the reconstructions are based largely upon unfounded assumptions as to the age and nature of the basement beneath the Loyalty arc and Three Kings Ridge. Finally, reconstructions of the Northland region are based upon the erroneous assumption that the age of the majority of the igneous component comprising the Northland allochthon is Late Cretaceous-Paleocene, when in fact it is Oligocene. A new model is presented whereby the PUB, New Caledonia, and Northland ophiolites formed and were emplaced in a cyclical fashion above an extensive NE dipping Cenozoic intraoceanic arc system which diachronously propagated (N-S) along the entire eastern margin of the Australian Plate. These "infant arc" ophiolites represent fragments of suprasubduction zone lithosphere (SSZL) generated in the earliest stages of magmatic arc formation that were emplaced shortly after (<20 m.y.) as a result of forearc-Australian Plate collision. Subduction inception was the result of subsidence of older MORB-like lithosphere generated within an extensive "back arc basin" to the east of the Norfolk Ridge during the earliest stages of SLB formation above a southwest dipping Pacific Plate. During emplacement of each ophiolite, a crustal fragment of the older lithosphere was scraped off the NE dipping slab and subsequently back-thrust beneath each ophiolite during its emplacement.
... Humanitarian Efforts International Outreach Advocacy Board of Governors Industry Programs Professional Development Home AcademyU Home Study Course Maintenance of Certification Conferences & Events Practice Management Home Resources ...
Clinical study of the hypothesis of endogenous collateral wind on acute coronary syndrome: a review.
Wang, Xian; Zhang, Cong; Yang, Ran; Zhu, Haiyan; Zhao, Huaibing; Li, Xiaoming
2014-01-01
Acute Coronary Syndrome (ACS), is a serious threat to people's health, and life, and in recent years, the incidence has increased yearly. This study was to propose the hypothesis of "endogenous collateral wind" based on the patho-mechanism of thrombogenesis complicated by ruptured plaque on ACS, and the theory of traditional Chinese medicine. Through successful coronary angiography (CAG), and intravascular ultrasound (IVUS), patients with coronary artery disease were made the differential diagnosis such as blood stasis, blood stasis due to phlegm obstruction, and endogenous collateral wind. The levels of plasma inflammatory marker were measured to study on the characteristics of "endogenous collateral wind". Luo heng dripping pills with promoting blood circulation to expel wind-evil, and remove wetness were made based on the hypothesis of "endogenous collateral wind" on ACS. Patients with unstable angina were randomly divided into 3, groups based on therapeutic methods: conventional therapy group, Luo Heng dripping pills group and Tongxinluo caps. Differences among groups were compared. There were great changes in number and degree of coronary arteriostenosis confirmed by CAG, the types of ACC/AHA lesion and Levin lesion confirmed by CAG, remodeling index, positive or negative remodeling percentage measured by IVUS, the plasma levels of plasma inflammatory marker measured by ELLSA in the patients with endogenous collateral wind, compared with patients with blood stasis and blood stasis due to phlegm obstruction. The total effective rate of improved angina in Luo Heng dripping pills group was significantly higher than those in other two groups. The levels of plasma inflammatory marker were significantly lower in Luo Heng dripping pills group. There were some pathological basis which were found about the hypothesis of "endogenous collateral wind" on acute coronary syndrome. It provided evidences for patients with coronary artery disease treated by medicines with expelling evil-wind, and removing wetness.
Schlemm, Eckhard; Ebinger, Martin; Nolte, Christian H; Endres, Matthias; Schlemm, Ludwig
2017-08-01
Patients with acute ischemic stroke (AIS) and large vessel occlusion may benefit from direct transportation to an endovascular capable comprehensive stroke center (mothership approach) as opposed to direct transportation to the nearest stroke unit without endovascular therapy (drip and ship approach). The optimal transport strategy for patients with AIS and unknown vessel status is uncertain. The rapid arterial occlusion evaluation scale (RACE, scores ranging from 0 to 9, with higher scores indicating higher stroke severity) correlates with the National Institutes of Health Stroke Scale and was developed to identify patients with large vessel occlusion in a prehospital setting. We evaluate how the RACE scale can help to inform prehospital triage decisions for AIS patients. In a model-based approach, we estimate probabilities of good outcome (modified Rankin Scale score of ≤2 at 3 months) as a function of severity of stroke symptoms and transport times for the mothership approach and the drip and ship approach. We use these probabilities to obtain optimal RACE cutoff scores for different transfer time settings and combinations of treatment options (time-based eligibility for secondary transfer under the drip and ship approach, time-based eligibility for thrombolysis at the comprehensive stroke center under the mothership approach). In our model, patients with AIS are more likely to benefit from direct transportation to the comprehensive stroke center if they have more severe strokes. Values of the optimal RACE cutoff scores range from 0 (mothership for all patients) to >9 (drip and ship for all patients). Shorter transfer times and longer door-to-needle and needle-to-transfer (door out) times are associated with lower optimal RACE cutoff scores. Use of RACE cutoff scores that take into account transport times to triage AIS patients to the nearest appropriate hospital may lead to improved outcomes. Further studies should examine the feasibility of translation into clinical practice. © 2017 American Heart Association, Inc.
Xu, Fenghao; Uebaba, Kazuo; Ogawa, Hiroko; Tatsuse, Takeshi; Wang, Bing-Hong; Hisajima, Tatsuya; Venkatraman, Sonia
2008-10-01
Ayurvedic oil-dripping treatment, Shirodhara, involves the use of medicated herbal sesame oils. In our previous reports, we found that Shirodhara with plain sesame oil induced anxiolysis and an altered state of consciousness (ASC) in healthy subjects. We studied the pharmaco-physio-psychologic effect of Shirodhara with medicated sesame oil including an essential oil from Lavendula angustifolia (lavender) in the present study. Sixteen (16) healthy females (38 +/- 8 years old) were assigned at random to three treatments applied by a robotic oil-dripping system: plain sesame oil (plain Shirodhara), medicated sesame oil with a 0.3 volume % of lavender essential oil (lavender Shirodhara), or the control supine position. Psychophysiologic parameters including the heart rate, skin temperature of the dorsum of hands and feet, as well as anxiety and ASC were monitored, and the rates of change of these items were calculated to assess the psychophysiologic changes brought about by Shirodhara. Lavender Shirodhara showed potent anxiolytic and ASC-inducing or promoting effects, and induced the largest increase in foot skin temperature. The correlation between anxiolysis and ASC, as well as the correlation between these psychologic effects and the elevated foot skin temperature were larger in the lavender Shirodhara than in the other two conditions. It was speculated that the psycho-physiologic effects of lavender Shirodhara would be brought about by three mechanisms: (1) the well-known relaxing action of essential oils from L. angustifolia mediated by olfactory nerves, (2) the pharmacologic action of substances absorbed through the skin or mucosa in the sesame oil or lavender essential oil, and (3) the physiologic effect of sesame oil dripped on the forehead induced by the somato-autonomic reflex through thermosensors or pressure sensors in the skin or hair follicles via the trigeminal cranial nerve. The complicated pharmaco-physio-psychologic action of Ayurvedic oil treatment may provide a useful model for future pharmaco-physio-psychotherapy.
NASA Astrophysics Data System (ADS)
Pitcavage, E.; Furman, T.; Nelson, W. R.
2016-12-01
The East African Rift System (EARS) is the earth's largest continental divergent boundary and is an unparalleled natural laboratory for understanding magmatic processes related to continental rifting. A fundamental unresolved question in EARS magmatism is the degree to which volcanism and rifting are influenced by Cenozoic plume-related melting rather than older, tectonically-driven metasomatism. In the latter scenario, metasomatism by carbonatite or silicate magmas and/or fluids that accompanies tectonic events such as the Proterozoic Pan-African Orogeny will create geochemical heterogeneities and rheological weaknesses in the sub-continental lithospheric mantle (SCLM). In the Western Rift, abundant alkaline mafic lavas record significant contributions from metasomatized SCLM. Modification, destabilization and foundering of metasomatized SCLM has an increasingly recognized role in continental magmatism worldwide. Lithospheric drip magmatism occurs when foundered lithosphere devolatilizes and melts on descent. Lithospheric thinning is one consequence of this process, and may play a role in physical aspects of rifting. Geochemical and geophysical evidence that drip magmatism has occurred in several areas of the EARS, including Turkana, Chyulu Hills, and Oligocene HT2 flood basalts in Afar, suggests that this process is fundamentally related to the onset of successful rifting. We use geochemical characteristics of primitive lavas from the Bufumbira volcanic field in the Western Rift's Virunga Province to demonstrate that ancient, tectonically-driven metasomatism modified the SCLM and contributes to recent volcanism. Further, we identify geochemical signatures which indicate that lithospheric drip melting is the primary petrogenetic process generating these lavas. Sr-Nd-Pb-Hf isotopic data show that the northern portion of the Western Rift, including Bufumbira, requires magma sources distinct from the rest of the EARS. Trace element data show that Bufumbira lavas are derived from depths within the garnet stability field and that source mineralogy includes phlogopite with potential amphibole and zircon; and that extent of melting increased with depth of melting, a signature of lithospheric drip.
Zhou, Wei; Song, Xiang-gang; Chen, Chao; Wang, Shu-mei; Liang, Sheng-wang
2015-08-01
Action mechanism and material base of compound Danshen dripping pills in treatment of carotid atherosclerosis were discussed based on gene expression profile and molecular fingerprint in this paper. First, gene expression profiles of atherosclerotic carotid artery tissues and histologically normal tissues in human body were collected, and were screened using significance analysis of microarray (SAM) to screen out differential gene expressions; then differential genes were analyzed by Gene Ontology (GO) analysis and KEGG pathway analysis; to avoid some genes with non-outstanding differential expression but biologically importance, Gene Set Enrichment Analysis (GSEA) were performed, and 7 chemical ingredients with higher negative enrichment score were obtained by Cmap method, implying that they could reversely regulate the gene expression profiles of pathological tissues; and last, based on the hypotheses that similar structures have similar activities, 336 ingredients of compound Danshen dripping pills were compared with 7 drug molecules in 2D molecular fingerprints method. The results showed that 147 differential genes including 60 up-regulated genes and 87 down regulated genes were screened out by SAM. And in GO analysis, Biological Process ( BP) is mainly concerned with biological adhesion, response to wounding and inflammatory response; Cellular Component (CC) is mainly concerned with extracellular region, extracellular space and plasma membrane; while Molecular Function (MF) is mainly concerned with antigen binding, metalloendopeptidase activity and peptide binding. KEGG pathway analysis is mainly concerned with JAK-STAT, RIG-I like receptor and PPAR signaling pathway. There were 10 compounds, such as hexadecane, with Tanimoto coefficients greater than 0.85, which implied that they may be the active ingredients (AIs) of compound Danshen dripping pills in treatment of carotid atherosclerosis (CAs). The present method can be applied to the research on material base and molecular action mechanism of TCM.
Rice Performance and Water Use Efficiency under Plastic Mulching with Drip Irrigation
He, Haibing; Ma, Fuyu; Yang, Ru; Chen, Lin; Jia, Biao; Cui, Jing; Fan, Hua; Wang, Xin; Li, Li
2013-01-01
Plastic mulching with drip irrigation is a new water-saving rice cultivation technology, but little is known on its productivity and water-saving capacity. This study aimed to assess the production potential, performance, and water use efficiency (WUE) of rice under plastic mulching with drip irrigation. Field experiments were conducted over 2 years with two rice cultivars under different cultivation systems: conventional flooding (CF), non-flooded irrigation incorporating plastic mulching with furrow irrigation (FIM), non-mulching with furrow irrigation (FIN), and plastic mulching with drip irrigation (DI). Compared with the CF treatment, grain yields were reduced by 31.76–52.19% under the DI treatment, by 57.16–61.02% under the FIM treatment, by 74.40–75.73% under the FIN treatment, which were mainly from source limitation, especially a low dry matter accumulation during post-anthesis, in non-flooded irrigation. WUE was the highest in the DI treatment, being 1.52–2.12 times higher than with the CF treatment, 1.35–1.89 times higher than with the FIM treatment, and 2.37–3.78 times higher than with the FIN treatment. The yield contribution from tillers (YCFTs) was 50.65–62.47% for the CF treatment and 12.07–20.62% for the non-flooded irrigation treatments. These low YCFTs values were attributed to the poor performance in tiller panicles rather than the total tiller number. Under non-flooded irrigation, root length was significantly reduced with more roots distributed in deep soil layers compared with the CF treatment; the DI treatment had more roots in the topsoil layer than the FIM and FIN treatments. The experiment demonstrates that the DI treatment has greater water saving capacity and lower yield and economic benefit gaps than the FIM and FIN treatments compared with the CF treatment, and would therefore be a better water-saving technology in areas of water scarcity. PMID:24340087
NASA Astrophysics Data System (ADS)
Bonaccorso, Angela
2015-02-01
Among exotic nuclei those at the drip line which are unstable against neutron emission are particularly interesting because they convey information on the nuclear force in the most extreme situations. Strictly speaking they are not ''nuclei" but they exist thanks to long living resonances between a neutron and a bound ''core" nucleus. Adding one more neutron they become bound and are called "borromean". Being particularly exotic they have attracted much attention in past years, see for example Refs.[1, 2, 3]. One very challenging example is 13Be whose level ordering has been discussed in a large number of papers in which it has been studied by transfer [4] and fragmentation experiments [5]-[11], or it has been discussed theoretically[12]-[19]. Although projectile fragmentation spectra show evident similarities, the interpretations of data all differ from each other. In this paper we argue that a way trough the problem could be to try to establish first, or at the same time, the quite elusive "nature" of the second s-state in the Beryllium isotopes with A=9-14. On the other hand there are other recent neutron removal experiments leading to nuclei unstable by one or more proton emissions [20], and thus somewhat mirror to borromean nuclei, performed with nuclei close to the proton drip line. It has been shown that by taking in coincidence all (charged) particles but the removed neutron, reconstructing the invariant mass and gating on the ground state peak, it is possible to obtain the longitudinal momentum distribution of the unbound "core". One can link it to the original wave function of the bound orbital and thus determine the initial neutron angular momentum from the shape of the distribution and the initial occupation probability from the absolute removal cross section. Then it is clear that modern experiments and theories are able to study unstable nuclei with the same degree of accuracy as stable nuclei. Such a line of research offers a great potential for numerous further studies beyond the drip line.
NASA Technical Reports Server (NTRS)
Head, J. W.; Ivanov, M. A.
2010-01-01
Today, and throughout its recorded history, Venus can be classified as a "one-plate planet." The observable geological record of the planet comprises only the last 1/4 or less of its overall geologic history. As shown by many authors, it started with intensive deformation in broad regions to form tessera [1-6] during the Fortunian period of history [7]. The period of tessera formation quickly changed to numerous zonal deformational belts of ridges and grooves that were followed by emplacement of vast volcanic plains (shield plains, regional plains) [7,8]. During the final epoch of the geologic history of Venus, large but isolated centers of volcanism formed extensive fields of lavas, with tectonics concentrated within fewer very prominent rift zones [8,9]. The observable changes in intensity and character of volcanism and tectonics suggest progressive changes from thin lithosphere early in the geologic history to thick lithosphere during later epochs [6,10]. We have little idea of the character of the first 3/4 of Venus' history. So, what does the earliest period of recorded history tell us about the transition from the Pre-Fortunian to the Fortunian period and what insight does this give us into this earlier period?
Ring complexes and related rocks in Africa
NASA Astrophysics Data System (ADS)
Vail, J. R.
Over 625 igneous complexes throughout Africa and Arabia have been selected and classified on the basis of petrographic association and chronology into six broad age groups forming 29 provinces. The groups range from Mid-Proterozoic to Tertiary and include gabbro, granite, syenite, foid syenite and carbonatite plutonic rocks, the majority in the form of ring-dykes, cone-sheets, plugs, circular intrusions, and their associated extrusive phases. Pan-African late or post-orogenic complexes (720-490 Ma) are common in the Arabian-Nubian and Tuareg shields of north Africa originating from subduction zone derived magmatism. Anorogenic complexes in Egypt, NE and central Sudan, Niger, Nigeria, Cameroon, Zaïre-Burundi, Malawi, Mozambique, Zimbabwe, Namibia and Angola span 550 to 50 Ma and are dominantly alkali granites and foid syenites. Many groups occur as en-echelon bands within linear arrays, and show migrating centres of intrusion in variable directions. In W. Africa there was a progressive shift of emplacement southwards during early Ordovician to Mid-Cretaceous times. Distribution patterns suggest thatdeep seated features, such as shear zones associated with lithospheric plate movements,controlled melting, and the resultant location of the complexes. Economic mineralization is not widespread in the rocks of the African ring complexes and is mainly restricted to small deposits of Sn, W, F, U and Nb.
Bonada Sanjaume, Anna; Gils Contreras, Anna; Salas-Salvadó, Jordi
2015-08-01
the administration of enteral nutrition by gravity is a very useful method in clinical practice; nevertheless, it may not be very precise. Indeed, this method presents some important limitations, such as the difficulty in establishing a precise dripping rate and the possibility for the dripping rate decrease depending on the formula. assess the administration time and the risk of clogging of 5 fiber-enriched enteral nutrition formulas with different protein concentrations and caloric density, all administered by gravity through nasogastric (NG) tubes of different sizes. Assess the influence of the composition on the dripping rate, by gravity, of the tested formulas. 5 fiber-enriched EN formulas were compared by using nasogastric tubes of the calibers 8, 10 and 12 Fr. The fluidity of these gravity-administered NE formulas was estimated by timing the complete passage of each formula at full speed, thus allowing one to calculate the mean time of free fall (MTFF) and to register any possible obstruction. Subsequently, an in vitro simulation of a 1 500 ml administration was performed for each formula at a particular speed, so that the administration time was 5 hours. Slowing flow and stagnated flow were detected as indicators of the risk of obstruction. the two products that especially differed in MTFF were the ones with the highest energy concentration. The passage time in free fall of these two products through the 8 Fr tube exceeded four hours. For the rest of the products and NG tubes used, this time was less than 2 hours and 5 minutes. No slowing flow or tube obstruction was detected in free fall and at maximum speed. When the dripping was adjusted to be administered in 5 hours, three of the studied products (those with the least caloric concentration and viscosity) showed slowing flow and, in some cases, the dripping stopped completely. The most important factor associated to the MTFF was the lipid content, followed by viscosity, energy and protein content. The MTFF measured was not significantly related to the fiber content of the nutritional formula. all studied products can be administered by gravity via nasogastric tubes in free fall without any risk of obstruction, even though the free fall time was very variable. The lowest caliber tubes, the highest energy content and the viscosity of the EN mixture turn-out to be the limiting factors when fiber-enriched formulas are to be administered by gravity. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
13. Emplacement no. 2, overhead view of counterweight well, showing ...
13. Emplacement no. 2, overhead view of counterweight well, showing channel for gun motor cable and bolt plates upon which base ring of gun carriage was mounted - Fort Wadsworth Battery Romeyn B. Ayers, South side of Ayers Road, Staten Island, Rosebank, Richmond County, NY
10 CFR 60.113 - Performance of particular barriers after permanent closure.
Code of Federal Regulations, 2014 CFR
2014-01-01
... complete filling with groundwater of available void spaces in the underground facility shall be...) Geologic setting. The geologic repository shall be located so that pre-waste-emplacement groundwater travel... release rate, designed containment period or pre-waste-emplacement groundwater travel time, provided that...
10 CFR 60.113 - Performance of particular barriers after permanent closure.
Code of Federal Regulations, 2012 CFR
2012-01-01
... complete filling with groundwater of available void spaces in the underground facility shall be...) Geologic setting. The geologic repository shall be located so that pre-waste-emplacement groundwater travel... release rate, designed containment period or pre-waste-emplacement groundwater travel time, provided that...
10 CFR 60.113 - Performance of particular barriers after permanent closure.
Code of Federal Regulations, 2013 CFR
2013-01-01
... complete filling with groundwater of available void spaces in the underground facility shall be...) Geologic setting. The geologic repository shall be located so that pre-waste-emplacement groundwater travel... release rate, designed containment period or pre-waste-emplacement groundwater travel time, provided that...
40 CFR 194.24 - Waste characterization.
Code of Federal Regulations, 2012 CFR
2012-07-01
... system. (e) Waste may be emplaced in the disposal system only if the emplaced components of such waste... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Waste characterization. 194.24 Section... PROGRAMS CRITERIA FOR THE CERTIFICATION AND RE-CERTIFICATION OF THE WASTE ISOLATION PILOT PLANT'S...
40 CFR 194.24 - Waste characterization.
Code of Federal Regulations, 2013 CFR
2013-07-01
... system. (e) Waste may be emplaced in the disposal system only if the emplaced components of such waste... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Waste characterization. 194.24 Section... PROGRAMS CRITERIA FOR THE CERTIFICATION AND RE-CERTIFICATION OF THE WASTE ISOLATION PILOT PLANT'S...
40 CFR 194.24 - Waste characterization.
Code of Federal Regulations, 2011 CFR
2011-07-01
... system. (e) Waste may be emplaced in the disposal system only if the emplaced components of such waste... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Waste characterization. 194.24 Section... PROGRAMS CRITERIA FOR THE CERTIFICATION AND RE-CERTIFICATION OF THE WASTE ISOLATION PILOT PLANT'S...
40 CFR 194.24 - Waste characterization.
Code of Federal Regulations, 2014 CFR
2014-07-01
... system. (e) Waste may be emplaced in the disposal system only if the emplaced components of such waste... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Waste characterization. 194.24 Section... PROGRAMS CRITERIA FOR THE CERTIFICATION AND RE-CERTIFICATION OF THE WASTE ISOLATION PILOT PLANT'S...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stubbs, T.; Heinle, R.
1997-06-01
This containment data report for the ISLAY event provides a description of the event, including the site, emplacement, and instrumentation. Stemming performance is reported, including radiation pressure and motion. Collapse phenomena are reported, including motion and radiation pressure. Measurements on the emplacement pipe are reported, including motion, pressure, temperature, and radiation.
NASA Astrophysics Data System (ADS)
Labuhn, Inga; Genty, Dominique; Daux, Valérie; Bourges, François; Hoffmann, Georg
2013-04-01
The isotopic composition of proxies used for palaeoclimate reconstruction, like tree ring cellulose or speleothem calcite, is controlled to a large extent by the isotopic composition of precipitation. In order to calibrate and interpret these proxies in terms of climate, it is necessary to study water isotopes in rainfall and their link with the proxies' source water. We present 10 to 15-year series of stable hydrogen and oxygen isotopes in monthly precipitation from three sites in the south of France, along with corresponding REMOiso model simulations, a monitoring of cave drip water from two of these sites (Villars cave in the south-west and Chauvet cave in the south-east), as well as measurements of oxygen isotopes in tree ring cellulose from oak trees growing in the same area. The isotopic composition of monthly precipitation at the three sites displays a typical annual cycle. At the south-west sites, under Atlantic influence, the interannual variability is much more pronounced during the winter months than during the summer, whereas the south-eastern Mediterranean site shows the same variability throughout the year. The model simulations are able to reproduce the annual cycle of monthly precipitation δ18O as well as the intra-seasonal variability. Compared to the data, however, the modelled average isotopic values and the seasonal amplitude are overestimated. Correlations between temperature and precipitation δ18O are generally weak at all our sites, on both the monthly and the annual scale, even when using temperature averages weighted by the amount of precipitation. Consequently, a proxy which is controlled by the δ18O of precipitation cannot be directly interpreted in terms of temperature in this region. The isotopic composition of cave drip water in both caves remains stable throughout the monitoring period. By calculating different weighted averages of precipitation δ18O for time periods ranging from months to years, we demonstrate that the cave drip water isotopic composition is the result of several years of rainfall mixing. The precipitation of every month must be considered in order to attain the drip water values, which means that rain water infiltrates throughout the year. There is no modification of the soil water isotopic composition by evaporation and no seasonal bias introduced by transpiring plants; they use water from reserves which represents several months or years of mixing. For the interpretation of tree ring cellulose δ18O, this implies that - at least for the monitoring period of 15 years - the source water signal is more or less constant. Therefore, the variability of cellulose δ18O must be mainly due to evaporation at the leaf level, which is strongly dependent on summer temperature. Insights on the variability and temperature correlations of stable isotopes in precipitation and on the origin and composition of cave drip water are important for the interpretation of proxies. Long-term monitoring is needed for model validation, and the locally validated and corrected model can provide longer time series for a reliable proxy calibration.
NASA Astrophysics Data System (ADS)
Shields, Sarah; Petronis, Michael; Rapprich, Vladislav; Valenta, Jan
2016-04-01
The emplacement of silica-undersaturated magma in continental rift volcanoes remains poorly understood because the roots of these systems are not often accessible. The Miocene Měrunice and Oligocene Zákupy diatremes, Czech Republic, are located within or on the SE shoulder of the Eger Rift. These diatremes provide a unique opportunity to conduct a comparative emplacement study, in near 3-dimensions, of their sub-volcanic magma plumbing systems. Studies across the rift reveal that magma compositions show a temporal evolution trend that coincides with three rift phases: melilitic-nephelinites during pre-rift (79-49 Ma); two magmas, weakly alkaline olivine basalts and strongly alkaline nephlelinite-tephrite-phonolites during syn-rift (42-16 Ma), and olivine foidites during late rift (16-0.3 Ma). Here we report preliminary data on how varying degrees of alkaline magma generation paired with a dynamic rift stress regime yield unique emplacement mechanisms of presumed monogenetic rift diatremes. Field observations and laboratory data at both diatremes indicate multiple emplacement and eruptive events, as shown by variation in eruptive materials and cross cutting relationships between dikes and sills that differ in emplacement dynamics. Anisotropy of magnetic susceptibility (AMS) data were collected from 25 Zákupy diatreme sites and reveal primarily oblate magnetic fabrics that we interpret to indicate that magma flowed up, down, and laterally away from the suspected main conduit. Preliminary paleomagnetic data reveal that the intrusions are of reversed polarity and show some scatter about the expected reverse polarity reference direction that could be related to sub-volcanic deformation of the diatreme. In addition, ground magnetometry data indicate that the main conduit is likely located at the center of the quarry as shown by a magnetic low with a magnetic high radiating around the probable conduit. Curie point estimates show that the magnetic mineral phases carrying the characteristic remanent magnetization are moderate to high titanomagnetite with ilmenite inclusions in clinopyroxene. AMS data from the main feeder dikes from the Měrunice diatreme display a steep upward NW and NE emplacement trend. Petrologic observations indicate that the rocks are olivine basanites with little to no compositional variation between the intrusive and extrusive products. Paleomagnetic data from the Měrunice diatreme are underway and should aid with defining subvolcanic deformation during the growth of the diatreme. The results from this multidisciplinary study suggest that these presumed monogenetic systems display characteristics that are better described by a polygenetic emplacement model.
12. Battery Richmond, emplacement no. 1, iron stair from terreplein ...
12. Battery Richmond, emplacement no. 1, iron stair from terreplein up to loading platform. Beneath stair is doorway to powder room, at left is an entrance to the shot gallery; at center is entance to guard room - Forth Wadsworth Battery Richmond, Fort Wadsworth, Staten Island, New York County, NY
NASA Astrophysics Data System (ADS)
Abu El-Rus, Mohamed A.; Mohamed, Mohamed A.; Lindh, Anders
2017-12-01
The Mueilha granite pluton is one of the rare-metals bearing peraluminous granitic plutons in the Arabian-Nubian Shield. It represents the apical part of a highly evolved magma chamber emplaced at a shallow level subsequent to the post Pan-African orogeny. The pluton can be seen as a highly leucocratic medium-grained albite/oligoclase framework infilled with quartz, K-feldspar and muscovite that are variably overgrown by K-feldspar, muscovite, quartz and topaz megacrysts. The increasing number and size of the K-feldspar megacrysts at the expense of the whitened albite/oligoclase framework imparts variably red color to the Mueilha granite. Contacts between the milky white and red granites are usually gradational, but may be locally sharp or may form narrow transition zones resulting from abrupt variations in texture and lithology. Textural relations indicate an initial stage of hydrothermal albitization of magmatic plagioclase and crystallization of topaz megacrysts resulting from infiltration of Na-rich fluorine bearing fluids. A subsequent stage of metasomatic enrichment is characterized by extensive growth of large K-feldspar, quartz and muscovite megacrysts at the expense of the albite/oligoclase crystals as a result of infiltration of K-Si rich hydrous fluids. Post-magmatic infiltration of hydrous fluids along the fault planes is shown by the intense replacement of alkali feldspar megacrysts by quartz, development of myrmekitic intergrowth pockets along the K-feldspar megacrysts and sealing of the micro-fractures by cryptocrystalline mixtures of clay minerals, iron oxides, sericite and chlorite. Compositionally, the red granitic rocks have higher SiO2, Fe2O3total, K2O/Na2O, Σ REE, Y, Th, U, Zr and Zn and lower Al2O3, Ga, Ta, Nb and Mo compared to the milky white granites. LILE and Sn do not show clear variation trends throughout the Mueilha granite pluton, suggesting their immobility during hydrothermal alteration. Microthermometric measurements indicate that the interactions with the hydrothermal fluids started at a minimum temperature > 400°C, most likely during the late-stage crystallization of the Mueilha granite and continued after their complete solidification (i.e. subsolidus conditions) at a temperature as low as 120 °C. The high fertility of Mueilha granite is most plausibly the result of partial melting within the undepleted juvenile crust of the Arabian-Nubian Shield that has formed during the Pan-African orogeny.
Outer crust of nonaccreting cold neutron stars
NASA Astrophysics Data System (ADS)
Rüster, Stefan B.; Hempel, Matthias; Schaffner-Bielich, Jürgen
2006-03-01
The properties of the outer crust of nonaccreting cold neutron stars are studied by using modern nuclear data and theoretical mass tables, updating in particular the classic work of Baym, Pethick, and Sutherland. Experimental data from the atomic mass table from Audi, Wapstra, and Thibault of 2003 are used and a thorough comparison of many modern theoretical nuclear models, both relativistic and nonrelativistic, is performed for the first time. In addition, the influences of pairing and deformation are investigated. State-of-the-art theoretical nuclear mass tables are compared to check their differences concerning the neutron drip line, magic neutron numbers, the equation of state, and the sequence of neutron-rich nuclei up to the drip line in the outer crust of nonaccreting cold neutron stars.
Spectroscopy at the two-proton drip line: Excited states in 158W
NASA Astrophysics Data System (ADS)
Joss, D. T.; Page, R. D.; Herzán, A.; Donosa, L.; Uusitalo, J.; Carroll, R. J.; Darby, I. G.; Andgren, K.; Cederwall, B.; Eeckhaudt, S.; Grahn, T.; Greenlees, P. T.; Hadinia, B.; Jakobsson, U.; Jones, P. M.; Julin, R.; Juutinen, S.; Leino, M.; Leppanen, A.-P.; Nyman, M.; O'Donnell, D.; Pakarinen, J.; Rahkila, P.; Sandzelius, M.; Sarén, J.; Scholey, C.; Seweryniak, D.; Simpson, J.; Sorri, J.
2017-09-01
Excited states have been identified in the heaviest known even-Z N = 84 isotone 158W, which lies in a region of one-proton emitters and the two-proton drip line. The observation of γ-ray transitions feeding the ground state establishes the excitation energy of the yrast 6+ state confirming the spin-gap nature of the α-decaying 8+ isomer. The 8+ isomer is also expected to be unbound to two-proton emission but no evidence for this decay mode was observed. An upper limit for the two-proton decay branch has been deduced as b2p ≤ 0.17% at the 90% confidence level. The possibility of observing two-proton emission from multiparticle isomers in nearby nuclides is considered.
Azari-Anpar, Mojtaba; Khomeiri, Morteza; Ghafouri-Oskuei, Hamed; Aghajani, Narjes
2017-04-01
In this research, maltodextrin (0, 1 and 2% w/w) and resistant starch (0, 1 and 2% w/w) were used in the formulation of low-fat ice cream (4% fat) and their effects on the physicochemical and sensory properties were investigated. The optimum levels of maltodextrin and resistant starch were determined by response surface methodology. Increment of maltodextrin and resistant starch increased acidity, viscosity, melting rate, time of dripping and overrun but decreased melting rate of ice cream. Results showed that the incorporation of maltodextrin and resistant starch at 0 and 2% w/w respectively, resulted into ice cream with suitable viscosity, melting rate, first dripping time, overrun and acidity.
[The succinyl-choline drip as a muscle relaxant for ether-air anesthesia (author's transl)].
Lunt, R L; Kamm, G
1976-11-19
We made a test series with ether-air anesthesia in combination with the succinyl-choline (SCC) drip-method. The 53 patients (40 Africans, 10 Indians, 3 Europeans) were 1 to 85 years old. The results we obtained were good: There were no fundamental changes with regard to the circulatory system; the risk of an overdose as well as of a dual block can be reduced by careful observation of the muscular action after the first SCC dose; post-operative complications, too, can be reduced. The ether-air anesthesia is an uncomplicated and cheap method. It is, in combination with succinyl-choline infusion as a muscle relaxant, a most useful anesthetic method for short operations in developing countries.
The design of liquid drip speed monitoring device system based on MCU
NASA Astrophysics Data System (ADS)
Zheng, Shiyong; Li, Zhao; Li, Biqing
2017-08-01
This page proposed an intelligent transfusion control and monitoring system which designed by using AT89S52 micro controller as the core, using the keyboard and photoelectric sensor as the input module, digital tube and motor as the output module. The keyboard is independent and photoelectric sensor can offer reliable detection for liquid drop speed and the transfusion bottle page. When the liquid amount is less than the warning value, the system sounded the alarm, you can remove the alert by hand movement. With the advantages of speed controllable and input pulse power can be maintained of the motor, the system can control the bottle through the upper and lower slow-moving liquid drip to control the speed of intelligent purpose.
Three-Body Forces and the Limit of Oxygen Isotopes
NASA Astrophysics Data System (ADS)
Otsuka, Takaharu; Suzuki, Toshio; Holt, Jason D.; Schwenk, Achim; Akaishi, Yoshinori
2010-07-01
The limit of neutron-rich nuclei, the neutron drip line, evolves regularly from light to medium-mass nuclei except for a striking anomaly in the oxygen isotopes. This anomaly is not reproduced in shell-model calculations derived from microscopic two-nucleon forces. Here, we present the first microscopic explanation of the oxygen anomaly based on three-nucleon forces that have been established in few-body systems. This leads to repulsive contributions to the interactions among excess neutrons that change the location of the neutron drip line from O28 to the experimentally observed O24. Since the mechanism is robust and general, our findings impact the prediction of the most neutron-rich nuclei and the synthesis of heavy elements in neutron-rich environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denton, Mark A.
Under Task Order 22 of the industry Advisory and Assistance Services (A&AS) Contract to the Department of Energy (DOE) DE-NE0000291, AREVA has been tasked with providing assistance with engineering, analysis, cost estimating, and design support of a system for disposal of radioactive wastes in deep boreholes (without the use of radioactive waste). As part of this task order, AREVA was requested, through a letter of technical direction, to evaluate Sandia National Laboratory’s (SNL’s) waste package borehole emplacement system concept recommendation using input from DOE and SNL. This summary review report (SRR) documents this evaluation, with its focus on the primarymore » input document titled: “Deep Borehole Field Test Specifications/M2FT-15SN0817091” Rev. 1 [1], hereafter referred to as the “M2 report.” The M2 report focuses on the conceptual design development for the Deep Borehole Field Test (DBFT), mainly the test waste packages (WPs) and the system for demonstrating emplacement and retrieval of those packages in the Field Test Borehole (FTB). This SRR follows the same outline as the M2 report, which allows for easy correlation between AREVA’s review comments, discussion, potential proposed alternatives, and path forward with information established in the M2 report. AREVA’s assessment focused on three primary elements of the M2 report: the conceptual design of the WPs proposed for deep borehole disposal (DBD), the mode of emplacement of the WP into DBD, and the conceptual design of the DBFT. AREVA concurs with the M2 report’s selection of the wireline emplacement mode specifically over the drill-string emplacement mode and generically over alternative emplacement modes. Table 5-1 of this SRR compares the pros and cons of each emplacement mode considered viable for DBD. The primary positive characteristics of the wireline emplacement mode include: (1) considered a mature technology; (2) operations are relatively simple; (3) probability of a radiological release due to off-normal events are relatively low; (4) costs are relatively low; and (5) maintenance activities are relatively simple. The primary drawback associated with the wireline emplacement mode for DBD is the number of emplacement trips-in to the borehole, which results in a relatively higher probability for a drop event. Fortunately, the WPs can be engineered with impact limiters that will minimize the likelihood of a breach of the WP due to a drop. The WP designs presented in the M2 report appear to be focused on compatibility with the drill-string emplacement mode (e.g., the threaded connections). With the recommendation that the wireline emplacement mode be utilized for the DBFT, some changes may be warranted to these WPs. For example, the development of a WP release connection that is more reliable than the currently credited connection, which is considered to have a high failure probability, and the integration of an impact limiter into its design. The M2 report states the engineering demonstration of the DBFT will occur in the FTB over a 4-year period. AREVA recommends development and testing of the WP emplacement handling equipment occur separately (but concurrently, if not earlier) from the FTB at a mock-up facility. The separation of this activity would prevent schedule interference between the science and engineering thrusts of the project. Performing tests in a mock-up facility would allow additional control and observation compared to the FTB. The mock-up facility could also be utilized as a training facility for future operations. Terminal velocity and impact limiter testing would require the FTB for testing, since these areas would be difficult to reproduce in a limited depth mock-up. Although only at the end of the conceptual stage of design development, DBD appears to be a viable solution for some waste forms produced by the nuclear industry. However, regulatory requirements have yet to be established for pre- and post-closure performance of DBD and should be established as soon as possible. Some of the main areas of focus from a regulatory perspective include: (1) establishing acceptable performance requirements for the long-term behavior of DBD; (2) determining acceptable borehole abandonment criteria; (3) establishing retrievability requirements; (4) developing a consensus on the factor of safety (FoS) for the emplacement mode and WP; and (5) establishing safety and safeguards performance requirements for DBD. Although conservative requirements have been utilized to provide the foundation for the conceptual design of DBD, regulatory requirements and feedback are necessary to confirm recommendations made herein and to ensure the long-term performance of DBD is acceptable. The combination of the M2 report and this SRR is intended to facilitate the completion of the conceptual design for DBD for the Cs and Sr capsules and calcined waste forms. Using the conceptual design, preliminary design activities (the second stage of a three-stage process described in the M2 report) can proceed and the DBFT utilized to support, demonstrate, and confirm engineering elements of this design.« less
DETAIL OF THE SLOPING CONCRETE PAD AT THE SOUTH SIDE ...
DETAIL OF THE SLOPING CONCRETE PAD AT THE SOUTH SIDE OF THE GUN EMPLACEMENT. NOTE ADDED BLOCK OF CAST CONCRETE AT THE LOW (RIGHT) END OF SLOPED PAD. VIEW FACING SOUTHWEST - U.S. Naval Base, Pearl Harbor, Ford Island 5-Inch Antiaircraft Battery, East Gun Emplacement, Ford Island, Pearl City, Honolulu County, HI
From Embodiment to Emplacement: Re-Thinking Competing Bodies, Senses and Spatialities
ERIC Educational Resources Information Center
Pink, Sarah
2011-01-01
In this article I discuss how a shift from theories of embodiment to one of emplacement can inform how we understand the performing body in competitive and pedagogical contexts. I argue that recent theoretical advances concerning the senses, human perception and place offer new analytical possibilities for understanding skilled performances and…
NASA Astrophysics Data System (ADS)
Harp, A. G.; Valentine, G. A.
2018-06-01
In the article "Emplacement controls for the basaltic-andesitic radial dikes of Summer Coon volcano and implications for flank vents at stratovolcanoes", the vertical axis for Fig. 8 a was incorrectly labeled (i.e., the value for dikes per km2).
Estimating the Life Cycle Cost of Space Systems
NASA Technical Reports Server (NTRS)
Jones, Harry W.
2015-01-01
A space system's Life Cycle Cost (LCC) includes design and development, launch and emplacement, and operations and maintenance. Each of these cost factors is usually estimated separately. NASA uses three different parametric models for the design and development cost of crewed space systems; the commercial PRICE-H space hardware cost model, the NASA-Air Force Cost Model (NAFCOM), and the Advanced Missions Cost Model (AMCM). System mass is an important parameter in all three models. System mass also determines the launch and emplacement cost, which directly depends on the cost per kilogram to launch mass to Low Earth Orbit (LEO). The launch and emplacement cost is the cost to launch to LEO the system itself and also the rockets, propellant, and lander needed to emplace it. The ratio of the total launch mass to payload mass depends on the mission scenario and destination. The operations and maintenance costs include any material and spares provided, the ground control crew, and sustaining engineering. The Mission Operations Cost Model (MOCM) estimates these costs as a percentage of the system development cost per year.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalinina, Elena Arkadievna; Hardin, Ernest
This study identified potential geologic repository concepts for disposal of spent nuclear fuel (SNF) and (2) evaluated the achievable repository waste emplacement rate and the time required to complete the disposal for these concepts. Total repository capacity is assumed to be approximately 140,000 MT of spent fuel. The results of this study provide an important input for the rough-order-of-magnitude (ROM) disposal cost analysis. The disposal concepts cover three major categories of host geologic media: crystalline or hard rock, salt, and argillaceous rock. Four waste package sizes are considered: 4PWR/9BWR; 12PWR/21BWR; 21PWR/44BWR, and dual purpose canisters (DPCs). The DPC concepts assumemore » that the existing canisters will be sealed into disposal overpacks for direct disposal. Each concept assumes one of the following emplacement power limits for either emplacement or repository closure: 1.7 kW; 2.2 kW; 5.5 kW; 10 kW; 11.5 kW, and 18 kW.« less
NASA Astrophysics Data System (ADS)
Canon-Tapia, E.; Raposo, M. I. B.
2017-12-01
The Paraná-Etendeka Large Igneous Province includes felsic volcanic rocks whose mechanism of emplacement and location of their eruptive sources are controversial. Opening of several quarries of dimension stone near the city of Sao Marcos, Rio Grande do Sul, Brazil, offers a unique opportunity to study in detail some of those products. Here, we present the results of a study of the anisotropy of magnetic susceptibility (AMS) completed in some rocks that had been interpreted as the roots of volcanic conduits. Our results, and reexamination of the textural features of the rocks, lead to a reinterpretation that suggests that these rocks were emplaced subaerially, and involved assimilation and remelting of clastic components of previous lavas. The extremely high eruption temperatures of the lavas promoted the development of peperite-like textures and mixing patterns similar to those observed in plutonic environments. Due to the inferred conditions of emplacement, it is unlikely that the eruptive vents are located far from the area of study, therefore ruling out the long-travelled nature of these products.
NASA Astrophysics Data System (ADS)
Cañón-Tapia, Edgardo; Raposo, M. Irene B.
2018-04-01
The Paraná-Etendeka Large Igneous Province includes acid volcanic rocks that can be found throughout its extension. Several aspects concerning those rocks remain controversial, including their mechanism of emplacement and location of their eruptive sources. Opening of several quarries of dimension stone near the city of Sao Marcos, Rio Grande do Sul, Brazil, offers a unique opportunity to study in detail the acid products. Here, we present the results of a study of the anisotropy of magnetic susceptibility (AMS) completed in some rocks that had been interpreted as the roots of volcanic conduits. Our results, and reexamination of the textural features of the rocks, lead to a reinterpretation that suggests that these rocks were emplaced subaerially, and involved assimilation and remelting of clastic components of previous products. Due to the inferred conditions of emplacement, it is unlikely that the eruptive vents are located far from the area of study, therefore ruling out the long-travelled nature of these products.
Local-scale stratigraphy of grooved terrain on Ganymede
NASA Technical Reports Server (NTRS)
Murchie, Scott L.; Head, James W.; Helfenstein, Paul; Plescia, Jeffrey B.
1987-01-01
The surface of the Jovian satellite, Ganymede, is divided into two main units, dark terrain cut by arcuate and subradial furrows, and light terrain consisting largely of areas with pervasive U-shaped grooves. The grooved terrain may be subdivided on the basis of pervasive morphology of groove domains into four terrain types: (1) elongate bands of parallel grooves (groove lanes); (2) polygonal domains of parallel grooves (grooved polygons); (3) polygonal domains of two orthogonal groove sets (reticulate terrain); and (4) polygons having two to several complexly cross-cutting groove sets (complex grooved terrain). Reticulate terrain is frequently dark and not extensively resurfaced, and grades to a more hummocky terrain type. The other three grooved terrain types have almost universally been resurfaced by light material during their emplacement. The sequence of events during grooved terrain emplacement has been investigated. An attempt is made to integrate observed geologic and tectonic patterns to better constrain the relative ages and styles of emplacement of grooved terrain types. A revised model of grooved terrain emplacement is proposed and is tested using detailed geologic mapping and measurement of crater density.
Temporal and structural evolution of the Early Palæogene rocks of the Seychelles microcontinent.
Shellnutt, J Gregory; Yeh, Meng-Wan; Suga, Kenshi; Lee, Tung-Yi; Lee, Hao-Yang; Lin, Te-Hsien
2017-03-14
The Early Palæogene Silhouette/North Island volcano-plutonic complex was emplaced during the rifting of the Seychelles microcontinent from western India. The complex is thought to have been emplaced during magnetochron C28n. However, the magnetic polarities of the rocks are almost entirely reversed and inconsistent with a normal polarity. In this study we present new in situ zircon U/Pb geochronology of the different intrusive facies of the Silhouette/North Island complex in order to address the timing of emplacement and the apparent magnetic polarity dichotomy. The rocks from Silhouette yielded weighted mean 206 Pb/ 238 U ages from 62.4 ± 0.9 Ma to 63.1 ± 0.9 Ma whereas the rocks from North Island yielded slightly younger mean ages between 60.6 ± 0.7 Ma to 61.0 ± 0.8 Ma. The secular latitudinal variation from Silhouette to North Island is consistent with the anticlockwise rotation of the Seychelles microcontinent and the measured polarities. The rocks from Silhouette were emplaced across a polarity cycle (C26r-C27n-C27r) and the rocks from North Island were emplaced entirely within a magnetic reversal (C26r). Moreover, the rocks from North Island and those from the conjugate margin of India are contemporaneous and together mark the culmination of rift-related magmatism.
Citrulline and DRIP-1 protein (ArgE homologue) in drought tolerance of wild watermelon.
Yokota, Akiho; Kawasaki, Shinji; Iwano, Megumi; Nakamura, Chie; Miyake, Chikahiro; Akashi, Kinya
2002-06-01
Drought-affected plants experience more than just desiccation of their organs due to water deficit. Plants transpire 1000 times more molecules of water than of CO2 fixed by photosynthesis in full sunlight. One effect of transpiration is to cool the leaves. Accordingly, drought brings about such multi-stresses as high temperatures, excess photoradiation and other factors that affect plant viability. Wild watermelon serves as a suitable model system to study drought responses of C3 plants, since this plant survives drought by maintaining its water content without any wilting of leaves or desiccation even under severe drought conditions. Under drought conditions in the presence of strong light, wild watermelon accumulates high concentrations of citrulline, glutamate and arginine in its leaves. The accumulation of citrulline and arginine may be related to the induction of DRIP-1, a homologue of ArgE in Escherichia coli, where it functions to incorporate the carbon skeleton of glutamate into the urea cycle. Immunogold electron microscopy reveals the enzyme to be confined exclusively to the cytosol. DRIP-1 is also induced by treating wild watermelon with 150 mM NaCl, but is not induced following treatment with 100 microM abscisic acid. The salt treatment causes the accumulation of gamma-aminobutyrate, glutamine and alanine, in addition to a smaller amount of citrulline. Citrulline may function as a potent hydroxyl radical scavenger.
A Versatile Strategy for Characterization and Imaging of Drip Flow Microbial Biofilms.
Li, Bin; Dunham, Sage J B; Ellis, Joseph F; Lange, Justin D; Smith, Justin R; Yang, Ning; King, Travis L; Amaya, Kensey R; Arnett, Clint M; Sweedler, Jonathan V
2018-06-05
The inherent architectural and chemical complexities of microbial biofilms mask our understanding of how these communities form, survive, propagate, and influence their surrounding environment. Here we describe a simple and versatile workflow for the cultivation and characterization of model flow-cell-based microbial ecosystems. A customized low-shear drip flow reactor was designed and employed to cultivate single and coculture flow-cell biofilms at the air-liquid interface of several metal surfaces. Pseudomonas putida F1 and Shewanella oneidensis MR-1 were selected as model organisms for this study. The utility and versatility of this platform was demonstrated via the application of several chemical and morphological imaging techniques-including matrix-assisted laser desorption/ionization mass spectrometry imaging, secondary ion mass spectrometry imaging, and scanning electron microscopy-and through the examination of model systems grown on iron substrates of varying compositions. Implementation of these techniques in combination with tandem mass spectrometry and a two-step imaging principal component analysis strategy resulted in the identification and characterization of 23 lipids and 3 oligosaccharides in P. putida F1 biofilms, the discovery of interaction-specific analytes, and the observation of several variations in cell and substrate morphology present during microbially influenced corrosion. The presented workflow is well-suited for examination of both single and multispecies drip flow biofilms and offers a platform for fundamental inquiries into biofilm formation, microbe-microbe interactions, and microbially influenced corrosion.
Sorption of pathogens during sub-surface drip irrigation with wastewater
NASA Astrophysics Data System (ADS)
Levi, Laillach; Gillerman Gillerman, Leonid; Kalavrouziotis, Ioannis; Oron, Gideon
2017-04-01
Water scarcity continues to be one of the major threats to human survival in many regions worldwide, such as Africa, the Mediterranean Basin, the State of California in the US. Due to a mixture of factors such as population growth, reduction in water resources availability and higher demand for high quality waters in these regions these countries face water shortage issues that stem from overuse, extensive extraction of groundwater, and frequent drought events. In addition, there are increases in environmental and health awareness that have led to intensive efforts in the treatment and reuse of nonconventional water sources, mainly wastewater and greywater. One approach to water shortages issues is to use wastewater as means to close the gap between supply and demand. However, the need to treat wastewater and to disinfect it forces additional economic burden on the users, primarily for agricultural irrigation. A possible solution might be to use the soil as a sorbent for the contained pathogens. Under sub-surface drip irrigation, not allowing the wastewater to reach the soil surface, the pathogens will remain in the soil. It was as well shown in field experiments that the opening size of roots will not allow pathogens to penetrate into the plants. Additional advantages such as water saving, protection of the pipe systems and others are also important. Field experiments in commercial fields just emphasize the main advantages of sub-surface drip irrigation.
Mass balance approaches to understanding evolution of dripwater chemistry
NASA Astrophysics Data System (ADS)
Fairchild, I. J.; Baker, A.; Andersen, M. S.; Treble, P. C.
2015-12-01
Forward and inverse modelling of dripwater chemistry is a fast-developing area in speleothem science. Such approaches can incorporate theoretical, parameterized or observed relationships between forcing factors and water composition, but at the heart is mass balance: a fundamental principle that provides important constraints. Mass balance has been used in speleothem studies to trace the evolution of dissolved inorganic carbon and carbon isotopes from soil to cave, and to characterize the existence and quantification of prior calcite precipitation (PCP) based on ratios of Mg and Sr to Ca. PCP effects can dominate slow drips, whereas fast drips are more likely to show a residual variability linked to soil-biomass processes. A possible configuration of a more complete mass balance model is illustrated in the figure. Even in humid temperate climates, evapotranspiration can be 50% of total atmospheric precipitation leading to substantially raised salt contents and there can be significant exchange with biomass. In more arid settings, at least seasonal soil storage of salts is likely. Golgotha Cave in SW Australia is in a Mediterranean climate with a strong summer soil moisture deficit. The land surface is forested leading to large ion fluxes related to vegetation. There are also periodic disturbances related to fire. Mass balance approaches have been applied to an 8-year monitoring record. Inter-annual trends of elements coprecipitated in speleothems from fast drips are predicted to be dominated by biomass effects.
Experimental Modeling of the Formation of Saucer-Shaped sills
NASA Astrophysics Data System (ADS)
Galland, O.; Planke, S.; Malthe-Sorenssen, A.
2007-12-01
Many magma intrusions in sedimentary basins are sills, and especially saucer-shaped sills. These features are observed in many places (i.e. South Africa; the Norwegian and North Sea; Siberia; Argentina). Sand injectites exhibit similar geometries. The occurrence of such features in so various settings suggests that their emplacement results from fundamental processes in sedimentary basins. To understand such processes, we performed experimental modeling of saucer-shaped sill emplacement. The experiments consist of injecting a molten low viscosity vegetable oil (model magma) at a constant flow rate into a fine-grained Coulomb silica flour (model rock). When the oil starts intruding, the initially flat surface of the model inflates and forms a smooth dome. At the end of the experiment, the oil erupts at the edge of the dome. After the experiment, the oil cools and solidifies, the resulting solid intrusion is unburied and exposed, and its upper surface digitalized. For our purpose, we did our experiments without external deformation. We performed two series of experiments with varying depth of injection. The first series consisted of injection into a homogeneous medium. The resulting intrusions were cone-sheets and dykes. The second series consisted of heterogeneous models where the heterogeneity was a weak layer made of a flexible net. The resulting intrusions were made of (1) a horizontal basal sill emplaced along the weakness, and (2) inclined sheets nucleating at the edges of the basal sill and propagating upward and outward. The inclined sheets exhibited a convex shape, i.e. a decreasing slope outward. In addition, the deeper the sills emplaced, the larger they were. Our experimental results are consistent with saucer-shaped features in nature. We infer from our results that the transition between the basal sills and the inclined sheets results from a transition of emplacement processes. We suggest that the basal sill emplace by open (mode I) fracturing, whereas the inclined sheets result from shear (mode II) fracturing, i.e. along faults at the edge of the dome.
Basement diapirism associated with the emplacement of major ophiolite nappes: Some constraints
NASA Astrophysics Data System (ADS)
Andrews-Speed, C. P.; Johns, C. C.
1985-09-01
The association of basement uplifts with major ophiolite nappes in some Phanerozoic orogenic belts suggests that gravitational instability results in the local diapiric uplift of the basement following ophiolite emplacement. In previous analyses of diapirism in crustal silicate rocks, viscous behaviour of rocks has been assumed. It is argued that this assumption is not valid. An alternative analysis is offered to determine whether or not the stress would be sufficient for diapirism to occur. The negative buoyancy stress resulting from the emplacement of an ophiolite nappe 5-15 km thick onto continental basement may be in the range 10-50 MPa. If the horizontal deviatoric stress is zero, this will be the maximum principal compressive stress. After ophiolite emplacement the thermal profile through the ophiolite and the basement will relax from a saw-tooth form to an equilibrium profile. If the ophiolite is young and thick there will be a zone of ductile strain in the lower part of the ophiolite and in the upper part of the continental basement. Results from steady-state creep experiments suggest that temperatures in this zone may be high enough for a short time after ophiolite emplacement (3 Ma or more) for the rocks in this zone to deform at geologically significant strain rates (10 -14 or greater) in response to the negative buoyancy stress. A thin ophiolite or rapid erosion will result in this ductile zone being absent or too short-lived for significant strain. Aquaeous fluids may reduce the strength of brittle rocks by decreasing the effective normal stress or by encouraging pressure solution creep. Evidence suggests that the deviatoric stress across presently active faults may be as low at 10 MPa. Thus diapirism in response to ophiolite emplacement may occur through brittle strain. Gravity spreading within the ophiolite is an alternative mechanism for accommodating the gravitational instability. The critical evidence lies in the field.
NASA Astrophysics Data System (ADS)
Harp, A.; Valentine, G.
2016-12-01
Mafic eruptions along the flanks of stratovolcanoes pose significant hazards to life and property due to the uncertainty linked to new vent locations and their potentially close proximity to inhabited areas. Flank eruptions are often fed by radial dikes with magma supplied either laterally from the central conduit or vertically from a deeper storage location. The highly eroded Oligocene age Summer Coon stratovolcano, Colorado reveals over 700 mafic dikes surrounding a series of intrusive stocks (inferred conduit). The exposure provides an opportunity to study radial dike propagation directions and their relationship with the conduit in the lower portions of a volcanic edifice. Detailed geologic mapping and a geophysical survey revealed that little or no direct connection exists between the mafic radial dikes and the inferred conduit at the current level of exposure. Oriented samples collected from the chilled margins of 29 mafic dikes were analyzed for flow fabrics and emplacement directions. Among them, 20 dikes show flow angles greater than 30 degrees from horizontal, and a single dike had flow fabrics oriented at approximately 20 degrees. Of the dikes with steeper fabrics nine dikes were emplaced up and toward the volcano's center between 30-75 degrees from horizontal, and 11 dikes emplaced up and away from the volcano's center between 35-60 degrees. The two groups of dikes likely responded to the stress field within the edifice, where steepest-emplaced had relatively high magma overpressure and were focused toward the volcano's summit, while dikes with lower overpressures propagated out toward the flanks. At Summer Coon, the lack of connection between mafic dikes and the inferred conduit and presence of only one sub-horizontally emplaced dike implies the stresses within lower edifice impeded lateral dike nucleation and propagation while promoting and influencing the emplacement direction of upward propagating dikes.
Sill Emplacement and Forced Folding in the Canterbury Basin, offshore SE New Zealand
NASA Astrophysics Data System (ADS)
Reeves, Jennifer; Magee, Craig; Jackson, Christopher
2017-04-01
Sill-complexes are common in sedimentary basins worldwide. The geometry of sill-complexes and their associated deformation can be used to unravel tectono-magmatic events. For example, intruding magma may uplift the overburden and the free surface to produce forced folds that are typically either dome-shaped or flat-topped. These four-way dip closures can form suitable hydrocarbon traps and dating of onlapping of sedimentary strata allows the timing of emplacement, relative to hydrocarbon generation and migration to be assessed. Furthermore, these forced folds directly overlie the forcing intrusion and their volume is commonly assumed to equal that of the emplaced magma. This relationship between folds, which may be expressed that the Earth's surface, and magma volume is fundamental for volcano predication due to the use of ground deformation as a proxy for the location and magnitude of future eruptions. However, recent studies have demonstrated that fluidization of weak host rock can accommodate magma during non-brittle emplacement, producing little or no overburden deformation. Assessing the mechanics of intrusion-induced forced folding is therefore critical to a variety of Earth Science disciplines. Here, we use 3D seismic reflection data map four sills at a high-resolution within the underexplored Canterbury Basin, offshore SE New Zealand. We demonstrate that: (i) despite similar emplacement levels, forced folds are only developed above two of the sills, with no apparent uplift above the other two sills; (ii) onlap of sedimentary onto forced folds and associated hydrothermal vents indicates two episodes of sill emplacement in the Whaingaroan (34.6-31.8 Ma) and Opoitian (5.33-3.7 Ma); and (iii) intra-fold thickness is variable, with lower intervals within the folds displaying a flat-topped geometry overlain by sedimentary strata displaying dome-shaped folding. We discuss the formation of these forced folds as assess the role of non-brittle and inelastic deformation on the geometry and growth of forced folds.
The origins of radial fracture systems and associated large lava flows on Venus
NASA Technical Reports Server (NTRS)
Parfitt, Elisabeth A.; Wilson, Lionel; Head, James W., III
1992-01-01
Magellan images have revealed the existence of systems of radial fractures on venus that are very similar in form to terrestrial dike swarms such as the Mackenzie swarm in Northern Canada. The association of many of the fracture systems with lava flows, calderas, and volcanic edifices further support the idea of a dike emplacement origin. A global survey of the Magellan images has allowed the location of 300 such fracture systems. Two types of fracture systems are defined. A series of models were developed to simulate the emplacement of dikes on Venus. Observations of fracture lengths and widths were then used to constrain the emplacement conditions. The model results show that the great length and relatively large width of the fractures can only be explained if the dikes that produce them were emplaced in high driving pressure (pressure buffered) conditions. Such conditions imply high rates of melt production, which is consistent with the melt being derived directly from a plume head. We have recently modeled the vertical emplacement of a dike from the top of a mantle plume and calculated the eruption rates such a dike would produce on reaching the surface. This modeling shows that eruption rates of approximately 0.1 cu km/hr can readily be generated by such a dike, consistent with the above results. However, the sensitivity of the model to dike width and therefore driving pressure means that eruption rates from dikes emplaced from the base of the crust or the head of a mantle plume could be orders of magnitude higher than this. Clearly, therefore, the model needs to be refined in order to better constrain eruption conditions. However, it is worth noting here that the initial results do show that even for moderate dike widths, eruption rates could be at least on the order of those estimated for terrestrial flood basalts.
NASA Astrophysics Data System (ADS)
Altman, K. M.; Teasdale, R.
2009-12-01
From 1980 to 1986 the dacite dome at Mount St. Helens was emplaced as a series of 17 events, identified by different growth rates, volumes, height to diameter ratios, emplacement rates, surface textures and dome morphologies (Swanson, 1989). Rates of emplacement characterize three periods; between October 18, 1980 and the end of 1981 the growth rate was 1.8 x 10^6 m^3/month; between March 1982 and March 1984 the growth rate was 1.3 x 10^6 m^3/month; followed by a growth rate of 0.62 x 10^6 m^3/month until the end of the emplacement events in 1986 (Swanson, 1989). The shape of the dome changed from 1980 to 1986 as a function of magma viscosity, tensile strength of the hot core, and thickness of the outer shell (Swanson, 1989). The height to diameter ratios (h:d) recorded throughout the growth of the dome have been used to quantify the changes in the shape of the dome. The dome was flatter during the first period of emplacement when larger volumes kept the dome hotter and hindered the formation of a thick, cool outer crust (Swanson, 1989). Once the growth rate slowed by June 1981, a thick skin had formed and allowed the dome to steepen (Swanson, 1989). Analog models presented here aim to reproduce the emplacement of the domes based on observations and data recorded at Mount St. Helens from 1980 to 1986. Flow experiments use a slurry of PEG (poly-ethelyne glycol) mixed with kaolin powder that is pumped into a tank of cold water (Fink and Griffiths, 1998). PEG is used because it is liquid at room temperature and solidifies in the cold water. Kaolin powder is added to the PEG to simulate the viscosity of the dacite domes. The observed and recorded data from Mount St. Helens are used to constrain analog flow model parameters such as slope, effusion rate, and PEG viscosity in an attempt to recreate the dome morphologies observed in the 1980 to 1986 episodes. As expected, dome morphology in experiments varies with the crustal thickness developed during experiments. The thickness of dome crust increases when the difference between water temperature and the slurry are large. Dome crust thickness controls the h:d ratio, which are used here to characterize dome morphology. The h:d ratio of experiments are within 5% of those measured at Mount St. Helens, so are considered good representations of dome growth events. Ongoing work investigates multiple episodes of dome emplacement using solid structures in the tanks to represent previously emplaced dome edifices.
NASA Astrophysics Data System (ADS)
Miles, A. J.; Woodcock, N. H.
2018-04-01
With the advent of more precise dating methods, it has become apparent that zircon dates from granite plutons frequently indicate older emplacement ages than other dating methods. Here we attempt to reconcile a number of dating methods from the c. 5 km2 Caledonian Shap granite, Northern England. The results reveal a more complex and protracted evolution than indicated by application of any single dating method. Zircon U-Pb dates give a weighted mean age of 415.6 ± 1.4 (2σ) Ma. A mafic enclave, dated at 412 ± 2 (2σ) Ma (revised Rb-Sr feldspar age from Davidson et al., 2005), contains resorbed K-feldspar and zircon crystals scavenged from the host crystal mush. These ages are at odds with field relations in the thermal aureole that suggest final emplacement at approximately 404 Ma or later during Acadian deformation. Previously reported Re-Os ages on molybdenites associated with magmatic fluids, have given ages of 405.2 ± 1.8 (2σ) Ma (Selby et al., 2008) and confirm the overlap of at least some magmatic activity with Acadian deformation. A similar emplacement age is supported by Rb-Sr whole-rock-mineral and biotite K-Ar dates when adjusted for revised decay constants (402 ± 3 Ma and 401 ± 7 Ma, respectively, Wadge et al., 1978). The lower closure temperatures of these systems relative to the U-Pb system in zircon means that they are more likely to record the timing of final granite emplacement. These data suggest that most zircons grew before final granite emplacement, by about 10 Ma on average. We suggest that the majority of zircon crystals record pre-emplacement magmatic activity within a deeper part of the system. Mafic enclaves and their scavenged cargo of crystals record the assembly of a mid-crustal batholith where crystals remained at least locally mobile at 412 Ma. Gravity data support the existence of an extensive, 1500 km2 intrusive body, originally at about 15 km depth beneath Shap. This batholith is likely to have remained below the granite solidus for much of its existence due to conductive heat loss, but episodic influxes of silicic magma between c. 412 and 405 Ma are thought to have enabled periods of rejuvenation. These influxes are recorded by complex compositional zoning patterns within K-feldspar megacrysts. The Shap granite itself is likely to represent a rejuvenated crystal slurry, emplaced as a cylindrical cupola above the main magma body during Acadian transpression. This study highlights the importance of integrating different dating techniques and that final emplacement of granites can only be indicated by the youngest zircon ages.
... the interior of the nose with a fiberoptic scope and CAT scan x-rays. If medication does not relieve the problem, surgery may be recommended. Vasomotor Rhinitis describes ... Policy Terms of Use © ...
Outer crust of nonaccreting cold neutron stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruester, Stefan B.; Hempel, Matthias; Schaffner-Bielich, Juergen
The properties of the outer crust of nonaccreting cold neutron stars are studied by using modern nuclear data and theoretical mass tables, updating in particular the classic work of Baym, Pethick, and Sutherland. Experimental data from the atomic mass table from Audi, Wapstra, and Thibault of 2003 are used and a thorough comparison of many modern theoretical nuclear models, both relativistic and nonrelativistic, is performed for the first time. In addition, the influences of pairing and deformation are investigated. State-of-the-art theoretical nuclear mass tables are compared to check their differences concerning the neutron drip line, magic neutron numbers, the equationmore » of state, and the sequence of neutron-rich nuclei up to the drip line in the outer crust of nonaccreting cold neutron stars.« less
Kim, Hyun-Joo; Choi, Jong-il; Kim, Duk-Jin; Kim, Jae-Hun; Soo Chun, Byeong; Hyun Ahn, Dong; Sun Yook, Hong; Byun, Myung-Woo; Kim, Mi-Jung; Shin, Myung-Gon; Lee, Ju-Woon
2009-01-01
Although the byproduct from Hizikia fusiformis industry had many nutrients, it is being wasted. In this study, the physiological activities of cooking drip extracts from H. fusiformis (CDHF) were determined to investigate the effect of a gamma and an electron beam irradiations. DPPH radical scavenging activity and tyrosinase and ACE inhibition effects of the gamma and electron beam irradiated CDHF extracts were increased with increasing irradiation dose. These were reasoned by the increase in the content of the total polyphenolic compound of CDHF by the gamma and electron beam irradiation. There were no differences for the radiation types. These results show that ionizing radiation could be used for enhancing the functional activity of CDHF which is a major by-product in Hizikia fusiformis processing, in various applications.
Sánchez-Molinero, F; Arnau, J
2014-10-01
The effects of: a) applications of oil drip (from aged salted pork fat) onto dry-cured ham surface and b) application of a temperature of 35°C for 4days after 234days of processing (HTST treatment) were evaluated. The oil application reduced moisture, proteolysis and white film in semimembranosus, microbial counts in adductor and the intensity of hollow extent, toasted flavour, adhesiveness, pastiness (in semimembranosus) and chewiness (in semimembranosus and biceps femoris) and increased the intensity of nutty flavour (in both muscles), aged flavour, hardness, fibrousness and overall liking (in semimembranosus). The HTST did not affect any ham characteristics. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sato, Kouichi; Takenokishin, Miki; Anzai, Sachi; Sato, Rei; Tatewaki, Miyako; Takahashi, Mikako
2003-12-01
The home drip infusion is a stressful procedure for both patients and families under HPN at home. Effective and reliable guidance for drip infusion management should be provided while patients are still at the hospital to realize reliable home care. We revised the HPN Guidance Manual and report the process in this article. We revised the manual according to the principles that "the guidance is subdivided into 3 steps so that the contents of the guidance can be adjusted for individual patients", that "a lot of photos and illustrations for frequently used 2 models are placed" and that "a video is prepared to make the most of the impact motion pictures can give". We want to use the manual in future clinical practices.
Clasen, T; Brown, J; Suntura, O; Collin, S
2004-01-01
A randomised controlled field trial was conducted to evaluate the effectiveness of ceramic drip filters to improve the microbiological quality of drinking water in a low-income community in rural Bolivia. In four rounds of water sampling over five months, 100% of the samples were free of thermotolerant (faecal) coliforms (TTC) compared to an arithmetic mean TTC count of 1517, 406, 167 and 245 among control households which continued to use their customary sources of drinking water. The filter systems produced water that consistently met WHO drinking-water standards despite levels of turbidity that presented a challenge to other low-cost POU treatment methods. The filter systems also demonstrated an ability to maintain the high quality of the treated water against subsequent re-contamination in the home.
Compound parabolic concentrator with cavity for tubular absorbers
Winston, Roland
1983-01-01
A compond parabolic concentrator with a V-shaped cavity is provided in which an optical receiver is emplaced. The cavity redirects all energy entering between the receiver and the cavity structure onto the receiver, if the optical receiver is emplaced a distance from the cavity not greater than 0.27 r (where r is the radius of the receiver).
NASA Astrophysics Data System (ADS)
Bosle, J.; Scholz, D.; Hoffmann, T.
2012-04-01
Cave drip water, speleothems and the proxies preserved within them have significant potential to record palaeoenvironmental changes in the regional vegetation [1]. The use of stalagmites provides valuable information because they form a chemically closed system which does not change much after lithification, they grow continuously and are amenable to precise Th/U-dating [2]. The most common proxies measured in speleothems are inorganic proxies, in particular oxygen isotopes, but more recently the importance of organic matter analyses in this field is examined. This study focuses on the research of lipid biomarkers. The lipids contained in stalagmites originate from the overlying soil and different plants, bacteria and fungi. Therefore different compositions of lipids may provide records of environmental changes [3]. In the following the development of a new method for the extraction of saturated free fatty acids from cave drip water and their measurement by RP-HPLC-ESI-IT/MS (reversed phase high performance liquid chromatography coupled to electrospray ion trap mass spectrometry) is presented. Four different fatty acids (myristic acid, palmitic acid, stearic acid and arachidic acid) with chain lengths from C14 to C20 were applied as analytical standards. A mixture of these was used to optimize the separation by HPLC. The analytes were measured in MRM mode (multiple reactions monitoring) and negative polarity (m/z: 227, 255, 283, 311) therefore a time consuming derivatisation of the fatty acids was not necessary. By using a certain gradient program an adequate separation of the standards was accomplished. Likewise the realization of calibration curves of the different fatty acids showed that quantitative analyses are possible as well. To simulate the extraction of the analytes from cave drip water a spiking experiment with the analytical standards was performed. Three water samples were spiked with the same amount of the fatty acids to test the reproducibility of the extraction. The extraction was carried out using a SPE (solid phase extraction) procedure in which the elution of the analytes was assured by using a rather apolar solvent like dichloromethane. Measurements of water blanks which were treated the same way as the spikes showed high amounts of palmitic acid and stearic acid which were reduced by heating the glass ware to 400 °C before usage. To achieve an improvement of the reproducibility of the spiking experiment different amounts and compositions of organic solvents were added to the water samples to function as a modifier. These parameters are optimized to obtain a sufficient reproducibility of the extraction procedure in order to extract the actual cave drip water samples.
NASA Astrophysics Data System (ADS)
Sakoparnig, Marlene; Boch, Ronny; Wang, Xianfeng; Lin, Ke; Spötl, Christoph; Leis, Albrecht; Gollowitsch, Anna; Dietzel, Martin
2016-04-01
Located near Graz at the SE-rim of the Alps Katerloch is well-known for its impressive dripstone decoration, e.g. several metres tall and relatively fast growing (0.2-0.7 mm/yr on average) candle-stick-type stalagmites. In the course of an ongoing multi-annual and partially high-resolution cave monitoring program we study modern (active) sites of carbonate deposition focusing on the site-specific growth dynamics and connection of modern regional and cave environmental conditions with petrographic, chemical and stable isotopic information captured in the speleothems. Fresh calcite precipitates on artificial (glass) substrates underneath active drip sites were collected continuously from 2006 to 2014 (eight years!). The samples (up to 7 mm thick) represent cave sections of different temperature and drip sites of partially different characteristics (e.g. drip rate). We also recovered short drill cores (up to 3 cm length, 1 cm diameter) from the top of active stalagmites probably representing the last decades to centuries of calcite crystallization. Moreover, an actively growing stalagmite (K10) comprising both modern and past calcite deposition was collected. 238U-234U-230Th dating using MC-ICP-MS of K10 (71 cm long) revealed several distinct growth intervals (separated by growth interruptions) starting at 129.1 ±1.2 kyr BP (Last Interglacial) up to now, mostly reflecting warm and humid climate intervals. High-resolution (100 μm) isotope profiles micromilled from the multi-annual modern calcite precipitates on artificial substrates revealed low δ13C values of -12.8 to -8.3 ‰ (VPDB) and relatively high δ18O of -6.9 to -4.9 ‰Ṫhe δ18O curves from all collection sites (different growth rate) record a pronounced decrease during their most recent growth period most likely corresponding to a significant decrease towards lower oxygen isotope values observed in drip waters collected in the year 2014 compared with samples from 2005 to 2007. Drip water δ2H /δ18O values plot between the Western Mediterranean Meteoric Water Line and Global MWL indicating a significant contribution of Mediterranean moisture to regional precipitation. The prominent shifts could also be explained by changes in seasonality of precipitation and water infiltration. Geochemical and petrographic results from the modern stalagmite calcite are therefore compared to new and published (Boch et al., 2011) hydrochemical and cave air data, as well as regional meteorological data. The modern datasets are further compared to data from Katerloch stalagmites of older time intervals. BOCH, R., SPÖTL, C., FRISIA, S. (2011): Sedimentology, 58, 508-531
Deformation properties of lead isotopes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolokonnikov, S. V.; Borzov, I. N.; Lutostansky, Yu. S.
2016-01-15
The deformation properties of a long lead isotopic chain up to the neutron drip line are analyzed on the basis of the energy density functional (EDF) in the FaNDF{sup 0} Fayans form. The question of whether the ground state of neutron-deficient lead isotopes can have a stable deformation is studied in detail. The prediction of this deformation is contained in the results obtained on the basis of the HFB-17 and HFB-27 Skyrme EDF versions and reported on Internet. The present analysis reveals that this is at odds with experimental data on charge radii and magnetic moments of odd lead isotopes.more » The Fayans EDF version predicts a spherical ground state for all light lead isotopes, but some of them (for example, {sup 180}Pb and {sup 184}Pb) prove to be very soft—that is, close to the point of a phase transition to a deformed state. Also, the results obtained in our present study are compared with the predictions of some other Skyrme EDF versions, including SKM*, SLy4, SLy6, and UNE1. By and large, their predictions are closer to the results arising upon the application of the Fayans functional. For example, the SLy4 functional predicts, in just the same way as the FaNDF{sup 0} functional, a spherical shape for all nuclei of this region. The remaining three Skyrme EDF versions lead to a deformation of some light lead isotopes, but their number is substantially smaller than that in the case of the HFB-17 and HFB-27 functionals. Moreover, the respective deformation energy is substantially lower, which gives grounds to hope for the restoration of a spherical shape upon going beyond the mean-field approximation, which we use here. Also, the deformation properties of neutron-rich lead isotopes are studied up to the neutron drip line. Here, the results obtained with the FaNDF{sup 0} functional are compared with the predictions of the HFB-17, HFB-27, SKM*, and SLy4 Skyrme EDF versions. All of the EDF versions considered here predict the existence of a region where neutron-rich lead isotopes undergo deformations, but the size of this region is substantially different for the different functionals being considered. Once again, it is maximal for the HFB-17 and HFB-27 functionals, is substantially narrower for the FaNDF{sup 0} functional, and is still narrower for the SKM* and SLy4 functionals. The two-neutron drip line proved to be A{sub drip}{sup 2n} = 266 for all of the EDF versions considered here, with the exception of SKM*, for which it is shifted to A{sub drip}{sup 2n}(SKM*) = 272.« less
Li, Meng; Li, Yunjing; Liu, Weiwei; Li, Rongli; Qin, Cuiying; Liu, Nan; Han, Jing
2016-10-10
Water-soluble Cistanche phenylethanoid glycosides (CPhGs) have poor permeability and low bioavailability. However, liposomes can improve the permeability of such drugs and their poor stability, and proliposomes have been used to overcome these problems. Based on this, Cistanche phenylethanoid glycoside liquid proliposomes (CPhGsP) and dripping(?) pills were prepared and optimized using response surface methodology. The properties of CPhGsP were evaluated in terms of their encapsulation efficiency, particle size, zeta potential, and morphology. The results obtained showed that the optimal formulation was drug/soybean phospholipid/poloxamer-188/sodium deoxycholate/propylene glycol 1:22.38:3.52:0.84:80 (w/w/w/w/v). This resulted in an encapsulation efficiency, particle size, and zeta potential of hydrated proliposomes with phosphate buffer solution (pH7.4) of 51.97%, 671.7nm, and -25.49mV, respectively. Stability testing of CPhGsP and CPhGs ordinary liposomes was carried out for 3months at 4±2°C, 25±2°C, 40±2°C, 75±5% RH. The results obtained showed that the stability of the proliposomes was better than that of ordinary liposomes at the same temperature, while a lower temperature of 4°C is ideal for storage. Cistanche phenylethanoid glycoside liquid proliposomes dripping pills (CPhGsPD) are efficiently released in gastrointestinal solution as shown by in vitro release experiments and the structure of the liposomes does not destroy the proliposome dripping pills by hydration. In vivo experiments showed that the areas under the plasma level-time curves and peak concentrations of CPhGsPD and hydrated proliposomes were higher than those of CPhGs. Moreover, with CPhGsPD, the pharmacokinetic parameters were similar to those with hydrated proliposomes. These results showed that CPhGsPD offer a good way to improve the oral delivery of CPhGs. Copyright © 2016 Elsevier B.V. All rights reserved.
Cloud and fog interactions with coastal forests in the California Channel Islands
NASA Astrophysics Data System (ADS)
Still, C. J.; Baguskas, S. A.; Williams, P.; Fischer, D. T.; Carbone, M. S.; Rastogi, B.
2015-12-01
Coastal forests in California are frequently covered by clouds or immersed in fog in the rain-free summer. Scientists have long surmised that fog might provide critical water inputs to these forests. However, until recently, there has been little ecophysiological research to support how or why plants should prefer foggy regions; similarly, there is very little work quantifying water delivered to ecosystems by fog drip except for a few notable sites along the California coast. However, without spatial datasets of summer cloudcover and fog inundation, combined with detailed process studies, questions regarding the roles of cloud shading and fog drip in dictating plant distributions and ecosystem physiology cannot be addressed effectively. The overall objective of this project is to better understand how cloudcover and fog influence forest metabolism, growth, and distribution. Across a range of sites in California's Channel Islands National Park we measured a wide variety of ecosystem processes and properties. We then related these to cloudcover and fog immersion maps created using satellite datasets and airport and radiosonde observations. We compiled a spatially continuous dataset of summertime cloudcover frequency of the Southern California bight using satellite imagery from the NOAA geostationary GOES-11 Imager. We also created map of summertime cloudcover frequency of this area using MODIS imagery. To assess the ability of our mapping approach to predict spatial and temporal fog inundation patterns, we compared our monthly average daytime fog maps for GOES pixels corresponding to stations where fog inputs were measured with fog collectors in a Bishop pine forest. We also compared our cloudcover maps to measurements of irradiance measurements. Our results demonstrate that cloudcover and fog strongly modulate radiation, water, and carbon budgets, as well as forest distributions, in this semi-arid environment. Measurements of summertime fog drip, pine sapflow and growth, and soil respiration are strongly related to variations in cloudcover and fog drip. Importantly, spatial variations in cloud cover and fog immersion drive large changes in modeled water budgets and correspond closely to patterns of tree growth and mortality.
Albrecht, Antonia; Herbert, Ulrike; Miskel, Dennis; Heinemann, Celine; Braun, Carina; Dohlen, Sophia; Zeitz, Johanna O; Eder, Klaus; Saremi, Behnam; Kreyenschmidt, Judith
2017-08-01
The aim of this study was to investigate the influence of different methionine sources and concentrations on the quality and spoilage process of broiler meat. The trial was comprised of 7 treatment groups: one basal group (suboptimal in Methionine+Cysteine; i.e., 0.89, 0.74, 0.69% in DM SID Met+Cys in starter, grower, and finisher diets, respectively) and 3 doses (0.10, 0.25, and 0.40%) of either DL-Methionine (DLM) or DL-2-hydroxy-4-methylthio butanoic acid (DL-HMTBA) on an equimolar basis of the DLM-supplemented groups. The broilers were fed the diets for 35 d, then slaughtered and processed. The filets were aerobically packed and stored under temperature controlled conditions at 4°C. Meat quality investigations were comprised of microbial investigations (total viable count and Pseudomonas spp.), pH and drip loss measurements of the filets. The shelf life of the meat samples was determined based on sensory parameters. After slaughtering, all supplemented meat samples showed a high quality, whereby no differences between the 2 methionine sources could be detected for the microbial load, pH, and drip loss. In comparison to the control group, the supplemented samples showed a higher sensory quality, characterized by a fresh smell and fresh red color. Methionine supplementation had a significant influence on meat quality parameters during storage. The microbial load, pH and drip loss of the chicken filets were positively correlated to the methionine concentration. Additionally, the microbial load at the end of storage was positively correlated to pH and drip loss values. Nevertheless, the microbial parameters were in a normal range and the positive correlation to methionine concentration did not affect the sensory shelf life. The mean sensory shelf life of the broiler filets varied between 7 to 9 d. During storage, no difference in the development of sensory parameters was observed between the supplemented groups, while the spoilage process of the basal group occurred slightly faster. In conclusion, methionine concentration, but not methionine source, effected meat quality parameters in breast muscles of broilers. © 2017 Poultry Science Association Inc.
Patiño, Jairo; Hylander, Kristoffer; González-Mancebo, Juana M
2010-09-01
Forested freshwater ecosystems worldwide are threatened by a number of anthropogenic disturbances, such as water pollution and canalization. Transient or permanent deforestation can also be a serious threat to organisms in forested watersheds, but its effects on different types of freshwater systems has been little studied. We investigated lotic bryophyte communities on rock and soil in subtropical cloud laurel forests on La Gomera Island in the Canary Islands, Spain, and asked whether the response to forest clear-cutting varied among the communities associated with dripping walls, streams, and waterfalls. We compared three successional forest stages: ancient forests (> 250 years), young forests (20-50 years after clear-cutting), and open stands (5-15 years after clear-cutting). In each of 56 study sites we sampled general vegetation and substrate data in a 0.01-ha plot and took composition data of bryophyte species in 3 + 3 subplots of 1 x 1 m. The general pattern of decline in species richness and change in species composition after forest clear-cutting was stronger for streamside assemblages compared to assemblages on dripping walls and in waterfalls. The change in species numbers on rocks was larger than that on soils, because a guild of species growing on soil (but not on rocks) were favored by disturbance and thus increased in the disturbed sites. Most of the sensitive species could be classified as typical laurel forest species. Mosses were generally more tolerant to forest clear-cutting than were liverworts. We suggest that streamsides are more sensitive to disturbance than waterfalls and dripping walls because of a larger variation in microclimate before than after clear-cutting and because they are more easily invaded by early-successional species (both bryophytes and highly competitive vascular plants). We propose that special care should be taken along small streams within disturbed watersheds if bryophyte assemblages and threatened species should be protected. The susceptibility to anthropogenic pressures is probably rather high in ecosystems that do not regularly experience large-scale stand-replacing disturbances, especially on oceanic islands because of isolation and a small total habitat area for focal organisms.
NASA Astrophysics Data System (ADS)
Jackson, Mike; Bowles, Julie A.
2014-11-01
Pumices, ashes, and tuffs from Mt. St. Helens and from Novarupta contain two principal forms of titanomagnetite: homogeneous grains with Curie temperatures in the range 350-500°C and oxyexsolved grains with similar bulk composition, containing ilmenite lamellae and having Curie temperatures above 500°C. Thermomagnetic analyses and isothermal annealing experiments in combination with stratigraphic settings and thermal models show that emplacement temperatures and cooling history may have affected the relative proportions of homogeneous and exsolved grains and have clearly had a strong influence on the Curie temperature of the homogeneous phase. The exsolved grains are most common where emplacement temperatures exceeded 600°C, and in laboratory experiments, heating to over 600°C in air causes the homogeneous titanomagnetites to oxyexsolve rapidly. Where emplacement temperatures were lower, Curie temperatures of the homogeneous grains are systematically related to overburden thickness and cooling timescales, and thermomagnetic curves are generally irreversible, with lower Curie temperatures measured during cooling, but little or no change is observed in room temperature susceptibility. We interpret this irreversible behavior as reflecting variations in the degree of cation ordering in the titanomagnetites, although we cannot conclusively rule out an alternative interpretation involving fine-scale subsolvus unmixing. Short-range ordering within the octahedral sites may play a key role in the observed phenomena. Changes in the Curie temperature have important implications for the acquisition, stabilization, and retention of natural remanence and may in some cases enable quantification of the emplacement temperatures or cooling rates of volcanic units containing homogeneous titanomagnetites.
Time-Lapse Electrical Geophysical Monitoring of Amendment-Based Biostimulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Timothy C.; Versteeg, Roelof; Day-Lewis, Frederick D.
Biostimulation is increasingly used to accelerate microbial remediation of recalcitrant groundwater contaminants. Effective application of biostimulation requires successful emplacement of amendment in the contaminant target zone. Verification of remediation performance requires postemplacement assessment and contaminant monitoring. Sampling based approaches are expensive and provide low-density spatial and temporal information. Time-lapse electrical resistivity tomography (ERT) is an effective geophysical method for determining temporal changes in subsurface electrical conductivity. Because remedial amendments and biostimulation-related biogeochemical processes often change subsurface electrical conductivity, ERT can complement and enhance sampling-based approaches for assessing emplacement and monitoring biostimulation-based remediation. Field studies demonstrating the ability of time-lapse ERTmore » to monitor amendment emplacement and behavior were performed during a biostimulation remediation effort conducted at the Department of Defense Reutilization and Marketing Office (DRMO) Yard, in Brandywine, Maryland, United States. Geochemical fluid sampling was used to calibrate a petrophysical relation in order to predict groundwater indicators of amendment distribution. The petrophysical relations were field validated by comparing predictions to sequestered fluid sample results, thus demonstrating the potential of electrical geophysics for quantitative assessment of amendment-related geochemical properties. Crosshole radar zero-offset profile and borehole geophysical logging were also performed to augment the data set and validate interpretation. In addition to delineating amendment transport in the first 10 months after emplacement, the time-lapse ERT results show later changes in bulk electrical properties interpreted as mineral precipitation. Results support the use of more cost-effective surfacebased ERT in conjunction with limited field sampling to improve spatial and temporal monitoring of amendment emplacement and remediation performance.« less
Time-lapse electrical geophysical monitoring of amendment-based biostimulation
Johnson, Timothy C.; Versteeg, Roelof J.; Day-Lewis, Frederick D.; Major, William; Lane, John W.
2015-01-01
Biostimulation is increasingly used to accelerate microbial remediation of recalcitrant groundwater contaminants. Effective application of biostimulation requires successful emplacement of amendment in the contaminant target zone. Verification of remediation performance requires postemplacement assessment and contaminant monitoring. Sampling-based approaches are expensive and provide low-density spatial and temporal information. Time-lapse electrical resistivity tomography (ERT) is an effective geophysical method for determining temporal changes in subsurface electrical conductivity. Because remedial amendments and biostimulation-related biogeochemical processes often change subsurface electrical conductivity, ERT can complement and enhance sampling-based approaches for assessing emplacement and monitoring biostimulation-based remediation.Field studies demonstrating the ability of time-lapse ERT to monitor amendment emplacement and behavior were performed during a biostimulation remediation effort conducted at the Department of Defense Reutilization and Marketing Office (DRMO) Yard, in Brandywine, Maryland, United States. Geochemical fluid sampling was used to calibrate a petrophysical relation in order to predict groundwater indicators of amendment distribution. The petrophysical relations were field validated by comparing predictions to sequestered fluid sample results, thus demonstrating the potential of electrical geophysics for quantitative assessment of amendment-related geochemical properties. Crosshole radar zero-offset profile and borehole geophysical logging were also performed to augment the data set and validate interpretation.In addition to delineating amendment transport in the first 10 months after emplacement, the time-lapse ERT results show later changes in bulk electrical properties interpreted as mineral precipitation. Results support the use of more cost-effective surface-based ERT in conjunction with limited field sampling to improve spatial and temporal monitoring of amendment emplacement and remediation performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Channell, J.K.; Walker, B.A.
2000-05-01
Specifically this report: 1. Compares requirements of the WAP that are pertinent from a technical viewpoint with the WIPP pre-Permit waste characterization program, 2. Presents the results of a risk analysis of the currently emplaced wastes. Expected and bounding risks from routine operations and possible accidents are evaluated; and 3. Provides conclusions and recommendations.
Emplacement of the youngest flood lava on Mars: A short, turbulent story
Jaeger, W.L.; Keszthelyi, L.P.; Skinner, J.A.; Milazzo, M.P.; McEwen, A.S.; Titus, T.N.; Rosiek, M.R.; Galuszka, D.M.; Howington-Kraus, E.; Kirk, R.L.
2010-01-01
Recently acquired data from the High Resolution Imaging Science Experiment (HiRISE), Context (CTX) imager, and Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) onboard the Mars Reconnaissance Orbiter (MRO) spacecraft were used to investigate the emplacement of the youngest flood-lava flow on Mars. Careful mapping finds that the Athabasca Valles flood lava is the product of a single eruption, and it covers 250,000 km2 of western Elysium Planitia with an estimated 5000-7500 km3 of mafic or ultramafic lava. Calculations utilizing topographic data enhanced with MRO observations to refine the dimensions of the channel system show that this flood lava was emplaced turbulently over a period of only a few to several weeks. This is the first well-documented example of a turbulently emplaced flood lava anywhere in the Solar System. However, MRO data suggest that this same process may have operated in a number of martian channel systems. The magnitude and dynamics of these lava floods are similar to the aqueous floods that are generally believed to have eroded the channels, raising the intriguing possibility that mechanical erosion by lava could have played a role in their incision. ?? 2009.
Emplacement of the youngest flood lava on Mars: A short, turbulent story
Jaeger, W.L.; Keszthelyi, L.P.; Skinner, J.A.; Milazzo, M.P.; McEwen, A.S.; Titus, T.N.; Rosiek, M.R.; Galuszka, D.M.; Howington-Kraus, E.; Kirk, R.L.
2009-01-01
Recently acquired data from the High Resolution Imaging Science Experiment (HiRISE), Context (CTX) imager, and Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) onboard the Mars Reconnaissance Orbiter (MRO) spacecraft were used to investigate the emplacement of the youngest flood-lava flow on Mars. Careful mapping finds that the Athabasca Valles flood lava is the product of a single eruption, and it covers 250,000 km2 of western Elysium Planitia with an estimated 5000-7500 km3 of mafic or ultramafic lava. Calculations utilizing topographic data enhanced with MRO observations to refine the dimensions of the channel system show that this flood lava was emplaced turbulently over a period of only a few to several weeks. This is the first well-documented example of a turbulently emplaced flood lava anywhere in the Solar System. However, MRO data suggest that this same process may have operated in a number of martian channel systems. The magnitude and dynamics of these lava floods are similar to the aqueous floods that are generally believed to have eroded the channels, raising the intriguing possibility that mechanical erosion by lava could have played a role in their incision.
... Safe Videos for Educators Search English Español Your Hair KidsHealth / For Kids / Your Hair What's in this ... eyes from sweat dripping down from your forehead. Hair Comes From Where? Whether hair is growing out ...
Hyperhidrosis (Excessive Sweating)
... your daily routine Sweating causes emotional distress or social withdrawal You suddenly begin to sweat more than usual ... can lead to heavy sweating, as can opioid ... infections. Social and emotional effects. Having clammy or dripping hands ...
Role of strike-slip faulting in the evolution of allochthonous terranes in the Philippines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karig, D.E.; Sarewitz, D.R.; Haeck, G.D.
1986-10-01
Concepts of allochthonous terrane transport and emplacement are dominated by the assumption that most terranes originate on the subducting plate, collide with the upper plate, and are emplaced there. Movement of terranes along the convergent margin is recognized but is generally attributed to postcollision slip. In the northern Philippines, allochthonous terranes originate primarily within the arc system, have been translated along it by strike-slip faults, and were emplaced by cessation of that slip. The authors suggest that in the Philippines some originally vertical strike-slip boundaries may have evolved into shallow-dipping sutures marked by fold and thrust systems. This mode ofmore » terrane evolution may be more common than generally appreciated, particularly in orogenic belts developed in response to oblique convergence.« less
Ground-water flow model of the Boone formation at the Tar Creek superfund site, Oklahoma and Kansas
Reed, T.B.; Czarnecki, John B.
2006-01-01
Extensive mining activities conducted at the Tar Creek Superfund site, one of the largest Superfund sites in the United States, pose substantial health and safety risks. Mining activities removed a total of about 6,000,000 tons of lead and zinc by 1949. To evaluate the effect of this mining on the ground-water flow, a MODFLOW 2000 digital model has been developed to simulate ground-water flow in the carbonate formations of Mississippian age underlying the Tar Creek Superfund site. The model consists of three layers of variable thickness and a grid of 580 rows by 680 columns of cells 164 feet (50 meters) on a side. Model flux boundary conditions are specified for rivers and general head boundaries along the northern boundary of the Boone Formation. Selected cells in layer 1 are simulated as drain cells. Model calibration has been performed to minimize the difference between simulated and observed water levels in the Boone Formation. Hydraulic conductivity values specified during calibration range from 1.3 to 35 feet per day for the Boone Formation with the larger values occurring along the axis of the Miami Syncline where horizontal anisotropy is specified as 10 to 1. Hydraulic conductivity associated with the mine void is set at 50,000 feet per day and a specific yield of 1.0 is specified to represent that the mine void is filled completely with water. Residuals (the difference between measured and simulated ground-water altitudes) has a root-mean-squared value of 8.53 feet and an absolute mean value of 7.29 feet for 17 observed values of water levels in the Boone Formation. The utility of the model for simulating and evaluating the possible consequences of remediation activities has been demonstrated. The model was used to simulate the emplacement of chat (mine waste consisting of fines and fragments of chert) back into the mine. Scenarios using 1,800,000 and 6,500,000 tons of chat were run. Hydraulic conductivity was reduced from 50,000 feet per day to 35 feet per day in the model cells corresponding to chat emplacement locations. A comparison of the simulated baseline conditions and conditions after simulated chat emplacement revealed little change in water levels, drainage and stream flux, and ground-water flow velocity. Using the calibrated flow model, particle tracks were simulated using MODPATH to evaluate the simultaneous movement of particles with water in the vicinity of four potential sites at which various volumes of chat might be emplaced in the underground mine workings as part of potential remediation efforts at the site. Particle tracks were generated to follow the rate and direction of water movement for a simulated period of 100 years. In general, chat emplacement had minimal effect on the direction and rate of movement when compared to baseline (current) flow conditions. Water-level differences between baseline and chat-emplacement scenarios showed declines as much as 2 to 3 feet in areas immediately downgradient from the chat emplacement cells and little or no head change upgradient. Chat emplacements had minimal effect on changes in surfacewater flux with the largest simulated difference in one cell between baseline and chat emplacement scenarios being about 3.5 gallons per minute.
Double-layer neutron shield design as neutron shielding application
NASA Astrophysics Data System (ADS)
Sariyer, Demet; Küçer, Rahmi
2018-02-01
The shield design in particle accelerators and other high energy facilities are mainly connected to the high-energy neutrons. The deep penetration of neutrons through massive shield has become a very serious problem. For shielding to be efficient, most of these neutrons should be confined to the shielding volume. If the interior space will become limited, the sufficient thickness of multilayer shield must be used. Concrete and iron are widely used as a multilayer shield material. Two layers shield material was selected to guarantee radiation safety outside of the shield against neutrons generated in the interaction of the different proton energies. One of them was one meter of concrete, the other was iron-contained material (FeB, Fe2B and stainless-steel) to be determined shield thicknesses. FLUKA Monte Carlo code was used for shield design geometry and required neutron dose distributions. The resulting two layered shields are shown better performance than single used concrete, thus the shield design could leave more space in the interior shielded areas.
Genetics Home Reference: Buschke-Ollendorff syndrome
... example, a small percentage of affected individuals have melorheostosis , which is characterized by excess bone growth on ... bones in a pattern resembling dripping candle wax. Melorheostosis usually affects the bones in one arm or ...
Travelers' Health: Water Disinfection for Travelers
... hand-pump or gravity-drip filters with various designs and types of filter media are commercially available ... salts, thus achieving desalination. One new portable filter design incorporates hollow fiber technology, which is a cluster ...
Feeding patterns and diet - babies and infants
... infants - feeding; Diet - age appropriate - babies and infants; Breastfeeding - babies and infants; Formula feeding - babies and infants ... You can see milk leaking or dripping while nursing. Your baby starts to gain weight; about 4 ...
Li, Yuan; Jia, Zongxia; Niu, Wenquan; Wang, Jingwei; Zhang, Mingzhi
2015-01-01
Soil hydraulic principles suggest that post-infiltration hypoxic conditions would be induced in the plant root-zone for drip-irrigated tomato production in small pots filled with natural soil. No previous study specifically examined the response of tomato plants (Solanum lycopersicum) at different growth stages to low soil aeration under these conditions. A 2 × 6 factorial experiment was conducted to quantify effects of no post-infiltration soil aeration versus aeration during 5 different periods (namely 27–33, 34–57, 58–85, 86–99, and 27–99 days after sowing), on growth and fruit quality of potted single tomato plants that were sub-surface trickle-irrigated every 2 days at 2 levels. Soil was aerated by injecting 2.5 liters of air into each pot through the drip tubing immediately after irrigation. Results showed that post-infiltration aeration, especially during the fruit setting (34–57 DAS) and enlargement (58–85 DAS) growth stages, can positively influence the yield, root dry weight and activity, and the nutritional (soluble solids and vitamin C content), taste (titratable acidity), and market quality (shape and firmness) of the tomato fruits. Interactions between irrigation level and post-infiltration aeration on some of these fruit quality parameters indicated a need for further study on the dynamic interplay of air and water in the root zone of the plants under the conditions of this experiment. PMID:26630675
Li, Yuan; Jia, Zongxia; Niu, Wenquan; Wang, Jingwei; Zhang, Mingzhi
2015-01-01
Soil hydraulic principles suggest that post-infiltration hypoxic conditions would be induced in the plant root-zone for drip-irrigated tomato production in small pots filled with natural soil. No previous study specifically examined the response of tomato plants (Solanum lycopersicum) at different growth stages to low soil aeration under these conditions. A 2 × 6 factorial experiment was conducted to quantify effects of no post-infiltration soil aeration versus aeration during 5 different periods (namely 27-33, 34-57, 58-85, 86-99, and 27-99 days after sowing), on growth and fruit quality of potted single tomato plants that were sub-surface trickle-irrigated every 2 days at 2 levels. Soil was aerated by injecting 2.5 liters of air into each pot through the drip tubing immediately after irrigation. Results showed that post-infiltration aeration, especially during the fruit setting (34-57 DAS) and enlargement (58-85 DAS) growth stages, can positively influence the yield, root dry weight and activity, and the nutritional (soluble solids and vitamin C content), taste (titratable acidity), and market quality (shape and firmness) of the tomato fruits. Interactions between irrigation level and post-infiltration aeration on some of these fruit quality parameters indicated a need for further study on the dynamic interplay of air and water in the root zone of the plants under the conditions of this experiment.
Properties of r-process nuclei near N=82 shell closure
NASA Astrophysics Data System (ADS)
Farhan, A. R.; Sharma, M. M.
2004-10-01
We have studied properties of nuclei in r-process region near N=82 shell closure with the RMF calculations in a deformed basis using the force NL-SV1 that includes vector self-coupling of w meson. It is shown that nuclei above N=82 in several isotopic chains in the r-process region exhibit an onset of deformation beyond the drip line. Consequently, induced by the deformation these nuclei show an extra stability above the shell closure. This stability of nuclei is expected to contribute to the r-process nucleosynthesis of nuclei below the abundance peak at A ˜130. A comparison with the mass formulae shows that our microscopic calculations with NL-SV1 show a decrease of shell strength with increase in isospin. This is in contrast to the strong shell effects shown by FRDM and ETF-SI in going to the drip line. The stiffness of the shell structure with FRDM and ETF-SI is known to lead to a shortfall in the r-process abundances. This shortcoming of the above mass formulae has inspired an ad-hoc inclusion of shell quenching in the mass formula ETF-SI(Q) with a view to better reproduce the r-process abundances. In comparison, our model shows a decrease of the shell strength in going from the r-process path to the drip line. Therefore, this represents a natural behaviour as required by r-process abundances. It may, however, be confirmed in network chain calculations using inputs from our microscopic model.
NASA Astrophysics Data System (ADS)
Anker, Y.; Sheffer, N. A.; Scanlon, B. R.; Gimburg, A.; Morin, E.
2010-12-01
Understanding recharge mechanisms and controls in karst regions is extremely important for managing water resources because of the dynamic nature of the system. To better understand this mechanism, a cave in the recharge area of the karstic Western Mountain Aquifer (WMA) of Israel was equipped to measure precipitation infiltration (2006-2008) by collecting integrated water drips from three areas in the cave (14, 46, and 52 m2 areas). Barrels equipped with pressure transducers record drip rate and volume for each of the three areas and enable estimation of recharge. A water budget model - DReAM (Daily Recharge Assessment Model) was used to quantify and predict infiltration behavior at the cave. DReAM includes calculations of all water cycle components - precipitation, evapotranspiration, runoff and recharge. The model was calibrated and validated using two independent sets of values, providing good agreement between calculated and observed data. Modeling results agree with previous studies that show: 1) three distinct flow paths (slow, intermediate, and fast flows) of water infiltrating at the cave; 2) a threshold of ~100 mm rain at the beginning of the rainy season for infiltration to begin; and 3) a decrease in lag time between rain events and infiltration response throughout the rainy season. This modeling tool and analysis approach can translate precipitation to groundwater recharge which will be very important for projecting future water resources in response to climate variability.
Noachian Faulting: What Do Faults Tell Us About the Tectonic History of Tharsis?
NASA Technical Reports Server (NTRS)
Anderson, R. C.; Dohm, J. M.
2001-01-01
The western hemisphere of Mars is dominated by the formation of Tharsis, which is an enormous high-standing region (roughly 25% of the surface area of the planet) capped by volcanics, including the solar system's largest shield volcanoes. Tharsis is surrounded by an enormous radiating system of grabens and a circumferential system of wrinkle ridges that extends over the entire western hemisphere of Mars. This region is perhaps the largest and most long lived tectonic and volcanic province of any of the terrestrial planets with a well-preserved history of magmatic-driven activity that began in the Noachian and has lasted throughout Martian geologic time. Tharsis and the surrounding regions comprise numerous components, including volcanic constructs of varying sizes and extensive lava flow fields, large igneous plateaus, fault and ridge systems of varying extent and relative age of formation, gigantic outflow channel systems, vast system of canyons, and local and regional centers of tectonic activity. Many of these centers are interpreted to be the result of magmatic-related activity, including uplift, faulting, dike emplacement, volcanism, and local hydrothermal activity. Below we present a summary of our work for Tharsis focusing primarily on the earliest stage of development, the Noachian period. Here we hone in on the early centers and how they relate to the early development of the Tharsis Magmatic Complex (TMC).
Rainy Lake wrench zone: An example of an Archaean subprovince boundary in northwestern Ontario
NASA Technical Reports Server (NTRS)
Poulsen, K. H.
1986-01-01
The Superior Province of the Canadian Shield comprises an alternation of subprovinces with contrasting lithological, structural and metamorphic styles. Rocks of the Rainly Lake area form a fault bounded wedge between two of these subprovinces, the Wabigoon granite-greenstone terrain to the north and the Quetico metasedimentary terrain to the south. The Quetico and Seine River-Rainy Lake Faults bound this wedge within which interpretation of the stratigraphy has been historically contentious. In the eastern part of the wedge, volcanic rocks and coeval tonalitic sills are unconformably overlain by fluviatile conglomerate and arenite of the Seine Group; in the western part of the wedge, metamorphosed wacke and mudstone of the Coutchiching Group are cut by granodioritic plutons. The Coutchiching Group has previously been correlated with the Seine Group and with the turbiditic Quetico metasediments of the Quetico Subprovince and these correlations are the cornerstone of earlier tectonic models which relate the subprovinces. The structural geology of the Rainy Lake area is characterized by attributes which compare favourably with the known characteristics of dextral wrench or 'transpressive zones based both on experimental data and natural examples. Much of this deformation involved the Seine Group, the youngest stratigraphic unit in the area, and predates the emplacement of late-to-post-tectonic granodioritic plutons for which radiometric data indicate a Late Archean age.
Lake Ellen kimberlite, Michigan, U.S.A.
McGee, E.S.; Hearn, B.C.
1983-01-01
The recently discovered Lake Ellen kimberlite, in northern Michigan, indicates that bedrock sources of diamonds found in glacial deposits in the Great Lakes area could lie within the northern U.S. Magnetic surveys show a main kimberlite 200 m in diameter and an adjacent body 25 x 90 m(?). The kimberlite cuts Proterozoic volcanic rocks that overlie Archean basement, but is post-Ordovician in age based on abundant Ordovician(?) dolomite inclusions. Xenocrysts and megacrysts are ilmenite (abundant, 12.5-19% MgO), pyropealmandine and Cr-pyrope (up to 9.3% Cr2O3), Cr-diopside (up to 4.5% Cr2O3), olivine (Fo 91), enstatite and phlogopite. The kimberlite contains fragments of crustal schist and granulite, as well as disaggregated crystals and rare xenoliths of eclogites, garnet pyroxenites and garnet peridotites from a heterogeneous upper mantle. Eclogites, up to 3 cm size, show granoblastic equant or tabular textures and consist of jadeitic cpx (up to 8.4% Na20, 15.3% Al2O3), pyrope-almandine, ? rutile ? kyanite ? sanidine ? sulfide. Garnet pyroxenite contains pyrope--(0.44% Cr2O3) + cpx (0.85% Na2O, 0.53% Cr2O3) + Mg-Al spinel. Mineral compositions of rare composite xenocrysts of garnet + cpx are distinctively peridotitic, pyroxenitic or eclogitic. Calculated temperatures of equilibration are 920-1060 ?C for the eclogites and 820-910?C for the garnet pyroxenite using the Ellis-Green method. Five peridotite garnet-clinopyroxene composite xenocrysts have calculated temperatures of 980-1120?C using the Lindsley-Dixon 20 kb solvus. Spinel pyroxenite and clinopyroxene-orthopyroxene composites have lower calculated temperatures of 735?C and 820-900?C, respectively. Kyanite-bearing eclogites must have formed at pressures greater than 18-20 kb. Using the present shield geotherm with a heat flow value of 44mW/m 2 for the time of kimberlite emplacement, the eclogite temperatures imply pressures of 35-48 kb (105-140 km) and the garnet pyroxenite temperatures indicate pressures of 24-29 kb (75-90 km). Temperatures of two peridotitic garnet-cpx composite xenocrysts if on a shield geotherm, imply pressures within the diamond stability field.
Wireless Sensor Networks for Detection of IED Emplacement
2009-06-01
unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Abstract We are investigating the use of wireless nonimaging -sensor...networks for the difficult problem of detection of suspicious behavior related to IED emplacement. Hardware for surveillance by nonimaging -sensor networks...with people crossing a live sensor network. We conclude that nonimaging -sensor networks can detect a variety of suspicious behavior, but
NASA Astrophysics Data System (ADS)
Feng, H.; Lizarralde, D.; Tominaga, M.; Hart, L.; Tivey, M.; Swift, S. A.
2015-12-01
Multi-channel seismic (MCS) images and wide-angle sonobuoy data acquired during a 2011 cruise on the R/V Thomas G. Thompson (TN272) show widespread emplacement of igneous sills and broadly thickened oceanic Layer 2 through hundreds of kilometers of oceanic crust in one of the oldest ocean basins in the western Pacific, a region known as the Jurassic Quiet Zone (JQZ). Oceanic crust from the JQZ has grown through at least two main magmatic phases: It was formed by mid-ocean ridge processes in the Jurassic (at ~170 Ma), and then it was added to by a substantial Cretaceous magmatic event (at ~75-125 Ma). The scale of Cretaceous magmatism is exemplified by massive seafloor features such as the Ontong Java Plateau, Mid-Pacific Mountains, Marshall-Gilbert Islands, Marcus-Wake Seamount Chain, and numerous guyots, seamounts, and volcaniclastic flows observed throughout the region. We use seismic data to image heavily intruded and modified oceanic crust along an 800-km-long transect through the JQZ in order to examine how processes of secondary crustal growth - including magmatic emplacement, transport, and distribution - are expressed in the structure of modified oceanic crust. We also model gravity anomalies to constrain crustal thickness and depth to the Moho. Our observations suggest that western Pacific crust was modified via the following modes of emplacement: (a) extrusive seafloor flows that may or may not have grown into seamounts, (b) seamounts formed through intrusive diking that pushed older sediments aside during their formation, and (c) igneous sills that intruded sediments at varying depths. Emplacement modes (a) and (b) tend to imply a focused, pipe-like mechanism for melt transport through the lithosphere. Such a mechanism does not explain the observed broadly distributed intrusive emplacement of mode (c) however, which may entail successive sill emplacement between igneous basement and sediments thickening oceanic Layer 2 along ~400 km of our seismic line. This mode of crustal growth seems to require broad zones of melt transport through the lithosphere and across the Moho.
NASA Astrophysics Data System (ADS)
Wittmann, Werner; Dumont, Stephanie; Lavallee, Yan; Sigmundsson, Freysteinn
2016-04-01
Gradual post-emplacement subsidence of lava flows has been observed at various volcanoes, e.g. Okmok volcano in Alaska, Kilauea volcano on Hawaii and Etna volcano on Sicily. In Iceland, this effect has been observed at Krafla volcano and Hekla volcano. The latter was chosen as a case study for investigating subsidence mechanisms, specifically thermal contraction. Effects like gravitational loading, clast repacking or creeping of a hot and liquid core can contribute to subsidence of emplaced lava flows, but thermal contraction is considered being a crucial effect. The extent to which it contributes to lava flow subsidence is investigated by mapping the relative movement of emplaced lava flows and flow substrate, and modeling the observed signal. The slow vegetation in Iceland is advantageous for Interferometric Synthetic Aperture Radar (InSAR) and offers great coherence over long periods after lava emplacement, expanding beyond the outlines of lava flows. Due to this reason, InSAR observations over volcanoes in Iceland have taken place for more than 20 years. By combining InSAR tracks from ERS, Envisat and Cosmo-SkyMed satellites we gain six time series with a total of 99 interferograms. Making use of the high spatial resolution, a temporal trend of vertical lava movements was investigated over a course of over 23 years over the 1991 lava flow of Hekla volcano, Iceland. From these time series, temporal trends of accumulated subsidence and subsidence velocities were determined in line of sight of the satellites. However, the deformation signal of lava fields after emplacement is vertically dominated. Subsidence on this lava field is still ongoing and subsidence rates vary from 14.8 mm/year in 1995 to about 1.0 mm/year in 2014. Fitting a simple exponential function suggests a exponential decay constant of 5.95 years. Additionally, a one-dimensional, semi-analytical model was fitted to these data. While subsidence due to phase change is calculated analytically, subsidence due to thermal contraction gives additional subsidence, which is calculated numerically. Inversions were carried out for initial lava thickness, thermal expansivity, thermal diffusivity, latent heat and specific heat as the crucial parameters governing lava flow subsidence.
Flood lavas on Earth, Io and Mars
Keszthelyi, L.; Self, S.; Thordarson, T.
2006-01-01
Flood lavas are major geological features on all the major rocky planetary bodies. They provide important insight into the dynamics and chemistry of the interior of these bodies. On the Earth, they appear to be associated with major and mass extinction events. It is therefore not surprising that there has been significant research on flood lavas in recent years. Initial models suggested eruption durations of days and volumetric fluxes of order 107 m3 s-1 with flows moving as turbulent floods. However, our understanding of how lava flows can be emplaced under an insulating crust was revolutionized by the observations of actively inflating pahoehoe flows in Hawaii. These new ideas led to the hypothesis that flood lavas were emplaced over many years with eruption rates of the order of 104 m3 s-1. The field evidence indicates that flood lava flows in the Columbia River Basalts, Deccan Traps, Etendeka lavas, and the Kerguelen Plateau were emplaced as inflated pahoehoe sheet flows. This was reinforced by the observation of active lava flows of ??? 100 km length on Io being formed as tube-fed flow fed by moderate eruption rates (102-103 m3 s-1). More recently it has been found that some flood lavas are also emplaced in a more rapid manner. New high-resolution images from Mars revealed 'platy-ridged' flood lava flows, named after the large rafted plates and ridges formed by compression of the flow top. A search for appropriate terrestrial analogues found an excellent example in Iceland: the 1783-1784 Laki Flow Field. The brecciated Laki flow top consists of pieces of pahoehoe, not aa clinker, leading us to call this 'rubbly pahoehoe'. Similar flows have been found in the Columbia River Basalts and the Kerguelen Plateau. We hypothesize that these flows form with a thick, insulating, but mobile crust, which is disrupted when surges in the erupted flux are too large to maintain the normal pahoehoe mode of emplacement Flood lavas emplaced in this manner could have (intermittently) reached effusion rates of the order of 106 m3 s-1.
Umino, Susumu; Nonaka, Miyuki; Kauahikaua, James P.
2006-01-01
Episode 48 of the ongoing eruption of Kilauea, Hawai`i, began in July 1986 and continuously extruded lava for the next 5.5 years from a low shield, Kūpaianaha. The flows in March 1990 headed for Kalapana and inundated the entire town under 15–25 m of lava by the end of August. As the flows advanced eastward, they entered into Kaimū Bay, replacing it with a plain of lava that extends 300 m beyond the original shoreline. The focus of our study is the period from August 1 to October 31, 1990, when the lava buried almost 406,820 m2 of the 5-m deep bay. When lava encountered the sea, it flowed along the shoreline as a narrow primary lobe up to 400 m long and 100 m wide, which in turn inflated to a thickness of 5–6 m. The flow direction of the primary lobes was controlled by the submerged delta below the lavas and by damming up lavas fed at low extrusion rates. Breakout flows through circumferential and axial inflation cracks on the inflating primary lobes formed smaller secondary lobes, burying the lows between the primary lobes and hiding their original outlines. Inflated flow lobes eventually ruptured at proximal and/or distal ends as well as mid-points between the two ends, feeding new primary lobes which were emplaced along and on the shore side of the previously inflated lobes. The flow lobes mapped with the aid of aerial photographs were correlated with daily observations of the growing flow field, and 30 primary flow lobes were dated. Excluding the two repose periods that intervened while the bay was filled, enlargement of the flow field took place at a rate of 2,440–22,640 square meters per day in the bay. Lobe thickness was estimated to be up to 11 m on the basis of cross sections of selected lobes measured using optical measurement tools, measuring tape and hand level. The total flow-lobe volume added in the bay during August 1–October 31 was approximately 3.95 million m3, giving an average supply rate of 0.86 m3/s.
Debris-flow origin for the Simud/Tiu deposit on Mars
Tanaka, K.L.
1999-01-01
A late Hesperian smooth plains deposit on Mars interpreted as a debris flow extends more than 2000 km from Hydraotes Chaos, through Simud and Tiu Valles, and into Chryse Planitia. The Simud/Tiu deposit widens out to >1000 km and embays streamlined landforms and knobs made up of sedimentary and perhaps volcanic deposits that were carved by earlier channeling activity. Morphologic features of the Simud/Tiu deposit observed in Viking and Pathfinder images are generally consistent with a debris-flow origin, but some of the deposit's salient features are not readily explained by catastrophic flooding or ice flow. Internal depressions appear to be bounded by linear scarps along flow margins where differential shearing may have occurred and in areas where flow spreading may have produced zones of extensional breakup and thinning within the flow. Possible flow lobes within the deposit may have formed by successive flow surges within the flow unit. The Pathfinder landing site is on the Simud/Tiu deposit, and the observations there are consistent with debris flow. The low, longitudinal ridges at the site may have formed by clast interactions as the flow ground to a halt. Imbricated, planar rocks on the ridges, such as in the Rock Garden, also may have been emplaced by debris or ice flow. However, stream energy calculations at Ares Vallis and channel geology indicate that flooding probably was incapable of emplacing the meter-size boulders observed at the Pathfinder site. Dewatering of pressurized zones in the debris flow or underlying material may be responsible for mud eruptions that formed a couple of patches of low pancakelike shields up to 5 km in diameter and for probable water flows that formed two small rille channels a few kilometers long. Local irregular grooves may be cracks that resulted from later desiccation and contraction of the flow material. The debris-flow unit apparently coalesced from outflows of water-fluidized debris originating from beneath chaotic and hummocky terrains within and along the margins of Simud and Tiu Valles. The deposit is onlapped from the north by another flow deposit originating from Acidalia Planitia. If the Simud/Tiu debris flow had entered a standing body of water, a turbidity current may have arisen from the debris flow and then backflowed over the debris flow to account for the Acidalia deposit.
NASA Astrophysics Data System (ADS)
Crown, David A.; Baloga, Stephen M.
Pahoehoe toe dimensions, morphology, and branching relationships were analyzed in flows emplaced during 1972 at Mauna Ulu, a satellitic shield on the east rift zone of Kilauea Volcano, Hawai'i. In order to characterize regions within flow fields dominated by networks of pahoehoe toes, measurements of toe length, width, thickness, and orientation were completed for 445 toes at 13 sites. Variations in site characteristics, including slope, substrate, and position in the flow field allow an evaluation of the effects of such parameters on toe dimensions. Toe surface morphology (ropy or smooth), local flow lobe position (interior or margin), and connective relationships between toes were documented in the form of detailed toe maps. These maps show the number of branches connecting a given toe to other toes in its local pahoehoe network and illustrate branching patterns. Statistical analyses of toe dimensions and comparisons of pahoehoe toe study sites and sub-populations combined with field observations, evaluation of toe maps, and qualitative examination of toe dimension size distributions show the following: (a) Although there are significant variations at a given site, toes typically have mean lengths (101cm) greater than mean widths (74cm) and mean widths greater than mean thicknesses (19cm) sites that have mean widths greater than mean lengths are those with lower slopes. (b) Where significant site-to-site variations in mean values of a given toe dimension were apparent, these differences could not be directly related to site characteristics. (c) Ropy toes have significantly larger mean values of length, width, and number of branches than smooth toes, and toes with three or more branches have greater lengths, widths, and thicknesses than toes with two or fewer branches, suggesting concentration of flow in these toe types. (d) The skewness of all size distributions of toe length and width to larger values suggests that toes are transitional to larger sheets and channels, consistent with field observations; and (e) Two distinct types of branching patterns (called monolayer and centrally ridged) were observed in preserved pahoehoe flow lobes. The significant variability in measured toe dimensions at Mauna Ulu suggests that toe dimensions are influenced by numerous locally defined, random factors, and that an approach based on stochastic methods can be used to model pahoehoe flow emplacement.
NASA Astrophysics Data System (ADS)
McGovern, P. J., Jr.; Kramer, G. Y.; Neumann, G. A.
2017-12-01
In the last decade, new missions to the Moon have returned a flood of new high-resolution imaging, spectroscopy, topography, and gravity data that have triggered major advances in our knowledge of that body's origin, structure, and evolution. One major development is the identification of several large mare provinces (basalt-covered plains) that lack a clear association with the interiors of large impact basins. These include the broad but narrow Mare Frigoris (MF) north of the Imbrium and Serentiatis basins, and Mare Tranquillitatis (MT), which occupies the center of a triangular region delineated by the Crisium, Serenitatis, and Nectaris basins ("CSN Triangle"). MF and the western margin of MT coincide with the proposed volcano-tectonic (rift) boundary structures of the Procellarum region detected in the GRAIL gravity data, but a search for gravitational signals of basins revealed evidence for only one small basin in western MT and none in the remainder of MT or MF. These observations clearly show that the standard paradigm for creating maria, with basaltic melt ascending from an anomalously warm (and presumably impact-heated) mantle region beneath an impact basin to fill the basin, is insufficient to explain the Frigoris and Tranquillitatis mare units (and corresponding intrusives below). Alternative scenarios for mare unit emplacement include 1) volcanism generated from ancient Procellarum-bounding rift (PBR) structures, and 2) stress-enhanced magma ascent potential from central mare unit lithospheric loading in adjacent basins. The PBR scenario can in principle explain the emplacement of MF, but the concentric nature of the geometry of western and central MF with respect to Imbrium and eastern MF with respect to Serenitatis is then rendered coincidental. Some element of outer ring structure inheritance from these basins is suggested by the geometric relationships. The PBR scenario is also relevant to the western margin of Mare Tranquillitatis, where a strong linear gravity anomaly and low elevation point to the role of rifting there, but the majority of MT is at higher elevation, including the broad Cauchy volcanic edifice (a proposed shield volcano) and volcanic centers and plains in northern MT, where high density high-Ti basalts suggest a role for the magma ascent-enhancing stress scenario.
NASA Astrophysics Data System (ADS)
Umino, Susumu; Nonaka, Miyuki; Kauahikaua, Jim
2006-09-01
Episode 48 of the ongoing eruption of Kilauea, Hawai`i, began in July 1986 and continuously extruded lava for the next 5.5 years from a low shield, Kūpaianaha. The flows in March 1990 headed for Kalapana and inundated the entire town under 15-25 m of lava by the end of August. As the flows advanced eastward, they entered into Kaimū Bay, replacing it with a plain of lava that extends 300 m beyond the original shoreline. The focus of our study is the period from August 1 to October 31, 1990, when the lava buried almost 406,820 m2 of the 5-m deep bay. When lava encountered the sea, it flowed along the shoreline as a narrow primary lobe up to 400 m long and 100 m wide, which in turn inflated to a thickness of 5-6 m. The flow direction of the primary lobes was controlled by the submerged delta below the lavas and by damming up lavas fed at low extrusion rates. Breakout flows through circumferential and axial inflation cracks on the inflating primary lobes formed smaller secondary lobes, burying the lows between the primary lobes and hiding their original outlines. Inflated flow lobes eventually ruptured at proximal and/or distal ends as well as mid-points between the two ends, feeding new primary lobes which were emplaced along and on the shore side of the previously inflated lobes. The flow lobes mapped with the aid of aerial photographs were correlated with daily observations of the growing flow field, and 30 primary flow lobes were dated. Excluding the two repose periods that intervened while the bay was filled, enlargement of the flow field took place at a rate of 2,440-22,640 square meters per day in the bay. Lobe thickness was estimated to be up to 11 m on the basis of cross sections of selected lobes measured using optical measurement tools, measuring tape and hand level. The total flow-lobe volume added in the bay during August 1-October 31 was approximately 3.95 million m3, giving an average supply rate of 0.86 m3/s.
NASA Astrophysics Data System (ADS)
Swanson, Kirk Edward
The 30 minute Orcopampa quadrangle, southern Peru, was a site of several episodes of Neogene volcanism, hydrothermal activity and precious-metal mineralization. Lavas of pyroxene andesite and associated silicic tuffs of the early Miocene Santa Rosa volcanics are the remnants of stratovolcanoes overlying an irregular erosional surface developed on a transgressive Mesozoic marine succession. Major ash-flow volcanism then resulted in the 20.1 Ma Manto Tuff and the associated Chinchon caldera. Deep dissection, locally >2 km, has exposed the steep caldera margin, slide blocks and related (19.9 Ma) dikes. Flows and domes of hornblende-biotite dacite comprising the Sarpane volcanics were erupted between about 18.5--19.5 Ma over much of the northern part of the quadrangle. Early Miocene rocks were folded during the Quechua I tectonic event, and related ENE-trending normal faults host the 17.8 Ma Ag-Au veins of the Orcopampa district. Eruption of the ca. 11.6 Ma tuffs of Cerro Huayta and Cerro Hospicio resulted in formation of the Huayta caldera, nested within the northern part of the Chinchon caldera. Caldera formation was associated with, and followed by, the eruption of intermediate lavas of Cerro Sahuarque ( ca. 11.4 Ma) and the emplacement of rhyolite domes. The adularia-sericite type Au-Ag veins of Mina Shila were formed along the southern margin of the Huayta caldera several million years after collapse. The 7.3 Ma tuff of Laguna Pariguanas, erupted from vents northeast of the Huayta caldera, appears to be deformed; however, the 6.2 Ma tuff of Umachulco postdates Quechua II/III tectonism. Flows and domes of the ca. 7.2 Ma andesite of Cerro Aseruta were emplaced within the Huayta caldera, and approximately contemporaneous lavas of silicic to intermediate composition were erupted in the northern part of the quadrangle. A large area of largely barren acid-sulfate alteration (Chuchanne) formed within the Huayta caldera shortly after the eruption of the andesite of Cerro Aseruta. Pliocene volcanic activity included the formation of the Cailloma caldera to the east and the Coropuna caldera southwest of the Orcopampa quadrangle. Lava flows, cinder cones and small shield volcanoes of intermediate composition of the Andagua volcanics were formed from late Pliocene to Holocene time.
[Trial manufacture of a plunger shield for a disposable plastic syringe].
Murakami, Shigeki; Emoto, Takashi; Mori, Hiroshige; Fujita, Katsuhisa; Kubo, Naoki
2008-08-20
A syringe-type radiopharmaceutical being supplied by a manufacturer has a syringe shield and a plunger shield, whereas an in-hospital labeling radiopharmaceutical is administered by a disposable plastic syringe without the plunger shield. In cooperation with Nihon Medi-Physics Co. Ltd., we have produced a new experimental plunger shield for the disposable plastic syringe. In order to evaluate this shielding effect, we compared the leaked radiation doses of our plunger shield with those of the syringe-type radiopharmaceutical (Medi shield type). Our plunger shield has a lead plate of 21 mm in diameter and 3 mm thick. This shield is equipped with the plunger-end of a disposal plastic syringe. We sealed 99mTc solution into a plastic syringe (Terumo Co.) of 5 ml with our plunger shield and Medi shield type of 2 ml. We measured leaked radiation doses around syringes using fluorescent glass dosimeters (Dose Ace). The number of measure points was 18. The measured doses were converted to 70 microm dose equivalent at 740 MBq of radioactivity. The results of our plunger shield and the Medi shield type were as follows: 4-13 microSv/h and 3-14 microSv/h at shielding areas, 3-545 microSv/h and 6-97 microSv/h at non-shielding areas, 42-116 microSv/h and 88-165 microSv/h in the vicinity of the syringe shield, and 1071 microSv/h and 1243 microSv/h at the front of the needle. For dose rates of shielding areas around the syringe, the shielding effects were approximately the same as those of the Medi shield type. In conclusion, our plunger shield may be useful for reducing finger exposure during the injection of an in-hospital labeled radiopharmaceutical.
Tull, J.F.; Barineau, C.I.; Mueller, P.A.; Wooden, J.L.
2007-01-01
In the southernmost Appalachians, the Hillabee Greenstone, an Ordovician volcanic arc fragment, lies directly atop the outermost Laurentian Devonian-earliest Mississippian(?) shelf sequence at the structural top of the greenschist facies Talladega belt, the frontal metamorphic allochthon along this orogenic segment. The Hillabee Greenstone was emplaced between latest Devonian and middle Mississippian time. It and the uppermost Laurentian section were later repeated together within a series of map-scale imbricate slices of a postmetamorphic, dextral, transpressional, Alleghanian thrust duplex system that placed the high-grade eastern Blue Ridge allochthon atop the Talladega belt. Geochemical and geochronologic (U-Pb zircon) studies indicate that the Hillabee Greenstone's interstratified tholeiitic metabasalt and calc-alkaline metadacite/rhyolite formed within an extensional setting on continental crust ca. 460-470 Ma. Palinspastic reconstructions of the southern Appalachian Ordovician margin place the Hillabee Greenstone outboard of the present position of the Pine Mountain terrane and suggest links to Ordovician plutonism in the overlying eastern Blue Ridge, and possibly to widespread K-bentonite deposits within Ordovician platform units. The tectonic evolution of the Hillabee Greenstone exhibits many unusual and intriguing features, including: (1) premetamorphic emplacement along a basal cryptic thrust, which is remarkably concordant to both hanging wall and footwall sequences across its entire extent (>230 km), (2) formation, transport, and emplacement of the arc fragment accompanied by minimal deformation of the Hillabee Greenstone and underlying outer-margin shelf rocks, (3) emplacement temporally coincident with the adjacent collision of the younger, tectonically independent Ouachita volcanic arc with southeastern Laurentia. These features highlight strong contrasts in the Ordovician-Taconian evolution of the southern and northern parts of the Appalachian orogen. ?? 2007 Geological Society of America.
Constraints on the magnitude and rate of CO2 dissolution at Bravo Dome natural gas field
Sathaye, Kiran J.; Hesse, Marc A.; Cassidy, Martin; Stockli, Daniel F.
2014-01-01
The injection of carbon dioxide (CO2) captured at large point sources into deep saline aquifers can significantly reduce anthropogenic CO2 emissions from fossil fuels. Dissolution of the injected CO2 into the formation brine is a trapping mechanism that helps to ensure the long-term security of geological CO2 storage. We use thermochronology to estimate the timing of CO2 emplacement at Bravo Dome, a large natural CO2 field at a depth of 700 m in New Mexico. Together with estimates of the total mass loss from the field we present, to our knowledge, the first constraints on the magnitude, mechanisms, and rates of CO2 dissolution on millennial timescales. Apatite (U-Th)/He thermochronology records heating of the Bravo Dome reservoir due to the emplacement of hot volcanic gases 1.2–1.5 Ma. The CO2 accumulation is therefore significantly older than previous estimates of 10 ka, which demonstrates that safe long-term geological CO2 storage is possible. Integrating geophysical and geochemical data, we estimate that 1.3 Gt CO2 are currently stored at Bravo Dome, but that only 22% of the emplaced CO2 has dissolved into the brine over 1.2 My. Roughly 40% of the dissolution occurred during the emplacement. The CO2 dissolved after emplacement exceeds the amount expected from diffusion and provides field evidence for convective dissolution with a rate of 0.1 g/(m2y). The similarity between Bravo Dome and major US saline aquifers suggests that significant amounts of CO2 are likely to dissolve during injection at US storage sites, but that convective dissolution is unlikely to trap all injected CO2 on the 10-ky timescale typically considered for storage projects. PMID:25313084
Time-Lapse Electrical Geophysical Monitoring of Amendment-Based Biostimulation.
Johnson, Timothy C; Versteeg, Roelof J; Day-Lewis, Frederick D; Major, William; Lane, John W
2015-01-01
Biostimulation is increasingly used to accelerate microbial remediation of recalcitrant groundwater contaminants. Effective application of biostimulation requires successful emplacement of amendment in the contaminant target zone. Verification of remediation performance requires postemplacement assessment and contaminant monitoring. Sampling-based approaches are expensive and provide low-density spatial and temporal information. Time-lapse electrical resistivity tomography (ERT) is an effective geophysical method for determining temporal changes in subsurface electrical conductivity. Because remedial amendments and biostimulation-related biogeochemical processes often change subsurface electrical conductivity, ERT can complement and enhance sampling-based approaches for assessing emplacement and monitoring biostimulation-based remediation. Field studies demonstrating the ability of time-lapse ERT to monitor amendment emplacement and behavior were performed during a biostimulation remediation effort conducted at the Department of Defense Reutilization and Marketing Office (DRMO) Yard, in Brandywine, Maryland, United States. Geochemical fluid sampling was used to calibrate a petrophysical relation in order to predict groundwater indicators of amendment distribution. The petrophysical relations were field validated by comparing predictions to sequestered fluid sample results, thus demonstrating the potential of electrical geophysics for quantitative assessment of amendment-related geochemical properties. Crosshole radar zero-offset profile and borehole geophysical logging were also performed to augment the data set and validate interpretation. In addition to delineating amendment transport in the first 10 months after emplacement, the time-lapse ERT results show later changes in bulk electrical properties interpreted as mineral precipitation. Results support the use of more cost-effective surface-based ERT in conjunction with limited field sampling to improve spatial and temporal monitoring of amendment emplacement and remediation performance. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
Temperature-package power correlations for open-mode geologic disposal concepts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardin, Ernest.
2013-02-01
Logistical simulation of spent nuclear fuel (SNF) management in the U.S. combines storage, transportation and disposal elements to evaluate schedule, cost and other resources needed for all major operations leading to final geologic disposal. Geologic repository reference options are associated with limits on waste package thermal power output at emplacement, in order to meet limits on peak temperature for certain key engineered and natural barriers. These package power limits are used in logistical simulation software such as CALVIN, as threshold requirements that must be met by means of decay storage or SNF blending in waste packages, before emplacement in amore » repository. Geologic repository reference options include enclosed modes developed for crystalline rock, clay or shale, and salt. In addition, a further need has been addressed for open modes in which SNF can be emplaced in a repository, then ventilated for decades or longer to remove heat, prior to permanent repository closure. For each open mode disposal concept there are specified durations for surface decay storage (prior to emplacement), repository ventilation, and repository closure operations. This study simulates those steps for several timing cases, and for SNF with three fuel-burnup characteristics, to develop package power limits at which waste packages can be emplaced without exceeding specified temperature limits many years later after permanent closure. The results are presented in the form of correlations that span a range of package power and peak postclosure temperature, for each open-mode disposal concept, and for each timing case. Given a particular temperature limit value, the corresponding package power limit for each case can be selected for use in CALVIN and similar tools.« less
Timing of mafic magmatism VS localization of the deformation: the Ivrea Zone (Italian Alps)
NASA Astrophysics Data System (ADS)
Bidault, M.; Geoffroy, L.; Arbaret, L.; Aubourg, C. T.
2017-12-01
Mafic magma emplacement is a common feature of continental extension systems, represented at initial stage by volcanic rifts and at more mature stage by volcanic passive margins. In those contexts, lithospheric extension is not isovolumic, magma being notably added to the crust while it is tectonically stretched and thinned. Crystal-scale power-law mechanisms responsible for the continuous flow of the lower crust during extension are composition- and temperature-dependent and additionally, very slow processes. However magma emplacement is a very rapid process. Its effect on the lower crust rheology is dual depending upon the time-scale of the processes: thermal weakening, when newly-formed hot intrusions emplace and heat their surrounding, and rheological chemical hardening when mafic intrusions are cold. Consequently, the localization and type of ductile deformation affecting the lower crust depend on the emplacement rate, volume and spatial organization of the mafic system. The Ivrea Zone is a well-known variscan continental crust section that underwent extension through first gravitational collapse in the Carboniferous and then lithospheric extension until the Permian. From the Late Carboniferous to the Permian, extension in the Ivrea Zone was associated with large volumes of magma intrusion within the lower crust. This volcanic rift stage predated the development of a non-volcanic passive margin during the Jurassic. The entire system was tilted 90° eastward during the Alpine orogeny but remained unaffected by significant metamorphism or pervasive strain. We combine new field observations, Anisotropy of Magnetic Susceptibility data and trace-element geochemistry to investigate the timing, tectonic-setting and consequences of magma emplacement in the in-extension Ivrea lower crust. We propose a new tectonic history, highlighting time-dependent strain transfer and localization in the lower crust, in connection with mafic magma intrusion.
NASA Astrophysics Data System (ADS)
Pe-Piper, Georgia; Piper, David J. W.
2018-04-01
Small appinite plutons ca. 610 Ma outcrop in the peri-Gondwanan Avalon terrane of northern Nova Scotia, with different structural levels exposed. Field mapping shows that the Jeffers Brook pluton is a laccolith emplaced along an upper crustal thrust zone, likely in a dilational jog in a regional dextral strike-slip system. The oldest rocks are probably mafic sills, which heated the area facilitating emplacement of intermediate magmas. Cross-cutting relationships show that both mafic and intermediate magmas were supplied throughout the history of pluton emplacement. The modal composition, mineral chemistry, and bulk chemistry of gabbro, diorite, tonalite, granodiorite, and granite have been studied in the main plutonic phases, dykes, and sills, and mafic microgranular enclaves. As with the type appinites in the Scottish Caledonides, the pluton shows evidence of high water content: the dominance of hornblende, locally within pegmatitic texture; vesicles and irregular felsic patches in enclaves; and late aplite dykes. Analyzed mafic microgranular enclaves are geochemically similar to larger diorite bodies in the pluton. Tonalite-granodiorite is distinct from the diorite in trace-element geochemistry and radiogenic isotopes. Elsewhere to the east, similar rocks of the same age form vertically sheeted complexes in major shear zones; hornblende chemistry shows that they were emplaced at a deeper upper crustal level. This implies that little of the observed geochemical variability in the Jeffers Brook pluton was developed within the pluton. The general requirements to form appinites are proposed to be small magma volumes of subduction-related magmas that reach the upper crust because of continual heating by mafic magmas moving through strike-slip fault pathways and trapping of aqueous fluids rather than venting through volcanic activity.
NASA Astrophysics Data System (ADS)
Mirzaei, Masoud; Zavada, Prokop; Machek, Matej; Roxerova, Zuzana
2016-04-01
Magma emplacement in extended brittle crust was simulated by injecting plaster of Paris (magma) into a large sandbox with central deformable rubber sheet. Analog magma is during the experiments injected through small circular inlet cut in the center of the elastic sheet. Injection force oscillation during the steadily evacuating analog magma was recorded during the experiments and regularly showed 3-4 increases followed by a quick drop. The recorded oscillation amplitude is largest for static injection without extension of the sandbox, which formed a columnar body with concentric and zonal internal fabric. Experiments including normal or oblique 20% extension resulted in along rift axis elongated oblate ellipsoidal pluton with rift parallel ridges in the top part of the pluton. Inspection of horizontal profiles show bone-shaped internal zoning patterns limited by conjugate sets of shear zones. Orientation of these internal shear zones is correlated with the sand-clock fault pattern developed in the overburden sand pack. Another set of shear zones parallel with the long axes of the plutons (rift axis) are associated with successive emplacement of distinct plaster pulses during the buildup of the entire body. The innermost lastly emplaced pulses of plaster display weak vertical magnetic fabrics with vertical lineations, while the outer shells of already emplaced plaster reveal stronger and margin parallel oblate magnetic fabrics with subhorizontal lineations. We interpret the vertical innermost fabrics as a result of active ascent of plaster from the injection inlet, while the fabrics in the outer zones likely reflect push due to inflation of the inner domain reflected in the reworking of the magnetic fabric.
Igneous Sheet Intrusions as a Record of Paleostress States
NASA Astrophysics Data System (ADS)
Stephens, T. L.; Walker, R. J.; Healy, D.; Bubeck, A.; England, R. W.; McCaffrey, K. J. W.
2017-12-01
The architecture of igneous sheet intrusion networks provides useful constraints on paleostress during emplacement. Several models for sill emplacement have used the close spatial relationships between sills and dikes in layered (sedimentary) host rocks to propose that dike-sill transitions are driven by layering. Such models require a stress rotation - from horizontal extension for dikes, to horizontal compression for sills - which is assumed to reflect a near-hydrostatic stress state, facilitating the dilation and intrusion of pre-existing structures (e.g. faults, joints, and bedding). Here, we present case examples of sills for which layering is not the main control on emplacement: Isle of Mull (UK), Faroe Islands (European Atlantic margin) and the San Rafael Subvolcanic Field (Utah, USA). In each case, dikes cut, or are cut by, sills; indicating that dikes were not the feeders to sills in the same section. The sills consist of linked, flat and shallowly-dipping segments that always show near-vertical opening directions. Sills cut bedding and formation contacts with consistent low-angle dips, and cut or abut against vertical faults, fractures, and tectonic foliations. From this, we infer that magma pressure during emplacement did not exceed the horizontal stress. To constrain the stress state during emplacement we present a novel approach that combines analysis of local and overall sill geometry data with mechanical models for slip tendency, dilation tendency, and fracture susceptibility. We also present a new depth-independent mechanical model, which estimates paleostress ratio and driving fluid pressure ratio using the opening angles of dilated fluid-filled fractures. Our results show that the studied sills record previously unrecognised local fluctuations in the far-field stress state, during magmatic supply. Sills, therefore, present an important tool for determining paleostress in areas where few brittle deformation structures (e.g. faults), other than intrusions, are present.
Emplacement of Basaltic Lava Flows: the Legacy of GPL Walker
NASA Astrophysics Data System (ADS)
Cashman, K. V.
2005-12-01
Through his early field measurements of lava flow morphology, G.P.L. Walker established a framework for examination of the dynamics of lava flow emplacement that is still in place today. I will examine this legacy as established by three early papers: (1) his 1967 paper, where he defined a relationship between the thickness of recent Etna lava flows and the slope over which they flowed, a relationship that he ascribed to lava viscosity; (2) his 1971 paper, which defined a relationship between lava flux and the formation of simple and compound flow units that he used to infer high effusion rates for the emplacement of some flood basalt lavas; and (3) his often-cited 1973 paper, which related the length of lava flows to their average effusion rate. These three papers, all similar in their basic approach of using field measurements of lava flow morphology to extract fundamental relationships between eruption conditions (magma flux and rheology) and emplacement style (flow length and thickness), firmly established the relationship between flow morphology and emplacement dynamics that has since been widely applied not only to subaerial lava flows, but also to the interpretation of flows in submarine and planetary environments. Important extensions of these concepts have been provided by improved field observation methods, particularly for analysis of flowing lava, by laboratory measurements of lava rheology, by the application of analog experiments to lava flow dynamics, and by steady improvement of numerical techniques to model the flow of lava over complex terrain. The real legacy of G.P.L. Walker's field measurement approach, however, may lie in the future, as new topographic measurement techniques such as LIDAR hold exciting promise for truly quantitative analysis of lava flow morphologies and their relationship to flow dynamics.
Emplacement of Volcanic Domes on Venus and Europa
NASA Technical Reports Server (NTRS)
Quick, Lynnae C.; Glaze, Lori S.; Baloga, Steve M.
2015-01-01
Placing firmer constraints on the emplacement timescales of visible volcanic features is essential to obtaining a better understanding of the resurfacing history of Venus. Fig. 1 shows a Magellan radar image and topography for a putative venusian lava dome. 175 such domes have been identified, having diameters that range from 19 - 94 km, and estimated thicknesses as great as 4 km [1-2]. These domes are thought to be volcanic in origin [3], having formed by the flow of a viscous fluid (i.e., lava) onto the surface. Among the unanswered questions surrounding the formation of Venus steep-sided domes are their emplacement duration, composition, and the rheology of the lava. Rheologically speaking, maintenance of extremely thick, 1-4 km flows necessitates higher viscosity lavas, while the domes' smooth upper surfaces imply the presence of lower viscosity lavas [2-3]. Further, numerous quantitative issues, such as the nature and duration of lava supply, how long the conduit remained open and capable of supplying lava, the volumetric flow rate, and the role of rigid crust in influencing flow and final morphology all have implications for subsurface magma ascent and local surface stress conditions. The surface of Jupiter's icy moon Europa exhibits many putative cryovolcanic constructs [5-7], and previous workers have suggested that domical positive relief features imaged by the Galileo spacecraft may be volcanic in origin [5,7-8] (Fig. 2). Though often smaller than Venus domes, if emplaced as a viscous fluid, formation mechanisms for europan domes may be similar to those of venusian domes [7]. Models for the emplacement of venusian lava domes (e.g. [9-10]) have been previously applied to the formation of putative cryolava domes on Europa [7].
Intraflow width variations in Martian and terrestrial lava flows
NASA Astrophysics Data System (ADS)
Peitersen, Matthew N.; Crown, David A.
1997-03-01
Flow morphology is used to interpret emplacement processes for lava flows on Earth and Mars. Accurate measurements of flow geometry are essential, particularly for planetary flows where neither compositional sampling nor direct observations of active flows may be possible. Width behavior may indicate a flow's response to topography, its emplacement regime, and its physical properties. Variations in width with downflow distance from the vent may therefore provide critical clues to flow emplacement processes. Flow width is also one of the few characteristics that can be readily measured from planetary mission data with accuracy. Recent analyses of individual flows at two terrestrial and four Martian sites show that widths within an individual flow vary by up to an order of magnitude. Width is generally thought to be correlated to topography; however, recent studies show that this relationship is neither straightforward nor easily quantifiable.
Documenting Chemical Assimilation in a Basaltic Lava Flow
NASA Technical Reports Server (NTRS)
Young, K. E.; Bleacher, J. E.; Needham, D. H.; Evans, C.; Whelley, P. L.; Scheidt, S.; Williams, D.; Rogers, A. D.; Glotch, T.
2017-01-01
Lava channels are features seen throughout the inner Solar System, including on Earth, the Moon, and Mars. Flow emplacement is therefore a crucial process in the shaping of planetary surfaces. Many studies have investigated the dynamics of lava flow emplacement, both on Earth and on the Moon [1,2,3] but none have focused on how the compositional and structural characteristics of the substrate over which a flow was emplaced influenced its final flow morphology. Within the length of one flow, it is common for flows to change in morphology, a quality linked to lava rheology (a function of multiple factors including viscosity, temperature, composition, etc.). The relationship between rheology and temperature has been well-studied [4,5,6] but less is understood about the relationship between a pre-flow terrain's chemistry and how the interaction between this flow and the new flow might affect lava rheology and therefore emplacement dynamics. Lava erosion. Through visual observations of active terrestrial flows, lava erosion has been well-documented [i.e. 7,8,9,10]. Lava erosion is the process by which flow composition is altered as the active lava melts and assimilates the pre-flow terrain over which it moves. Though this process has been observed, there is only one instance of where it was been geochemically documented.
Subsurface geology of a potential waste emplacement site, Salt Valley Anticline, Grand County, Utah
Hite, R.J.
1977-01-01
The Salt Valley anticline, which is located about 32 km northeast of Moab, Utah, is perhaps one of the most favorable waste emplacement sites in the Paradox basin. The site, which includes about 7.8 km 2, is highly accessible and is adjacent to a railroad. The anticline is one of a series of northwest-trending salt anticlines lying along the northeast edge of the Paradox basin. These anticlines are cored by evaporites of the Paradox Member of the Hermosa Formation of Middle Pennsylvanian age. The central core of the Salt Valley anticline forms a ridgelike mass of evaporites that has an estimated amplitude of 3,600 m. The evaporite core consists of about 87 percent halite rock, which includes some potash deposits; the remainder is black shale, silty dolomite, and anhydrite. The latter three lithologies are referred to as 'marker beds.' Using geophysical logs from drill holes on the anticline, it is possible to demonstrate that the marker beds are complexly folded and faulted. Available data concerning the geothermal gradient and heatflow at the site indicate that heat from emplaced wastes should be rapidly dissipated. Potentially exploitable resources of potash and petroleum are present at Salt Valley. Development of these resources may conflict with use of the site for waste emplacement.
The role of the geothermal gradient in the emplacement and replenishment of ground ice on Mars
NASA Technical Reports Server (NTRS)
Clifford, Stephen M.
1993-01-01
Knowledge of the mechanisms by which ground ice is emplaced, removed, and potentially replenished, are critical to understanding the climatic and hydrologic behavior of water on Mars, as well as the morphologic evolution of its surface. Because of the strong temperature dependence of the saturated vapor pressure of H2O, the atmospheric emplacement or replenishment of ground ice is prohibited below the depth at which crustal temperatures begin to monotonically increase due to geothermal heating. In contrast, the emplacement and replenishment of ground ice from reservoirs of H2O residing deep within the crust can occur by at least three different thermally-driven processes, involving all three phases of water. In this regard, Clifford has discussed how the presence of a geothermal gradient as small as 15 K/km can give rise to a corresponding vapor pressure gradient sufficient to drive the vertical transport of 1 km of water from a reservoir of ground water at depth to the base of the cryosphere every 10(exp 6) - 10(exp 7) years. This abstract expands on this earlier treatment by considering the influence of thermal gradients on the transport of H2O at temperatures below the freezing point.
Self, S.; Thordarson, Th.; Keszthelyi, L.; Walker, G.P.L.; Hon, K.; Murphy, M.T.; Long, P.; Finnemore, S.
1996-01-01
Extensive flows of the Columbia River Basalt (CRB) Group in Washington, Oregon, and Idaho are dominantly inflated compound pahoehoe sheet lavas. Early studies recognized that CRB lavas are compound pahoehoe flows, with textures suggesting low flow velocities, but it was thought that the great thickness and extent of the major flows required very rapid emplacement as turbulent floods of lava over a period of days or weeks. However, small volume ( < 1 km3) compound pahoehoe flows on Kilauea, Hawai'i, demonstrate that such flows can thicken by at least an order of magnitude through gradual inflation and the same mechanism has been proposed for larger (10-20 km3) pahoehoe flows in Iceland. The vertical distribution of vesicles and other morphologic features within CRB lava flows indicate that they grew similarly by inflation. Small pahoehoe lobes at the base and top of many CRB pahoehoe lava flows indicate emplacement in a gradual, piecemeal manner rather than as a single flood. We propose that each thick CRB sheet flow was active for months to years and that each group of flows produced by a single eruption (a flow field) was emplaced slowly over many years. Copyright 1996 by the American Geophysical Union.
Passive magnetic shielding in MRI-Linac systems.
Whelan, Brendan; Kolling, Stefan; Oborn, Brad M; Keall, Paul
2018-03-26
Passive magnetic shielding refers to the use of ferromagnetic materials to redirect magnetic field lines away from vulnerable regions. An application of particular interest to the medical physics community is shielding in MRI systems, especially integrated MRI-linear accelerator (MRI-Linac) systems. In these systems, the goal is not only to minimize the magnetic field in some volume, but also to minimize the impact of the shield on the magnetic fields within the imaging volume of the MRI scanner. In this work, finite element modelling was used to assess the shielding of a side coupled 6 MV linac and resultant heterogeneity induced within the 30 cm diameter of spherical volume (DSV) of a novel 1 Tesla split bore MRI magnet. A number of different shield parameters were investigated; distance between shield and magnet, shield shape, shield thickness, shield length, openings in the shield, number of concentric layers, spacing between each layer, and shield material. Both the in-line and perpendicular MRI-Linac configurations were studied. By modifying the shield shape around the linac from the starting design of an open ended cylinder, the shielding effect was boosted by approximately 70% whilst the impact on the magnet was simultaneously reduced by approximately 10%. Openings in the shield for the RF port and beam exit were substantial sources of field leakage; however it was demonstrated that shielding could be added around these openings to compensate for this leakage. Layering multiple concentric shield shells was highly effective in the perpendicular configuration, but less so for the in-line configuration. Cautious use of high permeability materials such as Mu-metal can greatly increase the shielding performance in some scenarios. In the perpendicular configuration, magnetic shielding was more effective and the impact on the magnet lower compared with the in-line configuration.
Passive magnetic shielding in MRI-Linac systems
NASA Astrophysics Data System (ADS)
Whelan, Brendan; Kolling, Stefan; Oborn, Brad M.; Keall, Paul
2018-04-01
Passive magnetic shielding refers to the use of ferromagnetic materials to redirect magnetic field lines away from vulnerable regions. An application of particular interest to the medical physics community is shielding in MRI systems, especially integrated MRI-linear accelerator (MRI-Linac) systems. In these systems, the goal is not only to minimize the magnetic field in some volume, but also to minimize the impact of the shield on the magnetic fields within the imaging volume of the MRI scanner. In this work, finite element modelling was used to assess the shielding of a side coupled 6 MV linac and resultant heterogeneity induced within the 30 cm diameter of spherical volume (DSV) of a novel 1 Tesla split bore MRI magnet. A number of different shield parameters were investigated; distance between shield and magnet, shield shape, shield thickness, shield length, openings in the shield, number of concentric layers, spacing between each layer, and shield material. Both the in-line and perpendicular MRI-Linac configurations were studied. By modifying the shield shape around the linac from the starting design of an open ended cylinder, the shielding effect was boosted by approximately 70% whilst the impact on the magnet was simultaneously reduced by approximately 10%. Openings in the shield for the RF port and beam exit were substantial sources of field leakage; however it was demonstrated that shielding could be added around these openings to compensate for this leakage. Layering multiple concentric shield shells was highly effective in the perpendicular configuration, but less so for the in-line configuration. Cautious use of high permeability materials such as Mu-metal can greatly increase the shielding performance in some scenarios. In the perpendicular configuration, magnetic shielding was more effective and the impact on the magnet lower compared with the in-line configuration.
The Impact of Solar Arrays on Arid Soil Hydrology: Some Numerical Simulations
NASA Astrophysics Data System (ADS)
Luo, Y.; Berli, M.; Koonce, J.; Shillito, R.; Dijkema, J.; Ghezzehei, T. A.; Yu, Z.
2016-12-01
Hot deserts are prime locations for solar energy generation but also recognized as particularly fragile environments. Minimizing the impact of facility-scale solar installations on desert environments is therefore of increasing concern. This study focuses on the impact of photovoltaic solar arrays on the water balance of arid soil underneath the array. The goal was to explore whether concentrated rainwater infiltration along the solar panel drip lines would lead to deeper infiltration and an increase in soil water storage in the long term. A two-dimensional HYDRUS model was developed to simulate rainwater infiltration into the soil within a photovoltaic solar array. Results indicate that rainwater infiltrates deeper below the drip lines compared to the areas between solar panels but only for coarse textured soil. Finer-textured soils redistribute soil moisture horizontally and the concentrating effect of solar panels on rainwater infiltration appears to be small.
NASA Technical Reports Server (NTRS)
Scargle, Jeffrey D.; Steiman-Cameron, Thomas; Young, Karl; Donoho, David L.; Crutchfield, James P.; Imamura, James
1993-01-01
We present evidence that the quasi-periodic oscillations (QPO) and very low frequency noise (VLFN) characteristic of many accretion sources are different aspects of the same physical process. We analyzed a long, high time resolution EXOSAT observation of the low-mass X-ray binary (LMXB) Sco X-1. The X-ray luminosity varies stochastically on time scales from milliseconds to hours. The nature of this variability - as quantified with both power spectrum analysis and a new wavelet technique, the scalegram - agrees well with the dripping handrail accretion model, a simple dynamical system which exhibits transient chaos. In this model both the QPO and VLFN are produced by radiation from blobs with a wide size distribution, resulting from accretion and subsequent diffusion of hot gas, the density of which is limited by an unspecified instability to lie below a threshold.
The Hydrodynamics of Urination: to drip or jet
NASA Astrophysics Data System (ADS)
Pham, Jonathan; Yang, Patricia; Choo, Jerome; Hu, David
2013-11-01
The release of waste products is fundamental to all life. How are fluids released from the body quickly and efficiently? In a combined experimental and theoretical investigation, we elucidate the hydrodynamics of urination across five orders of magnitude in animal mass. Using high-speed videography and flow-rate measurement at the Atlanta Zoo, we report discrete regimes for urination style. We observe dripping by small mammals such as rats and jetting by large mammals such as elephants. We discover urination duration is independent of animal size among animals that use jetting. We rationalize urination styles, along with the constant-time scaling, by consideration of the relative magnitudes of the driving forces, gravity and bladder pressure, and the corresponding viscous losses within the urethra. This study may give insight into why certain animals are more prone to diseases of the urinary tract, and how the urinary system evolved under the laws of fluid mechanics.
Realizing Full Coverage of Stable Perovskite Film by Modified Anti-Solvent Process
NASA Astrophysics Data System (ADS)
Ji, Long; Zhang, Ting; Wang, Yafei; Zhang, Peng; Liu, Detao; Chen, Zhi; Li, Shibin
2017-05-01
Lead-free solution-processed solid-state photovoltaic devices based on formamidinium tin triiodide (FASnI3) and cesium tin triiodide (CsSnI3) perovskite semiconductor as the light harvester are reported. In this letter, we used solvent engineering and anti-solvent dripping method to fabricate perovskite films. SnCl2 was used as an inhibitor of Sn4+ in FASnI3 precursor solution. We obtained the best films under the function of toluene or chlorobenzene in anti-solvent dripping method and monitored the oxidation of FASnI3 films in air. We chose SnF2 as an additive of CsSnI3 precursor solution to prevent the oxidation of the Sn2+, improving the stability of CsSnI3. The experimental results we obtained can pave the way for lead-free tin-based perovskite solar cells (PSCs).
An Assessment of Irrigation Technology Performance in the Southern San Joaquin Valley of California
NASA Astrophysics Data System (ADS)
Vaux, H. J., Jr.; Handley, Dale F.; Giboney, Paul M.
1990-01-01
Seasonal applied water measurements were obtained for 1710 irrigated fields in the southern San Joaquin Valley of California. Most of the fields were planted to one of five major crops: citrus, almonds, grapes, cotton, and small grains. These crops were irrigated with a wide array of irrigation technologies, including drip, sprinkler, furrows with tailwater reuse facilities, conventional furrows, and border irrigation systems. The data were analyzed within an accounting framework to standardize for a variety of climatic and cultural variations. Analyses of the mean depths of applied water by crop and irrigation technology and of the standardized results reveal that drip irrigation systems were associated with the lowest levels of applied water on permanent crops and that the levels of water applied with sprinklers did not differ significantly from those applied with surface systems on either permanent or annual crops.
Effects of service environments on aluminum-brazed titanium (ABTi)
NASA Technical Reports Server (NTRS)
Cotton, W. L.
1978-01-01
Aluminum brazed titanium (ABTi) structures were evaluated during prolonged exposure to extreme environments: elevated temperature exposure to airline service fluids, hydraulic fluid, and seawater, followed by laboratory corrosion tests. Solid-face and perforated face honeycomb sandwich panel specimens, stressed panel assemblies, and faying surface brazed joints were tested. The corrosion resistance of ABTi is satisfactory for commercial airline service. Unprotected ABTi proved inherently resistant to attack by all of the extreme service aircraft environments except: seawater at 700 K (800 F) and above, dripping phosphate ester hydraulic fluid at 505 K (450 F), and a marine environment at ambient temperature. The natural oxides and deposits present on titanium surfaces in airline service provide protection against hot salt corrosion pitting. Coatings are required to protect titanium dripping phosphate ester fluid at elevated temperatures and to protect exposed acoustic honeycomb parts against corrosion in a marine environment.
Fluid leakage near the percolation threshold
NASA Astrophysics Data System (ADS)
Dapp, Wolf B.; Müser, Martin H.
2016-02-01
Percolation is a concept widely used in many fields of research and refers to the propagation of substances through porous media (e.g., coffee filtering), or the behaviour of complex networks (e.g., spreading of diseases). Percolation theory asserts that most percolative processes are universal, that is, the emergent powerlaws only depend on the general, statistical features of the macroscopic system, but not on specific details of the random realisation. In contrast, our computer simulations of the leakage through a seal—applying common assumptions of elasticity, contact mechanics, and fluid dynamics—show that the critical behaviour (how the flow ceases near the sealing point) solely depends on the microscopic details of the last constriction. It appears fundamentally impossible to accurately predict from statistical properties of the surfaces alone how strongly we have to tighten a water tap to make it stop dripping and also how it starts dripping once we loosen it again.
Hazard Assessment of Personal Protective Clothing for Hydrogen Peroxide Service
NASA Technical Reports Server (NTRS)
Greene, Ben; McClure, Mark B.; Johnson, Harry T.
2004-01-01
Selection of personal protective equipment (PPE) for hydrogen peroxide service is an important part of the hazard assessment process. But because drip testing of chemical protective clothing for hydrogen peroxide service has not been reported for about 40 years, it is of great interest to test new protective clothing materials with new, high-concentration hydrogen peroxide following similar procedures. The suitability of PPE for hydrogen peroxide service is in part determined by observations made when hydrogen peroxide is dripped onto swatches of protective clothing material. Protective clothing material was tested as received, in soiled condition, and in grossly soiled condition. Materials were soiled by pretreating the material with potassium permanganate (KMnO4) solution then drying to promote a reaction. Materials were grossly soiled with solid KMnO4 to greatly promote reaction. Observations of results including visual changes to the hydrogen peroxide and materials, times to ignition, and self-extinguishing characteristics of the materials are reported.
Influence of the impact energy on the pattern of blood drip stains
NASA Astrophysics Data System (ADS)
Smith, F. R.; Nicloux, C.; Brutin, D.
2018-01-01
The maximum spreading diameter of complex fluid droplets has been extensively studied and explained by numerous physical models. This research focuses therefore on a different aspect, the bulging outer rim observed after evaporation on the final dried pattern of blood droplets. A correlation is found between the inner diameter, the maximum outer diameter, and the impact speed. This shows how the drying mechanism of a blood drip stain is influenced by the impact energy, which induces a larger spreading diameter and thus a different redistribution of red blood cells inside the droplet. An empirical relation is established between the final dried pattern of a passive bloodstain and its impact speed, yielding a possible forensic application. Indeed, being able to relate accurately the energy of the drop with its final pattern would give a clue to investigators, as currently no such simple and accurate tool exists.
Effects of irrigation on the seasonal abundance of Empoasca vitis in north-Italian vineyards.
Fornasiero, D; Duso, C; Pozzebon, A; Tomasi, D; Gaiotti, F; Pavan, F
2012-02-01
The effect of irrigation on the abundance of Empoasca vitis (Göthe) populations was investigated in four vineyards located in northeastern Italy. In two experiments, we compared leafhopper population densities in plots irrigated (micro-spray irrigation system) or nonirrigated. In another experiment, we studied the effect of various irrigation systems on E. vitis populations over two successive seasons. In particular, five treatments were compared: control (not irrigated), traditional drip system, three types of subirrigation varying in distance from the row (40, 135, and 95 cm). In this vineyard, stem water potential was monitored with a pressure chamber. E. vitis population densities were affected by irrigation, with higher densities of this pest recorded on irrigated vines. Highest E. vitis densities were detected in drip irrigation plots compared with nonirrigated plots where water stress was highest. Moderate water stress (subirrigation plots) was associated with intermediate leafhopper densities. Implications for integrated pest management are discussed.
Analysis of preparation of Chinese traditional medicine based on the fiber fingerprint drop trace
NASA Astrophysics Data System (ADS)
Zhang, Zhilin; Wang, Jialu; Sun, Weimin; Yan, Qi
2010-11-01
The purpose of the fiber micro-drop analyzing technique is to measure the characteristics of liquids using optical methods. The fiber fingerprint drop trace (FFDT) is a curve of light intensity vs. time. This curve indicates the forming, growing and dripping processes of the liquid drops. A pair of fibers was used to monitor the dripping process. The FFDTs are acquired and analyzed by a computer. Different liquid samples of many kinds of preparation of Chinese traditional medicines were tested by using the fiber micro-drop sensor in the experiments. The FFDTs of preparation of Chinese traditional medicines with different concentrations were analyzed in different ways. Considering the characters of the FFDTs, a novel method is proposed to measure the different preparation of Chinese traditional medicines and its concentration based on the corresponding relationship of FFDTs and the physical and chemical parameters of the liquids.
Quantitating protein synthesis, degradation, and endogenous antigen processing.
Princiotta, Michael F; Finzi, Diana; Qian, Shu-Bing; Gibbs, James; Schuchmann, Sebastian; Buttgereit, Frank; Bennink, Jack R; Yewdell, Jonathan W
2003-03-01
Using L929 cells, we quantitated the macroeconomics of protein synthesis and degradation and the microeconomics of producing MHC class I associated peptides from viral translation products. To maintain a content of 2.6 x 10(9) proteins, each cell's 6 x 10(6) ribosomes produce 4 x 10(6) proteins min(-1). Each of the cell's 8 x 10(5) proteasomes degrades 2.5 substrates min(-1), creating one MHC class I-peptide complex for each 500-3000 viral translation products degraded. The efficiency of complex formation is similar in dendritic cells and macrophages, which play a critical role in activating T cells in vivo. Proteasomes create antigenic peptides at different efficiencies from two distinct substrate pools: rapidly degraded newly synthesized proteins that clearly represent defective ribosomal products (DRiPs) and a less rapidly degraded pool in which DRiPs may also predominate.