Energy-Saving Control of a Novel Hydraulic Drive System for Field Walking Robot
NASA Astrophysics Data System (ADS)
Fang, Delei; Shang, Jianzhong; Xue, Yong; Yang, Junhong; Wang, Zhuo
2018-01-01
To improve the efficiency of the hydraulic drive system in field walking robot, this paper proposed a novel hydraulic system based on two-stage pressure source. Based on the analysis of low efficiency of robot single-stage hydraulic system, the paper firstly introduces the concept and design of two-stage pressure source drive system. Then, the new hydraulic system energy-saving control is planned according to the characteristics of walking robot. The feasibility of the new hydraulic system is proved by the simulation of the walking robot squatting. Finally, the efficiencies of two types hydraulic system are calculated, indicating that the novel hydraulic system can increase the efficiency by 41.5%, which can contribute to enhance knowledge about hydraulic drive system for field walking robot.
An efficient supersonic wind tunnel drive system for Mach 2.5 flows
NASA Technical Reports Server (NTRS)
Wolf, Stephen W. D.; Laub, James A.; King, Lyndell S.
1991-01-01
A novel efficient drive system has been developed which provides for the continuous operation of a pitot Mach 2.5 wind tunnel at compression ratios down to 0.625:1. The drive system does not require an overpressure to start, and no hysteresis has been observed. The general design of the proof-of-concept wind tunnel using the new drive system and its modifications are described.
Design of a portable artificial heart drive system based on efficiency analysis.
Kitamura, T
1986-11-01
This paper discusses a computer simulation of a pneumatic portable piston-type artificial heart drive system with a linear d-c-motor. The purpose of the design is to obtain an artificial heart drive system with high efficiency and small dimensions to enhance portability. The design employs two factors contributing the total efficiency of the drive system. First, the dimensions of the pneumatic actuator were optimized under a cost function of the total efficiency. Second, the motor performance was studied in terms of efficiency. More than 50 percent of the input energy of the actuator with practical loads is consumed in the armature circuit in all linear d-c-motors with brushes. An optimal design is: the piston cross-sectional area of 10.5 cm2 cylinder longitudinal length of 10 cm. The total efficiency could be up to 25 percent by improving the gasket to reduce the frictional force.
Fuel-Cell-Powered Electric Motor Drive Analyzed for a Large Airplane
NASA Technical Reports Server (NTRS)
Brown, Gerald V.; Choi, Benjamin B.
2005-01-01
Because of its high efficiency, fuel cell technology may be used to launch a new generation of more-electric aeropropulsion and power systems for future aircraft. Electric-motor-driven airplanes using fuel-cell powerplants would be beneficial to the environment because of fuel savings, low noise, and zero carbon-dioxide emissions. In spite of the fuel cell s efficiency benefit, to produce the same shaft drive power, a fuel cell- powered electric-drive system must be definitely heavier than a turbine-drive system. However, the fuel-cell system s overall efficiency from fuel-to-shaft power is higher than for a turbine-drive system. This means that the fuel consumption rate could be lower than for a conventional system. For heavier, fuel-laden planes for longer flights, we might achieve substantial fuel savings. In the airplane industry, in fact, an efficiency gain of even a few percentage points can make a major economic difference in operating costs.
Arend, Matthias G; Franke, Thomas
2017-03-01
The objective of the present research was to understand drivers' interaction patterns with hybrid electric vehicles' (HEV) eco-features (electric propulsion, regenerative braking, neutral mode) and their relationship to fuel efficiency and driver characteristics (technical system knowledge, eco-driving motivation). Eco-driving (driving behaviors performed to achieve higher fuel efficiency) has the potential to reduce CO 2 emissions caused by road vehicles. Eco-driving in HEVs is particularly challenging due to the systems' dynamic energy flows. As a result, drivers are likely to show diverse eco-driving behaviors, depending on factors like knowledge and motivation. The eco-features represent an interface for the control of the systems' energy flows. A sample of 121 HEV drivers who had constantly logged their fuel consumption prior to the study participated in an online questionnaire. Drivers' interaction patterns with the eco-features were related to fuel efficiency. A common factor was identified in an exploratory factor analysis, characterizing the intensity of actively dealing with electric energy, which was also related to fuel efficiency. Driver characteristics were not related to this factor, yet they were significant predictors of fuel efficiency. From the perspective of user-energy interaction, the relationship of the aggregated factor to fuel efficiency emphasizes the central role of drivers' perception of and interaction with energy conversions in determining HEV eco-driving success. To arrive at an in-depth understanding of drivers' eco-driving behaviors that can guide interface design, authors of future research should be concerned with the psychological processes that underlie drivers' interaction patterns with eco-features.
Traction Drives for Zero Stick-Slip Robots, and Reaction Free, Momentum Balanced Systems
NASA Technical Reports Server (NTRS)
Anderson, William J.; Shipitalo, William; Newman, Wyatt
1995-01-01
Two differential (dual input, single output) drives (a roller-gear and a pure roller), and a momentum balanced (single input, dual output) drive (pure roller ) were designed, fabricated, and tested. The differential drives are each rated at 295 rad/sec (2800 rpm) input speed, 450 N-m (4,000 in-lbf) output torque. The momentum balanced drive is rated at 302 rad/sec (2880 rpm) input speed, and dual output torques of 434N-m (3840 in-lbf). The Dual Input Differential Roller-Gear Drive (DC-700) has a planetary roller-gear system with a reduction ratio (one input driving the output with the second input fixed) of 29.23: 1. The Dual Input Differential Roller Drive (DC-500) has a planetary roller system with a reduction ratio of approximately 24:1. Each of the differential drives features dual roller-gear or roller arrangements consisting of a sun, four first row planets, four second row planets, and a ring. The Momentum Balanced (Grounded Ring) Drive (DC-400) has a planetary roller system with a reduction ratio of 24:1 with both outputs counterrotating at equal speed. Its single roller cluster consists of a sun, five first and five second row planets, a roller cage or spider and a ring. Outputs are taken from both the roller cage and the ring which counterrotate. Test results reported for all three drives include angular and torque ripple (linearity and cogging), viscous and Coulomb friction, and forward and reverse power efficiency. Of the two differential drives, the Differential Roller Drive had better linearity and less cogging than did the Differential Roller-Gear Drive, but it had higher friction and lower efficiency (particularly at low power throughput levels). Use of full preloading rather than a variable preload system in the Differential Roller Drive assessed a heavy penalty in part load efficiency. Maximum measured efficiency (ratio of power out to power in) was 95% for the Differential Roller-Gear Drive and 86% for the Differential Roller Drive. The Momentum Balanced (Grounded Ring) Drive performed as expected kinematically. Reduction r-atios to the two counterrotating outputs (design nominal=24:1) were measured to be 23.98:1 and 24.12:1 at zero load.. At 25ONm (2200 in-lbf) output torque the ratio changed 2% due to roller creep. This drive was the smoothest of all three as determined from linearity and cogging tests, and maximum measured efficiency (ratio of power out to power in) was 95%. The disadvantages of full preloading as comvared to variable preload were apparent in this drive as in the Differential Roller Drive. Efficiencies at part load were low, but improved dramatically with increases in torque. These were consistent with friction measurements which indicated losses primarily from Coulomb friction. The initial preload level setting was low so roller slip was encountered at higher torques during testing.
Study of the impact of a telematics system on safe and fuel-efficient driving in trucks.
DOT National Transportation Integrated Search
2014-04-01
A telematics system has been successfully demonstrated to be useful for improving motor carrier efficiency. In this : particular field study, the research team demonstrated that telematics can be used to monitor and improve safe : driving behavior as...
National energy efficient driving system (NEEDS). Volume 1, Survey of requirements
DOT National Transportation Integrated Search
1981-12-15
This report provides a state-of-the-art summary of the means by which individual drivers can achieve more fuel-efficient vehicle operation. It identifies fuel-efficient driving behaviors, the means of influencing behavior, appropriate audiences for a...
FY2014 Electric Drive Technologies Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The Electric Drive Technologies research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research is focused on developing power electronics (PE), electric motor, and traction drive system (TDS) technologies that will reduce system cost and improve their efficiency in transforming battery energy to useful work. The R&D is also aimed at better understanding and improving how various components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.
FY2016 Electric Drive Technologies Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Electric Drive Technologies research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research is focused on developing power electronics (PE), electric motor, and traction drive system (TDS) technologies that will reduce system cost and improve their efficiency in transforming battery energy to useful work. The R&D is also aimed at better understanding and improving how various components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.
FY2015 Electric Drive Technologies Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Electric Drive Technologies research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research is focused on developing power electronics (PE), electric motor, and traction drive system (TDS) technologies that will reduce system cost and improve their efficiency in transforming battery energy to useful work. The R&D is also aimed at better understanding and improving how various components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.
2010-08-19
highlight the benefits of regenerative braking . Parameters within the drive cycle may include vehicle speed, elevation/grade changes, road surface...assist to downsize the engine due to infinite maximum speed requirements • Drive cycle less suited to regenerative braking improvement compared to...will be cycle dependent. A high speed drive cycle may for example drive a focus on aerodynamic improvements, while high frequency of braking will
Energy efficient engine. Core engine bearings, drives and configuration: Detailed design report
NASA Technical Reports Server (NTRS)
Broman, C. L.
1981-01-01
The detailed design of the forward and aft sumps, the accessory drive system, the lubrication system, and the piping/manifold configuration to be employed in the core engine test of the Energy Efficient Engine is addressed. The design goals for the above components were established based on the requirements of the test cell engine.
Improving Motor and Drive System Performance – A Sourcebook for Industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This sourcebook outlines opportunities to improve motor and drive systems performance. The sourcebook is divided into four main sections: (1) Motor and Drive System Basics: Summarizes important terms, relationships, and system design considerations relating to motor and drive systems. (2) Performance Opportunity Road Map: Details the key components of well-functioning motor and drive systems and opportunities for energy performance opportunities. (3) Motor System Economics: Offers recommendations on how to propose improvement projects based on corporate priorities, efficiency gains, and financial payback periods. (4) Where to Find Help: Provides a directory of organizations associated with motors and drives, as well asmore » resources for additional information, tools, software, videos, and training opportunities.« less
Partially Turboelectric Aircraft Drive Key Performance Parameters
NASA Technical Reports Server (NTRS)
Jansen, Ralph H.; Duffy, Kirsten P.; Brown, Gerald V.
2017-01-01
The purpose of this paper is to propose electric drive specific power, electric drive efficiency, and electrical propulsion fraction as the key performance parameters for a partially turboelectric aircraft power system and to investigate their impact on the overall aircraft performance. Breguet range equations for a base conventional turbofan aircraft and a partially turboelectric aircraft are found. The benefits and costs that may result from the partially turboelectric system are enumerated. A break even analysis is conducted to find the minimum allowable electric drive specific power and efficiency, for a given electrical propulsion fraction, that can preserve the range, fuel weight, operating empty weight, and payload weight of the conventional aircraft. Current and future power system performance is compared to the required performance to determine the potential benefit.
Design and simulation of the direct drive servo system
NASA Astrophysics Data System (ADS)
Ren, Changzhi; Liu, Zhao; Song, Libin; Yi, Qiang; Chen, Ken; Zhang, Zhenchao
2010-07-01
As direct drive technology is finding their way into telescope drive designs for its many advantages, it would push to more reliable and cheaper solutions for future telescope complex motion system. However, the telescope drive system based on the direct drive technology is one high integrated electromechanical system, which one complex electromechanical design method is adopted to improve the efficiency, reliability and quality of the system during the design and manufacture circle. The telescope is one ultra-exact, ultra-speed, high precision and huge inertial instrument, which the direct torque motor adopted by the telescope drive system is different from traditional motor. This paper explores the design process and some simulation results are discussed.
Next Generation Environmentally-Friendly Driving Feedback Systems Research and Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barth, Matthew; Boriboonsomsin, Kanok
2014-12-31
The objective of this project is to design, develop, and demonstrate a next-generation, federal safety- and emission-complaint driving feedback system that can be deployed across the existing vehicle fleet and improve fleet average fuel efficiency by at least 2%. The project objective was achieved with the driving feedback system that encourages fuel-efficient vehicle travel and operation through: 1) Eco-Routing Navigation module that suggests the most fuel-efficient route from one stop to the next, 2) Eco-Driving Feedback module that provides sensible information, recommendation, and warning regarding fuel-efficient vehicle operation, and 3) Eco-Score and Eco-Rank module that provides a means for drivingmore » performance tracking, self-evaluation, and peer comparison. The system also collects and stores vehicle travel and operation data, which are used by Algorithm Updating module to customize the other modules for specific vehicles and adapts them to specific drivers over time. The driving feedback system was designed and developed as an aftermarket technology that can be retrofitted to vehicles in the existing fleet. It consists of a mobile application for smart devices running Android operating system, a vehicle on-board diagnostics connector, and a data server. While the system receives and utilizes real-time vehicle and engine data from the vehicle’s controller area network bus through the vehicle’s on-board diagnostic connector, it does not modify or interfere with the vehicle’s controller area network bus, and thus, is in compliance with federal safety and emission regulations. The driving feedback system was demonstrated and then installed on 45 vehicles from three different fleets for field operational test. These include 15 private vehicles of the general public, 15 pickup trucks of the California Department of Transportation that are assigned to individual employees for business use, and 15 shuttle buses of the Riverside Transit Agency that are used for paratransit service. Detailed vehicle travel and operation data including route taken, driving speed, acceleration, braking, and the corresponding fuel consumption, were collected both before and during the test period. The data analysis results show that the fleet average fuel efficiency improvements for the three fleets with the use of the driving feedback system are in the range of 2% to 9%. The economic viability of the driving feedback system is high. A fully deployed system would require capital investment in smart device ($150-$350) and on-board diagnostics connector ($50-$100) as well as paying operating costs for wireless data plan and subscription fees ($20-$30 per month) for connecting to the data server and receiving various system services. For individual consumers who already own a smart device (such as smartphone) and commercial fleets that already use some kind of telematics services, the costs for deploying this driving feedback system would be much lower.« less
Determination of The Mechanical Power in Belt Conveyor's Drive System in Industrial Conditions
NASA Astrophysics Data System (ADS)
Król, Robert; Kaszuba, Damian; Kisielewski, Waldemar
2016-10-01
Mechanical power is a value which carries a significant amount of information on the properties of the operating status of the machine analysed. The value of mechanical power reflects the degree of load of the drive system and of the entire machine. It is essential to determine the actual efficiency of the drive system η [%], which is the key parameter of the energy efficiency of the drive system. In the case of a single drive of a belt conveyor the actual efficiency is expressed as the ratio of mechanical output power Pm [W] at the drive pulley shaft to active electrical power drawn by the motor Pe [W]. Furthermore, the knowledge about the mechanical power from all drives of the multiple driven belt conveyor allows for the analysis of load distribution between the drives. In case of belt conveyor, the mechanical power Pm [W] generated by the drive at the drive pulley's shaft is equal to its angular velocity ω [rad / s] multiplied by the torque T [Nm]. The measurement of angular velocity is relatively easy and can be realized with the use of a tachometer or can be determined on the basis of linear velocity of the conveyor belt during belt conveyor's steady state operation. Significantly more difficult to perform in industrial conditions is the measurement of the torque. This is due to the operational conditions of belt conveyors (e.g. dustiness, high humidity, high temperature) and tight assembly of the drive components without the possibility of their disassembly. It makes it difficult or even impossible to measure the torque using a number of the techniques available, causing an individual approach to each object of research. The paper proposes a measurement methodology allowing to determine the mechanical power in belt conveyors drives which are commonly used in underground and surface mining. The paper presents result of the research into mechanical power in belt conveyor's drive carried out in underground mine conditions.
Synthetic Fiber Capstan Drives for Highly Efficient, Torque Controlled, Robotic Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazumdar, Anirban; Spencer, Steven James; Hobart, Clinton
Here this paper describes the design and performance of a synthetic rope on sheave drive system. This system uses synthetic ropes instead of steel cables to achieve low weight and a compact form factor. We demonstrate how this system is capable of 28-Hz torque control bandwidth, 95% efficiency, and quiet operation, making it ideal for use on legged robots and other dynamic physically interactive systems. Component geometry and tailored maintenance procedures are used to achieve high endurance. Endurance tests based on walking data predict that the ropes will survive roughly 247,000 cycles when used on large (90 kg), fully actuatedmore » bipedal robot systems. The drive systems have been incorporated into two novel bipedal robots capable of three-dimensional unsupported walking. Robot data illustrate effective torque tracking and nearly silent operation. Finally, comparisons with alternative transmission designs illustrate the size, weight, and endurance advantages of using this type of synthetic rope drive system.« less
Synthetic Fiber Capstan Drives for Highly Efficient, Torque Controlled, Robotic Applications
Mazumdar, Anirban; Spencer, Steven James; Hobart, Clinton; ...
2017-01-05
Here this paper describes the design and performance of a synthetic rope on sheave drive system. This system uses synthetic ropes instead of steel cables to achieve low weight and a compact form factor. We demonstrate how this system is capable of 28-Hz torque control bandwidth, 95% efficiency, and quiet operation, making it ideal for use on legged robots and other dynamic physically interactive systems. Component geometry and tailored maintenance procedures are used to achieve high endurance. Endurance tests based on walking data predict that the ropes will survive roughly 247,000 cycles when used on large (90 kg), fully actuatedmore » bipedal robot systems. The drive systems have been incorporated into two novel bipedal robots capable of three-dimensional unsupported walking. Robot data illustrate effective torque tracking and nearly silent operation. Finally, comparisons with alternative transmission designs illustrate the size, weight, and endurance advantages of using this type of synthetic rope drive system.« less
Powertrain system for a hybrid electric vehicle
Reed, Jr., Richard G.; Boberg, Evan S.; Lawrie, Robert E.; Castaing, Francois J.
1999-08-31
A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration.
Powertrain system for a hybrid electric vehicle
Reed, R.G. Jr.; Boberg, E.S.; Lawrie, R.E.; Castaing, F.J.
1999-08-31
A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration. 34 figs.
NASA Astrophysics Data System (ADS)
Yuan, Yongliang; Song, Xueguan; Sun, Wei; Wang, Xiaobang
2018-05-01
The dynamic performance of a belt drive system is composed of many factors, such as the efficiency, the vibration, and the optimal parameters. The conventional design only considers the basic performance of the belt drive system, while ignoring its overall performance. To address all these challenges, the study on vibration characteristics and optimization strategies could be a feasible way. This paper proposes a new optimization strategy and takes a belt drive design optimization as a case study based on the multidisciplinary design optimization (MDO). The MDO of the belt drive system is established and the corresponding sub-systems are analyzed. The multidisciplinary optimization is performed by using an improved genetic algorithm. Based on the optimal results obtained from the MDO, the three-dimension (3D) model of the belt drive system is established for dynamics simulation by virtual prototyping. From the comparison of the results with respect to different velocities and loads, the MDO method can effectively reduce the transverse vibration amplitude. The law of the vibration displacement, the vibration frequency, and the influence of velocities on the transverse vibrations has been obtained. Results show that the MDO method is of great help to obtain the optimal structural parameters. Furthermore, the kinematics principle of the belt drive has been obtained. The belt drive design case indicates that the proposed method in this paper can also be used to solve other engineering optimization problems efficiently.
iDriving (Intelligent Driving)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malikopoulos, Andreas
2012-09-17
iDriving identifies the driving style factors that have a major impact on fuel economy. An optimization framework is used with the aim of optimizing a driving style with respect to these driving factors. A set of polynomial metamodels is constructed to reflect the responses produced in fuel economy by changing the driving factors. The optimization framework is used to develop a real-time feedback system, including visual instructions, to enable drivers to alter their driving styles in responses to actual driving conditions to improve fuel efficiency.
Chen, Zhongxian; Yu, Haitao; Wen, Cheng
2014-01-01
The goal of direct drive ocean wave energy extraction system is to convert ocean wave energy into electricity. The problem explored in this paper is the design and optimal control for the direct drive ocean wave energy extraction system. An optimal control method based on internal model proportion integration differentiation (IM-PID) is proposed in this paper though most of ocean wave energy extraction systems are optimized by the structure, weight, and material. With this control method, the heavy speed of outer heavy buoy of the energy extraction system is in resonance with incident wave, and the system efficiency is largely improved. Validity of the proposed optimal control method is verified in both regular and irregular ocean waves, and it is shown that IM-PID control method is optimal in that it maximizes the energy conversion efficiency. In addition, the anti-interference ability of IM-PID control method has been assessed, and the results show that the IM-PID control method has good robustness, high precision, and strong anti-interference ability. PMID:25152913
Chen, Zhongxian; Yu, Haitao; Wen, Cheng
2014-01-01
The goal of direct drive ocean wave energy extraction system is to convert ocean wave energy into electricity. The problem explored in this paper is the design and optimal control for the direct drive ocean wave energy extraction system. An optimal control method based on internal model proportion integration differentiation (IM-PID) is proposed in this paper though most of ocean wave energy extraction systems are optimized by the structure, weight, and material. With this control method, the heavy speed of outer heavy buoy of the energy extraction system is in resonance with incident wave, and the system efficiency is largely improved. Validity of the proposed optimal control method is verified in both regular and irregular ocean waves, and it is shown that IM-PID control method is optimal in that it maximizes the energy conversion efficiency. In addition, the anti-interference ability of IM-PID control method has been assessed, and the results show that the IM-PID control method has good robustness, high precision, and strong anti-interference ability.
NASA Astrophysics Data System (ADS)
andreev, A. N.; Kolesnichenko, D. A.
2017-12-01
The possibility of increasing the energy efficiency of the production cycle in a roller bed is briefly reviewed and justified. The sequence diagram of operation of the electrical drive in a roller bed is analyzed, and the possible increase in the energy efficiency is calculated. A method for energy saving is described for the application of a frequency-controlled asynchronous electrical drive of drive rollers in a roller bed with an increased capacitor capacity in a dc link. A fine mathematical model is developed to describe the behavior of the electrical drive during the deceleration of a roller bed. An experimental setup is created and computer simulation and physical modeling are performed. The basic information flows of the general hierarchical automatic control system of an enterprise are described and determined with allowance for the proposed method of increasing the energy efficiency.
Mechanical design of walking machines.
Arikawa, Keisuke; Hirose, Shigeo
2007-01-15
The performance of existing actuators, such as electric motors, is very limited, be it power-weight ratio or energy efficiency. In this paper, we discuss the method to design a practical walking machine under this severe constraint with focus on two concepts, the gravitationally decoupled actuation (GDA) and the coupled drive. The GDA decouples the driving system against the gravitational field to suppress generation of negative power and improve energy efficiency. On the other hand, the coupled drive couples the driving system to distribute the output power equally among actuators and maximize the utilization of installed actuator power. First, we depict the GDA and coupled drive in detail. Then, we present actual machines, TITAN-III and VIII, quadruped walking machines designed on the basis of the GDA, and NINJA-I and II, quadruped wall walking machines designed on the basis of the coupled drive. Finally, we discuss walking machines that travel on three-dimensional terrain (3D terrain), which includes the ground, walls and ceiling. Then, we demonstrate with computer simulation that we can selectively leverage GDA and coupled drive by walking posture control.
Liu, Chen
2017-01-01
A functioning gene drive system could fundamentally change our strategies for the control of vector-borne diseases by facilitating rapid dissemination of transgenes that prevent pathogen transmission or reduce vector capacity. CRISPR/Cas9 gene drive promises such a mechanism, which works by converting cells that are heterozygous for the drive construct into homozygotes, thereby enabling super-Mendelian inheritance. Although CRISPR gene drive activity has already been demonstrated, a key obstacle for current systems is their propensity to generate resistance alleles, which cannot be converted to drive alleles. In this study, we developed two CRISPR gene drive constructs based on the nanos and vasa promoters that allowed us to illuminate the different mechanisms by which resistance alleles are formed in the model organism Drosophila melanogaster. We observed resistance allele formation at high rates both prior to fertilization in the germline and post-fertilization in the embryo due to maternally deposited Cas9. Assessment of drive activity in genetically diverse backgrounds further revealed substantial differences in conversion efficiency and resistance rates. Our results demonstrate that the evolution of resistance will likely impose a severe limitation to the effectiveness of current CRISPR gene drive approaches, especially when applied to diverse natural populations. PMID:28727785
Fault tolerant operation of switched reluctance machine
NASA Astrophysics Data System (ADS)
Wang, Wei
The energy crisis and environmental challenges have driven industry towards more energy efficient solutions. With nearly 60% of electricity consumed by various electric machines in industry sector, advancement in the efficiency of the electric drive system is of vital importance. Adjustable speed drive system (ASDS) provides excellent speed regulation and dynamic performance as well as dramatically improved system efficiency compared with conventional motors without electronics drives. Industry has witnessed tremendous grow in ASDS applications not only as a driving force but also as an electric auxiliary system for replacing bulky and low efficiency auxiliary hydraulic and mechanical systems. With the vast penetration of ASDS, its fault tolerant operation capability is more widely recognized as an important feature of drive performance especially for aerospace, automotive applications and other industrial drive applications demanding high reliability. The Switched Reluctance Machine (SRM), a low cost, highly reliable electric machine with fault tolerant operation capability, has drawn substantial attention in the past three decades. Nevertheless, SRM is not free of fault. Certain faults such as converter faults, sensor faults, winding shorts, eccentricity and position sensor faults are commonly shared among all ASDS. In this dissertation, a thorough understanding of various faults and their influence on transient and steady state performance of SRM is developed via simulation and experimental study, providing necessary knowledge for fault detection and post fault management. Lumped parameter models are established for fast real time simulation and drive control. Based on the behavior of the faults, a fault detection scheme is developed for the purpose of fast and reliable fault diagnosis. In order to improve the SRM power and torque capacity under faults, the maximum torque per ampere excitation are conceptualized and validated through theoretical analysis and experiments. With the proposed optimal waveform, torque production is greatly improved under the same Root Mean Square (RMS) current constraint. Additionally, position sensorless operation methods under phase faults are investigated to account for the combination of physical position sensor and phase winding faults. A comprehensive solution for position sensorless operation under single and multiple phases fault are proposed and validated through experiments. Continuous position sensorless operation with seamless transition between various numbers of phase fault is achieved.
Energy Storage | Transportation Research | NREL
, and safe energy storage systems to power the next generation of electric-drive vehicles (EDVs). While lasting, safe, and operate at maximum efficiency in a wide range of driving conditions and climates. The Consumers, Industry, and the Environment As manufacturers develop new electric-drive vehicles, NREL acts as
Oak Ridge National Laboratory Annual Progress Report for the Electric Drive Technologies Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozpineci, Burak
The US Department of Energy (DOE) announced in May 2011 a new cooperative research effort comprising DOE, the US Council for Automotive Research (composed of automakers Ford Motor Company, General Motors Company, and Chrysler Group), Tesla Motors, and representatives of the electric utility and petroleum industries. Known as U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability), it represents DOE’s commitment to developing public–private partnerships to fund high-risk–high-reward research into advanced automotive technologies. The new partnership replaces and builds upon the partnership known as FreedomCAR (derived from “Freedom” and “Cooperative Automotive Research”) that ran from 2002 throughmore » 2010 and the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. Oak Ridge National Laboratory’s (ORNL’s) Electric Drive Technologies (EDT) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), and traction drive system (TDS) technologies that will leapfrog current on-the-road technologies, leading to lower cost and better efficiency in transforming battery energy to useful work. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency through research in more efficient TDSs. In supporting the development of advanced vehicle propulsion systems, the EDT subprogram fosters the development of technologies that will significantly improve efficiency, costs, and fuel economy« less
Downward Slope Driving Control for Electric Powered Wheelchair Based on Capacitor Regenerative Brake
NASA Astrophysics Data System (ADS)
Seki, Hirokazu; Takahashi, Yoshiaki
This paper describes a novel capacitor regenerative braking control scheme of electric powered wheelchairs for efficient driving on downward slopes. An electric powered wheelchair, which generates the driving force by electric motors, is expected to be widely used as a mobility support system for elderly people and disabled people; however the energy efficiency has to be further improved because it is driven only by battery energy. This study proposes a capacitor regenerative braking circuit and two types of velocity control schemes with variable duty ratio. The proposed regenerative braking circuit is based on the step-up/down circuit with additional resistance and connects right and left motors in series in order to obtain a larger braking power. Some driving experiments on a practical downward slope show the effectiveness of the proposed control system.
NASA Astrophysics Data System (ADS)
Wang, Song-Bai; Chen, Ye-Hong; Wu, Qi-Cheng; Shi, Zhi-Cheng; Huang, Bi-Hua; Song, Jie; Xia, Yan
2018-07-01
A scheme is proposed to implement quantum state engineering (QSE) in a four-state system via counterdiabatic driving. In the scheme, single- and multi-mode driving methods are used respectively to drive the system to a target state at a predefined time. It is found that a fast QSE can be realized by utilizing simply designed pulses. In addition, a beneficial discussion on the energy consumption between the single- and multi-mode driving protocols shows that the multi-mode driving method seems to have a wider range of applications than the single-mode driving method with respect to different parameters. Finally, the scheme is also helpful for implementing the generalization QSE in high-dimensional systems via the concept of a dressed state. Therefore, the scheme can be implemented with the present experimental technology, which is useful in quantum information processing.
Mobility systems activity for lunar rovers at MSFC
NASA Technical Reports Server (NTRS)
Jones, C. S., Jr.; Nola, F. J.
1971-01-01
The Apollo Lunar Roving Vehicle (LRV) mobility system is described. Special emphasis is given to the redundancy aspects and to the selection of the drive motors. A summary chart of the performance on the lunar surface during the Apollo 15 flight is included. An appendix gives details on some development work on high efficiency drive systems and compares these systems to the selected system.
Real time PI-backstepping induction machine drive with efficiency optimization.
Farhani, Fethi; Ben Regaya, Chiheb; Zaafouri, Abderrahmen; Chaari, Abdelkader
2017-09-01
This paper describes a robust and efficient speed control of a three phase induction machine (IM) subjected to load disturbances. First, a Multiple-Input Multiple-Output (MIMO) PI-Backstepping controller is proposed for a robust and highly accurate tracking of the mechanical speed and rotor flux. Asymptotic stability of the control scheme is proven by Lyapunov Stability Theory. Second, an active online optimization algorithm is used to optimize the efficiency of the drive system. The efficiency improvement approach consists of adjusting the rotor flux with respect to the load torque in order to minimize total losses in the IM. A dSPACE DS1104 R&D board is used to implement the proposed solution. The experimental results released on 3kW squirrel cage IM, show that the reference speed as well as the rotor flux are rapidly achieved with a fast transient response and without overshoot. A good load disturbances rejection response and IM parameters variation are fairly handled. The improvement of drive system efficiency reaches up to 180% at light load. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Turboelectric Aircraft Drive Key Performance Parameters and Functional Requirements
NASA Technical Reports Server (NTRS)
Jansen, Ralph H.; Brown, Gerald V.; Felder, James L.; Duffy, Kirsten P.
2016-01-01
The purpose of this paper is to propose specific power and efficiency as the key performance parameters for a turboelectric aircraft power system and investigate their impact on the overall aircraft. Key functional requirements are identified that impact the power system design. Breguet range equations for a base aircraft and a turboelectric aircraft are found. The benefits and costs that may result from the turboelectric system are enumerated. A break-even analysis is conducted to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.
Turboelectric Aircraft Drive Key Performance Parameters and Functional Requirements
NASA Technical Reports Server (NTRS)
Jansen, Ralph; Brown, Gerald V.; Felder, James L.; Duffy, Kirsten P.
2015-01-01
The purpose of this presentation is to propose specific power and efficiency as the key performance parameters for a turboelectric aircraft power system and investigate their impact on the overall aircraft. Key functional requirements are identified that impact the power system design. Breguet range equations for a base aircraft and a turboelectric aircraft are found. The benefits and costs that may result from the turboelectric system are enumerated. A break-even analysis is conducted to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.
Turboelectric Aircraft Drive Key Performance Parameters and Functional Requirements
NASA Technical Reports Server (NTRS)
Jansen, Ralph H.; Brown, Gerald V.; Felder, James L.; Duffy, Kirsten P.
2015-01-01
The purpose of this paper is to propose specific power and efficiency as the key performance parameters for a turboelectric aircraft power system and investigate their impact on the overall aircraft. Key functional requirements are identified that impact the power system design. Breguet range equations for a base aircraft and a turboelectric aircraft are found. The benefits and costs that may result from the turboelectric system are enumerated. A break-even analysis is conducted to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.
Solar receiver heliostat reflector having a linear drive and position information system
Horton, Richard H.
1980-01-01
A heliostat for a solar receiver system comprises an improved drive and control system for the heliostat reflector assembly. The heliostat reflector assembly is controllably driven in a predetermined way by a light-weight drive system so as to be angularly adjustable in both elevation and azimuth to track the sun and efficiently continuously reflect the sun's rays to a focal zone, i.e., heat receiver, which forms part of a solar energy utilization system, such as a solar energy fueled electrical power generation system. The improved drive system includes linear stepping motors which comprise low weight, low cost, electronic pulse driven components. One embodiment comprises linear stepping motors controlled by a programmed, electronic microprocessor. Another embodiment comprises a tape driven system controlled by a position control magnetic tape.
Synthetically engineered Medea gene drive system in the worldwide crop pest Drosophila suzukii
Buchman, Anna; Marshall, John M.; Ostrovski, Dennis; Yang, Ting; Akbari, Omar S.
2018-01-01
Synthetic gene drive systems possess enormous potential to replace, alter, or suppress wild populations of significant disease vectors and crop pests; however, their utility in diverse populations remains to be demonstrated. Here, we report the creation of a synthetic Medea gene drive system in a major worldwide crop pest, Drosophila suzukii. We demonstrate that this drive system, based on an engineered maternal “toxin” coupled with a linked embryonic “antidote,” is capable of biasing Mendelian inheritance rates with up to 100% efficiency. However, we find that drive resistance, resulting from naturally occurring genetic variation and associated fitness costs, can be selected for and hinder the spread of such a drive. Despite this, our results suggest that this gene drive could maintain itself at high frequencies in a wild population and spread to fixation if either its fitness costs or toxin resistance were reduced, providing a clear path forward for developing future such systems in this pest. PMID:29666236
Using Mobile Laser Scanning Data for Features Extraction of High Accuracy Driving Maps
NASA Astrophysics Data System (ADS)
Yang, Bisheng; Liu, Yuan; Liang, Fuxun; Dong, Zhen
2016-06-01
High Accuracy Driving Maps (HADMs) are the core component of Intelligent Drive Assistant Systems (IDAS), which can effectively reduce the traffic accidents due to human error and provide more comfortable driving experiences. Vehicle-based mobile laser scanning (MLS) systems provide an efficient solution to rapidly capture three-dimensional (3D) point clouds of road environments with high flexibility and precision. This paper proposes a novel method to extract road features (e.g., road surfaces, road boundaries, road markings, buildings, guardrails, street lamps, traffic signs, roadside-trees, power lines, vehicles and so on) for HADMs in highway environment. Quantitative evaluations show that the proposed algorithm attains an average precision and recall in terms of 90.6% and 91.2% in extracting road features. Results demonstrate the efficiencies and feasibilities of the proposed method for extraction of road features for HADMs.
Pohlmann, André; Hameyer, Kay
2012-01-01
Ventricular Assist Devices (VADs) are mechanical blood pumps that support the human heart in order to maintain a sufficient perfusion of the human body and its organs. During VAD operation blood damage caused by hemolysis, thrombogenecity and denaturation has to be avoided. One key parameter causing the blood's denaturation is its temperature which must not exceed 42 °C. As a temperature rise can be directly linked to the losses occuring in the drive system, this paper introduces an efficiency prediction chain for Brushless DC (BLDC) drives which are applied in various VAD systems. The presented chain is applied to various core materials and operation ranges, providing a general overview on the loss dependencies.
Eco Assist Techniques through Real-time Monitoring of BEV Energy Usage Efficiency
Kim, Younsun; Lee, Ingeol; Kang, Sungho
2015-01-01
Energy efficiency enhancement has become an increasingly important issue for battery electric vehicles. Even if it can be improved in many ways, the driver’s driving pattern strongly influences the battery energy consumption of a vehicle. In this paper, eco assist techniques to simply implement an energy-efficient driving assistant system are introduced, including eco guide, eco control and eco monitoring methods. The eco guide is provided to control the vehicle speed and accelerator pedal stroke, and eco control is suggested to limit the output power of the battery. For eco monitoring, the eco indicator and eco report are suggested to teach eco-friendly driving habits. The vehicle test, which is done in four ways, consists of federal test procedure (FTP)-75, new european driving cycle (NEDC), city and highway cycles, and visual feedback with audible warnings is provided to attract the driver’s voluntary participation. The vehicle test result shows that the energy usage efficiency can be increased up to 19.41%. PMID:26121611
Grid-Integrated Electric Drive Analysis for The Ohio State University |
thermal management analysis and simulations on a high-performance, high-speed drive-developed by The Ohio as a pilot study for the future generation of energy efficient, high power density, high-speed integrated medium/high-voltage drive systems. If successful, the proposed project will significantly advance
NASA Astrophysics Data System (ADS)
Zhou, Daming; Al-Durra, Ahmed; Gao, Fei; Ravey, Alexandre; Matraji, Imad; Godoy Simões, Marcelo
2017-10-01
Energy management strategy plays a key role for Fuel Cell Hybrid Electric Vehicles (FCHEVs), it directly affects the efficiency and performance of energy storages in FCHEVs. For example, by using a suitable energy distribution controller, the fuel cell system can be maintained in a high efficiency region and thus saving hydrogen consumption. In this paper, an energy management strategy for online driving cycles is proposed based on a combination of the parameters from three offline optimized fuzzy logic controllers using data fusion approach. The fuzzy logic controllers are respectively optimized for three typical driving scenarios: highway, suburban and city in offline. To classify patterns of online driving cycles, a Probabilistic Support Vector Machine (PSVM) is used to provide probabilistic classification results. Based on the classification results of the online driving cycle, the parameters of each offline optimized fuzzy logic controllers are then fused using Dempster-Shafer (DS) evidence theory, in order to calculate the final parameters for the online fuzzy logic controller. Three experimental validations using Hardware-In-the-Loop (HIL) platform with different-sized FCHEVs have been performed. Experimental comparison results show that, the proposed PSVM-DS based online controller can achieve a relatively stable operation and a higher efficiency of fuel cell system in real driving cycles.
Fast and efficient wireless power transfer via transitionless quantum driving.
Paul, Koushik; Sarma, Amarendra K
2018-03-07
Shortcut to adiabaticity (STA) techniques have the potential to drive a system beyond the adiabatic limits. Here, we present a robust and efficient method for wireless power transfer (WPT) between two coils based on the so-called transitionless quantum driving (TQD) algorithm. We show that it is possible to transfer power between the coils significantly fast compared to its adiabatic counterpart. The scheme is fairly robust against the variations in the coupling strength and the coupling distance between the coils. Also, the scheme is found to be reasonably immune to intrinsic losses in the coils.
An Optimization Framework for Driver Feedback Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malikopoulos, Andreas; Aguilar, Juan P.
2013-01-01
Modern vehicles have sophisticated electronic control units that can control engine operation with discretion to balance fuel economy, emissions, and power. These control units are designed for specific driving conditions (e.g., different speed profiles for highway and city driving). However, individual driving styles are different and rarely match the specific driving conditions for which the units were designed. In the research reported here, we investigate driving-style factors that have a major impact on fuel economy and construct an optimization framework to optimize individual driving styles with respect to these driving factors. In this context, we construct a set of polynomialmore » metamodels to reflect the responses produced in fuel economy by changing the driving factors. Then, we compare the optimized driving styles to the original driving styles and evaluate the effectiveness of the optimization framework. Finally, we use this proposed framework to develop a real-time feedback system, including visual instructions, to enable drivers to alter their driving styles in response to actual driving conditions to improve fuel efficiency.« less
[Application of extended exergy method in driving mechanism and efficiency of regional eco-economy].
Fan, Xin Gang; Mi, Wen Bao; Hou, Jing Wei
2017-01-01
To analyze social-economic causes of the regional ecological degradation, and avoid such problems as the complex circulation network and difficulty to identify laws caused by extended exergy analysis (EEA) previously applied at the national scale, this paper reduced spatial scale to the county scale and took Pengyang County in Ningxia as an example. Eco-economic system in Peng-yang County was divided into seven interrelated sectors. The exergy value of circulations in the eco-economic system including materials, labor and capital were calculated respectively to analyze the extended exergy characteristics of the driving sectors, factors and paths and evaluate their ecological efficiency. The results showed that agriculture and households were the main driving sectors of the eco-economic system in Pengyang County. The average exergy value of 31 flow paths among the sectors was 0.80 PJ. There were only 8 flow paths whose exergy values were higher than the average value. Eco-economic system in Pengyang County development was driven by two continuous flow paths, labor output of the households sector and demands of the households sector supported by other sectors. The mineral resources were massively exploited, and then directly exported to the outside, which could not promote the local development from the inside, but, on the contrary, increase the ecological environment pressure because of the over-exploitation. The eco-efficiency of Pengyang County in 2014 was 68.1%, almost equivalent to the by-level of the national scale at home and abroad ten years ago, mainly because of the lower eco-efficiencies of the service sector and households sector. EEA had the advantage of networking and structuring, could specify the sectors, factors and driven paths, and break through the bottleneck of driving mechanism research of the eco-economic system. EEA had certain adaptability to explore the operational principle and optimal pattern of the regional eco-economic system. Compared with the national scale, EEA at the regional scale could more easily identify the driving mechanism of eco-economic system, and could clearly guide the regional administrative department to reduce the ecological environment pressure.
Assessing Energy Efficiency Opportunities in US Industrial and Commercial Building Motor Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Prakash; Sheaffer, Paul; McKane, Aimee
2015-09-01
In 2002, the United States Department of Energy (USDOE) published an energy efficiency assessment of U.S. industrial sector motor systems titled United States Industrial Electric Motor Systems Market Opportunities Assessment. The assessment advanced motor system efficiency by providing a greater understanding of the energy consumption, use characteristics, and energy efficiency improvement potential of industrial sector motor systems in the U.S. Since 2002, regulations such as Minimum Energy Performance Standards, cost reductions for motor system components such as variable frequency drives, system-integrated motor-driven equipment, and awareness programs for motor system energy efficiency have changed the landscape of U.S. motor system energymore » consumption. To capture the new landscape, the USDOE has initiated a three-year Motor System Market Assessment (MSMA), led by Lawrence Berkeley National Laboratory (LBNL). The MSMA will assess the energy consumption, operational and maintenance characteristics, and efficiency improvement opportunity of U.S. industrial sector and commercial building motor systems. As part of the MSMA, a significant effort is currently underway to conduct field assessments of motor systems from a sample of facilities representative of U.S. commercial and industrial motor system energy consumption. The Field Assessment Plan used for these assessments builds on recent LBNL research presented at EEMODS 2011 and EEMODS 2013 using methods for characterizing and determining regional motor system energy efficiency opportunities. This paper provides an update on the development and progress of the MSMA, focusing on the Field Assessment Plan and the framework for assessing the global supply chain for emerging motors and drive technologies.« less
Biological optimization systems for enhancing photosynthetic efficiency and methods of use
Hunt, Ryan W.; Chinnasamy, Senthil; Das, Keshav C.; de Mattos, Erico Rolim
2012-11-06
Biological optimization systems for enhancing photosynthetic efficiency and methods of use. Specifically, methods for enhancing photosynthetic efficiency including applying pulsed light to a photosynthetic organism, using a chlorophyll fluorescence feedback control system to determine one or more photosynthetic efficiency parameters, and adjusting one or more of the photosynthetic efficiency parameters to drive the photosynthesis by the delivery of an amount of light to optimize light absorption of the photosynthetic organism while providing enough dark time between light pulses to prevent oversaturation of the chlorophyll reaction centers are disclosed.
Current CRISPR gene drive systems are likely to be highly invasive in wild populations.
Noble, Charleston; Adlam, Ben; Church, George M; Esvelt, Kevin M; Nowak, Martin A
2018-06-19
Recent reports have suggested that self-propagating CRISPR-based gene drive systems are unlikely to efficiently invade wild populations due to drive-resistant alleles that prevent cutting. Here we develop mathematical models based on existing empirical data to explicitly test this assumption for population alteration drives. Our models show that although resistance prevents spread to fixation in large populations, even the least effective drive systems reported to date are likely to be highly invasive. Releasing a small number of organisms will often cause invasion of the local population, followed by invasion of additional populations connected by very low rates of gene flow. Hence, initiating contained field trials as tentatively endorsed by the National Academies report on gene drive could potentially result in unintended spread to additional populations. Our mathematical results suggest that self-propagating gene drive is best suited to applications such as malaria prevention that seek to affect all wild populations of the target species. © 2018, Noble et al.
Intelligent single switch wheelchair navigation.
Ka, Hyun W; Simpson, Richard; Chung, Younghyun
2012-11-01
We have developed an intelligent single switch scanning interface and wheelchair navigation assistance system, called intelligent single switch wheelchair navigation (ISSWN), to improve driving safety, comfort and efficiency for individuals who rely on single switch scanning as a control method. ISSWN combines a standard powered wheelchair with a laser rangefinder, a single switch scanning interface and a computer. It provides the user with context sensitive and task specific scanning options that reduce driving effort based on an interpretation of sensor data together with user input. Trials performed by 9 able-bodied participants showed that the system significantly improved driving safety and efficiency in a navigation task by significantly reducing the number of switch presses to 43.5% of traditional single switch wheelchair navigation (p < 0.001). All participants made a significant improvement (39.1%; p < 0.001) in completion time after only two trials.
Advances in shutter drive technology to enhance man-portable infrared cameras
NASA Astrophysics Data System (ADS)
Durfee, David
2012-06-01
With an emphasis on highest reliability, infrared (IR) imagers have traditionally used simplest-possible shutters and field-proven technology. Most commonly, single-step rotary or linear magnetic actuators have been used with good success. However, several newer shutter drive technologies offer benefits in size and power reduction, enabling man-portable imagers that are more compact, lighter, and more durable. This paper will discuss improvements in shutter and shutter drive technology, which enable smaller and more power-efficient imagers. Topics will transition from single-step magnetic actuators to multi-stepping magnetic drives, latching vs. balanced systems for blade position shock-resistance, motor and geared motor drives, and associated stepper driver electronics. It will highlight performance tradeoffs pertinent to man-portable military systems.
Design of a Novel Electro-hydraulic Drive Downhole Tractor
NASA Astrophysics Data System (ADS)
Fang, Delei; Shang, Jianzhong; Yang, Junhong; Wang, Zhuo; Wu, Wei
2018-02-01
In order to improve the traction ability and the work efficiency of downhole tractor in oil field, a novel electro-hydraulic drive downhole tractor was designed. The tractor’s supporting mechanism and moving mechanism were analyzed based on the tractor mechanical structure. Through the introduction of hydraulic system, the hydraulic drive mechanism and the implementation process were researched. Based on software, analysis of tractor hydraulic drive characteristic and movement performance were simulated, which provide theoretical basis for the development of tractor prototype.
NASA Astrophysics Data System (ADS)
Tsubaki, Kenji; Komoda, Takuya; Koshida, Nobuyoshi
2006-04-01
It is shown that the dc-superimposed driving mode is more useful for the efficient operation of a novel thermally induced ultrasonic emitter based on nanocrystalline porous silicon (nc-PS) than the conventional simple ac-voltage driving mode. The nc-PS device is composed of a patterned heater electrode, an nc-PS layer and a single crystalline silicon (c-Si) substrate. The almost complete thermally insulating property of nc-PS as a quantum-sized system makes it possible to apply the nc-PS device as an ultrasonic generator by efficient thermo acoustic conversion without any mechanical vibrations. In the dc-superimposed driving mode, the output frequency is the same as the input frequency and a stationary temperature rise is kept constant independent of input peak-to-peak voltage. In addition, power efficiency is significantly increases compared with that in the ac-voltage driving mode without affecting on the temperature rise. The present results suggest the further possibility of the nc-PS device being used as a functional speaker.
National energy efficient driving system (NEEDS). Volume 2, Driver education program
DOT National Transportation Integrated Search
1981-12-15
Studies were conducted to identify young driver deficiencies in knowledge, attitude, and performance with respect to fuel-efficiency. Five different programs of classroom-only and classroom/in-car instruction were administered experimentally to high ...
NASA Heavy Lift Rotorcraft Systems Investigation
NASA Technical Reports Server (NTRS)
Johnson, Wayne; Yamauchi, Gloria K.; Watts, Michael E.
2005-01-01
The NASA Heavy Lift Rotorcraft Systems Investigation examined in depth several rotorcraft configurations for large civil transport, designed to meet the technology goals of the NASA Vehicle Systems Program. The investigation identified the Large Civil Tiltrotor as the configuration with the best potential to meet the technology goals. The design presented was economically competitive, with the potential for substantial impact on the air transportation system. The keys to achieving a competitive aircraft were low drag airframe and low disk loading rotors; structural weight reduction, for both airframe and rotors; drive system weight reduction; improved engine efficiency; low maintenance design; and manufacturing cost comparable to fixed-wing aircraft. Risk reduction plans were developed to provide the strategic direction to support a heavy-lift rotorcraft development. The following high risk areas were identified for heavy lift rotorcraft: high torque, light weight drive system; high performance, structurally efficient rotor/wing system; low noise aircraft; and super-integrated vehicle management system.
NASA Technical Reports Server (NTRS)
1976-01-01
A variable pitch fan actuation system was designed which incorporates a remote nacelle-mounted blade angle regulator. The regulator drives a rotating fan-mounted mechanical actuator through a flexible shaft and differential gear train. The actuator incorporates a high ratio harmonic drive attached to a multitrack spherical cam which changes blade pitch through individual cam follower arms attached to each blade trunnion. Detail design parameters of the actuation system are presented. These include the following: design philosophies, operating limits, mechanical, hydraulic and thermal characteristics, mechanical efficiencies, materials, weights, lubrication, stress analyses, reliability and failure analyses.
Noise Mitigation During Pile Driving Efficiently Reduces Disturbance of Marine Mammals.
Nehls, Georg; Rose, Armin; Diederichs, Ansgar; Bellmann, Michael; Pehlke, Hendrik
2016-01-01
Acoustic monitoring of harbor porpoises (Phocoena phocoena L., 1758) indicated a strongly reduced disturbance by noise emitted by pile driving for offshore wind turbine foundations insulated by a big bubble curtain (BBC). This newly developed noise mitigation system was tested during construction of the offshore wind farm Borkum West II (North Sea). Because porpoise activity strongly corresponded to the sound level, operation of the new system under its most suitable configuration reduced the porpoise disturbance area by ~90%. Hence, for the first time, a positive effect of a noise mitigation system during offshore pile driving on an affected marine mammal species could be demonstrated.
Metal band drives in spacecraft mechanisms
NASA Technical Reports Server (NTRS)
Maus, Daryl
1993-01-01
Transmitting and changing the characteristics of force and stroke is a requirement in nearly all mechanisms. Examples include changing linear to rotary motion, providing a 90 deg change in direction, and amplifying stroke or force. Requirements for size, weight, efficiency and reliability create unique problems in spacecraft mechanisms. Flexible metal band and cam drive systems provide powerful solutions to these problems. Band drives, rack and pinion gears, and bell cranks are compared for effectiveness. Band drive issues are discussed including materials, bend radius, fabrication, attachment and reliability. Numerous mechanisms are shown which illustrate practical applications of band drives.
Designs and Technology Requirements for Civil Heavy Lift Rotorcraft
NASA Technical Reports Server (NTRS)
Johnson, Wayne; Yamauchi, Gloria K.; Watts, Michael E.
2006-01-01
The NASA Heavy Lift Rotorcraft Systems Investigation examined in depth several rotorcraft configurations for large civil transport, designed to meet the technology goals of the NASA Vehicle Systems Program. The investigation identified the Large Civil Tiltrotor as the configuration with the best potential to meet the technology goals. The design presented was economically competitive, with the potential for substantial impact on the air transportation system. The keys to achieving a competitive aircraft were low drag airframe and low disk loading rotors; structural weight reduction, for both airframe and rotors; drive system weight reduction; improved engine efficiency; low maintenance design; and manufacturing cost comparable to fixed-wing aircraft. Risk reduction plans were developed to provide the strategic direction to support a heavy-lift rotorcraft development. The following high risk areas were identified for heavy lift rotorcraft: high torque, light weight drive system; high performance, structurally efficient rotor/wing system; low noise aircraft; and super-integrated vehicle management system.
NASA Astrophysics Data System (ADS)
Yoneda, Makoto; Dohmeki, Hideo
The position control system with the advantage large torque, low vibration, and high resolution can be obtained by the constant current micro step drive applied to hybrid stepping motor. However loss is large, in order not to be concerned with load torque but to control current uniformly. As the one technique of a position control system in which high efficiency is realizable, the same sensorless control as a permanent magnet motor is effective. But, it was the purpose that the control method proposed until now controls speed. Then, this paper proposed changing the drive method of micro step drive and sensorless drive. The change of the drive method was verified from the simulation and the experiment. On no load, it was checked not producing change of a large speed at the time of a change by making electrical angle and carrying out zero reset of the integrator. On load, it was checked that a large speed change arose. The proposed system could change drive method by setting up the initial value of an integrator using the estimated result, without producing speed change. With this technique, the low loss position control system, which employed the advantage of the hybrid stepping motor, has been built.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nadel, S.; Elliott, R.N.; Shepard, M.
This updated and revised book, based on the best-selling first edition, will address how motors and motor systems can achieve greater efficiency through efficient motors, motor management, optimized controls, improved component sizing and repair, better transmission hardware, and comprehensive monitoring and maintenance. In language understandable to non-engineers, this second edition will provide an overview of existing motor stock, chronicle experience with drive power programs and policies, and offer recommendations for future efforts to increase motor system efficiency.
An efficient, modular and simple tape archiving solution for LHC Run-3
NASA Astrophysics Data System (ADS)
Murray, S.; Bahyl, V.; Cancio, G.; Cano, E.; Kotlyar, V.; Kruse, D. F.; Leduc, J.
2017-10-01
The IT Storage group at CERN develops the software responsible for archiving to tape the custodial copy of the physics data generated by the LHC experiments. Physics run 3 will start in 2021 and will introduce two major challenges for which the tape archive software must be evolved. Firstly the software will need to make more efficient use of tape drives in order to sustain the predicted data rate of 150 petabytes per year as opposed to the current 50 petabytes per year. Secondly the software will need to be seamlessly integrated with EOS, which has become the de facto disk storage system provided by the IT Storage group for physics data. The tape storage software for LHC physics run 3 is code named CTA (the CERN Tape Archive). This paper describes how CTA will introduce a pre-emptive drive scheduler to use tape drives more efficiently, will encapsulate all tape software into a single module that will sit behind one or more EOS systems, and will be simpler by dropping support for obsolete backwards compatibility.
Variable-Speed Induction Motor Drives for Aircraft Environmental Control Compressors
NASA Technical Reports Server (NTRS)
Mildice, J. W.; Hansen, I. G.; Schreiner, K. E.; Roth, M. E.
1996-01-01
New, more-efficient designs for aircraft jet engines are not capable of supplying the large quantities of bleed air necessary to provide pressurization and air conditioning for the environmental control systems (ECS) of the next generation of large passenger aircraft. System analysis and engineering have determined that electrically-driven ECS can help to maintain the improved fuel efficiencies; and electronic controllers and induction motors are now being developed in a NASA/NPD SBIR Program to drive both types of ECS compressors. Previous variable-speed induction motor/controller system developments and publications have primarily focused on field-oriented control, with large transient reserve power, for maximum acceleration and optimum response in actuator and robotics systems. The application area addressed herein is characterized by slowly-changing inputs and outputs, small reserve power capability for acceleration, and optimization for maximum efficiency. This paper therefore focuses on the differences between this case and the optimum response case, and shows the development of this new motor/controller approach. It starts with the creation of a new set of controller requirements. In response to those requirements, new control algorithms are being developed and implemented in an embedded computer, which is integrated into the motor controller closed loop. Buffered logic outputs are used to drive the power switches in a resonant-technology, power processor/motor-controller, at switching/resonant frequencies high enough to support efficient high-frequency induction motor operation at speeds up to 50,000-RPA
Wang, Minjuan; Sun, Dong; Chen, Fang
2012-01-01
In recent years, there are many naturalistic driving projects have been conducted, such as the 100-Car Project (Naturalistic Driving study in United State), EuroFOT(European Large-Scale Field Operational Tests on Vehicle Systems), SeMi- FOT(Sweden Michigan Naturalistic Field Operational Test and etc. However, those valuable naturalistic driving data hasn't been applied into Human-machine Interaction (HMI) design for Advanced Driver Assistance Systems (ADAS), a good HMI design for ADAS requires a deep understanding of drive environment and the interactions between the driving car and other road users in different situations. The results demonstrated the benefits of using naturalistic driving films as a mean for enhancing focus group discussion for better understanding driver's needs and traffic environment constraints. It provided an efficient tool for designers to have inside knowledge about drive and the needs for information presentation; The recommendations for how to apply this method is discussed in the paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olszewski, Mitchell
The U.S. Department of Energy (DOE) announced in May 2011 a new cooperative research effort comprising DOE, the U.S. Council for Automotive Research (composed of automakers Ford Motor Company, General Motors Company, and Chrysler Group), Tesla Motors, and representatives of the electric utility and petroleum industries. Known as U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability), it represents DOE's commitment to developing public-private partnerships to fund high risk-high reward research into advanced automotive technologies. The new partnership replaces and builds upon the partnership known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research') that ran frommore » 2002 through 2010 and the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machines (PEEM) subprogram within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the PEEM subprogram has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The PEEM subprogram supports the efforts of the U.S. DRIVE partnership through a three phase approach intended to: (1) identify overall propulsion and vehicle related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component R&D activities; (2) develop and validate individual subsystems and components, including EMs and PE; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), battery electric vehicles, and fuel-cell-powered automobiles that meet the goals of the VTP. A key element in making these advanced vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, efficiency, and cost targets for the PE and EM subsystems of the traction drive system. Areas of development include: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency with the ability to accommodate higher temperature environments while achieving high reliability; (3) converter concepts that use methods of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) new onboard battery charging concepts that result in decreased cost and size; (5) more effective thermal control through innovative packaging technologies; and (6) integrated motor-inverter traction drive system concepts. ORNL's PEEM research program conducts fundamental research, evaluates hardware, and assists in the technical direction of the VTP Advanced Power Electronics and Electric Motors (APEEM) program. In this role, ORNL serves on the U.S. DRIVE Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. DOE's continuing R&D into advanced vehicle technologies for transportation offers the possibility of reducing the nation's dependence on foreign oil and the negative economic impacts of crude oil price fluctuations. It also supports the Administration's goal of deploying 1 million PHEVs by 2015.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreno, Gilbert; Bennion, Kevin
This project will develop thermal management strategies to enable efficient and high-temperature wide-bandgap (WBG)-based power electronic systems (e.g., emerging inverter and DC-DC converter designs). The use of WBG-based devices in automotive power electronics will improve efficiency and increase driving range in electric-drive vehicles; however, the implementation of this technology is limited, in part, due to thermal issues. This project will develop system-level thermal models to determine the thermal limitations of current automotive power modules under elevated device temperature conditions. Additionally, novel cooling concepts and material selection will be evaluated to enable high-temperature silicon and WBG devices in power electronics components.more » WBG devices (silicon carbide [SiC], gallium nitride [GaN]) promise to increase efficiency, but will be driven as hard as possible. This creates challenges for thermal management and reliability.« less
A hierarchical detection method in external communication for self-driving vehicles based on TDMA.
Alheeti, Khattab M Ali; Al-Ani, Muzhir Shaban; McDonald-Maier, Klaus
2018-01-01
Security is considered a major challenge for self-driving and semi self-driving vehicles. These vehicles depend heavily on communications to predict and sense their external environment used in their motion. They use a type of ad hoc network termed Vehicular ad hoc networks (VANETs). Unfortunately, VANETs are potentially exposed to many attacks on network and application level. This paper, proposes a new intrusion detection system to protect the communication system of self-driving cars; utilising a combination of hierarchical models based on clusters and log parameters. This security system is designed to detect Sybil and Wormhole attacks in highway usage scenarios. It is based on clusters, utilising Time Division Multiple Access (TDMA) to overcome some of the obstacles of VANETs such as high density, high mobility and bandwidth limitations in exchanging messages. This makes the security system more efficient, accurate and capable of real time detection and quick in identification of malicious behaviour in VANETs. In this scheme, each vehicle log calculates and stores different parameter values after receiving the cooperative awareness messages from nearby vehicles. The vehicles exchange their log data and determine the difference between the parameters, which is utilised to detect Sybil attacks and Wormhole attacks. In order to realize efficient and effective intrusion detection system, we use the well-known network simulator (ns-2) to verify the performance of the security system. Simulation results indicate that the security system can achieve high detection rates and effectively detect anomalies with low rate of false alarms.
NASA Technical Reports Server (NTRS)
Ehsani, M.; Tchamdjou, A.
1997-01-01
This report presents an evaluation of advanced motor drive systems as a replacement for the hydrazine fueled APU units. The replacement technology must meet several requirements which are particular to the space applications and the Orbiter in general. Some of these requirements are high efficiency, small size, high power density. In the first part of the study several motors are compared, based on their characteristics and in light of the Orbiter requirements. The best candidate, the brushless DC is chosen because of its particularly good performance with regards to efficiency. Several power electronics drive technologies including the conventional three-phase hard switched and several soft-switched inverters are then presented. In the last part of the study, a soft-switched inverter is analyzed and compared to its conventional hard-switched counterpart. Optimal efficiency is a basic requirement for space applications and the soft-switched technology represents an unavoidable trend for the future.
Fault tolerant vector control of induction motor drive
NASA Astrophysics Data System (ADS)
Odnokopylov, G.; Bragin, A.
2014-10-01
For electric composed of technical objects hazardous industries, such as nuclear, military, chemical, etc. an urgent task is to increase their resiliency and survivability. The construction principle of vector control system fault-tolerant asynchronous electric. Displaying recovery efficiency three-phase induction motor drive in emergency mode using two-phase vector control system. The process of formation of a simulation model of the asynchronous electric unbalance in emergency mode. When modeling used coordinate transformation, providing emergency operation electric unbalance work. The results of modeling transient phase loss motor stator. During a power failure phase induction motor cannot save circular rotating field in the air gap of the motor and ensure the restoration of its efficiency at rated torque and speed.
Modelling and control algorithms of the cross conveyors line with multiengine variable speed drives
NASA Astrophysics Data System (ADS)
Cheremushkina, M. S.; Baburin, S. V.
2017-02-01
The paper deals with the actual problem of developing the control algorithm that meets the technical requirements of the mine belt conveyors, and enables energy and resource savings taking into account a random sort of traffic. The most effective method of solution of these tasks is the construction of control systems with the use of variable speed drives for asynchronous motors. The authors designed the mathematical model of the system ‘variable speed multiengine drive - conveyor - control system of conveyors’ that takes into account the dynamic processes occurring in the elements of the transport system, provides an assessment of the energy efficiency of application the developed algorithms, which allows one to reduce the dynamic overload in the belt to 15-20%.
Solar-Power System Produces High-Pressure Steam
NASA Technical Reports Server (NTRS)
Lansing, F. L.
1985-01-01
Combination of three multistaged solar collectors produces highpressure steam for large-scale continuously operating turbines for generating mechanical or electrical energy. Superheated water vapor drives turbines, attaining an overall system efficiency about 22 percent.
Motor Drive Technologies for the Power-by-Wire (PBW) Program: Options, Trends and Tradeoffs
NASA Technical Reports Server (NTRS)
Elbuluk, Malik E.; Kankam, M. David
1995-01-01
Power-By-Wire (PBW) is a program involving the replacement of hydraulic and pneumatic systems currently used in aircraft with an all-electric secondary power system. One of the largest loads of the all-electric secondary power system will be the motor loads which include pumps, compressors and Electrical Actuators (EA's). Issues of improved reliability, reduced maintenance and efficiency, among other advantages, are the motivation for replacing the existing aircraft actuators with electrical actuators. An EA system contains four major components. These are the motor, the power electronic converters, the actuator and the control system, including the sensors. This paper is a comparative literature review in motor drive technologies, with a focus on the trends and tradeoffs involved in the selection of a particular motor drive technology. The reported research comprises three motor drive technologies. These are the induction motor (IM), the brushless dc motor (BLDCM) and the switched reluctance motor (SRM). Each of the three drives has the potential for application in the PBW program. Many issues remain to be investigated and compared between the three motor drives, using actual mechanical loads expected in the PBW program.
Leveraging Intelligent Vehicle Technologies to Maximize Fuel Economy (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonder, J.
2011-11-01
Advancements in vehicle electronics, along with communication and sensing technologies, have led to a growing number of intelligent vehicle applications. Example systems include those for advanced driver information, route planning and prediction, driver assistance, and crash avoidance. The National Renewable Energy Laboratory is exploring ways to leverage intelligent vehicle systems to achieve fuel savings. This presentation discusses several potential applications, such as providing intelligent feedback to drivers on specific ways to improve their driving efficiency, and using information about upcoming driving to optimize electrified vehicle control strategies for maximum energy efficiency and battery life. The talk also covers the potentialmore » of Advanced Driver Assistance Systems (ADAS) and related technologies to deliver significant fuel savings in addition to providing safety and convenience benefits.« less
NASA Astrophysics Data System (ADS)
Ekedebe, Nnanna; Yu, Wei; Lu, Chao
2015-06-01
Driver distraction could result in safety compromises attributable to distractions from in-vehicle equipment usage [1]. The effective design of driver-vehicle interfaces (DVIs) and other human-machine interfaces (HMIs) together with their usability, and accessibility while driving become important [2]. Driving distractions can be classified as: visual distractions (any activity that takes your eyes away from the road), cognitive distraction (any activity that takes your mind away from the course of driving), and manual distractions (any activity that takes your hands away from the steering wheel [2]). Besides, multitasking during driving is a distractive activity that can increase the risks of vehicular accidents. To study the driver's behaviors on the safety of transportation system, using an in-vehicle driver notification application, we examined the effects of increasing driver distraction levels on the evaluation metrics of traffic efficiency and safety by using two types of driver models: young drivers (ages 16-25 years) and middle-age drivers (ages 30-45 years). Our evaluation data demonstrates that as a drivers distraction level is increased, less heed is given to change route directives from the in-vehicle on-board unit (OBU) using textual, visual, audio, and haptic notifications. Interestingly, middle-age drivers proved more effective/resilient in mitigating the negative effects of driver distraction over young drivers [2].
On the efficiency of small air coil motors
NASA Astrophysics Data System (ADS)
Horowitz, P.
1981-05-01
The efficiency of two types of small ironless motors in the output range of 5 to 500 mW was investigated for use in driving a miniature roller pump for a portable infusion system. One motor has a continuous rotating coil (commutator motor) and one has an oscillating coil. In this case a ratchet and ratchet wheel is needed to generate a rotating motion (ratchet wheel motor). The electromechanical transducer and a mechanical transformation and support system are discussed as well as frictional losses. The influence of the size of the motor is discussed. An expression for the total efficiency is obtained which enables the calculation of the speed of rotation of a certain motor at maximum efficiency for a certain required output. This optimal speed of rotation is hardly influenced by the required speed of rotation at the output shaft of the driving. The transmission, if required, has only a small effect on the optimum speed of rotation of the motor.
Simulating the dynamic behavior of chain drive systems by advanced CAE programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, J.; Meyer, J.
1996-09-01
Due to the increased requirements for chain drive systems of 4-stroke internal combustion engines CAE-tools are necessary to design the optimum dynamic system. In comparison to models used din the past the advantage of the new model CDD (Chain Drive Dynamics) is the capability of simulating the trajectory of each chain link around the drive system. Each chain link is represented by a mass with two degrees of freedom and is coupled to the next by a spring-damper element. The drive sprocket can be moved with a constant or non-constant speed. As in reality the other sprockets are driven bymore » the running chain and can be excited by torques. Due to these unique model features it is possible to calculate all vibration types of the chain, polygon effects and radial or angular vibrations of the sprockets very accurately. The model includes the detailed simulation of a mechanical or a hydraulic tensioner as well. The method is ready to be coupled to other detailed calculation models (e.g. valve train systems, crankshaft, etc.). The high efficiency of the tool predicting the dynamic and acoustic behavior of a chain drive system will be demonstrated in comparison to measurements.« less
Mechanical drive for blood pump
Bifano, N.J.; Pouchot, W.D.
1975-07-29
This patent relates to a highly efficient blood pump to be used as a replacement for a ventricle of the human heart to restore people disabled by heart disease. The mechanical drive of the present invention is designed to operate in conjunction with a thermoelectric converter power source. The mechanical drive system essentially converts the output of a rotary power into pulsatile motion so that the power demand from the thermoelectric converter remains essentially constant while the blood pump output is pulsed. (auth)
TAL Performance and Mission Analysis in a CDL Capacitor Powered Direct-Drive Configuration
NASA Technical Reports Server (NTRS)
Hrbud, Ivana; Rose, M. Frank; Oleson, Steve R.; Jenkins, Rhonald M.
1999-01-01
The goals of this research are (1) to prove the concept feasibility of a direct-drive electric propulsion system, and (2) to evaluate the performance and characteristics of a Russian TAL (Thruster with Anode Layer) operating in a long-pulse mode, powered by a capacitor-based power source developed at Space Power Institute. The TAL, designated D-55, is characterized by an external acceleration zone and is powered by a unique chemical double layer (CDL) capacitor bank with a capacitance of 4 F at a charge voltage of 400 V. Performance testing of this power supply on the TAL was conducted at NASA Lewis Research Center in Cleveland, OH. Direct thrust measurements of the TAL were obtained at CDL power levels ranging from 450 to 1750 W. The specific impulse encompassed a range from 1150 s to 2200 s, yielding thruster system efficiencies between 50 and 60%. Preliminary mission analysis of the CDL direct-drive concept and other electric propulsion options was performed for the ORACLE spacecraft in 6am/6pm and 12am/12pm, 300 km sun-synchronous orbits. The direct-drive option was competitive with the other systems by increasing available net mass between 5 and 42% and reducing two-year system wet mass between 18 and 63%. Overall, the electric propulsion power requirements for the satellite solar array were reduced between 57 and 91% depending oil the orbit evaluated The direct-drive, CDL capacitor-based concept in electric propulsion thus promises to be a highly-efficient, viable alternative for satellite operations in specific near-Earth missions.
Is the addition of an assisted driving Hamiltonian always useful for adiabatic evolution?
NASA Astrophysics Data System (ADS)
Sun, Jie; Lu, Songfeng; Li, Li
2017-04-01
It has been known that when an assisted driving item is added to the main system Hamiltonian, the efficiency of the resultant adiabatic evolution can be significantly improved. In some special cases, it can be seen that only through adding an assisted driving Hamiltonian can the resulting adiabatic evolution be made not to fail. Thus the additional driving Hamiltonian plays an important role in adiabatic computing. In this paper, we show that if the driving Hamiltonian is chosen inappropriately, the adiabatic computation may still fail. More importantly, we find that the adiabatic computation can only succeed if the assisted driving Hamiltonian has a relatively fixed form. This may help us understand why in the related literature all of the driving Hamiltonians used share the same form.
Centrifugal reciprocating compressor
NASA Technical Reports Server (NTRS)
High, W. H.
1980-01-01
Efficient compressor uses centrifugal force to compress gas. System incorporates two coupled dc motors, each driving separate centrifugal reciprocating-compressor assembly. Motors are synchronized to accelerate and decelerate alternately.
Analysis of the efficiency of a hybrid foil tunnel heating system
NASA Astrophysics Data System (ADS)
Kurpaska, Sławomir; Pedryc, Norbert
2017-10-01
The paper analyzes the efficiency of the hybrid system used to heat the foil tunnel. The tested system was built on the basis of heat gain in a cascade manner. The first step is to heat the water in the storage tank using the solar collectors. The second stage is the use of a heat pump (HP) in order to heat the diaphragm exchangers. The lower HP heat source is a cascade first stage buffer. In the storage tank, diaphragm exchangers used for solar collectors and heat pumps are installed. The research was carried out at a research station located in the University of Agriculture in Cracow. The aim was to perform an analysis of the efficiency of a hybrid system for the heating of a foil tunnel in the months from May to September. The efficiency of the entire hybrid system was calculated as the relation of the effect obtained in reference to the electrical power used to drive the heat pump components (compressor drive, circulation pump), circulation pumps and fans installed in the diaphragm heaters. The resulting effect was the amount of heat supplied to the interior of the object as a result of the internal air being forced through the diaphragm exchangers.
A hierarchical detection method in external communication for self-driving vehicles based on TDMA
Al-ani, Muzhir Shaban; McDonald-Maier, Klaus
2018-01-01
Security is considered a major challenge for self-driving and semi self-driving vehicles. These vehicles depend heavily on communications to predict and sense their external environment used in their motion. They use a type of ad hoc network termed Vehicular ad hoc networks (VANETs). Unfortunately, VANETs are potentially exposed to many attacks on network and application level. This paper, proposes a new intrusion detection system to protect the communication system of self-driving cars; utilising a combination of hierarchical models based on clusters and log parameters. This security system is designed to detect Sybil and Wormhole attacks in highway usage scenarios. It is based on clusters, utilising Time Division Multiple Access (TDMA) to overcome some of the obstacles of VANETs such as high density, high mobility and bandwidth limitations in exchanging messages. This makes the security system more efficient, accurate and capable of real time detection and quick in identification of malicious behaviour in VANETs. In this scheme, each vehicle log calculates and stores different parameter values after receiving the cooperative awareness messages from nearby vehicles. The vehicles exchange their log data and determine the difference between the parameters, which is utilised to detect Sybil attacks and Wormhole attacks. In order to realize efficient and effective intrusion detection system, we use the well-known network simulator (ns-2) to verify the performance of the security system. Simulation results indicate that the security system can achieve high detection rates and effectively detect anomalies with low rate of false alarms. PMID:29315302
NASA Astrophysics Data System (ADS)
Kuznetsov, N. K.; Iov, I. A.; Iov, A. A.
2018-05-01
The article presents the results of a study of the efficiency of the electric drive control system of the traction mechanism of a dragline based on the use of feedback on load in the traction cable. The investigations were carried out using a refined electromechanical model of the traction mechanism, which took into account not only the elastic elements of the gearbox, the backlashes in it and the changes in the kinematic parameters of the mechanism during operation, but also the mechanical characteristics of the electric drive and the features of its control system. By mathematical modeling of the transient processes of the electromechanical system, it is shown that the introduction of feedback on the load in the elastic element allows one to reduce the dynamic loads in the traction mechanism and to limit the elastic oscillations of the actuating mechanism in comparison with the standard control system. Fixed as a general decrease in the dynamic load of the nodes of traction mechanism in the modes of loading and latching of the bucket, and a decrease the operating time of the mechanism at maximum load. At the same time, undesirable phenomena in the operation of the electric drive were also associated with the increase in the recovery time of the steady-state value of the speed of the actuating mechanism under certain operating conditions, which can lead to a decrease in the reliability of the mechanical part and the productivity of the traction mechanism.
Towards building high performance medical image management system for clinical trials
NASA Astrophysics Data System (ADS)
Wang, Fusheng; Lee, Rubao; Zhang, Xiaodong; Saltz, Joel
2011-03-01
Medical image based biomarkers are being established for therapeutic cancer clinical trials, where image assessment is among the essential tasks. Large scale image assessment is often performed by a large group of experts by retrieving images from a centralized image repository to workstations to markup and annotate images. In such environment, it is critical to provide a high performance image management system that supports efficient concurrent image retrievals in a distributed environment. There are several major challenges: high throughput of large scale image data over the Internet from the server for multiple concurrent client users, efficient communication protocols for transporting data, and effective management of versioning of data for audit trails. We study the major bottlenecks for such a system, propose and evaluate a solution by using a hybrid image storage with solid state drives and hard disk drives, RESTfulWeb Services based protocols for exchanging image data, and a database based versioning scheme for efficient archive of image revision history. Our experiments show promising results of our methods, and our work provides a guideline for building enterprise level high performance medical image management systems.
Direct drive options for electric propulsion systems
NASA Technical Reports Server (NTRS)
Hamley, John A.
1995-01-01
Power processing units (PPU's) in an electric propulsion system provide many challenging integration issues. The PPU must provide power to the electric thruster while maintaining compatibility with all of the spacecraft power and data systems. Inefficiencies in the power processor produce heat, which must be radiated to the environment in order to ensure reliable operation. Although PPU efficiencies are generally greater than 0.9, heat loads are often substantial. This heat must be rejected by thermal control systems which generally have specific masses of 15-30 kg/kW. PPU's also represent a large fraction of the electric propulsion system dry mass. Simplification or elimination of power processing in a propulsion system would reduce the electric propulsion system specific mass and improve the overall reliability and performance. A direct drive system would eliminate all or some of the power supplies required to operate a thruster by directly connecting the various thruster loads to the solar array. The development of concentrator solar arrays has enabled power bus voltages in excess of 300 V which is high enough for direct drive applications for Hall thrusters such as the Stationary Plasma Thruster (SPT). The option of solar array direct drive for SPT's is explored to provide a comparison between conventional and direct drive system mass.
Efficient excitation of nonlinear phonons via chirped pulses: Induced structural phase transitions
NASA Astrophysics Data System (ADS)
Itin, A. P.; Katsnelson, M. I.
2018-05-01
Nonlinear phononics play important role in strong laser-solid interactions. We discuss a dynamical protocol for efficient phonon excitation, considering recent inspiring proposals: inducing ferroelectricity in paraelectric perovskites, and inducing structural deformations in cuprates [Subedi et al., Phys. Rev. B 89, 220301(R) (2014), 10.1103/PhysRevB.89.220301; Phys. Rev. B 95, 134113 (2017), 10.1103/PhysRevB.95.134113]. High-frequency phonon modes are driven by midinfrared pulses, and coupled to lower-frequency modes those indirect excitations cause structural deformations. We study in more detail the case of KTaO3 without strain, where it was not possible to excite the needed low-frequency phonon mode by resonant driving of the higher frequency one. Behavior of the system is explained using a reduced model of coupled driven nonlinear oscillators. We find a dynamical mechanism which prevents effective excitation at resonance driving. To induce ferroelectricity, we employ driving with sweeping frequency, realizing so-called capture into resonance. The method can be applied to many other related systems.
Tape SCSI monitoring and encryption at CERN
NASA Astrophysics Data System (ADS)
Laskaridis, Stefanos; Bahyl, V.; Cano, E.; Leduc, J.; Murray, S.; Cancio, G.; Kruse, D.
2017-10-01
CERN currently manages the largest data archive in the HEP domain; over 180PB of custodial data is archived across 7 enterprise tape libraries containing more than 25,000 tapes and using over 100 tape drives. Archival storage at this scale requires a leading edge monitoring infrastructure that acquires live and lifelong metrics from the hardware in order to assess and proactively identify potential drive and media level issues. In addition, protecting the privacy of sensitive archival data is becoming increasingly important and with it the need for a scalable, compute-efficient and cost-effective solution for data encryption. In this paper, we first describe the implementation of acquiring tape medium and drive related metrics reported by the SCSI interface and its integration with our monitoring system. We then address the incorporation of tape drive real-time encryption with dedicated drive hardware into the CASTOR [1] hierarchical mass storage system.
Automatic control in multidrive electrotechnical complexes with semiconductor converters
NASA Astrophysics Data System (ADS)
Vasilev, B. U.; Mardashov, D. V.
2017-01-01
The frequency convertor and the automatic control system, which can be used in the multi-drive electromechanical system with a few induction motions, are considered. The paper presents the structure of existing modern multi-drive electric drives inverters, namely, electric drives with a total frequency converter and few electric motions, and an electric drive, in which the converter is used for power supply and control of the independent frequency. It was shown that such technical solutions of frequency converters possess a number of drawbacks. The drawbacks are given. It was shown that the control of technological processes using the electric drive of this structure may be provided under very limited conditions, as the energy efficiency and the level of electromagnetic compatibility of electric drives is low. The authors proposed using a multi-inverter structure with an active rectifier in multidrive electric drives with induction motors frequency converters. The application of such frequency converter may solve the problem of electromagnetic compatibility, namely, consumption of sinusoidal currents from the network and the maintenance of a sinusoidal voltage and energy compatibility, namely, consumption of practically active energy from the network. Also, the paper proposes the use of the automatic control system, which by means of a multi-inverter frequency converter provides separate control of drive machines and flexible regulation of technological processes. The authors present oscillograms, which confirm the described characteristics of the developed electrical drive. The possible subsequent ways to improve the multi-motor drives are also described.
Drivers' safety needs, behavioural adaptations and acceptance of new driving support systems.
Saad, Farida; Van Elslande, Pierre
2012-01-01
The aim of this paper is to discuss the contribution of two complementary approaches for designing and evaluating new driver support systems likely to improve the operation and safety of the road traffic system. The first approach is based on detailed analyses of traffic crashes so as to estimate drivers' needs for assistance and the situational constraints that safety functions should address to be efficient. The second approach is based on in depth-analyses of behavioral adaptations induced by the usage of new driver support systems in regular driving situations and on drivers' acceptance of the assistance provided by the systems.
Jakowetz, Andreas C; Böhm, Marcus L; Zhang, Jiangbin; Sadhanala, Aditya; Huettner, Sven; Bakulin, Artem A; Rao, Akshay; Friend, Richard H
2016-09-14
In solar energy harvesting devices based on molecular semiconductors, such as organic photovoltaics (OPVs) and artificial photosynthetic systems, Frenkel excitons must be dissociated via charge transfer at heterojunctions to yield free charges. What controls the rate and efficiency of charge transfer and charge separation is an important question, as it determines the overall power conversion efficiency (PCE) of these systems. In bulk heterojunctions between polymer donor and fullerene acceptors, which provide a model system to understand the fundamental dynamics of electron transfer in molecular systems, it has been established that the first step of photoinduced electron transfer can be fast, of order 100 fs. But here we report the first study which correlates differences in the electron transfer rate with electronic structure and morphology, achieved with sub-20 fs time resolution pump-probe spectroscopy. We vary both the fullerene substitution and donor/fullerene ratio which allow us to control both aggregate size and the energetic driving force for charge transfer. We observe a range of electron transfer times from polymer to fullerene, from 240 fs to as short as 37 fs. Using ultrafast electro-optical pump-push-photocurrent spectroscopy, we find the yield of free versus bound charges to be weakly dependent on the energetic driving force, but to be very strongly dependent on fullerene aggregate size and packing. Our results point toward the importance of state accessibility and charge delocalization and suggest that energetic offsets between donor and acceptor levels are not an important criterion for efficient charge generation. This provides design rules for next-generation materials to minimize losses related to driving energy and boost PCE.
NASA Technical Reports Server (NTRS)
Robuck, Mark; Wilkerson, Joseph; Maciolek, Robert; Vonderwell, Dan
2012-01-01
A multi-year study was conducted under NASA NNA06BC41C Task Order 10 and NASA NNA09DA56C task orders 2, 4, and 5 to identify the most promising propulsion system concepts that enable rotor cruise tip speeds down to 54% of the hover tip speed for a civil tiltrotor aircraft. Combinations of engine RPM reduction and 2-speed drive systems were evaluated. Three levels of engine and the drive system advanced technology were assessed; 2015, 2025 and 2035. Propulsion and drive system configurations that resulted in minimum vehicle gross weight were identified. Design variables included engine speed reduction, drive system speed reduction, technology, and rotor cruise propulsion efficiency. The NASA Large Civil Tiltrotor, LCTR, aircraft served as the base vehicle concept for this study and was resized for over thirty combinations of operating cruise RPM and technology level, quantifying LCTR2 Gross Weight, size, and mission fuel. Additional studies show design sensitivity to other mission ranges and design airspeeds, with corresponding relative estimated operational cost. The lightest vehicle gross weight solution consistently came from rotor cruise tip speeds between 422 fps and 500 fps. Nearly equivalent results were achieved with operating at reduced engine RPM with a single-speed drive system or with a two-speed drive system and 100% engine RPM. Projected performance for a 2025 engine technology provided improved fuel flow over a wide range of operating speeds relative to the 2015 technology, but increased engine weight nullified the improved fuel flow resulting in increased aircraft gross weights. The 2035 engine technology provided further fuel flow reduction and 25% lower engine weight, and the 2035 drive system technology provided a 12% reduction in drive system weight. In combination, the 2035 technologies reduced aircraft takeoff gross weight by 14% relative to the 2015 technologies.
Fu, Qiang; Chen, Jiangshan; Shi, Changsheng; Ma, Dongge
2012-12-01
The widely used hole-transporting host 4,4',4″-tris(N-carbazolyl)-triphenylamine (TCTA) blended with either a hole-transporting or an electron-transporting small-molecule material as a mixed-host was investigated in the phosphorescent organic light-emitting diodes (OLEDs) fabricated by the low-cost solution-process. The performance of the solution-processed OLEDs was found to be very sensitive to the composition of the mixed-host systems. The incorporation of the hole-transporting 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC) into TCTA as the mixed-host was demonstrated to greatly reduce the driving voltage and thus enhance the efficiency due to the improvement of hole injection and transport. On the basis of the mixed-host of TCTA:TAPC, we successfully fabricated low driving voltage and high efficiency blue and white phosphorescent OLEDs. A maximum forward viewing current efficiency of 32.0 cd/A and power efficiency of 25.9 lm/W were obtained in the optimized mixed-host blue OLED, which remained at 29.6 cd/A and 19.1 lm/W at the luminance of 1000 cd/m(2) with a driving voltage as low as 4.9 V. The maximum efficiencies of 37.1 cd/A and 32.1 lm/W were achieved in a single emissive layer white OLED based on the TCTA:TAPC mixed-host. Even at 1000 cd/m(2), the efficiencies still reach 34.2 cd/A and 23.3 lm/W and the driving voltage is only 4.6 V, which is comparable to those reported from the state-of-the-art vacuum-evaporation deposited white OLEDs.
National energy efficient driving system (NEEDS). Volume 3, Home vehicle use study
DOT National Transportation Integrated Search
1981-12-15
Eight vehicles were instrumented to permit travel distance and fuel consumption to be measured. Following the collection of baseline measures, three different systems were provided to feed back distance and fuel information to drivers: manual, a week...
Alternative Fuels Data Center: Active Transit
: Active Transit on AddThis.com... More in this section... Idle Reduction Parts & Equipment Maintenance Reduction Parts & Equipment Maintenance Driving Behavior Fleet Rightsizing System Efficiency Locate
NASA Astrophysics Data System (ADS)
Katayama, Noboru; Kamiyama, Hideyuki; Kogoshi, Sumio; Kudo, Yusuke; Fukada, Takafumi; Ogawa, Makoto
The use of fuel-cell auxiliary power units (FC-APU) in refrigerator cars employed delivery to for convenience store delivery has been studied. The delivery pattern is assumed to be a typical pattern that includes driving between convenience stores or between a delivery center and a convenience store, unloading, driver's lunch break. The M15 driving mode, which simulates the driving condition in urban areas, is used as the driving mode in the delivery pattern. The FC-APU system includes a proton-exchange membrane fuel cell (PEFC) module, an inverter, and DC/DC converter. Bench tests of the FC-APU are performed to determine the hydrogen fuel consumption rate and the energy efficiency; these values depend on the output power of the PEFC module. The calculated relationship between the output power and fuel consumption rate of a current used system, which consists of an alternator and a secondary battery, are used to estimate the energy efficiency of the current used system. On the basis of the measurement data in this study and the results for the model proposed by Brodric et al. [C. J. Brodrick et al., Trans. Res. D, vol 7, pp. 303 (2002)], the payback period is calculated. The results indicate that the payback period would be 2.1 years when the FC-APU operates at a load of 70%.
Study on Enhanceing Mechanisim and Policy on Energy Efficiency of Electrical Motor System in China
NASA Astrophysics Data System (ADS)
Liu, Ren; Zhao, Yuejin; Liu, Meng; Chen, Lili; Yang, Ming
2017-12-01
Motor is a kind of terminal energy-consumption equipment with the maximum power consumption in China every year; compared with international advanced level, the technical innovation of motor equipment, speed regulating system, drive system and automatic intelligent control technique in China still lag behind relatively; the standard technical service support system of motor system is not complete, the energy conserving transformation mode needs to be innovated, and the market development mechanism of motor industry is not perfect, etc. This paper analyzes the promotion mechanism and policy on energy efficiency of the motor system in China in recent years, studies the demonstration cases of successful promotion of high-efficiency motor, standard labeling, financial finance and tax policy, and puts forward suggestions on promotion of high-efficiency motor in China.
Evaluation of half wave induction motor drive for use in passenger vehicles
NASA Technical Reports Server (NTRS)
Hoft, R. G.; Kawamura, A.; Goodarzi, A.; Yang, G. Q.; Erickson, C. L.
1985-01-01
Research performed at the University of Missouri-Columbia to devise and design a lower cost inverter induction motor drive for electrical propulsion of passenger vehicles is described. A two phase inverter motor system is recommended. The new design is predicted to provide comparable vehicle performance, improved reliability and a cost advantage for a high production vehicle, decreased total rating of the power semiconductor switches, and a somewhat simpler control hardware compared to the conventional three phase bridge inverter motor drive system. The major disadvantages of the two phase inverter motor drive are that it is larger and more expensive than a three phase machine, the design of snubbers for the power leakage inductances produce higher transient voltages, and the torque pulsations are relatively large because of the necessity to limit the inverter switching frequency to achieve high efficiency.
Two coupled, driven Ising spin systems working as an engine.
Basu, Debarshi; Nandi, Joydip; Jayannavar, A M; Marathe, Rahul
2017-05-01
Miniaturized heat engines constitute a fascinating field of current research. Many theoretical and experimental studies are being conducted that involve colloidal particles in harmonic traps as well as bacterial baths acting like thermal baths. These systems are micron-sized and are subjected to large thermal fluctuations. Hence, for these systems average thermodynamic quantities, such as work done, heat exchanged, and efficiency, lose meaning unless otherwise supported by their full probability distributions. Earlier studies on microengines are concerned with applying Carnot or Stirling engine protocols to miniaturized systems, where system undergoes typical two isothermal and two adiabatic changes. Unlike these models we study a prototype system of two classical Ising spins driven by time-dependent, phase-different, external magnetic fields. These spins are simultaneously in contact with two heat reservoirs at different temperatures for the full duration of the driving protocol. Performance of the model as an engine or a refrigerator depends only on a single parameter, namely the phase between two external drivings. We study this system in terms of fluctuations in efficiency and coefficient of performance (COP). We find full distributions of these quantities numerically and study the tails of these distributions. We also study reliability of the engine. We find the fluctuations dominate mean values of efficiency and COP, and their probability distributions are broad with power law tails.
Two coupled, driven Ising spin systems working as an engine
NASA Astrophysics Data System (ADS)
Basu, Debarshi; Nandi, Joydip; Jayannavar, A. M.; Marathe, Rahul
2017-05-01
Miniaturized heat engines constitute a fascinating field of current research. Many theoretical and experimental studies are being conducted that involve colloidal particles in harmonic traps as well as bacterial baths acting like thermal baths. These systems are micron-sized and are subjected to large thermal fluctuations. Hence, for these systems average thermodynamic quantities, such as work done, heat exchanged, and efficiency, lose meaning unless otherwise supported by their full probability distributions. Earlier studies on microengines are concerned with applying Carnot or Stirling engine protocols to miniaturized systems, where system undergoes typical two isothermal and two adiabatic changes. Unlike these models we study a prototype system of two classical Ising spins driven by time-dependent, phase-different, external magnetic fields. These spins are simultaneously in contact with two heat reservoirs at different temperatures for the full duration of the driving protocol. Performance of the model as an engine or a refrigerator depends only on a single parameter, namely the phase between two external drivings. We study this system in terms of fluctuations in efficiency and coefficient of performance (COP). We find full distributions of these quantities numerically and study the tails of these distributions. We also study reliability of the engine. We find the fluctuations dominate mean values of efficiency and COP, and their probability distributions are broad with power law tails.
Solid-state transformer-based new traction drive system and control
NASA Astrophysics Data System (ADS)
Feng, Jianghua; Shang, Jing; Zhang, Zhixue; Liu, Huadong; Huang, Zihao
2017-11-01
A new type of traction drive system consisting of solid-state traction transformer (SSTT), inverter unit, auxiliary inverter, traction motor and other key components is built in order to suit the demand of developing the next-generation electric traction system which will be efficient and lightweight, with high power density. For the purpose of reducing system volume and weight and improving efficiency and grid-side power quality, an efficient SSTT optimized topology combining high-voltage cascaded rectifiers with high-power high-frequency LLC resonant converter is proposed. On this basis, an integrated control strategy built upon synchronous rotating reference frame is presented to achieve unified control over fundamental active, reactive and harmonic components. The carrier-interleaving phase shift modulation strategy is proposed to improve the harmonic performance of cascaded rectifiers. In view of the secondary pulsating existing in a single-phase system, the mathematical model of secondary power transfer is built, and the mechanism of pulsating voltage resulting in beat frequency of LLC resonant converter is revealed, so as to design optimum matching of system parameters. Simulation and experimental results have verified that the traction system and control scheme mentioned in this paper are reasonable and superior and that they meet the future application requirements for rail transit.
Driver Education Curriculum Guide. Energy Conservation.
ERIC Educational Resources Information Center
Governor's Highway Safety Program Office, Columbus, OH.
Designed to provide high school students with information concerning energy-efficient driving, this curriculum guide covers techniques of conserving energy, efficient use of motor vehicles, safe driving techniques, and development of energy-efficient driving habits. The guide consists of six lessons: (1) Fuel Conservation: Why It Is Essential; (2)…
Young, Mark S; Birrell, Stewart A; Stanton, Neville A
2011-05-01
Road transport is a significant source of both safety and environmental concerns. With climate change and fuel prices increasingly prominent on social and political agendas, many drivers are turning their thoughts to fuel efficient or 'green' (i.e., environmentally friendly) driving practices. Many vehicle manufacturers are satisfying this demand by offering green driving feedback or advice tools. However, there is a legitimate concern regarding the effects of such devices on road safety--both from the point of view of change in driving styles, as well as potential distraction caused by the in-vehicle feedback. In this paper, we appraise the benchmarks for safe and green driving, concluding that whilst they largely overlap, there are some specific circumstances in which the goals are in conflict. We go on to review current and emerging in-vehicle information systems which purport to affect safe and/or green driving, and discuss some fundamental ergonomics principles for the design of such devices. The results of the review are being used in the Foot-LITE project, aimed at developing a system to encourage 'smart'--that is safe and green--driving. Copyright © 2010 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Analysis of the performance of the drive system and diffuser of the Langley unitary plan wind tunnel
NASA Technical Reports Server (NTRS)
Hasel, L. E.; Stallings, R. L.
1981-01-01
A broad program was initiated at the Langley Research Center in 1973 to reduce the energy consumption of the laboratory. As a part of this program, the performance characteristics of the Unitary Plan Wind Tunnel were reexamined to determine if potential methods for incresing the operating efficiencies of the tunnel could be formulated. The results of that study are summarized. The performance characteristics of the drive system components and the variable-geometry diffuser system of the tunnel are documented and analyzed. Several potential methods for reducing the energy requirements of the facility are discussed.
Novel AC Servo Rotating and Linear Composite Driving Device for Plastic Forming Equipment
NASA Astrophysics Data System (ADS)
Liang, Jin-Tao; Zhao, Sheng-Dun; Li, Yong-Yi; Zhu, Mu-Zhi
2017-07-01
The existing plastic forming equipment are mostly driven by traditional AC motors with long transmission chains, low efficiency, large size, low precision and poor dynamic response are the common disadvantages. In order to realize high performance forming processes, the driving device should be improved, especially for complicated processing motions. Based on electric servo direct drive technology, a novel AC servo rotating and linear composite driving device is proposed, which features implementing both spindle rotation and feed motion without transmission, so that compact structure and precise control can be achieved. Flux switching topology is employed in the rotating drive component for strong robustness, and fractional slot is employed in the linear direct drive component for large force capability. Then the mechanical structure for compositing rotation and linear motion is designed. A device prototype is manufactured, machining of each component and the whole assembly are presented respectively. Commercial servo amplifiers are utilized to construct the control system of the proposed device. To validate the effectiveness of the proposed composite driving device, experimental study on the dynamic test benches are conducted. The results indicate that the output torque can attain to 420 N·m and the dynamic tracking errors are less than about 0.3 rad in the rotating drive. the dynamic tracking errors are less than about 1.6 mm in the linear feed. The proposed research provides a method to construct high efficiency and accuracy direct driving device in plastic forming equipment.
EERE: Alternative Fuels Data Center Home Page
facility safe with a first-of-its-kind CNG Maintenance Facility Modifications Handbook. Find Fleet & Equipment Maintenance Driving Behavior Fleet Rightsizing System Efficiency Locate Stations Search
Hartwich, Franziska; Beggiato, Matthias; Krems, Josef F
2018-02-23
Automated driving has the potential to improve the safety and efficiency of future traffic and to extend elderly peoples' driving life, provided it is perceived as comfortable and joyful and is accepted by drivers. Driving comfort could be enhanced by familiar automated driving styles based on drivers' manual driving styles. In a two-stage driving simulator study, effects of driving automation and driving style familiarity on driving comfort, enjoyment and system acceptance were examined. Twenty younger and 20 older drivers performed a manual and four automated drives of different driving style familiarity. Acceptance, comfort and enjoyment were assessed after driving with standardised questionnaires, discomfort during driving via handset control. Automation increased both age groups' comfort, but decreased younger drivers' enjoyment. Younger drivers showed higher comfort, enjoyment and acceptance with familiar automated driving styles, whereas older drivers preferred unfamiliar, automated driving styles tending to be faster than their age-affected manual driving styles. Practitioner Summary: Automated driving needs to be comfortable and enjoyable to be accepted by drivers, which could be enhanced by driving style individualisation. This approach was evaluated in a two-stage driving simulator study for different age groups. Younger drivers preferred familiar driving styles, whereas older drivers preferred driving styles unaffected by age.
Case-based reasoning emulation of persons for wheelchair navigation.
Peula, Jose Manuel; Urdiales, Cristina; Herrero, Ignacio; Fernandez-Carmona, Manuel; Sandoval, Francisco
2012-10-01
Testing is a key stage in system development, particularly in systems such as a wheelchair, in which the final user is typically a disabled person. These systems have stringent safety requirements, requiring major testing with many different individuals. The best would be to have the wheelchair tested by many different end users, as each disability affects driving skills in a different way. Unfortunately, from a practical point of view it is difficult to engage end users as beta testers. Hence, testing often relies on simulations. Naturally, these simulations need to be as realistic as possible to make the system robust and safe before real tests can be accomplished. This work presents a tool to automatically test wheelchairs through realistic emulation of different wheelchair users. Our approach is based on extracting meaningful data from real users driving a power wheelchair autonomously. This data is then used to train a case-based reasoning (CBR) system that captures the specifics of the driver via learning. The resulting case-base is then used to emulate the driving behavior of that specific person in more complex situations or when a new assistive algorithm needs to be tested. CBR returns user's motion commands appropriate for each specific situation to add the human component to shared control systems. The proposed system has been used to emulate several power wheelchair users presenting different disabilities. Data to create this emulation was obtained from previous wheelchair navigation experiments with 35 volunteer in-patients presenting different degrees of disability. CBR was trained with a limited number of scenarios for each volunteer. Results proved that: (i) emulated and real users returned similar paths in the same scenario (maximum and mean path deviations are equal to 23 and 10cm, respectively) and similar efficiency; (ii) we established the generality of our approach taking a new path not present in the training traces; (iii) the emulated user is more realistic - path and efficiency are less homogeneous and smooth - than potential field approaches; and (iv) the system adequately emulates in-patients - maximum and mean path deviations are equal to 19 and 8.3cm approximately and efficiencies are similar - with specific disabilities (apraxia and dementia) obtaining different behaviors during emulation for each of the in-patients, as expected. The proposed system adequately emulates the driving behavior of people with different disabilities in indoor scenarios. This approach is suitable to emulate real users' driving behaviors for early testing stages of assistive navigation systems. Copyright © 2012 Elsevier B.V. All rights reserved.
Key Performance Parameter Driven Technology Goals for Electric Machines and Power Systems
NASA Technical Reports Server (NTRS)
Bowman, Cheryl; Jansen, Ralph; Brown, Gerald; Duffy, Kirsten; Trudell, Jeffrey
2015-01-01
Transitioning aviation to low carbon propulsion is one of the crucial strategic research thrust and is a driver in the search for alternative propulsion system for advanced aircraft configurations. This work requires multidisciplinary skills coming from multiple entities. The feasibility of scaling up various electric drive system technologies to meet the requirements of a large commercial transport is discussed in terms of key parameters. Functional requirements are identified that impact the power system design. A breakeven analysis is presented to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.
DOT National Transportation Integrated Search
2014-04-01
Transportation and logistics companies increasingly : rely on modern technologies and in-vehicle tools : (also known as telematics systems) to optimize their : truck fleet operations. Telematics is technology that : combines telecommunications (i.e.,...
Biswas, Abul Kalam; Barik, Sunirmal; Das, Amitava; Ganguly, Bishwajit
2016-06-01
We have reported a number of new metal-free organic dyes (2-6) that have cyclic asymmetric benzotripyrrole derivatives as donor groups with peripheral nitrogen atoms in the ring, fluorine and thiophene groups as π-spacers, and a cyanoacrylic acid acceptor group. Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations were employed to examine the influence of the position of the donor nitrogen atom and π-conjugation on solar cell performance. The calculated electron-injection driving force (ΔG inject), electron-regeneration driving force (ΔG regen), light-harvesting efficiency (LHE), dipole moment (μ normal), and number of electrons transferred (∆q) indicate that dyes 3, 4, and 6 have significantly higher efficiencies than reference dye 1, which exhibits high efficiency. We also extended our comparison to some other reported dyes, 7-9, which have a donor nitrogen atom in the middle of the ring system. The computed results suggest that dye 6 possesses a higher incident photon to current conversion efficiency (IPCE) than reported dyes 7-9. Thus, the use of donor groups with peripheral nitrogen atoms appears to lead to more efficient dyes than those in which the nitrogen atom is present in the middle of the donor ring system. Graphical Abstract The locations of the nitrogen atoms in the donor groups in the designed dye molecules have an important influence on DSSC efficiency.
Urban water metabolism efficiency assessment: integrated analysis of available and virtual water.
Huang, Chu-Long; Vause, Jonathan; Ma, Hwong-Wen; Yu, Chang-Ping
2013-05-01
Resolving the complex environmental problems of water pollution and shortage which occur during urbanization requires the systematic assessment of urban water metabolism efficiency (WME). While previous research has tended to focus on either available or virtual water metabolism, here we argue that the systematic problems arising during urbanization require an integrated assessment of available and virtual WME, using an indicator system based on material flow analysis (MFA) results. Future research should focus on the following areas: 1) analysis of available and virtual water flow patterns and processes through urban districts in different urbanization phases in years with varying amounts of rainfall, and their environmental effects; 2) based on the optimization of social, economic and environmental benefits, establishment of an indicator system for urban WME assessment using MFA results; 3) integrated assessment of available and virtual WME in districts with different urbanization levels, to facilitate study of the interactions between the natural and social water cycles; 4) analysis of mechanisms driving differences in WME between districts with different urbanization levels, and the selection of dominant social and economic driving indicators, especially those impacting water resource consumption. Combinations of these driving indicators could then be used to design efficient water resource metabolism solutions, and integrated management policies for reduced water consumption. Copyright © 2013 Elsevier B.V. All rights reserved.
Yang, Wenxing; Vlachopoulos, Nick; Hao, Yan; Hagfeldt, Anders; Boschloo, Gerrit
2015-06-28
Minimizing the driving force required for the regeneration of oxidized dyes using redox mediators in an electrolyte is essential to further improve the open-circuit voltage and efficiency of dye-sensitized solar cells (DSSCs). Appropriate combinations of redox mediators and dye molecules should be explored to achieve this goal. Herein, we present a triphenylamine dye, LEG4, in combination with a TEMPO-based electrolyte in acetonitrile (E(0) = 0.89 V vs. NHE), reaching an efficiency of up to 5.4% under one sun illumination and 40% performance improvement compared to the previously and widely used indoline dye D149. The origin of this improvement was found to be the increased dye regeneration efficiency of LEG4 using the TEMPO redox mediator, which regenerated more than 80% of the oxidized dye with a driving force of only ∼0.2 eV. Detailed mechanistic studies further revealed that in addition to electron recombination to oxidized dyes, recombination of electrons from the conducting substrate and the mesoporous TiO2 film to the TEMPO(+) redox species in the electrolyte accounts for the reduced short circuit current, compared to the state-of-the-art cobalt tris(bipyridine) electrolyte system. The diffusion length of the TEMPO-electrolyte based DSSCs was determined to be ∼0.5 μm, which is smaller than the ∼2.8 μm found for cobalt-electrolyte based DSSCs. These results show the advantages of using LEG4 as a sensitizer, compared to previously record indoline dyes, in combination with a TEMPO-based electrolyte. The low driving force for efficient dye regeneration presented by these results shows the potential to further improve the power conversion efficiency (PCE) of DSSCs by utilizing redox couples and dyes with a minimal need of driving force for high regeneration yields.
Fuzzy efficiency optimization of AC induction motors
NASA Technical Reports Server (NTRS)
Jani, Yashvant; Sousa, Gilberto; Turner, Wayne; Spiegel, Ron; Chappell, Jeff
1993-01-01
This paper describes the early states of work to implement a fuzzy logic controller to optimize the efficiency of AC induction motor/adjustable speed drive (ASD) systems running at less than optimal speed and torque conditions. In this paper, the process by which the membership functions of the controller were tuned is discussed and a controller which operates on frequency as well as voltage is proposed. The membership functions for this dual-variable controller are sketched. Additional topics include an approach for fuzzy logic to motor current control which can be used with vector-controlled drives. Incorporation of a fuzzy controller as an application-specific integrated circuit (ASIC) microchip is planned.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennion, K.
Electric drive systems, which include electric machines and power electronics, are a key enabling technology for advanced vehicle propulsion systems that reduce the dependence of the U.S. transportation sector on petroleum. However, to penetrate the market, these electric drive technologies must enable vehicle solutions that are economically viable. The push to make critical electric drivesystems smaller, lighter, and more cost-effective brings respective challenges associated with heat removal and system efficiency. In addition, the wide application of electric drive systems to alternative propulsion technologies ranging from integrated starter generators, to hybrid electric vehicles, to full electric vehicles presents challenges in termsmore » of sizing critical components andthermal management systems over a range of in-use operating conditions. This effort focused on developing a modular modeling methodology to enable multi-scale and multi-physics simulation capabilities leading to generic electric drive system models applicable to alternative vehicle propulsion configurations. The primary benefit for the National Renewable Energy Laboratory (NREL) is the abilityto define operating losses with the respective impact on component sizing, temperature, and thermal management at the component, subsystem, and system level. However, the flexible nature of the model also allows other uses related to evaluating the impacts of alternative component designs or control schemes depending on the interests of other parties.« less
Radio-frequency current drive efficiency in the presence of ITBs and a dc electric field
NASA Astrophysics Data System (ADS)
Rosa, P. R. da S.; Mourão, R.; Ziebell, L. F.
2009-05-01
This paper discusses the current drive efficiency by the combined action of EC and LH waves in the presence of a dc electric field and transport, with an internal transport barrier. The transport is assumed to be produced by magnetic fluctuations. The study explores the different barrier parameters and their influence on the current drive efficiency. We study the subject by numerically solving the Fokker-Planck equation. Our main result is that the barrier depth and barrier width are important to determine the correct shape of the current density profile but not to determine the current drive efficiency, which is very little influenced by these parameters. We also found similar results for the influence of the level of magnetic fluctuations on the current density profile and on the current drive efficiency.
Experimental study of a fuel cell power train for road transport application
NASA Astrophysics Data System (ADS)
Corbo, P.; Corcione, F. E.; Migliardini, F.; Veneri, O.
The development of fuel cell electric vehicles requires the on-board integration of fuel cell systems and electric energy storage devices, with an appropriate energy management system. The optimization of performance and efficiency needs an experimental analysis of the power train, which has to be effected in both stationary and transient conditions (including standard driving cycles). In this paper experimental results concerning the performance of a fuel cell power train are reported and discussed. In particular characterization results for a small sized fuel cell system (FCS), based on a 2.5 kW PEM stack, alone and coupled to an electric propulsion chain of 3.7 kW are presented and discussed. The control unit of the FCS allowed the main stack operative parameters (stoichiometric ratio, hydrogen and air pressure, temperature) to be varied and regulated in order to obtain optimized polarization and efficiency curves. Experimental runs effected on the power train during standard driving cycles have allowed the performance and efficiency of the individual components (fuel cell stack and auxiliaries, dc-dc converter, traction batteries, electric engine) to be evaluated, evidencing the role of output current and voltage of the dc-dc converter in directing the energy flows within the propulsion system.
A fuzzy logic sliding mode controlled electronic differential for a direct wheel drive EV
NASA Astrophysics Data System (ADS)
Ozkop, Emre; Altas, Ismail H.; Okumus, H. Ibrahim; Sharaf, Adel M.
2015-11-01
In this study, a direct wheel drive electric vehicle based on an electronic differential system with a fuzzy logic sliding mode controller (FLSMC) is studied. The conventional sliding surface is modified using a fuzzy rule base to obtain fuzzy dynamic sliding surfaces by changing its slopes using the global error and its derivative in a fuzzy logic inference system. The controller is compared with proportional-integral-derivative (PID) and sliding mode controllers (SMCs), which are usually preferred to be used in industry. The proposed controller provides robustness and flexibility to direct wheel drive electric vehicles. The fuzzy logic sliding mode controller, electronic differential system and the overall electrical vehicle mechanism are modelled and digitally simulated by using the Matlab software. Simulation results show that the system with FLSMC has better efficiency and performance compared to those of PID and SMCs.
NASA Astrophysics Data System (ADS)
Inoue, Kaoru; Ogata, Kenji; Kato, Toshiji
When the motor speed is reduced by using a regenerative brake, the mechanical energy of rotation is converted to the electrical energy. When the regenerative torque is large, the corresponding current increases so that the copper loss also becomes large. On the other hand, the damping effect of rotation increases according to the time elapse when the regenerative torque is small. In order to use the limited energy effectively, an optimal regenerative torque should be discussed in order to regenerate electrical energy as much as possible. This paper proposes a design methodology of a regenerative torque for an induction motor to maximize the regenerative electric energy by means of the variational method. Similarly, an optimal torque for acceleration is derived in order to minimize the energy to drive. Finally, an efficient motor drive system with the proposed optimal torque and the power storage system stabilizing the DC link voltage will be proposed. The effectiveness of the proposed methods are illustrated by both simulations and experiments.
Attitudes towards and perceptions of eco-driving and the role of feedback systems.
Harvey, Joan; Thorpe, Neil; Fairchild, Richard
2013-01-01
This paper addresses whether eco-driving may be encouraged by providing drivers with feedback, and how eco-driving attitudes fit with other environmental attitudes. Eight focus groups, including fleet drivers, discussed how feedback and other motives might affect driving behaviour. A survey of 350 respondents investigated attitudes towards saving fuel, the role of incentives and use of eco-friendly products. The focus groups' findings show that the environment is a lower priority than comfort and convenience, that feedback might provide a stimulus to eco-driving and that saving money was less important than saving time. The attitude survey showed that price, convenience, attitudes and eco-driving are not conceptually linked together, that convenience is rated as more important than saving money from fuel efficiency and that although the environment is of concern, it is not a high enough priority to increase fuel efficiency. The findings are discussed in relation to the low level of priority given to environmental concerns and the inability of financial incentives presenting significant challenges in terms of changing the subjective norms of the majority of drivers. This paper, using focus groups and a questionnaire, aims to understand how feedback devices, attitudes and motivation can improve eco-driving behaviours. The incentive to save money by better fuel economy was found to be insufficient, and roles for feedback devices and how information is presented are identified.
Economical drive for large tube mills by means of planetary gears
NASA Technical Reports Server (NTRS)
Ackle, W.
1980-01-01
The performance of heavy-duty planetary gear drives for ball mills used in the cement industry since 1967 is described. These gear drives transmit up to 8500 HP per installation. A reliable method for establishing gear drive efficiency is described and possible savings due to higher efficiency are indicated.
DOT National Transportation Integrated Search
2016-12-01
An independent evaluation of a non-video-based onboard monitoring system (OBMS) was conducted. The objective was to determine if the OBMS system performed reliably, improved driving safety and performance, and improved fuel efficiency in a commercial...
DOT National Transportation Integrated Search
2016-11-01
An independent evaluation of a non-video-based onboard monitoring system (OBMS) was conducted. The objective was to determine if the OBMS system performed reliably, improved driving safety and performance, and improved fuel efficiency in a commercial...
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1999-05-01
In 1995, Alumax (subsequently acquired by Alcoa), an aluminum refiner, decided to improve the energy efficiency of its four-pot line dust collection systems at its smelter in Mount Holly, S.C. One consultant recommended installing variable frequency drive (VFD) controls on the fourfan system.
Study of Solid State Drives performance in PROOF distributed analysis system
NASA Astrophysics Data System (ADS)
Panitkin, S. Y.; Ernst, M.; Petkus, R.; Rind, O.; Wenaus, T.
2010-04-01
Solid State Drives (SSD) is a promising storage technology for High Energy Physics parallel analysis farms. Its combination of low random access time and relatively high read speed is very well suited for situations where multiple jobs concurrently access data located on the same drive. It also has lower energy consumption and higher vibration tolerance than Hard Disk Drive (HDD) which makes it an attractive choice in many applications raging from personal laptops to large analysis farms. The Parallel ROOT Facility - PROOF is a distributed analysis system which allows to exploit inherent event level parallelism of high energy physics data. PROOF is especially efficient together with distributed local storage systems like Xrootd, when data are distributed over computing nodes. In such an architecture the local disk subsystem I/O performance becomes a critical factor, especially when computing nodes use multi-core CPUs. We will discuss our experience with SSDs in PROOF environment. We will compare performance of HDD with SSD in I/O intensive analysis scenarios. In particular we will discuss PROOF system performance scaling with a number of simultaneously running analysis jobs.
Development of a dry actuation conducting polymer actuator for micro-optical zoom lenses
NASA Astrophysics Data System (ADS)
Kim, Baek-Chul; Kim, Hyunseok; Nguyen, H. C.; Cho, M. S.; Lee, Y.; Nam, Jae-Do; Choi, Hyouk Ryeol; Koo, J. C.; Jeong, H.-S.
2008-03-01
The objective of the present work is to demonstrate the efficiency and feasibility of NBR (Nitrile Butadiene Rubber) based conducting polymer actuator that is fabricated into a micro zoon lens driver. Unlike the traditional conducting polymer that normally operates in a liquid, the proposed actuator successfully provides fairly effective driving performance for the zoom lens system in a dry environment. And this paper is including the experiment results for an efficiency improvement. The result suggested by an experiment was efficient in micro optical zoom lens system. In addition, the developed design method of actuator was given consideration to design the system.
Fast charge separation in a non-fullerene organic solar cell with a small driving force
NASA Astrophysics Data System (ADS)
Liu, Jing; Chen, Shangshang; Qian, Deping; Gautam, Bhoj; Yang, Guofang; Zhao, Jingbo; Bergqvist, Jonas; Zhang, Fengling; Ma, Wei; Ade, Harald; Inganäs, Olle; Gundogdu, Kenan; Gao, Feng; Yan, He
2016-07-01
Fast and efficient charge separation is essential to achieve high power conversion efficiency in organic solar cells (OSCs). In state-of-the-art OSCs, this is usually achieved by a significant driving force, defined as the offset between the bandgap (Egap) of the donor/acceptor materials and the energy of the charge transfer (CT) state (ECT), which is typically greater than 0.3 eV. The large driving force causes a relatively large voltage loss that hinders performance. Here, we report non-fullerene OSCs that exhibit ultrafast and efficient charge separation despite a negligible driving force, as ECT is nearly identical to Egap. Moreover, the small driving force is found to have minimal detrimental effects on charge transfer dynamics of the OSCs. We demonstrate a non-fullerene OSC with 9.5% efficiency and nearly 90% internal quantum efficiency despite a low voltage loss of 0.61 V. This creates a path towards highly efficient OSCs with a low voltage loss.
The evaluation model of the enterprise energy efficiency based on DPSR.
Wei, Jin-Yu; Zhao, Xiao-Yu; Sun, Xue-Shan
2017-05-08
The reasonable evaluation of the enterprise energy efficiency is an important work in order to reduce the energy consumption. In this paper, an effective energy efficiency evaluation index system is proposed based on DPSR (Driving forces-Pressure-State-Response) with the consideration of the actual situation of enterprises. This index system which covers multi-dimensional indexes of the enterprise energy efficiency can reveal the complete causal chain which includes the "driver forces" and "pressure" of the enterprise energy efficiency "state" caused by the internal and external environment, and the ultimate enterprise energy-saving "response" measures. Furthermore, the ANP (Analytic Network Process) and cloud model are used to calculate the weight of each index and evaluate the energy efficiency level. The analysis of BL Company verifies the feasibility of this index system and also provides an effective way to improve the energy efficiency at last.
Driving Circuitry for Focused Ultrasound Noninvasive Surgery and Drug Delivery Applications
El-Desouki, Munir M.; Hynynen, Kullervo
2011-01-01
Recent works on focused ultrasound (FUS) have shown great promise for cancer therapy. Researchers are continuously trying to improve system performance, which is resulting in an increased complexity that is more apparent when using multi-element phased array systems. This has led to significant efforts to reduce system size and cost by relying on system integration. Although ideas from other fields such as microwave antenna phased arrays can be adopted in FUS, the application requirements differ significantly since the frequency range used in FUS is much lower. In this paper, we review recent efforts to design efficient power monitoring, phase shifting and output driving techniques used specifically for high intensity focused ultrasound (HIFU). PMID:22346589
Driving circuitry for focused ultrasound noninvasive surgery and drug delivery applications.
El-Desouki, Munir M; Hynynen, Kullervo
2011-01-01
Recent works on focused ultrasound (FUS) have shown great promise for cancer therapy. Researchers are continuously trying to improve system performance, which is resulting in an increased complexity that is more apparent when using multi-element phased array systems. This has led to significant efforts to reduce system size and cost by relying on system integration. Although ideas from other fields such as microwave antenna phased arrays can be adopted in FUS, the application requirements differ significantly since the frequency range used in FUS is much lower. In this paper, we review recent efforts to design efficient power monitoring, phase shifting and output driving techniques used specifically for high intensity focused ultrasound (HIFU).
Linear Back-Drive Differentials
NASA Technical Reports Server (NTRS)
Waydo, Peter
2003-01-01
Linear back-drive differentials have been proposed as alternatives to conventional gear differentials for applications in which there is only limited rotational motion (e.g., oscillation). The finite nature of the rotation makes it possible to optimize a linear back-drive differential in ways that would not be possible for gear differentials or other differentials that are required to be capable of unlimited rotation. As a result, relative to gear differentials, linear back-drive differentials could be more compact and less massive, could contain fewer complex parts, and could be less sensitive to variations in the viscosities of lubricants. Linear back-drive differentials would operate according to established principles of power ball screws and linear-motion drives, but would utilize these principles in an innovative way. One major characteristic of such mechanisms that would be exploited in linear back-drive differentials is the possibility of designing them to drive or back-drive with similar efficiency and energy input: in other words, such a mechanism can be designed so that a rotating screw can drive a nut linearly or the linear motion of the nut can cause the screw to rotate. A linear back-drive differential (see figure) would include two collinear shafts connected to two parts that are intended to engage in limited opposing rotations. The linear back-drive differential would also include a nut that would be free to translate along its axis but not to rotate. The inner surface of the nut would be right-hand threaded at one end and left-hand threaded at the opposite end to engage corresponding right- and left-handed threads on the shafts. A rotation and torque introduced into the system via one shaft would drive the nut in linear motion. The nut, in turn, would back-drive the other shaft, creating a reaction torque. Balls would reduce friction, making it possible for the shaft/nut coupling on each side to operate with 90 percent efficiency.
Electromagnetic driving units for complex microrobotic systems
NASA Astrophysics Data System (ADS)
Michel, Frank; Ehrfeld, Wolfgang; Berg, Udo; Degen, Reinhard; Schmitz, Felix
1998-10-01
Electromagnetic actuators play an important role in macroscopic robotic systems. In combination with motion transformers, like reducing gear units, angular gears or spindle-screw drives, electromagnetic motors in large product lines ensure the rotational or linear motion of robot driving units and grippers while electromagnets drive valves or part conveyors. In this paper micro actuators and miniaturized motion transformers are introduced which allow a similar development in microrobotics. An electromagnetic motor and a planetary gear box, both with a diameter of 1.9 mm, are already commercially available from the cooperation partner of IMM, the company Dr. Fritz Faulhaber GmbH in Schonaich, Germany. In addition, a motor with a diameter of 2.4 mm is in development. The motors successfully drive an angular gear and a belt drive. A linear stage with a motion range of 7 mm and an overall size as small as 5 X 3.5 X 24 mm3 has been realized involving the motor, a stationary spur gear with zero backlash and a spindle-screw drive. By the use of these commercially available elements complex microrobots can be built up cost-efficiently and rapidly. Furthermore, a batch process has been developed to produce the coils of micro actuator arrays using lithographic techniques with SU-8 resin. In applying these components, the modular construction of complex microrobotic systems becomes feasible.
User's guide : pavement marking management system database.
DOT National Transportation Integrated Search
2011-12-01
Pavement markings play a critical role in maintaining a safe and efficient driving environment for road users, especially during nighttime conditions. The Texas Department of Transportation (TxDOT) spends millions of dollars each year for installatio...
High-Efficiency Nested Hall Thrusters for Robotic Solar System Exploration
NASA Technical Reports Server (NTRS)
Hofer, Richard R.
2013-01-01
This work describes the scaling and design attributes of Nested Hall Thrusters (NHT) with extremely large operational envelopes, including a wide range of throttleability in power and specific impulse at high efficiency (>50%). NHTs have the potential to provide the game changing performance, powerprocessing capabilities, and cost effectiveness required to enable missions that cannot otherwise be accomplished. NHTs were first identified in the electric propulsion community as a path to 100- kW class thrusters for human missions. This study aimed to identify the performance capabilities NHTs can provide for NASA robotic and human missions, with an emphasis on 10-kW class thrusters well-suited for robotic exploration. A key outcome of this work has been the identification of NHTs as nearly constant-efficiency devices over large power throttling ratios, especially in direct-drive power systems. NHT systems sized for robotic solar system exploration are predicted to be capable of high-efficiency operation over nearly their entire power throttling range. A traditional Annular Hall Thruster (AHT) consists of a single annular discharge chamber where the propellant is ionized and accelerated. In an NHT, multiple annular channels are concentrically stacked. The channels can be operated in unison or individually depending on the available power or required performance. When throttling an AHT, performance must be sacrificed since a single channel cannot satisfy the diverse design attributes needed to maintain high thrust efficiency. NHTs can satisfy these requirements by varying which channels are operated and thereby offer significant benefits in terms of thruster performance, especially under deep power throttling conditions where the efficiency of an AHT suffers since a single channel can only operate efficiently (>50%) over a narrow power throttling ratio (3:1). Designs for 10-kW class NHTs were developed and compared with AHT systems. Power processing systems were considered using either traditional Power Processing Units (PPU) or Direct Drive Units (DDU). In a PPU-based system, power from the solar arrays is transformed from the low voltage of the arrays to the high voltage needed by the thruster. In a DDU-based system, power from the solar arrays is fed to the thruster without conversion. DDU-based systems are attractive for their simplicity since they eliminate the most complex and expensive part of the propulsion system. The results point to the strong potential of NHTs operating with either PPUs or DDUs to benefit robotic and human missions through their unprecedented power and specific impulse throttling capabilities. NHTs coupled to traditional PPUs are predicted to offer high-efficiency (>50%) power throttling ratios 320% greater than present capabilities, while NHTs with direct-drive power systems (DDU) could exceed existing capabilities by 340%. Because the NHT-DDU approach is implicitly low-cost, NHT-DDU technology has the potential to radically reduce the cost of SEP-enabled NASA missions while simultaneously enabling unprecedented performance capability.
Optimized Ion Energy Profiles for Heavy Ion Direct Drive Targets
NASA Astrophysics Data System (ADS)
Hay, Michael J.; Barnard, John J.; Perkins, L. John; Logan, B. Grant
2009-11-01
Recent 1-D implosion calculations [1] have characterized pure-DT targets delivering gains of 50-90 with less than 0.5 MJ of heavy ion direct drive. With a payload fraction of 1/3, these low-aspect ratio targets operate near the peak of rocket efficiency and achieve ˜10% overall coupling efficiencies (vs. the 15-20% efficiencies analytically predicted for less stable, higher-aspect ratio targets). In Ref. 1, the ion energy is ramped directly from a 50 MeV foot pulse to a 500 MeV main pulse. In this paper, we instead tune the ion energy throughout the drive to closely match the beam deposition with the inward progress of the ablation front. We will present the ion energy and intensity time histories that maximize drive efficiency and gain for a single target at constant integrated drive energy. [1] L. J. Perkins, B. G. Logan, J. J. Barnard, and M. J. Hay. ``High Efficiency High Gain Heavy Ion Direct Drive Targets,'' Bulletin of the American Physical Society, vol. 54: DPP, Nov. 2009.
Gene Drive for Mosquito Control: Where Did It Come from and Where Are We Headed?
Macias, Vanessa M.; Ohm, Johanna R.; Rasgon, Jason L.
2017-01-01
Mosquito-borne pathogens place an enormous burden on human health. The existing toolkit is insufficient to support ongoing vector-control efforts towards meeting disease elimination and eradication goals. The perspective that genetic approaches can potentially add a significant set of tools toward mosquito control is not new, but the recent improvements in site-specific gene editing with CRISPR/Cas9 systems have enhanced our ability to both study mosquito biology using reverse genetics and produce genetics-based tools. Cas9-mediated gene-editing is an efficient and adaptable platform for gene drive strategies, which have advantages over innundative release strategies for introgressing desirable suppression and pathogen-blocking genotypes into wild mosquito populations; until recently, an effective gene drive has been largely out of reach. Many considerations will inform the effective use of new genetic tools, including gene drives. Here we review the lengthy history of genetic advances in mosquito biology and discuss both the impact of efficient site-specific gene editing on vector biology and the resulting potential to deploy new genetic tools for the abatement of mosquito-borne disease. PMID:28869513
Process Model of A Fusion Fuel Recovery System for a Direct Drive IFE Power Reactor
NASA Astrophysics Data System (ADS)
Natta, Saswathi; Aristova, Maria; Gentile, Charles
2008-11-01
A task has been initiated to develop a detailed representative model for the fuel recovery system (FRS) in the prospective direct drive inertial fusion energy (IFE) reactor. As part of the conceptual design phase of the project, a chemical process model is developed in order to observe the interaction of system components. This process model is developed using FEMLAB Multiphysics software with the corresponding chemical engineering module (CEM). Initially, the reactants, system structure, and processes are defined using known chemical species of the target chamber exhaust. Each step within the Fuel recovery system is modeled compartmentally and then merged to form the closed loop fuel recovery system. The output, which includes physical properties and chemical content of the products, is analyzed after each step of the system to determine the most efficient and productive system parameters. This will serve to attenuate possible bottlenecks in the system. This modeling evaluation is instrumental in optimizing and closing the fusion fuel cycle in a direct drive IFE power reactor. The results of the modeling are presented in this paper.
NASA Technical Reports Server (NTRS)
Sargent, N. B.; Dustin, M. O.
1981-01-01
Steady state tests were run to characterize the system and component efficiencies over the complete speed-torque capabilities of the propulsion system in both motoring and regenerative modes of operation. The steady state data were obtained using a battery simulator to separate the effects on efficiency caused by changing battery state-of-charge and component temperature. Transient tests were performed to determine the energy profiles of the propulsion system operating over the SAE J227a driving schedules.
Wilson, Mark; Smith, Nickolas C; Chattington, Mark; Ford, Mike; Marple-Horvat, Dilwyn E
2006-11-01
We tested some of the key predictions of processing efficiency theory using a simulated rally driving task. Two groups of participants were classified as either dispositionally high or low anxious based on trait anxiety scores and trained on a simulated driving task. Participants then raced individually on two similar courses under counterbalanced experimental conditions designed to manipulate the level of anxiety experienced. The effort exerted on the driving tasks was assessed though self-report (RSME), psychophysiological measures (pupil dilation) and visual gaze data. Efficiency was measured in terms of efficiency of visual processing (search rate) and driving control (variability of wheel and accelerator pedal) indices. Driving performance was measured as the time taken to complete the course. As predicted, increased anxiety had a negative effect on processing efficiency as indexed by the self-report, pupillary response and variability of gaze data. Predicted differences due to dispositional levels of anxiety were also found in the driving control and effort data. Although both groups of drivers performed worse under the threatening condition, the performance of the high trait anxious individuals was affected to a greater extent by the anxiety manipulation than the performance of the low trait anxious drivers. The findings suggest that processing efficiency theory holds promise as a theoretical framework for examining the relationship between anxiety and performance in sport.
Refrigeration system with a compressor-pump unit and a liquid-injection desuperheating line
Gaul, Christopher J.
2001-01-01
The refrigeration system includes a compressor-pump unit and/or a liquid-injection assembly. The refrigeration system is a vapor-compression refrigeration system that includes an expansion device, an evaporator, a compressor, a condenser, and a liquid pump between the condenser and the expansion device. The liquid pump improves efficiency of the refrigeration system by increasing the pressure of, thus subcooling, the liquid refrigerant delivered from the condenser to the expansion device. The liquid pump and the compressor are driven by a single driving device and, in this regard, are coupled to a single shaft of a driving device, such as a belt-drive, an engine, or an electric motor. While the driving device may be separately contained, in a preferred embodiment, the liquid pump, the compressor, and the driving device (i.e., an electric motor) are contained within a single sealable housing having pump and driving device cooling paths to subcool liquid refrigerant discharged from the liquid pump and to control the operating temperature of the driving device. In another aspect of the present invention, a liquid injection assembly is included in a refrigeration system to divert liquid refrigerant from the discharge of a liquid pressure amplification pump to a compressor discharge pathway within a compressor housing to desuperheat refrigerant vapor to the saturation point within the compressor housing. The liquid injection assembly includes a liquid injection pipe with a control valve to meter the volume of diverted liquid refrigerant. The liquid injection assembly may also include a feedback controller with a microprocessor responsive to a pressure sensor and a temperature sensor both positioned between the compressor to operate the control valve to maintain the refrigerant at or near saturation.
Cutting the cost of hospital HVAC.
Ruddell, Steve
2011-09-01
Steve Ruddell, head of global marketing, Motors & Generators, at ABB, emphasises the importance of a good motor management and maintenance policy in getting the best performance from, and reducing the energy consumption of, hospitals' HVAC systems, also explaining why investing in energy-efficient, low voltage drives, and high efficiency electric motors, to control such equipment, can pay major dividends for estates and facilities teams.
Thermally driven electrokinetic energy conversion with liquid water microjets
Lam, Royce K.; Gamlieli, Zach; Harris, Stephen J.; ...
2015-11-01
One goal of current energy research is to design systems and devices that can efficiently exploit waste heat and utilize solar or geothermal heat energy for electrical power generation. We demonstrate a novel technique exploiting water's large coefficient of thermal expansion, wherein modest thermal gradients produce the requisite high pressure for driving fast-flowing liquid water microjets, which can effect the direct conversion of the kinetic energy into electricity and gaseous hydrogen. Waste heat in thermoelectric generating plants and combustion engines, as well as solar and geothermal energy could be used to drive these systems.
Initial testing of a variable-stroke Stirling engine
NASA Technical Reports Server (NTRS)
Thieme, L. G.
1985-01-01
In support of the U.S. Department of Energy's Stirling Engine Highway Vehicle Systems Program, NASA Lewis Research Center is evaluating variable-stroke control for Stirling engines. The engine being tested is the Advenco Stirling engine; this engine was manufactured by Philips Research Laboratories of the Netherlands and uses a variable-angle swash-plate drive to achieve variable stroke operation. The engine is described, initial steady-state test data taken at Lewis are presented, a major drive system failure and subsequent modifications are described. Computer simulation results are presented to show potential part-load efficiency gains with variable-stroke control.
Thermally driven electrokinetic energy conversion with liquid water microjets
NASA Astrophysics Data System (ADS)
Lam, Royce K.; Gamlieli, Zach; Harris, Stephen J.; Saykally, Richard J.
2015-11-01
A goal of current energy research is to design systems and devices that can efficiently exploit waste heat and utilize solar or geothermal heat energy for electrical power generation. We demonstrate a novel technique exploiting water's large coefficient of thermal expansion, wherein modest thermal gradients produce the requisite high pressure for driving fast-flowing liquid water microjets, which can effect the direct conversion of the kinetic energy into electricity and gaseous hydrogen. Waste heat in thermoelectric generating plants and combustion engines, as well as solar and geothermal energy could be used to drive these systems.
Photoelectric panel with equatorial mounting of drive
NASA Astrophysics Data System (ADS)
Kukhta, M. S.; Krauinsh, P. Y.; Krauinsh, D. P.; Sokolov, A. P.; Mainy, S. B.
2018-03-01
The relevance of the work is determined by the need to create effective models for sunny energy. The article considers a photoelectric panel equipped with a system for tracking the sun. Efficiency of the system is provided by equatorial mounting, which compensates for the rotation of the Earth by rotating the sunny panel in the plane of the celestial equator. The specificity of climatic and geographical conditions of Tomsk is estimated. The dynamics of power variations of photoelectric panels with equatorial mounting during seasonal fluctuations in Tomsk is calculated. A mobile photovoltaic panel with equatorial mounting of the drive has been developed. The methods of design strategy for placing photovoltaic panels in the architectural environment of the city are presented. Key words: sunny energy, photovoltaics, equatorial mounting, mechatronic model, wave reducer, electric drive.
Recording and automated analysis of naturalistic bioptic driving.
Luo, Gang; Peli, Eli
2011-05-01
People with moderate central vision loss are legally permitted to drive with a bioptic telescope in 39 US states and the Netherlands, but the safety of bioptic driving remains highly controversial. There is no scientific evidence about bioptic use and its impact on safety. We propose searching for evidence by recording naturalistic driving activities in patients' cars. In a pilot study we used an analogue video system to record two bioptic drivers' daily driving activities for 10 and 5 days, respectively. In this technical report, we also describe our novel digital system that collects vehicle manoeuvre information and enables recording over more extended periods, and discuss our approach to analyzing the vast amount of data. Our observations of telescope use by the pilot subjects were quite different from their reports in a previous survey. One subject used the telescope only seven times in nearly 6 h of driving. For the other subject, the average interval between telescope use was about 2 min, and Mobile (cell) phone use in one trip extended the interval to almost 5 min. We demonstrate that computerized analysis of lengthy recordings based on video, GPS, acceleration, and black box data can be used to select informative segments for efficient off-line review of naturalistic driving behaviours. The inconsistency between self reports and objective data as well as infrequent telescope use underscores the importance of recording bioptic driving behaviours in naturalistic conditions over extended periods. We argue that the new recording system is important for understanding bioptic use behaviours and bioptic driving safety. © 2011 The College of Optometrists.
Recording and automated analysis of naturalistic bioptic driving
Luo, Gang; Peli, Eli
2011-01-01
Purpose People with moderate central vision loss are legally permitted to drive with a bioptic telescope in 39 US states and the Netherlands, but the safety of bioptic driving remains highly controversial. There is no scientific evidence about bioptic use and its impact on safety. We propose searching for evidence by recording naturalistic driving activities in patients' cars. Methods In a pilot study we used an analogue video system to record two bioptic drivers' daily driving activities for 10 and 5 days, respectively. In this technical report, we also describe our novel digital system that collects vehicle maneuver information and enables recording over more extended periods, and discuss our approach to analyzing the vast amount of data. Results Our observations of telescope use by the pilot subjects were quite different from their reports in a previous survey. One subject used the telescope only 7 times in nearly 6 hours of driving. For the other subject, the average interval between telescope use was about 2 minutes, and cell phone use in one trip extended the interval to almost 5 minutes. We demonstrate that computerized analysis of lengthy recordings based on video, GPS, acceleration, and black box data can be used to select informative segments for efficient off-line review of naturalistic driving behaviors. Conclusions The inconsistency between self reports and objective data as well as infrequent telescope use underscores the importance of recording bioptic driving behaviors in naturalistic conditions over extended periods. We argue that the new recording system is important for understanding bioptic use behaviors and bioptic driving safety. PMID:21410498
Energy optimization analysis of the more electric aircraft
NASA Astrophysics Data System (ADS)
Liu, Yitao; Deng, Junxiang; Liu, Chao; Li, Sen
2018-02-01
The More Electric Aircraft (MEA) underlines the utilization of the electrical power to drive the non-propulsive aircraft systems. The critical features of the MEA including no-bleed engine architecture and advanced electrical system are introduced. Energy and exergy analysis is conducted for the MEA, and comparison of the effectiveness and efficiency of the energy usage between conventional aircraft and the MEA is conducted. The results indicate that one of the advantages of the MEA architecture is the greater efficiency gained in terms of reduced fuel consumption.
The 2011 mileage-based user fee symposium.
DOT National Transportation Integrated Search
2011-09-01
"The fuel tax is rapidly losing its ability to support system needs. Federal environmental : regulations and the escalating price of fossil fuels have created a strong incentive to develop and : utilize more fuel-efficient vehicles, which will drive ...
Analysis of older driver safety interventions : a human factors taxonomic approach
DOT National Transportation Integrated Search
1999-03-01
The careful application of human factors design principles and guidelines is integral to : the development of safe, efficient and usable Intelligent Transportation Systems (ITS). One : segment of the driving population that may significantly benefit ...
Coordinated Control of Slip Ratio for Wheeled Mobile Robots Climbing Loose Sloped Terrain
Li, Zhengcai; Wang, Yang
2014-01-01
A challenging problem faced by wheeled mobile robots (WMRs) such as planetary rovers traversing loose sloped terrain is the inevitable longitudinal slip suffered by the wheels, which often leads to their deviation from the predetermined trajectory, reduced drive efficiency, and possible failures. This study investigates this problem using terramechanics analysis of the wheel-soil interaction. First, a slope-based wheel-soil interaction terramechanics model is built, and an online slip coordinated algorithm is designed based on the goal of optimal drive efficiency. An equation of state is established using the coordinated slip as the desired input and the actual slip as a state variable. To improve the robustness and adaptability of the control system, an adaptive neural network is designed. Analytical results and those of a simulation using Vortex demonstrate the significantly improved mobile performance of the WMR using the proposed control system. PMID:25276849
Coordinated control of slip ratio for wheeled mobile robots climbing loose sloped terrain.
Li, Zhengcai; Wang, Yang
2014-01-01
A challenging problem faced by wheeled mobile robots (WMRs) such as planetary rovers traversing loose sloped terrain is the inevitable longitudinal slip suffered by the wheels, which often leads to their deviation from the predetermined trajectory, reduced drive efficiency, and possible failures. This study investigates this problem using terramechanics analysis of the wheel-soil interaction. First, a slope-based wheel-soil interaction terramechanics model is built, and an online slip coordinated algorithm is designed based on the goal of optimal drive efficiency. An equation of state is established using the coordinated slip as the desired input and the actual slip as a state variable. To improve the robustness and adaptability of the control system, an adaptive neural network is designed. Analytical results and those of a simulation using Vortex demonstrate the significantly improved mobile performance of the WMR using the proposed control system.
NASA Astrophysics Data System (ADS)
Varnhagen, Scott; Same, Adam; Remillard, Jesse; Park, Jae Wan
2011-03-01
Series plug-in hybrid electric vehicles of varying engine configuration and battery capacity are modeled using Advanced Vehicle Simulator (ADVISOR). The performance of these vehicles is analyzed on the bases of energy consumption and greenhouse gas emissions on the tank-to-wheel and well-to-wheel paths. Both city and highway driving conditions are considered during the simulation. When simulated on the well-to-wheel path, it is shown that the range extender with a Wankel rotary engine consumes less energy and emits fewer greenhouse gases compared to the other systems with reciprocating engines during many driving cycles. The rotary engine has a higher power-to-weight ratio and lower noise, vibration and harshness compared to conventional reciprocating engines, although performs less efficiently. The benefits of a Wankel engine make it an attractive option for use as a range extender in a plug-in hybrid electric vehicle.
A robot arm simulation with a shared memory multiprocessor machine
NASA Technical Reports Server (NTRS)
Kim, Sung-Soo; Chuang, Li-Ping
1989-01-01
A parallel processing scheme for a single chain robot arm is presented for high speed computation on a shared memory multiprocessor. A recursive formulation that is derived from a virtual work form of the d'Alembert equations of motion is utilized for robot arm dynamics. A joint drive system that consists of a motor rotor and gears is included in the arm dynamics model, in order to take into account gyroscopic effects due to the spinning of the rotor. The fine grain parallelism of mechanical and control subsystem models is exploited, based on independent computation associated with bodies, joint drive systems, and controllers. Efficiency and effectiveness of the parallel scheme are demonstrated through simulations of a telerobotic manipulator arm. Two different mechanical subsystem models, i.e., with and without gyroscopic effects, are compared, to show the trade-off between efficiency and accuracy.
Vertical Take-Off and Landing Vehicle with Increased Cruise Efficiency
NASA Technical Reports Server (NTRS)
Fredericks, William J. (Inventor); Moore, Mark D. (Inventor); Busan, Ronald C. (Inventor); Johns, Zachary R. (Inventor); Langford, William M. (Inventor); Rothhaar, Paul M. (Inventor); North, David D. (Inventor); Laws, Christopher T. (Inventor); Hodges, William T. (Inventor); Webb, Sandy R. (Inventor)
2016-01-01
Systems, methods, and devices are provided that combine an advance vehicle configuration, such as an advanced aircraft configuration, with the infusion of electric propulsion, thereby enabling a four times increase in range and endurance while maintaining a full vertical takeoff and landing ("VTOL") and hover capability for the vehicle. Embodiments may provide vehicles with both VTOL and cruise efficient capabilities without the use of ground infrastructure. An embodiment vehicle may comprise a wing configured to tilt through a range of motion, a first series of electric motors coupled to the wing and each configured to drive an associated wing propeller, a tail configured to tilt through the range of motion, a second series of electric motors coupled to the tail and each configured to drive an associated tail propeller, and an electric propulsion system connected to the first series of electric motors and the second series of electric motors.
Vertical Takeoff and Landing Vehicle with Increased Cruise Efficiency
NASA Technical Reports Server (NTRS)
Langford, William M. (Inventor); Hodges, William T. (Inventor); Laws, Christopher T. (Inventor); Johns, Zachary R. (Inventor); Fredericks, William J. (Inventor); Moore, Mark D. (Inventor); Busan, Ronald C. (Inventor); Rothhaar, Paul M. (Inventor); North, David D. (Inventor); Webb, Sandy R. (Inventor)
2018-01-01
Systems, methods, and devices are provided that combine an advance vehicle configuration, such as an advanced aircraft configuration, with the infusion of electric propulsion, thereby enabling a four times increase in range and endurance while maintaining a full vertical takeoff and landing ("VTOL") and hover capability for the vehicle. Embodiments may provide vehicles with both VTOL and cruise efficient capabilities without the use of ground infrastructure. An embodiment vehicle may comprise a wing configured to tilt through a range of motion, a first series of electric motors coupled to the wing and each configured to drive an associated wing propeller, a tail configured to tilt through the range of motion, a second series of electric motors coupled to the tail and each configured to drive an associated tail propeller, and an electric propulsion system connected to the first series of electric motors and the second series of electric motors.
Improved InGaN LED System Efficacy and Cost via Droop Reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wildeson, Isaac
Efficiency droop is a non-thermal process intrinsic to indium gallium nitride light emitting diodes (LEDs) in which the external quantum efficiency (EQE) decreases with increasing drive current density. Mitigating droop would allow one to reduce the size of LEDs driven at a given current or to drive LEDs of given size at higher current while maintaining high efficiencies. In other words, droop mitigation can lead to significant gains in light output per dollar and/or light output per watt of input power. This project set an EQE improvement goal at high drive current density which was to be attained by improvingmore » the LED active region design and growth process following a droop mitigation strategy. The interactions between LED active region design parameters and efficiency droop were studied by modeling and experiments. The crystal defects that tend to form in more complex LED designs intended to mitigate droop were studied with advanced characterization methods that provided insight into the structural and electronic properties of the material. This insight was applied to improve the epitaxy process both in terms of active region design and optimization of growth parameters. The final project goals were achieved on schedule and an epitaxy process leading to LEDs with EQE exceeding the project target was demonstrated.« less
ICRF fast wave current drive and mode conversion current drive in EAST tokamak
NASA Astrophysics Data System (ADS)
Yin, L.; Yang, C.; Gong, X. Y.; Lu, X. Q.; Du, D.; Chen, Y.
2017-10-01
Fast wave in the ion-cyclotron resonance frequency (ICRF) range is a promising candidate for non-inductive current drive (CD), which is essential for long pulse and high performance operation of tokamaks. A numerical study on the ICRF fast wave current drive (FWCD) and mode-conversion current drive (MCCD) in the Experimental Advanced Superconducting Tokamak (EAST) is carried out by means of the coupled full wave and Ehst-Karney parameterization methods. The results show that FWCD efficiency is notable in two frequency regimes, i.e., f ≥ 85 MHz and f = 50-65 MHz, where ion cyclotron absorption is effectively avoided, and the maximum on-axis driven current per unit power can reach 120 kA/MW. The sensitivity of the CD efficiency to the minority ion concentration is confirmed, owing to fast wave mode conversion, and the peak MCCD efficiency is reached for 22% minority-ion concentration. The effects of the wave-launch position and the toroidal wavenumber on the efficiency of current drive are also investigated.
Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%
Jia, Jieyang; Seitz, Linsey C.; Benck, Jesse D.; Huo, Yijie; Chen, Yusi; Ng, Jia Wei Desmond; Bilir, Taner; Harris, James S.; Jaramillo, Thomas F.
2016-01-01
Hydrogen production via electrochemical water splitting is a promising approach for storing solar energy. For this technology to be economically competitive, it is critical to develop water splitting systems with high solar-to-hydrogen (STH) efficiencies. Here we report a photovoltaic-electrolysis system with the highest STH efficiency for any water splitting technology to date, to the best of our knowledge. Our system consists of two polymer electrolyte membrane electrolysers in series with one InGaP/GaAs/GaInNAsSb triple-junction solar cell, which produces a large-enough voltage to drive both electrolysers with no additional energy input. The solar concentration is adjusted such that the maximum power point of the photovoltaic is well matched to the operating capacity of the electrolysers to optimize the system efficiency. The system achieves a 48-h average STH efficiency of 30%. These results demonstrate the potential of photovoltaic-electrolysis systems for cost-effective solar energy storage. PMID:27796309
Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30.
Jia, Jieyang; Seitz, Linsey C; Benck, Jesse D; Huo, Yijie; Chen, Yusi; Ng, Jia Wei Desmond; Bilir, Taner; Harris, James S; Jaramillo, Thomas F
2016-10-31
Hydrogen production via electrochemical water splitting is a promising approach for storing solar energy. For this technology to be economically competitive, it is critical to develop water splitting systems with high solar-to-hydrogen (STH) efficiencies. Here we report a photovoltaic-electrolysis system with the highest STH efficiency for any water splitting technology to date, to the best of our knowledge. Our system consists of two polymer electrolyte membrane electrolysers in series with one InGaP/GaAs/GaInNAsSb triple-junction solar cell, which produces a large-enough voltage to drive both electrolysers with no additional energy input. The solar concentration is adjusted such that the maximum power point of the photovoltaic is well matched to the operating capacity of the electrolysers to optimize the system efficiency. The system achieves a 48-h average STH efficiency of 30%. These results demonstrate the potential of photovoltaic-electrolysis systems for cost-effective solar energy storage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozpineci, Burak
The US Department of Energy (DOE) announced in May 2011 a new cooperative research effort comprising DOE, the US Council for Automotive Research (composed of automakers Ford Motor Company, General Motors Company, and Chrysler Group), Tesla Motors, and representatives of the electric utility and petroleum industries. Known as U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability), it represents DOE’s commitment to developing public–private partnerships to fund high-risk–high-reward research into advanced automotive technologies. The new partnership replaces and builds upon the partnership known as FreedomCAR (derived from “Freedom” and “Cooperative Automotive Research”) that ran from 2002 throughmore » 2010 and the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. Oak Ridge National Laboratory’s (ORNL’s) Advanced Power Electronics and Electric Motors (APEEM) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor, and traction drive system (TDS) technologies that will leapfrog current on-the-road technologies, leading to lower cost and better efficiency in transforming battery energy to useful work. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency through research in more efficient TDSs.« less
Low Temperature Regenerators for Zero Boil-Off Liquid Hydrogen Pulse Tube Cryocoolers
NASA Technical Reports Server (NTRS)
Salerno, Louis J.; Kashani, Ali; Helvensteijn, Ben; Kittel, Peter; Arnoldm James O. (Technical Monitor)
2002-01-01
Recently, a great deal of attention has been focused on zero boil-off (ZBO) propellant storage as a means of minimizing the launch mass required for long-term exploration missions. A key component of ZBO systems is the cooler. Pulse tube coolers offer the advantage of zero moving mass at the cold head, and recent advances in lightweight, high efficiency cooler technology have paved the way for reliable liquid oxygen (LOx) temperature coolers to be developed which are suitable for flight ZBO systems. Liquid hydrogen (LH2) systems, however, are another matter. For ZBO liquid hydrogen systems, cooling powers of 1-5 watts are required at 20 K. The final development from tier for these coolers is to achieve high efficiency and reliability at lower operating temperatures. Most of the life-limiting issues of flight Stirling and pulse tube coolers are associated with contamination, drive mechanisms, and drive electronics. These problems are well in hand in the present generation coolers. The remaining efficiency and reliability issues reside with the low temperature regenerators. This paper will discuss advances to be made in regenerators for pulse tube LH2 ZBO coolers, present some historical background, and discuss recent progress in regenerator technology development using alloys of erbium.
NASA Astrophysics Data System (ADS)
Yamamoto, Kichiro; Imakiire, Akihiro; Iimori, Kenichi
An interior permanent magnet (IPM) motor drive system which has regenerating capability augmented by electric double-layer capacitors (EDLCs) is proposed. In the proposed system, EDLCs are arranged in series with batteries so that a lesser number of the EDLCs and batteries will be required. The proposed system has two bi-directional voltage boosters: one is for both the batteries and EDLCs to control the dc-link voltage of a PWM inverter and the other is for only the EDLCs and is used to control the energy flow from and to the EDLCs. In this paper, a strategy to control the energy flow to and from the EDLCs is explained and its effectiveness is confirmed by simulation and experimental results. Furthermore, the efficiencies of the voltage booster, inverter, PM motor, and whole system are measured for the system with the basic configuration, i.e., which consists of only one bi-directional voltage booster and PWM inverter. Then, the steady-state characteristics are determined. Finally, the efficiency of the voltage boosters in the proposed system is determined, and the advantage of the proposed PM motor drive system is discussed.
Hybrid RAID With Dual Control Architecture for SSD Reliability
NASA Astrophysics Data System (ADS)
Chatterjee, Santanu
2010-10-01
The Solid State Devices (SSD) which are increasingly being adopted in today's data storage Systems, have higher capacity and performance but lower reliability, which leads to more frequent rebuilds and to a higher risk. Although SSD is very energy efficient compared to Hard Disk Drives but Bit Error Rate (BER) of an SSD require expensive erase operations between successive writes. Parity based RAID (for Example RAID4,5,6)provides data integrity using parity information and supports losing of any one (RAID4, 5)or two drives(RAID6), but the parity blocks are updated more often than the data blocks due to random access pattern so SSD devices holding more parity receive more writes and consequently age faster. To address this problem, in this paper we propose a Model based System of hybrid disk array architecture in which we plan to use RAID 4(Stripping with Parity) technique and SSD drives as Data drives while any fastest Hard disk drives of same capacity can be used as dedicated parity drives. By this proposed architecture we can open the door to using commodity SSD's past their erasure limit and it can also reduce the need for expensive hardware Error Correction Code (ECC) in the devices.
Methods for Automated Identification of Informative Behaviors in Natural Bioptic Driving
Luo, Gang; Peli, Eli
2012-01-01
Visually impaired people may legally drive if wearing bioptic telescopes in some developed countries. To address the controversial safety issue of the practice, we have developed a low cost in-car recording system that can be installed in study participants’ own vehicles to record their daily driving activities. We also developed a set of automated identification techniques of informative behaviors to facilitate efficient manual review of important segments submerged in the vast amount of uncontrolled data. Here we present the methods and quantitative results of the detection performance for six types of driving maneuvers and behaviors that are important for bioptic driving: bioptic telescope use, turns, curves, intersections, weaving, and rapid stops. The testing data were collected from one normally sighted and two visually impaired subjects across multiple days. The detection rates ranged from 82% up to 100%, and the false discovery rates ranged from 0% to 13%. In addition, two human observers were able to interpret about 80% of targets viewed through the telescope. These results indicate that with appropriate data processing the low-cost system is able to provide reliable data for natural bioptic driving studies. PMID:22514200
Efficient conceptual design for LED-based pixel light vehicle headlamps
NASA Astrophysics Data System (ADS)
Held, Marcel Philipp; Lachmayer, Roland
2017-12-01
High-resolution vehicle headlamps represent a future-oriented technology that can be used to increase traffic safety and driving comfort. As a further development to the current Matrix Beam headlamps, LED-based pixel light systems enable ideal lighting functions (e.g. projection of navigation information onto the road) to be activated in any given driving scenario. Moreover, compared to other light-modulating elements such as DMDs and LCDs, instantaneous LED on-off toggling provides a decisive advantage in efficiency. To generate highly individualized light distributions for automotive applications, a number of approaches using an LED array may be pursued. One approach is to vary the LED density in the array so as to output the desired light distribution. Another notable approach makes use of an equidistant arrangement of the individual LEDs together with distortion optics to formulate the desired light distribution. The optical system adjusts the light distribution in a manner that improves resolution and increases luminous intensity of the desired area. An efficient setup for pixel generation calls for one lens per LED. Taking into consideration the limited space requirements of the system, this implies that the luminous flux, efficiency and resolution image parameters are primarily controlled by the lens dimensions. In this paper a concept for an equidistant LED array arrangement utilizing distortion optics is presented. The paper is divided into two parts. The first part discusses the influence of lens geometry on the system efficiency whereas the second part investigates the correlation between resolution and luminous flux based on the lens dimensions.
Origins of low energy-transfer efficiency between patterned GaN quantum well and CdSe quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Xingsheng, E-mail: xsxu@semi.ac.cn
For hybrid light emitting devices (LEDs) consisting of GaN quantum wells and colloidal quantum dots, it is necessary to explore the physical mechanisms causing decreases in the quantum efficiencies and the energy transfer efficiency between a GaN quantum well and CdSe quantum dots. This study investigated the electro-luminescence for a hybrid LED consisting of colloidal quantum dots and a GaN quantum well patterned with photonic crystals. It was found that both the quantum efficiency of colloidal quantum dots on a GaN quantum well and the energy transfer efficiency between the patterned GaN quantum well and the colloidal quantum dots decreasedmore » with increases in the driving voltage or the driving time. Under high driving voltages, the decreases in the quantum efficiency of the colloidal quantum dots and the energy transfer efficiency can be attributed to Auger recombination, while those decreases under long driving time are due to photo-bleaching and Auger recombination.« less
A Traction Control Strategy with an Efficiency Model in a Distributed Driving Electric Vehicle
Lin, Cheng
2014-01-01
Both active safety and fuel economy are important issues for vehicles. This paper focuses on a traction control strategy with an efficiency model in a distributed driving electric vehicle. In emergency situation, a sliding mode control algorithm was employed to achieve antislip control through keeping the wheels' slip ratios below 20%. For general longitudinal driving cases, an efficiency model aiming at improving the fuel economy was built through an offline optimization stream within the two-dimensional design space composed of the acceleration pedal signal and the vehicle speed. The sliding mode control strategy for the joint roads and the efficiency model for the typical drive cycles were simulated. Simulation results show that the proposed driving control approach has the potential to apply to different road surfaces. It keeps the wheels' slip ratios within the stable zone and improves the fuel economy on the premise of tracking the driver's intention. PMID:25197697
A traction control strategy with an efficiency model in a distributed driving electric vehicle.
Lin, Cheng; Cheng, Xingqun
2014-01-01
Both active safety and fuel economy are important issues for vehicles. This paper focuses on a traction control strategy with an efficiency model in a distributed driving electric vehicle. In emergency situation, a sliding mode control algorithm was employed to achieve antislip control through keeping the wheels' slip ratios below 20%. For general longitudinal driving cases, an efficiency model aiming at improving the fuel economy was built through an offline optimization stream within the two-dimensional design space composed of the acceleration pedal signal and the vehicle speed. The sliding mode control strategy for the joint roads and the efficiency model for the typical drive cycles were simulated. Simulation results show that the proposed driving control approach has the potential to apply to different road surfaces. It keeps the wheels' slip ratios within the stable zone and improves the fuel economy on the premise of tracking the driver's intention.
High-voltage Array Ground Test for Direct-drive Solar Electric Propulsion
NASA Technical Reports Server (NTRS)
Howell, Joe T.; Mankins, John C.; O'Neill, Mark J.
2005-01-01
Development is underway on a unique high-power solar concentrator array called Stretched Lens Array (SLA) for direct drive electric propulsion. These SLA performance attributes closely match the critical needs of solar electric propulsion (SEP) systems, which may be used for "space tugs" to fuel-efficiently transport cargo from low earth orbit (LEO) to low lunar orbit (LLO), in support of NASA s robotic and human exploration missions. Later SEP systems may similarly transport cargo from the earth-moon neighborhood to the Mars neighborhood. This paper will describe the SLA SEP technology, discuss ground tests already completed, and present plans for future ground tests and future flight tests of SLA SEP systems.
Optimization design of wind turbine drive train based on Matlab genetic algorithm toolbox
NASA Astrophysics Data System (ADS)
Li, R. N.; Liu, X.; Liu, S. J.
2013-12-01
In order to ensure the high efficiency of the whole flexible drive train of the front-end speed adjusting wind turbine, the working principle of the main part of the drive train is analyzed. As critical parameters, rotating speed ratios of three planetary gear trains are selected as the research subject. The mathematical model of the torque converter speed ratio is established based on these three critical variable quantity, and the effect of key parameters on the efficiency of hydraulic mechanical transmission is analyzed. Based on the torque balance and the energy balance, refer to hydraulic mechanical transmission characteristics, the transmission efficiency expression of the whole drive train is established. The fitness function and constraint functions are established respectively based on the drive train transmission efficiency and the torque converter rotating speed ratio range. And the optimization calculation is carried out by using MATLAB genetic algorithm toolbox. The optimization method and results provide an optimization program for exact match of wind turbine rotor, gearbox, hydraulic mechanical transmission, hydraulic torque converter and synchronous generator, ensure that the drive train work with a high efficiency, and give a reference for the selection of the torque converter and hydraulic mechanical transmission.
Battery outgassing sensor for electric drive vehicle energy storage systems
NASA Astrophysics Data System (ADS)
Beshay, Manal; Chandra Sekhar, Jai Ganesh; Kempen, Lothar U.
2011-06-01
Lithium-ion batteries have been proven efficient as high power density and low self-discharge rate energy storage systems, specifically in electrical drive vehicles. An important safety factor associated with these systems is the potential hazardous release and outgassing of toxic chemical vapors such as hydrogen fluoride (HF) and hydrogen sulfides (H2S), and relatively elevated levels of carbon dioxide (CO2). The release and accumulation of such gases emphasizes an in-line monitoring need. Intelligent Optical Systems, Inc. (IOS) has identified a viable approach for the development of an onboard optical sensor array that can be used to monitor battery outgassing. This paper discusses the potential of developing a battery outgas sensing approach that will meet sensitivity and response time requirements.
NASA Astrophysics Data System (ADS)
Tsutsumi, Shigeyoshi; Wada, Takahiro; Akita, Tokihiko; Doi, Shun'ichi
Driver's workload tends to be increased during driving under complicated traffic environments like a lane change. In such cases, rear collision warning is effective for reduction of cognitive workload. On the other hand, it is pointed out that false alarm or missing alarm caused by sensor errors leads to decrease of driver' s trust in the warning system and it can result in low efficiency of the system. Suppose that reliability information of the sensor is provided in real-time. In this paper, we propose a new warning method to increase driver' s trust in the system even with low sensor reliability utilizing the sensor reliability information. The effectiveness of the warning methods is shown by driving simulator experiments.
Development and Validation of a Slurry Model for Chemical Hydrogen Storage in Fuel Cell Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brooks, Kriston P.; Pires, Richard P.; Simmons, Kevin L.
2014-07-25
The US Department of Energy's (DOE) Hydrogen Storage Engineering Center of Excellence (HSECoE) is developing models for hydrogen storage systems for fuel cell-based light duty vehicle applications for a variety of promising materials. These transient models simulate the performance of the storage system for comparison to the DOE’s Technical Targets and a set of four drive cycles. The purpose of this research is to describe the models developed for slurry-based chemical hydrogen storage materials. The storage systems of both a representative exothermic system based on ammonia borane and endothermic system based on alane were developed and modeled in Simulink®. Oncemore » complete the reactor and radiator components of the model were validated with experimental data. The model was then run using a highway cycle, an aggressive cycle, cold-start cycle and hot drive cycle. The system design was adjusted to meet these drive cycles. A sensitivity analysis was then performed to identify the range of material properties where these DOE targets and drive cycles could be met. Materials with a heat of reaction greater than 11 kJ/mol H2 generated and a slurry hydrogen capacity of greater than 11.4% will meet the on-board efficiency and gravimetric capacity targets, respectively.« less
NASA Astrophysics Data System (ADS)
Sakai, Kazuto; Takahashi, Norio; Shimomura, Eiji; Arata, Masanobu; Nakazawa, Yousuke; Tajima, Toshinobu
Regarding environmental and energy issues, increasing importance has been placed on energy saving in various systems. To save energy, it would be desirable if the total efficiency of various types of equipment were increased.Recently, a hybrid electric vehicle (HEV) and an electric vehicle (EV) have been developed. The use of new technologies will eventually lead to the realization of the new- generation vehicle with high efficiency. One new technology is the variable-speed drive over a wide range of speeds. The motor driving systems of the EV or the HEV must operate in the variable-speed range of up to 1:5. This has created the need for a high-efficiency motor that is capable of operation over a wide speed range. In this paper, we describe the concept of a novel permanent magnet reluctance motor (PRM) and discuss its characteristics. We developed the PRM, which has the capability of operating over a wide speed range with high efficiency. The PRM has a rotor with a salient pole, which generates magnetic anisotropy. In addition, the permanent magnets embedded in the rotor core counter the q-axis flux by the armature reaction. Then, the power density and the power factor increase. The PRM produces reluctance torque and torque by permanent magnet (PM) flux. The reluctance torque is 1 to 2 times larger than the PM torque. When the PRM operates over a constant-power speed range, the field component of the current will be regulated to maintain a constant voltage. The output power of the developed PRM is 8 to 250kW. It is clarified that the PRM operates at a wide variable-speed range (1:5) with high efficiency (92-97%). It is concluded that the PRM has high performance over a wide constant-power speed range. In addition, the PRM is constructed using a small PM, so that we can solve the problem of cost. Thus, the PRM is a superior machine that is suited for variable-speed drive applications.
Modeling of a Thermoelectric Generator for Thermal Energy Regeneration in Automobiles
NASA Astrophysics Data System (ADS)
Tatarinov, Dimitri; Koppers, M.; Bastian, G.; Schramm, D.
2013-07-01
In the field of passenger transportation a reduction of the consumption of fossil fuels has to be achieved by any measures. Advanced designs of internal combustion engine have the potential to reduce CO2 emissions, but still suffer from low efficiencies in the range from 33% to 44%. Recuperation of waste heat can be achieved with thermoelectric generators (TEGs) that convert heat directly into electric energy, thus offering a less complicated setup as compared with thermodynamic cycle processes. During a specific driving cycle of a car, the heat currents and temperature levels of the exhaust gas are dynamic quantities. To optimize a thermoelectric recuperation system fully, various parameters have to be tested, for example, the electric and thermal conductivities of the TEG and consequently the heat absorbed and rejected from the system, the generated electrical power, and the system efficiency. A Simulink model consisting of a package for dynamic calculation of energy management in a vehicle, coupled with a model of the thermoelectric generator system placed on the exhaust system, determines the drive-cycle-dependent efficiency of the heat recovery system, thus calculating the efficiency gain of the vehicle. The simulation also shows the temperature drop at the heat exchanger along the direction of the exhaust flow and hence the variation of the voltage drop of consecutively arranged TEG modules. The connection between the temperature distribution and the optimal electrical circuitry of the TEG modules constituting the entire thermoelectric recuperation system can then be examined. The simulation results are compared with data obtained from laboratory experiments. We discuss error bars and the accuracy of the simulation results for practical thermoelectric systems embedded in cars.
Modeling methods of MEMS micro-speaker with electrostatic working principle
NASA Astrophysics Data System (ADS)
Tumpold, D.; Kaltenbacher, M.; Glacer, C.; Nawaz, M.; Dehé, A.
2013-05-01
The market for mobile devices like tablets, laptops or mobile phones is increasing rapidly. Device housings get thinner and energy efficiency is more and more important. Micro-Electro-Mechanical-System (MEMS) loudspeakers, fabricated in complementary metal oxide semiconductor (CMOS) compatible technology merge energy efficient driving technology with cost economical fabrication processes. In most cases, the fabrication of such devices within the design process is a lengthy and costly task. Therefore, the need for computer modeling tools capable of precisely simulating the multi-field interactions is increasing. The accurate modeling of such MEMS devices results in a system of coupled partial differential equations (PDEs) describing the interaction between the electric, mechanical and acoustic field. For the efficient and accurate solution we apply the Finite Element (FE) method. Thereby, we fully take the nonlinear effects into account: electrostatic force, charged moving body (loaded membrane) in an electric field, geometric nonlinearities and mechanical contact during the snap-in case between loaded membrane and stator. To efficiently handle the coupling between the mechanical and acoustic fields, we apply Mortar FE techniques, which allow different grid sizes along the coupling interface. Furthermore, we present a recently developed PML (Perfectly Matched Layer) technique, which allows limiting the acoustic computational domain even in the near field without getting spurious reflections. For computations towards the acoustic far field we us a Kirchhoff Helmholtz integral (e.g, to compute the directivity pattern). We will present simulations of a MEMS speaker system based on a single sided driving mechanism as well as an outlook on MEMS speakers using double stator systems (pull-pull-system), and discuss their efficiency (SPL) and quality (THD) towards the generated acoustic sound.
NASA Astrophysics Data System (ADS)
Liang, Jiejunyi; Yang, Haitao; Wu, Jinglai; Zhang, Nong; Walker, Paul D.
2018-05-01
To improve the overall efficiency of electric vehicles and guarantee the driving comfort and vehicle drivability under the concept of simplifying mechanism complexity and minimizing manufacturing cost, this paper proposes a novel clutchless power-shifting transmission system with shifting control strategy and power sharing control strategy. The proposed shifting strategy takes advantage of the transmission architecture to achieve power-on shifting, which greatly improves the driving comfort compared with conventional automated manual transmission, with a bump function based shifting control method. To maximize the overall efficiency, a real-time power sharing control strategy is designed to solve the power distribution problem between the two motors. Detailed mathematical model is built to verify the effectiveness of the proposed methods. The results demonstrate the proposed strategies considerably improve the overall efficiency while achieve non-interrupted power-on shifting and maintain the vehicle jerk during shifting under an acceptable threshold.
Characterization of the powertrain components for a hybrid quadricycle
NASA Astrophysics Data System (ADS)
De Santis, M.; Agnelli, S.; Silvestri, L.; Di Ilio, G.; Giannini, O.
2016-06-01
This paper presents the experimental characterization of a prototyping hybrid electric quadricycle, which is equipped with two independently actuated hub (in-wheel) motors and powered by a 51 V 132 Ah LiFeYPO4 battery pack. Such a vehicle employs two hub motors located in the rear axles in order to independently drive/brake the rear wheels; such architecture allows to implement a torque vectoring system to improve the vehicle dynamics. Due to its actuation flexibility, energy efficiency and performance potentials, this architecture is one of the promising powertrain design for electric quadricycle. Experimental data obtained from measurements on the vehicle powertrain components going from the battery pack to the inverter and to the in-wheel motor were employed to generate the hub motor torque response and power efficiency maps in both driving and regenerative braking modes. Furthermore, the vehicle is equipped with a gasoline internal combustion engine as range extender whose efficiency was also characterized.
A study on optimization of hybrid drive train using Advanced Vehicle Simulator (ADVISOR)
NASA Astrophysics Data System (ADS)
Same, Adam; Stipe, Alex; Grossman, David; Park, Jae Wan
This study investigates the advantages and disadvantages of three hybrid drive train configurations: series, parallel, and "through-the-ground" parallel. Power flow simulations are conducted with the MATLAB/Simulink-based software ADVISOR. These simulations are then applied in an application for the UC Davis SAE Formula Hybrid vehicle. ADVISOR performs simulation calculations for vehicle position using a combined backward/forward method. These simulations are used to study how efficiency and agility are affected by the motor, fuel converter, and hybrid configuration. Three different vehicle models are developed to optimize the drive train of a vehicle for three stages of the SAE Formula Hybrid competition: autocross, endurance, and acceleration. Input cycles are created based on rough estimates of track geometry. The output from these ADVISOR simulations is a series of plots of velocity profile and energy storage State of Charge that provide a good estimate of how the Formula Hybrid vehicle will perform on the given course. The most noticeable discrepancy between the input cycle and the actual velocity profile of the vehicle occurs during deceleration. A weighted ranking system is developed to organize the simulation results and to determine the best drive train configuration for the Formula Hybrid vehicle. Results show that the through-the-ground parallel configuration with front-mounted motors achieves an optimal balance of efficiency, simplicity, and cost. ADVISOR is proven to be a useful tool for vehicle power train design for the SAE Formula Hybrid competition. This vehicle model based on ADVISOR simulation is applicable to various studies concerning performance and efficiency of hybrid drive trains.
Electrical Properties and Power Considerations of a Piezoelectric Actuator
NASA Technical Reports Server (NTRS)
Jordan, T.; Ounaies, Z.; Tripp, J.; Tcheng, P.
1999-01-01
This paper assesses the electrical characteristics of piezoelectric wafers for use in aeronautical applications such as active noise control in aircraft. Determination of capacitive behavior and power consumption is necessary to optimize the system configuration and to design efficient driving electronics. Empirical relations are developed from experimental data to predict the capacitance and loss tangent of a PZT5A ceramic as nonlinear functions of both applied peak voltage and driving frequency. Power consumed by the PZT is the rate of energy required to excite the piezoelectric system along with power dissipated due to dielectric loss and mechanical and structural damping. Overall power consumption is thus quantified as a function of peak applied voltage and driving frequency. It was demonstrated that by incorporating the variation of capacitance and power loss with voltage and frequency, satisfactory estimates of power requirements can be obtained. These relations allow general guidelines in selection and application of piezoelectric actuators and driving electronics for active control applications.
Sensorless Sinusoidal Drives for Fan and Pump Motors by V/f Control
NASA Astrophysics Data System (ADS)
Kiuchi, Mitsuyuki; Ohnishi, Tokuo
This paper proposes sensorless sinusoidal driving methods of permanent magnet synchronous motors for fans and pumps by V/f control. The proposed methods are simple methods that control the motor peak current constant by voltage or frequency control, and are characterized by DC link current detection using a single shunt resistor at carrier wave signal bottom timing. As a result of the dumping factor from square torque load characteristics of fan and pump motors, it is possible to control stable starting and stable steady state by V/f control. In general, pressure losses as a result of the fluid pass of fan and pump systems are nearly constant; therefore, the flow rate and motor torque are determined by revolutions. Accordingly, high efficiency driving is possible by setting corresponding currents to q-axis currents (torque currents) at target revolutions. Because of the simple current detection and motor control methods, the proposed methods are optimum for fan and pump motor driving systems of home appliances.
Design of Range Adaptive Wireless Power Transfer System Using Non-coaxial Coils
NASA Astrophysics Data System (ADS)
Yang, Dongsheng; Won, Sokhui; Hong, Huan
2017-05-01
Wireless Power Transfer (WPT) is a remarkable technology because of its convenience and applicability in harsh environment. Particularly, Magnetic Coupling WPT (MC-WPT) is a proper method to midrange power transfer, but the frequency splitting at over-coupling range, which is related with transfer distance, is challenge of transmission efficiency. In order to overcome this phenomenon, recently the range adaptive WPT is proposed. In this paper, we aim to the type with a set of non-coaxial driving coils, so that this may remove the connection wires from PA (Power Amplifier) to driving coil. And, when the radius of driving coil is changed, on the different gaps between driving and TX coils, coupling coefficient between these is computed in both cases of coaxial and non-coaxial configurations. In addition, the designing steps for 4-coil WPT system using non-coaxial coils are described with the example. Finally, the reliability of this topology has been proved and simulated with PSPICE.
System Engineering of Photonic Systems for Space Application
NASA Technical Reports Server (NTRS)
Watson, Michael D.; Pryor, Jonathan E.
2014-01-01
The application of photonics in space systems requires tight integration with the spacecraft systems to ensure accurate operation. This requires some detailed and specific system engineering to properly incorporate the photonics into the spacecraft architecture and to guide the spacecraft architecture in supporting the photonics devices. Recent research in product focused, elegant system engineering has led to a system approach which provides a robust approach to this integration. Focusing on the mission application and the integration of the spacecraft system physics incorporation of the photonics can be efficiently and effectively accomplished. This requires a clear understanding of the driving physics properties of the photonics device to ensure proper integration with no unintended consequences. The driving physics considerations in terms of optical performance will be identified for their use in system integration. Keywords: System Engineering, Optical Transfer Function, Optical Physics, Photonics, Image Jitter, Launch Vehicle, System Integration, Organizational Interaction
A 25-kW Series-Resonant Power Converter
NASA Technical Reports Server (NTRS)
Frye, R. J.; Robson, R. R.
1986-01-01
Prototype exhibited efficiency of 93.9 percent. 25-kW resonant dc/dc power converter designed, developed, fabricated, and tested, using Westinghouse D7ST transistors as high-power switches. D7ST transistor characterized for use as switch in series-resonant converters, and refined base-drive circuit developed. Technical base includes advanced switching magnetic, and filter components, mathematical circuit models, control philosophies, and switch-drive strategies. Power-system benefits such as lower losses when used for high-voltage distribution, and reduced magnetics and filter mass realized.
Thermodynamic geometry of minimum-dissipation driven barrier crossing
NASA Astrophysics Data System (ADS)
Sivak, David A.; Crooks, Gavin E.
2016-11-01
We explore the thermodynamic geometry of a simple system that models the bistable dynamics of nucleic acid hairpins in single molecule force-extension experiments. Near equilibrium, optimal (minimum-dissipation) driving protocols are governed by a generalized linear response friction coefficient. Our analysis demonstrates that the friction coefficient of the driving protocols is sharply peaked at the interface between metastable regions, which leads to minimum-dissipation protocols that drive rapidly within a metastable basin, but then linger longest at the interface, giving thermal fluctuations maximal time to kick the system over the barrier. Intuitively, the same principle applies generically in free energy estimation (both in steered molecular dynamics simulations and in single-molecule experiments), provides a design principle for the construction of thermodynamically efficient coupling between stochastic objects, and makes a prediction regarding the construction of evolved biomolecular motors.
Thermodynamic geometry of minimum-dissipation driven barrier crossing
NASA Astrophysics Data System (ADS)
Sivak, David; Crooks, Gavin
We explore the thermodynamic geometry of a simple system that models the bistable dynamics of nucleic acid hairpins in single molecule force-extension experiments. Near equilibrium, optimal (minimum-dissipation) driving protocols are governed by a generalized linear response friction coefficient. Our analysis demonstrates that the friction coefficient of the driving protocols is sharply peaked at the interface between metastable regions, which leads to minimum-dissipation protocols that drive rapidly within a metastable basin, but then linger longest at the interface, giving thermal fluctuations maximal time to kick the system over the barrier. Intuitively, the same principle applies generically in free energy estimation (both in steered molecular dynamics simulations and in single-molecule experiments), provides a design principle for the construction of thermodynamically efficient coupling between stochastic objects, and makes a prediction regarding the construction of evolved biomolecular motors.
Efficient Driving of Piezoelectric Transducers Using a Biaxial Driving Technique
2015-01-01
Efficient driving of piezoelectric materials is desirable when operating transducers for biomedical applications such as high intensity focused ultrasound (HIFU) or ultrasound imaging. More efficient operation reduces the electric power required to produce the desired bioeffect or contrast. Our preliminary work [Cole et al. Journal of Physics: Condensed Matter. 2014;26(13):135901.] suggested that driving transducers by applying orthogonal electric fields can significantly reduce the coercivity that opposes ferroelectric switching. We present here the experimental validation of this biaxial driving technique using piezoelectric ceramics typically used in HIFU. A set of narrow-band transducers was fabricated with two sets of electrodes placed in an orthogonal configuration (following the propagation and the lateral mode). The geometry of the ceramic was chosen to have a resonance frequency similar for the propagation and the lateral mode. The average (± s.d.) resonance frequency of the samples was 465.1 (± 1.5) kHz. Experiments were conducted in which each pair of electrodes was driven independently and measurements of effective acoustic power were obtained using the radiation force method. The efficiency (acoustic/electric power) of the biaxial driving method was compared to the results obtained when driving the ceramic using electrodes placed only in the pole direction. Our results indicate that the biaxial method increases efficiency from 50% to 125% relative to the using a single electric field. PMID:26418550
Papadelis, Christos; Chen, Zhe; Kourtidou-Papadeli, Chrysoula; Bamidis, Panagiotis D; Chouvarda, Ioanna; Bekiaris, Evangelos; Maglaveras, Nikos
2007-09-01
The objective of this study is the development and evaluation of efficient neurophysiological signal statistics, which may assess the driver's alertness level and serve as potential indicators of sleepiness in the design of an on-board countermeasure system. Multichannel EEG, EOG, EMG, and ECG were recorded from sleep-deprived subjects exposed to real field driving conditions. A number of severe driving errors occurred during the experiments. The analysis was performed in two main dimensions: the macroscopic analysis that estimates the on-going temporal evolution of physiological measurements during the driving task, and the microscopic event analysis that focuses on the physiological measurements' alterations just before, during, and after the driving errors. Two independent neurophysiologists visually interpreted the measurements. The EEG data were analyzed by using both linear and non-linear analysis tools. We observed the occurrence of brief paroxysmal bursts of alpha activity and an increased synchrony among EEG channels before the driving errors. The alpha relative band ratio (RBR) significantly increased, and the Cross Approximate Entropy that quantifies the synchrony among channels also significantly decreased before the driving errors. Quantitative EEG analysis revealed significant variations of RBR by driving time in the frequency bands of delta, alpha, beta, and gamma. Most of the estimated EEG statistics, such as the Shannon Entropy, Kullback-Leibler Entropy, Coherence, and Cross-Approximate Entropy, were significantly affected by driving time. We also observed an alteration of eyes blinking duration by increased driving time and a significant increase of eye blinks' number and duration before driving errors. EEG and EOG are promising neurophysiological indicators of driver sleepiness and have the potential of monitoring sleepiness in occupational settings incorporated in a sleepiness countermeasure device. The occurrence of brief paroxysmal bursts of alpha activity before severe driving errors is described in detail for the first time. Clear evidence is presented that eye-blinking statistics are sensitive to the driver's sleepiness and should be considered in the design of an efficient and driver-friendly sleepiness detection countermeasure device.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaClair, Tim; Gao, Zhiming; Fu, Joshua
Quantifying the fuel savings and emissions reductions that can be achieved from truck fuel efficiency technologies for a fleet's specific usage allows the fleet to select a combination of technologies that will yield the greatest operational efficiency and profitability. An accurate characterization of usage for the fleet is critical for such an evaluation; however, short-term measured drive cycle data do not generally reflect overall usage very effectively. This study presents a detailed analysis of vehicle usage in a commercial vehicle fleet and demonstrates the development of a short-duration synthetic drive cycle with measured drive cycle data collected over an extendedmore » period of time. The approach matched statistical measures of the vehicle speed with acceleration history and integrated measured grade data to develop a compressed drive cycle that accurately represents total usage. Drive cycle measurements obtained during a full year from six tractor trailers in normal operations in a less-than-truckload carrier were analyzed to develop a synthetic drive cycle. The vehicle mass was also estimated to account for the variation of loads that the fleet experienced. These drive cycle and mass data were analyzed with a tractive energy analysis to quantify the benefits in terms of fuel efficiency and reduced carbon dioxide emissions that can be achieved on Class 8 tractor trailers by using advanced efficiency technologies, either individually or in combination. Although differences exist between Class 8 tractor trailer fleets, this study provides valuable insight into the energy and emissions reduction potential that various technologies can bring in this important trucking application. Finally, the methodology employed for generating the synthetic drive cycle serves as a rigorous approach to develop an accurate usage characterization that can be used to effectively compress large quantities of drive cycle data.« less
LaClair, Tim; Gao, Zhiming; Fu, Joshua; ...
2014-12-01
Quantifying the fuel savings and emissions reductions that can be achieved from truck fuel efficiency technologies for a fleet's specific usage allows the fleet to select a combination of technologies that will yield the greatest operational efficiency and profitability. An accurate characterization of usage for the fleet is critical for such an evaluation; however, short-term measured drive cycle data do not generally reflect overall usage very effectively. This study presents a detailed analysis of vehicle usage in a commercial vehicle fleet and demonstrates the development of a short-duration synthetic drive cycle with measured drive cycle data collected over an extendedmore » period of time. The approach matched statistical measures of the vehicle speed with acceleration history and integrated measured grade data to develop a compressed drive cycle that accurately represents total usage. Drive cycle measurements obtained during a full year from six tractor trailers in normal operations in a less-than-truckload carrier were analyzed to develop a synthetic drive cycle. The vehicle mass was also estimated to account for the variation of loads that the fleet experienced. These drive cycle and mass data were analyzed with a tractive energy analysis to quantify the benefits in terms of fuel efficiency and reduced carbon dioxide emissions that can be achieved on Class 8 tractor trailers by using advanced efficiency technologies, either individually or in combination. Although differences exist between Class 8 tractor trailer fleets, this study provides valuable insight into the energy and emissions reduction potential that various technologies can bring in this important trucking application. Finally, the methodology employed for generating the synthetic drive cycle serves as a rigorous approach to develop an accurate usage characterization that can be used to effectively compress large quantities of drive cycle data.« less
Schoonover, Heather; Haydon, Kristin
2018-06-14
When breaches in infection control occur, it is imperative that organizations respond in a manner that is effective, efficient, and rebuilds trust with patients. Readers will learn how the incident command structure, daily management system, and the Centers for Disease Control and Prevention's Patient Notification Toolkit were used to drive an effective response to an infection control breach-resulting in 92% of affected patients completing the recommended testing for hepatitis B, hepatitis C, and human immunodeficiency virus. © 2018 American Society for Healthcare Risk Management of the American Hospital Association.
A high-efficiency high-power-generation system for automobiles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naidu, M.; Boules, N.; Henry, R.
This paper presents a new scheme for the efficient generation of high electric power demanded for future automobiles. The new system consists of a permanent-magnet (PM) alternator having high-energy MAGNEQUENCH (MQ) magnets and split winding and a novel electronic voltage-regulation scheme. A proof-of-concept system, capable of providing 100/250 A (idle/cruising) at 14 V, has been built and tested in the laboratory with encouraging results. This high output is provided at 15--20 percentage points higher efficiencies than conventional automotive alternators, which translates into considerable fuel economy savings. The system is 8 dB quieter and has a rotor inertia of only 2/3more » that of an equivalent production alternator, thus allowing for a belt drive without excessive slippage.« less
A high-efficiency, high power generation system for automobiles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naidu, M.; Boules, N.; Henry, R.
The paper presents a new scheme for the efficient generation of high electric power, demands for future automobiles. The new system, consists of a permanent magnet (PM) alternator having high energy MAGNEQUENCH (MQ) magnets and split winding; and a novel electronic voltage regulation scheme. A proof of concept system, capable of providing 100/250 A (idle/cruising) at 14 V, has been built and tested in the laboratory with encouraging results. This high output is provided at 15--20 percentage points higher efficiencies than conventional automotive alternators, which translates into considerable fuel economy savings. The system is 8 dB quieter and has amore » rotor inertia of only 2/3 that of an equivalent production alternator, thus allowing for a belt drive without excessive slippage.« less
Iqbal, Asif; Allan, Andrew; Afroze, Shirina
2017-08-01
The study focused to assess the level of efficiency (of both emissions and service quality) that can be achieved for the transport system in Dhaka City, Bangladesh. The assessment technique attempted to quantify the extent of eco-efficiency achievable for the system modifications due to planning or strategy. The eco-efficiency analysis was facilitated with a detailed survey data on Dhaka City transport system, which was conducted for 9 months in 2012-2013. Line source modelling (CALINE4) was incorporated to estimate the on-road emission concentration. The eco-efficiency of the transport systems was assessed with the 'multi-criteria analysis' (MCA) technique that enabled the valuation of systems' qualitative and quantitative parameters. As per the analysis, driving indiscipline on road can alone promise about 47% reductions in emissions, which along with the number of private vehicles were the important stressors that restrict achieving eco-efficiency in Dhaka City. Detailed analysis of the transport system together with the potential transport system scenarios can offer a checklist to the policy makers enabling to identify the possible actions needed that can offer greater services to the dwellers against lesser emissions, which in turn can bring sustainability of the system.
NASA Astrophysics Data System (ADS)
Sutherland, D. A.; Jarboe, T. R.; Marklin, G.; Morgan, K. D.; Nelson, B. A.
2013-10-01
A high-beta spheromak reactor system has been designed with an overnight capital cost that is competitive with conventional power sources. This reactor system utilizes recently discovered imposed-dynamo current drive (IDCD) and a molten salt blanket system for first wall cooling, neutron moderation and tritium breeding. Currently available materials and ITER developed cryogenic pumping systems were implemented in this design on the basis of technological feasibility. A tritium breeding ratio of greater than 1.1 has been calculated using a Monte Carlo N-Particle (MCNP5) neutron transport simulation. High-temperature superconducting tapes (YBCO) were used for the equilibrium coil set, substantially reducing the recirculating power fraction when compared to previous spheromak reactor studies. Using zirconium hydride for neutron shielding, a limiting equilibrium coil lifetime of at least thirty full-power years has been achieved. The primary FLiBe loop was coupled to a supercritical carbon dioxide Brayton cycle due to attractive economics and high thermal efficiencies. With these advancements, an electrical output of 1000 MW from a thermal output of 2486 MW was achieved, yielding an overall plant efficiency of approximately 40%. A paper concerning the Dynomak reactor design is currently being reviewed for publication.
2014-09-01
reasonable yield within this decade. Similarly, the permanent magnet motors , which are desirable for traction due to their high efficiency, must also be...degrees C and 180 degrees C (RDECOM Public Affairs 2014). Current electric drive vehicles, using permanent magnet motors , have thermal limitations well...performance and their good efficiency, benefits particularly applicable to permanent magnet motors . Synchronous motors with permanent magnets, in
NASA transmission research and its probable effects on helicopter transmission design
NASA Technical Reports Server (NTRS)
Zaretsky, E. V.; Coy, J. J.; Townsend, D. P.
1983-01-01
Transmissions studied for application to helicopters in addition to the more conventional geared transmissions include hybrid (traction/gear), bearingless planetary, and split torque transmissions. Research is being performed to establish the validity of analysis and computer codes developed to predict the performance, efficiency, life, and reliability of these transmissions. Results of this research should provide the transmission designer with analytical tools to design for minimum weight and noise with maximum life and efficiency. In addition, the advantages and limitations of drive systems as well as the more conventional systems will be defined.
NASA transmission research and its probable effects on helicopter transmission design
NASA Technical Reports Server (NTRS)
Zaretsky, E. V.; Coy, J. J.; Townsend, D. P.
1984-01-01
Transmissions studied for application to helicopters in addition to the more conventional geared transmissions include hybrid (traction/gear), bearingless planetary, and split torque transmissions. Research is being performed to establish the validity of analysis and computer codes developed to predict the performance, efficiency, life, and reliability of these transmissions. Results of this research should provide the transmission designer with analytical tools to design for minimum weight and noise with maximum life and efficiency. In addition, the advantages and limitations of drive systems as well as the more conventional systems will be defined.
Thermal Performance Benchmarking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Xuhui; Moreno, Gilbert; Bennion, Kevin
2016-06-07
The goal for this project is to thoroughly characterize the thermal performance of state-of-the-art (SOA) in-production automotive power electronics and electric motor thermal management systems. Information obtained from these studies will be used to: evaluate advantages and disadvantages of different thermal management strategies; establish baseline metrics for the thermal management systems; identify methods of improvement to advance the SOA; increase the publicly available information related to automotive traction-drive thermal management systems; help guide future electric drive technologies (EDT) research and development (R&D) efforts. The thermal performance results combined with component efficiency and heat generation information obtained by Oak Ridge Nationalmore » Laboratory (ORNL) may then be used to determine the operating temperatures for the EDT components under drive-cycle conditions. In FY16, the 2012 Nissan LEAF power electronics and 2014 Honda Accord Hybrid power electronics thermal management system were characterized. Comparison of the two power electronics thermal management systems was also conducted to provide insight into the various cooling strategies to understand the current SOA in thermal management for automotive power electronics and electric motors.« less
Magnetic particle clutch controls servo system
NASA Technical Reports Server (NTRS)
Fow, P. B.
1973-01-01
Magnetic clutches provide alternative means of driving low-power rate or positioning servo systems. They may be used over wide variety of input speed ranges and weigh comparatively little. Power drain is good with overall motor/clutch efficiency greater than 50 percent, and gain of clutch is close to linear, following hysteresis curve of core and rotor material.
NASA Astrophysics Data System (ADS)
Zheng, Pingwei; Gong, Xueyu; Lu, Xingqiang; He, Lihua; Cao, Jingjia; Huang, Qianhong; Deng, Sheng
2018-03-01
A localized and efficient current drive method in the outer-half region of the tokamak with a large inverse aspect ratio is proposed via the Ohkawa mechanism of electron cyclotron (EC) waves. Further off-axis Ohkawa current drive (OKCD) via EC waves was investigated in high electron beta β e HL-2M-like tokamaks with a large inverse aspect ratio, and in EAST-like tokamaks with a low inverse aspect ratio. OKCD can be driven efficiently, and the driven current profile is spatially localized in the radial region, ranging from 0.62 to 0.85, where the large fraction of trapped electrons provides an excellent advantage for OKCD. Furthermore, the current drive efficiency increases with an increase in minor radius, and then drops when the minor radius beyond a certain value. The effect of trapped electrons greatly enhances the current driving capability of the OKCD mechanism. The highest current drive efficiency can reach 0.183 by adjusting the steering mirror to change the toroidal and poloidal incident angle, and the total driven current by OKCD can reach 20-32 kA MW-1 in HL-2M-like tokamaks. The current drive is less efficient for the EAST-like scenario due to the lower inverse aspect ratio. The results show that OKCD may be a valuable alternative current drive method in large inverse aspect ratio tokamaks, and the potential capabilities of OKCD can be used to suppress some important magnetohydrodynamics instabilities in the far off-axis region.
FUZZY-LOGIC-BASED CONTROLLERS FOR EFFICIENCY OPTIMIZATION OF INVERTER-FED INDUCTION MOTOR DRIVES
This paper describes a fuzzy-logic-based energy optimizing controller to improve the efficiency of induction motor/drives operating at various load (torque) and speed conditions. Improvement of induction motor efficiency is important not only from the considerations of energy sav...
Water splitting-biosynthetic system with CO₂ reduction efficiencies exceeding photosynthesis.
Liu, Chong; Colón, Brendan C; Ziesack, Marika; Silver, Pamela A; Nocera, Daniel G
2016-06-03
Artificial photosynthetic systems can store solar energy and chemically reduce CO2 We developed a hybrid water splitting-biosynthetic system based on a biocompatible Earth-abundant inorganic catalyst system to split water into molecular hydrogen and oxygen (H2 and O2) at low driving voltages. When grown in contact with these catalysts, Ralstonia eutropha consumed the produced H2 to synthesize biomass and fuels or chemical products from low CO2 concentration in the presence of O2 This scalable system has a CO2 reduction energy efficiency of ~50% when producing bacterial biomass and liquid fusel alcohols, scrubbing 180 grams of CO2 per kilowatt-hour of electricity. Coupling this hybrid device to existing photovoltaic systems would yield a CO2 reduction energy efficiency of ~10%, exceeding that of natural photosynthetic systems. Copyright © 2016, American Association for the Advancement of Science.
Göppel, Tobias; Palyulin, Vladimir V; Gerland, Ulrich
2016-07-27
An out-of-equilibrium physical environment can drive chemical reactions into thermodynamically unfavorable regimes. Under prebiotic conditions such a coupling between physical and chemical non-equilibria may have enabled the spontaneous emergence of primitive evolutionary processes. Here, we study the coupling efficiency within a theoretical model that is inspired by recent laboratory experiments, but focuses on generic effects arising whenever reactant and product molecules have different transport coefficients in a flow-through system. In our model, the physical non-equilibrium is represented by a drift-diffusion process, which is a valid coarse-grained description for the interplay between thermophoresis and convection, as well as for many other molecular transport processes. As a simple chemical reaction, we consider a reversible dimerization process, which is coupled to the transport process by different drift velocities for monomers and dimers. Within this minimal model, the coupling efficiency between the non-equilibrium transport process and the chemical reaction can be analyzed in all parameter regimes. The analysis shows that the efficiency depends strongly on the Damköhler number, a parameter that measures the relative timescales associated with the transport and reaction kinetics. Our model and results will be useful for a better understanding of the conditions for which non-equilibrium environments can provide a significant driving force for chemical reactions in a prebiotic setting.
Control and Optimization of Electric Ship Propulsion Systems with Hybrid Energy Storage
NASA Astrophysics Data System (ADS)
Hou, Jun
Electric ships experience large propulsion-load fluctuations on their drive shaft due to encountered waves and the rotational motion of the propeller, affecting the reliability of the shipboard power network and causing wear and tear. This dissertation explores new solutions to address these fluctuations by integrating a hybrid energy storage system (HESS) and developing energy management strategies (EMS). Advanced electric propulsion drive concepts are developed to improve energy efficiency, performance and system reliability by integrating HESS, developing advanced control solutions and system integration strategies, and creating tools (including models and testbed) for design and optimization of hybrid electric drive systems. A ship dynamics model which captures the underlying physical behavior of the electric ship propulsion system is developed to support control development and system optimization. To evaluate the effectiveness of the proposed control approaches, a state-of-the-art testbed has been constructed which includes a system controller, Li-Ion battery and ultra-capacitor (UC) modules, a high-speed flywheel, electric motors with their power electronic drives, DC/DC converters, and rectifiers. The feasibility and effectiveness of HESS are investigated and analyzed. Two different HESS configurations, namely battery/UC (B/UC) and battery/flywheel (B/FW), are studied and analyzed to provide insights into the advantages and limitations of each configuration. Battery usage, loss analysis, and sensitivity to battery aging are also analyzed for each configuration. In order to enable real-time application and achieve desired performance, a model predictive control (MPC) approach is developed, where a state of charge (SOC) reference of flywheel for B/FW or UC for B/UC is used to address the limitations imposed by short predictive horizons, because the benefits of flywheel and UC working around high-efficiency range are ignored by short predictive horizons. Given the multi-frequency characteristics of load fluctuations, a filter-based control strategy is developed to illustrate the importance of the coordination within the HESS. Without proper control strategies, the HESS solution could be worse than a single energy storage system solution. The proposed HESS, when introduced into an existing shipboard electrical propulsion system, will interact with the power generation systems. A model-based analysis is performed to evaluate the interactions of the multiple power sources when a hybrid energy storage system is introduced. The study has revealed undesirable interactions when the controls are not coordinated properly, and leads to the conclusion that a proper EMS is needed. Knowledge of the propulsion-load torque is essential for the proposed system-level EMS, but this load torque is immeasurable in most marine applications. To address this issue, a model-based approach is developed so that load torque estimation and prediction can be incorporated into the MPC. In order to evaluate the effectiveness of the proposed approach, an input observer with linear prediction is developed as an alternative approach to obtain the load estimation and prediction. Comparative studies are performed to illustrate the importance of load torque estimation and prediction, and demonstrate the effectiveness of the proposed approach in terms of improved efficiency, enhanced reliability, and reduced wear and tear. Finally, the real-time MPC algorithm has been implemented on a physical testbed. Three different efforts have been made to enable real-time implementation: a specially tailored problem formulation, an efficient optimization algorithm and a multi-core hardware implementation. Compared to the filter-based strategy, the proposed real-time MPC achieves superior performance, in terms of the enhanced system reliability, improved HESS efficiency, and extended battery life.
DOT National Transportation Integrated Search
2013-12-01
This simulation-based study explores the effects of different work zone configurations, varying distances : between traffic signs, traffic density and individual differences on drivers behavior. Conventional Lane : Merge (CLM) and Joint Lane Merge...
ERIC Educational Resources Information Center
Lent, John
1984-01-01
This article describes a computer network system that connects several microcomputers to a single disk drive and one copy of software. Many schools are switching to networks as a cheaper and more efficient means of computer instruction. Teachers may be faced with copywriting problems when reproducing programs. (DF)
An Evaluation of Ecotoxicity Test Guidelines: Their Adequacy for Nanomaterials
Advances in nanotechnology are resulting in the production of new nanomaterials at a rapid pace. Driving the dramatic development of new materials and products is the prospect of stronger and lighter materials, better and more efficient energy systems, potential tremendous benefi...
Reducing The Risk Of Fires In Conveyor Transport
NASA Astrophysics Data System (ADS)
Cheremushkina, M. S.; Poddubniy, D. A.
2017-01-01
The paper deals with the actual problem of increasing the safety of operation of belt conveyors in mines. Was developed the control algorithm that meets the technical requirements of the mine belt conveyors, reduces the risk of fires of conveyors belt, and enables energy and resource savings taking into account random sort of traffic. The most effective method of decision such tasks is the construction of control systems with the use of variable speed drives for asynchronous motors. Was designed the mathematical model of the system "variable speed multiengine drive - conveyor - control system of conveyors", that takes into account the dynamic processes occurring in the elements of the transport system, provides an assessment of the energy efficiency of application the developed algorithms, which allows to reduce the dynamic overload in the belt to (15-20)%.
Optimal pitching axis location of flapping wings for efficient hovering flight.
Wang, Q; Goosen, J F L; van Keulen, F
2017-09-01
Flapping wings can pitch passively about their pitching axes due to their flexibility, inertia, and aerodynamic loads. A shift in the pitching axis location can dynamically alter the aerodynamic loads, which in turn changes the passive pitching motion and the flight efficiency. Therefore, it is of great interest to investigate the optimal pitching axis for flapping wings to maximize the power efficiency during hovering flight. In this study, flapping wings are modeled as rigid plates with non-uniform mass distribution. The wing flexibility is represented by a linearly torsional spring at the wing root. A predictive quasi-steady aerodynamic model is used to evaluate the lift generated by such wings. Two extreme power consumption scenarios are modeled for hovering flight, i.e. the power consumed by a drive system with and without the capacity of kinetic energy recovery. For wings with different shapes, the optimal pitching axis location is found such that the cycle-averaged power consumption during hovering flight is minimized. Optimization results show that the optimal pitching axis is located between the leading edge and the mid-chord line, which shows close resemblance to insect wings. An optimal pitching axis can save up to 33% of power during hovering flight when compared to traditional wings used by most of flapping wing micro air vehicles (FWMAVs). Traditional wings typically use the straight leading edge as the pitching axis. With the optimized pitching axis, flapping wings show higher pitching amplitudes and start the pitching reversals in advance of the sweeping reversals. These phenomena lead to higher lift-to-drag ratios and, thus, explain the lower power consumption. In addition, the optimized pitching axis provides the drive system higher potential to recycle energy during the deceleration phases as compared to their counterparts. This observation underlines the particular importance of the wing pitching axis location for energy-efficient FWMAVs when using kinetic energy recovery drive systems.
The nature of Stokes efficiency in a rocked ratchet
NASA Astrophysics Data System (ADS)
Sahoo, Mamata; Jayannavar, A. M.
2017-05-01
We have introduced the notion of stochastic Stokes efficiency in thermal ratchets or molecular motors. These ratchet systems comprise of Brownian particles in a nonequilibrium state and they show unidirectional currents in the absence of obvious bias. They convert nonequilibrium fluctuations into useful work. Our study reveals that the average stochastic Stokes efficiency can be very large, however, dominated by the thermal fluctuations. To this end we have obtained the full probability distribution of the stochastic Stokes efficiency, which exhibits novel behaviour as a function of the strength of the external drive. Stokes efficiency decreases as we go from adiabatic to the nonadiabatic regime.
NASA Astrophysics Data System (ADS)
Pak, Pyong Sik
This paper evaluates two proposed repowering systems together with a conventional repowering system. A power generation system utilizing waste heat produced by a garbage incineration plant (GIP), which treats 45 t/d of garbage, was taken as an objective power generation system to be repowered. As the conventional repowering system (Sys-C), a gas turbine system with waste heat boiler was adopted. In the proposed system 1 (Sys-P1), temperature of the low temperature steam generated at the GIP is raised in the gas combustor by burning fuel, and used to drive a gas turbine generator. Hence, required power for compressing the air becomes remarkably small and expected to be high efficient compared with Sys-C. In the proposed system 2 (Sys-P2), the low temperature steam generated at the GIP is superheated by using regenerative burner and used to drive a steam turbine generator, and hence making steam condition optimal becomes easy. Various basic characteristics of the three repowering systems were estimated through computer simulation, such as repowering efficiency, energy saving characteristics, and amount of CO2 reduction. It was shown that Sys-P1 and Sys-P2 were both superior to the conventional repowering system Sys-C in the all characteristics, and Sys-P1 to Sys-P2 in repowering efficiency, and that Sys-P2 to Sys-P1 in energy saving characteristics and CO2 reduction effect. It has also been estimated that all the repowering systems are economically feasible, and that the proposed systems Sys-P1 and Sys-P2 are both superior to the Sys-C in the three economical indices of unit cost of power, annual gross profit and depreciation year.
Bridging Quantum, Classical and Stochastic Shortcuts to Adiabaticity
NASA Astrophysics Data System (ADS)
Patra, Ayoti
Adiabatic invariants - quantities that are preserved under the slow driving of a system's external parameters - are important in classical mechanics, quantum mechanics and thermodynamics. Adiabatic processes allow a system to be guided to evolve to a desired final state. However, the slow driving of a quantum system makes it vulnerable to environmental decoherence, and for both quantum and classical systems, it is often desirable and time-efficient to speed up a process. Shortcuts to adiabaticity are strategies for preserving adiabatic invariants under rapid driving, typically by means of an auxiliary field that suppresses excitations, otherwise generated during rapid driving. Several theoretical approaches have been developed to construct such shortcuts. In this dissertation we focus on two different approaches, namely counterdiabatic driving and fast-forward driving, which were originally developed for quantum systems. The counterdiabatic approach introduced independently by Dermirplak and Rice [J. Phys. Chem. A, 107:9937, 2003], and Berry [J. Phys. A: Math. Theor., 42:365303, 2009] formally provides an exact expression for the auxiliary Hamiltonian, which however is abstract and difficult to translate into an experimentally implementable form. By contrast, the fast-forward approach developed by Masuda and Nakamura [Proc. R. Soc. A, 466(2116):1135, 2010] provides an auxiliary potential that may be experimentally implementable but generally applies only to ground states. The central theme of this dissertation is that classical shortcuts to adiabaticity can provide useful physical insights and lead to experimentally implementable shortcuts for analogous quantum systems. We start by studying a model system of a tilted piston to provide a proof of principle that quantum shortcuts can successfully be constructed from their classical counterparts. In the remainder of the dissertation, we develop a general approach based on flow-fields which produces simple expressions for auxiliary terms required for both counterdiabatic and fast-forward driving. We demonstrate the applicability of this approach for classical, quantum as well as stochastic systems. We establish strong connections between counterdiabatic and fast-forward approaches, and also between shortcut protocols required for classical, quantum and stochastic systems. In particular, we show how the fast-forward approach can be extended to highly excited states of quantum systems.
NASA Astrophysics Data System (ADS)
Kim, Chul-Ho; Lee, Kee-Man; Lee, Sang-Heon
Power train system design is one of the key R&D areas on the development process of new automobile because an optimum size of engine with adaptable power transmission which can accomplish the design requirement of new vehicle can be obtained through the system design. Especially, for the electric vehicle design, very reliable design algorithm of a power train system is required for the energy efficiency. In this study, an analytical simulation algorithm is developed to estimate driving performance of a designed power train system of an electric. The principal theory of the simulation algorithm is conservation of energy with several analytical and experimental data such as rolling resistance, aerodynamic drag, mechanical efficiency of power transmission etc. From the analytical calculation results, running resistance of a designed vehicle is obtained with the change of operating condition of the vehicle such as inclined angle of road and vehicle speed. Tractive performance of the model vehicle with a given power train system is also calculated at each gear ratio of transmission. Through analysis of these two calculation results: running resistance and tractive performance, the driving performance of a designed electric vehicle is estimated and it will be used to evaluate the adaptability of the designed power train system on the vehicle.
New Technique of AC drive in Tokamak using Permanent Magnets
NASA Astrophysics Data System (ADS)
Matteucci, Jackson; Zolfaghari, Ali
2013-10-01
This study investigates a new technique of capturing the rotational energy of alternating permanent magnets in order to inductively drive an alternating current in tokamak devices. The use of rotational motion bypasses many of the pitfalls seen in typical inductive and non-inductive current drives. Three specific designs are presented and assessed in the following criteria: the profile of the current generated, the RMS loop voltage generated as compared to the RMS power required to maintain it, the system's feasibility from an engineering perspective. All of the analysis has been done under ideal E&M conditions using the Maxwell 3D program. Preliminary results indicate that it is possible to produce an over 99% purely toroidal current with a RMS d Φ/dt of over 150 Tm2/s, driven by 20 MW or less of rotational power. The proposed mechanism demonstrates several key advantages including an efficient mechanical drive system, the generation of pure toroidal currents, and the potential for a quasi-steady state fusion reactor. The following quantities are presented for various driving frequencies and magnet strengths: plasma current generated, loop voltage, torque and power required. This project has been supported by DOE Funding under the SULI program.
Using speech recognition to enhance the Tongue Drive System functionality in computer access.
Huo, Xueliang; Ghovanloo, Maysam
2011-01-01
Tongue Drive System (TDS) is a wireless tongue operated assistive technology (AT), which can enable people with severe physical disabilities to access computers and drive powered wheelchairs using their volitional tongue movements. TDS offers six discrete commands, simultaneously available to the users, for pointing and typing as a substitute for mouse and keyboard in computer access, respectively. To enhance the TDS performance in typing, we have added a microphone, an audio codec, and a wireless audio link to its readily available 3-axial magnetic sensor array, and combined it with a commercially available speech recognition software, the Dragon Naturally Speaking, which is regarded as one of the most efficient ways for text entry. Our preliminary evaluations indicate that the combined TDS and speech recognition technologies can provide end users with significantly higher performance than using each technology alone, particularly in completing tasks that require both pointing and text entry, such as web surfing.
Sustainable Mobility Initiative | Transportation Research | NREL
optimize mobility and significantly reduce related energy consumption. This concept of an intelligent measures to explore these technologies' effects on transportation energy use, emissions, and overall system . Efficient driving with smoother starts, stops, and accelerations to reduce energy consumption and
Analyzing Vehicle Fuel Saving Opportunities through Intelligent Driver Feedback
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonder, J.; Earleywine, M.; Sparks, W.
2012-06-01
Driving style changes, e.g., improving driver efficiency and motivating driver behavior changes, could deliver significant petroleum savings. This project examines eliminating stop-and-go driving and unnecessary idling, and also adjusting acceleration rates and cruising speeds to ideal levels to quantify fuel savings. Such extreme adjustments can result in dramatic fuel savings of over 30%, but would in reality only be achievable through automated control of vehicles and traffic flow. In real-world driving, efficient driving behaviors could reduce fuel use by 20% on aggressively driven cycles and by 5-10% on more moderately driven trips. A literature survey was conducted of driver behaviormore » influences, and pertinent factors from on-road experiments with different driving styles were observed. This effort highlighted important driver influences such as surrounding vehicle behavior, anxiety over trying to get somewhere quickly, and the power/torque available from the vehicle. Existing feedback approaches often deliver efficiency information and instruction. Three recommendations for maximizing fuel savings from potential drive cycle improvement are: (1) leveraging applications with enhanced incentives, (2) using an approach that is easy and widely deployable to motivate drivers, and (3) utilizing connected vehicle and automation technologies to achieve large and widespread efficiency improvements.« less
Isolated step-down DC -DC converter for electric vehicles
NASA Astrophysics Data System (ADS)
Kukovinets, O. V.; Sidorov, K. M.; Yutt, V. E.
2018-02-01
Modern motor-vehicle industrial sector is moving rapidly now towards the electricity-driving cars production, improving their range and efficiency of components, and in particular the step-down DC/DC converter to supply the onboard circuit 12/24V of electric vehicle from the high-voltage battery. The purpose of this article - to identify the best circuitry topology to design an advanced step-down DC/DC converters with the smallest mass, volume, highest efficiency and power. And this will have a positive effect on driving distance of electric vehicle (EV). On the basis of computational research of existing and implemented circuit topologies of step-down DC/DC converters (serial resonant converter, full bridge with phase-shifting converter, LLC resonant converter) a comprehensive analysis was carried out on the following characteristics: specific volume, specific weight, power, efficiency. The data obtained was the basis for the best technical option - LLC resonant converter. The results can serve as a guide material in the process of components design of the traction equipment for electric vehicles, providing for the best technical solutions in the design and manufacturing of converting equipment, self-contained power supply systems and advanced driver assistance systems.
Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel
Energy Futures Series: Effects of Travel Reduction and Efficient Driving on Transportation: Energy Use and Greenhouse Gas Emissions Transportation Energy Futures Series: Effects of the Built Environment on
Water augmented indirectly-fired gas turbine systems and method
Bechtel, Thomas F.; Parsons, Jr., Edward J.
1992-01-01
An indirectly-fired gas turbine system utilizing water augmentation for increasing the net efficiency and power output of the system is described. Water injected into the compressor discharge stream evaporatively cools the air to provide a higher driving temperature difference across a high temperature air heater which is used to indirectly heat the water-containing air to a turbine inlet temperature of greater than about 1,000.degree. C. By providing a lower air heater hot side outlet temperature, heat rejection in the air heater is reduced to increase the heat recovery in the air heater and thereby increase the overall cycle efficiency.
Performance Estimation for Two-Dimensional Brownian Rotary Ratchet Systems
NASA Astrophysics Data System (ADS)
Tutu, Hiroki; Horita, Takehiko; Ouchi, Katsuya
2015-04-01
Within the context of the Brownian ratchet model, a molecular rotary system that can perform unidirectional rotations induced by linearly polarized ac fields and produce positive work under loads was studied. The model is based on the Langevin equation for a particle in a two-dimensional (2D) three-tooth ratchet potential of threefold symmetry. The performance of the system is characterized by the coercive torque, i.e., the strength of the load competing with the torque induced by the ac driving field, and the energy efficiency in force conversion from the driving field to the torque. We propose a master equation for coarse-grained states, which takes into account the boundary motion between states, and develop a kinetic description to estimate the mean angular momentum (MAM) and powers relevant to the energy balance equation. The framework of analysis incorporates several 2D characteristics and is applicable to a wide class of models of smooth 2D ratchet potential. We confirm that the obtained expressions for MAM, power, and efficiency of the model can enable us to predict qualitative behaviors. We also discuss the usefulness of the torque/power relationship for experimental analyses, and propose a characteristic for 2D ratchet systems.
Driving and flying with epilepsy.
Drazkowski, Joseph F
2007-07-01
Transportation issues in industrialized nations play an important role in the lives of most citizens. The acts of flying and driving, especially in the United States, intersect with many peoples' lives on almost a daily basis. Although some larger cities have modern and efficient public transportation systems, many do not, thus placing considerable responsibility on the individual to manage their own transportation needs. A person with epilepsy faces considerable challenges when it comes to transportation. Defining these challenges and understanding how to deal with the person with epilepsy and transportation issues is the focus of this article.
Consumer holographic read-only memory reader with mastering and replication technology.
Chuang, Ernest; Curtis, Kevin; Yang, Yunping; Hill, Adrian
2006-04-15
What is believed to be a novel holographic design for read-only memory systems allows a compact low-cost consumer drive within a 10 mm drive height, using a lensless phase conjugate readout and a combination of polytopic and angle multiplexing. A two-step mastering method enables production of high-efficiency holographic masters, and fast replication is possible by using only a series of plane-wave illuminations. Mastering and replication techniques are verified experimentally with an array of 125 holograms with no measured bit errors.
Zhou, Yangen; Zhang, Shun; Ding, Yu; Zhang, Leyuan; Zhang, Changkun; Zhang, Xiaohong; Zhao, Yu; Yu, Guihua
2018-06-14
Simultaneous solar energy conversion and storage is receiving increasing interest for better utilization of the abundant yet intermittently available sunlight. Photoelectrodes driving nonspontaneous reversible redox reactions in solar-powered redox cells (SPRCs), which can deliver energy via the corresponding reverse reactions, present a cost-effective and promising approach for direct solar energy harvesting and storage. However, the lack of photoelectrodes having both high conversion efficiency and high durability becomes a bottleneck that hampers practical applications of SPRCs. Here, it is shown that a WO 3 -decorated BiVO 4 photoanode, without the need of extra electrocatalysts, can enable a single-photocatalyst-driven SPRC with a solar-to-output energy conversion efficiency as high as 1.25%. This SPRC presents stable performance over 20 solar energy storage/delivery cycles. The high efficiency and stability are attributed to the rapid redox reactions, the well-matched energy level, and the efficient light harvesting and charge separation of the prepared BiVO 4 . This demonstrated device system represents a potential alternative toward the development of low-cost, durable, and easy-to-implement solar energy technologies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Howell, Joe T.; O'Neill, Mark J.; Mankins, John C.
2006-01-01
Development is underway on a unique high-voltage, high energy solar concentrator array called Stretched Lens Array Square-Rigger (SLASR) for direct drive electric propulsion. The SLASR performance attributes closely match the critical needs of solar electric propulsion (SEP) systems, which may be used for space tugs to fuel efficiently transport cargo from low earth orbit (LEO) to low lunar orbit (LLO), in support of NASA's robotic and human exploration missions. Later SEP systems may similarly transport cargo from the earth-moon neighborhood to the Mars neighborhood. This paper will describe the SLASR technology, discuss SLASR developments and ground testing, and outline plans for future SLASR technology maturation.
NASA Technical Reports Server (NTRS)
Howell, Joe T.; O'Neill, Mark; Mankins, John C.
2006-01-01
Development is underway on a unique high-voltage, high-energy solar concentrator array called Stretched Lens Array Square-Rigger (SLASR) for direct drive electric propulsion. The SLASR performance attributes closely match the critical needs of solar electric propulsion (SEP) systems, which may be used for space tugs to fuel-efficiently transport cargo from low earth orbit (LEO) to low lunar orbit (LLO), in support of NASA s robotic and human exploration missions. Later SEP systems may similarly transport cargo from the earth-moon neighborhood to the Mars neighborhood. This paper will describe the SLASR technology, discuss SLASR developments and ground testing, and outline plans for future SLASR technology maturation.
NASA Technical Reports Server (NTRS)
Frye, R. J.; Birchenough, A. G.
1971-01-01
The design of a three-phase, 400-Hz, 15-kVA static inverter for motor-starting the 2- to 15-kWe Brayton electrical space power system is described. The inverter operates from a nominal 56-V dc source to provide a 28-V, rms, quasi-square-wave output. The inverter is capable of supplying a 200-A peak current. Integrated circuitry is used to generate the three-phase, 400-Hz reference signals. Performance data for a drive stage that improves switching speed and provides efficient operation over a range of output current and drive supply voltage are presented. A transformerless, transistor output stage is used.
NASA Astrophysics Data System (ADS)
Amano, Yoko; Ogasawara, Satoshi
In this paper, a new universal drive system of synchronous motors used Real-Time Interface (RTI) performs characteristic evaluation of Synchronous Reluctance (SynR) motors and Surface Permanent Magnet (SPM) synchronous motors. The RTI connects directly a simulation model with experimental equipment, and makes it possible to use the simulation model for an experiment. The RTI is very effective in the early detection of an actual problem and examination of solution technique. Moreover, it concentrates on examination of control algorithm, and efficient research and development are enabled. A measuring system of synchronous motors is built by the universal drive system. The examination of various synchronous motors is possible for the measurement system using the same control algorithm. Characteristic evaluation of a SynR motor and a SPM synchronous motor that are the same gap length and stator was performed using the measuring system. The measurement result shows experimentally that motor loss of the SynR motor is smaller rather than the SPM synchronous motor, at the time of high speed and low load operation. For example, the SynR motor is suitable to hybrid cars with the comparatively long time of low load and high-speed operation.
NASA Technical Reports Server (NTRS)
Purohit, G. P.; Leising, C. J.
1984-01-01
The power train performance of load leveled electric vehicles can be compared with that of nonload leveled systems by use of a simple mathematical model. This method of measurement involves a number of parameters including the degree of load leveling and regeneration, the flywheel mechanical to electrical energy fraction, and efficiencies of the motor, generator, flywheel, and transmission. Basic efficiency terms are defined and representative comparisons of a variety of systems are presented. Results of the study indicate that mechanical transfer of energy into and out of the flywheel is more advantageous than electrical transfer. An optimum degree of load leveling may be achieved in terms of the driving cycle, battery characteristics, mode of mechanization, and the efficiency of the components. For state of the art mechanically coupled flyheel systems, load leveling losses can be held to a reasonable 10%; electrically coupled systems can have losses that are up to six times larger. Propulsion system efficiencies for mechanically coupled flywheel systems are predicted to be approximately the 60% achieved on conventional nonload leveled systems.
Evaluation of food drying with air dehumidification system: a short review
NASA Astrophysics Data System (ADS)
Djaeni, M.; Utari, F. D.; Sasongko, S. B.; Kumoro, A. C.
2018-01-01
Energy efficient drying for food and agriculture products resulting high quality products has been an important issue. Currently, about 50% of total energy for postharvest treatment was used for drying. This paper presents the evaluation of new approach namely air dehumidification system with zeolite for food drying. Zeolite is a material having affinity to water in which reduced the moisture in air. With low moisture content and relative humidity, the air can improve driving force for drying even at low temperature. Thus, the energy efficiency can be potentially enhanced and the product quality can be well retained. For proving the hypothesis, the paddy and onion have been dried using dehumidified air. As performance indicators, the drying time, product quality, and heat efficiency were evaluated. Results indicated that the drying with zeolite improved the performances significantly. At operating temperature ranging 50 - 60°C, the efficiency of drying system can reach 75% with reasonable product quality.
Direct Drive Hall Thruster System Development
NASA Technical Reports Server (NTRS)
Hoskins, W. Andrew; Homiak, Daniel; Cassady, R. Joseph; Kerslake, Tom; Peterson, Todd; Ferguson, Dale; Snyder, Dave; Mikellides, Ioannis; Jongeward, Gary; Schneider, Todd
2003-01-01
The sta:us of development of a Direct Drive Ha!! Thruster System is presented. 13 the first part. a s:udy of the impacts to spacecraft systems and mass benefits of a direct-drive architecture is reviewed. The study initially examines four cases of SPT-100 and BPT-4000 Hall thrusters used for north-south station keeping on an EXPRESS-like geosynchronous spacecraft and for primary propulsion for a Deep Space- 1 based science spacecraft. The study is also extended the impact of direct drive on orbit raising for higher power geosynchronous spacecraft and on other deep space missions as a function of power and delta velocity. The major system considerations for accommodating a direct drive Hall thruster are discussed, including array regulation, system grounding, distribution of power to the spacecraft bus, and interactions between current-voltage characteristics for the arrays and thrusters. The mass benefit analysis shows that, for the initial cases, up to 42 kg of dry mass savings is attributable directly to changes in the propulsion hardware. When projected mass impacts of operating the arrays and the electric power system at 300V are included, up to 63 kg is saved for the four initial cases. Adoption of high voltage lithium ion battery technology is projected to further improve these savings. Orbit raising of higher powered geosynchronous spacecraft, is the mission for which direct drive provides the most benefit, allowing higher efficiency electric orbit raising to be accomplished in a limited period of time, as well as nearly eliminating significant power processing heat rejection mass. The total increase in useful payload to orbit ranges up to 278 kg for a 25 kW spacecraft, launched from an Atlas IIA. For deep space missions, direct drive is found to be most applicable to higher power missions with delta velocities up to several km/s , typical of several Discovery-class missions. In the second part, the status of development of direct drive propulsion power electronics is presented. The core of this hardware is the heater-keeper-magnet supply being qualified for the BPT-4000 by Aerojet. A breadboard propulsion power unit is in fabrication and is scheduled for delivery late in 2003.
Canada's new drug-impaired driving law: the need to consider other approaches.
Solomon, Robert; Chamberlain, Erika
2014-01-01
The objects of this study were: To review the state of drug-impaired driving in Canada, particularly in light of the 2008 amendments to the Criminal Code, which authorized police to demand standardized field sobriety testing and drug recognition evaluations, and to consider whether alternative enforcement models would be more effective in terms of detecting and prosecuting drug-impaired drivers and thereby achieve greater deterrence. This article provides a review of survey data, roadside screening studies, and postmortem reports that indicate the prevalence of driving after drug use in Canada. It evaluates the Criminal Code's 2008 amendments and their impact on charges and convictions for drug-impaired driving. It then reviews some alternative enforcement models for drug-impaired driving that have been adopted in other jurisdictions, particularly toxicological testing, and evaluates them against Canada's social, political, and constitutional framework. Survey data, roadside screening studies, and postmortem reports indicate that driving after drug use is commonplace and is now more prevalent among young people than driving after drinking. Unfortunately, the 2008 Criminal Code amendments have not had their desired effects. The measures have proven to be costly, time-consuming, and cumbersome, and are readily susceptible to challenge in the courts. Accordingly, the charge rates for drug-impaired driving remain extremely low, and the law has had minimal deterrent effects. The review of alternative enforcement models suggests that a system of random roadside saliva screening, somewhat similar to the model used in Victoria, Australia, will be the most effective in terms of detecting and prosecuting drug-impaired drivers and most consistent with Canada's legal and constitutional system. Canada should establish per se limits for the most commonly used drugs, enforceable through a system of screening and evidentiary tests. This will be more efficient and cost-effective and will result in more reliable evidence for criminal trials. Although this system will inevitably be subject to constitutional challenge, existing case law suggests that it should be upheld as a reasonable limit on constitutional rights.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashley, S.
1991-05-01
Ford's new concept car achieves weight, size, and cost savings with an innovative lightweight aluminum space frame composed of simple extrusions that are fitted together like Lego blocks and adhesively bonded. On the outside, the design is a blend of art and technology that is a modern restatement of a large luxury car. The other major focus of the design is the Contour's compact T-drive powertrain configuration (also shared by the Mystique). This consists of a transversely mounted engine stuffed into the front of the chassis with a longitudinally positioned transmission right behind it. The T-drive arrangement shrinks the car'smore » engine bay and overall length while expanding the passenger compartment. In addition, powerplants with from four to eight cylinders as well as front-wheel-, rear-wheel-, and four-wheel-drive transmission systems can all be incorporated into the T-drive. Other technical innovations on the Contour include an unusual ducted cooling system, a compact brake assembly, a lightweight high-efficiency air conditioner, centralized single-source lighting, and simple but effective suspension technology.« less
Wide Bandgap Technology Enhances Performance of Electric-Drive Vehicles |
, WBG materials/devices enable lighter, more compact, and more efficient power electronics for vehicles, and increased electric vehicle adoption by consumers. Wide bandgap power electronics devices power electronics component size and potentially reduce system or component-level cost, while improving
Advances in nanotechnology are resulting in the production of new nanomaterials at a rapid pace. Driving the dramatic development of new materials and products is the prospect of stronger and lighter materials, better and more efficient energy systems, potential tremendous benefi...
Design of vehicle intelligent anti-collision warning system
NASA Astrophysics Data System (ADS)
Xu, Yangyang; Wang, Ying
2018-05-01
This paper mainly designs a low cost, high-accuracy, micro-miniaturization, and digital display and acousto-optic alarm features of the vehicle intelligent anti-collision warning system that based on MCU AT89C51. The vehicle intelligent anti-collision warning system includes forward anti-collision warning system, auto parking systems and reversing anti-collision radar system. It mainly develops on the basis of ultrasonic distance measurement, its performance is reliable, thus the driving safety is greatly improved and the parking security and efficiency enhance enormously.
Resonant mode controllers for launch vehicle applications
NASA Technical Reports Server (NTRS)
Schreiner, Ken E.; Roth, Mary Ellen
1992-01-01
Electro-mechanical actuator (EMA) systems are currently being investigated for the National Launch System (NLS) as a replacement for hydraulic actuators due to the large amount of manpower and support hardware required to maintain the hydraulic systems. EMA systems in weight sensitive applications, such as launch vehicles, have been limited to around 5 hp due to system size, controller efficiency, thermal management, and battery size. Presented here are design and test data for an EMA system that competes favorably in weight and is superior in maintainability to the hydraulic system. An EMA system uses dc power provided by a high energy density bipolar lithium thionyl chloride battery, with power conversion performed by low loss resonant topologies, and a high efficiency induction motor controlled with a high performance field oriented controller to drive a linear actuator.
Investigation of control system of traction electric drive with feedbacks on load
NASA Astrophysics Data System (ADS)
Kuznetsov, N. K.; Iov, I. A.; Iov, A. A.
2018-03-01
In the article, by the example of a walking excavator, the results of a study of a control system of traction electric drive with a rigid and flexible feedback on the load are mentioned. Based on the analysis of known works, the calculation scheme has been chosen; the equations of motion of the electromechanical system have been obtained, taking into account the elasticity of the rope and feedbacks on the load in the elastic element. A simulation model of this system has been developed and mathematical modeling of the transient processes to evaluate the influence of feedback on the dynamic characteristics of the mechanism and its efficiency of work was carried out. It is shown that the use of rigid and flexible feedbacks makes it possible to reduce dynamic loads in the traction mechanism and to limit the elastic oscillation of the executive mechanism in transient operating modes in comparison with the standard control system; however, there is some decrease in productivity. It has been also established that the sign-variable of the loading of the electric drive, connected with the opening of the backlashes in the gearbox due to the action of feedbacks on the load in the elastic element, under certain conditions, can lead to undesirable phenomena in the operation of the drive and a decrease in the reliability of its operation.
A Framework to Survey the Energy Efficiency of Installed Motor Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Prakash; Hasanbeigi, Ali; McKane, Aimee
2013-08-01
While motors are ubiquitous throughout the globe, there is insufficient data to properly assess their level of energy efficiency across regional boundaries. Furthermore, many of the existing data sets focus on motor efficiency and neglect the connected drive and system. Without a comprehensive survey of the installed motor system base, a baseline energy efficiency of a country or region’s motor systems cannot be developed. The lack of data impedes government agencies, utilities, manufacturers, distributers, and energy managers when identifying where to invest resources to capture potential energy savings, creating programs aimed at reducing electrical energy consumption, or quantifying the impactsmore » of such programs. This paper will outline a data collection framework for use when conducting a survey under a variety of execution models to characterize motor system energy efficiency within a country or region. The framework is intended to standardize the data collected ensuring consistency across independently conducted surveys. Consistency allows for the surveys to be leveraged against each other enabling comparisons to motor system energy efficiencies from other regions. In creating the framework, an analysis of various motor driven systems, including compressed air, pumping, and fan systems, was conducted and relevant parameters characterizing the efficiency of these systems were identified. A database using the framework will enable policymakers and industry to better assess the improvement potential of their installed motor system base particularly with respect to other regions, assisting in efforts to promote improvements to the energy efficiency of motor driven systems.« less
An assembly-type master-slave catheter and guidewire driving system for vascular intervention.
Cha, Hyo-Jeong; Yi, Byung-Ju; Won, Jong Yun
2017-01-01
Current vascular intervention inevitably exposes a large amount of X-ray to both an operator and a patient during the procedure. The purpose of this study is to propose a new catheter driving system which assists the operator in aspects of less X-ray exposure and convenient user interface. For this, an assembly-type 4-degree-of-freedom master-slave system was designed and tested to verify the efficiency. First, current vascular intervention procedures are analyzed to develop a new robotic procedure that enables us to use conventional vascular intervention devices such as catheter and guidewire which are commercially available in the market. Some parts of the slave robot which contact the devices were designed to be easily assembled and dissembled from the main body of the slave robot for sterilization. A master robot is compactly designed to conduct insertion and rotational motion and is able to switch from the guidewire driving mode to the catheter driving mode or vice versa. A phantom resembling the human arteries was developed, and the master-slave robotic system is tested using the phantom. The contact force of the guidewire tip according to the shape of the arteries is measured and reflected to the user through the master robot during the phantom experiment. This system can drastically reduce radiation exposure by replacing human effort by a robotic system for high radiation exposure procedures. Also, benefits of the proposed robot system are low cost by employing currently available devices and easy human interface.
Candidate Coatings and Dry Traction Drives for Planetary Vehicles
NASA Technical Reports Server (NTRS)
Fusaro, Robert; Oswald, Fred B.
2002-01-01
Robert Fusaro and Fred Oswald of the Mechanical Components Branch discussed 'Candidate Coatings and Dry Traction Drives for Planetary Vehicles'. Vehicles to be designed for exploration of planets and moons of the solar system will require reliable mechanical drives to operate efficiently. Long-term operation of these drives will be challenging because of extreme operating conditions. These extreme conditions include: very high and/or very cold temperatures, wide temperature ranges, dust, vacuum or low-pressure atmospheres, and corrosive environments. Most drives used on Earth involve oil-lubricated gears. However, due to the extreme conditions on planetary surfaces, it may not be advisable or even possible to use oil lubrication. Unfortunately, solid lubricants do not work well when applied to gears because of the high contact stress conditions and large sliding motion between the teeth, which cause wear and limit life. We believe traction drives will provide an attractive alternative to gear drives. Traction drives are composed of rollers that provide geometry more conducive to solid lubrication. Minimal slip occurs in this contact geometry and thus there is very low wear to the solid lubricant. The challenge for these solid-lubricated drives is finding materials or coatings that provide the required long-life while also providing high traction. We seek materials that provide low wear with high friction.
An alternative arrangement of metered dosing fluid using centrifugal pump
NASA Astrophysics Data System (ADS)
Islam, Md. Arafat; Ehsan, Md.
2017-06-01
Positive displacement dosing pumps are extensively used in various types of process industries. They are widely used for metering small flow rates of a dosing fluid into a main flow. High head and low controllable flow rates make these pumps suitable for industrial flow metering applications. However their pulsating flow is not very suitable for proper mixing of fluids and they are relatively more expensive to buy and maintain. Considering such problems, alternative techniques to control the fluid flow from a low cost centrifugal pump is practiced. These include - throttling, variable speed drive, impeller geometry control and bypass control. Variable speed drive and impeller geometry control are comparatively costly and the flow control by throttling is not an energy efficient process. In this study an arrangement of metered dosing flow was developed using a typical low cost centrifugal pump using bypass flow technique. Using bypass flow control technique a wide range of metered dosing flows under a range of heads were attained using fixed pump geometry and drive speed. The bulk flow returning from the system into the main tank ensures better mixing which may eliminate the need of separate agitators. Comparative performance study was made between the bypass flow control arrangement of centrifugal pump and a diaphragm type dosing pump. Similar heads and flow rates were attainable using the bypass control system compared to the diaphragm dosing pump, but using relatively more energy. Geometrical optimization of the centrifugal pump impeller was further carried out to make the bypass flow arrangement more energy efficient. Although both the systems run at low overall efficiencies but the capital cost could be reduced by about 87% compared to the dosing pump. The savings in capital investment and lower maintenance cost very significantly exceeds the relatively higher energy cost of the bypass system. This technique can be used as a cost effective solution for industries in Bangladesh and have been implemented in two salt iodization plants at Narayangang.
An analysis of mobile whole blood collection labor efficiency.
Rose, William N; Dayton, Paula J; Raife, Thomas J
2011-07-01
Labor efficiency is desirable in mobile blood collection. There are few published data on labor efficiency. The variability in the labor efficiency of mobile whole blood collections was analyzed. We determined to improve our labor efficiency using lean manufacturing principles. Workflow changes in mobile collections were implemented with the goal of minimizing labor expenditures. To measure success, data on labor efficiency measured by units/hour/full-time equivalent (FTE) were collected. The labor efficiency in a 6-month period before the implementation of changes, and in months 1 to 6 and 7 to 12 after implementation was analyzed and compared. Labor efficiency in the 6-month period preceding implementation was 1.06 ± 0.4 units collected/hour/FTE. In months 1 to 6, labor efficiency declined slightly to 0.92 ± 0.4 units collected/hour/FTE (p = 0.016 vs. preimplementation). In months 7 to 12, the mean labor efficiency returned to preimplementation levels of 1.09 ±0.4 units collected/hour/FTE. Regression analysis correlating labor efficiency with total units collected per drive revealed a strong correlation (R(2) = 0.48 for the aggregate data from all three periods), indicating that nearly half of labor efficiency was associated with drive size. The lean-based changes in workflow were subjectively favored by employees and donors. The labor efficiency of our mobile whole blood drives is strongly influenced by size. Larger drives are more efficient, with diminishing returns above 40 units collected. Lean-based workflow changes were positively received by employees and donors. © 2011 American Association of Blood Banks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaClair, Tim J; Gao, Zhiming; Fu, Joshua S.
2014-01-01
Quantifying the fuel savings that can be achieved from different truck fuel efficiency technologies for a fleet s specific usage allows the fleet to select the combination of technologies that will yield the greatest operational efficiency and profitability. This paper presents an analysis of vehicle usage in a commercial vehicle fleet and an assessment of advanced efficiency technologies using an analysis of measured drive cycle data for a class 8 regional commercial shipping fleet. Drive cycle measurements during a period of a full year from six tractor-trailers in normal operations in a less-than-truckload (LTL) carrier were analyzed to develop amore » characteristic drive cycle that is highly representative of the fleet s usage. The vehicle mass was also estimated to account for the variation of loads that the fleet experienced. The drive cycle and mass data were analyzed using a tractive energy analysis to quantify the fuel efficiency and CO2 emissions benefits that can be achieved on class 8 tractor-trailers when using advanced efficiency technologies, either individually or in combination. Although differences exist among class 8 tractor-trailer fleets, this study provides valuable insight into the energy and emissions reduction potential that various technologies can bring in this important trucking application.« less
Dynamic trapping near a quantum critical point
NASA Astrophysics Data System (ADS)
Kolodrubetz, Michael; Katz, Emanuel; Polkovnikov, Anatoli
2015-02-01
The study of dynamics in closed quantum systems has been revitalized by the emergence of experimental systems that are well-isolated from their environment. In this paper, we consider the closed-system dynamics of an archetypal model: spins driven across a second-order quantum critical point, which are traditionally described by the Kibble-Zurek mechanism. Imbuing the driving field with Newtonian dynamics, we find that the full closed system exhibits a robust new phenomenon—dynamic critical trapping—in which the system is self-trapped near the critical point due to efficient absorption of field kinetic energy by heating the quantum spins. We quantify limits in which this phenomenon can be observed and generalize these results by developing a Kibble-Zurek scaling theory that incorporates the dynamic field. Our findings can potentially be interesting in the context of early universe physics, where the role of the driving field is played by the inflaton or a modulus field.
Evaluation of the potential of the Stirling engine for heavy duty application
NASA Technical Reports Server (NTRS)
Meijer, R. J.; Ziph, B.
1981-01-01
A 150 hp four cylinder heavy duty Stirling engine was evaluated. The engine uses a variable stroke power control system, swashplate drive and ceramic insulation. The sensitivity of the design to engine size and heater temperature is investigated. Optimization shows that, with porous ceramics, indicated efficiencies as high as 52% can be achieved. It is shown that the gain in engine efficiency becomes insignificant when the heater temperature is raised above 200 degrees F.
2009-06-01
Ras or Cdc42, and a downstream IRES (internal ribosome entry site) to express Renilla luciferase for normalization of infection efficiency. As...internal ribosome entry site (IRES) downstream of Gal4-GFP-VP16-H-Ras/Cdc42 to drive constitutive expression of Renilla luciferase as a means of...for infection efficiency ( renilla luc). 8 mechanisms determining FTI or GGTI sensitivity and resistance in tumors. The system now will be
Influence of limited heliostat motion onto the efficiency of a solar field
NASA Astrophysics Data System (ADS)
Burisch, Michael; Mutuberria, Amaia; Olasolo, David; Villasante, Cristobal
2016-05-01
The efficiency of a central receiver solar thermal power plant depends on the ability of the heliostats to reflect the sunlight onto the receiver. Reflecting the sunlight over the course of a year requires the drive system to move the heliostat over a wide range of azimuth and elevation angles, which results to be a challenge in the development of new low cost drive system designs. Reducing this range simplifies the design and would, therefore, enable further cost savings. At the same time, reducing the range would also cause efficiency losses of the solar field, as the heliostats would not be able to reflect the sunlight under all conditions. Analyzing the range of motions required for each heliostat and the flux contribution of each position allows assessing these losses. With the aim of minimizing the losses an optimal range of heliostat motions can be chosen. It is shown that in combination with properly placing each heliostat in the solar field, the efficiency losses due to the limited motion range can be kept low as most of the receiver incident flux results from a small range of heliostat orientations. If such a heliostat design allow for sufficiently high costs saving per heliostat the potential losses can be compensated by adding more heliostats to the field, while still reducing the overall expenses.
Investigation of Transmission Warming Technologies at Various Ambient Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jehlik, Forrest; Iliev, Simeon; Wood, Eric
This work details two approaches for evaluating transmission warming technology: experimental dynamometer testing and development of a simplified transmission efficiency model to quantify effects under varied real world ambient and driving conditions. Two vehicles were used for this investigation: a 2013 Ford Taurus and a 2011 Ford Fusion. The Taurus included a production transmission warming system and was tested over hot and cold ambient temperatures with the transmission warming system enabled and disabled. A robot driver was used to minimize driver variability and increase repeatability. Additionally the Fusion was tested cold and with the transmission pre-heated prior to completing themore » test cycles. These data were used to develop a simplified thermally responsive transmission model to estimate effects of transmission warming in real world conditions. For the Taurus, the fuel consumption variability within one standard deviation was shown to be under 0.5% for eight repeat Urban Dynamometer Driving Cycles (UDDS). These results were valid with the transmission warming system active or passive. Using the transmission warming system under 22 degrees C ambient temperature, fuel consumption reduction was shown to be 1.4%. For the Fusion, pre-warming the transmission reduced fuel consumption 2.5% for an urban drive cycle at -7 degrees C ambient temperature, with 1.5% of the 2.5% gain associated with the transmission, while consumption for the US06 test was shown to be reduced by 7% with 5.5% of the 7% gain associated with the transmission. It was found that engine warming due to conduction between the pre-heated transmission and the engine resulted in the remainder of the benefit. For +22 degrees C ambient tests, the pre-heated transmission was shown to reduce fuel consumption approximately 1% on an urban cycle, while no benefit was seen for the US06 cycle. The simplified modeling results showed gains in efficiency ranging from 0-1.5% depending on the ambient temperature and drive cycle.« less
Thermal Performance Benchmarking: Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreno, Gilbert
2016-04-08
The goal for this project is to thoroughly characterize the performance of state-of-the-art (SOA) automotive power electronics and electric motor thermal management systems. Information obtained from these studies will be used to: Evaluate advantages and disadvantages of different thermal management strategies; establish baseline metrics for the thermal management systems; identify methods of improvement to advance the SOA; increase the publicly available information related to automotive traction-drive thermal management systems; help guide future electric drive technologies (EDT) research and development (R&D) efforts. The performance results combined with component efficiency and heat generation information obtained by Oak Ridge National Laboratory (ORNL) maymore » then be used to determine the operating temperatures for the EDT components under drive-cycle conditions. In FY15, the 2012 Nissan LEAF power electronics and electric motor thermal management systems were benchmarked. Testing of the 2014 Honda Accord Hybrid power electronics thermal management system started in FY15; however, due to time constraints it was not possible to include results for this system in this report. The focus of this project is to benchmark the thermal aspects of the systems. ORNL's benchmarking of electric and hybrid electric vehicle technology reports provide detailed descriptions of the electrical and packaging aspects of these automotive systems.« less
Test results for the 201.25 MHZ tetrode power amplifier at LANSCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyles, J. T.; Archuletta, S.; Davis, J. L.
2004-01-01
A new RF amplifier has been constructed for use as the intermediate power amplifier stage for the 201.25 MHz Alvarez DTL at the Los Alamos Neutron Science Center (LANSCE). It is part of a larger upgrade to replace the entire RF plant with a new generation of components. The new RF power system under development will enable increased peak power with higher duty factor. The first tank requires over 400 kW of RF power. This can be satisfied using the TH781 tetrode in a THALES cavity amplifier. The same stage will be also used to drive a TH628 Diacrode(reg. sign)more » final power amplifier for each of the three remaining DTL tanks. In this application, it will only be required to deliver approximately 150 kW of peak power. Details of the system design, layout for DTL 1, and test results will be presented. The Thales cavity amplifier and TH78I tetrode have been tested for two upcoming requirements at LANSCE. As an IPA to drive a future TH628 Diacrode(reg. sign) FPA with 120-150 kW, the amplifier provided over 16 dB power gain with 50% efficiency or better. As a stand-alone FPA to drive a 5 MeV Alvarez DTI, tank, the amplifier provided 13.5 dB power gain with 50% efficiency or better. It can also be used to drive a 200 MHz RFQ in the future. Power supplies, driver amplifier and coaxial circulators are being specified for the complete installation.« less
NASA Astrophysics Data System (ADS)
Hall, G. N.; Jones, O. S.; Strozzi, D. J.; Moody, J. D.; Turnbull, D.; Ralph, J.; Michel, P. A.; Hohenberger, M.; Moore, A. S.; Landen, O. L.; Divol, L.; Bradley, D. K.; Hinkel, D. E.; Mackinnon, A. J.; Town, R. P. J.; Meezan, N. B.; Berzak Hopkins, L.; Izumi, N.
2017-05-01
Indirect drive inertial confinement fusion experiments were conducted at the National Ignition Facility to investigate the performance of the hohlraum drive as a function of hohlraum gas fill density by imploding high-density-carbon capsules using a 2-shock laser pulse. Measurements characterized the backscatter behavior, the production of hot electrons, the motion and brightness of the laser spots on the hohlraum wall, and the efficiency of the hohlraum x-ray drive as a function of gas fill density ρgf between 0.03 mg/cc ("near vacuum") and 1.6 mg/cc. For hohlraums with ρgf up to 0.85 mg/cc, very little stimulated Raman backscatter (SRS) was observed. For higher ρgf, significant SRS was produced and was observed to occur during the rise to peak laser power and throughout the main pulse. The efficiency with which laser energy absorbed by the hohlraum is converted into drive energy was measured to be the same for ρgf ≥ 0.6 mg/cc once the laser reached peak power. However, for the near vacuum case, the absorbed energy was converted to drive energy more efficiently throughout the pulse and maintained an efficiency ˜10% higher than the gas filled hohlraums throughout the main pulse.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, G. N.; Jones, O. S.; Strozzi, D. J.
Indirect drive inertial confinement fusion experiments were conducted at the National Ignition Facility to investigate the performance of the hohlraum drive as a function of hohlraum gas fill density by imploding high-density-carbon capsules using a 2-shock laser pulse. Our ,easurements characterize the backscatter behavior, the production of hot electrons, the motion and brightness of the laser spots on the hohlraum wall, and the efficiency of the hohlraum x-ray drive as a function of gas fill density ρ gf between 0.03 mg/cc (“near vacuum”) and 1.6 mg/cc. For hohlraums with ρ gf up to 0.85 mg/cc, very little stimulated Raman backscattermore » (SRS) was observed. Furthermore, for higher ρ gf, significant SRS was produced and was observed to occur during the rise to peak laser power and throughout the main pulse. The efficiency with which laser energy absorbed by the hohlraum is converted into drive energy was measured to be the same for ρ gf ≥ 0.6 mg/cc once the laser reached peak power. But, for the near vacuum case, the absorbed energy was converted to drive energy more efficiently throughout the pulse and maintained an efficiency ~10% higher than the gas filled hohlraums throughout the main pulse.« less
Hall, G. N.; Jones, O. S.; Strozzi, D. J.; ...
2017-05-11
Indirect drive inertial confinement fusion experiments were conducted at the National Ignition Facility to investigate the performance of the hohlraum drive as a function of hohlraum gas fill density by imploding high-density-carbon capsules using a 2-shock laser pulse. Our ,easurements characterize the backscatter behavior, the production of hot electrons, the motion and brightness of the laser spots on the hohlraum wall, and the efficiency of the hohlraum x-ray drive as a function of gas fill density ρ gf between 0.03 mg/cc (“near vacuum”) and 1.6 mg/cc. For hohlraums with ρ gf up to 0.85 mg/cc, very little stimulated Raman backscattermore » (SRS) was observed. Furthermore, for higher ρ gf, significant SRS was produced and was observed to occur during the rise to peak laser power and throughout the main pulse. The efficiency with which laser energy absorbed by the hohlraum is converted into drive energy was measured to be the same for ρ gf ≥ 0.6 mg/cc once the laser reached peak power. But, for the near vacuum case, the absorbed energy was converted to drive energy more efficiently throughout the pulse and maintained an efficiency ~10% higher than the gas filled hohlraums throughout the main pulse.« less
Partnerships Drive New Transportation Solutions | News | NREL
efficiency challenges. Photo by Dennis Schroeder, NREL Hybrid car sales have taken off in recent years, with by Dennis Schroeder, NREL "NREL's connection to the marketplace and deployment, its strong Systems Integration Facility. Photo by Dennis Schroeder, NREL NREL leverages partnerships to deepen its
Heavy-Duty Vehicle Port Drayage Drive Cycle Characterization and Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prohaska, Robert; Konan, Arnaud; Kelly, Kenneth
In an effort to better understand the operational requirements of port drayage vehicles and their potential for adoption of advanced technologies, National Renewable Energy Laboratory (NREL) researchers collected over 36,000 miles of in-use duty cycle data from 30 Class 8 drayage trucks operating at the Port of Long Beach and Port of Los Angeles in Southern California. These data include 1-Hz global positioning system location and SAE J1939 high-speed controller area network information. Researchers processed the data through NREL's Drive-Cycle Rapid Investigation, Visualization, and Evaluation tool to examine vehicle kinematic and dynamic patterns across the spectrum of operations. Using themore » k-medoids clustering method, a repeatable and quantitative process for multi-mode drive cycle segmentation, the analysis led to the creation of multiple drive cycles representing four distinct modes of operation that can be used independently or in combination. These drive cycles are statistically representative of real-world operation of port drayage vehicles. When combined with modeling and simulation tools, these representative test cycles allow advanced vehicle or systems developers to efficiently and accurately evaluate vehicle technology performance requirements to reduce cost and development time while ultimately leading to the commercialization of advanced technologies that meet the performance requirements of the port drayage vocation. The drive cycles, which are suitable for chassis dynamometer testing, were compared to several existing test cycles. This paper presents the clustering methodology, accompanying results of the port drayage duty cycle analysis and custom drive cycle creation.« less
Heavy-Duty Vehicle Port Drayage Drive Cycle Characterization and Development: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prohaska, Robert; Konan, Arnaud; Kelly, Kenneth
In an effort to better understand the operational requirements of port drayage vehicles and their potential for adoption of advanced technologies, National Renewable Energy Laboratory (NREL) researchers collected over 36,000 miles of in-use duty cycle data from 30 Class 8 drayage trucks operating at the Port of Long Beach and Port of Los Angeles in Southern California. These data include 1-Hz global positioning system location and SAE J1939 high-speed controller area network information. Researchers processed the data through NREL's Drive-Cycle Rapid Investigation, Visualization, and Evaluation tool to examine vehicle kinematic and dynamic patterns across the spectrum of operations. Using themore » k-medoids clustering method, a repeatable and quantitative process for multi-mode drive cycle segmentation, the analysis led to the creation of multiple drive cycles representing four distinct modes of operation that can be used independently or in combination. These drive cycles are statistically representative of real-world operation of port drayage vehicles. When combined with modeling and simulation tools, these representative test cycles allow advanced vehicle or systems developers to efficiently and accurately evaluate vehicle technology performance requirements to reduce cost and development time while ultimately leading to the commercialization of advanced technologies that meet the performance requirements of the port drayage vocation. The drive cycles, which are suitable for chassis dynamometer testing, were compared to several existing test cycles. This paper presents the clustering methodology, accompanying results of the port drayage duty cycle analysis and custom drive cycle creation.« less
Heavy-Duty Vehicle Port Drayage Drive Cycle Characterization and Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prohaska, Robert; Konan, Arnaud; Kelly, Kenneth
2016-05-02
In an effort to better understand the operational requirements of port drayage vehicles and their potential for adoption of advanced technologies, National Renewable Energy Laboratory (NREL) researchers collected over 36,000 miles of in-use duty cycle data from 30 Class 8 drayage trucks operating at the Port of Long Beach and Port of Los Angeles in Southern California. These data include 1-Hz global positioning system location and SAE J1939 high-speed controller area network information. Researchers processed the data through NREL's Drive-Cycle Rapid Investigation, Visualization, and Evaluation tool to examine vehicle kinematic and dynamic patterns across the spectrum of operations. Using themore » k-medoids clustering method, a repeatable and quantitative process for multi-mode drive cycle segmentation, the analysis led to the creation of multiple drive cycles representing four distinct modes of operation that can be used independently or in combination. These drive cycles are statistically representative of real-world operation of port drayage vehicles. When combined with modeling and simulation tools, these representative test cycles allow advanced vehicle or systems developers to efficiently and accurately evaluate vehicle technology performance requirements to reduce cost and development time while ultimately leading to the commercialization of advanced technologies that meet the performance requirements of the port drayage vocation. The drive cycles, which are suitable for chassis dynamometer testing, were compared to several existing test cycles. This paper presents the clustering methodology, accompanying results of the port drayage duty cycle analysis and custom drive cycle creation.« less
Future Automotive Systems Technology Simulator (FASTSim)
DOE Office of Scientific and Technical Information (OSTI.GOV)
An advanced vehicle powertrain systems analysis tool, the Future Automotive Systems Technology Simulator (FASTSim) provides a simple way to compare powertrains and estimate the impact of technology improvements on light-, medium- and heavy-duty vehicle efficiency, performance, cost, and battery life. Created by the National Renewable Energy Laboratory, FASTSim accommodates a range of vehicle types - including conventional vehicles, electric-drive vehicles, and fuel cell vehicles - and is available for free download in Microsoft Excel and Python formats.
Bidirectional DC-DC conversion device use at system of urban electric transport
NASA Astrophysics Data System (ADS)
Vilberger, M. E.; Vislogusov, D. P.; Kotin, D. A.; Kulekina, A. V.
2017-10-01
The paper considers questions of energy storage devices used in electric transport, especially in the electric traction drive of a trolley bus, in order to provide an autonomous motion, overhead system’s load leveling and energy recovering. For efficiency of the proposed system, a bidirectional DC-DC converter is used. During the simulation, regulation characteristics of the bidirectional DC-DC converters were obtained.
Ecodriving in hybrid electric vehicles--Exploring challenges for user-energy interaction.
Franke, Thomas; Arend, Matthias Georg; McIlroy, Rich C; Stanton, Neville A
2016-07-01
Hybrid electric vehicles (HEVs) can help to reduce transport emissions; however, user behaviour has a significant effect on the energy savings actually achieved in everyday usage. The present research aimed to advance understanding of HEV drivers' ecodriving strategies, and the challenges for optimal user-energy interaction. We conducted interviews with 39 HEV drivers who achieved above-average fuel efficiencies. Regression analyses showed that technical system knowledge and ecodriving motivation were both important predictors for ecodriving efficiency. Qualitative data analyses showed that drivers used a plethora of ecodriving strategies and had diverse conceptualisations of HEV energy efficiency regarding aspects such as the efficiency of actively utilizing electric energy or the efficiency of different acceleration strategies. Drivers also reported several false beliefs regarding HEV energy efficiency that could impair ecodriving efforts. Results indicate that ecodriving support systems should facilitate anticipatory driving and help users locate and maintain drivetrain states of maximum efficiency. Copyright © 2016 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Vehicle systems: coupled and interactive dynamics analysis
NASA Astrophysics Data System (ADS)
Vantsevich, Vladimir V.
2014-11-01
This article formulates a new direction in vehicle dynamics, described as coupled and interactive vehicle system dynamics. Formalised procedures and analysis of case studies are presented. An analytical consideration, which explains the physics of coupled system dynamics and its consequences for dynamics of a vehicle, is given for several sets of systems including: (i) driveline and suspension of a 6×6 truck, (ii) a brake mechanism and a limited slip differential of a drive axle and (iii) a 4×4 vehicle steering system and driveline system. The article introduces a formal procedure to turn coupled system dynamics into interactive dynamics of systems. A new research direction in interactive dynamics of an active steering and a hybrid-electric power transmitting unit is presented and analysed to control power distribution between the drive axles of a 4×4 vehicle. A control strategy integrates energy efficiency and lateral dynamics by decoupling dynamics of the two systems thus forming their interactive dynamics.
FY2013 Advanced Power Electronics and Electric Motors R&D Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, Susan A.
The Advanced Power Electronics and Electric Motors (APEEM) technology area within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor, and traction drive system (TDS) technologies that will leapfrog current on-the-road technologies, leading to lower cost and better efficiency in transforming battery energy to useful work. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system tomore » improve fuel efficiency through research in more efficient TDSs.« less
Efficient micromagnetics for magnetic storage devices
NASA Astrophysics Data System (ADS)
Escobar Acevedo, Marco Antonio
Micromagnetics is an important component for advancing the magnetic nanostructures understanding and design. Numerous existing and prospective magnetic devices rely on micromagnetic analysis, these include hard disk drives, magnetic sensors, memories, microwave generators, and magnetic logic. The ability to examine, describe, and predict the magnetic behavior, and macroscopic properties of nanoscale magnetic systems is essential for improving the existing devices, for progressing in their understanding, and for enabling new technologies. This dissertation describes efficient micromagnetic methods as required for magnetic storage analysis. Their performance and accuracy is demonstrated by studying realistic, complex, and relevant micromagnetic system case studies. An efficient methodology for dynamic micromagnetics in large scale simulations is used to study the writing process in a full scale model of a magnetic write head. An efficient scheme, tailored for micromagnetics, to find the minimum energy state on a magnetic system is presented. This scheme can be used to calculate hysteresis loops. An efficient scheme, tailored for micromagnetics, to find the minimum energy path between two stable states on a magnetic system is presented. This minimum energy path is intimately related to the thermal stability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nimbalkar, Sachin U.; Guo, Wei; Wenning, Thomas J.
Smart manufacturing and advanced data analytics can help the manufacturing sector unlock energy efficiency from the equipment level to the entire manufacturing facility and the whole supply chain. These technologies can make manufacturing industries more competitive, with intelligent communication systems, real-time energy savings, and increased energy productivity. Smart manufacturing can give all employees in an organization the actionable information they need, when they need it, so that each person can contribute to the optimal operation of the corporation through informed, data-driven decision making. This paper examines smart technologies and data analytics approaches for improving energy efficiency and reducing energy costsmore » in process-supporting energy systems. It dives into energy-saving improvement opportunities through smart manufacturing technologies and sophisticated data collection and analysis. The energy systems covered in this paper include those with motors and drives, fans, pumps, air compressors, steam, and process heating.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurnik, Charles W; Benton, Nathanael; Burns, Patrick
Compressed-air systems are used widely throughout industry for many operations, including pneumatic tools, packaging and automation equipment, conveyors, and other industrial process operations. Compressed-air systems are defined as a group of subsystems composed of air compressors, air treatment equipment, controls, piping, pneumatic tools, pneumatically powered machinery, and process applications using compressed air. A compressed-air system has three primary functional subsystems: supply, distribution, and demand. Air compressors are the primary energy consumers in a compressed-air system and are the primary focus of this protocol. The two compressed-air energy efficiency measures specifically addressed in this protocol are: High-efficiency/variable speed drive (VSD) compressormore » replacing modulating, load/unload, or constant-speed compressor; and Compressed-air leak survey and repairs. This protocol provides direction on how to reliably verify savings from these two measures using a consistent approach for each.« less
Global stabilisation of a class of generalised cascaded systems by homogeneous method
NASA Astrophysics Data System (ADS)
Ding, Shihong; Zheng, Wei Xing
2016-04-01
This paper considers the problem of global stabilisation of a class of generalised cascaded systems. By using the extended adding a power integrator technique, a global controller is first constructed for the driving subsystem. Then based on the homogeneous properties and polynomial assumption, it is shown that the stabilisation of the driving subsystem implies the stabilisation of the overall cascaded system. Meanwhile, by properly choosing some control parameters, the global finite-time stability of the closed-loop cascaded system is also established. The proposed control method has several new features. First, the nonlinear cascaded systems considered in the paper are more general than the conventional ones, since the powers in the nominal part of the driving subsystem are not required to be restricted to ratios of positive odd numbers. Second, the proposed method has some flexible parameters which provide the possibility for designing continuously differentiable controllers for cascaded systems, while the existing designed controllers for such kind of cascaded systems are only continuous. Third, the homogenous and polynomial conditions adopted for the driven subsystem are easier to verify when compared with the matching conditions that are widely used previously. Furthermore, the efficiency of the proposed control method is validated by its application to finite-time tracking control of non-holonomic wheeled mobile robot.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shan, Bing; Baine, Teera; Ma, Xuan Anh N.
2013-04-17
The use of sunlight to drive chemical reactions that lead to the reduction of water to produce hydrogen is a potential avenue of solar energy utilization. There are many individual steps that take place in this process. This paper reports the investigation of a particular system that involves light absorbing molecules, electron donating agents and a catalyst for water reduction to hydrogen. We evaluated the efficiency of the light induced formation of a strong electron donor, the use of this donor to reduce the catalyst and finally the efficiency of the catalyst to produce hydrogen from water. From this, themore » sources of loss of efficiency could be clearly identified and used in the design of better systems to produce hydrogen from water.« less
Evaluation of a supervisor training program for ODOT's EcoDrive program.
DOT National Transportation Integrated Search
2016-12-01
Eco-driving consists of using energy-efficient approaches to driving aimed at reducing : fuel consumption and, ultimately, CO2 emissions. A previous study found that an EcoDrive : informational campaign was effective at increasing the use of eco-driv...
Turbulent current drive mechanisms
NASA Astrophysics Data System (ADS)
McDevitt, Christopher J.; Tang, Xian-Zhu; Guo, Zehua
2017-08-01
Mechanisms through which plasma microturbulence can drive a mean electron plasma current are derived. The efficiency through which these turbulent contributions can drive deviations from neoclassical predictions of the electron current profile is computed by employing a linearized Coulomb collision operator. It is found that a non-diffusive contribution to the electron momentum flux as well as an anomalous electron-ion momentum exchange term provide the most efficient means through which turbulence can modify the mean electron current for the cases considered. Such turbulent contributions appear as an effective EMF within Ohm's law and hence provide an ideal means for driving deviations from neoclassical predictions.
Clinical information systems: cornerstone for an efficient hospital management.
Lovis, Christian
2011-01-01
The university hospitals of Geneva are the largest consortium of public hospitals in Switzerland. This organization is born in 1995, after a political decision to merge the seven public and teaching hospitals of the Canton of Geneva. From an information technologies perspective, it took several years to reach a true unified vision of the complete organization. The clinical information system is deployed in all sites covering in- and outpatient cares. It is seen as the cornerstone of information management and flow in the organization, for direct patient care and decision support, but also for the management to drive, improve and leverage the activities, for better efficiency, quality and safety of care, but also to drive processes. As the system has become more important for the organization, it has required progressive changes in its governance. The high importance of interoperability and use of formal representation has become a major challenge in order to be able to reuse clinical information for real-time care and management activities, and for secondary usage such as billing, resource management, strategic planning and clinical research. This paper proposes a short overview of the tools allowing to leverage the management for physicians, nurses, human resources and hospital governance.
A microprogrammed data acquisition system for renography.
Imperiale, C
1983-01-01
The purpose of this project was to design an efficient, low cost, and portable system for renography suitable for clinical use. The principles involved in the renographic test, and the procedures and calculations which act on the design of our system, are given. The system consists of an Apple II Plus computer equipped with 48K memory, two disk drives with diskettes of 143K each, a thermal printer with graphic capability, the Microsoft Z80 card, and an interface which is specifically designed for renographic data acquisition.
Generating higher-order quantum dissipation from lower-order parametric processes
NASA Astrophysics Data System (ADS)
Mundhada, S. O.; Grimm, A.; Touzard, S.; Vool, U.; Shankar, S.; Devoret, M. H.; Mirrahimi, M.
2017-06-01
The stabilisation of quantum manifolds is at the heart of error-protected quantum information storage and manipulation. Nonlinear driven-dissipative processes achieve such stabilisation in a hardware efficient manner. Josephson circuits with parametric pump drives implement these nonlinear interactions. In this article, we propose a scheme to engineer a four-photon drive and dissipation on a harmonic oscillator by cascading experimentally demonstrated two-photon processes. This would stabilise a four-dimensional degenerate manifold in a superconducting resonator. We analyse the performance of the scheme using numerical simulations of a realisable system with experimentally achievable parameters.
Baseline tests of the power-train electric delivery van
NASA Technical Reports Server (NTRS)
Lumannick, S.; Dustin, M. O.; Bozek, J. M.
1977-01-01
Vehicle maximum speed, range at constant speed, range over stop-and-go driving schedules, maximum acceleration, gradeability, gradeability limit, road energy consumption, road power, indicated energy consumption, braking capability, battery charger efficiency, and battery characteristics were determined for a modified utility van powered by sixteen 6-volt batteries connected in series. A chopper controller actuated by a foot accelerator pedal changes the voltage applied to the 22-kilowatt (30-hp) series-wound drive motor. In addition to the conventional hydraulic braking system, the vehicle has hydraulic regenerative braking. Cycle tests and acceleration tests were conducted with and without hydraulic regeneration.
Nonleaky Population Transfer in a Transmon Qutrit via Largely-Detuned Drivings
NASA Astrophysics Data System (ADS)
Yan, Run-Ying; Feng, Zhi-Bo
2018-06-01
We propose an efficient scheme to implement nonleaky population transfer in a transmon qutrit via largely-detuned drivings. Due to weak level anharmonicity of the transmon system, the remarkable quantum leakages need to be considered in quantum coherent operations. Under the conditions of two-photon resonance and large detunings, the robust population transfer within a qutrit can be implemented via the technique of stimulated Raman adiabatic passage. Based on the accessible parameters, the feasible approach can remove the leakage error effectively, and then provides a potential approach for enhancing the transfer fidelity with transmon-regime artificial atoms experimentally.
NASA Astrophysics Data System (ADS)
Ren, Changzhi; Li, Xiaoyan; Song, Xiaoli; Niu, Yong; Li, Aihua; Zhang, Zhenchao
2012-09-01
Direct drive technology is the key to solute future 30-m and larger telescope motion system to guarantee a very high tracking accuracy, in spite of unbalanced and sudden loads such as wind gusts and in spite of a structure that, because of its size, can not be infinitely stiff. However, this requires the design and realization of unusually large torque motor that the torque slew rate must be extremely steep too. A conventional torque motor design appears inadequate. This paper explores one redundant unit permanent magnet synchronous motor and its simulation bed for 30-m class telescope. Because its drive system is one high integrated electromechanical system, one complexly electromechanical design method is adopted to improve the efficiency, reliability and quality of the system during the design and manufacture circle. This paper discusses the design and control of the precise tracking simulation bed in detail.
NASA Astrophysics Data System (ADS)
Bürger, Adrian; Sawant, Parantapa; Bohlayer, Markus; Altmann-Dieses, Angelika; Braun, Marco; Diehl, Moritz
2017-10-01
Within this work, the benefits of using predictive control methods for the operation of Adsorption Cooling Machines (ACMs) are shown on a simulation study. Since the internal control decisions of series-manufactured ACMs often cannot be influenced, the work focuses on optimized scheduling of an ACM considering its internal functioning as well as forecasts for load and driving energy occurrence. For illustration, an assumed solar thermal climate system is introduced and a system model suitable for use within gradient-based optimization methods is developed. The results of a system simulation using a conventional scheme for ACM scheduling are compared to the results of a predictive, optimization-based scheduling approach for the same exemplary scenario of load and driving energy occurrence. The benefits of the latter approach are shown and future actions for application of these methods for system control are addressed.
Determining Off-Cycle Fuel Economy Benefits of 2-Layer HVAC Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, Eric W; Moniot, Matthew; Jehlik, Forrest
This work presents a methodology to determine the off-cycle fuel economy benefit of a 2-Layer HVAC system which reduces ventilation and heat rejection losses of the heater core versus a vehicle using a standard system. Experimental dynamometer tests using EPA drive cycles over a broad range of ambient temperatures were conducted on a highly instrumented 2016 Lexus RX350 (3.5L, 8 speed automatic). These tests were conducted to measure differences in engine efficiency caused by changes in engine warmup due to the 2-Layer HVAC technology in use versus the technology being disabled (disabled equals fresh air-considered as the standard technology baseline).more » These experimental datasets were used to develop simplified response surface and lumped capacitance vehicle thermal models predictive of vehicle efficiency as a function of thermal state. These vehicle models were integrated into a database of measured on road testing and coupled with U.S. typical meteorological data to simulate vehicle efficiency across seasonal thermal and operational conditions for hundreds of thousands of drive cycles. Fuel economy benefits utilizing the 2-Layer HVAC technology are presented in addition to goodness of fit statistics of the modeling approach relative to the experimental test data.« less
Hybrid propulsion system with a gyro component for economic and dynamic operation. [of motor vehicle
NASA Technical Reports Server (NTRS)
Giera, B.; Helling, J.; Schreck, J.
1977-01-01
The design of a hybrid drive with gyro components is described and its drive components for a medium class private car are discussed. The gyro component affects the short-period output of the drive by accelerating and slowing down and -- because of the mechanical transfer of kinetic energy between the gyro and the vehicle -- it affects also the energy balance in the case of intermittent operation. Energy can be taken in as desired either in the form of fuel or as fuel and current. A high energy recovery efficiency as well as the favorable operating range of the interval combustion engine makes it possible to reduce the fuel consumption per unit distance travelled to almost half that for a private car with a traditional engine.
Using Speech Recognition to Enhance the Tongue Drive System Functionality in Computer Access
Huo, Xueliang; Ghovanloo, Maysam
2013-01-01
Tongue Drive System (TDS) is a wireless tongue operated assistive technology (AT), which can enable people with severe physical disabilities to access computers and drive powered wheelchairs using their volitional tongue movements. TDS offers six discrete commands, simultaneously available to the users, for pointing and typing as a substitute for mouse and keyboard in computer access, respectively. To enhance the TDS performance in typing, we have added a microphone, an audio codec, and a wireless audio link to its readily available 3-axial magnetic sensor array, and combined it with a commercially available speech recognition software, the Dragon Naturally Speaking, which is regarded as one of the most efficient ways for text entry. Our preliminary evaluations indicate that the combined TDS and speech recognition technologies can provide end users with significantly higher performance than using each technology alone, particularly in completing tasks that require both pointing and text entry, such as web surfing. PMID:22255801
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodhouse, Michael; Jones-Albertus, Rebecca; Feldman, David
2016-05-01
Although tremendous progress has been made in reducing the cost of PV systems, additional LCOE reductions of 40%–50% between 2015 and 2020 will be required to reach the SunShot Initiative’s targets (see Woodhouse et al. 2016). Understanding the tradeoffs between installed prices and other PV system characteristics—such as module efficiency, module degradation rate, and system lifetime—are vital. For example, with 29%-efficient modules and high reliability (a 50-year lifetime and a 0.2%/year module degradation rate), a residential PV system could achieve the SunShot LCOE goal with modules priced at almost $1.20/W. But change the lifetime to 10 years and the degradationmore » rate to 2%/year, and the system would need those very high-efficiency modules at zero cost to achieve the same LCOE. Although these examples are extreme, they serve to illustrate the wide range of technological combinations that could help drive PV toward the LCOE goals. SunShot’s PV roadmaps illustrate specific potential pathways to the target cost reductions.« less
NASA Astrophysics Data System (ADS)
Ishbulatov, Yu. M.; Karavaev, A. S.; Kiselev, A. R.; Semyachkina-Glushkovskaya, O. V.; Postnov, D. E.; Bezruchko, B. P.
2018-04-01
A method for the reconstruction of time-delayed feedback system is investigated, which is based on the detection of synchronous response of a slave time-delay system with respect to the driving from the master system under study. The structure of the driven system is similar to the structure of the studied time-delay system, but the feedback circuit is broken in the driven system. The method efficiency is tested using short and noisy data gained from an electronic chaotic oscillator with time-delayed feedback.
Well-Designed Wholesale Electricity Markets Support System Flexibility |
electricity markets drive efficient solutions to meet reliability needs in a least-cost manner, and they can service (which is typically provided by conventional generators as a part of interconnection through cost variable generation and load (net load) economically and reducing use of regulating reserves-cost
Engine Concept Study for an Advanced Single-Aisle Transport
NASA Technical Reports Server (NTRS)
Guynn, Mark D.; Berton, Jeffrey J.; Fisher, Kenneth L.; Haller, William J.; Tong, Michael; Thurman, Douglas R.
2009-01-01
The desire for higher engine efficiency has resulted in the evolution of aircraft gas turbine engines from turbojets, to low bypass ratio, first generation turbofans, to today's high bypass ratio turbofans. Although increased bypass ratio has clear benefits in terms of propulsion system metrics such as specific fuel consumption, these benefits may not translate into aircraft system level benefits due to integration penalties. In this study, the design trade space for advanced turbofan engines applied to a single aisle transport (737/A320 class aircraft) is explored. The benefits of increased bypass ratio and associated enabling technologies such as geared fan drive are found to depend on the primary metrics of interest. For example, bypass ratios at which mission fuel consumption is minimized may not require geared fan technology. However, geared fan drive does enable higher bypass ratio designs which result in lower noise. The results of this study indicate the potential for the advanced aircraft to realize substantial improvements in fuel efficiency, emissions, and noise compared to the current vehicles in this size class.
Li, Jinqing; Qi, Hui; Cong, Ligang; Yang, Huamin
2017-01-01
Both symmetric and asymmetric color image encryption have advantages and disadvantages. In order to combine their advantages and try to overcome their disadvantages, chaos synchronization is used to avoid the key transmission for the proposed semi-symmetric image encryption scheme. Our scheme is a hybrid chaotic encryption algorithm, and it consists of a scrambling stage and a diffusion stage. The control law and the update rule of function projective synchronization between the 3-cell quantum cellular neural networks (QCNN) response system and the 6th-order cellular neural network (CNN) drive system are formulated. Since the function projective synchronization is used to synchronize the response system and drive system, Alice and Bob got the key by two different chaotic systems independently and avoid the key transmission by some extra security links, which prevents security key leakage during the transmission. Both numerical simulations and security analyses such as information entropy analysis, differential attack are conducted to verify the feasibility, security, and efficiency of the proposed scheme. PMID:28910349
New sensorless, efficient optimized and stabilized v/f control for pmsm machines
NASA Astrophysics Data System (ADS)
Jafari, Seyed Hesam
With the rapid advances in power electronics and motor drive technologies in recent decades, permanent magnet synchronous machines (PMSM) have found extensive applications in a variety of industrial systems due to its many desirable features such as high power density, high efficiency, and high torque to current ratio, low noise, and robustness. In low dynamic applications like pumps, fans and compressors where the motor speed is nearly constant, usage of a simple control algorithm that can be implemented with least number of the costly external hardware can be highly desirable for industry. In recent published works, for low power PMSMs, a new sensorless volts-per-hertz (V/f) controlling method has been proposed which can be used for PMSM drive applications where the motor speed is constant. Moreover, to minimize the cost of motor implementation, the expensive rotor damper winding was eliminated. By removing the damper winding, however, instability problems normally occur inside of the motor which in some cases can be harmful for a PMSM drive. As a result, to address the instability issue, a stabilizing loop was developed and added to the conventional V/f. By further studying the proposed sensorless stabilized V/f, and calculating power loss, it became known that overall motor efficiency still is needed to be improved and optimized. This thesis suggests a new V/f control method for PMSMs, where both efficiency and stability problems are addressed. Also, although in nearly all recent related research, methods have been applied to low power PMSM, for the first time, in this thesis, the suggested method is implemented for a medium power 15 kW PMSM. A C2000 F2833x Digital Signal Processor (DSP) is used as controller part for the student custom built PMSM drive, but instead of programming the DSP in Assembly or C, the main control algorithm was developed in a rapid prototype software environment which here Matlab Simulink embedded code library is used.
NASA Astrophysics Data System (ADS)
Seo, Satoshi; Shitagaki, Satoko; Ohsawa, Nobuharu; Inoue, Hideko; Suzuki, Kunihiko; Nowatari, Hiromi; Yamazaki, Shunpei
2014-04-01
A novel approach to enhance the power efficiency of an organic light-emitting diode (OLED) by employing energy transfer from an exciplex to a phosphorescent emitter is reported. It was found that excitation energy of an exciplex formed between an electron-transporting material with a π-deficient quinoxaline moiety and a hole-transporting material with aromatic amine structure can be effectively transferred to a phosphorescent iridium complex in an emission layer of a phosphorescent OLED. Moreover, such an exciplex formation increases quantum efficiency and reduces drive voltage. A highly efficient, low-voltage, and long-life OLED based on this energy transfer is also demonstrated. This OLED device exhibited extremely high external quantum efficiency of 31% even without any attempt to enhance light outcoupling and also achieved a low drive voltage of 2.8 V and a long lifetime of approximately 1,000,000 h at a luminance of 1,000 cd/m2.
Evaluation strategy of regenerative braking energy for supercapacitor vehicle.
Zou, Zhongyue; Cao, Junyi; Cao, Binggang; Chen, Wen
2015-03-01
In order to improve the efficiency of energy conversion and increase the driving range of electric vehicles, the regenerative energy captured during braking process is stored in the energy storage devices and then will be re-used. Due to the high power density of supercapacitors, they are employed to withstand high current in the short time and essentially capture more regenerative energy. The measuring methods for regenerative energy should be investigated to estimate the energy conversion efficiency and performance of electric vehicles. Based on the analysis of the regenerative braking energy system of a supercapacitor vehicle, an evaluation system for energy recovery in the braking process is established using USB portable data-acquisition devices. Experiments under various braking conditions are carried out. The results verify the higher efficiency of energy regeneration system using supercapacitors and the effectiveness of the proposed measurement method. It is also demonstrated that the maximum regenerative energy conversion efficiency can reach to 88%. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Turbulent current drive mechanisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDevitt, Christopher J.; Tang, Xian-Zhu; Guo, Zehua
Mechanisms through which plasma microturbulence can drive a mean electron plasma current are derived. The efficiency through which these turbulent contributions can drive deviations from neoclassical predictions of the electron current profile is computed by employing a linearized Coulomb collision operator. It is found that a non-diffusive contribution to the electron momentum flux as well as an anomalous electron-ion momentum exchange term provide the most efficient means through which turbulence can modify the mean electron current for the cases considered. Such turbulent contributions appear as an effective EMF within Ohm’s law, and hence provide an ideal means for driving deviationsmore » from neoclassical predictions.« less
Turbulent current drive mechanisms
McDevitt, Christopher J.; Tang, Xian-Zhu; Guo, Zehua
2017-07-01
Mechanisms through which plasma microturbulence can drive a mean electron plasma current are derived. The efficiency through which these turbulent contributions can drive deviations from neoclassical predictions of the electron current profile is computed by employing a linearized Coulomb collision operator. It is found that a non-diffusive contribution to the electron momentum flux as well as an anomalous electron-ion momentum exchange term provide the most efficient means through which turbulence can modify the mean electron current for the cases considered. Such turbulent contributions appear as an effective EMF within Ohm’s law, and hence provide an ideal means for driving deviationsmore » from neoclassical predictions.« less
Efficient shortcut techniques in evanescently coupled waveguides
NASA Astrophysics Data System (ADS)
Paul, Koushik; Sarma, Amarendra K.
2016-10-01
Shortcut to Adiabatic Passage (SHAPE) technique, in the context of coherent control of atomic systems has gained considerable attention in last few years. It is primarily because of its ability to manipulate population among the quantum states infinitely fast compared to the adiabatic processes. Two methods in this regard have been explored rigorously, namely the transitionless quantum driving and the Lewis-Riesenfeld invariant approach. We have applied these two methods to realize SHAPE in adiabatic waveguide coupler. Waveguide couplers are integral components of photonic circuits, primarily used as switching devices. Our study shows that with appropriate engineering of the coupling coefficient and propagation constants of the coupler it is possible to achieve efficient and complete power switching. We also observed that the coupler length could be reduced significantly without affecting the coupling efficiency of the system.
Inherent Driving Force for Charge Separation in Curved Stacks of Oligothiophenes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Qin
Coexistence of high local charge mobility and an energy gradient can lead to efficient free charge carrier generation from geminate charge transfer states at the donor–acceptor interface in bulk heterojunction organic photovoltaics. It is, however, not clear what polymer microstructures can support such coexistence. Using recent methods from density functional theory, we propose that a stack of similarly curved oligothiophene chains can deliver the requirements for efficient charge separation. Curved stacks are stable because of the polymer’s strong π-stacking ability and because backbone torsions are flexible in neutral chains. However, energy of a charge in a polymer chain has remarkablymore » stronger dependence on torsions. The trend of increasing planarity in curved stacks effectively creates an energy gradient that drives charge in one direction. The curvature of these partially ordered stacks is found to beneficially interact with fullerenes for charge separation. The curved stacks, therefore, are identified as possible building blocks for interfacial structures that lead to efficient free carrier generation in high-performing organic photovoltaic systems.« less
Inherent Driving Force for Charge Separation in Curved Stacks of Oligothiophenes
Wu, Qin
2015-01-30
Coexistence of high local charge mobility and an energy gradient can lead to efficient free charge carrier generation from geminate charge transfer states at the donor–acceptor interface in bulk heterojunction organic photovoltaics. It is, however, not clear what polymer microstructures can support such coexistence. Using recent methods from density functional theory, we propose that a stack of similarly curved oligothiophene chains can deliver the requirements for efficient charge separation. Curved stacks are stable because of the polymer’s strong π-stacking ability and because backbone torsions are flexible in neutral chains. However, energy of a charge in a polymer chain has remarkablymore » stronger dependence on torsions. The trend of increasing planarity in curved stacks effectively creates an energy gradient that drives charge in one direction. The curvature of these partially ordered stacks is found to beneficially interact with fullerenes for charge separation. The curved stacks, therefore, are identified as possible building blocks for interfacial structures that lead to efficient free carrier generation in high-performing organic photovoltaic systems.« less
Comparative study for "36 V" vehicle applications: advantages of lead-acid batteries
NASA Astrophysics Data System (ADS)
Lailler, Patrick; Sarrau, Jean-François; Sarrazin, Christian
From thermal engine equipped vehicles to completely electric ones, evolution of light weight vehicles in the future will take several steps in so far as there is no adequate battery or fuel cell presently available to power these vehicles for "on the road" driving. On the other hand, for city driving, vehicles can be improved a lot in terms of fuel efficiency as well as air pollution, if partly or totally electric propulsion can be developed, manufactured and marketed for appropriate applications. The 36-42 V battery is part of this orientation towards improving the efficiency of thermal vehicles in city driving, while keeping adequate autonomy on the roads. Actually, in city traffic, thermal engines are idle most of the time and stop periods represent a large part of the time spent "driving", using up fuel and polluting air for no use at all. The idea of stopping the engine during these periods, if appropriately managed, might potentially lead to a large improvement in fuel economy as well as air pollution reduction. The association of a higher voltage battery to an alternator-starter device in thermal vehicles, seems to be an interesting way towards that end. In this paper, we are presenting our results of a study we have just completed in relationship with RENAULT & VALEO, supported by the French Ministry of Industry, concerning a comparative evaluation of different automobile energy storage systems, and the definition of specifications as the final step of this study. The main conclusion is that lead-acid will still remain dominant in this role, since its operational cost versus efficiency is by far the lowest of every battery presently considered, more particularly in the less expensive car segments.
Efficient common-envelope ejection through dust-driven winds
NASA Astrophysics Data System (ADS)
Glanz, Hila; Perets, Hagai B.
2018-04-01
Common-envelope evolution (CEE) is the short-lived phase in the life of an interacting binary-system during which two stars orbit inside a single shared envelope. Such evolution is thought to lead to the inspiral of the binary, the ejection of the extended envelope and the formation of a remnant short-period binary. However, detailed hydrodynamical models of CEE encounter major difficulties. They show that following the inspiral most of the envelope is not ejected; though it expands to larger separations, it remains bound to the binary. Here we propose that dust-driven winds can be produced following the CEE. These can evaporate the envelope following similar processes operating in the ejection of the envelopes of AGB stars. Pulsations in an AGB-star drives the expansion of its envelope, allowing the material to cool down to low temperatures thus enabling dust condensation. Radiation pressure on the dust accelerates it, and through its coupling to the gas it drives winds which eventually completely erode the envelope. We show that the inspiral phase in CE-binaries can effectively replace the role of stellar pulsation and drive the CE expansion to scales comparable with those of AGB stars, and give rise to efficient mass-loss through dust-driven winds.
Optimized Generator Designs for the DTU 10-MW Offshore Wind Turbine using GeneratorSE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sethuraman, Latha; Maness, Michael; Dykes, Katherine
Compared to land-based applications, offshore wind imposes challenges for the development of next generation wind turbine generator technology. Direct-drive generators are believed to offer high availability, efficiency, and reduced operation and maintenance requirements; however, previous research suggests difficulties in scaling to several megawatts or more in size. The resulting designs are excessively large and/or massive, which are major impediments to transportation logistics, especially for offshore applications. At the same time, geared wind turbines continue to sustain offshore market growth through relatively cheaper and lightweight generators. However, reliability issues associated with mechanical components in a geared system create significant operation andmore » maintenance costs, and these costs make up a large portion of overall system costs offshore. Thus, direct-drive turbines are likely to outnumber their gear-driven counterparts for this market, and there is a need to review the costs or opportunities of building machines with different types of generators and examining their competitiveness at the sizes necessary for the next generation of offshore wind turbines. In this paper, we use GeneratorSE, the National Renewable Energy Laboratory's newly developed systems engineering generator sizing tool to estimate mass, efficiency, and the costs of different generator technologies satisfying the electromagnetic, structural, and basic thermal design requirements for application in a very large-scale offshore wind turbine such as the Technical University of Denmark's (DTU) 10-MW reference wind turbine. For the DTU reference wind turbine, we use the previously mentioned criteria to optimize a direct-drive, radial flux, permanent-magnet synchronous generator; a direct-drive electrically excited synchronous generator; a medium-speed permanent-magnet generator; and a high-speed, doubly-fed induction generator. Preliminary analysis of leveled costs of energy indicate that for large turbines, the cost of permanent magnets and reliability issues associated with brushes in electrically excited machines are the biggest deterrents for building direct-drive systems. The advantage of medium-speed permanent-magnet machines over doubly-fed induction generators is evident, yet, variability in magnet prices and solutions to address reliability issues associated with gearing and brushes can change this outlook. This suggests the need to potentially pursue fundamentally new innovations in generator designs that help avoid high capital costs but still have significant reliability related to performance.« less
Optimized Generator Designs for the DTU 10-MW Offshore Wind Turbine using GeneratorSE: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sethuraman, Latha; Maness, Michael; Dykes, Katherine
Compared to land-based applications, offshore wind imposes challenges for the development of next generation wind turbine generator technology. Direct-drive generators are believed to offer high availability, efficiency, and reduced operation and maintenance requirements; however, previous research suggests difficulties in scaling to several megawatts or more in size. The resulting designs are excessively large and/or massive, which are major impediments to transportation logistics, especially for offshore applications. At the same time, geared wind turbines continue to sustain offshore market growth through relatively cheaper and lightweight generators. However, reliability issues associated with mechanical components in a geared system create significant operation andmore » maintenance costs, and these costs make up a large portion of overall system costs offshore. Thus, direct-drive turbines are likely to outnumber their gear-driven counterparts for this market, and there is a need to review the costs or opportunities of building machines with different types of generators and examining their competitiveness at the sizes necessary for the next generation of offshore wind turbines. In this paper, we use GeneratorSE, the National Renewable Energy Laboratory's newly developed systems engineering generator sizing tool to estimate mass, efficiency, and the costs of different generator technologies satisfying the electromagnetic, structural, and basic thermal design requirements for application in a very large-scale offshore wind turbine such as the Technical University of Denmark's (DTU) 10-MW reference wind turbine. For the DTU reference wind turbine, we use the previously mentioned criteria to optimize a direct-drive, radial flux, permanent-magnet synchronous generator; a direct-drive electrically excited synchronous generator; a medium-speed permanent-magnet generator; and a high-speed, doubly-fed induction generator. Preliminary analysis of leveled costs of energy indicate that for large turbines, the cost of permanent magnets and reliability issues associated with brushes in electrically excited machines are the biggest deterrents for building direct-drive systems. The advantage of medium-speed permanent-magnet machines over doubly-fed induction generators is evident, yet, variability in magnet prices and solutions to address reliability issues associated with gearing and brushes can change this outlook. This suggests the need to potentially pursue fundamentally new innovations in generator designs that help avoid high capital costs but still have significant reliability related to performance.« less
Combined braking system for hybrid vehicle
NASA Astrophysics Data System (ADS)
Kulekina, A. V.; Bakholdin, P. A.; Shchurov, N. I.
2017-10-01
The paper presents an analysis of surface vehicle’s existing braking systems. The technical solution and brake-system design were developed for use of regenerative braking energy. A technical parameters comparison of energy storage devices of various types was made. Based on the comparative analysis, it was decided to use supercapacitor because of its applicability for an electric drive intermittent operation. The calculation methods of retarder key components were proposed. Therefrom, it was made a conclusion that rebuild gasoline-electric vehicles are more efficient than gasoline ones.
Artificial photosynthesis combines biology with technology for sustainable energy transformation
NASA Astrophysics Data System (ADS)
Moore, Thomas A.; Moore, Ana L.; Gust, Devens
2013-03-01
Photosynthesis supports the biosphere. Currently, human activity appropriates about one fourth of terrestrial photosynthetic net primary production (NPP) to support our GDP and nutrition. The cost to Earth systems of "our cut" of NPP is thought to be rapidly driving several Earth systems outside of bounds that were established on the geological time scale. Even with a fundamental realignment of human priorities, changing the unsustainable trajectory of the anthropocene will require reengineering photosynthesis to more efficiently meet human needs. Artificial photosynthetic systems are envisioned that can both supply renewable fuels and serve as platforms for exploring redesign strategies for photosynthesis. These strategies can be used in the nascent field of synthetic biology to make vast, much needed improvements in the biomass production efficiency of photosynthesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hancock, David, W.
2012-02-14
Air-cooled stack technology offers the potential for a simpler system architecture (versus liquid-cooled) for applications below 4 kilowatts. The combined cooling and cathode air allows for a reduction in part count and hence a lower cost solution. However, efficient heat rejection challenges escalate as power and ambient temperature increase. For applications in ambient temperatures below freezing, the air-cooled approach has additional challenges associated with not overcooling the fuel cell stack. The focus of this project was freeze tolerance while maintaining all other stack and system requirements. Through this project, Plug Power advanced the state of the art in technology formore » air-cooled PEM fuel cell stacks and related GenDrive material handling application fuel cell systems. This was accomplished through a collaborative work plan to improve freeze tolerance and mitigate freeze-thaw effect failure modes within innovative material handling equipment fuel cell systems designed for use in freezer forklift applications. Freeze tolerance remains an area where additional research and understanding can help fuel cells to become commercially viable. This project evaluated both stack level and system level solutions to improve fuel cell stack freeze tolerance. At this time, the most cost effective solutions are at the system level. The freeze mitigation strategies developed over the course of this project could be used to drive fuel cell commercialization. The fuel cell system studied in this project was Plug Power's commercially available GenDrive platform providing battery replacement for equipment in the material handling industry. The fuel cell stacks were Ballard's commercially available FCvelocity 9SSL (9SSL) liquid-cooled PEM fuel cell stack and FCvelocity 1020ACS (Mk1020) air-cooled PEM fuel cell stack.« less
Automatic control of the preload in adaptive friction drives of chemical production machines
NASA Astrophysics Data System (ADS)
Balakin, P. D.
2017-08-01
Being based on the principle of providing the systems with adaptation property to the real parameters and operational condition, the energy effective mechanical system constructed on the base of friction gear with automated preload is offered and this allows keeping mechanical efficiency value adequate transforming drive path to in the terms of multimode operation. This is achieved by integrated control loop, operating on the basis of the laws of motion with the energy of the main power flow by changing automatically the kinematic dimension of the section and, hence, the value of preload in the friction contact. The given ratios of forces and deformations in the control loop are required at the stage of conceptual design to determine design dimensions of power transmission elements with new properties.
Theoretical performance of plasma driven railguns
NASA Astrophysics Data System (ADS)
Thio, Y. C.; McNab, I. R.; Condit, W. C.
1983-07-01
The overall efficiency of a railgun launch system is the product of efficiencies of its subsystems: prime mover, energy storage, pulse forming network, and accelerator. In this paper, the efficiency of the accelerator is examined in terms of the processes occurring in the accelerator. The principal loss mechanisms include Joule heating in the plasma, in the rails, kinetic energy of the driving plasma and magnetic energy remaining in the accelerator after projectile exit. The mass of the plasma and the atomic weight of the ionic species are important parameters in determining the energy loss in the plasma. Techniques are developed for selecting these parameters of minimize this loss.
Design and implementation of scalable tape archiver
NASA Technical Reports Server (NTRS)
Nemoto, Toshihiro; Kitsuregawa, Masaru; Takagi, Mikio
1996-01-01
In order to reduce costs, computer manufacturers try to use commodity parts as much as possible. Mainframes using proprietary processors are being replaced by high performance RISC microprocessor-based workstations, which are further being replaced by the commodity microprocessor used in personal computers. Highly reliable disks for mainframes are also being replaced by disk arrays, which are complexes of disk drives. In this paper we try to clarify the feasibility of a large scale tertiary storage system composed of 8-mm tape archivers utilizing robotics. In the near future, the 8-mm tape archiver will be widely used and become a commodity part, since recent rapid growth of multimedia applications requires much larger storage than disk drives can provide. We designed a scalable tape archiver which connects as many 8-mm tape archivers (element archivers) as possible. In the scalable archiver, robotics can exchange a cassette tape between two adjacent element archivers mechanically. Thus, we can build a large scalable archiver inexpensively. In addition, a sophisticated migration mechanism distributes frequently accessed tapes (hot tapes) evenly among all of the element archivers, which improves the throughput considerably. Even with the failures of some tape drives, the system dynamically redistributes hot tapes to the other element archivers which have live tape drives. Several kinds of specially tailored huge archivers are on the market, however, the 8-mm tape scalable archiver could replace them. To maintain high performance in spite of high access locality when a large number of archivers are attached to the scalable archiver, it is necessary to scatter frequently accessed cassettes among the element archivers and to use the tape drives efficiently. For this purpose, we introduce two cassette migration algorithms, foreground migration and background migration. Background migration transfers cassettes between element archivers to redistribute frequently accessed cassettes, thus balancing the load of each archiver. Background migration occurs the robotics are idle. Both migration algorithms are based on access frequency and space utility of each element archiver. To normalize these parameters according to the number of drives in each element archiver, it is possible to maintain high performance even if some tape drives fail. We found that the foreground migration is efficient at reducing access response time. Beside the foreground migration, the background migration makes it possible to track the transition of spatial access locality quickly.
Autoresonant excitation of Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Batalov, S. V.; Shagalov, A. G.; Friedland, L.
2018-03-01
Controlling the state of a Bose-Einstein condensate driven by a chirped frequency perturbation in a one-dimensional anharmonic trapping potential is discussed. By identifying four characteristic time scales in this chirped-driven problem, three dimensionless parameters P1 ,2 ,3 are defined describing the driving strength, the anharmonicity of the trapping potential, and the strength of the particles interaction, respectively. As the driving frequency passes the linear resonance in the problem, and depending on the location in the P1 ,2 ,3 parameter space, the system may exhibit two very different evolutions, i.e., the quantum energy ladder climbing (LC) and the classical autoresonance (AR). These regimes are analyzed both in theory and simulations with the emphasis on the effect of the interaction parameter P3. In particular, the transition thresholds on the driving parameter P1 and their width in P1 in both the AR and LC regimes are discussed. Different driving protocols are also illustrated, showing efficient control of excitation and deexcitation of the condensate.
Energy-efficient quantum computing
NASA Astrophysics Data System (ADS)
Ikonen, Joni; Salmilehto, Juha; Möttönen, Mikko
2017-04-01
In the near future, one of the major challenges in the realization of large-scale quantum computers operating at low temperatures is the management of harmful heat loads owing to thermal conduction of cabling and dissipation at cryogenic components. This naturally raises the question that what are the fundamental limitations of energy consumption in scalable quantum computing. In this work, we derive the greatest lower bound for the gate error induced by a single application of a bosonic drive mode of given energy. Previously, such an error type has been considered to be inversely proportional to the total driving power, but we show that this limitation can be circumvented by introducing a qubit driving scheme which reuses and corrects drive pulses. Specifically, our method serves to reduce the average energy consumption per gate operation without increasing the average gate error. Thus our work shows that precise, scalable control of quantum systems can, in principle, be implemented without the introduction of excessive heat or decoherence.
Wavelet-based information filtering for fault diagnosis of electric drive systems in electric ships.
Silva, Andre A; Gupta, Shalabh; Bazzi, Ali M; Ulatowski, Arthur
2017-09-22
Electric machines and drives have enjoyed extensive applications in the field of electric vehicles (e.g., electric ships, boats, cars, and underwater vessels) due to their ease of scalability and wide range of operating conditions. This stems from their ability to generate the desired torque and power levels for propulsion under various external load conditions. However, as with the most electrical systems, the electric drives are prone to component failures that can degrade their performance, reduce the efficiency, and require expensive maintenance. Therefore, for safe and reliable operation of electric vehicles, there is a need for automated early diagnostics of critical failures such as broken rotor bars and electrical phase failures. In this regard, this paper presents a fault diagnosis methodology for electric drives in electric ships. This methodology utilizes the two-dimensional, i.e. scale-shift, wavelet transform of the sensor data to filter optimal information-rich regions which can enhance the diagnosis accuracy as well as reduce the computational complexity of the classifier. The methodology was tested on sensor data generated from an experimentally validated simulation model of electric drives under various cruising speed conditions. The results in comparison with other existing techniques show a high correct classification rate with low false alarm and miss detection rates. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Analysis of a Temperature-Controlled Exhaust Thermoelectric Generator During a Driving Cycle
NASA Astrophysics Data System (ADS)
Brito, F. P.; Alves, A.; Pires, J. M.; Martins, L. B.; Martins, J.; Oliveira, J.; Teixeira, J.; Goncalves, L. M.; Hall, M. J.
2016-03-01
Thermoelectric generators can be used in automotive exhaust energy recovery. As car engines operate under wide variable loads, it is a challenge to design a system for operating efficiently under these variable conditions. This means being able to avoid excessive thermal dilution under low engine loads and being able to operate under high load, high temperature events without the need to deflect the exhaust gases with bypass systems. The authors have previously proposed a thermoelectric generator (TEG) concept with temperature control based on the operating principle of the variable conductance heat pipe/thermosiphon. This strategy allows the TEG modules’ hot face to work under constant, optimized temperature. The variable engine load will only affect the number of modules exposed to the heat source, not the heat transfer temperature. This prevents module overheating under high engine loads and avoids thermal dilution under low engine loads. The present work assesses the merit of the aforementioned approach by analysing the generator output during driving cycles simulated with an energy model of a light vehicle. For the baseline evaporator and condenser configuration, the driving cycle averaged electrical power outputs were approximately 320 W and 550 W for the type-approval Worldwide harmonized light vehicles test procedure Class 3 driving cycle and for a real-world highway driving cycle, respectively.
Sumner, T; Shephard, E; Bogle, I D L
2012-09-07
One of the main challenges in the development of mathematical and computational models of biological systems is the precise estimation of parameter values. Understanding the effects of uncertainties in parameter values on model behaviour is crucial to the successful use of these models. Global sensitivity analysis (SA) can be used to quantify the variability in model predictions resulting from the uncertainty in multiple parameters and to shed light on the biological mechanisms driving system behaviour. We present a new methodology for global SA in systems biology which is computationally efficient and can be used to identify the key parameters and their interactions which drive the dynamic behaviour of a complex biological model. The approach combines functional principal component analysis with established global SA techniques. The methodology is applied to a model of the insulin signalling pathway, defects of which are a major cause of type 2 diabetes and a number of key features of the system are identified.
Phase control of the transient resonance of the automatic ball balancer
NASA Astrophysics Data System (ADS)
Michalczyk, Jerzy; Pakuła, Sebastian
2016-05-01
Hazards related to undesired increases of vibration amplitudes in transient resonance of vibroinsulated rotor systems with automatic ball balancer (ABB) are discussed in the paper. The application of the phase control method with taking into account the limited drive power is proposed for these amplitudes reduction. The high efficiency of this approach is indicated.
Odor-Evoked Inhibition of Olfactory Sensory Neurons Drives Olfactory Perception in Drosophila
2017-05-22
J.L. Highly efficient targeted 859 mutagenesis of Drosophila with the CRISPR /Cas9 system. Cell Rep. 4, 220-228 860 (2013). 861 53. Gratz, S.J...Harrison, M.M., Wildonger, J. & O’Connor-Giles, K.M. Precise 862 Genome Editing of Drosophila with CRISPR RNA-Guided Cas9. Methods Mol. 863 Biol. 1311
Generalized Simulation Model for a Switched-Mode Power Supply Design Course Using MATLAB/SIMULINK
ERIC Educational Resources Information Center
Liao, Wei-Hsin; Wang, Shun-Chung; Liu, Yi-Hua
2012-01-01
Switched-mode power supplies (SMPS) are becoming an essential part of many electronic systems as the industry drives toward miniaturization and energy efficiency. However, practical SMPS design courses are seldom offered. In this paper, a generalized MATLAB/SIMULINK modeling technique is first presented. A proposed practical SMPS design course at…
Visualizing Student Flows: Busting Myths about Student Movement and Success
ERIC Educational Resources Information Center
Heileman, Gregory L.; Babbitt, Terry H.; Abdallah, Chaouki T.
2015-01-01
Many institutions are trying to better understand the factors that drive student success and failure in order to improve the efficiency of degree production. Traditional academic reporting systems are not adequate for this purpose, since they are designed to measure outcomes, not to uncover the factors that influence them. To address this problem,…
NASA Technical Reports Server (NTRS)
Dustin, M. O.
1983-01-01
The propulsion system of the Lewis Research Center's electric propulsion system test bed vehicle was tested on the road load simulator under the DOE Electric and Hybrid Vehicle Program. This propulsion system, consisting of a series-wound dc motor controlled by an infinitely variable SCR chopper and an 84-V battery pack, is typical of those used in electric vehicles made in 1976. Steady-state tests were conducted over a wide range of differential output torques and vehicle speeds. Efficiencies of all of the components were determined. Effects of temperature and voltage variations on the motor and the effect of voltage changes on the controller were examined. Energy consumption and energy efficiency for the system were determined over the B and C driving schedules of the SAE J227a test procedure.
Computer hardware for radiologists: Part 2.
Indrajit, Ik; Alam, A
2010-11-01
Computers are an integral part of modern radiology equipment. In the first half of this two-part article, we dwelt upon some fundamental concepts regarding computer hardware, covering components like motherboard, central processing unit (CPU), chipset, random access memory (RAM), and memory modules. In this article, we describe the remaining computer hardware components that are of relevance to radiology. "Storage drive" is a term describing a "memory" hardware used to store data for later retrieval. Commonly used storage drives are hard drives, floppy drives, optical drives, flash drives, and network drives. The capacity of a hard drive is dependent on many factors, including the number of disk sides, number of tracks per side, number of sectors on each track, and the amount of data that can be stored in each sector. "Drive interfaces" connect hard drives and optical drives to a computer. The connections of such drives require both a power cable and a data cable. The four most popular "input/output devices" used commonly with computers are the printer, monitor, mouse, and keyboard. The "bus" is a built-in electronic signal pathway in the motherboard to permit efficient and uninterrupted data transfer. A motherboard can have several buses, including the system bus, the PCI express bus, the PCI bus, the AGP bus, and the (outdated) ISA bus. "Ports" are the location at which external devices are connected to a computer motherboard. All commonly used peripheral devices, such as printers, scanners, and portable drives, need ports. A working knowledge of computers is necessary for the radiologist if the workflow is to realize its full potential and, besides, this knowledge will prepare the radiologist for the coming innovations in the 'ever increasing' digital future.
Takatani, S; Orime, Y; Tasai, K; Ohara, Y; Naito, K; Mizuguchi, K; Makinouchi, K; Damm, G; Glueck, J; Ling, J
1994-01-01
A multipurpose miniature electromechanical energy system has been developed to yield a compact, efficient, durable, and biocompatible total artificial heart (TAH) and ventricular assist device (VAD). Associated controller-driver electronics were recently miniaturized and converted into hybrid circuits. The hybrid controller consists of a microprocessor and controller, motor driver, Hall sensor, and commutation circuit hybrids. The sizing study demonstrated that all these components can be incorporated in the pumping unit of the TAH and VAD, particularly in the centerpiece of the TAH and the motor housing of the VAD. Both TAH and VAD pumping units will start when their power line is connected to either the internal power pack or the external battery unit. As a redundant driving and diagnostic port, an emergency port was newly added and will be placed in subcutaneous location. In case of system failure, the skin will be cut down, and an external motor drive or a pneumatic driver will be connected to this port to run the TAH. This will minimize the circulatory arrest time. Overall efficiency of the TAH without the transcutaneous energy transmission system was 14-18% to deliver pump outputs of 4-9 L/min against the right and left afterload pressures of 25 and 100 mm Hg. The internal power requirement ranged from 6 to 13 W. The rechargeable batteries such as NiCd or NiMH with 1 AH capacity can run the TAH for 30-45 min. The external power requirement, when TETS efficiency of 75% was assumed, ranged from 8 to 18 W. The accelerated endurance test in the 42 degrees C saline bath demonstrated stable performance over 4 months. Long-term endurance and chronic animal studies will continue toward a system with 5 years durability by the year 2000.
Energy efficient quantum machines
NASA Astrophysics Data System (ADS)
Abah, Obinna; Lutz, Eric
2017-05-01
We investigate the performance of a quantum thermal machine operating in finite time based on shortcut-to-adiabaticity techniques. We compute efficiency and power for a paradigmatic harmonic quantum Otto engine by taking the energetic cost of the shortcut driving explicitly into account. We demonstrate that shortcut-to-adiabaticity machines outperform conventional ones for fast cycles. We further derive generic upper bounds on both quantities, valid for any heat engine cycle, using the notion of quantum speed limit for driven systems. We establish that these quantum bounds are tighter than those stemming from the second law of thermodynamics.
Near-Blackbody Enclosed Particle-Receiver Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Zhiwen; Sakadjian, Bartev
2015-12-01
This 3-year project develops a technology using gas/solid, two-phase flow as a heat-transfer fluid and separated, stable, solid particles as a thermal energy storage (TES) medium for a concentrating solar power (CSP) plant, to address the temperature, efficiency, and cost barriers associated with current molten-salt CSP systems. This project focused on developing a near-blackbody particle receiver and an integrated fluidized-bed heat exchanger with auxiliary components to achieve greater than 20% cost reduction over current CSP plants, and to provide the ability to drive high-efficiency power cycles.
Anderson, Steven W.; Aksan, Nazan; Dawson, Jeffrey D.; Uc, Ergun Y.; Johnson, Amy M.; Rizzo, Matthew
2013-01-01
Decline in cognitive abilities can be an important contributor to the driving problems encountered by older adults, and neuropsychological assessment may provide a practical approach to evaluating this aspect of driving safety risk. The purpose of the present study was to evaluate several commonly used neuropsychological tests in the assessment of driving safety risk in older adults with and without neurological disease. A further goal of this study was to identify brief combinations of neuropsychological tests that sample performances in key functional domains and thus could be used to efficiently assess driving safety risk. 345 legally licensed and active drivers over the age of 50, with either no neurologic disease (N=185), probable Alzheimer's disease (N=40), Parkinson's disease (N=91), or stroke (N=29), completed vision testing, a battery of 10 neuropsychological tests, and an 18 mile drive on urban and rural roads in an instrumented vehicle. Performances on all neuropsychological tests were significantly correlated with driving safety errors. Confirmatory factor analysis was used to identify 3 key cognitive domains assessed by the tests (speed of processing, visuospatial abilities, and memory), and several brief batteries consisting of one test from each domain showed moderate corrected correlations with driving performance. These findings are consistent with the notion that driving places demands on multiple cognitive abilities that can be affected by aging and age-related neurological disease, and that neuropsychological assessment may provide a practical off-road window into the functional status of these cognitive systems. PMID:22943767
Anderson, Steven W; Aksan, Nazan; Dawson, Jeffrey D; Uc, Ergun Y; Johnson, Amy M; Rizzo, Matthew
2012-01-01
Decline in cognitive abilities can be an important contributor to the driving problems encountered by older adults, and neuropsychological assessment may provide a practical approach to evaluating this aspect of driving safety risk. The purpose of the present study was to evaluate several commonly used neuropsychological tests in the assessment of driving safety risk in older adults with and without neurological disease. A further goal of this study was to identify brief combinations of neuropsychological tests that sample performances in key functional domains and thus could be used to efficiently assess driving safety risk. A total of 345 legally licensed and active drivers over the age of 50, with no neurologic disease (N = 185), probable Alzheimer's disease (N = 40), Parkinson's disease (N = 91), or stroke (N = 29), completed vision testing, a battery of 10 neuropsychological tests, and an 18-mile drive on urban and rural roads in an instrumented vehicle. Performances on all neuropsychological tests were significantly correlated with driving safety errors. Confirmatory factor analysis was used to identify 3 key cognitive domains assessed by the tests (speed of processing, visuospatial abilities, and memory), and several brief batteries consisting of one test from each domain showed moderate corrected correlations with driving performance. These findings are consistent with the notion that driving places demands on multiple cognitive abilities that can be affected by aging and age-related neurological disease, and that neuropsychological assessment may provide a practical off-road window into the functional status of these cognitive systems.
Analytical Cost Metrics : Days of Future Past
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prajapati, Nirmal; Rajopadhye, Sanjay; Djidjev, Hristo Nikolov
As we move towards the exascale era, the new architectures must be capable of running the massive computational problems efficiently. Scientists and researchers are continuously investing in tuning the performance of extreme-scale computational problems. These problems arise in almost all areas of computing, ranging from big data analytics, artificial intelligence, search, machine learning, virtual/augmented reality, computer vision, image/signal processing to computational science and bioinformatics. With Moore’s law driving the evolution of hardware platforms towards exascale, the dominant performance metric (time efficiency) has now expanded to also incorporate power/energy efficiency. Therefore the major challenge that we face in computing systems researchmore » is: “how to solve massive-scale computational problems in the most time/power/energy efficient manner?”« less
Qi, Xuewei; Wu, Guoyuan; Boriboonsomsin, Kanok; ...
2016-01-01
Plug-in hybrid electric vehicles (PHEVs) show great promise in reducing transportation-related fossil fuel consumption and greenhouse gas emissions. Designing an efficient energy management system (EMS) for PHEVs to achieve better fuel economy has been an active research topic for decades. Most of the advanced systems rely either on a priori knowledge of future driving conditions to achieve the optimal but not real-time solution (e.g., using a dynamic programming strategy) or on only current driving situations to achieve a real-time but nonoptimal solution (e.g., rule-based strategy). This paper proposes a reinforcement learning–based real-time EMS for PHEVs to address the trade-off betweenmore » real-time performance and optimal energy savings. The proposed model can optimize the power-split control in real time while learning the optimal decisions from historical driving cycles. Here, a case study on a real-world commute trip shows that about a 12% fuel saving can be achieved without considering charging opportunities; further, an 8% fuel saving can be achieved when charging opportunities are considered, compared with the standard binary mode control strategy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Xuewei; Wu, Guoyuan; Boriboonsomsin, Kanok
Plug-in hybrid electric vehicles (PHEVs) show great promise in reducing transportation-related fossil fuel consumption and greenhouse gas emissions. Designing an efficient energy management system (EMS) for PHEVs to achieve better fuel economy has been an active research topic for decades. Most of the advanced systems rely either on a priori knowledge of future driving conditions to achieve the optimal but not real-time solution (e.g., using a dynamic programming strategy) or on only current driving situations to achieve a real-time but nonoptimal solution (e.g., rule-based strategy). This paper proposes a reinforcement learning–based real-time EMS for PHEVs to address the trade-off betweenmore » real-time performance and optimal energy savings. The proposed model can optimize the power-split control in real time while learning the optimal decisions from historical driving cycles. Here, a case study on a real-world commute trip shows that about a 12% fuel saving can be achieved without considering charging opportunities; further, an 8% fuel saving can be achieved when charging opportunities are considered, compared with the standard binary mode control strategy.« less
Wang, Yang; Wang, Shumeng; Ding, Junqiao; Wang, Lixiang; Jing, Xiabin; Wang, Fosong
2016-12-20
Dendron engineering in self-host blue Ir dendrimers is reported to develop power-efficient nondoped electrophosphorescent devices for the first time, which can be operated at low voltage close to the theoretical limit (E g /e: corresponding to the optical bandgap divided by the electron charge). With increasing dendron's HOMO energy levels from B-POCz to B-CzCz and B-CzTA, effective hole injection is favored to promote exciton formation, resulting in a significant reduction of driving voltage and improvement of power efficiency. Consequently, the nondoped device of B-CzTA achieves extremely low driving voltages of 2.7/3.4/4.4 V and record high power efficiencies of 30.3/24.4/16.3 lm W -1 at 1, 100 and 1000 cd m -2 , respectively. We believe that this work will pave the way to the design of novel power-efficient self-host blue phosphorescent dendrimers used for energy-saving displays and solid-state lightings.
NASA Technical Reports Server (NTRS)
Wong, Robert Y.; Monroe, Daniel E.
1959-01-01
The design and experimental investigation of a 4.5-inch-mean-diameter two-stage turbine are presented herein and used to study the effect of size on the efficiency of turbines in the auxiliary power drive class. The results of the experimental investigation indicated that design specific work was obtained at design speed at a total-to-static efficiency of 0.639. At design pressure ratio, design static-pressure distribution through the turbine was obtained with an equivalent specific work output of 33.2 Btu per pound and an efficiency of 0.656. It was found that, in the design of turbines in the auxiliary power drive class, Reynolds number plays an important part in the selection of the design efficiency. Comparison with theoretical efficiencies based on a loss coefficient and velocity diagrams are presented. Close agreement was obtained between theory and experiment when the loss coefficient was adjusted for changes in Reynolds number to the -1/5 power.
NASA Astrophysics Data System (ADS)
Fu, Enjin
Demand for more bandwidth is rapidly increasing, which is driven by data intensive applications such as high-definition (HD) video streaming, cloud storage, and terascale computing applications. Next-generation high-performance computing systems require power efficient chip-to-chip and intra-chip interconnect yielding densities on the order of 1Tbps/cm2. The performance requirements of such system are the driving force behind the development of silicon integrated optical interconnect, providing a cost-effective solution for fully integrated optical interconnect systems on a single substrate. Compared to conventional electrical interconnect, optical interconnects have several advantages, including frequency independent insertion loss resulting in ultra wide bandwidth and link latency reduction. For high-speed optical transmitter modules, the optical modulator is a key component of the optical I/O channel. This thesis presents a silicon integrated optical transmitter module design based on a novel silicon HBT-based carrier injection electroabsorption modulator (EAM), which has the merits of wide optical bandwidth, high speed, low power, low drive voltage, small footprint, and high modulation efficiency. The structure, mechanism, and fabrication of the modulator structure will be discussed which is followed by the electrical modeling of the post-processed modulator device. The design and realization of a 10Gbps monolithic optical transmitter module integrating the driver circuit architecture and the HBT-based EAM device in a 130nm BiCMOS process is discussed. For high power efficiency, a 6Gbps ultra-low power driver IC implemented in a 130nm BiCMOS process is presented. The driver IC incorporates an integrated 27-1 pseudo-random bit sequence (PRBS) generator for reliable high-speed testing, and a driver circuit featuring digitally-tuned pre-emphasis signal strength. With outstanding drive capability, the driver module can be applied to a wide range of carrier injection modulators and light-emitting diodes (LED) with drive voltage requirements below 1.5V. Measurement results show an optical link based on a 70MHz red LED work well at 300Mbps by using the pre-emphasis driver module. A traveling wave electrode (TWE) modulator structure is presented, including a novel design methodology to address process limitations imposed by a commercial silicon fabrication technology. Results from 3D full wave EM simulation demonstrate the application of the design methodology to achieve specifications, including phase velocity matching, insertion loss, and impedance matching. Results show the HBT-based TWE-EAM system has the bandwidth higher than 60GHz.
Konrad, C.E.; Boothe, R.W.
1994-02-15
A scheme for optimizing the efficiency of an AC motor drive operated in a pulse-width-modulated mode provides that the modulation frequency of the power furnished to the motor is a function of commanded motor torque and is higher at lower torque requirements than at higher torque requirements. 6 figures.
Konrad, C.E.; Boothe, R.W.
1996-01-23
A scheme for optimizing the efficiency of an AC motor drive operated in a pulse-width-modulated mode provides that the modulation frequency of the power furnished to the motor is a function of commanded motor torque and is higher at lower torque requirements than at higher torque requirements. 6 figs.
Konrad, Charles E.; Boothe, Richard W.
1996-01-01
A scheme for optimizing the efficiency of an AC motor drive operated in a pulse-width-modulated mode provides that the modulation frequency of the power furnished to the motor is a function of commanded motor torque and is higher at lower torque requirements than at higher torque requirements.
Konrad, Charles E.; Boothe, Richard W.
1994-01-01
A scheme for optimizing the efficiency of an AC motor drive operated in a pulse-width-modulated mode provides that the modulation frequency of the power furnished to the motor is a function of commanded motor torque and is higher at lower torque requirements than at higher torque requirements.
Small passenger car transmission test-Chevrolet 200 transmission
NASA Technical Reports Server (NTRS)
Bujold, M. P.
1980-01-01
The small passenger car transmission was tested to supply electric vehicle manufacturers with technical information regarding the performance of commerically available transmissions which would enable them to design a more energy efficient vehicle. With this information the manufacturers could estimate vehicle driving range as well as speed and torque requirements for specific road load performance characteristics. A 1979 Chevrolet Model 200 automatic transmission was tested per a passenger car automatic transmission test code (SAE J651b) which required drive performance, coast performance, and no load test conditions. The transmission attained maximum efficiencies in the mid-eighty percent range for both drive performance tests and coast performance tests. Torque, speed and efficiency curves map the complete performance characteristics for Chevrolet Model 200 transmission.
Enhanced Control for Local Helicity Injection on the Pegasus ST
NASA Astrophysics Data System (ADS)
Pierren, C.; Bongard, M. W.; Fonck, R. J.; Lewicki, B. T.; Perry, J. M.
2017-10-01
Local helicity injection (LHI) experiments on Pegasus rely upon programmable control of a 250 MVA modular power supply system that drives the electromagnets and helicity injection systems. Precise control of the central solenoid is critical to experimental campaigns that test the LHI Taylor relaxation limit and the coupling efficiency of LHI-produced plasmas to Ohmic current drive. Enhancement and expansion of the present control system is underway using field programmable gate array (FPGA) technology for digital logic and control, coupled to new 10 MHz optical-to-digital transceivers for semiconductor level device communication. The system accepts optical command signals from existing analog feedback controllers, transmits them to multiple devices in parallel H-bridges, and aggregates their status signals for fault detection. Present device-level multiplexing/de-multiplexing and protection logic is extended to include bridge-level protections with the FPGA. An input command filter protects against erroneous and/or spurious noise generated commands that could otherwise cause device failures. Fault registration and response times with the FPGA system are 25 ns. Initial system testing indicates an increased immunity to power supply induced noise, enabling plasma operations at higher working capacitor bank voltage. This can increase the applied helicity injection drive voltage, enable longer pulse lengths and improve Ohmic loop voltage control. Work supported by US DOE Grant DE-FG02-96ER54375.
Assessment of Joystick control during the performance of powered wheelchair driving tasks
2011-01-01
Background Powered wheelchairs are essential for many individuals who have mobility impairments. Nevertheless, if operated improperly, the powered wheelchair poses dangers to both the user and to those in its vicinity. Thus, operating a powered wheelchair with some degree of proficiency is important for safety, and measuring driving skills becomes an important issue to address. The objective of this study was to explore the discriminate validity of outcome measures of driving skills based on joystick control strategies and performance recorded using a data logging system. Methods We compared joystick control strategies and performance during standardized driving tasks between a group of 10 expert and 13 novice powered wheelchair users. Driving tasks were drawn from the Wheelchair Skills Test (v. 4.1). Data from the joystick controller were collected on a data logging system. Joystick control strategies and performance outcome measures included the mean number of joystick movements, time required to complete tasks, as well as variability of joystick direction. Results In simpler tasks, the expert group's driving skills were comparable to those of the novice group. Yet, in more difficult and spatially confined tasks, the expert group required fewer joystick movements for task completion. In some cases, experts also completed tasks in approximately half the time with respect to the novice group. Conclusions The analysis of joystick control made it possible to discriminate between novice and expert powered wheelchair users in a variety of driving tasks. These results imply that in spatially confined areas, a greater powered wheelchair driving skill level is required to complete tasks efficiently. Based on these findings, it would appear that the use of joystick signal analysis constitutes an objective tool for the measurement of powered wheelchair driving skills. This tool may be useful for the clinical assessment and training of powered wheelchair skills. PMID:21609435
Computer hardware for radiologists: Part 2
Indrajit, IK; Alam, A
2010-01-01
Computers are an integral part of modern radiology equipment. In the first half of this two-part article, we dwelt upon some fundamental concepts regarding computer hardware, covering components like motherboard, central processing unit (CPU), chipset, random access memory (RAM), and memory modules. In this article, we describe the remaining computer hardware components that are of relevance to radiology. “Storage drive” is a term describing a “memory” hardware used to store data for later retrieval. Commonly used storage drives are hard drives, floppy drives, optical drives, flash drives, and network drives. The capacity of a hard drive is dependent on many factors, including the number of disk sides, number of tracks per side, number of sectors on each track, and the amount of data that can be stored in each sector. “Drive interfaces” connect hard drives and optical drives to a computer. The connections of such drives require both a power cable and a data cable. The four most popular “input/output devices” used commonly with computers are the printer, monitor, mouse, and keyboard. The “bus” is a built-in electronic signal pathway in the motherboard to permit efficient and uninterrupted data transfer. A motherboard can have several buses, including the system bus, the PCI express bus, the PCI bus, the AGP bus, and the (outdated) ISA bus. “Ports” are the location at which external devices are connected to a computer motherboard. All commonly used peripheral devices, such as printers, scanners, and portable drives, need ports. A working knowledge of computers is necessary for the radiologist if the workflow is to realize its full potential and, besides, this knowledge will prepare the radiologist for the coming innovations in the ‘ever increasing’ digital future. PMID:21423895
Prototype color field sequential television lens assembly
NASA Technical Reports Server (NTRS)
1974-01-01
The design, development, and evaluation of a prototype modular lens assembly with a self-contained field sequential color wheel is presented. The design of a color wheel of maximum efficiency, the selection of spectral filters, and the design of a quiet, efficient wheel drive system are included. Design tradeoffs considered for each aspect of the modular assembly are discussed. Emphasis is placed on achieving a design which can be attached directly to an unmodified camera, thus permitting use of the assembly in evaluating various candidate camera and sensor designs. A technique is described which permits maintaining high optical efficiency with an unmodified camera. A motor synchronization system is developed which requires only the vertical synchronization signal as a reference frequency input. Equations and tradeoff curves are developed to permit optimizing the filter wheel aperture shapes for a variety of different design conditions.
STEP wastewater treatment: a solar thermal electrochemical process for pollutant oxidation.
Wang, Baohui; Wu, Hongjun; Zhang, Guoxue; Licht, Stuart
2012-10-01
A solar thermal electrochemical production (STEP) pathway was established to utilize solar energy to drive useful chemical processes. In this paper, we use experimental chemistry for efficient STEP wastewater treatment, and suggest a theory based on the decreasing stability of organic pollutants (hydrocarbon oxidation potentials) with increasing temperature. Exemplified by the solar thermal electrochemical oxidation of phenol, the fundamental model and experimental system components of this process outline a general method for the oxidation of environmentally stable organic pollutants into carbon dioxide, which is easily removed. Using thermodynamic calculations we show a sharply decreasing phenol oxidation potential with increasing temperature. The experimental results demonstrate that this increased temperature can be supplied by solar thermal heating. In combination this drives electrochemical phenol removal with enhanced oxidation efficiency through (i) a thermodynamically driven decrease in the energy needed to fuel the process and (ii) improved kinetics to sustain high rates of phenol oxidation at low electrochemical overpotential. The STEP wastewater treatment process is synergistic in that it is performed with higher efficiency than either electrochemical or photovoltaic conversion process acting alone. STEP is a green, efficient, safe, and sustainable process for organic wastewater treatment driven solely by solar energy. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Study on heat pipe assisted thermoelectric power generation system from exhaust gas
NASA Astrophysics Data System (ADS)
Chi, Ri-Guang; Park, Jong-Chan; Rhi, Seok-Ho; Lee, Kye-Bock
2017-11-01
Currently, most fuel consumed by vehicles is released to the environment as thermal energy through the exhaust pipe. Environmentally friendly vehicle technology needs new methods to increase the recycling efficiency of waste exhaust thermal energy. The present study investigated how to improve the maximum power output of a TEG (Thermoelectric generator) system assisted with a heat pipe. Conventionally, the driving energy efficiency of an internal combustion engine is approximately less than 35%. TEG with Seebeck elements is a new idea for recycling waste exhaust heat energy. The TEG system can efficiently utilize low temperature waste heat, such as industrial waste heat and solar energy. In addition, the heat pipe can transfer heat from the automobile's exhaust gas to a TEG. To improve the efficiency of the thermal power generation system with a heat pipe, effects of various parameters, such as inclination angle, charged amount of the heat pipe, condenser temperature, and size of the TEM (thermoelectric element), were investigated. Experimental studies, CFD simulation, and the theoretical approach to thermoelectric modules were carried out, and the TEG system with heat pipe (15-20% charged, 20°-30° inclined configuration) showed the best performance.
Visualizing the spinal neuronal dynamics of locomotion
NASA Astrophysics Data System (ADS)
Subramanian, Kalpathi R.; Bashor, D. P.; Miller, M. T.; Foster, J. A.
2004-06-01
Modern imaging and simulation techniques have enhanced system-level understanding of neural function. In this article, we present an application of interactive visualization to understanding neuronal dynamics causing locomotion of a single hip joint, based on pattern generator output of the spinal cord. Our earlier work visualized cell-level responses of multiple neuronal populations. However, the spatial relationships were abstract, making communication with colleagues difficult. We propose two approaches to overcome this: (1) building a 3D anatomical model of the spinal cord with neurons distributed inside, animated by the simulation and (2) adding limb movements predicted by neuronal activity. The new system was tested using a cat walking central pattern generator driving a pair of opposed spinal motoneuron pools. Output of opposing motoneuron pools was combined into a single metric, called "Net Neural Drive", which generated angular limb movement in proportion to its magnitude. Net neural drive constitutes a new description of limb movement control. The combination of spatial and temporal information in the visualizations elegantly conveys the neural activity of the output elements (motoneurons), as well as the resulting movement. The new system encompasses five biological levels of organization from ion channels to observed behavior. The system is easily scalable, and provides an efficient interactive platform for rapid hypothesis testing.
Fuel economy of hybrid fuel-cell vehicles
NASA Astrophysics Data System (ADS)
Ahluwalia, Rajesh K.; Wang, X.; Rousseau, A.
The potential improvement in fuel economy of a mid-size fuel-cell vehicle by combining it with an energy storage system has been assessed. An energy management strategy is developed and used to operate the direct hydrogen, pressurized fuel-cell system in a load-following mode and the energy storage system in a charge-sustaining mode. The strategy places highest priority on maintaining the energy storage system in a state where it can supply unanticipated boost power when the fuel-cell system alone cannot meet the power demand. It is found that downsizing a fuel-cell system decreases its efficiency on a drive cycle which is compensated by partial regenerative capture of braking energy. On a highway cycle with limited braking energy the increase in fuel economy with hybridization is small but on the stop-and-go urban cycle the fuel economy can improve by 27%. On the combined highway and urban drive cycles the fuel economy of the fuel-cell vehicle is estimated to increase by up to 15% by hybridizing it with an energy storage system.
Oscillatory nonohomic current drive for maintaining a plasma current
Fisch, N.J.
1984-01-01
Apparatus and methods are described for maintaining a plasma current with an oscillatory nonohmic current drive. Each cycle of operation has a generation period in which current driving energy is applied to the plasma, and a relaxation period in which current driving energy is removed. Plasma parameters, such as plasma temperature or plasma average ionic charge state, are modified during the generation period so as to oscillate plasma resistivity in synchronism with the application of current driving energy. The invention improves overall current drive efficiencies.
Oscillatory nonhmic current drive for maintaining a plasma current
Fisch, Nathaniel J.
1986-01-01
Apparatus and method of the invention maintain a plasma current with an oscillatory nonohmic current drive. Each cycle of operation has a generation period in which current driving energy is applied to the plasma, and a relaxation period in which current driving energy is removed. Plasma parameters, such as plasma temperature or plasma average ionic charge state, are modified during the generation period so as to oscillate plasma resistivity in synchronism with the application of current driving energy. The invention improves overall current drive efficiencies.
Miniature thermoacoustic cryocooler driven by a vertical comb-drive
NASA Astrophysics Data System (ADS)
Hao, Zhili; Fowler, Mark; Hammer, Jay A.; Whitley, Michael R.; Brown, David
2003-01-01
In this paper, we propose a novel miniature MEMS based thermoacoustic cryo-cooler for thermal management of cryogenic electronic devices. The basic idea is to exploit a new way to realize a highly-reliable miniature cryo-cooler, which would allow integration of a cryogenic cooling system directly into a cryogenic electronic device. A vertical comb-drive is proposed as the means to provide an acoustic source through a driving plate to a resonant tube. By exciting a standing wave within the resonant tube, a temperature difference develops across the stack in the tube, thereby enabling heat exchange between two heat exchangers. The use of gray scale technology to fabricate tapered resonant tube provides a way to improve the efficiency of the cooling system, compared with a simple cylinder configuration. Furthermore, a tapered tube leads to extremely strong standing waves with relatively pure waveforms and reduces possible harmonics. The working principle of this device is described here. The fabrication of this device is considered, which is compatible with current MEMS fabrication technology. Finally, the theoretical analysis of key components of this cryo-cooler is presented.
Silicon Carbide (SiC) MOSFET-based Full-Bridge for Fusion Science Applications
NASA Astrophysics Data System (ADS)
Ziemba, Timothy; Miller, Kenneth; Prager, James; Picard, Julian; Hashim, Akel
2014-10-01
Switching power amplifiers (SPAs) have a wide variety of applications within the fusion science community, including feedback and control systems for dynamic plasma stabilization in tokamaks, inductive and arc plasma sources, Radio Frequency (RF) helicity and flux injection, RF plasma heating and current drive schemes, ion beam generation, and RF pre-ionizer systems. SiC MOSFETs offer many advantages over IGBTs including lower drive energy requirements, lower conduction and switching losses, and higher switching frequency capabilities. When comparing SiC and traditional silicon-based MOSFETs, SiC MOSFETs provide higher current carrying capability allowing for smaller package weights and sizes and lower operating temperature. Eagle Harbor Technologies (EHT) is designing, constructing, and testing a SiC MOSFET-based full-bridge SPA. EHT will leverage the proprietary gate drive technology previously developed with the support of a DOE SBIR, which will enable fast, efficient switching in a small form factor. The primary goal is to develop a SiC MOSFET-based SPA for fusion science applications. Work supported in part by the DOE under Contract Number DE-SC0011907.
Active model-based balancing strategy for self-reconfigurable batteries
NASA Astrophysics Data System (ADS)
Bouchhima, Nejmeddine; Schnierle, Marc; Schulte, Sascha; Birke, Kai Peter
2016-08-01
This paper describes a novel balancing strategy for self-reconfigurable batteries where the discharge and charge rates of each cell can be controlled. While much effort has been focused on improving the hardware architecture of self-reconfigurable batteries, energy equalization algorithms have not been systematically optimized in terms of maximizing the efficiency of the balancing system. Our approach includes aspects of such optimization theory. We develop a balancing strategy for optimal control of the discharge rate of battery cells. We first formulate the cell balancing as a nonlinear optimal control problem, which is modeled afterward as a network program. Using dynamic programming techniques and MATLAB's vectorization feature, we solve the optimal control problem by generating the optimal battery operation policy for a given drive cycle. The simulation results show that the proposed strategy efficiently balances the cells over the life of the battery, an obvious advantage that is absent in the other conventional approaches. Our algorithm is shown to be robust when tested against different influencing parameters varying over wide spectrum on different drive cycles. Furthermore, due to the little computation time and the proved low sensitivity to the inaccurate power predictions, our strategy can be integrated in a real-time system.
Experimental demonstration of an efficient hybrid equalizer for short-reach optical SSB systems
NASA Astrophysics Data System (ADS)
Zhu, Mingyue; Ying, Hao; Zhang, Jing; Yi, Xingwen; Qiu, Kun
2018-02-01
We propose an efficient enhanced hybrid equalizer combining the feed forward equalization (FFE) with a modified Volterra filter to mitigate the linear and nonlinear interference for the short-reach optical single side-band (SSB) system. The optical SSB signal is generated by a relatively low-cost dual-drive Mach-Zehnder modulator (DDMZM). The two driving signals are a pair of Hilbert signals with Nyquist pulse-shaped four-level pulse amplitude modulation (NPAM-4). After the fiber transmission, the neighboring received symbols are strongly correlated due to the pulse spreading in time domain caused by the chromatic dispersion (CD). At the receiver equalization stage, the FFE followed by higher order terms of modified Volterra filter, which utilizes the forward and backward neighboring symbols to construct the kernels with strong correlation, are used as an enhanced hybrid equalizer to mitigate the inter symbol interference (ISI) and nonlinear distortion due to the interaction of the CD and the square-law detection. We experimentally demonstrate that the optical SSB NPAM-4 signal of 40 Gb/s transmitting over 80 km standard single mode fiber (SSMF) with a bit-error-rate (BER) of 7 . 59 × 10-4.
Analysis of Turbofan Design Options for an Advanced Single-Aisle Transport Aircraft
NASA Technical Reports Server (NTRS)
Guynn, Mark D.; Berton, Jeffrey J.; Fisher, Kenneth L.; Haller, William J.; Tong, Michael T.; Thurman, Douglas R.
2009-01-01
The desire for higher engine efficiency has resulted in the evolution of aircraft gas turbine engines from turbojets, to low bypass ratio, first generation turbofans, to today's high bypass ratio turbofans. It is possible that future designs will continue this trend, leading to very-high or ultra-high bypass ratio (UHB) engines. Although increased bypass ratio has clear benefits in terms of propulsion system metrics such as specific fuel consumption, these benefits may not translate into aircraft system level benefits due to integration penalties. In this study, the design trade space for advanced turbofan engines applied to a single-aisle transport (737/A320 class aircraft) is explored. The benefits of increased bypass ratio and associated enabling technologies such as geared fan drive are found to depend on the primary metrics of interest. For example, bypass ratios at which fuel consumption is minimized may not require geared fan technology. However, geared fan drive does enable higher bypass ratio designs which result in lower noise. Regardless of the engine architecture chosen, the results of this study indicate the potential for the advanced aircraft to realize substantial improvements in fuel efficiency, emissions, and noise compared to the current vehicles in this size class.
An optimal design of coreless direct-drive axial flux permanent magnet generator for wind turbine
NASA Astrophysics Data System (ADS)
Ahmed, D.; Ahmad, A.
2013-06-01
Different types of generators are currently being used in wind power technology. The commonly used are induction generator (IG), doubly-fed induction generator (DFIG), electrically excited synchronous generator (EESG) and permanent magnet synchronous generator (PMSG). However, the use of PMSG is rapidly increasing because of advantages such as higher power density, better controllability and higher reliability. This paper presents an innovative design of a low-speed modular, direct-drive axial flux permanent magnet (AFPM) generator with coreless stator and rotor for a wind turbine power generation system that is developed using mathematical and analytical methods. This innovative design is implemented in MATLAB / Simulink environment using dynamic modelling techniques. The main focus of this research is to improve efficiency of the wind power generation system by investigating electromagnetic and structural features of AFPM generator during its operation in wind turbine. The design is validated by comparing its performance with standard models of existing wind power generators. The comparison results demonstrate that the proposed model for the wind power generator exhibits number of advantages such as improved efficiency with variable speed operation, higher energy yield, lighter weight and better wind power utilization.
Gaussian white noise as a resource for work extraction.
Dechant, Andreas; Baule, Adrian; Sasa, Shin-Ichi
2017-03-01
We show that uncorrelated Gaussian noise can drive a system out of equilibrium and can serve as a resource from which work can be extracted. We consider an overdamped particle in a periodic potential with an internal degree of freedom and a state-dependent friction, coupled to an equilibrium bath. Applying additional Gaussian white noise drives the system into a nonequilibrium steady state and causes a finite current if the potential is spatially asymmetric. The model thus operates as a Brownian ratchet, whose current we calculate explicitly in three complementary limits. Since the particle current is driven solely by additive Gaussian white noise, this shows that the latter can potentially perform work against an external load. By comparing the extracted power to the energy injection due to the noise, we discuss the efficiency of such a ratchet.
Dynamic neural networks based on-line identification and control of high performance motor drives
NASA Technical Reports Server (NTRS)
Rubaai, Ahmed; Kotaru, Raj
1995-01-01
In the automated and high-tech industries of the future, there wil be a need for high performance motor drives both in the low-power range and in the high-power range. To meet very straight demands of tracking and regulation in the two quadrants of operation, advanced control technologies are of a considerable interest and need to be developed. In response a dynamics learning control architecture is developed with simultaneous on-line identification and control. the feature of the proposed approach, to efficiently combine the dual task of system identification (learning) and adaptive control of nonlinear motor drives into a single operation is presented. This approach, therefore, not only adapts to uncertainties of the dynamic parameters of the motor drives but also learns about their inherent nonlinearities. In fact, most of the neural networks based adaptive control approaches in use have an identification phase entirely separate from the control phase. Because these approaches separate the identification and control modes, it is not possible to cope with dynamic changes in a controlled process. Extensive simulation studies have been conducted and good performance was observed. The robustness characteristics of neuro-controllers to perform efficiently in a noisy environment is also demonstrated. With this initial success, the principal investigator believes that the proposed approach with the suggested neural structure can be used successfully for the control of high performance motor drives. Two identification and control topologies based on the model reference adaptive control technique are used in this present analysis. No prior knowledge of load dynamics is assumed in either topology while the second topology also assumes no knowledge of the motor parameters.
Prospects for Off-axis Current Drive via High Field Side Lower Hybrid Current Drive in DIII-D
NASA Astrophysics Data System (ADS)
Wukitch, S. J.; Shiraiwa, S.; Wallace, G. M.; Bonoli, P. T.; Holcomb, C.; Park, J. M.; Pinsker, R. I.
2017-10-01
An outstanding challenge for an economical, steady state tokamak is efficient off-axis current drive scalable to reactors. Previous studies have focused on high field side (HFS) launch of lower hybrid waves for current drive (LHCD) in double null configurations in reactor grade plasmas. The goal of this work is to find a HFS LHCD scenario for DIII-D that balances coupling, power penetration and damping. The higher magnetic field on the HFS improves wave accessibility, which allows for lower n||waves to be launched. These waves penetrate farther into the plasma core before damping at higher Te yielding a higher current drive efficiency. Utilizing advanced ray tracing and Fokker Planck simulation tools (GENRAY+CQL3D), wave penetration, absorption and drive current profiles in high performance DIII-D H-Mode plasmas were investigated. We found LH scenarios with single pass absorption, excellent wave penetration to r/a 0.6-0.8, FWHM r/a=0.2 and driven current up to 0.37 MA/MW coupled. These simulations indicate that HFS LHCD has potential to achieve efficient off-axis current drive in DIII-D and the latest results will be presented. Work supported by U.S. Dept. of Energy, Office of Science, Office of Fusion Energy Sciences, using User Facility DIII-D, under Award No. DE-FC02-04ER54698 and Contract No. DE-FC02-01ER54648 under Scientific Discovery through Advanced Computing Initiative.
Characterization of Quantum Efficiency and Robustness of Cesium-Based Photocathodes
2010-01-01
photocathodes produce picosecond-pulsed, high- current electron beams for photoinjection applications like free electron lasers . In photoinjectors, a...pulsed drive laser incident on the photocathode causes photoemission of short, dense bunches of electrons, which are then accelerated into a...relativistic, high quality beam. Future free electron lasers demand reliable photocathodes with long-lived quantum efficiency at suitable drive laser
Driving Green: Toward the Prediction and Influence of Efficient Driving Behavior
NASA Astrophysics Data System (ADS)
Newsome, William D.
Sub-optimal efficiency in activities involving the consumption of fossil fuels, such as driving, contribute to a miscellany of negative environmental, political, economic and social externalities. Demonstrations of the effectiveness of feedback interventions can be found in countless organizational settings, as can demonstrations of individual differences in sensitivity to feedback interventions. Mechanisms providing feedback to drivers about fuel economy are becoming standard equipment in most new vehicles, but vary considerably in their constitution. A keystone of Radical Behaviorism is the acknowledgement that verbal behavior appears to play a role in mediating apparent susceptibility to influence by contingencies of varying delay. In the current study, samples of verbal behavior (rules) were collected in the context of a feedback intervention to improve driving efficiency. In an analysis of differences in individual responsiveness to the feedback intervention, the rate of novel rules per week generated by drivers is revealed to account for a substantial proportion of the variability in relative efficiency gains across participants. The predictive utility of conceptual tools, such as the basic distinction among contingency-shaped and rule governed behavior, the elaboration of direct-acting and indirect-acting contingencies, and the psychological flexibility model, is bolstered by these findings.
SEX-RATIO MEIOTIC DRIVE AND INTERSPECIFIC COMPETITION
Unckless, Robert L.; Clark, Andrew G.
2014-01-01
It has long been known that processes occurring within a species may impact the interactions between species. For example, since competitive ability is sensitive to parameters including reproductive rate, carrying capacity and competition efficiency, the outcome of interspecific competition may be influenced by any process that alters these attributes. While several such scenarios have been discussed, the influence of selfish genetic elements within one species on competition between species has not received theoretical treatment. We show that, with strong competition, sex-ratio meiotic drive systems can result in a significant shift in community composition because the effective birth rate in the population may be increased by a female-biased sex-ratio. Using empirical data we attempt to estimate the magnitude of this effect in several Drosophila species. We infer that meiotic drive elements, selfish genetic elements within species, can provide a substantial competitive advantage to that species within a community. PMID:24835887
NASA Astrophysics Data System (ADS)
Chen, Xianhe; Xia, Zhixun; Huang, Liya; Hu, Jianxin
2017-05-01
The working cycle of a novel underwater propulsion system based on aluminium combustion with water is researched in order to evaluate the best performance. The system exploits the exothermic reaction between aluminium and water which will produce high temperature, pressure steam and hydrogen mixture that can be used to drive turbine to generate power. Several new system configurations corresponding to different working cycles are investigated, and their performance parameters in terms of net power, energy density and global efficiency are discussed. The results of the system simulation show that using the recirculation steam rather than hydrogen as the carrier gas, the system net power, energy density and efficiency of the system are greatly increased compared, however the system performance is close either using adiabatic compression or isothermal compression. And if an evaporator component is added into system in order to take full use of the solid product heat, the system performance will be improved.
Kornienko, Nikolay; Sakimoto, Kelsey K.; Herlihy, David M.; ...
2016-10-03
We present that the rise of inorganic–biological hybrid organisms for solar-to-chemical production has spurred mechanistic investigations into the dynamics of the biotic–abiotic interface to drive the development of next-generation systems. The model system, Moorella thermoacetica–cadmium sulfide (CdS), combines an inorganic semiconductor nanoparticle light harvester with an acetogenic bacterium to drive the photosynthetic reduction of CO 2 to acetic acid with high efficiency. In this work, we report insights into this unique electrotrophic behavior and propose a charge-transfer mechanism from CdS to M. thermoacetica. Transient absorption (TA) spectroscopy revealed that photoexcited electron transfer rates increase with increasing hydrogenase (H 2ase) enzymemore » activity. On the same time scale as the TA spectroscopy, time-resolved infrared (TRIR) spectroscopy showed spectral changes in the 1,700–1,900-cm -1 spectral region. The quantum efficiency of this system for photosynthetic acetic acid generation also increased with increasing H 2ase activity and shorter carrier lifetimes when averaged over the first 24 h of photosynthesis. However, within the initial 3 h of photosynthesis, the rate followed an opposite trend: The bacteria with the lowest H 2ase activity photosynthesized acetic acid the fastest. These results suggest a two-pathway mechanism: a high quantum efficiency charge-transfer pathway to H 2ase generating H 2 as a molecular intermediate that dominates at long time scales (24 h), and a direct energy-transducing enzymatic pathway responsible for acetic acid production at short time scales (3 h). Lastly, this work represents a promising platform to utilize conventional spectroscopic methodology to extract insights from more complex biotic–abiotic hybrid systems.« less
Operational Merits of Maritime Superconductivity
NASA Astrophysics Data System (ADS)
Ross, R.; Bosklopper, J. J.; van der Meij, K. H.
The perspective of superconductivity to transfer currents without loss is very appealing in high power applications. In the maritime sector many machines and systems exist in the roughly 1-100 MW range and the losses are well over 50%, which calls for dramatic efficiency improvements. This paper reports on three studies that aimed at the perspectives of superconductivity in the maritime sector. It is important to realize that the introduction of superconductivity comprises two technology transitions namely firstly electrification i.e. the transition from mechanical drives to electric drives and secondly the transition from normal to superconductive electrical machinery. It is concluded that superconductivity does reduce losses, but its impact on the total energy chain is of little significance compared to the investments and the risk of introducing a very promising but as yet not proven technology in the harsh maritime environment. The main reason of the little impact is that the largest losses are imposed on the system by the fossil fueled generators as prime movers that generate the electricity through mechanical torque. Unless electric power is supplied by an efficient and reliable technology that does not involve mechanical torque with the present losses both normal as well as superconductive electrification of the propulsion will hardly improve energy efficiency or may even reduce it. One exception may be the application of degaussing coils. Still appealing merits of superconductivity do exist, but they are rather related to the behavior of superconductive machines and strong magnetic fields and consequently reduction in volume and mass of machinery or (sometimes radically) better performance. The merits are rather convenience, design flexibility as well as novel applications and capabilities which together yield more adequate systems. These may yield lower operational costs in the long run, but at present the added value of superconductivity rather seems more adequate than cheaper systems.
Kornienko, Nikolay; Sakimoto, Kelsey K; Herlihy, David M; Nguyen, Son C; Alivisatos, A Paul; Harris, Charles B; Schwartzberg, Adam; Yang, Peidong
2016-10-18
The rise of inorganic-biological hybrid organisms for solar-to-chemical production has spurred mechanistic investigations into the dynamics of the biotic-abiotic interface to drive the development of next-generation systems. The model system, Moorella thermoacetica-cadmium sulfide (CdS), combines an inorganic semiconductor nanoparticle light harvester with an acetogenic bacterium to drive the photosynthetic reduction of CO 2 to acetic acid with high efficiency. In this work, we report insights into this unique electrotrophic behavior and propose a charge-transfer mechanism from CdS to M. thermoacetica Transient absorption (TA) spectroscopy revealed that photoexcited electron transfer rates increase with increasing hydrogenase (H 2 ase) enzyme activity. On the same time scale as the TA spectroscopy, time-resolved infrared (TRIR) spectroscopy showed spectral changes in the 1,700-1,900-cm -1 spectral region. The quantum efficiency of this system for photosynthetic acetic acid generation also increased with increasing H 2 ase activity and shorter carrier lifetimes when averaged over the first 24 h of photosynthesis. However, within the initial 3 h of photosynthesis, the rate followed an opposite trend: The bacteria with the lowest H 2 ase activity photosynthesized acetic acid the fastest. These results suggest a two-pathway mechanism: a high quantum efficiency charge-transfer pathway to H 2 ase generating H 2 as a molecular intermediate that dominates at long time scales (24 h), and a direct energy-transducing enzymatic pathway responsible for acetic acid production at short time scales (3 h). This work represents a promising platform to utilize conventional spectroscopic methodology to extract insights from more complex biotic-abiotic hybrid systems.
Leader–follower fixed-time consensus of multi-agent systems with high-order integrator dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Bailing; Zuo, Zongyu; Wang, Hong
The leader-follower fixed-time consensus of high-order multi-agent systems with external disturbances is investigated in this paper. A novel sliding manifold is designed to ensure that the tracking errors converge to zero in a fixed-time during the sliding motion. Then, a distributed control law is designed based on Lyapunov technique to drive the system states to the sliding manifold in finite-time independent of initial conditions. Finally, the efficiency of the proposed method is illustrated by numerical simulations.
Life-times of quantum resonances through the Geometrical Phase Propagator Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavlou, G.E.; Karanikas, A.I.; Diakonos, F.K., E-mail: fdiakono@phys.uoa.gr
We employ the recently introduced Geometric Phase Propagator Approach (GPPA) (Diakonos et al., 2012) to develop an improved perturbative scheme for the calculation of life times in driven quantum systems. This incorporates a resummation of the contributions of virtual processes starting and ending at the same state in the considered time interval. The proposed procedure allows for a strict determination of the conditions leading to finite life times in a general driven quantum system by isolating the resummed terms in the perturbative expansion contributing to their generation. To illustrate how the derived conditions apply in practice, we consider the effect ofmore » driving in a system with purely discrete energy spectrum, as well as in a system for which the eigenvalue spectrum contains a continuous part. We show that in the first case, when the driving contains a dense set of frequencies acting as a noise to the system, the corresponding bound states acquire a finite life time. When the energy spectrum contains also a continuum set of eigenvalues then the bound states, due to the driving, couple to the continuum and become quasi-bound resonances. The benchmark of this change is the appearance of a Fano-type peak in the associated transmission profile. In both cases the corresponding life-time can be efficiently estimated within the reformulated GPPA approach.« less
Heat rejection efficiency research of new energy automobile radiators
NASA Astrophysics Data System (ADS)
Ma, W. S.; Shen, W. X.; Zhang, L. W.
2018-03-01
The driving system of new energy vehicle has larger heat load than conventional engine. How to ensure the heat dissipation performance of the cooling system is the focus of the design of new energy vehicle thermal management system. In this paper, the heat dissipation efficiency of the radiator of the hybrid electric vehicle is taken as the research object, the heat dissipation efficiency of the radiator of the new energy vehicle is studied through the multi-working-condition enthalpy difference test. In this paper, the test method in the current standard QC/T 468-2010 “automobile radiator” is taken, but not limited to the test conditions specified in the standard, 5 types of automobile radiator are chosen, each of them is tested 20 times in simulated condition of different wind speed and engine inlet temperature. Finally, regression analysis is carried out for the test results, and regression equation describing the relationship of radiator heat dissipation heat dissipation efficiency air side flow rate cooling medium velocity and inlet air temperature is obtained, and the influence rule is systematically discussed.
Bansal, Neha; Reynolds, Luke X.; MacLachlan, Andrew; Lutz, Thierry; Ashraf, Raja Shahid; Zhang, Weimin; Nielsen, Christian B.; McCulloch, Iain; Rebois, Dylan G.; Kirchartz, Thomas; Hill, Michael S.; Molloy, Kieran C.; Nelson, Jenny; Haque, Saif A.
2013-01-01
The dissociation of photogenerated excitons and the subsequent spatial separation of the charges are of crucial importance to the design of efficient donor-acceptor heterojunction solar cells. While huge progress has been made in understanding charge generation at all-organic junctions, the process in hybrid organic:inorganic systems has barely been addressed. Here, we explore the influence of energetic driving force and local crystallinity on the efficiency of charge pair generation at hybrid organic:inorganic semiconductor heterojunctions. We use x-ray diffraction, photoluminescence quenching, transient absorption spectroscopy, photovoltaic device and electroluminescence measurements to demonstrate that the dissociation of photogenerated polaron pairs at hybrid heterojunctions is assisted by the presence of crystalline electron acceptor domains. We propose that such domains encourage delocalization of the geminate pair state. The present findings suggest that the requirement for a large driving energy for charge separation is relaxed when a more crystalline electron acceptor is used. PMID:23524906
Advanced dc motor controller for battery-powered electric vehicles
NASA Technical Reports Server (NTRS)
Belsterling, C. A.
1981-01-01
A motor generation set is connected to run from the dc source and generate a voltage in the traction motor armature circuit that normally opposes the source voltage. The functional feasibility of the concept is demonstrated with tests on a Proof of Principle System. An analog computer simulation is developed, validated with the results of the tests, applied to predict the performance of a full scale Functional Model dc Controller. The results indicate high efficiencies over wide operating ranges and exceptional recovery of regenerated energy. The new machine integrates both motor and generator on a single two bearing shaft. The control strategy produces a controlled bidirectional plus or minus 48 volts dc output from the generator permitting full control of a 96 volt dc traction motor from a 48 volt battery, was designed to control a 20 hp traction motor. The controller weighs 63.5 kg (140 lb.) and has a peak efficiency of 90% in random driving modes and 96% during the SAE J 227a/D driving cycle.
Characterization of advanced electric propulsion systems
NASA Technical Reports Server (NTRS)
Ray, P. K.
1982-01-01
Characteristics of several advanced electric propulsion systems are evaluated and compared. The propulsion systems studied are mass driver, rail gun, MPD thruster, hydrogen free radical thruster and mercury electron bombardment ion engine. These are characterized by specific impulse, overall efficiency, input power, average thrust, power to average thrust ratio and average thrust to dry weight ratio. Several important physical characteristics such as dry system mass, accelerator length, bore size and current pulse requirement are also evaluated in appropriate cases. Only the ion engine can operate at a specific impulse beyond 2000 sec. Rail gun, MPD thruster and free radical thruster are currently characterized by low efficiencies. Mass drivers have the best performance characteristics in terms of overall efficiency, power to average thrust ratio and average thrust to dry weight ratio. But, they can only operate at low specific impulses due to large power requirements and are extremely long due to limitations of driving current. Mercury ion engines have the next best performance characteristics while operating at higher specific impulses. It is concluded that, overall, ion engines have somewhat better characteristics as compared to the other electric propulsion systems.
Lower hybrid current drive experiments in the HT-6M tokamak
NASA Astrophysics Data System (ADS)
Jiang, Tongwen; Liu, Yuexiu; Guo, Wenkang; Zhang, Xuelei; Luo, Jiarong
1987-07-01
Lower hybrid current drive (LHCD) experiments with a multijunction grill have been performed in the HT-6M tokamak. When the RF power pulse with 15ms risetime is injected into the plasma, the toroidal current amplitude is raised, but the temporal variation of the loop voltage does not have measurable change. The efficiency of current drive is Irf/Prf=0.57kA/kW at bar ne=3 × 1012cm-3 and Bt=8KG. It seems that the multijunction grill has the same efficiency as the ordinary grill on the LHCD experiments.
NASA Astrophysics Data System (ADS)
Kalabukhov, D. S.; Radko, V. M.; Grigoriev, V. A.
2018-01-01
Ultra-low power turbine drives are used as energy sources in auxiliary power systems, energy units, terrestrial, marine, air and space transport within the confines of shaft power N td = 0.01…10 kW. In this paper we propose a new approach to the development of surrogate models for evaluating the integrated efficiency of multistage ultra-low power impulse turbine with pressure stages. This method is based on the use of existing mathematical models of ultra-low power turbine stage efficiency and mass. It has been used in a method for selecting the rational parameters of two-stage axial ultra-low power turbine. The article describes the basic features of an algorithm for two-stage turbine parameters optimization and for efficiency criteria evaluating. Pledged mathematical models are intended for use at the preliminary design of turbine drive. The optimization method was tested at preliminary design of an air starter turbine. Validation was carried out by comparing the results of optimization calculations and numerical gas-dynamic simulation in the Ansys CFX package. The results indicate a sufficient accuracy of used surrogate models for axial two-stage turbine parameters selection
Zhang, Dalong; Du, Qingjie; Zhang, Zhi; Jiao, Xiaocong; Song, Xiaoming; Li, Jianming
2017-01-01
Although atmospheric vapour pressure deficit (VPD) has been widely recognized as the evaporative driving force for water transport, the potential to reduce plant water consumption and improve water productivity by regulating VPD is highly uncertain. To bridge this gap, water transport in combination with plant productivity was examined in tomato (Solanum lycopersicum L.) plants grown under contrasting VPD gradients. The driving force for water transport was substantially reduced in low-VPD treatment, which consequently decreased water loss rate and moderated plant water stress: leaf desiccation, hydraulic limitation and excessive negative water potential were prevented by maintaining water balance. Alleviation in water stress by reducing VPD sustained stomatal function and photosynthesis, with concomitant improvements in biomass and fruit production. From physiological perspectives, suppression of the driving force and water flow rate substantially reduced cumulative transpiration by 19.9%. In accordance with physiological principles, irrigation water use efficiency as criterions of biomass and fruit yield in low-VPD treatment was significantly increased by 36.8% and 39.1%, respectively. The reduction in irrigation was counterbalanced by input of fogging water to some extent. Net water saving can be increased by enabling greater planting densities and improving the evaporative efficiency of the mechanical system. PMID:28266524
A new energy-efficient control approach for astronomical telescope drive system
NASA Astrophysics Data System (ADS)
Zhou, W.; Wang, Y.
2012-12-01
Drive control makes the astronomical telescope accurately tracking celestial bodies in spite of external and internal disturbances, which is a key technique to the performance of telescopes. In this paper, we propose a nonlinear ad, aptive observer based on power reversible approach for high precision telescope position tracking. The nonlinear adaptive observer automatically estimates the disturbances in drive system, and the observed value is applied to compensate for the real disturbances. With greatly reduced disturbances, the control precision can be evidently improved. In conventional drive control, the brake device is often used to slow down the reaction wheel and may waste enormous energy. To avoid those disadvantages, an H-bridge is put forward for wheel speed regulation. Such H-bridge has four independent sections, and each section mainly consists of a power electronic switch and an anti-parallel diode. During the period of the mount slowing down, the armature current of drive motor goes through the two path-wise diodes to charge the battery. Thus, energy waste is avoided. Based on the disturbance compensation, an optimal controller is designed to minimize an evaluation function which is made up of a weighted sum of position errors and energy consumption.The outputs of the controller are applied to control the H-bridge. Simulations are performed in MATLAB language. The results show that high precision control can be obtained by the proposed approach. And the energy consumption will be remarkably reduced.
Performance Analysis of Three-Phase Induction Motor with AC Direct and VFD
NASA Astrophysics Data System (ADS)
Kumar, Dinesh
2018-03-01
The electrical machine analysis and performance calculation is a very important aspect of efficient drive system design. The development of power electronics devices and power converters provide smooth speed control of Induction Motors by changing the frequency of input supply. These converters, on one hand are providing a more flexible speed control that also leads to problems of harmonics and their associated ailments like pulsating torque, distorted current and voltage waveforms, increasing losses etc. This paper includes the performance analysis of three phase induction motor with three-phase AC direct and variable frequency drives (VFD). The comparison has been concluded with respect to various parameters. MATLAB-SIMULINKTM is used for the analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey, R. W.
This DOE grant supported fusion energy research, a potential long-term solution to the world's energy needs. Magnetic fusion, exemplified by confinement of very hot ionized gases, i.e., plasmas, in donut-shaped tokamak vessels is a leading approach for this energy source. Thus far, a mixture of hydrogen isotopes has produced 10's of megawatts of fusion power for seconds in a tokamak reactor at Princeton Plasma Physics Laboratory in New Jersey. The research grant under consideration, ER54684, uses computer models to aid in understanding and projecting efficacy of heating and current drive sources in the National Spherical Torus Experiment, a tokamak variant,more » at PPPL. The NSTX experiment explores the physics of very tight aspect ratio, almost spherical tokamaks, aiming at producing steady-state fusion plasmas. The current drive is an integral part of the steady-state concept, maintaining the magnetic geometry in the steady-state tokamak. CompX further developed and applied models for radiofrequency (rf) heating and current drive for applications to NSTX. These models build on a 30 year development of rf ray tracing (the all-frequencies GENRAY code) and higher dimensional Fokker-Planck rf-collisional modeling (the 3D collisional-quasilinear CQL3D code) at CompX. Two mainline current-drive rf modes are proposed for injection into NSTX: (1) electron Bernstein wave (EBW), and (2) high harmonic fast wave (HHFW) modes. Both these current drive systems provide a means for the rf to access the especially high density plasma--termed high beta plasma--compared to the strength of the required magnetic fields. The CompX studies entailed detailed modeling of the EBW to calculate the efficiency of the current drive system, and to determine its range of flexibility for driving current at spatial locations in the plasma cross-section. The ray tracing showed penetration into NSTX bulk plasma, relatively efficient current drive, but a limited ability to produce current over the whole radial plasma cross-section. The actual EBW experiment will cost several million dollars, and remains in the proposal stage. The HHFW current drive system has been experimentally implemented on NSTX, and successfully drives substantial current. The understanding of the experiment is to be accomplished in terms of general concepts of rf current drive, and also detailed modeling of the experiment which can discern the various competing processes which necessarily occur simultaneously in the experiment. An early discovery of the CompX codes, GENRAY and CQL3D, was that there could be significant interference between the neutral beam injection fast ions in the machine (injected for plasma heating) and the HHFW energy. Under many NSTX experimental conditions, power which could go to the fast ions would then be unavailable for current drive by the desired HHFW interaction with electrons. This result has been born out by experiments; the modeling helps in understanding difficulties with HHFW current drive, and has enabled adjustment of the experiment to avoid interaction with neutral beam injected fast ions thereby achieving stronger HHFW current drive. The detailed physics modeling of the various competing processes is almost always required in fusion energy plasma physics, to ensure a reasonably accurate and certain interpretation of the experiment, enabling the confident design of future, more advanced experiments and ultimately a commercial fusion reactor. More recent work entails detailed investigation of the interaction of the HHFW radiation for fast ions, accounting for the particularly large radius orbits in NSTX, and correlations between multiple HHFW-ion interactions. The spherical aspect of the NSTX experiment emphasized particular physics such as the large orbits which are present to some degree in all tokamaks, but gives clearer clues on the resulting physics phenomena since competing physics effects are reduced.« less
AC propulsion system for an electric vehicle, phase 2
NASA Astrophysics Data System (ADS)
Slicker, J. M.
1983-06-01
A second-generation prototype ac propulsion system for a passenger electric vehicle was designed, fabricated, tested, installed in a modified Mercury Lynx vehicle and track tested at the Contractor's site. The system consisted of a Phase 2, 18.7 kw rated ac induction traction motor, a 192-volt, battery powered, pulse-width-modulated, transistorized inverter packaged for under rear seat installation, a 2-axis, 2-speed, automatically-shifted mechanical transaxle and a microprocessor-based powertrain/vehicle controller. A diagnostics computer to assist tuning and fault finding was fabricated. Dc-to-mechanical-system efficiency varied from 78% to 82% as axle speed/torque ranged from 159 rpm/788 nm to 65 rpm/328 nm. Track test efficiency results suggest that the ac system will be equal or superior to dc systems when driving urban cycles. Additional short-term work is being performed under a third contract phase (AC-3) to raise transaxle efficiency to predicted levels, and to improve starting and shifting characteristics. However, the long-term challenge to the system's viability remains inverter cost. A final report on the Phase 2 system, describing Phase 3 modifications, will be issued at the conclusion of AC-3.
AC propulsion system for an electric vehicle, phase 2
NASA Technical Reports Server (NTRS)
Slicker, J. M.
1983-01-01
A second-generation prototype ac propulsion system for a passenger electric vehicle was designed, fabricated, tested, installed in a modified Mercury Lynx vehicle and track tested at the Contractor's site. The system consisted of a Phase 2, 18.7 kw rated ac induction traction motor, a 192-volt, battery powered, pulse-width-modulated, transistorized inverter packaged for under rear seat installation, a 2-axis, 2-speed, automatically-shifted mechanical transaxle and a microprocessor-based powertrain/vehicle controller. A diagnostics computer to assist tuning and fault finding was fabricated. Dc-to-mechanical-system efficiency varied from 78% to 82% as axle speed/torque ranged from 159 rpm/788 nm to 65 rpm/328 nm. Track test efficiency results suggest that the ac system will be equal or superior to dc systems when driving urban cycles. Additional short-term work is being performed under a third contract phase (AC-3) to raise transaxle efficiency to predicted levels, and to improve starting and shifting characteristics. However, the long-term challenge to the system's viability remains inverter cost. A final report on the Phase 2 system, describing Phase 3 modifications, will be issued at the conclusion of AC-3.
Recent progress of RF-dominated experiments on EAST
NASA Astrophysics Data System (ADS)
Liu, F. K.; Zhao, Y. P.; Shan, J. F.; Zhang, X. J.; Ding, B. J.; Wang, X. J.; Wang, M.; Xu, H. D.; Qin, C. M.; Li, M. H.; Gong, X. Z.; Hu, L. Q.; Wan, B. N.; Song, Y. T.; Li, J. G.
2017-10-01
The research of EAST program is mostly focused on the development of high performance steady state scenario with ITER-like poloidal configuration and RF-dominated heating schemes. With the enhanced ITER-relevant auxiliary heating and current drive systems, the plasma profile control by coupling/integration of various combinations has been investigated, including lower hybrid current drive (LHCD), electron cyclotron resonance heating (ECRH) and ion cyclotron resonance heating (ICRH). The 12 MW ICRH system has been installed on EAST. Heating and confinement studies using the Hydrogen Minority Heating scheme have been investigated. One of the importance challenges for EAST is coupling higher power into the core plasma, experiments including changing plasma position, electron density, local gas puffing and antenna phasing scanning were performed to improve ICRF coupling efficiency on EAST. Results show that local gas injection and reducing the k|| can improve the coupling efficiency directly. By means of the 4.6 GHz and 2.45 GHz LHCD systems, H-mode can be obtained and sustained at relatively high density, even up to ne ˜ 4.5 × 1019 m-3, where a current drive effect is still observed. Meanwhile, effect of source frequency (2.45GHz and 4.6GHz) on LHCD characteristic has been studied on EAST, showing that higher frequency improves penetration of the coupled LH (lower hybrid) power into the plasma core and leads to a better effect on plasma characteristics. Studies demonstrate the role of parasitic effects of edge plasma in LHCD and the mitigation by increasing source frequency. Experiments of effect of LH spectrum and plasma density on plasma characteristics are performed, suggesting the possibility of plasma control for high performance. The development of a 4MW ECRH system is in progress for the purpose of plasma heating and MHD control. The built ECRH system with 1MW source power has been successfully put into use on EAST in 2015. H-mode discharges with L-H transition triggered by ECRH injection were obtained and its effects on the electron temperature, particle confinement and the core MHD stabilities were observed. By further exploring and optimizing the RF combination for the sole RF heating and current drive regime, fully non-inductive H-mode discharges with Vloop˜0V has progressed steadily in the 2016 campaign. The overview of the significant progress of RF dominated experiments is presented in this paper.
Integrated orbital servicing study follow-on. Volume 3: Engineering test unit and controls
NASA Technical Reports Server (NTRS)
1978-01-01
A one-g servicing demonstration system which can be used to investigate and develop, in a real time hands-on situation, a wide variety of the mechanism and control system aspects of orbital servicing in the form of module exchange is described including the engineering test unit and the servicer servo drive console. A series of recommendations for future work is given concerning the control problem and more efficient module exchanges, mechanical elements, and electronics.
Development of a National Item Bank for Tests of Driving Knowledge.
ERIC Educational Resources Information Center
Pollock, William T.; McDole, Thomas L.
Materials intended for driving knowledge test development use by operational licensing and education agencies were prepared. Candidate test items were developed, using literature and operational practice sources, to reflect current state-of-knowledge with respect to principles of safe, efficient driving, to legal regulations, and to traffic…
NASA Astrophysics Data System (ADS)
Kiss, Gellért Zsolt; Borbély, Sándor; Nagy, Ladislau
2017-12-01
We have presented here an efficient numerical approach for the ab initio numerical solution of the time-dependent Schrödinger Equation describing diatomic molecules, which interact with ultrafast laser pulses. During the construction of the model we have assumed a frozen nuclear configuration and a single active electron. In order to increase efficiency our system was described using prolate spheroidal coordinates, where the wave function was discretized using the finite-element discrete variable representation (FE-DVR) method. The discretized wave functions were efficiently propagated in time using the short-iterative Lanczos algorithm. As a first test we have studied here how the laser induced bound state dynamics in H2+ is influenced by the strength of the driving laser field.
Energy conversion in isothermal nonlinear irreversible processes - struggling for higher efficiency
NASA Astrophysics Data System (ADS)
Ebeling, W.; Feistel, R.
2017-06-01
First we discuss some early work of Ulrike Feudel on structure formation in nonlinear reactions including ions and the efficiency of the conversion of chemical into electrical energy. Then we give some survey about isothermal energy conversion from chemical to higher forms of energy like mechanical, electrical and ecological energy. Isothermal means here that there are no temperature gradients within the model systems. We consider examples of energy conversion in several natural processes and in some devices like fuel cells. Further, as an example, we study analytically the dynamics and efficiency of a simple "active circuit" converting chemical into electrical energy and driving currents which is roughly modeling fuel cells. Finally we investigate an analogous ecological system of Lotka-Volterra type consisting of an "active species" consuming some passive "chemical food". We show analytically for both these models that the efficiency increases with the load, reaches values higher then 50 percent in a narrow regime of optimal load and goes beyond some maximal load abruptly to zero.
Zodrow, Katherine R; Li, Qilin; Buono, Regina M; Chen, Wei; Daigger, Glen; Dueñas-Osorio, Leonardo; Elimelech, Menachem; Huang, Xia; Jiang, Guibin; Kim, Jae-Hong; Logan, Bruce E; Sedlak, David L; Westerhoff, Paul; Alvarez, Pedro J J
2017-09-19
Innovation in urban water systems is required to address the increasing demand for clean water due to population growth and aggravated water stress caused by water pollution, aging infrastructure, and climate change. Advances in materials science, modular water treatment technologies, and complex systems analyses, coupled with the drive to minimize the energy and environmental footprints of cities, provide new opportunities to ensure a resilient and safe water supply. We present a vision for enhancing efficiency and resiliency of urban water systems and discuss approaches and research needs for overcoming associated implementation challenges.
Design and Analysis of Hydrostatic Transmission System
NASA Astrophysics Data System (ADS)
Mistry, Kayzad A.; Patel, Bhaumikkumar A.; Patel, Dhruvin J.; Parsana, Parth M.; Patel, Jitendra P.
2018-02-01
This study develops a hydraulic circuit to drive a conveying system dealing with heavy and delicate loads. Various safety circuits have been added in order to ensure stable working at high pressure and precise controlling. Here we have shown the calculation procedure based on an arbitrarily selected load. Also the circuit design and calculations of various components used is depicted along with the system simulation. The results show that the system is stable and efficient enough to transmit heavy loads by functioning of the circuit. By this information, one can be able to design their own hydrostatic circuits for various heavy loading conditions.
Electrified Automotive Powertrain Architecture Using Composite DC–DC Converters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Hua; Kim, Hyeokjin; Erickson, Robert
In a hybrid or electric vehicle powertrain, a boost dc-dc converter enables reduction of the size of the electric machine and optimization of the battery system. Design of the powertrain boost converter is challenging because the converter must be rated at high peak power, while efficiency at medium-to-light load is critical for the vehicle system performance. By addressing only some of the loss mechanisms, previously proposed efficiency improvement approaches offer limited improvements in size, cost, and efficiency tradeoffs. This article shows how all dominant loss mechanisms in automotive powertrain applications can be mitigated using a new boost composite converter approach.more » In the composite dc-dc architecture, the loss mechanisms associated with indirect power conversion are addressed explicitly, resulting in fundamental efficiency improvements over wide ranges of operating conditions. Several composite converter topologies are presented and compared to state-of-the-art boost converter technologies. It is found that the selected boost composite converter results in a decrease in the total loss by a factor of 2-4 for typical drive cycles. Furthermore, the total system capacitor power rating and energy rating are substantially reduced, which implies potentials for significant reductions in system size and cost.« less
Electrified Automotive Powertrain Architecture Using Composite DC–DC Converters
Chen, Hua; Kim, Hyeokjin; Erickson, Robert; ...
2017-01-01
In a hybrid or electric vehicle powertrain, a boost dc-dc converter enables reduction of the size of the electric machine and optimization of the battery system. Design of the powertrain boost converter is challenging because the converter must be rated at high peak power, while efficiency at medium-to-light load is critical for the vehicle system performance. By addressing only some of the loss mechanisms, previously proposed efficiency improvement approaches offer limited improvements in size, cost, and efficiency tradeoffs. This article shows how all dominant loss mechanisms in automotive powertrain applications can be mitigated using a new boost composite converter approach.more » In the composite dc-dc architecture, the loss mechanisms associated with indirect power conversion are addressed explicitly, resulting in fundamental efficiency improvements over wide ranges of operating conditions. Several composite converter topologies are presented and compared to state-of-the-art boost converter technologies. It is found that the selected boost composite converter results in a decrease in the total loss by a factor of 2-4 for typical drive cycles. Furthermore, the total system capacitor power rating and energy rating are substantially reduced, which implies potentials for significant reductions in system size and cost.« less
Cyber-physical experiments on the efficiency of swimming protocols
NASA Astrophysics Data System (ADS)
Wei, Nathaniel; Floryan, Daniel; van Buren, Tyler; Smits, Alexander
2016-11-01
We present results from experiments on a biologically inspired cyber-physical system, composed of a two-dimensional heaving and pitching rigid airfoil attached to a six component load cell, mounted to a traverse that can move along a water channel. A feedback controller, influenced by the apparatus of Mackowski and Williamson, introduces the effects of a fictional drag force specified by a virtual body profile and drives the traverse accordingly. Free-swimming protocols using the force-feedback system are compared with similar motions on a motionless traverse. The propulsive efficiency of burst-and-coast kinematics is also considered. Of particular interest are (1) the implementation of the cyber-physical control system with respect to the accessible experimental parameter space, (2) the impact of force-based streamwise actuation on experimental data, and (3) the effects of burst-and-coast motions on propulsive efficiency. The work was supported by the Office of Naval Research (ONR) under MURI Grant N00014-14-1-0533.
Code of Federal Regulations, 2014 CFR
2014-01-01
... vertical solid shaft normal thrust general purpose electric motor (subtype II), in which case it shall be... solid shaft shall be inserted, bolted to the non-drive end of the motor and welded on the drive end... Efficiency of Electric Motors B Appendix B to Subpart B of Part 431 Energy DEPARTMENT OF ENERGY ENERGY...
Robertson, Robyn; Vanlaar, Ward; Simpson, Herb; Boase, Paul
2009-01-01
This article summarizes the main findings from a study designed to examine the legal process in Canada as it applies to alcohol-impaired driving from the point of view of Crown prosecutors and defense counsel, and to identify evidentiary or procedural factors that may impact the legal process, the rights of the accused, and interactions of all parts in the legal process. The data in this study were collected by means of a survey that was mailed out to the population of Crown prosecutors and defense counsel in Canada. In total, 765 prosecutors and 270 defense lawyers or an estimated 33% of all Canadian prosecutors and 15% of defense lawyers completed and returned the questionnaire. The "systems improvement" paradigm was used to interpret the findings and draw conclusions. Such an approach acknowledges the importance of the context in which countermeasures are implemented and delivered and the structures or entities used to deliver countermeasures to a designated target group. Results on type of charges and breath alcohol concentration, caseload, case outcomes, case preparation time, conviction rate at trial and overall conviction rate, reasons for acquittals and time to resolve cases are described. The findings from this national survey suggest that there are important challenges within the criminal justice system that impede the effective and efficient processing of impaired driving cases. Some of these challenges occur as a function of practices and policies, while others occur as a function of legislation. This study illustrates that a "system improvements" approach that acknowledges the importance of all elements of the criminal justice system and the interaction between those elements, can be beneficial in overcoming the alcohol-impaired driving problem.
FASTSim: A Model to Estimate Vehicle Efficiency, Cost and Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brooker, A.; Gonder, J.; Wang, L.
2015-05-04
The Future Automotive Systems Technology Simulator (FASTSim) is a high-level advanced vehicle powertrain systems analysis tool supported by the U.S. Department of Energy’s Vehicle Technologies Office. FASTSim provides a quick and simple approach to compare powertrains and estimate the impact of technology improvements on light- and heavy-duty vehicle efficiency, performance, cost, and battery batches of real-world drive cycles. FASTSim’s calculation framework and balance among detail, accuracy, and speed enable it to simulate thousands of driven miles in minutes. The key components and vehicle outputs have been validated by comparing the model outputs to test data for many different vehicles tomore » provide confidence in the results. A graphical user interface makes FASTSim easy and efficient to use. FASTSim is freely available for download from the National Renewable Energy Laboratory’s website (see www.nrel.gov/fastsim).« less
Four quadrant control of induction motors
NASA Technical Reports Server (NTRS)
Hansen, Irving G.
1991-01-01
Induction motors are the nation's workhorse, being the motor of choice in most applications due to their simple rugged construction. It has been estimated that 14 to 27 percent of the country's total electricity use could be saved with adjustable speed drives. Until now, induction motors have not been suited well for variable speed or servo-drives, due to the inherent complexity, size, and inefficiency of their variable speed controls. Work at NASA Lewis Research Center on field oriented control of induction motors using pulse population modulation method holds the promise for the desired drive electronics. The system allows for a variable voltage to frequency ratio which enables the user to operate the motor at maximum efficiency, while having independent control of both the speed and torque of an induction motor in all four quadrants of the speed torque map. Multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of machine. The pulse population technique, results to date, and projections for implementation of this existing new motor control technology are discussed.
NASA Astrophysics Data System (ADS)
Lin, Y.; Wukitch, S. J.; Edlund, E.; Ennever, P.; Hubbard, A. E.; Porkolab, M.; Rice, J.; Wright, J.
2017-10-01
In recent three-ion species (majority D and H plus a trace level of 3He) ICRF heating experiments on Alcator C-Mod, double mode conversion on both sides of the 3He cyclotron resonance has been observed using the phase contrast imaging (PCI) system. The MC locations are used to estimate the species concentrations in the plasma. Simulation using TORIC shows that with the 3He level <1%, most RF power is absorbed by the 3He ions and the process can generate energetic 3He ions. In mode conversion (MC) flow drive experiment in D(3He) plasma at 8 T, MC waves were also monitored by PCI. The MC ion cyclotron wave (ICW) amplitude and wavenumber kR have been found to correlate with the flow drive force. The MC efficiency, wave-number k of the MC ICW and their dependence on plasma parameters like Te0 have been studied. Based on the experimental observation and numerical study of the dispersion solutions, a hypothesis of the flow drive mechanism has been proposed.
The New NASA-STD-4005 and NASA-HDBK-4006, Essentials for Direct-Drive Solar Electric Propulsion
NASA Technical Reports Server (NTRS)
Ferguson, Dale C.
2007-01-01
High voltage solar arrays are necessary for direct-drive solar electric propulsion, which has many advantages, including simplicity and high efficiency. Even when direct-drive is not used, the use of high voltage solar arrays leads to power transmission and conversion efficiencies in electric propulsion Power Management and Distribution. Nevertheless, high voltage solar arrays may lead to temporary power disruptions, through the so-called primary electrostatic discharges, and may permanently damage arrays, through the so-called permanent sustained discharges between array strings. Design guidance is needed to prevent these solar array discharges, and to prevent high power drains through coupling between the electric propulsion devices and the high voltage solar arrays. While most electric propulsion systems may operate outside of Low Earth Orbit, the plasmas produced by their thrusters may interact with the high voltage solar arrays in many ways similarly to Low Earth Orbit plasmas. A brief description of previous experiences with high voltage electric propulsion systems will be given in this paper. There are two new official NASA documents available free through the NASA Standards website to help in designing and testing high voltage solar arrays for electric propulsion. They are NASA-STD-4005, the Low Earth Orbit Spacecraft Charging Design Standard, and NASA-HDBK-4006, the Low Earth Orbit Spacecraft Charging Design Handbook. Taken together, they can both educate the high voltage array designer in the engineering and science of spacecraft charging in the presence of dense plasmas and provide techniques for designing and testing high voltage solar arrays to prevent electrical discharges and power drains.
Impact Factors Analysis of the Hot Side Temperature of Thermoelectric Module
NASA Astrophysics Data System (ADS)
Zhang, Xingyu; Tan, Gangfeng; Yang, Bo
2018-03-01
The thermoelectric generator (TEG) plays a crucial role in converting the waste energy of exhaust into electricity, which ensures energy saving and increased fuel utilization efficiency. In the urban driving cycle, frequent vehicle operation, like deceleration or acceleration, results in continuous variation of the exhaust temperature. In order to make the operating performance stable, and to weaken the adverse effects of the frequent variation of the exhaust temperature on the lifetime and work efficiency of the electronic components of TEG systems, the output voltage of the thermoelectric (TE) module should stay more stable. This article provides an improved method for the temperature stability of the TE material hot side based on sandwiching material. From the view of the TEG system's average output power and the hot side temperature stability of the TE material, the analyzing factors, including the fluctuation frequency of the exhaust temperature and the physical properties and thickness of the sandwiching material are evaluated, respectively, in the sine and new European driving cycle (NEDC) fluctuation condition of the exhaust temperature. The results show few effects of sandwiching material thickness with excellent thermal conductivity on the average output power. During the 150-170 s of the NEDC test condition, the minimum hot side temperatures with a BeO ceramic thickness of 2 mm and 6 mm are, respectively, 537.19 K and 685.70 K, which shows the obvious effect on the hot side temperature stability of the BeO ceramic thickness in the process of acceleration and deceleration of vehicle driving.
Impact Factors Analysis of the Hot Side Temperature of Thermoelectric Module
NASA Astrophysics Data System (ADS)
Zhang, Xingyu; Tan, Gangfeng; Yang, Bo
2017-12-01
The thermoelectric generator (TEG) plays a crucial role in converting the waste energy of exhaust into electricity, which ensures energy saving and increased fuel utilization efficiency. In the urban driving cycle, frequent vehicle operation, like deceleration or acceleration, results in continuous variation of the exhaust temperature. In order to make the operating performance stable, and to weaken the adverse effects of the frequent variation of the exhaust temperature on the lifetime and work efficiency of the electronic components of TEG systems, the output voltage of the thermoelectric (TE) module should stay more stable. This article provides an improved method for the temperature stability of the TE material hot side based on sandwiching material. From the view of the TEG system's average output power and the hot side temperature stability of the TE material, the analyzing factors, including the fluctuation frequency of the exhaust temperature and the physical properties and thickness of the sandwiching material are evaluated, respectively, in the sine and new European driving cycle (NEDC) fluctuation condition of the exhaust temperature. The results show few effects of sandwiching material thickness with excellent thermal conductivity on the average output power. During the 150-170 s of the NEDC test condition, the minimum hot side temperatures with a BeO ceramic thickness of 2 mm and 6 mm are, respectively, 537.19 K and 685.70 K, which shows the obvious effect on the hot side temperature stability of the BeO ceramic thickness in the process of acceleration and deceleration of vehicle driving.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curran, Scott; Briggs, Thomas E; Cho, Kukwon
2011-01-01
In-cylinder blending of gasoline and diesel to achieve Reactivity Controlled Compression Ignition (RCCI) has been shown to reduce NOx and PM emissions while maintaining or improving brake thermal efficiency as compared to conventional diesel combustion (CDC). The RCCI concept has an advantage over many advanced combustion strategies in that by varying both the percent of premixed gasoline and EGR rate, stable combustion can be extended over more of the light-duty drive cycle load range. Changing the percent premixed gasoline changes the fuel reactivity stratification in the cylinder providing further control of combustion phasing and pressure rise rate than the usemore » of EGR alone. This paper examines the combustion and emissions performance of light-duty diesel engine using direct injected diesel fuel and port injected gasoline to carry out RCCI for steady-state engine conditions which are consistent with a light-duty drive cycle. A GM 1.9L four-cylinder engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure EGR system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline. Engine-out emissions, engine performance and combustion behavior for RCCI operation is compared against both CDC and a premixed charge compression ignition (PCCI) strategy which relies on high levels of EGR dilution. The effect of percent of premixed gasoline, EGR rate, boost level, intake mixture temperature, combustion phasing and pressure rise rate is investigated for RCCI combustion for the light-duty modal points. Engine-out emissions of NOx and PM were found to be considerably lower for RCCI operation as compared to CDC and PCCI, while HC and CO emissions were higher. Brake thermal efficiency was similar or higher for many of the modal conditions for RCCI operation. The emissions results are used to estimate hot-start FTP-75 emissions levels with RCCI and are compared against CDC and PCCI modes.« less
Hybrid-drive implosion system for ICF targets
Mark, James W.
1988-08-02
Hybrid-drive implosion systems (20,40) for ICF targets (10,22,42) are described which permit a significant increase in target gain at fixed total driver energy. The ICF target is compressed in two phases, an initial compression phase and a final peak power phase, with each phase driven by a separate, optimized driver. The targets comprise a hollow spherical ablator (12) surroundingly disposed around fusion fuel (14). The ablator is first compressed to higher density by a laser system (24), or by an ion beam system (44), that in each case is optimized for this initial phase of compression of the target. Then, following compression of the ablator, energy is directly delivered into the compressed ablator by an ion beam driver system (30,48) that is optimized for this second phase of operation of the target. The fusion fuel (14) is driven, at high gain, to conditions wherein fusion reactions occur. This phase separation allows hydrodynamic efficiency and energy deposition uniformity to be individually optimized, thereby securing significant advantages in energy gain. In additional embodiments, the same or separate drivers supply energy for ICF target implosion.
Hybrid-drive implosion system for ICF targets
Mark, James W.
1988-01-01
Hybrid-drive implosion systems (20,40) for ICF targets (10,22,42) are described which permit a significant increase in target gain at fixed total driver energy. The ICF target is compressed in two phases, an initial compression phase and a final peak power phase, with each phase driven by a separate, optimized driver. The targets comprise a hollow spherical ablator (12) surroundingly disposed around fusion fuel (14). The ablator is first compressed to higher density by a laser system (24), or by an ion beam system (44), that in each case is optimized for this initial phase of compression of the target. Then, following compression of the ablator, energy is directly delivered into the compressed ablator by an ion beam driver system (30,48) that is optimized for this second phase of operation of the target. The fusion fuel (14) is driven, at high gain, to conditions wherein fusion reactions occur. This phase separation allows hydrodynamic efficiency and energy deposition uniformity to be individually optimized, thereby securing significant advantages in energy gain. In additional embodiments, the same or separate drivers supply energy for ICF target implosion.
Hybrid-drive implosion system for ICF targets
Mark, J.W.K.
1987-10-14
Hybrid-drive implosion systems for ICF targets are described which permit a significant increase in target gain at fixed total driver energy. The ICF target is compressed in two phases, an initial compression phase and a final peak power phase, with each phase driven by a separate, optimized driver. The targets comprise a hollow spherical ablator surroundingly disposed around fusion fuel. The ablator is first compressed to higher density by a laser system, or by an ion beam system, that in each case is optimized for this initial phase of compression of the target. Then, following compression of the ablator, energy is directly delivered into the compressed ablator by an ion beam driver system that is optimized for this second phase of operation of the target. The fusion fuel is driven, at high gain, to conditions wherein fusion reactions occur. This phase separation allows hydrodynamic efficiency and energy deposition uniformity to be individually optimized, thereby securing significant advantages in energy gain. In additional embodiments, the same or separate drivers supply energy for ICF target implosion. 3 figs.
Assessment of Wearable Sensor Technologies for Biosurveillance
2014-11-01
used in the field. By building devices that leverage elements such as more efficient operating systems and lower power requirements, developers may...technology into the hands of nearly every citizen. Mid-term forecasts for this sector anticipate the development and approval of more precise medical...Batteries with different shapes Paper USB intelliPaper A “smart” paper business card bearing a detachable paper USB drive Deep Tissue Power
Progress in the Science and Technology of Direct Drive Laser Fusion with the KrF Laser
2010-12-01
important parameters KrF technology leads) Direct Laser Drive is a better choice for Energy Indirect Drive (initial path for NIF ) Laser Beams x-rays Hohlraum...Pellet Direct Drive (IFE) Laser Beams Pellet .. • ID Ignition being explored on NIF • Providing high enough gain for pure fusion energy is...challenging. • DD Ignition physics can be explored on NIF . • More efficient use of laser light, and greater flexibility in applying drive provides potential for
NASA Astrophysics Data System (ADS)
Hong, Seok Hoon; Kwon, Yong-Chan; Jewett, Michael
2014-06-01
Incorporating non-standard amino acids (NSAAs) into proteins enables new chemical properties, new structures, and new functions. In recent years, improvements in cell-free protein synthesis (CFPS) systems have opened the way to accurate and efficient incorporation of NSAAs into proteins. The driving force behind this development has been three-fold. First, a technical renaissance has enabled high-yielding (>1 g/L) and long-lasting (>10 h in batch operation) CFPS in systems derived from Escherichia coli. Second, the efficiency of orthogonal translation systems has improved. Third, the open nature of the CFPS platform has brought about an unprecedented level of control and freedom of design. Here, we review recent developments in CFPS platforms designed to precisely incorporate NSAAs. In the coming years, we anticipate that CFPS systems will impact efforts to elucidate structure/function relationships of proteins and to make biomaterials and sequence-defined biopolymers for medical and industrial applications.
Driving profile modeling and recognition based on soft computing approach.
Wahab, Abdul; Quek, Chai; Tan, Chin Keong; Takeda, Kazuya
2009-04-01
Advancements in biometrics-based authentication have led to its increasing prominence and are being incorporated into everyday tasks. Existing vehicle security systems rely only on alarms or smart card as forms of protection. A biometric driver recognition system utilizing driving behaviors is a highly novel and personalized approach and could be incorporated into existing vehicle security system to form a multimodal identification system and offer a greater degree of multilevel protection. In this paper, detailed studies have been conducted to model individual driving behavior in order to identify features that may be efficiently and effectively used to profile each driver. Feature extraction techniques based on Gaussian mixture models (GMMs) are proposed and implemented. Features extracted from the accelerator and brake pedal pressure were then used as inputs to a fuzzy neural network (FNN) system to ascertain the identity of the driver. Two fuzzy neural networks, namely, the evolving fuzzy neural network (EFuNN) and the adaptive network-based fuzzy inference system (ANFIS), are used to demonstrate the viability of the two proposed feature extraction techniques. The performances were compared against an artificial neural network (NN) implementation using the multilayer perceptron (MLP) network and a statistical method based on the GMM. Extensive testing was conducted and the results show great potential in the use of the FNN for real-time driver identification and verification. In addition, the profiling of driver behaviors has numerous other potential applications for use by law enforcement and companies dealing with buses and truck drivers.
From systems biology to systems biomedicine.
Antony, Paul M A; Balling, Rudi; Vlassis, Nikos
2012-08-01
Systems Biology is about combining theory, technology, and targeted experiments in a way that drives not only data accumulation but knowledge as well. The challenge in Systems Biomedicine is to furthermore translate mechanistic insights in biological systems to clinical application, with the central aim of improving patients' quality of life. The challenge is to find theoretically well-chosen models for the contextually correct and intelligible representation of multi-scale biological systems. In this review, we discuss the current state of Systems Biology, highlight the emergence of Systems Biomedicine, and highlight some of the topics and views that we think are important for the efficient application of Systems Theory in Biomedicine. Copyright © 2011 Elsevier Ltd. All rights reserved.
Landau-Zener-Stückelberg-Majorana Interferometry of a Single Hole
NASA Astrophysics Data System (ADS)
Bogan, Alex; Studenikin, Sergei; Korkusinski, Marek; Gaudreau, Louis; Zawadzki, Piotr; Sachrajda, Andy S.; Tracy, Lisa; Reno, John; Hargett, Terry
2018-05-01
We perform Landau-Zener-Stückelberg-Majorana (LZSM) spectroscopy on a system with strong spin-orbit interaction (SOI), realized as a single hole confined in a gated double quantum dot. Analogous to electron systems, at a magnetic field B =0 and high modulation frequencies, we observe photon-assisted tunneling between dots, which smoothly evolves into the typical LZSM funnel-shaped interference pattern as the frequency is decreased. In contrast to electrons, the SOI enables an additional, efficient spin-flip interdot tunneling channel, introducing a distinct interference pattern at finite B . Magnetotransport spectra at low-frequency LZSM driving show the two channels to be equally coherent. High-frequency LZSM driving reveals complex photon-assisted tunneling pathways, both spin conserving and spin flip, which form closed loops at critical magnetic fields. In one such loop, an arbitrary hole spin state is inverted, opening the way toward its all-electrical manipulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, T. Jr; Cunningham, A.R.; Iannelli, D.A.
Volume II is part of a four volume set documenting areas of research resulting from the development of the Automotive Manufacturing Assessment System (AMAS) for the DOT/Transportation Systems Center. AMAS was designed to assist in the evaluation of industry's capability to produce fuel efficient vehicles. Engine/driveline changes are the second most important contribution to fuel economy (weight reduction being the first) and are of major importance towards meeting emission standards. Through extensive synthesis of vehicle specifications and other data, chronological presentations were developed to illustrate engines and transmissions in production, engine/transmission and model/engine combinations, and automatic vs. manual transmission availability.more » Also shown are the progression of engine/driveline changes from 1975 through 1978; the correlation of these changes with new vehicle introductions; the restrictions on available drive-train options due to emission requirements; and technological improvements including dieselization, fuel metering, lock-up torque converters, and front-wheel-drive.« less
a Novel Approach to Camera Calibration Method for Smart Phones Under Road Environment
NASA Astrophysics Data System (ADS)
Lee, Bijun; Zhou, Jian; Ye, Maosheng; Guo, Yuan
2016-06-01
Monocular vision-based lane departure warning system has been increasingly used in advanced driver assistance systems (ADAS). By the use of the lane mark detection and identification, we proposed an automatic and efficient camera calibration method for smart phones. At first, we can detect the lane marker feature in a perspective space and calculate edges of lane markers in image sequences. Second, because of the width of lane marker and road lane is fixed under the standard structural road environment, we can automatically build a transformation matrix between perspective space and 3D space and get a local map in vehicle coordinate system. In order to verify the validity of this method, we installed a smart phone in the `Tuzhi' self-driving car of Wuhan University and recorded more than 100km image data on the road in Wuhan. According to the result, we can calculate the positions of lane markers which are accurate enough for the self-driving car to run smoothly on the road.
Distributed electromechanical actuation system design for a morphing trailing edge wing
NASA Astrophysics Data System (ADS)
Dimino, I.; Diodati, G.; Concilio, A.; Volovick, A.; Zivan, L.
2016-04-01
Next-generation flight control actuation technology will be based on "more electric" concepts to ensure benefits in terms of efficiency, weight and maintenance. This paper is concerned with the design of an un-shafted distributed servo-electromechanical actuation system, suited for morphing trailing edge wings of large commercial aircraft. It aims at producing small wing camber variations in the range between -5° and +5° in cruise, to enable aerodynamic efficiency improvements. The deployment kinematics is based on multiple "direct-drive" actuation, each made of light-weight compact lever mechanisms, rigidly connected to compliant ribs and sustained by load-bearing motors. Navier-Stokes computations are performed to estimate the pressure distribution over the interested wing region and the resulting hinge moments. These transfer to the primary structure via the driving mechanism. An electro-mechanical Matlab/Simulink model of the distributed actuation architecture is developed and used as a design tool, to preliminary evaluate the complete system performance. Implementing a multi-shaft strategy, each actuator is sized for the torque acting on the respective adaptive rib, following the effect of both the aerodynamic pressure and the morphing skin stiffness. Elastic trailing edge rotations and power needs are evaluated in operative conditions. Focus is finally given to the key challenges of the proposed concept: targeting quantifiable performance improvements while being compliant to the demanding requirements in terms of reliability and safety.
Hardware-in-the-Loop emulator for a hydrokinetic turbine
NASA Astrophysics Data System (ADS)
Rat, C. L.; Prostean, O.; Filip, I.
2018-01-01
Hydroelectric power has proven to be an efficient and reliable form of renewable energy, but its impact on the environment has long been a source of concern. Hydrokinetic turbines are an emerging class of renewable energy technology designed for deployment in small rivers and streams with minimal environmental impact on the local ecosystem. Hydrokinetic technology represents a truly clean source of energy, having the potential to become a highly efficient method of harvesting renewable energy. However, in order to achieve this goal, extensive research is necessary. This paper presents a Hardware-in-the-Loop emulator for a run-of-the-river type hydrokinetic turbine. The HIL system uses an ABB ACS800 drive to control an induction machine as a significant means of replicating the behavior of the real turbine. The induction machine is coupled to a permanent magnet synchronous generator and the corresponding load. The ACS800 drive is controlled through the software system, which comprises of the hydrokinetic turbine real-time simulation through mathematical modeling in the LabVIEW programming environment running on a NI CompactRIO (cRIO) platform. The advantages of this method are that it can provide a means for testing many control configurations without requiring the presence of the real turbine. This paper contains the basic principles of a hydrokinetic turbine, particularly the run-of-the-river configurations along with the experimental results obtained from the HIL system.
2015-01-01
Metadynamics is an enhanced sampling method designed to flatten free energy surfaces uniformly. However, the highest-energy regions are often irrelevant to study and dangerous to explore because systems often change irreversibly in unforeseen ways in response to driving forces in these regions, spoiling the sampling. Introducing an on-the-fly domain restriction allows metadynamics to flatten only up to a specified energy level and no further, improving efficiency and safety while decreasing the pressure on practitioners to design collective variables that are robust to otherwise irrelevant high energy driving. This paper describes a new method that achieves this using sequential on-the-fly estimation of energy wells and redefinition of the metadynamics hill shape, termed metabasin metadynamics. The energy level may be defined a priori or relative to unknown barrier energies estimated on-the-fly. Altering only the hill ensures that the method is compatible with many other advances in metadynamics methodology. The hill shape has a natural interpretation in terms of multiscale dynamics, and the computational overhead in simulation is minimal when studying systems of any reasonable size, for instance proteins or other macromolecules. Three example applications show that the formula is accurate and robust to complex dynamics, making metadynamics significantly more forgiving with respect to CV quality and thus more feasible to apply to the most challenging biomolecular systems. PMID:26587809
Experimental model of a wind energy conversion system
NASA Astrophysics Data System (ADS)
Vasar, C.; Rat, C. L.; Prostean, O.
2018-01-01
The renewable energy domain represents an important issue for the sustainable development of the mankind in the actual context of increasing demand for energy along with the increasing pollution that affect the environment. A significant quota of the clean energy is represented by the wind energy. As a consequence, the developing of wind energy conversion systems (WECS) in order to achieve high energetic performances (efficiency, stability, availability, competitive cost etc) represents a topic of permanent actuality. Testing and developing of an optimized control strategy for a WECS direct implemented on a real energetic site is quite difficult and not cost efficient. Thus a more convenient solution consists in a flexible laboratory setup which requires an experimental model of a WECS. Such approach would allow the simulation of various real conditions very similar with existing energetic sites. This paper presents a grid-connected wind turbine emulator. The wind turbine is implemented through a real-time Hardware-in-the-Loop (HIL) emulator, which will be analyzed extensively in the paper. The HIL system uses software implemented in the LabVIEW programming environment to control an ABB ACS800 electric drive. ACS800 has the task of driving an induction machine coupled to a permanent magnet synchronous generator. The power obtained from the synchronous generator is rectified, filtered and sent to the main grid through a controlled inverter. The control strategy is implemented on a NI CompactRIO (cRIO) platform.
Generation of bright isolated attosecond soft X-ray pulses driven by multicycle midinfrared lasers
Chen, Ming-Chang; Mancuso, Christopher; Hernández-García, Carlos; Dollar, Franklin; Galloway, Ben; Popmintchev, Dimitar; Huang, Pei-Chi; Walker, Barry; Plaja, Luis; Jaroń-Becker, Agnieszka A.; Becker, Andreas; Murnane, Margaret M.; Kapteyn, Henry C.; Popmintchev, Tenio
2014-01-01
High harmonic generation driven by femtosecond lasers makes it possible to capture the fastest dynamics in molecules and materials. However, to date the shortest subfemtosecond (attosecond, 10−18 s) pulses have been produced only in the extreme UV region of the spectrum below 100 eV, which limits the range of materials and molecular systems that can be explored. Here we experimentally demonstrate a remarkable convergence of physics: when midinfrared lasers are used to drive high harmonic generation, the conditions for optimal bright, soft X-ray generation naturally coincide with the generation of isolated attosecond pulses. The temporal window over which phase matching occurs shrinks rapidly with increasing driving laser wavelength, to the extent that bright isolated attosecond pulses are the norm for 2-µm driving lasers. Harnessing this realization, we experimentally demonstrate the generation of isolated soft X-ray attosecond pulses at photon energies up to 180 eV for the first time, to our knowledge, with a transform limit of 35 attoseconds (as), and a predicted linear chirp of 300 as. Most surprisingly, advanced theory shows that in contrast with as pulse generation in the extreme UV, long-duration, 10-cycle, driving laser pulses are required to generate isolated soft X-ray bursts efficiently, to mitigate group velocity walk-off between the laser and the X-ray fields that otherwise limit the conversion efficiency. Our work demonstrates a clear and straightforward approach for robustly generating bright isolated attosecond pulses of electromagnetic radiation throughout the soft X-ray region of the spectrum. PMID:24850866
Generation of bright isolated attosecond soft X-ray pulses driven by multicycle midinfrared lasers.
Chen, Ming-Chang; Mancuso, Christopher; Hernández-García, Carlos; Dollar, Franklin; Galloway, Ben; Popmintchev, Dimitar; Huang, Pei-Chi; Walker, Barry; Plaja, Luis; Jaroń-Becker, Agnieszka A; Becker, Andreas; Murnane, Margaret M; Kapteyn, Henry C; Popmintchev, Tenio
2014-06-10
High harmonic generation driven by femtosecond lasers makes it possible to capture the fastest dynamics in molecules and materials. However, to date the shortest subfemtosecond (attosecond, 10(-18) s) pulses have been produced only in the extreme UV region of the spectrum below 100 eV, which limits the range of materials and molecular systems that can be explored. Here we experimentally demonstrate a remarkable convergence of physics: when midinfrared lasers are used to drive high harmonic generation, the conditions for optimal bright, soft X-ray generation naturally coincide with the generation of isolated attosecond pulses. The temporal window over which phase matching occurs shrinks rapidly with increasing driving laser wavelength, to the extent that bright isolated attosecond pulses are the norm for 2-µm driving lasers. Harnessing this realization, we experimentally demonstrate the generation of isolated soft X-ray attosecond pulses at photon energies up to 180 eV for the first time, to our knowledge, with a transform limit of 35 attoseconds (as), and a predicted linear chirp of 300 as. Most surprisingly, advanced theory shows that in contrast with as pulse generation in the extreme UV, long-duration, 10-cycle, driving laser pulses are required to generate isolated soft X-ray bursts efficiently, to mitigate group velocity walk-off between the laser and the X-ray fields that otherwise limit the conversion efficiency. Our work demonstrates a clear and straightforward approach for robustly generating bright isolated attosecond pulses of electromagnetic radiation throughout the soft X-ray region of the spectrum.
Chromosome-wide linkage disequilibrium as a consequence of meiotic drive
Dyer, Kelly A.; Charlesworth, Brian; Jaenike, John
2007-01-01
Adaptation by natural selection proceeds most efficiently when alleles compete solely on the basis of their effects on the survival and reproduction of their carriers. A major condition for this is equal Mendelian segregation, but meiotic drive can short-circuit this process. The evolution of drive often involves multiple, interacting genetic components, together with enhancers and suppressors of drive. Chromosomal inversions that suppress crossing over are also frequently associated with drive systems. This study investigates the effects of these processes on patterns of molecular evolution in the fly Drosophila recens, which is polymorphic for a driving X chromosome (XD). Whereas standard wild-type chromosomes exhibit high levels of polymorphism at multiple loci, all of the XD chromosomes effectively carry a single multilocus haplotype that spans at least 130 cM. The XD is associated with a complex set of inversions that completely suppresses recombination between the standard wild-type chromosome and XD in heterozygous females, which maintain nonrandom associations among loci that presumably interact epistatically for the expression of drive. The long-term costs of foregoing recombination may be substantial; in combination with its low equilibrium frequency, this makes the XD chromosome susceptible to the accumulation of deleterious mutations. Consistent with this, XD chromosomes are apparently fixed for a recessive mutation that causes female sterility. Thus, the XD in D. recens appears to be in chromosome-wide linkage disequilibrium and in the early stages of mutational degradation. PMID:17242362
NASA Astrophysics Data System (ADS)
Meiler, M.; Andre, D.; Schmid, O.; Hofer, E. P.
Intelligent energy management is a cost-effective key path to realize efficient automotive drive trains [R. O'Hayre, S.W. Cha, W. Colella, F.B. Prinz. Fuel Cell Fundamentals, John Wiley & Sons, Hoboken, 2006]. To develop operating strategy in fuel cell drive trains, precise and computational efficient models of all system components, especially the fuel cell stack, are needed. Should these models further be used in diagnostic or control applications, then some major requirements must be fulfilled. First, the model must predict the mean fuel cell voltage very precisely in all possible operating conditions, even during transients. The model output should be as smooth as possible to support best efficient optimization strategies of the complete system. At least, the model must be computational efficient. For most applications, a difference between real fuel cell voltage and model output of less than 10 mV and 1000 calculations per second will be sufficient. In general, empirical models based on system identification offer a better accuracy and consume less calculation resources than detailed models derived from theoretical considerations [J. Larminie, A. Dicks. Fuel Cell Systems Explained, John Wiley & Sons, West Sussex, 2003]. In this contribution, the dynamic behaviour of the mean cell voltage of a polymer-electrolyte-membrane fuel cell (PEMFC) stack due to variations in humidity of cell's reactant gases is investigated. The validity of the overall model structure, a so-called general Hammerstein model (or Uryson model), was introduced recently in [M. Meiler, O. Schmid, M. Schudy, E.P. Hofer. Dynamic fuel cell stack model for real-time simulation based on system identification, J. Power Sources 176 (2007) 523-528]. Fuel cell mean voltage is calculated as the sum of a stationary and a dynamic voltage component. The stationary component of cell voltage is represented by a lookup-table and the dynamic voltage by a parallel placed, nonlinear transfer function. A suitable experimental setup to apply fast variations of gas humidity is introduced and is used to investigate a 10 cell PEMFC stack under various operation conditions. Using methods like stepwise multiple-regression a good mathematical description with reduced free parameters is achieved.
van den Beukel, Arie P; van der Voort, Mascha C
2017-03-01
The introduction of partially automated driving systems changes the driving task into supervising the automation with an occasional need to intervene. To develop interface solutions that adequately support drivers in this new role, this study proposes and evaluates an assessment framework that allows designers to evaluate driver-support within relevant real-world scenarios. Aspects identified as requiring assessment in terms of driver-support within the proposed framework are Accident Avoidance, gained Situation Awareness (SA) and Concept Acceptance. Measurement techniques selected to operationalise these aspects and the associated framework are pilot-tested with twenty-four participants in a driving simulator experiment. The objective of the test is to determine the reliability of the applied measurements for the assessment of the framework and whether the proposed framework is effective in predicting the level of support offered by the concepts. Based on the congruency between measurement scores produced in the test and scores with predefined differences in concept-support, this study demonstrates the framework's reliability. A remaining concern is the framework's weak sensitivity to small differences in offered support. The article concludes that applying the framework is especially advantageous for evaluating early design phases and can successfully contribute to the efficient development of driver's in-control and safe means of operating partially automated vehicles. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gutfrind, Christophe; Dufour, Laurent; Liebart, Vincent; Vannier, Jean-Claude; Vidal, Pierre
2016-01-01
The purpose of this article is to describe the design of a limited stroke actuator and the corresponding prototype to drive a Low Pressure (LP) Exhaust Gas Recirculation (EGR) valve for use in Internal Combustion Engines (ICEs). The direct drive actuator topology is an axial flux machine with two air gaps in order to minimize the rotor inertia and a bipolar surface-mounted permanent magnet in order to respect an 80° angular stroke. Firstly, the actuator will be described and optimized under constraints of a 150 ms time response, a 0.363 N·m minimal torque on an angular range from 0° to 80° and prototyping constraints. Secondly, the finite element method (FEM) using the FLUX-3D® software (CEDRAT, Meylan, France) will be used to check the actuator performances with consideration of the nonlinear effect of the iron material. Thirdly, a prototype will be made and characterized to compare its measurement results with the analytical model and the FEM model results. With these electromechanical behavior measurements, a numerical model is created with Simulink® in order to simulate an EGR system with this direct drive actuator under all operating conditions. Last but not least, the energy consumption of this machine will be estimated to evaluate the efficiency of the proposed EGR electromechanical system. PMID:27213398
Gutfrind, Christophe; Dufour, Laurent; Liebart, Vincent; Vannier, Jean-Claude; Vidal, Pierre
2016-05-20
The purpose of this article is to describe the design of a limited stroke actuator and the corresponding prototype to drive a Low Pressure (LP) Exhaust Gas Recirculation (EGR) valve for use in Internal Combustion Engines (ICEs). The direct drive actuator topology is an axial flux machine with two air gaps in order to minimize the rotor inertia and a bipolar surface-mounted permanent magnet in order to respect an 80° angular stroke. Firstly, the actuator will be described and optimized under constraints of a 150 ms time response, a 0.363 N·m minimal torque on an angular range from 0° to 80° and prototyping constraints. Secondly, the finite element method (FEM) using the FLUX-3D(®) software (CEDRAT, Meylan, France) will be used to check the actuator performances with consideration of the nonlinear effect of the iron material. Thirdly, a prototype will be made and characterized to compare its measurement results with the analytical model and the FEM model results. With these electromechanical behavior measurements, a numerical model is created with Simulink(®) in order to simulate an EGR system with this direct drive actuator under all operating conditions. Last but not least, the energy consumption of this machine will be estimated to evaluate the efficiency of the proposed EGR electromechanical system.
Laureiro-Martínez, Daniella; Canessa, Nicola; Brusoni, Stefano; Zollo, Maurizio; Hare, Todd; Alemanno, Federica; Cappa, Stefano F
2013-01-01
An optimal balance between efficient exploitation of available resources and creative exploration of alternatives is critical for adaptation and survival. Previous studies associated these behavioral drives with, respectively, the dopaminergic mesocorticolimbic system and frontopolar-intraparietal networks. We study the activation of these systems in two age and gender-matched groups of experienced decision-makers differing in prior professional background, with the aim to understand the neural bases of individual differences in decision-making efficiency (performance divided by response time). We compare brain activity of entrepreneurs (who currently manage the organization they founded based on their venture idea) and managers (who are constantly involved in making strategic decisions but have no venture experience) engaged in a gambling-task assessing exploitative vs. explorative decision-making. Compared with managers, entrepreneurs showed higher decision-making efficiency, and a stronger activation in regions of frontopolar cortex (FPC) previously associated with explorative choice. Moreover, activity across a network of regions previously linked to explore/exploit tradeoffs explained individual differences in choice efficiency. These results suggest new avenues for the study of individual differences in the neural antecedents of efficient decision-making.
Laureiro-Martínez, Daniella; Canessa, Nicola; Brusoni, Stefano; Zollo, Maurizio; Hare, Todd; Alemanno, Federica; Cappa, Stefano F.
2014-01-01
An optimal balance between efficient exploitation of available resources and creative exploration of alternatives is critical for adaptation and survival. Previous studies associated these behavioral drives with, respectively, the dopaminergic mesocorticolimbic system and frontopolar-intraparietal networks. We study the activation of these systems in two age and gender-matched groups of experienced decision-makers differing in prior professional background, with the aim to understand the neural bases of individual differences in decision-making efficiency (performance divided by response time). We compare brain activity of entrepreneurs (who currently manage the organization they founded based on their venture idea) and managers (who are constantly involved in making strategic decisions but have no venture experience) engaged in a gambling-task assessing exploitative vs. explorative decision-making. Compared with managers, entrepreneurs showed higher decision-making efficiency, and a stronger activation in regions of frontopolar cortex (FPC) previously associated with explorative choice. Moreover, activity across a network of regions previously linked to explore/exploit tradeoffs explained individual differences in choice efficiency. These results suggest new avenues for the study of individual differences in the neural antecedents of efficient decision-making. PMID:24478664
Using AORSA to simulate helicon waves in DIII-D
NASA Astrophysics Data System (ADS)
Lau, C.; Jaeger, E. F.; Bertelli, N.; Berry, L. A.; Blazevski, D.; Green, D. L.; Murakami, M.; Park, J. M.; Pinsker, R. I.; Prater, R.
2015-12-01
Recent efforts have shown that helicon waves (fast waves at > 20ωci) may be an attractive option for driving efficient off-axis current drive during non-inductive tokamak operation for DIII-D, ITER and DEMO. For DIII-D scenarios, the ray tracing code, GENRAY, has been extensively used to study helicon current drive efficiency and location as a function of many plasma parameters. The full wave code, AORSA, which is applicable to arbitrary Larmor radius and can resolve arbitrary ion cyclotron harmonic order, has been recently used to validate the ray tracing technique at these high cyclotron harmonics. If the SOL is ignored, it will be shown that the GENRAY and AORSA calculated current drive profiles are comparable for the envisioned high beta advanced scenarios for DIII-D, where there is high single pass absorption due to electron Landau damping and minimal ion damping. AORSA is also been used to estimate possible SOL effects on helicon current drive coupling and SOL absorption due to collisional and slow wave effects.
Aging and efficiency in living systems: Complexity, adaptation and self-organization.
Chatterjee, Atanu; Georgiev, Georgi; Iannacchione, Germano
2017-04-01
Living systems are open, out-of-equilibrium thermodynamic entities, that maintain order by locally reducing their entropy. Aging is a process by which these systems gradually lose their ability to maintain their out-of-equilibrium state, as measured by their free-energy rate density, and hence, their order. Thus, the process of aging reduces the efficiency of those systems, making them fragile and less adaptive to the environmental fluctuations, gradually driving them towards the state of thermodynamic equilibrium. In this paper, we discuss the various metrics that can be used to understand the process of aging from a complexity science perspective. Among all the metrics that we propose, action efficiency, is observed to be of key interest as it can be used to quantify order and self-organization in any physical system. Based upon our arguments, we present the dependency of other metrics on the action efficiency of a system, and also argue as to how each of the metrics, influences all the other system variables. In order to support our claims, we draw parallels between technological progress and biological growth. Such parallels are used to support the universal applicability of the metrics and the methodology presented in this paper. Therefore, the results and the arguments presented in this paper throw light on the finer nuances of the science of aging. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhileykin, M. M.; Kotiev, G. O.; Nagatsev, M. V.
2018-02-01
In order to improve the efficiency of the multi-axle wheeled vehicles (MWV) automotive engineers are increasing their cruising speed. One of the promising ways to improve ride comfort of the MWV is the development of the dynamic active suspension systems and control laws for such systems. Here, by the dynamic control systems we mean the systems operating in real time mode and using current (instantaneous) values of the state variables. The aim of the work is to develop the MWV suspension optimal control laws that would reduce vibrations on the driver’s seat at kinematic excitation. The authors have developed the optimal control laws for damping the oscillations of the MWV body. The developed laws allow reduction of the vibrations on the driver’s seat and increase in the maximum speed of the vehicle. The laws are characterized in that they allow generating the control inputs in real time mode. The authors have demonstrated the efficiency of the proposed control laws by means of mathematical simulation of the MWV driving over unpaved road with kinematic excitation. The proposed optimal control laws can be used in the MWV suspension control systems with magnetorheological shock absorbers or controlled hydropneumatic springs. Further evolution of the research line can be the development of the energy-efficient MWV suspension control systems with continuous control input on the vehicle body.
Zhang, Zhensong; Yue, Shouzhen; Wu, Yukun; Yan, Pingrui; Wu, Qingyang; Qu, Dalong; Liu, Shiyong; Zhao, Yi
2014-01-27
Low driving voltage blue, green, yellow, red and white phosphorescent organic light-emitting diodes (OLEDs) with a common simply double emitting layer (D-EML) structure are investigated. Our OLEDs without any out-coupling schemes as well as n-doping strategies show low driving voltage, e.g. < 2.4 V for onset and < 3 V for 1000 cd/m2, and high efficiency of 32.5 lm/W (13.3%), 58.8 lm/W (14.3%), 55.1 lm/W (14.6%), 24.9 lm/W (13.7%) and 45.1 lm/W (13.5%) for blue, green, yellow, red and white OLED, respectively. This work demonstrates that the low driving voltages and high efficiencies can be simultaneously realized with a common simply D-EML structure.
A Novelty Design Of Minimization Of Electrical Losses In A Vector Controlled Induction Machine Drive
NASA Astrophysics Data System (ADS)
Aryza, Solly; Irwanto, M.; Lubis, Zulkarnain; Putera Utama Siahaan, Andysah; Rahim, Robbi; Furqan, Mhd.
2018-01-01
The induction motor has in the industry . More attention has been a focus to develop and design of induction motor drive. With the method of vector control novelty prove the efficiency of induction motor over their entire speed range. In this paper desirable to design a loss minimization controller which can improve the efficiency. Also, this research described Modeling of an induction motor with core loss included. Realization of methods vector control for an induction motor drive with loss element included. The case of the loss minimization condition. The procedure was successful to calculate the gains of a PI controller. Though the problem of obtaining a robust and sensorless induction motor drive is by no means completely solved, the results obtained as part of this work point in a promising direction.
Wang, Sihong; Lin, Long; Wang, Zhong Lin
2012-12-12
Harvesting energy from our living environment is an effective approach for sustainable, maintenance-free, and green power source for wireless, portable, or implanted electronics. Mechanical energy scavenging based on triboelectric effect has been proven to be simple, cost-effective, and robust. However, its output is still insufficient for sustainably driving electronic devices/systems. Here, we demonstrated a rationally designed arch-shaped triboelectric nanogenerator (TENG) by utilizing the contact electrification between a polymer thin film and a metal thin foil. The working mechanism of the TENG was studied by finite element simulation. The output voltage, current density, and energy volume density reached 230 V, 15.5 μA/cm(2), and 128 mW/cm(3), respectively, and an energy conversion efficiency as high as 10-39% has been demonstrated. The TENG was systematically studied and demonstrated as a sustainable power source that can not only drive instantaneous operation of light-emitting diodes (LEDs) but also charge a lithium ion battery as a regulated power module for powering a wireless sensor system and a commercial cell phone, which is the first demonstration of the nanogenerator for driving personal mobile electronics, opening the chapter of impacting general people's life by nanogenerators.
Absorption spectrum of a two-level system subjected to a periodic pulse sequence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fotso, H. F.; Dobrovitski, V. V.
We investigate how the quantum control of a two-level system (TLS) coupled to photons can modify and tune the TLS’s photon absorption spectrum. Tuning and controlling the emission and the absorption is of much interest e.g. for the development of efficient interfaces between stationary and flying qubits in modern architectures for quantum computation and quantum communication. We consider the periodic pulse control, where the TLS is subjected to a periodic sequence of the near-resonant Rabi driving pulses, each pulse implementing a 180° rotation. For small inter-pulse delays, the absorption spectrum features a pronounced peak of stimulated emission at the pulsemore » frequency, as well as equidistant satellite peaks with smaller spectral weights. As long as the detuning between the carrier frequency of the driving and the TLS transition frequency remains moderate, this spectral shape shows little change. Therefore, the quantum control allows shifting the absorption peak to a desired position, and locks the absorption peak to the carrier frequency of the driving pulses. Detailed description of the spectrum, and its evolution as a function time, the inter-pulse spacing and the detuning, is presented.« less
Absorption spectrum of a two-level system subjected to a periodic pulse sequence
Fotso, H. F.; Dobrovitski, V. V.
2017-06-01
We investigate how the quantum control of a two-level system (TLS) coupled to photons can modify and tune the TLS’s photon absorption spectrum. Tuning and controlling the emission and the absorption is of much interest e.g. for the development of efficient interfaces between stationary and flying qubits in modern architectures for quantum computation and quantum communication. We consider the periodic pulse control, where the TLS is subjected to a periodic sequence of the near-resonant Rabi driving pulses, each pulse implementing a 180° rotation. For small inter-pulse delays, the absorption spectrum features a pronounced peak of stimulated emission at the pulsemore » frequency, as well as equidistant satellite peaks with smaller spectral weights. As long as the detuning between the carrier frequency of the driving and the TLS transition frequency remains moderate, this spectral shape shows little change. Therefore, the quantum control allows shifting the absorption peak to a desired position, and locks the absorption peak to the carrier frequency of the driving pulses. Detailed description of the spectrum, and its evolution as a function time, the inter-pulse spacing and the detuning, is presented.« less
RECENT DEVELOPMENTS IN HYDROLOGIC INSTRUMENTATION.
Latkovich, Vito J.
1985-01-01
The availability of space-age materials and implementation of state-of-the-art electronics is making possible the recent developments of hydrologic instrumentation. Material developments include: Synthetic-fiber sounding and tag lines; fiberglass wading rod; polymer (plastic) sheaves, pulleys and sampler components; and polymer (plastic) bucket wheels for current meters. These materials are very cost effective and efficient. Electromechanical and electronic developments and applications include: adaptable data acquisition system; downhole sampler for hazardous substances; current-meter digitizer; hydraulic power/drive system for discharge measurements and water-quality sampling; non-contact water-level sensors; minimum data recorder; acoustic velocity meters, and automated current meter discharge-measurement system.
Alternative Fuels Data Center: Phoenix Utility Fleet Drives Smarter with
electric car. College Students Engineer Efficient Vehicles in EcoCAR 2 Competition Aug. 2, 2014 Photo of a BiodieselA> Phoenix Utility Fleet Drives Smarter with Biodiesel to someone by E-mail Share ... Aug. 26, 2017 Phoenix Utility Fleet Drives Smarter with Biodiesel Watch how a utility company in
Demonstration of variable speed permanent magnet generator at small, low-head hydro site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown Kinloch, David
Small hydro developers face a limited set of bad choices when choosing a generator for a small low-head hydro site. Direct drive synchronous generators are expensive and technically complex to install. Simpler induction generators are higher speed, requiring a speed increaser, which results in inefficiencies and maintenance problems. In addition, both induction and synchronous generators turn at a fixed speed, causing the turbine to run off its peak efficiency curve whenever the available head is different than the designed optimum head.The solution to these problems is the variable speed Permanent Magnet Generators (PMG). At the Weisenberger Mill in Midway, KY,more » a variable speed Permanent Magnet Generator has been installed and demonstrated. This new PMG system replaced an existing induction generator that had a HTD belt drive speed increaser system. Data was taken from the old generator before it was removed and compared to data collected after the PMG system was installed. The new variable speed PMG system is calculated to produce over 96% more energy than the old induction generator system during an average year. This significant increase was primarily due to the PMG generator operating at the correct speed at the maximum head, and the ability for the PMG generator to reduce its speed to lower optimum speeds as the stream flow increased and the net head decreased.This demonstration showed the importance of being able to adjust the speed of fixed blade turbines. All fixed blade turbines with varying net heads could achieve higher efficiencies if the speed can be matched to the optimum speed as the head changes. In addition, this demonstration showed that there are many potential efficiencies that could be realized with variable speed technology at hydro sites where mismatched turbine and generator speeds result in lower power output, even at maximum head. Funding for this project came from the US Dept. of Energy, through Award Number DE-EE0005429.« less
Fully Automated Driving: Impact of Trust and Practice on Manual Control Recovery.
Payre, William; Cestac, Julien; Delhomme, Patricia
2016-03-01
An experiment was performed in a driving simulator to investigate the impacts of practice, trust, and interaction on manual control recovery (MCR) when employing fully automated driving (FAD). To increase the use of partially or highly automated driving efficiency and to improve safety, some studies have addressed trust in driving automation and training, but few studies have focused on FAD. FAD is an autonomous system that has full control of a vehicle without any need for intervention by the driver. A total of 69 drivers with a valid license practiced with FAD. They were distributed evenly across two conditions: simple practice and elaborate practice. When examining emergency MCR, a correlation was found between trust and reaction time in the simple practice group (i.e., higher trust meant a longer reaction time), but not in the elaborate practice group. This result indicated that to mitigate the negative impact of overtrust on reaction time, more appropriate practice may be needed. Drivers should be trained in how the automated device works so as to improve MCR performance in case of an emergency. The practice format used in this study could be used for the first interaction with an FAD car when acquiring such a vehicle. © 2015, Human Factors and Ergonomics Society.
A new energy-efficient control approach for space telescope drive system
NASA Astrophysics Data System (ADS)
Zhou, Wangping; Wang, Yong
Drive control makes the telescope accurately track celestial bodies in spite of external and in-ternal disturbances, and is a key technique to the performance of telescopes. In this paper, we propose a nonlinear adaptive observer based on power reversible approach for high preci-sion position tracking, i.e., space telescopes. The nonlinear adaptive observer automatically estimates the disturbances in drive system, and the observed value is applied to compensate for the real disturbances. With greatly reduced disturbances, the control precision can be ev-idently improved. In conventional drive control, the brake device is often used to slow down the reaction wheel and may waste enormous energy. To avoid those disadvantages, an H-bridge is put forward for wheel speed regulation. Such H-bridge has four independent sections, and each section mainly consists of a power electronic switch and an anti-parallel diode. A pair of diagonal sections is switched on for speeding up the reaction wheel and the other pair act in reverse. During the period of the wheel slowing down, the armature current of drive motor goes through the two path-wise diodes to discharge the battery. Thusly, energy waste is avoided. Based on the disturbance compensation, an optimal controller is designed to minimize an eval-uation function which is made up of a weighted sum of position errors and energy consumption. The outputs of the controller are amplified to control the H-bridge. Simulations are performed in MATLAB language. The results show that high precision control can be obtained by the proposed approach. And the energy consumption will be remarkably reduced.
Solar-Driven Liquid-Metal MHD Generator
NASA Technical Reports Server (NTRS)
Hohl, F.; Lee, J. H.
1982-01-01
Liquid-metal magnetohydrodynamic (MHD) power generator with solar oven as its heat source has potential to produce electric power in space and on Earth at high efficiency. Generator focuses radiation from Sun to heat driving gas that pushes liquid metal past magnetic coil. Power is extracted directly from electric currents set up in conducting liquid. Using solar energy as fuel can save considerable costs and payload weight, compared to previous systems.
Schormans, Matthew; Valente, Virgilio; Demosthenous, Andreas
2016-08-04
Inductive powering for implanted medical devices, such as implantable biosensors, is a safe and effective technique that allows power to be delivered to implants wirelessly, avoiding the use of transcutaneous wires or implanted batteries. Wireless powering is very sensitive to a number of link parameters, including coil distance, alignment, shape, and load conditions. The optimum drive frequency of an inductive link varies depending on the coil spacing and load. This paper presents an optimum frequency tracking (OFT) method, in which an inductive power link is driven at a frequency that is maintained at an optimum value to ensure that the link is working at resonance, and the output voltage is maximised. The method is shown to provide significant improvements in maintained secondary voltage and system efficiency for a range of loads when the link is overcoupled. The OFT method does not require the use of variable capacitors or inductors. When tested at frequencies around a nominal frequency of 5 MHz, the OFT method provides up to a twofold efficiency improvement compared to a fixed frequency drive. The system can be readily interfaced with passive implants or implantable biosensors, and lends itself to interfacing with designs such as distributed implanted sensor networks, where each implant is operating at a different frequency.
Axial force and efficiency tests of fixed center variable speed belt drive
NASA Technical Reports Server (NTRS)
Bents, D. J.
1981-01-01
An investigation of how the axial force varies with the centerline force at different speed ratios, speeds, and loads, and how the drive's transmission efficiency is affected by these related forces is described. The tests, intended to provide a preliminary performance and controls characterization for a variable speed belt drive continuously variable transmission (CVT), consisted of the design and construction of an experimental test rig geometrically similar to the CVT, and operation of that rig at selected speed ratios and power levels. Data are presented which show: how axial forces exerted on the driver and driven sheaves vary with the centerline force at constant values of speed ratio, speed, and output power; how the transmission efficiency varies with centerline force and how it is also a function of the V belt coefficient; and the axial forces on both sheaves as normalized functions of the traction coefficient.
Optimization of Driving Styles for Fuel Economy Improvement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malikopoulos, Andreas; Aguilar, Juan P.
2012-01-01
Modern vehicles have sophisticated electronic control units, particularly to control engine operation with respect to a balance between fuel economy, emissions, and power. These control units are designed for specific driving conditions and testing. However, each individual driving style is different and rarely meets those driving conditions. In the research reported here we investigate those driving style factors that have a major impact on fuel economy. An optimization framework is proposed with the aim of optimizing driving styles with respect to these driving factors. A set of polynomial metamodels are constructed to reflect the responses produced by changes of themore » driving factors. Then we compare the optimized driving styles to the original ones and evaluate the efficiency and effectiveness of the optimization formulation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holmfeldt, Karin; Solonenko, Natalie; Howard-Varona, Cristina
Microbes drive ecosystem functioning and their viruses modulate these impacts through mortality, gene transfer and metabolic reprogramming. Despite the importance of virus-host interactions and likely variable infection efficiencies of individual phages across hosts, such variability is seldom quantified. In this paper, we quantify infection efficiencies of 38 phages against 19 host strains in aquatic Cellulophaga (Bacteroidetes) phage-host model systems. Binary data revealed that some phages infected only one strain while others infected 17, whereas quantitative data revealed that efficiency of infection could vary 10 orders of magnitude, even among phages within one population. This provides a baseline for understanding andmore » modeling intrapopulation host range variation. Genera specific host ranges were also informative. For example, the Cellulophaga Microviridae, showed a markedly broader intra-species host range than previously observed in Escherichia coli systems. Further, one phage genus, Cba41, was examined to investigate nonheritable changes in plating efficiency and burst size that depended on which host strain it most recently infected. While consistent with host modification of phage DNA, no differences in nucleotide sequence or DNA modifications were detected, leaving the observation repeatable, but the mechanism unresolved. Overall, this study highlights the importance of quantitatively considering replication variations in studies of phage-host interactions.« less
Holmfeldt, Karin; Solonenko, Natalie; Howard-Varona, Cristina; ...
2016-06-28
Microbes drive ecosystem functioning and their viruses modulate these impacts through mortality, gene transfer and metabolic reprogramming. Despite the importance of virus-host interactions and likely variable infection efficiencies of individual phages across hosts, such variability is seldom quantified. In this paper, we quantify infection efficiencies of 38 phages against 19 host strains in aquatic Cellulophaga (Bacteroidetes) phage-host model systems. Binary data revealed that some phages infected only one strain while others infected 17, whereas quantitative data revealed that efficiency of infection could vary 10 orders of magnitude, even among phages within one population. This provides a baseline for understanding andmore » modeling intrapopulation host range variation. Genera specific host ranges were also informative. For example, the Cellulophaga Microviridae, showed a markedly broader intra-species host range than previously observed in Escherichia coli systems. Further, one phage genus, Cba41, was examined to investigate nonheritable changes in plating efficiency and burst size that depended on which host strain it most recently infected. While consistent with host modification of phage DNA, no differences in nucleotide sequence or DNA modifications were detected, leaving the observation repeatable, but the mechanism unresolved. Overall, this study highlights the importance of quantitatively considering replication variations in studies of phage-host interactions.« less
Variable-Reluctance Motor For Electric Vehicles
NASA Technical Reports Server (NTRS)
Lang, Jeffrey H.
1987-01-01
Report describes research on variable-reluctance electric-motor drive for eventual use in electric-vehicle propulsion. Primary design and performance criteria were torque and power output per unit mass of motor, cost, and drive efficiency. For each criterion, optimized drive design developed, and designs unified to yield single electric-vehicle drive. Scaled-down motor performed as expected. Prototype of paraplegic lift operated by toggle switch and joystick. Lift plugs into household electrical outlet for recharging when not in use.
Optimization of spent fuel pool weir gate driving mechanism
NASA Astrophysics Data System (ADS)
Liu, Chao; Du, Lin; Tao, Xinlei; Wang, Shijie; Shang, Ertao; Yu, Jianjiang
2018-04-01
Spent fuel pool is crucial facility for fuel storage and nuclear safety, and the spent fuel pool weir gate is the key related equipment. In order to achieve a goal of more efficient driving force transfer, loading during the opening/closing process is analyzed and an optimized calculation method for dimensions of driving mechanism is proposed. The result of optimizing example shows that the method can be applied to weir gates' design with similar driving mechanism.
Virtual sensor models for real-time applications
NASA Astrophysics Data System (ADS)
Hirsenkorn, Nils; Hanke, Timo; Rauch, Andreas; Dehlink, Bernhard; Rasshofer, Ralph; Biebl, Erwin
2016-09-01
Increased complexity and severity of future driver assistance systems demand extensive testing and validation. As supplement to road tests, driving simulations offer various benefits. For driver assistance functions the perception of the sensors is crucial. Therefore, sensors also have to be modeled. In this contribution, a statistical data-driven sensor-model, is described. The state-space based method is capable of modeling various types behavior. In this contribution, the modeling of the position estimation of an automotive radar system, including autocorrelations, is presented. For rendering real-time capability, an efficient implementation is presented.
FY2012 Advanced Power Electronics and Electric Motors Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, Susan A.
The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), thermal management, and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency.
A method for evaluating photovoltaic potential in China based on GIS platform
NASA Astrophysics Data System (ADS)
Wang, L. Z.; Tan, H. W.; Ji, L.; Wang, D.
2017-11-01
Solar photovoltaic systems are commonly utilized in China. However, the associated research is still lack of its resource potential analysis in all regions in China. Based on the existed data about solar radiation and system conversion efficiency data, a new method for distributed photovoltaic potential assessment has been presented. The experiment of three kinds of solar photovoltaic system has been set up for the purpose of analyzing the relationship between conversion efficiency and environmental parameters. This paper fits the relationship between conversion efficiency and solar radiation intensity. This method takes into account the amount of solar radiation that is effectively generated and drives away the weak values. With the spatial analysis function of geographic information system (GIS) platform, frequency distribution of solar radiation intensity and PV potential in China can be derived. Furthermore, analytical results show that monocrystalline-silicon PV generation in the north-western and northern areas have reached a level of more than 200 kWh/(m2.a), making those areas be suitable for the development of PV system. However, the potential for southwest areas reaches a level of only 130 kWh/(m2.a). This paper can provide the baseline reference for solar energy development planning.
Numerically robust and efficient nonlocal electron transport in 2D DRACO simulations
NASA Astrophysics Data System (ADS)
Cao, Duc; Chenhall, Jeff; Moses, Greg; Delettrez, Jacques; Collins, Tim
2013-10-01
An improved implicit algorithm based on Schurtz, Nicolai and Busquet (SNB) algorithm for nonlocal electron transport is presented. Validation with direct drive shock timing experiments and verification with the Goncharov nonlocal model in 1D LILAC simulations demonstrate the viability of this efficient algorithm for producing 2D lagrangian radiation hydrodynamics direct drive simulations. Additionally, simulations provide strong incentive to further modify key parameters within the SNB theory, namely the ``mean free path.'' An example 2D polar drive simulation to study 2D effects of the nonlocal flux as well as mean free path modifications will also be presented. This research was supported by the University of Rochester Laboratory for Laser Energetics.
Diaphragm Pressure Wave Generator Developments at Industrial Research Ltd
NASA Astrophysics Data System (ADS)
Caughley, A. J.; Emery, N.; Glasson, N. D.
2010-04-01
Industrial Research Ltd (IRL) have been developing a unique diaphragm based pressure wave generator technology for pulse tube and Stirling cryocoolers. Our system uses a metal diaphragm to separate the clean cryocooler gas circuit from a conventionally lubricated mechanical driver, thus producing a clean pressure wave with a long life drive that does not require the precision manufacture and associated costs of large linear motors. The first successful diaphragm pressure wave generator produced 3.2 kW of acoustic power at an electro-acoustic efficiency of 72% with a swept volume of 200 ml and a prototype has now accumulated over 2500 hours running. This paper describes recent developments in the technology. To explore scaling, a small diaphragm pressure wave generator with a swept volume of 20 ml has been constructed and has delivered 454 W of acoustic power at an electro-acoustic efficiency of 60%. Improvements have been made to the hydraulic force amplifier mechanism for driving the diaphragms resulting in a cheaper and lighter mechanism than the mechanical linkage originally used. To meet a customer's specific requirements, the 200 ml pressure wave generator's stroke was extended to achieve 240 ml of swept volume thereby increasing its acoustic power delivery to 4.1 kW without compromising efficiency.
High-efficiency induction motor drives using type-2 fuzzy logic
NASA Astrophysics Data System (ADS)
Khemis, A.; Benlaloui, I.; Drid, S.; Chrifi-Alaoui, L.; Khamari, D.; Menacer, A.
2018-03-01
In this work we propose to develop an algorithm for improving the efficiency of an induction motor using type-2 fuzzy logic. Vector control is used to control this motor due to the high performances of this strategy. The type-2 fuzzy logic regulators are developed to obtain the optimal rotor flux for each torque load by minimizing the copper losses. We have compared the performances of our fuzzy type-2 algorithm with the type-1 fuzzy one proposed in the literature. The proposed algorithm is tested with success on the dSPACE DS1104 system even if there is parameters variance.
NASA Astrophysics Data System (ADS)
Niu, Simiao; Wang, Xiaofeng; Yi, Fang; Zhou, Yu Sheng; Wang, Zhong Lin
2015-12-01
Human biomechanical energy is characterized by fluctuating amplitudes and variable low frequency, and an effective utilization of such energy cannot be achieved by classical energy-harvesting technologies. Here we report a high-efficient self-charging power system for sustainable operation of mobile electronics exploiting exclusively human biomechanical energy, which consists of a high-output triboelectric nanogenerator, a power management circuit to convert the random a.c. energy to d.c. electricity at 60% efficiency, and an energy storage device. With palm tapping as the only energy source, this power unit provides a continuous d.c. electricity of 1.044 mW (7.34 W m-3) in a regulated and managed manner. This self-charging unit can be universally applied as a standard `infinite-lifetime' power source for continuously driving numerous conventional electronics, such as thermometers, electrocardiograph system, pedometers, wearable watches, scientific calculators and wireless radio-frequency communication system, which indicates the immediate and broad applications in personal sensor systems and internet of things.
Niu, Simiao; Wang, Xiaofeng; Yi, Fang; Zhou, Yu Sheng; Wang, Zhong Lin
2015-12-11
Human biomechanical energy is characterized by fluctuating amplitudes and variable low frequency, and an effective utilization of such energy cannot be achieved by classical energy-harvesting technologies. Here we report a high-efficient self-charging power system for sustainable operation of mobile electronics exploiting exclusively human biomechanical energy, which consists of a high-output triboelectric nanogenerator, a power management circuit to convert the random a.c. energy to d.c. electricity at 60% efficiency, and an energy storage device. With palm tapping as the only energy source, this power unit provides a continuous d.c. electricity of 1.044 mW (7.34 W m(-3)) in a regulated and managed manner. This self-charging unit can be universally applied as a standard 'infinite-lifetime' power source for continuously driving numerous conventional electronics, such as thermometers, electrocardiograph system, pedometers, wearable watches, scientific calculators and wireless radio-frequency communication system, which indicates the immediate and broad applications in personal sensor systems and internet of things.
A 17 degree of freedom anthropomorphic manipulator
NASA Technical Reports Server (NTRS)
Vold, Havard I.; Karlen, James P.; Thompson, Jack M., Jr.; Farrell, James D.; Eismann, Paul H.
1989-01-01
A 17 axis anthropomorphic manipulator, providing coordinated control of two seven degree of freedom arms mounted on a three degree of freedom torso-waist assembly, is presented. This massively redundant telerobot, designated the Robotics Research K/B-2017 Dexterous Manipulator, employs a modular mechanism design with joint-mounted actuators based on brushless motors and harmonic drive gear reducers. Direct joint torque control at the servo level causes these high-output joint drives to behave like direct-drive actuators, facilitating the implementation of an effective impedance control scheme. The redundant, but conservative motion control system models the manipulator as a spring-loaded linkage with viscous damping and rotary inertia at each joint. This approach allows for real time, sensor-driven control of manipulator pose using a hierarchy of competing rules, or objective functions, to avoid unplanned collisions with objects in the workplace, to produce energy-efficient, graceful motion, to increase leverage, to control effective impedance at the tool or to favor overloaded joints.
Status of Electron Bernstein Wave (EBW) Research on NSTX and CDX-U
NASA Astrophysics Data System (ADS)
Taylor, G.; Efthimion, P. C.; Jones, B. M.; Wilson, J. R.; Wilgen, J. B.; Bell, G. L.; Bigelow, T. S.; Rasmussen, D. A.; Ram, A. K.; Bers, A.; Harvey, R. W.
2002-11-01
Recent studies of EBWs, via mode conversion (MC) to X-mode electromagnetic radiation on the CDX-U and NSTX spherical torus (ST) plasmas, support the use of EBWs to measure the Te profile and allow local heating and current drive in ST plasmas. An in-vessel antenna with a local adjustable limiter has successfully controlled the density scale length at the MC layer in CDX-U increasing the MC by an order of magnitude to ˜ 100%. A similar technique on NSTX has so far increased MC efficiency fivefold to ˜ 50%. Both results are in good agreement with theoretical predictions. Experiments focused on achieving >= 80% MC on NSTX are planned for the coming year. Ray tracing and Fokker-Planck modeling support the design of a ˜ 1 MW EBW heating and current drive system for NSTX that will assist plasma startup, locally heat electrons, drive non-inductive current and may suppress tearing modes or other MHD that limit high β operation.
A CRISPR Cas9-based gene drive platform for genetic interaction analysis in Candida albicans
Shapiro, Rebecca S.; Chavez, Alejandro; Porter, Caroline B. M.; Hamblin, Meagan; Kaas, Christian S.; DiCarlo, James E.; Zeng, Guisheng; Xu, Xiaoli; Revtovich, Alexey V.; Kirienko, Natalia V.; Wang, Yue; Church, George M.; Collins, James J.
2018-01-01
Candida albicans is the leading cause of fungal infections; yet, complex genetic interaction analysis remains cumbersome in this diploid pathogen. Here, we developed a CRISPR-Cas9-based ‘gene drive array’ (GDA) platform to facilitate efficient genetic analysis in C. albicans. In our system, a modified DNA donor molecule acts as a selfish genetic element, replaces the targeted site, and propagates to replace additional wild-type loci. Using mating-competent C. albicans haploids, each carrying a different gene drive disabling a gene of interest, we are able to create diploid strains that are homozygous double-deletion mutants. We generate double-gene deletion libraries to demonstrate this technology, targeting antifungal efflux and biofilm adhesion factors. We screen these libraries to identify virulence regulators and determine how genetic networks shift under diverse conditions. This platform transforms our ability to perform genetic interaction analysis in C. albicans and is readily extended to other fungal pathogens. PMID:29062088
Structural Health Monitoring for a Z-Type Special Vehicle
Yuan, Chaolin; Ren, Liang; Li, Hongnan
2017-01-01
Nowadays there exist various kinds of special vehicles designed for some purposes, which are different from regular vehicles in overall dimension and design. In that case, accidents such as overturning will lead to large economical loss and casualties. There are still no technical specifications to follow to ensure the safe operation and driving of these special vehicles. Owing to the poor efficiency of regular maintenance, it is more feasible and effective to apply real-time monitoring during the operation and driving process. In this paper, the fiber Bragg grating (FBG) sensors are used to monitor the safety of a z-type special vehicle. Based on the structural features and force distribution, a reasonable structural health monitoring (SHM) scheme is presented. Comparing the monitoring results with the finite element simulation results guarantees the accuracy and reliability of the monitoring results. Large amounts of data are collected during the operation and driving progress to evaluate the structural safety condition and provide reference for SHM systems developed for other special vehicles. PMID:28587161
Conceptual design and cost analysis of hydraulic output unit for 15 kW free-piston Stirling engine
NASA Technical Reports Server (NTRS)
White, M. A.
1982-01-01
A long-life hydraulic converter with unique features was conceptually designed to interface with a specified 15 kW(e) free-piston Stirling engine in a solar thermal dish application. Hydraulic fluid at 34.5 MPa (5000 psi) is produced to drive a conventional hydraulic motor and rotary alternator. Efficiency of the low-maintenance converter design was calculated at 93.5% for a counterbalanced version and 97.0% without the counterbalance feature. If the converter were coupled to a Stirling engine with design parameters more typcial of high-technology Stirling engines, counterbalanced converter efficiency could be increased to 99.6%. Dynamic computer simulation studies were conducted to evaluate performance and system sensitivities. Production costs of the complete Stirling hydraulic/electric power system were evaluated at $6506 which compared with $8746 for an alternative Stirling engine/linear alternator system.
Hansen, A K; Christensen, M; Noordegraaf, D; Heist, P; Papastathopoulos, E; Loyo-Maldonado, V; Jensen, O B; Skovgaard, P M W
2016-11-10
Watt-level yellow emitting lasers are interesting for medical applications, due to their high hemoglobin absorption, and for efficient detection of certain fluorophores. In this paper, we demonstrate a compact and robust diode-based laser system in the yellow spectral range. The system generates 1.9 W of single-frequency light at 562.4 nm by cascaded single-pass frequency doubling of the 1124.8 nm emission from a distributed Bragg reflector (DBR) tapered laser diode. The absence of a free-space cavity makes the system stable over a base-plate temperature range of 30 K. At the same time, the use of a laser diode enables the modulation of the pump wavelength by controlling the drive current. This is utilized to achieve a power modulation depth above 90% for the second harmonic light, with a rise time below 40 μs.
Development of a lightweight fuel cell vehicle
NASA Astrophysics Data System (ADS)
Hwang, J. J.; Wang, D. Y.; Shih, N. C.
This paper described the development of a fuel cell system and its integration into the lightweight vehicle known as the Mingdao hydrogen vehicle (MHV). The fuel cell system consists of a 5-kW proton exchange membrane fuel cell (PEMFC), a microcontroller and other supported components like a compressed hydrogen cylinder, blower, solenoid valve, pressure regulator, water pump, heat exchanger and sensors. The fuel cell not only propels the vehicle but also powers the supporting components. The MHV performs satisfactorily over a hundred-kilometer drive thus validating the concept of a fuel cell powered zero-emission vehicle. Measurements further show that the fuel cell system has an efficiency of over 30% at the power consumption for vehicle cruise, which is higher than that of a typical internal combustion engine. Tests to improve performance such as speed enhancement, acceleration and fuel efficiency will be conducted in the future work. Such tests will consist of hybridizing with a battery pack.
NASA Astrophysics Data System (ADS)
Yeghiazarian, L.; Riasi, M. S.
2016-12-01
Although controlling the level of contamination everywhere in the surface water network may not be feasible, it is vital to maintain safe water quality levels in specific areas, e.g. recreational waters. The question then is "what is the most efficient way to fully/partially control water quality in surface water networks?". This can be posed as a control problem where the goal is to efficiently drive the system to a desired state by manipulating few input variables. Such problems reduce to (1) finding the best control locations in the network to influence the state of the system; and (2) choosing the time-variant inputs at the control locations to achieve the desired state of the system with minimum effort. We demonstrate that the optimal solution to control the level of contamination in the network can be found through application of control theory concepts to transport in dendritic surface water networks.
Engineering the quantum states of light in a Kerr-nonlinear resonator by two-photon driving
NASA Astrophysics Data System (ADS)
Puri, Shruti; Boutin, Samuel; Blais, Alexandre
2017-04-01
Photonic cat states stored in high-Q resonators show great promise for hardware efficient universal quantum computing. We propose an approach to efficiently prepare such cat states in a Kerr-nonlinear resonator by the use of a two-photon drive. Significantly, we show that this preparation is robust against single-photon loss. An outcome of this observation is that a two-photon drive can eliminate undesirable phase evolution induced by a Kerr nonlinearity. By exploiting the concept of transitionless quantum driving, we moreover demonstrate how non-adiabatic initialization of cat states is possible. Finally, we present a universal set of quantum logical gates that can be performed on the engineered eigenspace of such a two-photon driven resonator and discuss a possible realization using superconducting circuits. The robustness of the engineered subspace to higher-order circuit nonlinearities makes this implementation favorable for scalable quantum computation.
Multi-Level Bitmap Indexes for Flash Memory Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Kesheng; Madduri, Kamesh; Canon, Shane
2010-07-23
Due to their low access latency, high read speed, and power-efficient operation, flash memory storage devices are rapidly emerging as an attractive alternative to traditional magnetic storage devices. However, tests show that the most efficient indexing methods are not able to take advantage of the flash memory storage devices. In this paper, we present a set of multi-level bitmap indexes that can effectively take advantage of flash storage devices. These indexing methods use coarsely binned indexes to answer queries approximately, and then use finely binned indexes to refine the answers. Our new methods read significantly lower volumes of data atmore » the expense of an increased disk access count, thus taking full advantage of the improved read speed and low access latency of flash devices. To demonstrate the advantage of these new indexes, we measure their performance on a number of storage systems using a standard data warehousing benchmark called the Set Query Benchmark. We observe that multi-level strategies on flash drives are up to 3 times faster than traditional indexing strategies on magnetic disk drives.« less
Engineering Social Justice into Traffic Control for Self-Driving Vehicles?
Mladenovic, Milos N; McPherson, Tristram
2016-08-01
The convergence of computing, sensing, and communication technology will soon permit large-scale deployment of self-driving vehicles. This will in turn permit a radical transformation of traffic control technology. This paper makes a case for the importance of addressing questions of social justice in this transformation, and sketches a preliminary framework for doing so. We explain how new forms of traffic control technology have potential implications for several dimensions of social justice, including safety, sustainability, privacy, efficiency, and equal access. Our central focus is on efficiency and equal access as desiderata for traffic control design. We explain the limitations of conventional traffic control in meeting these desiderata, and sketch a preliminary vision for a next-generation traffic control tailored to address better the demands of social justice. One component of this vision is cooperative, hierarchically distributed self-organization among vehicles. Another component of this vision is a priority system enabling selection of priority levels by the user for each vehicle trip in the network, based on the supporting structure of non-monetary credits.
Performance and reliability enhancement of linear coolers
NASA Astrophysics Data System (ADS)
Mai, M.; Rühlich, I.; Schreiter, A.; Zehner, S.
2010-04-01
Highest efficiency states a crucial requirement for modern tactical IR cryocooling systems. For enhancement of overall efficiency, AIM cryocooler designs where reassessed considering all relevant loss mechanisms and associated components. Performed investigation was based on state-of-the-art simulation software featuring magnet circuitry analysis as well as computational fluid dynamics (CFD) to realistically replicate thermodynamic interactions. As a result, an improved design for AIM linear coolers could be derived. This paper gives an overview on performance enhancement activities and major results. An additional key-requirement for cryocoolers is reliability. In recent time, AIM has introduced linear coolers with full Flexure Bearing suspension on both ends of the driving mechanism incorporating Moving Magnet piston drive. In conjunction with a Pulse-Tube coldfinger these coolers are capable of meeting MTTF's (Mean Time To Failure) in excess of 50,000 hours offering superior reliability for space applications. Ongoing development also focuses on reliability enhancement, deriving space technology into tactical solutions combining both, excelling specific performance with space like reliability. Concerned publication will summarize the progress of this reliability program and give further prospect.
A High Fuel Consumption Efficiency Management Scheme for PHEVs Using an Adaptive Genetic Algorithm
Lee, Wah Ching; Tsang, Kim Fung; Chi, Hao Ran; Hung, Faan Hei; Wu, Chung Kit; Chui, Kwok Tai; Lau, Wing Hong; Leung, Yat Wah
2015-01-01
A high fuel efficiency management scheme for plug-in hybrid electric vehicles (PHEVs) has been developed. In order to achieve fuel consumption reduction, an adaptive genetic algorithm scheme has been designed to adaptively manage the energy resource usage. The objective function of the genetic algorithm is implemented by designing a fuzzy logic controller which closely monitors and resembles the driving conditions and environment of PHEVs, thus trading off between petrol versus electricity for optimal driving efficiency. Comparison between calculated results and publicized data shows that the achieved efficiency of the fuzzified genetic algorithm is better by 10% than existing schemes. The developed scheme, if fully adopted, would help reduce over 600 tons of CO2 emissions worldwide every day. PMID:25587974
NASA Astrophysics Data System (ADS)
Clark, Michael; Tilman, David
2017-06-01
Global agricultural feeds over 7 billion people, but is also a leading cause of environmental degradation. Understanding how alternative agricultural production systems, agricultural input efficiency, and food choice drive environmental degradation is necessary for reducing agriculture’s environmental impacts. A meta-analysis of life cycle assessments that includes 742 agricultural systems and over 90 unique foods produced primarily in high-input systems shows that, per unit of food, organic systems require more land, cause more eutrophication, use less energy, but emit similar greenhouse gas emissions (GHGs) as conventional systems; that grass-fed beef requires more land and emits similar GHG emissions as grain-feed beef; and that low-input aquaculture and non-trawling fisheries have much lower GHG emissions than trawling fisheries. In addition, our analyses show that increasing agricultural input efficiency (the amount of food produced per input of fertilizer or feed) would have environmental benefits for both crop and livestock systems. Further, for all environmental indicators and nutritional units examined, plant-based foods have the lowest environmental impacts; eggs, dairy, pork, poultry, non-trawling fisheries, and non-recirculating aquaculture have intermediate impacts; and ruminant meat has impacts ∼100 times those of plant-based foods. Our analyses show that dietary shifts towards low-impact foods and increases in agricultural input use efficiency would offer larger environmental benefits than would switches from conventional agricultural systems to alternatives such as organic agriculture or grass-fed beef.
Passive wide spectrum harmonic filter for adjustable speed drives in oil and gas industry
NASA Astrophysics Data System (ADS)
Al Jaafari, Khaled Ali
Non-linear loads such as variable speed drives constitute the bulky load of oil and gas industry power systems. They are widely used in driving induction and permanent magnet motors for variable speed applications. That is because variable speed drives provide high static and dynamic performance. Moreover, they are known of their high energy efficiency and high motion quality, and high starting torque. However, these non-linear loads are main sources of current and voltage harmonics and lower the quality of electric power system. In fact, it is the six-pulse and twelve-pulse diode and thyristor rectifiers that spoil the AC power line with the dominant harmonics (5th, 7th, 11th). They provide DC voltage to the inverter of the variable speed drives. Typical problems that arise from these harmonics are Harmonic resonances', harmonic losses, interference with electronic equipment, and line voltage distortion at the Point of Common Coupling (PCC). Thus, it is necessary to find efficient, reliable, and economical harmonic filters. The passive filters have definite advantage over active filters in terms of components count, cost and reliability. Reliability and maintenance is a serious issue in drilling rigs which are located in offshore and onshore with extreme operating conditions. Passive filters are tuned to eliminate a certain frequency and therefore there is a need to equip the system with more than one passive filter to eliminate all unwanted frequencies. An alternative solution is Wide Spectrum Harmonic passive filter. The wide spectrum harmonic filters are becoming increasingly popular in these applications and found to overcome some of the limitations of conventional tuned passive filter. The most important feature of wide spectrum harmonic passive filters is that only one capacitor is required to filter a wide range of harmonics. Wide spectrum filter is essentially a low-pass filter for the harmonic at fundamental frequency. It can also be considered as a single-stage passive filter plus input and output inductors. The work proposed gives a complete analysis of wide spectrum harmonic passive filters, the methodology to choose its parameters according to the operational condition, effect of load and source inductance on its characteristics. Also, comparison of the performance of the wide band passive filter with tuned filter is given. The analyses are supported with the simulation results and were verified experimentally. The analysis given in this thesis will be useful for the selection of proper wide spectrum harmonic filters for harmonic mitigation applications in oil and gas industry.
Heat Transfer Phenomena in Concentrating Solar Power Systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armijo, Kenneth Miguel; Shinde, Subhash L.
Concentrating solar power (CSP) utilizes solar thermal energy to drive a thermal power cycle for the generation of electricity. CSP systems are facilitated as large, centralized power plants , such as power towers and trough systems, to take advantage of ec onomies of scale through dispatchable thermal energy storage, which is a principle advantage over other energy generation systems . Additionally, the combination of large solar concentration ratios with high solar conversion efficiencies provides a strong o pportunity of employment of specific power cycles such as the Brayton gas cycle that utilizes super critical fluids such as supercritical carbon dioxidemore » (s CO 2 ) , compared to other sola r - fossil hybrid power plants. A comprehensive thermal - fluids examination is provided by this work of various heat transfer phenomena evident in CSP technologies. These include sub - systems and heat transfer fundamental phenomena evident within CSP systems , which include s receivers, heat transfer fluids (HTFs), thermal storage me dia and system designs , thermodynamic power block systems/components, as well as high - temperature materials. This work provides literature reviews, trade studies, and phenomenological comparisons of heat transfer media (HTM) and components and systems, all for promotion of high performance and efficient CSP systems. In addition, f urther investigations are also conducted that provide advanced heat transfer modeling approaches for gas - particle receiver systems , as well as performance/efficiency enhancement re commendations, particularly for solarized supercritical power systems .« less
Testing of Lightweight Fuel Cell Vehicles System at Low Speeds with Energy Efficiency Analysis
NASA Astrophysics Data System (ADS)
Mustaffa, Muhammad Rizuwan B.; Mohamed, Wan Ahmad Najmi B. Wan
2013-12-01
A fuel cell vehicle power train mini test bench was developed which consists of a 1 kW open cathode hydrogen fuel cell, electric motor, wheel, gearing system, DC/DC converter and vehicle control system (VCS). Energy efficiency identification and energy flow evaluation is a useful tool in identifying a detail performance of each component and sub-systems in a fuel cell vehicle system configuration. Three artificial traction loads was simulated at 30 kg, 40 kg and 50 kg force on a single wheel drive configuration. The wheel speed range reported here covers from idle to 16 km/h (low speed range) as a preliminary input in the research work frame. The test result shows that the system efficiency is 84.5 percent when the energy flow is considered from the fuel cell to the wheel and 279 watts of electrical power was produced by the fuel cell during that time. Dynamic system responses was also identified as the load increases beyond the motor traction capabilities where the losses at the converter and motor controller increased significantly as it tries to meet the motor traction power demands. This work is currently being further expanded within the work frame of developing a road-worthy fuel cell vehicle.
Electric urban delivery trucks: energy use, greenhouse gas emissions, and cost-effectiveness.
Lee, Dong-Yeon; Thomas, Valerie M; Brown, Marilyn A
2013-07-16
We compare electric and diesel urban delivery trucks in terms of life-cycle energy consumption, greenhouse gas (GHG) emissions, and total cost of ownership (TCO). The relative benefits of electric trucks depend heavily on vehicle efficiency associated with drive cycle, diesel fuel price, travel demand, electric drive battery replacement and price, electricity generation and transmission efficiency, electric truck recharging infrastructure, and purchase price. For a drive cycle with frequent stops and low average speed such as the New York City Cycle (NYCC), electric trucks emit 42-61% less GHGs and consume 32-54% less energy than diesel trucks, depending upon vehicle efficiency cases. Over an array of possible conditions, the median TCO of electric trucks is 22% less than that of diesel trucks on the NYCC. For a drive cycle with less frequent stops and high average speed such as the City-Suburban Heavy Vehicle Cycle (CSHVC), electric trucks emit 19-43% less GHGs and consume 5-34% less energy, but cost 1% more than diesel counterparts. Considering current and projected U.S. regional electricity generation mixes, for the baseline case, the energy use and GHG emissions ratios of electric to diesel trucks range from 48 to 82% and 25 to 89%, respectively.
He, Shuang; Su, Shi-Lei; Wang, Dong-Yang; Sun, Wen-Mei; Bai, Cheng-Hua; Zhu, Ai-Dong; Wang, Hong-Fu; Zhang, Shou
2016-01-01
We propose an effective scheme of shortcuts to adiabaticity for generating a three-dimensional entanglement of two atoms trapped in a cavity using the transitionless quantum driving (TQD) approach. The key point of this approach is to construct an effective Hamiltonian that drives the dynamics of a system along instantaneous eigenstates of a reference Hamiltonian to reproduce the same final state as that of an adiabatic process within a much shorter time. In this paper, the shortcuts to adiabatic passage are constructed by introducing two auxiliary excited levels in each atom and applying extra cavity modes and classical fields to drive the relevant transitions. Thereby, the three-dimensional entanglement is obtained with a faster rate than that in the adiabatic passage. Moreover, the influences of atomic spontaneous emission and photon loss on the fidelity are discussed by numerical simulation. The results show that the speed of entanglement implementation is greatly improved by the use of adiabatic shortcuts and that this entanglement implementation is robust against decoherence. This will be beneficial to the preparation of high-dimensional entanglement in experiment and provides the necessary conditions for the application of high-dimensional entangled states in quantum information processing. PMID:27499169
He, Shuang; Su, Shi-Lei; Wang, Dong-Yang; Sun, Wen-Mei; Bai, Cheng-Hua; Zhu, Ai-Dong; Wang, Hong-Fu; Zhang, Shou
2016-08-08
We propose an effective scheme of shortcuts to adiabaticity for generating a three-dimensional entanglement of two atoms trapped in a cavity using the transitionless quantum driving (TQD) approach. The key point of this approach is to construct an effective Hamiltonian that drives the dynamics of a system along instantaneous eigenstates of a reference Hamiltonian to reproduce the same final state as that of an adiabatic process within a much shorter time. In this paper, the shortcuts to adiabatic passage are constructed by introducing two auxiliary excited levels in each atom and applying extra cavity modes and classical fields to drive the relevant transitions. Thereby, the three-dimensional entanglement is obtained with a faster rate than that in the adiabatic passage. Moreover, the influences of atomic spontaneous emission and photon loss on the fidelity are discussed by numerical simulation. The results show that the speed of entanglement implementation is greatly improved by the use of adiabatic shortcuts and that this entanglement implementation is robust against decoherence. This will be beneficial to the preparation of high-dimensional entanglement in experiment and provides the necessary conditions for the application of high-dimensional entangled states in quantum information processing.
Magnetic compression laser driving circuit
Ball, D.G.; Birx, D.; Cook, E.G.
1993-01-05
A magnetic compression laser driving circuit is disclosed. The magnetic compression laser driving circuit compresses voltage pulses in the range of 1.5 microseconds at 20 kilovolts of amplitude to pulses in the range of 40 nanoseconds and 60 kilovolts of amplitude. The magnetic compression laser driving circuit includes a multi-stage magnetic switch where the last stage includes a switch having at least two turns which has larger saturated inductance with less core material so that the efficiency of the circuit and hence the laser is increased.
Magnetic compression laser driving circuit
Ball, Don G.; Birx, Dan; Cook, Edward G.
1993-01-01
A magnetic compression laser driving circuit is disclosed. The magnetic compression laser driving circuit compresses voltage pulses in the range of 1.5 microseconds at 20 Kilovolts of amplitude to pulses in the range of 40 nanoseconds and 60 Kilovolts of amplitude. The magnetic compression laser driving circuit includes a multi-stage magnetic switch where the last stage includes a switch having at least two turns which has larger saturated inductance with less core material so that the efficiency of the circuit and hence the laser is increased.
Entropic bounds on currents in Langevin systems
NASA Astrophysics Data System (ADS)
Dechant, Andreas; Sasa, Shin-ichi
2018-06-01
We derive a bound on generalized currents for Langevin systems in terms of the total entropy production in the system and its environment. For overdamped dynamics, any generalized current is bounded by the total rate of entropy production. We show that this entropic bound on the magnitude of generalized currents imposes power-efficiency tradeoff relations for ratchets in contact with a heat bath: Maximum efficiency—Carnot efficiency for a Smoluchowski-Feynman ratchet and unity for a flashing or rocking ratchet—can only be reached at vanishing power output. For underdamped dynamics, while there may be reversible currents that are not bounded by the entropy production rate, we show that the output power and heat absorption rate are irreversible currents and thus obey the same bound. As a consequence, a power-efficiency tradeoff relation holds not only for underdamped ratchets but also for periodically driven heat engines. For weak driving, the bound results in additional constraints on the Onsager matrix beyond those imposed by the second law. Finally, we discuss the connection between heat and entropy in a nonthermal situation where the friction and noise intensity are state dependent.
An Exciplex Host for Deep-Blue Phosphorescent Organic Light-Emitting Diodes.
Lim, Hyoungcheol; Shin, Hyun; Kim, Kwon-Hyeon; Yoo, Seung-Jun; Huh, Jin-Suk; Kim, Jang-Joo
2017-11-01
The use of exciplex hosts is attractive for high-performance phosphorescent organic light-emitting diodes (PhOLEDs) and thermally activated delayed fluorescence OLEDs, which have high external quantum efficiency, low driving voltage, and low efficiency roll-off. However, exciplex hosts for deep-blue OLEDs have not yet been reported because of the difficulties in identifying suitable molecules. Here, we report a deep-blue-emitting exciplex system with an exciplex energy of 3.0 eV. It is composed of a carbazole-based hole-transporting material (mCP) and a phosphine-oxide-based electron-transporting material (BM-A10). The blue PhOLEDs exhibited maximum external quantum efficiency of 24% with CIE coordinates of (0.15, 0.21) and longer lifetime than the single host devices.
Curran, Scott J.; Gao, Zhiming; Wagner, Robert M.
2014-12-22
In-cylinder blending of gasoline and diesel to achieve reactivity-controlled compression ignition has been shown to reduce NO X and soot emissions while maintaining or improving brake thermal efficiency as compared with conventional diesel combustion. The reactivity-controlled compression ignition concept has an advantage over many advanced combustion strategies in that the fuel reactivity can be tailored to the engine speed and load, allowing stable low-temperature combustion to be extended over more of the light-duty drive cycle load range. In this paper, a multi-mode reactivity-controlled compression ignition strategy is employed where the engine switches from reactivity-controlled compression ignition to conventional diesel combustionmore » when speed and load demand are outside of the experimentally determined reactivity-controlled compression ignition range. The potential for reactivity-controlled compression ignition to reduce drive cycle fuel economy and emissions is not clearly understood and is explored here by simulating the fuel economy and emissions for a multi-mode reactivity-controlled compression ignition–enabled vehicle operating over a variety of US drive cycles using experimental engine maps for multi-mode reactivity-controlled compression ignition, conventional diesel combustion, and a 2009 port-fuel injected gasoline engine. Drive cycle simulations are completed assuming a conventional mid-size passenger vehicle with an automatic transmission. Multi-mode reactivity-controlled compression ignition fuel economy simulation results are compared with the same vehicle powered by a representative 2009 port-fuel injected gasoline engine over multiple drive cycles. Finally, engine-out drive cycle emissions are compared with conventional diesel combustion, and observations regarding relative gasoline and diesel tank sizes needed for the various drive cycles are also summarized.« less
Maximum efficiency of state-space models of nanoscale energy conversion devices
NASA Astrophysics Data System (ADS)
Einax, Mario; Nitzan, Abraham
2016-07-01
The performance of nano-scale energy conversion devices is studied in the framework of state-space models where a device is described by a graph comprising states and transitions between them represented by nodes and links, respectively. Particular segments of this network represent input (driving) and output processes whose properly chosen flux ratio provides the energy conversion efficiency. Simple cyclical graphs yield Carnot efficiency for the maximum conversion yield. We give general proof that opening a link that separate between the two driving segments always leads to reduced efficiency. We illustrate these general result with simple models of a thermoelectric nanodevice and an organic photovoltaic cell. In the latter an intersecting link of the above type corresponds to non-radiative carriers recombination and the reduced maximum efficiency is manifested as a smaller open-circuit voltage.
Maximum efficiency of state-space models of nanoscale energy conversion devices.
Einax, Mario; Nitzan, Abraham
2016-07-07
The performance of nano-scale energy conversion devices is studied in the framework of state-space models where a device is described by a graph comprising states and transitions between them represented by nodes and links, respectively. Particular segments of this network represent input (driving) and output processes whose properly chosen flux ratio provides the energy conversion efficiency. Simple cyclical graphs yield Carnot efficiency for the maximum conversion yield. We give general proof that opening a link that separate between the two driving segments always leads to reduced efficiency. We illustrate these general result with simple models of a thermoelectric nanodevice and an organic photovoltaic cell. In the latter an intersecting link of the above type corresponds to non-radiative carriers recombination and the reduced maximum efficiency is manifested as a smaller open-circuit voltage.
Multiroller traction drive speed reducer: Evaluation for automotive gas turbine engine
NASA Technical Reports Server (NTRS)
Rohn, D. A.; Anderson, N. E.; Loewenthal, S. H.
1982-01-01
Tests were conducted on a nominal 14:1 fixed-ratio Nasvytis multiroller traction drive retrofitted as the speed reducer in an automotive gas turbine engine. Power turbine speeds of 45,000 rpm and a drive output power of 102 kW (137 hp) were reached. The drive operated under both variable roller loading (proportional to torque) and fixed roller loading (automatic loading mechanism locked). The drive operated smoothly and efficiently as the engine speed reducer. Engine specific fuel consumption with the traction speed reducer was comparable to that with the original helical gearset.
NASA Astrophysics Data System (ADS)
Kobayashi, Takao; Katsuyama, Etsuo; Sugiura, Hideki; Ono, Eiichi; Yamamoto, Masaki
2018-05-01
This paper proposes an efficient direct yaw moment control (DYC) capable of minimising tyre slip power loss on contact patches for a four-independent wheel drive vehicle. Simulations identified a significant power loss reduction with a direct yaw moment due to a change in steer characteristics during acceleration or deceleration while turning. Simultaneously, the vehicle motion can be stabilised. As a result, the proposed control method can ensure compatibility between vehicle dynamics performance and energy efficiency. This paper also describes the results of a full-vehicle simulation that was conducted to examine the effectiveness of the proposed DYC.
A Hybrid Converter for Improving Light Load Efficiency
NASA Astrophysics Data System (ADS)
Takahashi, Masaya; Nishijima, Kimihiro; Nagao, Michihiko; Sato, Terukazu; Nabeshima, Takashi
In order to reduce power consumption of electronic equipment in stand-by mode, idle-mode and sleep-mode, a simple efficiency improvement technique for switching regulator in light load region is proposed. In this technique, under the light load, the small switching elements in a MOSFET driver circuit are used instead of the switching elements in a main regulator circuit to reduce driving losses. Of course, under the load heavier than light load, the MOSFET driver drives the switching elements in the main regulator circuit. The efficiency of a 2.5V/5A prototype buck converter is improved from 47.1% to 72.7% by using the proposed technique.
Design and Implementation of High Interaction Client Honeypot for Drive-by-Download Attacks
NASA Astrophysics Data System (ADS)
Akiyama, Mitsuaki; Iwamura, Makoto; Kawakoya, Yuhei; Aoki, Kazufumi; Itoh, Mitsutaka
Nowadays, the number of web-browser targeted attacks that lead users to adversaries' web sites and exploit web browser vulnerabilities is increasing, and a clarification of their methods and countermeasures is urgently needed. In this paper, we introduce the design and implementation of a new client honeypot for drive-by-download attacks that has the capacity to detect and investigate a variety of malicious web sites. On the basis of the problems of existing client honeypots, we enumerate the requirements of a client honeypot: 1) detection accuracy and variety, 2) collection variety, 3) performance efficiency, and 4) safety and stability. We improve our system with regard to these requirements. The key features of our developed system are stepwise detection focusing on exploit phases, multiple crawler processing, tracking of malware distribution networks, and malware infection prevention. Our evaluation of our developed system in a laboratory experiment and field experiment indicated that its detection variety and crawling performance are higher than those of existing client honeypots. In addition, our system is able to collect information for countermeasures and is secure and stable for continuous operation. We conclude that our system can investigate malicious web sites comprehensively and support countermeasures.
NASA Astrophysics Data System (ADS)
Pedersen, F.
2008-09-01
The presented bidirectional DC/DC converter design concept is a further development of an already existing converter used for low battery voltage operation.For low battery voltage operation a high efficient low parts count DC/DC converter was developed, and used in a satellite for the battery charge and battery discharge function.The converter consists in a bidirectional, non regulating DC/DC converter connected to a discharge regulating Buck converter and a charge regulating Buck converter.The Bidirectional non regulating DC/DC converter performs with relatively high efficiency even at relatively high currents, which here means up to 35Amps.This performance was obtained through the use of power MOSFET's with on- resistances of only a few mille Ohms connected to a special transformer allowing paralleling several transistor stages on the low voltage side of the transformer. The design is patent protected. Synchronous rectification leads to high efficiency at the low battery voltages considered, which was in the range 2,7- 4,3 Volt DC.The converter performs with low switching losses as zero voltage zero current switching is implemented in all switching positions of the converter.Now, the drive power needed, to switch a relatively large number of low Ohm , hence high drive capacitance, power MOSFET's using conventional drive techniques would limit the overall conversion efficiency.Therefore a resonant drive consuming considerable less power than a conventional drive circuit was implemented in the converter.To the originally built and patent protected bidirectional non regulating DC/DC converter, is added the functionality of regulation.Hereby the need for additional converter stages in form of a Charge Buck regulator and a Discharge Buck regulator is eliminated.The bidirectional DC/DC converter can be used in connection with batteries, motors, etc, where the bidirectional feature, simple design and high performance may be useful.
Using AORSA to simulate helicon waves in DIII-D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lau, C., E-mail: lauch@ornl.gov; Blazevski, D.; Green, D. L.
2015-12-10
Recent efforts have shown that helicon waves (fast waves at > 20ω{sub ci}) may be an attractive option for driving efficient off-axis current drive during non-inductive tokamak operation for DIII-D, ITER and DEMO. For DIII-D scenarios, the ray tracing code, GENRAY, has been extensively used to study helicon current drive efficiency and location as a function of many plasma parameters. The full wave code, AORSA, which is applicable to arbitrary Larmor radius and can resolve arbitrary ion cyclotron harmonic order, has been recently used to validate the ray tracing technique at these high cyclotron harmonics. If the SOL is ignored,more » it will be shown that the GENRAY and AORSA calculated current drive profiles are comparable for the envisioned high beta advanced scenarios for DIII-D, where there is high single pass absorption due to electron Landau damping and minimal ion damping. AORSA is also been used to estimate possible SOL effects on helicon current drive coupling and SOL absorption due to collisional and slow wave effects.« less
Using AORSA to simulate helicon waves in DIII-D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lau, Cornwall H; Jaeger, E. F.; Bertelli, Nicola
2015-01-01
Recent efforts have shown that helicon waves (fast waves at >20 omega(ci)) may be an attractive option for driving efficient off-axis current drive during non-inductive tokamak operation for DIII-D, ITER and DEMO. For DIII-D scenarios, the ray tracing code, GENRAY, has been extensively used to study helicon current drive efficiency and location as a function of many plasma parameters. The full wave code, AORSA, which is applicable to arbitrary Larmor radius and can resolve arbitrary ion cyclotron harmonic order, has been recently used to validate the ray tracing technique at these high cyclotron harmonics. If the SOL is ignored, itmore » will be shown that the GENRAY and AORSA calculated current drive profiles are comparable for the envisioned high beta advanced scenarios for DIII-D, where there is high single pass absorption due to electron Landau damping and minimal ion damping. AORSA is also been used to estimate possible SOL effects on helicon current drive coupling and SOL absorption due to collisional and slow wave effects.« less
Dama, James F.; Hocky, Glen M.; Sun, Rui; ...
2015-11-03
Metadynamics is an enhanced sampling method designed to flatten free energy surfaces uniformly. However, the highest-energy regions are often irrelevant to study and dangerous to explore because systems often respond irreversibly in unforeseen ways in response to driving forces in these regions, spoiling the sampling. Introducing an on-the-fly domain restriction allows metadynamics to flatten only up to a specified energy level and no further, improving efficiency and safety while decreasing the pressure on practitioners to design collective variables that are robust to otherwise irrelevant high energy driving. Here this paper describes a new method that achieves this using sequential on-the-flymore » estimation of energy wells and redefinition of the metadynamics hill shape, termed metabasin metadynamics. The energy level may be defined a priori or relative to unknown barrier energies estimated on the fly. Altering only the hill ensures that the method is compatible with many other advances in metadynamics methodology. The hill shape has a natural interpretation in terms of multiscale dynamics and the computational overhead in simulation is minimal when studying systems of any reasonable size, for instance proteins or other macromolecules. Ultimately, three example applications show that the formula is accurate and robust to complex dynamics, making metadynamics significantly more forgiving with respect to CV quality and thus more feasible to apply to the most challenging biomolecular systems.« less
Energy efficient engine preliminary design and integration study
NASA Technical Reports Server (NTRS)
Gray, D. E.
1978-01-01
The technology and configurational requirements of an all new 1990's energy efficient turbofan engine having a twin spool arrangement with a directly coupled fan and low-pressure turbine, a mixed exhaust nacelle, and a high 38.6:1 overall pressure ratio were studied. Major advanced technology design features required to provide the overall benefits were a high pressure ratio compression system, a thermally actuated advanced clearance control system, lightweight shroudless fan blades, a low maintenance cost one-stage high pressure turbine, a short efficient mixer and structurally integrated engine and nacelle. A conceptual design analysis was followed by integration and performance analyses of geared and direct-drive fan engines with separate or mixed exhaust nacelles to refine previously designed engine cycles. Preliminary design and more detailed engine-aircraft integration analysis were then conducted on the more promising configurations. Engine and aircraft sizing, fuel burned, and airframe noise studies on projected 1990's domestic and international aircraft produced sufficient definition of configurational and advanced technology requirements to allow immediate initiation of component technology development.
A new method of efficient heat transfer and storage at very high temperatures
NASA Technical Reports Server (NTRS)
Shaw, D.; Bruckner, A. P.; Hertzberg, A.
1980-01-01
A unique, high temperature (1000-2000 K) continuously operating capacitive heat exchanger system is described. The system transfers heat from a combustion or solar furnace to a working gas by means of a circulating high temperature molten refractory. A uniform aggregate of beads of a glass-like refractory is injected into the furnace volume. The aggregate is melted and piped to a heat exchanger where it is sprayed through a counter-flowing, high pressure working gas. The refractory droplets transfer their heat to the gas, undergoing a phase change into the solid bead state. The resulting high temperature gas is used to drive a suitable high efficiency heat engine. The solidified refractory beads are delivered back to the furnace and melted to continue the cycle. This approach avoids the important temperature limitations of conventional tube-type heat exchangers, giving rise to the potential of converting heat energy into useful work at considerably higher efficiencies than currently attainable and of storing energy at high thermodynamic potential.
Zhang, Jin jing; Shi, Liang; Chen, Hui; Sun, Yun qi; Zhao, Ming wen; Ren, Ang; Chen, Ming jie; Wang, Hong; Feng, Zhi yong
2014-01-01
Hypsizygus marmoreus is one of the major edible mushrooms in East Asia. As no efficient transformation method, the molecular and genetics studies were hindered. The glyceraldehyde-3-phosphate dehydrogenase (GPD) gene of H. marmoreus was isolated and its promoter was used to drive the hygromycin B phosphotransferase (HPH) and enhanced green fluorescent protein (EGFP) in H. marmoreus. Agrobacterium tumefaciens-mediated transformation (ATMT) was successfully applied in H. marmoreus. The transformation parameters were optimized, and it was found that co-cultivation of bacteria with protoplast at a ratio of 1000:1 at a temperature of 26 °C in medium containing 0.3 mM acetosyringone resulted in the highest transformation efficiency for Agrobacterium strain. Besides, three plasmids, each carrying a different promoter (from H. marmoreus, Ganoderma lucidum and Lentinula edodes) driving the expression of an antibiotic resistance marker, were also tested. The construct carrying the H. marmoreus gpd promoter produced more transformants than other constructs. Our analysis showed that over 85% of the transformants tested remained mitotically stable even after five successive rounds of subculturing. Putative transformants were analyzed for the presence of hph gene by PCR and Southern blot. Meanwhile, the expression of EGFP in H. marmoreus transformants was detected by fluorescence imaging. This ATMT system increases the transformation efficiency of H. marmoreus and may represent a useful tool for molecular genetic studies in this mushroom species. Copyright © 2014 Elsevier GmbH. All rights reserved.
Integrated, Reactor Relevant Solutions for Lower Hybrid Range of Frequencies Actuators
NASA Astrophysics Data System (ADS)
Shiraiwa, S.; Bonoli, P. T.; Lin, Y.; Wallace, G. M.; Wukitch, S. J.
2017-10-01
RF (radiofrequency) actuators with high system efficiency (wall-plug to plasma) and ability for continuous operation have long be recognized as essential tools for realizing a steady state tokamak. A number of physics and technological challenges to utilization remain including current drive efficiency and location, efficient coupling, and impurity contamination. In a reactor environment, plasma material interaction (PMI) issues associated with coupling structures are similar to the first wall and have been identified as a potential show-stopper. High field side (HFS) launch of LHRF power represents an integrated solution that both improves core wave physics and mitigates PMI/coupling issues. For HFS LHRF, wave penetration is vastly improves because wave accessibility scales as 1/B allowing for launching the wave at lower n|| (parallel refractive index). The lower n|| penetrate to higher electron temperature resulting in higher current drive efficiency (1/n||2). HFS RF launch also provides for a means to dramatically improve launcher robustness in a reactor environment. On the HFS, the SOL is quiescent; local density profile is steep and controlled through magnetic shape; fast particle, neutron, turbulent heat and particle fluxes are eliminated or minim Work supported by the U.S. DoE, Office of Science, Office of Fusion Energy Sciences, User Facility Alcator C-Mod under DE-FC02-99ER54512 and US DoE Contract No. DE-FC02-01ER54648 under a Scientific Discovery through Advanced Computing Initiative.
Small passenger car transmission test; Chevrolet LUV transmission
NASA Technical Reports Server (NTRS)
Bujold, M. P.
1980-01-01
A 1978 Chevrolet LUV manual transmission tested per the applicable portions of a passenger car automatic transmission test code (SAE J65lb) which required drive performance, coast performance, and no load test conditions. Under these test conditions, the transmission attained maximum efficiencies in the upper ninety percent range for both drive performance tests and coast performance tests. The major results of this test (torque, speed, and efficiency curves) are presented. Graphs map the complete performance characteristics for the Chevrolet LUV transmission.
Small passenger car transmission test; Ford C4 transmission
NASA Technical Reports Server (NTRS)
Bujold, M. P.
1980-01-01
A 1979 Ford C4 automatic transmission was tested per a passenger car automatic transmission test code (SAE J651b) which required drive performance, coast performance, and no load test conditions. Under these test conditions, the transmission attained maximum efficiencies in the mid-eighty percent range for both drive performance tests and coast performance tests. The major results of this test (torque, speed, and efficiency curves) are presented. Graphs map the complete performance characteristics for the Ford C4 transmission.
Small passenger car transmission test: Mercury Lynx ATX transmission
NASA Technical Reports Server (NTRS)
Bujold, M. P.
1981-01-01
The testing of a Mercury Lynx automatic transmission is reported. The transmission was tested in accordance with a passenger car automatic transmission test code (SAE J65lb) which required drive performance, coast performance, and no load test conditions. Under these conditions, the transmission attained maximum efficiencies in the mid-ninety percent range both for drive performance test and coast performance tests. The torque, speed, and efficiency curves are presented, which provide the complete performance characteristics for the Mercury Lynx automatic transmission.
Method of electric powertrain matching for battery-powered electric cars
NASA Astrophysics Data System (ADS)
Ning, Guobao; Xiong, Lu; Zhang, Lijun; Yu, Zhuoping
2013-05-01
The current match method of electric powertrain still makes use of longitudinal dynamics, which can't realize maximum capacity for on-board energy storage unit and can't reach lowest equivalent fuel consumption as well. Another match method focuses on improving available space considering reasonable layout of vehicle to enlarge rated energy capacity for on-board energy storage unit, which can keep the longitudinal dynamics performance almost unchanged but can't reach lowest fuel consumption. Considering the characteristics of driving motor, method of electric powertrain matching utilizing conventional longitudinal dynamics for driving system and cut-and-try method for energy storage system is proposed for passenger cars converted from traditional ones. Through combining the utilization of vehicle space which contributes to the on-board energy amount, vehicle longitudinal performance requirements, vehicle equivalent fuel consumption level, passive safety requirements and maximum driving range requirement together, a comprehensive optimal match method of electric powertrain for battery-powered electric vehicle is raised. In simulation, the vehicle model and match method is built in Matlab/simulink, and the Environmental Protection Agency (EPA) Urban Dynamometer Driving Schedule (UDDS) is chosen as a test condition. The simulation results show that 2.62% of regenerative energy and 2% of energy storage efficiency are increased relative to the traditional method. The research conclusions provide theoretical and practical solutions for electric powertrain matching for modern battery-powered electric vehicles especially for those converted from traditional ones, and further enhance dynamics of electric vehicles.
Scanning properties of a resonant fiber-optic piezoelectric scanner
NASA Astrophysics Data System (ADS)
Li, Zhi; Yang, Zhe; Fu, Ling
2011-12-01
We develop a resonant fiber-optic scanner using four piezoelectric elements arranged as a square tube, which is efficient to manufacture and drive. Using coupled-field model based on finite element method, scanning properties of the scanner, including vibration mode, resonant frequency, and scanning range, are numerically studied. We also physically measure the effects of geometry sizes and drive signals on the scanning properties, thus providing a foundation for general purpose designs. A scanner adopted in a prototype of imaging system, with a diameter of ˜2 mm and driven by a voltage of 10 V (peak to peak), demonstrates the scanning performance by obtaining an image of resolution target bars. The proposed fiber-optic scanner can be applied to micro-endoscopy that requires two-dimensional scanning of fibers.
The group employed model as a foundation for health care delivery reform.
Minott, Jenny; Helms, David; Luft, Harold; Guterman, Stuart; Weil, Henry
2010-04-01
With a focus on delivering low-cost, high-quality care, several organizations using the group employed model (GEM)-with physician groups whose primary and specialty care physicians are salaried or under contract-have been recognized for creating a culture of patient-centeredness and accountability, even in a toxic fee-for-service environment. The elements that leaders of such organizations identify as key to their success are physician leadership that promotes trust in the organization, integration that promotes teamwork and coordination, governance and strategy that drive results, transparency and health information technology that drive continual quality improvement, and a culture of accountability that focuses providers on patient needs and responsibility for effective care and efficient use of resources. These organizations provide important lessons for health care delivery system reform.
Utschig, Lisa M; Silver, Sunshine C; Mulfort, Karen L; Tiede, David M
2011-10-19
Solar energy conversion of water into the environmentally clean fuel hydrogen offers one of the best long-term solutions for meeting future energy demands. Nature provides highly evolved, finely tuned molecular machinery for solar energy conversion that exquisitely manages photon capture and conversion processes to drive oxygenic water-splitting and carbon fixation. Herein, we use one of Nature's specialized energy-converters, the Photosystem I (PSI) protein, to drive hydrogen production from a synthetic molecular catalyst comprised of inexpensive, earth-abundant materials. PSI and a cobaloxime catalyst self-assemble, and the resultant complex rapidly produces hydrogen in aqueous solution upon exposure to visible light. This work establishes a strategy for enhancing photosynthetic efficiency for solar fuel production by augmenting natural photosynthetic systems with synthetically tunable abiotic catalysts.
[Eco-efficiency change and its driving factors in Tongling City of Anhui Province].
Wang, Yi-Chen; Wang, Yuan; Zhu, Xiao-Dong; Wu, Xiao-Qing; Wang, Ke; Ren, Ke-Xiu; Lu, Gen-Fa
2011-02-01
This paper first applied material flow analysis (MFA) to construct three levels of regional eco-efficiency indicators, i.e., regional direct eco-efficiency (RDE), regional total eco-efficiency (RTE), and holistic eco-efficiency (HE), and adopted the newly developed data envelopment analysis (DEA) to evaluate the eco-efficiency of Tongling City during the period of 1990-2008. We also applied Malmquist productivity index (MPI) to explore the eco-efficiency change between two following years and its driving factors. The main results were summarized as 1) though the RDE of Tongling City in 1990-2008 kept an increasing trend, its mean eco-efficiency was not high (close to 0.8 in 80% of the years), being lower than that of the RTE and HE, and 2) the RDE change was closely relevant to the improvement in resource management and the technical input in environmental protection in recent years. In order to further improve the RDE of the City, it would be necessary to raise its eco-efficiency via expanding raw material input, reducing domestic extraction, promoting resources productivity, and taking more measures on environmental protection facilities construction.
Interactive Schematic Integration Within the Propellant System Modeling Environment
NASA Technical Reports Server (NTRS)
Coote, David; Ryan, Harry; Burton, Kenneth; McKinney, Lee; Woodman, Don
2012-01-01
Task requirements for rocket propulsion test preparations of the test stand facilities drive the need to model the test facility propellant systems prior to constructing physical modifications. The Propellant System Modeling Environment (PSME) is an initiative designed to enable increased efficiency and expanded capabilities to a broader base of NASA engineers in the use of modeling and simulation (M&S) technologies for rocket propulsion test and launch mission requirements. PSME will enable a wider scope of users to utilize M&S of propulsion test and launch facilities for predictive and post-analysis functionality by offering a clean, easy-to-use, high-performance application environment.
Adaptive vehicle motion estimation and prediction
NASA Astrophysics Data System (ADS)
Zhao, Liang; Thorpe, Chuck E.
1999-01-01
Accurate motion estimation and reliable maneuver prediction enable an automated car to react quickly and correctly to the rapid maneuvers of the other vehicles, and so allow safe and efficient navigation. In this paper, we present a car tracking system which provides motion estimation, maneuver prediction and detection of the tracked car. The three strategies employed - adaptive motion modeling, adaptive data sampling, and adaptive model switching probabilities - result in an adaptive interacting multiple model algorithm (AIMM). The experimental results on simulated and real data demonstrate that our tracking system is reliable, flexible, and robust. The adaptive tracking makes the system intelligent and useful in various autonomous driving tasks.
Demand Response Advanced Controls Framework and Assessment of Enabling Technology Costs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potter, Jennifer; Cappers, Peter
The Demand Response Advanced Controls Framework and Assessment of Enabling Technology Costs research describe a variety of DR opportunities and the various bulk power system services they can provide. The bulk power system services are mapped to a generalized taxonomy of DR “service types”, which allows us to discuss DR opportunities and bulk power system services in fewer yet broader categories that share similar technological requirements which mainly drive DR enablement costs. The research presents a framework for the costs to automate DR and provides descriptions of the various elements that drive enablement costs. The report introduces the various DRmore » enabling technologies and end-uses, identifies the various services that each can provide to the grid and provides the cost assessment for each enabling technology. In addition to a report, this research includes a Demand Response Advanced Controls Database and User Manual. They are intended to provide users with the data that underlies this research and instructions for how to use that database more effectively and efficiently.« less
Hybrid Turbine Electric Vehicle
NASA Technical Reports Server (NTRS)
Viterna, Larry A.
1997-01-01
Hybrid electric power trains may revolutionize today's ground passenger vehicles by significantly improving fuel economy and decreasing emissions. The NASA Lewis Research Center is working with industry, universities, and Government to develop and demonstrate a hybrid electric vehicle. Our partners include Bowling Green State University, the Cleveland Regional Transit Authority, Lincoln Electric Motor Division, the State of Ohio's Department of Development, and Teledyne Ryan Aeronautical. The vehicle will be a heavy class urban transit bus offering double the fuel economy of today's buses and emissions that are reduced to 1/10th of the Environmental Protection Agency's standards. At the heart of the vehicle's drive train is a natural-gas-fueled engine. Initially, a small automotive engine will be tested as a baseline. This will be followed by the introduction of an advanced gas turbine developed from an aircraft jet engine. The engine turns a high-speed generator, producing electricity. Power from both the generator and an onboard energy storage system is then provided to a variable-speed electric motor attached to the rear drive axle. An intelligent power-control system determines the most efficient operation of the engine and energy storage system.
Liu, Shu-Yen; Sheu, J K; Lin, Yu-Chuan; Chen, Yu-Tong; Tu, S J; Lee, M L; Lai, W C
2013-11-04
Hydrogen generation through water splitting by n-InGaN working electrodes with bias generated from GaAs solar cell was studied. Instead of using an external bias provided by power supply, a GaAs-based solar cell was used as the driving force to increase the rate of hydrogen production. The water-splitting system was tuned using different approaches to set the operating points to the maximum power point of the GaAs solar cell. The approaches included changing the electrolytes, varying the light intensity, and introducing the immersed ITO ohmic contacts on the working electrodes. As a result, the hybrid system comprising both InGaN-based working electrodes and GaAs solar cells operating under concentrated illumination could possibly facilitate efficient water splitting.
Driving and Neurodegenerative Diseases
Uc, Ergun Y.; Rizzo, Matthew
2011-01-01
The proportion of elderly in the general population is rising, resulting in greater numbers of drivers with neurodegenerative disorders such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). These neurodegenerative disorders impair cognition, visual perception, and motor function, leading to reduced driver fitness and greater crash risk. Yet medical diagnosis or age alone is not reliable enough to predict driver safety or crashes, or revoke the driving privileges of these drivers. Driving research utilizes tools such as questionnaires about driving habits and history, driving simulators, standardized road tests utilizing instrumented vehicles, and state driving records. Research challenges include outlining the evolution of driving safety, understanding the mechanisms of driving impairment, and developing a reliable and efficient standardized test battery for prediction of driver safety in neurodegenerative disorders. This information will enable healthcare providers to advise their patients with neurodegenerative disorders with more certainty, affect policy, and help to develop rehabilitative measures for driving. PMID:18713573
NASA Astrophysics Data System (ADS)
Kenda, A.; Kraft, M.; Tortschanoff, A.; Scherf, Werner; Sandner, T.; Schenk, Harald; Luettjohann, Stephan; Simon, A.
2014-05-01
With a trend towards the use of spectroscopic systems in various fields of science and industry, there is an increasing demand for compact spectrometers. For UV/VIS to the shortwave near-infrared spectral range, compact hand-held polychromator type devices are widely used and have replaced larger conventional instruments in many applications. Still, for longer wavelengths this type of compact spectrometers is lacking suitable and affordable detector arrays. In perennial development Carinthian Tech Research AG together with the Fraunhofer Institute for Photonic Microsystems endeavor to close this gap by developing spectrometer systems based on photonic MEMS. Here, we review on two different spectrometer developments, a scanning grating spectrometer working in the NIR and a FT-spectrometer accessing the mid-IR range up to 14 μm. Both systems are using photonic MEMS devices actuated by in-plane comb drive structures. This principle allows for high mechanical amplitudes at low driving voltages but results in gratings respectively mirrors oscillating harmonically. Both systems feature special MEMS structures as well as aspects in terms of system integration which shall tease out the best possible overall performance on the basis of this technology. However, the advantages of MEMS as enabling technology for high scanning speed, miniaturization, energy efficiency, etc. are pointed out. Whereas the scanning grating spectrometer has already evolved to a product for the point of sale analysis of traditional Chinese medicine products, the purpose of the FT-spectrometer as presented is to demonstrate what is achievable in terms of performance. Current developments topics address MEMS packaging issues towards long term stability, further miniaturization and usability.