Sample records for drive microbial colonization

  1. Maternal influences on fetal microbial colonization and immune development

    PubMed Central

    Romano-Keeler, Joann; Weitkamp, Jörn-Hendrik

    2014-01-01

    While critical for normal development, the exact timing of establishment of the intestinal microbiome is unknown. For example, although preterm labor and birth have been associated with bacterial colonization of the amniotic cavity and fetal membranes for many years, the prevailing dogma of a sterile intrauterine environment during normal term pregnancies has been challenged more recently. While found to be a key contributor of evolution in the animal kingdom, maternal transmission of commensal bacteria may also constitute a critical process during healthy pregnancies in humans with yet unclear developmental importance. Metagenomic sequencing has elucidated a rich placental microbiome in normal term pregnancies likely providing important metabolic and immune contributions to the growing fetus. Conversely, an altered microbial composition during pregnancy may produce aberrant metabolites impairing fetal brain development and life-long neurological outcomes. Here we review the current understanding of microbial colonization at the feto-maternal interface and explain how normal gut colonization drives a balanced neonatal mucosal immune system, while dysbiosis contributes to aberrant immune function early in life and beyond. We discuss how maternal genetics, diet, medications, and probiotics inform the fetal microbiome in preparation for perinatal and postnatal bacterial colonization. PMID:25310759

  2. Effect of water flow and chemical environment on microbiota growth and composition in the human colon.

    PubMed

    Cremer, Jonas; Arnoldini, Markus; Hwa, Terence

    2017-06-20

    The human gut harbors a dynamic microbial community whose composition bears great importance for the health of the host. Here, we investigate how colonic physiology impacts bacterial growth, which ultimately dictates microbiota composition. Combining measurements of bacterial physiology with analysis of published data on human physiology into a quantitative, comprehensive modeling framework, we show how water flow in the colon, in concert with other physiological factors, determine the abundances of the major bacterial phyla. Mechanistically, our model shows that local pH values in the lumen, which differentially affect the growth of different bacteria, drive changes in microbiota composition. It identifies key factors influencing the delicate regulation of colonic pH, including epithelial water absorption, nutrient inflow, and luminal buffering capacity, and generates testable predictions on their effects. Our findings show that a predictive and mechanistic understanding of microbial ecology in the gut is possible. Such predictive understanding is needed for the rational design of intervention strategies to actively control the microbiota.

  3. Effect of water flow and chemical environment on microbiota growth and composition in the human colon

    PubMed Central

    Cremer, Jonas; Arnoldini, Markus; Hwa, Terence

    2017-01-01

    The human gut harbors a dynamic microbial community whose composition bears great importance for the health of the host. Here, we investigate how colonic physiology impacts bacterial growth, which ultimately dictates microbiota composition. Combining measurements of bacterial physiology with analysis of published data on human physiology into a quantitative, comprehensive modeling framework, we show how water flow in the colon, in concert with other physiological factors, determine the abundances of the major bacterial phyla. Mechanistically, our model shows that local pH values in the lumen, which differentially affect the growth of different bacteria, drive changes in microbiota composition. It identifies key factors influencing the delicate regulation of colonic pH, including epithelial water absorption, nutrient inflow, and luminal buffering capacity, and generates testable predictions on their effects. Our findings show that a predictive and mechanistic understanding of microbial ecology in the gut is possible. Such predictive understanding is needed for the rational design of intervention strategies to actively control the microbiota. PMID:28588144

  4. Who's on First? Part II: Bacterial and fungal colonization of fresh soil minerals

    NASA Astrophysics Data System (ADS)

    Whitman, T.; Neurath, R.; Zhang, P.; Yuan, T.; Weber, P. K.; Zhou, J.; Pett-Ridge, J.; Firestone, M. K.

    2015-12-01

    Soil organic matter (SOM) stabilization by soil minerals is an important mechanism influencing soil C cycling. Microbes make up only a few percent of total SOM, but have a disproportionate impact on SOM cycling. Their direct interactions with soil minerals, however, are not well characterized. We studied colonization of fresh minerals by soil microbes in an Avena barbata (wild oat) California grassland soil microcosm. Examining quartz, ferrihydrite, kaolinite, and the heavy fraction of the native soil, we asked: (1) Do different minerals select for different communities, or do random processes drive the colonization of fresh minerals? (2) What factors influence which taxa colonize fresh minerals? After incubating mesh bags (<18 μm) of minerals buried next to actively growing plant roots for 2 months, we used high-throughput sequencing of 16S and ITS2 genes to characterize the microbial communities colonizing the minerals. We found significant differences between the microbial community composition of different minerals and soil for both bacteria and fungi. We found a higher relative abundance of arbuscular mycorrhial fungi with ferrihydrite and quartz, and nanoscale secondary ion mass spectrometry (NanoSIMS) imaging of these minerals suggests that some fungal hyphae are moving C directly from roots to mineral surfaces. The enriched presence of both nematode-associated fungi (Pochonia sp.) and bacteria (Candidatus Xiphinematobacter) in the minerals suggests that these minerals may be a habitat for nematodes. Bacteria of the family Chitinophagaceae and genus Janthinobacterium were significantly enriched on both ferrihydrite and quartz minerals, both of which may interact with colonizing fungi. These findings suggest that: (1) Microbial colonization of fresh minerals is not a fully passive or neutral process. (2) Mineral exploration by plant-associated fungi and soil fauna transport may be factors in determining the initial colonization of minerals and subsequent C protection.

  5. Characteristics of microbial community involved in early biofilms formation under the influence of wastewater treatment plant effluent.

    PubMed

    Peng, Yuke; Li, Jie; Lu, Junling; Xiao, Lin; Yang, Liuyan

    2018-04-01

    Effluents from wastewater treatment plants (WWTPs) containing microorganisms and residual nutrients can influence the biofilm formation. Although the process and mechanism of bacterial biofilm formation have been well characterized, little is known about the characteristics and interaction of bacteria, archaea and eukaryotes in the early colonization, especially under the influence of WWTP effluent. The aim of this study was to characterize the important bacterial, archaeal and eukaryotic species in the early stage of biofilm formation downstream of the WWTP outlet. Water and biofilm samples were collected 24 and 48hr after the deposition of bio-cords in the stream. Illumina Miseq sequencing of the 16S and 18S rDNA showed that, among the three domains, the bacterial biofilm community had the largest alpha and beta diversity. The early bacterial colonizers appeared to be "biofilm-specific", with only a few dominant operational taxonomic units (OTUs) shared between the biofilm and the ambient water environment. Alpha-proteobacteria and Ciliophora tended to dominate the bacterial and eukaryotic communities, respectively, of the early biofilm already at 24hr, whereas archaea played only a minor role during the early stage of colonization. The network analysis showed that the three domains of microbial community connected highly during the early colonization and it might be a characteristic of the microbial communities in the biofilm formation process where co-occurrence relationships could drive coexistence and diversity maintenance within the microbial communities. Copyright © 2017. Published by Elsevier B.V.

  6. Fate of Eight Different Polymers under Uncontrolled Composting Conditions: Relationships Between Deterioration, Biofilm Formation, and the Material Surface Properties.

    PubMed

    Mercier, Anne; Gravouil, Kevin; Aucher, Willy; Brosset-Vincent, Sandra; Kadri, Linette; Colas, Jenny; Bouchon, Didier; Ferreira, Thierry

    2017-02-21

    With the ever-increasing volume of polymer wastes and their associated detrimental impacts on the environment, the plastic life cycle has drawn increasing attention. Here, eight commercial polymers selected from biodegradable to environmentally persistent materials, all formulated under a credit card format, were incubated in an outdoor compost to evaluate their fate over time and to profile the microbial communities colonizing their surfaces. After 450 days in compost, the samples were all colonized by multispecies biofilms, these latest displaying different amounts of adhered microbial biomass and significantly distinct bacterial and fungal community compositions depending on the substrate. Interestingly, colonization experiments on the eight polymers revealed a large core of shared microbial taxa, predominantly composed of microorganisms previously reported from environments contaminated with petroleum hydrocarbons or plastics debris. These observations suggest that biofilms may contribute to the alteration process of all the polymers studied. Actually, four substrates, independently of their assignment to a polymer group, displayed a significant deterioration, which might be attributed to biologically mediated mechanisms. Relevantly, the deterioration appears strongly associated with the formation of a high-cell density biofilm onto the polymer surfaces. The analysis of various surface properties revealed that roughness and hydrophilicity are likely prominent parameters for driving the biological interactions with the polymers.

  7. Marked seasonal variation in the wild mouse gut microbiota.

    PubMed

    Maurice, Corinne F; Knowles, Sarah C L; Ladau, Joshua; Pollard, Katherine S; Fenton, Andy; Pedersen, Amy B; Turnbaugh, Peter J

    2015-11-01

    Recent studies have provided an unprecedented view of the microbial communities colonizing captive mice; yet the host and environmental factors that shape the rodent gut microbiota in their natural habitat remain largely unexplored. Here, we present results from a 2-year 16 S ribosomal RNA gene sequencing-based survey of wild wood mice (Apodemus sylvaticus) in two nearby woodlands. Similar to other mammals, wild mice were colonized by 10 bacterial phyla and dominated by the Firmicutes, Bacteroidetes and Proteobacteria. Within the Firmicutes, the Lactobacillus genus was most abundant. Putative bacterial pathogens were widespread and often abundant members of the wild mouse gut microbiota. Among a suite of extrinsic (environmental) and intrinsic (host-related) factors examined, seasonal changes dominated in driving qualitative and quantitative differences in the gut microbiota. In both years examined, we observed a strong seasonal shift in gut microbial community structure, potentially due to the transition from an insect- to a seed-based diet. This involved decreased levels of Lactobacillus, and increased levels of Alistipes (Bacteroidetes phylum) and Helicobacter. We also detected more subtle but statistically significant associations between the gut microbiota and biogeography, sex, reproductive status and co-colonization with enteric nematodes. These results suggest that environmental factors have a major role in shaping temporal variations in microbial community structure within natural populations.

  8. Microbial precipitation of dolomite in methanogenic groundwater

    USGS Publications Warehouse

    Roberts, Jennifer A.; Bennett, Philip C.; Gonzalez, Luis A.; Macpherson, G.L.; Milliken, Kitty L.

    2004-01-01

    We report low-temperature microbial precipitation of dolomite in dilute natural waters from both field and laboratory experiments. In a freshwater aquifer, microorganisms colonize basalt and nucleate nonstoichiometric dolomite on cell walls. In the laboratory, ordered dolomite formed at near-equilibrium conditions from groundwater with molar Mg:Ca ratios of <1; dolomite was absent in sterile experiments. Geochemical and microbiological data suggest that methanogens are the dominant metabolic guild in this system and are integral to dolomite precipitation. We hypothesize that the attached microbial consortium reacts with the basalt surface, releasing Mg and Ca into solution, which drives dolomite precipitation via nucleation on the cell wall. These findings provide insight into the long-standing dolomite problem and suggest a fundamental role for microbial processes in the formation of dolomite across a wide range of environmental conditions.

  9. Spatial colonization of microbial cells on the rhizoplane.

    NASA Astrophysics Data System (ADS)

    Raynaud, Xavier; Eickhorst, Thilo; Nunan, Naoise; Kaiser, Christina; Woebken, Dagmar; Schmidt, Hannes

    2017-04-01

    The rhizoplane is the region where the root surface is in contact with soil and corresponds to the inner limit of the rhizosphere. At the rhizoplane level, plants exchange elements with the surrounding soil and the rhizoplane can therefore be considered as the region that drives nutrient movement and transformation in the rhizosphere. The rhizoplane differs in many respects from the bulk soil due to the far larger supply of substrates derived from the roots, with far greater microbial cell densities and reduced levels of diversity (Philippot et al., 2013). This is likely to result in completely different interaction profiles among microorganisms which may affect rhizosphere biogeochemistry. While the diversity of microorganisms associated with the rhizosphere and on the rhizoplane is getting increasing attention, knowledge on the spatial organisation of this diversity is still scarce. We therefore aimed at investigating the spatial arrangement of microbial rhizoplane colonization to increase our understanding of potential interaction dynamics within soil-microbe-plant interfaces. To study the spatial distribution of microbial cells on roots we cultivated rice plants in water-logged paddy soil. Root samples were taken three months after germination. After removing adhering rhizosphere soil the root samples were chemically fixed and prepared for CARD-FISH (Schmidt & Eickhorst, 2014). For hybridization, the oligonucleotide probes EUB I-III (Daims et al., 1999) were applied to cover the majority of bacteria colonizing the rhizoplane. Root segments were then subjected to confocal laser scanning microscopy where triplicate image stacks of 10 µm thickness (0.5 µm layer distance) were acquired per region of interest (ROI). ROIs were defined as distances from the root tip (0, 5, 10, 15 mm) and corresponded to the root tip, elongation zone, and zone of maturation. Image stacks were processed using ImageJ software to extract microbial cells spatial coordinates, as well as other features of the root (e.g. root cell walls). For all the images analysed, we found that microbial cell distributions were not distributed randomly and strongly associated to root cell walls. The spatial organization of root cell walls could be used to simulate microbial cell distribution that have similar spatial properties compared to the microscopic data. Root cell walls thus appear as a strong determinant for microbial cell colonization of the rhizoplane.

  10. Diatom-driven recolonization of microbial mat-dominated siliciclastic tidal flat sediments.

    PubMed

    Pan, Jerónimo; Cuadrado, Diana G; Bournod, Constanza N

    2017-10-01

    Modern microbial mats and biofilms play a paramount role in sediment biostabilization. When sporadic storms affect tidal flats of Bahía Blanca Estuary, the underlying siliciclastic sediment is exposed by physical disruption of the mat, and in a few weeks' lapse, a microbial community re-establishes. With the objective of studying colonization patterns and the ecological succession of microorganisms at the scale of these erosional structures, these were experimentally made and their biological recolonization followed for 8 weeks, with replication in winter and spring. Motile pennate diatoms led the initial colonization following two distinct patterns: a dominance by Cylindrotheca closterium in winter and by naviculoid and nitzschioid diatoms in spring. During the first 7 days, cell numbers increased 2- to 17-fold. Cell densities further increased exhibiting sigmoidal community growth, reaching 2.9-8.9 × 106 cells cm-3 maxima around day 30; centric diatoms maintained low densities throughout. In 56 days after removal of the original mat, filamentous cyanobacteria that dominate mature mats did not establish a significant biomass, leading to the rejection of the hypothesis that cyanobacteria would drive the colonization. The observed dominance of pennate diatoms is attributed to extrinsic factors determined by tidal flooding, and intrinsic ones, e.g. motility, nutrient affinity and high growth rate. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Colonic transit time is related to bacterial metabolism and mucosal turnover in the gut.

    PubMed

    Roager, Henrik M; Hansen, Lea B S; Bahl, Martin I; Frandsen, Henrik L; Carvalho, Vera; Gøbel, Rikke J; Dalgaard, Marlene D; Plichta, Damian R; Sparholt, Morten H; Vestergaard, Henrik; Hansen, Torben; Sicheritz-Pontén, Thomas; Nielsen, H Bjørn; Pedersen, Oluf; Lauritzen, Lotte; Kristensen, Mette; Gupta, Ramneek; Licht, Tine R

    2016-06-27

    Little is known about how colonic transit time relates to human colonic metabolism and its importance for host health, although a firm stool consistency, a proxy for a long colonic transit time, has recently been positively associated with gut microbial richness. Here, we show that colonic transit time in humans, assessed using radio-opaque markers, is associated with overall gut microbial composition, diversity and metabolism. We find that a long colonic transit time associates with high microbial richness and is accompanied by a shift in colonic metabolism from carbohydrate fermentation to protein catabolism as reflected by higher urinary levels of potentially deleterious protein-derived metabolites. Additionally, shorter colonic transit time correlates with metabolites possibly reflecting increased renewal of the colonic mucosa. Together, this suggests that a high gut microbial richness does not per se imply a healthy gut microbial ecosystem and points at colonic transit time as a highly important factor to consider in microbiome and metabolomics studies.

  12. Microbial ecology and biogeochemistry of continental Antarctic soils.

    PubMed

    Cowan, Don A; Makhalanyane, Thulani P; Dennis, Paul G; Hopkins, David W

    2014-01-01

    The Antarctica Dry Valleys are regarded as the coldest hyperarid desert system on Earth. While a wide variety of environmental stressors including very low minimum temperatures, frequent freeze-thaw cycles and low water availability impose severe limitations to life, suitable niches for abundant microbial colonization exist. Antarctic desert soils contain much higher levels of microbial diversity than previously thought. Edaphic niches, including cryptic and refuge habitats, microbial mats and permafrost soils all harbor microbial communities which drive key biogeochemical cycling processes. For example, lithobionts (hypoliths and endoliths) possess a genetic capacity for nitrogen and carbon cycling, polymer degradation, and other system processes. Nitrogen fixation rates of hypoliths, as assessed through acetylene reduction assays, suggest that these communities are a significant input source for nitrogen into these oligotrophic soils. Here we review aspects of microbial diversity in Antarctic soils with an emphasis on functionality and capacity. We assess current knowledge regarding adaptations to Antarctic soil environments and highlight the current threats to Antarctic desert soil communities.

  13. A Seafloor Microbial Biome Hosted within Incipient Ferromanganese Crusts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Templeton, Alexis S.; Knowles, A. S.; Eldridge, D. L.

    2009-11-15

    Unsedimented volcanic rocks exposed on the seafloor at ridge systems and Seamounts host complex, abundant and diverse microbial communities that are relatively cosmopolitan in distribution (Lysnes, Thorseth et al. 2004; Mason, Stingl et al. 2007; Santelli, Orcutt et al. 2008). The most commonly held hypothesis is that the energy released by the hydration, dissolution and oxidative alteration of volcanic glasses in seawater drives the formation of an ocean crust biosphere (Thorseth, Furnes et al. 1992; Fisk, Giovannoni et al. 1998; Furnes and Staudigel 1999). The combined thermodynamically favorable weathering reactions could theoretically support anywhere from 105 to 109 cells/gram ofmore » rock depending upon the metabolisms utilized and cellular growth rates and turnover (Bach and Edwards 2003; Santelli, Orcutt et al. 2008). Yet microbially-mediated basalt alteration and energy conservation has not been directly demonstrated on the seafloor. By using synchrotron-based x-ray microprobe mapping, x-ray absorption spectroscopy and high-resolution scanning and transmission electron microscopy observations of young volcanic glasses recovered from the outer flanks of Loihi Seamount, we intended to identify the initial rates and mechanisms of microbial basalt colonization and bioalteration. Instead, here we show that microbial biofilms are intimately associated with ferromanganese crusts precipitating onto basalt surfaces from cold seawater. Thus we hypothesize that microbial communities colonizing seafloor rocks are established and sustained by external inputs of potential energy sources, such as dissolved and particulate Fe(II), Mn(II) and organic matter, rather than rock dissolution.« less

  14. Microbial colonization and lung function in adolescents with cystic fibrosis.

    PubMed

    Hector, Andreas; Kirn, Tobias; Ralhan, Anjali; Graepler-Mainka, Ute; Berenbrinker, Sina; Riethmueller, Joachim; Hogardt, Michael; Wagner, Marlies; Pfleger, Andreas; Autenrieth, Ingo; Kappler, Matthias; Griese, Matthias; Eber, Ernst; Martus, Peter; Hartl, Dominik

    2016-05-01

    With intensified antibiotic therapy and longer survival, patients with cystic fibrosis (CF) are colonized with a more complex pattern of bacteria and fungi. However, the clinical relevance of these emerging pathogens for lung function remains poorly defined. The aim of this study was to assess the association of bacterial and fungal colonization patterns with lung function in adolescent patients with CF. Microbial colonization patterns and lung function parameters were assessed in 770 adolescent European (German/Austrian) CF patients in a retrospective study (median follow-up time: 10years). Colonization with Pseudomonas aeruginosa and MRSA were most strongly associated with loss of lung function, while mainly colonization with Haemophilus influenzae was associated with preserved lung function. Aspergillus fumigatus was the only species that was associated with an increased risk for infection with P. aeruginosa. Microbial interaction analysis revealed three distinct microbial clusters within the longitudinal course of CF lung disease. Collectively, this study identified potentially protective and harmful microbial colonization patterns in adolescent CF patients. Further studies in different patient cohorts are required to evaluate these microbial patterns and to assess their clinical relevance. Copyright © 2016 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  15. Microbial community development in a dynamic gut model is reproducible, colon region specific, and selective for Bacteroidetes and Clostridium cluster IX.

    PubMed

    Van den Abbeele, Pieter; Grootaert, Charlotte; Marzorati, Massimo; Possemiers, Sam; Verstraete, Willy; Gérard, Philippe; Rabot, Sylvie; Bruneau, Aurélia; El Aidy, Sahar; Derrien, Muriel; Zoetendal, Erwin; Kleerebezem, Michiel; Smidt, Hauke; Van de Wiele, Tom

    2010-08-01

    Dynamic, multicompartment in vitro gastrointestinal simulators are often used to monitor gut microbial dynamics and activity. These reactors need to harbor a microbial community that is stable upon inoculation, colon region specific, and relevant to in vivo conditions. Together with the reproducibility of the colonization process, these criteria are often overlooked when the modulatory properties from different treatments are compared. We therefore investigated the microbial colonization process in two identical simulators of the human intestinal microbial ecosystem (SHIME), simultaneously inoculated with the same human fecal microbiota with a high-resolution phylogenetic microarray: the human intestinal tract chip (HITChip). Following inoculation of the in vitro colon compartments, microbial community composition reached steady state after 2 weeks, whereas 3 weeks were required to reach functional stability. This dynamic colonization process was reproducible in both SHIME units and resulted in highly diverse microbial communities which were colon region specific, with the proximal regions harboring saccharolytic microbes (e.g., Bacteroides spp. and Eubacterium spp.) and the distal regions harboring mucin-degrading microbes (e.g., Akkermansia spp.). Importantly, the shift from an in vivo to an in vitro environment resulted in an increased Bacteroidetes/Firmicutes ratio, whereas Clostridium cluster IX (propionate producers) was enriched compared to clusters IV and XIVa (butyrate producers). This was supported by proportionally higher in vitro propionate concentrations. In conclusion, high-resolution analysis of in vitro-cultured gut microbiota offers new insight on the microbial colonization process and indicates the importance of digestive parameters that may be crucial in the development of new in vitro models.

  16. Staphylococcus aureus Colonization: Modulation of Host Immune Response and Impact on Human Vaccine Design

    PubMed Central

    Brown, Aisling F.; Leech, John M.; Rogers, Thomas R.; McLoughlin, Rachel M.

    2014-01-01

    In apparent contrast to its invasive potential Staphylococcus aureus colonizes the anterior nares of 20–80% of the human population. The relationship between host and microbe appears particularly individualized and colonization status seems somehow predetermined. After decolonization, persistent carriers often become re-colonized with their prior S. aureus strain, whereas non-carriers resist experimental colonization. Efforts to identify factors facilitating colonization have thus far largely focused on the microorganism rather than on the human host. The host responds to S. aureus nasal colonization via local expression of anti-microbial peptides, lipids, and cytokines. Interplay with the co-existing microbiota also influences colonization and immune regulation. Transient or persistent S. aureus colonization induces specific systemic immune responses. Humoral responses are the most studied of these and little is known of cellular responses induced by colonization. Intriguingly, colonized patients who develop bacteremia may have a lower S. aureus-attributable mortality than their non-colonized counterparts. This could imply a staphylococcal-specific immune “priming” or immunomodulation occurring as a consequence of colonization and impacting on the outcome of infection. This has yet to be fully explored. An effective vaccine remains elusive. Anti-S. aureus vaccine strategies may need to drive both humoral and cellular immune responses to confer efficient protection. Understanding the influence of colonization on adaptive response is essential to intelligent vaccine design, and may determine the efficacy of vaccine-mediated immunity. Clinical trials should consider colonization status and the resulting impact of this on individual patient responses. We urgently need an increased appreciation of colonization and its modulation of host immunity. PMID:24409186

  17. Improving microbial fitness in the mammalian gut by in vivo temporal functional metagenomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yaung, Stephanie J.; Deng, Luxue; Li, Ning

    Elucidating functions of commensal microbial genes in the mammalian gut is challenging because many commensals are recalcitrant to laboratory cultivation and genetic manipulation. We present Temporal FUnctional Metagenomics sequencing (TFUMseq), a platform to functionally mine bacterial genomes for genes that contribute to fitness of commensal bacteria in vivo. Our approach uses metagenomic DNA to construct large-scale heterologous expression libraries that are tracked over time in vivo by deep sequencing and computational methods. To demonstrate our approach, we built a TFUMseq plasmid library using the gut commensal Bacteroides thetaiotaomicron (Bt) and introduced Escherichia coli carrying this library into germfree mice. Populationmore » dynamics of library clones revealed Bt genes conferring significant fitness advantages in E. coli over time, including carbohydrate utilization genes, with a Bt galactokinase central to early colonization, and subsequent dominance by a Bt glycoside hydrolase enabling sucrose metabolism coupled with co-evolution of the plasmid library and E. coli genome driving increased galactose utilization. Here, our findings highlight the utility of functional metagenomics for engineering commensal bacteria with improved properties, including expanded colonization capabilities in vivo.« less

  18. Improving microbial fitness in the mammalian gut by in vivo temporal functional metagenomics

    DOE PAGES

    Yaung, Stephanie J.; Deng, Luxue; Li, Ning; ...

    2015-03-11

    Elucidating functions of commensal microbial genes in the mammalian gut is challenging because many commensals are recalcitrant to laboratory cultivation and genetic manipulation. We present Temporal FUnctional Metagenomics sequencing (TFUMseq), a platform to functionally mine bacterial genomes for genes that contribute to fitness of commensal bacteria in vivo. Our approach uses metagenomic DNA to construct large-scale heterologous expression libraries that are tracked over time in vivo by deep sequencing and computational methods. To demonstrate our approach, we built a TFUMseq plasmid library using the gut commensal Bacteroides thetaiotaomicron (Bt) and introduced Escherichia coli carrying this library into germfree mice. Populationmore » dynamics of library clones revealed Bt genes conferring significant fitness advantages in E. coli over time, including carbohydrate utilization genes, with a Bt galactokinase central to early colonization, and subsequent dominance by a Bt glycoside hydrolase enabling sucrose metabolism coupled with co-evolution of the plasmid library and E. coli genome driving increased galactose utilization. Here, our findings highlight the utility of functional metagenomics for engineering commensal bacteria with improved properties, including expanded colonization capabilities in vivo.« less

  19. Metaproteomics Reveals Functional Shifts in Microbial and Human Proteins During Infant Gut Colonization Case

    DOE PAGES

    Young, Jacque C.; Pan, Chongle; Adams, Rachel M.; ...

    2015-01-01

    The microbial colonization of the human gastrointestinal tract plays an important role in establishing health and homeostasis. However, the time-dependent functional signatures of microbial and human proteins during early colonization of the gut have yet to be determined. Thus, we employed shotgun proteomics to simultaneously monitor microbial and human proteins in fecal samples from a preterm infant during the first month of life. Microbial community complexity and functions increased over time, with compositional changes that were consistent with previous metagenomic and rRNA gene data indicating three distinct colonization phases. Overall microbial community functions were established relatively early in development andmore » remained stable. Human proteins detected included those responsible for epithelial barrier function and antimicrobial activity. Some neutrophil-derived proteins increased in abundance early in the study period, suggesting activation of the innate immune system. Moreover, abundances of cytoskeletal and mucin proteins increased later in the time course, suggestive of subsequent adjustment to the increased microbial load. Our study provides the first snapshot of coordinated human and microbial protein expression in the infant gut during early development.« less

  20. Initial Gut Microbial Composition as a Key Factor Driving Host Response to Antibiotic Treatment, as Exemplified by the Presence or Absence of Commensal Escherichia coli

    PubMed Central

    Ju, Tingting; Shoblak, Yasmeen; Gao, Yanhua; Yang, Kaiyuan; Fouhse, Janelle; Finlay, B. Brett; So, Yee Wing; Stothard, Paul

    2017-01-01

    ABSTRACT Antibiotics are important for treating bacterial infection; however, efficacies and side effects of antibiotics vary in medicine and experimental models. A few studies have correlated microbiota composition variations with health outcomes in response to antibiotics; however, no study has demonstrated causality. We had noted variation in colonic expression of C-type lectins, regenerating islet-derived protein 3β (Reg3β) and Reg3γ, after metronidazole treatment in a mouse model. To investigate the effects of specific variations in the preexisting microbiome on host response to antibiotics, mice harboring a normal microbiota were allocated to 4 treatments in a 2-by-2 factorial arrangement with or without commensal Escherichia coli and with or without metronidazole in drinking water. E. coli colonized readily without causing a notable shift in the microbiota or host response. Metronidazole administration reduced microbiota biodiversity, indicated by decreased Chao1 and Shannon index values, and altered microbiota composition. However, the presence of E. coli strongly affected metronidazole-induced microbiota shifts. Remarkably, this single commensal bacterium in the context of a complex population led to variations in host responses to metronidazole treatment, including increased expression of antimicrobial peptides Reg3β and Reg3γ and intestinal inflammation indicated by tumor necrosis factor alpha levels. Similar results were obtained from 2-week antibiotic exposure and with additional E. coli isolates. The results of this proof-of-concept study indicate that even minor variations in initial commensal microbiota can drive shifts in microbial composition and host response after antibiotic administration. As well as providing an explanation for variability in animal models using antibiotics, the findings encourage the development of personalized medication in antibiotic therapies. IMPORTANCE This work provides an understanding of variability in studies where antibiotics are used to alter the gut microbiota to generate a host response. Furthermore, although providing evidence only for the one antibiotic, the study demonstrated that initial gut microbial composition is a key factor driving host response to antibiotic administration, creating a compelling argument for considering personalized medication based on individual variations in gut microbiota. PMID:28667114

  1. Initial Gut Microbial Composition as a Key Factor Driving Host Response to Antibiotic Treatment, as Exemplified by the Presence or Absence of Commensal Escherichia coli.

    PubMed

    Ju, Tingting; Shoblak, Yasmeen; Gao, Yanhua; Yang, Kaiyuan; Fouhse, Janelle; Finlay, B Brett; So, Yee Wing; Stothard, Paul; Willing, Benjamin P

    2017-09-01

    Antibiotics are important for treating bacterial infection; however, efficacies and side effects of antibiotics vary in medicine and experimental models. A few studies have correlated microbiota composition variations with health outcomes in response to antibiotics; however, no study has demonstrated causality. We had noted variation in colonic expression of C-type lectins, regenerating islet-derived protein 3β (Reg3β) and Reg3γ, after metronidazole treatment in a mouse model. To investigate the effects of specific variations in the preexisting microbiome on host response to antibiotics, mice harboring a normal microbiota were allocated to 4 treatments in a 2-by-2 factorial arrangement with or without commensal Escherichia coli and with or without metronidazole in drinking water. E. coli colonized readily without causing a notable shift in the microbiota or host response. Metronidazole administration reduced microbiota biodiversity, indicated by decreased Chao1 and Shannon index values, and altered microbiota composition. However, the presence of E. coli strongly affected metronidazole-induced microbiota shifts. Remarkably, this single commensal bacterium in the context of a complex population led to variations in host responses to metronidazole treatment, including increased expression of antimicrobial peptides Reg3β and Reg3γ and intestinal inflammation indicated by tumor necrosis factor alpha levels. Similar results were obtained from 2-week antibiotic exposure and with additional E. coli isolates. The results of this proof-of-concept study indicate that even minor variations in initial commensal microbiota can drive shifts in microbial composition and host response after antibiotic administration. As well as providing an explanation for variability in animal models using antibiotics, the findings encourage the development of personalized medication in antibiotic therapies. IMPORTANCE This work provides an understanding of variability in studies where antibiotics are used to alter the gut microbiota to generate a host response. Furthermore, although providing evidence only for the one antibiotic, the study demonstrated that initial gut microbial composition is a key factor driving host response to antibiotic administration, creating a compelling argument for considering personalized medication based on individual variations in gut microbiota. Copyright © 2017 American Society for Microbiology.

  2. Microbial Surface Colonization and Biofilm Development in Marine Environments

    PubMed Central

    2015-01-01

    SUMMARY Biotic and abiotic surfaces in marine waters are rapidly colonized by microorganisms. Surface colonization and subsequent biofilm formation and development provide numerous advantages to these organisms and support critical ecological and biogeochemical functions in the changing marine environment. Microbial surface association also contributes to deleterious effects such as biofouling, biocorrosion, and the persistence and transmission of harmful or pathogenic microorganisms and their genetic determinants. The processes and mechanisms of colonization as well as key players among the surface-associated microbiota have been studied for several decades. Accumulating evidence indicates that specific cell-surface, cell-cell, and interpopulation interactions shape the composition, structure, spatiotemporal dynamics, and functions of surface-associated microbial communities. Several key microbial processes and mechanisms, including (i) surface, population, and community sensing and signaling, (ii) intraspecies and interspecies communication and interaction, and (iii) the regulatory balance between cooperation and competition, have been identified as critical for the microbial surface association lifestyle. In this review, recent progress in the study of marine microbial surface colonization and biofilm development is synthesized and discussed. Major gaps in our knowledge remain. We pose questions for targeted investigation of surface-specific community-level microbial features, answers to which would advance our understanding of surface-associated microbial community ecology and the biogeochemical functions of these communities at levels from molecular mechanistic details through systems biological integration. PMID:26700108

  3. Microbial Surface Colonization and Biofilm Development in Marine Environments.

    PubMed

    Dang, Hongyue; Lovell, Charles R

    2016-03-01

    Biotic and abiotic surfaces in marine waters are rapidly colonized by microorganisms. Surface colonization and subsequent biofilm formation and development provide numerous advantages to these organisms and support critical ecological and biogeochemical functions in the changing marine environment. Microbial surface association also contributes to deleterious effects such as biofouling, biocorrosion, and the persistence and transmission of harmful or pathogenic microorganisms and their genetic determinants. The processes and mechanisms of colonization as well as key players among the surface-associated microbiota have been studied for several decades. Accumulating evidence indicates that specific cell-surface, cell-cell, and interpopulation interactions shape the composition, structure, spatiotemporal dynamics, and functions of surface-associated microbial communities. Several key microbial processes and mechanisms, including (i) surface, population, and community sensing and signaling, (ii) intraspecies and interspecies communication and interaction, and (iii) the regulatory balance between cooperation and competition, have been identified as critical for the microbial surface association lifestyle. In this review, recent progress in the study of marine microbial surface colonization and biofilm development is synthesized and discussed. Major gaps in our knowledge remain. We pose questions for targeted investigation of surface-specific community-level microbial features, answers to which would advance our understanding of surface-associated microbial community ecology and the biogeochemical functions of these communities at levels from molecular mechanistic details through systems biological integration. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Microbial colonization of basaltic glasses in hydrothermal organic-rich sediments at Guaymas Basin

    PubMed Central

    Callac, Nolwenn; Rommevaux-Jestin, Céline; Rouxel, Olivier; Lesongeur, Françoise; Liorzou, Céline; Bollinger, Claire; Ferrant, Antony; Godfroy, Anne

    2013-01-01

    Oceanic basalts host diverse microbial communities with various metabolisms involved in C, N, S, and Fe biogeochemical cycles which may contribute to mineral and glass alteration processes at, and below the seafloor. In order to study the microbial colonization on basaltic glasses and their potential biotic/abiotic weathering products, two colonization modules called AISICS (“Autonomous in situ Instrumented Colonization System”) were deployed in hydrothermal deep-sea sediments at the Guaymas Basin for 8 days and 22 days. Each AISICS module contained 18 colonizers (including sterile controls) filled with basaltic glasses of contrasting composition. Chemical analyses of ambient fluids sampled through the colonizers showed a greater contribution of hydrothermal fluids (maximum temperature 57.6°C) for the module deployed during the longer time period. For each colonizer, the phylogenetic diversity and metabolic function of bacterial and archaeal communities were explored using a molecular approach by cloning and sequencing. Results showed large microbial diversity in all colonizers. The bacterial distribution was primarily linked to the deployment duration, as well as the depth for the short deployment time module. Some 16s rRNA sequences formed a new cluster of Epsilonproteobacteria. Within the Archaea the retrieved diversity could not be linked to either duration, depth or substrata. However, mcrA gene sequences belonging to the ANME-1 mcrA-guaymas cluster were found sometimes associated with their putative sulfate-reducers syntrophs depending on the colonizers. Although no specific glass alteration texture was identified, nano-crystals of barite and pyrite were observed in close association with organic matter, suggesting a possible biological mediation. This study gives new insights into the colonization steps of volcanic rock substrates and the capability of microbial communities to exploit new environmental conditions. PMID:23986754

  5. Colonization Habitat Controls Biomass, Composition, and Metabolic Activity of Attached Microbial Communities in the Columbia River Hyporheic Corridor.

    PubMed

    Stern, Noah; Ginder-Vogel, Matthew; Stegen, James C; Arntzen, Evan; Kennedy, David W; Larget, Bret R; Roden, Eric E

    2017-08-15

    Hydrologic exchange plays a critical role in biogeochemical cycling within the hyporheic zone (the interface between river water and groundwater) of riverine ecosystems. Such exchange may set limits on the rates of microbial metabolism and impose deterministic selection on microbial communities that adapt to dynamically changing dissolved organic carbon (DOC) sources. This study examined the response of attached microbial communities ( in situ colonized sand packs) from groundwater, hyporheic, and riverbed habitats within the Columbia River hyporheic corridor to "cross-feeding" with either groundwater, river water, or DOC-free artificial fluids. Our working hypothesis was that deterministic selection during in situ colonization would dictate the response to cross-feeding, with communities displaying maximal biomass and respiration when supplied with their native fluid source. In contrast to expectations, the major observation was that the riverbed colonized sand had much higher biomass and respiratory activity, as well as a distinct community structure, compared with those of the hyporheic and groundwater colonized sands. 16S rRNA gene amplicon sequencing revealed a much higher proportion of certain heterotrophic taxa as well as significant numbers of eukaryotic algal chloroplasts in the riverbed colonized sand. Significant quantities of DOC were released from riverbed sediment and colonized sand, and separate experiments showed that the released DOC stimulated respiration in the groundwater and piezometer colonized sand. These results suggest that the accumulation and degradation of labile particulate organic carbon (POC) within the riverbed are likely to release DOC, which may enter the hyporheic corridor during hydrologic exchange, thereby stimulating microbial activity and imposing deterministic selective pressure on the microbial community composition. IMPORTANCE The influence of river water-groundwater mixing on hyporheic zone microbial community structure and function is an important but poorly understood component of riverine biogeochemistry. This study employed an experimental approach to gain insight into how such mixing might be expected to influence the biomass, respiration, and composition of hyporheic zone microbial communities. Colonized sands from three different habitats (groundwater, river water, and hyporheic) were "cross-fed" with either groundwater, river water, or DOC-free artificial fluids. We expected that the colonization history would dictate the response to cross-feeding, with communities displaying maximal biomass and respiration when supplied with their native fluid source. By contrast, the major observation was that the riverbed communities had much higher biomass and respiration, as well as a distinct community structure compared with those of the hyporheic and groundwater colonized sands. These results highlight the importance of riverbed microbial metabolism in organic carbon processing in hyporheic corridors. Copyright © 2017 American Society for Microbiology.

  6. Tracking microbial colonization patterns associated with micro-environments of rice

    NASA Astrophysics Data System (ADS)

    Schmidt, Hannes; Eickhorst, Thilo

    2015-04-01

    The interface between soil and roots (i.e. the rhizosphere) represents a highly dynamic micro-environment for microbial populations. Root-derived compounds are released into the rhizosphere and may attract, stimulate, or inhibit native soil microorganisms. Microbes associated with the rhizosphere, in turn, may have deleterious, neutral, or promoting effects on the plant. Such influences of microbial populations on the plant and vice versa are likely to be greatest in close vicinity to the root surface. It is therefore essential to detect and visualize preferential micro-sites of microbial root colonization to identify potential areas of microbe-plant interaction. We present a single-cell based approach allowing for the localization, quantification, and visualization of native microbial populations in the rhizosphere and on the rhizoplane of soil-grown roots in situ. Catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) in combination with confocal laser scanning microscopy was applied to observe colonization densities and patterns of microbial populations associated with wetland rice. Hybridizations with domain- and phylum-specific oligonucleotide probes showed that the growth stage of the rice plant as well as the distance to the root surface had a strong influence on microbial colonization patterns. Three-dimensional visualizations of root-associated microbes revealed micro-sites of preferential colonization. Highest cell numbers of archaea and bacteria were found at flowering stage of rice plant development. Irregular distribution patterns of microbiota observed at early growth stages shifted towards more uniform colonization with plant age. Accordingly, the highest colonization densities shifted from the tip to more mature regions of rice roots. Methanogenic archaea and methanotrophic bacteria were found to be co-localized at basal regions of lateral roots. Beneficial effects of a close association with root surfaces were indicated by proportionally higher numbers of methane-oxidizing bacteria on the rhizoplane compared to the rhizosphere. Such spatial effects could not be observed for methanogenic archaea. As a consequence, the detection and visualization of microbial colonization patterns on a micro-scale via CARD-FISH represents an instrumental approach in revealing potential sites of interaction between microbes and plants in soil micro-environments.

  7. Mean Annual Temperature Drives Microbial Nitrogen Cycling and Fine Root Nutrient Foraging Across a Tropical Montane Wet Forest Elevation Gradient

    NASA Astrophysics Data System (ADS)

    Pierre, S.; Litton, C. L. M.; Giardina, C. P.; Sparks, J. P.; Groffman, P. M.; Hewson, I.; Fahey, T. J.

    2017-12-01

    Mean annual temperature (MAT) is positively correlated with rates of primary production and carbon (C) turnover in forests globally, but the underlying biotic drivers of these relationships remain poorly resolved. We hypothesized that (1) MAT increases nitrifier abundance and thereby nitrate (NO-) bioavailability in soils and (2) increased NO- bioavailability reduces fine root nitrogen (N) demand. We used an ecologically well-constrained natural elevation gradient (13˚C -18˚C) in a tropical wet motane forest on the Island of Hawaii to study to role of MAT in situ. Our previous work showed that MAT drives increased soil NO- bioavailability in situ (r²=0.79, P=0.003), and indicated that the abundance of ammonia oxidizing archaea is strongly and positively correlated with MAT in situ (r²=0.34, P<0.001; Pierre et. al. 2017). Using fertilized fine root ingrowth cores (+N, +P, +N+P, control) across the same MAT gradient, we found that increasing MAT and bulk soil NO- bioavailability produced a significant negative fine root response to the +N+P treatment (P=0.023), and no response to other fertilization treatments. Increasing MAT and soil NO- bioavailability led to increased percent arbuscular mycorrhizal (AM) colonization of fine roots (r²=0.43, P=0.004), but no treatment effect on AM colonization was observed. Our results suggest that N and P generally co-limit fine root foraging across the gradient, while higher MAT and bulk soil NO- bioavailability interact to reduce fine root foraging effort. Further, higher MAT and greater N fertility in soils may reduce the C limitation of AM fungal colonization. We conclude that MAT drives N-rich conditions, which allow for lower N foraging effort, but greater C investment in P acquisition through AM fine root colonization.

  8. Microbes on a Bottle: Substrate, Season and Geography Influence Community Composition of Microbes Colonizing Marine Plastic Debris.

    PubMed

    Oberbeckmann, Sonja; Osborn, A Mark; Duhaime, Melissa B

    2016-01-01

    Plastic debris pervades in our oceans and freshwater systems and the potential ecosystem-level impacts of this anthropogenic litter require urgent evaluation. Microbes readily colonize aquatic plastic debris and members of these biofilm communities are speculated to include pathogenic, toxic, invasive or plastic degrading-species. The influence of plastic-colonizing microorganisms on the fate of plastic debris is largely unknown, as is the role of plastic in selecting for unique microbial communities. This work aimed to characterize microbial biofilm communities colonizing single-use poly(ethylene terephthalate) (PET) drinking bottles, determine their plastic-specificity in contrast with seawater and glass-colonizing communities, and identify seasonal and geographical influences on the communities. A substrate recruitment experiment was established in which PET bottles were deployed for 5-6 weeks at three stations in the North Sea in three different seasons. The structure and composition of the PET-colonizing bacterial/archaeal and eukaryotic communities varied with season and station. Abundant PET-colonizing taxa belonged to the phylum Bacteroidetes (e.g. Flavobacteriaceae, Cryomorphaceae, Saprospiraceae-all known to degrade complex carbon substrates) and diatoms (e.g. Coscinodiscophytina, Bacillariophytina). The PET-colonizing microbial communities differed significantly from free-living communities, but from particle-associated (>3 μm) communities or those inhabiting glass substrates. These data suggest that microbial community assembly on plastics is driven by conventional marine biofilm processes, with the plastic surface serving as raft for attachment, rather than selecting for recruitment of plastic-specific microbial colonizers. A small proportion of taxa, notably, members of the Cryomorphaceae and Alcanivoraceae, were significantly discriminant of PET but not glass surfaces, conjuring the possibility that these groups may directly interact with the PET substrate. Future research is required to investigate microscale functional interactions at the plastic surface.

  9. Microbes on a Bottle: Substrate, Season and Geography Influence Community Composition of Microbes Colonizing Marine Plastic Debris

    PubMed Central

    Osborn, A. Mark

    2016-01-01

    Plastic debris pervades in our oceans and freshwater systems and the potential ecosystem-level impacts of this anthropogenic litter require urgent evaluation. Microbes readily colonize aquatic plastic debris and members of these biofilm communities are speculated to include pathogenic, toxic, invasive or plastic degrading-species. The influence of plastic-colonizing microorganisms on the fate of plastic debris is largely unknown, as is the role of plastic in selecting for unique microbial communities. This work aimed to characterize microbial biofilm communities colonizing single-use poly(ethylene terephthalate) (PET) drinking bottles, determine their plastic-specificity in contrast with seawater and glass-colonizing communities, and identify seasonal and geographical influences on the communities. A substrate recruitment experiment was established in which PET bottles were deployed for 5–6 weeks at three stations in the North Sea in three different seasons. The structure and composition of the PET-colonizing bacterial/archaeal and eukaryotic communities varied with season and station. Abundant PET-colonizing taxa belonged to the phylum Bacteroidetes (e.g. Flavobacteriaceae, Cryomorphaceae, Saprospiraceae—all known to degrade complex carbon substrates) and diatoms (e.g. Coscinodiscophytina, Bacillariophytina). The PET-colonizing microbial communities differed significantly from free-living communities, but from particle-associated (>3 μm) communities or those inhabiting glass substrates. These data suggest that microbial community assembly on plastics is driven by conventional marine biofilm processes, with the plastic surface serving as raft for attachment, rather than selecting for recruitment of plastic-specific microbial colonizers. A small proportion of taxa, notably, members of the Cryomorphaceae and Alcanivoraceae, were significantly discriminant of PET but not glass surfaces, conjuring the possibility that these groups may directly interact with the PET substrate. Future research is required to investigate microscale functional interactions at the plastic surface. PMID:27487037

  10. Colonization Habitat Controls Biomass, Composition, and Metabolic Activity of Attached Microbial Communities in the Columbia River Hyporheic Corridor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stern, Noah; Ginder-Vogel, Matthew; Stegen, James C.

    Hydrologic exchange plays a critical role in biogeochemical cycling within the hyporheic zone (the interface between river water and groundwater) of riverine ecosystems. Such exchange may set limits on the rates of microbial metabolism and impose deterministic selection on microbial communities that adapt to dynamically changing dissolved organic carbon (DOC) sources. This study examined the response of attached microbial communities (in situcolonized sand packs) from groundwater, hyporheic, and riverbed habitats within the Columbia River hyporheic corridor to “cross-feeding” with either groundwater, river water, or DOC-free artificial fluids. Our working hypothesis was that deterministic selection duringin situcolonization would dictate the responsemore » to cross-feeding, with communities displaying maximal biomass and respiration when supplied with their native fluid source. In contrast to expectations, the major observation was that the riverbed colonized sand had much higher biomass and respiratory activity, as well as a distinct community structure, compared with those of the hyporheic and groundwater colonized sands. 16S rRNA gene amplicon sequencing revealed a much higher proportion of certain heterotrophic taxa as well as significant numbers of eukaryotic algal chloroplasts in the riverbed colonized sand. Significant quantities of DOC were released from riverbed sediment and colonized sand, and separate experiments showed that the released DOC stimulated respiration in the groundwater and piezometer colonized sand. These results suggest that the accumulation and degradation of labile particulate organic carbon (POC) within the riverbed are likely to release DOC, which may enter the hyporheic corridor during hydrologic exchange, thereby stimulating microbial activity and imposing deterministic selective pressure on the microbial community composition. IMPORTANCEThe influence of river water-groundwater mixing on hyporheic zone microbial community structure and function is an important but poorly understood component of riverine biogeochemistry. This study employed an experimental approach to gain insight into how such mixing might be expected to influence the biomass, respiration, and composition of hyporheic zone microbial communities. Colonized sands from three different habitats (groundwater, river water, and hyporheic) were “cross-fed” with either groundwater, river water, or DOC-free artificial fluids. We expected that the colonization history would dictate the response to cross-feeding, with communities displaying maximal biomass and respiration when supplied with their native fluid source. By contrast, the major observation was that the riverbed communities had much higher biomass and respiration, as well as a distinct community structure compared with those of the hyporheic and groundwater colonized sands. These results highlight the importance of riverbed microbial metabolism in organic carbon processing in hyporheic corridors.« less

  11. The Canonical Wnt Pathway Drives Macropinocytosis in Cancer.

    PubMed

    Redelman-Sidi, Gil; Binyamin, Anna; Gaeta, Isabella; Palm, Wilhelm; Thompson, Craig B; Romesser, Paul B; Lowe, Scott W; Bagul, Mukta; Doench, John G; Root, David E; Glickman, Michael S

    2018-06-05

    Macropinocytosis has emerged as an important pathway of protein acquisition in cancer cells, particularly in tumors with activated Ras such as pancreatic and colon cancer. Macropinocytosis is also the route of entry of Bacillus Calmette-Guerin (BCG) and other microbial therapies of cancer. Despite this important role in tumor biology and therapy, the full mechanisms by which cancer cells can activate macropinocytosis remain incompletely defined. Using BCG uptake to assay macropinocytosis, we executed a genome-wide shRNA screen for macropinocytosis activators and identified Wnt pathway activation as a strong driver of macropinocytosis. Wnt-driven macropinocytosis was downstream of the beta catenin-dependent canonical Wnt pathway, was Pak1 dependent, and supported albumin-dependent growth in Ras-WT cells. In cells with activated Ras-dependent macropinocytosis, pharmacologic or genetic inhibition of Wnt signaling suppressed macropinocytosis. In a mouse model of Wnt-driven colonic hyperplasia via APC silencing, Wnt-activated macropinocytosis stimulated uptake of luminal microbiota, a process reversed by topical pharmacologic inhibition of macropinocytosis. Our findings indicate that Wnt pathway activation drives macropinocytosis in cancer, and its inhibition could provide a therapeutic vulnerability in Wnt-driven intestinal polyposis and cancers with Wnt activation. Copyright ©2018, American Association for Cancer Research.

  12. Metaproteogenomic Profiling of Microbial Communities Colonizing Actively Venting Hydrothermal Chimneys

    PubMed Central

    Pjevac, Petra; Meier, Dimitri V.; Markert, Stephanie; Hentschker, Christian; Schweder, Thomas; Becher, Dörte; Gruber-Vodicka, Harald R.; Richter, Michael; Bach, Wolfgang; Amann, Rudolf; Meyerdierks, Anke

    2018-01-01

    At hydrothermal vent sites, chimneys consisting of sulfides, sulfates, and oxides are formed upon contact of reduced hydrothermal fluids with oxygenated seawater. The walls and surfaces of these chimneys are an important habitat for vent-associated microorganisms. We used community proteogenomics to investigate and compare the composition, metabolic potential and relative in situ protein abundance of microbial communities colonizing two actively venting hydrothermal chimneys from the Manus Basin back-arc spreading center (Papua New Guinea). We identified overlaps in the in situ functional profiles of both chimneys, despite differences in microbial community composition and venting regime. Carbon fixation on both chimneys seems to have been primarily mediated through the reverse tricarboxylic acid cycle and fueled by sulfur-oxidation, while the abundant metabolic potential for hydrogen oxidation and carbon fixation via the Calvin–Benson–Bassham cycle was hardly utilized. Notably, the highly diverse microbial community colonizing the analyzed black smoker chimney had a highly redundant metabolic potential. In contrast, the considerably less diverse community colonizing the diffusely venting chimney displayed a higher metabolic versatility. An increased diversity on the phylogenetic level is thus not directly linked to an increased metabolic diversity in microbial communities that colonize hydrothermal chimneys. PMID:29696004

  13. Living microorganisms change the information (Shannon) content of a geophysical system.

    PubMed

    Tang, Fiona H M; Maggi, Federico

    2017-06-12

    The detection of microbial colonization in geophysical systems is becoming of interest in various disciplines of Earth and planetary sciences, including microbial ecology, biogeochemistry, geomicrobiology, and astrobiology. Microorganisms are often observed to colonize mineral surfaces, modify the reactivity of minerals either through the attachment of their own biomass or the glueing of mineral particles with their mucilaginous metabolites, and alter both the physical and chemical components of a geophysical system. Here, we hypothesise that microorganisms engineer their habitat, causing a substantial change to the information content embedded in geophysical measures (e.g., particle size and space-filling capacity). After proving this hypothesis, we introduce and test a systematic method that exploits this change in information content to detect microbial colonization in geophysical systems. Effectiveness and robustness of this method are tested using a mineral sediment suspension as a model geophysical system; tests are carried out against 105 experiments conducted with different suspension types (i.e., pure mineral and microbially-colonized) subject to different abiotic conditions, including various nutrient and mineral concentrations, and different background entropy production rates. Results reveal that this method can systematically detect microbial colonization with less than 10% error in geophysical systems with low-entropy background production rate.

  14. The social structure of microbial community involved in colonization resistance.

    PubMed

    He, Xuesong; McLean, Jeffrey S; Guo, Lihong; Lux, Renate; Shi, Wenyuan

    2014-03-01

    It is well established that host-associated microbial communities can interfere with the colonization and establishment of microbes of foreign origins, a phenomenon often referred to as bacterial interference or colonization resistance. However, due to the complexity of the indigenous microbiota, it has been extremely difficult to elucidate the community colonization resistance mechanisms and identify the bacterial species involved. In a recent study, we have established an in vitro mice oral microbial community (O-mix) and demonstrated its colonization resistance against an Escherichia coli strain of mice gut origin. In this study, we further analyzed the community structure of the O-mix by using a dilution/regrowth approach and identified the bacterial species involved in colonization resistance against E. coli. Our results revealed that, within the O-mix there were three different types of bacterial species forming unique social structure. They act as 'Sensor', 'Mediator' and 'Killer', respectively, and have coordinated roles in initiating the antagonistic action and preventing the integration of E. coli. The functional role of each identified bacterial species was further confirmed by E. coli-specific responsiveness of the synthetic communities composed of different combination of the identified players. The study reveals for the first time the sophisticated structural and functional organization of a colonization resistance pathway within a microbial community. Furthermore, our results emphasize the importance of 'Facilitation' or positive interactions in the development of community-level functions, such as colonization resistance.

  15. Cryptic oxygen oases: Hypolithic photosynthesis in hydrothermal areas and implications for Archean surface oxidation

    NASA Astrophysics Data System (ADS)

    Havig, J. R.; Hamilton, T. L.

    2017-12-01

    Mounting geochemical evidence suggests microorganisms capable of oxygenic photosynthesis (e.g., Cyanobacteria) colonized Archean continental surfaces, driving oxidative weathering of detrital pyrites prior to the 2.5 Ga great oxidation event. Modern terrestrial environments dominated by single-celled phototrophs include hydrothermal systems (e.g., Yellowstone National Park) and hypolithic communities found in arid to hyper-arid deserts (e.g., McMurdo Dry Valleys of Antarctica, Atacama Desert of Chile). Recent work indicates terrestrial hydrothermal systems date back at least as far as 3.5 Ga. Here, we explore phototrophic communities in both hypolithic (sub-sinter) and hydrothermal (subaqueous and subaerial) environments in Yellowstone National Park as potential analogs to Archean continental surfaces. Hydrothermal sub-sinter environments provide ideal conditions for phototrophic microbial communities, including blocking of harmful UV radiation, trapping and retention of moisture, and protection from erosion by rain and surface runoff. Hypolithic communities in geothermal settings were similar in both composition and carbon uptake rates to nearby hot spring communities. We hypothesize that hydrothermal area hypolithic communities represent modern analogs of phototrophic microbial communities that colonized Archean continental surfaces, producing oxygen locally and facilitating microbially-mediated pyrite oxidation prior to the presence of free oxygen in the global atmosphere. These results have implications for oxidation of the early Earth surface, the search for biosignatures in the rock record, as well as for potential harbors of past life on Mars and the search for life on Exoplanets.

  16. Microbial Community Functional Change during Vertebrate Carrion Decomposition

    PubMed Central

    Pechal, Jennifer L.; Crippen, Tawni L.; Tarone, Aaron M.; Lewis, Andrew J.; Tomberlin, Jeffery K.; Benbow, M. Eric

    2013-01-01

    Microorganisms play a critical role in the decomposition of organic matter, which contributes to energy and nutrient transformation in every ecosystem. Yet, little is known about the functional activity of epinecrotic microbial communities associated with carrion. The objective of this study was to provide a description of the carrion associated microbial community functional activity using differential carbon source use throughout decomposition over seasons, between years and when microbial communities were isolated from eukaryotic colonizers (e.g., necrophagous insects). Additionally, microbial communities were identified at the phyletic level using high throughput sequencing during a single study. We hypothesized that carrion microbial community functional profiles would change over the duration of decomposition, and that this change would depend on season, year and presence of necrophagous insect colonization. Biolog EcoPlates™ were used to measure the variation in epinecrotic microbial community function by the differential use of 29 carbon sources throughout vertebrate carrion decomposition. Pyrosequencing was used to describe the bacterial community composition in one experiment to identify key phyla associated with community functional changes. Overall, microbial functional activity increased throughout decomposition in spring, summer and winter while it decreased in autumn. Additionally, microbial functional activity was higher in 2011 when necrophagous arthropod colonizer effects were tested. There were inconsistent trends in the microbial function of communities isolated from remains colonized by necrophagous insects between 2010 and 2011, suggesting a greater need for a mechanistic understanding of the process. These data indicate that functional analyses can be implemented in carrion studies and will be important in understanding the influence of microbial communities on an essential ecosystem process, carrion decomposition. PMID:24265741

  17. A submarine volcanic eruption leads to a novel microbial habitat.

    PubMed

    Danovaro, Roberto; Canals, Miquel; Tangherlini, Michael; Dell'Anno, Antonio; Gambi, Cristina; Lastras, Galderic; Amblas, David; Sanchez-Vidal, Anna; Frigola, Jaime; Calafat, Antoni M; Pedrosa-Pàmies, Rut; Rivera, Jesus; Rayo, Xavier; Corinaldesi, Cinzia

    2017-04-24

    Submarine volcanic eruptions are major catastrophic events that allow investigation of the colonization mechanisms of newly formed seabed. We explored the seafloor after the eruption of the Tagoro submarine volcano off El Hierro Island, Canary Archipelago. Near the summit of the volcanic cone, at about 130 m depth, we found massive mats of long, white filaments that we named Venus's hair. Microscopic and molecular analyses revealed that these filaments are made of bacterial trichomes enveloped within a sheath and colonized by epibiotic bacteria. Metagenomic analyses of the filaments identified a new genus and species of the order Thiotrichales, Thiolava veneris. Venus's hair shows an unprecedented array of metabolic pathways, spanning from the exploitation of organic and inorganic carbon released by volcanic degassing to the uptake of sulfur and nitrogen compounds. This unique metabolic plasticity provides key competitive advantages for the colonization of the new habitat created by the submarine eruption. A specialized and highly diverse food web thrives on the complex three-dimensional habitat formed by these microorganisms, providing evidence that Venus's hair can drive the restart of biological systems after submarine volcanic eruptions.

  18. Host-selected mutations converging on a global regulator drive an adaptive leap towards symbiosis in bacteria

    PubMed Central

    Sabrina Pankey, M; Foxall, Randi L; Ster, Ian M; Perry, Lauren A; Schuster, Brian M; Donner, Rachel A; Coyle, Matthew; Cooper, Vaughn S; Whistler, Cheryl A

    2017-01-01

    Host immune and physical barriers protect against pathogens but also impede the establishment of essential symbiotic partnerships. To reveal mechanisms by which beneficial organisms adapt to circumvent host defenses, we experimentally evolved ecologically distinct bioluminescent Vibrio fischeri by colonization and growth within the light organs of the squid Euprymna scolopes. Serial squid passaging of bacteria produced eight distinct mutations in the binK sensor kinase gene, which conferred an exceptional selective advantage that could be demonstrated through both empirical and theoretical analysis. Squid-adaptive binK alleles promoted colonization and immune evasion that were mediated by cell-associated matrices including symbiotic polysaccharide (Syp) and cellulose. binK variation also altered quorum sensing, raising the threshold for luminescence induction. Preexisting coordinated regulation of symbiosis traits by BinK presented an efficient solution where altered BinK function was the key to unlock multiple colonization barriers. These results identify a genetic basis for microbial adaptability and underscore the importance of hosts as selective agents that shape emergent symbiont populations. DOI: http://dx.doi.org/10.7554/eLife.24414.001 PMID:28447935

  19. Microbial colonization is required for normal neurobehavioral development in zebrafish..

    EPA Science Inventory

    Host-associated microbiota are a dynamic system that shapes organismal development. There is growing evidence that microbiota modify the toxicokinetics and/or toxicodynamics of environmental chemicals. To delineate the neurobehavioral consequences of microbial colonization, we ex...

  20. Microbial colonization is required for normal neurobehavioral development in zebrafish.

    EPA Science Inventory

    Host-associated microbiota are a dynamic system that shapes organismal development. There is growing evidence that microbiota modify the toxicokinetics and/or toxicodynamics of environmental chemicals. To delineate the neurobehavioral consequences of microbial colonization, we ex...

  1. Microbial shaping of wrinkle structures in siliciclastic deposits

    NASA Astrophysics Data System (ADS)

    Bosak, T.; Mariotti, G.; Pruss, S. B.; Perron, J.; O'Grady, M.

    2013-12-01

    Wrinkle structures are millimeter- to centimeter-scale elongated or reticulate sedimentary structures that resemble symmetric ripples. Sharp-crested and flat-topped wrinkle structures up to 1 cm wide occur on numerous bedding planes in the Neoproterozoic and Cambrian, as well as in some Archean and Phanerozoic siliciclastic deposits. Because similar, but unlithified structures occur in some modern, microbially-colonized sands, wrinkle structures are typically interpreted as microbially induced sedimentary structures. However, it is unclear if physical processes, such as the motion of suspended sand grains, can produce similar features in sand even before microbial colonization. We introduced mat fragments to the surface of silica sand in wave tanks and generated sharp-crested, flat-topped and pitted wrinkle structures. The abrasion of the sandy surface by rolling, low density, millimeter-size fragments of microbial mats produces wrinkle structures at extremely weak orbital velocities that cannot move sand grains in the absence of light particles. Wrinkle structures form in a few hours and can become colonized by microbial mats within weeks. Thus, wrinkle structures are patterns formed by microbially mediated sand motion at low orbital velocities in the absence of bioturbation. Once formed, wrinkle structures can be colonized and stabilized by microbial mats, but the shape of these mats does not dictate the shape of wrinkle structures. These experiments bolster the interpretation of wrinkle structures as morphological signatures of organic particles and early life in Archean and Proterozoic siliciclastic deposits.

  2. Microbial Biotransformation of a Polyphenol-Rich Potato Extract Affects Antioxidant Capacity in a Simulated Gastrointestinal Model

    PubMed Central

    Khairallah, Joelle; Sadeghi Ekbatan, Shima; Sabally, Kebba; Iskandar, Michèle M.; Hussain, Raza; Sleno, Lekha; Rodes, Laetitia; Prakash, Satya

    2018-01-01

    A multistage human gastrointestinal model was used to digest a polyphenol-rich potato extract containing chlorogenic acid, caffeic acid, ferulic acid, and rutin as the primary polyphenols, to assess for their microbial biotransformation and to measure changes in antioxidant capacity in up to 24 h of digestion. The biotransformation of polyphenols was assessed by liquid chromatography–mass spectrometry. Antioxidant capacity was measured by the ferric reducing antioxidant power (FRAP) assay. Among the colonic reactors, parent (poly)phenols were detected in the ascending (AC), but not the transverse (TC) or descending (DC) colons. The most abundant microbial phenolic metabolites in all colonic reactors included derivatives of propionic acid, acetic acid, and benzoic acid. As compared to the baseline, an earlier increase in antioxidant capacity (T = 8 h) was seen in the stomach and small intestine vessels as compared to the AC (T = 16 h) and TC and DC (T = 24 h). The increase in antioxidant capacity observed in the DC and TC can be linked to the accumulation of microbial smaller-molecular-weight phenolic catabolites, as the parent polyphenolics had completely degraded in those vessels. The colonic microbial digestion of potato-based polyphenols could lead to improved colonic health, as this generates phenolic metabolites with significant antioxidant potential. PMID:29558385

  3. PCR Conditions for 16S Primers for Analysis of Microbes in the Colon of Rats.

    PubMed

    Guillen, I A; Camacho, H; Tuero, A D; Bacardí, D; Palenzuela, D O; Aguilera, A; Silva, J A; Estrada, R; Gell, O; Suárez, J; Ancizar, J; Brown, E; Colarte, A B; Castro, J; Novoa, L I

    2016-09-01

    The study of the composition of the intestinal flora is important to the health of the host, playing a key role in maintaining intestinal homeostasis and the evolution of the immune system. For these studies, various universal primers of the 16S rDNA gene are used in microbial taxonomy. Here, we report an evaluation of 5 universal primers to explore the presence of microbial DNA in colon biopsies preserved in RNAlater solution. The DNA extracted was used for the amplification of PCR products containing the variable (V) regions of the microbial 16S rDNA gene. The PCR products were studied by restriction fragment length polymorphism (RFLP) analysis and DNA sequence, whose percent of homology with microbial sequences reported in GenBank was verified using bioinformatics tools. The presence of microbes in the colon of rats was quantified by the quantitative PCR (qPCR) technique. We obtained microbial DNA from rat, useful for PCR analysis with the universal primers for the bacteria 16S rDNA. The sequences of PCR products obtained from a colon biopsy of the animal showed homology with the classes bacilli (Lactobacillus spp) and proteobacteria, normally represented in the colon of rats. The proposed methodology allowed the attainment of DNA of bacteria with the quality and integrity for use in qPCR, sequencing, and PCR-RFLP analysis. The selected universal primers provided knowledge of the abundance of microorganisms and the formation of a preliminary test of bacterial diversity in rat colon biopsies.

  4. Colonization of plant substrates at hydrothermal vents and cold seeps in the northeast Atlantic and Mediterranean and occurrence of symbiont-related bacteria

    PubMed Central

    Szafranski, Kamil M.; Deschamps, Philippe; Cunha, Marina R.; Gaudron, Sylvie M.; Duperron, Sébastien

    2015-01-01

    Reducing conditions with elevated sulfide and methane concentrations in ecosystems such as hydrothermal vents, cold seeps or organic falls, are suitable for chemosynthetic primary production. Understanding processes driving bacterial diversity, colonization and dispersal is of prime importance for deep-sea microbial ecology. This study provides a detailed characterization of bacterial assemblages colonizing plant-derived substrates using a standardized approach over a geographic area spanning the North-East Atlantic and Mediterranean. Wood and alfalfa substrates in colonization devices were deployed for different periods at 8 deep-sea chemosynthesis-based sites in four distinct geographic areas. Pyrosequencing of a fragment of the 16S rRNA-encoding gene was used to describe bacterial communities. Colonization occurred within the first 14 days. The diversity was higher in samples deployed for more than 289 days. After 289 days, no relation was observed between community richness and deployment duration, suggesting that diversity may have reached saturation sometime in between. Communities in long-term deployments were different, and their composition was mainly influenced by the geographical location where devices were deployed. Numerous sequences related to horizontally-transmitted chemosynthetic symbionts of metazoans were identified. Their potential status as free-living forms of these symbionts was evaluated based on sequence similarity with demonstrated symbionts. Results suggest that some free-living forms of metazoan symbionts or their close relatives, such as Epsilonproteobacteria associated with the shrimp Rimicaris exoculata, are efficient colonizers of plant substrates at vents and seeps. PMID:25774156

  5. A Spatially Continuous Model of Carbohydrate Digestion and Transport Processes in the Colon

    PubMed Central

    Moorthy, Arun S.; Brooks, Stephen P. J.; Kalmokoff, Martin; Eberl, Hermann J.

    2015-01-01

    A spatially continuous mathematical model of transport processes, anaerobic digestion and microbial complexity as would be expected in the human colon is presented. The model is a system of first-order partial differential equations with context determined number of dependent variables, and stiff, non-linear source terms. Numerical simulation of the model is used to elucidate information about the colon-microbiota complex. It is found that the composition of materials on outflow of the model does not well-describe the composition of material in other model locations, and inferences using outflow data varies according to model reactor representation. Additionally, increased microbial complexity allows the total microbial community to withstand major system perturbations in diet and community structure. However, distribution of strains and functional groups within the microbial community can be modified depending on perturbation length and microbial kinetic parameters. Preliminary model extensions and potential investigative opportunities using the computational model are discussed. PMID:26680208

  6. Surface-Enhanced Raman Scattering (SERS) in Microbiology: Illumination and Enhancement of the Microbial World.

    PubMed

    Chisanga, Malama; Muhamadali, Howbeer; Ellis, David I; Goodacre, Royston

    2018-01-01

    The microbial world forms a huge family of organisms that exhibit the greatest phylogenetic diversity on Earth and thus colonize virtually our entire planet. Due to this diversity and subsequent complex interactions, the vast majority of microorganisms are involved in innumerable natural bioprocesses and contribute an absolutely vital role toward the maintenance of life on Earth, whilst a small minority cause various infectious diseases. The ever-increasing demand for environmental monitoring, sustainable ecosystems, food security, and improved healthcare systems drives the continuous search for inexpensive but reproducible, automated and portable techniques for detection of microbial isolates and understanding their interactions for clinical, environmental, and industrial applications and benefits. Surface-enhanced Raman scattering (SERS) is attracting significant attention for the accurate identification, discrimination and characterization and functional assessment of microbial cells at the single cell level. In this review, we briefly discuss the technological advances in Raman and Fourier transform infrared (FT-IR) instrumentation and their application for the analysis of clinically and industrially relevant microorganisms, biofilms, and biological warfare agents. In addition, we summarize the current trends and future prospects of integrating Raman/SERS-isotopic labeling and cell sorting technologies in parallel, to link genotype-to-phenotype in order to define community function of unculturable microbial cells in mixed microbial communities which possess admirable traits such as detoxification of pollutants and recycling of essential metals.

  7. Age-related changes in select fecal bacteria in foals

    USDA-ARS?s Scientific Manuscript database

    Adult horses depend on the microbial community in the hindgut to produce VFAs that are utilized for energy. Microbial colonization in the gastrointestinal tract of foals is essential to develop a healthy symbiotic relationship and prevent proliferation of pathogenic bacteria. However, colonization i...

  8. The skin microbiome: current perspectives and future challenges

    PubMed Central

    Chen, Yiyin Erin; Tsao, Hensin

    2013-01-01

    Complex communities of bacteria, fungi, and viruses thrive on our skin. The composition of these communities depends on skin characteristics, such as sebaceous gland concentration, moisture content, and temperature, as well as on host genetics and exogenous environmental factors. Recent metagenomic studies have uncovered a surprising diversity within these ecosystems and have fostered a new view of commensal organisms as playing a much larger role in immune modulation and epithelial health than previously expected. Understanding microbe-host interactions and discovering the factors that drive microbial colonization will help us understand the pathogenesis of skin diseases and develop new promicrobial and antimicrobial therapeutics. PMID:23489584

  9. Lactobacillus plantarum IFPL935 favors the initial metabolism of red wine polyphenols when added to a colonic microbiota.

    PubMed

    Barroso, Elvira; Sánchez-Patán, Fernando; Martín-Alvarez, Pedro J; Bartolomé, Begoña; Moreno-Arribas, María Victoria; Peláez, Carmen; Requena, Teresa; van de Wiele, Tom; Martínez-Cuesta, M Carmen

    2013-10-23

    This work aimed to unravel the role of Lactobacillus plantarum IFPL935 strain in the colonic metabolism of a polyphenolic red wine extract, when added to a complex human colonic microbiota from the dynamic simulator of the human intestinal microbial ecosystem (SHIME). The concentration of microbial-derived phenolic metabolites and microbial community changes along with fermentative and proteolytic activities were monitored. The results showed that L. plantarum IFPL935 significantly increased the concentration of the initial microbial ring-fission catabolite of catechins and procyanidins, diphenylpropanol, and, similarly, 4-hydroxy-5-(3'-hydroxyphenyl)valeric acid production. Overall, the addition of L. plantarum IFPL935 did not have an impact on the total concentration of phenolic metabolites, except for batches inoculated with colonic microbiota from the effluent compartment (EC), where the figures were significantly higher when L. plantarum IFPL935 was added (24 h). In summary, the data highlighted that L. plantarum IFPL935 may have an impact on the bioavailability of these dietary polyphenols. Some of the microbial-derived metabolites may play a key role in the protective effects that have been linked to a polyphenol-rich diet.

  10. Characterizing the microbial colonization of a dolostone quarry: implications for stone biodeterioration and response to biocide treatments.

    PubMed

    Cámara, Beatriz; De los Ríos, Asuncion; Urizal, Marta; de Buergo, Mónica Alvarez; Varas, Maria Jose; Fort, Rafael; Ascaso, Carmen

    2011-08-01

    This study examines the microbial colonization of three fronts of an abandoned dolostone quarry (Redueña, Madrid, Spain) exposed to atmospheric conditions for different time periods since Roman times to the present. Through scanning electron microscopy in backscattered electron mode (SEM-BSE), endolithic colonization was predominantly detected in the most recently exposed front, while in the longer exposed quarry fronts, epilithic forms of growth were most often observed. These observations were confirmed by denaturing gradient gel electrophoresis (DGGE) analysis. Based on the distribution pattern of microbial colonization in the different quarry fronts, we then established a sequence of colonization events that took place over this long time frame. Bioalteration processes related to this sequential colonization were also identified. Characterizing these sequential processes can be useful for interpreting biodeterioration processes in historic dolostone monuments, especially those affecting constructions in the area of the Redueña stone quarry. In a second experimental stage, different biocide treatments were tested on this quarry rock to find the best way to avoid the microbial colonization effects identified. Through combined SEM-BSE/DGGE analysis, the efficacy of several biocides against the microorganisms inhabiting the dolostones was assessed after 4 and 16 months treatment. In general, all treatments were effective at reducing around 80% of the lichen cover, although effects on endolithic lithobiontic communities were dependent on how well the rock surface had been mechanically cleaned prior to treatment and gradually disappeared over time.

  11. MICROBIAL COLONIZATION, RESPIRATION, AND BREAKDOWN OF MAPLE LEAVES ALONG A STREAM-MARSH CONTINUUM

    EPA Science Inventory

    Breakdown rates, macroinvertebrate and bacterial colonization, and microbial respiration were measured on decaying maple (Acer saccharum) leaves at three sites along a stream-marsh continuum. Breakdown rates (-k+-SE) were 0.0284+-0.0045 d-1 for leaves in a high-gradient, non-tida...

  12. MICROBIAL COLONIZATION, RESPIRATION AND BREAKDOWN OF MAPLE LEAVES ALONG A STREAM-MARSH CONTINUUM

    EPA Science Inventory

    Breakdown rates, macroinvertebrate and bacterial colonization, and microbial respiration were measured on decaying maple leaves at three sites along a stream-marsh continuum. Breakdown rates were 0.0284+/-0.0045 d-1 for leaves in a high-gradient, non-tidal stream; 0.0112 +/- 0.0...

  13. Effects of encapsulated Lactobacillus acidophilus along with pasteurized longan juice on the colon microbiota residing in a dynamic simulator of the human intestinal microbial ecosystem.

    PubMed

    Chaikham, Pittaya; Apichartsrangkoon, Arunee

    2014-01-01

    The effect of encapsulated Lactobacillus acidophilus LA5 along with pasteurized longan juice on the colon microbiota was investigated by applying a dynamic model of the human gastrointestinal tract. Encapsulated L. acidophilus LA5 in pasteurized longan juice or sole encapsulated L. acidophilus LA5 exhibited the efficiency of colonizing the colon and enabling the growth of colon lactobacilli as well as beneficial bifidobacteria but inhibited the growth of fecal coliforms and clostridia. Moreover, these treatments gave rise to a significant increase of lactic acid and short-chain fatty acids such as acetate, propionate, and butyrate. Although acetate displayed the highest quantity, it was likely that after incorporating encapsulated L. acidophilus LA5 plus pasteurized longan juice, quantity of butyrate exceed propionate, and acetate in comparison with their controls. Denaturant gradient gel electrophoresis patterns confirmed that various treatments affected the alteration of microbial community within the simulator of the human intestinal microbial ecosystem.

  14. Inhibition and enhancement of microbial surface colonization: the role of silicate composition

    USGS Publications Warehouse

    Roberts, Jennifer A.

    2004-01-01

    Classical treatment of cell attachment by models of filtration or coulombic attraction assumes that attachment of cells to mineral surfaces would be controlled by factors such as response to predation, collision efficiency, or coulombic attraction between the charged groups at the mineral and cell surfaces. In the study reported here, the passive model of attachment was investigated using a native microbial consortium and a variety of Al- and Fe-bearing silicates and oxides to determine if other controls, such as mineral composition, also influence the interaction between cells and surfaces. Results from in situ colonization studies in an anaerobic groundwater at pH 6.8 combined with most probable number analyses (MPN) of surface-adherent cells demonstrate that electrostatic effects dominate microbial colonization on positively charged oxide surfaces regardless of mineral composition. In contrast, on negatively charged silicate minerals and glasses, the solid phase composition is a factor in determining the extent of microbial colonization, as well as the diversity of the attached community. In particular, silicates containing more than 1.2% Al exhibit less biomass than Al-poor silicates and MPN suggests a shift in community diversity, possibly indicating Al toxicity on these surfaces. When Fe is present in the silicate, however, this trend is reversed and abundant colonization of the surface is observed. Here, microorganisms preferentially colonize those silicate surfaces that offer beneficial nutrients and avoid those that contain potentially toxic elements.

  15. Helicobacter pylori-infected C57BL/6 mice with different gastrointestinal microbiota have contrasting gastric pathology, microbial and host immune responses.

    PubMed

    Ge, Zhongming; Sheh, Alexander; Feng, Yan; Muthupalani, Sureshkumar; Ge, Lili; Wang, Chuanwu; Kurnick, Susanna; Mannion, Anthony; Whary, Mark T; Fox, James G

    2018-05-22

    C57BL/6 (B6) mice from Taconic Sciences (Tac) and the Jackson Laboratory (Jax) were infected with H. pylori PMSS1 (Hp) for 16 week; there was no significant difference in the gastric histologic activity index between Hp infected Tac and Jax B6. However, the degree of gastric mucous metaplasia and Th1-associated IgG2c levels in response to Hp infection were increased in Tac mice over Jax mice, whereas the colonization levels of gastric Hp were higher by 8-fold in Jax B6 compared with Tac B6. Additionally, mRNA expression of gastric Il-1β, Il-17A and RegIIIγ were significantly lower in the infected Tac compared to the infected Jax mice. There were significant differences in the microbial community structures in stomach, colon, and feces between Jax and Tac B6 females. Differences in gastric microbial communities between Jax and Tac B6 females are predicted to affect the metagenome. Moreover, Hp infection perturbed the microbial community structures in the stomach, colon and feces of Jax mice, but only altered the colonic microbial composition of Tac mice. Our data indicate that the GI microbiome of Tac B6 mice is compositionally distinct from Jax B6 mice, which likely resulted in different pathological, immunological, and microbial responses to Hp infection.

  16. Man and his spaceships: Vehicles for extraterrestrial colonization?

    PubMed

    Siefert, Janet L

    2012-11-01

    The resiliency and adaptive ability of microbial life in real time on Earth relies heavily upon horizontal gene transfer. Based on that knowledge, how likely is earth based microbial life to colonize extraterrestrial targets such as Mars? To address this question, we consider manned and unmanned space exploration, the resident microbiota that is likely to inhabit those vehicles, the adaptive potential of that microbiota in an extraterrestrial setting especially with regards to mobile genetic elements, and the likelihood that Mars like environments could initiate and sustain colonization.

  17. Analysis of gut microbial regulation of host gene expression along the length of the gut and regulation of gut microbial ecology through MyD88.

    PubMed

    Larsson, Erik; Tremaroli, Valentina; Lee, Ying Shiuan; Koren, Omry; Nookaew, Intawat; Fricker, Ashwana; Nielsen, Jens; Ley, Ruth E; Bäckhed, Fredrik

    2012-08-01

    The gut microbiota has profound effects on host physiology but local host-microbial interactions in the gut are only poorly characterised and are likely to vary from the sparsely colonised duodenum to the densely colonised colon. Microorganisms are recognised by pattern recognition receptors such as Toll-like receptors, which signal through the adaptor molecule MyD88. To identify host responses induced by gut microbiota along the length of the gut and whether these required MyD88, transcriptional profiles of duodenum, jejunum, ileum and colon were compared from germ-free and conventionally raised wild-type and Myd88-/- mice. The gut microbial ecology was assessed by 454-based pyrosequencing and viruses were analysed by PCR. The gut microbiota modulated the expression of a large set of genes in the small intestine and fewer genes in the colon but surprisingly few microbiota-regulated genes required MyD88 signalling. However, MyD88 was essential for microbiota-induced colonic expression of the antimicrobial genes Reg3β and Reg3γ in the epithelium, and Myd88 deficiency was associated with both a shift in bacterial diversity and a greater proportion of segmented filamentous bacteria in the small intestine. In addition, conventionally raised Myd88-/- mice had increased expression of antiviral genes in the colon, which correlated with norovirus infection in the colonic epithelium. This study provides a detailed description of tissue-specific host transcriptional responses to the normal gut microbiota along the length of the gut and demonstrates that the absence of MyD88 alters gut microbial ecology.

  18. Internal Porosity of Mineral Coating Supports Microbial Activity in Rapid Sand Filters for Groundwater Treatment

    PubMed Central

    Gülay, Arda; Tatari, Karolina; Musovic, Sanin; Mateiu, Ramona V.; Albrechtsen, Hans-Jørgen

    2014-01-01

    A mineral coating develops on the filter grain surface when groundwater is treated via rapid sand filtration in drinking water production. The coating changes the physical and chemical properties of the filter material, but little is known about its effect on the activity, colonization, diversity, and abundance of microbiota. This study reveals that a mineral coating can positively affect the colonization and activity of microbial communities in rapid sand filters. To understand this effect, we investigated the abundance, spatial distribution, colonization, and diversity of all and of nitrifying prokaryotes in filter material with various degrees of mineral coating. We also examined the physical and chemical characteristics of the mineral coating. The amount of mineral coating correlated positively with the internal porosity, the packed bulk density, and the biologically available surface area of the filter material. The volumetric NH4+ removal rate also increased with the degree of mineral coating. Consistently, bacterial 16S rRNA and amoA abundances positively correlated with increased mineral coating levels. Microbial colonization could be visualized mainly within the outer periphery (60.6 ± 35.6 μm) of the mineral coating, which had a thickness of up to 600 ± 51 μm. Environmental scanning electron microscopic (E-SEM) observations suggested an extracellular polymeric substance-rich matrix and submicron-sized bacterial cells. Nitrifier diversity profiles were similar irrespective of the degree of mineral coating, as indicated by pyrosequencing analysis. Overall, our results demonstrate that mineral coating positively affects microbial colonization and activity in rapid sand filters, most likely due to increased volumetric cell abundances facilitated by the large surface area of internal mineral porosity accessible for microbial colonization. PMID:25192987

  19. The influence of stents on microbial colonization of the airway in children after slide tracheoplasty: a 14-year single-center experience.

    PubMed

    Rijnberg, Friso M; Butler, Colin R; Speggiorin, Simone; Fierens, Anja; Wallis, Colin; Nouraei, Reza; McLaren, Clare A; Roebuck, Derek J; Hewitt, Richard; Elliott, Martin J

    2015-01-01

    This study describes the microbial colonization profile of the airway in children after slide tracheoplasty (STP) with and without stents, and compares colonization to children undergoing cardiothoracic surgical procedures without airway related disease. A 14-year retrospective single case note review was performed on patients undergoing STP and stent insertion. Nose and throat (NT) and bronchoalveolar lavage (BAL) specimens were analyzed for microbial profile and expressed as cumulative mean microorganisms per patient (MMP). Forty-three patients (median age ± SD 15.02 ± 31.76 months) underwent STP and 141 patients underwent cardiothoracic but no airway surgery (median age ± SD 31.7 ± 47.2 months). Sixteen patients required a stent after STP. One-hundred seventy-two positive microbial specimens were identified. The predominant 6 microorganisms were (1) Staphylococcus aureus; (2) Pseudomonas aeruginosa; (3) Haemophilus influenzae not type B; (4) Coliforms; (5) Streptococcus pneumoniae; and (6) Candida Albicans, and accounted for 128 (74%) of all positive specimens found. Children with stents had more MMP compared to children without stents after STP [4.06 ± 2.38 and 2.04 ± 2.24 MMP (P < 0.001), respectively]. Both groups of children after STP had more MMP compared to the control group (P < 0.001). Children with stents had more microbial colonization of their lower respiratory tract compared to their upper respiratory tract (3.36 ± 2.02 and 1.36 ± 0.93 MMP (P < 0.01) respectively). Staphylococcus aureus colonization of the lower respiratory tract was significantly higher in children with stents compared to children without stents after STP [0.5 and 0.15 MMP (P < 0.05) respectively]. This study indicates airway surgery and the subsequent use of stents to be a significant risk factor for microbial colonization of the airway in children. More specifically airway stents appear to increase colonization in the distal airway, which appears unrelated to that of the upper respiratory tract. © 2014 Wiley Periodicals, Inc.

  20. Multi-Body-Site Microbiome and Culture Profiling of Military Trainees Suffering from Skin and Soft Tissue Infections at Fort Benning, Georgia

    PubMed Central

    Singh, Jatinder; Johnson, Ryan C.; Schlett, Carey D.; Elassal, Emad M.; Crawford, Katrina B.; Mor, Deepika; Lanier, Jeffrey B.; Law, Natasha N.; Walters, William A.; Teneza-Mora, Nimfa; Bennett, Jason W.; Hall, Eric R.; Millar, Eugene V.; Ellis, Michael W.

    2016-01-01

    ABSTRACT Skin and soft tissue infections (SSTIs) are common in the general population, with increased prevalence among military trainees. Previous research has revealed numerous nasal microbial signatures that correlate with SSTI development and Staphylococcus aureus colonization. Thus, we hypothesized that the ecology of the inguinal, oropharynx, and perianal regions may also be altered in response to SSTI and/or S. aureus colonization. We collected body site samples from 46 military trainees with purulent abscess (SSTI group) as well as from 66 asymptomatic controls (non-SSTI group). We also collected abscess cavity samples to assess the microbial composition of these infections. Samples were analyzed by culture, and the microbial communities were characterized by high-throughput sequencing. We found that the nasal, inguinal, and perianal regions were similar in microbial composition and significantly differed from the oropharynx. We also observed differences in Anaerococcus and Streptococcus abundance between the SSTI and non-SSTI groups for the nasal and oropharyngeal regions, respectively. Furthermore, we detected community membership differences between the SSTI and non-SSTI groups for the nasal and inguinal sites. Compared to that of the other regions, the microbial compositions of the nares of S. aureus carriers and noncarriers were dramatically different; we noted an inverse correlation between the presence of Corynebacterium and the presence of Staphylococcus in the nares. This correlation was also observed for the inguinal region. Culture analysis revealed elevated methicillin-resistant S. aureus (MRSA) colonization levels for the SSTI group in the nasal and inguinal body sites. Together, these data suggest significant microbial variability in patients with SSTI as well as between S. aureus carriers and noncarriers. IMPORTANCE While it is evident that nasal colonization with S. aureus increases the likelihood of SSTI, there is a significant lack of information regarding the contribution of extranasal colonization to the overall risk of a subsequent SSTI. Furthermore, the impact of S. aureus colonization on bacterial community composition outside the nasal microbiota is unclear. Thus, this report represents the first investigation that utilized both culture and high-throughput sequencing techniques to analyze microbial dysbiosis at multiple body sites of healthy and diseased/colonized individuals. The results described here may be useful in the design of future methodologies to treat and prevent SSTIs. PMID:27747300

  1. Investigation of the microbial communities colonizing prepainted steel used for roofing and walling.

    PubMed

    Huynh, Tran T; Jamil, Ili; Pianegonda, Nicole A; Blanksby, Stephen J; Barker, Philip J; Manefield, Mike; Rice, Scott A

    2017-04-01

    Microbial colonization of prepainted steel, commonly used in roofing applications, impacts their aesthetics, durability, and functionality. Understanding the relevant organisms and the mechanisms by which colonization occurs would provide valuable information that can be subsequently used to design fouling prevention strategies. Here, next-generation sequencing and microbial community finger printing (T-RFLP) were used to study the community composition of microbes colonizing prepainted steel roofing materials at Burrawang, Australia and Kapar, Malaysia over a 52-week period. Community diversity was low and was dominated by Bacillus spp., cyanobacteria, actinobacteria, Cladosporium sp., Epicoccum nigrum, and Teratosphaeriaceae sp. Cultivation-based methods isolated approximately 20 different fungi and bacteria, some of which, such as E. nigrum and Cladosporium sp., were represented in the community sequence data. Fluorescence in situ hybridization imaging showed that fungi were the most dominant organisms present. Analysis of the sequence and T-RFLP data indicated that the microbial communities differed significantly between locations and changed significantly over time. The study demonstrates the utility of molecular ecology tools to identify and characterize microbial communities associated with the fouling of painted steel surfaces and ultimately can enable the targeted development of control strategies based on the dominant species responsible for fouling. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  2. Optical Measurement of Cell Colonization Patterns on Individual Suspended Sediment Aggregates

    NASA Astrophysics Data System (ADS)

    Nguyen, Thu Ha; Tang, Fiona H. M.; Maggi, Federico

    2017-10-01

    Microbial processes can make substantial differences to the way in which particles settle in aquatic environments. A novel method (OMCEC, optical measurement of cell colonization) is introduced to systematically map the biological spatial distribution over individual suspended sediment aggregates settling through a water column. OMCEC was used to investigate (1) whether a carbon source concentration has an impact on cell colonization, (2) how cells colonize minerals, and (3) if a correlation between colonization patterns and aggregate geometry exists. Incubations of Saccharomyces cerevisiae and stained montmorillonite at four sucrose concentrations were tested in a settling column equipped with a full-color microparticle image velocimetry system. The acquired high-resolution images were processed to map the cell distribution on aggregates based on emission spectra separation. The likelihood of cells colonizing minerals increased with increasing sucrose concentration. Colonization patterns were classified into (i) scattered, (ii) well touched, and (iii) poorly touched, with the second being predominant. Cell clusters in well-touched patterns were found to have lower capacity dimension than those in other patterns, while the capacity dimension of the corresponding aggregates was relatively high. A strong correlation of colonization patterns with aggregate biomass fraction and properties suggests dynamic colonization mechanisms from cell attachment to minerals, to joining of isolated cell clusters, and finally cell growth over the entire aggregate. This paper introduces a widely applicable method for analyses of microbial-affected sediment dynamics and highlights the microbial control on aggregate geometry, which can improve the prediction of large-scale morphodynamics processes.

  3. Bacterial Endophyte Colonization and Distribution within Plants

    PubMed Central

    Kandel, Shyam L.; Joubert, Pierre M.

    2017-01-01

    The plant endosphere contains a diverse group of microbial communities. There is general consensus that these microbial communities make significant contributions to plant health. Both recently adopted genomic approaches and classical microbiology techniques continue to develop the science of plant-microbe interactions. Endophytes are microbial symbionts residing within the plant for the majority of their life cycle without any detrimental impact to the host plant. The use of these natural symbionts offers an opportunity to maximize crop productivity while reducing the environmental impacts of agriculture. Endophytes promote plant growth through nitrogen fixation, phytohormone production, nutrient acquisition, and by conferring tolerance to abiotic and biotic stresses. Colonization by endophytes is crucial for providing these benefits to the host plant. Endophytic colonization refers to the entry, growth and multiplication of endophyte populations within the host plant. Lately, plant microbiome research has gained considerable attention but the mechanism allowing plants to recruit endophytes is largely unknown. This review summarizes currently available knowledge about endophytic colonization by bacteria in various plant species, and specifically discusses the colonization of maize plants by Populus endophytes. PMID:29186821

  4. A central venous catheter coated with benzalkonium chloride for the prevention of catheter-related microbial colonization.

    PubMed

    Moss, H A; Tebbs, S E; Faroqui, M H; Herbst, T; Isaac, J L; Brown, J; Elliott, T S

    2000-11-01

    In an attempt to overcome infections associated with central venous catheters, a new antiseptic central venous catheter coated with benzalkonium chloride on the internal and external surfaces has been developed and evaluated in a clinical trial. Patients (235) randomly received either a triple-lumen central venous catheter coated with benzalkonium chloride (117) or a polyurethane non-antiseptic catheter (118). The incidence of microbial colonization of both catheters and retained antiseptic activity of the benzalkonium chloride device following removal were determined. The benzalkonium chloride resulted in a significant reduction of the incidence of microbial colonization on both the internal and external catheter surfaces. The reduction in colonization was detected at both the intradermal (21 benzalkonium chloride catheters vs. 38 controls, P = 0.0016) and distal segments of the antiseptic-coated catheters. Following catheter removal retained activity was demonstrated in benzalkonium chloride catheters which had been in place for up to 12 days. No patients developed adverse reactions to the benzalkonium chloride catheters. The findings demonstrate that the benzalkonium chloride catheter significantly reduced the incidence of catheter-associated colonization.

  5. Microbial colonization of biopolymeric thin films containing natural compounds and antibiotics fabricated by MAPLE

    NASA Astrophysics Data System (ADS)

    Cristescu, R.; Surdu, A. V.; Grumezescu, A. M.; Oprea, A. E.; Trusca, R.; Vasile, O.; Dorcioman, G.; Visan, A.; Socol, G.; Mihailescu, I. N.; Mihaiescu, D.; Enculescu, M.; Chifiriuc, M. C.; Boehm, R. D.; Narayan, R. J.; Chrisey, D. B.

    2015-05-01

    Although a great number of antibiotics are currently available, they are often rendered ineffective by the ability of microbial strains to develop genetic resistance and to grow in biofilms. Since many antimicrobial agents poorly penetrate biofilms, biofilm-associated infections often require high concentrations of antimicrobial agents for effective treatment. Among the various strategies that may be used to inhibit microbial biofilms, one strategy that has generated significant interest involves the use of bioactive surfaces that are resistant to microbial colonization. In this respect, we used matrix assisted pulsed laser evaporation (MAPLE) involving a pulsed KrF* excimer laser source (λ = 248 nm, τ = 25 ns, ν = 10 Hz) to obtain thin composite biopolymeric films containing natural (flavonoid) or synthetic (antibiotic) compounds as bioactive substances. Chemical composition and film structures were investigated by Fourier transform infrared spectroscopy and X-ray diffraction. Films morphology was studied by scanning electron microscopy and transmission electron microscopy. The antimicrobial assay of the microbial biofilms formed on these films was assessed by the viable cell counts method. The flavonoid-containing thin films showed increased resistance to microbial colonization, highlighting their potential to be used for the design of anti-biofilm surfaces.

  6. The composition of the gut microbiota throughout life, with an emphasis on early life

    PubMed Central

    Rodríguez, Juan Miguel; Murphy, Kiera; Stanton, Catherine; Ross, R. Paul; Kober, Olivia I.; Juge, Nathalie; Avershina, Ekaterina; Rudi, Knut; Narbad, Arjan; Jenmalm, Maria C.; Marchesi, Julian R.; Collado, Maria Carmen

    2015-01-01

    The intestinal microbiota has become a relevant aspect of human health. Microbial colonization runs in parallel with immune system maturation and plays a role in intestinal physiology and regulation. Increasing evidence on early microbial contact suggest that human intestinal microbiota is seeded before birth. Maternal microbiota forms the first microbial inoculum, and from birth, the microbial diversity increases and converges toward an adult-like microbiota by the end of the first 3–5 years of life. Perinatal factors such as mode of delivery, diet, genetics, and intestinal mucin glycosylation all contribute to influence microbial colonization. Once established, the composition of the gut microbiota is relatively stable throughout adult life, but can be altered as a result of bacterial infections, antibiotic treatment, lifestyle, surgical, and a long-term change in diet. Shifts in this complex microbial system have been reported to increase the risk of disease. Therefore, an adequate establishment of microbiota and its maintenance throughout life would reduce the risk of disease in early and late life. This review discusses recent studies on the early colonization and factors influencing this process which impact on health. PMID:25651996

  7. Bacterial Colonization of Disposable Soft Contact Lenses Is Greater during Corneal Infiltrative Events than during Asymptomatic Extended Lens Wear

    PubMed Central

    Sankaridurg, Padmaja R.; Sharma, Savitri; Willcox, Mark; Naduvilath, Thomas J.; Sweeney, Deborah F.; Holden, Brien A.; Rao, Gullapalli N.

    2000-01-01

    Microorganisms, especially gram-negative bacteria, are considered to play a role in the etiology of certain corneal infiltrative events (CIEs) observed during soft contact lens wear. This study explored the possibility of microbial colonization of soft contact lenses as a risk factor leading to CIEs. In a clinical trial conducted from March 1993 to January 1996, 330 subjects wore disposable soft contact lenses on a 6-night extended-wear and disposal schedule. During this period, 4,321 lenses (118 during CIEs; 4,203 during asymptomatic lens wear) were recovered aseptically and analyzed for microbial colonization. A greater percentage of lenses were free from microbial colonization during asymptomatic wear than during CIEs (42 versus 23%; P < 0.0001). The incidence of gram-positive bacteria, gram-negative bacteria and fungi was greater during CIEs than during asymptomatic lens wear (P < 0.05). During asymptomatic lens wear, gram-positive bacteria were isolated most frequently and were usually normal external ocular microbiota. Of the gram-positive bacteria, the incidence of Streptococcus pneumoniae was greater during CIE than during asymptomatic wear (7.6 versus 0.6%; P < 0.0001). While gram-negative bacteria were seen in few cases during asymptomatic wear, their incidence during CIE in comparison to asymptomatic wear was substantial and significant (23.7 versus 3.8%; P < 0.0001). Also, the level of colonization was high. Of CIEs, events of microbial keratitis, contact lens acute red eye, and asymptomatic infiltrative keratitis were associated with lens colonization with gram-negative bacteria or S. pneumoniae. Colonization of soft contact lenses with pathogenic bacteria, especially gram-negative bacteria and S. pneumoniae, appears to be a significant risk factor leading to CIE. PMID:11101574

  8. The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota.

    PubMed

    Milani, Christian; Duranti, Sabrina; Bottacini, Francesca; Casey, Eoghan; Turroni, Francesca; Mahony, Jennifer; Belzer, Clara; Delgado Palacio, Susana; Arboleya Montes, Silvia; Mancabelli, Leonardo; Lugli, Gabriele Andrea; Rodriguez, Juan Miguel; Bode, Lars; de Vos, Willem; Gueimonde, Miguel; Margolles, Abelardo; van Sinderen, Douwe; Ventura, Marco

    2017-12-01

    The human gut microbiota is engaged in multiple interactions affecting host health during the host's entire life span. Microbes colonize the neonatal gut immediately following birth. The establishment and interactive development of this early gut microbiota are believed to be (at least partially) driven and modulated by specific compounds present in human milk. It has been shown that certain genomes of infant gut commensals, in particular those of bifidobacterial species, are genetically adapted to utilize specific glycans of this human secretory fluid, thus representing a very intriguing example of host-microbe coevolution, where both partners are believed to benefit. In recent years, various metagenomic studies have tried to dissect the composition and functionality of the infant gut microbiome and to explore the distribution across the different ecological niches of the infant gut biogeography of the corresponding microbial consortia, including those corresponding to bacteria and viruses, in healthy and ill subjects. Such analyses have linked certain features of the microbiota/microbiome, such as reduced diversity or aberrant composition, to intestinal illnesses in infants or disease states that are manifested at later stages of life, including asthma, inflammatory bowel disease, and metabolic disorders. Thus, a growing number of studies have reported on how the early human gut microbiota composition/development may affect risk factors related to adult health conditions. This concept has fueled the development of strategies to shape the infant microbiota composition based on various functional food products. In this review, we describe the infant microbiota, the mechanisms that drive its establishment and composition, and how microbial consortia may be molded by natural or artificial interventions. Finally, we discuss the relevance of key microbial players of the infant gut microbiota, in particular bifidobacteria, with respect to their role in health and disease. Copyright © 2017 American Society for Microbiology.

  9. Microbial biofilms associated with fluid chemistry and megafaunal colonization at post-eruptive deep-sea hydrothermal vents

    NASA Astrophysics Data System (ADS)

    O'Brien, Charles E.; Giovannelli, Donato; Govenar, Breea; Luther, George W.; Lutz, Richard A.; Shank, Timothy M.; Vetriani, Costantino

    2015-11-01

    At deep-sea hydrothermal vents, reduced, super-heated hydrothermal fluids mix with cold, oxygenated seawater. This creates temperature and chemical gradients that support chemosynthetic primary production and a biomass-rich community of invertebrates. In late 2005/early 2006 an eruption occurred on the East Pacific Rise at 9°50‧N, 104°17‧W. Direct observations of the post-eruptive diffuse-flow vents indicated that the earliest colonizers were microbial biofilms. Two cruises in 2006 and 2007 allowed us to monitor and sample the early steps of ecosystem recovery. The main objective of this work was to characterize the composition of microbial biofilms in relation to the temperature and chemistry of the hydrothermal fluids and the observed patterns of megafaunal colonization. The area selected for this study had local seafloor habitats of active diffuse flow (in-flow) interrupted by adjacent habitats with no apparent expulsion of hydrothermal fluids (no-flow). The in-flow habitats were characterized by higher temperatures (1.6-25.2 °C) and H2S concentrations (up to 67.3 μM) than the no-flow habitats, and the microbial biofilms were dominated by chemosynthetic Epsilonproteobacteria. The no-flow habitats had much lower temperatures (1.2-5.2 °C) and H2S concentrations (0.3-2.9 μM), and Gammaproteobacteria dominated the biofilms. Siboglinid tubeworms colonized only in-flow habitats, while they were absent at the no-flow areas, suggesting a correlation between siboglinid tubeworm colonization, active hydrothermal flow, and the composition of chemosynthetic microbial biofilms.

  10. Investigating Bacterial-Animal Symbioses with Light Sheet Microscopy

    PubMed Central

    Taormina, Michael J.; Jemielita, Matthew; Stephens, W. Zac; Burns, Adam R.; Troll, Joshua V.; Parthasarathy, Raghuveer; Guillemin, Karen

    2014-01-01

    SUMMARY Microbial colonization of the digestive tract is a crucial event in vertebrate development, required for maturation of host immunity and establishment of normal digestive physiology. Advances in genomic, proteomic, and metabolomic technologies are providing a more detailed picture of the constituents of the intestinal habitat, but these approaches lack the spatial and temporal resolution needed to characterize the assembly and dynamics of microbial communities in this complex environment. We report the use of light sheet microscopy to provide high resolution imaging of bacterial colonization of the zebrafish intestine. The methodology allows us to characterize bacterial population dynamics across the entire organ and the behaviors of individual bacterial and host cells throughout the colonization process. The large four-dimensional datasets generated by these imaging approaches require new strategies for image analysis. When integrated with other “omics” datasets, information about the spatial and temporal dynamics of microbial cells within the vertebrate intestine will provide new mechanistic insights into how microbial communities assemble and function within hosts. PMID:22983029

  11. Acquisition and maturation of oral microbiome throughout childhood: An update

    PubMed Central

    Sampaio-Maia, Benedita; Monteiro-Silva, Filipa

    2014-01-01

    Traditional microbiology concepts are being renewed since the development of new microbiological technologies, such as, sequencing and large-scale genome analysis. Since the entry into the new millennium, a lot of new information has emerged regarding the oral microbiome. This revision presents an overview of this renewed knowledge on oral microbial community acquisition in the newborn and on the evolution of this microbiome to adulthood. Throughout childhood, the oral microbial load increases, but the microbial diversity decreases. The initial colonizers are related to the type of delivery, personal relationships, and living environment. These first colonizers seem to condition the subsequent colonization, which will lead to more complex and stable ecosystems in adulthood. These early oral microbial communities, therefore, play a major role in the development of the adult oral microbiota and may represent a source of both pathogenic and protective microorganisms in a very early stage of human life. The implications of this knowledge on the daily clinical practice of odontopediatrics are highlighted. PMID:25097637

  12. Tracking microbial colonization in fecal microbiota transplantation experiments via genome-resolved metagenomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sonny T. M.; Kahn, Stacy A.; Delmont, Tom O.

    Fecal microbiota transplantation (FMT) is an effective treatment for recurrent Clostridium difficile infection and shows promise for treating other medical conditions associated with intestinal dysbioses. However, we lack a sufficient understanding of which microbial populations successfully colonize the recipient gut, and the widely used approaches to study the microbial ecology of FMT experiments fail to provide enough resolution to identify populations that are likely responsible for FMT-derived benefits. Here, we used shotgun metagenomics together with assembly and binning strategies to reconstruct metagenome-assembled genomes (MAGs) from fecal samples of a single FMT donor. We then used metagenomic mapping to track themore » occurrence and distribution patterns of donor MAGs in two FMT recipients. Our analyses revealed that 22% of the 92 highly complete bacterial MAGs that we identified from the donor successfully colonized and remained abundant in two recipients for at least 8 weeks. Most MAGs with a high colonization rate belonged to the order Bacteroidales. The vast majority of those that lacked evidence of colonization belonged to the order Clostridiales, and colonization success was negatively correlated with the number of genes related to sporulation. Our analysis of 151 publicly available gut metagenomes showed that the donor MAGs that colonized both recipients were prevalent, and the ones that colonized neither were rare across the participants of the Human Microbiome Project. Although our dataset showed a link between taxonomy and the colonization ability of a given MAG, we also identified MAGs that belong to the same taxon with different colonization properties, highlighting the importance of an appropriate level of resolution to explore the functional basis of colonization and to identify targets for cultivation, hypothesis generation, and testing in model systems. Lastly, the analytical strategy adopted in our study can provide genomic insights into bacterial populations that may be critical to the efficacy of FMT due to their success in gut colonization and metabolic properties, and guide cultivation efforts to investigate mechanistic underpinnings of this procedure beyond associations.« less

  13. Tracking microbial colonization in fecal microbiota transplantation experiments via genome-resolved metagenomics

    DOE PAGES

    Lee, Sonny T. M.; Kahn, Stacy A.; Delmont, Tom O.; ...

    2017-05-04

    Fecal microbiota transplantation (FMT) is an effective treatment for recurrent Clostridium difficile infection and shows promise for treating other medical conditions associated with intestinal dysbioses. However, we lack a sufficient understanding of which microbial populations successfully colonize the recipient gut, and the widely used approaches to study the microbial ecology of FMT experiments fail to provide enough resolution to identify populations that are likely responsible for FMT-derived benefits. Here, we used shotgun metagenomics together with assembly and binning strategies to reconstruct metagenome-assembled genomes (MAGs) from fecal samples of a single FMT donor. We then used metagenomic mapping to track themore » occurrence and distribution patterns of donor MAGs in two FMT recipients. Our analyses revealed that 22% of the 92 highly complete bacterial MAGs that we identified from the donor successfully colonized and remained abundant in two recipients for at least 8 weeks. Most MAGs with a high colonization rate belonged to the order Bacteroidales. The vast majority of those that lacked evidence of colonization belonged to the order Clostridiales, and colonization success was negatively correlated with the number of genes related to sporulation. Our analysis of 151 publicly available gut metagenomes showed that the donor MAGs that colonized both recipients were prevalent, and the ones that colonized neither were rare across the participants of the Human Microbiome Project. Although our dataset showed a link between taxonomy and the colonization ability of a given MAG, we also identified MAGs that belong to the same taxon with different colonization properties, highlighting the importance of an appropriate level of resolution to explore the functional basis of colonization and to identify targets for cultivation, hypothesis generation, and testing in model systems. Lastly, the analytical strategy adopted in our study can provide genomic insights into bacterial populations that may be critical to the efficacy of FMT due to their success in gut colonization and metabolic properties, and guide cultivation efforts to investigate mechanistic underpinnings of this procedure beyond associations.« less

  14. Spatio temporal analysis of microbial habitats in soil-root interfaces

    NASA Astrophysics Data System (ADS)

    Eickhorst, Thilo; Schmidt, Hannes

    2017-04-01

    Microbial habitats in soils are formed by the arrangement and availability of inorganic and organic compounds. They can be characterized by physico-chemical parameters and the resulting colonization by microorganisms. Areas being preferably colonized are known as microbial hot spots which can be found in (bio)pores within the aggregatusphere or in the rhizosphere. The latter is directly influenced by plants i.e. the growth and activity of plant roots which has an influence on physico-chemical dynamics in the rhizosphere and can even shape plants' root microbiome. As microbial communities play an important role in nutrient cycling their response in soil-root interfaces is of great importance. Especially in complex systems such as paddy soils used for the cultivation of wetland rice the analysis of spatio-temporal aspects is important to get knowledge about their influence on the microbial dynamics in the respective habitats. But also other spatial variations on larger scales up to landscape scale may have an impact on the soil microorganisms in their habitats. This PICO presentation will introduce a set of techniques which are useful to analyze both the physico-chemical characteristics of microbial habitats and the microbial colonization and dynamics in soil-root interfaces. Examples will be given on various studies from rice cultivation in different paddy soils up to an European transect representing rhizosphere soils of selected plant species.

  15. Heterogeneity of Microbiota Dysbiosis in Chronic Rhinosinusitis: Potential Clinical Implications and Microbial Community Mechanisms Contributing to Sinonasal Inflammation.

    PubMed

    Lee, Keehoon; Pletcher, Steven D; Lynch, Susan V; Goldberg, Andrew N; Cope, Emily K

    2018-01-01

    Recent studies leveraging next-generation sequencing and functional approaches to understand the human microbiota have demonstrated the presence of diverse, niche-specific microbial communities at nearly every mucosal surface. These microbes contribute to the development and function of physiologic and immunological features that are key to host health status. Not surprisingly, several chronic inflammatory diseases have been attributed to dysbiosis of microbiota composition or function, including chronic rhinosinusitis (CRS). CRS is a heterogeneous disease characterized by inflammation of the sinonasal cavity and mucosal microbiota dysbiosis. Inflammatory phenotypes and bacterial community compositions vary considerably across individuals with CRS, complicating current studies that seek to address causality of a dysbiotic microbiome as a driver or initiator of persistent sinonasal inflammation. Murine models have provided some experimental evidence that alterations in local microbial communities and microbially-produced metabolites influence health status. In this perspective, we will discuss the clinical implications of distinct microbial compositions and community-level functions in CRS and how mucosal microbiota relate to the diverse inflammatory endotypes that are frequently observed. We will also describe specific microbial interactions that can deterministically shape the pattern of co-colonizers and the resulting metabolic products that drive or exacerbate host inflammation. These findings are discussed in the context of CRS-associated inflammation and in other chronic inflammatory diseases that share features observed in CRS. An improved understanding of CRS patient stratification offers the opportunity to personalize therapeutic regimens and to design novel treatments aimed at manipulation of the disease-associated microbiota to restore sinus health.

  16. Colonization-Induced Host-Gut Microbial Metabolic Interaction

    PubMed Central

    Claus, Sandrine P.; Ellero, Sandrine L.; Berger, Bernard; Krause, Lutz; Bruttin, Anne; Molina, Jérôme; Paris, Alain; Want, Elizabeth J.; de Waziers, Isabelle; Cloarec, Olivier; Richards, Selena E.; Wang, Yulan; Dumas, Marc-Emmanuel; Ross, Alastair; Rezzi, Serge; Kochhar, Sunil; Van Bladeren, Peter; Lindon, John C.; Holmes, Elaine; Nicholson, Jeremy K.

    2011-01-01

    The gut microbiota enhances the host’s metabolic capacity for processing nutrients and drugs and modulate the activities of multiple pathways in a variety of organ systems. We have probed the systemic metabolic adaptation to gut colonization for 20 days following exposure of axenic mice (n = 35) to a typical environmental microbial background using high-resolution 1H nuclear magnetic resonance (NMR) spectroscopy to analyze urine, plasma, liver, kidney, and colon (5 time points) metabolic profiles. Acquisition of the gut microbiota was associated with rapid increase in body weight (4%) over the first 5 days of colonization with parallel changes in multiple pathways in all compartments analyzed. The colonization process stimulated glycogenesis in the liver prior to triggering increases in hepatic triglyceride synthesis. These changes were associated with modifications of hepatic Cyp8b1 expression and the subsequent alteration of bile acid metabolites, including taurocholate and tauromuricholate, which are essential regulators of lipid absorption. Expression and activity of major drug-metabolizing enzymes (Cyp3a11 and Cyp2c29) were also significantly stimulated. Remarkably, statistical modeling of the interactions between hepatic metabolic profiles and microbial composition analyzed by 16S rRNA gene pyrosequencing revealed strong associations of the Coriobacteriaceae family with both the hepatic triglyceride, glucose, and glycogen levels and the metabolism of xenobiotics. These data demonstrate the importance of microbial activity in metabolic phenotype development, indicating that microbiota manipulation is a useful tool for beneficially modulating xenobiotic metabolism and pharmacokinetics in personalized health care. PMID:21363910

  17. Prolonged restraint stressor exposure in outbred CD-1 mice impacts microbiota, colonic inflammation, and short chain fatty acids.

    PubMed

    Maltz, Ross M; Keirsey, Jeremy; Kim, Sandra C; Mackos, Amy R; Gharaibeh, Raad Z; Moore, Cathy C; Xu, Jinyu; Bakthavatchalu, Vasudevan; Somogyi, Arpad; Bailey, Michael T

    2018-01-01

    Stressor-exposure has been shown to exacerbate inflammation and change the composition of the gastrointestinal microbiota; however stressor-induced effects on microbiota-derived metabolites and their receptors are unknown. Thus, bacterial-produced short chain fatty acids (SCFAs), as well as microbial community composition, were assessed in the colons of mice exposed to stress during infection with Citrobacter rodentium. Mice were exposed to overnight restraint on 7 consecutive nights, or left undisturbed as a control. After the first exposure of restraint, mice were orally challenged with C. rodentium or with vehicle. Microbial community composition was assessed using 16S rRNA gene sequencing and SCFA levels measured using gas chromatography-mass spectrometry (GC-MS). Pathogen levels and colonic inflammation were also assessed 6 days post-infection. Results demonstrated that the microbial community structure and SCFA production were significantly affected by both stressor exposure and C. rodentium-infection. Exposure to prolonged restraint in the absence of infection significantly reduced SCFAs (acetic acid, butyric acid, and propionic acid). Multiple bacterial taxa were affected by stressor exposure, with the relative abundance of Lactobacillus being significantly reduced and directly correlated with propionic acid. Lactobacillus abundances were inversely correlated with colonic inflammation, supporting the contention that Lactobacillus helps to regulate mucosal inflammatory responses. Our data indicates that restraint stressor can have significant effects on pathogen-induced colonic inflammation and suggest that stressor-induced changes in the microbiota, microbial-produced SCFAs and their receptors may be involved.

  18. Reduced Epithelial Na+/H+ Exchange Drives Gut Microbial Dysbiosis and Promotes Inflammatory Response in T Cell-Mediated Murine Colitis

    PubMed Central

    Midura-Kiela, Monica T.; Ramalingam, Rajalakshmy; Larmonier, Claire B.; Chase, John H.; Caporaso, J. Gregory; Besselsen, David G.; Ghishan, Fayez K.; Kiela, Pawel R.

    2016-01-01

    Inflammatory bowel diseases (IBD) are associated with functional inhibition of epithelial Na+/H+ exchange. In mice, a selective disruption of NHE3 (Slc9a3), a major apical Na+/H+ exchanger, also promotes IBD-like symptoms and gut microbial dysbiosis. We hypothesized that disruption of Na+/H+ exchange is necessary for the development of dysbiosis, which promotes an exacerbated mucosal inflammatory response. Therefore, we performed a temporal analysis of gut microbiota composition, and mucosal immune response to adoptive T cell transfer was evaluated in Rag2-/- and NHE3-/-/Rag2-/- (DKO) mice with and without broad-spectrum antibiotics. Microbiome (16S profiling), colonic histology, T cell and neutrophil infiltration, mucosal inflammatory tone, and epithelial permeability were analyzed. In adoptive T cell transfer colitis model, Slc9a3 status was the most significant determinant of gut microbial community. In DKO mice, NHE3-deficiency and dysbiosis were associated with dramatically accelerated and exacerbated disease, with rapid body weight loss, increased mucosal T cell and neutrophil influx, increased mucosal cytokine expression, increased permeability, and expansion of CD25-FoxP3+ Tregs; this enhanced susceptibility was alleviated by oral broad-spectrum antibiotics. Based on these results and our previous work, we postulate that epithelial electrolyte homeostasis is an important modulator in the progression of colitis, acting through remodeling of the gut microbial community. PMID:27050757

  19. Defining the microbial transcriptional response to colitis through integrated host and microbiome profiling

    PubMed Central

    Ilott, Nicholas Edward; Bollrath, Julia; Danne, Camille; Schiering, Chris; Shale, Matthew; Adelmann, Krista; Krausgruber, Thomas; Heger, Andreas; Sims, David; Powrie, Fiona

    2016-01-01

    The gut microbiome is significantly altered in inflammatory bowel diseases, but the basis of these changes is not well understood. We have combined metagenomic and metatranscriptomic profiling of the gut microbiome to assess modifications to both bacterial community structure and transcriptional activity in a mouse model of colitis. By using transcriptomic analysis of colonic tissue and luminal RNA derived from the host, we have also characterised how host transcription relates to the microbial transcriptional response in inflammation. In colitis, increased abundance and transcription of diverse microbial gene families involved in responses to nutrient deprivation, antimicrobial peptide production and oxidative stress support an adaptation of multiple commensal genera to withstand a diverse set of environmental stressors in the inflammatory environment. These data are supported by a transcriptional signature of activated macrophages and granulocytes in the gut lumen during colitis, a signature that includes the transcription of the key antimicrobial genes S100a8 and S100a9 (calprotectin). Genes involved in microbial resistance to oxidative stress, including Dps/ferritin, Fe-dependent peroxidase and glutathione S-transferase were identified as changing to a greater extent at the level of transcription than would be predicted by DNA abundance changes, implicating a role for increased oxygen tension and/or host-derived reactive oxygen species in driving transcriptional changes in commensal microbes. PMID:27003245

  20. Wheat bran extract alters colonic fermentation and microbial composition, but does not affect faecal water toxicity: a randomised controlled trial in healthy subjects.

    PubMed

    Windey, Karen; De Preter, Vicky; Huys, Geert; Broekaert, Willem F; Delcour, Jan A; Louat, Thierry; Herman, Jean; Verbeke, Kristin

    2015-01-28

    Wheat bran extract (WBE), containing arabinoxylan-oligosaccharides that are potential prebiotic substrates, has been shown to modify bacterial colonic fermentation in human subjects and to beneficially affect the development of colorectal cancer (CRC) in rats. However, it is unclear whether these changes in fermentation are able to reduce the risk of developing CRC in humans. The aim of the present study was to evaluate the effects of WBE on the markers of CRC risk in healthy volunteers, and to correlate these effects with colonic fermentation. A total of twenty healthy subjects were enrolled in a double-blind, cross-over, randomised, controlled trial in which the subjects ingested WBE (10 g/d) or placebo (maltodextrin, 10 g/d) for 3 weeks, separated by a 3-week washout period. At the end of each study period, colonic handling of NH3 was evaluated using the biomarker lactose[15N, 15N']ureide, colonic fermentation was characterised through a metabolomics approach, and the predominant microbial composition was analysed using denaturing gradient gel electrophoresis. As markers of CRC risk, faecal water genotoxicity was determined using the comet assay and faecal water cytotoxicity using a colorimetric cell viability assay. Intake of WBE induced a shift from urinary to faecal 15N excretion, indicating a stimulation of colonic bacterial activity and/or growth. Microbial analysis revealed a selective stimulation of Bifidobacterium adolescentis. In addition, WBE altered the colonic fermentation pattern and significantly reduced colonic protein fermentation compared with the run-in period. However, faecal water cytotoxicity and genotoxicity were not affected. Although intake of WBE clearly affected colonic fermentation and changed the composition of the microbiota, these changes were not associated with the changes in the markers of CRC risk.

  1. Genome-resolved metaproteomic characterization of preterm infant gut microbiota development reveals species-specific metabolic shifts and variabilities during early life

    DOE PAGES

    Xiong, Weili; Brown, Christopher T.; Morowitz, Michael J.; ...

    2017-07-10

    Establishment of the human gut microbiota begins at birth. This early-life microbiota development can impact host physiology during infancy and even across an entire life span. But, the functional stability and population structure of the gut microbiota during initial colonization remain poorly understood. Metaproteomics is an emerging technology for the large-scale characterization of metabolic functions in complex microbial communities (gut microbiota). We applied a metagenome-informed metaproteomic approach to study the temporal and inter-individual differences of metabolic functions during microbial colonization of preterm human infants’ gut. By analyzing 30 individual fecal samples, we identified up to 12,568 protein groups for eachmore » of four infants, including both human and microbial proteins. With genome-resolved matched metagenomics, proteins were confidently identified at the species/strain level. The maximum percentage of the proteome detected for the abundant organisms was ~45%. A time-dependent increase in the relative abundance of microbial versus human proteins suggested increasing microbial colonization during the first few weeks of early life. We observed remarkable variations and temporal shifts in the relative protein abundances of each organism in these preterm gut communities. Given the dissimilarity of the communities, only 81 microbial EggNOG orthologous groups and 57 human proteins were observed across all samples. These conserved microbial proteins were involved in carbohydrate, energy, amino acid and nucleotide metabolism while conserved human proteins were related to immune response and mucosal maturation. We also identified seven proteome clusters for the communities and showed infant gut proteome profiles were unstable across time and not individual-specific. By applying a gut-specific metabolic module (GMM) analysis, we found that gut communities varied primarily in the contribution of nutrient (carbohydrates, lipids, and amino acids) utilization and short-chain fatty acid production. Overall, this study reports species-specific proteome profiles and metabolic functions of human gut microbiota during early colonization. In particular, our work contributes to reveal microbiota-associated shifts and variations in the metabolism of three major nutrient sources and short-chain fatty acid during colonization of preterm infant gut.« less

  2. Genome-resolved metaproteomic characterization of preterm infant gut microbiota development reveals species-specific metabolic shifts and variabilities during early life

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Weili; Brown, Christopher T.; Morowitz, Michael J.

    Establishment of the human gut microbiota begins at birth. This early-life microbiota development can impact host physiology during infancy and even across an entire life span. But, the functional stability and population structure of the gut microbiota during initial colonization remain poorly understood. Metaproteomics is an emerging technology for the large-scale characterization of metabolic functions in complex microbial communities (gut microbiota). We applied a metagenome-informed metaproteomic approach to study the temporal and inter-individual differences of metabolic functions during microbial colonization of preterm human infants’ gut. By analyzing 30 individual fecal samples, we identified up to 12,568 protein groups for eachmore » of four infants, including both human and microbial proteins. With genome-resolved matched metagenomics, proteins were confidently identified at the species/strain level. The maximum percentage of the proteome detected for the abundant organisms was ~45%. A time-dependent increase in the relative abundance of microbial versus human proteins suggested increasing microbial colonization during the first few weeks of early life. We observed remarkable variations and temporal shifts in the relative protein abundances of each organism in these preterm gut communities. Given the dissimilarity of the communities, only 81 microbial EggNOG orthologous groups and 57 human proteins were observed across all samples. These conserved microbial proteins were involved in carbohydrate, energy, amino acid and nucleotide metabolism while conserved human proteins were related to immune response and mucosal maturation. We also identified seven proteome clusters for the communities and showed infant gut proteome profiles were unstable across time and not individual-specific. By applying a gut-specific metabolic module (GMM) analysis, we found that gut communities varied primarily in the contribution of nutrient (carbohydrates, lipids, and amino acids) utilization and short-chain fatty acid production. Overall, this study reports species-specific proteome profiles and metabolic functions of human gut microbiota during early colonization. In particular, our work contributes to reveal microbiota-associated shifts and variations in the metabolism of three major nutrient sources and short-chain fatty acid during colonization of preterm infant gut.« less

  3. Genome-resolved metaproteomic characterization of preterm infant gut microbiota development reveals species-specific metabolic shifts and variabilities during early life.

    PubMed

    Xiong, Weili; Brown, Christopher T; Morowitz, Michael J; Banfield, Jillian F; Hettich, Robert L

    2017-07-10

    Establishment of the human gut microbiota begins at birth. This early-life microbiota development can impact host physiology during infancy and even across an entire life span. However, the functional stability and population structure of the gut microbiota during initial colonization remain poorly understood. Metaproteomics is an emerging technology for the large-scale characterization of metabolic functions in complex microbial communities (gut microbiota). We applied a metagenome-informed metaproteomic approach to study the temporal and inter-individual differences of metabolic functions during microbial colonization of preterm human infants' gut. By analyzing 30 individual fecal samples, we identified up to 12,568 protein groups for each of four infants, including both human and microbial proteins. With genome-resolved matched metagenomics, proteins were confidently identified at the species/strain level. The maximum percentage of the proteome detected for the abundant organisms was ~45%. A time-dependent increase in the relative abundance of microbial versus human proteins suggested increasing microbial colonization during the first few weeks of early life. We observed remarkable variations and temporal shifts in the relative protein abundances of each organism in these preterm gut communities. Given the dissimilarity of the communities, only 81 microbial EggNOG orthologous groups and 57 human proteins were observed across all samples. These conserved microbial proteins were involved in carbohydrate, energy, amino acid and nucleotide metabolism while conserved human proteins were related to immune response and mucosal maturation. We identified seven proteome clusters for the communities and showed infant gut proteome profiles were unstable across time and not individual-specific. Applying a gut-specific metabolic module (GMM) analysis, we found that gut communities varied primarily in the contribution of nutrient (carbohydrates, lipids, and amino acids) utilization and short-chain fatty acid production. Overall, this study reports species-specific proteome profiles and metabolic functions of human gut microbiota during early colonization. In particular, our work contributes to reveal microbiota-associated shifts and variations in the metabolism of three major nutrient sources and short-chain fatty acid during colonization of preterm infant gut.

  4. Microbial community composition and endolith colonization at an Arctic thermal spring are driven by calcite precipitation

    USGS Publications Warehouse

    Starke, Verena; Kirshtein, Julie; Fogel, Marilyn L.; Steele, Andrew

    2013-01-01

    Environmental conditions shape community composition. Arctic thermal springs provide an opportunity to study how environmental gradients can impose strong selective pressures on microbial communities and provide a continuum of niche opportunities. We use microscopic and molecular methods to conduct a survey of microbial community composition at Troll Springs on Svalbard, Norway, in the high Arctic. Microorganisms there exist under a wide range of environmental conditions: in warm water as periphyton, in moist granular materials, and in cold, dry rock as endoliths. Troll Springs has two distinct ecosystems, aquatic and terrestrial, together in close proximity, with different underlying environmental factors shaping each microbial community. Periphyton are entrapped during precipitation of calcium carbonate from the spring's waters, providing microbial populations that serve as precursors for the development of endolithic communities. This process differs from most endolith colonization, in which the rock predates the communities that colonize it. Community composition is modulated as environmental conditions change within the springs. At Troll, the aquatic environments show a small number of dominant operational taxonomic units (OTUs) that are specific to each sample. The terrestrial environments show a more even distribution of OTUs common to multiple samples.

  5. Early Microbes Modify Immune System Development and Metabolic Homeostasis—The “Restaurant” Hypothesis Revisited

    PubMed Central

    Nash, Michael J.; Frank, Daniel N.; Friedman, Jacob E.

    2017-01-01

    The developing infant gut microbiome affects metabolism, maturation of the gastrointestinal tract, immune system function, and brain development. Initial seeding of the neonatal microbiota occurs through maternal and environmental contact. Maternal diet, antibiotic use, and cesarean section alter the offspring microbiota composition, at least temporarily. Nutrients are thought to regulate initial perinatal microbial colonization, a paradigm known as the “Restaurant” hypothesis. This hypothesis proposes that early nutritional stresses alter both the initial colonizing bacteria and the development of signaling pathways controlled by microbial mediators. These stresses fine-tune the immune system and metabolic homeostasis in early life, potentially setting the stage for long-term metabolic and immune health. Dysbiosis, an imbalance or a maladaptation in the microbiota, can be caused by several factors including dietary alterations and antibiotics. Dysbiosis can alter biological processes in the gut and in tissues and organs throughout the body. Misregulated development and activity of both the innate and adaptive immune systems, driven by early dysbiosis, could have long-lasting pathologic consequences such as increased autoimmunity, increased adiposity, and non-alcoholic fatty liver disease (NAFLD). This review will focus on factors during pregnancy and the neonatal period that impact a neonate’s gut microbiome, as well as the mechanisms and possible links from early infancy that can drive increased risk for diseases including obesity and NAFLD. The complex pathways that connect diet, the microbiota, immune system development, and metabolism, particularly in early life, present exciting new frontiers for biomedical research. PMID:29326657

  6. Ignimbrite textural properties as determinants of endolithic colonization patterns from hyper-arid Atacama Desert.

    PubMed

    Cámara, Beatriz; Suzuki, Shino; Nealson, Kenneth H; Wierzchos, Jacek; Ascaso, Carmen; Artieda, Octavio; de los Ríos, Asunción

    2014-12-01

    This study explores the photosynthetic microbial colonization of rhyolitic ignimbrites in Lomas de Tilocalar, a hyper-arid region of the Atacama Desert, Chile. Colonization appeared in the form of a green layer a few millimeters beneath the ignimbrite surface. Some ignimbrite rocks revealed two distinct micromorphological areas of identical mineralogical and chemical composition but different textural properties. According to texture, colonization patterns varied in terms of the extension and depth of colonization. The diversity of photosynthetic microorganisms was assessed by denaturing gradient gel electrophoresis (DGGE) of the 23S rRNA gene and by generating clone libraries of the 16S rRNA gene. We observed a low diversity of photosynthetic microorganisms colonizing the ignimbrite microhabitat. Most rRNA gene sequences recovered greatly resembled those of Chroococcidiopsis hypolith clones from arid deserts. These results point to highly restrictive conditions of the hyper-arid Atacama Desert conditioning the diversity of cyanobacteria, and suggest that microbial colonization and composition patterns might be determined by the microscale physico-chemical properties of the ignimbrite rocks. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  7. Neonatal microbial colonization in mice promotes prolonged dominance of CD11b(+)Gr-1(+) cells and accelerated establishment of the CD4(+) T cell population in the spleen.

    PubMed

    Kristensen, Matilde B; Metzdorff, Stine B; Bergström, Anders; Damlund, Dina S M; Fink, Lisbeth N; Licht, Tine R; Frøkiær, Hanne

    2015-09-01

    To assess the microbial influence on postnatal hematopoiesis, we examined the role of early life microbial colonization on the composition of leukocyte subsets in the neonatal spleen. A high number of CD11b(+)Gr-1(+) splenocytes present perinatally was sustained for a longer period in conventionally colonized (CONV) mice than in mono-colonized (MC) and germfree (GF) mice, and the CD4(+) T cell population established faster in CONV mice. At the day of birth, compared to GF mice, the expression of Cxcl2 was up-regulated and Arg1 down-regulated in livers of CONV mice. This coincided with lower abundance of polylobed cells in the liver of CONV mice. An earlier peak in the expression of the genes Tjp1, Cdh1, and JamA in intestinal epithelial cells of CONV mice indicated an accelerated closure of the epithelial barrier. In conclusion, we have identified an important microbiota-dependent neonatal hematopoietic event, which we suggest impacts the subsequent development of the T cell population in the murine spleen.

  8. Potential sources of microbial colonizers in an initial soil ecosystem after retreat of an alpine glacier

    PubMed Central

    Rime, Thomas; Hartmann, Martin; Frey, Beat

    2016-01-01

    Rapid disintegration of alpine glaciers has led to the formation of new terrain consisting of mineral debris colonized by microorganisms. Despite the importance of microbial pioneers in triggering the formation of terrestrial ecosystems, their sources (endogenous versus exogenous) and identities remain elusive. We used 454-pyrosequencing to characterize the bacterial and fungal communities in endogenous glacier habitats (ice, sub-, supraglacial sediments and glacier stream leaving the glacier forefront) and in atmospheric deposition (snow, rain and aeolian dust). We compared these microbial communities with those occurring in recently deglaciated barren soils before and after snow melt (snow-covered soil and barren soil). Atmospheric bacteria and fungi were dominated by plant-epiphytic organisms and differed from endogenous glacier habitats and soils indicating that atmospheric input of microorganisms is not a major source of microbial pioneers in newly formed soils. We found, however, that bacterial communities in newly exposed soils resembled those of endogenous habitats, which suggests that bacterial pioneers originating from sub- and supraglacial sediments contributed to the colonization of newly exposed soils. Conversely, fungal communities differed between habitats suggesting a lower dispersal capability than bacteria. Yeasts putatively adapted to cold habitats characteristic of snow and supraglacial sediments were similar, despite the fact that these habitats were not spatially connected. These findings suggest that environmental filtering selects particular fungi in cold habitats. Atmospheric deposition provided important sources of dissolved organic C, nitrate and ammonium. Overall, microbial colonizers triggering soil development in alpine environments mainly originate from endogenous glacier habitats, whereas atmospheric deposition contributes to the establishment of microbial communities by providing sources of C and N. PMID:26771926

  9. Potential sources of microbial colonizers in an initial soil ecosystem after retreat of an alpine glacier.

    PubMed

    Rime, Thomas; Hartmann, Martin; Frey, Beat

    2016-07-01

    Rapid disintegration of alpine glaciers has led to the formation of new terrain consisting of mineral debris colonized by microorganisms. Despite the importance of microbial pioneers in triggering the formation of terrestrial ecosystems, their sources (endogenous versus exogenous) and identities remain elusive. We used 454-pyrosequencing to characterize the bacterial and fungal communities in endogenous glacier habitats (ice, sub-, supraglacial sediments and glacier stream leaving the glacier forefront) and in atmospheric deposition (snow, rain and aeolian dust). We compared these microbial communities with those occurring in recently deglaciated barren soils before and after snow melt (snow-covered soil and barren soil). Atmospheric bacteria and fungi were dominated by plant-epiphytic organisms and differed from endogenous glacier habitats and soils indicating that atmospheric input of microorganisms is not a major source of microbial pioneers in newly formed soils. We found, however, that bacterial communities in newly exposed soils resembled those of endogenous habitats, which suggests that bacterial pioneers originating from sub- and supraglacial sediments contributed to the colonization of newly exposed soils. Conversely, fungal communities differed between habitats suggesting a lower dispersal capability than bacteria. Yeasts putatively adapted to cold habitats characteristic of snow and supraglacial sediments were similar, despite the fact that these habitats were not spatially connected. These findings suggest that environmental filtering selects particular fungi in cold habitats. Atmospheric deposition provided important sources of dissolved organic C, nitrate and ammonium. Overall, microbial colonizers triggering soil development in alpine environments mainly originate from endogenous glacier habitats, whereas atmospheric deposition contributes to the establishment of microbial communities by providing sources of C and N.

  10. The Colonic Microbiome and Epithelial Transcriptome Are Altered in Rats Fed a High-Protein Diet Compared with a Normal-Protein Diet.

    PubMed

    Mu, Chunlong; Yang, Yuxiang; Luo, Zhen; Guan, Leluo; Zhu, Weiyun

    2016-03-01

    A high-protein diet (HPD) can produce hazardous compounds and reduce butyrate-producing bacteria in feces, which may be detrimental to gut health. However, information on whether HPD affects intestinal function is limited. The aim of this study was to determine the impact of an HPD on the microbiota, microbial metabolites, and epithelial transcriptome in the colons of rats. Adult male Wistar rats were fed either a normal-protein diet (20% protein, 56% carbohydrate) or an HPD (45% protein, 30% carbohydrate) for 6 wk (n = 10 rats per group, individually fed). After 6 wk, the colonic microbiome, microbial metabolites, and epithelial transcriptome were determined. Compared with the normal-protein diet, the HPD adversely altered the colonic microbiota by increasing (P < 0.05) Escherichia/Shigella, Enterococcus, Streptococcus, and sulfate-reducing bacteria by 54.9-fold, 31.3-fold, 5.36-fold, and 2.59-fold, respectively. However, the HPD reduced Ruminococcus (8.04-fold), Akkermansia (not detected in HPD group), and Faecalibacterium prausnitzii (3.5-fold) (P < 0.05), which are generally regarded as beneficial bacteria in the colon. Concomitant increases in cadaverine (4.88-fold), spermine (31.2-fold), and sulfide (4.8-fold) (P < 0.05) and a decrease in butyrate (2.16-fold) (P < 0.05) in the HPD rats indicated an evident shift toward the production of unhealthy microbial metabolites. In the colon epithelium of the HPD rats, transcriptome analysis identified an upregulation of genes (P < 0.05) involved in disease pathogenesis; these genes are involved in chemotaxis, the tumor necrosis factor signal process, and apoptosis. The HPD was also associated with a downregulation of many genes (P < 0.05) involved in immunoprotection, such as genes involved in innate immunity, O-linked glycosylation of mucin, and oxidative phosphorylation, suggesting there may be an increased disease risk in these rats. The abundance of Escherichia/Shigella, Enterococcus, and Streptococcus was positively correlated (Spearman's ρ > 0.7, P < 0.05) with genes and metabolites generally regarded as being involved in disease pathogenesis, suggesting these bacteria may mediate the detrimental effects of HPDs on colonic health. Our findings suggest that the HPD altered the colonic microbial community, shifted the metabolic profile, and affected the host response in the colons of rats toward an increased risk of colonic disease. © 2016 American Society for Nutrition.

  11. From birth to ‘immuno-health’, allergies and enterocolitis

    PubMed Central

    Houghteling, Pearl D.; Walker, W. Allan

    2015-01-01

    Microbial signals stimulate development and maintenance of the neonatal immune system. The process begins in utero, with limited exposure to microbes in the intrauterine environment, as well as maternal immune signals priming the developing immune system. After birth and initial colonization, the immune system must be able to activate against pathogens, but also achieve oral tolerance of food and resident gut microbes. Through microbial signals and appropriate nutrition, the immune system is able to achieve homeostasis. Major challenges to successful colonization and immune system regulation include abnormal microbial inoculi (cesarean section, hygiene) and antibiotics. When normal colonization is interrupted, dysbiosis occurs. This imbalance of microbes and subsequently of the immune system can result in allergic diseases, asthma or necrotizing enterocolitis. Probiotics and probiotic-derived therapies represent an exciting avenue to replete the population of commensal microbes and to prevent the immune-mediated sequelae of dysbiosis. PMID:26447970

  12. Investigating How the Microbiome Interacts With Environmental Chemicals in Zebrafish

    EPA Pesticide Factsheets

    This internship will use an innovative experimental system comprised of colonized and microbe-free zebrafish to learn how microbial colonization status affects the toxicity of environmental chemicals.

  13. On Growth and Form of the Zebrafish Gut Microbiome

    NASA Astrophysics Data System (ADS)

    Jemielita, Matthew; Taormina, Michael; Rolig, Annah; Burns, Adam; Hampton, Jennifer; Guillemin, Karen; Parthasarathy, Raghuveer

    2014-03-01

    The vertebrate gut is home to a diverse microbial community whose composition has a strong influence on the development and health of the host organism. Researchers can identify the members of the microbiota, yet little is known about the spatial and temporal dynamics of these microbial communities, including the mechanisms guiding their nucleation, growth, and interactions. We address these issues using the larval zebrafish (Danio rerio) as a model organism, which are raised microbe-free and then inoculated with controlled compositions of fluorophore-expressing bacteria. Live imaging using light sheet fluorescence microscopy enables visualization of the gut's entire microbial population over the first 24 hours of colonization. Image analysis allows us to quantify microbial populations that range from a few individuals to tens of thousands of microbes, and analyze the structure and growth kinetics of gut bacterial communities. We find that genetically-identical microbes can show surprisingly different growth rates and colonization abilities depending on their order of arrival. This demonstrates that knowing only the constituents of the gut community is insufficient to determine their dynamics; rather, the history of colonization matters.

  14. A unique in vivo approach for investigating antimicrobial materials utilizing fistulated animals

    NASA Astrophysics Data System (ADS)

    Berean, Kyle J.; Adetutu, Eric M.; Zhen Ou, Jian; Nour, Majid; Nguyen, Emily P.; Paull, David; McLeod, Jess; Ramanathan, Rajesh; Bansal, Vipul; Latham, Kay; Bishop-Hurley, Greg J.; McSweeney, Chris; Ball, Andrew S.; Kalantar-Zadeh, Kourosh

    2015-06-01

    Unique in vivo tests were conducted through the use of a fistulated ruminant, providing an ideal environment with a diverse and vibrant microbial community. Utilizing such a procedure can be especially invaluable for investigating the performance of antimicrobial materials related to human and animal related infections. In this pilot study, it is shown that the rumen of a fistulated animal provides an excellent live laboratory for assessing the properties of antimicrobial materials. We investigate microbial colonization onto model nanocomposites based on silver (Ag) nanoparticles at different concentrations into polydimethylsiloxane (PDMS). With implantable devices posing a major risk for hospital-acquired infections, the present study provides a viable solution to understand microbial colonization with the potential to reduce the incidence of infection through the introduction of Ag nanoparticles at the optimum concentrations. In vitro measurements were also conducted to show the validity of the approach. An optimal loading of 0.25 wt% Ag is found to show the greatest antimicrobial activity and observed through the in vivo tests to reduce the microbial diversity colonizing the surface.

  15. Post-Genomics Approaches towards Monitoring Changes within the Microbial Ecology of the Gut

    NASA Astrophysics Data System (ADS)

    Tuohy, Kieran M.; Abecia, Leticia; Deaville, Eddie R.; Fava, Francesca; Klinder, Annett; Shen, Qing

    The human gut microbiota, comprising many hundreds of different microbial species, has closely co-evolved with its human host over the millennia. Diet has been a major driver of this co-evolution, in particular dietary non-digestible carbohydrates. This dietary fraction reaches the colon and becomes available for microbial fermentation, and it is in the colon that the great diversity of gut microorganisms resides. For the vast majority of our evolutionary history humans followed hunter-gatherer life-styles and consumed diets with many times more non-digestible carbohydrates, fiber and whole plant polyphenol rich foods than typical Western style diets today.

  16. Rhizosphere effect of colonizer plant species on the development of soil microbial community during primary succession on postmining sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elhottova, D.; Kristufek, V.; Maly, S.

    2009-07-01

    The impact of pioneer plant species Tussilago farfara on structural, functional, and growth characterization of microbial community colonizing the spoil colliery substrate was studied in a laboratory microcosm experiment. Microcosms consisting of spoil substrate (0.7 dm{sup 3} of tertiary alkaline clay sediment from Sokolov brown-coal mine area) from a pioneer site (without vegetation, 5 years after heaping) were cultivated in a greenhouse with one plant of this species. Plant roots substantially increased microbial diversity and biomass after one season (7 months) of cultivation. Roots influenced the microbial community and had nearly twice the size, higher growth, and metabolic potential inmore » comparison to the control. The development of microbial specialists improves the plant nutrient status. Bacterial nitrogen (N{sub 2}) fixators (Bradyrhizobium japonicum, Rhizobium radiobacter) and arbuscular mycorrhizal fungi were confirmed in the rhizosphere of Tussilago farfara.« less

  17. Fungal Colonization and Biodeterioration of Plasticized Polyvinyl Chloride

    PubMed Central

    Webb, Jeremy S.; Nixon, Marianne; Eastwood, Ian M.; Greenhalgh, Malcolm; Robson, Geoffrey D.; Handley, Pauline S.

    2000-01-01

    Significant substratum damage can occur when plasticized PVC (pPVC) is colonized by microorganisms. We investigated microbial colonization of pPVC in an in situ, longitudinal study. Pieces of pPVC containing the plasticizers dioctyl phthalate and dioctyl adipate (DOA) were exposed to the atmosphere for up to 2 years. Fungal and bacterial populations were quantified, and colonizing fungi were identified by rRNA gene sequencing and morphological characteristics. Aureobasidium pullulans was the principal colonizing fungus, establishing itself on the pPVC between 25 and 40 weeks of exposure. A group of yeasts and yeast-like fungi, including Rhodotorula aurantiaca and Kluyveromyces spp., established themselves on the pPVC much later (after 80 weeks of exposure). Numerically, these organisms dominated A. pullulans after 95 weeks, with a mean viable count ± standard error of 1,000 ± 200 yeast CFU cm−2, compared to 390 ± 50 A. pullulans CFU cm−2. No bacterial colonization was observed. We also used in vitro tests to characterize the deteriogenic properties of fungi isolated from the pPVC. All strains of A. pullulans tested could grow with the intact pPVC formulation as the sole source of carbon, degrade the plasticizer DOA, produce extracellular esterase, and cause weight loss of the substratum during growth in vitro. In contrast, several yeast isolates could not grow on pPVC or degrade DOA. These results suggest that microbial succession may occur during the colonization of pPVC and that A. pullulans is critical to the establishment of a microbial community on pPVC. PMID:10919769

  18. Microbial and metabolic signatures of necrotizing enterocolitis in formula-fed piglets

    USDA-ARS?s Scientific Manuscript database

    Major risk factors for necrotizing enterocolitis (NEC) include premature birth, formula feeding, and microbial colonization of the gastrointestinal tract. We previously showed that feeding formula composed of lactose vs corn syrup solids protects against NEC in preterm pigs, however the microbial an...

  19. The shared microbiota of humans and companion animals as evaluated from Staphylococcus carriage sites.

    PubMed

    Misic, Ana M; Davis, Meghan F; Tyldsley, Amanda S; Hodkinson, Brendan P; Tolomeo, Pam; Hu, Baofeng; Nachamkin, Irving; Lautenbach, Ebbing; Morris, Daniel O; Grice, Elizabeth A

    2015-01-01

    Staphylococcus aureus and other coagulase-positive staphylococci (CPS) colonize skin and mucous membrane sites and can cause skin and soft tissue infections (SSTIs) in humans and animals. Factors modulating methicillin-resistant S. aureus (MRSA) colonization and infection in humans remain unclear, including the role of the greater microbial community and environmental factors such as contact with companion animals. In the context of a parent study evaluating the households of outpatients with community MRSA SSTI, the objectives of this study were 1) to characterize the microbiota that colonizes typical coagulase-positive Staphylococcus spp. carriage sites in humans and their companion pets, 2) to analyze associations between Staphylococcus infection and carriage and the composition and diversity of microbial communities, and 3) to analyze factors that influence sharing of microbiota between pets and humans. We enrolled 25 households containing 56 pets and 30 humans. Sampling locations were matched to anatomical sites cultured by the parent study for MRSA and other CPS. Bacterial microbiota were characterized by sequencing of 16S ribosomal RNA genes. Household membership was strongly associated with microbial communities, in both humans and pets. Pets were colonized with a greater relative abundance of Proteobacteria, whereas people were colonized with greater relative abundances of Firmicutes and Actinobacteria. We did not detect differences in microbiota associated with MRSA SSTI, or carriage of MRSA, S. aureus or CPS. Humans in households without pets were more similar to each other than humans in pet-owning households, suggesting that companion animals may play a role in microbial transfer. We examined changes in microbiota over a 3-month time period and found that pet staphylococcal carriage sites were more stable than human carriage sites. We characterized and identified patterns of microbiota sharing and stability between humans and companion animals. While we did not detect associations with MRSA SSTI, or carriage of MRSA, S. aureus or CPS in this small sample size, larger studies are warranted to fully explore how microbial communities may be associated with and contribute to MRSA and/or CPS colonization, infection, and recurrence.

  20. Hospitalized Premature Infants Are Colonized by Related Bacterial Strains with Distinct Proteomic Profiles

    PubMed Central

    Xiong, Weili; Olm, Matthew R.; Thomas, Brian C.; Baker, Robyn; Firek, Brian; Morowitz, Michael J.; Hettich, Robert L.

    2018-01-01

    ABSTRACT During the first weeks of life, microbial colonization of the gut impacts human immune system maturation and other developmental processes. In premature infants, aberrant colonization has been implicated in the onset of necrotizing enterocolitis (NEC), a life-threatening intestinal disease. To study the premature infant gut colonization process, genome-resolved metagenomics was conducted on 343 fecal samples collected during the first 3 months of life from 35 premature infants housed in a neonatal intensive care unit, 14 of whom developed NEC, and metaproteomic measurements were made on 87 samples. Microbial community composition and proteomic profiles remained relatively stable on the time scale of a week, but the proteome was more variable. Although genetically similar organisms colonized many infants, most infants were colonized by distinct strains with metabolic profiles that could be distinguished using metaproteomics. Microbiome composition correlated with infant, antibiotics administration, and NEC diagnosis. Communities were found to cluster into seven primary types, and community type switched within infants, sometimes multiple times. Interestingly, some communities sampled from the same infant at subsequent time points clustered with those of other infants. In some cases, switches preceded onset of NEC; however, no species or community type could account for NEC across the majority of infants. In addition to a correlation of protein abundances with organism replication rates, we found that organism proteomes correlated with overall community composition. Thus, this genome-resolved proteomics study demonstrated that the contributions of individual organisms to microbiome development depend on microbial community context. PMID:29636439

  1. In Vitro Continuous Fermentation Model (PolyFermS) of the Swine Proximal Colon for Simultaneous Testing on the Same Gut Microbiota

    PubMed Central

    Tanner, Sabine A.; Zihler Berner, Annina; Rigozzi, Eugenia; Grattepanche, Franck; Chassard, Christophe; Lacroix, Christophe

    2014-01-01

    In vitro gut modeling provides a useful platform for a fast and reproducible assessment of treatment-related changes. Currently, pig intestinal fermentation models are mainly batch models with important inherent limitations. In this study we developed a novel in vitro continuous fermentation model, mimicking the porcine proximal colon, which we validated during 54 days of fermentation. This model, based on our recent PolyFermS design, allows comparing different treatment effects on the same microbiota. It is composed of a first-stage inoculum reactor seeded with immobilized fecal swine microbiota and used to constantly inoculate (10% v/v) five second-stage reactors, with all reactors fed with fresh nutritive chyme medium and set to mimic the swine proximal colon. Reactor effluents were analyzed for metabolite concentrations and bacterial composition by HPLC and quantitative PCR, and microbial diversity was assessed by 454 pyrosequencing. The novel PolyFermS featured stable microbial composition, diversity and metabolite production, consistent with bacterial activity reported for swine proximal colon in vivo. The constant inoculation provided by the inoculum reactor generated reproducible microbial ecosystems in all second-stage reactors, allowing the simultaneous investigation and direct comparison of different treatments on the same porcine gut microbiota. Our data demonstrate the unique features of this novel PolyFermS design for the swine proximal colon. The model provides a tool for efficient, reproducible and cost-effective screening of environmental factors, such as dietary additives, on pig colonic fermentation. PMID:24709947

  2. In vitro continuous fermentation model (PolyFermS) of the swine proximal colon for simultaneous testing on the same gut microbiota.

    PubMed

    Tanner, Sabine A; Zihler Berner, Annina; Rigozzi, Eugenia; Grattepanche, Franck; Chassard, Christophe; Lacroix, Christophe

    2014-01-01

    In vitro gut modeling provides a useful platform for a fast and reproducible assessment of treatment-related changes. Currently, pig intestinal fermentation models are mainly batch models with important inherent limitations. In this study we developed a novel in vitro continuous fermentation model, mimicking the porcine proximal colon, which we validated during 54 days of fermentation. This model, based on our recent PolyFermS design, allows comparing different treatment effects on the same microbiota. It is composed of a first-stage inoculum reactor seeded with immobilized fecal swine microbiota and used to constantly inoculate (10% v/v) five second-stage reactors, with all reactors fed with fresh nutritive chyme medium and set to mimic the swine proximal colon. Reactor effluents were analyzed for metabolite concentrations and bacterial composition by HPLC and quantitative PCR, and microbial diversity was assessed by 454 pyrosequencing. The novel PolyFermS featured stable microbial composition, diversity and metabolite production, consistent with bacterial activity reported for swine proximal colon in vivo. The constant inoculation provided by the inoculum reactor generated reproducible microbial ecosystems in all second-stage reactors, allowing the simultaneous investigation and direct comparison of different treatments on the same porcine gut microbiota. Our data demonstrate the unique features of this novel PolyFermS design for the swine proximal colon. The model provides a tool for efficient, reproducible and cost-effective screening of environmental factors, such as dietary additives, on pig colonic fermentation.

  3. Phototrophic Biofilm Assembly in Microbial-Mat-Derived Unicyanobacterial Consortia: Model Systems for the Study of Autotroph-Heterotroph Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, Jessica K.; Hutchison, Janine R.; Renslow, Ryan S.

    2014-04-07

    Though microbial autotroph-heterotroph interactions influence biogeochemical cycles on a global scale, the diversity and complexity of natural systems and their intractability to in situ environmental manipulation makes elucidation of the principles governing these interactions challenging. Examination of primary succession during phototrophic biofilm assembly provides a robust means by which to elucidate the dynamics of such interactions and determine their influence upon recruitment and maintenance of phylogenetic and functional diversity in microbial communities. We isolated and characterized two unicyanobacterial consortia from the Hot Lake phototrophic mat, quantifying the structural and community composition of their assembling biofilms. The same heterotrophs were retainedmore » in both consortia and included members of Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes, taxa frequently reported as consorts of microbial photoautotrophs. Cyanobacteria led biofilm assembly, eventually giving way to a late heterotrophic bloom. The consortial biofilms exhibited similar patterns of assembly, with the relative abundances of members of Bacteroidetes and Alphaproteobacteria increasing and members of Gammaproteobacteria decreasing as colonization progressed. Despite similar trends in assembly at higher taxa, the consortia exhibited substantial differences in community structure at the species level. These similar patterns of assembly with divergent community structures suggest that, while similar niches are created by the metabolism of the cyanobacteria, the resultant webs of autotroph-heterotroph and heterotroph-heterotroph interactions driving metabolic exchange are specific to each primary producer. Altogether, our data support these Hot Lake unicyanobacterial consortia as generalizable model systems whose simplicity and tractability permit the deciphering of community assembly principles relevant to natural microbial communities.« less

  4. Bacteria from diverse habitats colonize and compete in the mouse gut.

    PubMed

    Seedorf, Henning; Griffin, Nicholas W; Ridaura, Vanessa K; Reyes, Alejandro; Cheng, Jiye; Rey, Federico E; Smith, Michelle I; Simon, Gabriel M; Scheffrahn, Rudolf H; Woebken, Dagmar; Spormann, Alfred M; Van Treuren, William; Ursell, Luke K; Pirrung, Megan; Robbins-Pianka, Adam; Cantarel, Brandi L; Lombard, Vincent; Henrissat, Bernard; Knight, Rob; Gordon, Jeffrey I

    2014-10-09

    To study how microbes establish themselves in a mammalian gut environment, we colonized germ-free mice with microbial communities from human, zebrafish, and termite guts, human skin and tongue, soil, and estuarine microbial mats. Bacteria from these foreign environments colonized and persisted in the mouse gut; their capacity to metabolize dietary and host carbohydrates and bile acids correlated with colonization success. Cohousing mice harboring these xenomicrobiota or a mouse cecal microbiota, along with germ-free "bystanders," revealed the success of particular bacterial taxa in invading guts with established communities and empty gut habitats. Unanticipated patterns of ecological succession were observed; for example, a soil-derived bacterium dominated even in the presence of bacteria from other gut communities (zebrafish and termite), and human-derived bacteria colonized germ-free bystander mice before mouse-derived organisms. This approach can be generalized to address a variety of mechanistic questions about succession, including succession in the context of microbiota-directed therapeutics. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Effects of fermented milk treatment on microbial population and metabolomic outcomes in a three-stage semi-continuous culture system.

    PubMed

    Cha, Kwang Hyun; Lee, Eun Ha; Yoon, Hyo Shin; Lee, Jae Ho; Kim, Joo Yun; Kang, Kyungsu; Park, Jin-Soo; Jin, Jong Beom; Ko, GwangPyo; Pan, Cheol-Ho

    2018-10-15

    We investigated the impact of a fermented milk product on gut microbiota and their metabolism in 3 different conditions of the colon with a systemic viewpoint. An in vitro semi-continuous anaerobic cultivation was used to assess the colon compartment-specific influence of fermented milk, followed by a multiomics approach combining 16S rDNA amplicon sequencing and nuclear magnetic resonance (NMR) spectroscopy. The microbiome profiling and metabolomic features were significantly different across three colon compartments and after fermented milk treatment. Integrative correlation analysis indicated that the alteration of butyrate-producing microbiota (Veillonella, Roseburia, Lachnospira, and Coprococcus) and some primary metabolites (butyrate, ethanol, lactate, and isobutyrate) in the treatment group had a strong association with the fermented milk microorganisms. Our findings suggested that fermented milk treatment significantly affected microbial population in an in vitro cultivation system as well as the colonic metabolome in different ways in each of colon compartment. Copyright © 2018. Published by Elsevier Ltd.

  6. Microbial fuel cell as power supply for implantable medical devices: a novel configuration design for simulating colonic environment.

    PubMed

    Dong, Kun; Jia, Boyang; Yu, Chaoling; Dong, Wenbo; Du, Fangzhou; Liu, Hong

    2013-03-15

    This study focused on providing power for implantable medical devices (IMDs) using a microbial fuel cell (MFC) implanted in human transverse colon. Considering the condition of colonic environment, a continuous-flow single-chamber MFC without membrane was set up. The performance of the MFC was investigated. The power output of 1.6 mW under the steady state was not rich enough for some high energy-consuming IMDs. Moreover, the parameters of the simulated colonic environment, such as pH and ORP value, varied along with the time. Hence, a new MFC configuration was developed. In this novel model, pH transducers were placed in cathodic and anodic areas, so as to regulate the reactor operation timely via external intervention. And two ORP transducers were inserted next to the pH transducers, for monitoring and adjusting the MFC operation efficiently. Besides, colonic haustra were designed in order to increase the difference between cathodic and anodic areas. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. OC28 - Effect of mode of delivery on early oral colonization and childhood dental caries: a systematic review.

    PubMed

    Antão, Celeste; Teixeira, Cristina; Gomes, Maria José

    2016-05-09

    Theme: Multidisciplinary team working. Oral colonization starts at birth by vertical transmission. To determine whether mode of delivery influences the oral colonization of infants and contributes to the risk of childhood dental caries. A systematic review was conducted in the electronic database Web of Science for articles published from January 1995 to December 2015 by using a set of keywords. From 2,644 citations identified through electronic search, ten studies met the inclusion criteria. According to the studies mode of delivery influences oral microbial density, oral microbial profile and the timing of oral colonization by cariogenic microbiota. However, there are no consistent results concerning either the prevalence of children harboring cariogenic microbiota or the prevalence of early childhood caries by mode of delivery. Mode of delivery influences early oral colonization. However, it seems that other determinants rather than mode of delivery could be major contributors to the development of early childhood caries.

  8. Transfer of Multidrug-Resistant Bacteria between Intermingled Ecological Niches: The Interface between Humans, Animals and the Environment

    PubMed Central

    da Costa, Paulo Martins; Loureiro, Luís; Matos, Augusto J. F.

    2013-01-01

    The use of antimicrobial agents has been claimed to be the driving force for the emergence and spread of microbial resistance. However, several studies have reported the presence of multidrug-resistant bacteria in populations exposed to low levels of antimicrobial drugs or even never exposed. For many pathogens, especially those organisms for which asymptomatic colonization typically precedes infection (e.g., Enterococcus spp. and Escherichia coli), the selective effects of antimicrobial use can only be understood if we considerer all biological and environmental pathways which enable these bacteria, and the genes they carry, to spread between different biomes. This ecological framework provides an essential perspective for formulating antimicrobial use policies, precisely because it encompasses the root causes of these problems rather than merely their consequences. PMID:23343983

  9. Differential Bacterial Colonization of Volcanic Minerals in Deep Thermal Basalts

    NASA Astrophysics Data System (ADS)

    Smith, A. R.; Popa, R.; Fisk, M. R.; Nielsen, M.; Wheat, G.; Jannasch, H.; Fisher, A.; Sievert, S.

    2010-04-01

    There are reports of microbial weathering patterns in volcanic glass and minerals of both terrestrial and Martian origin. Volcanic minerals are colonized differentially in subsurface hydrothermal environments by a variety of physiological types.

  10. Man and his spaceships

    PubMed Central

    Siefert, Janet L.

    2012-01-01

    The resiliency and adaptive ability of microbial life in real time on Earth relies heavily upon horizontal gene transfer. Based on that knowledge, how likely is earth based microbial life to colonize extraterrestrial targets such as Mars? To address this question, we consider manned and unmanned space exploration, the resident microbiota that is likely to inhabit those vehicles, the adaptive potential of that microbiota in an extraterrestrial setting especially with regards to mobile genetic elements, and the likelihood that Mars like environments could initiate and sustain colonization. PMID:23481263

  11. Contrasting effects of biochar versus manure on soil microbial communities and enzyme activities in an Aridisol.

    PubMed

    Elzobair, Khalid A; Stromberger, Mary E; Ippolito, James A; Lentz, Rodrick D

    2016-01-01

    Biochar can increase microbial activity, alter microbial community structure, and increase soil fertility in arid and semi-arid soils, but at relatively high rates that may be impractical for large-scale field studies. This contrasts with organic amendments such as manure, which can be abundant and inexpensive if locally available, and thus can be applied to fields at greater rates than biochar. In a field study comparing biochar and manure, a fast pyrolysis hardwood biochar (22.4 Mg ha(-1)), dairy manure (42 Mg ha(-1) dry wt), a combination of biochar and manure at the aforementioned rates, or no amendment (control) was applied to an Aridisol (n=3) in fall 2008. Plots were annually cropped to corn (Zea maize L.). Surface soils (0-30 cm) were sampled directly under corn plants in late June 2009 and early August 2012, and assayed for microbial community fatty acid methyl ester (FAME) profiles and six extracellular enzyme activities involved in soil C, N, and P cycling. Arbuscular mycorrhizal (AM) fungal colonization was assayed in corn roots in 2012. Biochar had no effect on microbial biomass, community structure, extracellular enzyme activities, or AM fungi root colonization of corn. In the short-term, manure amendment increased microbial biomass, altered microbial community structure, and significantly reduced the relative concentration of the AM fungal biomass in soil. Manure also reduced the percent root colonization of corn by AM fungi in the longer-term. Thus, biochar and manure had contrasting short-term effects on soil microbial communities, perhaps because of the relatively low application rate of biochar. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Submarine Basaltic Glass Colonization by the Heterotrophic Fe(II)-Oxidizing and Siderophore-Producing Deep-Sea Bacterium Pseudomonas stutzeri VS-10: The Potential Role of Basalt in Enhancing Growth

    PubMed Central

    Sudek, Lisa A.; Wanger, Greg; Templeton, Alexis S.; Staudigel, Hubert; Tebo, Bradley M.

    2017-01-01

    Phylogenetically and metabolically diverse bacterial communities have been found in association with submarine basaltic glass surfaces. The driving forces behind basalt colonization are for the most part unknown. It remains ambiguous if basalt provides ecological advantages beyond representing a substrate for surface colonization, such as supplying nutrients and/or energy. Pseudomonas stutzeri VS-10, a metabolically versatile bacterium isolated from Vailulu’u Seamount, was used as a model organism to investigate the physiological responses observed when biofilms are established on basaltic glasses. In Fe-limited heterotrophic media, P. stutzeri VS-10 exhibited elevated growth in the presence of basaltic glass. Diffusion chamber experiments demonstrated that physical attachment or contact of soluble metabolites such as siderophores with the basaltic glass plays a pivotal role in this process. Electrochemical data indicated that P. stutzeri VS-10 is able to use solid substrates (electrodes) as terminal electron donors and acceptors. Siderophore production and heterotrophic Fe(II) oxidation are discussed as potential mechanisms enhancing growth of P. stutzeri VS-10 on glass surfaces. In correlation with that we discuss the possibility that metabolic versatility could represent a common and beneficial physiological trait in marine microbial communities being subject to oligotrophic and rapidly changing deep-sea conditions. PMID:28344573

  13. Effects of antimicrobial treatment on fiberglass-acrylic filters.

    PubMed

    Cecchini, C; Verdenelli, M C; Orpianesi, C; Dadea, G M; Cresci, A

    2004-01-01

    The aims of the present study were to: (i) analyse a group of antimicrobial agents and to select the most active against test microbial strains; (ii) test the effect of the antimicrobial treatment on air filters in order to reduce microbial colonization. Different kinds of antimicrobial agents were analysed to assess their compatibility with the production process of air filter media. The minimal inhibitory concentration for each antimicrobial agent was determined against a defined list of microbial strains, and an antimicrobial activity assay of filter prototypes was developed to determine the most active agent among the compatible antimicrobials. Then, the most active was chosen and added directly to the filter during the production process. The microbial colonization of treated and untreated filter media was assessed at different working times for different incubation times by stereomicroscope and scanning electron microscope analysis. Some of the antimicrobial agents analysed were more active against microbial test strains and compatible with the production process of the filter media. Filter sections analysis of treated filter media showed a significantly lower microbial colonization than those untreated, a reduction of species both in density and varieties and of the presence of bacteria and fungal hyphae with reproductive structures. This study demonstrated the ability of antimicrobial treatments to inhibit the growth of micro-organisms in filter media and subsequently to increase indoor air quality (IAQ), highlighting the value of adding antimicrobials to filter media. To make a contribution to solving the problem of microbial contamination of air filters, by demonstrating the efficacy of incorporating antimicrobial agents in the filter media to improve IAQ and health.

  14. Microbial community profiles of the colon from steers differing in feed efficiency

    USDA-ARS?s Scientific Manuscript database

    Ruminal microbial fermentation plays an essential role in host nutrition, and as a result, the rumen microbiota have been a major focus of research examining bovine feed efficiency. Microbial communities within other sections of the gastrointestinal tract may also be important with regard to feed ef...

  15. Alteration of the gastrointestinal microbiota of mice by edible blue-green algae.

    PubMed

    Rasmussen, H E; Martínez, I; Lee, J Y; Walter, J

    2009-10-01

    To characterize the effect of edible blue-green algae (cyanobacteria) on the gastrointestinal microbiota of mice. C57BL/6J mice were fed a diet supplemented with 0% or 5% dried Nostoc commune, Spirulina platensis or Afanizominon flos-aquae (w/w) for 4 weeks. Molecular fingerprinting of the colonic microbiota using denaturing gradient gel electrophoresis revealed that administration of N. commune induced major alterations in colonic microbiota composition, while administration of S. platensis or A. flos-aquae had a more subtle impact. Community profile analysis revealed that administration of N. commune did not reduce microbial diversity indices of the colonic microbiota. Despite its pronounced effects on the bacterial composition in the colon, total bacterial numbers in the gut of mice fed N. commune were not reduced as assessed by quantitative real-time PCR and bacteriological culture. The results presented here show that administration of blue-green algae, and especially N. commune, alters colonic microbiota composition in mice with limited effects on total bacterial numbers or microbial diversity. Blue-green algae are consumed in many countries as a source of nutrients and to promote health, and they are intensively studied for their pharmaceutical value. Given the importance of the gut microbiota for many host functions, the effects of blue-green algae on gut microbial ecology revealed during this study should be considered when using them as food supplements or when studying their pharmaceutical properties.

  16. Gut microbiota facilitates dietary heme-induced epithelial hyperproliferation by opening the mucus barrier in colon.

    PubMed

    Ijssennagger, Noortje; Belzer, Clara; Hooiveld, Guido J; Dekker, Jan; van Mil, Saskia W C; Müller, Michael; Kleerebezem, Michiel; van der Meer, Roelof

    2015-08-11

    Colorectal cancer risk is associated with diets high in red meat. Heme, the pigment of red meat, induces cytotoxicity of colonic contents and elicits epithelial damage and compensatory hyperproliferation, leading to hyperplasia. Here we explore the possible causal role of the gut microbiota in heme-induced hyperproliferation. To this end, mice were fed a purified control or heme diet (0.5 μmol/g heme) with or without broad-spectrum antibiotics for 14 d. Heme-induced hyperproliferation was shown to depend on the presence of the gut microbiota, because hyperproliferation was completely eliminated by antibiotics, although heme-induced luminal cytotoxicity was sustained in these mice. Colon mucosa transcriptomics revealed that antibiotics block heme-induced differential expression of oncogenes, tumor suppressors, and cell turnover genes, implying that antibiotic treatment prevented the heme-dependent cytotoxic micelles to reach the epithelium. Our results indicate that this occurs because antibiotics reinforce the mucus barrier by eliminating sulfide-producing bacteria and mucin-degrading bacteria (e.g., Akkermansia). Sulfide potently reduces disulfide bonds and can drive mucin denaturation and microbial access to the mucus layer. This reduction results in formation of trisulfides that can be detected in vitro and in vivo. Therefore, trisulfides can serve as a novel marker of colonic mucolysis and thus as a proxy for mucus barrier reduction. In feces, antibiotics drastically decreased trisulfides but increased mucin polymers that can be lysed by sulfide. We conclude that the gut microbiota is required for heme-induced epithelial hyperproliferation and hyperplasia because of the capacity to reduce mucus barrier function.

  17. Bacterial colonization stimulates a complex physiological response in the immature human intestinal epithelium

    PubMed Central

    Hill, David R; Huang, Sha; Nagy, Melinda S; Yadagiri, Veda K; Fields, Courtney; Mukherjee, Dishari; Bons, Brooke; Dedhia, Priya H; Chin, Alana M; Tsai, Yu-Hwai; Thodla, Shrikar; Schmidt, Thomas M; Walk, Seth

    2017-01-01

    The human gastrointestinal tract is immature at birth, yet must adapt to dramatic changes such as oral nutrition and microbial colonization. The confluence of these factors can lead to severe inflammatory disease in premature infants; however, investigating complex environment-host interactions is difficult due to limited access to immature human tissue. Here, we demonstrate that the epithelium of human pluripotent stem-cell-derived human intestinal organoids is globally similar to the immature human epithelium and we utilize HIOs to investigate complex host-microbe interactions in this naive epithelium. Our findings demonstrate that the immature epithelium is intrinsically capable of establishing a stable host-microbe symbiosis. Microbial colonization leads to complex contact and hypoxia driven responses resulting in increased antimicrobial peptide production, maturation of the mucus layer, and improved barrier function. These studies lay the groundwork for an improved mechanistic understanding of how colonization influences development of the immature human intestine. PMID:29110754

  18. Stability of Microbiota Facilitated by Host Immune Regulation: Informing Probiotic Strategies to Manage Amphibian Disease

    PubMed Central

    Küng, Denise; Bigler, Laurent; Davis, Leyla R.; Gratwicke, Brian; Griffith, Edgardo; Woodhams, Douglas C.

    2014-01-01

    Microbial communities can augment host immune responses and probiotic therapies are under development to prevent or treat diseases of humans, crops, livestock, and wildlife including an emerging fungal disease of amphibians, chytridiomycosis. However, little is known about the stability of host-associated microbiota, or how the microbiota is structured by innate immune factors including antimicrobial peptides (AMPs) abundant in the skin secretions of many amphibians. Thus, conservation medicine including therapies targeting the skin will benefit from investigations of amphibian microbial ecology that provide a model for vertebrate host-symbiont interactions on mucosal surfaces. Here, we tested whether the cutaneous microbiota of Panamanian rocket frogs, Colostethus panamansis, was resistant to colonization or altered by treatment. Under semi-natural outdoor mesocosm conditions in Panama, we exposed frogs to one of three treatments including: (1) probiotic - the potentially beneficial bacterium Lysinibacillus fusiformis, (2) transplant – skin washes from the chytridiomycosis-resistant glass frog Espadarana prosoblepon, and (3) control – sterile water. Microbial assemblages were analyzed by a culture-independent T-RFLP analysis. We found that skin microbiota of C. panamansis was resistant to colonization and did not differ among treatments, but shifted through time in the mesocosms. We describe regulation of host AMPs that may function to maintain microbial community stability. Colonization resistance was metabolically costly and microbe-treated frogs lost 7–12% of body mass. The discovery of strong colonization resistance of skin microbiota suggests a well-regulated, rather than dynamic, host-symbiont relationship, and suggests that probiotic therapies aiming to enhance host immunity may require an approach that circumvents host mechanisms maintaining equilibrium in microbial communities. PMID:24489847

  19. Factors affecting the conversion of apple polyphenols to phenolic acids and fruit matrix to short-chain fatty acids by human faecal microbiota in vitro.

    PubMed

    Bazzocco, Sarah; Mattila, Ismo; Guyot, Sylvain; Renard, Catherine M G C; Aura, Anna-Marja

    2008-12-01

    Proanthocyanidins (PAs) in apples are condensed tannins comprised mostly of (-)-epicatechin units with some terminal (+)-catechins. PAs, especially those having a long chain-length, are absorbed in the upper intestine only to a small extent and are passed to the colon. In the colon they are subjected to microbial metabolism by colonic microbiota. In the present article, the ability of human microbiota to ferment apple PAs is studied. Freeze-dried fruit preparations (apple, enzymatically digested apple, isolated cell-walls, isolated PAs or ciders) from two varieties, Marie Ménard and Avrolles, containing PAs of different chain lengths, were compared. Fermentation studies were performed in an in vitro colon model using human faecal microbiota as an inoculum. The maximal extent of conversion to known microbial metabolites, was observed at late time point for Marie Ménard cider, having short PAs. In this case, the initial dose also contributed to the extent of conversion. Long-chain PAs were able to inhibit the in vitro microbial metabolism of PAs shown as low maxima at early time points. Presence of isolated PAs also suppressed SCFA formation from carbohydrates as compared with that from apple cell wall or faecal suspension without substrates. The low maximal extents at early time points suggest that there is a competition between the inhibitory effect of the PAs on microbial activity, and the ability to convert PAs by the microbiota.

  20. Evaluation of the Efficacy of Different Mixing Techniques and Disinfection on Microbial Colonization of Polyether Impression Materials: A Comparative Study.

    PubMed

    Singla, Youginder; Pachar, Renu B; Poriya, Sangeeta; Mishra, Aalok; Sharma, Rajni; Garg, Anshu

    2018-03-01

    This study aims to determine the role of mixing techniques of polyether impression materials and efficacy of disinfection on microbial colonization of these impression materials. Polyether impression material was mixed using two methods: First by hand mixing (group I) and second using an automixer (group II) with a total of 100 samples. Four microbial strains were studied, which included Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. After incubation, the bacterial colonies were counted, and then, disinfectant solution was applied. The effect of disinfection solution was evaluated for each specimen. The surface of polyether impression materials mixed with an automixer has less number of voids and overall a smoother surface as compared with the hand-mixed ones. On comparing the disinfection procedures, i.e., specimens without any disinfection and specimens after disinfection, statistically highly significant difference was seen between all the groups. We can conclude that impression mixing procedures are important in determining the surface characteristics of the impression and ultimately the colonization of bacteria and also determine the importance of disinfection on microbial colonization. This study emphasises the deleterious role of nosocomial infections and specific measures that should be taken regarding the prevention of such diseases. Dental impressions are proved to be a source of such infections and may lead to transmission of such diseases. Thus, proper measures should be taken right from the first step of impression taking to minimizing and preventing such kind of contaminations in clinical practice.

  1. The microbiota of traumatic, open fracture wounds is associated with mechanism of injury.

    PubMed

    Bartow-McKenney, Casey; Hannigan, Geoffrey D; Horwinski, Joseph; Hesketh, Patrick; Horan, Annamarie D; Mehta, Samir; Grice, Elizabeth A

    2018-05-26

    Open fractures are characterized by disruption of the skin and soft tissue, which allows for microbial contamination and colonization. Preventing infection-related complications of open fractures and other acute wounds remains an evolving challenge due to an incomplete understanding of how microbial colonization and contamination influence healing and outcomes. Culture-independent molecular methods are now widely used to study human-associated microbial communities without introducing culture biases. Using such approaches, the objectives of this study were to 1) define the long-term temporal microbial community dynamics of open fracture wounds and 2) examine microbial community dynamics with respect to clinical and demographic factors. Fifty-two subjects with traumatic open fracture wounds (32 blunt and 20 penetrating injuries) were enrolled prospectively and sampled longitudinally from presentation to the emergency department and at each subsequent inpatient or outpatient encounter. Specimens were collected from both the wound center and adjacent skin. Culture-independent sequencing of the 16S ribosomal RNA gene was employed to identify and characterize microbiota. Upon presentation to the emergency department and time points immediately following, sample collection site (wound or adjacent skin) was the most defining feature discriminating microbial profiles. Microbial composition of adjacent skin and wound center converged over time. Mechanism of injury most strongly defined the microbiota after initial convergence. Further analysis controlling for race, gender, and age revealed that mechanism of injury remained a significant discriminating feature throughout the continuum of care. We conclude that the microbial communities associated with open fracture wounds are dynamic in nature until eventual convergence with the adjacent skin community during healing, with mechanism of injury as an important feature affecting both diversity and composition of the microbiota. A more complete understanding of the factors influencing microbial contamination and/or colonization in open fractures is a critical foundation for identifying markers indicative of outcome and deciphering their respective contributions to healing and/or complication. This article is protected by copyright. All rights reserved. © 2018 by the Wound Healing Society.

  2. The influence of Staphylococcus aureus on gut microbial ecology in an in vitro continuous culture human colonic model system.

    PubMed

    Sannasiddappa, Thippeswamy H; Costabile, Adele; Gibson, Glenn R; Clarke, Simon R

    2011-01-01

    An anaerobic three-stage continuous culture model of the human colon (gut model), which represent different anatomical areas of the large intestine, was used to study the effect of S. aureus infection of the gut on the resident faecal microbiota. Studies on the development of the microbiota in the three vessels were performed and bacteria identified by culture independent fluorescence in situ hybridization (FISH). Furthermore, short chain fatty acids (SCFA), as principal end products of gut bacterial metabolism, were measured along with a quantitative assessment of the predominant microbiota. During steady state conditions, numbers of S. aureus cells stabilised until they were washed out, but populations of indigenous bacteria were transiently altered; thus S. aureus was able to compromise colonisation resistance by the colonic microbiota. Furthermore, the concentration of butyric acid in the vessel representing the proximal colon was significantly decreased by infection. Thus infection by S. aureus appears to be able to alter the overall structure of the human colonic microbiota and the microbial metabolic profiles. This work provides an initial in vitro model to analyse interactions with pathogens.

  3. Colonization of the Cecal Mucosa by Helicobacter hepaticus Impacts the Diversity of the Indigenous Microbiota

    PubMed Central

    Kuehl, Carole J.; Wood, Heather D.; Marsh, Terence L.; Schmidt, Thomas M.; Young, Vincent B.

    2005-01-01

    Establishment of mucosal and/or luminal colonization is the first step in the pathogenesis of many gastrointestinal bacterial pathogens. The pathogen must be able to establish itself in the face of competition from the complex microbial community that is already in place. We used culture-independent methods to monitor the colonization of the cecal mucosa of Helicobacter-free mice following experimental infection with the pathogen Helicobacter hepaticus. Two days after infection, H. hepaticus comprised a minor component of the mucosa-associated microbiota, but within 14 days, it became the dominant member of the community. Colonization of the mucosa by H. hepaticus was associated with a decrease in the overall diversity of the microbial community, in large part due to changes in evenness resulting from the relative dominance of H. hepaticus as a member of the community. Our results demonstrate that invasion of the complex gastrointestinal microbial community by a pathogenic microorganism causes reproducible and significant disturbances in the community structure. The use of non-culture-based methods to monitor these changes should lead to a greater understanding of the ecological principles that govern pathogen invasion and may lead to novel methods for the prevention and control of gastrointestinal pathogens. PMID:16177375

  4. Biofilm on the tracheoesophageal voice prosthesis: considerations for oral decontamination.

    PubMed

    Somogyi-Ganss, Eszter; Chambers, Mark S; Lewin, Jan S; Tarrand, Jeffrey J; Hutcheson, Katherine A

    2017-01-01

    The tracheoesophageal puncture (TEP) restores verbal communication after total laryngectomy using a one-way valved voice prosthesis (VP). Microbial colonization can shorten VP device life. Our aims were to investigate patterns of prosthetic and oral colonization, and record changes in VP device life after targeted decontamination. We conducted a retrospective review of TEP clinic patients who underwent microbial analysis of the VP between 01/2003 and 07/2013. Two subgroups were analyzed: (1) patients with microbial analysis of the VP and the mouth were analyzed to identify patterns of common contamination, and (2) patients who were prescribed targeted oral decontamination on the basis of the microbial analysis of the VP were analyzed to evaluate effects on device life. Among 42 patients, 3 patients had only fungal, 5 only bacterial, and 33 had polyspecies fungal and bacterial colonization. In the TEP-oral microflora subgroup (n = 15), 7 had common microorganisms in the mouth and on the VP. Among the decontamination subgroup (n = 23), 6 patients received broad spectrum rinse, 16 antifungal agents and 13 antibiotics, or a combination thereof. After targeted decontamination, the median device life of prostheses improved from 7.89 to 10.82 weeks (p = 0.260). The majority of patients with a suboptimal VP device life in this pilot had polyspecies bacterial and fungal colonization. VPs rarely had fungal contamination alone (3 %), and non-albicans fungal species were more common than expected. For these reasons, we are exploring the use of targeted decontamination regimens that were associated with 1.4-fold improvement in VP duration.

  5. The Role of Curcumin in Modulating Colonic Microbiota During Colitis and Colon Cancer Prevention.

    PubMed

    McFadden, Rita-Marie T; Larmonier, Claire B; Shehab, Kareem W; Midura-Kiela, Monica; Ramalingam, Rajalakshmy; Harrison, Christy A; Besselsen, David G; Chase, John H; Caporaso, J Gregory; Jobin, Christian; Ghishan, Fayez K; Kiela, Pawel R

    2015-11-01

    Intestinal microbiota influences the progression of colitis-associated colorectal cancer. With diet being a key determinant of the gut microbial ecology, dietary interventions are an attractive avenue for the prevention of colitis-associated colorectal cancer. Curcumin is the most active constituent of the ground rhizome of the Curcuma longa plant, which has been demonstrated to have anti-inflammatory, antioxidative, and antiproliferative properties. Il10 mice on 129/SvEv background were used as a model of colitis-associated colorectal cancer. Starting at 10 weeks of age, wild-type or Il10 mice received 6 weekly intraperitoneal injections of azoxymethane (AOM) or phosphate-buffered saline (PBS) and were started on either a control or a curcumin-supplemented diet. Stools were collected every 4 weeks for microbial community analysis. Mice were killed at 30 weeks of age. Curcumin-supplemented diet increased survival, decreased colon weight/length ratio, and, at 0.5%, entirely eliminated tumor burden. Although colonic histology indicated improvement with curcumin, no effects of mucosal immune responses have been observed in PBS/Il10 mice and limited effects were seen in AOM/Il10 mice. In wild-type and in Il10 mice, curcumin increased bacterial richness, prevented age-related decrease in alpha diversity, increased the relative abundance of Lactobacillales, and decreased Coriobacterales order. Taxonomic profile of AOM/Il10 mice receiving curcumin was more similar to those of wild-type mice than those fed control diet. In AOM/Il10 model, curcumin reduced or eliminated colonic tumor burden with limited effects on mucosal immune responses. The beneficial effect of curcumin on tumorigenesis was associated with the maintenance of a more diverse colonic microbial ecology.

  6. Phylogenetic Profiles of In-House Microflora in Drains at a Food Production Facility: Comparison and Biocontrol Implications of Listeria-Positive and -Negative Bacterial Populations

    PubMed Central

    Solomon, Katie; Moore, John E.; Wall, Patrick G.; Fanning, Séamus

    2014-01-01

    Listeria species experience complex interactions with other microorganisms, which may promote growth and colonization of the organism in local environments or negatively affect them. This study investigated the microbial community at a food production facility, examining interactions between Listeria and the associated microbiome. Listeria species can be transferred between zones in the production environment by individuals or equipment, and drains may act as a reservoir for the organism, reflecting the microbial flora potentially in the production environment. Drains that were colonized by Listeria species and those determined to be free of Listeria were examined. In each case, 16S rRNA gene analysis was performed using the PhyloChip platform. Some general similarities in bacterial population structure were observed when Listeria-negative and -positive drain communities were compared, with some distinct differences also noted. These included increased populations of the genera Prevotella and Janthinobacterium associated with the absence of Listeria species, whereas Enterococcus and Rhodococcus were in higher abundance in drains colonized by Listeria species. Based on these results, a selection of bacterial species were grown in coculture biofilm with a Listeria monocytogenes strain identified as having colonized a drain at the facility. Mixed-species biofilm experiments showed that Janthinobacterium inhibited attachment and subsequent biofilm formation of L. monocytogenes; however, Enterococcus gallinarum significantly increased it. The results of this study suggest the microbial community in food processing facilities can impact the colonization of Listeria species and that influencing the microbiome in favor of antilisterial species may reduce the colonization of Listeria species and limit the likelihood of product/process contamination. PMID:24657862

  7. The Role of Curcumin in Modulating Colonic Microbiota During Colitis and Colon Cancer Prevention

    PubMed Central

    McFadden, Rita-Marie T.; Larmonier, Claire B.; Shehab, Kareem W.; Midura-Kiela, Monica; Ramalingam, Rajalakshmy; Harrison, Christy A.; Besselsen, David G.; Chase, John H.; Caporaso, J. Gregory; Jobin, Christian; Ghishan, Fayez K.; Kiela, Pawel R.

    2015-01-01

    Background Intestinal microbiota influences the progression of colitis-associated colorectal cancer (CAC). With diet being a key determinant of the gut microbial ecology, dietary interventions are an attractive avenue for the prevention of CAC. Curcumin is the most active constituent of the ground rhizome of the Curcuma Longa plant, which has been demonstrated to have anti-inflammatory, anti-oxidative and anti-proliferative properties. Methods Il10−/− mice on 129/SvEv background were used as a model of CAC. Starting at 10 weeks of age, WT or Il10−/− mice received six weekly i.p. injections of azoxymethane (AOM) or saline, and were started on either a control or curcumin-supplemented diet. Stools were collected every 4 weeks for microbial community analysis. Mice were sacrificed at 30 weeks of age. Results Curcumin-supplemented diet increased survival, decreased colon weight/length ratio, and at 0.5%, entirely eliminated tumor burden. Although colonic histology indicated improvement with curcumin, no effects of mucosal immune responses have been observed in PBS/Il10−/− mice, and limited effects were seen in AOM/Il10−/− mice. In WT and in Il10−/− mice, curcumin increased bacterial richness, prevented age-related decrease in alpha diversity, increased the relative abundance of Lactobacillales, and decreased Coriobacterales order. Taxonomic profile of AOM/Il10−/− mice receiving curcumin was more similar to those of wild-type mice than those fed control diet. Conclusions In AOM/Il10−/− model, curcumin reduced or eliminated colonic tumor burden with limited effects on mucosal immune responses. The beneficial effect of curcumin on tumorigenesis was associated with the maintenance of a more diverse colonic microbial ecology. PMID:26218141

  8. Effect of Replacing Soybean Meal by Raw or Extruded Pea Seeds on Growth Performance and Selected Physiological Parameters of the Ileum and Distal Colon of Pigs

    PubMed Central

    Taciak, Marcin; Barszcz, Marcin; Święch, Ewa; Bachanek, Ilona; Skomiał, Jacek

    2017-01-01

    The use of pea seeds is limited due to the content of antinutritional factors that may affect gut physiology. Heat treatment such as extrusion may reduce heat-labile antinutritional factors and improve the nutritional value of pea seeds. This study determined the effect of partial replacement of soybean meal in pig diets by raw or extruded pea seeds on growth performance, nitrogen balance and physiology of the ileum and distal colon. The experiment was carried out in 18 castrated male piglets of initial body weight of 11 kg, divided into three groups. The animals were fed cereal-based diets with soybean meal (C), which was partly replaced by raw (PR) or extruded pea (PE) seeds. Nitrogen balance was measured at about 15 kg body weight. After 26 days of feeding, tissue samples were taken from the ileum and distal colon for histological measurements, and colonic digesta samples for analyses of microbial activity indices. The animals fed the PE diet had a significantly greater average daily gain than those fed the C diet and better apparent protein digestibility than those on the PR diet. Pigs fed the PR diet had a significantly greater butyric acid concentration and lower pH in the colon than pigs fed PE and C diets. There was no significant effect of the diet on other indices of microbial activity or morphological parameters. In conclusion, feeding a diet with extruded pea seeds improved growth performance of pigs, did not affect intestinal morphology and had a negligible effect on microbial activity in the distal colon. PMID:28060879

  9. Factoring the intestinal microbiome into the pathogenesis of autoimmune hepatitis.

    PubMed

    Czaja, Albert J

    2016-11-14

    The intestinal microbiome is a reservoir of microbial antigens and activated immune cells. The aims of this review were to describe the role of the intestinal microbiome in generating innate and adaptive immune responses, indicate how these responses contribute to the development of systemic immune-mediated diseases, and encourage investigations that improve the understanding and management of autoimmune hepatitis. Alterations in the composition of the intestinal microflora (dysbiosis) can disrupt intestinal and systemic immune tolerances for commensal bacteria. Toll-like receptors within the intestine can recognize microbe-associated molecular patterns and shape subsets of T helper lymphocytes that may cross-react with host antigens (molecular mimicry). Activated gut-derived lymphocytes can migrate to lymph nodes, and gut-derived microbial antigens can translocate to extra-intestinal sites. Inflammasomes can form within hepatocytes and hepatic stellate cells, and they can drive the pro-inflammatory, immune-mediated, and fibrotic responses. Diet, designer probiotics, vitamin supplements, re-colonization methods, antibiotics, drugs that decrease intestinal permeability, and molecular interventions that block signaling pathways may emerge as adjunctive regimens that complement conventional immunosuppressive management. In conclusion, investigations of the intestinal microbiome are warranted in autoimmune hepatitis and promise to clarify pathogenic mechanisms and suggest alternative management strategies.

  10. Factoring the intestinal microbiome into the pathogenesis of autoimmune hepatitis

    PubMed Central

    Czaja, Albert J

    2016-01-01

    The intestinal microbiome is a reservoir of microbial antigens and activated immune cells. The aims of this review were to describe the role of the intestinal microbiome in generating innate and adaptive immune responses, indicate how these responses contribute to the development of systemic immune-mediated diseases, and encourage investigations that improve the understanding and management of autoimmune hepatitis. Alterations in the composition of the intestinal microflora (dysbiosis) can disrupt intestinal and systemic immune tolerances for commensal bacteria. Toll-like receptors within the intestine can recognize microbe-associated molecular patterns and shape subsets of T helper lymphocytes that may cross-react with host antigens (molecular mimicry). Activated gut-derived lymphocytes can migrate to lymph nodes, and gut-derived microbial antigens can translocate to extra-intestinal sites. Inflammasomes can form within hepatocytes and hepatic stellate cells, and they can drive the pro-inflammatory, immune-mediated, and fibrotic responses. Diet, designer probiotics, vitamin supplements, re-colonization methods, antibiotics, drugs that decrease intestinal permeability, and molecular interventions that block signaling pathways may emerge as adjunctive regimens that complement conventional immunosuppressive management. In conclusion, investigations of the intestinal microbiome are warranted in autoimmune hepatitis and promise to clarify pathogenic mechanisms and suggest alternative management strategies. PMID:27895415

  11. Colonizing the embryonic zebrafish gut with anaerobic bacteria derived from the human gastrointestinal tract.

    PubMed

    Toh, Michael C; Goodyear, Mara; Daigneault, Michelle; Allen-Vercoe, Emma; Van Raay, Terence J

    2013-06-01

    The zebrafish has become increasingly popular for microbiological research. It has been used as an infection model for a variety of pathogens, and is also emerging as a tool for studying interactions between a host and its resident microbial communities. The mouse microbiota has been transplanted into the zebrafish gut, but to our knowledge, there has been no attempt to introduce a bacterial community derived from the human gut. We explored two methods for colonizing the developing gut of 5-day-old germ-free zebrafish larvae with a defined anaerobic microbial community derived from a single human fecal sample. Both environmental exposure (static immersion) and direct microinjection into the gut resulted in the establishment of two species-Lactobacillus paracasei and Eubacterium limosum-from a community of 30 strains consisting of 22 anaerobic species. Of particular interest is E. limosum, which, as a strict anaerobe, represents a group of bacteria which until now have not been shown to colonize the developing zebrafish gut. Our success here indicates that further investigation of zebrafish as a tool for studying human gut microbial communities is warranted.

  12. Microbial colonization and degradation of polyethylene and biodegradable plastic bags in temperate fine-grained organic-rich marine sediments.

    PubMed

    Nauendorf, Alice; Krause, Stefan; Bigalke, Nikolaus K; Gorb, Elena V; Gorb, Stanislav N; Haeckel, Matthias; Wahl, Martin; Treude, Tina

    2016-02-15

    To date, the longevity of plastic litter at the sea floor is poorly constrained. The present study compares colonization and biodegradation of plastic bags by aerobic and anaerobic benthic microbes in temperate fine-grained organic-rich marine sediments. Samples of polyethylene and biodegradable plastic carrier bags were incubated in natural oxic and anoxic sediments from Eckernförde Bay (Western Baltic Sea) for 98 days. Analyses included (1) microbial colonization rates on the bags, (2) examination of the surface structure, wettability, and chemistry, and (3) mass loss of the samples during incubation. On average, biodegradable plastic bags were colonized five times higher by aerobic and eight times higher by anaerobic microbes than polyethylene bags. Both types of bags showed no sign of biodegradation during this study. Therefore, marine sediment in temperate coastal zones may represent a long-term sink for plastic litter and also supposedly compostable material. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Exploring the Colonic Metabolism of Grape and Strawberry Anthocyanins and Their in Vitro Apoptotic Effects in HT-29 Colon Cancer Cells.

    PubMed

    López de Las Hazas, María-Carmen; Mosele, Juana I; Macià, Alba; Ludwig, Iziar A; Motilva, María-José

    2017-08-09

    Beneficial properties attributed to the intake of fruit and red wine have been associated with the presence of significant amounts of anthocyanins. However, their low absorption and consequent accumulation in the gut have generated the suspicion that colonic metabolites of anthocyanins are probably involved in these protective effects. Grape pomace and strawberry extracts, rich in malvidin- and pelargonidin-glucoside, respectively, were fermented in vitro using human feces as microbial inoculum. After 8 h of anaerobic incubation, the anthocyanins were almost completely degraded, whereas their microbial metabolite concentrations were highest at 24 h. Syringic acid and tyrosol were the main metabolites of grape and strawberry extracts, respectively. On the basis of the metabolites detected, metabolic pathways of malvidin- and pelargonidin-glucosides were proposed. Anthocyanin-rich grape and strawberry extracts and their generated metabolites such as hydroxyphenylacetic acid showed apoptotic effects in HT-29 colon cancer cells and may suggest their possible contribution as anticarcinogenic agents.

  14. Effect of Pre-weaning Diet on the Ruminal Archaeal, Bacterial, and Fungal Communities of Dairy Calves

    PubMed Central

    Dias, Juliana; Marcondes, Marcos I.; Noronha, Melline F.; Resende, Rafael T.; Machado, Fernanda S.; Mantovani, Hilário C.; Dill-McFarland, Kimberly A.; Suen, Garret

    2017-01-01

    At birth, calves display an underdeveloped rumen that eventually matures into a fully functional rumen as a result of solid food intake and microbial activity. However, little is known regarding the gradual impact of pre-weaning diet on the establishment of the rumen microbiota. Here, we employed next-generation sequencing to investigate the effects of the inclusion of starter concentrate (M: milk-fed vs. MC: milk plus starter concentrate fed) on archaeal, bacterial and anaerobic fungal communities in the rumens of 45 crossbred dairy calves across pre-weaning development (7, 28, 49, and 63 days). Our results show that archaeal, bacterial, and fungal taxa commonly found in the mature rumen were already established in the rumens of calves at 7 days old, regardless of diet. This confirms that microbiota colonization occurs in the absence of solid substrate. However, diet did significantly impact some microbial taxa. In the bacterial community, feeding starter concentrate promoted greater diversity of bacterial taxa known to degrade readily fermentable carbohydrates in the rumen (e.g., Megasphaera, Sharpea, and Succinivribrio). Shifts in the ruminal bacterial community also correlated to changes in fermentation patterns that favored the colonization of Methanosphaera sp. A4 in the rumen of MC calves. In contrast, M calves displayed a bacterial community dominated by taxa able to utilize milk nutrients (e.g., Lactobacillus, Bacteroides, and Parabacteroides). In both diet groups, the dominance of these milk-associated taxa decreased with age, suggesting that diet and age simultaneously drive changes in the structure and abundance of bacterial communities in the developing rumen. Changes in the composition and abundance of archaeal communities were attributed exclusively to diet, with more highly abundant Methanosphaera and less abundant Methanobrevibacter in MC calves. Finally, the fungal community was dominated by members of the genus SK3 and Caecomyces. Relative anaerobic fungal abundances did not change significantly in response to diet or age, likely due to high inter-animal variation and the low fiber content of starter concentrate. This study provides new insights into the colonization of archaea, bacteria, and anaerobic fungi communities in pre-ruminant calves that may be useful in designing strategies to promote colonization of target communities to improve functional development. PMID:28861065

  15. Intraspecific Competition Impacts Vibrio fischeri Strain Diversity during Initial Colonization of the Squid Light Organ

    PubMed Central

    Sun, Yan; LaSota, Elijah D.; Cecere, Andrew G.; LaPenna, Kyle B.; Larios-Valencia, Jessie; Wollenberg, Michael S.

    2016-01-01

    ABSTRACT Animal development and physiology depend on beneficial interactions with microbial symbionts. In many cases, the microbial symbionts are horizontally transmitted among hosts, thereby making the acquisition of these microbes from the environment an important event within the life history of each host. The light organ symbiosis established between the Hawaiian squid Euprymna scolopes and the bioluminescent bacterium Vibrio fischeri is a model system for examining how hosts acquire horizontally transmitted microbial symbionts. Recent studies have revealed that the light organ of wild-caught E. scolopes squid contains polyclonal populations of V. fischeri bacteria; however, the function and development of such strain diversity in the symbiosis are unknown. Here, we report our phenotypic and phylogenetic characterizations of FQ-A001, which is a V. fischeri strain isolated directly from the light organ of an E. scolopes individual. Relative to the type strain ES114, FQ-A001 exhibits similar growth in rich medium but displays increased bioluminescence and decreased motility in soft agar. FQ-A001 outcompetes ES114 in colonizing the crypt spaces of the light organs. Remarkably, we find that animals cocolonized with FQ-A001 and ES114 harbor singly colonized crypts, in contrast to the cocolonized crypts observed from competition experiments involving single genotypes. The results with our two-strain system suggest that strain diversity within the squid light organ is a consequence of diversity in the single-strain colonization of individual crypt spaces. IMPORTANCE The developmental programs and overall physiologies of most animals depend on diverse microbial symbionts that are acquired from the environment. However, the basic principles underlying how microbes colonize their hosts remain poorly understood. Here, we report our findings of bacterial strain competition within the coevolved animal-microbe symbiosis composed of the Hawaiian squid and bioluminescent bacterium Vibrio fischeri. Using fluorescent proteins to differentially label two distinct V. fischeri strains, we find that the strains are unable to coexist in the same niche within the host. Our results suggest that strain competition for distinct colonization sites dictates the strain diversity associated with the host. Our study provides a platform for studying how strain diversity develops within a host. PMID:27016564

  16. Microbial biofilm formation and its consequences for the CELSS program

    NASA Technical Reports Server (NTRS)

    Mitchell, R.

    1994-01-01

    A major goal of the Controlled Ecology Life Support System (CELSS) program is to provide reliable and efficient life support systems for long-duration space flights. A principal focus of the program is on the growth of higher plants in growth chambers. These crops should be grown without the risk of damage from microbial contamination. While it is unlikely that plant pathogens will pose a risk, there are serious hazards associated with microorganisms carried in the nutrient delivery systems and in the atmosphere of the growth chamber. Our experience in surface microbiology showed that colonization of surfaces with microorganisms is extremely rapid even when the inoculum is small. After initial colonization extensive biofilms accumulate on moist surfaces. These microbial films metabolize actively and slough off continuously to the air and water. During plant growth in the CELSS program, microbial biofilms have the potential to foul sensors and to plug nutrient delivery systems. In addition both metabolic products of microbial growth and degradation products of materials being considered for use as nutrient reservoirs and for delivery are likely sources of chemicals known to adversly affect plant growth.

  17. Natural and artificial feeding management before weaning promote different rumen microbial colonization but not differences in gene expression levels at the rumen epithelium of newborn goats

    PubMed Central

    Abecia, Leticia; Jiménez, Elisabeth; Martínez-Fernandez, Gonzalo; Martín-García, A. Ignacio; Ramos-Morales, Eva; Pinloche, Eric; Denman, Stuart E.; Newbold, C. Jamie

    2017-01-01

    The aim of this work was to evaluate the effect of feeding management during the first month of life (natural with the mother, NAT, or artificial with milk replacer, ART) on the rumen microbial colonization and the host innate immune response. Thirty pregnant goats carrying two fetuses were used. At birth one kid was taken immediately away from the doe and fed milk replacer (ART) while the other remained with the mother (NAT). Kids from groups received colostrum during first 2 days of life. Groups of four kids (from ART and NAT experimental groups) were slaughtered at 1, 3, 7, 14, 21 and 28 days of life. On the sampling day, after slaughtering, the rumen content was sampled and epithelial rumen tissue was collected. Pyrosequencing analyses of the bacterial community structure on samples collected at 3, 7, 14 and 28 days showed that both systems promoted significantly different colonization patterns (P = 0.001). Diversity indices increased with age and were higher in NAT feeding system. Lower mRNA abundance was detected in TLR2, TLR8 and TLR10 in days 3 and 5 compared to the other days (7, 14, 21 and 28). Only TLR5 showed a significantly different level of expression according to the feeding system, presenting higher mRNA abundances in ART kids. PGLYRP1 showed significantly higher abundance levels in days 3, 5 and 7, and then experienced a decline independently of the feeding system. These observations confirmed a highly diverse microbial colonisation from the first day of life in the undeveloped rumen, and show that the colonization pattern substantially differs between pre-ruminants reared under natural or artificial milk feeding systems. However, the rumen epithelial immune development does not differentially respond to distinct microbial colonization patterns. PMID:28813529

  18. Natural and artificial feeding management before weaning promote different rumen microbial colonization but not differences in gene expression levels at the rumen epithelium of newborn goats.

    PubMed

    Abecia, Leticia; Jiménez, Elisabeth; Martínez-Fernandez, Gonzalo; Martín-García, A Ignacio; Ramos-Morales, Eva; Pinloche, Eric; Denman, Stuart E; Newbold, C Jamie; Yáñez-Ruiz, David R

    2017-01-01

    The aim of this work was to evaluate the effect of feeding management during the first month of life (natural with the mother, NAT, or artificial with milk replacer, ART) on the rumen microbial colonization and the host innate immune response. Thirty pregnant goats carrying two fetuses were used. At birth one kid was taken immediately away from the doe and fed milk replacer (ART) while the other remained with the mother (NAT). Kids from groups received colostrum during first 2 days of life. Groups of four kids (from ART and NAT experimental groups) were slaughtered at 1, 3, 7, 14, 21 and 28 days of life. On the sampling day, after slaughtering, the rumen content was sampled and epithelial rumen tissue was collected. Pyrosequencing analyses of the bacterial community structure on samples collected at 3, 7, 14 and 28 days showed that both systems promoted significantly different colonization patterns (P = 0.001). Diversity indices increased with age and were higher in NAT feeding system. Lower mRNA abundance was detected in TLR2, TLR8 and TLR10 in days 3 and 5 compared to the other days (7, 14, 21 and 28). Only TLR5 showed a significantly different level of expression according to the feeding system, presenting higher mRNA abundances in ART kids. PGLYRP1 showed significantly higher abundance levels in days 3, 5 and 7, and then experienced a decline independently of the feeding system. These observations confirmed a highly diverse microbial colonisation from the first day of life in the undeveloped rumen, and show that the colonization pattern substantially differs between pre-ruminants reared under natural or artificial milk feeding systems. However, the rumen epithelial immune development does not differentially respond to distinct microbial colonization patterns.

  19. Bacterial Community Composition Associated with Pyrogenic Organic Matter (Biochar) Varies with Pyrolysis Temperature and Colonization Environment

    PubMed Central

    Dai, Zhongmin; Barberán, Albert; Li, Yong; Brookes, Philip C.

    2017-01-01

    ABSTRACT Microbes that colonize pyrogenic organic matter (PyOM) (also called biochar) play an important role in PyOM mineralization and crucially affect soil biogeochemical cycling, while the microbial community composition associated with PyOM particles is poorly understood. We generated two manure-based PyOMs with different characteristics (PyOM pyrolyzed at the low temperature of 300°C [i.e., PyOM300] and at the high temperature of 700°C [i.e., PyOM700]) and added them to high-carbon (4.15%) and low-C (0.37%) soil for microbial colonization. 16S rRNA gene sequencing showed that Actinobacteria, particularly Actinomycetales, was the dominant taxon in PyOM, regardless of the PyOM pyrolysis temperature and soil type. Bacterial communities associated with PyOM particles from high-C soils were similar to those in non-PyOM-amended soils. PyOM300 had higher total microbial activity and more differential bacterial communities than PyOM700. More bacterial operational taxonomic units (OTUs) preferentially thrived on the low-pyrolysis-temperature PyOM, while some specific OTUs thrived on high-pyrolysis-temperature PyOM. In particular, Chloroflexi species tended to be more prevalent in high-pyrolysis-temperature PyOM in low-C soils. In conclusion, the differences in colonized bacterial community composition between the different PyOMs were strongly influenced by the pyrolysis temperatures of PyOM, i.e., under conditions of easily mineralizable C or fused aromatic C, and by other properties, e.g., pH, surface area, and nutrient content. IMPORTANCE Pyrogenic organic matter (PyOM) is widely distributed in soil and fluvial ecosystems and plays an important role in biogeochemical cycling. Many studies have reported changes in soil microbial communities stimulated by PyOM, but very little is known about the microbial communities associated with PyOM. The microbes that colonize PyOMs can participate in the mineralization of PyOM, so changing its structure affects the fate of PyOMs and contributes to soil biogeochemical cycling. This study identified the bacterial community composition associated with PyOMs on the basis of high-throughput sequencing and demonstrated that both PyOM pyrolysis temperature and the colonization environment determined the bacterial community composition. Our work increases our understanding of the dominant phylogenetic taxa associated with PyOMs, demonstrates mechanisms mediating microbial metabolism and growth in PyOMs, and expands a new research area for pyrogenic organic matter. This study identified the bacterial community composition associated with PyOM, which is widely distributed in the environment. Most bacterial OTUs preferentially thrived on PyOM pyrolyzed at low temperature, while some specific OTUs thrived on PyOM pyrolyzed at high temperature. PMID:28405627

  20. Bacterial Community Composition Associated with Pyrogenic Organic Matter (Biochar) Varies with Pyrolysis Temperature and Colonization Environment.

    PubMed

    Dai, Zhongmin; Barberán, Albert; Li, Yong; Brookes, Philip C; Xu, Jianming

    2017-01-01

    Microbes that colonize pyrogenic organic matter (PyOM) (also called biochar) play an important role in PyOM mineralization and crucially affect soil biogeochemical cycling, while the microbial community composition associated with PyOM particles is poorly understood. We generated two manure-based PyOMs with different characteristics (PyOM pyrolyzed at the low temperature of 300°C [i.e., PyOM300] and at the high temperature of 700°C [i.e., PyOM700]) and added them to high-carbon (4.15%) and low-C (0.37%) soil for microbial colonization. 16S rRNA gene sequencing showed that Actinobacteria , particularly Actinomycetales , was the dominant taxon in PyOM, regardless of the PyOM pyrolysis temperature and soil type. Bacterial communities associated with PyOM particles from high-C soils were similar to those in non-PyOM-amended soils. PyOM300 had higher total microbial activity and more differential bacterial communities than PyOM700. More bacterial operational taxonomic units (OTUs) preferentially thrived on the low-pyrolysis-temperature PyOM, while some specific OTUs thrived on high-pyrolysis-temperature PyOM. In particular, Chloroflexi species tended to be more prevalent in high-pyrolysis-temperature PyOM in low-C soils. In conclusion, the differences in colonized bacterial community composition between the different PyOMs were strongly influenced by the pyrolysis temperatures of PyOM, i.e., under conditions of easily mineralizable C or fused aromatic C, and by other properties, e.g., pH, surface area, and nutrient content. IMPORTANCE Pyrogenic organic matter (PyOM) is widely distributed in soil and fluvial ecosystems and plays an important role in biogeochemical cycling. Many studies have reported changes in soil microbial communities stimulated by PyOM, but very little is known about the microbial communities associated with PyOM. The microbes that colonize PyOMs can participate in the mineralization of PyOM, so changing its structure affects the fate of PyOMs and contributes to soil biogeochemical cycling. This study identified the bacterial community composition associated with PyOMs on the basis of high-throughput sequencing and demonstrated that both PyOM pyrolysis temperature and the colonization environment determined the bacterial community composition. Our work increases our understanding of the dominant phylogenetic taxa associated with PyOMs, demonstrates mechanisms mediating microbial metabolism and growth in PyOMs, and expands a new research area for pyrogenic organic matter. This study identified the bacterial community composition associated with PyOM, which is widely distributed in the environment. Most bacterial OTUs preferentially thrived on PyOM pyrolyzed at low temperature, while some specific OTUs thrived on PyOM pyrolyzed at high temperature.

  1. Demonstrating the suitability of genetic algorithms for driving microbial ecosystems in desirable directions.

    PubMed

    Vandecasteele, Frederik P J; Hess, Thomas F; Crawford, Ronald L

    2007-07-01

    The functioning of natural microbial ecosystems is determined by biotic interactions, which are in turn influenced by abiotic environmental conditions. Direct experimental manipulation of such conditions can be used to purposefully drive ecosystems toward exhibiting desirable functions. When a set of environmental conditions can be manipulated to be present at a discrete number of levels, finding the right combination of conditions to obtain the optimal desired effect becomes a typical combinatorial optimisation problem. Genetic algorithms are a class of robust and flexible search and optimisation techniques from the field of computer science that may be very suitable for such a task. To verify this idea, datasets containing growth levels of the total microbial community of four different natural microbial ecosystems in response to all possible combinations of a set of five chemical supplements were obtained. Subsequently, the ability of a genetic algorithm to search this parameter space for combinations of supplements driving the microbial communities to high levels of growth was compared to that of a random search, a local search, and a hill-climbing algorithm, three intuitive alternative optimisation approaches. The results indicate that a genetic algorithm is very suitable for driving microbial ecosystems in desirable directions, which opens opportunities for both fundamental ecological research and industrial applications.

  2. Manipulating rumen microbiome and fermentation through interventions during early life: a review

    PubMed Central

    Yáñez-Ruiz, David R.; Abecia, Leticia; Newbold, Charles J.

    2015-01-01

    The nutritional manipulations of the rumen microbiome to enhance productivity and health are rather limited by the resilience of the ecosystem once established in the mature rumen. Based on recent studies, it has been suggested that the microbial colonization that occurs soon after birth opens a possibility of manipulation with potential to produce lasting effects into adult life. This paper presents the state-of-the-art in relation to early life nutritional interventions by addressing three areas: the development of the rumen as an organ in regards to the nutrition of the new-born, the main factors that determine the microbial population that first colonizes and establishes in the rumen, and the key immunity players that contribute to shaping the commensal microbiota in the early stage of life to understand host-microbiome specificity. The development of the rumen epithelium and muscularization are differently affected by the nature of the diet and special care should be taken with regards to transition from liquid (milk) to solid feed. The rumen is quickly colonized by all type of microorganisms straight after birth and the colonization pattern may be influenced by several factors such as presence/absence of adult animals, the first solid diet provided, and the inclusion of compounds that prevent/facilitate the establishment of some microorganisms or the direct inoculation of specific strains. The results presented show how early life events may be related to the microbial community structure and/or the rumen activity in the animals post-weaning. This would create differences in adaptive capacity due to different early life experiences and leads to the idea of microbial programming. However, many elements need to be further studied such as: the most sensitive window of time for interventions, the best means to test long term effectiveness, the role of key microbial groups and host-immune regulations. PMID:26528276

  3. Colonization of overlaying water by bacteria from dry river sediments.

    PubMed

    Fazi, Stefano; Amalfitano, Stefano; Piccini, Claudia; Zoppini, Annamaria; Puddu, Alberto; Pernthaler, Jakob

    2008-10-01

    We studied the diversity, community composition and activity of the primary microbial colonizers of the water above freshly re-wetted sediments from a temporary river. Dried sediments, collected from Mulargia River (Sardinia, Italy), were covered with sterile freshwater in triplicate microcosms, and changes of the planktonic microbial assemblage were monitored over a 48 h period. During the first 9 h bacterial abundance was low (1.5 x 10(4) cells ml(-1)); it increased to 3.4 x 10(6) cells ml(-1) after 28 h and did not change thereafter. Approximately 20% of bacteria exhibited DNA de novo synthesis already after 9 h of incubation. Changes of the ratios of (3)H-leucine to (3)H-thymidine incorporation rates indicated a shift of growth patterns during the experiment. Extracellular enzyme activity showed a maximum at 48 h with aminopeptidase activity (430.8 +/- 22.6 nmol MCA l(-1) h(-1)) significantly higher than alkaline phosphatase (98.6 +/- 4.3 nmol MUF l(-1) h(-1)). The primary microbial colonizers of the overlaying water - as determined by 16S rRNA gene sequence analysis - were related to at least six different phylogenetic lineages of Bacilli and to Alphaproteobacteria (Brevundimonas spp. and Caulobacter spp.). Large bacterial cells affiliated to one clade of Bacillus sp. were rare in the dried sediments, but constituted the majority of the planktonic microbial assemblage and of cells with detectable DNA-synthesis until 28 h after re-wetting. Their community contribution decreased in parallel with a rise of flagellated and ciliated protists. Estimates based on cell production rates suggested that the rapidly enriched Bacillus sp. suffered disproportionally high loss rates from selective predation, thus favouring the establishment of a more heterogenic assemblage of microbes (consisting of Proteobacteria, Actinobacteria and Cytophaga-Flavobacteria). Our results suggest that the primary microbial colonizers of the water above dried sediments are passively released into the plankton and that their high growth potential is counteracted by the activity of bacterivorous protists.

  4. Variable effects of plant colonization on black slate uptake into microbial PLFAs

    NASA Astrophysics Data System (ADS)

    Seifert, Anne-Gret; Trumbore, Susan; Xu, Xiaomei; Zhang, Dachung; Gleixner, Gerd

    2013-04-01

    Microbial degradation of carbon derived from black shale and slate has been shown in vitro. However, in natural settings where other labile carbon sources are likely to exist, this has not been previously demonstrated. We investigated the uptake of ancient carbon derived from slate weathering and from recently photosynthesised organic matter by different groups of microorganisms. Therefore we isolated microbial biomarkers (phospholipid fatty acids, PLFAs) from black slates collected at a chronosequence of waste piles which differed in age and vegetation cover. We quantified the amount of PLFAs and performed stable isotope and radiocarbon measurements on individual or grouped PLFAs to quantify the fraction of slate derived carbon. We used black slate from a pile heaped in the 1950s with either uncovered black slate material (bare site) or material slightly colonized by small plants (greened site) and from a forested leaching pile (forested site) used for alum-mining in the 19th century. Colonization by plants influenced the amount and composition of the microbial community. Greater amounts of PLFAs (5410 ng PLFA/g dw) were extracted from slate sampled at the forested site as opposed to the bare site (960 ng PLFAs/g dw) or the greened (annual grasses and mosses) rock waste pile (1050 ng PLFAs/g dw). We found the highest proportion of PLFAs representing Gram-negative bacteria on the forested site and the highest proportion of PLFAs representing Gram-positive bacteria on the bare site. The fungal PLFA was most abundant at the greened site. Sites with less plant colonization (bare and greened site) tended to have more depleted δ13C values compared to the forested site. Radiocarbon measurements on PLFAs indicated that fungi and Gram-positive bacteria were best adapted to black slate carbon uptake. In the fungal PLFA (combined bare and greened waste pile sample) and in PLFAs of Gram-positive bacteria (greened site) we measured 39.7% and 28.9% ancient carbon uptake, respectively. Our results prove that black slate degradation followed by carbon uptake takes place in situ. Results imply that plant colonization might additionally affect this process. Slight colonization with few plants increased slate derived carbon uptake in PLFAs of Gram-positive bacteria. Evidently, Gram-positive bacteria represented by specific PLFAs from the greened site held more ancient carbon than from the bare site. In contrast, no black slate derived carbon was used by microorganisms at the forested site with 2-3 times greater carbon content. Results suggest that the use of ancient slate derived carbon dominates mainly in early stages of microbial colonization of surfaces and that with increasing ecosystem development recycling of plant derived carbon dominates.

  5. Effect of milk on the urinary excretion of microbial phenolic acids after cocoa powder consumption in humans.

    PubMed

    Urpi-Sarda, Mireia; Llorach, Rafael; Khan, Nasiruddin; Monagas, Maria; Rotches-Ribalta, Maria; Lamuela-Raventos, Rosa; Estruch, Ramon; Tinahones, Francisco J; Andres-Lacueva, Cristina

    2010-04-28

    Health effects of cocoa flavonols depend on their bioavailability, which is strongly influenced by the food matrix and the degree of flavanol polymerization. The effect of milk on the bioavailability of cocoa flavanoids considering phase II metabolites of epicatechin has been the subject of considerable debate. This work studies the effect of milk at the colonic microbial metabolism level of the nonabsorbed flavanol fraction that reaches the colon and is metabolized by the colonic microbiota into various phenolic acids. Twenty-one human volunteers followed a diet low in polyphenols for at least 48 h before taking, in a random order, 40 g of cocoa powder dissolved either in 250 mL of whole milk or in 250 mL of water. Urine samples were collected before the intake and during three different periods (0-6, 6-12, and 12-24 h). Phenolic acids were analyzed by LC-MS/MS after solid-phase extraction. Of the 15 metabolites assessed, the excretion of 9 phenolic acids was affected by the intake of milk. The urinary concentration of 3,4-dihydroxyphenylacetic, protocatechuic, 4-hydroxybenzoic, 4-hydroxyhippuric, hippuric, caffeic, and ferulic acids diminished after the intake of cocoa with milk, whereas urinary concentrations of vanillic and phenylacetic acids increased. In conclusion, milk partially affects the formation of microbial phenolic acids derived from the colonic degradation of procyanidins and other compounds present in cocoa powder.

  6. A proposal for a CT driven classification of left colon acute diverticulitis.

    PubMed

    Sartelli, Massimo; Moore, Frederick A; Ansaloni, Luca; Di Saverio, Salomone; Coccolini, Federico; Griffiths, Ewen A; Coimbra, Raul; Agresta, Ferdinando; Sakakushev, Boris; Ordoñez, Carlos A; Abu-Zidan, Fikri M; Karamarkovic, Aleksandar; Augustin, Goran; Costa Navarro, David; Ulrych, Jan; Demetrashvili, Zaza; Melo, Renato B; Marwah, Sanjay; Zachariah, Sanoop K; Wani, Imtiaz; Shelat, Vishal G; Kim, Jae Il; McFarlane, Michael; Pintar, Tadaja; Rems, Miran; Bala, Miklosh; Ben-Ishay, Offir; Gomes, Carlos Augusto; Faro, Mario Paulo; Pereira, Gerson Alves; Catani, Marco; Baiocchi, Gianluca; Bini, Roberto; Anania, Gabriele; Negoi, Ionut; Kecbaja, Zurabs; Omari, Abdelkarim H; Cui, Yunfeng; Kenig, Jakub; Sato, Norio; Vereczkei, Andras; Skrovina, Matej; Das, Koray; Bellanova, Giovanni; Di Carlo, Isidoro; Segovia Lohse, Helmut A; Kong, Victor; Kok, Kenneth Y; Massalou, Damien; Smirnov, Dmitry; Gachabayov, Mahir; Gkiokas, Georgios; Marinis, Athanasios; Spyropoulos, Charalampos; Nikolopoulos, Ioannis; Bouliaris, Konstantinos; Tepp, Jaan; Lohsiriwat, Varut; Çolak, Elif; Isik, Arda; Rios-Cruz, Daniel; Soto, Rodolfo; Abbas, Ashraf; Tranà, Cristian; Caproli, Emanuele; Soldatenkova, Darija; Corcione, Francesco; Piazza, Diego; Catena, Fausto

    2015-01-01

    Computed tomography (CT) imaging is the most appropriate diagnostic tool to confirm suspected left colonic diverticulitis. However, the utility of CT imaging goes beyond accurate diagnosis of diverticulitis; the grade of severity on CT imaging may drive treatment planning of patients presenting with acute diverticulitis. The appropriate management of left colon acute diverticulitis remains still debated because of the vast spectrum of clinical presentations and different approaches to treatment proposed. The authors present a new simple classification system based on both CT scan results driving decisions making management of acute diverticulitis that may be universally accepted for day to day practice.

  7. The secret world of endophytes in perspective

    USDA-ARS?s Scientific Manuscript database

    This work in Fungal Ecology is focused on the group of plant symbionts that have been termed collectively ‘microbial endophytes’. Broadly, microbial endophytes are commonly considered to be any of a diverse group of bacteria, cyanobacteria, or fungi that colonize internal tissues of plants. After ...

  8. Acetaldehyde production and microbial colonization in oral squamous cell carcinoma and oral lichenoid disease.

    PubMed

    Marttila, Emilia; Uittamo, Johanna; Rusanen, Peter; Lindqvist, Christian; Salaspuro, Mikko; Rautemaa, Riina

    2013-07-01

    The main aim of this prospective study was to explore the ability of the oral microbiome to produce acetaldehyde in ethanol incubation. A total of 90 patients [30 oral squamous cell carcinoma (OSCC); 30 oral lichenoid disease (OLD); 30 healthy controls (CO)] were enrolled in the study. Microbial samples were taken from the mucosa using a filter paper method. The density of microbial colonization was calculated and the spectrum analyzed. Microbial acetaldehyde production was measured by gas chromatography. The majority (68%) of cultures produced carcinogenic levels of acetaldehyde (>100 μM) when incubated with ethanol (22 mM). The mean acetaldehyde production by microbes cultured from smoker samples was significantly higher (213 μM) than from non-smoker samples (141 μM) (P=.0326). The oral microbiota from OSCC, OLD patients and healthy individuals are able to produce carcinogenic levels of acetaldehyde. The present provisional study suggests smoking may increase the production of acetaldehyde. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Assessment of the physicochemical conditions sediments in a polluted tidal flat colonized by microbial mats in Bahía Blanca Estuary (Argentina).

    PubMed

    Spetter, C V; Buzzi, N S; Fernández, E M; Cuadrado, D G; Marcovecchio, J E

    2015-02-28

    The aim of this work is to assess the physicochemical conditions of the supratidal sediments colonized by microbial mats at two sites from Rosales Harbor (Bahía Blanca Estuary, Argentina) close to sewage discharge. Both sites differed in the size grain. No differences in pH, Eh and temperature were observed. Moisture retention and chlorophyll a concentration were significantly different between sites and sediment layers. Heavy metals and organic matter content were significantly higher in SII. No statistical differences were found in porewater nutrients concentration, being higher in SI (except DSi). The presence of Escherichia coli in water and sediment (1000 CFU/100 mL - uncountable and 35-40 CFU g(-1) dw, respectively) evidenced microbial contamination in the study area. The relationships between the physicochemical parameters evaluated and the influence of the sewage discharge allow defining two different areas in the Rosales Harbor despite the proximity and the presence of microbial mats.

  10. Reproducing stone monument photosynthetic-based colonization under laboratory conditions.

    PubMed

    Miller, Ana Zélia; Laiz, Leonila; Gonzalez, Juan Miguel; Dionísio, Amélia; Macedo, Maria Filomena; Saiz-Jimenez, Cesareo

    2008-11-01

    In order to understand the biodeterioration process occurring on stone monuments, we analyzed the microbial communities involved in these processes and studied their ability to colonize stones under controlled laboratory experiments. In this study, a natural green biofilm from a limestone monument was cultivated, inoculated on stone probes of the same lithotype and incubated in a laboratory chamber. This incubation system, which exposes stone samples to intermittently sprinkling water, allowed the development of photosynthetic biofilms similar to those occurring on stone monuments. Denaturing gradient gel electrophoresis (DGGE) analysis was used to evaluate the major microbial components of the laboratory biofilms. Cyanobacteria, green microalgae, bacteria and fungi were identified by DNA-based molecular analysis targeting the 16S and 18S ribosomal RNA genes. The natural green biofilm was mainly composed by the Chlorophyta Chlorella, Stichococcus, and Trebouxia, and by Cyanobacteria belonging to the genera Leptolyngbya and Pleurocapsa. A number of bacteria belonging to Alphaproteobacteria, Bacteroidetes and Verrucomicrobia were identified, as well as fungi from the Ascomycota. The laboratory colonization experiment on stone probes showed a colonization pattern similar to that occurring on stone monuments. The methodology described in this paper allowed to reproduce a colonization equivalent to the natural biodeteriorating process.

  11. Zebrafish Axenic Larvae Colonization with Human Intestinal Microbiota.

    PubMed

    Arias-Jayo, Nerea; Alonso-Saez, Laura; Ramirez-Garcia, Andoni; Pardo, Miguel A

    2018-04-01

    The human intestine hosts a vast and complex microbial community that is vital for maintaining several functions related with host health. The processes that determine the gut microbiome composition are poorly understood, being the interaction between species, the external environment, and the relationship with the host the most feasible. Animal models offer the opportunity to understand the interactions between the host and the microbiota. There are different gnotobiotic mice or rat models colonized with the human microbiota, however, to our knowledge, there are no reports on the colonization of germ-free zebrafish with a complex human intestinal microbiota. In the present study, we have successfully colonized 5 days postfertilization germ-free zebrafish larvae with the human intestinal microbiota previously extracted from a donor and analyzed by high-throughput sequencing the composition of the transferred microbial communities that established inside the zebrafish gut. Thus, we describe for first time which human bacteria phylotypes are able to colonize the zebrafish digestive tract. Species with relevant interest because of their linkage to dysbiosis in different human diseases, such as Akkermansia muciniphila, Eubacterium rectale, Faecalibacterium prausnitzii, Prevotella spp., or Roseburia spp. have been successfully transferred inside the zebrafish digestive tract.

  12. Context-dependent colonization dynamics: Regional reward contagion drives local compression in aquatic beetles.

    PubMed

    Pintar, Matthew R; Resetarits, William J

    2017-09-01

    Habitat selection by colonizing organisms is an important factor in determining species abundance and community dynamics at multiple spatial scales. Many organisms select habitat patches based on intrinsic patch quality, but patches exist in complex landscapes linked by dispersal and colonization, forming metapopulations and metacommunities. Perceived patch quality can be influenced by neighbouring patches through spatial contagion, wherein perceived quality of one patch can extend beyond its borders and either increase or decrease the colonization of neighbouring patches and localities. These spatially explicit colonization dynamics can result in habitat compression, wherein more colonists occupy a patch or locality than in the absence of spatial context dependence. Previous work on contagion/compression focused primarily on the role of predators in driving colonization patterns. Our goal was to determine whether resource abundance can drive multi-scale colonization dynamics of aquatic beetles through the processes of contagion and compression in naturally colonized experimental pools. We established two levels (high/low quality) of within-patch resource abundances (leaf litter) using an experimental landscape of mesocosms, and assayed colonization by 35 species of aquatic beetles. Patches were arranged in localities (sets of two patches), which consisted of a combination of two patch-level resource levels in a 2 × 2 factorial design, allowing us to assay colonization at both locality and patch levels. We demonstrate that patterns of species abundance and richness of colonizing aquatic beetles are determined by patch quality and context-dependent processes at multiple spatial scales. Localities that consisted of at least one high-quality patch were colonized at equivalent rates that were higher than localities containing only low-quality patches, displaying regional reward contagion. In localities that consisted of one high- and one low-quality patch, reward contagion produced by higher leaf litter levels resulted in greater abundance of beetles in such localities, which then compressed into the highest quality patches. Our results provide further support for the critical roles of habitat selection and spatial context, particularly the quality of neighbouring habitat patches, in generating patterns of species abundances and community structure across landscapes. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beam, Jake; Bernstein, Hans C.; Jay, Z.

    Iron oxide microbial mats are ubiquitous geobiological features on Earth and occur in extant acidic hot springs of Yellowstone National Park (YNP), WY, USA, and form as a result of microbial processes. The relative contribution of different organisms to the development of these mat ecosystems is of specific interest. We hypothesized that chemolithoautotrophic organisms contribute to the early development and production of Fe(III)-oxide mats, which could support later-colonizing heterotrophic microorganisms. Sterile glass slides were incubated in the outflow channels of two acidic geothermal springs in YNP, and spatiotemporal changes in Fe(III)-oxide accretion and abundance of relevant community members were measured.more » Lithoautotrophic Hydrogenobaculum spp. were first colonizers and the most abundant taxa identified during early successional stages (7 – 40 days). Populations of M. yellowstonensis colonized after ~ 7 days, corresponding to visible Fe(III)-oxide accretion. Heterotrophic archaea colonized after 30 days, and emerge as the dominant functional guild in mature iron oxide mats (1 – 2 cm thick) that form after 70 – 120 days. First-order rate constants of iron oxide accretion ranged from 0.05 – 0.046 day-1, and reflected the absolute amount of iron accreted. Micro- and macroscale microterracettes were identified during iron oxide mat development, and suggest that the mass transfer of oxygen limits microbial growth. This was also demonstrated using microelectrode measurements of oxygen as a function of mat depth, which showed steep gradients in oxygen from the aqueous mat interface to ~ 1 mm. The formation and succession of amorphous Fe(III)-oxide mat communities follows a predictable pattern of distinct stages and growth. The successional stages and microbial signatures observed in these extant Fe(III)-oxide mat communities may be relevant to other past or present Fe(III)-oxide mineralizing systems.« less

  14. The Effect of Therapeutic Clowning on Handwashing Technique and Microbial Colonization in Preschool Children.

    PubMed

    Arıkan, Duygu; Gürarslan Baş, Nazan; Kurudirek, Fatma; Baştopcu, Ayşe; Uslu, Hakan

    2018-05-15

    This study aimed to determine the effect of therapeutic clowning on handwashing technique and microbial colonization in preschool children. This randomized controlled trial was conducted using pre-test and post-test experimental and control groups. The study was conducted between March and June 2016 in two kindergartens in eastern Turkey. The study was completed with a total of 195 students, including 90 students in the experimental group and 105 students in the control group. A questionnaire was used for data collection. This questionnaire included sections about the subjects' descriptive characteristics and the results of the bacterial cultures of their hand swabs. For the collection of these swabs, the subjects were informed in advance, and samples were collected at predetermined times. The swabs were analyzed to determine the bacterial colonization of the subjects' hands. Clowns and video activities were used as intervention tools in the study. In the post-test, the microbial growth was ≤10 3 in 68.9% and >10 3 in 31.1% of the subjects in the experimental group. In contrast, the growth was ≤10 3 in 34.3% and >10 3 in 65.7% of the control group subjects. The difference in the post-test microbial growths of the two groups was statistically significant (p < .000). The hygienic handwashing technique taught in the therapeutic clowning and videos reduced the bacterial colonization on the preschool children's hands by 50%. Moreover, this method was effective in reducing the growth rate of coliform bacteria that indicate undesirable, poor hygiene of the hands. Considering these results, we recommend that pediatric healthcare professionals use entertaining methods such as those involving clowns to teach and guide children regarding hygienic handwashing techniques. © 2018 Sigma Theta Tau International.

  15. Effects of correcting in situ ruminal microbial colonization of feed particles on the relationship between ruminally undegraded and intestinally digested crude protein in concentrate feeds.

    PubMed

    González, Javier; Mouhbi, Rabiaa; Guevara-González, Jesús Alberto; Arroyo, José María

    2018-02-01

    In situ estimates of ruminally undegraded protein (RUP) and intestinally digested protein (IDP) of ten concentrates, uncorrected or corrected for the ruminal microbial colonization, were used to examine the effects of this correction on the relationship between IDP and RUP values. Both variables were established for three rumen and duodenum cannulated wethers using 15 N labeling-techniques and considering measured rates of ruminal particle comminution (k c ) and outflow (k p ). A covariance analysis showed that the close relationship found between both variables (IDP = -0.0132 ± 0.00679 + 0.776 ± 0.0002 RUP; n = 60; P < 0.001; r = 0.960) is not affected by correcting for microbial colonization (P = 0.682). The IDP content in concentrates and industrial by-products can be predicted from RUP values, thus avoiding the laborious and complex procedure of determining intestinal digestibility; however, a larger sample of feeds is necessary to achieve more accurate predictions. The lack of influence of the correction for microbial contamination on the prediction observed in the present study increases the data available for this prediction. However, only the use of corrected values may provide an accurate evaluation. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Nectar microbes can reduce secondary metabolites in nectar and alter effects on nectar consumption by pollinators.

    PubMed

    Vannette, Rachel L; Fukami, Tadashi

    2016-06-01

    Secondary metabolites that are present in floral nectar have been hypothesized to enhance specificity in plant-pollinator mutualism by reducing larceny by non-pollinators, including microorganisms that colonize nectar. However, few studies have tested this hypothesis. Using synthetic nectar, we conducted laboratory and field experiments to examine the effects of five chemical compounds found in nectar on the growth and metabolism of nectar-colonizing yeasts and bacteria, and the interactive effects of these compounds and nectar microbes on the consumption of nectar by pollinators. In most cases, focal compounds inhibited microbial growth, but the extent of these effects depended on compound identity, concentration, and microbial species. Moreover, most compounds did not substantially decrease sugar metabolism by microbes, and microbes reduced the concentration of some compounds in nectar. Using artificial flowers in the field, we also found that the common nectar yeast Metschnikowia reukaufii altered nectar consumption by small floral visitors, but only in nectar containing catalpol. This effect was likely mediated by a mechanism independent of catalpol metabolism. Despite strong compound-specific effects on microbial growth, our results suggest that the secondary metabolites tested here are unlikely to be an effective general defense mechanism for preserving nectar sugars for pollinators. Instead, our results indicate that microbial colonization of nectar could reduce the concentration of secondary compounds in nectar and, in some cases, reduce deterrence to pollinators.

  17. Hospital microbial surface colonization revealed during monitoring of Klebsiella spp., Pseudomonas aeruginosa, and non-tuberculous mycobacteria.

    PubMed

    Geadas Farias, Pedro; Gama, Fernando; Reis, Diogo; Alarico, Susana; Empadinhas, Nuno; Martins, José Carlos; de Almeida, Ana Figueiredo; Morais, Paula Vasconcelos

    2017-07-01

    Hospital environmental conditions, human occupancy, and the characteristics of the equipment influence the survival of microbial communities and raise a concern with regard to nosocomial infections. The objective of the present work was to use the monitoring of Pseudomonas aeruginosa, Klebsiella spp. and non-tuberculous mycobacteria as a strategy to improve knowledge on microbial colonization of non-critical equipment and surfaces, in a tertiary hospital from Central Portugal. A 3-month microbiological survey was performed in a district teaching hospital. A total of 173 samples were obtained from the wards Hematology, Urology, Medicine, and Renal Transplants, and 102 presumptive strains recovered. Per sampling, Pseudomonas Isolation agar showed 42.8 to 73.3% of presumptive P. aeruginosa colonies and MacConkey agar recovered mostly Staphylococcus. Most of the colonies recovered in Middlebrook 7H10-PANTA belonged to the genus Methylobacterium. Taps and WC shower curtains carry high bacterial species diversity. The Redundancy Analysis grouped the samples in those mostly handled by patients, and those mostly handled by healthcare staff or of mixed use. This study shows that the preferential users of the space and equipment seem to be important contributors to the microbial community. The most recovered genus was Methylobacterium, known as colonizer of the water distribution system therefore, it is possible that the water points and biofilms in taps also contribute as dispersion hotspots.

  18. Microbial Response to a Deep-Sea Volcanic Eruption at 9N on the East Pacific Rise

    NASA Astrophysics Data System (ADS)

    Sievert, S. M.; Gulmann, L. K.; Hugler, M.; Taylor, C. D.; Molyneaux, S. J.; Sylva, S. P.; Beaulieu, S. E.; Shank, T. M.; Summons, R. E.; Wirsen, C. O.

    2006-12-01

    Microorganisms form the basis of deep-sea hydrothermal vent ecosystems. Never is this more apparent than after an eruption, which basically wipes out the lush animal communities typically associated with these systems. However, the consequences of eruptions and other perturbations to the microbial communities are only poorly understood. This contrasts with faunal communities, for which disturbances and succession have been described, in particular after the eruption at 9 ° N EPR in 1991. Thus, the recent eruption that occurred at this site represents a unique opportunity to not only follow the faunal communities, but to also study the microbial communities after a major disturbance and to follow their succession through time. During the RESET06 cruise on R/V Atlantis in June/July 2006 we had the opportunity to visit the this site approximately 5 months after an eruption. During dives with the research submersible ALVIN we identified a diffuse vent site for more detailed studies. This site lies within the former Marker 82 area and was marked with a new marker. Extensive diffuse flow was observed at this site with temperatures ranging between 10 and 30 ° C. New lava flow covered the area and in areas of diffuse flow the new basalt was covered with white staining. In addition, tubeworms of the genus Tevnia had already started colonizing these rocks, particularly the underside. 16S rDNA clone libraries constructed with genomic DNA extracted from basalt revealed that the white staining was in fact a biofilm predominantly composed of epsilon proteobacteria, with additional phylotypes belonging to the gamma and delta proteobacteria as well as the CFB phylum. Archaea were not detected. In addition, we analyzed a biofilm that had formed on a colonization device that was exposed to diffuse hydrothermal fluids for four days to look. In this case, the microbial community was entirely composed of epsilon-proteobacteria, with sequences related to Candidatus Arcobacter sulfidicus, a chemolithoautotrophic sulfur oxidizing bacterium that forms filamentous sulfur, dominating. Arcobacter related sequences were not observed on the basalt samples, indicating that these organisms might be early colonizers, which subsequently get replaced by other bacteria. This supports our hypothesis that autotrophic epsilon- proteobacteria, such as Arcobacter, will be the first colonizers, followed by increasing numbers of heterotrophic microorganisms over time. These autotrophic microbes appear to predominantly live in the subsurface at vents, allowing the rapid colonization of newly exposed surfaces. To confirm this hypothesis we also filtered large volumes of water in situ to access the composition of the microbial communities associated with the expelled fluids. Shipboard incubations with 13C-labeled bicarbonate were further carried out to identify chemolithoautotrophic microbes. The data obtained in this study will further be compared with recent colonization experiments that were carried out at 9 ° N EPR prior to the eruption. Overall, our studies show that microorganisms rapidly colonize newly exposed surfaces at sites where warm water emanates from the sub-seafloor. Furthermore there appears to be a succession of microbes, with epsilon-proteobacteria and in particular Arcobacter species as primary colonizers, possibly triggering the settlement of larvae. Finally, the data obtained during this cruise will serve as a benchmark for future cruises and analyses to document the changes in the microbial communities occurring over time.

  19. The plastid genome as a platform for the expression of microbial resistance genes

    USDA-ARS?s Scientific Manuscript database

    In recent years, our fundamental understanding of host-microbe interaction has developed considerably. We have begun to tease out the genetic components that influence host resistance to microbial colonization. The use of advancing molecular technologies such as microarray expression profiling and...

  20. Are pathogenic bacteria just looking for food? Metabolism and microbial pathogenesis

    PubMed Central

    Rohmer, Laurence; Hocquet, Didier; Miller, Samuel I.

    2011-01-01

    It is interesting to speculate that the evolutionary drive of microbes to develop pathogenic characteristics was to access the nutrient resources that animals provided. Environments in animals that pathogens colonize have also driven the evolution of new bacterial characteristics to maximize these new nutritional opportunities. This review focuses on genomic and functional aspects of pathogen metabolism that allow efficient utilization of nutrient resources provided by animals. Similar to genes encoding specific virulence traits, some genes encoding metabolic functions have been horizontally acquired by pathogens to provide a selective advantage in host tissues. Selective advantage in host tissues can also be gained in some circumstances by loss of function due to mutations that alter metabolic capabilities. Greater understanding of bacterial metabolism within host tissues should be important for increased understanding of host-pathogen interactions and the development of future therapeutic strategies. PMID:21600774

  1. A widespread plant-fungal-bacterial symbiosis promotes plant biodiversity, plant nutrition and seedling recruitment.

    PubMed

    van der Heijden, Marcel G A; de Bruin, Susanne; Luckerhoff, Ludo; van Logtestijn, Richard S P; Schlaeppi, Klaus

    2016-02-01

    Highly diverse microbial assemblages colonize plant roots. It is still poorly understood whether different members of this root microbiome act synergistically by supplying different services (for example, different limiting nutrients) to plants and plant communities. In order to test this, we manipulated the presence of two widespread plant root symbionts, arbuscular mycorrhizal fungi and nitrogen-fixing rhizobia bacteria in model grassland communities established in axenic microcosms. Here, we demonstrate that both symbionts complement each other resulting in increased plant diversity, enhanced seedling recruitment and improved nutrient acquisition compared with a single symbiont situation. Legume seedlings obtained up to 15-fold higher productivity if they formed an association with both symbionts, opposed to productivity they reached with only one symbiont. Our results reveal the importance of functional diversity of symbionts and demonstrate that different members of the root microbiome can complement each other in acquiring different limiting nutrients and in driving important ecosystem functions.

  2. Fungal colonization of an Ordovician impact-induced hydrothermal system

    PubMed Central

    Ivarsson, Magnus; Broman, Curt; Sturkell, Erik; Ormö, Jens; Siljeström, Sandra; van Zuilen, Mark; Bengtson, Stefan

    2013-01-01

    Impacts are common geologic features on the terrestrial planets throughout the solar system, and on at least Earth and Mars impacts have induced hydrothermal convection. Impact-generated hydrothermal systems have been suggested to possess the same life supporting capability as hydrothermal systems associated with volcanic activity. However, evidence of fossil microbial colonization in impact-generated hydrothermal systems is scarce in the literature. Here we report of fossilized microorganisms in association with cavity-grown hydrothermal minerals from the 458 Ma Lockne impact structure, Sweden. Based on morphological characteristics the fossilized microorganisms are interpreted as fungi. We further infer the kerogenization of the microfossils, and thus the life span of the fungi, to be contemporaneous with the hydrothermal activity and migration of hydrocarbons in the system. Our results from the Lockne impact structure show that hydrothermal systems associated with impact structures can support colonization by microbial life. PMID:24336641

  3. Fungal colonization of an Ordovician impact-induced hydrothermal system

    NASA Astrophysics Data System (ADS)

    Ivarsson, Magnus; Broman, Curt; Sturkell, Erik; Ormö, Jens; Siljeström, Sandra; van Zuilen, Mark; Bengtson, Stefan

    2013-12-01

    Impacts are common geologic features on the terrestrial planets throughout the solar system, and on at least Earth and Mars impacts have induced hydrothermal convection. Impact-generated hydrothermal systems have been suggested to possess the same life supporting capability as hydrothermal systems associated with volcanic activity. However, evidence of fossil microbial colonization in impact-generated hydrothermal systems is scarce in the literature. Here we report of fossilized microorganisms in association with cavity-grown hydrothermal minerals from the 458 Ma Lockne impact structure, Sweden. Based on morphological characteristics the fossilized microorganisms are interpreted as fungi. We further infer the kerogenization of the microfossils, and thus the life span of the fungi, to be contemporaneous with the hydrothermal activity and migration of hydrocarbons in the system. Our results from the Lockne impact structure show that hydrothermal systems associated with impact structures can support colonization by microbial life.

  4. Fungal colonization of an Ordovician impact-induced hydrothermal system.

    PubMed

    Ivarsson, Magnus; Broman, Curt; Sturkell, Erik; Ormö, Jens; Siljeström, Sandra; van Zuilen, Mark; Bengtson, Stefan

    2013-12-16

    Impacts are common geologic features on the terrestrial planets throughout the solar system, and on at least Earth and Mars impacts have induced hydrothermal convection. Impact-generated hydrothermal systems have been suggested to possess the same life supporting capability as hydrothermal systems associated with volcanic activity. However, evidence of fossil microbial colonization in impact-generated hydrothermal systems is scarce in the literature. Here we report of fossilized microorganisms in association with cavity-grown hydrothermal minerals from the 458 Ma Lockne impact structure, Sweden. Based on morphological characteristics the fossilized microorganisms are interpreted as fungi. We further infer the kerogenization of the microfossils, and thus the life span of the fungi, to be contemporaneous with the hydrothermal activity and migration of hydrocarbons in the system. Our results from the Lockne impact structure show that hydrothermal systems associated with impact structures can support colonization by microbial life.

  5. The microbial colonization of some woods of small dimensions buried in soil.

    PubMed

    Sharp, R F

    1975-06-01

    Several species of wood veneer, including some in a green undried state, were buried in various soils, and at intervals the colonists were isolated and identified. In addition, veneers were deteriorated for different periods of time, sterilized, and then reburied in the same soil. Isolates were obtained before sterilization and compared with those found afterwards. In each case the colonization involved a small number of microfungi and, because similar species were repeatedly isolated, an absence of succession under laboratory conditions was indicated. Deteriorating cubes of weed were periodically assayed for their glucose content, pH of exudates, and the release of microbial cellulase and amylase. A lack of any consistent change in colonist activity, with respect to these factors, again indicated an absence of stages during decay. The colonization pattern was contrasted with successions described in previous studies and the simplest explanation was given for the differences found.

  6. Ecosystem and physiological scales of microbial responses to nutrients in a detritus-based stream: results of a 5-year continuous enrichment

    Treesearch

    Keller Suberkropp; Vladislav Gulis; Amy D. Rosemond; Jonathan Benstead

    2010-01-01

    Our study examined the response of leaf detritus–associated microorganisms (both bacteria and fungi) to a 5-yr continuous nutrient enrichment of a forested headwater stream. Leaf litter dominates detritus inputs to such streams and, on a system wide scale, serves as the key substrate for microbial colonization. We determined physiological responses as microbial biomass...

  7. Impact of drinking water conditions and copper materials on downstream biofilm microbial communities and legionella pneumophila colonization

    EPA Science Inventory

    Legionella pneumophila, the medically important species within the genus Legionella, is a concern in engineered water systems. Its ability to amplify within free-living amoebae is well documented, but its interactions/ecology within the microbial community of drinking water biofi...

  8. Transcriptome changes in artificial dosing of rumen content in neonatal calves

    USDA-ARS?s Scientific Manuscript database

    In mammals, microbial colonization in the digestive tract (GIT) occurs right after birth by the main bacteria groups. Numerous human and mouse studies have reported the importance of early gut microbial inhabitants on host health. However, few attempts have been undertaken to understand the role of ...

  9. Global study of probiotic effect on gut microbial communities in fish larvae

    USDA-ARS?s Scientific Manuscript database

    The goal of this project was to test the long term effects of early microbial colonization on fish gut microbiota composition. To do so, axenically raised tilapia larvae were either reared under conventional conditions in activated suspension tanks (AST) or first exposed to a single strain probioti...

  10. Microbiology of folliculitis: a histological study of 39 cases.

    PubMed

    Jahns, Anika C; Lundskog, Bertil; Berg, Johanna; Jonsson, Rebecca; McDowell, Andrew; Patrick, Sheila; Golovleva, Irina; Palmer, Ruth H; Alexeyev, Oleg A

    2014-01-01

    Folliculitis is a common inflammatory skin syndrome. Several microbial organisms have been put forward as causative agents, but few studies visualized microbes directly in inflamed hair follicles. This retrospective study investigated bacterial and fungal colonization of inflamed hair follicles in patients with clinically diagnosed non-infectious folliculitis. Skin biopsies from 39 folliculitis patients and 27 controls were screened by fluorescence in situ hybridization (FISH) using broad-range bacterial and fungal probes and by immunofluorescence microscopy using a monoclonal antibody towards Gram-positive bacteria. Specific monoclonal and polyclonal antibodies towards Staphylococcus spp. and Propionibacterium acnes were applied for further species identification. Inflamed follicles were associated with bacterial colonization in 10 samples (26%) and fungal colonization in three samples (8%). Staphylococcus spp. were observed in inflamed follicles in seven samples (18%). Two samples were positive for P. acnes, which were identified as either type II or type IB/type III. Both Staphylococcus spp. and P. acnes were seen in macrocolonies/biofilm structures. In conclusion, one-third of patients with clinically diagnosed, non-infectious folliculitis exhibited microbial colonization with predominance of Staphylococcus spp. © 2013 APMIS Published by Blackwell Publishing Ltd.

  11. Liver Transplantation and Gut Microbiota Profiling in a Child Colonized by a Multi-Drug Resistant Klebsiella pneumoniae: A New Approach to Move from Antibiotic to "Eubiotic" Control of Microbial Resistance.

    PubMed

    Del Chierico, Federica; Cardile, Sabrina; Pietrobattista, Andrea; Liccardo, Daniela; Russo, Alessandra; Candusso, Manila; Basso, Maria Sole; Grimaldi, Chiara; Pansani, Laura; Bernaschi, Paola; Torre, Giuliano; Putignani, Lorenza

    2018-04-25

    The increase of microorganisms multi-drug resistant (MDR) to antibiotics (ATBs) is becoming a global emergency, especially in frail subjects. In chronic liver disease (LD) with indications for liver transplantation (LT), MDR colonization can significantly affect the LT outcome. However, no clear guidelines for microbial management are available. A novel approach toward MDR-colonized patients undergoing LT was developed at our Center refraining from ATBs use during the transplant waiting list, and use of an intensive perioperative prophylaxis cycle. This study aimed to couple clinical evaluation with monitoring of gut microbiota in a pediatric LD patient colonized with MDR Klebsiella pneumoniae (KP) who underwent LT. No peri-transplant complications were reported, and a decontamination from the MDR bacteria occurred during follow-up. Significant changes in gut microbiota, especially during ATB treatment, were reported by microbiota profiling. Patterns of Klebsiella predominance and microbiota diversity revealed opposite temporal trends, with Klebsiella ecological microbiota niches linked to ATB-driven selection. Our infection control program appeared to control complications following LT in an MDR-KP-colonized patient. The perioperative ATB regimen, acting as LT prophylaxis, triggered MDR-KP overgrowth and gut dysbiosis, but buffered infectious processes. Mechanisms modulating the gut ecosystem should be taken into account in MDR colonization clinical management.

  12. Clostridium difficile – From Colonization to Infection

    PubMed Central

    Schäffler, Holger; Breitrück, Anne

    2018-01-01

    Clostridium difficile is the most frequent cause of nosocomial antibiotic-associated diarrhea. The incidence of C. difficile infection (CDI) has been rising worldwide with subsequent increases in morbidity, mortality, and health care costs. Asymptomatic colonization with C. difficile is common and a high prevalence has been found in specific cohorts, e.g., hospitalized patients, adults in nursing homes and in infants. However, the risk of infection with C. difficile differs significantly between these cohorts. While CDI is a clear indication for therapy, colonization with C. difficile is not believed to be a direct precursor for CDI and therefore does not require treatment. Antibiotic therapy causes alterations of the intestinal microbial composition, enabling C. difficile colonization and consecutive toxin production leading to disruption of the colonic epithelial cells. Clinical symptoms of CDI range from mild diarrhea to potentially life-threatening conditions like pseudomembranous colitis or toxic megacolon. While antibiotics are still the treatment of choice for CDI, new therapies have emerged in recent years such as antibodies against C. difficile toxin B and fecal microbial transfer (FMT). This specific therapy for CDI underscores the role of the indigenous bacterial composition in the prevention of the disease in healthy individuals and its role in the pathogenesis after alteration by antibiotic treatment. In addition to the pathogenesis of CDI, this review focuses on the colonization of C. difficile in the human gut and factors promoting CDI. PMID:29692762

  13. Effect of enhanced ultraviolet germicidal irradiation in the heating ventilation and air conditioning system on ventilator-associated pneumonia in a neonatal intensive care unit.

    PubMed

    Ryan, R M; Wilding, G E; Wynn, R J; Welliver, R C; Holm, B A; Leach, C L

    2011-09-01

    The objective of this study was to test the hypothesis that enhanced ultraviolet germicidal irradiation (eUVGI) installed in our neonatal intensive care unit (NICU) heating ventilation and air conditioning system (HVAC) would decrease HVAC and NICU environment microbes, tracheal colonization and ventilator-associated pneumonia (VAP). The study was designed as a prospective interventional pre- and post-single-center study. University-affiliated Regional Perinatal Center NICU. Intubated patients in the NICU were evaluated for colonization, and a high-risk sub-population of infants <30 weeks gestation ventilated for ≥ 14 days was studied for VAP. eUVGI was installed in the NICU's remote HVACs. The HVACs, NICU environment and intubated patients' tracheas were cultured pre- and post-eUVGI for 12 months. The high-risk patients were studied for VAP (positive bacterial tracheal culture, increased ventilator support, worsening chest radiograph and ≥ 7 days of antibiotics). Pseudomonas, Klebsiella, Serratia, Acinetobacter, Staphylococcus aureus and Coagulase-negative Staphylococcus species were cultured from all sites. eUVGI significantly decreased HVAC organisms (baseline 500,000 CFU cm(-2); P=0.015) and NICU environmental microbes (P<0.0001). Tracheal microbial loads decreased 45% (P=0.004), and fewer patients became colonized. VAP in the high-risk cohort fell from 74% (n=31) to 39% (n=18), P=0.04. VAP episodes per patient decreased (Control: 1.2 to eUVGI: 0.4; P=0.004), and antibiotic usage was 62% less (P=0.013). eUVGI decreased HVAC microbial colonization and was associated with reduced NICU environment and tracheal microbial colonization. Significant reductions in VAP and antibiotic use were also associated with eUVGI in this single-center study. Large randomized multicenter trials are needed.

  14. Conjugation of metronidazole with dextran: a potential pharmaceutical strategy to control colonic distribution of the anti-amebic drug susceptible to metabolism by colonic microbes

    PubMed Central

    Kim, Wooseong; Yang, Yejin; Kim, Dohoon; Jeong, Seongkeun; Yoo, Jin-Wook; Yoon, Jeong-Hyun; Jung, Yunjin

    2017-01-01

    Metronidazole (MTDZ), the drug of choice for the treatment of protozoal infections such as luminal amebiasis, is highly susceptible to colonic metabolism, which may hinder its conversion from a colon-specific prodrug to an effective anti-amebic agent targeting the entire large intestine. Thus, in an attempt to control the colonic distribution of the drug, a polymeric colon-specific prodrug, MTDZ conjugated to dextran via a succinate linker (Dex-SA-MTDZ), was designed. Upon treatment with dextranase for 8 h, the degree of Dex-SA-MTDZ depolymerization (%) with a degree of substitution (mg of MTDZ bound in 100 mg of Dex-SA-MTDZ) of 7, 17, and 30 was 72, 38, and 8, respectively, while that of dextran was 85. Depolymerization of Dex-SA-MTDZ was found to be necessary for the release of MTDZ, because dextranase pretreatment ensures that de-esterification occurs between MTDZ and the dextran backbone. In parallel, Dex-SA-MTDZ with a degree of substitution of 17 was found not to release MTDZ upon incubation with the contents of the small intestine and stomach of rats, but it released MTDZ when incubated with rat cecal contents (including microbial dextranases). Moreover, Dex-SA-MTDZ exhibited prolonged release of MTDZ, which contrasts with drug release by small molecular colon-specific prodrugs, MTDZ sulfate and N-nicotinoyl-2-{2-(2-methyl-5-nitroimidazol-1-yl)ethyloxy}-d,l-glycine. These prodrugs were eliminated very rapidly, and no MTDZ was detected in the cecal contents. Consistent with these in vitro results, we found that oral gavage of Dex-SA-MTDZ delivered MTDZ (as MTDZ conjugated to [depolymerized] dextran) to the distal colon. However, upon oral gavage of the small molecular prodrugs, no prodrugs were detected in the distal colon. Collectively, these data suggest that dextran conjugation is a potential pharmaceutical strategy to control the colonic distribution of drugs susceptible to colonic microbial metabolism. PMID:28243064

  15. Conjugation of metronidazole with dextran: a potential pharmaceutical strategy to control colonic distribution of the anti-amebic drug susceptible to metabolism by colonic microbes.

    PubMed

    Kim, Wooseong; Yang, Yejin; Kim, Dohoon; Jeong, Seongkeun; Yoo, Jin-Wook; Yoon, Jeong-Hyun; Jung, Yunjin

    2017-01-01

    Metronidazole (MTDZ), the drug of choice for the treatment of protozoal infections such as luminal amebiasis, is highly susceptible to colonic metabolism, which may hinder its conversion from a colon-specific prodrug to an effective anti-amebic agent targeting the entire large intestine. Thus, in an attempt to control the colonic distribution of the drug, a polymeric colon-specific prodrug, MTDZ conjugated to dextran via a succinate linker (Dex-SA-MTDZ), was designed. Upon treatment with dextranase for 8 h, the degree of Dex-SA-MTDZ depolymerization (%) with a degree of substitution (mg of MTDZ bound in 100 mg of Dex-SA-MTDZ) of 7, 17, and 30 was 72, 38, and 8, respectively, while that of dextran was 85. Depolymerization of Dex-SA-MTDZ was found to be necessary for the release of MTDZ, because dextranase pretreatment ensures that de-esterification occurs between MTDZ and the dextran backbone. In parallel, Dex-SA-MTDZ with a degree of substitution of 17 was found not to release MTDZ upon incubation with the contents of the small intestine and stomach of rats, but it released MTDZ when incubated with rat cecal contents (including microbial dextranases). Moreover, Dex-SA-MTDZ exhibited prolonged release of MTDZ, which contrasts with drug release by small molecular colon-specific prodrugs, MTDZ sulfate and N -nicotinoyl-2-{2-(2-methyl-5-nitroimidazol-1-yl)ethyloxy}-d,l-glycine. These prodrugs were eliminated very rapidly, and no MTDZ was detected in the cecal contents. Consistent with these in vitro results, we found that oral gavage of Dex-SA-MTDZ delivered MTDZ (as MTDZ conjugated to [depolymerized] dextran) to the distal colon. However, upon oral gavage of the small molecular prodrugs, no prodrugs were detected in the distal colon. Collectively, these data suggest that dextran conjugation is a potential pharmaceutical strategy to control the colonic distribution of drugs susceptible to colonic microbial metabolism.

  16. IgA Function in Relation to the Intestinal Microbiota.

    PubMed

    Macpherson, Andrew J; Yilmaz, Bahtiyar; Limenitakis, Julien P; Ganal-Vonarburg, Stephanie C

    2018-04-26

    IgA is the dominant immunoglobulin isotype produced in mammals, largely secreted across the intestinal mucosal surface. Although induction of IgA has been a hallmark feature of microbiota colonization following colonization in germ-free animals, until recently appreciation of the function of IgA in host-microbial mutualism has depended mainly on indirect evidence of alterations in microbiota composition or penetration of microbes in the absence of somatic mutations in IgA (or compensatory IgM). Highly parallel sequencing techniques that enable high-resolution analysis of either microbial consortia or IgA sequence diversity are now giving us new perspectives on selective targeting of microbial taxa and the trajectory of IgA diversification according to induction mechanisms, between different individuals and over time. The prospects are to link the range of diversified IgA clonotypes to specific antigenic functions in modulating the microbiota composition, position and metabolism to ensure host mutualism.

  17. Effect of Bioprocessing on the In Vitro Colonic Microbial Metabolism of Phenolic Acids from Rye Bran Fortified Breads.

    PubMed

    Koistinen, Ville M; Nordlund, Emilia; Katina, Kati; Mattila, Ismo; Poutanen, Kaisa; Hanhineva, Kati; Aura, Anna-Marja

    2017-03-08

    Cereal bran is an important source of dietary fiber and bioactive compounds, such as phenolic acids. We aimed to study the phenolic acid metabolism of native and bioprocessed rye bran fortified refined wheat bread and to elucidate the microbial metabolic route of phenolic acids. After incubation in an in vitro colon model, the metabolites were analyzed using two different methods applying mass spectrometry. While phenolic acids were released more extensively from the bioprocessed bran bread and ferulic acid had consistently higher concentrations in the bread type during fermentation, there were only minor differences in the appearance of microbial metabolites, including the diminished levels of certain phenylacetic acids in the bioprocessed bran. This may be due to rye matrix properties, saturation of ferulic acid metabolism, or a rapid formation of intermediary metabolites left undetected. In addition, we provide expansion to the known metabolic pathways of phenolic acids.

  18. Identical bacterial populations colonize premature infant gut, skin, and oral microbiomes and exhibit different in situ growth rates

    PubMed Central

    Olm, Matthew R.; Brown, Christopher T.; Brooks, Brandon; Firek, Brian; Baker, Robyn; Burstein, David; Soenjoyo, Karina; Thomas, Brian C.; Morowitz, Michael; Banfield, Jillian F.

    2017-01-01

    The initial microbiome impacts the health and future development of premature infants. Methodological limitations have led to gaps in our understanding of the habitat range and subpopulation complexity of founding strains, as well as how different body sites support microbial growth. Here, we used metagenomics to reconstruct genomes of strains that colonized the skin, mouth, and gut of two hospitalized premature infants during the first month of life. Seven bacterial populations, considered to be identical given whole-genome average nucleotide identity of >99.9%, colonized multiple body sites, yet none were shared between infants. Gut-associated Citrobacter koseri genomes harbored 47 polymorphic sites that we used to define 10 subpopulations, one of which appeared in the gut after 1 wk but did not spread to other body sites. Differential genome coverage was used to measure bacterial population replication rates in situ. In all cases where the same bacterial population was detected in multiple body sites, replication rates were faster in mouth and skin compared to the gut. The ability of identical strains to colonize multiple body sites underscores the habit flexibility of initial colonists, whereas differences in microbial replication rates between body sites suggest differences in host control and/or resource availability. Population genomic analyses revealed microdiversity within bacterial populations, implying initial inoculation by multiple individual cells with distinct genotypes. Overall, however, the overlap of strains across body sites implies that the premature infant microbiome can exhibit very low microbial diversity. PMID:28073918

  19. H2 metabolism is widespread and diverse among human colonic microbes

    PubMed Central

    Wolf, Patricia G.; Biswas, Ambarish; Morales, Sergio E.; Greening, Chris; Gaskins, H. Rex

    2016-01-01

    ABSTRACT Microbial molecular hydrogen (H2) cycling is central to metabolic homeostasis and microbial composition in the human gastrointestinal tract. Molecular H2 is produced as an endproduct of carbohydrate fermentation and is reoxidised primarily by sulfate-reduction, acetogenesis, and methanogenesis. However, the enzymatic basis for these processes is incompletely understood and the hydrogenases responsible have not been investigated. In this work, we surveyed the genomic and metagenomic distribution of hydrogenase-encoding genes in the human colon to infer dominant mechanisms of H2 cycling. The data demonstrate that 70% of gastrointestinal microbial species listed in the Human Microbiome Project encode the genetic capacity to metabolise H2. A wide variety of anaerobically-adapted hydrogenases were present, with [FeFe]-hydrogenases predominant. We subsequently analyzed the hydrogenase gene content of stools from 20 healthy human subjects. The hydrogenase gene content of all samples was overwhelmingly dominated by fermentative and electron-bifurcating [FeFe]-hydrogenases emerging from the Bacteroidetes and Firmicutes. This study supports that H2 metabolism in the human gut is driven by fermentative H2 production and interspecies H2 transfer. However, it suggests that electron-bifurcation rather than respiration is the dominant mechanism of H2 reoxidation in the human colon, generating reduced ferredoxin to sustain carbon-fixation (e.g. acetogenesis) and respiration (via the Rnf complex). This work provides the first comprehensive bioinformatic insight into the mechanisms of H2 metabolism in the human colon. PMID:27123663

  20. Metabolomic and high-throughput sequencing analysis-modern approach for the assessment of biodeterioration of materials from historic buildings.

    PubMed

    Gutarowska, Beata; Celikkol-Aydin, Sukriye; Bonifay, Vincent; Otlewska, Anna; Aydin, Egemen; Oldham, Athenia L; Brauer, Jonathan I; Duncan, Kathleen E; Adamiak, Justyna; Sunner, Jan A; Beech, Iwona B

    2015-01-01

    Preservation of cultural heritage is of paramount importance worldwide. Microbial colonization of construction materials, such as wood, brick, mortar, and stone in historic buildings can lead to severe deterioration. The aim of the present study was to give modern insight into the phylogenetic diversity and activated metabolic pathways of microbial communities colonized historic objects located in the former Auschwitz II-Birkenau concentration and extermination camp in Oświecim, Poland. For this purpose we combined molecular, microscopic and chemical methods. Selected specimens were examined using Field Emission Scanning Electron Microscopy (FESEM), metabolomic analysis and high-throughput Illumina sequencing. FESEM imaging revealed the presence of complex microbial communities comprising diatoms, fungi and bacteria, mainly cyanobacteria and actinobacteria, on sample surfaces. Microbial diversity of brick specimens appeared higher than that of the wood and was dominated by algae and cyanobacteria, while wood was mainly colonized by fungi. DNA sequences documented the presence of 15 bacterial phyla representing 99 genera including Halomonas, Halorhodospira, Salinisphaera, Salinibacterium, Rubrobacter, Streptomyces, Arthrobacter and nine fungal classes represented by 113 genera including Cladosporium, Acremonium, Alternaria, Engyodontium, Penicillium, Rhizopus, and Aureobasidium. Most of the identified sequences were characteristic of organisms implicated in deterioration of wood and brick. Metabolomic data indicated the activation of numerous metabolic pathways, including those regulating the production of primary and secondary metabolites, for example, metabolites associated with the production of antibiotics, organic acids and deterioration of organic compounds. The study demonstrated that a combination of electron microscopy imaging with metabolomic and genomic techniques allows to link the phylogenetic information and metabolic profiles of microbial communities and to shed new light on biodeterioration processes.

  1. Metabolomic and high-throughput sequencing analysis—modern approach for the assessment of biodeterioration of materials from historic buildings

    PubMed Central

    Gutarowska, Beata; Celikkol-Aydin, Sukriye; Bonifay, Vincent; Otlewska, Anna; Aydin, Egemen; Oldham, Athenia L.; Brauer, Jonathan I.; Duncan, Kathleen E.; Adamiak, Justyna; Sunner, Jan A.; Beech, Iwona B.

    2015-01-01

    Preservation of cultural heritage is of paramount importance worldwide. Microbial colonization of construction materials, such as wood, brick, mortar, and stone in historic buildings can lead to severe deterioration. The aim of the present study was to give modern insight into the phylogenetic diversity and activated metabolic pathways of microbial communities colonized historic objects located in the former Auschwitz II–Birkenau concentration and extermination camp in Oświecim, Poland. For this purpose we combined molecular, microscopic and chemical methods. Selected specimens were examined using Field Emission Scanning Electron Microscopy (FESEM), metabolomic analysis and high-throughput Illumina sequencing. FESEM imaging revealed the presence of complex microbial communities comprising diatoms, fungi and bacteria, mainly cyanobacteria and actinobacteria, on sample surfaces. Microbial diversity of brick specimens appeared higher than that of the wood and was dominated by algae and cyanobacteria, while wood was mainly colonized by fungi. DNA sequences documented the presence of 15 bacterial phyla representing 99 genera including Halomonas, Halorhodospira, Salinisphaera, Salinibacterium, Rubrobacter, Streptomyces, Arthrobacter and nine fungal classes represented by 113 genera including Cladosporium, Acremonium, Alternaria, Engyodontium, Penicillium, Rhizopus, and Aureobasidium. Most of the identified sequences were characteristic of organisms implicated in deterioration of wood and brick. Metabolomic data indicated the activation of numerous metabolic pathways, including those regulating the production of primary and secondary metabolites, for example, metabolites associated with the production of antibiotics, organic acids and deterioration of organic compounds. The study demonstrated that a combination of electron microscopy imaging with metabolomic and genomic techniques allows to link the phylogenetic information and metabolic profiles of microbial communities and to shed new light on biodeterioration processes. PMID:26483760

  2. Microbial Populations of Stony Meteorites: Substrate Controls on First Colonizers.

    PubMed

    Tait, Alastair W; Gagen, Emma J; Wilson, Siobhan A; Tomkins, Andrew G; Southam, Gordon

    2017-01-01

    Finding fresh, sterilized rocks provides ecologists with a clean slate to test ideas about first colonization and the evolution of soils de novo. Lava has been used previously in first colonizer studies due to the sterilizing heat required for its formation. However, fresh lava typically falls upon older volcanic successions of similar chemistry and modal mineral abundance. Given enough time, this results in the development of similar microbial communities in the newly erupted lava due to a lack of contrast between the new and old substrates. Meteorites, which are sterile when they fall to Earth, provide such contrast because their reduced and mafic chemistry commonly differs to the surfaces on which they land; thus allowing investigation of how community membership and structure respond to this new substrate over time. We conducted 16S rRNA gene analysis on meteorites and soil from the Nullarbor Plain, Australia. We found that the meteorites have low species richness and evenness compared to soil sampled from directly beneath each meteorite. Despite the meteorites being found kilometers apart, the community structure of each meteorite bore more similarity to those of other meteorites (of similar composition) than to the community structure of the soil on which it resided. Meteorites were dominated by sequences that affiliated with the Actinobacteria with the major Operational Taxonomic Unit (OTU) classified as Rubrobacter radiotolerans. Proteobacteria and Bacteroidetes were the next most abundant phyla. The soils were also dominated by Actinobacteria but to a lesser extent than the meteorites. We also found OTUs affiliated with iron/sulfur cycling organisms Geobacter spp. and Desulfovibrio spp. This is an important finding as meteorites contain abundant metal and sulfur for use as energy sources. These ecological findings demonstrate that the structure of the microbial community in these meteorites is controlled by the substrate, and will not reach homeostasis with the Nullarbor community, even after ca. 35,000 years. Our findings show that meteorites provide a unique, sterile substrate with which to test ideas relating to first-colonizers. Although meteorites are colonized by microorganisms, the microbial population is unlikely to match the community of the surrounding soil on which they fall.

  3. Microbial Populations of Stony Meteorites: Substrate Controls on First Colonizers

    PubMed Central

    Tait, Alastair W.; Gagen, Emma J.; Wilson, Siobhan A.; Tomkins, Andrew G.; Southam, Gordon

    2017-01-01

    Finding fresh, sterilized rocks provides ecologists with a clean slate to test ideas about first colonization and the evolution of soils de novo. Lava has been used previously in first colonizer studies due to the sterilizing heat required for its formation. However, fresh lava typically falls upon older volcanic successions of similar chemistry and modal mineral abundance. Given enough time, this results in the development of similar microbial communities in the newly erupted lava due to a lack of contrast between the new and old substrates. Meteorites, which are sterile when they fall to Earth, provide such contrast because their reduced and mafic chemistry commonly differs to the surfaces on which they land; thus allowing investigation of how community membership and structure respond to this new substrate over time. We conducted 16S rRNA gene analysis on meteorites and soil from the Nullarbor Plain, Australia. We found that the meteorites have low species richness and evenness compared to soil sampled from directly beneath each meteorite. Despite the meteorites being found kilometers apart, the community structure of each meteorite bore more similarity to those of other meteorites (of similar composition) than to the community structure of the soil on which it resided. Meteorites were dominated by sequences that affiliated with the Actinobacteria with the major Operational Taxonomic Unit (OTU) classified as Rubrobacter radiotolerans. Proteobacteria and Bacteroidetes were the next most abundant phyla. The soils were also dominated by Actinobacteria but to a lesser extent than the meteorites. We also found OTUs affiliated with iron/sulfur cycling organisms Geobacter spp. and Desulfovibrio spp. This is an important finding as meteorites contain abundant metal and sulfur for use as energy sources. These ecological findings demonstrate that the structure of the microbial community in these meteorites is controlled by the substrate, and will not reach homeostasis with the Nullarbor community, even after ca. 35,000 years. Our findings show that meteorites provide a unique, sterile substrate with which to test ideas relating to first-colonizers. Although meteorites are colonized by microorganisms, the microbial population is unlikely to match the community of the surrounding soil on which they fall. PMID:28713354

  4. Caprylic acid reduces enteric Campylobacter colonization in market-aged broiler chickens but does not appear to alter cecal microbial populations

    USDA-ARS?s Scientific Manuscript database

    Campylobacter is one of the leading causes of food-borne illness in the United States, and epidemiological evidence indicates poultry and poultry products to be a significant source of human Campylobacter infections. Caprylic acid, an 8-carbon medium chain fatty acid, can reduce Campylobacter colon...

  5. Maternal Antibiotic-Induced Early Changes in Microbial Colonization Selectively Modulate Colonic Permeability and Inducible Heat Shock Proteins, and Digesta Concentrations of Alkaline Phosphatase and TLR-Stimulants in Swine Offspring

    PubMed Central

    Arnal, Marie-Edith; Zhang, Jing; Erridge, Clett; Smidt, Hauke; Lallès, Jean-Paul

    2015-01-01

    Elevated intake of high energy diets is a risk factor for the development of metabolic diseases and obesity. High fat diets cause alterations in colonic microbiota composition and increase gut permeability to bacterial lipopolysaccharide, and subsequent low-grade chronic inflammation in mice. Chronic inflammatory bowel diseases are increasing worldwide and may involve alterations in microbiota-host dialog. Metabolic disorders appearing in later life are also suspected to reflect changes in early programming. However, how the latter affects the colon remains poorly studied. Here, we hypothesized that various components of colonic physiology, including permeability, ion exchange and protective inducible heat shock proteins (HSP) are influenced in the short- and long-terms by early disturbances in microbial colonization. The hypothesis was tested in a swine model. Offspring were born to control mothers (n = 12) or mothers treated with the antibiotic (ATB) amoxicillin around parturition (n = 11). Offspring were slaughtered between 14 and 42 days of age to study short-term effects. For long-term effects, young adult offspring from the same litters consumed a normal or a palm oil-enriched diet for 4 weeks between 140 and 169 days of age. ATB treatment transiently modified maternal fecal microbiota although the minor differences observed for offspring colonic microbiota were nonsignificant. In the short-term, consistently higher HSP27 and HSP70 levels and transiently increased horseradish peroxidase permeability in ATB offspring colon were observed. Importantly, long-term consequences included reduced colonic horseradish peroxidase permeability, and increased colonic digesta alkaline phosphatase (AP) and TLR2- and TLR4-stimulant concentrations in rectal digesta in adult ATB offspring. Inducible HSP27 and HSP70 did not change. Interactions between early ATB treatment and later diet were noted for paracellular permeability and concentrations of colonic digesta AP. In conclusion, our data suggest that early ATB-induced changes in bacterial colonization modulate important aspects of colonic physiology in the short- and long-terms. PMID:25689154

  6. Maternal antibiotic-induced early changes in microbial colonization selectively modulate colonic permeability and inducible heat shock proteins, and digesta concentrations of alkaline phosphatase and TLR-stimulants in swine offspring.

    PubMed

    Arnal, Marie-Edith; Zhang, Jing; Erridge, Clett; Smidt, Hauke; Lallès, Jean-Paul

    2015-01-01

    Elevated intake of high energy diets is a risk factor for the development of metabolic diseases and obesity. High fat diets cause alterations in colonic microbiota composition and increase gut permeability to bacterial lipopolysaccharide, and subsequent low-grade chronic inflammation in mice. Chronic inflammatory bowel diseases are increasing worldwide and may involve alterations in microbiota-host dialog. Metabolic disorders appearing in later life are also suspected to reflect changes in early programming. However, how the latter affects the colon remains poorly studied. Here, we hypothesized that various components of colonic physiology, including permeability, ion exchange and protective inducible heat shock proteins (HSP) are influenced in the short- and long-terms by early disturbances in microbial colonization. The hypothesis was tested in a swine model. Offspring were born to control mothers (n = 12) or mothers treated with the antibiotic (ATB) amoxicillin around parturition (n = 11). Offspring were slaughtered between 14 and 42 days of age to study short-term effects. For long-term effects, young adult offspring from the same litters consumed a normal or a palm oil-enriched diet for 4 weeks between 140 and 169 days of age. ATB treatment transiently modified maternal fecal microbiota although the minor differences observed for offspring colonic microbiota were nonsignificant. In the short-term, consistently higher HSP27 and HSP70 levels and transiently increased horseradish peroxidase permeability in ATB offspring colon were observed. Importantly, long-term consequences included reduced colonic horseradish peroxidase permeability, and increased colonic digesta alkaline phosphatase (AP) and TLR2- and TLR4-stimulant concentrations in rectal digesta in adult ATB offspring. Inducible HSP27 and HSP70 did not change. Interactions between early ATB treatment and later diet were noted for paracellular permeability and concentrations of colonic digesta AP. In conclusion, our data suggest that early ATB-induced changes in bacterial colonization modulate important aspects of colonic physiology in the short- and long-terms.

  7. Brief Report: Dialister as a Microbial Marker of Disease Activity in Spondyloarthritis.

    PubMed

    Tito, Raul Y; Cypers, Heleen; Joossens, Marie; Varkas, Gaëlle; Van Praet, Liesbet; Glorieus, Elien; Van den Bosch, Filip; De Vos, Martine; Raes, Jeroen; Elewaut, Dirk

    2017-01-01

    Dysbiosis of the intestinal microbiota has been widely established in inflammatory bowel disease (IBD). There is significant clinical and genetic overlap between spondyloarthritis (SpA) and IBD, and up to 50% of all patients with SpA exhibit microscopic signs of bowel inflammation, often bearing particular resemblance to early Crohn's disease, a subtype of IBD. This study was undertaken to assess the relationship between intestinal microbial composition, gut histology, and disease activity markers in SpA. Gene analysis by 16S ribosomal RNA amplicon sequencing was used to compare the microbial composition in ileal and colonic biopsy specimens from 27 patients with SpA (14 with microscopic bowel inflammation, 13 without) and 15 healthy control subjects (ileal samples from all 15 subjects and colonic samples from 6). Spearman's rank correlation tests were used to assess correlations of the microbial composition with disease activity measures. The intestinal inflammation status (histologically normal versus acute or chronic inflammation) was strongly associated with the mucosal microbiota profile of patients with SpA. In inflamed biopsy tissue, the detected bacterial community composition clustered separately from that in noninflamed biopsy tissue (P < 0.05 by permutational multivariate analysis of variance, using hierarchical clustering on Bray-Curtis distances). Interestingly, abundance of the genus Dialister was found to be positively correlated with the Ankylosing Spondylitis Disease Activity Score (Spearman's rho = 0.62, false discovery rate-corrected q < 0.01). This finding was further supported by the low frequency of Dialister observed in noninflamed ileal and colonic biopsy tissue from patients with SpA and healthy controls. These findings demonstrate a significant difference in the intestinal microbial composition in patients with SpA who have microscopic gut inflammation compared to those without microscopic gut inflammation. Moreover, Dialister may represent a potential microbial marker of disease activity in SpA. © 2016, American College of Rheumatology.

  8. Microbial colonization of Ca-sulfate crusts in the hyperarid core of the Atacama Desert: implications for the search for life on Mars.

    PubMed

    Wierzchos, J; Cámara, B; de Los Ríos, A; Davila, A F; Sánchez Almazo, I M; Artieda, O; Wierzchos, K; Gómez-Silva, B; McKay, C; Ascaso, C

    2011-01-01

    The scarcity of liquid water in the hyperarid core of the Atacama Desert makes this region one of the most challenging environments for life on Earth. The low numbers of microbial cells in the soils suggest that within the Atacama Desert lies the dry limit for life on our planet. Here, we show that the Ca-sulfate crusts of this hyperarid core are the habitats of lithobiontic micro-organisms. This microporous, translucent substrate is colonized by epilithic lichens, as well as endolithic free-living algae, fungal hyphae, cyanobacteria and non photosynthetic bacteria. We also report a novel type of endolithic community, "hypoendoliths", colonizing the undermost layer of the crusts. The colonization of gypsum crusts within the hyperarid core appears to be controlled by the moisture regime. Our data shows that the threshold for colonization is crossed within the dry core, with abundant colonization in gypsum crusts at one study site, while crusts at a drier site are virtually devoid of life. We show that the cumulative time in 1 year of relative humidity (RH) above 60% is the best parameter to explain the difference in colonization between both sites. This is supported by controlled humidity experiments, where we show that colonies of endolithic cyanobacteria in the Ca-sulfate crust undergo imbibition process at RH >60%. Assuming that life once arose on Mars, it is conceivable that Martian micro-organisms sought refuge in similar isolated evaporite microenvironments during their last struggle for life as their planet turned arid. © 2010 Blackwell Publishing Ltd.

  9. Microbial Hub Taxa Link Host and Abiotic Factors to Plant Microbiome Variation

    PubMed Central

    Agler, Matthew T.; Ruhe, Jonas; Kroll, Samuel; Morhenn, Constanze; Kim, Sang-Tae; Weigel, Detlef; Kemen, Eric M.

    2016-01-01

    Plant-associated microorganisms have been shown to critically affect host physiology and performance, suggesting that evolution and ecology of plants and animals can only be understood in a holobiont (host and its associated organisms) context. Host-associated microbial community structures are affected by abiotic and host factors, and increased attention is given to the role of the microbiome in interactions such as pathogen inhibition. However, little is known about how these factors act on the microbial community, and especially what role microbe–microbe interaction dynamics play. We have begun to address this knowledge gap for phyllosphere microbiomes of plants by simultaneously studying three major groups of Arabidopsis thaliana symbionts (bacteria, fungi and oomycetes) using a systems biology approach. We evaluated multiple potential factors of microbial community control: we sampled various wild A. thaliana populations at different times, performed field plantings with different host genotypes, and implemented successive host colonization experiments under lab conditions where abiotic factors, host genotype, and pathogen colonization was manipulated. Our results indicate that both abiotic factors and host genotype interact to affect plant colonization by all three groups of microbes. Considering microbe–microbe interactions, however, uncovered a network of interkingdom interactions with significant contributions to community structure. As in other scale-free networks, a small number of taxa, which we call microbial “hubs,” are strongly interconnected and have a severe effect on communities. By documenting these microbe–microbe interactions, we uncover an important mechanism explaining how abiotic factors and host genotypic signatures control microbial communities. In short, they act directly on “hub” microbes, which, via microbe–microbe interactions, transmit the effects to the microbial community. We analyzed two “hub” microbes (the obligate biotrophic oomycete pathogen Albugo and the basidiomycete yeast fungus Dioszegia) more closely. Albugo had strong effects on epiphytic and endophytic bacterial colonization. Specifically, alpha diversity decreased and beta diversity stabilized in the presence of Albugo infection, whereas they otherwise varied between plants. Dioszegia, on the other hand, provided evidence for direct hub interaction with phyllosphere bacteria. The identification of microbial “hubs” and their importance in phyllosphere microbiome structuring has crucial implications for plant–pathogen and microbe–microbe research and opens new entry points for ecosystem management and future targeted biocontrol. The revelation that effects can cascade through communities via “hub” microbes is important to understand community structure perturbations in parallel fields including human microbiomes and bioprocesses. In particular, parallels to human microbiome “keystone” pathogens and microbes open new avenues of interdisciplinary research that promise to better our understanding of functions of host-associated microbiomes. PMID:26788878

  10. Microbial competition between Bacillus subtilis and Staphylococcus aureus monitored by imaging mass spectrometry

    PubMed Central

    Gonzalez, David J.; Haste, Nina M.; Hollands, Andrew; Fleming, Tinya C.; Hamby, Matthew; Pogliano, Kit; Nizet, Victor

    2011-01-01

    Microbial competition exists in the general environment, such as soil or aquatic habitats, upon or within unicellular or multicellular eukaryotic life forms. The molecular actions that govern microbial competition, leading to niche establishment and microbial monopolization, remain undetermined. The emerging technology of imaging mass spectrometry (IMS) enabled the observation that there is directionality in the metabolic output of the organism Bacillus subtilis when co-cultured with Staphylococcus aureus. The directionally released antibiotic alters S. aureus virulence factor production and colonization. Therefore, IMS provides insight into the largely hidden nature of competitive microbial encounters and niche establishment, and provides a paradigm for future antibiotic discovery. PMID:21719540

  11. Gut microbiota induce IGF-1 and promote bone formation and growth.

    PubMed

    Yan, Jing; Herzog, Jeremy W; Tsang, Kelly; Brennan, Caitlin A; Bower, Maureen A; Garrett, Wendy S; Sartor, Balfour R; Aliprantis, Antonios O; Charles, Julia F

    2016-11-22

    Appreciation of the role of the gut microbiome in regulating vertebrate metabolism has exploded recently. However, the effects of gut microbiota on skeletal growth and homeostasis have only recently begun to be explored. Here, we report that colonization of sexually mature germ-free (GF) mice with conventional specific pathogen-free (SPF) gut microbiota increases both bone formation and resorption, with the net effect of colonization varying with the duration of colonization. Although colonization of adult mice acutely reduces bone mass, in long-term colonized mice, an increase in bone formation and growth plate activity predominates, resulting in equalization of bone mass and increased longitudinal and radial bone growth. Serum levels of insulin-like growth factor 1 (IGF-1), a hormone with known actions on skeletal growth, are substantially increased in response to microbial colonization, with significant increases in liver and adipose tissue IGF-1 production. Antibiotic treatment of conventional mice, in contrast, decreases serum IGF-1 and inhibits bone formation. Supplementation of antibiotic-treated mice with short-chain fatty acids (SCFAs), products of microbial metabolism, restores IGF-1 and bone mass to levels seen in nonantibiotic-treated mice. Thus, SCFA production may be one mechanism by which microbiota increase serum IGF-1. Our study demonstrates that gut microbiota provide a net anabolic stimulus to the skeleton, which is likely mediated by IGF-1. Manipulation of the microbiome or its metabolites may afford opportunities to optimize bone health and growth.

  12. Gut microbiota induce IGF-1 and promote bone formation and growth

    PubMed Central

    Yan, Jing; Herzog, Jeremy W.; Tsang, Kelly; Brennan, Caitlin A.; Bower, Maureen A.; Garrett, Wendy S.; Sartor, Balfour R.; Charles, Julia F.

    2016-01-01

    Appreciation of the role of the gut microbiome in regulating vertebrate metabolism has exploded recently. However, the effects of gut microbiota on skeletal growth and homeostasis have only recently begun to be explored. Here, we report that colonization of sexually mature germ-free (GF) mice with conventional specific pathogen-free (SPF) gut microbiota increases both bone formation and resorption, with the net effect of colonization varying with the duration of colonization. Although colonization of adult mice acutely reduces bone mass, in long-term colonized mice, an increase in bone formation and growth plate activity predominates, resulting in equalization of bone mass and increased longitudinal and radial bone growth. Serum levels of insulin-like growth factor 1 (IGF-1), a hormone with known actions on skeletal growth, are substantially increased in response to microbial colonization, with significant increases in liver and adipose tissue IGF-1 production. Antibiotic treatment of conventional mice, in contrast, decreases serum IGF-1 and inhibits bone formation. Supplementation of antibiotic-treated mice with short-chain fatty acids (SCFAs), products of microbial metabolism, restores IGF-1 and bone mass to levels seen in nonantibiotic-treated mice. Thus, SCFA production may be one mechanism by which microbiota increase serum IGF-1. Our study demonstrates that gut microbiota provide a net anabolic stimulus to the skeleton, which is likely mediated by IGF-1. Manipulation of the microbiome or its metabolites may afford opportunities to optimize bone health and growth. PMID:27821775

  13. Simultaneous purification of DNA and RNA from microbiota in a single colonic mucosal biopsy.

    PubMed

    Moen, Aina E F; Tannæs, Tone M; Vatn, Simen; Ricanek, Petr; Vatn, Morten Harald; Jahnsen, Jørgen

    2016-06-28

    Nucleic acid purification methods are of importance when performing microbiota studies and especially when analysing the intestinal microbiota as we here find a wide range of different microbes. Various considerations must be taken to lyse the microbial cell wall of each microbe. In the present article, we compare several tissue lysis steps and commercial purification kits, to achieve a joint RNA and DNA purification protocol for the purpose of investigating the microbiota and the microbiota-host interactions in a single colonic mucosal tissue sample. A further optimised tissue homogenisation and lysis protocol comprising mechanical bead beating, lysis buffer replacement and enzymatic treatment, in combination with the AllPrep DNA/RNA Mini Kit (Qiagen, Hilden, Germany) resulted in efficient and simultaneous purification of microbial and human RNA and DNA from a single mucosal colonic tissue sample. The present work provides a unique possibility to study RNA and DNA from the same mucosal biopsy sample, making a direct comparison between metabolically active microbes and total microbial DNA. The protocol also offers an opportunity to investigate other members of a microbiota such as viruses, fungi and micro-eukaryotes, and moreover the possibility to extract data on microbiota and host interactions from one single mucosal biopsy.

  14. Spatiotemporal microbiota dynamics from quantitative in vitro and in silico models of the gut

    NASA Astrophysics Data System (ADS)

    Hwa, Terence

    The human gut harbors a dynamic microbial community whose composition bears great importance for the health of the host. Here, we investigate how colonic physiology impacts bacterial growth behaviors, which ultimately dictate the gut microbiota composition. Combining measurements of bacterial growth physiology with analysis of published data on human physiology into a quantitative modeling framework, we show how hydrodynamic forces in the colon, in concert with other physiological factors, determine the abundances of the major bacterial phyla in the gut. Our model quantitatively explains the observed variation of microbiota composition among healthy adults, and predicts colonic water absorption (manifested as stool consistency) and nutrient intake to be two key factors determining this composition. The model further reveals that both factors, which have been identified in recent correlative studies, exert their effects through the same mechanism: changes in colonic pH that differentially affect the growth of different bacteria. Our findings show that a predictive and mechanistic understanding of microbial ecology in the human gut is possible, and offer the hope for the rational design of intervention strategies to actively control the microbiota. This work is supported by the Bill and Melinda Gates Foundation.

  15. Metabolism links bacterial biofilms and colon carcinogenesis

    PubMed Central

    Johnson, Caroline H.; Dejea, Christine M.; Edler, David; Hoang, Linh T.; Santidrian, Antonio F.; Felding, Brunhilde H.; Cho, Kevin; Wick, Elizabeth C.; Hechenbleikner, Elizabeth M.; Uritboonthai, Winnie; Goetz, Laura; Casero, Robert A.; Pardoll, Drew M.; White, James R.; Patti, Gary J.; Sears, Cynthia L.; Siuzdak, Gary

    2015-01-01

    SUMMARY Bacterial biofilms in the colon alter the host tissue microenvironment. A role for biofilms in colon cancer metabolism has been suggested but to date has not been evaluated. Using metabolomics, we investigated the metabolic influence that microbial biofilms have on colon tissues and the related occurrence of cancer. Patient-matched colon cancers and histologically normal tissues, with or without biofilms, were examined. We show the upregulation of polyamine metabolites in tissues from cancer hosts with significant enhancement of N1, N12-diacetylspermine in both biofilm positive cancer and normal tissues. Antibiotic treatment, which cleared biofilms, decreased N1, N12-diacetylspermine levels to those seen in biofilm negative tissues, indicating that host cancer and bacterial biofilm structures contribute to the polyamine metabolite pool. These results show that colonic mucosal biofilms alter the cancer metabolome, to produce a regulator of cellular proliferation and colon cancer growth potentially affecting cancer development and progression. PMID:25959674

  16. Metabolism links bacterial biofilms and colon carcinogenesis.

    PubMed

    Johnson, Caroline H; Dejea, Christine M; Edler, David; Hoang, Linh T; Santidrian, Antonio F; Felding, Brunhilde H; Ivanisevic, Julijana; Cho, Kevin; Wick, Elizabeth C; Hechenbleikner, Elizabeth M; Uritboonthai, Winnie; Goetz, Laura; Casero, Robert A; Pardoll, Drew M; White, James R; Patti, Gary J; Sears, Cynthia L; Siuzdak, Gary

    2015-06-02

    Bacterial biofilms in the colon alter the host tissue microenvironment. A role for biofilms in colon cancer metabolism has been suggested but to date has not been evaluated. Using metabolomics, we investigated the metabolic influence that microbial biofilms have on colon tissues and the related occurrence of cancer. Patient-matched colon cancers and histologically normal tissues, with or without biofilms, were examined. We show the upregulation of polyamine metabolites in tissues from cancer hosts with significant enhancement of N(1), N(12)-diacetylspermine in both biofilm-positive cancer and normal tissues. Antibiotic treatment, which cleared biofilms, decreased N(1), N(12)-diacetylspermine levels to those seen in biofilm-negative tissues, indicating that host cancer and bacterial biofilm structures contribute to the polyamine metabolite pool. These results show that colonic mucosal biofilms alter the cancer metabolome to produce a regulator of cellular proliferation and colon cancer growth potentially affecting cancer development and progression. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Colonic bacterial composition in Parkinson's disease.

    PubMed

    Keshavarzian, Ali; Green, Stefan J; Engen, Phillip A; Voigt, Robin M; Naqib, Ankur; Forsyth, Christopher B; Mutlu, Ece; Shannon, Kathleen M

    2015-09-01

    We showed that Parkinson's disease (PD) patients have alpha-synuclein (α-Syn) aggregation in their colon with evidence of colonic inflammation. If PD patients have altered colonic microbiota, dysbiosis might be the mechanism of neuroinflammation that leads to α-Syn misfolding and PD pathology. Sixty-six sigmoid mucosal biopsies and 65 fecal samples were collected from 38 PD patients and 34 healthy controls. Mucosal-associated and feces microbiota compositions were characterized using high-throughput ribosomal RNA gene amplicon sequencing. Data were correlated with clinical measures of PD, and a predictive assessment of microbial community functional potential was used to identify microbial functions. The mucosal and fecal microbial community of PD patients was significantly different than control subjects, with the fecal samples showing more marked differences than the sigmoid mucosa. At the taxonomic level of genus, putative, "anti-inflammatory" butyrate-producing bacteria from the genera Blautia, Coprococcus, and Roseburia were significantly more abundant in feces of controls than PD patients. Bacteria from the genus Faecalibacterium were significantly more abundant in the mucosa of controls than PD. Putative, "proinflammatory" Proteobacteria of the genus Ralstonia were significantly more abundant in mucosa of PD than controls. Predictive metagenomics indicated that a large number of genes involved in metabolism were significantly lower in the PD fecal microbiome, whereas genes involved in lipopolysaccharide biosynthesis and type III bacterial secretion systems were significantly higher in PD patients. This report provides evidence that proinflammatory dysbiosis is present in PD patients and could trigger inflammation-induced misfolding of α-Syn and development of PD pathology. © 2015 International Parkinson and Movement Disorder Society.

  18. Gut microbiota utilize immunoglobulin A for mucosal colonization.

    PubMed

    Donaldson, G P; Ladinsky, M S; Yu, K B; Sanders, J G; Yoo, B B; Chou, W-C; Conner, M E; Earl, A M; Knight, R; Bjorkman, P J; Mazmanian, S K

    2018-05-18

    The immune system responds vigorously to microbial infection while permitting lifelong colonization by the microbiome. Mechanisms that facilitate the establishment and stability of the gut microbiota remain poorly described. We found that a regulatory system in the prominent human commensal Bacteroides fragilis modulates its surface architecture to invite binding of immunoglobulin A (IgA) in mice. Specific immune recognition facilitated bacterial adherence to cultured intestinal epithelial cells and intimate association with the gut mucosal surface in vivo. The IgA response was required for B. fragilis (and other commensal species) to occupy a defined mucosal niche that mediates stable colonization of the gut through exclusion of exogenous competitors. Therefore, in addition to its role in pathogen clearance, we propose that IgA responses can be co-opted by the microbiome to engender robust host-microbial symbiosis. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  19. Dysbiosis of the gut microbiota is associated with HIV disease progression and tryptophan catabolism

    PubMed Central

    Vujkovic-Cvijin, Ivan; Dunham, Richard M.; Iwai, Shoko; Maher, M. Cyrus; Albright, Rebecca G.; Broadhurst, Mara J.; Hernandez, Ryan D.; Lederman, Michael M.; Huang, Yong; Somsouk, Ma; Deeks, Steven G.; Hunt, Peter W.; Lynch, Susan V.; McCune, Joseph M.

    2014-01-01

    Progressive HIV infection is characterized by dysregulation of the intestinal immune barrier, translocation of immunostimulatory microbial products, and chronic systemic inflammation that is thought to drive progression of disease to AIDS. Elements of this pathologic process persist despite viral suppression during highly active antiretroviral therapy (HAART) and drivers of these phenomena remain poorly understood. Disrupted intestinal immunity can precipitate dysbiosis that induces chronic inflammation in the mucosa and periphery of mice. However, putative microbial drivers of HIV-associated immunopathology versus recovery have not been identified in humans. Using high-resolution bacterial community profiling, we identified a dysbiotic mucosal-adherent community enriched in Proteobacteria and depleted of Bacteroidia members that was associated with markers of mucosal immune disruption, T cell activation, and chronic inflammation in HIV-infected subjects. Furthermore, this dysbiosis was evident among HIV-infected subjects undergoing HAART, and the extent of dysbiosis correlated with activity of the kynurenine pathway of tryptophan metabolism and plasma concentrations of the inflammatory cytokine interleukin-6 (IL-6), two established markers of disease progression. Gut-resident bacteria with capacity to metabolize tryptophan through the kynurenine pathway were found to be enriched in HIV-infected subjects, strongly correlated with kynurenine levels in HIV-infected subjects, and capable of kynurenine production in vitro. These observations demonstrate a link between mucosal-adherent colonic bacteria and immunopathogenesis during progressive HIV infection, which is apparent even in the setting of viral suppression during HAART. This link suggests that gut-resident microbial populations may influence intestinal homeostasis during HIV disease. PMID:23843452

  20. Exploring the bovine rumen bacterial community from birth to adulthood.

    PubMed

    Jami, Elie; Israel, Adi; Kotser, Assaf; Mizrahi, Itzhak

    2013-06-01

    The mammalian gut microbiota is essential in shaping many of its host's functional attributes. One such microbiota resides in the bovine digestive tract in a compartment termed as the rumen. The rumen microbiota is necessary for the proper physiological development of the rumen and for the animal's ability to digest and convert plant mass into food products, making it highly significant to humans. The establishment of this microbial population and the changes occurring with the host's age are important for understanding this key microbial community. Despite its importance, little information about colonization of the microbial populations in newborn animals, and the gradual changes occurring thereafter, exists. Here, we characterized the overall bovine ruminal bacterial populations of five age groups, from 1-day-old calves to 2-year-old cows. We describe the changes occurring in the rumen ecosystem after birth, reflected by a decline in aerobic and facultative anaerobic taxa and an increase in anaerobic ones. Some rumen bacteria that are essential for mature rumen function could be detected as early as 1 day after birth, long before the rumen is active or even before ingestion of plant material occurs. The diversity and within-group similarity increased with age, suggesting a more diverse but homogeneous and specific mature community, compared with the more heterogeneous and less diverse primary community. In addition, a convergence toward a mature bacterial arrangement with age was observed. These findings have also been reported for human gut microbiota, suggesting that similar forces drive the establishment of gut microbiotas in these two distinct mammalian digestive systems.

  1. Exploring the bovine rumen bacterial community from birth to adulthood

    PubMed Central

    Jami, Elie; Israel, Adi; Kotser, Assaf; Mizrahi, Itzhak

    2013-01-01

    The mammalian gut microbiota is essential in shaping many of its host's functional attributes. One such microbiota resides in the bovine digestive tract in a compartment termed as the rumen. The rumen microbiota is necessary for the proper physiological development of the rumen and for the animal's ability to digest and convert plant mass into food products, making it highly significant to humans. The establishment of this microbial population and the changes occurring with the host's age are important for understanding this key microbial community. Despite its importance, little information about colonization of the microbial populations in newborn animals, and the gradual changes occurring thereafter, exists. Here, we characterized the overall bovine ruminal bacterial populations of five age groups, from 1-day-old calves to 2-year-old cows. We describe the changes occurring in the rumen ecosystem after birth, reflected by a decline in aerobic and facultative anaerobic taxa and an increase in anaerobic ones. Some rumen bacteria that are essential for mature rumen function could be detected as early as 1 day after birth, long before the rumen is active or even before ingestion of plant material occurs. The diversity and within-group similarity increased with age, suggesting a more diverse but homogeneous and specific mature community, compared with the more heterogeneous and less diverse primary community. In addition, a convergence toward a mature bacterial arrangement with age was observed. These findings have also been reported for human gut microbiota, suggesting that similar forces drive the establishment of gut microbiotas in these two distinct mammalian digestive systems. PMID:23426008

  2. Mutualistic interaction between Salmonella enterica and Aspergillus niger and its effects on Zea mays colonization.

    PubMed

    Balbontín, Roberto; Vlamakis, Hera; Kolter, Roberto

    2014-11-01

    Salmonella Typhimurium inhabits a variety of environments and is able to infect a broad range of hosts. Throughout its life cycle, some hosts can act as intermediates in the path to the infection of others. Aspergillus niger is a ubiquitous fungus that can often be found in soil or associated to plants and microbial consortia. Recently, S. Typhimurium was shown to establish biofilms on the hyphae of A. niger. In this work, we have found that this interaction is stable for weeks without a noticeable negative effect on either organism. Indeed, bacterial growth is promoted upon the establishment of the interaction. Moreover, bacterial biofilms protect the fungus from external insults such as the effects of the anti-fungal agent cycloheximide. Thus, the Salmonella-Aspergillus interaction can be defined as mutualistic. A tripartite gnotobiotic system involving the bacterium, the fungus and a plant revealed that co-colonization has a greater negative effect on plant growth than colonization by either organism in dividually. Strikingly, co-colonization also causes a reduction in plant invasion by S. Typhimurium. This work demonstrates that S. Typhimurium and A. niger establish a mutualistic interaction that alters bacterial colonization of plants and affects plant physiology. © 2014 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  3. Purified rutin and rutin-rich asparagus attenuates disease severity and tissue damage following dextran sodium sulfate-induced colitis.

    PubMed

    Power, Krista A; Lu, Jenifer T; Monk, Jennifer M; Lepp, Dion; Wu, Wenqing; Zhang, Claire; Liu, Ronghua; Tsao, Rong; Robinson, Lindsay E; Wood, Geoffrey A; Wolyn, David J

    2016-11-01

    This study investigated the effects of cooked whole asparagus (ASP) versus its equivalent level of purified flavonoid glycoside, rutin (RUT), on dextran sodium sulfate (DSS)-induced colitis and subsequent colitis recovery in mice. C57BL/6 male mice were fed an AIN-93G basal diet (BD), or BD supplemented with 2% cooked ASP or 0.025% RUT for 2 wks prior to and during colitis induction with 2% DSS in water for 7 days, followed by 5 days colitis recovery. In colitic mice, both ASP and RUT upregulated mediators of improved barrier integrity and enhanced mucosal injury repair (e.g. Muc1, IL-22, Rho-A, Rac1, and Reg3γ), increased the proportion of mouse survival, and improved disease activity index. RUT had the greatest effect in attenuating DSS-induced colonic damage indicated by increased crypt and goblet cell restitution, reduced colonic myeloperoxidase, as well as attenuated DSS-induced microbial dysbiosis (reduced Enterobacteriaceae and Bacteroides, and increased unassigned Clostridales, Oscillospira, Lactobacillus, and Bifidobacterium). These findings demonstrate that dietary cooked ASP and its flavonoid glycoside, RUT, may be useful in attenuating colitis severity by modulating the colonic microenvironment resulting in reduced colonic inflammation, promotion of colonic mucosal injury repair, and attenuation of colitis-associated microbial dysbiosis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. In vitro Multi-Species Biofilms of Methicillin-Resistant Staphylococcus aureus and Pseudomonas aeruginosa and Their Host Interaction during In vivo Colonization of an Otitis Media Rat Model

    PubMed Central

    Yadav, Mukesh K.; Chae, Sung-Won; Go, Yoon Young; Im, Gi Jung; Song, Jae-Jun

    2017-01-01

    Staphylococcus aureus (SA) and Pseudomonas aeruginosa (PA) are known to cause biofilm-related infections. MRSA and PA have been frequently isolated from chronically infected wounds, cystic fibrosis, chronic suppurative otitis media (CSOM), and from indwelling medical devices, and these bacteria co-exist; however, their interaction with each-other or with the host is not well known. In this study, we investigated MRSA and PA multi-species biofilm communities in vitro and their interaction with the host during in vivo colonization using an OM rat-model. In-vitro biofilm formation and in-vivo colonization were studied using CV-microtiter plate assay and OM rat-model respectively. The biofilms were viewed under scanning electron microscope and bacteria were enumerated using cfu counts. The differential gene expressions of rat mucosa colonized with single or multi-species of MRSA or PA were studied using RNA-sequencing of total transcriptome. In multi-species in-vitro biofilms PA partially inhibited SA growth. However, no significant inhibition of MRSA was detected during in-vivo colonization of multi-species in rat bullae. A total of 1,797 genes were significantly (p < 0.05) differentially expressed in MRSA or PA or MRSA + PA colonized rat middle ear mucosa with respect to the control. The poly-microbial colonization of MRSA and PA induced the differential expression of a significant number of genes that are involved in immune response, inflammation, signaling, development, and defense; these were not expressed with single species colonization by either MRSA or PA. Genes involved in defense, immune response, inflammatory response, and developmental process were exclusively up-regulated, and genes that are involved in nervous system signaling, development and transmission, regulation of cell growth and development, anatomical and system development, and cell differentiation were down-regulated after multi-species inoculation. These results indicate that poly-microbial colonization induces a host response that is different from that induced by single species infection. PMID:28459043

  5. The microbial diversity, distribution, and ecology of permafrost in China: a review.

    PubMed

    Hu, Weigang; Zhang, Qi; Tian, Tian; Cheng, Guodong; An, Lizhe; Feng, Huyuan

    2015-07-01

    Permafrost in China mainly located in high-altitude areas. It represents a unique and suitable ecological niche that can be colonized by abundant microbes. Permafrost microbial community varies across geographically separated locations in China, and some lineages are novel and possible endemic. Besides, Chinese permafrost is a reservoir of functional microbial groups involved in key biogeochemical cycling processes. In future, more work is necessary to determine if these phylogenetic groups detected by DNA-based methods are part of the viable microbial community, and their functional roles and how they potentially respond to climate change. This review summaries recent studies describing microbial biodiversity found in permafrost and associated environments in China, and provides a framework for better understanding the microbial ecology of permafrost.

  6. The Effect of Diet on the Human Gut Microbiome: A Metagenomic Analysis in Humanized Gnotobiotic Mice

    PubMed Central

    Turnbaugh, Peter J.; Ridaura, Vanessa K.; Faith, Jeremiah J.; Rey, Federico E.; Knight, Rob; Gordon, Jeffrey I.

    2010-01-01

    Diet and nutritional status are among the most important, modifiable determinants of human health. The nutritional value of food is influenced in part by a person’s gut microbial community (microbiota) and its component genes (microbiome). Unraveling the interrelationships between diet, the structure and operations of the gut microbiota, and nutrient and energy harvest is confounded by variations in human environmental exposures, microbial ecology and genotype. To help overcome these problems, we created a well-defined, representative animal model of the human gut ecosystem by transplanting fresh or frozen adult human fecal microbial communities into germ-free C57BL/6J mice. Culture-independent, metagenomic analysis of the temporal, spatial and intergenerational patterns of bacterial colonization showed that these humanized mice were stably and heritably colonized, and reproduced much of the bacterial diversity of the donor’s microbiota. Switching from a low-fat, plant polysaccharide-rich diet to a high-fat/high-sugar “Western” diet shifted the structure of the microbiota within a single day, changed the representation of metabolic pathways in the microbiome, and altered microbiome gene expression. Reciprocal transplants involving various combinations of donor and recipient diets revealed that colonization history influences the initial structure of the microbial community, but that these effects can be rapidly altered by diet. Humanized mice fed the Western diet have increased adiposity; this trait is transmissible via microbiota transplantation. Humanized gnotobiotic mice will be useful for conducting proof-of-principle “clinical trials” that test the effects of environmental and genetic factors on the gut microbiota and host physiology. PMID:20368178

  7. Simultaneous UPLC-MS/MS analysis of native catechins and procyanidins and their microbial metabolites in intestinal contents and tissues of male Wistar Furth inbred rats.

    PubMed

    Goodrich, Katheryn M; Neilson, Andrew P

    2014-05-01

    Procyanidins have been extensively investigated for their potential health protective activities. However, the potential bioactivities of procyanidins are limited by their poor bioavailability. The majority of the ingested dose remains unabsorbed and reaches the colon where extensive microbial metabolism occurs. Most existing analytical methods measure either native compounds (catechins and procyanidins), or their microbial metabolites. The objectives of this study were to develop a high-throughput extraction and UPLC-MS/MS method for simultaneous measurement of both native procyanidins and their metabolites, facilitating high-throughput analysis of native and metabolite profiles in various regions of the colon. The present UPLC-MS/MS method facilitates simultaneous resolution and detection of authentic standards of 14 native catechin monomers and procyanidins, as well as 24 microbial metabolites. Detection and resolution of an additional 3 procyanidin dimers and 10 metabolites for which standards were not available was achieved. Elution and adequate resolution of both native compounds and metabolites were achieved within 10min. The intraday repeatability for native compounds was between 1.1 and 16.5%, and the interday repeatability for native compounds was between 2.2 and 25%. Intraday and interday repeatability for metabolites was between 0.6 and 24.1% and 1 and 23.9%, respectively. Observed lower limits of quantification for native compounds were ∼9-350fmol on-column, and for the microbial metabolites were ∼0.8-12,000fmol on-column. Observed lower limits of detection for native compounds were ∼4.5-190fmol on-column, and for metabolites were 0.304-6020fmol on-column. For native monomers and procyanidins, extraction recoveries ranged from 38 to 102%. Extraction recoveries for the 9 microbial metabolites tested ranged from 41 to 95%. Data from tissue analysis of rats gavaged with grape seed extract indicate fairly high accumulation of native compounds, primarily monomers and dimers, in the cecum and colon. Metabolite data indicate the progressive nature of microbial metabolism as the digesta moves through the lower GI tract. This method facilitates the high-throughput, sensitive, and simultaneous analysis of both native compounds and their microbial metabolites in biological samples and provides a more efficient means of extraction and analysis than previous methods. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. A Novel Adaptation Mechanism Underpinning Algal Colonization of a Nuclear Fuel Storage Pond.

    PubMed

    MeGraw, Victoria E; Brown, Ashley R; Boothman, Christopher; Goodacre, Royston; Morris, Katherine; Sigee, David; Anderson, Lizzie; Lloyd, Jonathan R

    2018-06-26

    Geochemical analyses alongside molecular techniques were used to characterize the microbial ecology and biogeochemistry of an outdoor spent nuclear fuel storage pond at Sellafield, United Kingdom, that is susceptible to seasonal algal blooms that cause plant downtime. 18S rRNA gene profiling of the filtered biomass samples showed the increasing dominance of a species closely related to the alga Haematococcus pluvialis , alongside 16S rRNA genes affiliated with a diversity of freshwater bacteria, including Proteobacteria and Cyanobacteria High retention of 137 Cs and 90 Sr on pond water filters coincided with high levels of microbial biomass in the pond, suggesting that microbial colonization may have an important control on radionuclide fate in the pond. To interpret the unexpected dominance of Haematococcus species during bloom events in this extreme environment, the physiological response of H. pluvialis to environmentally relevant ionizing radiation doses was assessed. Irradiated laboratory cultures produced significant quantities of the antioxidant astaxanthin, consistent with pigmentation observed in pond samples. Fourier transform infrared (FT-IR) spectroscopy suggested that radiation did not have a widespread impact on the metabolic fingerprint of H. pluvialis in laboratory experiments, despite the 80-Gy dose. This study suggests that the production of astaxanthin-rich encysted cells may be related to the preservation of the Haematococcus phenotype, potentially allowing it to survive oxidative stress arising from radiation doses associated with the spent nuclear fuel. The oligotrophic and radiologically extreme conditions in this environment do not prevent extensive colonization by microbial communities, which play a defining role in controlling the biogeochemical fate of major radioactive species present. IMPORTANCE Spent nuclear fuel is stored underwater in large ponds prior to processing and disposal. Such environments are intensively radioactive but can be colonized by microorganisms. Colonization of such inhospitable radioactive ponds is surprising, and the survival mechanisms that microbes use is of fundamental interest. It is also important to study these unusual ecosystems, as microbes growing in the pond waters may accumulate radionuclides present in the waters (for bioremediation applications), while high cell loads can hamper management of the ponds due to poor visibility. In this study, an outdoor pond at the U.K. Sellafield facility was colonized by a seasonal bloom of microorganisms, able to accumulate high levels of 137 Cs and 90 Sr and dominated by the alga Haematococcus This organism is not normally associated with deep water bodies, but it can adapt to radioactive environments via the production of the pigment astaxanthin, which protects the cells from radiation damage. Copyright © 2018 MeGraw et al.

  9. Novel long-chain anteiso-alkanes and anteiso-alkanoic acids in Antarctic rocks colonized by living and fossil cryptoendolithic microorganisms

    NASA Technical Reports Server (NTRS)

    Matsumoto, G. I.; Friedmann, E. I.; Watanuki, K.; Ocampo-Friedmann, R.

    1992-01-01

    Saponified extracts of rock samples colonized by cryptoendolithic microbial communities from the McMurdo Dry Valleys of Southern Victoria Land, Antarctica, were separated into hydrocarbon and fatty acid fractions by silica gel column chromatography. Hydrocarbons and methyl esters of fatty acids were analyzed by capillary gas chromatography-mass spectrometry. Unusually, a suite of long-chain anteiso-alkanes (a-C20 to a-C30) and anteiso-alkanoic acids (a-C20 to a-C30) were detected in many samples, together with straight-chain, branched and/or cyclic and acyclic isoprenoid compounds. These novel compounds are probably derived from unidentified heterotrophic bacteria or symbiotic processes in a unique microbial community in the Antarctic cold desert and suggest the occurrence of a special biosynthetic pathway. Long-chain anteiso-alkanes are probably formed through microbial decarboxylation of corresponding anteiso-alkanoic acids. They may serve as new biomarkers in environmental and geochemical studies.

  10. Customizing laboratory mice by modifying gut microbiota and host immunity in an early "window of opportunity".

    PubMed

    Hansen, Camilla H F; Metzdorff, Stine B; Hansen, Axel K

    2013-01-01

    We recently investigated how post-natal microbial gut colonization is important for the development of the immune system, especially in the systemic compartments. This addendum presents additional data which in accordance with our previous findings show that early life microbial colonization is critical for a fine-tuned immune homeostasis to develop also in the intestinal environment. A generalized reduction in the expression of immune signaling related genes in the small intestine may explain previously shown increased systemic adaptive immune reactivity, if the regulatory cross-talk between intra- and extra-intestinal immune cells is immature following a neonatal germ-free period. These findings are furthermore discussed in the context of recently published results on how lack of microbial exposure in the neonatal life modifies disease expression in rodents used as models mimicking human inflammatory diseases. In particular, with a focus on how these interesting findings could be used to optimize the use of rodent models.

  11. Temperature and Redox Effect on Mineral Colonization in Juan de Fuca Ridge Flank Subsurface Crustal Fluids

    PubMed Central

    Baquiran, Jean-Paul M.; Ramírez, Gustavo A.; Haddad, Amanda G.; Toner, Brandy M.; Hulme, Samuel; Wheat, Charles G.; Edwards, Katrina J.; Orcutt, Beth N.

    2016-01-01

    To examine microbe-mineral interactions in subsurface oceanic crust, we evaluated microbial colonization on crustal minerals that were incubated in borehole fluids for 1 year at the seafloor wellhead of a crustal borehole observatory (IODP Hole U1301A, Juan de Fuca Ridge flank) as compared to an experiment that was not exposed to subsurface crustal fluids (at nearby IODP Hole U1301B). In comparison to previous studies at these same sites, this approach allowed assessment of the effects of temperature, fluid chemistry, and/or mineralogy on colonization patterns of different mineral substrates, and an opportunity to verify the approach of deploying colonization experiments at an observatory wellhead at the seafloor instead of within the borehole. The Hole U1301B deployment did not have biofilm growth, based on microscopy and DNA extraction, thereby confirming the integrity of the colonization design against bottom seawater intrusion. In contrast, the Hole U1301A deployment supported biofilms dominated by Epsilonproteobacteria (43.5% of 370 16S rRNA gene clone sequences) and Gammaproteobacteria (29.3%). Sequence analysis revealed overlap in microbial communities between different minerals incubated at the Hole U1301A wellhead, indicating that mineralogy did not separate biofilm structure within the 1-year colonization experiment. Differences in the Hole U1301A wellhead biofilm community composition relative to previous studies from within the borehole using similar mineral substrates suggest that temperature and the diffusion of dissolved oxygen through plastic components influenced the mineral colonization experiments positioned at the wellhead. This highlights the capacity of low abundance crustal fluid taxa to rapidly establish communities on diverse mineral substrates under changing environmental conditions such as from temperature and oxygen. PMID:27064928

  12. Impact of humic acids on the colonic microbiome in healthy volunteers.

    PubMed

    Swidsinski, Alexander; Dörffel, Yvonne; Loening-Baucke, Vera; Gille, Christoph; Reißhauer, Anne; Göktas, Onder; Krüger, Monika; Neuhaus, Jürgen; Schrödl, Wieland

    2017-02-07

    To test the effects of humic acids on innate microbial communities of the colon. We followed the effects of oral supplementation with humic acids (Activomin ® ) on concentrations and composition of colonic microbiome in 14 healthy volunteers for 45 d. 3 × 800 mg Activomin ® were taken orally for 10 d followed by 3 × 400 mg for 35 d. Colonic microbiota were investigated using multicolor fluorescence in situ hybridization (FISH) of Carnoy fixated and paraffin embedded stool cylinders. Two stool samples were collected a week prior to therapy and one stool sample on days 10, 31 and 45. Forty-one FISH probes representing different bacterial groups were used. The sum concentration of colonic microbiota increased from 20% at day 10 to 30% by day 31 and remained stable until day 45 (32%) of humic acid supplementation ( P < 0.001). The increase in the concentrations in each person was due to growth of preexisting groups. The individual microbial profile of the patients remained unchanged. Similarly, the bacterial diversity remained stable. Concentrations of 24 of the 35 substantial groups increased from 20% to 96%. Two bacterial groups detected with Bac303 ( Bacteroides ) and Myc657 (mycolic acid-containing Actinomycetes ) FISH probes decreased ( P > 0.05). The others remained unaffected. Bacterial groups with initially marginal concentrations (< 0.1 × 10 9 /mL) demonstrated no response to humic acids. The concentrations of pioneer groups of Bifidobacteriaceae , Enterobacteriaceae and Clostridium difficile increased but the observed differences were statistically not significant. Humic acids have a profound effect on healthy colonic microbiome and may be potentially interesting substances for the development of drugs that control the innate colonic microbiome.

  13. Impact of humic acids on the colonic microbiome in healthy volunteers

    PubMed Central

    Swidsinski, Alexander; Dörffel, Yvonne; Loening-Baucke, Vera; Gille, Christoph; Reißhauer, Anne; Göktas, Onder; Krüger, Monika; Neuhaus, Jürgen; Schrödl, Wieland

    2017-01-01

    AIM To test the effects of humic acids on innate microbial communities of the colon. METHODS We followed the effects of oral supplementation with humic acids (Activomin®) on concentrations and composition of colonic microbiome in 14 healthy volunteers for 45 d. 3 × 800 mg Activomin® were taken orally for 10 d followed by 3 × 400 mg for 35 d. Colonic microbiota were investigated using multicolor fluorescence in situ hybridization (FISH) of Carnoy fixated and paraffin embedded stool cylinders. Two stool samples were collected a week prior to therapy and one stool sample on days 10, 31 and 45. Forty-one FISH probes representing different bacterial groups were used. RESULTS The sum concentration of colonic microbiota increased from 20% at day 10 to 30% by day 31 and remained stable until day 45 (32%) of humic acid supplementation (P < 0.001). The increase in the concentrations in each person was due to growth of preexisting groups. The individual microbial profile of the patients remained unchanged. Similarly, the bacterial diversity remained stable. Concentrations of 24 of the 35 substantial groups increased from 20% to 96%. Two bacterial groups detected with Bac303 (Bacteroides) and Myc657 (mycolic acid-containing Actinomycetes) FISH probes decreased (P > 0.05). The others remained unaffected. Bacterial groups with initially marginal concentrations (< 0.1 × 109/mL) demonstrated no response to humic acids. The concentrations of pioneer groups of Bifidobacteriaceae, Enterobacteriaceae and Clostridium difficile increased but the observed differences were statistically not significant. CONCLUSION Humic acids have a profound effect on healthy colonic microbiome and may be potentially interesting substances for the development of drugs that control the innate colonic microbiome. PMID:28223733

  14. The gut microbiota and inflammatory noncommunicable diseases: associations and potentials for gut microbiota therapies.

    PubMed

    West, Christina E; Renz, Harald; Jenmalm, Maria C; Kozyrskyj, Anita L; Allen, Katrina J; Vuillermin, Peter; Prescott, Susan L

    2015-01-01

    Rapid environmental transition and modern lifestyles are likely driving changes in the biodiversity of the human gut microbiota. With clear effects on physiologic, immunologic, and metabolic processes in human health, aberrations in the gut microbiome and intestinal homeostasis have the capacity for multisystem effects. Changes in microbial composition are implicated in the increasing propensity for a broad range of inflammatory diseases, such as allergic disease, asthma, inflammatory bowel disease (IBD), obesity, and associated noncommunicable diseases (NCDs). There are also suggestive implications for neurodevelopment and mental health. These diverse multisystem influences have sparked interest in strategies that might favorably modulate the gut microbiota to reduce the risk of many NCDs. For example, specific prebiotics promote favorable intestinal colonization, and their fermented products have anti-inflammatory properties. Specific probiotics also have immunomodulatory and metabolic effects. However, when evaluated in clinical trials, the effects are variable, preliminary, or limited in magnitude. Fecal microbiota transplantation is another emerging therapy that regulates inflammation in experimental models. In human subjects it has been successfully used in cases of Clostridium difficile infection and IBD, although controlled trials are lacking for IBD. Here we discuss relationships between gut colonization and inflammatory NCDs and gut microbiota modulation strategies for their treatment and prevention. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  15. Effects of dietary fat profile on gut permeability and microbiota and their relationships with metabolic changes in mice.

    PubMed

    Lam, Yan Y; Ha, Connie W Y; Hoffmann, Jenny M A; Oscarsson, Jan; Dinudom, Anuwat; Mather, Thomas J; Cook, David I; Hunt, Nicholas H; Caterson, Ian D; Holmes, Andrew J; Storlien, Len H

    2015-07-01

    To distinguish the effects of dietary fat profile on gut parameters and their relationships with metabolic changes and to determine the capacity of n-3 fatty acids to modify gut variables in the context of diet-induced metabolic dysfunctions. Mice received control or high-fat diets emphasizing saturated (HFD-sat), n-6 (HFD-n6), or n-3 (HFD-n3) fatty acids for 8 weeks. In another cohort, mice that were maintained on HFD-sat received n-3-rich fish oil or resolvin D1 supplementation. HFD-sat and HFD-n6 induced similar weight gain, but only HFD-sat increased index of insulin resistance (HOMA-IR), colonic permeability, and mesenteric fat inflammation. Hydrogen sulfide-producing bacteria were one of the major groups driving the diet-specific changes in gut microbiome, with the overall microbial profile being associated with changes in body weight, HOMA-IR, and gut permeability. In mice maintained on HFD-sat, fish oil and resolvin D1 restored barrier function and reduced inflammation in the colon but were unable to normalize HOMA-IR. Different dietary fat profiles led to distinct intestinal and metabolic outcomes that are independent of obesity. Interventions targeting inflammation successfully restored gut health but did not reverse systemic aspects of diet-induced metabolic dysfunction, implicating separation between gut dysfunctions and disease-initiating and/or -maintaining processes. © 2015 The Obesity Society.

  16. The usual suspects : fingerprinting microbial communities involved in decay of treated southern yellow pine

    Treesearch

    Grant T. Kirker; Susan V. Diehl; M. Lynn Prewitt

    2010-01-01

    Currrent standards for soil-block testing have long been based on the effectiveness of preservative systems against only a small number of wood decay fungi and even fewer bacteria. Culture-independent molecular methods offer simple, reproducible means to obtain a more holistic view of the microbial communities that colonize wood throughout the decay process. By using a...

  17. The relative importance of exogenous and substrate-derived nitrogen for microbial growth during leaf decomposition

    Treesearch

    B.M. Cheever; J. R. Webster; E. E. Bilger; S. A. Thomas

    2013-01-01

    Heterotrophic microbes colonizing detritus obtain nitrogen (N) for growth by assimilating N from their substrate or immobilizing exogenous inorganic N. Microbial use of these two pools has different implications for N cycling and organic matter decomposition in the face of the global increase in biologically available N. We used sugar maple leaves labeled with

  18. Synthetic networks in microbial communities

    NASA Astrophysics Data System (ADS)

    Suel, Gurol

    2015-03-01

    While bacteria are single celled organisms, they predominantly reside in structured communities known as biofilms. Cells in biofilms are encapsulated and protected by the extracellular matrix (ECM), which also confines cells in space. During biofilm development, microbial cells are organized in space and over time. Little is known regarding the processes that drive the spatio-temporal organization of microbial communities. Here I will present our latest efforts that utilize synthetic biology approaches to uncover the organizational principles that drive biofilm development. I will also discuss the possible implications of our recent findings in terms of the cost and benefit to biofilm cells.

  19. Validated measurements of microbial loads on environmental surfaces in intensive care units before and after disinfecting cleaning.

    PubMed

    Frickmann, H; Bachert, S; Warnke, P; Podbielski, A

    2018-03-01

    Preanalytic aspects can make results of hygiene studies difficult to compare. Efficacy of surface disinfection was assessed with an evaluated swabbing procedure. A validated microbial screening of surfaces was performed in the patients' environment and from hands of healthcare workers on two intensive care units (ICUs) prior to and after a standardized disinfection procedure. From a pure culture, the recovery rate of the swabs for Staphylococcus aureus was 35%-64% and dropped to 0%-22% from a mixed culture with 10-times more Staphylococcus epidermidis than S. aureus. Microbial surface loads 30 min before and after the cleaning procedures were indistinguishable. The quality-ensured screening procedure proved that adequate hygiene procedures are associated with a low overall colonization of surfaces and skin of healthcare workers. Unchanged microbial loads before and after surface disinfection demonstrated the low additional impact of this procedure in the endemic situation when the pathogen load prior to surface disinfection is already low. Based on a validated screening system ensuring the interpretability and reliability of the results, the study confirms the efficiency of combined hand and surface hygiene procedures to guarantee low rates of bacterial colonization. © 2017 The Society for Applied Microbiology.

  20. Effects of subsurface aeration and trinexapac-ethyl application on soil microbial communities in a creeping bentgrass putting green

    USGS Publications Warehouse

    Feng, Y.; Stoeckel, D.M.; Van Santen, E.; Walker, R.H.

    2002-01-01

    The sensitivity of creeping bentgrass (Agrostis palustris Huds.) to the extreme heat found in the southeastern United States has led to the development of new greens-management methods. The purpose of this study was to examine the effects of subsurface aeration and growth regulator applications on soil microbial communities and mycorrhizal colonization rates in a creeping bentgrass putting green. Two cultivars (Crenshaw and Penncross), a growth regulator (trinexapacethyl), and subsurface aeration were evaluated in cool and warm seasons. Total bacterial counts were higher in whole (unsieved) soils than in sieved soils, indicating a richer rhizosphere soil environment. Mycorrhizal infection rates were higher in trinexapac-ethyl (TE) treated plants. High levels of hyphal colonization and relatively low arbuscule and vesicle occurrence were observed. Principal components analysis of whole-soil fatty acid methyl ester (FAME) profiles indicated that warm-season microbial populations in whole and sieved soils had similar constituents, but the populations differed in the cool season. FAME profiles did not indicate that subsurface aeration and TE application affected soil microbial community structure. This is the first reported study investigating the influences of subsurface aeration and TE application on soil microorganisms in a turfgrass putting green soil.

  1. In Situ Analysis of a Silver Nanoparticle-Precipitating Shewanella Biofilm by Surface Enhanced Confocal Raman Microscopy

    PubMed Central

    Schkolnik, Gal; Schmidt, Matthias; Mazza, Marco G.; Harnisch, Falk; Musat, Niculina

    2015-01-01

    Shewanella oneidensis MR-1 is an electroactive bacterium, capable of reducing extracellular insoluble electron acceptors, making it important for both nutrient cycling in nature and microbial electrochemical technologies, such as microbial fuel cells and microbial electrosynthesis. When allowed to anaerobically colonize an Ag/AgCl solid interface, S. oneidensis has precipitated silver nanoparticles (AgNp), thus providing the means for a surface enhanced confocal Raman microscopy (SECRaM) investigation of its biofilm. The result is the in-situ chemical mapping of the biofilm as it developed over time, where the distribution of cytochromes, reduced and oxidized flavins, polysaccharides and phosphate in the undisturbed biofilm is monitored. Utilizing AgNp bio-produced by the bacteria colonizing the Ag/AgCl interface, we could perform SECRaM while avoiding the use of a patterned or roughened support or the introduction of noble metal salts and reducing agents. This new method will allow a spatially and temporally resolved chemical investigation not only of Shewanella biofilms at an insoluble electron acceptor, but also of other noble metal nanoparticle-precipitating bacteria in laboratory cultures or in complex microbial communities in their natural habitats. PMID:26709923

  2. Interactions among plants, bacteria, and fungi reduce extracellular enzyme activities under long-term N fertilization.

    PubMed

    Carrara, Joseph E; Walter, Christopher A; Hawkins, Jennifer S; Peterjohn, William T; Averill, Colin; Brzostek, Edward R

    2018-06-01

    Atmospheric nitrogen (N) deposition has enhanced soil carbon (C) stocks in temperate forests. Most research has posited that these soil C gains are driven primarily by shifts in fungal community composition with elevated N leading to declines in lignin degrading Basidiomycetes. Recent research, however, suggests that plants and soil microbes are dynamically intertwined, whereby plants send C subsidies to rhizosphere microbes to enhance enzyme production and the mobilization of N. Thus, under elevated N, trees may reduce belowground C allocation leading to cascading impacts on the ability of microbes to degrade soil organic matter through a shift in microbial species and/or a change in plant-microbe interactions. The objective of this study was to determine the extent to which couplings among plant, fungal, and bacterial responses to N fertilization alter the activity of enzymes that are the primary agents of soil decomposition. We measured fungal and bacterial community composition, root-microbial interactions, and extracellular enzyme activity in the rhizosphere, bulk, and organic horizon of soils sampled from a long-term (>25 years), whole-watershed, N fertilization experiment at the Fernow Experimental Forest in West Virginia, USA. We observed significant declines in plant C investment to fine root biomass (24.7%), root morphology, and arbuscular mycorrhizal (AM) colonization (55.9%). Moreover, we found that declines in extracellular enzyme activity were significantly correlated with a shift in bacterial community composition, but not fungal community composition. This bacterial community shift was also correlated with reduced AM fungal colonization indicating that declines in plant investment belowground drive the response of bacterial community structure and function to N fertilization. Collectively, we find that enzyme activity responses to N fertilization are not solely driven by fungi, but instead reflect a whole ecosystem response, whereby declines in the strength of belowground C investment to gain N cascade through the soil environment. © 2018 John Wiley & Sons Ltd.

  3. Microbial mineral colonization across a subsurface redox transition zone

    DOE PAGES

    Converse, Brandon J.; McKinley, James P.; Resch, Charles T.; ...

    2015-08-28

    Here our study employed 16S rRNA gene amplicon pyrosequencing to examine the hypothesis that chemolithotrophic Fe(II)-oxidizing bacteria (FeOB) would preferentially colonize the Fe(II)-bearing mineral biotite compared to quartz sand when the minerals were incubated in situ within a subsurface redox transition zone (RTZ) at the Hanford 300 Area site in Richland, WA, USA. The work was motivated by the recently documented presence of neutral-pH chemolithotrophic FeOB capable of oxidizing structural Fe(II) in primary silicate and secondary phyllosilicate minerals in 300 Area sediments and groundwater (Benzine et al., 2013). Sterilized portions of sand+biotite or sand alone were incubated in situ formore » 5 months within a multilevel sampling (MLS) apparatus that spanned a ca. 2-m interval across the RTZ in two separate groundwater wells. Parallel MLS measurements of aqueous geochemical species were performed prior to deployment of the minerals. Contrary to expectations, the 16S rRNA gene libraries showed no significant difference in microbial communities that colonized the sand+biotite vs. sand-only deployments. Both mineral-associated and groundwater communities were dominated by heterotrophic taxa, with organisms from the Pseudomonadaceae accounting for up to 70% of all reads from the colonized minerals. These results are consistent with previous results indicating the capacity for heterotrophic metabolism (including anaerobic metabolism below the RTZ) as well as the predominance of heterotrophic taxa within 300 Area sediments and groundwater. Although heterotrophic organisms clearly dominated the colonized minerals, several putative lithotrophic (NH 4 +, H 2, Fe(II), and HS - oxidizing) taxa were detected in significant abundance above and within the RTZ. Such organisms may play a role in the coupling of anaerobic microbial metabolism to oxidative pathways with attendant impacts on elemental cycling and redox-sensitive contaminant behavior in the vicinity of the RTZ.« less

  4. Comparative Analysis of Bacterial Community Composition and Structure in Clinically Symptomatic and Asymptomatic Central Venous Catheters

    PubMed Central

    Stressmann, Franziska A.; Couve-Deacon, Elodie; Chainier, Delphine; Chauhan, Ashwini; Wessel, Aimee; Durand-Fontanier, Sylvaine; Escande, Marie-Christine; Kriegel, Irène; Francois, Bruno; Ploy, Marie-Cécile

    2017-01-01

    ABSTRACT Totally implanted venous access ports (TIVAPs) are commonly used catheters for the management of acute or chronic pathologies. Although these devices improve health care, repeated use of this type of device for venous access over long periods of time is also associated with risk of colonization and infection by pathogenic bacteria, often originating from skin. However, although the skin microbiota is composed of both pathogenic and nonpathogenic bacteria, the extent and the consequences of TIVAP colonization by nonpathogenic bacteria have rarely been studied. Here, we used culture-dependent and 16S rRNA gene-based culture-independent approaches to identify differences in bacterial colonization of TIVAPs obtained from two French hospitals. To explore the relationships between nonpathogenic organisms colonizing TIVAPs and the potential risk of infection, we analyzed the bacterial community parameters between TIVAPs suspected (symptomatic) or not (asymptomatic) of infection. Although we did not find a particular species assemblage or community marker to distinguish infection risk on an individual sample level, we identified differences in bacterial community composition, diversity, and structure between clinically symptomatic and asymptomatic TIVAPs that could be explored further. This study therefore provides a new view of bacterial communities and colonization patterns in intravascular TIVAPs and suggests that microbial ecology approaches could improve our understanding of device-associated infections and could be a prognostic tool to monitor the evolution of bacterial communities in implants and their potential susceptibility to infections. IMPORTANCE Totally implanted venous access ports (TIVAPs) are commonly used implants for the management of acute or chronic pathologies. Although their use improves the patient’s health care and quality of life, they are associated with a risk of infection and subsequent clinical complications, often leading to implant removal. While all TIVAPs appear to be colonized, only a fraction become infected, and the relationship between nonpathogenic organisms colonizing TIVAPs and the potential risk of infection is unknown. We explored bacteria present on TIVAPs implanted in patients with or without signs of TIVAP infection and identified differences in phylum composition and community structure. Our data suggest that the microbial ecology of intravascular devices could be predictive of TIVAP infection status and that ultimately a microbial ecological signature could be identified as a tool to predict TIVAP infection susceptibility and improve clinical management. PMID:28959736

  5. An In Vitro Evaluation of Antioxidant and Colonic Microbial Profile Levels following Mushroom Consumption

    PubMed Central

    Vamanu, Emanuel; Avram, Ionela; Nita, Sultana

    2013-01-01

    The biological activity of mushroom consumption is achieved by the antioxidant effect of constituent biomolecules released during digestion. In the following study, the consumption of mushroom fungi was determined to increase the number of Lactobacillus and Bifidobacterium strains within the colon. The main phenolic antioxidant compounds identified were both gentisic and homogentisic acids. Moreover, the flavonoid catechin as well as a significant amount of δ- and γ-tocopherols was determined. The amount of Lactobacillus and Bifidobacterium strains from different sections of the human colon was significantly correlated with levels of antioxidative biomolecules. The experimental data clearly demonstrate a significant impact of mushroom consumption on the fermentative function of microorganisms in the human colon, resulting in the homeostasis of normal physiological colonic functions. PMID:24027755

  6. Linking microbial community structure to function in representative simulated systems.

    PubMed

    Marcus, Ian M; Wilder, Hailey A; Quazi, Shanin J; Walker, Sharon L

    2013-04-01

    Pathogenic bacteria are generally studied as a single strain under ideal growing conditions, although these conditions are not the norm in the environments in which pathogens typically proliferate. In this investigation, a representative microbial community along with Escherichia coli O157:H7, a model pathogen, was studied in three environments in which such a pathogen could be found: a human colon, a septic tank, and groundwater. Each of these systems was built in the lab in order to retain the physical/chemical and microbial complexity of the environments while maintaining control of the feed into the models. The microbial community in the colon was found to have a high percentage of bacteriodetes and firmicutes, while the septic tank and groundwater systems were composed mostly of proteobacteria. The introduction of E. coli O157:H7 into the simulated systems elicited a shift in the structures and phenotypic cell characteristics of the microbial communities. The fate and transport of the microbial community with E. coli O157:H7 were found to be significantly different from those of E. coli O157:H7 studied as a single isolate, suggesting that the behavior of the organism in the environment was different from that previously conceived. The findings in this study clearly suggest that to gain insight into the fate of pathogens, cells should be grown and analyzed under conditions simulating those of the environment in which the pathogens are present.

  7. Linking Microbial Community Structure to Function in Representative Simulated Systems

    PubMed Central

    Marcus, Ian M.; Wilder, Hailey A.; Quazi, Shanin J.

    2013-01-01

    Pathogenic bacteria are generally studied as a single strain under ideal growing conditions, although these conditions are not the norm in the environments in which pathogens typically proliferate. In this investigation, a representative microbial community along with Escherichia coli O157:H7, a model pathogen, was studied in three environments in which such a pathogen could be found: a human colon, a septic tank, and groundwater. Each of these systems was built in the lab in order to retain the physical/chemical and microbial complexity of the environments while maintaining control of the feed into the models. The microbial community in the colon was found to have a high percentage of bacteriodetes and firmicutes, while the septic tank and groundwater systems were composed mostly of proteobacteria. The introduction of E. coli O157:H7 into the simulated systems elicited a shift in the structures and phenotypic cell characteristics of the microbial communities. The fate and transport of the microbial community with E. coli O157:H7 were found to be significantly different from those of E. coli O157:H7 studied as a single isolate, suggesting that the behavior of the organism in the environment was different from that previously conceived. The findings in this study clearly suggest that to gain insight into the fate of pathogens, cells should be grown and analyzed under conditions simulating those of the environment in which the pathogens are present. PMID:23396331

  8. Microbial diversity and impact on carbonate geochemistry across a changing geochemical gradient in a karst aquifer

    PubMed Central

    Gray, Cassie J; Engel, Annette S

    2013-01-01

    Although microbes are known to influence karst (carbonate) aquifer ecosystem-level processes, comparatively little information is available regarding the diversity of microbial activities that could influence water quality and geological modification. To assess microbial diversity in the context of aquifer geochemistry, we coupled 16S rRNA Sanger sequencing and 454 tag pyrosequencing to in situ microcosm experiments from wells that cross the transition from fresh to saline and sulfidic water in the Edwards Aquifer of central Texas, one of the largest karst aquifers in the United States. The distribution of microbial groups across the transition zone correlated with dissolved oxygen and sulfide concentration, and significant variations in community composition were explained by local carbonate geochemistry, specifically calcium concentration and alkalinity. The waters were supersaturated with respect to prevalent aquifer minerals, calcite and dolomite, but in situ microcosm experiments containing these minerals revealed significant mass loss from dissolution when colonized by microbes. Despite differences in cell density on the experimental surfaces, carbonate loss was greater from freshwater wells than saline, sulfidic wells. However, as cell density increased, which was correlated to and controlled by local geochemistry, dissolution rates decreased. Surface colonization by metabolically active cells promotes dissolution by creating local disequilibria between bulk aquifer fluids and mineral surfaces, but this also controls rates of karst aquifer modification. These results expand our understanding of microbial diversity in karst aquifers and emphasize the importance of evaluating active microbial processes that could affect carbonate weathering in the subsurface. PMID:23151637

  9. Microbial diversity and impact on carbonate geochemistry across a changing geochemical gradient in a karst aquifer.

    PubMed

    Gray, Cassie J; Engel, Annette S

    2013-02-01

    Although microbes are known to influence karst (carbonate) aquifer ecosystem-level processes, comparatively little information is available regarding the diversity of microbial activities that could influence water quality and geological modification. To assess microbial diversity in the context of aquifer geochemistry, we coupled 16S rRNA Sanger sequencing and 454 tag pyrosequencing to in situ microcosm experiments from wells that cross the transition from fresh to saline and sulfidic water in the Edwards Aquifer of central Texas, one of the largest karst aquifers in the United States. The distribution of microbial groups across the transition zone correlated with dissolved oxygen and sulfide concentration, and significant variations in community composition were explained by local carbonate geochemistry, specifically calcium concentration and alkalinity. The waters were supersaturated with respect to prevalent aquifer minerals, calcite and dolomite, but in situ microcosm experiments containing these minerals revealed significant mass loss from dissolution when colonized by microbes. Despite differences in cell density on the experimental surfaces, carbonate loss was greater from freshwater wells than saline, sulfidic wells. However, as cell density increased, which was correlated to and controlled by local geochemistry, dissolution rates decreased. Surface colonization by metabolically active cells promotes dissolution by creating local disequilibria between bulk aquifer fluids and mineral surfaces, but this also controls rates of karst aquifer modification. These results expand our understanding of microbial diversity in karst aquifers and emphasize the importance of evaluating active microbial processes that could affect carbonate weathering in the subsurface.

  10. A widespread plant-fungal-bacterial symbiosis promotes plant biodiversity, plant nutrition and seedling recruitment

    PubMed Central

    van der Heijden, Marcel GA; Bruin, Susanne de; Luckerhoff, Ludo; van Logtestijn, Richard SP; Schlaeppi, Klaus

    2016-01-01

    Highly diverse microbial assemblages colonize plant roots. It is still poorly understood whether different members of this root microbiome act synergistically by supplying different services (for example, different limiting nutrients) to plants and plant communities. In order to test this, we manipulated the presence of two widespread plant root symbionts, arbuscular mycorrhizal fungi and nitrogen-fixing rhizobia bacteria in model grassland communities established in axenic microcosms. Here, we demonstrate that both symbionts complement each other resulting in increased plant diversity, enhanced seedling recruitment and improved nutrient acquisition compared with a single symbiont situation. Legume seedlings obtained up to 15-fold higher productivity if they formed an association with both symbionts, opposed to productivity they reached with only one symbiont. Our results reveal the importance of functional diversity of symbionts and demonstrate that different members of the root microbiome can complement each other in acquiring different limiting nutrients and in driving important ecosystem functions. PMID:26172208

  11. Catabolite and Oxygen Regulation of Enterohemorrhagic Escherichia coli Virulence.

    PubMed

    Carlson-Banning, Kimberly M; Sperandio, Vanessa

    2016-11-22

    The biogeography of the gut is diverse in its longitudinal axis, as well as within specific microenvironments. Differential oxygenation and nutrient composition drive the membership of microbial communities in these habitats. Moreover, enteric pathogens can orchestrate further modifications to gain a competitive advantage toward host colonization. These pathogens are versatile and adept when exploiting the human colon. They expertly navigate complex environmental cues and interkingdom signaling to colonize and infect their hosts. Here we demonstrate how enterohemorrhagic Escherichia coli (EHEC) uses three sugar-sensing transcription factors, Cra, KdpE, and FusR, to exquisitely regulate the expression of virulence factors associated with its type III secretion system (T3SS) when exposed to various oxygen concentrations. We also explored the effect of mucin-derived nonpreferred carbon sources on EHEC growth and expression of virulence genes. Taken together, the results show that EHEC represses the expression of its T3SS when oxygen is absent, mimicking the largely anaerobic lumen, and activates its T3SS when oxygen is available through Cra. In addition, when EHEC senses mucin-derived sugars heavily present in the O-linked and N-linked glycans of the large intestine, virulence gene expression is initiated. Sugars derived from pectin, a complex plant polysaccharide digested in the large intestine, also increased virulence gene expression. Not only does EHEC sense host- and microbiota-derived interkingdom signals, it also uses oxygen availability and mucin-derived sugars liberated by the microbiota to stimulate expression of the T3SS. This precision in gene regulation allows EHEC to be an efficient pathogen with an extremely low infectious dose. Enteric pathogens have to be crafty when interpreting multiple environmental cues to successfully establish themselves within complex and diverse gut microenvironments. Differences in oxygen tension and nutrient composition determine the biogeography of the gut microbiota and provide unique niches that can be exploited by enteric pathogens. EHEC is an enteric pathogen that colonizes the colon and causes outbreaks of bloody diarrhea and hemolytic-uremic syndrome worldwide. It has a very low infectious dose, which requires it to be an extremely effective pathogen. Hence, here we show that EHEC senses multiple sugar sources and oxygen levels to optimally control the expression of its virulence repertoire. This exquisite regulatory control equips EHEC to sense different intestinal compartments to colonize the host. Copyright © 2016 Carlson-Banning and Sperandio.

  12. Barcoded pyrosequencing analysis of the microbial community in a simulator of the human gastrointestinal tract showed a colon region-specific microbiota modulation for two plant-derived polysaccharide blends.

    PubMed

    Marzorati, Massimo; Maignien, Lois; Verhelst, An; Luta, Gabriela; Sinnott, Robert; Kerckhof, Frederiek Maarten; Boon, Nico; Van de Wiele, Tom; Possemiers, Sam

    2013-02-01

    The combination of a Simulator of the Human Intestinal Microbial Ecosystem with ad hoc molecular techniques (i.e. pyrosequencing, denaturing gradient gel electrophoresis and quantitative PCR) allowed an evaluation of the extent to which two plant polysaccharide supplements could modify a complex gut microbial community. The presence of Aloe vera gel powder and algae extract in product B as compared to the standard blend (product A) improved its fermentation along the entire simulated colon. The potential extended effect of product B in the simulated distal colon, as compared to product A, was confirmed by: (i) the separate clustering of the samples before and after the treatment in the phylogenetic-based dendrogram and OTU-based PCoA plot only for product B; (ii) a higher richness estimator (+33 vs. -36 % of product A); and (iii) a higher dynamic parameter (21 vs. 13 %). These data show that the combination of well designed in vitro simulators with barcoded pyrosequencing is a powerful tool for characterizing changes occurring in the gut microbiota following a treatment. However, for the quantification of low-abundance species-of interest because of their relationship to potential positive health effects (i.e. bifidobacteria or lactobacilli)-conventional molecular ecological approaches, such as PCR-DGGE and qPCR, still remain a very useful complementary tool.

  13. Respiratory pathogen colonization of dental plaque, the lower airways, and endotracheal tube biofilms during mechanical ventilation.

    PubMed

    Sands, Kirsty M; Wilson, Melanie J; Lewis, Michael A O; Wise, Matt P; Palmer, Nicki; Hayes, Anthony J; Barnes, Rosemary A; Williams, David W

    2017-02-01

    In mechanically ventilated patients, the endotracheal tube is an essential interface between the patient and ventilator, but inadvertently, it also facilitates the development of ventilator-associated pneumonia (VAP) by subverting pulmonary host defenses. A number of investigations suggest that bacteria colonizing the oral cavity may be important in the etiology of VAP. The present study evaluated microbial changes that occurred in dental plaque and lower airways of 107 critically ill mechanically ventilated patients. Dental plaque and lower airways fluid was collected during the course of mechanical ventilation, with additional samples of dental plaque obtained during the entirety of patients' hospital stay. A "microbial shift" occurred in dental plaque, with colonization by potential VAP pathogens, namely, Staphylococcus aureus and Pseudomonas aeruginosa in 35 patients. Post-extubation analyses revealed that 70% and 55% of patients whose dental plaque included S aureus and P aeruginosa, respectively, reverted back to having a predominantly normal oral microbiota. Respiratory pathogens were also isolated from the lower airways and within the endotracheal tube biofilms. To the best of our knowledge, this is the largest study to date exploring oral microbial changes during both mechanical ventilation and after recovery from critical illness. Based on these findings, it was apparent that during mechanical ventilation, dental plaque represents a source of potential VAP pathogens. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Pre-post evaluation of effects of a titanium dioxide coating on environmental contamination of an intensive care unit: the TITANIC study.

    PubMed

    de Jong, B; Meeder, A M; Koekkoek, K W A C; Schouten, M A; Westers, P; van Zanten, A R H

    2018-07-01

    Among patients admitted to European hospitals or intensive care units (ICUs), 5.7% and 19.5% will encounter healthcare-associated infections (HAIs), respectively, and antimicrobial resistance is emerging. As hospital surfaces are contaminated with potentially pathogenic bacteria, environmental cleanliness is an essential aspect to reduce HAIs. To address the efficacy of a titanium dioxide coating in reducing the microbial colonization of environmental surfaces in an ICU. A prospective, controlled, single-centre pilot study was conducted to examine the effect of a titanium dioxide coating on the microbial colonization of surfaces in an ICU. During the pre- and post-intervention periods, surfaces were cultured with agar contact plates (BBL RODAC plates). Factors that were potentially influencing the bacterial colonization of surfaces were recorded. A repeated measurements analysis within a hierarchic multi-level framework was used to analyse the effect of the intervention, controlling for the explanatory variables. The mean ratio for the total number of colony-forming units (cfus) in a room between the pre- and post-intervention periods was 0.86 (standard deviation 0.57). The optimal model included the following explanatory variables: intervention (P=0.065), week (P=0.002), culture surfaces (P<0.001), ICU room (P=0.039), and interaction between intervention and week (P=0.002) and between week and culture surfaces (P=0.031). The effect of the intervention on the number of cfus from all culture plates in Week 4 between the pre- and post-intervention periods was -0.47 (95% confidence interval -0.24 to - 0.70). This study found that a titanium dioxide coating had no effect on the microbial colonization of surfaces in an ICU. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  15. Adaptation strategies of endolithic chlorophototrophs to survive the hyperarid and extreme solar radiation environment of the Atacama Desert

    PubMed Central

    Wierzchos, Jacek; DiRuggiero, Jocelyne; Vítek, Petr; Artieda, Octavio; Souza-Egipsy, Virginia; Škaloud, Pavel; Tisza, Michel; Davila, Alfonso F.; Vílchez, Carlos; Garbayo, Inés; Ascaso, Carmen

    2015-01-01

    The Atacama Desert, northern Chile, is one of the driest deserts on Earth and, as such, a natural laboratory to explore the limits of life and the strategies evolved by microorganisms to adapt to extreme environments. Here we report the exceptional adaptation strategies of chlorophototrophic and eukaryotic algae, and chlorophototrophic and prokaryotic cyanobacteria to the hyperarid and extremely high solar radiation conditions occurring in this desert. Our approach combined several microscopy techniques, spectroscopic analytical methods, and molecular analyses. We found that the major adaptation strategy was to avoid the extreme environmental conditions by colonizing cryptoendolithic, as well as, hypoendolithic habitats within gypsum deposits. The cryptoendolithic colonization occurred a few millimeters beneath the gypsum surface and showed a succession of organized horizons of algae and cyanobacteria, which has never been reported for endolithic microbial communities. The presence of cyanobacteria beneath the algal layer, in close contact with sepiolite inclusions, and their hypoendolithic colonization suggest that occasional liquid water might persist within these sub-microhabitats. We also identified the presence of abundant carotenoids in the upper cryptoendolithic algal habitat and scytonemin in the cyanobacteria hypoendolithic habitat. This study illustrates that successful lithobiontic microbial colonization at the limit for microbial life is the result of a combination of adaptive strategies to avoid excess solar irradiance and extreme evapotranspiration rates, taking advantage of the complex structural and mineralogical characteristics of gypsum deposits—conceptually called “rock's habitable architecture.” Additionally, self-protection by synthesis and accumulation of secondary metabolites likely produces a shielding effect that prevents photoinhibition and lethal photooxidative damage to the chlorophototrophs, representing another level of adaptation. PMID:26441871

  16. The microbial ecology of anaerobic cellulose degradation in municipal waste landfill sites: evidence of a role for fibrobacters.

    PubMed

    McDonald, James E; Houghton, James N I; Rooks, David J; Allison, Heather E; McCarthy, Alan J

    2012-04-01

    Cellulose is reputedly the most abundant organic polymer in the biosphere, yet despite the fundamental role of cellulolytic microorganisms in global carbon cycling and as potential sources of novel enzymes for biotechnology, their identity and ecology is not well established. Cellulose is a major component of landfill waste and its degradation is therefore a key feature of the anaerobic microbial decomposition process. Here, we targeted a number of taxa containing known cellulolytic anaerobes (members of the bacterial genus Fibrobacter, lineages of Clostridium clusters I, III, IV and XIV, and anaerobic fungi of the Neocallimastigales) in landfill leachate and colonized cellulose 'baits' via PCR and quantitative PCR (qPCR). Fibrobacter spp. and Clostridium clusters III, IV and XIV were detected in almost all leachate samples and cluster III and XIV clostridia were the most abundant (1-6% and 1-17% of total bacterial 16S rRNA gene copies respectively). Two landfill leachate microcosms were constructed to specifically assess those microbial communities that colonize and degrade cellulose substrates in situ. Scanning electron microscopy (SEM) of colonized cotton revealed extensive cellulose degradation in one microcosm, and Fibrobacter spp. and Clostridium cluster III represented 29% and 17%, respectively, of total bacterial 16S rRNA gene copies in the biofilm. Visible cellulose degradation was not observed in the second microcosm, and this correlated with negligible relative abundances of Clostridium cluster III and Fibrobacter spp. (≤ 0.1%), providing the first evidence that the novel fibrobacters recently detected in landfill sites and other non-gut environments colonize and degrade cellulose substrates in situ. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  17. Adaptation strategies of endolithic chlorophototrophs to survive the hyperarid and extreme solar radiation environment of the Atacama Desert.

    PubMed

    Wierzchos, Jacek; DiRuggiero, Jocelyne; Vítek, Petr; Artieda, Octavio; Souza-Egipsy, Virginia; Škaloud, Pavel; Tisza, Michel; Davila, Alfonso F; Vílchez, Carlos; Garbayo, Inés; Ascaso, Carmen

    2015-01-01

    The Atacama Desert, northern Chile, is one of the driest deserts on Earth and, as such, a natural laboratory to explore the limits of life and the strategies evolved by microorganisms to adapt to extreme environments. Here we report the exceptional adaptation strategies of chlorophototrophic and eukaryotic algae, and chlorophototrophic and prokaryotic cyanobacteria to the hyperarid and extremely high solar radiation conditions occurring in this desert. Our approach combined several microscopy techniques, spectroscopic analytical methods, and molecular analyses. We found that the major adaptation strategy was to avoid the extreme environmental conditions by colonizing cryptoendolithic, as well as, hypoendolithic habitats within gypsum deposits. The cryptoendolithic colonization occurred a few millimeters beneath the gypsum surface and showed a succession of organized horizons of algae and cyanobacteria, which has never been reported for endolithic microbial communities. The presence of cyanobacteria beneath the algal layer, in close contact with sepiolite inclusions, and their hypoendolithic colonization suggest that occasional liquid water might persist within these sub-microhabitats. We also identified the presence of abundant carotenoids in the upper cryptoendolithic algal habitat and scytonemin in the cyanobacteria hypoendolithic habitat. This study illustrates that successful lithobiontic microbial colonization at the limit for microbial life is the result of a combination of adaptive strategies to avoid excess solar irradiance and extreme evapotranspiration rates, taking advantage of the complex structural and mineralogical characteristics of gypsum deposits-conceptually called "rock's habitable architecture." Additionally, self-protection by synthesis and accumulation of secondary metabolites likely produces a shielding effect that prevents photoinhibition and lethal photooxidative damage to the chlorophototrophs, representing another level of adaptation.

  18. Absorption and Metabolism of Phenolics from Digests of Polyphenol-Rich Potato Extracts Using the Caco-2/HepG2 Co-Culture System

    PubMed Central

    Sadeghi Ekbatan, Shima; Iskandar, Michele M.; Sleno, Lekha; Sabally, Kebba; Khairallah, Joelle; Prakash, Satya

    2018-01-01

    The bioactivity of dietary polyphenols depends upon gastrointestinal and hepatic metabolism of secondary microbial phenolic metabolites generated via colonic microbiota-mediated biotransformation. A polyphenol-rich potato extract (PRPE) containing chlorogenic, caffeic, and ferulic acids and rutin was digested in a dynamic multi-reactor gastrointestinal simulator of the human intestinal microbial ecosystem (GI model). Simulated digestion showed extensive degradation of the parent compounds and the generation of microbial phenolic metabolites. To characterize the transport and metabolism of microbial phenolic metabolites following digestion, a co-culture of intestinal Caco-2 and hepatic HepG2 cells was exposed to the PRPE-derived digests obtained from the colonic vessels. Following a 2 h incubation of the digesta with the Caco-2/HepG2 co-cultures, approximately 10–15% of ferulic, dihydrocaffeic, and dihydroferulic acids and 3–5% of 3-hydroxybenzoic, 3-hydroxyphenylpropionic, and coumaric acids were observed in the basolateral side, whereas 3-hydroxyphenylacetic acid, phenylpropanoic acid, and cinnamic acid were not detected. Subsequent HepG2 cellular metabolism led to major increases in ferulic, dihydrocaffeic, 3-hydroxyphenylpropionic, and coumaric acids ranging from 160–370%. These findings highlight the importance of hepatic metabolism towards the generation of secondary metabolites of polyphenols despite low selective Caco-2 cellular uptake of microbial phenolic metabolites. PMID:29329242

  19. Microbial Response to High Temperature Hydrothermal Forcing: AISICS Vent (Lucky Strike, 37°N, MAR) and Prokaryote Community as Example.

    NASA Astrophysics Data System (ADS)

    Henri, P. A.; Rommevaux, C.; Chavagnac, V.; Degboe, J.; Destrigneville, C.; Boulart, C.; Lesongeur, F.; Castillo, A.; Goodfroy, A.

    2015-12-01

    To study the hydrothermal forcing on microbial colonization, and impacts on the oceanic crust alteration, an integrated study was led at the Tour Eiffel hydrothermal site (Lucky Strike hydrothermal field, 37°N, MAR). We benefited from an annual survey between 2009 and 2011 of temperatures, along with sampling of focused and diffused fluids for chemical analysis, and chimney sampling and samples from microbial colonization experiments analyzed for prokaryotic composition and rock alteration study. The chemical composition of the fluids show an important increase in the CO2 concentration at the Eiffel Tower site between 2009 and 2010 followed by a decrease between 2010 and 2011. In 2011, several fluid samples show an important depletion in Si, suggesting that some Si was removed by interaction with the stockwork before emission. Our observations, regarding the previous studies of chemical fluid affected by a magmatic event lead us to suppose that a magmatic/tectonic event occurred under the Lucky Strike hydrothermal field between 2009 and 2010. The results of the prokaryotic communities' analysis show that a shift occurred in the dominant microbial metabolisms present in the colonizer retrieved in 2010 and the one retrieved in 2011. Archaeal communities shifted from chemolithoautotropic sulfite/thiosulfate reducers-dominated in 2010 to ammonia oxidizers-dominated in 2011. The bacterial communities also undergo a shift, from a community with diversified metabolisms in 2010 to a community strongly dominated by chemolithoautotrophic sulfide or hydrogen oxidation in 2011. Moreover, in terms of ecological preferendum, the Archaeal communities shifted from thermophilic-dominated to mesophilic-dominated. The present study underline the influence of modifications in gases compositions of hydrothermal fluids subsequently to a degassing of the magma chamber and their impact on the microbial communities living in the vicinity of hydrothermal vents at the Eiffel Tower site.

  20. The gut microbiota and its role in the development of allergic disease: a wider perspective.

    PubMed

    West, C E; Jenmalm, M C; Prescott, S L

    2015-01-01

    The gut microbiota are critical in the homoeostasis of multiple interconnected host metabolic and immune networks. If early microbial colonization is delayed, the gut-associated lymphoid tissues (GALT) fail to develop, leading to persistent immune dysregulation in mice. Microbial colonization has also been proposed as a major driver for the normal age-related maturation of both Th1 and T regulatory (Treg) pathways that appear important in suppressing early propensity for Th2 allergic responses. There is emerging evidence that resident symbionts induce tolerogenic gut-associated Treg cells and dendritic cells that ensure the preferential growth of symbionts; keeping pathogenic strains in check and constraining proinflammatory Th1, Th2, and Th17 clones. Some effects of symbionts are mediated by short-chain fatty acids, which play a critical role in mucosal integrity and local and systemic metabolic function and stimulate the regulatory immune responses. The homoeostatic IL-10/TGF-β dominated tolerogenic response within the GALT also signals the production of secretory IgA, which have a regulating role in mucosal integrity. Contrary to the 'sterile womb' paradigm, recent studies suggest that maternal microbial transfer to the offspring begins during pregnancy, providing a pioneer microbiome. It is likely that appropriate microbial stimulation both pre- and postnatally is required for optimal Th1 and Treg development to avoid the pathophysiological processes leading to allergy. Disturbed gut colonization patterns have been associated with allergic disease, but whether microbial variation is the cause or effect of these diseases is still under investigation. We are far from understanding what constitutes a 'healthy gut microbiome' that promotes tolerance. This remains a major limitation and might explain some of the inconsistency in human intervention studies with prebiotics and probiotics. Multidisciplinary integrative approaches with researchers working in networks, using harmonized outcomes and methodologies, are needed to advance our understanding in this field. © 2014 John Wiley & Sons Ltd.

  1. Linking Microbial Dynamics and Physicochemical Processes in High-temperature Acidic Fe(III)- Mineralizing Systems

    NASA Astrophysics Data System (ADS)

    Inskeep, W.

    2014-12-01

    Microbial activity is responsible for the mineralization of Fe(III)-oxides in high-temperature chemotrophic communities that flourish within oxygenated zones of low pH (2.5 - 4) geothermal outflow channels (Yellowstone National Park, WY). High-temperature Fe(II)-oxidizing communities contain several lineages of Archaea, and are excellent model systems for studying microbial interactions and spatiotemporal dynamics across geochemical gradients. We hypothesize that acidic Fe(III)-oxide mats form as a result of constant interaction among primary colonizers including Hydrogenobaculum spp. (Aquificales) and Metallosphaera spp. (Sulfolobales), and subsequent colonization by archaeal heterotrophs, which vary in abundance as a function of oxygen, pH and temperature. We are integrating a complementary suite of geochemical, stable isotope, genomic, proteomic and modeling analyses to study the role of microorganisms in Fe(III)-oxide mat development, and to elucidate the primary microbial interactions that are coupled with key abiotic events. Curated de novo assemblies of major phylotypes are being used to analyze additional -omics datasets from these microbial mats. Hydrogenobaculum spp. (Aquificales) are the dominant bacterial population(s) present, and predominate during early mat development (< 30 d). Other Sulfolobales populations known to oxidize Fe(II) and fix carbon dioxide (e.g., Metallosphaera spp.) represent a secondary stage of mat development (e.g., 14 - 30 d). Hydrogenobaculum filaments appear to promote the nucleation and subsequent mineralization of Fe(III)-oxides, which likely affect the growth and turnover rates of these organisms. Other heterotrophs colonize Fe(III)-oxide mats during succession (> 30 d), including novel lineages of Archaea and representatives within the Crenarchaeota, Euryarchaeota, Thaumarchaeota and Nanoarchaeota. In situ oxygen consumption rates show that steep gradients occur within the top 1 mm of mat surface, and which correlate with changes in the abundance of different organisms that occupy these microenvironments. The relative consumption of oxygen by different members of Fe(II)-oxidizing mat communities has implications for autotroph-heterotroph associations and the dynamic micromorphology of active Fe(III)-oxide terraces.

  2. Effects of the dietary protein level on the microbial composition and metabolomic profile in the hindgut of the pig.

    PubMed

    Zhou, Liping; Fang, Lingdong; Sun, Yue; Su, Yong; Zhu, Weiyun

    2016-04-01

    The aim of this study was to investigate the effects of a long-term low protein diet on the microbial composition and metabolomic profile in the hindgut of the pig. Thirty-six Duroc × Landrace × Large White growing barrows (70 days of age, 23.57 ± 1.77 kg) were randomly allocated to normal protein diet (NP) and low protein diet (LP) groups using a randomized block design. At the age of 170 days, the digesta in the hindguts of the pigs were collected for microbial and metabolomic analysis. The results showed that there were no significant differences in the average daily gain, average daily feed intake, or feed:gain ratio between the NP and LP groups. The concentrations of isobutyrate, isovalerate, and branched-chain fatty acids (BCFAs)/short-chain fatty acids (SCFAs) in the cecum decreased with the reduction of dietary protein. Pyrosequencing of the V1-V3 region of the 16S rRNA genes showed that LP diet significantly decreased the relative abundance of Lactobacillus in the cecum, and Streptococcus in the colon; however, the relative abundance of Prevotella and Coprococcus in the LP group was significantly higher than in the NP group in the cecum, and Sarcina, Peptostreptococcaceae incertae sedis, Mogibacterium, Subdoligranulum, and Coprococcus was higher in the colon. The gas chromatography-mass spectrometry (GC-MS) analysis showed that the dietary protein level mainly affected phenylalanine metabolism; glycine, serine, and threonine metabolism; the citrate cycle; pyruvate metabolism; and the alanine, aspartate, and glutamate metabolism. Moreover, the correlation analysis of the combined datasets revealed some potential relationships between the colonic metabolites and certain microbial species. These results suggest that a low protein diet may modulate the microbial composition and metabolites of the hindgut, without affecting the growth performance of pigs; however, potential roles of this modulation to the health of pigs remains unknown. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Mucosal innate response stimulation induced by lipopolysaccharide protects against Bordetella pertussis colonization.

    PubMed

    Errea, A; Moreno, G; Sisti, F; Fernández, J; Rumbo, M; Hozbor, Daniela Flavia

    2010-05-01

    Non-specific enhancement of the airways innate response has been shown to impair lung infections in several models of infection such diverse as influenza A, Streptococcus pneumoniae, and Aspergillus niger. Our aim was to evaluate whether a similar event could operate in the context of Bordetella pertussis respiratory infection, not only to enrich the knowledge of host-bacteria interaction but also to establish immunological basis for the development of new control strategies against the pathogen. Using a B. pertussis intranasal infection model and coadministration of different TLR agonists at the moment of the infection, we observed that the enhancement of innate response activation, in a TLR4-dependent way, could efficiently impair B. pertussis colonization (P < 0.001). While LPS from different microbial sources were equally effective in promoting this effect, flagellin and poly I:C coadministration, in spite of inducing expression of innate response markers TNFalpha, CXCL2, CXCL10 and IL6, was not effective to prevent B. pertussis colonization. Our results indicate that during the early stage of infection, specific anti-microbial mechanisms triggered by TLR4 stimulation are able to impair B. pertussis colonization. These findings could complement our current view of the role of TLR4-dependent processes that contribute to anti-pertussis immunity.

  4. Using Nitrogen Limiting Growth Conditions to Remove Atrazine from Groundwater: Laboratory Studies

    USDA-ARS?s Scientific Manuscript database

    In the past microbial redox reactions have been the driving mechanism behind in situ bioremediations that use a carbon substrate. This is because subsurface microbial activity is generally restricted by electron (e-) donor availability and microbial activity, growth and respiration, can be stimulat...

  5. Microbial ecology of the skin in the era of metagenomics and molecular microbiology.

    PubMed

    Hannigan, Geoffrey D; Grice, Elizabeth A

    2013-12-01

    The skin is the primary physical barrier between the body and the external environment and is also a substrate for the colonization of numerous microbes. Previously, dermatological microbiology research was dominated by culture-based techniques, but significant advances in genomic technologies have enabled the development of less-biased, culture-independent approaches to characterize skin microbial communities. These molecular microbiology approaches illustrate the great diversity of microbiota colonizing the skin and highlight unique features such as site specificity, temporal dynamics, and interpersonal variation. Disruptions in skin commensal microbiota are associated with the progression of many dermatological diseases. A greater understanding of how skin microbes interact with each other and with their host, and how we can therapeutically manipulate those interactions, will provide powerful tools for treating and preventing dermatological disease.

  6. Microbial trace-fossil formation, biogenous, and abiotic weathering in the Antarctic cold desert

    NASA Technical Reports Server (NTRS)

    Friedmann, E. Imre; Weed, Rebecca

    1987-01-01

    In the Antarctic cold desert (Ross Desert), the survival of the cryptoendolithic microorganisms that colonize the near-surface layer of porous sandstone rocks depends on a precarious equilibrium of biological and geological factors. An unfavorable shift of this equilibrium results in death, and this may be followed by formation of trace fossils that preserve the characteristic iron-leaching pattern caused by microbial activity. Similar microbial trace fossils may exist in the geological record. If life ever arose on early Mars, similar processes may have occurred there and left recognizable traces.

  7. Endolithic diversity of microorganisms on sandstone and implications for biogenic weathering

    NASA Astrophysics Data System (ADS)

    Hallmann, C.; Friedenberger, H.; Hoppert, M.

    2012-04-01

    Molecular methods allow a comprehensive view on uncultured microbial communities in dimension stone. In the presented study, we focus on depth profiles of microbial colonization in sandstones with different porosity and overall durability. All sandstones were taken from quarries where they were exposed to the environment for several years. Approximately 0.1 g of material from the stone surface, from 5 mm and from 30 mm depths was taken under sterile conditions and subjected to analysis of microbial DNA and culturing experiments. In particular, DNA was extracted from the material, the phylogenetic marker gene of eukaryotic organisms (18S rDNA) was amplified and used for generation of clone libraries, which were then analysed by sequencing. "Roter Wesersandstein" was just colonized at the material surface, predominantly with algal and fungal microorganisms. No environmental DNA could be isolated from depth profiles. From "Nebraer Sandstein" with high pore size (shown by thin sections), environmental DNA from depths down to 3 cm could be retrieved. Though the uppermost layer is dominated by microalgae (as concluded from the retrieved clones), the percentage of algal clones from 5 mm and 30 mm depths drop to 10 % of all clones. There, apart from filamentous fungi, moss clones clearly dominate the microbial community. At a depth of 30 mm, 70-80 % of the retrieved clones match to various mosses (Bryophyta). Though mosses do not form layers on the stone surfaces, moss rhizoids or protonemata must be abundant as endoliths inside the stone material. It is reasonable to assume that the rhizoids may contribute to an increase in pore size by active penetration of the clastic material, even though colonization of the surface by mosses is not obvious. This feature may imply stronger impact of stone decay induced by endolithic growth of bryophytes than hitherto observed.

  8. Colonization strategy of the endophytic plant growth-promoting strains of Pseudomonas fluorescens and Klebsiella oxytoca on the seeds, seedlings and roots of the epiphytic orchid, Dendrobium nobile Lindl.

    PubMed

    Pavlova, A S; Leontieva, M R; Smirnova, T A; Kolomeitseva, G L; Netrusov, A I; Tsavkelova, E A

    2017-04-29

    Orchids form strong mycorrhizal associations, but their interactions with bacteria are poorly understood. We aimed to investigate the distribution of plant growth promoting rhizobacteria (PGPR) at different stages of orchid development and to study if there is any selective specificity in choosing PGPR partners. Colonization patterns of gfp-tagged Pseudomonas fluorescens and Klebsiella oxytoca were studied on roots, seeds, and seedlings of Dendrobium nobile. Endophytic rhizobacteria rapidly colonized velamen and core parenchyma entering through exodermis and the passage cells, whereas at the early stages, they stayed restricted to the surface and the outer layers of the protocorms and rhizoids. The highest amounts of auxin (indole-3-acetic acid) were produced by K. oxytoca and P. fluorescens in the nitrogen-limiting and NO 3 -containing media respectively. Bacterization of D. nobile seeds resulted in promotion of their in vitro germination. The plant showed no selective specificity to the tested strains. Klebsiella oxytoca demonstrated more intense colonization activity and more efficient growth promoting impact under tryptophan supplementation, while P. fluorescens revealed its growth-promoting capacity without tryptophan. Both strategies are regarded as complementary, improving adaptive potentials of the orchid when different microbial populations colonize the plant. This study enlarges our knowledge on orchid-microbial interactions, and provides new features on application of the nonorchid PGPR in orchid seed germination and conservation. © 2017 The Society for Applied Microbiology.

  9. Habitability and Biosignature Preservation in Impact-Derived Materials

    NASA Astrophysics Data System (ADS)

    Sapers, H. M.; Pontefract, A.; Osinski, G. R.; Cannon, K. M.; Mustard, J. F.

    2016-05-01

    Meteorite impacts create environments conducive to microbial colonization. Biosignatures in impact-derived materials have been characterized on Earth. Impact environments comprise candidates for biosignature detection and preservation on Mars.

  10. The Infant Microbiome: Implications for Infant Health and Neurocognitive Development

    PubMed Central

    Yang, Irene; Corwin, Elizabeth J.; Brennan, Patricia A.; Jordan, Sheila; Murphy, Jordan R.; Dunlop, Anne

    2015-01-01

    Background Beginning at birth, the microbes in the gut perform essential duties related to the digestion and metabolism of food, the development and activation of the immune system, and the production of neurotransmitters that affect behavior and cognitive function. Objectives The objectives of this review are to: (a) provide a brief overview of the microbiome and the “microbiome-gut-brain axis”; (b) discuss factors known to affect the composition of the infant microbiome: mode of delivery, antibiotic exposure, and infant feeding patterns; and (c) present research priorities for nursing science, and clinical implications for infant health and neurocognitive development. Discussion The gut microbiome influences immunological, endocrine, and neural pathways and plays an important role in infant development. Several factors influence colonization of the infant gut microbiome. Different microbial colonization patterns are associated with vaginal versus surgical birth, exposure to antibiotics, and infant feeding patterns. Because of extensive physiological influence, infant microbial colonization patterns have the potential to impact physical and neurocognitive development and life course disease risk. Understanding these influences will inform newborn care and parental education. PMID:26657483

  11. Response of a salt marsh microbial community to metal contamination

    NASA Astrophysics Data System (ADS)

    Mucha, Ana P.; Teixeira, Catarina; Reis, Izabela; Magalhães, Catarina; Bordalo, Adriano A.; Almeida, C. Marisa R.

    2013-09-01

    Salt marshes are important sinks for contaminants, namely metals that tend to accumulate around plant roots and could eventually be taken up in a process known as phytoremediation. On the other hand, microbial communities display important roles in the salt marsh ecosystems, such as recycling of nutrients and/or degradation of organic contaminants. Thus, plants can benefit from the microbial activity in the phytoremediation process. Nevertheless, above certain levels, metals are known to be toxic to microorganisms, fact that can eventually compromise their ecological functions. In this vein, the aim of present study was to investigate, in the laboratory, the effect of selected metals (Cd, Cu and Pb) on the microbial communities associated to the roots of two salt marsh plants. Sediments colonized by Juncus maritimus and Phragmites australis were collected in the River Lima estuary (NW Portugal), and spiked with each of the metals at three different Effects Range-Median (ERM) concentrations (1, 10×, 50×), being ERM the sediment quality guideline that indicates the concentration above which adverse biological effects may frequently occur. Spiked sediments were incubated with a nutritive saline solution, being left in the dark under constant agitation for 7 days. The results showed that, despite the initial sediments colonized by J. maritimus and P. australis displayed significant (p < 0.05) differences in terms of microbial community structure (evaluated by ARISA), they presented similar microbial abundances (estimated by DAPI). Also, in terms of microbial abundance, both sediments showed a similar response to metal addition, with a decrease in number of cells only observed for the higher addition of Cu. Nevertheless, both Cu and Pb, at intermediate metals levels promote a shift in the microbial community structure, with possibly effect on the ecological function of these microbial communities in salt marshes. These changes may affect plants phytoremediation potential and further work on this subject is in need.

  12. Mineralogic control on abundance and diversity of surface-adherent microbial communities

    USGS Publications Warehouse

    Mauck, Brena S.; Roberts, Jennifer A.

    2007-01-01

    In this study, we investigated the role of mineral-bound P and Fe in defining microbial abundance and diversity in a carbon-rich groundwater. Field colonization experiments of initially sterile mineral surfaces were combined with community structure characterization of the attached microbial population. Silicate minerals containing varying concentrations of P (∼1000 ppm P) and Fe (∼4 wt % Fe 2 O3), goethite (FeOOH), and apatite [Ca5(PO4)3(OH)] were incubated for 14 months in three biogeochemically distinct zones within a petroleum-contaminated aquifer. Phospholipid fatty acid analysis of incubated mineral surfaces and groundwater was used as a measure of microbial community structure and biomass. Microbial biomass on minerals exhibited distinct trends as a function of mineralogy depending on the environment of incubation. In the carbon-rich, aerobic groundwater attached biomass did not correlate to the P- or Fe- content of the mineral. In the methanogenic groundwater, however, biomass was most abundant on P-containing minerals. Similarly, in the Fe-reducing groundwater a correlation between Fe-content and biomass was observed. The community structure of the mineral-adherent microbial population was compared to the native groundwater community. These two populations were significantly different regardless of mineralogy, suggesting differentiation of the planktonic community through attachment, growth, and death of colonizing cells. Biomarkers specific for dissimilatory Fe-reducing bacteria native to the aquifer were identified only on Fe-containing minerals in the Fe-reducing groundwater. These results demonstrate that the trace nutrient content of minerals affects both the abundance and diversity of surface-adherent microbial communities. This behavior may be a means to access limiting nutrients from the mineral, creating a niche for a particular microbial population. These results suggest that heterogeneity of microbial populations and their associated activities in subsurface environments extend to the microscale and cautions over-interpretation of highly sample-dependent measurements in the context of interpreting field data.

  13. Mineral stimulation of subsurface microorganisms: release of limiting nutrients from silicates

    USGS Publications Warehouse

    Roger, Jennifer Roberts; Bennett, Philip C.

    2004-01-01

    Microorganisms play an important role in the weathering of silicate minerals in many subsurface environments, but an unanswered question is whether the mineral plays an important role in the microbial ecology. Silicate minerals often contain nutrients necessary for microbial growth, but whether the microbial community benefits from their release during weathering is unclear. In this study, we used field and laboratory approaches to investigate microbial interactions with minerals and glasses containing beneficial nutrients and metals. Field experiments from a petroleum-contaminated aquifer, where silicate weathering is substantially accelerated in the contaminated zone, revealed that phosphorus (P) and iron (Fe)-bearing silicate glasses were preferentially colonized and weathered, while glasses without these elements were typically barren of colonizing microorganisms, corroborating previous studies using feldspars. In laboratory studies, we investigated microbial weathering of silicates and the release of nutrients using a model ligand-promoted pathway. A metal-chelating organic ligand 3,4 dihydroxybenzoic acid (3,4 DHBA) was used as a source of chelated ferric iron, and a carbon source, to investigate mineral weathering rate and microbial metabolism.In the investigated aquifer, we hypothesize that microbes produce organic ligands to chelate metals, particularly Fe, for metabolic processes and also form stable complexes with Al and occasionally with Si. Further, the concentration of these ligands is apparently sufficient near an attached microorganism to destroy the silicate framework while releasing the nutrient of interest. In microcosms containing silicates and glasses with trace phosphate mineral inclusions, microbial biomass increased, indicating that the microbial community can use silicate-bound phosphate inclusions. The addition of a native microbial consortium to microcosms containing silicates or glasses with iron oxide inclusions correlated to accelerated weathering and release of Si into solution as well as the accelerated degradation of the model substrate 3,4 DHBA. We propose that silicate-bound P and Fe inclusions are bioavailable, and microorganisms may use organic ligands to dissolve the silicate matrix and access these otherwise limiting nutrients.

  14. Effects of Rifaximin on Transit, Permeability, Fecal Microbiome, and Organic Acid Excretion in Irritable Bowel Syndrome.

    PubMed

    Acosta, Andrés; Camilleri, Michael; Shin, Andrea; Linker Nord, Sara; O'Neill, Jessica; Gray, Amber V; Lueke, Alan J; Donato, Leslie J; Burton, Duane D; Szarka, Lawrence A; Zinsmeister, Alan R; Golden, Pamela L; Fodor, Anthony

    2016-05-26

    Rifaximin relieves irritable bowel syndrome (IBS) symptoms, bloating, abdominal pain, and loose or watery stools. Our objective was to investigate digestive functions in rifaximin-treated IBS patients. In a randomized, double-blind, placebo-controlled, parallel-group study, we compared the effects of rifaximin, 550 mg t.i.d., and placebo for 14 days in nonconstipated IBS and no evidence of small intestinal bacterial overgrowth (SIBO). All subjects completed baseline and on-treatment evaluation of colonic transit by scintigraphy, mucosal permeability by lactulose-mannitol excretion, and fecal microbiome, bile acids, and short chain fatty acids measured on random stool sample. Overall comparison of primary response measures between treatment groups was assessed using intention-to-treat analysis of covariance (ANCOVA, with baseline value as covariate). There were no significant effects of treatment on bowel symptoms, small bowel or colonic permeability, or colonic transit at 24 h. Rifaximin was associated with acceleration of ascending colon emptying (14.9±2.6 h placebo; 6.9±0.9 h rifaximin; P=0.033) and overall colonic transit at 48 h (geometric center 4.0±0.3 h placebo; 4.7±0.2 h rifaximin; P=0.046); however, rifaximin did not significantly alter total fecal bile acids per g of stool or proportion of individual bile acids or acetate, propionate, or butyrate in stool. Microbiome studies showed strong associations within subjects, modest associations with time across subjects, and a small but significant association of microbial richness with treatment arm (rifaximin vs. treatment). In nonconstipated IBS without documented SIBO, rifaximin treatment is associated with acceleration of colonic transit and changes in microbial richness; the mechanism for reported symptomatic benefit requires further investigation.

  15. Responses in colonic microbial community and gene expression of pigs to a long-term high resistant starch diet

    PubMed Central

    Sun, Yue; Zhou, Liping; Fang, Lingdong; Su, Yong; Zhu, Weiyun

    2015-01-01

    Intake of raw potato starch (RPS) has been associated with various intestinal health benefits, but knowledge of its mechanism in a long-term is limited. The aim of this study was to investigate the effects of long-term intake of RPS on microbial composition, genes expression profiles in the colon of pigs. Thirty-six Duroc × Landrace × Large White growing barrows were randomly allocated to corn starch (CS) and RPS groups with a randomized block design. Each group consisted of six replicates (pens), with three pigs per pen. Pigs in the CS group were offered a corn/soybean-based diet, while pigs in the RPS group were put on a diet in which 230 g/kg (growing period) or 280 g/kg (finishing period) purified CS was replaced with purified RPS during a 100-day trial. Real-time PCR assay showed that RPS significantly decreased the number of total bacteria in the colonic digesta. MiSeq sequencing of the V3-V4 region of the 16S rRNA genes showed that RPS significantly decreased the relative abundance of Clostridium, Treponema, Oscillospira, Phascolarctobacterium, RC9 gut group, and S24-7-related operational taxonomic units (OTUs), and increased the relative abundance of Turicibacter, Blautia, Ruminococcus, Coprococcus, Marvinbryantia, and Ruminococcus bromii-related OTUs in colonic digesta and mucosa. Analysis of the colonic transcriptome profiles revealed that the RPS diet changed the colonic expression profile of the host genes mainly involved in immune response pathways. RPS significantly increased proinflammartory cytokine IL-1β gene expression and suppressed genes involved in lysosome. Our findings suggest that long-term intake of high resistant starch (RS) diet may result in both positive and negative roles in gut health. PMID:26379652

  16. Colonization in the Photic Zone and Subsequent Changes during Sinking Determine Bacterial Community Composition in Marine Snow

    PubMed Central

    Thiele, Stefan; Fuchs, Bernhard M.; Amann, Rudolf

    2014-01-01

    Due to sampling difficulties, little is known about microbial communities associated with sinking marine snow in the twilight zone. A drifting sediment trap was equipped with a viscous cryogel and deployed to collect intact marine snow from depths of 100 and 400 m off Cape Blanc (Mauritania). Marine snow aggregates were fixed and washed in situ to prevent changes in microbial community composition and to enable subsequent analysis using catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH). The attached microbial communities collected at 100 m were similar to the free-living community at the depth of the fluorescence maximum (20 m) but different from those at other depths (150, 400, 550, and 700 m). Therefore, the attached microbial community seemed to be “inherited” from that at the fluorescence maximum. The attached microbial community structure at 400 m differed from that of the attached community at 100 m and from that of any free-living community at the tested depths, except that collected near the sediment at 700 m. The differences between the particle-associated communities at 400 m and 100 m appeared to be due to internal changes in the attached microbial community rather than de novo colonization, detachment, or grazing during the sinking of marine snow. The new sampling method presented here will facilitate future investigations into the mechanisms that shape the bacterial community within sinking marine snow, leading to better understanding of the mechanisms which regulate biogeochemical cycling of settling organic matter. PMID:25527538

  17. Microbial stowaways: inimitable survivors or hopeless pioneers?

    PubMed

    Siefert, Janet L; Souza, Valeria; Eguiarte, Luis; Olmedo-Alvarez, Gabriela

    2012-07-01

    The resiliency of prokaryotic life has provided colonization across the globe and in the recesses of Earth's most extreme environments. Horizontal gene transfer provides access to a global bank of genetic resources that creates diversity and allows real-time adaptive potential to the clonal prokaryotic world. We assess the likelihood that this Earth-based strategy could provide survival and adaptive potential, in the case of microbial stowaways off Earth.

  18. PhyloChip microarray analysis reveals altered gastrointestinal microbial communities in a rat model of colonic hypersensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, T.A.; Holmes, S.; Alekseyenko, A.V.

    Irritable bowel syndrome (IBS) is a chronic, episodic gastrointestinal disorder that is prevalent in a significant fraction of western human populations; and changes in the microbiota of the large bowel have been implicated in the pathology of the disease. Using a novel comprehensive, high-density DNA microarray (PhyloChip) we performed a phylogenetic analysis of the microbial community of the large bowel in a rat model in which intracolonic acetic acid in neonates was used to induce long lasting colonic hypersensitivity and decreased stool water content and frequency, representing the equivalent of human constipation-predominant IBS. Our results revealed a significantly increased compositionalmore » difference in the microbial communities in rats with neonatal irritation as compared with controls. Even more striking was the dramatic change in the ratio of Firmicutes relative to Bacteroidetes, where neonatally irritated rats were enriched more with Bacteroidetes and also contained a different composition of species within this phylum. Our study also revealed differences at the level of bacterial families and species. The PhyloChip is a useful and convenient method to study enteric microflora. Further, this rat model system may be a useful experimental platform to study the causes and consequences of changes in microbial community composition associated with IBS.« less

  19. Rumen Bacterial Diversity of 80 to 110-Day-Old Goats Using 16S rRNA Sequencing

    PubMed Central

    Han, Xufeng; Yang, Yuxin; Yan, Hailong; Wang, Xiaolong; Qu, Lei; Chen, Yulin

    2015-01-01

    The ability of rumen microorganisms to use fibrous plant matter plays an important role in ruminant animals; however, little information about rumen colonization by microbial populations after weaning has been reported. In this study, high-throughput sequencing was used to investigate the establishment of this microbial population in 80 to 110-day-old goats. Illumina sequencing of goat rumen samples yielded 101,356,610 nucleotides that were assembled into 256,868 reads with an average read length of 394 nucleotides. Taxonomic analysis of metagenomic reads indicated that the predominant phyla were distinct at different growth stages. The phyla Firmicutes and Synergistetes were predominant in samples taken from 80 to 100-day-old goats, but Bacteroidetes and Firmicutes became the most abundant phyla in samples from 110-day-old animals. There was a remarkable variation in the microbial populations with age; Firmicutes and Synergistetes decreased after weaning, but Bacteroidetes and Proteobacteria increased from 80 to 110 day of age. These findings suggested that colonization of the rumen by microorganisms is related to their function in the rumen digestive system. These results give a better understanding of the role of rumen microbes and the establishment of the microbial population, which help to maintain the host’s health and improve animal performance. PMID:25700157

  20. Bacteria with Phosphate Solubilizing Capacity Alter Mycorrhizal Fungal Growth Both Inside and Outside the Root and in the Presence of Native Microbial Communities.

    PubMed

    Ordoñez, Yuli Marcela; Fernandez, Belen Rocio; Lara, Lidia Susana; Rodriguez, Alia; Uribe-Vélez, Daniel; Sanders, Ian R

    2016-01-01

    Arbuscular mycorrhizal fungi (AMF) and phosphate solubilizing Pseudomonas bacteria (PSB) could potentially interact synergistically because PSB solubilize phosphate into a form that AMF can absorb and transport to the plant. However, very little is known about the interactions between these two groups of microorganisms and how they influence the growth of each other. We tested whether different strains of bacteria, that have the capacity to solubilize phosphate, are able to grow along AMF hyphae and differentially influence the growth of AMF both outside the roots of carrot in in vitro conditions and inside the roots of potato in the presence of a microbial community. We found strong effects of AMF on the growth of the different bacterial strains. Different bacterial strains also had very strong effects on the growth of AMF extraradical hyphae outside the roots of carrot and on colonization of potato roots by AMF. The differential effects on colonization occurred in the presence of a microbial community. Our results show that these two important groups of rhizosphere microorganisms indeed interact with each other. Such interactions could potentially lead to synergistic effects between the two groups but this could depend on whether the bacteria truly solubilize phosphate in the rhizosphere in the presence of microbial communities.

  1. Early diagenesis and recrystallization of bone

    NASA Astrophysics Data System (ADS)

    Keenan, Sarah W.; Engel, Annette Summers

    2017-01-01

    One of the most challenging problems in paleobiology is determining how bone transforms from a living tissue into a fossil. The geologic record is replete with vertebrate fossils preserved from a range of depositional environments, including wetland systems. However, thermodynamic models suggest that bone (modeled as hydroxylapatite) is generally unstable in a range of varying geochemical conditions and should readily dissolve if it does not alter to a more thermodynamically stable phase, such as a fluorine-enriched apatite. Here, we assess diagenesis of alligator bone from fleshed, articulated skeletons buried in wetland soils and from de-fleshed bones in experimental mesocosms with and without microbial colonization. When microbial colonization of bone was inhibited, bioapatite recrystallization to a more stable apatite phase occurred after one month of burial. Ca-Fe-phosphate phases in bone developed after several months to years due to ion substitutions from the protonation of the hydroxyl ion. These rapid changes demonstrate a continuum of structural and bonding transformations to bone that have not been observed previously. When bones were directly in contact with sediment and microbial cells, rapid bioerosion and compositional alteration occurred after one week, but slowed after one month because biofilms reduced exposed surfaces and subsequent bioapatite lattice substitutions. Microbial contributions are likely essential in forming stable apatite phases during early diagenesis and for enabling bone preservation and fossilization.

  2. Microbial Community Composition and Putative Biogeochemical Functions in the Sediment and Water of Tropical Granite Quarry Lakes.

    PubMed

    Kumar, Amit; Ng, Daphne H P; Wu, Yichao; Cao, Bin

    2018-05-28

    Re-naturalized quarry lakes are important ecosystems, which support complex communities of flora and fauna. Microorganisms associated with sediment and water form the lowest trophic level in these ecosystems and drive biogeochemical cycles. A direct comparison of microbial taxa in water and sediment microbial communities is lacking, which limits our understanding of the dominant functions that are carried out by the water and sediment microbial communities in quarry lakes. In this study, using the 16S rDNA amplicon sequencing approach, we compared microbial communities in the water and sediment in two re-naturalized quarry lakes in Singapore and elucidated putative functions of the sediment and water microbial communities in driving major biogeochemical processes. The richness and diversity of microbial communities in sediments of the quarry lakes were higher than those in the water. The composition of the microbial communities in the sediments from the two quarries was highly similar to one another, while those in the water differed greatly. Although the microbial communities of the sediment and water samples shared some common members, a large number of microbial taxa (at the phylum and genus levels) were prevalent either in sediment or water alone. Our results provide valuable insights into the prevalent biogeochemical processes carried out by water and sediment microbial communities in tropical granite quarry lakes, highlighting distinct microbial processes in water and sediment that contribute to the natural purification of the resident water.

  3. Gut Microbial Diversity in Rat Model Induced by Rhubarb

    PubMed Central

    Peng, Ying; Wu, Chunfu; Yang, Jingyu; Li, Xiaobo

    2014-01-01

    Rhubarb is often used to establish chronic diarrhea and spleen (Pi)-deficiency syndrome animal models in China. In this study, we utilized the enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) method to detect changes in bacterial diversity in feces and the bowel mucosa associated with this model. Total microbial genomic DNA from the small bowel (duodenum, jejunum, and ileum), large bowel (proximal colon, distal colon, and rectum), cecum, and feces of normal and rhubarb-exposed rats were used as templates for the ERIC-PCR analysis. We found that the fecal microbial composition did not correspond to the bowel bacteria mix. More bacterial diversity was observed in the ileum of rhubarb-exposed rats (P<0.05). Furthermore, a 380 bp product was found to be increased in rhubarb-exposed rats both in faces and the bowel mucosa. The product was cloned and sequenced and showed high similarity with regions of the Bacteroides genome. AS a result of discriminant analysis with the SPSS software, the Canonical Discriminant Function Formulae for model rats was established. PMID:25048267

  4. Copolymers enhance selective bacterial community colonization for potential root zone applications.

    PubMed

    Pham, Vy T H; Murugaraj, Pandiyan; Mathes, Falko; Tan, Boon K; Truong, Vi Khanh; Murphy, Daniel V; Mainwaring, David E

    2017-11-21

    Managing the impact of anthropogenic and climate induced stress on plant growth remains a challenge. Here we show that polymeric hydrogels, which maintain their hydrous state, can be designed to exploit functional interactions with soil microorganisms. This microbial enhancement may mitigate biotic and abiotic stresses limiting productivity. The presence of mannan chains within synthetic polyacrylic acid (PAA) enhanced the dynamics and selectivity of bacterial ingress in model microbial systems and soil microcosms. Pseudomonas fluorescens exhibiting high mannan binding adhesins showed higher ingress and localised microcolonies throughout the polymeric network. In contrast, ingress of Bacillus subtilis, lacking adhesins, was unaltered by mannan showing motility comparable to bulk liquids. Incubation within microcosms of an agricultural soil yielded hydrogel populations significantly increased from the corresponding soil. Bacterial diversity was markedly higher in mannan containing hydrogels compared to both control polymer and soil, indicating enhanced selectivity towards microbial families that contain plant beneficial species. Here we propose functional polymers applied to the potential root zone which can positively influence rhizobacteria colonization and potentially plant growth as a new approach to stress tolerance.

  5. Microbial ecology and host-microbiota interactions during early life stages

    PubMed Central

    Collado, Maria Carmen; Cernada, Maria; Baüerl, Christine; Vento, Máximo; Pérez-Martínez, Gaspar

    2012-01-01

    The role of human microbiota has been redefined during recent years and its physiological role is now much more important than earlier understood. Intestinal microbial colonization is essential for the maturation of immune system and for the developmental regulation of the intestinal physiology. Alterations in this process of colonization have been shown to predispose and increase the risk to disease later in life. The first contact of neonates with microbes is provided by the maternal microbiota. Moreover, mode of delivery, type of infant feeding and other perinatal factors can influence the establishment of the infant microbiota. Taken into consideration all the available information it could be concluded that the exposure to the adequate microbes early in gestation and neonatal period seems to have a relevant role in health. Maternal microbial environment affects maternal and fetal immune physiology and, of relevance, this interaction with microbes at the fetal-maternal interface could be modulated by specific microbes administered to the pregnant mother. Indeed, probiotic interventions aiming to reduce the risk of immune-mediated diseases may appear effective during early life. PMID:22743759

  6. Archaeal and bacterial diversity in two hot spring microbial mats from a geothermal region in Romania.

    PubMed

    Coman, Cristian; Drugă, Bogdan; Hegedus, Adriana; Sicora, Cosmin; Dragoş, Nicolae

    2013-05-01

    The diversity of archaea and bacteria was investigated in two slightly alkaline, mesophilic hot springs from the Western Plain of Romania. Phylogenetic analysis showed a low diversity of Archaea, only three Euryarchaeota taxa being detected: Methanomethylovorans thermophila, Methanomassiliicoccus luminyensis and Methanococcus aeolicus. Twelve major bacterial groups were identified, both springs being dominated by Cyanobacteria, Chloroflexi and Proteobacteria. While at the phylum/class-level the microbial mats share a similar biodiversity; at the species level the geothermal springs investigated seem to be colonized by specific consortia. The dominant taxa were filamentous heterocyst-containing Fischerella, at 45 °C and non-heterocyst Leptolyngbya and Geitlerinema, at 55 °C. Other bacterial taxa (Thauera sp., Methyloversatilis universalis, Pannonibacter phragmitetus, Polymorphum gilvum, Metallibacterium sp. and Spartobacteria) were observed for the first time in association with a geothermal habitat. Based on their bacterial diversity the two mats were clustered together with other similar habitats from Europe and part of Asia, most likely the water temperature playing a major role in the formation of specific microbial communities that colonize the investigated thermal springs.

  7. Impact of microbial derived secondary bile acids on colonization resistance against Clostridium difficile in the gastrointestinal tract.

    PubMed

    Winston, Jenessa A; Theriot, Casey M

    2016-10-01

    Clostridium difficile is an anaerobic, Gram positive, spore-forming bacillus that is the leading cause of nosocomial gastroenteritis. Clostridium difficile infection (CDI) is associated with increasing morbidity and mortality, consequently posing an urgent threat to public health. Recurrence of CDI after successful treatment with antibiotics is high, thus necessitating discovery of novel therapeutics against this pathogen. Susceptibility to CDI is associated with alterations in the gut microbiota composition and bile acid metabolome, specifically a loss of microbial derived secondary bile acids. This review aims to summarize in vitro, ex vivo, and in vivo studies done by our group and others that demonstrate how secondary bile acids affect the different stages of the C. difficile life cycle. Understanding the dynamic interplay of C. difficile and microbial derived secondary bile acids within the gastrointestinal tract will shed light on how bile acids play a role in colonization resistance against C. difficile. Rational manipulation of secondary bile acids may prove beneficial as a treatment for patients with CDI. Published by Elsevier Ltd.

  8. [Microbial colonization of the caviar of the sturgeon fishes].

    PubMed

    Boĭko, A V; Pogorelova, N P; Zhuravlëva, L A; Lartseva, L V

    1993-11-01

    Samples of black caviar in 47.7% of cases are contaminated by opportunistic bacteria Aeromonas, Proteus, Vibrio, V. parahaemolyticus. Standardization of these micro-organisms content in black caviar is recommended.

  9. Trace fossils of microbial colonization on Mars: Criteria for search and for sample return

    NASA Technical Reports Server (NTRS)

    Friedmann, E. I.

    1988-01-01

    The recent discovery of microbial trace-fossil formation in the frigid Ross Desert of Antarctica suggests that early primitive life on Mars may have left behind similar signatures. These trace fossils are apparent as chemical or physical changes in rock (or sediment) structure (or chemistry) caused by the activity of organisms. Life on Mars, if it ever existed, almost certainly did not evolve above the level of microorganisms, and this should be considered in search for fossil life. For the reasons detailed here, microbial trace fossils seem to be a better and more realistic target for search than would be true microbial fossils (remnants of cellular structures).

  10. Study to determine the aquatic biological effects on the Solid Rocket Booster (SRB). [technique for monitoring marine microbial fouling

    NASA Technical Reports Server (NTRS)

    Colwell, R. R.; Zachary, A.

    1979-01-01

    The surface of the reusable solid rocket boosters (SRB), which are jettisoned from the Shuttle Orbiter to parachute in the sea, are studied for colonization by marine life. Techniques for monitoring the marine microbial fouling of SRB materials are presented. An assessment of the nature and degree of the biofouling expected on the SRB materials in the recovery zone is reported. A determination of the degree and the effects of seasonal variation occurring on microbial fouling in the retrieval zone waters is made. The susceptibility of the SRB parachute recovery system to microbial fouling and biodeterioration is investigated. The development of scanning electron microscopy and epifluorescence microscopic observation techniques for rapid assessment of microbial fouling is discussed.

  11. Development of the Human Mycobiome over the First Month of Life and across Body Sites.

    PubMed

    Ward, Tonya L; Dominguez-Bello, Maria Gloria; Heisel, Tim; Al-Ghalith, Gabriel; Knights, Dan; Gale, Cheryl A

    2018-01-01

    With the advent of next-generation sequencing and microbial community characterization, we are beginning to understand the key factors that shape early-life microbial colonization and associated health outcomes. Studies characterizing infant microbial colonization have focused mostly on bacteria in the microbiome and have largely neglected fungi (the mycobiome), despite their relevance to mucosal infections in healthy infants. In this pilot study, we characterized the skin, oral, and anal mycobiomes of infants over the first month of life ( n = 17) and the anal and vaginal mycobiomes of mothers ( n = 16) by internal transcribed spacer 2 (ITS2) amplicon sequencing. We found that infant mycobiomes differed by body site, with the infant mycobiomes at the anal sites being different from those at the skin and oral sites. The relative abundances of body site-specific taxa differed by birth mode, with significantly more Candida albicans fungi present on the skin of vaginally born infants on day 30 and significantly more Candida orthopsilosis fungi present in the oral cavity of caesarean section-born infants throughout the first month of life. We found the mycobiomes within individual infants to be variable over the first month of life, and vaginal birth did not result in infant mycobiomes that were more similar to the mother's vaginal mycobiome. Therefore, although vertical transmission of specific fungal isolates from mother to infant has been reported, it is likely that other sources (environment, other caregivers) also contribute to early-life mycobiome establishment. Thus, future longitudinal studies of mycobiome and bacterial microbiome codevelopment, with dense sampling from birth to beyond the first month of life, are warranted. IMPORTANCE Humans are colonized by diverse fungi (mycobiome), which have received much less study to date than colonizing bacteria. We know very little about the succession of fungal colonization in early life and whether it may relate to long-term health. To better understand fungal colonization and its sources, we studied the skin, oral, and anal mycobiomes of healthy term infants and the vaginal and anal mycobiomes of their mothers. Generally, infants were colonized by few fungal taxa, and fungal alpha diversity did not increase over the first month of life. There was no clear community maturation over the first month of life, regardless of body site. Key body-site-specific taxa, but not overall fungal community structures, were impacted by birth mode. Thus, additional studies to characterize mycobiome acquisition and succession throughout early life are needed to form a foundation for research into the relationship between mycobiome development and human disease.

  12. Probiotics and Diverticular Disease: Evidence-based?

    PubMed

    Lahner, Edith; Annibale, Bruno

    Diverticular disease (DD) is a common gastrointestinal condition. Clinical spectrum ranges from asymptomatic diverticulosis to symptomatic uncomplicated or complicated DD. Symptoms related to uncomplicated DD are not specific and may be indistinguishable from those of irritable bowel syndrome. Low-grade inflammation, altered intestinal microbiota, visceral hypersensitivity, and abnormal colonic motility have been identified as factors potentially contributing to symptoms. Probiotics may modify the gut microbial balance leading to health benefits. Probiotics, due to their anti-inflammatory effects and ability to maintain an adequate bacterial colonization in the colon, are promising treatment options for DD. This review focuses on the available evidence on the efficacy of prebiotics in uncomplicated DD.

  13. Pesticide dissipation and microbial community changes in a biopurification system: influence of the rhizosphere.

    PubMed

    Diez, M C; Elgueta, S; Rubilar, O; Tortella, G R; Schalchli, H; Bornhardt, C; Gallardo, F

    2017-12-01

    The dissipation of atrazine, chlorpyrifos and iprodione in a biopurification system and changes in the microbial and some biological parameters influenced by the rhizosphere of Lolium perenne were studied in a column system packed with an organic biomixture. Three column depths were analyzed for residual pesticides, peroxidase, fluorescein diacetate activity and microbial communities. Fungal colonization was analyzed by confocal laser scanning microscopy to assess the extent of its proliferation in wheat straw. The L. perenne rhizosphere enhanced pesticide dissipation and negligible pesticide residues were detected at 20-30 cm column depth. Atrazine, chlorpyrifos and iprodione removal was 82, 89 and 74% respectively in the first 10 cm depth for columns with vegetal cover. The presence of L. perenne in contaminated columns stimulated peroxidase activity in all three column depth sections. Fluorescein diacetate activity decreased over time in all column sections with the highest values in biomixtures with vegetal cover. Microbial communities, analyzed by PCR-DGGE, were not affected by the pesticide mixture application, presenting high values of similarity (>65%) with and without vegetal cover. Microbial abundance of Actinobacteria varied according to treatment and no clear link was observed. However, bacterial abundance increased over time and was similar with and without vegetal cover. On the other hand, fungal abundance decreased in all sections of columns after 40 days, but an increase was observed in response to pesticide application. Fungal colonization and straw degradation during pesticide dissipation were verified by monitoring the lignin autofluorescence loss.

  14. Metabolome progression during early gut microbial colonization of gnotobiotic mice

    PubMed Central

    Marcobal, Angela; Yusufaly, Tahir; Higginbottom, Steven; Snyder, Michael; Sonnenburg, Justin L.; Mias, George I.

    2015-01-01

    The microbiome has been implicated directly in host health, especially host metabolic processes and development of immune responses. These are particularly important in infants where the gut first begins being colonized, and such processes may be modeled in mice. In this investigation we follow longitudinally the urine metabolome of ex-germ-free mice, which are colonized with two bacterial species, Bacteroides thetaiotaomicron and Bifidobacterium longum. High-throughput mass spectrometry profiling of urine samples revealed dynamic changes in the metabolome makeup, associated with the gut bacterial colonization, enabled by our adaptation of non-linear time-series analysis to urine metabolomics data. Results demonstrate both gradual and punctuated changes in metabolite production and that early colonization events profoundly impact the nature of small molecules circulating in the host. The identified small molecules are implicated in amino acid and carbohydrate metabolic processes, and offer insights into the dynamic changes occurring during the colonization process, using high-throughput longitudinal methodology. PMID:26118551

  15. Multifaceted Role of IRAK-M in the Promotion of Colon Carcinogenesis via Barrier Dysfunction and STAT3 Oncoprotein Stabilization in Tumors.

    PubMed

    Jenkins, Brendan J

    2016-05-09

    Dysregulated interactions between the host immune system and gut microbiota can underpin inflammation, leading to colorectal cancer (CRC). In this issue of Cancer Cell, Kesselring et al. reveal a bimodal role of the TLR/IL-1R-signaling negative regulator, IRAK-M, in promoting tumoral microbial colonization and STAT3 oncoprotein stabilization during CRC. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Effects of dietary fibre source on microbiota composition in the large intestine of suckling piglets.

    PubMed

    Zhang, Lingli; Mu, Chunlong; He, Xiangyu; Su, Yong; Mao, Shengyong; Zhang, Jing; Smidt, Hauke; Zhu, Weiyun

    2016-07-01

    This study aimed to investigate the effects of dietary fibre sources on the gut microbiota in suckling piglets, and to test the hypothesis that a moderate increase of dietary fibre may affect the gut microbiota during the suckling period. Suckling piglets were fed different fibre-containing diets or a control diet from postnatal day 7 to 22. Digesta samples from cecum, proximal colon and distal colon were used for Pig Intestinal Tract Chip analysis. The data showed that the effects of fibre-containing diet on the gut microbiota differed in the fibre source and gut location. The alfalfa diet increased Clostridium cluster XIVb and Sporobacter termitidis in the cecum compared to the pure cellulose diet. Compared to the control diet, the alfalfa diet also increased Coprococcus eutactus in the distal colon, while the pure cellulose diet decreased Eubacterium pyruvativorans in the cecum. The pure cellulose diet increased Prevotella ruminicola compared to the wheat bran diet. Interestingly, the alfalfa group had the lowest abundance of the potential pathogen Streptococcus suis in the cecum and distal colon. These results indicated that a moderate increase in dietary fibres affected the microbial composition in suckling piglets, and that the alfalfa inclusion produced some beneficial effects on the microbial communities. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. The inside tract: The appendicular, cecal, and colonic microbiome of captive aye-ayes.

    PubMed

    Greene, Lydia K; McKenney, Erin A

    2018-04-17

    The aye-aye (Daubentonia madagascariensis) is famous for its feeding strategies that target structurally defended, but high-quality resources. Nonetheless, the influence of this digestible diet on gut microbial contributions to aye-aye metabolism and nutrition remains unexplored. When four captive aye-ayes were unexpectedly lost to persin toxicity, we opportunistically collected samples along the animals' gastrointestinal tracts. Here we describe the diversity and composition of appendicular, cecal, and colonic consortia relative to the aye-aye's unusual feeding ecology. During necropsies, we collected digestive content from the appendix, cecum, and distal colon. We determined microbiome structure at these sites via amplicon sequencing of the 16S rRNA gene and an established bioinformatics pipeline. The aye-ayes' microbiomes exhibited low richness and diversity compared to the consortia of other lemurs housed at the same facility, and were dominated by a single genus, Prevotella. Appendicular microbiomes were differentiated from more homogenized cecal and colonic consortia by lower richness and diversity, greater evenness, and a distinct taxonomic composition. The simplicity of the aye-aye's gut microbiome could be attributed to captivity-induced dysbiosis, or it may reflect this species' extreme foraging investment in a digestible diet that requires little microbial metabolism. Site-specific appendicular consortia, but more similar cecal and colonic consortia, support the theory that the appendix functions as a safe-house for beneficial bacteria, and confirm fecal communities as fairly reliable proxies for consortia along the lower gut. We encourage others to make similar use of natural or accidental losses for probing the primate gut microbiome. © 2018 Wiley Periodicals, Inc.

  18. Candida albicans Inhibits Pseudomonas aeruginosa Virulence through Suppression of Pyochelin and Pyoverdine Biosynthesis

    PubMed Central

    Lopez-Medina, Eduardo; Fan, Di; Coughlin, Laura A.; Ho, Evi X.; Lamont, Iain L.; Reimmann, Cornelia; Hooper, Lora V.; Koh, Andrew Y.

    2015-01-01

    Bacterial-fungal interactions have important physiologic and medical ramifications, but the mechanisms of these interactions are poorly understood. The gut is host to trillions of microorganisms, and bacterial-fungal interactions are likely to be important. Using a neutropenic mouse model of microbial gastrointestinal colonization and dissemination, we show that the fungus Candida albicans inhibits the virulence of the bacterium Pseudomonas aeruginosa by inhibiting P. aeruginosa pyochelin and pyoverdine gene expression, which plays a critical role in iron acquisition and virulence. Accordingly, deletion of both P. aeruginosa pyochelin and pyoverdine genes attenuates P. aeruginosa virulence. Heat-killed C. albicans has no effect on P. aeruginosa, whereas C. albicans secreted proteins directly suppress P. aeruginosa pyoverdine and pyochelin expression and inhibit P. aeruginosa virulence in mice. Interestingly, suppression or deletion of pyochelin and pyoverdine genes has no effect on P. aeruginosa’s ability to colonize the GI tract but does decrease P. aeruginosa’s cytotoxic effect on cultured colonocytes. Finally, oral iron supplementation restores P. aeruginosa virulence in P. aeruginosa and C. albicans colonized mice. Together, our findings provide insight into how a bacterial-fungal interaction can modulate bacterial virulence in the intestine. Previously described bacterial-fungal antagonistic interactions have focused on growth inhibition or colonization inhibition/modulation, yet here we describe a novel observation of fungal-inhibition of bacterial effectors critical for virulence but not important for colonization. These findings validate the use of a mammalian model system to explore the complexities of polymicrobial, polykingdom infections in order to identify new therapeutic targets for preventing microbial disease. PMID:26313907

  19. Characterization of Microbial Community in Lascaux Cave by High Throughput Sequencing

    NASA Astrophysics Data System (ADS)

    Alonso, Lise; Dubost, Audrey; Luis, Patricia; Pommier, Thomas; Moënne-Loccoz, Yvan

    2017-04-01

    The Lascaux Cave in South-Est France is an archeological landmark renowned for its Paleolithic paintings dating back c.18.000 years. Extensive touristic frequenting and repeated chemical treatments have resulted in the development of microbial stains on cave walls, which is a major issue in terms of art conservation. Therefore, it is of prime importance to better understand the microbial ecology of Lascaux Cave. Like many other caves, Lascaux is quite heterogeneous in terms of the nature and surface properties of rock walls within cave rooms, as well as the succession of rooms/galleries from the entrance to deeper areas of the cave. Lascaux Cave displays an additional levels of heterogeneity related to the presence of discontinuous stains on certain types of cave walls. We compared the microbial community (i.e. both prokaryotic and eukaryotic microbial populations) colonizing cave walls of different rooms/galleries, in and outside stains and in different cave layers, in successive years. Quantitative PCR analysis of cave wall samples gave in the order of 102 copies of 18S rRNA genes and 105 copies of 16S rRNA genes per ng of DNA, indicating significant colonization of all cave walls by micro-eukaryotes and especially bacteria. Illumina metagenomic analyses of cave wall samples was carried out based on four ribosomal DNA markers targeting bacteria, archaea, fungi, and other micro-eukaryotes. The results showed that the four microbial communities were highly diverse in and outside stains, as several hundred genera of microorganisms were identified in each. Proteobacteria were more prominent within stains whereas Bacteroidetes and Sordariomycetes were more prominent outside stains. High-throughput sequencing also showed that the nature/surface properties of cave walls were the main factor determining the structure and composition of microbial communities, ahead of the other heterogeneity factors studied i.e. location within the cave, presence of stain and sampling season. This work provides a global view of the microbial community of Lascaux Cave, which could be useful to guide conservation efforts.

  20. Coupled Spatiotemporal Dynamics of Microbial Community Ecology, Biogeochemistry, and Hydrologic Mixing

    NASA Astrophysics Data System (ADS)

    Stegen, J.; Johnson, T. C.; Fredrickson, J.; Wilkins, M.; Konopka, A.; Nelson, W.; Arntzen, E.; Chrisler, W.; Chu, R. K.; Fansler, S.; Kennedy, D.; Resch, T.; Tfaily, M. M.

    2015-12-01

    The hyporheic zone (HZ) is a critical ecosystem component that links terrestrial, surface water, and groundwater ecosystems. A dominant feature of the HZ is groundwater-surface water mixing and the input of terrestrially—as well as aquatically—derived organic carbon. In many systems the HZ has a relatively small spatial extent, but in larger riverine systems groundwater-surface water mixing can occur 100s of meters beyond the surface water shoreline; we consider these more distal locations to be within the 'subsurface interaction zone' (SIZ) as they are beyond the traditional HZ. Microbial communities in the HZ and SIZ drive biogeochemical processes in these system components, yet relatively little is known about the ecological processes that drive HZ and SIZ microbial communities. Here, we applied ecological theory, aqueous biogeochemistry, DNA sequencing, and ultra-high resolution organic carbon profiling to field samples collected through space (400m spatial extent) and time (7 month temporal extent) within the Hanford Site 300 Area. These data streams were integrated to evaluate how the influence of groundwater-surface water mixing on microbial communities changes when moving from the HZ to the broader SIZ. Our results indicate that groundwater-surface water mixing (i) consistently stimulated heterotrophic respiration, but only above a threshold of surface water intrusion, (ii) did not stimulate denitrification, (iii) caused deterministic shifts in HZ microbial communities due to changes in organic carbon composition, and (iv) did not cause shifts in SIZ microbial communities. These results suggest that microbial communities and the biogeochemical processes they drive are impacted by groundwater-surface water mixing primarily in the HZ and to a lesser extent in the SIZ.

  1. Biliary Endoprosthesis: A Prospective Analysis of Bacterial Colonization and Risk Factors for Sludge Formation

    PubMed Central

    Schneider, Jochen; Hapfelmeier, Alexander; Fremd, Julia; Schenk, Philipp; Obermeier, Andreas; Burgkart, Rainer; Forkl, Stefanie; Feihl, Susanne; Wantia, Nina; Neu, Bruno; Bajbouj, Monther; von Delius, Stefan; Schmid, Roland M.; Algül, Hana; Weber, Andreas

    2014-01-01

    Bacterial colonization of biliary stents is one of the driving forces behind sludge formation which may result in stent occlusion. Major focus of the study was to analyze the spectrum and number of microorganisms in relation to the indwelling time of stents and the risk factors for sludge formation. 343 stents were sonicated to optimize the bacterial release from the biofilm and identified by matrix-associated laser desorption/ionization-time of flight mass spectrometer (MALDI-TOF). 2283 bacteria were analyzed in total. The most prevalent microorganisms were Enterococcus species (spp.) (504;22%), followed by Klebsiella spp. (218;10%) and Candida spp. (188;8%). Colonization of the stents mainly began with aerobic gram-positive bacteria (43/49;88%) and Candida spp. (25/49;51%), whereas stents with an indwelling time>60 days(d) showed an almost equal colonization rate by aerobic gram-negative (176/184;96%) and aerobic gram-positive bacteria (183/184;99%) and a high proportion of anaerobes (127/184;69%). Compared to stents without sludge, more Clostridium spp. [(P = 0.02; Odds Ratio (OR): 2.4; 95% confidence interval (95%CI): (1.1–4.9)]) and Staphylococcus spp. [(P = 0.03; OR (95%CI): 4.3 (1.1–16.5)] were cultured from stents with sludge. Multivariate analysis revealed a significant relationship between the number of microorganisms [P<0.01; OR (95%CI): 1.3(1.1–1.5)], the indwelling time [P<0.01; 1–15 d vs. 20–59 d: OR (95%CI): 5.6(1.4–22), 1–15 d vs. 60–3087 d: OR (95% CI): 9.5(2.5–35.7)], the presence of sideholes [P<0.01; OR (95%CI): 3.5(1.6–7.9)] and the occurrence of sludge. Stent occlusion was found in 70/343(20%) stents. In 35% of cases, stent occlusion resulted in a cholangitis or cholestasis. In conclusion, microbial colonization of the stents changed with the indwelling time. Sludge was associated with an altered spectrum and an increasing number of microorganisms, a long indwelling time and the presence of sideholes. Interestingly, stent occlusion did not necessarily lead to a symptomatic biliary obstruction. PMID:25314593

  2. Bardoxolone Methyl Prevents High-Fat Diet-Induced Colon Inflammation in Mice

    PubMed Central

    Dinh, Chi H. L.; Yu, Yinghua; Szabo, Alexander; Zhang, Qingsheng; Zhang, Peng; Huang, Xu-Feng

    2016-01-01

    Obesity induces chronic, low-grade inflammation, which increases the risk of colon cancer. We investigated the preventive effects of Bardoxolone methyl (BARD) on high-fat diet (HFD)-induced inflammation in a mouse colon. Male C57BL/6J mice (n=7) were fed a HFD (HFD group), HFD plus BARD (10 mg/kg) in drinking water (HFD/BARD group), or normal laboratory chow diet (LFD group) for 21 weeks. In HFD mice, BARD reduced colon thickness and decreased colon weight per length. This was associated with an increase in colon crypt depth and the number of goblet cells per crypt. BARD reduced the expression of F4/80 and CD11c but increased CD206 and IL-10, indicating an anti-inflammatory effect. BARD prevented an increase of the intracellular pro-inflammatory biomarkers (NF-қB, p NF-қB, IL-6, TNF-α) and cell proliferation markers (Cox2 and Ki67). BARD prevented fat deposition in the colon wall and prevented microbial population changes. Overall, we report the preventive effects of BARD on colon inflammation in HFD-fed mice through its regulation of macrophages, NF-қB, cytokines, Cox2 and Ki67, fat deposition and microflora. PMID:26920068

  3. Effect of dietary fiber on microbial activity and microbial gas production in various regions of the gastrointestinal tract of pigs.

    PubMed Central

    Jensen, B B; Jørgensen, H

    1994-01-01

    The microbial activity, composition of the gas phase, and gas production rates in the gastrointestinal tract of pigs fed either a low- or a high-fiber diet were investigated. Dense populations of culturable anaerobic bacteria, high ATP concentrations, and high adenylate energy charges were found for the last third of the small intestine, indicating that substantial microbial activity takes place in that portion of the gut. The highest microbial activity (highest bacterium counts, highest ATP concentration, high adenylate energy charge, and low pH) was found in the cecum and proximal colon. Greater microbial activity was found in the stomach and all segments of the hindgut in the pigs fed the high-fiber diet than in the pigs fed the low-fiber diet. Considerable amounts of O2 were found in the stomach (around 5%), while the content of O2 in gas samples taken from all other parts of the gastrointestinal tract was < 1%. The highest concentrations and highest production rates for H2 were found in the last third of the small intestine. No methane could be detected in the stomach or the small intestine. The rate of production and concentration of methane in the cecum and the proximal colon were low, followed by a steady increase in the successive segments of the hindgut. A very good correlation between in vivo and in vitro measurements of methane production was found. The amount of CH4 produced by pigs fed the low-fiber diet was 1.4 liters/day per animal. Substantially larger amounts of CH4 were produced by pigs fed the high-fiber diet (12.5 liters/day)(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8031085

  4. Investigating microbial colonization in actively forming hydrothermal deposits using thermocouple arrays

    NASA Astrophysics Data System (ADS)

    Tivey, M. K.; Reysenbach, A. L.; Hirsch, M.; Steinberg, J.; Flores, G. E.

    2010-12-01

    Investigations of microbial colonization of very young hydrothermal deposits were carried out in 2009 at hydrothermal vents in the Lau Basin (SW Pacific), and in Guaymas Basin, Gulf of California, with a test deployment at the Rainbow vent field on the Mid-Atlantic Ridge in 2008. Our method entailed razing active chimneys and placing arrays of temperature probes (8 titanium-encased probes with their tips placed within a titanium cage) over the active flow. The chimneys that grew back through each array, encasing the temperature probe tips, were recovered after 2 to 15 days, along with temperature records. Molecular phylogenetic methods are being used to reveal the members of the microbial communities that developed in each chimney of known age and thermal history. A total of 15 array deployments were made at 10 vents in 6 different vent fields. Similar morphology beehives (with porous fine-grained interiors and steep temperature gradients across the outermost more-consolidated “wall”) formed at 2 of the 3 vents in Guaymas Basin (in 2 and 5 days at one vent and 3 and 15 days at a second), and at one vent each in the Kilo Moana (in 3 days), Tahi Moana (in 2.5 days), and Tui Malila (in 3 and 8 days) vent fields in the Lau Basin. In contrast, open conduit, thin walled chimneys grew within arrays at the Mariner vent field, Lau Basin, at 3 different vents (in 3 days at one vent, in 3 and 11 days at a second vent, and in 13 days at a third vent). A lower temperature (<280C) diffuser/spire with a filamentous biofilm formed in 15 days in an array at a hydrocarbon-rich vent in the Guaymas Basin. A similar biofilm formed after 6 days within an array placed earlier at this same vent, with little mineralization. Preliminary diversity data from the 6 and 15 day Guaymas deployments show an increased diversity of bacteria with time with initial colonizers being primarily sulfur-oxidizing Epsilonproteobacteria, with members of the Aquificales and Deltaproteobacteria appearing in the 15 day deposit. In contrast, the Archaea showed very little change in diversity over time, with members of the genera Thermococcus and Methanocaldococcus present in all samples analyzed, irrespective of location and timing of sampling. This is very different from a 72-hour test array deployment done in 2008 at Rainbow vent field, where the deposited soft material was colonized only by the sulfate-reducing archaeum, Archaeoglobus. These samples (8 beehives, 4 open conduit smokers, one diffuser spire, from chimneys of known composition, plus less consolidated biofilm material) are all of known age, and fluids were collected from 7 of the 10 vents. This suite of samples will allow comparisons to data from 2003 (Page et al., 2008, Env. Micr.), study of the potential impact of fluid chemistry, mineralogy/texture, and time on microbial diversity, and testing of hypotheses about microbial colonization and succession.

  5. Hydrocarbon degradation and plant colonization of selected bacterial strains isolated from the rhizsophere and plant interior of Italian ryegrass and Birdsfoot trefoil

    NASA Astrophysics Data System (ADS)

    Sohail, Y.; Andria, V.; Reichenauer, T. G.; Sessitsch, A.

    2009-04-01

    Hydrocarbon-degrading strains were isolated from the rhizosphere, root and shoot interior of Italian ryegrass (Lolium multiflorum var. Taurus), Birdsfoot trefoil (Lotus corniculatus var. Leo) grown in a soil contaminated with petroleum oil. Strains were tested regarding their phylogeny and their degradation efficiency. The most efficient strains were tested regarding their suitability to be applied for phytoremediation of diesel oils. Sterilized and non-sterilized agricultural soil, with and with out compost, were spiked with diesel and used for planting Italian ryegrass and birdsfoot trefoil. Four selected strains with high degradation activities, derived from the rhizosphere and plant interior, were selected for individual inoculation. Plants were harvested at flowering stage and plant biomass and hydrocarbon degradation was determined. Furthermore, it was investigated to which extent the inoculant strains were able to survive and colonize plants. Microbial community structures were analysed by 16S rRNA and alkB gene analysis. Results showed efficient colonization by the inoculant strains and improved degradation by the application of compost combined with inoculation as well as on microbial community structures will be presented.

  6. Microbial colonization of halite from the hyper-arid Atacama Desert studied by Raman spectroscopy.

    PubMed

    Vítek, P; Edwards, H G M; Jehlicka, J; Ascaso, C; De los Ríos, A; Valea, S; Jorge-Villar, S E; Davila, A F; Wierzchos, J

    2010-07-13

    The hyper-arid core of the Atacama Desert (Chile) is the driest place on Earth and is considered a close analogue to the extremely arid conditions on the surface of Mars. Microbial life is very rare in soils of this hyper-arid region, and autotrophic micro-organisms are virtually absent. Instead, photosynthetic micro-organisms have successfully colonized the interior of halite crusts, which are widespread in the Atacama Desert. These endoevaporitic colonies are an example of life that has adapted to the extreme dryness by colonizing the interior of rocks that provide enhanced moisture conditions. As such, these colonies represent a novel example of potential life on Mars. Here, we present non-destructive Raman spectroscopical identification of these colonies and their organic remnants. Spectral signatures revealed the presence of UV-protective biomolecules as well as light-harvesting pigments pointing to photosynthetic activity. Compounds of biogenic origin identified within these rocks differed depending on the origins of specimens from particular areas in the desert, with differing environmental conditions. Our results also demonstrate the capability of Raman spectroscopy to identify biomarkers within rocks that have a strong astrobiological potential.

  7. Role of Vancomycin as a Component of Oral Nonabsorbable Antibiotics for Microbial Suppression in Leukemic Patients

    PubMed Central

    Bender, John F.; Schimpff, Stephen C.; Young, Viola Mae; Fortner, Clarence L.; Brouillet, Mary D.; Love, Lillian J.; Wiernik, Peter H.

    1979-01-01

    A total of 38 adult patients with acute leukemia who were undergoing remission induction chemotherapy in regular patient rooms were randomly allocated to one of two oral nonabsorbable antibiotic regimens for infection prophylaxis (gentamicin, vancomycin, and nystatin [GVN] or gentamicin and nystatin [GN]) to evaluate whether vancomycin was a necessary component. The patient population in both groups were comparable. Tolerance to GVN was less than GN but compliance was approximately equal (>85% in both groups). Patients receiving vancomycin demonstrated greater overall alimentary tract microbial suppression; however, acquisition of potential pathogens was approximately equal in both groups. The incidence of bacteremia, as well as the overall incidence of infection as related to the number of days at various granulocyte levels, was also approximately equal in both groups. Group D Streptococcus species were poorly suppressed by GN compared with GVN, although no patient developed an infection with these organisms. Colonization by newly acquired gram-negative bacilli was significantly less in the GN group (GN, 3 colonizations; GVN, 13 colonizations; P < 0.01). It is concluded that vancomycin may be safely eliminated from the GVN regimen provided microbiological data is monitored to detect resistant organisms. PMID:464573

  8. Nanocoatings for Chronic Wound Repair-Modulation of Microbial Colonization and Biofilm Formation.

    PubMed

    Mihai, Mara Mădălina; Preda, Mădălina; Lungu, Iulia; Gestal, Monica Cartelle; Popa, Mircea Ioan; Holban, Alina Maria

    2018-04-12

    Wound healing involves a complex interaction between immunity and other natural host processes, and to succeed it requires a well-defined cascade of events. Chronic wound infections can be mono- or polymicrobial but their major characteristic is their ability to develop a biofilm. A biofilm reduces the effectiveness of treatment and increases resistance. A biofilm is an ecosystem on its own, enabling the bacteria and the host to establish different social interactions, such as competition or cooperation. With an increasing incidence of chronic wounds and, implicitly, of chronic biofilm infections, there is a need for alternative therapeutic agents. Nanotechnology shows promising openings, either by the intrinsic antimicrobial properties of nanoparticles or their function as drug carriers. Nanoparticles and nanostructured coatings can be active at low concentrations toward a large variety of infectious agents; thus, they are unlikely to elicit emergence of resistance. Nanoparticles might contribute to the modulation of microbial colonization and biofilm formation in wounds. This comprehensive review comprises the pathogenesis of chronic wounds, the role of chronic wound colonization and infection in the healing process, the conventional and alternative topical therapeutic approaches designed to combat infection and stimulate healing, as well as revolutionizing therapies such as nanotechnology-based wound healing approaches.

  9. Effects of antimicrobial therapy on faecal bulking.

    PubMed Central

    Kurpad, A V; Shetty, P S

    1986-01-01

    It has recently been postulated that dietary fibre acts as a substrate for colonic flora, and that the resultant microbial growth bulks the faeces. Antimicrobial therapy was used in this study to assess the effect of reduction in colonic microbial proliferation on faecal output in human subjects on a constant dietary fibre intake. Six healthy young male subjects were maintained on constant daily diets and metronidazole (1 g/day) and ampicillin (1 g/day) were administered in divided doses for one week after an initial baseline study period of two weeks. After antimicrobial therapy, mean faecal weights rose from 176.0 +/- 27.0 g to 348.1 +/- 37.7 g/day. Faecal solids increased from 32.9 +/- 4.2 g to 46.1 +/- 5.8 g/day. Faecal neutral detergent fibre increased from 1.92 +/- 0.42 g to 15.19 +/- 2.58 g/day. The mean transit times and mean daily faecal nitrogen remained the same, both before and after treatment. Substantial breakdown of dietary fibre occurs in the human colon which may decrease faecal bulk, suggesting that water holding by dietary fibre is probably of greater importance for faecal bulking. PMID:3005139

  10. Leaf-FISH: Microscale Imaging of Bacterial Taxa on Phyllosphere

    PubMed Central

    Peredo, Elena L.; Simmons, Sheri L.

    2018-01-01

    Molecular methods for microbial community characterization have uncovered environmental and plant-associated factors shaping phyllosphere communities. Variables undetectable using bulk methods can play an important role in shaping plant-microbe interactions. Microscale analysis of bacterial dynamics in the phyllosphere requires imaging techniques specially adapted to the high autoflouresence and 3-D structure of the leaf surface. We present an easily-transferable method (Leaf-FISH) to generate high-resolution tridimensional images of leaf surfaces that allows simultaneous visualization of multiple bacterial taxa in a structurally informed context, using taxon-specific fluorescently labeled oligonucleotide probes. Using a combination of leaf pretreatments coupled with spectral imaging confocal microscopy, we demonstrate the successful imaging bacterial taxa at the genus level on cuticular and subcuticular leaf areas. Our results confirm that different bacterial species, including closely related isolates, colonize distinct microhabitats in the leaf. We demonstrate that highly related Methylobacterium species have distinct colonization patterns that could not be predicted by shared physiological traits, such as carbon source requirements or phytohormone production. High-resolution characterization of microbial colonization patterns is critical for an accurate understanding of microbe-microbe and microbe-plant interactions, and for the development of foliar bacteria as plant-protective agents. PMID:29375531

  11. Carrying Capacity and Colonization Dynamics of Curvibacter in the Hydra Host Habitat

    PubMed Central

    Wein, Tanita; Dagan, Tal; Fraune, Sebastian; Bosch, Thomas C. G.; Reusch, Thorsten B. H.; Hülter, Nils F.

    2018-01-01

    Most eukaryotic species are colonized by a microbial community – the microbiota – that is acquired during early life stages and is critical to host development and health. Much research has focused on the microbiota biodiversity during the host life, however, empirical data on the basic ecological principles that govern microbiota assembly is lacking. Here we quantify the contribution of colonizer order, arrival time and colonization history to microbiota assembly on a host. We established the freshwater polyp Hydra vulgaris and its dominant colonizer Curvibacter as a model system that enables the visualization and quantification of colonizer population size at the single cell resolution, in vivo, in real time. We estimate the carrying capacity of a single Hydra polyp as 2 × 105 Curvibacter cells, which is robust among individuals and time. Colonization experiments reveal a clear priority effect of first colonizers that depends on arrival time and colonization history. First arriving colonizers achieve a numerical advantage over secondary colonizers within a short time lag of 24 h. Furthermore, colonizers primed for the Hydra habitat achieve a numerical advantage in the absence of a time lag. These results follow the theoretical expectations for any bacterial habitat with a finite carrying capacity. Thus, Hydra colonization and succession processes are largely determined by the habitat occupancy over time and Curvibacter colonization history. Our experiments provide empirical data on the basic steps of host-associated microbiota establishment – the colonization stage. The presented approach supplies a framework for studying habitat characteristics and colonization dynamics within the host–microbe setting. PMID:29593687

  12. Does intrinsic light heterogeneity in Ricinus communis L. monospecific thickets drive species' population dynamics?

    PubMed

    Goyal, Neha; Shah, Kanhaiya; Sharma, Gyan Prakash

    2018-06-19

    Ricinus communis L. colonizes heterogeneous urban landscapes as monospecific thickets. The ecological understanding on colonization success of R. communis population due to variable light availability is lacking. Therefore, to understand the effect of intrinsic light heterogeneity on species' population dynamics, R. communis populations exposed to variable light availability (low, intermediate, and high) were examined for performance strategies through estimation of key vegetative, eco-physiological, biochemical, and reproductive traits. Considerable variability existed in studied plant traits in response to available light. Individuals inhabiting high-light conditions exhibited high eco-physiological efficiency and reproductive performance that potentially confers population boom. Individuals exposed to low light showed poor performance in terms of eco-physiology and reproduction, which attribute to bust. However, individuals in intermediate light were observed to be indeterminate to light availability, potentially undergoing trait modulations with uncertainty of available light. Heterogeneous light availability potentially drives the boom and bust cycles in R. communis monospecific thickets. Such boom and bust cycles subsequently affect species' dominance, persistence, collapse, and/or resurgence as an aggressive colonizer in contrasting urban environments. The study fosters extensive monitoring of R. communis thickets to probe underlying mechanism(s) affecting expansions and/or collapses of colonizing populations.

  13. Metabolomic signatures distinguish the impact of formula carbohydrates on disease outcome in a preterm piglet model of NEC.

    PubMed

    Call, Lee; Stoll, Barbara; Oosterloo, Berthe; Ajami, Nadim; Sheikh, Fariha; Wittke, Anja; Waworuntu, Rosaline; Berg, Brian; Petrosino, Joseph; Olutoye, Oluyinka; Burrin, Douglas

    2018-06-19

    Major risk factors for necrotizing enterocolitis (NEC) include premature birth and formula feeding in the context of microbial colonization of the gastrointestinal tract. We previously showed that feeding formula composed of lactose vs. corn syrup solids protects against NEC in preterm pigs; however, the microbial and metabolic effects of these different carbohydrates used in infant formula has not been explored. Our objective was to characterize the effects of lactose- and corn syrup solid-based formulas on the metabolic and microbial profiles of preterm piglets and to determine whether unique metabolomic or microbiome signatures correlate with severity or incidence of NEC. Preterm piglets (103 days gestation) were given total parenteral nutrition (2 days) followed by gradual (5 days) advancement of enteral feeding of formulas matched in nutrient content but containing either lactose (LAC), corn syrup solids (CSS), or 1:1 mix (MIX). Gut contents and mucosal samples were collected and analyzed for microbial profiles by sequencing the V4 region of the 16S rRNA gene. Metabolomic profiles of cecal contents and plasma were analyzed by LC/GC mass spectrometry. NEC incidence was 14, 50, and 44% in the LAC, MIX, and CSS groups, respectively. The dominant classes of bacteria were Bacilli, Clostridia, and Gammaproteobacteria. The number of observed OTUs was lowest in colon contents of CSS-fed pigs. CSS-based formula was associated with higher Bacilli and lower Clostridium from clusters XIVa and XI in the colon. NEC was associated with decreased Gammaproteobacteria in the stomach and increased Clostridium sensu stricto in the ileum. Plasma from NEC piglets was enriched with metabolites of purine metabolism, aromatic amino acid metabolism, and bile acids. Markers of glycolysis, e.g., lactate, were increased in the cecal contents of CSS-fed pigs and in plasma of pigs which developed NEC. Feeding formula containing lactose is not completely protective against NEC, yet selects for greater microbial richness associated with changes in Bacilli and Clostridium and lower NEC incidence. We conclude that feeding preterm piglets a corn syrup solid vs. lactose-based formula increases the incidence of NEC and produces distinct metabolomic signatures despite modest changes in microbiome profiles.

  14. The cryptoendolithic microbial environment in the Ross Desert of Antarctica: mathematical models of the thermal regime

    NASA Technical Reports Server (NTRS)

    Nienow, J. A.; McKay, C. P.; Friedmann, E. I.

    1988-01-01

    Microbial activity in the Antarctic cryptoendolithic habitat is regulated primarily by temperature. Previous field studies have provided some information on the thermal regime in this habitat, but this type of information is limited by the remoteness of the site and the harsh climatic conditions. Therefore, a mathematical model of the endolithic thermal regime was constructed to augment the field data. This model enabled the parameters affecting the horizontal and altitudinal distribution of the community to be examined. The model predicts that colonization should be possible on surfaces with zenith angle less than 15 degrees. At greater zenith angles, colonization should be restricted to surfaces with azimuth angles less than 135 degrees or greater than 225 degrees. The upper elevational limit of the community should be less than 2,500 m. The thermal regime probably does not influence the zonation of the community within a rock.

  15. Rumen conditions that predispose cattle to pasture bloat.

    PubMed

    Majak, W; Howarth, R E; Cheng, K J; Hall, J W

    1983-08-01

    Rumen contents from the dorsal sac were examined before alfalfa ingestion to determine factors that predispose cattle to pasture bloat. Chlorophyll concentration, buoyancy of particulate matter, and rates of gas production were significantly higher in cattle that subsequently bloated than in those that did not. Higher chlorophyll in bloat cases indicated accumulation of suspended chloroplast particles in the dorsal sac, perhaps due to increased buoyancy of the particulate matter. The higher fermentation rates (in the presence of glucose) suggested that the latent capacity for gas production was due to microbial colonization of suspended feed particles. Chlorophyll 4 h after feeding was also higher in bloated as compared to unbloated animals. In short, the microbial colonization and retention of particulate matter provided active inocula for promoting rapid legume digestion. Consequently, gas production was enhanced when feeding commenced, but the fermentation gases were trapped by the buoyant, frothy ingesta, resulting in the condition of pasture bloat.

  16. Temporal Stability of the Human Skin Microbiome.

    PubMed

    Oh, Julia; Byrd, Allyson L; Park, Morgan; Kong, Heidi H; Segre, Julia A

    2016-05-05

    Biogeography and individuality shape the structural and functional composition of the human skin microbiome. To explore these factors' contribution to skin microbial community stability, we generated metagenomic sequence data from longitudinal samples collected over months and years. Analyzing these samples using a multi-kingdom, reference-based approach, we found that despite the skin's exposure to the external environment, its bacterial, fungal, and viral communities were largely stable over time. Site, individuality, and phylogeny were all determinants of stability. Foot sites exhibited the most variability; individuals differed in stability; and transience was a particular characteristic of eukaryotic viruses, which showed little site-specificity in colonization. Strain and single-nucleotide variant-level analysis showed that individuals maintain, rather than reacquire, prevalent microbes from the environment. Longitudinal stability of skin microbial communities generates hypotheses about colonization resistance and empowers clinical studies exploring alterations observed in disease states. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Hypolithic Microbial Community of Quartz Pavement in the High-Altitude Tundra of Central Tibet

    PubMed Central

    Wong, Fiona K. Y.; Lacap, Donnabella C.; Lau, Maggie C. Y.; Aitchison, J. C.; Cowan, Donald A.

    2010-01-01

    The hypolithic microbial community associated with quartz pavement at a high-altitude tundra location in central Tibet is described. A small-scale ecological survey indicated that 36% of quartz rocks were colonized. Community profiling using terminal restriction fragment length polymorphism revealed no significant difference in community structure among a number of colonized rocks. Real-time quantitative PCR and phylogenetic analysis of environmental phylotypes obtained from clone libraries were used to elucidate community structure across all domains. The hypolithon was dominated by cyanobacterial phylotypes (73%) with relatively low frequencies of other bacterial phylotypes, largely represented by the chloroflexi, actinobacteria, and bacteriodetes. Unidentified crenarchaeal phylotypes accounted for 4% of recoverable phylotypes, while algae, fungi, and mosses were indicated by a small fraction of recoverable phylotypes. Electronic supplementary material The online version of this article (doi:10.1007/s00248-010-9653-2) contains supplementary material, which is available to authorized users. PMID:20336290

  18. A highly diverse, desert-like microbial biocenosis on solar panels in a Mediterranean city.

    PubMed

    Dorado-Morales, Pedro; Vilanova, Cristina; Peretó, Juli; Codoñer, Francisco M; Ramón, Daniel; Porcar, Manuel

    2016-07-05

    Microorganisms colonize a wide range of natural and artificial environments although there are hardly any data on the microbial ecology of one the most widespread man-made extreme structures: solar panels. Here we show that solar panels in a Mediterranean city (Valencia, Spain) harbor a highly diverse microbial community with more than 500 different species per panel, most of which belong to drought-, heat- and radiation-adapted bacterial genera, and sun-irradiation adapted epiphytic fungi. The taxonomic and functional profiles of this microbial community and the characterization of selected culturable bacteria reveal the existence of a diverse mesophilic microbial community on the panels' surface. This biocenosis proved to be more similar to the ones inhabiting deserts than to any human or urban microbial ecosystem. This unique microbial community shows different day/night proteomic profiles; it is dominated by reddish pigment- and sphingolipid-producers, and is adapted to withstand circadian cycles of high temperatures, desiccation and solar radiation.

  19. A highly diverse, desert-like microbial biocenosis on solar panels in a Mediterranean city

    PubMed Central

    Dorado-Morales, Pedro; Vilanova, Cristina; Peretó, Juli; Codoñer, Francisco M.; Ramón, Daniel; Porcar, Manuel

    2016-01-01

    Microorganisms colonize a wide range of natural and artificial environments although there are hardly any data on the microbial ecology of one the most widespread man-made extreme structures: solar panels. Here we show that solar panels in a Mediterranean city (Valencia, Spain) harbor a highly diverse microbial community with more than 500 different species per panel, most of which belong to drought-, heat- and radiation-adapted bacterial genera, and sun-irradiation adapted epiphytic fungi. The taxonomic and functional profiles of this microbial community and the characterization of selected culturable bacteria reveal the existence of a diverse mesophilic microbial community on the panels’ surface. This biocenosis proved to be more similar to the ones inhabiting deserts than to any human or urban microbial ecosystem. This unique microbial community shows different day/night proteomic profiles; it is dominated by reddish pigment- and sphingolipid-producers, and is adapted to withstand circadian cycles of high temperatures, desiccation and solar radiation. PMID:27378552

  20. Structural Iron (II) of Basaltic Glass as an Energy Source for Zetaproteobacteria in an Abyssal Plain Environment, Off the Mid Atlantic Ridge

    PubMed Central

    Henri, Pauline A.; Rommevaux-Jestin, Céline; Lesongeur, Françoise; Mumford, Adam; Emerson, David; Godfroy, Anne; Ménez, Bénédicte

    2016-01-01

    To explore the capability of basaltic glass to support the growth of chemosynthetic microorganisms, complementary in situ and in vitro colonization experiments were performed. Microbial colonizers containing synthetic tholeitic basaltic glasses, either enriched in reduced or oxidized iron, were deployed off-axis from the Mid Atlantic Ridge on surface sediments of the abyssal plain (35°N; 29°W). In situ microbial colonization was assessed by sequencing of the 16S rRNA gene and basaltic glass alteration was characterized using Scanning Electron Microscopy, micro-X-ray Absorption Near Edge Structure at the Fe-K-edge and Raman microspectroscopy. The colonized surface of the reduced basaltic glass was covered by a rind of alteration made of iron-oxides trapped in a palagonite-like structure with thicknesses up to 150 μm. The relative abundance of the associated microbial community was dominated (39% of all reads) by a single operational taxonomic unit (OTU) that shared 92% identity with the iron-oxidizer Mariprofundus ferrooxydans PV-1. Conversely, the oxidized basaltic glass showed the absence of iron-oxides enriched surface deposits and correspondingly there was a lack of known iron-oxidizing bacteria in the inventoried diversity. In vitro, a similar reduced basaltic glass was incubated in artificial seawater with a pure culture of the iron-oxidizing M. ferrooxydans DIS-1 for 2 weeks, without any additional nutrients or minerals. Confocal Laser Scanning Microscopy revealed that the glass surface was covered by twisted stalks characteristic of this iron-oxidizing Zetaproteobacteria. This result supported findings of the in situ experiments indicating that the Fe(II) present in the basalt was the energy source for the growth of representatives of Zetaproteobacteria in both the abyssal plain and the in vitro experiment. In accordance, the surface alteration rind observed on the reduced basaltic glass incubated in situ could at least partly result from their activity. PMID:26834704

  1. Sustainable remediation: electrochemically assisted microbial dechlorination of tetrachloroethene-contaminated groundwater.

    PubMed

    Patil, Sayali S; Adetutu, Eric M; Rochow, Jacqueline; Mitchell, James G; Ball, Andrew S

    2014-01-01

    Microbial electric systems (MESs) hold significant promise for the sustainable remediation of chlorinated solvents such as tetrachlorethene (perchloroethylene, PCE). Although the bio-electrochemical potential of some specific bacterial species such as Dehalcoccoides and Geobacteraceae have been exploited, this ability in other undefined microorganisms has not been extensively assessed. Hence, the focus of this study was to investigate indigenous and potentially bio-electrochemically active microorganisms in PCE-contaminated groundwater. Lab-scale MESs were fed with acetate and carbon electrode/PCE as electron donors and acceptors, respectively, under biostimulation (BS) and BS-bioaugmentation (BS-BA) regimes. Molecular analysis of the indigenous groundwater community identified mainly Spirochaetes, Firmicutes, Bacteroidetes, and γ and δ-Proteobacteria. Environmental scanning electron photomicrographs of the anode surfaces showed extensive indigenous microbial colonization under both regimes. This colonization and BS resulted in 100% dechlorination in both treatments with complete dechlorination occurring 4 weeks earlier in BS-BA samples and up to 11.5 μA of current being generated. The indigenous non-Dehalococcoides community was found to contribute significantly to electron transfer with ∼61% of the current generated due to their activities. This study therefore shows the potential of the indigenous non-Dehalococcoides bacterial community in bio-electrochemically reducing PCE that could prove to be a cost-effective and sustainable bioremediation practice. © 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  2. Trehalose promotes Rhodococcus sp. strain YYL colonization in activated sludge under tetrahydrofuran (THF) stress

    PubMed Central

    He, Zhixing; Zhang, Kai; Wang, Haixia; Lv, Zhenmei

    2015-01-01

    Few studies have focused on the role of compatible solutes in changing the microbial community structure in bioaugmentation systems. In this study, we investigated the influence of trehalose as a biostimulant on the microbial community in tetrahydrofuran (THF)-treated wastewater bioaugmentation systems with Rhodococcus sp. YYL. Functional gene profile changes were used to study the variation in the microbial community. Soluble di-iron monooxygenases (SDIMO), particularly group-5 SDIMOs (i.e., tetrahydrofuran and propane monooxygenases), play a significant role in the initiation of the ring cleavage of tetrahydrofuran. Group-5 SDIMOs genes are enriched upon trehalose addition, and exogenous tetrahydrofuran monooxygenase (thmA) genes can successfully colonize bioaugmentation systems. Cytochrome P450 monooxygenases (P450s) have a significant role in catalyzing the region- and stereospecific oxidation of non-activated hydrocarbons, and THF was reported to inhibit P450s in the environment. The CYP153 family was chosen as a representative P450 to study the inhibitory effects of THF. The results demonstrated that CYP153 family genes exhibited significant changes upon THF treatment and that trehalose helped maintain a rich diversity and high abundance of CYP153 family genes. Biostimulation with trehalose could alleviate the negative effects of THF stress on microbial diversity in bioaugmentation systems. Our results indicated that trehalose as a compatible solute plays a significant role for environmental strains under extreme conditions. PMID:26029182

  3. Cable Bacteria and the Bioelectrochemical Snorkel: The Natural and Engineered Facets Playing a Role in Hydrocarbons Degradation in Marine Sediments

    PubMed Central

    Matturro, Bruna; Cruz Viggi, Carolina; Aulenta, Federico; Rossetti, Simona

    2017-01-01

    The composition and metabolic traits of the microbial communities acting in an innovative bioelectrochemical system were here investigated. The system, known as Oil Spill Snorkel, was recently developed to stimulate the oxidative biodegradation of petroleum hydrocarbons in anoxic marine sediments. Next Generation Sequencing was used to describe the microbiome of the bulk sediment and of the biofilm growing attached to the surface of the electrode. The analysis revealed that sulfur cycling primarily drives the microbial metabolic activities occurring in the bioelectrochemical system. In the anoxic zone of the contaminated marine sediment, petroleum hydrocarbon degradation occurred under sulfate-reducing conditions and was lead by different families of Desulfobacterales (46% of total OTUs). Remarkably, the occurrence of filamentous Desulfubulbaceae, known to be capable to vehicle electrons deriving from sulfide oxidation to oxygen serving as a spatially distant electron acceptor, was demonstrated. Differently from the sediment, which was mostly colonized by Deltaproteobacteria, the biofilm at the anode hosted, at high extent, members of Alphaproteobacteria (59%) mostly affiliated to Rhodospirillaceae family (33%) and including several known sulfur- and sulfide-oxidizing genera. Overall, we showed the occurrence in the system of a variety of electroactive microorganisms able to sustain the contaminant biodegradation alone or by means of an external conductive support through the establishment of a bioelectrochemical connection between two spatially separated redox zones and the preservation of an efficient sulfur cycling. PMID:28611751

  4. Lateral gene transfer in a heavy metal-contaminated-groundwater microbial community

    DOE PAGES

    Hemme, Christopher L.; Green, Stefan J.; Rishishwar, Lavanya; ...

    2016-04-05

    Here, unraveling the drivers controlling the response and adaptation of biological communities to environmental change, especially anthropogenic activities, is a central but poorly understood issue in ecology and evolution. Comparative genomics studies suggest that lateral gene transfer (LGT) is a major force driving microbial genome evolution, but its role in the evolution of microbial communities remains elusive.

  5. Drivers of symbiont diversity in freshwater snails: a comparative analysis of resource availability, community heterogeneity, and colonization opportunities

    PubMed Central

    McCaffrey, Keegan; Johnson, Pieter T. J.

    2017-01-01

    Decades of community ecology research have highlighted the importance of resource availability, habitat heterogeneity, and colonization opportunities in driving biodiversity. Less clear, however, is whether a similar suite of factors explains the diversity of symbionts. Here, we used a hierarchical dataset involving 12,712 freshwater snail hosts representing five species to test the relative importance of potential factors in driving symbiont richness. Specifically, we used model selection to assess the explanatory power of variables related to host species identity, resource availability (average body size, host density), ecological heterogeneity (richness of hosts and other taxa), and colonization opportunities (wetland size and amount of neighboring wetland area) on symbiont richness in 146 snail host populations in California, USA. We encountered a total of 24 taxa of symbionts, including both obligatory parasites such as digenetic trematodes as well as more commensal, mutualistic, or opportunistic groups such as aquatic insect larvae, annelids, and leeches. After validating richness estimates per host population using species accumulative curves, we detected positive effects on symbiont richness from host body size, total richness of the aquatic community, and colonization opportunities. Neither snail density nor the richness of snail species accounted for significant variation in symbiont diversity. Host species identity also affected symbiont richness, with higher gamma and average alpha diversity among more common host species and with higher local abundances. These findings highlight the importance of multiple, concurrent factors in driving symbiont richness that extend beyond epidemiological measures of host abundance or host diversity alone. PMID:28039528

  6. Ursodeoxycholic acid and lithocholic acid exert anti-inflammatory actions in the colon.

    PubMed

    Ward, Joseph B J; Lajczak, Natalia K; Kelly, Orlaith B; O'Dwyer, Aoife M; Giddam, Ashwini K; Ní Gabhann, Joan; Franco, Placido; Tambuwala, Murtaza M; Jefferies, Caroline A; Keely, Simon; Roda, Aldo; Keely, Stephen J

    2017-06-01

    Ward JB, Lajczak NK, Kelly OB, O'Dwyer AM, Giddam AK, Ní Gabhann J, Franco P, Tambuwala MM, Jefferies CA, Keely S, Roda A, Keely SJ. Ursodeoxycholic acid and lithocholic acid exert anti-inflammatory actions in the colon. Am J Physiol Gastrointest Liver Physiol 312: G550-G558, 2017. First published March 30, 2017; doi:10.1152/ajpgi.00256.2016.-Inflammatory bowel diseases (IBD) comprise a group of common and debilitating chronic intestinal disorders for which currently available therapies are often unsatisfactory. The naturally occurring secondary bile acid, ursodeoxycholic acid (UDCA), has well-established anti-inflammatory and cytoprotective actions and may therefore be effective in treating IBD. We aimed to investigate regulation of colonic inflammatory responses by UDCA and to determine the potential impact of bacterial metabolism on its therapeutic actions. The anti-inflammatory efficacy of UDCA, a nonmetabolizable analog, 6α-methyl-UDCA (6-MUDCA), and its primary colonic metabolite lithocholic acid (LCA) was assessed in the murine dextran sodium sulfate (DSS) model of mucosal injury. The effects of bile acids on cytokine (TNF-α, IL-6, Il-1β, and IFN-γ) release from cultured colonic epithelial cells and mouse colonic tissue in vivo were investigated. Luminal bile acids were measured by gas chromatography-mass spectrometry. UDCA attenuated release of proinflammatory cytokines from colonic epithelial cells in vitro and was protective against the development of colonic inflammation in vivo. In contrast, although 6-MUDCA mimicked the effects of UDCA on epithelial cytokine release in vitro, it was ineffective in preventing inflammation in the DSS model. In UDCA-treated mice, LCA became the most common colonic bile acid. Finally, LCA treatment more potently inhibited epithelial cytokine release and protected against DSS-induced mucosal inflammation than did UDCA. These studies identify a new role for the primary metabolite of UDCA, LCA, in preventing colonic inflammation and suggest that microbial metabolism of UDCA is necessary for the full expression of its protective actions. NEW & NOTEWORTHY On the basis of its cytoprotective and anti-inflammatory actions, the secondary bile acid ursodeoxycholic acid (UDCA) has well-established uses in both traditional and Western medicine. We identify a new role for the primary metabolite of UDCA, lithocholic acid, as a potent inhibitor of intestinal inflammatory responses, and we present data to suggest that microbial metabolism of UDCA is necessary for the full expression of its protective effects against colonic inflammation. Copyright © 2017 the American Physiological Society.

  7. Microbial community in a precursory scenario of growing Tagetes patula in a lunar greenhouse

    NASA Astrophysics Data System (ADS)

    Kozyrovska, N. O.; Korniichuk, O. S.; Voznyuk, T. M.; Kovalchuk, M. V.; Lytvynenko, T. L.; Rogutskyy, I. S.; Mytrokhyn, O. V.; Estrella-Liopis, V. R.; Borodinova, T. I.; Mashkovska, S. P.; Foing, B. H.; Kordyum, V. A.

    A confined prototype plant-microbial system is elaborated for demonstration of growing pioneer plants in a lunar greenhouse. A precursory scenario of growing Tagetes patula L. in a substrate anorthosite which is similar mineralogically and chemically to lunar silicate rocks includes the use of a microbial community. Microorganisms served for preventive substrate colonization to avoid infection by deleterious microorganisms as well as for bioleaching and delivering of nutritional elements from anorthosite to plants. A model consortium of a siliceous bacterium, biocontrol agents, and arbuscular mycorrhizal fungi provided an acceptable growth and blossoming of Tagetes patula L. under growth limiting factors in terrestrial conditions.

  8. The Impact of Helicobacter pylori Infection on the Gastric Microbiota of the Rhesus Macaque

    PubMed Central

    Martin, Miriam E.; Bhatnagar, Srijak; George, Michael D.; Paster, Bruce J.; Canfield, Don R.; Eisen, Jonathan A.; Solnick, Jay V.

    2013-01-01

    Helicobacter pylori colonization is highly prevalent among humans and causes significant gastric disease in a subset of those infected. When present, this bacterium dominates the gastric microbiota of humans and induces antimicrobial responses in the host. Since the microbial context of H. pylori colonization influences the disease outcome in a mouse model, we sought to assess the impact of H. pylori challenge upon the pre-existing gastric microbial community members in the rhesus macaque model. Deep sequencing of the bacterial 16S rRNA gene identified a community profile of 221 phylotypes that was distinct from that of the rhesus macaque distal gut and mouth, although there were taxa in common. High proportions of both H. pylori and H. suis were observed in the post-challenge libraries, but at a given time, only one Helicobacter species was dominant. However, the relative abundance of non-Helicobacter taxa was not significantly different before and after challenge with H. pylori. These results suggest that while different gastric species may show competitive exclusion in the gastric niche, the rhesus gastric microbial community is largely stable despite immune and physiological changes due to H. pylori infection. PMID:24116104

  9. Implant-abutment gap versus microbial colonization: Clinical significance based on a literature review.

    PubMed

    Passos, Sheila Pestana; Gressler May, Liliana; Faria, Renata; Özcan, Mutlu; Bottino, Marco Antonio

    2013-10-01

    Microorganisms from the oral cavity may settle at the implant-abutment interface (IAI). As a result, tissue inflammation could occur around these structures. The databases MEDLINE/PubMed and PubMed Central were used to identify articles published from 1981 through 2012 related to the microbial colonization in the implant-abutment gap and its consequence in terms of crest bone loss and osseointegration. The following considerations could be put forward, with respect to the clinical importance of IAI: (a) the space present at the IAI seems to allow bacterial leakage to occur, in spite of the size of this space; (b) bacterial leakage seems to occur at the IAI, irrespective of the type of connection. More studies are necessary to clarify the relationship between leakage at IAI and abutment connection designs; (c) losses at the peri-implant bone crests cannot be related to the IAI size, since few studies have shown no relationship. Also, the microbial leakage at the IAI cannot be related to the bone crest loss, since there are no articles reporting this relationship; remains controversial the influence of the IAI position on the bone crest losses. Copyright © 2013 Wiley Periodicals, Inc.

  10. Gut Microbiota and Probiotics in Colon Tumorigenesis

    PubMed Central

    Zhu, Yuanmin; Luo, T. Michelle; Jobin, Christian; Young, Howard A.

    2011-01-01

    The human gastrointestinal tract harbors a complex and abundant microbial community reaching as high as 1013–1014 microorganisms in the colon. This endogenous microbiota forms a symbiotic relationship with their eukaryotic host and this close partnership helps maintain homeostasis by performing essential and non-redundant tasks (e.g. nutrition/energy and, immune system balance, pathogen exclusion). Although this relationship is essential and beneficial to the host, various events (e.g. infection, diet, stress, inflammation) may impact microbial composition, leading to the formation of a dysbiotic microbiota, further impacting on health and disease states. For example, Crohn’s disease and ulcerative colitis, collectively termed inflammatory bowel diseases (IBD), have been associated with the establishment of a dysbiotic microbiota. In addition, extra-intestinal disorders such as obesity and metabolic syndrome are also associated with the development of a dysbiotic microbiota. Consequently, there is an increasing interest in harnessing the power of the microbiome and modulating its composition as a means to alleviate intestinal pathologies/disorders and maintain health status. In this review we will discuss the emerging relationship between the microbiota and development of colorectal cancer as well as present evidence that microbial manipulation (probiotic, prebiotic) impacts disease development. PMID:21741763

  11. Spatial organization of the gastrointestinal microbiota in urban Canada geese

    USGS Publications Warehouse

    Drovetski, Sergei V.; O'Mahoney, Michael; Ransome, Emma J.; Matterson, Kenan O.; Lim, Haw Chuan; Chesser, Terry; Graves, Gary R.

    2018-01-01

    Recent reviews identified the reliance on fecal or cloacal samples as a significant limitation hindering our understanding of the avian gastrointestinal (gut) microbiota and its function. We investigated the microbiota of the esophagus, duodenum, cecum, and colon of a wild urban population of Canada goose (Branta canadensis). From a population sample of 30 individuals, we sequenced the V4 region of the 16S SSU rRNA on an Illumina MiSeq and obtained 8,628,751 sequences with a median of 76,529 per sample. These sequences were assigned to 420 bacterial OTUs and a single archaeon. Firmicutes, Proteobacteria, and Bacteroidetes accounted for 90% of all sequences. Microbiotas from the four gut regions differed significantly in their richness, composition, and variability among individuals. Microbial communities of the esophagus were the most distinctive whereas those of the colon were the least distinctive, reflecting the physical downstream mixing of regional microbiotas. The downstream mixing of regional microbiotas was also responsible for the majority of observed co-occurrence patterns among microbial families. Our results indicate that fecal and cloacal samples inadequately represent the complex patterns of richness, composition, and variability of the gut microbiota and obscure patterns of co-occurrence of microbial lineages.

  12. Characterization of microbial metabolism of Syrah grape products in an in vitro colon model using targeted and non-targeted analytical approaches.

    PubMed

    Aura, Anna-Marja; Mattila, Ismo; Hyötyläinen, Tuulia; Gopalacharyulu, Peddinti; Cheynier, Veronique; Souquet, Jean-Marc; Bes, Magali; Le Bourvellec, Carine; Guyot, Sylvain; Orešič, Matej

    2013-03-01

    Syrah red grapes are used in the production of tannin-rich red wines. Tannins are high molecular weight molecules, proanthocyanidins (PAs), and poorly absorbed in the upper intestine. In this study, gut microbial metabolism of Syrah grape phenolic compounds was investigated. Syrah grape pericarp was subjected to an enzymatic in vitro digestion model, and red wine and grape skin PA fraction were prepared. Microbial conversion was screened using an in vitro colon model with faecal microbiota, by measurement of short-chain fatty acids by gas chromatography (GC) and microbial phenolic metabolites using GC with mass detection (GC-MS). Red wine metabolites were further profiled using two-dimensional GC mass spectrometry (GCxGC-TOFMS). In addition, the effect of PA structure and dose on conversion efficiency was investigated by GC-MS. Red wine exhibited a higher degree of C1-C3 phenolic acid formation than PA fraction or grape pericarp powders. Hydroxyphenyl valeric acid (flavanols and PAs as precursors) and 3,5-dimethoxy-4-hydroxybenzoic acid (anthocyanin as a precursor) were identified from the red wine metabolite profile. In the absence of native grape pericarp or red wine matrix, the isolated PAs were found to be effective in the dose-dependent inhibition of microbial conversions and short-chain fatty acid formation. Metabolite profiling was complementary to targeted analysis. The identified metabolites had biological relevance, because the structures of the metabolites resembled fragments of their grape phenolic precursors or were in agreement with literature data.

  13. Structural and functional alterations in the colonic microbiome of the rat in a model of stress induced irritable bowel syndrome

    PubMed Central

    Fourie, Nicolaas H.; Wang, Dan; Abey, Sarah K.; Creekmore, Amy L.; Hong, Shuangsong; Martin, Christiana G.; Wiley, John W.

    2017-01-01

    ABSTRACT Stress is known to perturb the microbiome and exacerbate irritable bowel syndrome (IBS) associated symptoms. Characterizing structural and functional changes in the microbiome is necessary to understand how alterations affect the biomolecular environment of the gut in IBS. Repeated water avoidance (WA) stress was used to induce IBS-like symptoms in rats. The colon-mucosa associated microbiome was characterized in 13 stressed and control animals by 16S sequencing. In silico analysis of the functional domains of microbial communities was done by inferring metagenomic profiles from 16S data. Microbial communities and functional profiles were compared between conditions. WA animals exhibited higher α-diversity and moderate divergence in community structure (β-diversity) compared with controls. Specific clades and taxa were consistently and significantly modified in the WA animals. The WA microbiome was particularly enriched in Proteobacteria and depleted in several beneficial taxa. A decreased capacity in metabolic domains, including energy- and lipid-metabolism, and an increased capacity for fatty acid and sulfur metabolism was inferred for the WA microbiome. The stressed condition favored the proliferation of a greater diversity of microbes that appear to be functionally similar, resulting in a functionally poorer microbiome with implications for epithelial health. Taxa, with known beneficial effects, were found to be depleted, which supports their relevance as therapeutic agents to restore microbial health. Microbial sulfur metabolism may form a key component of visceral nerve sensitization pathways and is therefore of interest as a target metabolic domain in microbial ecological restoration. PMID:28059627

  14. The effect of polyvinylpyrrolidone-sodium hyaluronate gel (Gelclair) on oral microbial colonization and pain control compared with other rinsing solutions in patients with oral mucositis after allogeneic stem cells transplantation

    PubMed Central

    Vokurka, Samuel; Skardova, Jana; Hruskova, Renata; Kabatova-Maxova, Klara; Svoboda, Tomas; Bystricka, Eva; Steinerova, Katerina; Koza, Vladimir

    2011-01-01

    Summary Background Gelclair is an oral lubricating gel used in the management of oral mucositis (OM). We evaluated its efficacy, tolerance and impact on oral cavity microbial colonization in patients with OM after allogeneic hematopoietic stem cells transplantation. Material/Method Gelclair was administered in a group of 22 patients with active OM. A control group of 15 patients used other rinsing solutions (chlorhexidine, benzydamine, salvia). Tests with oral cavity swabs for microbiology analysis were performed once a week. Results The characteristics of OM in both groups were comparable, and rinsing solutions had satisfactory tolerability. There was no difference in the median improvement of oral intake and OM-related pain relief, which was assessed mostly as “slight effect”. In the Gelclair group, the effect duration was longer (median 3 [0–5] vs. 1 [0–3] hours, p=0.001). There was significant increase of Enterococcus faecalis and Candida sp. colonization of the oral cavity over the course of the hospitalization and significantly reduced incidence of such colonization in patients with OM in the Gelclair group: 1/22 (5%) vs. 6/15 (40%), p=0.01. In vitro tests showed inhibited growth of Enterococcus faecalis and Candida sp. colonies within the area of the Gelclair application. Conclusions Gelclair may be individually helpful in the management of OM and pain in patients after allogeneic stem cells transplantation. Its use did not lead to worsened oral bacterial and yeast colonization and probably even helped to protect mucosa from Enterococcus and Candida sp. Further studies based on larger cohorts are needed. PMID:21959611

  15. Acetogenic and Sulfate-Reducing Bacteria Inhabiting the Rhizoplane and Deep Cortex Cells of the Sea Grass Halodule wrightii†

    PubMed Central

    Küsel, Kirsten; Pinkart, Holly C.; Drake, Harold L.; Devereux, Richard

    1999-01-01

    Recent declines in sea grass distribution underscore the importance of understanding microbial community structure-function relationships in sea grass rhizospheres that might affect the viability of these plants. Phospholipid fatty acid analyses showed that sulfate-reducing bacteria and clostridia were enriched in sediments colonized by the sea grasses Halodule wrightii and Thalassia testudinum compared to an adjacent unvegetated sediment. Most-probable-number analyses found that in contrast to butyrate-producing clostridia, acetogens and acetate-utilizing sulfate reducers were enriched by an order of magnitude in rhizosphere sediments. Although sea grass roots are oxygenated in the daytime, colorimetric root incubation studies demonstrated that acetogenic O-demethylation and sulfidogenic iron precipitation activities were tightly associated with washed, sediment-free H. wrightii roots. This suggests that the associated anaerobes are able to tolerate exposure to oxygen. To localize and quantify the anaerobic microbial colonization, root thin sections were hybridized with newly developed 33P-labeled probes that targeted (i) low-G+C-content gram-positive bacteria, (ii) cluster I species of clostridia, (iii) species of Acetobacterium, and (iv) species of Desulfovibrio. Microautoradiography revealed intercellular colonization of the roots by Acetobacterium and Desulfovibrio species. Acetogenic bacteria occurred mostly in the rhizoplane and outermost cortex cell layers, and high numbers of sulfate reducers were detected on all epidermal cells and inward, colonizing some 60% of the deepest cortex cells. Approximately 30% of epidermal cells were colonized by bacteria that hybridized with an archaeal probe, strongly suggesting the presence of methanogens. Obligate anaerobes within the roots might contribute to the vitality of sea grasses and other aquatic plants and to the biogeochemistry of the surrounding sediment. PMID:10543830

  16. The microbiota metabolite indole inhibits Salmonella virulence: Involvement of the PhoPQ two-component system.

    PubMed

    Kohli, Nandita; Crisp, Zeni; Riordan, Rebekah; Li, Michael; Alaniz, Robert C; Jayaraman, Arul

    2018-01-01

    The microbial community present in the gastrointestinal tract is an important component of the host defense against pathogen infections. We previously demonstrated that indole, a microbial metabolite of tryptophan, reduces enterohemorrhagic Escherichia coli O157:H7 attachment to intestinal epithelial cells and biofilm formation, suggesting that indole may be an effector/attenuator of colonization for a number of enteric pathogens. Here, we report that indole attenuates Salmonella Typhimurium (Salmonella) virulence and invasion as well as increases resistance to colonization in host cells. Indole-exposed Salmonella colonized mice less effectively compared to solvent-treated controls, as evident by competitive index values less than 1 in multiple organs. Indole-exposed Salmonella demonstrated 160-fold less invasion of HeLa epithelial cells and 2-fold less invasion of J774A.1 macrophages compared to solvent-treated controls. However, indole did not affect Salmonella intracellular survival in J774A.1 macrophages suggesting that indole primarily affects Salmonella invasion. The decrease in invasion was corroborated by a decrease in expression of multiple Salmonella Pathogenicity Island-1 (SPI-1) genes. We also identified that the effect of indole was mediated by both PhoPQ-dependent and independent mechanisms. Indole also synergistically enhanced the inhibitory effect of a short chain fatty acid cocktail on SPI-1 gene expression. Lastly, indole-treated HeLa cells were 70% more resistant to Salmonella invasion suggesting that indole also increases resistance of epithelial cells to colonization. Our results demonstrate that indole is an important microbiota metabolite that has direct anti-infective effects on Salmonella and host cells, revealing novel mechanisms of pathogen colonization resistance.

  17. The microbiota metabolite indole inhibits Salmonella virulence: Involvement of the PhoPQ two-component system

    PubMed Central

    Kohli, Nandita; Crisp, Zeni; Riordan, Rebekah; Li, Michael; Alaniz, Robert C.

    2018-01-01

    The microbial community present in the gastrointestinal tract is an important component of the host defense against pathogen infections. We previously demonstrated that indole, a microbial metabolite of tryptophan, reduces enterohemorrhagic Escherichia coli O157:H7 attachment to intestinal epithelial cells and biofilm formation, suggesting that indole may be an effector/attenuator of colonization for a number of enteric pathogens. Here, we report that indole attenuates Salmonella Typhimurium (Salmonella) virulence and invasion as well as increases resistance to colonization in host cells. Indole-exposed Salmonella colonized mice less effectively compared to solvent-treated controls, as evident by competitive index values less than 1 in multiple organs. Indole-exposed Salmonella demonstrated 160-fold less invasion of HeLa epithelial cells and 2-fold less invasion of J774A.1 macrophages compared to solvent-treated controls. However, indole did not affect Salmonella intracellular survival in J774A.1 macrophages suggesting that indole primarily affects Salmonella invasion. The decrease in invasion was corroborated by a decrease in expression of multiple Salmonella Pathogenicity Island-1 (SPI-1) genes. We also identified that the effect of indole was mediated by both PhoPQ-dependent and independent mechanisms. Indole also synergistically enhanced the inhibitory effect of a short chain fatty acid cocktail on SPI-1 gene expression. Lastly, indole-treated HeLa cells were 70% more resistant to Salmonella invasion suggesting that indole also increases resistance of epithelial cells to colonization. Our results demonstrate that indole is an important microbiota metabolite that has direct anti-infective effects on Salmonella and host cells, revealing novel mechanisms of pathogen colonization resistance. PMID:29342189

  18. Giardia Alters Commensal Microbial Diversity throughout the Murine Gut

    PubMed Central

    Barash, N. R.; Maloney, J. G.

    2017-01-01

    ABSTRACT Giardia lamblia is the most frequently identified protozoan cause of intestinal infection. Over 200 million people are estimated to have acute or chronic giardiasis, with infection rates approaching 90% in areas where Giardia is endemic. Despite its significance in global health, the mechanisms of pathogenesis associated with giardiasis remain unclear, as the parasite neither produces a known toxin nor induces a robust inflammatory response. Giardia colonization and proliferation in the small intestine of the host may, however, disrupt the ecological homeostasis of gastrointestinal commensal microbes and contribute to diarrheal disease associated with giardiasis. To evaluate the impact of Giardia infection on the host microbiota, we used culture-independent methods to quantify shifts in the diversity of commensal microbes throughout the gastrointestinal tract in mice infected with Giardia. We discovered that Giardia's colonization of the small intestine causes a systemic dysbiosis of aerobic and anaerobic commensal bacteria. Specifically, Giardia colonization is typified by both expansions in aerobic Proteobacteria and decreases in anaerobic Firmicutes and Melainabacteria in the murine foregut and hindgut. Based on these shifts, we created a quantitative index of murine Giardia-induced microbial dysbiosis. This index increased at all gut regions during the duration of infection, including both the proximal small intestine and the colon. Giardiasis could be an ecological disease, and the observed dysbiosis may be mediated directly via the parasite's unique anaerobic fermentative metabolism or indirectly via parasite induction of gut inflammation. This systemic alteration of murine gut commensal diversity may be the cause or the consequence of inflammatory and metabolic changes throughout the gut. Shifts in the commensal microbiota may explain observed variations in giardiasis between hosts with respect to host pathology, degree of parasite colonization, infection initiation, and eventual clearance. PMID:28396324

  19. Prebiotic effect of fructooligosaccharide in the simulator of the human intestinal microbial ecosystem (SHIME® model).

    PubMed

    Sivieri, Katia; Morales, Martha L Villarreal; Saad, Susana M I; Adorno, Maria A Tallarico; Sakamoto, Isabel Kimiko; Rossi, Elizeu A

    2014-08-01

    Maintaining "gut health" is a goal for scientists throughout the world. Therefore, microbiota management models for testing probiotics, prebiotics, and synbiotics have been developed. The SHIME(®) model was used to study the effect of fructooligosaccharide (FOS) on the fermentation pattern of the colon microbiota. Initially, an inoculum prepared from human feces was introduced into the reactor vessels and stabilized over 2 weeks using a culture medium. This stabilization period was followed by a 2-week control period during which the microbiota was monitored. The microbiota was then subjected to a 4-week treatment period by adding 5 g/day-1 FOS to vessel one (the "stomach" compartment). Plate counts, Denaturing Gradient Gel Electrophoresis (DGGE), short-chain fatty acid (SCFA), and ammonium analyses were used to observe the influence of FOS treatment in simulated colon compartments. A significant increase (P<.01) in the Lactobacillus spp. and Bifidobacterium spp. populations was observed during the treatment period. The DGGE obtained showed the overall microbial community was changed in the ascending colon compartment of the SHIME reactor. FOS induced increase of the SCFA concentration (P<.05) during the treatment period, mainly due to significant increased levels of acetic and butyric acids. However, ammonium concentrations increased during the same period (P<.01). This study indicates the usefulness of in vitro methods that simulate the colon region as part of research towards the improvement of human health.

  20. Role of Lactobacillus reuteri in Human Health and Diseases

    PubMed Central

    Mu, Qinghui; Tavella, Vincent J.; Luo, Xin M.

    2018-01-01

    Lactobacillus reuteri (L. reuteri) is a well-studied probiotic bacterium that can colonize a large number of mammals. In humans, L. reuteri is found in different body sites, including the gastrointestinal tract, urinary tract, skin, and breast milk. The abundance of L. reuteri varies among different individuals. Several beneficial effects of L. reuteri have been noted. First, L. reuteri can produce antimicrobial molecules, such as organic acids, ethanol, and reuterin. Due to its antimicrobial activity, L. reuteri is able to inhibit the colonization of pathogenic microbes and remodel the commensal microbiota composition in the host. Second, L. reuteri can benefit the host immune system. For instance, some L. reuteri strains can reduce the production of pro-inflammatory cytokines while promoting regulatory T cell development and function. Third, bearing the ability to strengthen the intestinal barrier, the colonization of L. reuteri may decrease the microbial translocation from the gut lumen to the tissues. Microbial translocation across the intestinal epithelium has been hypothesized as an initiator of inflammation. Therefore, inflammatory diseases, including those located in the gut as well as in remote tissues, may be ameliorated by increasing the colonization of L. reuteri. Notably, the decrease in the abundance of L. reuteri in humans in the past decades is correlated with an increase in the incidences of inflammatory diseases over the same period of time. Direct supplementation or prebiotic modulation of L. reuteri may be an attractive preventive and/or therapeutic avenue against inflammatory diseases. PMID:29725324

  1. Effect of anti-biofouling potential of multi-walled carbon nanotubes-filled polydimethylsiloxane composites on pioneer microbial colonization.

    PubMed

    Sun, Yuan; Lang, Yanhe; Sun, Qian; Liang, Shuang; Liu, Yongkang; Zhang, Zhizhou

    2016-09-01

    In this paper, two carbon nanotube (CNT) nanofillers, namely the multi-walled carbon nanotubes (MWCNTs) and the carboxyl-modified MWCNTs (cMWCNTs), were introduced into the polydimethylsiloxane (PDMS) matrix respectively, in order to produce the PDMS composites with reinforced anti-biofouling properties. The anti-biofouling capacity of the silicone-based coatings, including the unfilled PDMS (P0), the MWCNTs-filled PDMS (PM) and the cMWCNTs-filled PDMS (PC), was examined via the field assays conducted in Weihai, China. The effect of different silicone-based coatings on the dynamic variations of the pioneer microbial-community diversity was analyzed using the single-strand conformation polymorphism (SSCP) technique. The PM and PC surfaces have exhibited excellent anti-biofouling properties in contrast to that of the PDMS surface, with extremely low attachment of the early colonizers, such as juvenile invertebrates, seaweeds and algae sporelings. The PM and PC surfaces can effectively prevent biofouling for more than 12 weeks. These combined results suggest that the incorporation of MWCNTs or cMWCNTs into the PDMS matrix can dramatically reinforce its anti-biofouling properties. The SSCP analysis reveals that compared with the PDMS surfaces, the PM and PC surfaces have strong modulating effect on the pioneer prokaryotic and eukaryotic communities, particularly on the colonization of pioneer eukaryotic microbes. The significantly reduced pioneer eukaryotic-community diversity may contribute to the weakening of the subsequent colonization of macrofoulers. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Gut bacteria are rarely shared by co-hospitalized premature infants, regardless of necrotizing enterocolitis development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raveh-Sadka, Tali; Thomas, Brian C.; Singh, Andrea

    Premature infants are highly vulnerable to aberrant gastrointestinal tract colonization, a process that may lead to diseases like necrotizing enterocolitis. Thus, spread of potential pathogens among hospitalized infants is of great concern. Here, we reconstructed hundreds of high-quality genomes of microorganisms that colonized co-hospitalized premature infants, assessed their metabolic potential, and tracked them over time to evaluate bacterial strain dispersal among infants. We compared microbial communities in infants who did and did not develop necrotizing enterocolitis. Surprisingly, while potentially pathogenic bacteria of the same species colonized many infants, our genome-resolved analysis revealed that strains colonizing each baby were typically distinct.more » In particular, no strain was common to all infants who developed necrotizing enterocolitis. The paucity of shared gut colonizers suggests the existence of significant barriers to the spread of bacteria among infants. Furthermore, we demonstrate that strain-resolved comprehensive community analysis can be accomplished on potentially medically relevant time scales.« less

  3. Gut bacteria are rarely shared by co-hospitalized premature infants, regardless of necrotizing enterocolitis development

    DOE PAGES

    Raveh-Sadka, Tali; Thomas, Brian C.; Singh, Andrea; ...

    2015-03-03

    Premature infants are highly vulnerable to aberrant gastrointestinal tract colonization, a process that may lead to diseases like necrotizing enterocolitis. Thus, spread of potential pathogens among hospitalized infants is of great concern. Here, we reconstructed hundreds of high-quality genomes of microorganisms that colonized co-hospitalized premature infants, assessed their metabolic potential, and tracked them over time to evaluate bacterial strain dispersal among infants. We compared microbial communities in infants who did and did not develop necrotizing enterocolitis. Surprisingly, while potentially pathogenic bacteria of the same species colonized many infants, our genome-resolved analysis revealed that strains colonizing each baby were typically distinct.more » In particular, no strain was common to all infants who developed necrotizing enterocolitis. The paucity of shared gut colonizers suggests the existence of significant barriers to the spread of bacteria among infants. Furthermore, we demonstrate that strain-resolved comprehensive community analysis can be accomplished on potentially medically relevant time scales.« less

  4. Ecological Interactions of Bacteria in the Human Gut

    NASA Astrophysics Data System (ADS)

    Falony, Gwen; de Vuyst, Luc

    The colon or large intestine is one of the most important organs of the human body (Macfarlane and Cummings, 1991). Moreover, its inhabitants, the colon microbiota, are the key elements of the human digestive ecosystem. The vast complexity of the human large-intestinal microbiota has inspired researchers to consider it as an organ itself, located inside the colon and acquired postnatally (Bäckhed et al., 2005; Zocco et al., 2007). From a physiologist's point of view, this image of the colon microbiota is relevant: like an organ, it is composed of different cell lineages that communicate with both one another and the host; it consumes, stores, and redistributes energy; it mediates physiologically important chemical transformations; and it is able to maintain and repair itself through self-replication (Bäckhed et al., 2005). As a microbial organ, the human colon community does not only broaden the digestive abilities of the host (Gill et al., 2006), but also influences body processes far beyond digestion (Roberfroid, 2005b; Turnbaugh et al., 2007).

  5. Transported biofilms and their influence on subsequent macrofouling colonization.

    PubMed

    Sweat, L Holly; Swain, Geoffrey W; Hunsucker, Kelli Z; Johnson, Kevin B

    2017-05-01

    Biofilm organisms such as diatoms are potential regulators of global macrofouling dispersal because they ubiquitously colonize submerged surfaces, resist antifouling efforts and frequently alter larval recruitment. Although ships continually deliver biofilms to foreign ports, it is unclear how transport shapes biofilm microbial structure and subsequent macrofouling colonization. This study demonstrates that different ship hull coatings and transport methods change diatom assemblage composition in transported coastal marine biofilms. Assemblages carried on the hull experienced significant cell losses and changes in composition through hydrodynamic stress, whereas those that underwent sheltered transport, even through freshwater, were largely unaltered. Coatings and their associated biofilms shaped distinct macrofouling communities and affected recruitment for one third of all species, while biofilms from different transport treatments had little effect on macrofouling colonization. These results demonstrate that transport conditions can shape diatom assemblages in biofilms carried by ships, but the properties of the underlying coatings are mainly responsible for subsequent macrofouling. The methods by which organisms colonize and are transferred by ships have implications for their distribution, establishment and invasion success.

  6. Gut bacteria are rarely shared by co-hospitalized premature infants, regardless of necrotizing enterocolitis development

    PubMed Central

    Raveh-Sadka, Tali; Thomas, Brian C; Singh, Andrea; Firek, Brian; Brooks, Brandon; Castelle, Cindy J; Sharon, Itai; Baker, Robyn; Good, Misty; Morowitz, Michael J; Banfield, Jillian F

    2015-01-01

    Premature infants are highly vulnerable to aberrant gastrointestinal tract colonization, a process that may lead to diseases like necrotizing enterocolitis. Thus, spread of potential pathogens among hospitalized infants is of great concern. Here, we reconstructed hundreds of high-quality genomes of microorganisms that colonized co-hospitalized premature infants, assessed their metabolic potential, and tracked them over time to evaluate bacterial strain dispersal among infants. We compared microbial communities in infants who did and did not develop necrotizing enterocolitis. Surprisingly, while potentially pathogenic bacteria of the same species colonized many infants, our genome-resolved analysis revealed that strains colonizing each baby were typically distinct. In particular, no strain was common to all infants who developed necrotizing enterocolitis. The paucity of shared gut colonizers suggests the existence of significant barriers to the spread of bacteria among infants. Importantly, we demonstrate that strain-resolved comprehensive community analysis can be accomplished on potentially medically relevant time scales. DOI: http://dx.doi.org/10.7554/eLife.05477.001 PMID:25735037

  7. Perinatal microbial exposure may influence aortic intima-media thickness in early infancy.

    PubMed

    McCloskey, Kate; Vuillermin, Peter; Carlin, John B; Cheung, Michael; Skilton, Michael R; Tang, Mimi Lk; Allen, Katie; Gilbert, Gwendolyn L; Ranganathan, Sarath; Collier, Fiona; Dwyer, Terence; Ponsonby, Anne-Louise; Burgner, David

    2017-02-01

    The maternal and infant microbiome may influence infant cardiovascular risk through immune programming. The maternal vagino-enteric microbiome is often sampled for group B streptococcus (GBS) colonization during pregnancy. Our aim was to investigate the association between maternal GBS colonization, intrapartum antibiotics, antenatal pet exposure and infant aortic intima-media thickness (aIMT), an intermediate vascular phenotype, and whether this association varied by mode of delivery. The Barwon Infant Study is a population-derived pre-birth cohort. Perinatal data were collected on participants. Women were tested for vagino-enteric group B streptococcus (GBS) colonization during third trimester. Six-week infant aIMT was measured by trans-abdominal ultrasound. Adjustment for confounders included maternal age, pre-pregnancy body mass index (BMI), smoking, socioeconomic status, gestational diabetes, length of gestation, infant sex, birthweight and aortic internal diameter. Data were available on 835 mother-infant pairs. Of these, 574 (69%) women delivered vaginally; of those, 129 (22%) were GBS-colonized; and of these women, 111 (86%) received prophylactic intrapartum antibiotics. An association between maternal GBS colonization and infant aIMT was observed among those delivered vaginally (β = 19.5 µm, 95% CI 9.5, 29.4; P  < 0.0001) but not by Caesarean section ( P for interaction = 0.02). A similar pattern was seen for intrapartum antibiotics. There was a negative association between antenatal pet exposure and aIMT observed in those delivered vaginally. Maternal GBS colonization and intrapartum antibiotics were associated with increased infant aIMT in those delivered vaginally, whereas antenatal pet exposure was associated with decreased aIMT. These data suggest that differences in early life microbial experience may contribute to an increased cardiovascular risk. © The Author 2016; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association

  8. Microbial Colonization of Earth's Subsurface: A Thermodynamically Consistent Perspective

    NASA Astrophysics Data System (ADS)

    Bethke, C. M.; Sanford, R. A.; Jin, Q.; Kirk, M. F.

    2014-12-01

    The nature of how anaerobic microbes have come to distribute themselves within Earth's crust is an ecologic question that must be posed subject to the laws of thermodynamics, but a question that cannot be understood in light of thermodynamics alone. We use here the results of theory and quantitative modeling, field observations, and long-term laboratory experiments to argue that subsurface communities are composed of groups of microbes that cooperate as well as compete, and whose existence reflects a tight balance between reproduction and cell death. The most significant functional groups colonizing the anoxic crust, classified by electron accepting process, are the methanogens, sulfate reducers, and ferric iron reducers. An anaerobe can harvest the energy it needs to live and reproduce only to the extent that energy available to it in the environment exceeds the cell's internal levels. When methanogens transfer or dismutate electrons, they capture little energy, so as to preserve a thermodynamic drive for their catabolic reaction. In this way, they maximize their environmental range, but grow slowly. Sulfate reducers adopt a different strategy, striving to capture energy quickly and grow rapidly. Iron reduction consumes acid, so the energy available to iron reducers varies sharply with pH. The iron reducers can grow rapidly under acidic conditions, but an alkaline environment may leave them insufficient energy to live. Methane producers are vulnerable to exclusion in the subsurface, as is broadly appreciated, but not because of energetic limitations. Instead, the methanogens require abundant energy substrates in order to reproduce quickly enough to replace cells as they die. Sulfate reducers and iron reducers, instead of working to exclude each other by competing for limited energy sources, as is commonly believed, thrive in mutualistic communities. The three functional groups by necessity compete in their environments for limited sources of energy, but the manner in which the groups have come to colonize the subsurface is richer and more nuanced than can be explained by competition alone.

  9. Mice deficient in Muc4 are resistant to experimental colitis and colitis-associated colorectal cancer.

    PubMed

    Das, S; Rachagani, S; Sheinin, Y; Smith, L M; Gurumurthy, C B; Roy, H K; Batra, S K

    2016-05-19

    MUC4, a large transmembrane mucin normally expressed in the small and large intestine, is differentially expressed during inflammatory and malignant conditions of the colon. However, the expression pattern and the role of MUC4 in colitis and colorectal cancer (CRC) are inconclusive. Therefore, the aim of this study was to understand the role of Muc4 during inflammatory and malignant conditions of the colon. Here, we generated Muc4(-/-) mice and addressed its role in colitis and colitis-associated CRC using dextran sodium sulfate (DSS) and azoxymethane (AOM)-DSS experimental models, respectively. Muc4(-/-) mice were viable, fertile with no apparent defects. Muc4(-/-) mice displayed increased resistance to DSS-induced colitis compared with wild-type (WT) littermates that was evaluated by survival rate, body weight loss, diarrhea and fecal blood score, and histological score. Reduced infiltration of inflammatory cells, that is, CD3(+) lymphocytes and F4/80(+) macrophages was observed in the inflamed mucosa along with reduction in the mRNA levels of inflammatory cytokines interleukin (IL)-1β and tumor necrosis factor (TNF)-α and anti-microbial genes Lysozyme M and SLPI in the colon of Muc4(-/-) mice compared with WT littermates. Compensatory upregulation of Muc2 and Muc3 mucins under basal and DSS treatment conditions partly explains the resistance observed in Muc4(-/-) mice. Accordingly, Muc4(-/-) mice exhibited significantly reduced tumor burden compared with WT mice assessed in a colitis-induced tumor model using AOM/DSS. An increased percentage of Ki67(+) nuclei was observed in the tumors from WT compared with Muc4(-/-) mice suggesting Muc4 to be critical in intestinal cell proliferation during tumorigenesis. Taken together, we conclusively demonstrate for the first time the role of Muc4 in driving intestinal inflammation and inflammation-associated tumorigenesis using a novel Muc4(-/-) mouse model.

  10. Mice deficient in Muc4 are resistant to experimental colitis and colitis-associated colorectal cancer

    PubMed Central

    Das, S; Rachagani, S; Sheinin, Y; Smith, LM; Gurumurthy, CB; Roy, HK; Batra, SK

    2017-01-01

    MUC4, a large transmembrane mucin normally expressed in the small and large intestine, is differentially expressed during inflammatory and malignant conditions of the colon. However, the expression pattern and the role of MUC4 in colitis and colorectal cancer (CRC) are inconclusive. Therefore, the aim of this study was to understand the role of Muc4 during inflammatory and malignant conditions of the colon. Here, we generated Muc4−/− mice and addressed its role in colitis and colitis-associated CRC using dextran sodium sulfate (DSS) and azoxymethane (AOM)-DSS experimental models, respectively. Muc4−/− mice were viable, fertile with no apparent defects. Muc4−/− mice displayed increased resistance to DSS-induced colitis compared with wild-type (WT) littermates that was evaluated by survival rate, body weight loss, diarrhea and fecal blood score, and histological score. Reduced infiltration of inflammatory cells, that is, CD3+ lymphocytes and F4/80+ macrophages was observed in the inflamed mucosa along with reduction in the mRNA levels of inflammatory cytokines interleukin (IL)-1β and tumor necrosis factor (TNF)-α and anti-microbial genes Lysozyme M and SLPI in the colon of Muc4−/− mice compared with WT littermates. Compensatory upregulation of Muc2 and Muc3 mucins under basal and DSS treatment conditions partly explains the resistance observed in Muc4−/− mice. Accordingly, Muc4−/− mice exhibited significantly reduced tumor burden compared with WT mice assessed in a colitis-induced tumor model using AOM/DSS. An increased percentage of Ki67+ nuclei was observed in the tumors from WT compared with Muc4−/− mice suggesting Muc4 to be critical in intestinal cell proliferation during tumorigenesis. Taken together, we conclusively demonstrate for the first time the role of Muc4 in driving intestinal inflammation and inflammation-associated tumorigenesis using a novel Muc4−/− mouse model. PMID:26364605

  11. Human Plasma Enhances the Expression of Staphylococcal Microbial Surface Components Recognizing Adhesive Matrix Molecules Promoting Biofilm Formation and Increases Antimicrobial Tolerance In Vitro

    DTIC Science & Technology

    2014-07-17

    infection and invasion in Staphylococcus aureus experimental endocarditis . J Exp Med 2005, 201:1627 1635. 23. Atshan SS, Shamsudin MN, Karunanidhi A, van... infections . The ability of S. aureus to colonize and establish biofilms, a surface- attached microbial community surrounded by a self- produced polymeric...human infections [2-4], and represent a major challenge to modern medicine given their recalcitrance to antimicrobials and host mechanisms of clearance

  12. Feeding preference of the South American endemic anomuran Aegla platensis (Decapoda, Anomura, Aeglidae)

    NASA Astrophysics Data System (ADS)

    Colpo, Karine Delevati; Ribeiro, Liara Colpo; Wesz, Bruna; Ribeiro, Ludmilla Oliveira

    2012-04-01

    In order to determine the feeding preference of Aegla platensis in streams and the importance of microorganisms in its detritivore diet, we carried out two experiments designed to evaluate the food preferences of A. platensis (1) among leaves with different levels of microbial colonization and (2) among insect larvae (Chironomidae, Simuliidae, Hydropsychidae) and microbially conditioned leaves. A. platensis preferred animal over plant food items; when only leaves were offered, this aeglid preferred the leaves with higher levels of microorganism conditioning.

  13. Methods for understanding microbial community structures and functions in microbial fuel cells: a review.

    PubMed

    Zhi, Wei; Ge, Zheng; He, Zhen; Zhang, Husen

    2014-11-01

    Microbial fuel cells (MFCs) employ microorganisms to recover electric energy from organic matter. However, fundamental knowledge of electrochemically active bacteria is still required to maximize MFCs power output for practical applications. This review presents microbiological and electrochemical techniques to help researchers choose the appropriate methods for the MFCs study. Pre-genomic and genomic techniques such as 16S rRNA based phylogeny and metagenomics have provided important information in the structure and genetic potential of electrode-colonizing microbial communities. Post-genomic techniques such as metatranscriptomics allow functional characterizations of electrode biofilm communities by quantifying gene expression levels. Isotope-assisted phylogenetic analysis can further link taxonomic information to microbial metabolisms. A combination of electrochemical, phylogenetic, metagenomic, and post-metagenomic techniques offers opportunities to a better understanding of the extracellular electron transfer process, which in turn can lead to process optimization for power output. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Cigarette Smoke, Bacteria, Mold, Microbial Toxins, and Chronic Lung Inflammation

    PubMed Central

    Pauly, John L.; Paszkiewicz, Geraldine

    2011-01-01

    Chronic inflammation associated with cigarette smoke fosters malignant transformation and tumor cell proliferation and promotes certain nonneoplastic pulmonary diseases. The question arises as to whether chronic inflammation and/or colonization of the airway can be attributed, at least in part, to tobacco-associated microbes (bacteria, fungi, and spores) and/or microbial toxins (endotoxins and mycotoxins) in tobacco. To address this question, a literature search of documents in various databases was performed. The databases included PubMed, Legacy Tobacco Documents Library, and US Patents. This investigation documents that tobacco companies have identified and quantified bacteria, fungi, and microbial toxins at harvest, throughout fermentation, and during storage. Also characterized was the microbial flora of diverse smoking and smokeless tobacco articles. Evidence-based health concerns expressed in investigations of microbes and microbial toxins in cigarettes, cigarette smoke, and smokeless tobacco products are reasonable; they warrant review by regulatory authorities and, if necessary, additional investigation to address scientific gaps. PMID:21772847

  15. Microbial biofilms on facial prostheses.

    PubMed

    Ariani, Nina; Vissink, Arjan; van Oort, Robert P; Kusdhany, Lindawati; Djais, Ariadna; Rahardjo, Tri Budi W; van der Mei, Henny C; Krom, Bastiaan P

    2012-01-01

    The composition of microbial biofilms on silicone rubber facial prostheses was investigated and compared with the microbial flora on healthy and prosthesis-covered skin. Scanning electron microscopy showed the presence of mixed bacterial and yeast biofilms on and deterioration of the surface of the prostheses. Microbial culturing confirmed the presence of yeasts and bacteria. Microbial colonization was significantly increased on prosthesis-covered skin compared to healthy skin. Candida spp. were exclusively isolated from prosthesis-covered skin and from prostheses. Biofilms from prostheses showed the least diverse band-profile in denaturing gradient gel electrophoresis (DGGE) whereas prosthesis-covered skin showed the most diverse band-profile. Bacterial diversity exceeded yeast diversity in all samples. It is concluded that occlusion of the skin by prostheses creates a favorable niche for opportunistic pathogens such as Candida spp. and Staphylococcus aureus. Biofilms on healthy skin, skin underneath the prosthesis and on the prosthesis had a comparable composition, but the numbers present differed according to the microorganism.

  16. [Synthetic biology toward microbial secondary metabolites and pharmaceuticals].

    PubMed

    Wu, Lin-Zhuan; Hong, Bin

    2013-02-01

    Microbial secondary metabolites are one of the major sources of anti-bacterial, anti-fungal, antitumor, anti-virus and immunosuppressive agents for clinical use. Present challenges in microbial pharmaceutical development are the discovery of novel secondary metabolites with significant biological activities, improving the fermentation titers of industrial microbial strains, and production of natural product drugs by re-establishing their biosynthetic pathways in suitable microbial hosts. Synthetic biology, which is developed from systematic biology and metabolic engineering, provides a significant driving force for microbial pharmaceutical development. The review describes the major applications of synthetic biology in novel microbial secondary metabolite discovery, improved production of known secondary metabolites and the production of some natural drugs in genetically modified or reconstructed model microorganisms.

  17. Toward Understanding, Managing, and Protecting Microbial Ecosystems

    PubMed Central

    Bodelier, Paul L. E.

    2011-01-01

    Microbial communities are at the very basis of life on earth, catalyzing biogeochemical reactions driving global nutrient cycles. However, unlike for plants and animals, microbial diversity is not on the biodiversity–conservation agenda. The latter, however, would imply that microbial diversity is not under any threat by anthropogenic disturbance or climate change. This maybe a misconception caused by the rudimentary knowledge we have concerning microbial diversity and its role in ecosystem functioning. This perspective paper identifies major areas with knowledge gaps within the field of environmental microbiology that preclude a comprehension of microbial ecosystems on the level we have for plants and animals. Opportunities and challenges are pointed out to open the microbial black box and to go from descriptive to predictive microbial ecology. PMID:21747797

  18. Carbohydrate maldigestion induces necrotizing enterocolitis in preterm pigs

    USDA-ARS?s Scientific Manuscript database

    Necrotizing enterocolitis (NEC) is a major gastrointestinal disorder in preterm infants. Key risk factors for NEC are enteral feeding and microbial colonization. Maldigestion of carbohydrate secondary to immature digestive function has been suspected to cause bacterial overgrowth and NEC. We investi...

  19. Bardoxolone Methyl Prevents High-Fat Diet-Induced Colon Inflammation in Mice.

    PubMed

    Dinh, Chi H L; Yu, Yinghua; Szabo, Alexander; Zhang, Qingsheng; Zhang, Peng; Huang, Xu-Feng

    2016-04-01

    Obesity induces chronic, low-grade inflammation, which increases the risk of colon cancer. We investigated the preventive effects of Bardoxolone methyl (BARD) on high-fat diet (HFD)-induced inflammation in a mouse colon. Male C57BL/6J mice (n=7) were fed a HFD (HFD group), HFD plus BARD (10 mg/kg) in drinking water (HFD/BARD group), or normal laboratory chow diet (LFD group) for 21 weeks. In HFD mice, BARD reduced colon thickness and decreased colon weight per length. This was associated with an increase in colon crypt depth and the number of goblet cells per crypt. BARD reduced the expression of F4/80 and CD11c but increased CD206 and IL-10, indicating an anti-inflammatory effect. BARD prevented an increase of the intracellular pro-inflammatory biomarkers (NF-қB, p NF-қB, IL-6, TNF-α) and cell proliferation markers (Cox2 and Ki67). BARD prevented fat deposition in the colon wall and prevented microbial population changes. Overall, we report the preventive effects of BARD on colon inflammation in HFD-fed mice through its regulation of macrophages, NF-қB, cytokines, Cox2 and Ki67, fat deposition and microflora. © 2016 The Histochemical Society.

  20. [Timing of bacterial colonization in severe burns: is strict isolation necessary?].

    PubMed

    Barret, Juan P

    2003-12-01

    Infection is still one of the main causes of mortality in severe burn patients. Strict isolation has been used for the prevention of infection, but the efficacy of this measure is debatable. The aim of this study was to determine the timing of bacterial colonization in these patients and to ascertain whether strict isolation is indicated. Thirty consecutive children with severe burns were studied. Patients were only barrier-nursed during dressing changes. On admission and twice weekly over the entire hospital stay, burn, sputum, gastric aspirates, feces, and blood samples were obtained for culture. All isolates were tested for specific biotypes. Results were studied with linear regression and repeated measures ANOVA to determine the timing of colonization and cross-colonization between patients. On admission, normal cutaneous flora were isolated from burn cultures of all patients. The remaining cultures were negative. After one week, gastric aspirates were found to be colonized by gram-negative bacteria and fungi. This was followed by colonization of feces, burn, and sputum cultures. Biotype identification showed unidirectional colonization from the gastrointestinal tract to burns and upper airway. There were no cross infections between patients. Microbial colonization in severe burn patients was endogenous in nature and there were no cross infections. Thus, strict isolation is not necessary in burn centers, except during outbreaks of multi-resistant microorganisms.

  1. Previously unrecognized stages of species-specific colonization in the mutualism between Xenorhabdus bacteria and Steinernema nematodes

    PubMed Central

    Chaston, John M.; Murfin, Kristen E.; Heath-Heckman, Elizabeth A.; Goodrich-Blair, Heidi

    2013-01-01

    Summary The specificity of a horizontally transmitted microbial symbiosis is often defined by molecular communication between host and microbe during initial engagement, which can occur in discrete stages. In the symbiosis between Steinernema nematodes and Xenorhabdus bacteria, previous investigations focused on bacterial colonization of the intestinal lumen (receptacle) of the nematode infective juvenile (IJ), as this was the only known persistent, intimate, and species-specific contact between the two. Here we show that bacteria colonize the anterior intestinal cells of other nematode developmental stages in a species-specific manner. Also, we describe three processes that only occur in juveniles that are destined to become IJs. First, a few bacterial cells colonize the nematode pharyngeal-intestinal valve (PIV) anterior to the intestinal epithelium. Second, the nematode intestine constricts while bacteria initially remain in the PIV. Third, anterior intestinal constriction relaxes and colonizing bacteria occupy the receptacle. At each stage, colonization requires X. nematophila symbiosis region 1 (SR1) genes and is species-specific: X. szentirmaii, which naturally lacks SR1, does not colonize unless SR1 is ectopically expressed. These findings reveal new aspects of Xenorhabdus bacteria interactions with and transmission by their Steinernema nematode hosts, and demonstrate that bacterial SR1 genes aid in colonizing nematode epithelial surfaces. PMID:23480552

  2. Molecular analysis of the microbial diversity present in the colonic wall, colonic lumen, and cecal lumen of a pig.

    PubMed

    Pryde, S E; Richardson, A J; Stewart, C S; Flint, H J

    1999-12-01

    Random clones of 16S ribosomal DNA gene sequences were isolated after PCR amplification with eubacterial primers from total genomic DNA recovered from samples of the colonic lumen, colonic wall, and cecal lumen from a pig. Sequences were also obtained for cultures isolated anaerobically from the same colonic-wall sample. Phylogenetic analysis showed that many sequences were related to those of Lactobacillus or Streptococcus spp. or fell into clusters IX, XIVa, and XI of gram-positive bacteria. In addition, 59% of randomly cloned sequences showed less than 95% similarity to database entries or sequences from cultivated organisms. Cultivation bias is also suggested by the fact that the majority of isolates (54%) recovered from the colon wall by culturing were related to Lactobacillus and Streptococcus, whereas this group accounted for only one-third of the sequence variation for the same sample from random cloning. The remaining cultured isolates were mainly Selenomonas related. A higher proportion of Lactobacillus reuteri-related sequences than of Lactobacillus acidophilus- and Lactobacillus amylovorus-related sequences were present in the colonic-wall sample. Since the majority of bacterial ribosomal sequences recovered from the colon wall are less than 95% related to known organisms, the roles of many of the predominant wall-associated bacteria remain to be defined.

  3. Molecular Analysis of the Microbial Diversity Present in the Colonic Wall, Colonic Lumen, and Cecal Lumen of a Pig

    PubMed Central

    Pryde, Susan E.; Richardson, Anthony J.; Stewart, Colin S.; Flint, Harry J.

    1999-01-01

    Random clones of 16S ribosomal DNA gene sequences were isolated after PCR amplification with eubacterial primers from total genomic DNA recovered from samples of the colonic lumen, colonic wall, and cecal lumen from a pig. Sequences were also obtained for cultures isolated anaerobically from the same colonic-wall sample. Phylogenetic analysis showed that many sequences were related to those of Lactobacillus or Streptococcus spp. or fell into clusters IX, XIVa, and XI of gram-positive bacteria. In addition, 59% of randomly cloned sequences showed less than 95% similarity to database entries or sequences from cultivated organisms. Cultivation bias is also suggested by the fact that the majority of isolates (54%) recovered from the colon wall by culturing were related to Lactobacillus and Streptococcus, whereas this group accounted for only one-third of the sequence variation for the same sample from random cloning. The remaining cultured isolates were mainly Selenomonas related. A higher proportion of Lactobacillus reuteri-related sequences than of Lactobacillus acidophilus- and Lactobacillus amylovorus-related sequences were present in the colonic-wall sample. Since the majority of bacterial ribosomal sequences recovered from the colon wall are less than 95% related to known organisms, the roles of many of the predominant wall-associated bacteria remain to be defined. PMID:10583991

  4. Using N-Limiting Growth Conditions to Remove Atrazine from Groundwater: Laboratory Studies.

    USDA-ARS?s Scientific Manuscript database

    Typically, respiratory redox reactions are the driving mechanism behind in situ bioremediations that use a carbon substrate. This is because electron (e-) donor availability generally restricts subsurface microbial activity. Thus, microbial growth and respiration can be greatly stimulated by the a...

  5. Interplay Between Innate Immunity and the Plant Microbiota.

    PubMed

    Hacquard, Stéphane; Spaepen, Stijn; Garrido-Oter, Ruben; Schulze-Lefert, Paul

    2017-08-04

    The innate immune system of plants recognizes microbial pathogens and terminates their growth. However, recent findings suggest that at least one layer of this system is also engaged in cooperative plant-microbe interactions and influences host colonization by beneficial microbial communities. This immune layer involves sensing of microbe-associated molecular patterns (MAMPs) by pattern recognition receptors (PRRs) that initiate quantitative immune responses to control host-microbial load, whereas diversification of MAMPs and PRRs emerges as a mechanism that locally sculpts microbial assemblages in plant populations. This suggests a more complex microbial management role of the innate immune system for controlled accommodation of beneficial microbes and in pathogen elimination. The finding that similar molecular strategies are deployed by symbionts and pathogens to dampen immune responses is consistent with this hypothesis but implies different selective pressures on the immune system due to contrasting outcomes on plant fitness. The reciprocal interplay between microbiota and the immune system likely plays a critical role in shaping beneficial plant-microbiota combinations and maintaining microbial homeostasis.

  6. Soil and plant factors driving the community of soil-borne microorganisms across chronosequences of secondary succession of chalk grasslands with a neutral pH.

    PubMed

    Kuramae, Eiko; Gamper, Hannes; van Veen, Johannes; Kowalchuk, George

    2011-08-01

    Although soil pH has been shown to be an important factor driving microbial communities, relatively little is known about the other potentially important factors that shape soil-borne microbial community structure. This study examined plant and microbial communities across a series of neutral pH fields (pH=7.0-7.5) representing a chronosequence of secondary succession after former arable fields were taken out of production. These fields ranged from 17 to >66 years since the time of abandonment, and an adjacent arable field was included as a reference. Hierarchical clustering analysis, nonmetric multidimensional scaling and analysis of similarity of 52 different plant species showed that the plant community composition was significantly different in the different chronosequences, and that plant species richness and diversity increased with time since abandonment. The microbial community structure, as analyzed by phylogenetic microarrays (PhyloChips), was significantly different in arable field and the early succession stage, but no distinct microbial communities were observed for the intermediate and the late succession stages. The most determinant factors in shaping the soil-borne microbial communities were phosphorous and NH(4)(+). Plant community composition and diversity did not have a significant effect on the belowground microbial community structure or diversity. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  7. Distinct microbial communities in the active and permafrost layers on the Tibetan Plateau.

    PubMed

    Chen, Yong-Liang; Deng, Ye; Ding, Jin-Zhi; Hu, Hang-Wei; Xu, Tian-Le; Li, Fei; Yang, Gui-Biao; Yang, Yuan-He

    2017-12-01

    Permafrost represents an important understudied genetic resource. Soil microorganisms play important roles in regulating biogeochemical cycles and maintaining ecosystem function. However, our knowledge of patterns and drivers of permafrost microbial communities is limited over broad geographic scales. Using high-throughput Illumina sequencing, this study compared soil bacterial, archaeal and fungal communities between the active and permafrost layers on the Tibetan Plateau. Our results indicated that microbial alpha diversity was significantly higher in the active layer than in the permafrost layer with the exception of fungal Shannon-Wiener index and Simpson's diversity index, and microbial community structures were significantly different between the two layers. Our results also revealed that environmental factors such as soil fertility (soil organic carbon, dissolved organic carbon and total nitrogen contents) were the primary drivers of the beta diversity of bacterial, archaeal and fungal communities in the active layer. In contrast, environmental variables such as the mean annual precipitation and total phosphorus played dominant roles in driving the microbial beta diversity in the permafrost layer. Spatial distance was important for predicting the bacterial and archaeal beta diversity in both the active and permafrost layers, but not for fungal communities. Collectively, these results demonstrated different driving factors of microbial beta diversity between the active layer and permafrost layer, implying that the drivers of the microbial beta diversity observed in the active layer cannot be used to predict the biogeographic patterns of the microbial beta diversity in the permafrost layer. © 2017 John Wiley & Sons Ltd.

  8. The Osteogenic Niche Promotes Early-Stage Bone Colonization of Disseminated Breast Cancer Cells

    PubMed Central

    Wang, Hai; Yu, Cuijuan; Gao, Xia; Welte, Thomas; Muscarella, Aaron M.; Tian, Lin; Zhao, Hong; Zhao, Zhen; Du, Shiyu; Tao, Jianning; Lee, Brendan; Westbrook, Thomas F.; Wong, Stephen T. C.; Jin, Xin; Rosen, Jeffrey M.; Osborne, C. Kent; Zhang, Xiang H.-F.

    2014-01-01

    Summary Breast cancer bone micrometastases can remain asymptomatic for years before progressing into overt lesions. The biology of this process, including the microenvironment niche and supporting pathways, is unclear. We find that bone micrometastases predominantly reside in a niche that exhibits features of osteogenesis. Niche interactions are mediated by heterotypic adherens junctions (hAJs) involving cancer-derived E-cadherin and osteogenic N-cadherin, the disruption of which abolishes niche-conferred advantages. We further elucidate that hAJ activates the mTOR pathway in cancer cells, which drives the progression from single cells to micrometastases. Human datasets analyses support the roles of AJ and the mTOR pathway in bone colonization. Our study illuminates the initiation of bone colonization, and provides potential therapeutic targets to block progression toward osteolytic metastases. Significance In advanced stages, breast cancer bone metastases are driven by paracrine crosstalk among cancer cells, osteoblasts, and osteoclasts, which constitute a vicious osteolytic cycle. Current therapies targeting this process limit tumor progression, but do not improve patient survival. On the other hand, bone micrometastases may remain indolent for years before activating the vicious cycle, providing a therapeutic opportunity to prevent macrometastases. Here, we show that bone colonization is initiated in a microenvironment niche exhibiting active osteogenesis. Cancer and osteogenic cells form heterotypic adherens junctions, which enhance mTOR activity and drive early-stage bone colonization prior to osteolysis. These results reveal a strong connection between osteogenesis and micrometastasis and suggest potential therapeutic targets to prevent bone macrometastases. PMID:25600338

  9. Mineralogical controls on surface colonization by sulfur-metabolizing microbial communities

    NASA Astrophysics Data System (ADS)

    Jones, A. A.; Bennett, P.

    2012-12-01

    When characterizing microbial diversity and the microbial ecosystem of the shallow subsurface the mineral matrix is generally assumed to be homogenous and unreactive. We report here experimental evidence that microorganisms colonize rock surfaces according to the rock's chemistry and the organism's metabolic requirements and tolerances. We investigated this phenomenon using laboratory biofilm reactors with both a pure culture of sulfur-oxidizing Thiothrix unzii and a mixed environmental sulfur-metabolizing community from Lower Kane, Cave, WY, USA. Reactors contained rock and mineral chips (calcite, albite, microcline, quartz, chert, Madison Limestone (ML), Madison Dolostone (MD), and basalt) amended with one of the two inoculants. Biomass of attached microorganisms on each mineral surface was quantified. The 16S rRNA of attached microbial communities were compared using Roche FLX and Titanium 454 next generation pyrosequencing. A primary controlling factor on taxonomy of attached microorganisms in both pure and mixed culture experiments was mineral buffering capacity. In mixed culture experiments acid-buffering carbonates were preferentially colonized by neutrophilic sulfur-oxidizing microorganisms (~18% to ~27% of microorganisms), while acidophilic sulfur-oxidizing microorganisms colonized non-buffering quartz exclusively (~46% of microorganisms). The nutrient content of the rock was a controlling factor on biomass accumulation, with neutrophilic organisms selecting between carbonate surfaces of equivalent buffer capacities according to the availability of phosphate. Dry biomass on ML was 17.8 ± 2.3 mg/cm2 and MD was 20.6 ± 6.8 mg/cm2; while nutrient poor calcite accumulated 2.4 ± 0.3 mg/cm2. Biomass accumulation was minimal on non-buffering nutrient-limited surfaces. These factors are countered by the competitive exclusion of some populations. A pure culture of T. unzii preferentially colonizes carbonates while a very closely related Thiothrix spp is excluded from these same rock samples in a mixed culture. Diversity analysis reveals that ML, MD, and calcite have >98% of sequences belonging to shared OTUs. The carbonates have <3% of sequences belonging to OTUs shared with any silicate mineral surface with the exception of basalt (~85% similarity). These four surfaces were host to the least diverse microbial communities, suggesting that competitive exclusion of microorganisms not adapted to these surfaces is a controlling variable on taxonomy. Furthermore, the microorganisms on basalt reveal an unique association between Thiothrix unzii (often found in mid-ocean ridge environments) and basalt, where it excludes other sulfur oxidizers and accumulates the highest non-carbonate biomass in both pure (3.5 ± 1.0 mg/cm2) and mixed culture (5.4 ± 1.4 mg/cm2) experiments. This association suggests that adaptations to specific rocks may be retained even when the organism is displaced from an ancestral rock/mineral surface habitat. Combined, these variables (buffering capacity, nutrient availability, competitive exclusion, tolerance of surface geochemistry, and latent adaptations) affect biomass density, local diversity, and global diversity of the attached communities on mineral and rock surfaces and suggest that different populations are more tolerant of, and more competitive on, specific rock/mineral types.

  10. Photosynthesis and early Earth.

    PubMed

    Shih, Patrick M

    2015-10-05

    Life has been built on the evolution and innovation of microbial metabolisms. Even with our scant understanding of the full diversity of microbial life, it is clear that microbes have become integral components of the biogeochemical cycles that drive our planet. The antiquity of life further suggests that various microbial metabolisms have been core and essential to global elemental cycling for a majority of Earth's history. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Microbial ecology of fermentative hydrogen producing bioprocesses: useful insights for driving the ecosystem function.

    PubMed

    Cabrol, Lea; Marone, Antonella; Tapia-Venegas, Estela; Steyer, Jean-Philippe; Ruiz-Filippi, Gonzalo; Trably, Eric

    2017-03-01

    One of the most important biotechnological challenges is to develop environment friendly technologies to produce new sources of energy. Microbial production of biohydrogen through dark fermentation, by conversion of residual biomass, is an attractive solution for short-term development of bioH2 producing processes. Efficient biohydrogen production relies on complex mixed communities working in tight interaction. Species composition and functional traits are of crucial importance to maintain the ecosystem service. The analysis of microbial community revealed a wide phylogenetic diversity that contributes in different-and still mostly unclear-ways to hydrogen production. Bridging this gap of knowledge between microbial ecology features and ecosystem functionality is essential to optimize the bioprocess and develop strategies toward a maximization of the efficiency and stability of substrate conversion. The aim of this review is to provide a comprehensive overview of the most up-to-date biodata available and discuss the main microbial community features of biohydrogen engineered ecosystems, with a special emphasis on the crucial role of interactions and the relationships between species composition and ecosystem service. The elucidation of intricate relationships between community structure and ecosystem function would make possible to drive ecosystems toward an improved functionality on the basis of microbial ecology principles. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Microbial production of organic acids in aquitard sediments and its role in aquifer geochemistry

    USGS Publications Warehouse

    McMahon, P.B.; Chapelle, F.H.

    1991-01-01

    MICROBIAL activity in aquifers plays an important part in the chemical evolution of ground water1-5. The most important terminal electron-accepting microbial processes in deeply buried anaerobic aquifers are iron reduction, sulphate reduction and methanogenesis5-8, each of which requires simple organic compounds or hydrogen (H2) as electron donors. Until now, the source of these compounds was unknown because the concentrations of dissolved organic carbon and sedimentary organic carbon in aquifers are extremely low9-11. Here we show that rates of microbial fermentation exceed rates of respiration in organic-rich aquitards (low-permeability sediments stratigraphically adjacent to higher-permeability aquifer sediments), resulting in a net accumulation of simple organic acids in pore waters. In aquifers, however, respiration outpaces fermentation, resulting in a net consumption of organic acids. The concentration gradient that develops in response to these two processes drives a net diffusive flux of organic acids from aquitards to aquifers. Diffusion calculations demonstrate that rates of organic acid transport are sufficient to account for observed rates of microbial respiration in aquifers. This overall process effectively links the large pool of sedimentary organic carbon in aquitards to microbial respiration in aquifers, and is a principal mechanism driving groundwater chemistry changes in aquifers.

  13. INTRACELLULAR COLONIZATION OF SEAGRASS ROOTS BY ACETOGENIC AND SULFIDOGENIC BACTERIA

    EPA Science Inventory

    The contribution of seagrasses to the stability and fertility of estuarine ecosystems is well established. Loss of seagrasses in recent years to disease and coastal development underscores the importance of understanding the microbial ecology of seagrasses, and the possible roles...

  14. NMR IMAGING OF HYDRODYNAMICS NEAR MICROBIALLY COLONIZED SURFACES. (R825549C027)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  15. Changes in mouse gastrointestinal microbial ecology with ingestion of kale.

    PubMed

    Uyeno, Y; Katayama, S; Nakamura, S

    2014-09-01

    Kale, a cultivar of Brassica oleracea, has attracted a great deal of attention because of its health-promoting effects, which are thought to be exerted through modulation of the intestinal microbiota. The present study was performed to investigate the effects of kale ingestion on the gastrointestinal microbial ecology of mice. 21 male C57BL/6J mice were divided into three groups and housed in a specific pathogen-free facility. The animals were fed either a control diet or experimental diets supplemented with different commercial kale products for 12 weeks. Contents of the caecum and colon of the mice were processed for the determination of active bacterial populations by a bacterial rRNA-based quantification method and short-chain fatty acids by HPLC. rRNAs of Bacteroides-Prevotella, the Clostridium coccoides-Eubacterium rectale group, and Clostridium leptum subgroup constituted the major fraction of microbiota regardless of the composition of the diet. The ratio of Firmicutes to Bacteroidetes was higher in the colon samples of one of the kale diet groups than in the control. The colonic butyrate level was also higher with the kale-supplemented diet. Overall, the ingestion of kale tended to either increase or decrease the activity of specific bacterial groups in the mouse gastrointestinal tract, however, the effect might vary depending on the nutritional composition.

  16. In vitro characterisation of the fermentation profile and prebiotic capacity of gold-fleshed kiwifruit.

    PubMed

    Blatchford, P; Bentley-Hewitt, K L; Stoklosinski, H; McGhie, T; Gearry, R; Gibson, G; Ansell, J

    2015-01-01

    A new Actinidia chinensis gold-fleshed kiwifruit cultivar 'Zesy002' was tested to investigate whether it could positively modulate the composition of the human colonic microbiota. Digested Zesy002 kiwifruit was added to in vitro pH-controlled anaerobic batch fermenters that were inoculated with representative human faecal microbiota. Alterations to the gut microbial ecology were determined by 16S rRNA gene sequencing and metabolic end products were measured using gas chromatography and liquid chromatography - mass spectrometry. Results indicated a substantial shift in the composition of bacteria within the gut models caused by kiwifruit supplementation. Zesy002 supplemented microbiota had a significantly higher abundance of Bacteroides spp., Parabacteroides spp. and Bifidobacterium spp. after 48 h of fermentation compared with the start of the fermentation. Organic acids from kiwifruit were able to endure simulated gastrointestinal digestion and were detectable in the first 10 h of fermentation. The fermentable carbohydrates were converted to beneficial organic acids with a particular predilection for propionate production, corresponding with the rise in Bacteroides spp. and Parabacteroides spp. These results support the claim that Zesy002 kiwifruit non-digestible fractions can effect favourable changes to the human colonic microbial community and primary metabolites, and demonstrate a hitherto unknown effect of Zesy002 on colonic microbiota under in vitro conditions.

  17. Influence of gastrointestinal tract on metabolism of bisphenol A as determined by in vitro simulated system.

    PubMed

    Wang, Yonghua; Rui, Min; Nie, Yang; Lu, Guanghua

    2018-05-07

    Oral exposure is a major route of human bisphenol A (BPA) exposure. However, influence of gastrointestinal tract on BPA metabolism is unavailable. In this study, in vitro simulator of the human intestinal microbial ecosystem (SHIME) was applied to investigate the changes in bioaccessibility and metabolism of BPA in different parts of gastrointestinal tract (stomach, small intestine and colon). Then the human hepatoma cell line HepG2 was employed to compare toxic effects of BPA itself and effluents of SHIME system on hepatic gene expression profiles. Results showed that level of bioaccessible BPA decreased with the process of gastrointestinal digestion. But the gastrointestinal digestion could not completely degrade BPA. Then, BPA exposure significantly changed microbial community in colons and increased the percentage of microbes shared in ascending, transverse and descending colons. Abundances of BPA-degradable bacteria, such as Microbacterium and Alcaligenes, were up-regulated. Further, SHIME effluents significantly up-regulated expressions of genes related to estrogenic effect and oxidative stress compared to BPA itself, but reduced or had little change on the risk of cell apoptosis and fatty deposits. This study sheds new lights on influence of gastrointestinal digestion on bioaccessibility and toxic effects of BPA. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Identification of oral bacteria on titanium implant surfaces by 16S rDNA sequencing.

    PubMed

    de Melo, Fabiana; do Nascimento, Cássio; Souza, Diogo Onofre; de Albuquerque, Rubens F

    2017-06-01

    To characterize the profile of microbial communities colonizing titanium implants with different surface treatments after exposure to the oral environment at the genus or higher taxonomic level. Sixteen titanium disks, machined or sandblasted large-grit and acid-etched (SLA), were mounted on removable intraoral splints worn by four patients. After 24 h of intraoral exposure, biofilm samples were collected from disks and supra/subgingival teeth areas. The 16S rDNA genes from each sample were amplified, sequenced with the Miseq Illumina instrument and analyzed. A total of 29 genera and seven more inclusive taxa, representing the phyla Firmicutes, Proteobacteria, Fusobacteria, Bacteroidetes, Actinobacteria and candidate division TM7 were identified in both titanium surfaces and teeth. No differences were found in relation to the operational taxonomic units (OTUs) and microbial diversity, assessed by Chao 1 and Shannon indices, when comparing SLA and machined titanium surfaces. Machined and SLA surfaces are colonized by similar numbers of prokaryotic OTUs after 24 h of exposure to the oral environment. Higher complexity of the titanium surface topography in the initial phase of biofilm maturation does not seem to significantly influence the colonizing microbiota. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Colonic fermentation of polyphenolics from Sea buckthorn (Hippophae rhamnoides) berries: Assessment of effects on microbial diversity by Principal Component Analysis.

    PubMed

    Attri, Sampan; Sharma, Kavita; Raigond, Pinky; Goel, Gunjan

    2018-03-01

    The present study investigates the stability of polyphenolic in Sea buckthorn berries juice (SBJ) during different phases of digestion and its effect on colonic microbial diversity. At each stage, the Total polyphenolic content (TPC), Total antioxidant activity (TAA) and polyphenolic profile was determined. A 1.64 and 2.20 folds increase in TPC with 4.88 and 9.61 folds increase in TAA were observed during gastric and small intestine digestion (p<0.05) with the release of quercetin from food matrix. The digestion resulted in deformation of intact crystalline structure as indicated by scanning electron micrographs. The colonic fermentation resulted in an increase in quercetin, caffeic acid with decrease in rutin and chlorogenic acid after 36h of fermentation (p<0.05). The Shannon diversity index (H) of beneficial groups including Lactic acid bacteria (LAB), Bacteroides/Prevotella and Bifidobacteria was increased by 35%, 71% and 17%, respectively (p<0.05). The PCA analysis indicated that the presence and digestion of polyphenolics promote the proliferation of Bacteroides/Prevotella group as well as Lactic acid bacteria and Bifidobacteria. The results suggest that SBJ is good source of prebiotic substrate in terms of the proliferation of beneficial gut microbiota. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Purple spot damage dynamics investigated by an integrated approach on a 1244 A.D. parchment roll from the Secret Vatican Archive.

    PubMed

    Migliore, Luciana; Thaller, Maria Cristina; Vendittozzi, Giulia; Mejia, Astrid Yazmine; Mercuri, Fulvio; Orlanducci, Silvia; Rubechini, Alessandro

    2017-09-07

    Ancient parchments are commonly attacked by microbes, producing purple spots and detachment of the superficial layer. Neither standard cultivation nor molecular methods (DGGE) solved the issue: causative agents and colonization model are still unknown. To identify the putative causal agents, we describe the 16 S rRNA gene analysis (454-pyrosequencing) of the microbial communities colonizing a damaged parchment roll dated 1244 A.D. (A.A. Arm. I-XVIII 3328, Vatican Secret Archives). The taxa in damaged or undamaged areas of the same document were different. In the purple spots, marine halotolerant Gammaproteobacteria, mainly Vibrio, were found; these microorganisms are rare or absent in the undamaged areas. Ubiquitous and environmental microorganisms were observed in samples from both damaged and undamaged areas. Pseudonocardiales were the most common, representing the main colonizers of undamaged areas. We hypothesize a successional model of biodeterioration, based on metagenomic data and spectroscopic analysis of pigments, which help to relate the damage to a microbial agent. Furthermore, a new method (Light Transmitted Analysis) was utilized to evaluate the kind and entity of the damage to native collagen. These data give a significant advance to the knowledge in the field and open new perspectives to remediation activity on a huge amount of ancient document.

  1. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine.

    PubMed

    Louis, Petra; Flint, Harry J

    2009-05-01

    Butyrate-producing bacteria play a key role in colonic health in humans. This review provides an overview of the current knowledge of the diversity, metabolism and microbial ecology of this functionally important group of bacteria. Human colonic butyrate producers are Gram-positive firmicutes, but are phylogenetically diverse, with the two most abundant groups related to Eubacterium rectale/Roseburia spp. and to Faecalibacterium prausnitzii. Five different arrangements have been identified for the genes of the central pathway involved in butyrate synthesis, while in most cases butyryl-CoA : acetate CoA-transferase, rather than butyrate kinase, appears to perform the final step in butyrate synthesis. Mechanisms have been proposed recently in non-gut Clostridium spp. whereby butyrate synthesis can result in energy generation via both substrate-level phosphorylation and proton gradients. Here we suggest that these mechanisms also apply to the majority of butyrate producers from the human colon. The roles of these bacteria in the gut community and their influence on health are now being uncovered, taking advantage of the availability of cultured isolates and molecular methodologies. Populations of F. prausnitzii are reported to be decreased in Crohn's disease, for example, while populations of Roseburia relatives appear to be particularly sensitive to the diet composition in human volunteer studies.

  2. Assessing the influence of reactor system design criteria on the performance of model colon fermentation units.

    PubMed

    Moorthy, Arun S; Eberl, Hermann J

    2014-04-01

    Fermentation reactor systems are a key platform in studying intestinal microflora, specifically with respect to questions surrounding the effects of diet. In this study, we develop computational representations of colon fermentation reactor systems as a way to assess the influence of three design elements (number of reactors, emptying mechanism, and inclusion of microbial immobilization) on three performance measures (total biomass density, biomass composition, and fibre digestion efficiency) using a fractional-factorial experimental design. It was determined that the choice of emptying mechanism showed no effect on any of the performance measures. Additionally, it was determined that none of the design criteria had any measurable effect on reactor performance with respect to biomass composition. It is recommended that model fermentation systems used in the experimenting of dietary effects on intestinal biomass composition be streamlined to only include necessary system design complexities, as the measured performance is not benefited by the addition of microbial immobilization mechanisms or semi-continuous emptying scheme. Additionally, the added complexities significantly increase computational time during simulation experiments. It was also noted that the same factorial experiment could be directly adapted using in vitro colon fermentation systems. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Site-specific programming of the host epithelial transcriptome by the gut microbiota.

    PubMed

    Sommer, Felix; Nookaew, Intawat; Sommer, Nina; Fogelstrand, Per; Bäckhed, Fredrik

    2015-03-28

    The intestinal epithelium separates us from the microbiota but also interacts with it and thus affects host immune status and physiology. Previous studies investigated microbiota-induced responses in the gut using intact tissues or unfractionated epithelial cells, thereby limiting conclusions about regional differences in the epithelium. Here, we sought to investigate microbiota-induced transcriptional responses in specific fractions of intestinal epithelial cells. To this end, we used microarray analysis of laser capture microdissection (LCM)-harvested ileal and colonic tip and crypt epithelial fractions from germ-free and conventionally raised mice and from mice during the time course of colonization. We found that about 10% of the host's transcriptome was microbially regulated, mainly including genes annotated with functions in immunity, cell proliferation, and metabolism. The microbial impact on host gene expression was highly site specific, as epithelial responses to the microbiota differed between cell fractions. Specific transcriptional regulators were enriched in each fraction. In general, the gut microbiota induced a more rapid response in the colon than in the ileum. Our study indicates that the microbiota engage different regulatory networks to alter host gene expression in a particular niche. Understanding host-microbiota interactions on a cellular level may facilitate signaling pathways that contribute to health and disease and thus provide new therapeutic strategies.

  4. Native arbuscular mycorrhizal symbiosis alters foliar bacterial community composition.

    PubMed

    Poosakkannu, Anbu; Nissinen, Riitta; Kytöviita, Minna-Maarit

    2017-11-01

    The effects of arbuscular mycorrhizal (AM) fungi on plant-associated microbes are poorly known. We tested the hypothesis that colonization by an AM fungus affects microbial species richness and microbial community composition of host plant tissues. We grew the grass, Deschampsia flexuosa in a greenhouse with or without the native AM fungus, Claroideoglomus etunicatum. We divided clonally produced tillers into two parts: one inoculated with AM fungus spores and one without AM fungus inoculation (non-mycorrhizal, NM). We characterized bacterial (16S rRNA gene) and fungal communities (internal transcribed spacer region) in surface-sterilized leaf and root plant compartments. AM fungus inoculation did not affect microbial species richness or diversity indices in leaves or roots, but the AM fungus inoculation significantly affected bacterial community composition in leaves. A total of three OTUs in leaves belonging to the phylum Firmicutes positively responded to the presence of the AM fungus in roots. Another six OTUs belonging to the Proteobacteria (Alpha, Beta, and Gamma) and Bacteroidetes were significantly more abundant in NM plants when compared to AM fungus-inoculated plants. Further, there was a significant correlation between plant dry weight and leaf microbial community compositional shift. Also, there was a significant correlation between leaf bacterial community compositional shift and foliar nitrogen content changes due to AM fungus inoculation. The results suggest that AM fungus colonization in roots has a profound effect on plant physiology that is reflected in leaf bacterial community composition.

  5. Remarkable recovery and colonization behaviour of methane oxidizing bacteria in soil after disturbance is controlled by methane source only.

    PubMed

    Pan, Yao; Abell, Guy C J; Bodelier, Paul L E; Meima-Franke, Marion; Sessitsch, Angela; Bodrossy, Levente

    2014-08-01

    Little is understood about the relationship between microbial assemblage history, the composition and function of specific functional guilds and the ecosystem functions they provide. To learn more about this relationship we used methane oxidizing bacteria (MOB) as model organisms and performed soil microcosm experiments comprised of identical soil substrates, hosting distinct overall microbial diversities(i.e., full, reduced and zero total microbial and MOB diversities). After inoculation with undisturbed soil, the recovery of MOB activity, MOB diversity and total bacterial diversity were followed over 3 months by methane oxidation potential measurements and analyses targeting pmoA and 16S rRNA genes. Measurement of methane oxidation potential demonstrated different recovery rates across the different treatments. Despite different starting microbial diversities, the recovery and succession of the MOB communities followed a similar pattern across the different treatment microcosms. In this study we found that edaphic parameters were the dominant factor shaping microbial communities over time and that the starting microbial community played only a minor role in shaping MOB microbial community.

  6. Digestive enzyme activities in the guts of bonnethead sharks (Sphyrna tiburo) provide insight into their digestive strategy and evidence for microbial digestion in their hindguts.

    PubMed

    Jhaveri, Parth; Papastamatiou, Yannis P; German, Donovan P

    2015-11-01

    Few investigations have studied digestive enzyme activities in the alimentary tracts of sharks to gain insight into how these organisms digest their meals. In this study, we examined the activity levels of proteases, carbohydrases, and lipase in the pancreas, and along the anterior intestine, spiral intestine, and colon of the bonnethead shark, Sphyrna tiburo. We then interpreted our data in the context of a rate-yield continuum to discern this shark's digestive strategy. Our data show anticipated decreasing patterns in the activities of pancreatic enzymes moving posteriorly along the gut, but also show mid spiral intestine peaks in aminopeptidase and lipase activities, which support the spiral intestine as the main site of absorption in bonnetheads. Interestingly, we observed spikes in the activity levels of N-acetyl-β-D-glucosaminidase and β-glucosidase in the bonnethead colon, and these chitin- and cellulose-degrading enzymes, respectively, are likely of microbial origin in this distal gut region. Taken in the context of intake and relatively long transit times of food through the gut, the colonic spikes in N-acetyl-β-D-glucosaminidase and β-glucosidase activities suggest that bonnetheads take a yield-maximizing strategy to the digestive process, with some reliance on microbial digestion in their hindguts. This is one of the first studies to examine digestive enzyme activities along the gut of any shark, and importantly, the data match with previous observations that sharks take an extended time to digest their meals (consistent with a yield-maximizing digestive strategy) and that the spiral intestine is the primary site of absorption in sharks. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Metagenomic characterization of biofilter microbial communities in a full-scale drinking water treatment plant.

    PubMed

    Oh, Seungdae; Hammes, Frederik; Liu, Wen-Tso

    2018-01-01

    Microorganisms inhabiting filtration media of a drinking water treatment plant can be beneficial, because they metabolize biodegradable organic matter from source waters and those formed during disinfection processes, leading to the production of biologically stable drinking water. However, which microbial consortia colonize filters and what metabolic capacity they possess remain to be investigated. To gain insights into these issues, we performed metagenome sequencing and analysis of microbial communities in three different filters of a full-scale drinking water treatment plant (DWTP). Filter communities were sampled from a rapid sand filter (RSF), granular activated carbon filter (GAC), and slow sand filter (SSF), and from the Schmutzdecke (SCM, a biologically active scum layer accumulated on top of SSF), respectively. Analysis of community phylogenetic structure revealed that the filter bacterial communities significantly differed from those in the source water and final effluent communities, respectively. Network analysis identified a filter-specific colonization pattern of bacterial groups. Bradyrhizobiaceae were abundant in GAC, whereas Nitrospira were enriched in the sand-associated filters (RSF, SCM, and SSF). The GAC community was enriched with functions associated with aromatics degradation, many of which were encoded by Rhizobiales (∼30% of the total GAC community). Predicting minimum generation time (MGT) of prokaryotic communities suggested that the GAC community potentially select fast-growers (<15 h of MGT) among the four filter communities, consistent with the highest dissolved organic matter removal rate by GAC. Our findings provide new insights into the community phylogenetic structure, colonization pattern, and metabolic capacity that potentially contributes to organic matter removal achieved in the biofiltration stages of the full-scale DWTP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The Development of Microbiota and Metabolome in Small Intestine of Sika Deer (Cervus nippon) from Birth to Weaning

    PubMed Central

    Li, Zhipeng; Wang, Xiaoxu; Zhang, Ting; Si, Huazhe; Nan, Weixiao; Xu, Chao; Guan, Leluo; Wright, André-Denis G.; Li, Guangyu

    2018-01-01

    The dense and diverse community of microorganisms inhabiting the gastrointestinal tract of ruminant animals plays critical roles in the metabolism and absorption of nutrients, and gut associated immune function. Understanding microbial colonization in the small intestine of new born ruminants is a vital first step toward manipulating gut function through interventions during early life to produce long-term positive effects on host productivity and health. Yet the knowledge of microbiota colonization and its induced metabolites of small intestine during early life is still limited. In the present study, we examined the microbiota and metabolome in the jejunum and ileum of neonatal sika deer (Cervus nippon) from birth to weaning at days 1, 42, and 70. The microbial data showed that diversity and richness were increased with age, but a highly individual variation was observed at day 1. Principal coordinate analysis revealed significant differences in microbial community composition across three time points in the jejunum and ileum. The abundance of Halomonas spp., Lactobacillus spp., Escherichia–Shigella, and Bacteroides spp. tended to be decreased, while the proportion of Intestinibacter spp., Cellulosilyticum spp., Turicibacter spp., Clostridium sensu stricto 1 and Romboutsia spp. was significantly increased with age. For metabolome, metabolites separated from each other across the three time points in both jejunum and ileum. Moreover, the amounts of methionine, threonine, and putrescine were increased, while the amounts of myristic acid and pentadecanoic acid were decreased with age, respectively. The present study demonstrated that microbiota colonization and the metabolome becomes more developed in the small intestine with age. This may shed new light on the microbiota-metabolome-immune interaction during development. PMID:29410651

  9. The Development of Microbiota and Metabolome in Small Intestine of Sika Deer (Cervus nippon) from Birth to Weaning.

    PubMed

    Li, Zhipeng; Wang, Xiaoxu; Zhang, Ting; Si, Huazhe; Nan, Weixiao; Xu, Chao; Guan, Leluo; Wright, André-Denis G; Li, Guangyu

    2018-01-01

    The dense and diverse community of microorganisms inhabiting the gastrointestinal tract of ruminant animals plays critical roles in the metabolism and absorption of nutrients, and gut associated immune function. Understanding microbial colonization in the small intestine of new born ruminants is a vital first step toward manipulating gut function through interventions during early life to produce long-term positive effects on host productivity and health. Yet the knowledge of microbiota colonization and its induced metabolites of small intestine during early life is still limited. In the present study, we examined the microbiota and metabolome in the jejunum and ileum of neonatal sika deer ( Cervus nippon ) from birth to weaning at days 1, 42, and 70. The microbial data showed that diversity and richness were increased with age, but a highly individual variation was observed at day 1. Principal coordinate analysis revealed significant differences in microbial community composition across three time points in the jejunum and ileum. The abundance of Halomonas spp., Lactobacillus spp., Escherichia - Shigella , and Bacteroides spp. tended to be decreased, while the proportion of Intestinibacter spp., Cellulosilyticum spp., Turicibacter spp., Clostridium sensu stricto 1 and Romboutsia spp. was significantly increased with age. For metabolome, metabolites separated from each other across the three time points in both jejunum and ileum. Moreover, the amounts of methionine, threonine, and putrescine were increased, while the amounts of myristic acid and pentadecanoic acid were decreased with age, respectively. The present study demonstrated that microbiota colonization and the metabolome becomes more developed in the small intestine with age. This may shed new light on the microbiota-metabolome-immune interaction during development.

  10. A liquid chromatography - tandem mass spectrometry method to measure a selected panel of uremic retention solutes derived from endogenous and colonic microbial metabolism.

    PubMed

    de Loor, Henriette; Poesen, Ruben; De Leger, Wout; Dehaen, Wim; Augustijns, Patrick; Evenepoel, Pieter; Meijers, Björn

    2016-09-14

    Chronic kidney disease (CKD) is associated with an increased risk of mortality and cardiovascular disease, which is, at least partly, mediated by the accumulation of so-called uremic retention solutes. Although there has been an increasing interest in the behavior of these solutes, derived from both the endogenous and colonic microbial metabolism, methods to simultaneously and accurately measure a broad panel of relevant uremic retention solutes remain scarce. We developed a highly sensitive ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method. A high throughput sample preparation was used with extraction of analytes from 50 μl serum using Ostro plate technology. For most solutes, stable isotopes labelled metabolites were used as internal standards. Chromatography was achieved using an Acquity UPLC CSH Fluoro Phenyl column. The total run time was 8 min, the mobile phase was a gradient of 0.1% formic acid in Milli-Q water and pure methanol at a flow rate of 0.5 ml min(-1). Detection was performed using a tandem mass spectrometer with alternated positive and negative electrospray ionization. Calibration curves were linear for all solutes. Precision was assessed according to the NCCLS EP5-T guideline, being below 15% for all metabolites. Mean recoveries were between 83 and 104% for all metabolites. The validated method was successfully applied in a cohort of 488 patients with CKD. We developed and validated a sensitive and robust UPLC-MS/MS method for quantification of 15 uremic retention solutes derived from endogenous and colonic microbial metabolism. This method allows for studying the behavior and relevance of these solutes in patients with CKD. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. CoMiniGut-a small volume in vitro colon model for the screening of gut microbial fermentation processes.

    PubMed

    Wiese, Maria; Khakimov, Bekzod; Nielsen, Sebastian; Sørensen, Helena; van den Berg, Frans; Nielsen, Dennis Sandris

    2018-01-01

    Driven by the growing recognition of the influence of the gut microbiota (GM) on human health and disease, there is a rapidly increasing interest in understanding how dietary components, pharmaceuticals and pre- and probiotics influence GM. In vitro colon models represent an attractive tool for this purpose. With the dual objective of facilitating the investigation of rare and expensive compounds, as well as an increased throughput, we have developed a prototype in vitro parallel gut microbial fermentation screening tool with a working volume of only 5 ml consisting of five parallel reactor units that can be expanded with multiples of five to increase throughput. This allows e.g., the investigation of interpersonal variations in gut microbial dynamics and the acquisition of larger data sets with enhanced statistical inference. The functionality of the in vitro colon model, Copenhagen MiniGut (CoMiniGut) was first demonstrated in experiments with two common prebiotics using the oligosaccharide inulin and the disaccharide lactulose at 1% (w/v). We then investigated fermentation of the scarce and expensive human milk oligosaccharides (HMOs) 3-Fucosyllactose, 3-Sialyllactose, 6-Sialyllactose and the more common Fructooligosaccharide in fermentations with infant gut microbial communities. Investigations of microbial community composition dynamics in the CoMiniGut reactors by MiSeq-based 16S rRNA gene amplicon high throughput sequencing showed excellent experimental reproducibility and allowed us to extract significant differences in gut microbial composition after 24 h of fermentation for all investigated substrates and fecal donors. Furthermore, short chain fatty acids (SCFAs) were quantified for all treatments and donors. Fermentations with inulin and lactulose showed that inulin leads to a microbiota dominated by obligate anaerobes, with high relative abundance of Bacteroidetes, while the more easily fermented lactulose leads to higher relative abundance of Proteobacteria. The subsequent study on the influence of HMOs on two infant GM communities, revealed the strongest bifidogenic effect for 3'SL for both infants. Inter-individual differences of infant GM, especially with regards to the occurrence of Bacteroidetes and differences in bifidobacterial species composition, correlated with varying degrees of HMO utilization foremost of 6'SL and 3'FL, indicating species and strain related differences in HMO utilization which was also reflected in SCFAs concentrations, with 3'SL and 6'SL resulting in significantly higher butyrate production compared to 3'FL. In conclusion, the increased throughput of CoMiniGut strengthens experimental conclusions through elimination of statistical interferences originating from low number of repetitions. Its small working volume moreover allows the investigation of rare and expensive bioactives.

  12. Accelerated microbial turnover but constant growth efficiency with warming in soil

    Treesearch

    Shannon B. Hagerty; Kees Jan van Groenigen; Steven D. Allison; Bruce A. Hungate; Egbert Schwartz; George W. Koch; Randall K. Kolka; Paul Dijkstra

    2014-01-01

    Rising temperatures are expected to reduce global soil carbon (C) stocks, driving a positive feedback to climate change1-3. However, the mechanisms underlying this prediction are not well understood, including how temperature affects microbial enzyme kinetics, growth effiency (MGE), and turnover4,5. Here, in a laboratory...

  13. The Mineralosphere Concept: Mineralogical Control of the Distribution and Function of Mineral-associated Bacterial Communities.

    PubMed

    Uroz, Stephane; Kelly, Laura Catherine; Turpault, Marie-Pierre; Lepleux, Cendrella; Frey-Klett, Pascale

    2015-12-01

    Soil is composed of a mosaic of different rocks and minerals, usually considered as an inert substrata for microbial colonization. However, recent findings suggest that minerals, in soils and elsewhere, favour the development of specific microbial communities according to their mineralogy, nutritive content, and weatherability. Based upon recent studies, we highlight how bacterial communities are distributed on the surface of, and in close proximity to, minerals. We also consider the potential role of the mineral-associated bacterial communities in mineral weathering and nutrient cycling in soils, with a specific focus on nutrient-poor and acidic forest ecosystems. We propose to define this microbial habitat as the mineralosphere, where key drivers of the microbial communities are the physicochemical properties of the minerals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Ecological consequences of antibiotic exposure to periphyton in naturally colonizing stream mesocosms

    EPA Science Inventory

    Tetracycline and its derivatives are extensively used human and animal antibiotics, and enter stream ecosystems via point and non-point sources. Laboratory studies indicate that microbial organisms are more sensitive to antibiotics than invertebrates or fish, and may indicate t...

  15. Steam explosion enhances digestibility and fermentation of corn stover by facilitating ruminal microbial colonization.

    PubMed

    Zhao, Shengguo; Li, Guodong; Zheng, Nan; Wang, Jiaqi; Yu, Zhongtang

    2018-04-01

    The purpose of this study was to evaluate steam explosion as a pretreatment to enhance degradation of corn stover by ruminal microbiome. The steam explosion conditions were first optimized, and then the efficacy of steam explosion was evaluated both in vitro and in vivo. Steam explosion altered the physical and chemical structure of corn stover as revealed by scanning electron microscopy (SEM) and Fourier-transform infrared (FTIR) spectroscopy, respectively, and increased its cellulose content while decreasing hemicellulose content. Steam-exploded corn stover also increased release of reducing sugars, rate of fermentation, and production of volatile fatty acids (VFAs) in vitro. The steam explosion treatment increased microbial colonization and in situ degradation of cellulose and hemicellulose of corn stover in the rumen of dairy cows. Steam explosion may be a useful pretreatment of corn stover to improve its nutritional value as forage for cattle, or as feedstock for biofuel production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. IL-1 receptor antagonist ameliorates inflammasome-dependent inflammation in murine and human cystic fibrosis

    PubMed Central

    Iannitti, Rossana G.; Napolioni, Valerio; Oikonomou, Vasilis; De Luca, Antonella; Galosi, Claudia; Pariano, Marilena; Massi-Benedetti, Cristina; Borghi, Monica; Puccetti, Matteo; Lucidi, Vincenzina; Colombo, Carla; Fiscarelli, Ersilia; Lass-Flörl, Cornelia; Majo, Fabio; Cariani, Lisa; Russo, Maria; Porcaro, Luigi; Ricciotti, Gabriella; Ellemunter, Helmut; Ratclif, Luigi; De Benedictis, Fernando Maria; Talesa, Vincenzo Nicola; Dinarello, Charles A.; van de Veerdonk, Frank L.; Romani, Luigina

    2016-01-01

    Dysregulated inflammasome activation contributes to respiratory infections and pathologic airway inflammation. Through basic and translational approaches involving murine models and human genetic epidemiology, we show here the importance of the different inflammasomes in regulating inflammatory responses in mice and humans with cystic fibrosis (CF), a life-threatening disorder of the lungs and digestive system. While both contributing to pathogen clearance, NLRP3 more than NLRC4 contributes to deleterious inflammatory responses in CF and correlates with defective NLRC4-dependent IL-1Ra production. Disease susceptibility in mice and microbial colonization in humans occurrs in conditions of genetic deficiency of NLRC4 or IL-1Ra and can be rescued by administration of the recombinant IL-1Ra, anakinra. These results indicate that pathogenic NLRP3 activity in CF could be negatively regulated by IL-1Ra and provide a proof-of-concept evidence that inflammasomes are potential targets to limit the pathological consequences of microbial colonization in CF. PMID:26972847

  17. Subsurface Biodegradation in a Fractured Basement Reservoir, Shropshire, UK

    NASA Astrophysics Data System (ADS)

    Parnell, John; Baba, Mas'ud; Bowden, Stephen; Muirhead, David

    2017-04-01

    Subsurface Biodegradation in a Fractured Basement Reservoir, Shropshire, UK. John Parnell, Mas'ud Baba, Stephen Bowden, David Muirhead Subsurface biodegradation in current oil reservoirs is well established, but there are few examples of fossil subsurface degradation. Biomarker compositions of viscous and solid oil residues ('bitumen') in fractured Precambrian and other basement rocks below the Carboniferous cover in Shropshire, UK, show that they are variably biodegraded. High levels of 25-norhopanes imply that degradation occurred in the subsurface. Lower levels of 25-norhopanes occur in active seepages. Liquid oil trapped in fluid inclusions in mineral veins in the fractured basement confirm that the oil was emplaced fresh before subsurface degradation. A Triassic age for the veins implies a 200 million year history of hydrocarbon migration in the basement rocks. The data record microbial colonization of a fractured basement reservoir, and add to evidence in modern basement aquifers for microbial activity in deep fracture systems. Buried basement highs may be especially favourable to colonization, through channelling fluid flow to shallow depths and relatively low temperatures

  18. Quantitative Imaging of Gut Microbiota Spatial Organization

    PubMed Central

    Earle, Kristen A.; Billings, Gabriel; Sigal, Michael; Lichtman, Joshua S.; Hansson, Gunnar C.; Elias, Joshua E.; Amieva, Manuel R.; Huang, Kerwyn Casey; Sonnenburg, Justin L.

    2015-01-01

    Summary Genomic technologies have significantly advanced our understanding of the composition and diversity of host-associated microbial populations. However, their spatial organization and functional interactions relative to the host have been more challenging to study. Here we present a pipeline for the assessment of intestinal microbiota localization within immunofluorescence images of fixed gut cross-sections that includes a flexible software package, BacSpace, for high-throughput quantification of microbial organization. Applying this pipeline to gnotobiotic and human microbiota-colonized mice, we demonstrate that elimination of microbiota accessible carbohydrates (MACs) from the diet results in thinner mucus in the distal colon, increased proximity of microbes to the epithelium, and heightened expression of the inflammatory marker REG3β. Measurements of microbe-microbe proximity reveal that a MAC-deficient diet alters monophyletic spatial clustering. Furthermore, we quantify the invasion of Helicobacter pylori into the glands of the mouse stomach relative to host mitotic progenitor cells, illustrating the generalizability of this approach. PMID:26439864

  19. IL-1 receptor antagonist ameliorates inflammasome-dependent inflammation in murine and human cystic fibrosis.

    PubMed

    Iannitti, Rossana G; Napolioni, Valerio; Oikonomou, Vasilis; De Luca, Antonella; Galosi, Claudia; Pariano, Marilena; Massi-Benedetti, Cristina; Borghi, Monica; Puccetti, Matteo; Lucidi, Vincenzina; Colombo, Carla; Fiscarelli, Ersilia; Lass-Flörl, Cornelia; Majo, Fabio; Cariani, Lisa; Russo, Maria; Porcaro, Luigi; Ricciotti, Gabriella; Ellemunter, Helmut; Ratclif, Luigi; De Benedictis, Fernando Maria; Talesa, Vincenzo Nicola; Dinarello, Charles A; van de Veerdonk, Frank L; Romani, Luigina

    2016-03-14

    Dysregulated inflammasome activation contributes to respiratory infections and pathologic airway inflammation. Through basic and translational approaches involving murine models and human genetic epidemiology, we show here the importance of the different inflammasomes in regulating inflammatory responses in mice and humans with cystic fibrosis (CF), a life-threatening disorder of the lungs and digestive system. While both contributing to pathogen clearance, NLRP3 more than NLRC4 contributes to deleterious inflammatory responses in CF and correlates with defective NLRC4-dependent IL-1Ra production. Disease susceptibility in mice and microbial colonization in humans occurs in conditions of genetic deficiency of NLRC4 or IL-1Ra and can be rescued by administration of the recombinant IL-1Ra, anakinra. These results indicate that pathogenic NLRP3 activity in CF could be negatively regulated by IL-1Ra and provide a proof-of-concept evidence that inflammasomes are potential targets to limit the pathological consequences of microbial colonization in CF.

  20. Prior Dietary Practices and Connections to a Human Gut Microbial Metacommunity Alter Responses to Diet Interventions.

    PubMed

    Griffin, Nicholas W; Ahern, Philip P; Cheng, Jiye; Heath, Andrew C; Ilkayeva, Olga; Newgard, Christopher B; Fontana, Luigi; Gordon, Jeffrey I

    2017-01-11

    Ensuring that gut microbiota respond consistently to prescribed dietary interventions, irrespective of prior dietary practices (DPs), is critical for effective nutritional therapy. To address this, we identified DP-associated gut bacterial taxa in individuals either practicing chronic calorie restriction with adequate nutrition (CRON) or without dietary restrictions (AMER). When transplanted into gnotobiotic mice, AMER and CRON microbiota responded predictably to CRON and AMER diets but with variable response strengths. An individual's microbiota is connected to other individuals' communities ("metacommunity") by microbial exchange. Sequentially cohousing AMER-colonized mice with two different groups of CRON-colonized mice simulated metacommunity effects, resulting in enhanced responses to a CRON diet intervention and changes in several metabolic features in AMER animals. This response was driven by an influx of CRON DP-associated taxa. Certain DPs may impair responses to dietary interventions, necessitating the introduction of diet-responsive bacterial lineages present in other individuals and identified using the strategies described. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Highly specialized microbial diversity in hyper-arid polar desert

    PubMed Central

    Pointing, Stephen B.; Chan, Yuki; Lacap, Donnabella C.; Lau, Maggie C. Y.; Jurgens, Joel A.; Farrell, Roberta L.

    2009-01-01

    The McMurdo Dry Valleys in Antarctica are a cold hyperarid polar desert that present extreme challenges to life. Here, we report a culture-independent survey of multidomain microbial biodiversity in McKelvey Valley, a pristine example of the coldest desert on Earth. We demonstrate that life has adapted to form highly-specialized communities in distinct lithic niches occurring concomitantly within this terrain. Endoliths and chasmoliths in sandstone displayed greatest diversity, whereas soil was relatively depauperate and lacked a significant photoautotrophic component, apart from isolated islands of hypolithic cyanobacterial colonization on quartz rocks in soil contact. Communities supported previously unreported polar bacteria and fungi, but archaea were absent from all niches. Lithic community structure did not vary significantly on a landscape scale and stochastic moisture input due to snowmelt resulted in increases in colonization frequency without significantly affecting diversity. The findings show that biodiversity near the cold-arid limit for life is more complex than previously appreciated, but communities lack variability probably due to the high selective pressures of this extreme environment. PMID:19850879

  2. Microbial diversity of supra- and subgingival biofilms on freshly colonized titanium implant abutments in the human mouth.

    PubMed

    Heuer, W; Stiesch, M; Abraham, W R

    2011-02-01

    Supra- and subgingival biofilm formation is considered to be mainly responsible for early implant failure caused by inflammations of periimplant tissues. Nevertheless, little is known about the complex microbial diversity and interindividual similarities around dental implants. An atraumatic assessment was made of the diversity of microbial communities around titanium implants by single strand conformation polymorphism (SSCP) analysis of the 16S rRNA gene amplicons as well as subsequent sequence analysis. Samples of adherent supra- and subgingival periimplant biofilms were collected from ten patients. Additionally, samples of sulcusfluid were taken at titanium implant abutments and remaining teeth. The bacteria in the samples were characterized by SSCP and sequence analysis. A high diversity of bacteria varying between patients and within one patient at different locations was found. Bacteria characteristic for sulcusfluid and supra- and subgingival biofilm communities were identified. Sulcusfluid of the abutments showed higher abundance of Streptococcus species than from residual teeth. Prevotella and Rothia species frequently reported from the oral cavity were not detected at the abutments suggesting a role as late colonizers. Different niches in the human mouth are characterized by specific groups of bacteria. Implant abutments are a very valuable approach to study dental biofilm development in vivo.

  3. Effect of Antimicrobial Interventions on the Oral Microbiota Associated with Early Childhood Caries.

    PubMed

    Li, Yihong; Tanner, Anne

    2015-01-01

    The purposes of this systematic literature review were to identify research-based evidence for an effect of antimicrobial therapeutic approaches on the cariogenic microbiota and early childhood caries (ECC) outcomes; and to review methods used to perform microbial assessments in clinical studies of ECC. Multiple databases were searched; only clinical cohort studies and randomized controlled trials published from 1998 to 2014 were selected. A total of 471 titles and abstracts were identified; 114 studies met the inclusion criteria for a full review, from which 41 studies were included in the meta-analyses. In most of the reviewed studies, moderate reductions in cariogenic bacterial levels, mainly in mutans streptococci (MS), were demonstrated following the use of antimicrobial agents, but bacterial regrowth occurred and new carious lesions developed once the treatment had ceased, particularly in high-risk children. Relatively consistent findings suggested that anti-cariogenic microbial interventions in mothers significantly reduced MS acquisition by children. However, studies of the long-term benefits of ECC prevention are lacking. Based on the meta-analyses, antimicrobial interventions and treatments show temporary reductions in MS colonization levels. However, there is insufficient evidence to indicate that the approaches used produced sustainable effects on cariogenic microbial colonization or ECC reduction and prevention.

  4. Prevention of microbial biofilms - the contribution of micro and nanostructured materials.

    PubMed

    Grumezescu, Alexandru Mihai; Chifiriuc, Carmen Mariana

    2014-01-01

    Microbial biofilms are associated with drastically enhanced resistance to most of the antimicrobial agents and with frequent treatment failures, generating the search for novel strategies which can eradicate infections by preventing the persistent colonization of the hospital environment, medical devices or human tissues. Some of the current approaches for fighting biofilms are represented by the development of novel biomaterials with increased resistance to microbial colonization and by the improvement of the current therapeutic solutions with the aid of nano (bio)technology. This special issues includes papers describing the applications of nanotechnology and biomaterials science for the development of improved drug delivery systems and nanostructured surfaces for the prevention and treatment of medical biofilms. Nanomaterials display unique and well-defined physical and chemical properties making them useful for biomedical applications, such as: very high surface area to volume ratio, biocompatibility, biodegradation, safety for human ingestion, capacity to support surface modification and therefore, to be combined with other bioactive molecules or substrata and more importantly being seemingly not attracting antimicrobial resistance. The use of biomaterials is significantly contributing to the reduction of the excessive use of antibiotics, and consequently to the decrease of the emergence rate of resistant microorganisms, as well as of the associated toxic effects. Various biomaterials with intrinsic antimicrobial activity (inorganic nanoparticles, polymers, composites), medical devices for drug delivery, as well as factors influencing their antimicrobial properties are presented. One of the presented papers reviews the recent literature on the use of magnetic nanoparticles (MNP)-based nanomaterials in antimicrobial applications for biomedicine, focusing on the growth inhibition and killing of bacteria and fungi, and, on viral inactivation. The anti-pathogenic activity of the most common types of metallic/metal oxide nanoparticles, as well as the photocontrolled targeted drug-delivery system and the development of traditional Chinese herbs nanoparticles are some of the highlights of another paper of this issue. The applications of synthetic, biodegradable polymers for the improvement of antiinfective therapeutic and prophylactic agents (i.e., antimicrobial and anti-inflammatory agents and vaccines) activity, as well as for the design of biomaterials with increased biocompatibility and resistance to microbial colonization are also discussed, as well as one of the most recent paradigms of the pharmaceutical field and nanobiotechnology, represented by the design of smart multifunctional polymeric nanocarriers for controlled drug delivery. These systems are responding to physico-chemical changes and as a result, they can release the active substances in a controlled and targeted manner. The advantages and limitations of the main routes of polymerization by which these nanovehicles are obtained, as well as the practical appllications in the field of drug nanocarriers are presented. The authors describe the therapeutic applications of dendrimers, which are unimolecular, monodisperse nanocarriers with unique branched tree-like globular structure. The applications of nanotechnology for the stabilization and improved release of anti-pathogenic natural or synthetic compounds, which do not interfere with the microbial growth, but inhibit different features of microbial pathogenicity are also highlighted. We expect this special issue would offer a comprehensive update and give new directions for the design of micro/nano engineered materials to inhibit microbial colonization on the surfaces or to potentiate the efficiency of the current/ novel/alternative antimicrobial agents by improving their bioavailability and pharmacokinetic features.

  5. Gut microbial diversity is reduced and is associated with colonic inflammation in a piglet model of short bowel syndrome

    PubMed Central

    Lapthorne, Susan; Pereira-Fantini, Prue M.; Fouhy, Fiona; Wilson, Guineva; Thomas, Sarah L.; Dellios, Nicole L.; Scurr, Michelle; O’Sullivan, Orla; Ross, R. Paul; Stanton, Catherine; Fitzgerald, Gerald F.; Cotter, Paul D.; Bines, Julie E.

    2013-01-01

    Background and objectives Following small bowel resection (SBR), the luminal environment is altered, which contributes to clinical manifestations of short bowel syndrome (SBS) including malabsorption, mucosal inflammation and bacterial overgrowth. However, the impact of SBR on the colon has not been well-defined. The aims of this study were to characterize the colonic microbiota following SBR and to assess the impact of SBR on mucosal inflammation in the colon. Results Analysis of the colonic microbiota demonstrated that there was a significant level of dysbiosis both two and six weeks post-SBR, particularly in the phylum Firmicutes, coupled with a decrease in overall bacterial diversity in the colon. This decrease in diversity was associated with an increase in colonic inflammation six weeks post-surgery. Methods Female (4-week old) piglets (5−6/group) received a 75% SBR, a transection (sham) or no surgery. Compositional analysis of the colonic microbiota was performed by high-throughput sequencing, two- and six-weeks post-surgery. The gene expression of the pro-inflammatory cytokines interleukin (IL)-1β, IL-6, IL-8, IL-18 and tumor necrosis factor (TNF)-α in the colonic mucosa was assessed by qRT-PCR and the number of macrophages and percentage inducible nitric oxide synthase (iNOS) staining in the colonic epithelium were quantified by immunohistochemistry. Conclusions SBR significantly decreased the diversity of the colonic microbiota and this was associated with an increase in colonic mucosal inflammation. This study supports the hypothesis that SBR has a significant impact on the colon and that this may play an important role in defining clinical outcome. PMID:23549027

  6. Mutual reinforcement of pathophysiological host-microbe interactions in intestinal stasis models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Touw, Ketrija; Ringus, Daina L.; Hubert, Nathaniel

    Chronic diseases arise when there is mutual reinforcement of pathophysiological processes that cause an aberrant steady state. Such a sequence of events may underlie chronic constipation, which has been associated with dysbiosis of the gut. In this study we hypothesized that assemblage of microbial communities, directed by slow gastrointestinal transit, affects host function in a way that reinforces constipation and further maintains selection on microbial communities. In our study, we used two models – an opioid-induced consti- pation model in mice, and a humanized mouse model where germ-free mice were colonized with stool from a patient with constipation-predominant irritable bowelmore » syndrome (IBS-C) in humans. We examined the impact of pharmacologically (loperamide)-induced constipation (PIC) and IBS-C on the structural and functional profile of the gut microbiota. Germ-free (GF) mice were colonized with microbiota from PIC donor mice and IBS-C patients to determine how the microbiota affects the host. PIC and IBS-C promoted changes in the gut microbiota, characterized by increased relative abundance of Bacteroides ovatus and Parabacteroides distasonis in both models. PIC mice exhibited decreased luminal concentrations of butyrate in the cecum and altered metabolic profiles of the gut microbiota. Colonization of GF mice with PIC-associated mice cecal or human IBS-C fecal microbiota significantly increased GI transit time when compared to control microbiota recipients. IBS-C-associated gut microbiota also impacted colonic contractile properties. Lastly, our findings support the concept that constipation is characterized by dis- ease-associated steady states caused by reinforcement of pathophysiological factors in host-microbe interactions.« less

  7. Mutual reinforcement of pathophysiological host-microbe interactions in intestinal stasis models

    DOE PAGES

    Touw, Ketrija; Ringus, Daina L.; Hubert, Nathaniel; ...

    2017-03-20

    Chronic diseases arise when there is mutual reinforcement of pathophysiological processes that cause an aberrant steady state. Such a sequence of events may underlie chronic constipation, which has been associated with dysbiosis of the gut. In this study we hypothesized that assemblage of microbial communities, directed by slow gastrointestinal transit, affects host function in a way that reinforces constipation and further maintains selection on microbial communities. In our study, we used two models – an opioid-induced consti- pation model in mice, and a humanized mouse model where germ-free mice were colonized with stool from a patient with constipation-predominant irritable bowelmore » syndrome (IBS-C) in humans. We examined the impact of pharmacologically (loperamide)-induced constipation (PIC) and IBS-C on the structural and functional profile of the gut microbiota. Germ-free (GF) mice were colonized with microbiota from PIC donor mice and IBS-C patients to determine how the microbiota affects the host. PIC and IBS-C promoted changes in the gut microbiota, characterized by increased relative abundance of Bacteroides ovatus and Parabacteroides distasonis in both models. PIC mice exhibited decreased luminal concentrations of butyrate in the cecum and altered metabolic profiles of the gut microbiota. Colonization of GF mice with PIC-associated mice cecal or human IBS-C fecal microbiota significantly increased GI transit time when compared to control microbiota recipients. IBS-C-associated gut microbiota also impacted colonic contractile properties. Lastly, our findings support the concept that constipation is characterized by dis- ease-associated steady states caused by reinforcement of pathophysiological factors in host-microbe interactions.« less

  8. Influence of Infant Feeding Type on Gut Microbiome Development in Hospitalized Preterm Infants

    PubMed Central

    Cong, Xiaomei; Judge, Michelle; Xu, Wanli; Diallo, Ana; Janton, Susan; Brownell, Elizabeth A.; Maas, Kendra; Graf, Joerg

    2016-01-01

    Background Premature infants have a high risk for dysbiosis of the gut microbiome. Mother’s own breastmilk (MOM) has been found to favorably alter gut microbiome composition in infants born at term. Evidence about the influence of feeding type on gut microbial colonization of preterm infants is limited. Objective The purpose of this study was to explore the effect of feeding types on gut microbial colonization of preterm infants in the neonatal intensive care unit (NICU). Methods Thirty-three stable preterm infants were recruited at birth and followed-up for the first 30 days of life. Daily feeding information was used to classify infants into six groups (mother’s own milk [MOM], human donated milk [HDM], formula, MOM+HDM, MOM+Formula, and HDM+forumla) during postnatal days 0–10, 11–20, and 21–30 after birth. Stool samples were collected daily. DNA extracted from stool was used to sequence the 16S rRNA gene. Exploratory data analysis was conducted with a focus on temporal changes of microbial patterns and diversities among infants from different feeding cohorts. Prediction of gut microbial diversity from feeding type was estimated using linear mixed models. Results Preterm infants fed MOM (at least 70% of the total diet) had highest abundance of Clostridiales, Lactobacillales, and Bacillales compared to infants in other feeding groups, whereas infants fed primarily human donor milk or formula had a high abundance of Enterobacteriales compared to infants fed MOM. After controlling for gender, postnatal age, weight and birth gestational age, the diversity of gut microbiome increased over time and was constantly higher in infants fed MOM relative to infants with other feeding types (p < .01). Discussion Mother’s own breast milk benefits gut microbiome development of preterm infants, including balanced microbial community pattern and increased microbial diversity in early life. PMID:28252573

  9. Disturbance opens recruitment sites for bacterial colonization in activated sludge.

    PubMed

    Vuono, David C; Munakata-Marr, Junko; Spear, John R; Drewes, Jörg E

    2016-01-01

    Little is known about the role of immigration in shaping bacterial communities or the factors that may dictate success or failure of colonization by bacteria from regional species pools. To address these knowledge gaps, the influence of bacterial colonization into an ecosystem (activated sludge bioreactor) was measured through a disturbance gradient (successive decreases in the parameter solids retention time) relative to stable operational conditions. Through a DNA sequencing approach, we show that the most abundant bacteria within the immigrant community have a greater probability of colonizing the receiving ecosystem, but mostly as low abundance community members. Only during the disturbance do some of these bacterial populations significantly increase in abundance beyond background levels and in few cases become dominant community members post-disturbance. Two mechanisms facilitate the enhanced enrichment of immigrant populations during disturbance: (i) the availability of resources left unconsumed by established species and (ii) the increased availability of niche space for colonizers to establish and displace resident populations. Thus, as a disturbance decreases local diversity, recruitment sites become available to promote colonization. This work advances our understanding of microbial resource management and diversity maintenance in complex ecosystems. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Plant colonization by pink-pigmented facultative methylotrophic bacteria (PPFMs).

    PubMed

    Omer, Zahra S; Tombolini, Riccardo; Gerhardson, Berndt

    2004-03-01

    Bacteria belonging to the genus Methylobacterium are characterized by being able to rely on methanol as a sole carbon and energy source and by presenting a more or less intense pink reddish pigmentation. These bacteria, also referred to as pink-pigmented methylotrophic bacteria (PPFMs), are common inhabitants of the phyllosphere and are found in many other environmental samples. Since they grow slowly they are often overlooked and their impact on phyllosphere microbial communities and on the plants harboring them is not well studied nor has their ecology been elucidated. In a survey of PPFM colonization in three different agricultural sites, PPFM populations were identified on both red clover and winter wheat, but red clover was more consistently colonized. Isolations from collected leaves showed PPFM populations to decrease from spring towards summer, but they increased again towards the end of the cropping season. Isolates from red clover readily colonized winter wheat leaves and vice versa in greenhouse experiments, but population sizes were dependent on the application procedure. Tested isolates had also good potential to colonize the rhizosphere, especially after seed inoculations. Confocal scanning laser microscopy showed gfp-tagged isolates to colonize the surface of clover leaves by forming large aggregates.

  11. Phylogenetic factorization of compositional data yields lineage-level associations in microbiome datasets.

    PubMed

    Washburne, Alex D; Silverman, Justin D; Leff, Jonathan W; Bennett, Dominic J; Darcy, John L; Mukherjee, Sayan; Fierer, Noah; David, Lawrence A

    2017-01-01

    Marker gene sequencing of microbial communities has generated big datasets of microbial relative abundances varying across environmental conditions, sample sites and treatments. These data often come with putative phylogenies, providing unique opportunities to investigate how shared evolutionary history affects microbial abundance patterns. Here, we present a method to identify the phylogenetic factors driving patterns in microbial community composition. We use the method, "phylofactorization," to re-analyze datasets from the human body and soil microbial communities, demonstrating how phylofactorization is a dimensionality-reducing tool, an ordination-visualization tool, and an inferential tool for identifying edges in the phylogeny along which putative functional ecological traits may have arisen.

  12. Geochemistry and microbial community composition across a range of acid mine drainage impact and implications for the Neoarchean-Paleoproterozoic transition

    NASA Astrophysics Data System (ADS)

    Havig, Jeff R.; Grettenberger, Christen; Hamilton, Trinity L.

    2017-06-01

    Streams impacted by acid mine drainage (AMD, also known as acid rock drainage) represent local environmental and ecological disasters; however, they may also present an opportunity to study microbial communities in environments analogous to past conditions. Neoarchean continents had streams and rivers replete with detrital pyrites. Following the emergence of oxygenic photosynthesis, Cyanobacteria colonized streams and rivers on continental surfaces. The combination of labile detrital pyrite grains and locally produced O2 generated by Cyanobacteria produced ideal conditions for pyrite oxidation similar to that found at modern AMD-impacted sites. To explore the connection of modern sites to ancient conditions, we sampled sites that exhibited a range of AMD-impact (e.g., pH from 2.1 to 7.9 [Fe2+] up to 5.2 mmol/L [SO42-] from 0.3 to 52.4 mmol/L) and found (i) nearly all analytes correlated to sulfate concentration; (ii) all sites exhibited the predominance of a single taxon most closely related to Ferrovum myxofaciens, an Fe-oxidixing betaproteoabacterium capable of carbon and nitrogen fixation, and (iii) signs of potential inorganic carbon limitation and nitrogen cycling. From these findings and building on the work of others, we present a conceptual model of continental surfaces during the Neoarchean and Paleoproterozoic linking local O2 production to pyrite oxidation on continental surfaces to sulfate production and delivery to nearshore environments. The delivery of sulfate drives sulfate reduction and euxinia—favoring anoxygenic photosynthesis over cyanobacterial O2 generation in near-continent/shelf marine environments.

  13. Transmission of the major skin microbiota, Malassezia, from mother to neonate.

    PubMed

    Nagata, Rie; Nagano, Hiroshi; Ogishima, Daiki; Nakamura, Yasushi; Hiruma, Masataro; Sugita, Takashi

    2012-06-01

    Skin surface colonization starts after birth. It is thought that early microbial colonization affects the development of skin immune functions. Although Malassezia is the predominant fungus in the skin microbiota in healthy individuals, the microorganism is associated with atopic dermatitis and seborrheic dermatitis. In the present study, transmission of skin microbiota from mothers to their neonates was elucidated using the Malassezia microbiota as an indicator. Temporal changes in the level of Malassezia colonization of the skin from 27 neonates and mothers were investigated by real-time polymerase chain reaction assay. The genotypes of Malassezia colonizing the neonate and mother were also determined. Malassezia was detected from 89% and 100% of neonate samples on days 0 and 1 after birth, respectively. Subsequently, the level of Malassezia colonization of the neonates increased with time, whereas that of the mothers did not change. The Malassezia diversity of neonates shifted to the adult type by day 30. The genotype of Malassezia colonizing the skin of neonates agreed well with that of Malassezia colonizing the skin of the mothers. Fungal microbiota colonization of neonates began on day 0, and the fungal microbiota of neonates had changed to the adult type by day 30. To our knowledge, this is the first report of a molecular analysis of the fungal microbiota of neonates. © 2012 The Authors. Pediatrics International © 2012 Japan Pediatric Society.

  14. Probiotic legacy on gut microbial assembly in fish larvae

    USDA-ARS?s Scientific Manuscript database

    Considerable efforts have been put into developing effective strategies for establishing beneficial interactions between a host and its microbiota. Early contact of fish with bacteria from their environment and its effect on early colonization in the gut has been studied in the past years. However, ...

  15. Searching for Synbiotics to increase Colonic Butyrate Concentration

    USDA-ARS?s Scientific Manuscript database

    Butyrate is produced by microbial fermentation of plant fiber in the gut and a preferred substrate for gut epithelial cells. In ruminants, butyrate contributes to 70% of energy metabolism. In monogastric species, butyrate also plays an important role in energy metabolism in the hindgut. Moreover, bu...

  16. Genomic and fluxomic analysis of carbohydrate metabolism in Bifidobacterium spp: human symbiotic bacteria

    USDA-ARS?s Scientific Manuscript database

    Bifidobacteria are gram-positive microorganisms widely applied in fermented dairy products due to their health-promoting effects. Bifidobacterium ssp. may also represent up to 91% of microbial gut population in the infant colon, but considerably less in adults. Fructose-6 phosphate phosphoketolase...

  17. Early gut colonizers shape parasite susceptibility and microbiota composition in honey bee workers

    USDA-ARS?s Scientific Manuscript database

    Microbial symbionts living within animal guts are largely composed of resident bacterial species, forming communities that often provide benefits to the host. Gut microbiomes of adult honey bees (Apis mel- lifera) include core residents such as the betaproteobacterium Snod- grassella alvi, alongside...

  18. Multitrophic microbial interactions for eco- and agro-biotechnological processes: theory and practice.

    PubMed

    Saleem, Muhammad; Moe, Luke A

    2014-10-01

    Multitrophic level microbial loop interactions mediated by protist predators, bacteria, and viruses drive eco- and agro-biotechnological processes such as bioremediation, wastewater treatment, plant growth promotion, and ecosystem functioning. To what extent these microbial interactions are context-dependent in performing biotechnological and ecosystem processes remains largely unstudied. Theory-driven research may advance the understanding of eco-evolutionary processes underlying the patterns and functioning of microbial interactions for successful development of microbe-based biotechnologies for real world applications. This could also be a great avenue to test the validity or limitations of ecology theory for managing diverse microbial resources in an era of altering microbial niches, multitrophic interactions, and microbial diversity loss caused by climate and land use changes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls

    DOE PAGES

    Kallenbach, Cynthia M.; Frey, Serita D.; Grandy, A. Stuart

    2016-11-28

    Soil organic matter (SOM) and the carbon and nutrients therein drive fundamental submicron- to global-scale biogeochemical processes and influence carbon-climate feedbacks. Consensus is emerging that microbial materials are an important constituent of stable SOM, and new conceptual and quantitative SOM models are rapidly incorporating this view. However, direct evidence demonstrating that microbial residues account for the chemistry, stability and abundance of SOM is still lacking. Further, emerging models emphasize the stabilization of microbial-derived SOM by abiotic mechanisms, while the effects of microbial physiology on microbial residue production remain unclear. Here we provide the first direct evidence that soil microbes producemore » chemically diverse, stable SOM. As a result, we show that SOM accumulation is driven by distinct microbial communities more so than clay mineralogy, where microbial-derived SOM accumulation is greatest in soils with higher fungal abundances and more efficient microbial biomass production.« less

  20. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kallenbach, Cynthia M.; Frey, Serita D.; Grandy, A. Stuart

    Soil organic matter (SOM) and the carbon and nutrients therein drive fundamental submicron- to global-scale biogeochemical processes and influence carbon-climate feedbacks. Consensus is emerging that microbial materials are an important constituent of stable SOM, and new conceptual and quantitative SOM models are rapidly incorporating this view. However, direct evidence demonstrating that microbial residues account for the chemistry, stability and abundance of SOM is still lacking. Further, emerging models emphasize the stabilization of microbial-derived SOM by abiotic mechanisms, while the effects of microbial physiology on microbial residue production remain unclear. Here we provide the first direct evidence that soil microbes producemore » chemically diverse, stable SOM. As a result, we show that SOM accumulation is driven by distinct microbial communities more so than clay mineralogy, where microbial-derived SOM accumulation is greatest in soils with higher fungal abundances and more efficient microbial biomass production.« less

  1. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls

    NASA Astrophysics Data System (ADS)

    Kallenbach, Cynthia M.; Frey, Serita D.; Grandy, A. Stuart

    2016-11-01

    Soil organic matter (SOM) and the carbon and nutrients therein drive fundamental submicron- to global-scale biogeochemical processes and influence carbon-climate feedbacks. Consensus is emerging that microbial materials are an important constituent of stable SOM, and new conceptual and quantitative SOM models are rapidly incorporating this view. However, direct evidence demonstrating that microbial residues account for the chemistry, stability and abundance of SOM is still lacking. Further, emerging models emphasize the stabilization of microbial-derived SOM by abiotic mechanisms, while the effects of microbial physiology on microbial residue production remain unclear. Here we provide the first direct evidence that soil microbes produce chemically diverse, stable SOM. We show that SOM accumulation is driven by distinct microbial communities more so than clay mineralogy, where microbial-derived SOM accumulation is greatest in soils with higher fungal abundances and more efficient microbial biomass production.

  2. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls.

    PubMed

    Kallenbach, Cynthia M; Frey, Serita D; Grandy, A Stuart

    2016-11-28

    Soil organic matter (SOM) and the carbon and nutrients therein drive fundamental submicron- to global-scale biogeochemical processes and influence carbon-climate feedbacks. Consensus is emerging that microbial materials are an important constituent of stable SOM, and new conceptual and quantitative SOM models are rapidly incorporating this view. However, direct evidence demonstrating that microbial residues account for the chemistry, stability and abundance of SOM is still lacking. Further, emerging models emphasize the stabilization of microbial-derived SOM by abiotic mechanisms, while the effects of microbial physiology on microbial residue production remain unclear. Here we provide the first direct evidence that soil microbes produce chemically diverse, stable SOM. We show that SOM accumulation is driven by distinct microbial communities more so than clay mineralogy, where microbial-derived SOM accumulation is greatest in soils with higher fungal abundances and more efficient microbial biomass production.

  3. Tracking the Fate of new C in Northern Peatlands by a Compound-Specific Stable Isotope-Labeling Approach coupled with multiple analytical techniques and gas fluxes analysis

    NASA Astrophysics Data System (ADS)

    Tfaily, M. M.; Hu, J.; Heyman, H. M.; Toyoda, J.; Jaegers, N. R.; Wilson, R.; Chanton, J.

    2017-12-01

    Predicted increases in temperatures in Northern peatlands are expected to drive substantial alterations to global carbon (C) cycling. In many peatlands, increased temperatures will drive the decomposition of old recalcitrant C pools, as well as a surge of new potentially labile C fluxes, as highly productive plant communities (e.g., sedges) take over these systems. The result will be a large increase in microbial decomposition of C and emissions of the greenhouse gases CO2 and CH4. Much attention and study has focused on the fate of old C, which may decompose as temperatures increase, but the fate of new C inputs resulting from increased plant production remains poorly understood. This "new C" cycle has potential to drive substantial climate forces. Particularly, if hydrologic changes increase anaerobic decomposition of new C (e.g., by priming effect), this then could drive larger contributions to gas emissions, and hence feedbacks related to climate change. In this study, we examined the priming effect, drivers, and dynamics of the "new C" that is stimulated by climate change in Northern peatlands soil using a stable isotope labeling approach in a long term incubation experiment using surface and deep soil samples. The aim was to understand: 1) how changes in labile carbon inputs drive microbial community composition in the surface and deeper in the peat column, 2) how microbial communities contribute to CH4 and CO2 fluxes, and 3) the impact of the labile new C on ecosystem C storage or release. We traced the fate of 13C-glucose added to decomposition incubations into (1) different organic matter (through high-resolution 21T FT-ICR-MS and GC-FTMS), then into (2) microbial community (16S rRNA), and finally into (3) greenhouse gases (CO2 and CH4 gas emissions). Furthermore, we employed in situ 13C magic angle spinning (MAS) NMR spectroscopy to study quantitatively and continuously the in situ migration or conversion of glucose into various metabolites by microbes in soil. This research represents a fully integrated study to achieve a mechanistic understanding of substrate transformation through the microbial loop and will help shed new light on the mechanistic basis of biological processes and how these processes change in response to community interactions and shifting environmental condition.

  4. Development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium.

    PubMed

    Teixeira, Catarina; Almeida, C Marisa R; Nunes da Silva, Marta; Bordalo, Adriano A; Mucha, Ana P

    2014-09-15

    Microbial assisted phytoremediation is a promising, though yet poorly explored, new remediation technique. The aim of this study was to develop autochthonous microbial consortia resistant to cadmium that could enhance phytoremediation of salt-marsh sediments contaminated with this metal. The microbial consortia were selectively enriched from rhizosediments colonized by Juncus maritimus and Phragmites australis. The obtained consortia presented similar microbial abundance but a fairly different community structure, showing that the microbial community was a function of the sediment from which the consortia were enriched. The effect of the bioaugmentation with the developed consortia on cadmium uptake, and the microbial community structure associated to the different sediments were assessed using a microcosm experiment. Our results showed that the addition of the cadmium resistant microbial consortia increased J. maritimus metal phytostabilization capacity. On the other hand, in P. australis, microbial consortia amendment promoted metal phytoextraction. The addition of the consortia did not alter the bacterial structure present in the sediments at the end of the experiments. This study provides new evidences that the development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium might be a simple, efficient, and environmental friendly remediation procedure. Development of autochthonous microbial consortia resistant to cadmium that enhanced phytoremediation by salt-marsh plants, without a long term effect on sediment bacterial diversity. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Evolutionary bottlenecks in brackish water habitats drive the colonization of fresh water by stingrays.

    PubMed

    Kirchhoff, K N; Hauffe, T; Stelbrink, B; Albrecht, C; Wilke, T

    2017-08-01

    Species richness in freshwater bony fishes depends on two main processes: the transition into and the diversification within freshwater habitats. In contrast to bony fishes, only few cartilaginous fishes, mostly stingrays (Myliobatoidei), were able to colonize fresh water. Respective transition processes have been mainly assessed from a physiological and morphological perspective, indicating that the freshwater lifestyle is strongly limited by the ability to perform osmoregulatory adaptations. However, the transition history and the effect of physiological constraints on the diversification in stingrays remain poorly understood. Herein, we estimated the geographic pathways of freshwater colonization and inferred the mode of habitat transitions. Further, we assessed habitat-related speciation rates in a time-calibrated phylogenetic framework to understand factors driving the transition of stingrays into and the diversification within fresh water. Using South American and Southeast Asian freshwater taxa as model organisms, we found one independent freshwater colonization event by stingrays in South America and at least three in Southeast Asia. We revealed that vicariant processes most likely caused freshwater transition during the time of major marine incursions. The habitat transition rates indicate that brackish water species switch preferably back into marine than forth into freshwater habitats. Moreover, our results showed significantly lower diversification rates in brackish water lineages, whereas freshwater and marine lineages exhibit similar rates. Thus, brackish water habitats may have functioned as evolutionary bottlenecks for the colonization of fresh water by stingrays, probably because of the higher variability of environmental conditions in brackish water. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  6. Microbial community in a full-scale drinking water biosand filter.

    PubMed

    Feng, Shuo; Chen, Chao; Wang, Qingfeng; Yang, Zhiyu; Zhang, Xiaojian; Xie, Shuguang

    2013-04-01

    To remove turbidity and minimize microbiological risks, rapid sand filtration is one of main drinking water treatment processes in the world. However, after a long-term operation, sand particles will be colonized by microorganisms which can remove biodegradable organic matters and nitrogen compounds. In this study, 16S rRNA gene clone library analysis was applied to characterize the microbial community in a full-scale biosand filter used for drinking water treatment. The results indicate that phylum Nitrospirae and class Alphaproteobacteria were the dominant bacterial groups in the biosand sample collected from the upper filter layer. The dominance of Sphingomonas species might pose a microbiological risk. This work could provide some new insights into microbial community in drinking water biofilter.

  7. A Mechanistic Study of Plant and Microbial Controls over R* for Nitrogen in an Annual Grassland

    PubMed Central

    Levine, Jonathan M.; HilleRisLambers, Janneke

    2014-01-01

    Differences in species' abilities to capture resources can drive competitive hierarchies, successional dynamics, community diversity, and invasions. To investigate mechanisms of resource competition within a nitrogen (N) limited California grassland community, we established a manipulative experiment using an R* framework. R* theory holds that better competitors within a N limited community should better depress available N in monoculture plots and obtain higher abundance in mixture plots. We asked whether (1) plant uptake or (2) plant species influences on microbial dynamics were the primary drivers of available soil N levels in this system where N structures plant communities. To disentangle the relative roles of plant uptake and microbially-mediated processes in resource competition, we quantified soil N dynamics as well as N pools in plant and microbial biomass in monoculture plots of 11 native or exotic annual grassland plants over one growing season. We found a negative correlation between plant N content and soil dissolved inorganic nitrogen (DIN, our measure of R*), suggesting that plant uptake drives R*. In contrast, we found no relationship between microbial biomass N or potential net N mineralization and DIN. We conclude that while plant-microbial interactions may have altered the overall quantity of N that plants take up, the relationship between species' abundance and available N in monoculture was largely driven by plant N uptake in this first year of growth. PMID:25170943

  8. [The significance of the contamination of dental care articles. The results of a field study].

    PubMed

    Hingst, V

    1989-04-01

    Permissible conclusions both from recent available literature and our own field-study results concerning the problematic nature of microbial contamination of dental hygiene articles and the resulting possible health hazard for the consumer can be summarized as follows: Manufacturing practices as are given in the basic instructions for production sites of the cosmetic industry, render a possible degree of microbial contamination. This largely rules out the danger of infection of the consumer upon acquisition of the dental hygiene product. Secondary contamination of these products, as inevitably is the case during use of dental hygiene articles, leads to microbial colonization especially of toothbrush bristles. The extent of this colonization depends at least partially upon the utilization age of the toothbrush. Also for this reason a toothbrush should be replaced by a new one after period of three months, six months at the latest and in all cases of inflammatory changes of the mouth and throat region. The contamination of both the glass or plastic container used for rinsing the teeth after brushing or for gargling can be held within certain limits by dry storage. Only in exceptional cases do mouthwashes show a small degree of contamination. Provided they contain antimicrobial substances, no therapeutically serviceable possibilities worth mentioning follow for the reduction of oropharyngeal flora. Microbial colonization of toothpastes as a result of secondary contamination following use is observed only in exceptional cases due to their preservative content. Significant germination of stagnated residual water in waterpicks often occurs, achieving germ counts up to more than 10(7) cfu per ml. Moreover, waterpicks can represent a biotope for Pseudomonas aeruginosa, and should be used neither by patients with open wounds or mucous membrane lesions in the oropharyngeal area, nor by patients with reduced immune resistance. Manufacturers of waterpicks are urged to impede or prevent the stagnation of residual water more effectively by introducing constructive improvements. Denture and retainer cleansing agents presently on the market display a sufficient antimicrobial effect within the frame of their application, however do not meet the standards set for disinfectants. Dental hygiene products are without relevance for the epidemiology of Legionnaires' disease.

  9. Microbial colonization of the hands of residents.

    PubMed

    Baker, Kris; Katz, Ben Z

    2006-05-01

    To determine whether carriage of resistant Gram-positive organisms by residents increases over time, the dominant hand of pediatric residents was cultured. Among first-year residents, 53 Gram-positive organisms were isolated; 12 were resistant to oxacillin, 13 to clindamycin. Six residents had organisms resistant to both; 14 carried at least one resistant to either. Among third-year residents, 46 Gram-positive organisms were cultured; 9 were resistant to oxacillin, 6 to clindamycin. Three residents carried organisms resistant to both; 10 carried at least one resistant to either. Colonization with resistant Gram-positive organisms did not increase with length of training.

  10. MetaSort untangles metagenome assembly by reducing microbial community complexity

    PubMed Central

    Ji, Peifeng; Zhang, Yanming; Wang, Jinfeng; Zhao, Fangqing

    2017-01-01

    Most current approaches to analyse metagenomic data rely on reference genomes. Novel microbial communities extend far beyond the coverage of reference databases and de novo metagenome assembly from complex microbial communities remains a great challenge. Here we present a novel experimental and bioinformatic framework, metaSort, for effective construction of bacterial genomes from metagenomic samples. MetaSort provides a sorted mini-metagenome approach based on flow cytometry and single-cell sequencing methodologies, and employs new computational algorithms to efficiently recover high-quality genomes from the sorted mini-metagenome by the complementary of the original metagenome. Through extensive evaluations, we demonstrated that metaSort has an excellent and unbiased performance on genome recovery and assembly. Furthermore, we applied metaSort to an unexplored microflora colonized on the surface of marine kelp and successfully recovered 75 high-quality genomes at one time. This approach will greatly improve access to microbial genomes from complex or novel communities. PMID:28112173

  11. Influence of Salmonella enterica Serovar Typhimurium ssrB on Colonization of Eastern Oysters (Crassostrea virginica) as Revealed by a Promoter Probe Screen

    PubMed Central

    Cox, Clayton E.; Wright, Anita C.; McClelland, Michael

    2015-01-01

    Although Salmonella has been isolated from 7.4 to 8.6% of domestic raw oysters, representing a significant risk for food-borne illness, little is known about the factors that influence their initial colonization by Salmonella. This study tested the hypothesis that specific regulatory changes enable a portion of the invading Salmonella population to colonize oysters. An in vivo promoter probe library screen identified 19 unique regions as regulated during colonization. The mutants in the nearest corresponding downstream genes were tested for colonization defects in oysters. Only one mutation, in ssrB, resulted in a significantly reduced ability to colonize oysters compared to that of wild-type Salmonella. Because ssrB regulates Salmonella pathogenicity island 2 (SPI-2)-dependent infections in vertebrate macrophages, the possibility that ssrB mediated colonization of oyster hemocytes in a similar manner was examined. However, no difference in hemocyte colonization was observed. The complementary hypothesis that signal exchange between Salmonella and the oyster's native microbial community aids colonization was also tested. Signals that triggered responses in quorum sensing (QS) reporters were shown to be produced by oyster-associated bacteria and present in oyster tissue. However, no evidence for signal exchange was observed in vivo. The sdiA reporter responded to salinity, suggesting that SdiA may also have a role in environmental sensing. Overall, this study suggests the initial colonization of live oysters by Salmonella is controlled by a limited number of regulators, including ssrB. PMID:26497459

  12. Temporal and spatial constraints on community assembly during microbial colonization of wood in seawater.

    PubMed

    Kalenitchenko, Dimitri; Fagervold, Sonja K; Pruski, Audrey M; Vétion, Gilles; Yücel, Mustafa; Le Bris, Nadine; Galand, Pierre E

    2015-12-01

    Wood falls on the ocean floor form chemosynthetic ecosystems that remain poorly studied compared with features such as hydrothermal vents or whale falls. In particular, the microbes forming the base of this unique ecosystem are not well characterized and the ecology of communities is not known. Here we use wood as a model to study microorganisms that establish and maintain a chemosynthetic ecosystem. We conducted both aquaria and in situ deep-sea experiments to test how different environmental constraints structure the assembly of bacterial, archaeal and fungal communities. We also measured changes in wood lipid concentrations and monitored sulfide production as a way to detect potential microbial activity. We show that wood falls are dynamic ecosystems with high spatial and temporal community turnover, and that the patterns of microbial colonization change depending on the scale of observation. The most illustrative example was the difference observed between pine and oak wood community dynamics. In pine, communities changed spatially, with strong differences in community composition between wood microhabitats, whereas in oak, communities changed more significantly with time of incubation. Changes in community assembly were reflected by changes in phylogenetic diversity that could be interpreted as shifts between assemblies ruled by species sorting to assemblies structured by competitive exclusion. These ecological interactions followed the dynamics of the potential microbial metabolisms accompanying wood degradation in the sea. Our work showed that wood is a good model for creating and manipulating chemosynthetic ecosystems in the laboratory, and attracting not only typical chemosynthetic microbes but also emblematic macrofaunal species.

  13. Microbiota and Dose Response: Evolving Paradigm of Health Triangle.

    PubMed

    Coleman, Margaret; Elkins, Christopher; Gutting, Bradford; Mongodin, Emmanuel; Solano-Aguilar, Gloria; Walls, Isabel

    2018-06-13

    SRA Dose-Response and Microbial Risk Analysis Specialty Groups jointly sponsored symposia that addressed the intersections between the "microbiome revolution" and dose response. Invited speakers presented on innovations and advances in gut and nasal microbiota (normal microbial communities) in the first decade after the Human Microbiome Project began. The microbiota and their metabolites are now known to influence health and disease directly and indirectly, through modulation of innate and adaptive immune systems and barrier function. Disruption of healthy microbiota is often associated with changes in abundance and diversity of core microbial species (dysbiosis), caused by stressors including antibiotics, chemotherapy, and disease. Nucleic-acid-based metagenomic methods demonstrated that the dysbiotic host microbiota no longer provide normal colonization resistance to pathogens, a critical component of innate immunity of the superorganism. Diverse pathogens, probiotics, and prebiotics were considered in human and animal models (in vivo and in vitro). Discussion included approaches for design of future microbial dose-response studies to account for the presence of the indigenous microbiota that provide normal colonization resistance, and the absence of the protective microbiota in dysbiosis. As NextGen risk analysis methodology advances with the "microbiome revolution," a proposed new framework, the Health Triangle, may replace the old paradigm based on the Disease Triangle (focused on host, pathogen, and environment) and germophobia. Collaborative experimental designs are needed for testing hypotheses about causality in dose-response relationships for pathogens present in our environments that clearly compete in complex ecosystems with thousands of bacterial species dominating the healthy superorganism. © 2018 Society for Risk Analysis.

  14. Altering host resistance to infections through microbial transplantation.

    PubMed

    Willing, Benjamin P; Vacharaksa, Anjalee; Croxen, Matthew; Thanachayanont, Teerawat; Finlay, B Brett

    2011-01-01

    Host resistance to bacterial infections is thought to be dictated by host genetic factors. Infections by the natural murine enteric pathogen Citrobacter rodentium (used as a model of human enteropathogenic and enterohaemorrhagic E. coli infections) vary between mice strains, from mild self-resolving colonization in NIH Swiss mice to lethality in C3H/HeJ mice. However, no clear genetic component had been shown to be responsible for the differences observed with C. rodentium infections. Because the intestinal microbiota is important in regulating resistance to infection, and microbial composition is dependent on host genotype, it was tested whether variations in microbial composition between mouse strains contributed to differences in "host" susceptibility by transferring the microbiota of resistant mice to lethally susceptible mice prior to infection. Successful transfer of the microbiota from resistant to susceptible mice resulted in delayed pathogen colonization and mortality. Delayed mortality was associated with increased IL-22 mediated innate defense including antimicrobial peptides Reg3γ and Reg3β, and immunono-neutralization of IL-22 abrogated the beneficial effect of microbiota transfer. Conversely, depletion of the native microbiota in resistant mice by antibiotics and transfer of the susceptible mouse microbiota resulted in reduced innate defenses and greater pathology upon infection. This work demonstrates the importance of the microbiota and how it regulates mucosal immunity, providing an important factor in susceptibility to enteric infection. Transfer of resistance through microbial transplantation (bacteriotherapy) provides additional mechanisms to alter "host" resistance, and a novel means to alter enteric infection and to study host-pathogen interactions.

  15. Invertebrate and microbial associates

    Treesearch

    Fred M. Stephen; C. Wayne Berisford; D.L. Dahlsten; John C. Moser

    1988-01-01

    Coincident with and immediately subsequent to bark penetration, colonization and establishment of bark beetle and pathogen populations in the host, a myriad of associated organisms that are intimately associated with the bark beetles arrives at and finds access to the subcortical environment of infested trees. Although many of these associated species have been...

  16. Pathogen re-colonization of in-house composted and non-composted broiler litter

    USDA-ARS?s Scientific Manuscript database

    “In-house” litter composting has been reintroduced to the industry and shown to reduce bacteria by as much as two orders of magnitude. Other industries have demonstrated that pathogens can recolonize a waste-residual when microbial competition has been reduced or inhibited following composting. Po...

  17. COMPARISON OF MICROBIAL TRANSFORMATION RATE COEFFICIENTS OF XENOBIOTIC CHEMICALS BETWEEN FIELD-COLLECTED AND LABORATORY MICROCOSM MICROBIOTA

    EPA Science Inventory

    Two second-order transformation rate coefficients--kb, based on total plate counts, and kA, based on periphyton-colonized surface areas--were used to compare xenobiotic chemical transformation by laboratory-developed (microcosm) and by field-collected microbiota. Similarity of tr...

  18. Laboratory colonization stabilizes the naturally dynamic microbiome composition of field collected dermacentor andersoni ticks

    USDA-ARS?s Scientific Manuscript database

    Nearly a quarter of emerging infectious diseases in the last century were transmitted by arthropods. Although ticks and insects can carry pathogenic microorganisms, non-pathogenic microbes make up the majority of the microbial community. Currently, the majority of tick microbiome research has had a ...

  19. Assessment of biological colonization of historic buildings in the former Auschwitz II-Birkenau concentration camp.

    PubMed

    Rajkowska, Katarzyna; Otlewska, Anna; Koziróg, Anna; Piotrowska, Małgorzata; Nowicka-Krawczyk, Paulina; Hachułka, Mariusz; Wolski, Grzegorz J; Kunicka-Styczyńska, Alina; Gutarowska, Beata; Zydzik-Białek, Agnieszka

    2014-01-01

    The objective of this study was to assess biological colonization of wooden and brick buildings in the former Auschwitz II-Birkenau concentration camp, and to identify the organisms colonizing the examined buildings. Microbiological analysis did not reveal increased microbial activity, and the total microbial count of the barrack surfaces did not exceed 10 3  CFU/100 cm 2 . However, certain symptoms of biodegradation of the buildings were observed. The predominant microflora consisted of bacteria of the genera Bacillus , Sporosarcina , Pseudomonas , Micrococcus , Streptomyces , and Staphylococcus , as well as fungi of the genera Acremonium , Cladosporium , Alternaria , Humicola , Penicillium , and Chaetomium . The microflora patterns varied both in wooden and brick buildings. The structural elements of wooden and brick barracks, and especially of the floors and lower parts of bathroom walls, were infected by cyanobacteria and algae, with the most numerous being cyanobacteria of the genera Scytonema , Chroococcus , Gloeothece , Leptolyngbya , diatoms of the genus Diadesmis , and chlorophytes of the genera Chlorella and Apatococcus . The outer surfaces of the examined buildings were primarily colonized by lichens and bryophytes, with nearly 30 species identified. The dominant species of lichens belonged to the genera Candelariella , Caloplaca , Lecanora , Lecidea , Lepraria , Physcia , and Protoparmeliopsis , and those of bryophytes to the genera Bryum , Ceratodon , Marchantia , and Tortula . The quantity and species diversity of lichens and mosses were much lower in wooden barracks than in brick ones. The external surfaces of those barracks were only affected by Lecanora conizaeoides , Lecanora symmicta , Lepraria cf. incana , and Strangospora pinicola . The study results revealed vast biodiversity among the species colonizing historic buildings. The presence of these groups of organisms, resulting from their natural expansion in the environment, is undesirable, as their excessive growth and spread may lead to progressive biodegradation of buildings. Our assessment of biological contamination will enable the development of a disinfection and conservation plan for the examined buildings.

  20. The role of pH in determining the species composition of the human colonic microbiota.

    PubMed

    Duncan, Sylvia H; Louis, Petra; Thomson, John M; Flint, Harry J

    2009-08-01

    The pH of the colonic lumen varies with anatomical site and microbial fermentation of dietary residue. We have investigated the impact of mildly acidic pH, which occurs in the proximal colon, on the growth of different species of human colonic bacteria in pure culture and in the complete microbial community. Growth was determined for 33 representative human colonic bacteria at three initial pH values (approximately 5.5, 6.2 and 6.7) in anaerobic YCFA medium, which includes a mixture of short-chain fatty acids (SCFA) with 0.2% glucose as energy source. Representatives of all eight Bacteroides species tested grew poorly at pH 5.5, as did Escherichia coli, whereas 19 of the 23 gram-positive anaerobes tested gave growth rates at pH 5.5 that were at least 50% of those at pH 6.7. Growth inhibition of B. thetaiotaomicron at pH 5.5 was increased by the presence of the SCFA mix (33 mM acetate, 9 mM propionate and 1 mM each of iso-valerate, valerate and iso-butyrate). Analysis of amplified 16S rRNA sequences demonstrated a major pH-driven shift within a human faecal bacterial community in a continuous flow fermentor. Bacteroides spp. accounted for 27% of 16S rRNA sequences detected at pH 5.5, but 86% of sequences at pH 6.7. Conversely, butyrate-producing gram-positive bacteria related to Eubacterium rectale represented 50% of all 16S rRNA sequences at pH 5.5, but were not detected at pH 6.7. Inhibition of the growth of a major group of gram-negative bacteria at mildly acidic pH apparently creates niches that can be exploited by more low pH-tolerant microorganisms.

  1. Changes in the colon microbiota and intestinal cytokine gene expression following minimal intestinal surgery

    PubMed Central

    Lapthorne, Susan; Bines, Julie E; Fouhy, Fiona; Dellios, Nicole L; Wilson, Guineva; Thomas, Sarah L; Scurr, Michelle; Stanton, Catherine; Cotter, Paul D; Pereira-Fantini, Prue M

    2015-01-01

    AIM: To investigate the impact of minor abdominal surgery on the caecal microbial population and on markers of gut inflammation. METHODS: Four week old piglets were randomly allocated to a no-surgery “control” group (n = 6) or a “transection surgery” group (n = 5). During the transection surgery procedure, a conventional midline incision of the lower abdominal wall was made and the small intestine was transected at a site 225 cm proximal to the ileocaecal valve, a 2 cm segment was removed and the intestine was re-anastomosed. Piglets received a polymeric infant formula diet throughout the study period and were sacrificed at two weeks post-surgery. Clinical outcomes including weight, stool consistency and presence of stool fat globules were monitored. High throughput DNA sequencing of colonic content was used to detect surgery-related disturbances in microbial composition at phylum, family and genus level. Diversity and richness estimates were calculated for the control and minor surgery groups. As disturbances in the gut microbial community are linked to inflammation we compared the gene expression of key inflammatory cytokines (TNF, IL1B, IL18, IL12, IL8, IL6 and IL10) in ileum, terminal ileum and colon mucosal extracts obtained from control and abdominal surgery groups at two weeks post-surgery. RESULTS: Changes in the relative abundance of bacterial species at family and genus level were confined to bacterial members of the Proteobacteria and Bacteroidetes phyla. Family level compositional shifts included a reduction in the relative abundance of Enterobacteriaceae (22.95 ± 5.27 vs 2.07 ± 0.72, P < 0.01), Bacteroidaceae (2.54 ± 0.56 vs 0.86 ± 0.43, P < 0.05) and Rhodospirillaceae (0.40 ± 0.14 vs 0.00 ± 0.00, P < 0.05) following transection surgery. Similarly, at the genus level, changes associated with transection surgery were restricted to members of the Proteobacteria and Bacteroidetes phyla and included decreased relative abundance of Enterobacteriaceae (29.20 ± 6.74 vs 2.88 ± 1.08, P < 0.01), Alistipes (4.82 ± 1.73 vs 0.18 ± 0.13, P < 0.05) and Thalassospira (0.53 ± 0.19 vs 0.00 ± 0.00, P < 0.05). Surgery-associated microbial dysbiosis was accompanied by increased gene expression of markers of inflammation. Within the ileum IL6 expression was decreased (4.46 ± 1.60 vs 0.24 ± 0.06, P < 0.05) following transection surgery. In the terminal ileum, gene expression of TNF was decreased (1.51 ± 0.13 vs 0.80 ± 0.16, P < 0.01) and IL18 (1.21 ± 0.18 vs 2.13 ± 0.24, P < 0.01), IL12 (1.04 ± 0.16 vs 1.82 ± 0.32, P < 0.05) and IL10 (1.04 ± 0.06 vs 1.43 ± 0.09, P < 0.01) gene expression increased following transection surgery. Within the colon, IL12 (0.72 ± 0.13 vs 1.78 ± 0.28, P < 0.01) and IL10 (0.98 ± 0.02 vs 1.95 ± 0.14, P < 0.01) gene expression were increased following transection surgery. CONCLUSION: This study suggests that minor abdominal surgery in infants, results in long-term alteration of the colonic microbial composition and persistent gastrointestinal inflammation. PMID:25892864

  2. Changes in the colon microbiota and intestinal cytokine gene expression following minimal intestinal surgery.

    PubMed

    Lapthorne, Susan; Bines, Julie E; Fouhy, Fiona; Dellios, Nicole L; Wilson, Guineva; Thomas, Sarah L; Scurr, Michelle; Stanton, Catherine; Cotter, Paul D; Pereira-Fantini, Prue M

    2015-04-14

    To investigate the impact of minor abdominal surgery on the caecal microbial population and on markers of gut inflammation. Four week old piglets were randomly allocated to a no-surgery "control" group (n = 6) or a "transection surgery" group (n = 5). During the transection surgery procedure, a conventional midline incision of the lower abdominal wall was made and the small intestine was transected at a site 225 cm proximal to the ileocaecal valve, a 2 cm segment was removed and the intestine was re-anastomosed. Piglets received a polymeric infant formula diet throughout the study period and were sacrificed at two weeks post-surgery. Clinical outcomes including weight, stool consistency and presence of stool fat globules were monitored. High throughput DNA sequencing of colonic content was used to detect surgery-related disturbances in microbial composition at phylum, family and genus level. Diversity and richness estimates were calculated for the control and minor surgery groups. As disturbances in the gut microbial community are linked to inflammation we compared the gene expression of key inflammatory cytokines (TNF, IL1B, IL18, IL12, IL8, IL6 and IL10) in ileum, terminal ileum and colon mucosal extracts obtained from control and abdominal surgery groups at two weeks post-surgery. Changes in the relative abundance of bacterial species at family and genus level were confined to bacterial members of the Proteobacteria and Bacteroidetes phyla. Family level compositional shifts included a reduction in the relative abundance of Enterobacteriaceae (22.95 ± 5.27 vs 2.07 ± 0.72, P < 0.01), Bacteroidaceae (2.54 ± 0.56 vs 0.86 ± 0.43, P < 0.05) and Rhodospirillaceae (0.40 ± 0.14 vs 0.00 ± 0.00, P < 0.05) following transection surgery. Similarly, at the genus level, changes associated with transection surgery were restricted to members of the Proteobacteria and Bacteroidetes phyla and included decreased relative abundance of Enterobacteriaceae (29.20 ± 6.74 vs 2.88 ± 1.08, P < 0.01), Alistipes (4.82 ± 1.73 vs 0.18 ± 0.13, P < 0.05) and Thalassospira (0.53 ± 0.19 vs 0.00 ± 0.00, P < 0.05). Surgery-associated microbial dysbiosis was accompanied by increased gene expression of markers of inflammation. Within the ileum IL6 expression was decreased (4.46 ± 1.60 vs 0.24 ± 0.06, P < 0.05) following transection surgery. In the terminal ileum, gene expression of TNF was decreased (1.51 ± 0.13 vs 0.80 ± 0.16, P < 0.01) and IL18 (1.21 ± 0.18 vs 2.13 ± 0.24, P < 0.01), IL12 (1.04 ± 0.16 vs 1.82 ± 0.32, P < 0.05) and IL10 (1.04 ± 0.06 vs 1.43 ± 0.09, P < 0.01) gene expression increased following transection surgery. Within the colon, IL12 (0.72 ± 0.13 vs 1.78 ± 0.28, P < 0.01) and IL10 (0.98 ± 0.02 vs 1.95 ± 0.14, P < 0.01) gene expression were increased following transection surgery. This study suggests that minor abdominal surgery in infants, results in long-term alteration of the colonic microbial composition and persistent gastrointestinal inflammation.

  3. Comparative in vitro fermentations of cranberry and grape seed polyphenols with colonic microbiota.

    PubMed

    Sánchez-Patán, Fernando; Barroso, Elvira; van de Wiele, Tom; Jiménez-Girón, Ana; Martín-Alvarez, Pedro J; Moreno-Arribas, M Victoria; Martínez-Cuesta, M Carmen; Peláez, Carmen; Requena, Teresa; Bartolomé, Begoña

    2015-09-15

    In this study, we have assessed the phenolic metabolism of a cranberry extract by microbiota obtained from the ascending colon and descending colon compartments of a dynamic gastrointestinal simulator (SHIME). For comparison, parallel fermentations with a grape seed extract were carried out. Extracts were used directly without previous intestinal digestion. Among the 60 phenolic compounds targeted, our results confirmed the formation of phenylacetic, phenylpropionic and benzoic acids as well as phenols such as catechol and its derivatives from the action of colonic microbiota on cranberry polyphenols. Benzoic acid (38.4μg/ml), 4-hydroxy-5-(3'-hydroxyphenyl)-valeric acid (26.2μg/ml) and phenylacetic acid (19.5μg/ml) reached the highest concentrations. Under the same conditions, microbial degradation of grape seed polyphenols took place to a lesser extent compared to cranberry polyphenols, which was consistent with the more pronounced antimicrobial effect observed for the grape seed polyphenols, particularly against Bacteroides, Prevotella and Blautia coccoides-Eubacterium rectale. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. A Chinese rhesus macaque (Macaca mulatta) model for vaginal Lactobacillus colonization and live microbicide development

    PubMed Central

    Yu, Rosa R.; Cheng, Andrew T.; Lagenaur, Laurel A.; Huang, Wenjun; Weiss, Deborah E.; Treece, Jim; Sanders-Beer, Brigitte E.; Hamer, Dean H.; Lee, Peter P.; Xu, Qiang; Liu, Yang

    2015-01-01

    Background We sought to establish a nonhuman primate model of vaginal Lactobacillus colonization suitable for evaluating live microbial microbicide candidates. Methods Vaginal and rectal microflora in Chinese rhesus macaques (Macaca mulatta) were analyzed, with cultivable bacteria identified by 16S rRNA gene sequencing. Live lactobacilli were intravaginally administered to evaluate bacterial colonization. Results Chinese rhesus macaques harbored abundant vaginal Lactobacillus, with Lactobacillus johnsonii as the predominant species. Like humans, most examined macaques harbored only one vaginal Lactobacillus species. Vaginal and rectal Lactobacillus isolates from the same animal exhibited different genetic and biochemical profiles. Vaginal Lactobacillus was cleared by a vaginal suppository of azithromycin, and endogenous L. johnsonii was subsequently restored by intravaginal inoculation. Importantly, prolonged colonization of a human vaginal Lactobacillus jensenii was established in these animals. Conclusions The Chinese rhesus macaque harbors vaginal Lactobacillus and is a potentially useful model to support the pre-clinical evaluation of Lactobacillus-based topical microbicides. PMID:19367737

  5. Genetic basis of priority effects: insights from nectar yeast

    PubMed Central

    Hartwig, Thomas

    2016-01-01

    Priority effects, in which the order of species arrival dictates community assembly, can have a major influence on species diversity, but the genetic basis of priority effects remains unknown. Here, we suggest that nitrogen scavenging genes previously considered responsible for starvation avoidance may drive priority effects by causing rapid resource depletion. Using single-molecule sequencing, we de novo assembled the genome of the nectar-colonizing yeast, Metschnikowia reukaufii, across eight scaffolds and complete mitochondrion, with gap-free coverage over gene spaces. We found a high rate of tandem gene duplication in this genome, enriched for nitrogen metabolism and transport. Both high-capacity amino acid importers, GAP1 and PUT4, present as tandem gene arrays, were highly expressed in synthetic nectar and regulated by the availability and quality of amino acids. In experiments with competitive nectar yeast, Candida rancensis, amino acid addition alleviated suppression of C. rancensis by early arrival of M. reukaufii, corroborating that amino acid scavenging may contribute to priority effects. Because niche pre-emption via rapid resource depletion may underlie priority effects in a broad range of microbial, plant and animal communities, nutrient scavenging genes like the ones we considered here may be broadly relevant to understanding priority effects. PMID:27708148

  6. An Investigation of Black Carbon Degradation Potential in a Forest Soil Environment

    NASA Astrophysics Data System (ADS)

    William, H. C.; Lee, E.; Grannas, A.; Hatcher, P. G.

    2003-12-01

    Except for emission processes, there is currently little understanding of the mechanisms driving the degradation and biogeochemical cycling of black carbon (BC). Considering current estimates of the global BC pool (>2,500x1015gC), and its annual emission rates (55-205x1012 gC/year), BC represents roughly 16% of Earth's actively cycling organic carbon. Without significant chemical and biological degradation pathways, all of the actively cycling carbon on earth would have accumulated as charcoal in <100,000 years. This investigation show that charcoals recovered from experimental forest fires are altered significantly by microbial colonization, and mineral complexation during exposure to soil processes. Charcoal surface morphology and elemental composition were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, and BET surface area measurements. The influence of 90 years aging upon carbon functionality was probed by solid-state 13C NMR spectroscopy. The prevalence of fungal mycorhizae in these forest soil charcoals also motivated an investigation of black carbon degradation via extracellular enzymes and acids known be exuded by mycelia. Degradation is quantified by carbon loss, and soluble products are examined by mass spectrometry.

  7. Live yeasts enhance fibre degradation in the cow rumen through an increase in plant substrate colonization by fibrolytic bacteria and fungi.

    PubMed

    Chaucheyras-Durand, F; Ameilbonne, A; Bichat, A; Mosoni, P; Ossa, F; Forano, E

    2016-03-01

    To monitor the effect of a live yeast additive on feedstuff colonization by targeted fibrolytic micro-organisms and fibre degradation in the cow rumen. Abundance of adhering fibrolytic bacteria and fungi on feedstuffs incubated in sacco in the cow rumen was quantified by qPCR and neutral detergent fibre (NDF) degradation was measured. Saccharomyces cerevisiae I-1077 (SC) increased the abundance of fibre-associated Fibrobacter succinogenes on wheat bran (WB) and that of Ruminococcus flavefaciens on alfalfa hay (AH) and wheat silage (WS). The greatest effect was observed on the abundance of Butyrivibrio fibrisolvens on AH and soya hulls (SH) (P < 0·001). Fungal biomass increased on AH, SH, WS and WB in the presence of SC. NDF degradation of AH and SH was improved (P < 0·05) with SC supplementation. Live yeasts enhanced microbial colonization of fibrous materials, the degree of enhancement depended on their nature and composition. As an effect on rumen pH was not likely to be solely involved, the underlying mechanisms could involve nutrient supply or oxygen scavenging by the live yeast cells. Distribution of this microbial additive could be an interesting tool to increase fibre digestion in the rumen and thereby improve cow feed efficiency. © 2015 The Society for Applied Microbiology.

  8. Looking Beyond Respiratory Cultures: Microbiome-Cytokine Signatures of Bacterial Pneumonia and Tracheobronchitis in Lung Transplant Recipients.

    PubMed

    Shankar, J; Nguyen, M H; Crespo, M M; Kwak, E J; Lucas, S K; McHugh, K J; Mounaud, S; Alcorn, J F; Pilewski, J M; Shigemura, N; Kolls, J K; Nierman, W C; Clancy, C J

    2016-06-01

    Bacterial pneumonia and tracheobronchitis are diagnosed frequently following lung transplantation. The diseases share clinical signs of inflammation and are often difficult to differentiate based on culture results. Microbiome and host immune-response signatures that distinguish between pneumonia and tracheobronchitis are undefined. Using a retrospective study design, we selected 49 bronchoalveolar lavage fluid samples from 16 lung transplant recipients associated with pneumonia (n = 8), tracheobronchitis (n = 12) or colonization without respiratory infection (n = 29). We ensured an even distribution of Pseudomonas aeruginosa or Staphylococcus aureus culture-positive samples across the groups. Bayesian regression analysis identified non-culture-based signatures comprising 16S ribosomal RNA microbiome profiles, cytokine levels and clinical variables that characterized the three diagnoses. Relative to samples associated with colonization, those from pneumonia had significantly lower microbial diversity, decreased levels of several bacterial genera and prominent multifunctional cytokine responses. In contrast, tracheobronchitis was characterized by high microbial diversity and multifunctional cytokine responses that differed from those of pneumonia-colonization comparisons. The dissimilar microbiomes and cytokine responses underlying bacterial pneumonia and tracheobronchitis following lung transplantation suggest that the diseases result from different pathogenic processes. Microbiomes and cytokine responses had complementary features, suggesting that they are closely interconnected in the pathogenesis of both diseases. © Copyright 2016 The American Society of Transplantation and the American Society of Transplant Surgeons.

  9. Effect of alginate and inulin on intestinal microbial ecology of weanling pigs reared under different husbandry conditions.

    PubMed

    Janczyk, Pawel; Pieper, Robert; Smidt, Hauke; Souffrant, Wolfgang B

    2010-04-01

    The effects of inulin and alginate on intestinal microbial ecophysiology were investigated in piglets fed a diet (C) with 0.1% alginate (C+A) or 1.5% inulin (C+I) from weaning at day 28. The experiment was performed at an experimental farm (EF) and a commercial farm (CF). Digesta was collected from the ileum, caecum and colon of four piglets from each group on days 29, 30, 33 and 39. The metabolite concentrations changed with age. Colonic and caecal metabolites were affected by prebiotic treatment. Changes in microbiota composition were assessed by cultivation and denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments. Enterococci increased in C+A at EF and decreased in C+I at both farms. Lactobacilli decreased in all segments in the experimental groups on days 30 and 33. Yeasts in C+I were five times lower at CF than at EF on day 39. The richness and diversity of DGGE profiles increased in the experimental groups. The evenness of colon digesta-derived DGGE profiles was higher in the experimental groups than in C and this situation was reversed in the distal small intestine. Multivariate redundancy analysis confirmed the recorded effects. In summary, both prebiotics affected the intestinal microbiota, and the changes were more pronounced at the CF.

  10. Design and Investigation of PolyFermS In Vitro Continuous Fermentation Models Inoculated with Immobilized Fecal Microbiota Mimicking the Elderly Colon

    PubMed Central

    Fehlbaum, Sophie; Chassard, Christophe; Haug, Martina C.; Fourmestraux, Candice; Derrien, Muriel; Lacroix, Christophe

    2015-01-01

    In vitro gut modeling is a useful approach to investigate some factors and mechanisms of the gut microbiota independent of the effects of the host. This study tested the use of immobilized fecal microbiota to develop different designs of continuous colonic fermentation models mimicking elderly gut fermentation. Model 1 was a three-stage fermentation mimicking the proximal, transverse and distal colon. Models 2 and 3 were based on the new PolyFermS platform composed of an inoculum reactor seeded with immobilized fecal microbiota and used to continuously inoculate with the same microbiota different second-stage reactors mounted in parallel. The main gut bacterial groups, microbial diversity and metabolite production were monitored in effluents of all reactors using quantitative PCR, 16S rRNA gene 454-pyrosequencing, and HPLC, respectively. In all models, a diverse microbiota resembling the one tested in donor’s fecal sample was established. Metabolic stability in inoculum reactors seeded with immobilized fecal microbiota was shown for operation times of up to 80 days. A high microbial and metabolic reproducibility was demonstrated for downstream control and experimental reactors of a PolyFermS model. The PolyFermS models tested here are particularly suited to investigate the effects of environmental factors, such as diet and drugs, in a controlled setting with the same microbiota source. PMID:26559530

  11. Design and Investigation of PolyFermS In Vitro Continuous Fermentation Models Inoculated with Immobilized Fecal Microbiota Mimicking the Elderly Colon.

    PubMed

    Fehlbaum, Sophie; Chassard, Christophe; Haug, Martina C; Fourmestraux, Candice; Derrien, Muriel; Lacroix, Christophe

    2015-01-01

    In vitro gut modeling is a useful approach to investigate some factors and mechanisms of the gut microbiota independent of the effects of the host. This study tested the use of immobilized fecal microbiota to develop different designs of continuous colonic fermentation models mimicking elderly gut fermentation. Model 1 was a three-stage fermentation mimicking the proximal, transverse and distal colon. Models 2 and 3 were based on the new PolyFermS platform composed of an inoculum reactor seeded with immobilized fecal microbiota and used to continuously inoculate with the same microbiota different second-stage reactors mounted in parallel. The main gut bacterial groups, microbial diversity and metabolite production were monitored in effluents of all reactors using quantitative PCR, 16S rRNA gene 454-pyrosequencing, and HPLC, respectively. In all models, a diverse microbiota resembling the one tested in donor's fecal sample was established. Metabolic stability in inoculum reactors seeded with immobilized fecal microbiota was shown for operation times of up to 80 days. A high microbial and metabolic reproducibility was demonstrated for downstream control and experimental reactors of a PolyFermS model. The PolyFermS models tested here are particularly suited to investigate the effects of environmental factors, such as diet and drugs, in a controlled setting with the same microbiota source.

  12. Bacterial contamination hypothesis: a new concept in endometriosis.

    PubMed

    Khan, Khaleque N; Fujishita, Akira; Hiraki, Koichi; Kitajima, Michio; Nakashima, Masahiro; Fushiki, Shinji; Kitawaki, Jo

    2018-04-01

    Endometriosis is a multifactorial disease that mainly affects women of reproductive age. The exact pathogenesis of this disease is still debatable. The role of bacterial endotoxin (lipopolysaccharide, LPS) and Toll-like receptor 4 (TLR4) in endometriosis were investigated and the possible source of endotoxin in the pelvic environment was examined. The limulus amoebocyte lysate test was used to measure the endotoxin levels in the menstrual fluid and peritoneal fluid and their potential role in the growth of endometriosis was investigated. Menstrual blood and endometrial samples were cultured for the presence of microbes. The effect of gonadotrophin-releasing hormone agonist (GnRHa) treatment on intrauterine microbial colonization (IUMC) and the occurrence of endometritis was investigated. Lipopolysaccharide regulates the pro-inflammatory response in the pelvis and growth of endometriosis via the LPS/TLR4 cascade. The menstrual blood was highly contaminated with Escherichea coli and the endometrial samples were colonized with other microbes. A cross-talk between inflammation and ovarian steroids or the stress reaction also was observed in the pelvis. Treatment with GnRHa further worsens intrauterine microbial colonization, with the consequent occurrence of endometritis in women with endometriosis. For the first time, a new concept called the "bacterial contamination hypothesis" is proposed in endometriosis. This study's findings of IUMC in women with endometriosis could hold new therapeutic potential in addition to the conventional estrogen-suppressing agent.

  13. From where and how do plants and microbes get nitrogen? Revisiting paradigms of soil nitrogen availability

    NASA Astrophysics Data System (ADS)

    Grandy, S.

    2017-12-01

    Despite decades of research progress, soil biogeochemists are still debating in different ecosystems what pools and fluxes provide N to plants and microbes. Current concepts argue that N mineralization regulates the supply of N for plants and microorganisms, and is a `gatekeeper' for environmental N losses. The prevailing paradigm also argues that the chemistry of plant litter inputs (e.g. initial C:N ratio) primarily drives N mineralization rates, existing as a universal regulator of a switch between net N immobilization versus net N mineralization. However, decomposer community enzyme upregulation drives proteolysis, the exocellular first step in N mineralization; then, cellular carbon use efficiency and stoichiometry are internal microbial physiological processes driving ammonification rates. Further, N mineralization is only one of multiple, microbial-driven sequences in soils that regulate bioavailable N. Emerging evidence and new conceptual models from both the ecological and biogeoscience communities argue that while depolymerization is a critical first step, clay minerals may be an important and overlooked mediator of bioavailable N, and especially in the soil rhizosphere they are both a large source and sink for N. Mineral-associated organic matter (MAOM) can hold up to 20x more N than particulate fractions, is a rich reservoir of proteins, amino acids, and nucleic acids, and is mobilized by microbes and their interactions with plants. We use this and other emerging information to develop a new model of N availability in soils, highlighting: mineralization is strongly influenced by microbial physiological traits; the various steps in N mineralization have different drivers and can become decoupled; minerals are a strong sink and source for bioavailable N that is regulated by interactions between plants and microbial communities; and plants are a driving force in the soil N cycle for their ability to prime mineral N, and influence the structure and function of microbial communities. Plants and microbes are far from passive players in the cycling of N in soils, actively regulating N mineralization, interactions of bioavailable N with minerals, and ultimately plant N uptake.

  14. Genome resolved analysis of a premature infant gut microbial community reveals a Varibaculum cambriense genome and a shift towards fermentation-based metabolism during the third week of life.

    PubMed

    Brown, Christopher T; Sharon, Itai; Thomas, Brian C; Castelle, Cindy J; Morowitz, Michael J; Banfield, Jillian F

    2013-12-17

    The premature infant gut has low individual but high inter-individual microbial diversity compared with adults. Based on prior 16S rRNA gene surveys, many species from this environment are expected to be similar to those previously detected in the human microbiota. However, the level of genomic novelty and metabolic variation of strains found in the infant gut remains relatively unexplored. To study the stability and function of early microbial colonizers of the premature infant gut, nine stool samples were taken during the third week of life of a premature male infant delivered via Caesarean section. Metagenomic sequences were assembled and binned into near-complete and partial genomes, enabling strain-level genomic analysis of the microbial community.We reconstructed eleven near-complete and six partial bacterial genomes representative of the key members of the microbial community. Twelve of these genomes share >90% putative ortholog amino acid identity with reference genomes. Manual curation of the assembly of one particularly novel genome resulted in the first essentially complete genome sequence (in three pieces, the order of which could not be determined due to a repeat) for Varibaculum cambriense (strain Dora), a medically relevant species that has been implicated in abscess formation.During the period studied, the microbial community undergoes a compositional shift, in which obligate anaerobes (fermenters) overtake Escherichia coli as the most abundant species. Other species remain stable, probably due to their ability to either respire anaerobically or grow by fermentation, and their capacity to tolerate fluctuating levels of oxygen. Metabolic predictions for V. cambriense suggest that, like other members of the microbial community, this organism is able to process various sugar substrates and make use of multiple different electron acceptors during anaerobic respiration. Genome comparisons within the family Actinomycetaceae reveal important differences related to respiratory metabolism and motility. Genome-based analysis provided direct insight into strain-specific potential for anaerobic respiration and yielded the first genome for the genus Varibaculum. Importantly, comparison of these de novo assembled genomes with closely related isolate genomes supported the accuracy of the metagenomic methodology. Over a one-week period, the early gut microbial community transitioned to a community with a higher representation of obligate anaerobes, emphasizing both taxonomic and metabolic instability during colonization.

  15. Genome resolved analysis of a premature infant gut microbial community reveals a Varibaculum cambriense genome and a shift towards fermentation-based metabolism during the third week of life

    PubMed Central

    2013-01-01

    Background The premature infant gut has low individual but high inter-individual microbial diversity compared with adults. Based on prior 16S rRNA gene surveys, many species from this environment are expected to be similar to those previously detected in the human microbiota. However, the level of genomic novelty and metabolic variation of strains found in the infant gut remains relatively unexplored. Results To study the stability and function of early microbial colonizers of the premature infant gut, nine stool samples were taken during the third week of life of a premature male infant delivered via Caesarean section. Metagenomic sequences were assembled and binned into near-complete and partial genomes, enabling strain-level genomic analysis of the microbial community. We reconstructed eleven near-complete and six partial bacterial genomes representative of the key members of the microbial community. Twelve of these genomes share >90% putative ortholog amino acid identity with reference genomes. Manual curation of the assembly of one particularly novel genome resulted in the first essentially complete genome sequence (in three pieces, the order of which could not be determined due to a repeat) for Varibaculum cambriense (strain Dora), a medically relevant species that has been implicated in abscess formation. During the period studied, the microbial community undergoes a compositional shift, in which obligate anaerobes (fermenters) overtake Escherichia coli as the most abundant species. Other species remain stable, probably due to their ability to either respire anaerobically or grow by fermentation, and their capacity to tolerate fluctuating levels of oxygen. Metabolic predictions for V. cambriense suggest that, like other members of the microbial community, this organism is able to process various sugar substrates and make use of multiple different electron acceptors during anaerobic respiration. Genome comparisons within the family Actinomycetaceae reveal important differences related to respiratory metabolism and motility. Conclusions Genome-based analysis provided direct insight into strain-specific potential for anaerobic respiration and yielded the first genome for the genus Varibaculum. Importantly, comparison of these de novo assembled genomes with closely related isolate genomes supported the accuracy of the metagenomic methodology. Over a one-week period, the early gut microbial community transitioned to a community with a higher representation of obligate anaerobes, emphasizing both taxonomic and metabolic instability during colonization. PMID:24451181

  16. Honey Bees Avoid Nectar Colonized by Three Bacterial Species, But Not by a Yeast Species, Isolated from the Bee Gut

    PubMed Central

    Good, Ashley P.; Gauthier, Marie-Pierre L.; Vannette, Rachel L.; Fukami, Tadashi

    2014-01-01

    The gut microflora of the honey bee, Apis mellifera, is receiving increasing attention as a potential determinant of the bees’ health and their efficacy as pollinators. Studies have focused primarily on the microbial taxa that appear numerically dominant in the bee gut, with the assumption that the dominant status suggests their potential importance to the bees’ health. However, numerically minor taxa might also influence the bees’ efficacy as pollinators, particularly if they are not only present in the gut, but also capable of growing in floral nectar and altering its chemical properties. Nonetheless, it is not well understood whether honey bees have any feeding preference for or against nectar colonized by specific microbial species. To test whether bees exhibit a preference, we conducted a series of field experiments at an apiary using synthetic nectar inoculated with specific species of bacteria or yeast that had been isolated from the bee gut, but are considered minor components of the gut microflora. These species had also been found in floral nectar. Our results indicated that honey bees avoided nectar colonized by the bacteria Asaia astilbes, Erwinia tasmaniensis, and Lactobacillus kunkeei, whereas the yeast Metschnikowia reukaufii did not affect the feeding preference of the insects. Our results also indicated that avoidance of bacteria-colonized nectar was caused not by the presence of the bacteria per se, but by the chemical changes to nectar made by the bacteria. These findings suggest that gut microbes may not only affect the bees’ health as symbionts, but that some of the microbes may possibly affect the efficacy of A. mellifera as pollinators by altering nectar chemistry and influencing their foraging behavior. PMID:24466119

  17. Intra-uterine microbial colonization and occurrence of endometritis in women with endometriosis†.

    PubMed

    Khan, Khaleque Newaz; Fujishita, Akira; Kitajima, Michio; Hiraki, Koichi; Nakashima, Masahiro; Masuzaki, Hideaki

    2014-11-01

    Is there any risk of intra-uterine bacterial colonization and concurrent occurrence of endometritis in women with endometriosis? An increase in intra-uterine microbial colonization and concurrent endometritis occurred in women with endometriosis that was further increased after GnRH agonist (GnRHa) treatment. Higher bacterial contamination of menstrual blood and increased endotoxin level in menstrual and peritoneal fluids have been found in women with endometriosis than in control women. However, information on intra-uterine microbial colonization across the phases of the menstrual cycle and possible occurrence of endometritis in women with endometriosis is still lacking. This is a case-controlled study with prospective collection of vaginal smears/endometrial samples from women with and without endometriosis and retrospective evaluation. Vaginal smears and endometrial smears were collected from 73 women with endometriosis and 55 control women. Twenty of the women with endometriosis and 19 controls had received GnRHa therapy for a period of 4-6 months. Vaginal pH was measured by intra-vaginal insertion of a pH paper strip. The bacterial vaginosis (BV) score was analyzed by Gram-staining of vaginal smears and based on a modified Nugent-BV scoring system. A panel of bacteria was analyzed by culture of endometrial samples from women treated with GnRHa or not treated. Immunohistochemcial analysis was performed using antibody against Syndecan-1 (CD138) and myeloperoxidase in endometrial biopsy specimens from women with and without endometriosis. A significant shifting of intra-vaginal pH to ≥4.5 was observed in women with endometriosis compared with control women (79.3 versus 58.4%, P < 0.03). Compared with untreated women, use of GnRHa therapy also shifted vaginal pH to ≥4.5 in both control women (P = 0.004) and in women with endometriosis (P = 0.03). A higher risk of increasing intermediate flora (total score, 4-6) (P = 0.05) was observed in women with endometriosis who had GnRHa treatment versus untreated women. The number of colony forming units (CFU/ml) of Gardnerella, α-Streptococcus, Enterococci and Escherichia coli was significantly higher in endometrial samples from women with endometriosis than control women (P < 0.05 for each bacteria). GnRHa-treated women also showed significantly higher colony formation for some of these bacteria in endometrial samples than in untreated women (Gardnerella and E. coli for controls; Gardnerella, Enterococci and E. coli for women with endometriosis, P < 0.05 for all). Although there was no significant difference in the occurrence of acute endometritis between women with and without endometriosis, both GnRHa-treated controls and women with endometriosis had a significantly higher occurrence of acute endometritis (P = 0.003 for controls, P = 0.001 for endometriosis versus untreated women). Multiple analysis of covariance analysis revealed that an intra-vaginal pH of ≥4.5 (P = 0.03) and use of GnRHa (P = 0.04) were potential factors that were significantly and independently associated with intra-uterine microbial colonization and occurrence of endometritis in women with endometriosis. These findings indicated the occurrence of sub-clinical uterine infection and endometritis in women with endometriosis after GnRHa treatment. We cannot exclude the introduction of bias from unknown previous treatment with immunosuppressing or anti-microbial agents. We have studied a limited range of bacterial species and used only culture-based methods. More sensitive molecular approaches would further delineate the similarities/differences between the vaginal cavity and uterine environment. Our current findings may have epidemiological and biological implications and help in understanding the pathogenesis of endometriosis and related disease burden. The worsening of intra-uterine microbial colonization and higher occurrence of endometritis in women with endometriosis who were treated with GnRHa identifies some future therapeutic avenues for the management, as well as prevention of recurrence, of endometriosis. Further studies are needed to examine intra-uterine colonization of a broad range of common bacteria as well as different viruses and their role in the occurrence of endometritis. This work was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Sports, Culture, Science and Technology of Japan. There is no conflict of interest related to this study. Not applicable. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Selling space colonization and immortality: A psychosocial, anthropological critique of the rush to colonize Mars

    NASA Astrophysics Data System (ADS)

    Slobodian, Rayna Elizabeth

    2015-08-01

    Extensive media coverage regarding the proposal to send four people to Mars by 2025 has exploded recently. Private enterprise has taken the reins to venture into space, which has typically only been reserved for government agencies. I argue, that with this new direction comes less regulation, raising questions regarding the ethics of sending people into outer space to colonize Mars within a decade. Marketers selling colonization to the public include perspectives such as biological drives, species survival, inclusiveness and utopian ideals. I challenge these narratives by suggesting that much of our desire to colonize space within the next decade is motivated by ego, money and romanticism. More specifically, I will examine the roles that fear and stories of immortality play within selling space and how those stories are marketed. I am passionate about space and hope that one day humanity will colonize other worlds, but the rush to settle is dangerous and careless. I assert that humanity should first gain more experience and knowledge before colonizing outer space, using this research to mitigate the risk to astronauts and proceed with careful consideration for the lives of potential astronauts.

  19. Effects of Simulated Human Gastrointestinal Digestion of Two Purple-Fleshed Potato Cultivars on Anthocyanin Composition and Cytotoxicity in Colonic Cancer and Non-Tumorigenic Cells

    PubMed Central

    Kubow, Stan; Iskandar, Michèle M.; Melgar-Bermudez, Emiliano; Sleno, Lekha; Sabally, Kebba; Azadi, Behnam; How, Emily; Prakash, Satya; Burgos, Gabriela; zum Felde, Thomas

    2017-01-01

    A dynamic human gastrointestinal (GI) model was used to digest cooked tubers from purple-fleshed Amachi and Leona potato cultivars to study anthocyanin biotransformation in the stomach, small intestine and colonic vessels. Colonic Caco-2 cancer cells and non-tumorigenic colonic CCD-112CoN cells were tested for cytotoxicity and cell viability after 24 h exposure to colonic fecal water (FW) digests (0%, 10%, 25%, 75% and 100% FW in culture media). After 24 h digestion, liquid chromatography-mass spectrometry identified 36 and 15 anthocyanin species throughout the GI vessels for Amachi and Leona, respectively. The total anthocyanin concentration was over thirty-fold higher in Amachi compared to Leona digests but seven-fold higher anthocyanin concentrations were noted for Leona versus Amachi in descending colon digests. Leona FW showed greater potency to induce cytotoxicity and decrease viability of Caco-2 cells than observed with FW from Amachi. Amachi FW at 100% caused cytotoxicity in non-tumorigenic cells while FW from Leona showed no effect. The present findings indicate major variations in the pattern of anthocyanin breakdown and release during digestion of purple-fleshed cultivars. The differing microbial anthocyanin metabolite profiles in colonic vessels between cultivars could play a significant role in the impact of FW toxicity on tumor and non-tumorigenic cells. PMID:28850070

  20. Differential protein abundance of a basolateral MCT1 transporter in the human gastrointestinal tract.

    PubMed

    Al-Mosauwi, Hashemeya; Ryan, Elizabeth; McGrane, Alison; Riveros-Beltran, Stefanie; Walpole, Caragh; Dempsey, Eugene; Courtney, Danielle; Fearon, Naomi; Winter, Desmond; Baird, Alan; Stewart, Gavin

    2016-12-01

    Bacterially derived short chain fatty acids (SCFAs), such as butyrate, are vital in maintaining the symbiotic relationship that exists between humans and their gastrointestinal microbial populations. A key step in this process is the transport of SCFAs across colonic epithelial cells via MCT1 transporters. This study investigated MCT1 protein abundance in various human intestinal tissues. Initial RT-PCR analysis confirmed the expected MCT1 RNA expression pattern of colon > small intestine > stomach. Using surgical resection samples, immunoblot analysis detected higher abundance of a 45 kDa MCT1 protein in colonic tissue compared to ileum tissue (P < 0.001, N = 4, unpaired t-test). Importantly, MCT1 abundance was found to be significantly lower in sigmoid colon compared to ascending colon (P < 0.01, N = 8-11, ANOVA). Finally, immunolocalization studies confirmed MCT1 to be abundant in the basolateral membranes of surface epithelial cells of the ascending, transverse, and descending colon, but significantly less prevalent in the sigmoid colon (P < 0.05, N = 5-21, ANOVA). In conclusion, these data confirm that basolateral MCT1 protein abundance is correlated to levels of bacterially derived SCFAs along the human gastrointestinal tract. These findings highlight the importance of precise tissue location in studies comparing colonic MCT1 abundance between normal and diseased states. © 2016 International Federation for Cell Biology.

  1. Microbial diversity drives multifunctionality in terrestrial ecosystems

    PubMed Central

    Delgado-Baquerizo, Manuel; Maestre, Fernando T.; Reich, Peter B.; Jeffries, Thomas C.; Gaitan, Juan J.; Encinar, Daniel; Berdugo, Miguel; Campbell, Colin D.; Singh, Brajesh K.

    2016-01-01

    Despite the importance of microbial communities for ecosystem services and human welfare, the relationship between microbial diversity and multiple ecosystem functions and services (that is, multifunctionality) at the global scale has yet to be evaluated. Here we use two independent, large-scale databases with contrasting geographic coverage (from 78 global drylands and from 179 locations across Scotland, respectively), and report that soil microbial diversity positively relates to multifunctionality in terrestrial ecosystems. The direct positive effects of microbial diversity were maintained even when accounting simultaneously for multiple multifunctionality drivers (climate, soil abiotic factors and spatial predictors). Our findings provide empirical evidence that any loss in microbial diversity will likely reduce multifunctionality, negatively impacting the provision of services such as climate regulation, soil fertility and food and fibre production by terrestrial ecosystems. PMID:26817514

  2. Microbial diversity drives multifunctionality in terrestrial ecosystems.

    PubMed

    Delgado-Baquerizo, Manuel; Maestre, Fernando T; Reich, Peter B; Jeffries, Thomas C; Gaitan, Juan J; Encinar, Daniel; Berdugo, Miguel; Campbell, Colin D; Singh, Brajesh K

    2016-01-28

    Despite the importance of microbial communities for ecosystem services and human welfare, the relationship between microbial diversity and multiple ecosystem functions and services (that is, multifunctionality) at the global scale has yet to be evaluated. Here we use two independent, large-scale databases with contrasting geographic coverage (from 78 global drylands and from 179 locations across Scotland, respectively), and report that soil microbial diversity positively relates to multifunctionality in terrestrial ecosystems. The direct positive effects of microbial diversity were maintained even when accounting simultaneously for multiple multifunctionality drivers (climate, soil abiotic factors and spatial predictors). Our findings provide empirical evidence that any loss in microbial diversity will likely reduce multifunctionality, negatively impacting the provision of services such as climate regulation, soil fertility and food and fibre production by terrestrial ecosystems.

  3. Thermal processing of food reduces gut microbiota diversity of the host and triggers adaptation of the microbiota: evidence from two vertebrates.

    PubMed

    Zhang, Zhimin; Li, Dapeng

    2018-05-31

    Adoption of thermal processing of the diet drives human evolution and gut microbiota diversity changes in a dietary habit-dependent manner. However, whether thermal processing of food triggers gut microbial variation remains unknown. Herein, we compared the microbiota of non-thermally processed and thermally processed food (NF and TF) and investigated gut microbiota associated with NF and TF in catfish Silurus meridionalis and C57BL/6 mice to assess effects of thermal processing of food on gut microbiota and to further identify the differences in host responses. We found no differences in overall microbial composition and structure in the pairwise NF and TF, but identified differential microbial communities between food and gut. Both fish and mice fed TF had significantly lower gut microbial diversity than those fed NF. Moreover, thermal processing of food triggered the changes in their microbial communities. Comparative host studies further indicated host species determined gut microbial assemblies, even if fed with the same food. Fusobacteria was the most abundant phylum in the fish, and Bacteroidetes and Firmicutes dominated in the mice. Besides the consistent reduction of Bacteroidetes and the balanced Protebacteria, the response of other dominated gut microbiota in the fish and mice to TF was taxonomically opposite at the phylum level, and those further found at the genus level. Our results reveal that thermal processing of food strongly contributes to the reduction of gut microbial diversity and differentially drives microbial alterations in a host-dependent manner, suggesting specific adaptations of host-gut microbiota in vertebrates responding to thermal processing of food. These findings open a window of opportunity to understand the decline in gut microbial diversity and the community variation in human evolution and provide new insights into the host-specific microbial assemblages associated with the use of processing techniques in food preparation in humans and domesticated animals.

  4. Leaf and root C-to-N ratios are poor predictors of soil microbial biomass C and respiration across 32 tree species.

    PubMed

    Ferlian, Olga; Wirth, Christian; Eisenhauer, Nico

    2017-11-01

    Soil microorganisms are the main primary decomposers of plant material and drive biogeochemical processes like carbon and nitrogen cycles. Hence, knowledge of their nutritional demands and limitations for activity and growth is of particular importance. However, potential effects of the stoichiometry of soil and plant species on soil microbial activity and carbon use efficiency are poorly understood. Soil properties and plant traits are assumed to drive microbial carbon and community structure. We investigated the associations between C and N concentrations of leaf, root, and soil as well as their ratios and soil microbial biomass C and activity (microbial basal respiration and specific respiratory quotient) across 32 young native angiosperm tree species at two locations in Central Germany. Correlations between C:N ratios of leaves, roots, and soil were positive but overall weak. Only regressions between root and leaf C:N ratios as well as between root and soil C:N ratios were significant at one site. Soil microbial properties differed significantly between the two sites and were significantly correlated with soil C:N ratio across sites. Soil C concentrations rather than N concentrations drove significant effects of soil C:N ratio on soil microbial properties. No significant correlations between soil microbial properties and leaf as well as root C:N ratios were found. We found weak correlations of C:N ratios between plant aboveground and belowground tissues. Furthermore, microorganisms were not affected by the stoichiometry of plant tissues in the investigated young trees. The results suggest that soil stoichiometry represents a consistent determinant of soil microbial biomass and respiration. Our study indicates that stoichiometric relationships among tree organs can be weak and poor predictors of soil microbial properties in young tree stands. Further research in controlled experimental settings with a wide range of tree species is needed to study the role of plant chemical traits like the composition and stoichiometry of root exudates in determining interactions between above- and belowground compartments.

  5. Effect of peristalsis in balance of intestinal microbial ecosystem

    NASA Astrophysics Data System (ADS)

    Mirbagheri, Seyed Amir; Fu, Henry C.

    2017-11-01

    A balance of microbiota density in gastrointestinal tracts is necessary for health of the host. Although peristaltic flow made by intestinal muscles is constantly evacuating the lumen, bacterial density stay balanced. Some of bacteria colonize in the secreted mucus where there is no flow, but the rest resist the peristaltic flow in lumen and maintain their population. Using a coupled two-dimensional model of flow induced by large amplitude peristaltic waves, bacterial motility, reproduction, and diffusion, we address how bacterial growth and motility combined with peristaltic flow affect the balance of the intestinal microbial ecosystem.

  6. Diversity of the human intestinal microbial flora.

    PubMed

    Eckburg, Paul B; Bik, Elisabeth M; Bernstein, Charles N; Purdom, Elizabeth; Dethlefsen, Les; Sargent, Michael; Gill, Steven R; Nelson, Karen E; Relman, David A

    2005-06-10

    The human endogenous intestinal microflora is an essential "organ" in providing nourishment, regulating epithelial development, and instructing innate immunity; yet, surprisingly, basic features remain poorly described. We examined 13,355 prokaryotic ribosomal RNA gene sequences from multiple colonic mucosal sites and feces of healthy subjects to improve our understanding of gut microbial diversity. A majority of the bacterial sequences corresponded to uncultivated species and novel microorganisms. We discovered significant intersubject variability and differences between stool and mucosa community composition. Characterization of this immensely diverse ecosystem is the first step in elucidating its role in health and disease.

  7. Superantigens Modulate Bacterial Density during Staphylococcus aureus Nasal Colonization

    PubMed Central

    Xu, Stacey X.; Kasper, Katherine J.; Zeppa, Joseph J.; McCormick, John K.

    2015-01-01

    Superantigens (SAgs) are potent microbial toxins that function to activate large numbers of T cells in a T cell receptor (TCR) Vβ-specific manner, resulting in excessive immune system activation. Staphylococcus aureus possesses a large repertoire of distinct SAgs, and in the context of host-pathogen interactions, staphylococcal SAg research has focused primarily on the role of these toxins in severe and invasive diseases. However, the contribution of SAgs to colonization by S. aureus remains unclear. We developed a two-week nasal colonization model using SAg-sensitive transgenic mice expressing HLA-DR4, and evaluated the role of SAgs using two well-studied stains of S. aureus. S. aureus Newman produces relatively low levels of staphylococcal enterotoxin A (SEA), and although we did not detect significant TCR-Vβ specific changes during wild-type S. aureus Newman colonization, S. aureus Newman Δsea established transiently higher bacterial loads in the nose. S. aureus COL produces relatively high levels of staphylococcal enterotoxin B (SEB), and colonization with wild-type S. aureus COL resulted in clear Vβ8-specific T cell skewing responses. S. aureus COL Δseb established consistently higher bacterial loads in the nose. These data suggest that staphylococcal SAgs may be involved in regulating bacterial densities during nasal colonization. PMID:26008236

  8. Inflammation-associated alterations to the intestinal microbiota reduce colonization resistance against non-typhoidal Salmonella during concurrent malaria parasite infection.

    PubMed

    Mooney, Jason P; Lokken, Kristen L; Byndloss, Mariana X; George, Michael D; Velazquez, Eric M; Faber, Franziska; Butler, Brian P; Walker, Gregory T; Ali, Mohamed M; Potts, Rashaun; Tiffany, Caitlin; Ahmer, Brian M M; Luckhart, Shirley; Tsolis, Renée M

    2015-10-05

    Childhood malaria is a risk factor for disseminated infections with non-typhoidal Salmonella (NTS) in sub-Saharan Africa. While hemolytic anemia and an altered cytokine environment have been implicated in increased susceptibility to NTS, it is not known whether malaria affects resistance to intestinal colonization with NTS. To address this question, we utilized a murine model of co-infection. Infection of mice with Plasmodium yoelii elicited infiltration of inflammatory macrophages and T cells into the intestinal mucosa and increased expression of inflammatory cytokines. These mucosal responses were also observed in germ-free mice, showing that they are independent of the resident microbiota. Remarkably, P. yoelii infection reduced colonization resistance of mice against S. enterica serotype Typhimurium. Further, 16S rRNA sequence analysis of the intestinal microbiota revealed marked changes in the community structure. Shifts in the microbiota increased susceptibility to intestinal colonization by S. Typhimurium, as demonstrated by microbiota reconstitution of germ-free mice. These results show that P. yoelii infection, via alterations to the microbial community in the intestine, decreases resistance to intestinal colonization with NTS. Further they raise the possibility that decreased colonization resistance may synergize with effects of malaria on systemic immunity to increase susceptibility to disseminated NTS infections.

  9. Inflammation-associated alterations to the intestinal microbiota reduce colonization resistance against non-typhoidal Salmonella during concurrent malaria parasite infection

    PubMed Central

    Mooney, Jason P.; Lokken, Kristen L.; Byndloss, Mariana X.; George, Michael D.; Velazquez, Eric M.; Faber, Franziska; Butler, Brian P.; Walker, Gregory T.; Ali, Mohamed M.; Potts, Rashaun; Tiffany, Caitlin; Ahmer, Brian M. M.; Luckhart, Shirley; Tsolis, Renée M.

    2015-01-01

    Childhood malaria is a risk factor for disseminated infections with non-typhoidal Salmonella (NTS) in sub-Saharan Africa. While hemolytic anemia and an altered cytokine environment have been implicated in increased susceptibility to NTS, it is not known whether malaria affects resistance to intestinal colonization with NTS. To address this question, we utilized a murine model of co-infection. Infection of mice with Plasmodium yoelii elicited infiltration of inflammatory macrophages and T cells into the intestinal mucosa and increased expression of inflammatory cytokines. These mucosal responses were also observed in germ-free mice, showing that they are independent of the resident microbiota. Remarkably, P. yoelii infection reduced colonization resistance of mice against S. enterica serotype Typhimurium. Further, 16S rRNA sequence analysis of the intestinal microbiota revealed marked changes in the community structure. Shifts in the microbiota increased susceptibility to intestinal colonization by S. Typhimurium, as demonstrated by microbiota reconstitution of germ-free mice. These results show that P. yoelii infection, via alterations to the microbial community in the intestine, decreases resistance to intestinal colonization with NTS. Further they raise the possibility that decreased colonization resistance may synergize with effects of malaria on systemic immunity to increase susceptibility to disseminated NTS infections. PMID:26434367

  10. Molecular analysis of long-term biofilm formation on PVC and cast iron surfaces in drinking water distribution system.

    PubMed

    Liu, Ruyin; Zhu, Junge; Yu, Zhisheng; Joshi, DevRaj; Zhang, Hongxun; Lin, Wenfang; Yang, Min

    2014-04-01

    To understand the impacts of different plumbing materials on long-term biofilm formation in water supply system, we analyzed microbial community compositions in the bulk water and biofilms on faucets with two different materials-polyvinyl chloride (PVC) and cast iron, which have been frequently used for more than10 years. Pyrosequencing was employed to describe both bacterial and eukaryotic microbial compositions. Bacterial communities in the bulk water and biofilm samples were significantly different from each other. Specific bacterial populations colonized on the surface of different materials. Hyphomicrobia and corrosion associated bacteria, such as Acidithiobacillus spp., Aquabacterium spp., Limnobacter thiooxidans, and Thiocapsa spp., were the most dominant bacteria identified in the PVC and cast iron biofilms, respectively, suggesting that bacterial colonization on the material surfaces was selective. Mycobacteria and Legionella spp. were common potential pathogenic bacteria occurred in the biofilm samples, but their abundance was different in the two biofilm bacterial communities. In contrast, the biofilm samples showed more similar eukaryotic communities than the bulk water. Notably, potential pathogenic fungi, i.e., Aspergillus spp. and Candida parapsilosis, occurred in similar abundance in both biofilms. These results indicated that microbial community, especially bacterial composition was remarkably affected by the different pipe materials (PVC and cast iron). Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  11. Distribution and Diversity of Bacteria and Fungi Colonization in Stone Monuments Analyzed by High-Throughput Sequencing.

    PubMed

    Li, Qiang; Zhang, Bingjian; He, Zhang; Yang, Xiaoru

    The historical and cultural heritage of Qingxing palace and Lingyin and Kaihua temple, located in Hangzhou of China, include a large number of exquisite Buddhist statues and ancient stone sculptures which date back to the Northern Song (960-1219 A.D.) and Qing dynasties (1636-1912 A.D.) and are considered to be some of the best examples of ancient stone sculpting techniques. They were added to the World Heritage List in 2011 because of their unique craftsmanship and importance to the study of ancient Chinese Buddhist culture. However, biodeterioration of the surface of the ancient Buddhist statues and white marble pillars not only severely impairs their aesthetic value but also alters their material structure and thermo-hygric properties. In this study, high-throughput sequencing was utilized to identify the microbial communities colonizing the stone monuments. The diversity and distribution of the microbial communities in six samples collected from three different environmental conditions with signs of deterioration were analyzed by means of bioinformatics software and diversity indices. In addition, the impact of environmental factors, including temperature, light intensity, air humidity, and the concentration of NO2 and SO2, on the microbial communities' diversity and distribution was evaluated. The results indicate that the presence of predominantly phototrophic microorganisms was correlated with light and humidity, while nitrifying bacteria and Thiobacillus were associated with NO2 and SO2 from air pollution.

  12. Ability of the gut microbiota to produce PUFA-derived bacterial metabolites: Proof of concept in germ-free versus conventionalized mice.

    PubMed

    Druart, Céline; Bindels, Laure B; Schmaltz, Robert; Neyrinck, Audrey M; Cani, Patrice D; Walter, Jens; Ramer-Tait, Amanda E; Delzenne, Nathalie M

    2015-08-01

    The gut microbiota is able to modulate host physiology through the production of bioactive metabolites. Our recent studies suggest that changes in gut microbiota composition upon prebiotics supplementation alter tissue levels of PUFA-derived metabolites in mice. However, in vivo evidence that gut microbes produces PUFA-derived metabolites is lacking. This study aimed to decipher the contribution of gut microbes versus that of the host in PUFA-derived metabolite production. To achieve this goal, we compared the proportion of PUFA-derived metabolites and the expression of fatty acid desaturases in germ-free (GF) and conventionalized (CONV) mice fed either a low fat or Western diet. Higher concentrations of PUFA-derived metabolites were found in the colonic contents of conventionalized mice (CONV) mice compared to GF mice. The abundance of these metabolites in host tissues was modulated by dietary treatments but not by microbial status. Although microbial status did significantly influence desaturase expression, no correlations between host enzymes and tissue PUFA-derived metabolite levels were observed. Together, these results highlight the ability of the gut microbiota to produce PUFA-derived metabolites from dietary PUFA. However, microbial production of these metabolites in colonic contents is not necessarily associated with modifications of their concentration in host tissues. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Colonization resistance and microbial ecophysiology: using gnotobiotic mouse models and single-cell technology to explore the intestinal jungle.

    PubMed

    Stecher, Bärbel; Berry, David; Loy, Alexander

    2013-09-01

    The highly diverse intestinal microbiota forms a structured community engaged in constant communication with itself and its host and is characterized by extensive ecological interactions. A key benefit that the microbiota affords its host is its ability to protect against infections in a process termed colonization resistance (CR), which remains insufficiently understood. In this review, we connect basic concepts of CR with new insights from recent years and highlight key technological advances in the field of microbial ecology. We present a selection of statistical and bioinformatics tools used to generate hypotheses about synergistic and antagonistic interactions in microbial ecosystems from metagenomic datasets. We emphasize the importance of experimentally testing these hypotheses and discuss the value of gnotobiotic mouse models for investigating specific aspects related to microbiota-host-pathogen interactions in a well-defined experimental system. We further introduce new developments in the area of single-cell analysis using fluorescence in situ hybridization in combination with metabolic stable isotope labeling technologies for studying the in vivo activities of complex community members. These approaches promise to yield novel insights into the mechanisms of CR and intestinal ecophysiology in general, and give researchers the means to experimentally test hypotheses in vivo at varying levels of biological and ecological complexity. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  14. Identification of Carbohydrate Metabolism Genes in the Metagenome of a Marine Biofilm Community Shown to Be Dominated by Gammaproteobacteria, Bacteroidetes

    PubMed Central

    Edwards, Jennifer L.; Smith, Darren L.; Connolly, John; McDonald, James E.; Cox, Michael J.; Joint, Ian; Edwards, Clive; McCarthy, Alan J.

    2010-01-01

    Polysaccharides are an important source of organic carbon in the marine environment, degradation of the insoluble, globally abundant cellulose is a major component of the marine carbon cycle. Although a number of species of cultured bacteria are known to degrade crystalline cellulose, little is known of the polysaccharide hydrolases expressed by cellulose-degrading microbial communities, particularly in the marine environment. Next generation 454 Pyrosequencing was applied to analyze the microbial community that colonizes, degrades insoluble polysaccharides in situ in the Irish Sea. The bioinformatics tool MG-RAST was used to examine the randomly sampled data for taxonomic markers, functional genes,, showed that the community was dominated by members of the Gammaproteobacteria, Bacteroidetes. Furthermore, the identification of 211 gene sequences matched to a custom-made database comprising the members of nine glycoside hydrolase families revealed an extensive repertoire of functional genes predicted to be involved in cellulose utilization. This demonstrates that the use of an in situ cellulose baiting method yielded a marine microbial metagenome considerably enriched in functional genes involved in polysaccharide degradation. The research reported here is the first designed to specifically address the bacterial communities that colonize, degrade cellulose in the marine environment, to evaluate the glycoside hydrolase (cellulase, chitinase) gene repertoire of that community, in the absence of the biases associated with PCR-based molecular techniques. PMID:24710093

  15. Effect of Antimicrobial Intervention on Oral Microbiota Associated with Early Childhood Caries

    PubMed Central

    Li, Yihong; Tanner, Anne

    2015-01-01

    Purpose The aim of this systematic literature review was to identify research-based evidence for an effect of antimicrobial therapeutic approaches on the cariogenic microbiota and early childhood caries (ECC) outcomes. Additionally, we reviewed methods used to perform microbial assessments in clinical studies of ECC. Methods Multiple database searches were conducted; only clinical cohort studies and randomized controlled trials published from 1998 to 2014 were selected for the review. A total of 471 titles and abstracts were identified; 114 studies met the inclusion criteria for a full review, and finally 41 studies were selected for the meta-analyses. Results Moderate reductions in cariogenic bacterial levels, mainly in mutans streptococci (MS), were demonstrated following the use of antimicrobial agents. The results varied depending on the different approaches used. In most of the reviewed studies MS levels were reduced after treatment, but the bacterial regrowth occurred once the treatment had ceased, and new caries lesions developed, particularly in high-risk children. Relatively consistent findings suggested that anti-cariogenic-microbial interventions in mothers significantly reduced MS acquisition by children. However, studies of the long-term benefits of ECC prevention are lacking. Conclusion Based on the meta-analyses, antimicrobial interventions and treatments show temporary reductions in MS colonization levels. However, insufficient evidence suggest that the approaches used produced sustainable effects on cariogenic microbial colonization, caries reduction, and ECC prevention. PMID:26063552

  16. CoMiniGut—a small volume in vitro colon model for the screening of gut microbial fermentation processes

    PubMed Central

    Khakimov, Bekzod; Nielsen, Sebastian; Sørensen, Helena; van den Berg, Frans; Nielsen, Dennis Sandris

    2018-01-01

    Driven by the growing recognition of the influence of the gut microbiota (GM) on human health and disease, there is a rapidly increasing interest in understanding how dietary components, pharmaceuticals and pre- and probiotics influence GM. In vitro colon models represent an attractive tool for this purpose. With the dual objective of facilitating the investigation of rare and expensive compounds, as well as an increased throughput, we have developed a prototype in vitro parallel gut microbial fermentation screening tool with a working volume of only 5 ml consisting of five parallel reactor units that can be expanded with multiples of five to increase throughput. This allows e.g., the investigation of interpersonal variations in gut microbial dynamics and the acquisition of larger data sets with enhanced statistical inference. The functionality of the in vitro colon model, Copenhagen MiniGut (CoMiniGut) was first demonstrated in experiments with two common prebiotics using the oligosaccharide inulin and the disaccharide lactulose at 1% (w/v). We then investigated fermentation of the scarce and expensive human milk oligosaccharides (HMOs) 3-Fucosyllactose, 3-Sialyllactose, 6-Sialyllactose and the more common Fructooligosaccharide in fermentations with infant gut microbial communities. Investigations of microbial community composition dynamics in the CoMiniGut reactors by MiSeq-based 16S rRNA gene amplicon high throughput sequencing showed excellent experimental reproducibility and allowed us to extract significant differences in gut microbial composition after 24 h of fermentation for all investigated substrates and fecal donors. Furthermore, short chain fatty acids (SCFAs) were quantified for all treatments and donors. Fermentations with inulin and lactulose showed that inulin leads to a microbiota dominated by obligate anaerobes, with high relative abundance of Bacteroidetes, while the more easily fermented lactulose leads to higher relative abundance of Proteobacteria. The subsequent study on the influence of HMOs on two infant GM communities, revealed the strongest bifidogenic effect for 3′SL for both infants. Inter-individual differences of infant GM, especially with regards to the occurrence of Bacteroidetes and differences in bifidobacterial species composition, correlated with varying degrees of HMO utilization foremost of 6′SL and 3′FL, indicating species and strain related differences in HMO utilization which was also reflected in SCFAs concentrations, with 3′SL and 6′SL resulting in significantly higher butyrate production compared to 3′FL. In conclusion, the increased throughput of CoMiniGut strengthens experimental conclusions through elimination of statistical interferences originating from low number of repetitions. Its small working volume moreover allows the investigation of rare and expensive bioactives. PMID:29372119

  17. Association of chronic Candida albicans respiratory infection with a more severe lung disease in patients with cystic fibrosis.

    PubMed

    Gileles-Hillel, Alex; Shoseyov, David; Polacheck, Itzhack; Korem, Maya; Kerem, Eitan; Cohen-Cymberknoh, Malena

    2015-11-01

    Despite the increase in fungal isolates, the significance of chronic Candida albicans airway colonization in CF is unclear. To investigate the impact of C. albicans airway colonization on CF disease severity. Longitudinal analysis of clinical data from CF patients followed during 2003-2009 at our CF center. Patients were stratified based on their C. albicans colonization status--chronic, intermittent, and none. A total of 4,244 cultures were obtained from 91 patients (mean age 19.7 years, range 5-68). The three colonization groups were similar in age, gender,and body mass index (BMI). Compared to the non-colonized group (n = 27, 30%), the chronic C. albicans colonization group (n = 34, 37%), had a significantly lower FEV1 percent predicted (74.3 ± 23.1% vs. 93.9% ± 22.2) with a higher annual rate of FEV1 decline (-1.9 ± 4.2% vs. 0.7 ± 4.5%). The patients who were intermittently colonized with C. albicans had intermediate values. Chronic respiratory colonization of C. albicans is associated with worsening of FEV1 in CF. Prospective studies are needed to confirm this finding and to corroborate whether indeed C. albicans drives a deleterious lung phenotype. © 2015 Wiley Periodicals, Inc.

  18. Effects of almond and pistachio consumption on gut microbiota composition in a randomised cross-over human feeding study

    USDA-ARS?s Scientific Manuscript database

    Modifying microbiota towards a 'beneficial' composition is a promising approach for improving intestinal as well as overall health. Natural fibers and phytochemicals that reach the proximal colon, such as those present in various nuts, provide substrates for maintaining a healthy and diverse microbi...

  19. ECTOMYCORRHIZAL FUNGI IDENTIFICATION IN SINGLE AND POOLED ROOT SAMPLES: TERMINAL RESTRICTION FRAGMENT LENGTH POLYMORPHISM (TRFLP) AND MORPHOTYPING COMPARED

    EPA Science Inventory

    PCR-TRFLP methodology targeting rRNA genes has effectively been used to discriminate between microbial communities but to date has not been used specifically for the analysis of ectomycorrhizal communities colonizing plant roots. We describe here results of a study conducted to a...

  20. Loss of microbial (pathogen) infections associated with recent invasions of the red imported fire ant Solenopsis invicta

    USDA-ARS?s Scientific Manuscript database

    Loss of natural enemies during colonization is a prominent hypothesis explaining enhanced performance of invasive species in introduced areas. Numerous studies have tested this enemy release hypothesis in a wide range of taxa but few studies have focused on invasive ants. We conducted extensive surv...

  1. Recto-anal junction (RAJ) microbiota composition in Escherichia coli O157:H7 shedding cattle

    USDA-ARS?s Scientific Manuscript database

    Introduction: Cattle are the asymptomatic reservoirs of Escherichia coli O157:H7 (O157) that tend to preferentially colonize the bovine recto-anal junction (RAJ). Therefore, understanding the taxonomic profile, microbial diversity, and microbiota-O157 interactions at the RAJ could give insights into...

  2. Dissolution of Calcite in the Twilight Zone: Bacterial Control of Dissolution of Sinking Planktonic Carbonates Is Unlikely

    PubMed Central

    Bissett, Andrew; Neu, Thomas R.; de Beer, Dirk

    2011-01-01

    We investigated the ability of bacterial communities to colonize and dissolve two biogenic carbonates (Foraminifera and oyster shells). Bacterial carbonate dissolution in the upper water column is postulated to be driven by metabolic activity of bacteria directly colonising carbonate surfaces and the subsequent development of acidic microenvironments. We employed a combination of microsensor measurements, scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM) and image analysis and molecular documentation of colonising bacteria to monitor microbial processes and document changes in shell surface topography. Bacterial communities rapidly colonised shell surfaces, forming dense biofilms with extracellular polymeric substance (EPS) deposits. Despite this, we found no evidence of bacterially mediated carbonate dissolution. Dissolution was not indicated by Ca2+ microprofiles, nor was changes in shell surface structure related to the presence of colonizing bacteria. Given the short time (days) settling carbonate material is actually in the twilight zone (500–1000 m), it is highly unlikely that microbial metabolic activity on directly colonised shells plays a significant role in dissolving settling carbonates in the shallow ocean. PMID:22102861

  3. Dissolution of calcite in the twilight zone: bacterial control of dissolution of sinking planktonic carbonates is unlikely.

    PubMed

    Bissett, Andrew; Neu, Thomas R; Beer, Dirk de

    2011-01-01

    We investigated the ability of bacterial communities to colonize and dissolve two biogenic carbonates (Foraminifera and oyster shells). Bacterial carbonate dissolution in the upper water column is postulated to be driven by metabolic activity of bacteria directly colonising carbonate surfaces and the subsequent development of acidic microenvironments. We employed a combination of microsensor measurements, scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM) and image analysis and molecular documentation of colonising bacteria to monitor microbial processes and document changes in shell surface topography. Bacterial communities rapidly colonised shell surfaces, forming dense biofilms with extracellular polymeric substance (EPS) deposits. Despite this, we found no evidence of bacterially mediated carbonate dissolution. Dissolution was not indicated by Ca²⁺ microprofiles, nor was changes in shell surface structure related to the presence of colonizing bacteria. Given the short time (days) settling carbonate material is actually in the twilight zone (500-1000 m), it is highly unlikely that microbial metabolic activity on directly colonised shells plays a significant role in dissolving settling carbonates in the shallow ocean.

  4. Back to the past: "find the guilty bug-microorganisms involved in the biodeterioration of archeological and historical artifacts".

    PubMed

    Mazzoli, Roberto; Giuffrida, Maria Gabriella; Pessione, Enrica

    2018-06-04

    Microbial deterioration accounts for a significant percentage of the degradation processes that occur on archeological/historical objects and artworks, and identifying the causative agents of such a phenomenon should therefore be a priority, in consideration of the need to conserve these important cultural heritage items. Diverse microbiological approaches, such as microscopic evaluations, cultural methods, metabolic- and DNA-based techniques, as well as a combination of the aforementioned methods, have been employed to characterize the bacterial, archaeal, and fungal communities that colonize art objects. The purpose of the present review article is to report the interactions occurring between the microorganisms and nutrients that are present in stones, bones, wood, paper, films, paintings, and modern art specimens (namely, collagen, cellulose, gelatin, albumin, lipids, and hydrocarbons). Some examples, which underline that a good knowledge of these interactions is essential to obtain an in depth understanding of the factors that favor colonization, are reported. These data can be exploited both to prevent damage and to obtain information on historical aspects that can be decrypted through the study of microbial population successions.

  5. Intervention strategies for cesarean section–induced alterations in the microbiota-gut-brain axis

    PubMed Central

    Moya-Pérez, Angela; Luczynski, Pauline; Renes, Ingrid B.; Wang, Shugui; Borre, Yuliya; Anthony Ryan, C.; Knol, Jan; Stanton, Catherine; Dinan, Timothy G.

    2017-01-01

    Microbial colonization of the gastrointestinal tract is an essential process that modulates host physiology and immunity. Recently, researchers have begun to understand how and when these microorganisms colonize the gut and the early-life factors that impact their natural ecological establishment. The vertical transmission of maternal microbes to the offspring is a critical factor for host immune and metabolic development. Increasing evidence also points to a role in the wiring of the gut-brain axis. This process may be altered by various factors such as mode of delivery, gestational age at birth, the use of antibiotics in early life, infant feeding, and hygiene practices. In fact, these early exposures that impact the intestinal microbiota have been associated with the development of diseases such as obesity, type 1 diabetes, asthma, allergies, and even neurodevelopmental disorders. The present review summarizes the impact of cesarean birth on the gut microbiome and the health status of the developing infant and discusses possible preventative and restorative strategies to compensate for early-life microbial perturbations. PMID:28379454

  6. Structural and functional changes within the gut microbiota and susceptibility to Clostridium difficile infection

    PubMed Central

    Ross, Caná L.; Spinler, Jennifer K.; Savidge, Tor C.

    2016-01-01

    Alteration of the gut microbial community structure and function through antibiotic use increases susceptibility to colonization by Clostridium difficile and other enteric pathogens. However, the mechanisms that mediate colonization resistance remain elusive. As the leading definable cause of infectious diarrhea, toxigenic C. difficile represents a burden for patients and health care systems, underscoring the need for better diagnostics and treatment strategies. Next-generation sequence data has increased our understanding of how the gut microbiota is influenced by many factors including diet, disease, aging and drugs. However, a microbial-based biomarker differentiating C. difficile infection from antibiotic-associated diarrhea remains elusive. Metabolomics profiling, which is highly responsive to changes in physiological conditions, have shown promise in differentiating subtle disease phenotypes that exhibit a nearly identical microbiome community structure, suggesting metabolite-based biomarkers may be an ideal diagnostic for identifying patients with CDI. This review focuses on the current understanding of structural and functional changes to the gut microbiota during C. difficile infection obtained from studies assessing the microbiome and metabolome of samples from patients and murine models. PMID:27180006

  7. A secreted antibacterial neuropeptide shapes the microbiome of Hydra.

    PubMed

    Augustin, René; Schröder, Katja; Murillo Rincón, Andrea P; Fraune, Sebastian; Anton-Erxleben, Friederike; Herbst, Eva-Maria; Wittlieb, Jörg; Schwentner, Martin; Grötzinger, Joachim; Wassenaar, Trudy M; Bosch, Thomas C G

    2017-09-26

    Colonization of body epithelial surfaces with a highly specific microbial community is a fundamental feature of all animals, yet the underlying mechanisms by which these communities are selected and maintained are not well understood. Here, we show that sensory and ganglion neurons in the ectodermal epithelium of the model organism hydra (a member of the animal phylum Cnidaria) secrete neuropeptides with antibacterial activity that may shape the microbiome on the body surface. In particular, a specific neuropeptide, which we call NDA-1, contributes to the reduction of Gram-positive bacteria during early development and thus to a spatial distribution of the main colonizer, the Gram-negative Curvibacter sp., along the body axis. Our findings warrant further research to test whether neuropeptides secreted by nerve cells contribute to the spatial structure of microbial communities in other organisms.Certain neuropeptides, in addition to their neuromodulatory functions, display antibacterial activities of unclear significance. Here, the authors show that a secreted neuropeptide modulates the distribution of bacterial communities on the body surface during development of the model organism Hydra.

  8. Mutualistic interaction between Salmonella enterica and Aspergillus niger and its effects on Zea mays colonization

    PubMed Central

    Balbontín, Roberto; Vlamakis, Hera; Kolter, Roberto

    2014-01-01

    Salmonella Typhimurium inhabits a variety of environments and is able to infect a broad range of hosts. Throughout its life cycle, some hosts can act as intermediates in the path to the infection of others. Aspergillus niger is a ubiquitous fungus that can often be found in soil or associated to plants and microbial consortia. Recently, S. Typhimurium was shown to establish biofilms on the hyphae of A. niger. In this work, we have found that this interaction is stable for weeks without a noticeable negative effect on either organism. Indeed, bacterial growth is promoted upon the establishment of the interaction. Moreover, bacterial biofilms protect the fungus from external insults such as the effects of the anti-fungal agent cycloheximide. Thus, the Salmonella–Aspergillus interaction can be defined as mutualistic. A tripartite gnotobiotic system involving the bacterium, the fungus and a plant revealed that co-colonization has a greater negative effect on plant growth than colonization by either organism in dividually. Strikingly, co-colonization also causes a reduction in plant invasion by S. Typhimurium. This work demonstrates that S. Typhimurium and A. niger establish a mutualistic interaction that alters bacterial colonization of plants and affects plant physiology. PMID:25351041

  9. Gamma-cyclodextrin/usnic acid thin film fabricated by MAPLE for improving the resistance of medical surfaces to Staphylococcus aureus colonization

    NASA Astrophysics Data System (ADS)

    Iordache, Florin; Grumezescu, Valentina; Grumezescu, Alexandru Mihai; Curuţiu, Carmen; Diţu, Lia Mara; Socol, Gabriel; Ficai, Anton; Truşcă, Roxana; Holban, Alina Maria

    2015-05-01

    This study reports on the successful deposition of γ-cyclodextrin/usnic acid (γCD/UA) thin film by Matrix Assisted Pulsed Laser Evaporation (MAPLE) as anti-adherent coating on medical surfaces against microbial colonization. The obtained results demonstrate that these bioactive thin films inhibit Staphylococcus aureus biofilm formation at all stages, starting with their initiation. The antibiofilm effect was constant along the bacterial incubation time. Furthermore, the γCD/UA coatings show a great biocompatibility which means that this material is suitable for the development of modern medical devices with antimicrobial properties.

  10. Aerobic sulfur-oxidizing bacteria: Environmental selection and diversification

    NASA Technical Reports Server (NTRS)

    Caldwell, D.

    1985-01-01

    Sulfur-oxidizing bacteria oxidize reduced inorganic compounds to sulfuric acid. Lithotrophic sulfur oxidizer use the energy obtained from oxidation for microbial growth. Heterotrophic sulfur oxidizers obtain energy from the oxidation of organic compounds. In sulfur-oxidizing mixotrophs energy are derived either from the oxidation of inorganic or organic compounds. Sulfur-oxidizing bacteria are usually located within the sulfide/oxygen interfaces of springs, sediments, soil microenvironments, and the hypolimnion. Colonization of the interface is necessary since sulfide auto-oxidizes and because both oxygen and sulfide are needed for growth. The environmental stresses associated with the colonization of these interfaces resulted in the evolution of morphologically diverse and unique aerobic sulfur oxidizers.

  11. Intra-tumor heterogeneity: lessons from microbial evolution and clinical implications

    PubMed Central

    2013-01-01

    Multiple subclonal populations of tumor cells can coexist within the same tumor. This intra-tumor heterogeneity will have clinical implications and it is therefore important to identify factors that drive or suppress such heterogeneous tumor progression. Evolutionary biology can provide important insights into this process. In particular, experimental evolution studies of microbial populations, which exist as clonal populations that can diversify into multiple subclones, have revealed important evolutionary processes driving heterogeneity within a population. There are transferrable lessons that can be learnt from these studies that will help us to understand the process of intra-tumor heterogeneity in the clinical setting. In this review, we summarize drivers of microbial diversity that have been identified, such as mutation rate and environmental influences, and discuss how knowledge gained from microbial experimental evolution studies may guide us to identify and understand important selective factors that promote intra-tumor heterogeneity. Furthermore, we discuss how these factors could be used to direct and optimize research efforts to improve patient care, focusing on therapeutic resistance. Finally, we emphasize the need for longitudinal studies to address the impact of these potential tumor heterogeneity-promoting factors on drug resistance, metastatic potential and clinical outcome. PMID:24267946

  12. Ferrous iron- and ammonium-rich diffuse vents support habitat-specific communities in a shallow hydrothermal field off the Basiluzzo Islet (Aeolian Volcanic Archipelago).

    PubMed

    Bortoluzzi, G; Romeo, T; La Cono, V; La Spada, G; Smedile, F; Esposito, V; Sabatino, G; Di Bella, M; Canese, S; Scotti, G; Bo, M; Giuliano, L; Jones, D; Golyshin, P N; Yakimov, M M; Andaloro, F

    2017-09-01

    Ammonium- and Fe(II)-rich fluid flows, known from deep-sea hydrothermal systems, have been extensively studied in the last decades and are considered as sites with high microbial diversity and activity. Their shallow-submarine counterparts, despite their easier accessibility, have so far been under-investigated, and as a consequence, much less is known about microbial communities inhabiting these ecosystems. A field of shallow expulsion of hydrothermal fluids has been discovered at depths of 170-400 meters off the base of the Basiluzzo Islet (Aeolian Volcanic Archipelago, Southern Tyrrhenian Sea). This area consists predominantly of both actively diffusing and inactive 1-3 meters-high structures in the form of vertical pinnacles, steeples and mounds covered by a thick orange to brown crust deposits hosting rich benthic fauna. Integrated morphological, mineralogical, and geochemical analyses revealed that, above all, these crusts are formed by ferrihydrite-type Fe 3+ oxyhydroxides. Two cruises in 2013 allowed us to monitor and sampled this novel ecosystem, certainly interesting in terms of shallow-water iron-rich site. The main objective of this work was to characterize the composition of extant communities of iron microbial mats in relation to the environmental setting and the observed patterns of macrofaunal colonization. We demonstrated that iron-rich deposits contain complex and stratified microbial communities with a high proportion of prokaryotes akin to ammonium- and iron-oxidizing chemoautotrophs, belonging to Thaumarchaeota, Nitrospira, and Zetaproteobacteria. Colonizers of iron-rich mounds, while composed of the common macrobenthic grazers, predators, filter-feeders, and tube-dwellers with no representatives of vent endemic fauna, differed from the surrounding populations. Thus, it is very likely that reduced electron donors (Fe 2+ and NH 4 + ) are important energy sources in supporting primary production in microbial mats, which form a habitat-specific trophic base of the whole Basiluzzo hydrothermal ecosystem, including macrobenthic fauna. © 2017 John Wiley & Sons Ltd.

  13. Recently Deglaciated High-Altitude Soils of the Himalaya: Diverse Environments, Heterogenous Bacterial Communities and Long-Range Dust Inputs from the Upper Troposphere

    PubMed Central

    Stres, Blaz; Sul, Woo Jun; Murovec, Bostjan; Tiedje, James M.

    2013-01-01

    Background The Himalaya with its altitude and geographical position forms a barrier to atmospheric transport, which produces much aqueous-particle monsoon precipitation and makes it the largest continuous ice-covered area outside polar regions. There is a paucity of data on high-altitude microbial communities, their native environments and responses to environmental-spatial variables relative to seasonal and deglaciation events. Methodology/Principal Findings Soils were sampled along altitude transects from 5000 m to 6000 m to determine environmental, spatial and seasonal factors structuring bacterial communities characterized by 16 S rRNA gene deep sequencing. Dust traps and fresh-snow samples were used to assess dust abundance and viability, community structure and abundance of dust associated microbial communities. Significantly different habitats among the altitude-transect samples corresponded to both phylogenetically distant and closely-related communities at distances as short as 50 m showing high community spatial divergence. High within-group variability that was related to an order of magnitude higher dust deposition obscured seasonal and temporal rearrangements in microbial communities. Although dust particle and associated cell deposition rates were highly correlated, seasonal dust communities of bacteria were distinct and differed significantly from recipient soil communities. Analysis of closest relatives to dust OTUs, HYSPLIT back-calculation of airmass trajectories and small dust particle size (4–12 µm) suggested that the deposited dust and microbes came from distant continental, lacustrine and marine sources, e.g. Sahara, India, Caspian Sea and Tibetan plateau. Cyanobacteria represented less than 0.5% of microbial communities suggesting that the microbial communities benefitted from (co)deposited carbon which was reflected in the psychrotolerant nature of dust-particle associated bacteria. Conclusions/Significance The spatial, environmental and temporal complexity of the high-altitude soils of the Himalaya generates ongoing disturbance and colonization events that subject heterogeneous microniches to stochastic colonization by far away dust associated microbes and result in the observed spatially divergent bacterial communities. PMID:24086740

  14. Minearl associated microbial communities from The Cedars, associate with specific geological features

    NASA Astrophysics Data System (ADS)

    Rowe, A. R.; Wanger, G. P.; Bhartia, R.

    2017-12-01

    The Cedars, an area of active serpentinization located in the Russian River area of Northern California, represents one of the few terrestrial areas on Earth undergoing active serpentinization. One of the products of the serpentinization reaction is the formation of hydroxyl radicals making the springs of the Cedars some of the most alkaline natural waters on Earth. These waters, with very high pH (pH>11), low EH and, low concentrations of electron acceptors are extremely inhospitible; however microbial life has found a way to thrive and a distinct microbial community is observed in the spring waters. Previous work with environmental samples and pure culture isolates [3] derived from The Cedars has suggested the importance of minearal association to these characteristic microbes. Here we show the results combined spectroscopic and molecular studies on aseries of mineral colonization experiemnts performed with a pure culture Cedar's isolate (Serpentenamonas str. A1) and in situ at CS spring. Centimeter scale, polished coupons of a variety of mminerals were prepared in the lab, spectroscopically characterized (Green Raman, DUV Raman, and DUV Fluorescence maps) and deployed into the springs for three months. The coupons were recovered and the distribution of the microbes on the minerals was mapped using a deep-UV native fluorescent mapping sustem that allows for non-destructive mapping of organics and microbes on surfaces. Subsequently the DNA from the minerals was extracted for community structure analysis. The MOSAIC (i.e. deep UV Fluorescence) showed extensicve colonization of the minerals and in some cases we were able to correlate microbial assemblages with specific geological features. In one example, organisms tended to associate strongly with carbonate features on Chromite mineral surfaces (Figure 1). The 16s rDNA revealed the microbial assemblages from each slide was dominated by active Cedars community memebers (i.e., Serpentinamonas and Silanimonas species), however the relative distribution oc bacterial types varied across mineral type and from the original spring community itself.

  15. Zeta-Proteobacteria dominate the formation of microbial mats in low-temperature hydrothermal vents at Loihi Seamount

    NASA Astrophysics Data System (ADS)

    Rassa, A. C.; McAllister, S. M.; Safran, S. A.; Moyer, C. L.

    2007-12-01

    Loihi Seamount is Hawaii's youngest volcano and one of the earth's most active. Loihi is located 30 km SE of the big island of Hawaii and rises over 3000m above the sea floor and summits at 1100m below sea level. An eruption in 1996 of Loihi led to the formation of Pele's Pit, a 300 meter deep caldera. The current observations have revealed diffuse hydrothermal venting causing low to intermediate temperatures (10 to 65°C). The elevated temperatures, coupled with high concentrations of Fe(II) (ranging from 50 to 750 μM) support conditions allowing for extensive microbial mat formation. The focus of this study was to identify the colonizing populations of bacteria generated by the microbial mats at Loihi Seamount. Twenty-six microbial growth chambers were deployed and recovered after placement in the flow of hydrothermal vents for 3 to 8 days from within Loihi's caldera. Genomic DNA was extracted from samples and analyzed by Terminal-Restriction Fragment Length Polymorphism (T-RFLP) using eight restriction enzyme treatments to generate fingerprints from bacterial amplicons of small subunit rRNA genes (SSU rDNAs). Pearson product-moment coupled with UPGMA cluster analysis of these T-RFLP fingerprints showed that these communities bifurcated into two primary clusters. The first (Group 1) had an average vent effluent temperature of 44°C, and the second (Group 2) had an average vent effluent temperature of 64°C. Representative samples from within the two clusters (or groups) were chosen for further clone library and sequencing analysis. These libraries revealing a dominance of the recently discovered zeta- Proteobacteria in the lower temperature group (Group 1) indicating that they were the dominant colonizers of the microbial mats. These microaerophilic, obligately lithotrophic, Fe-oxidizing bacteria are most closely related to Mariprofundus ferrooxydans. The higher temperature group (Group 2) was dominated by epsilon- Proteobacteria primarily of the genus Sulfurimonas, which are sulfur- and thiosulfate-oxidizing bacteria.

  16. Effect of breeding activity on the microflora of the external genitalia and in the semen of stallions, and the relationship between micro-organisms on the skin and on the external genitalia.

    PubMed

    Guimarães, T; Miranda, C; Pinto, M; Silva, E; Damásio, L; Costa, A L; Correia, M J; Duarte, J C; Cosinha, C; Lopes, G; Thompson, G; Rocha, A

    2014-12-01

    A possible role of breeding activities in the composition of the microbial population in stallions' external genitalia (EG) and the relationship between micro-organisms colonizing the skin of the abdomen and the ones colonizing the EG have not been studied. In experiment 1, EG microbiological samples were collected from 41 stallions used for both natural cover and semen collection (BST) and from 18 non-breeding stallions (NBST). A higher (p < 0.05) frequency of isolation of potentially pathogenic species was found for BST. Age did not influence number of micro-organism species isolated both in BST and NBST. In experiment 2, the microbial content of the EG and semen was compared in 23 BST. Most micro-organisms isolated from the EG were present in semen, albeit with a numerically lower prevalence. In 7 stallions, six microbial species isolated from semen were absent from the EG cultures, suggesting contamination by the operator. In experiment 3, a numerically higher number of micro-organism species was isolated from the EG of 31 stallions, than from their skin of the ventral abdomen in contact with the penis or from the skin of the thorax. With the sole exception of Escherichia coli, potentially pathogenic bacteria were only isolated from the EG but not from the skin. Results suggest that breeding activity increased the number of species colonizing the EG; most species isolated from the EG were also found in semen even if with a lower frequency, and additional semen contamination seemed to occur during its manipulation. Many micro-organism species of the skin were also isolated from the penis, but independently of being or not in contact with the penis, skin did not seem to provide an adequate environment for the growth of potentially pathogenic bacteria that were isolated from EG, with the sole exception for E. coli. © 2014 Blackwell Verlag GmbH.

  17. Evaluation of meteorites as habitats for terrestrial microorganisms: Results from the Nullarbor Plain, Australia, a Mars analogue site

    NASA Astrophysics Data System (ADS)

    Tait, Alastair W.; Wilson, Siobhan A.; Tomkins, Andrew G.; Gagen, Emma J.; Fallon, Stewart J.; Southam, Gordon

    2017-10-01

    Unambiguous identification of biosignatures on Mars requires access to well-characterized, long-lasting geochemical standards at the planet's surface that can be modified by theoretical martian life. Ordinary chondrites, which are ancient meteorites that commonly fall to the surface of Mars and Earth, have well-characterized, narrow ranges in trace element and isotope geochemistry compared to martian rocks. Given that their mineralogy is more attractive to known chemolithotrophic life than the basaltic rocks that dominate the martian surface, exogenic rocks (e.g., chondritic meteorites) may be good places to look for signs of prior life endemic to Mars. In this study, we show that ordinary chondrites, collected from the arid Australian Nullarbor Plain, are commonly colonized and inhabited by terrestrial microorganisms that are endemic to this Mars analogue site. These terrestrial endolithic and chasmolithic microbial contaminants are commonly found in close association with hygroscopic veins of gypsum and Mg-calcite, which have formed within cracks penetrating deep into the meteorites. Terrestrial bacteria are observed within corrosion cavities, where troilite (FeS) oxidation has produced jarosite [KFe3(SO4)2(OH)6]. Where terrestrial microorganisms have colonized primary silicate minerals and secondary calcite, these mineral surfaces are heavily etched. Our results show that inhabitation of meteorites by terrestrial microorganisms in arid environments relies upon humidity and pH regulation by minerals. Furthermore, microbial colonization affects the weathering of meteorites and production of sulfate, carbonate, Fe-oxide and smectite minerals that can preserve chemical and isotopic biosignatures for thousands to millions of years on Earth. Meteorites are thus habitable by terrestrial microorganisms, even under highly desiccating environmental conditions of relevance to Mars. They may therefore be useful as chemical and isotopic ;standards; that preserve evidence of life, thereby providing the possibility of universal context for recognition of microbial biosignatures on Earth, Mars and throughout the solar system.

  18. Phylogenetic and Functional Substrate Specificity for Endolithic Microbial Communities in Hyper-Arid Environments

    PubMed Central

    Crits-Christoph, Alexander; Robinson, Courtney K.; Ma, Bing; Ravel, Jacques; Wierzchos, Jacek; Ascaso, Carmen; Artieda, Octavio; Souza-Egipsy, Virginia; Casero, M. Cristina; DiRuggiero, Jocelyne

    2016-01-01

    Under extreme water deficit, endolithic (inside rock) microbial ecosystems are considered environmental refuges for life in cold and hot deserts, yet their diversity and functional adaptations remain vastly unexplored. The metagenomic analyses of the communities from two rock substrates, calcite and ignimbrite, revealed that they were dominated by Cyanobacteria, Actinobacteria, and Chloroflexi. The relative distribution of major phyla was significantly different between the two substrates and biodiversity estimates, from 16S rRNA gene sequences and from the metagenomic data, all pointed to a higher taxonomic diversity in the calcite community. While both endolithic communities showed adaptations to extreme aridity and to the rock habitat, their functional capabilities revealed significant differences. ABC transporters and pathways for osmoregulation were more diverse in the calcite chasmoendolithic community. In contrast, the ignimbrite cryptoendolithic community was enriched in pathways for secondary metabolites, such as non-ribosomal peptides (NRP) and polyketides (PK). Assemblies of the metagenome data produced population genomes for the major phyla found in both communities and revealed a greater diversity of Cyanobacteria population genomes for the calcite substrate. Draft genomes of the dominant Cyanobacteria in each community were constructed with more than 93% estimated completeness. The two annotated proteomes shared 64% amino acid identity and a significantly higher number of genes involved in iron update, and NRPS gene clusters, were found in the draft genomes from the ignimbrite. Both the community-wide and genome-specific differences may be related to higher water availability and the colonization of large fissures and cracks in the calcite in contrast to a harsh competition for colonization space and nutrient resources in the narrow pores of the ignimbrite. Together, these results indicated that the habitable architecture of both lithic substrates- chasmoendolithic versus cryptoendolithic – might be an essential element in determining the colonization and the diversity of the microbial communities in endolithic substrates at the dry limit for life. PMID:27014224

  19. Microbial colonization in diverse surface soil types in Surtsey and diversity analysis of its subsurface microbiota

    NASA Astrophysics Data System (ADS)

    Marteinsson, V.; Klonowski, A.; Reynisson, E.; Vannier, P.; Sigurdsson, B. D.; Ólafsson, M.

    2015-02-01

    Colonization of life on Surtsey has been observed systematically since the formation of the island 50 years ago. Although the first colonisers were prokaryotes, such as bacteria and blue-green algae, most studies have been focused on the settlement of plants and animals but less on microbial succession. To explore microbial colonization in diverse soils and the influence of associated vegetation and birds on numbers of environmental bacteria, we collected 45 samples from different soil types on the surface of the island. Total viable bacterial counts were performed with the plate count method at 22, 30 and 37 °C for all soil samples, and the amount of organic matter and nitrogen (N) was measured. Selected samples were also tested for coliforms, faecal coliforms and aerobic and anaerobic bacteria. The subsurface biosphere was investigated by collecting liquid subsurface samples from a 181 m borehole with a special sampler. Diversity analysis of uncultivated biota in samples was performed by 16S rRNA gene sequences analysis and cultivation. Correlation was observed between nutrient deficits and the number of microorganisms in surface soil samples. The lowest number of bacteria (1 × 104-1 × 105 cells g-1) was detected in almost pure pumice but the count was significantly higher (1 × 106-1 × 109 cells g-1) in vegetated soil or pumice with bird droppings. The number of faecal bacteria correlated also to the total number of bacteria and type of soil. Bacteria belonging to Enterobacteriaceae were only detected in vegetated samples and samples containing bird droppings. The human pathogens Salmonella, Campylobacter and Listeria were not in any sample. Both thermophilic bacteria and archaea 16S rDNA sequences were found in the subsurface samples collected at 145 and 172 m depth at 80 and 54 °C, respectively, but no growth was observed in enrichments. The microbiota sequences generally showed low affiliation to any known 16S rRNA gene sequences.

  20. Anoxia stimulates microbially catalyzed metal release from Animas River sediments.

    PubMed

    Saup, Casey M; Williams, Kenneth H; Rodríguez-Freire, Lucía; Cerrato, José M; Johnston, Michael D; Wilkins, Michael J

    2017-04-19

    The Gold King Mine spill in August 2015 released 11 million liters of metal-rich mine waste to the Animas River watershed, an area that has been previously exposed to historical mining activity spanning more than a century. Although adsorption onto fluvial sediments was responsible for rapid immobilization of a significant fraction of the spill-associated metals, patterns of longer-term mobility are poorly constrained. Metals associated with river sediments collected downstream of the Gold King Mine in August 2015 exhibited distinct presence and abundance patterns linked to location and mineralogy. Simulating riverbed burial and development of anoxic conditions, sediment microcosm experiments amended with Animas River dissolved organic carbon revealed the release of specific metal pools coupled to microbial Fe- and SO 4 2- -reduction. Results suggest that future sedimentation and burial of riverbed materials may drive longer-term changes in patterns of metal remobilization linked to anaerobic microbial metabolism, potentially driving decreases in downstream water quality. Such patterns emphasize the need for long-term water monitoring efforts in metal-impacted watersheds.

  1. Indigenous Bacteria and Fungi Drive Traditional Kimoto Sake Fermentations

    PubMed Central

    Bokulich, Nicholas A.; Ohta, Moe; Lee, Morgan

    2014-01-01

    Sake (Japanese rice wine) production is a complex, multistage process in which fermentation is performed by a succession of mixed fungi and bacteria. This study employed high-throughput rRNA marker gene sequencing, quantitative PCR, and terminal restriction fragment length polymorphism to characterize the bacterial and fungal communities of spontaneous sake production from koji to product as well as brewery equipment surfaces. Results demonstrate a dynamic microbial succession, with koji and early moto fermentations dominated by Bacillus, Staphylococcus, and Aspergillus flavus var. oryzae, succeeded by Lactobacillus spp. and Saccharomyces cerevisiae later in the fermentations. The microbiota driving these fermentations were also prevalent in the production environment, illustrating the reservoirs and routes for microbial contact in this traditional food fermentation. Interrogating the microbial consortia of production environments in parallel with food products is a valuable approach for understanding the complete ecology of food production systems and can be applied to any food system, leading to enlightened perspectives for process control and food safety. PMID:24973064

  2. Indigenous bacteria and fungi drive traditional kimoto sake fermentations.

    PubMed

    Bokulich, Nicholas A; Ohta, Moe; Lee, Morgan; Mills, David A

    2014-09-01

    Sake (Japanese rice wine) production is a complex, multistage process in which fermentation is performed by a succession of mixed fungi and bacteria. This study employed high-throughput rRNA marker gene sequencing, quantitative PCR, and terminal restriction fragment length polymorphism to characterize the bacterial and fungal communities of spontaneous sake production from koji to product as well as brewery equipment surfaces. Results demonstrate a dynamic microbial succession, with koji and early moto fermentations dominated by Bacillus, Staphylococcus, and Aspergillus flavus var. oryzae, succeeded by Lactobacillus spp. and Saccharomyces cerevisiae later in the fermentations. The microbiota driving these fermentations were also prevalent in the production environment, illustrating the reservoirs and routes for microbial contact in this traditional food fermentation. Interrogating the microbial consortia of production environments in parallel with food products is a valuable approach for understanding the complete ecology of food production systems and can be applied to any food system, leading to enlightened perspectives for process control and food safety. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  3. Moving Uphill: Microbial Facilitation at the Leading Edge of Plant Species Distributional Shifts

    NASA Astrophysics Data System (ADS)

    Suding, K.; Farrer, E.; Spasojevic, M.; Porazinska, D.; Bueno de Mesquita, C.; Schmidt, S. K.

    2016-12-01

    Climate change is expected to influence species distributions and reshuffle patterns of biodiversity. A key challenge to our understanding of these effects is that biotic interactions - new species to compete with, new stressors that increase dependence on facilitation, new prey or predators - will likely affect the ability of species to track climate at the leading edges of their distributional range. While it is well established that soil biota strongly influence plant abundance and diversity, it has been difficult to quantify the key belowground dynamics. This presentation will investigate the influence of one key biotic interaction, between plants and soil microbiota, on the ability of plant species to track climate change and expand their range uphill in a high montane system in the Front Range of Colorado. High-resolution photography from 1972 and 2008 indicate colonization of tundra vegetation in formerly unvegetated areas. Observational work on the distributions patterns of both plants and soil microbiota (bacteria, fungi and nematodes) in a spatially-explicit grid at the upper edge of plant distributions indicate strong, mostly positive, associations between plant species and soil taxa. Abiotic factors, while important, consistently underpredicted the occurrence of plant species and, in nine of the 12 most common tundra plants, co-occurring microbial taxa were important predictors of plant occurrence. Comparison of plant and microbial distributional patterns in 2007 and 2015 indicate the influence of microbial community composition on assembly and beta-diversity of the plant community over time. Plant colonization patterns in this region previously devoid of vegetation will likely influence carbon, nitrogen and phosphorus dynamics, with downstream consequences on nutrient limitation and phytoplankton composition in alpine lakes.

  4. Interactive effects of protein and carbohydrates on production of microbial metabolites in the large intestine of growing pigs.

    PubMed

    Taciak, Marcin; Barszcz, Marcin; Święch, Ewa; Tuśnio, Anna; Bachanek, Ilona

    2017-06-01

    The study aimed at determining the effect of protein type and indigestible carbohydrates on the concentration of microbial metabolites in the large intestine of pigs. The experiment involved 36 pigs (15 kg initial body weight) divided into six groups, fed cereal-based diets with highly digestible casein (CAS) or potato protein concentrate (PPC) of lower ileal digestibility. Each diet was supplemented with cellulose, raw potato starch or pectin. After 2 weeks of feeding, pigs were sacrificed and samples of caecal and ascending, transverse and descending colon digesta were collected for analyses of microbial metabolites. PPC increased the concentration of ammonia, p-cresol, indole, n-butyrate, isovalerate and most of the amines in comparison with CAS. Pectin reduced the production of p-cresol, indole, phenylethylamine and isovalerate in the large intestine compared with potato starch. Starch and pectin increased mainly the concentration of n-butyrate and n-valerate in the colon compared to cellulose. Interaction affected mainly amines. Feeding PPC diet with potato starch considerably increased putrescine, cadaverine, tyramine and total amines concentrations compared with PPC diets with pectin and cellulose, whereas feeding CAS diet with starch reduced their concentrations. There was also a significant effect of interaction between diet and intestinal segment on microbial metabolites. In conclusion, PPC intensifies proteolysis in the large intestine and also n-butyrate production. Raw starch and pectin similarly increase n-butyrate concentration but pectin inhibits proteolysis more efficiently than starch. The interactive effects of both factors indicate that pectin and cellulose may beneficially affect fermentative processes in case of greater protein flow to the large intestine.

  5. Microbial contamination of contact lenses, lens care solutions, and their accessories: a literature review.

    PubMed

    Szczotka-Flynn, Loretta B; Pearlman, Eric; Ghannoum, Mahmoud

    2010-03-01

    A contact lens (CL) can act as a vector for microorganisms to adhere to and transfer to the ocular surface. Commensal microorganisms that uneventfully cohabitate on lid margins and conjunctivae and potential pathogens that are found transiently on the ocular surface can inoculate CLs in vivo. In the presence of reduced tissue resistance, these resident microorganisms or transient pathogens can invade and colonize the cornea or conjunctiva to produce inflammation or infection. The literature was reviewed and used to summarize the findings over the last 30 years on the identification, enumeration, and classification of microorganisms adherent to CLs and their accessories during the course of normal wear and to hypothesize the role that these microorganisms play in CL infection and inflammation. Lens handling greatly increases the incidence of lens contamination, and the ocular surface has a tremendous ability to destroy organisms. However, even when removed aseptically from the eye, more than half of lenses are found to harbor microorganisms, almost exclusively bacteria. Coagulase-negative Staphylococci are most commonly cultured from worn lenses; however, approximately 10% of lenses harbor Gram-negative and highly pathogenic species, even in asymptomatic subjects. In storage cases, the incidence of positive microbial bioburden is also typically greater than 50%. All types of care solutions can become contaminated, including up to 30% of preserved products. The process of CL-related microbial keratitis and inflammation is thought to be preceded by the presence or transfer or both of microorganisms from the lens to the ocular surface. Thus, this detailed understanding of lens-related bioburden is important in the understanding of factors associated with infectious and inflammatory complications. Promising mechanisms to prevent bacterial colonization on lenses and lens cases are forthcoming, which may decrease the incidence of microbially driven CL complications.

  6. The use of high throughput DNA sequence analysis to assess the endophytic microbiome of date palm roots grown under different levels of salt stress.

    PubMed

    Yaish, Mahmoud W; Al-Harrasi, Ibtisam; Alansari, Aliya S; Al-Yahyai, Rashid; Glick, Bernard R

    2016-09-01

    Date palms are able to grow under diverse abiotic stress conditions including in saline soils, where microbial communities may be help in the plant's salinity tolerance. These communities able to produce specific growth promoting substances can enhance date palm growth in a saline environment. However, these communities are poorly defined. In the work reported here, the date palm endophytic bacterial and fungal communities were identified using the pyrosequencing method, and the microbial differential abundance in the root upon exposure to salinity stress was estimated. Approximately 150,061 reads were produced from the analysis of six ribosomal DNA libraries, which were prepared from endophytic microorganisms colonizing date palm root tissues. DNA sequence analysis of these libraries predicted the presence of a variety of bacterial and fungal endophytic species, some known and others unknown. The microbial community compositions of 30% and 8% of the bacterial and fungal species, respectively, were significantly (p ≤ 0.05) altered in response to salinity stress. Differential enrichment analysis showed that microbe diversity indicated by the Chao, Shannon and Simpson indices were slightly reduced, however, the overall microbial community structures were not significantly affected as a consequence of salinity. This may reflect a buffering effect by the host plant on the internal environments that these communities are colonizing. Some of the endophytes identified in this study were strains that were previously isolated from saline and marine environments. This suggests possible interactions with the plant that are favorable to salinity tolerance in date palm. [Int Microbiol 19(3):143-155 (2016)]. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  7. Lithobiontic life: "Atacama rocks are well and alive".

    PubMed

    Gómez-Silva, Benito

    2018-02-01

    Our knowledge on the Microbiology of the Atacama Desert has increased steadily and substantially during the last two decades. This information now supports a paradigmatic change on the Atacama Desert from a sterile, uninhabitable territory to a hyperarid region colonized by a rich microbiota that includes extremophiles and extreme-tolerant microorganisms. Also, extensive reports are available on the prevalent physical and chemical environmental conditions, ecological niches and, the abundance, diversity and organization of the microbial life in the Atacama Desert. This territory is a highly desiccated environment due to the absence of regular rain events. Liquid water scarcity is the most serious environmental factor affecting the Atacama Desert microorganisms. The intense solar irradiation in this region contributes, in a synergistic fashion with desiccation, to limit the survival and growth of the microbial life. In order to overcome these two extreme conditions, successful microorganisms, organized as microbial consortia, take advantage of (a) the physical characteristics of lithic habitats, which provide sites for colonization on, within or below the rock substrate, the attenuation and filtration of the intense solar irradiation and, the collection of liquid water from incoming fog formations and by water vapour condensation and deliquescence on or within their surfaces, and (b) the biological adaptations of members of the microbial communities that allow them to synthesize hydrophilic macromolecules, antioxidants and UV-light absorbents. Lithic habitats have been considered specialized shelters where life forms can reach protection at environments subjected to extremes of desiccation and solar irradiation, here on Earth or elsewhere. This review is an overview of part of the scientific information collected on lithobionts from the Atacama Desert, their rock substrates and their strategies to cope with extremes of desiccation and intense photosynthetic active radiation and UV irradiations.

  8. Experimental conical-head abutment screws on the microbial leakage through the implant-abutment interface: an in vitro analysis using target-specific DNA probes.

    PubMed

    Pita, Murillo S; do Nascimento, Cássio; Dos Santos, Carla G P; Pires, Isabela M; Pedrazzi, Vinícius

    2017-07-01

    The aim of this in vitro study was to identify and quantify up to 38 microbial species from human saliva penetrating through the implant-abutment interface in two different implant connections, external hexagon and tri-channel internal connection, both with conventional flat-head or experimental conical-head abutment screws. Forty-eight two-part implants with external hexagon (EH; n = 24) or tri-channel internal (TI; n = 24) connections were investigated. Abutments were attached to implants with conventional flat-head or experimental conical-head screws. After saliva incubation, Checkerboard DNA-DNA hybridization was used to identify and quantify up to 38 bacterial colonizing the internal parts of the implants. Kruskal-Wallis test followed by Bonferroni's post-tests for multiple comparisons was used for statistical analysis. Twenty-four of thirty-eight species, including putative periodontal pathogens, were found colonizing the inner surfaces of both EH and TI implants. Peptostreptococcus anaerobios (P = 0.003), Prevotella melaninogenica (P < 0.0001), and Candida dubliniensis (P < 0.0001) presented significant differences between different groups. Means of total microbial count (×10 4 , ±SD) for each group were recorded as follows: G1 (0.27 ± 2.04), G2 (0 ± 0), G3 (1.81 ± 7.50), and G4 (0.35 ± 1.81). Differences in the geometry of implant connections and abutment screws have impacted the microbial leakage through the implant-abutment interface. Implants attached with experimental conical-head abutment screws showed lower counts of microorganisms when compared with conventional flat-head screws. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. The earliest stages of ecosystem succession in high-elevation (5000 metres above sea level), recently deglaciated soils.

    PubMed

    Schmidt, S K; Reed, Sasha C; Nemergut, Diana R; Grandy, A Stuart; Cleveland, Cory C; Weintraub, Michael N; Hill, Andrew W; Costello, Elizabeth K; Meyer, A F; Neff, J C; Martin, A M

    2008-12-22

    Global climate change has accelerated the pace of glacial retreat in high-latitude and high-elevation environments, exposing lands that remain devoid of vegetation for many years. The exposure of 'new' soil is particularly apparent at high elevations (5000 metres above sea level) in the Peruvian Andes, where extreme environmental conditions hinder plant colonization. Nonetheless, these seemingly barren soils contain a diverse microbial community; yet the biogeochemical role of micro-organisms at these extreme elevations remains unknown. Using biogeochemical and molecular techniques, we investigated the biological community structure and ecosystem functioning of the pre-plant stages of primary succession in soils along a high-Andean chronosequence. We found that recently glaciated soils were colonized by a diverse community of cyanobacteria during the first 4-5 years following glacial retreat. This significant increase in cyanobacterial diversity corresponded with equally dramatic increases in soil stability, heterotrophic microbial biomass, soil enzyme activity and the presence and abundance of photosynthetic and photoprotective pigments. Furthermore, we found that soil nitrogen-fixation rates increased almost two orders of magnitude during the first 4-5 years of succession, many years before the establishment of mosses, lichens or vascular plants. Carbon analyses (pyrolysis-gas chromatography/mass spectroscopy) of soil organic matter suggested that soil carbon along the chronosequence was of microbial origin. This indicates that inputs of nutrients and organic matter during early ecosystem development at these sites are dominated by microbial carbon and nitrogen fixation. Overall, our results indicate that photosynthetic and nitrogen-fixing bacteria play important roles in acquiring nutrients and facilitating ecological succession in soils near some of the highest elevation receding glaciers on the Earth.

  10. Habitat generalists and specialists in microbial communities across a terrestrial-freshwater gradient

    NASA Astrophysics Data System (ADS)

    Monard, C.; Gantner, S.; Bertilsson, S.; Hallin, S.; Stenlid, J.

    2016-11-01

    Observations of distributions of microorganisms and their differences in community composition across habitats provide evidence of biogeographical patterns. However, little is known about the processes controlling transfers across habitat gradients. By analysing the overall microbial community composition (bacteria, fungi, archaea) across a terrestrial-freshwater gradient, the aim of this study was to understand the spatial distribution patterns of populations and identify taxa capable of crossing biome borders. Barcoded 454 pyrosequencing of taxonomic gene markers was used to describe the microbial communities in adjacent soil, freshwater and sediment samples and study the role of biotic and spatial factors in shaping their composition. Few habitat generalists but a high number of specialists were detected indicating that microbial community composition was mainly regulated by species sorting and niche partitioning. Biotic interactions within microbial groups based on an association network underlined the importance of Actinobacteria, Sordariomycetes, Agaricomycetes and Nitrososphaerales in connecting among biomes. Even if dispersion seemed limited, the shore of the lake represented a transition area, allowing populations to cross the biome boundaries. In finding few broadly distributed populations, our study points to biome specialization within microbial communities with limited potential for dispersal and colonization of new habitats along the terrestrial-freshwater continuum.

  11. The Fecal Microbial Community of Breast-fed Infants from Armenia and Georgia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Zachery T.; Sidamonidze, Ketevan; Tsaturyan, Vardan

    Multiple factors help shape the infant intestinal microbiota early in life. Environmental conditions such as the presence of bioactive molecules from breast milk dictate gut microbial growth and survival. Infants also receive distinct, personalized, bacterial exposures leading to differential colonization. Microbial exposures and gut environmental conditions differ between infants in different locations, as does the typical microbial community structure in an infant’s gut. Here we evaluate potential influences on the infant gut microbiota through a longitudinal study on cohorts of breast-fed infants from the neighboring countries of Armenia and Georgia, an area of the world for which the infant microbiomemore » has not been previously investigated. Marker gene sequencing of 16S ribosomal genes revealed that the gut microbial communities of infants from these countries were dominated by bifidobacteria, were different from each other, and were marginally influenced by their mother’s secretor status. Species-level differences in the bifidobacterial communities of each country and birth method were also observed. These community differences suggest that environmental variation between individuals in different locations may influence the gut microbiota of infants.« less

  12. Alignment-Independent Comparisons of Human Gastrointestinal Tract Microbial Communities in a Multidimensional 16S rRNA Gene Evolutionary Space▿

    PubMed Central

    Rudi, Knut; Zimonja, Monika; Kvenshagen, Bente; Rugtveit, Jarle; Midtvedt, Tore; Eggesbø, Merete

    2007-01-01

    We present a novel approach for comparing 16S rRNA gene clone libraries that is independent of both DNA sequence alignment and definition of bacterial phylogroups. These steps are the major bottlenecks in current microbial comparative analyses. We used direct comparisons of taxon density distributions in an absolute evolutionary coordinate space. The coordinate space was generated by using alignment-independent bilinear multivariate modeling. Statistical analyses for clone library comparisons were based on multivariate analysis of variance, partial least-squares regression, and permutations. Clone libraries from both adult and infant gastrointestinal tract microbial communities were used as biological models. We reanalyzed a library consisting of 11,831 clones covering complete colons from three healthy adults in addition to a smaller 390-clone library from infant feces. We show that it is possible to extract detailed information about microbial community structures using our alignment-independent method. Our density distribution analysis is also very efficient with respect to computer operation time, meeting the future requirements of large-scale screenings to understand the diversity and dynamics of microbial communities. PMID:17337554

  13. The Fecal Microbial Community of Breast-fed Infants from Armenia and Georgia

    PubMed Central

    Lewis, Zachery T; Sidamonidze, Ketevan; Tsaturyan, Vardan; Tsereteli, David; Khachidze, Nika; Pepoyan, Astghik; Zhgenti, Ekaterine; Tevzadze, Liana; Manvelyan, Anahit; Balayan, Marine; Imnadze, Paata; Torok, Tamas; Lemay, Danielle G.; Mills, David A.

    2017-01-01

    Multiple factors help shape the infant intestinal microbiota early in life. Environmental conditions such as the presence of bioactive molecules from breast milk dictate gut microbial growth and survival. Infants also receive distinct, personalized, bacterial exposures leading to differential colonization. Microbial exposures and gut environmental conditions differ between infants in different locations, as does the typical microbial community structure in an infant’s gut. Here we evaluate potential influences on the infant gut microbiota through a longitudinal study on cohorts of breast-fed infants from the neighboring countries of Armenia and Georgia, an area of the world for which the infant microbiome has not been previously investigated. Marker gene sequencing of 16S ribosomal genes revealed that the gut microbial communities of infants from these countries were dominated by bifidobacteria, were different from each other, and were marginally influenced by their mother’s secretor status. Species-level differences in the bifidobacterial communities of each country and birth method were also observed. These community differences suggest that environmental variation between individuals in different locations may influence the gut microbiota of infants. PMID:28150690

  14. The Fecal Microbial Community of Breast-fed Infants from Armenia and Georgia

    DOE PAGES

    Lewis, Zachery T.; Sidamonidze, Ketevan; Tsaturyan, Vardan; ...

    2017-02-02

    Multiple factors help shape the infant intestinal microbiota early in life. Environmental conditions such as the presence of bioactive molecules from breast milk dictate gut microbial growth and survival. Infants also receive distinct, personalized, bacterial exposures leading to differential colonization. Microbial exposures and gut environmental conditions differ between infants in different locations, as does the typical microbial community structure in an infant’s gut. Here we evaluate potential influences on the infant gut microbiota through a longitudinal study on cohorts of breast-fed infants from the neighboring countries of Armenia and Georgia, an area of the world for which the infant microbiomemore » has not been previously investigated. Marker gene sequencing of 16S ribosomal genes revealed that the gut microbial communities of infants from these countries were dominated by bifidobacteria, were different from each other, and were marginally influenced by their mother’s secretor status. Species-level differences in the bifidobacterial communities of each country and birth method were also observed. These community differences suggest that environmental variation between individuals in different locations may influence the gut microbiota of infants.« less

  15. Can Phlorotannins Purified Extracts Constitute a Novel Pharmacological Alternative for Microbial Infections with Associated Inflammatory Conditions?

    PubMed Central

    Lopes, Graciliana; Sousa, Carla; Silva, Luís R.; Pinto, Eugénia; Andrade, Paula B.; Bernardo, João; Mouga, Teresa; Valentão, Patrícia

    2012-01-01

    Bacterial and fungal infections and the emerging multidrug resistance are driving interest in fighting these microorganisms with natural products, which have generally been considered complementary to pharmacological therapies. Phlorotannins are polyphenols restricted to brown seaweeds, recognized for their biological capacity. This study represents the first research on the antibacterial, antifungal, anti-inflammatory and antioxidant activity of phlorotannins purified extracts, which were obtained from ten dominant brown seaweeds of the occidental Portuguese coast. Phlorotannins content was determined by the specific dimethoxybenzaldehyde (DMBA) method and a yield between 75 and 969 mg/Kg phloroglucinol units (dry matter) was obtained. Fucus spiralis ranked first, followed by three Cystoseira species. The anti-inflammatory potential of the purified extracts was assessed via inhibitory effect on nitric oxide (NO) production by lipopolysaccharide-stimulated RAW 264.7 macrophage cells, Cystoseira tamariscifolia being the one showing promising activity for the treatment of inflammation. NO scavenging ability was also addressed in cell free systems, F. spiralis being the species with highest capacity. The antimicrobial potential of the extracts was checked against five Gram-positive and four Gram-negative bacteria and three fungi strains, that commonly colonize skin and mucosa and are responsible for food contamination. The different extracts were more effective against Gram-positive bacteria, Staphylococcus epidermidis being the most susceptible species. Concerning antifungal activity, Trichophyton rubrum was the most sensitive species. Although the molecular mechanisms underlying these properties remain poorly understood, the results obtained turn phlorotannins purified extracts a novel and potent pharmacological alternative for the treatment of a wide range of microbial infections, which usually also present an inflammatory component. In addition to the biological properties demonstrated herein, phlorotannins extracts may also be preferred, in order to avoid side effects and allergic reactions commonly associated with synthetic drugs. PMID:22319609

  16. Successive bacterial colonisation of pork and its implications for forensic investigations.

    PubMed

    Handke, Jessica; Procopio, Noemi; Buckley, Michael; van der Meer, Dieudonne; Williams, Graham; Carr, Martin; Williams, Anna

    2017-12-01

    Bacteria are considered one of the major driving forces of the mammalian decomposition process and have only recently been recognised as forensic tools. At this point, little is known about their potential use as 'post-mortem clocks'. This study aimed to establish the proof of concept for using bacterial identification as post-mortem interval (PMI) indicators, using a multi-omics approach. Pieces of pork were placed in the University's outdoor facility and surface swabs were taken at regular intervals up to 60 days. Terminal restriction fragment length polymorphism (T-RFLP) of the 16S rDNA was used to identify bacterial taxa. It succeeded in detecting two out of three key contributors involved in decomposition and represents the first study to reveal Vibrionaceae as abundant on decomposing pork. However, a high fraction of present bacterial taxa could not be identified by T-RFLP. Proteomic analyses were also performed at selected time points, and they partially succeeded in the identification of precise strains, subspecies and species of bacteria that colonized the body after different PMIs. T-RFLP is incapable of reliably and fully identifying bacterial taxa, whereas proteomics could help in the identification of specific strains of bacteria. Nevertheless, microbial identification by next generation sequencing might be used as PMI clock in future investigations and in conjunction with information provided by forensic entomologists. To the best of our knowledge, this work represents the first attempt to find a cheaper and easily accessible, culture-independent alternative to high-throughput techniques to establish a 'microbial clock', in combination with proteomic strategies to address this issue. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Keystone taxa as drivers of microbiome structure and functioning.

    PubMed

    Banerjee, Samiran; Schlaeppi, Klaus; van der Heijden, Marcel G A

    2018-05-22

    Microorganisms have a pivotal role in the functioning of ecosystems. Recent studies have shown that microbial communities harbour keystone taxa, which drive community composition and function irrespective of their abundance. In this Opinion article, we propose a definition of keystone taxa in microbial ecology and summarize over 200 microbial keystone taxa that have been identified in soil, plant and marine ecosystems, as well as in the human microbiome. We explore the importance of keystone taxa and keystone guilds for microbiome structure and functioning and discuss the factors that determine their distribution and activities.

  18. Electron acceptors for anaerobic oxidation of methane drive microbial community structure and diversity in mud volcanoes.

    PubMed

    Ren, Ge; Ma, Anzhou; Zhang, Yanfen; Deng, Ye; Zheng, Guodong; Zhuang, Xuliang; Zhuang, Guoqiang; Fortin, Danielle

    2018-04-06

    Mud volcanoes (MVs) emit globally significant quantities of methane into the atmosphere, however, methane cycling in such environments is not yet fully understood, as the roles of microbes and their associated biogeochemical processes have been largely overlooked. Here, we used data from high-throughput sequencing of microbial 16S rRNA gene amplicons from six MVs in the Junggar Basin in northwest China to quantify patterns of diversity and characterize the community structure of archaea and bacteria. We found anaerobic methanotrophs and diverse sulfate- and iron-reducing microbes in all of the samples, and the diversity of both archaeal and bacterial communities was strongly linked to the concentrations of sulfate, iron and nitrate, which could act as electron acceptors in anaerobic oxidation of methane (AOM). The impacts of sulfate/iron/nitrate on AOM in the MVs were verified by microcosm experiments. Further, two representative MVs were selected to explore the microbial interactions based on phylogenetic molecular ecological networks. The sites showed distinct network structures, key species and microbial interactions, with more complex and numerous linkages between methane-cycling microbes and their partners being observed in the iron/sulfate-rich MV. These findings suggest that electron acceptors are important factors driving the structure of microbial communities in these methane-rich environments. © 2018 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. Diet and fecal steroid profile in a South Asian population with a low colon-cancer rate.

    PubMed

    McKeigue, P M; Adelstein, A M; Marmot, M G; Henly, P J; Owen, R W; Hill, M J; Thompson, M H

    1989-07-01

    South Asian immigrants to England and Wales have low mortality from colon cancer and high mortality from coronary heart disease compared with the general population. In a survey of a predominantly Gujarati population in northwest London, both vegetarians and nonvegetarians had similar total dietary fat intake to the native British population but higher dietary fiber intake. Total fecal bile acid and neutral animal sterol concentrations were lower in South Asians than in a native British comparison group. Sixty-two percent of South Asians excreted detectable quantities of free primary bile acids, which were not present in stools from native British subjects. The ratio of fecal coprostanol to total neutral animal sterols was also lower in South Asians. Low risk of colon cancer in this population may be related to reduced microbial activity in the bowel and low levels of tumor-promoting secondary bile acids.

  20. Divergence in plant and microbial allocation strategies explains continental patterns in microbial allocation and biogeochemical fluxes.

    PubMed

    Averill, Colin

    2014-10-01

    Allocation trade-offs shape ecological and biogeochemical phenomena at local to global scale. Plant allocation strategies drive major changes in ecosystem carbon cycling. Microbial allocation to enzymes that decompose carbon vs. organic nutrients may similarly affect ecosystem carbon cycling. Current solutions to this allocation problem prioritise stoichiometric tradeoffs implemented in plant ecology. These solutions may not maximise microbial growth and fitness under all conditions, because organic nutrients are also a significant carbon resource for microbes. I created multiple allocation frameworks and simulated microbial growth using a microbial explicit biogeochemical model. I demonstrate that prioritising stoichiometric trade-offs does not optimise microbial allocation, while exploiting organic nutrients as carbon resources does. Analysis of continental-scale enzyme data supports the allocation patterns predicted by this framework, and modelling suggests large deviations in soil C loss based on which strategy is implemented. Therefore, understanding microbial allocation strategies will likely improve our understanding of carbon cycling and climate. © 2014 John Wiley & Sons Ltd/CNRS.

Top