The simulations of indirect-drive targets for ignition on megajoule lasers.
NASA Astrophysics Data System (ADS)
Lykov, Vladimir; Andreev, Eugene; Ardasheva, Ludmila; Avramenko, Michael; Chernyakov, Valerian; Chizhkov, Maxim; Karlykhanov, Nikalai; Kozmanov, Michael; Lebedev, Serge; Rykovanov, George; Seleznev, Vladimir; Sokolov, Lev; Timakova, Margaret; Shestakov, Alexander; Shushlebin, Aleksander
2013-10-01
The calculations were performed with use of radiation hydrodynamic codes developed in RFNC-VNIITF. The analysis of published calculations of indirect-drive targets to obtain ignition on NIF and LMJ lasers has shown that these targets have very low margins for ignition: according to 1D-ERA code calculations it could not be ignited under decreasing of thermonuclear reaction rate less than in 2 times.The purpose of new calculations is search of indirect-drive targets with the raised margins for ignition. The calculations of compression and thermonuclear burning of targets are carried out for conditions of X-ray flux asymmetry obtained in simulations of Rugby hohlraum that were performed with 2D-SINARA code. The requirements to accuracy of manufacturing and irradiation symmetry of targets were studied with use of 2D-TIGR-OMEGA-3T code. The necessity of performed researches is caused by the construction of magajoule laser in Russia.
Starkey, Nicola J; Charlton, Samuel G
2014-07-01
Alcohol has an adverse effect on driving performance; however, the effects of moderate doses on different aspects of the driving task are inconsistent and differ across the intoxication curve. This research aimed to investigate driving and cognitive performance asymmetries (acute tolerance and acute protracted error) accompanying the onset and recovery from moderate alcohol consumption. Sixty-one participants received a placebo, medium (target blood alcohol concentration [BAC] 0.05 mg/ml) or high (target BAC 0.08 mg/ml) dose of alcohol. Participants completed a simulated drive, cognitive tests and subjective rating scales five times over a 3.5 h period. When ascending and descending BACs (0.05 and 0.09 mg/ml) were compared participants' self-ratings of intoxication and willingness to drive showed acute tolerance. Acute protracted errors were observed for response speed, maze learning errors, time exceeding the speed limit and exaggerated steering responses to hazards. Participants' estimates of their level of intoxication were poorly related to their actual BAC levels (and hence degree of impairment), and various aspects of driving and cognitive performance worsened during descending BACs. This indicates that drivers are not good at judging their fitness to drive after drinking only moderate amounts of alcohol and suggests an important focus for public education regarding alcohol and driving. Copyright © 2014 John Wiley & Sons, Ltd.
Quantifying design trade-offs of beryllium targets on NIF
NASA Astrophysics Data System (ADS)
Yi, S. A.; Zylstra, A. B.; Kline, J. L.; Loomis, E. N.; Kyrala, G. A.; Shah, R. C.; Perry, T. S.; Kanzleiter, R. J.; Batha, S. H.; MacLaren, S. A.; Ralph, J. E.; Masse, L. P.; Salmonson, J. D.; Tipton, R. E.; Callahan, D. A.; Hurricane, O. A.
2017-10-01
An important determinant of target performance is implosion kinetic energy, which scales with the capsule size. The maximum achievable performance for a given laser is thus related to the largest capsule that can be imploded symmetrically, constrained by drive uniformity. A limiting factor for symmetric radiation drive is the ratio of hohlraum to capsule radii, or case-to-capsule ratio (CCR). For a fixed laser energy, a larger hohlraum allows for driving bigger capsules symmetrically at the cost of reduced peak radiation temperature (Tr). Beryllium ablators may thus allow for unique target design trade-offs due to their higher ablation efficiency at lower Tr. By utilizing larger hohlraum sizes than most modern NIF designs, beryllium capsules thus have the potential to operate in unique regions of the target design parameter space. We present design simulations of beryllium targets with a large CCR = 4.3 3.7 . These are scaled surrogates of large hohlraum low Tr beryllium targets, with the goal of quantifying symmetry tunability as a function of CCR. This work performed under the auspices of the U.S. DOE by LANL under contract DE-AC52- 06NA25396, and by LLNL under Contract DE-AC52-07NA27344.
Age-Related Changes in the Ability to Switch between Temporal and Spatial Attention.
Callaghan, Eleanor; Holland, Carol; Kessler, Klaus
2017-01-01
Background : Identifying age-related changes in cognition that contribute towards reduced driving performance is important for the development of interventions to improve older adults' driving and prolong the time that they can continue to drive. While driving, one is often required to switch from attending to events changing in time, to distribute attention spatially. Although there is extensive research into both spatial attention and temporal attention and how these change with age, the literature on switching between these modalities of attention is limited within any age group. Methods : Age groups (21-30, 40-49, 50-59, 60-69 and 70+ years) were compared on their ability to switch between detecting a target in a rapid serial visual presentation (RSVP) stream and detecting a target in a visual search display. To manipulate the cost of switching, the target in the RSVP stream was either the first item in the stream (Target 1st), towards the end of the stream (Target Mid), or absent from the stream (Distractor Only). Visual search response times and accuracy were recorded. Target 1st trials behaved as no-switch trials, as attending to the remaining stream was not necessary. Target Mid and Distractor Only trials behaved as switch trials, as attending to the stream to the end was required. Results : Visual search response times (RTs) were longer on "Target Mid" and "Distractor Only" trials in comparison to "Target 1st" trials, reflecting switch-costs. Larger switch-costs were found in both the 40-49 and 60-69 years group in comparison to the 21-30 years group when switching from the Target Mid condition. Discussion : Findings warrant further exploration as to whether there are age-related changes in the ability to switch between these modalities of attention while driving. If older adults display poor performance when switching between temporal and spatial attention while driving, then the development of an intervention to preserve and improve this ability would be beneficial.
Leung, Sumie; Croft, Rodney J; Jackson, Melinda L; Howard, Mark E; McKenzie, Raymond J
2012-01-01
The present study compared the effects of a variety of mobile phone usage conditions to different levels of alcohol intoxication on simulated driving performance and psychomotor vigilance. Twelve healthy volunteers participated in a crossover design in which each participant completed a simulated driving task on 2 days, separated by a 1-week washout period. On the mobile phone day, participants performed the simulated driving task under each of 4 conditions: no phone usage, a hands-free naturalistic conversation, a hands-free cognitively demanding conversation, and texting. On the alcohol day, participants performed the simulated driving task at four different blood alcohol concentration (BAC) levels: 0.00, 0.04, 0.07, and 0.10. Driving performance was assessed by variables including time within target speed range, time spent speeding, braking reaction time, speed deviation, and lateral lane position deviation. In the BAC 0.07 and 0.10 alcohol conditions, participants spent less time in the target speed range and more time speeding and took longer to brake in the BAC 0.04, 0.07, and 0.10 than in the BAC 0.00 condition. In the mobile phone condition, participants took longer to brake in the natural hands-free conversation, cognitively demanding hands-free conversation and texting conditions and spent less time in the target speed range and more time speeding in the cognitively demanding, hands-free conversation, and texting conditions. When comparing the 2 conditions, the naturalistic conversation was comparable to the legally permissible BAC level (0.04), and the cognitively demanding and texting conversations were similar to the BAC 0.07 to 0.10 results. The findings of the current laboratory study suggest that very simple conversations on a mobile phone may not represent a significant driving risk (compared to legally permissible BAC levels), whereas cognitively demanding, hands-free conversation, and particularly texting represent significant risks to driving.
NASA Astrophysics Data System (ADS)
Solodov, A. A.; Rosenberg, M. J.; Myatt, J. F.; Epstein, R.; Regan, S. P.; Seka, W.; Shaw, J.; Hohenberger, M.; Bates, J. W.; Moody, J. D.; Ralph, J. E.; Turnbull, D. P.; Barrios, M. A.
2016-05-01
The two-plasmon-decay (TPD) instability can be detrimental for direct-drive inertial confinement fusion because it generates high-energy electrons that can preheat the target, thereby reducing target performance. Hydrodynamic simulations to design a new experimental platform to investigate TPD and other laser-plasma instabilities relevant to direct-drive-ignition implosions at the National Ignition Facility are presented. The proposed experiments utilize planar plastic targets with an embedded Mo layer to characterize generation of hot electrons through Mo Kα fluorescence and hard x-ray emission. Different laser-irradiation geometries approximate conditions near both the equator and the pole of a polar-direct-drive implosion.
Stavrinos, Despina; Heaton, Karen; Welburn, Sharon C; McManus, Benjamin; Griffin, Russell; Fine, Philip R
2016-08-01
Reducing distracters detrimental to commercial truck driving is a critical component of improving the safety performance of commercial drivers, and makes the highways safer for all drivers. This study used a driving simulator to examine effects of cell phone, texting, and email distractions as well as self-reported driver optimism bias on the driving performance of commercial truck drivers. Results revealed that more visually demanding tasks were related to poorer driving performance. However, the cell phone task resulted in less off-the-road eye glances. Drivers reporting being "very skilled" displayed poorer driving performance than those reporting being "skilled." Onboard communication devices provide a practical, yet visually and manually demanding, solution for connecting drivers and dispatchers. Trucking company policies should minimize interaction between dispatchers and drivers when the truck is in motion. Training facilities should integrate driving simulators into the instruction of commercial drivers, targeting over-confident drivers. © 2016 The Author(s).
NASA Astrophysics Data System (ADS)
McCrory, R. L.; Regan, S. P.; Loucks, S. J.; Meyerhofer, D. D.; Skupsky, S.; Betti, R.; Boehly, T. R.; Craxton, R. S.; Collins, T. J. B.; Delettrez, J. A.; Edgell, D.; Epstein, R.; Fletcher, K. A.; Freeman, C.; Frenje, J. A.; Glebov, V. Yu.; Goncharov, V. N.; Harding, D. R.; Igumenshchev, I. V.; Keck, R. L.; Kilkenny, J. D.; Knauer, J. P.; Li, C. K.; Marciante, J.; Marozas, J. A.; Marshall, F. J.; Maximov, A. V.; McKenty, P. W.; Myatt, J.; Padalino, S.; Petrasso, R. D.; Radha, P. B.; Sangster, T. C.; Séguin, F. H.; Seka, W.; Smalyuk, V. A.; Soures, J. M.; Stoeckl, C.; Yaakobi, B.; Zuegel, J. D.
2005-10-01
Significant theoretical and experimental progress continues to be made at the University of Rochester's Laboratory for Laser Energetics (LLE), charting the path to direct-drive inertial confinement fusion (ICF) ignition. Direct drive offers the potential for higher-gain implosions than x-ray drive and is a leading candidate for an inertial fusion energy power plant. LLE's direct-drive ICF ignition target designs for the National Ignition Facility (NIF) are based on hot-spot ignition. A cryogenic target with a spherical DT-ice layer, within or without a foam matrix, enclosed by a thin plastic shell, will be directly irradiated with ~1.5 MJ of laser energy. Cryogenic and plastic/foam (surrogate-cryogenic) targets that are hydrodynamically scaled from these ignition target designs are imploded on the 60-beam, 30 kJ, UV OMEGA laser system to validate the key target physics issues, including energy coupling, hydrodynamic instabilities and implosion symmetry. Prospects for direct-drive ignition on the NIF are extremely favourable, even while it is in its x-ray-drive irradiation configuration, with the development of the polar-direct-drive concept. A high-energy petawatt capability is being constructed at LLE next to the existing 60-beam OMEGA compression facility. This OMEGA EP (extended performance) laser will add two short-pulse, 2.6 kJ beams to the OMEGA laser system to backlight direct-drive ICF implosions and study fast-ignition physics with focused intensities up to 6 × 1020 W cm-2.
Age-Related Changes in the Ability to Switch between Temporal and Spatial Attention
Callaghan, Eleanor; Holland, Carol; Kessler, Klaus
2017-01-01
Background: Identifying age-related changes in cognition that contribute towards reduced driving performance is important for the development of interventions to improve older adults’ driving and prolong the time that they can continue to drive. While driving, one is often required to switch from attending to events changing in time, to distribute attention spatially. Although there is extensive research into both spatial attention and temporal attention and how these change with age, the literature on switching between these modalities of attention is limited within any age group. Methods: Age groups (21–30, 40–49, 50–59, 60–69 and 70+ years) were compared on their ability to switch between detecting a target in a rapid serial visual presentation (RSVP) stream and detecting a target in a visual search display. To manipulate the cost of switching, the target in the RSVP stream was either the first item in the stream (Target 1st), towards the end of the stream (Target Mid), or absent from the stream (Distractor Only). Visual search response times and accuracy were recorded. Target 1st trials behaved as no-switch trials, as attending to the remaining stream was not necessary. Target Mid and Distractor Only trials behaved as switch trials, as attending to the stream to the end was required. Results: Visual search response times (RTs) were longer on “Target Mid” and “Distractor Only” trials in comparison to “Target 1st” trials, reflecting switch-costs. Larger switch-costs were found in both the 40–49 and 60–69 years group in comparison to the 21–30 years group when switching from the Target Mid condition. Discussion: Findings warrant further exploration as to whether there are age-related changes in the ability to switch between these modalities of attention while driving. If older adults display poor performance when switching between temporal and spatial attention while driving, then the development of an intervention to preserve and improve this ability would be beneficial. PMID:28261088
Hack, M.; Davies, R.; Mullins, R.; Choi, S. J.; Ramdassingh-Dow, S.; Jenkinson, C.; Stradling, J.
2000-01-01
BACKGROUND—Obstructive sleep apnoea (OSA) impairs vigilance and may lead to an increased rate of driving accidents. In uncontrolled studies accident rates and simulated steering performance improve following treatment with nasal continuous positive airway pressure (NCPAP). This study seeks to confirm the improvement in steering performance in a randomised controlled trial using subtherapeutic NCPAP as a control treatment. METHODS—Fifty nine men with OSA (Epworth Sleepiness Score (ESS) of ⩾10, and ⩾10/h dips in SaO2 of >4% due to OSA) received therapeutic or subtherapeutic NCPAP (≈1 cm H2O) for one month. Simulated steering performance over three 30-minute "drives" was quantified as: standard deviation (SD) of road position, deterioration in SD across the drive, length of drive before "crashing", and number of off-road events. The reaction times to peripheral target stimuli during the drive were also measured. RESULTS—Subtherapeutic NCPAP did not improve overnight >4% SaO2 dips/h compared with baseline values, thus acting as a control. The SD of the steering position improved from 0.36 to 0.21 on therapeutic NCPAP, and from 0.35 to 0.30 on subtherapeutic NCPAP (p = 0.03). Deterioration in SD of the steering position improved from 0.18to 0.06 SD/h with therapeutic NCPAP and worsened from 0.18 to 0.24 with subtherapeutic NCPAP (p = 0.04). The reaction time to target stimuli was quicker after therapeutic than after subtherapeutic NCPAP (2.3 versus 2.7 seconds, p = 0.04). CONCLUSIONS—Therapeutic NCPAP improves steering performance and reaction time to target stimuli in patients with OSA, lending further support to the hypothesis that OSA impairs driving, increases driving accident rates, and that these improve following treatment with NCPAP. PMID:10679542
A Link Between Attentional Function, Effective Eye Movements, and Driving Ability
2016-01-01
The misallocation of driver visual attention has been suggested as a major contributing factor to vehicle accidents. One possible reason is that the relatively high cognitive demands of driving limit the ability to efficiently allocate gaze. We present an experiment that explores the relationship between attentional function and visual performance when driving. Drivers performed 2 variations of a multiple-object tracking task targeting aspects of cognition including sustained attention, dual-tasking, covert attention, and visuomotor skill. They also drove a number of courses in a driving simulator. Eye movements were recorded throughout. We found that individuals who performed better in the cognitive tasks exhibited more effective eye movement strategies when driving, such as scanning more of the road, and they also exhibited better driving performance. We discuss the potential link between an individual’s attentional function, effective eye movements, and driving ability. We also discuss the use of a visuomotor task in assessing driving behavior. PMID:27893270
Polar-direct-drive experiments with contoured-shell targets on OMEGA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, F. J.; Radha, P. B.; Bonino, M. J.
Polar-driven direct-drive experiments recently performed on the OMEGA Laser System have demonstrated the efficacy of using a target with a contoured shell with varying thickness to improve the symmetry and fusion performance of the implosion. The polar-driven contoured-shell implosions have substantially reduced low mode perturbations compared to polar-driven spherical-shell implosions as diagnosed by x-ray radiographs up to shell stagnation. As a result, fusion yields were increased by more than a factor of ~2 without increasing the energy of the laser by the use of contoured shells.
Polar-direct-drive experiments with contoured-shell targets on OMEGA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, F. J.; Radha, P. B.; Bonino, M. J.
Polar-driven direct-drive experiments recently performed on the OMEGA Laser System have demonstrated the efficacy of using a target with a contoured shell with varying thickness to improve the symmetry and fusion performance of the implosion. The polar-driven contoured-shell implosions have substantially reduced low mode perturbations compared to polar-driven spherical-shell implosions as diagnosed by x-ray radiographs up to shell stagnation. Fusion yields were increased by more than a factor of ∼2 without increasing the energy of the laser by the use of contoured shells.
Polar-direct-drive experiments with contoured-shell targets on OMEGA
Marshall, F. J.; Radha, P. B.; Bonino, M. J.; ...
2016-01-28
Polar-driven direct-drive experiments recently performed on the OMEGA Laser System have demonstrated the efficacy of using a target with a contoured shell with varying thickness to improve the symmetry and fusion performance of the implosion. The polar-driven contoured-shell implosions have substantially reduced low mode perturbations compared to polar-driven spherical-shell implosions as diagnosed by x-ray radiographs up to shell stagnation. As a result, fusion yields were increased by more than a factor of ~2 without increasing the energy of the laser by the use of contoured shells.
Integrated Eye Tracking and Neural Monitoring for Enhanced Assessment of Mild TBI
2015-04-01
virtual reality driving simulator data acquisition. Data collection for the pilot study is nearly complete and data analyses are currently under way...Training for primary study procedures including neuropsychological testing, eye- tracking, virtual reality driving simulator, and EEG data acquisition is...the virtual reality driving simulator. Participants are instructed to drive along a coastal highway while performing the target detection task
The effects of age and workload on 3D spatial attention in dual-task driving.
Pierce, Russell S; Andersen, George J
2014-06-01
In the present study we assessed whether the limits in visual-spatial attention associated with aging affect the spatial extent of attention in depth during driving performance. Drivers in the present study performed a car-following and light-detection task. To assess the extent of visual-spatial attention, we compared reaction times and accuracy to light change targets that varied in horizontal position and depth location. In addition, because workload has been identified as a factor that can change the horizontal and vertical extent of attention, we tested whether variability of the lead car speed influenced the extent of spatial attention for younger or older drivers. For younger drivers, reaction time (RT) to light-change targets varied as a function of distance and horizontal position. For older drivers RT varied only as a function of distance. There was a distance by horizontal position interaction for younger drivers but not for older drivers. Specifically, there was no effect of horizontal position at any given level of depth for older drivers. However, for younger drivers there was an effect of horizontal position for targets further in depth but not for targets nearer in depth. With regards to workload, we found no statistically reliable evidence that variability of the lead car speed had an effect on the spatial extent of attention for younger or older drivers. In a control experiment, we examined the effects of depth on light detection when the projected size and position of the targets was constant. Consistent with our previous results, we found that drivers' reaction time to light-change targets varied as a function of distance even when 2D position and size were controlled. Given that depth is an important dimension in driving performance, an important issue for assessing driving safety is to consider the limits of attention in the depth dimension. Therefore, we suggest that future research should consider the importance of depth as a dimension of spatial attention in relation to the assessment of driving performance. Copyright © 2014 Elsevier Ltd. All rights reserved.
Progress on 3-D ICF simulations and Ray-Traced Power Deposition Method
NASA Astrophysics Data System (ADS)
Schmitt, Andrew J.; Fyfe, David E.
2016-10-01
We have performed 3D simulations of Omega-scale and NIF-scale spherical direct-drive targets with the massively parallel
INTERACTIONS BETWEEN AGE AND MODERATE ALCOHOL EFFECTS ON SIMULATED DRIVING PERFORMANCE
Sklar, Alfredo L.; Boissoneault, Jeff; Fillmore, Mark T.; Nixon, Sara Jo
2013-01-01
Rationale There is a substantial body of literature documenting the deleterious effects of both alcohol consumption and age on driving performance. There is, however, limited work examining the interaction of age and acute alcohol consumption. Objectives The current study was conducted to determine if moderate alcohol doses differentially affect the driving performance of older and younger adults. Methods Healthy older (55 – 70) and younger (25 – 35) adults were tested during a baseline session and again following consumption of one of three beverages (0.0% (placebo), 0.04% or 0.065% target breath alcohol concentration). Measures of driving precision and average speed were recorded. Results Older adults performed more poorly on precision driving measures and drove more slowly than younger adults at baseline. After controlling for baseline performance, interactions between alcohol and age were observed following beverage consumption on two measures of driving precision with older adults exhibiting greater impairment as a result of alcohol consumption. Conclusions These data provide evidence that older adults may be more susceptible to the effects of alcohol on certain measures of driving performance. An investigation of mechanisms accounting for alcohol’s effects on driving in older and younger adults is required. Further evaluation using more complex driving environments is needed to assess the real-world implication of this interaction. PMID:24030469
DOE Office of Scientific and Technical Information (OSTI.GOV)
Séguin, F. H.; Li, C. K.; DeCiantis, J. L.
Three orthogonal proton emission imaging cameras were used to study the 3D effects of low-mode drive asymmetries and target asymmetries on nuclear burn symmetry and yield in direct-drive, inertial-confinement-fusion experiments. The fusion yield decreased quickly as the burn region became asymmetric due to either drive or capsule asymmetry. Measurements and analytic scaling are used to predict how intentionally asymmetric capsule shells could improve performance by compensating for drive asymmetry when it cannot be avoided (such as with indirect drive or with polar direct drive).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seguin, F. H.; Li, C. K.; DeCiantis, J. L.
Three orthogonal proton emission imaging cameras were used to study the 3D effects of low-mode drive asymmetries and target asymmetries on nuclear burn symmetry and yield in direct-drive, inertial-confinement-fusion experiments. The fusion yield decreased quickly as the burn region became asymmetric due to either drive or capsule asymmetry. Furthermore, measurements and analytic scaling are used to predict how intentionally asymmetric capsule shells could improve performance by compensating for drive asymmetry when it cannot be avoided (such as with indirect drive or with polar direct drive).
Seguin, F. H.; Li, C. K.; DeCiantis, J. L.; ...
2016-03-22
Three orthogonal proton emission imaging cameras were used to study the 3D effects of low-mode drive asymmetries and target asymmetries on nuclear burn symmetry and yield in direct-drive, inertial-confinement-fusion experiments. The fusion yield decreased quickly as the burn region became asymmetric due to either drive or capsule asymmetry. Furthermore, measurements and analytic scaling are used to predict how intentionally asymmetric capsule shells could improve performance by compensating for drive asymmetry when it cannot be avoided (such as with indirect drive or with polar direct drive).
Mazer, Barbara L; Sofer, Susan; Korner-Bitensky, Nicol; Gelinas, Isabelle; Hanley, James; Wood-Dauphinee, Sharon
2003-04-01
To compare the effectiveness of a visual attention retraining program using the Useful Field of View (UFOV) with a traditional visuoperception treatment program on the driving performance of clients with stroke. Randomized controlled trial. Rehabilitation hospital located in Quebec, Canada. Ninety-seven individuals referred for driving evaluation after a stroke. Participants were randomized to receive 20 sessions of either UFOV training of visual processing speed, divided attention, and selective attention or traditional computerized visuoperception retraining. Subjects were evaluated with an on-road driving evaluation, visuoperception tests, and the Test of Everyday Attention. An occupational therapist unaware of group assignment conducted all evaluations. Eighty-four participants completed the outcome evaluation. There were no significant differences between groups on any of the outcome measures. There was, however, almost a 2-fold increase (52.4% vs 28.6%) in the rate of success on the on-road driving evaluation after UFOV training for subjects with right-sided lesions. Rehabilitation that targets visual attention skills was not significantly more beneficial than traditional perceptual training in improving the outcome of an on-road driving evaluation. However, results suggest a potential improvement for subjects with right-sided lesions, indicating that training must target specific skills.
Naturalistic distraction and driving safety in older drivers.
Aksan, Nazan; Dawson, Jeffrey D; Emerson, Jamie L; Yu, Lixi; Uc, Ergun Y; Anderson, Steven W; Rizzo, Matthew
2013-08-01
In this study, we aimed to quantify and compare performance of middle-aged and older drivers during a naturalistic distraction paradigm (visual search for roadside targets) and to predict older drivers performance given functioning in visual, motor, and cognitive domains. Distracted driving can imperil healthy adults and may disproportionally affect the safety of older drivers with visual, motor, and cognitive decline. A total of 203 drivers, 120 healthy older (61 men and 59 women, ages 65 years and older) and 83 middle-aged drivers (38 men and 45 women, ages 40 to 64 years), participated in an on-road test in an instrumented vehicle. Outcome measures included performance in roadside target identification (traffic signs and restaurants) and concurrent driver safety. Differences in visual, motor, and cognitive functioning served as predictors. Older drivers identified fewer landmarks and drove slower but committed more safety errors than did middle-aged drivers. Greater familiarity with local roads benefited performance of middle-aged but not older drivers.Visual cognition predicted both traffic sign identification and safety errors, and executive function predicted traffic sign identification over and above vision. Older adults are susceptible to driving safety errors while distracted by common secondary visual search tasks that are inherent to driving. The findings underscore that age-related cognitive decline affects older drivers' management of driving tasks at multiple levels and can help inform the design of on-road tests and interventions for older drivers.
Multiple-object tracking while driving: the multiple-vehicle tracking task.
Lochner, Martin J; Trick, Lana M
2014-11-01
Many contend that driving an automobile involves multiple-object tracking. At this point, no one has tested this idea, and it is unclear how multiple-object tracking would coordinate with the other activities involved in driving. To address some of the initial and most basic questions about multiple-object tracking while driving, we modified the tracking task for use in a driving simulator, creating the multiple-vehicle tracking task. In Experiment 1, we employed a dual-task methodology to determine whether there was interference between tracking and driving. Findings suggest that although it is possible to track multiple vehicles while driving, driving reduces tracking performance, and tracking compromises headway and lane position maintenance while driving. Modified change-detection paradigms were used to assess whether there were change localization advantages for tracked targets in multiple-vehicle tracking. When changes occurred during a blanking interval, drivers were more accurate (Experiment 2a) and ~250 ms faster (Experiment 2b) at locating the vehicle that changed when it was a target rather than a distractor in tracking. In a more realistic driving task where drivers had to brake in response to the sudden onset of brake lights in one of the lead vehicles, drivers were more accurate at localizing the vehicle that braked if it was a tracking target, although there was no advantage in terms of braking response time. Overall, results suggest that multiple-object tracking is possible while driving and perhaps even advantageous in some situations, but further research is required to determine whether multiple-object tracking is actually used in day-to-day driving.
Acceleration of planar foils by the indirect-direct drive scheme
NASA Astrophysics Data System (ADS)
Honrubia, J. J.; Martínez-Val, J. M.; Bocher, J. L.; Faucheux, G.
1996-05-01
We have investigated the hydrodynamic response of plastic and aluminum foils accelerated by a pulse formed by an x-ray prepulse followed by the main laser pulse. This illumination scheme, so-called indirect-direct drive scheme, has been proposed as an alternative to the direct and indirect drive. The advantages of such a scheme are that it can contribute to solve the problem of uniformity of the direct drive and, at the same time, it can be much more efficient and use simpler targets than the indirect-drive. Experiments about this hybrid drive scheme have been performed at Limeil with the PHEBUS facility and the standard experimental set-up and diagnostics. The agreement between experiments and simulations is good for quantities such as the energy of the laser converted into x-rays and the burnthrough time of the converter foil. To simulate the full hydrodynamic evolution of the converter and target foils separated a distance of 1 mm, 2-D effects should be taken into account. The basic goals have been to check the simulation codes developed by the Institute of Nuclear Fusion and to determine the hydrodynamic response of the target foil to the hybrid pulse. These goals have been fulfilled.
NASA Astrophysics Data System (ADS)
Regan, S. P.; Goncharov, V. N.; Igumenshchev, I. V.; Sangster, T. C.; Betti, R.; Bose, A.; Boehly, T. R.; Bonino, M. J.; Campbell, E. M.; Cao, D.; Collins, T. J. B.; Craxton, R. S.; Davis, A. K.; Delettrez, J. A.; Edgell, D. H.; Epstein, R.; Forrest, C. J.; Frenje, J. A.; Froula, D. H.; Gatu Johnson, M.; Glebov, V. Yu.; Harding, D. R.; Hohenberger, M.; Hu, S. X.; Jacobs-Perkins, D.; Janezic, R.; Karasik, M.; Keck, R. L.; Kelly, J. H.; Kessler, T. J.; Knauer, J. P.; Kosc, T. Z.; Loucks, S. J.; Marozas, J. A.; Marshall, F. J.; McCrory, R. L.; McKenty, P. W.; Meyerhofer, D. D.; Michel, D. T.; Myatt, J. F.; Obenschain, S. P.; Petrasso, R. D.; Radha, P. B.; Rice, B.; Rosenberg, M. J.; Schmitt, A. J.; Schmitt, M. J.; Seka, W.; Shmayda, W. T.; Shoup, M. J.; Shvydky, A.; Skupsky, S.; Solodov, A. A.; Stoeckl, C.; Theobald, W.; Ulreich, J.; Wittman, M. D.; Woo, K. M.; Yaakobi, B.; Zuegel, J. D.
2016-07-01
A record fuel hot-spot pressure Phs=56 ±7 Gbar was inferred from x-ray and nuclear diagnostics for direct-drive inertial confinement fusion cryogenic, layered deuterium-tritium implosions on the 60-beam, 30-kJ, 351-nm OMEGA Laser System. When hydrodynamically scaled to the energy of the National Ignition Facility, these implosions achieved a Lawson parameter ˜60 % of the value required for ignition [A. Bose et al., Phys. Rev. E 93, LM15119ER (2016)], similar to indirect-drive implosions [R. Betti et al., Phys. Rev. Lett. 114, 255003 (2015)], and nearly half of the direct-drive ignition-threshold pressure. Relative to symmetric, one-dimensional simulations, the inferred hot-spot pressure is approximately 40% lower. Three-dimensional simulations suggest that low-mode distortion of the hot spot seeded by laser-drive nonuniformity and target-positioning error reduces target performance.
Regan, S. P.; Goncharov, V. N.; Igumenshchev, I. V.; ...
2016-07-07
A record fuel hot-spot pressure P hs = 56±7 Gbar was inferred from x-ray and nuclear diagnostics for direct-drive inertial confinement fusion cryogenic, layered deuterium–tritium implosions on the 60-beam, 30-kJ, 351-nm OMEGA Laser System. When hydrodynamically scaled to the energy of the National Ignition Facility (NIF), these implosions achieved a Lawson parameter ~60% of the value required for ignition [A. Bose et al., Phys. Rev. E (in press)], similar to indirect-drive implosions [R. Betti et al., Phys. Rev. Lett. 114, 255003 (2015)], and nearly half of the direct-drive ignition-threshold pressure. Relative to symmetric, one-dimensional simulations, the inferred hot-spot pressure ismore » ~40% lower. Furthermore, three-dimensional simulations suggest that low-mode distortion of the hot spot seeded by laser-drive nonuniformity and target-positioning error reduces target performance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Regan, S. P.; Goncharov, V. N.; Igumenshchev, I. V.
A record fuel hot-spot pressure P hs = 56±7 Gbar was inferred from x-ray and nuclear diagnostics for direct-drive inertial confinement fusion cryogenic, layered deuterium–tritium implosions on the 60-beam, 30-kJ, 351-nm OMEGA Laser System. When hydrodynamically scaled to the energy of the National Ignition Facility (NIF), these implosions achieved a Lawson parameter ~60% of the value required for ignition [A. Bose et al., Phys. Rev. E (in press)], similar to indirect-drive implosions [R. Betti et al., Phys. Rev. Lett. 114, 255003 (2015)], and nearly half of the direct-drive ignition-threshold pressure. Relative to symmetric, one-dimensional simulations, the inferred hot-spot pressure ismore » ~40% lower. Furthermore, three-dimensional simulations suggest that low-mode distortion of the hot spot seeded by laser-drive nonuniformity and target-positioning error reduces target performance.« less
Zahabi, Maryam; Machado, Patricia; Pankok, Carl; Lau, Mei Ying; Liao, Yi-Fan; Hummer, Joseph; Rasdorf, William; Kaber, David B
2017-09-01
White-on-blue logo signs are used to inform drivers of food, gas, lodging, and attraction businesses at highway interchanges. In this study, 60 drivers were asked to look for food and attraction targets on logo signs while driving in a realistic freeway simulation. The objective of the study was to quantify effects of the number of sign panels (six vs. nine), logo familiarity (familiar vs. unfamiliar), logo format (text vs. pictorial), and driver age (young, middle, and elderly) on performance, attention allocation and target identification accuracy. Results revealed elderly drivers to exhibit worse performance in comparison to middle-age and young groups even though they adopted a more conservative driving strategy. There was no significant effect of the number of panels, logo familiarity, and logo format on driver performance or attention allocation. In target identification, drivers were more accurate with familiar or text-based panels appearing in six-panel signs. Copyright © 2017 Elsevier Ltd. All rights reserved.
ALCOHOL AND DISTRACTION INTERACT TO IMPAIR DRIVING PERFORMANCE
Harrison, Emily L. R.; Fillmore, Mark T.
2011-01-01
Background Recognition of the risks associated with alcohol intoxication and driver distraction has led to a wealth of simulated driving research aimed at studying the adverse effects of each of these factors. Research on driving has moved beyond the individual, separate examination of these factors to the examination of potential interactions between alcohol intoxication and driver distraction. In many driving situations, distractions are commonplace and might have little or no disruptive influence on primary driving functions. Yet, such distractions might become disruptive to a driver who is intoxicated. Methods The present study examined the interactive impairing effects of alcohol intoxication and driver distraction on simulated driving performance in 40 young adult drivers using a divided attention task as a distracter activity. The interactive influence of alcohol and distraction was tested by having drivers perform the driving task under four different conditions: 0.65 g/kg alcohol; 0.65 g/kg alcohol + divided attention; placebo; and placebo + divided attention. Results As hypothesized, divided attention had no impairing effect on driving performance in sober drivers. However, under alcohol, divided attention exacerbated the impairing effects of alcohol on driving precision. Conclusions Alcohol and distraction continue to be appropriate targets for research into ways to reduce the rates of driving-related fatalities and injuries. Greater consideration of how alcohol and distraction interact to impair aspects of driving performance can further efforts to create prevention and intervention measures to protect drivers, particularly young adults. PMID:21277119
Alcohol and distraction interact to impair driving performance.
Harrison, Emily L R; Fillmore, Mark T
2011-08-01
Recognition of the risks associated with alcohol intoxication and driver distraction has led to a wealth of simulated driving research aimed at studying the adverse effects of each of these factors. Research on driving has moved beyond the individual, separate examination of these factors to the examination of potential interactions between alcohol intoxication and driver distraction. In many driving situations, distractions are commonplace and might have little or no disruptive influence on primary driving functions. Yet, such distractions might become disruptive to a driver who is intoxicated. The present study examined the interactive impairing effects of alcohol intoxication and driver distraction on simulated driving performance in 40 young adult drivers using a divided attention task as a distracter activity. The interactive influence of alcohol and distraction was tested by having drivers perform the driving task under four different conditions: 0.65 g/kg alcohol; 0.65 g/kg alcohol+divided attention; placebo; and placebo+divided attention. As hypothesized, divided attention had no impairing effect on driving performance in sober drivers. However, under alcohol, divided attention exacerbated the impairing effects of alcohol on driving precision. Alcohol and distraction continue to be appropriate targets for research into ways to reduce the rates of driving-related fatalities and injuries. Greater consideration of how alcohol and distraction interact to impair aspects of driving performance can further efforts to create prevention and intervention measures to protect drivers, particularly young adults. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Development and Validation of a Slurry Model for Chemical Hydrogen Storage in Fuel Cell Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brooks, Kriston P.; Pires, Richard P.; Simmons, Kevin L.
2014-07-25
The US Department of Energy's (DOE) Hydrogen Storage Engineering Center of Excellence (HSECoE) is developing models for hydrogen storage systems for fuel cell-based light duty vehicle applications for a variety of promising materials. These transient models simulate the performance of the storage system for comparison to the DOE’s Technical Targets and a set of four drive cycles. The purpose of this research is to describe the models developed for slurry-based chemical hydrogen storage materials. The storage systems of both a representative exothermic system based on ammonia borane and endothermic system based on alane were developed and modeled in Simulink®. Oncemore » complete the reactor and radiator components of the model were validated with experimental data. The model was then run using a highway cycle, an aggressive cycle, cold-start cycle and hot drive cycle. The system design was adjusted to meet these drive cycles. A sensitivity analysis was then performed to identify the range of material properties where these DOE targets and drive cycles could be met. Materials with a heat of reaction greater than 11 kJ/mol H2 generated and a slurry hydrogen capacity of greater than 11.4% will meet the on-board efficiency and gravimetric capacity targets, respectively.« less
Naturalistic distraction and driving safety in older drivers
Aksan, Nazan; Dawson, Jeffrey D.; Emerson, Jamie L.; Yu, Lixi; Uc, Ergun Y.; Anderson, Steven W.; Rizzo, Matthew
2013-01-01
Objective This study aimed to quantify and compare performance of middle-aged and older drivers during a naturalistic distraction paradigm (visual search for roadside targets) and predict older driver performance given functioning in visual, motor, and cognitive domains. Background Distracted driving can imperil healthy adults and may disproportionally affect the safety of older drivers with visual, motor, and cognitive decline. Methods Two hundred and three drivers, 120 healthy older (61 men and 59 women, ages 65 years or greater) and 83 middle-aged drivers (38 men and 45 women, ages 40–64 years), participated in an on-road test in an instrumented vehicle. Outcome measures included performance in roadside target identification (traffic signs and restaurants) and concurrent driver safety. Differences in visual, motor, and cognitive functioning served as predictors. Results Older drivers identified fewer landmarks and drove slower but committed more safety errors than middle-aged drivers. Greater familiarity with local roads benefited performance of middle-aged but not older drivers. Visual cognition predicted both traffic sign identification and safety errors while executive function predicted traffic sign identification over and above vision. Conclusion Older adults are susceptible to driving safety errors while distracted by common secondary visual search tasks that are inherent to driving. The findings underscore that age-related cognitive decline affects older driver management of driving tasks at multiple levels, and can help inform the design of on-road tests and interventions for older drivers. PMID:23964422
LLE Review Quarterly Report January - March 2012. Volume 130
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shvydky, Alex
2012-03-01
This volume of the LLE Review, covering January–March 2012, features “OMEGA Polar-Drive Target Designs,” by P. B. Radha, J. A. Marozas, F. J. Marshall, A. Shvydky, T. J. B. Collins, V. N. Goncharov, R. L. McCrory, P. W. McKenty, D. D. Meyerhofer, T. C. Sangster, and S. Skupsky. This article (p. 57) describes low-adiabat, cryogenic-deuterium–tritium, and warm-plastic-shell polar-drive (PD)–implosion designs for the OMEGA laser. The designs are at two different on-target laser intensities, each at a different in-flight aspect ratio (IFAR). The first design permits one to study implosion energetics and target performance closer to ignition-relevant intensities (7 X 10more » 14 W/cm 2 at the quarter-critical surface), where nonlocal heat conduction and laser–plasma interactions can play an important role, but at lower values of IFAR (~22). The second design permits one to study implosion energetics and target performance at a lower intensity (3 X 10 14 W/cm 2) but at higher IFAR (~32), where the shell instability can play an important role. The higher IFAR designs are accessible on the existing OMEGA Laser System only at lower intensities. Implosions at ignition-relevant intensities can be obtained only by reducing target radius, although only at smaller values of IFAR. Polar-drive geometry requires repointing the laser beams to improve shell symmetry. The higher-intensity designs optimize target performance by repointing beams to a lesser extent and compensate for the reduced equatorial drive by increasing beam energies for the repointed beams and using custom beam profiles that improve equatorial illumination at the expense of irradiation at higher latitudes. These designs will be studied when new phase plates for the OMEGA Laser System, corresponding to the smaller target radii and custom beam profiles, are obtained. Implosion results from the combined set of high-intensity and high-IFAR implosions should yield valuable data to validate models of laser-energy deposition, heat conduction, nonuniformity growth, and fuel assembly in PD geometry.« less
Harding, D. R.; Ulreich, J.; Wittman, M. D.; ...
2017-12-06
Improving the performance of direct-drive cryogenic targets at the Omega Laser Facility requires the development of a new cryogenic system to (i) field non permeable targets with a fill tube, and (ii) provide a clean environment around the target. This capability is to demonstrate that imploding a scaled-down version of the direct-drive–ignition target for the National Ignition Facility (NIF) on the OMEGA laser will generate the hot-spot pressure that is needed for ignition; this will justify future cryogenic direct-drive experiments on the NIF. The paper describes the target, the cryogenic equipment that is being constructed to achieve this goal, andmore » the proposed target delivery process. Thermal calculations, fill-tube–based target designs, and structural/vibrational analyses are provided to demonstrate the credibility of the design. This new design will include capabilities not available (or possible) with the existing OMEGA cryogenic system, with the emphasis being to preserve a pristinely clean environment around the target, and to provide upgraded diagnostics to characterize both the ice layer and the target’s surface. The conceptual design is complete and testing of prototypes and subcomponents is underway. The rationale and capabilities of the new design are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harding, D. R.; Ulreich, J.; Wittman, M. D.
Improving the performance of direct-drive cryogenic targets at the Omega Laser Facility requires the development of a new cryogenic system to (i) field non permeable targets with a fill tube, and (ii) provide a clean environment around the target. This capability is to demonstrate that imploding a scaled-down version of the direct-drive–ignition target for the National Ignition Facility (NIF) on the OMEGA laser will generate the hot-spot pressure that is needed for ignition; this will justify future cryogenic direct-drive experiments on the NIF. The paper describes the target, the cryogenic equipment that is being constructed to achieve this goal, andmore » the proposed target delivery process. Thermal calculations, fill-tube–based target designs, and structural/vibrational analyses are provided to demonstrate the credibility of the design. This new design will include capabilities not available (or possible) with the existing OMEGA cryogenic system, with the emphasis being to preserve a pristinely clean environment around the target, and to provide upgraded diagnostics to characterize both the ice layer and the target’s surface. The conceptual design is complete and testing of prototypes and subcomponents is underway. The rationale and capabilities of the new design are discussed.« less
The physics basis for ignition using indirect-drive targets on the National Ignition Facility
NASA Astrophysics Data System (ADS)
Lindl, John D.; Amendt, Peter; Berger, Richard L.; Glendinning, S. Gail; Glenzer, Siegfried H.; Haan, Steven W.; Kauffman, Robert L.; Landen, Otto L.; Suter, Laurence J.
2004-02-01
The 1990 National Academy of Science final report of its review of the Inertial Confinement Fusion Program recommended completion of a series of target physics objectives on the 10-beam Nova laser at the Lawrence Livermore National Laboratory as the highest-priority prerequisite for proceeding with construction of an ignition-scale laser facility, now called the National Ignition Facility (NIF). These objectives were chosen to demonstrate that there was sufficient understanding of the physics of ignition targets that the laser requirements for laboratory ignition could be accurately specified. This research on Nova, as well as additional research on the Omega laser at the University of Rochester, is the subject of this review. The objectives of the U.S. indirect-drive target physics program have been to experimentally demonstrate and predictively model hohlraum characteristics, as well as capsule performance in targets that have been scaled in key physics variables from NIF targets. To address the hohlraum and hydrodynamic constraints on indirect-drive ignition, the target physics program was divided into the Hohlraum and Laser-Plasma Physics (HLP) program and the Hydrodynamically Equivalent Physics (HEP) program. The HLP program addresses laser-plasma coupling, x-ray generation and transport, and the development of energy-efficient hohlraums that provide the appropriate spectral, temporal, and spatial x-ray drive. The HEP experiments address the issues of hydrodynamic instability and mix, as well as the effects of flux asymmetry on capsules that are scaled as closely as possible to ignition capsules (hydrodynamic equivalence). The HEP program also addresses other capsule physics issues associated with ignition, such as energy gain and energy loss to the fuel during implosion in the absence of alpha-particle deposition. The results from the Nova and Omega experiments approach the NIF requirements for most of the important ignition capsule parameters, including drive temperature, drive symmetry, and hydrodynamic instability. This paper starts with a review of the NIF target designs that have formed the motivation for the goals of the target physics program. Following that are theoretical and experimental results from Nova and Omega relevant to the requirements of those targets. Some elements of this work were covered in a 1995 review of indirect-drive [J. D. Lindl, ``Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain,'' Phys. Plasmas 2, 3933 (1995)]. In order to present as complete a picture as possible of the research that has been carried out on indirect drive, key elements of that earlier review are also covered here, along with a review of work carried out since 1995.
NASA Astrophysics Data System (ADS)
Li, Qi; Hu, Zhimin; Yao, Li; Huang, Chengwu; Yuan, Zheng; Zhao, Yang; Xiong, Gang; Qing, Bo; Lv, Min; Zhu, Tuo; Deng, Bo; Li, Jin; Wei, Minxi; Zhan, Xiayu; Li, Jun; Yang, Yimeng; Su, Chunxiao; Yang, Guohong; Zhang, Jiyan; Li, Sanwei; Yang, Jiamin; Ding, Yongkun
2017-01-01
Fluorescence imaging of surrogate Si-doped CH targets has been used to provide a measurement for drive condition of high-energy x-ray (i.e. M-band x-ray) drive symmetry upon the capsule in hohlraum on Shenguang-II laser facility. A series of experiments dedicated to the study of photo-pumping and fluorescence effect in Si-plasma are presented. To investigate the feasibility of fluorescence imaging in Si-plasma, an silicon plasma in Si-foil target is pre-formed at ground state by the soft x-ray from a half-hohlraum, which is then photo-pumped by the K-shell lines from a spatially distinct laser-produced Si-plasma. The resonant Si photon pump is used to improve the fluorescence signal and cause visible image in the Si-foil. Preliminary fluorescence imaging of Si-ball target is performed in both Si-doped and pure Au hohlraum. The usual capsule at the center of the hohlraum is replaced with a solid Si-doped CH-ball (Si-ball). Since the fluorescence is proportional to the photon pump upon the Si-plasma, high-energy x-ray drive symmetry is equal to the fluorescence distribution of the Si-ball.
National direct-drive program on OMEGA and the National Ignition Facility
NASA Astrophysics Data System (ADS)
Goncharov, V. N.; Regan, S. P.; Campbell, E. M.; Sangster, T. C.; Radha, P. B.; Myatt, J. F.; Froula, D. H.; Betti, R.; Boehly, T. R.; Delettrez, J. A.; Edgell, D. H.; Epstein, R.; Forrest, C. J.; Glebov, V. Yu; Harding, D. R.; Hu, S. X.; Igumenshchev, I. V.; Marshall, F. J.; McCrory, R. L.; Michel, D. T.; Seka, W.; Shvydky, A.; Stoeckl, C.; Theobald, W.; Gatu-Johnson, M.
2017-01-01
A major advantage of the laser direct-drive (DD) approach to ignition is the increased fraction of laser drive energy coupled to the hot spot and relaxed hot-spot requirements for the peak pressure and convergence ratios relative to the indirect-drive approach at equivalent laser energy. With the goal of a successful ignition demonstration using DD, the recently established national strategy has several elements and involves multiple national and international institutions. These elements include the experimental demonstration on OMEGA cryogenic implosions of hot-spot conditions relevant for ignition at MJ-scale energies available at the National Ignition Facility (NIF) and developing an understanding of laser-plasma interactions and laser coupling using DD experiments on the NIF. DD designs require reaching central stagnation pressures in excess of 100 Gbar. The current experiments on OMEGA have achieved inferred peak pressures of 56 Gbar (Regan et al 2016 Phys. Rev. Lett. 117 025001). Extensive analysis of the cryogenic target experiments and two- and three-dimensional simulations suggest that power balance, target offset, and target quality are the main limiting factors in target performance. In addition, cross-beam energy transfer (CBET) has been identified as the main mechanism reducing laser coupling. Reaching the goal of demonstrating hydrodynamic equivalence on OMEGA includes improving laser power balance, target position, and target quality at shot time. CBET must also be significantly reduced and several strategies have been identified to address this issue.
The Hohlraum Drive Campaign on the National Ignition Facility
NASA Astrophysics Data System (ADS)
Moody, John D.
2013-10-01
The Hohlraum drive effort on the National Ignition Facility (NIF) laser has three primary goals: 1) improve hohlraum performance by improving laser beam propagation, reducing backscatter from laser plasma interactions (LPI), controlling x-ray and electron preheat, and modifying the x-ray drive spectrum; 2) improve understanding of crossbeam energy transfer physics to better evaluate this as a symmetry tuning method; and 3) improve modeling in order to find optimum designs. Our experimental strategy for improving performance explores the impact of significant changes to the hohlraum shape, wall material, gasfill composition, and gasfill density on integrated implosion experiments. We are investigating the performance of a rugby-shaped design that has a significantly larger diameter (7 mm) at the waist than our standard 5.75 mm diameter cylindrical-shaped hohlraum but maintains approximately the same wall area. We are also exploring changes to the gasfill composition in cylindrical hohlraums by using neopentane at room temperature to compare with our standard helium gasfill. In addition, we are also investigating higher He gasfill density (1.6 mg/cc vs nominal 0.96 mg/cc) and increased x-ray drive very early in the pulse. Besides these integrated experiments, our strategy includes experiments testing separate aspects of the hohlraum physics. These include time-resolved and time-integrated measurements of cross-beam transfer rates and laser-beam spatial power distribution at early and late times using modified targets. Non-local thermal equilibrium modeling and heat transport relevant to ignition experiments are being studied using sphere targets on the Omega laser system. These simpler targets provide benchmarks for improving our modeling tools. This talk will summarize the results of the Hohlraum Drive campaign and discuss future directions. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA2-344.
Improving cryogenic deuterium–tritium implosion performance on OMEGA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sangster, T. C.; Goncharov, V. N.; Betti, R.
2013-05-15
A flexible direct-drive target platform is used to implode cryogenic deuterium–tritium (DT) capsules on the OMEGA laser [Boehly et al., Opt. Commun. 133, 495 (1997)]. The goal of these experiments is to demonstrate ignition hydrodynamically equivalent performance where the laser drive intensity, the implosion velocity, the fuel adiabat, and the in-flight aspect ratio (IFAR) are the same as those for a 1.5-MJ target [Goncharov et al., Phys. Rev. Lett. 104, 165001 (2010)] designed to ignite on the National Ignition Facility [Hogan et al., Nucl. Fusion 41, 567 (2001)]. The results from a series of 29 cryogenic DT implosions are presented.more » The implosions were designed to span a broad region of design space to study target performance as a function of shell stability (adiabat) and implosion velocity. Ablation-front perturbation growth appears to limit target performance at high implosion velocities. Target outer-surface defects associated with contaminant gases in the DT fuel are identified as the dominant perturbation source at the ablation surface; performance degradation is confirmed by 2D hydrodynamic simulations that include these defects. A trend in the value of the Lawson criterion [Betti et al., Phys. Plasmas 17, 058102 (2010)] for each of the implosions in adiabat–IFAR space suggests the existence of a stability boundary that leads to ablator mixing into the hot spot for the most ignition-equivalent designs.« less
Improving cryogenic deuterium tritium implosion performance on OMEGA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sangster, T. C.; Goncharov, V. N.; Betti, R.
2013-01-01
A flexible direct-drive target platform is used to implode cryogenic deuterium–tritium (DT) capsules on the OMEGA laser [Boehly et al., Opt. Commun. 133, 495 (1997)]. The goal of these experiments is to demonstrate ignition hydrodynamically equivalent performance where the laser drive intensity, the implosion velocity, the fuel adiabat, and the in-flight aspect ratio (IFAR) are the same as those for a 1.5-MJ target [Goncharov et al., Phys. Rev. Lett. 104, 165001 (2010)] designed to ignite on the National Ignition Facility [Hogan et al., Nucl. Fusion 41, 567 (2001)]. The results from a series of 29 cryogenic DT implosions are presented.more » The implosions were designed to span a broad region of design space to study target performance as a function of shell stability (adiabat) and implosion velocity. Ablation-front perturbation growth appears to limit target performance at high implosion velocities. Target outer-surface defects associated with contaminant gases in the DT fuel are identified as the dominant perturbation source at the ablation surface; performance degradation is confirmed by 2D hydrodynamic simulations that include these defects. A trend in the value of the Lawson criterion [Betti et al., Phys. Plasmas 17, 058102 (2010)] for each of the implosions in adiabat–IFAR space suggests the existence of a stability boundary that leads to ablator mixing into the hot spot for the most ignition-equivalent designs.« less
The US ICF Ignition Program and the Inertial Fusion Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindl, J D; Hammel, B A; Logan, B G
2003-07-02
There has been rapid progress in inertial fusion in the past few years. This progress spans the construction of ignition facilities, a wide range of target concepts, and the pursuit of integrated programs to develop fusion energy using lasers, ion beams and z-pinches. Two ignition facilities are under construction (NIF in the U.S. and LMJ in France) and both projects are progressing toward an initial experimental capability. The LIL prototype beamline for LMJ and the first 4 beams of NIF will be available for experiments in 2003. The full 192 beam capability of NIF will be available in 2009 andmore » ignition experiments are expected to begin shortly after that time. There is steady progress in the target science and target fabrication in preparation for indirect drive ignition experiments on NIF. Advanced target designs may lead to 5-10 times more yield than initial target designs. There has also been excellent progress on the science of ion beam and z-pinch driven indirect drive targets. Excellent progress on direct-drive targets has been obtained on the Omega laser at the University of Rochester. This includes improved performance of targets with a pulse shape predicted to result in reduced hydrodynamic instability. Rochester has also obtained encouraging results from initial cryogenic implosions. There is widespread interest in the science of fast ignition because of its potential for achieving higher target gain with lower driver energy and relaxed target fabrication requirements. Researchers from Osaka have achieved outstanding implosion and heating results from the Gekko XII Petawatt facility and implosions suitable for fast ignition have been tested on the Omega laser. A broad based program to develop lasers and ions beams for IFE is under way with excellent progress in drivers, chambers, target fabrication and target injection. KrF and Diode Pumped Solid-State lasers (DPSSL) are being developed in conjunction with drywall chambers and direct drive targets. Induction accelerators for heavy ions are being developed in conjunction with thick-liquid protected wall chambers and indirect-drive targets.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torcellini, Paul A; Scheib, Jennifer G; Pless, Shanti
New construction could account for more than 25% of the U.S. energy consumption by 2030. Millions of square feet are built every year that will not perform as expected - despite advancing codes, rating systems, super-efficient technologies, and advanced utility programs. With retrofits of these under-performers decades away, savings potential will be lost for years to come. Only the building owner is in the driver's seat to demand - and verify - higher-performing buildings. Yet our current policy and market interventions really target the design team, not the owner. Accelerate Performance, a U.S. Department of Energy funded initiative, is changingmore » the building procurement approach to drive deeper, verified savings in three pilot states: Illinois, Minnesota, and Connecticut. Performance-based procurement ties energy performance to design and contractor team compensation while freeing them to meet energy targets with strategies most familiar to them. The process teases out the creativity of the design and contracting teams to deliver energy performance - without driving up the construction cost. The paper will share early results and lessons learned from new procurement and contract approaches in government, public, and private sector building projects. The paper provides practical guidance for building owners, facilities managers, design, and contractor teams who wish to incorporate effective performance-based procurement for deeper energy savings in their buildings.« less
Park, George D; Reed, Catherine L
2015-02-01
Researchers acknowledge the interplay between action and attention, but typically consider action as a response to successful attentional selection or the correlation of performance on separate action and attention tasks. We investigated how concurrent action with spatial monitoring affects the distribution of attention across the visual field. We embedded a functional field of view (FFOV) paradigm with concurrent central object recognition and peripheral target localization tasks in a simulated driving environment. Peripheral targets varied across 20-60 deg eccentricity at 11 radial spokes. Three conditions assessed the effects of visual complexity and concurrent action on the size and shape of the FFOV: (1) with no background, (2) with driving background, and (3) with driving background and vehicle steering. The addition of visual complexity slowed task performance and reduced the FFOV size but did not change the baseline shape. In contrast, the addition of steering produced not only shrinkage of the FFOV, but also changes in the FFOV shape. Nonuniform performance decrements occurred in proximal regions used for the central task and for steering, independent of interference from context elements. Multifocal attention models should consider the role of action and account for nonhomogeneities in the distribution of attention. © 2015 SAGE Publications.
Regan, S P; Goncharov, V N; Igumenshchev, I V; Sangster, T C; Betti, R; Bose, A; Boehly, T R; Bonino, M J; Campbell, E M; Cao, D; Collins, T J B; Craxton, R S; Davis, A K; Delettrez, J A; Edgell, D H; Epstein, R; Forrest, C J; Frenje, J A; Froula, D H; Gatu Johnson, M; Glebov, V Yu; Harding, D R; Hohenberger, M; Hu, S X; Jacobs-Perkins, D; Janezic, R; Karasik, M; Keck, R L; Kelly, J H; Kessler, T J; Knauer, J P; Kosc, T Z; Loucks, S J; Marozas, J A; Marshall, F J; McCrory, R L; McKenty, P W; Meyerhofer, D D; Michel, D T; Myatt, J F; Obenschain, S P; Petrasso, R D; Radha, P B; Rice, B; Rosenberg, M J; Schmitt, A J; Schmitt, M J; Seka, W; Shmayda, W T; Shoup, M J; Shvydky, A; Skupsky, S; Solodov, A A; Stoeckl, C; Theobald, W; Ulreich, J; Wittman, M D; Woo, K M; Yaakobi, B; Zuegel, J D
2016-07-08
A record fuel hot-spot pressure P_{hs}=56±7 Gbar was inferred from x-ray and nuclear diagnostics for direct-drive inertial confinement fusion cryogenic, layered deuterium-tritium implosions on the 60-beam, 30-kJ, 351-nm OMEGA Laser System. When hydrodynamically scaled to the energy of the National Ignition Facility, these implosions achieved a Lawson parameter ∼60% of the value required for ignition [A. Bose et al., Phys. Rev. E 93, 011201(R) (2016)], similar to indirect-drive implosions [R. Betti et al., Phys. Rev. Lett. 114, 255003 (2015)], and nearly half of the direct-drive ignition-threshold pressure. Relative to symmetric, one-dimensional simulations, the inferred hot-spot pressure is approximately 40% lower. Three-dimensional simulations suggest that low-mode distortion of the hot spot seeded by laser-drive nonuniformity and target-positioning error reduces target performance.
Evaluation of Wavelength Detuning to Mitigate Cross-Beam Energy Transfer Using the Nike Laser
NASA Astrophysics Data System (ADS)
McKenty, P. W.; Marozas, J. A.; Weaver, J.; Obenschain, S. P.; Schmitt, A. J.
2015-11-01
Cross-beam energy transfer (CBET) has become a serious threat to the overall success of direct-drive experiments, and especially for polar-direct-drive (PDD) ignition experiments. CBET redirects incident laser light before it can be absorbed into the target, thereby degrading overall target performance. CBET is particularly detrimental over the equator of the target, which is hydrodynamically very sensitive to such losses in the PDD configuration. A promising solution uses laser wavelength detuning between beams to shift the resonance, thereby reducing the interaction cross section between them. Testing this process for direct drive is now underway at the Nike laser at the Naval Research Laboratory. Calculations evaluating the effect CBET has on the scattered-light signals indicate such an experiment will demonstrate the benefits of wavelength detuning for direct-drive implosions. Two-dimensional simulation results will be presented, predicting the effect for both spherical and cylindrical experiments. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Glaucoma and quality of life: fall and driving risk.
Montana, Cynthia L; Bhorade, Anjali M
2018-03-01
Numerous population-based studies suggest that glaucoma is an independent risk factor for falling and motor vehicle collisions, particularly for older adults. These adverse events lead to increased healthcare expenditures and decreased quality of life. Current research priorities, therefore, include identifying factors that predispose glaucoma patients to falling and unsafe driving, and developing screening strategies and targeted rehabilitation. The purpose of this article is to review recent studies that address these priorities. Studies continue to support that glaucoma patients, particularly those with advanced disease, have an increased risk of falling or unsafe driving. Risk factors, however, remain variable and include severity and location of visual field defects, contrast sensitivity, and performance on divided attention tasks. Such variability is likely because of the multifactorial nature of ambulating and driving and compensatory strategies used by patients. Falls and unsafe driving remain a serious public health issue for older adults with glaucoma. Ambulation and driving are complex tasks and there is no consensus yet, regarding the best methods for risk stratification and targeted interventions to increase safety. Therefore, comprehensive and individualized assessments are recommended to most effectively evaluate a patient's risk for falling or unsafe driving.
The Effects of Target Orientation on the Dynamic Contrast Sensitivity Function
1994-01-01
tests: A comparative evaluation. Journal of Amlied ychology, 50, 460-466. Burg, A. (1971). Vision and driving: A report on research. Human Factors...evaluation. Journal of Applied Ps ogy, 50, 460-466. Burg, A. (1971). Vision and driving: A report on research. Human Factors, 13, 79-87. Campbell, F. W...FUNDING NUMBERS 6. AUTHOR(S)G~ioD A- 0ecoKT, ) 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER AFIT Student
Simulated Driving Assessment (SDA) for Teen Drivers: Results from a Validation Study
McDonald, Catherine C.; Kandadai, Venk; Loeb, Helen; Seacrist, Thomas S.; Lee, Yi-Ching; Winston, Zachary; Winston, Flaura K.
2015-01-01
Background Driver error and inadequate skill are common critical reasons for novice teen driver crashes, yet few validated, standardized assessments of teen driving skills exist. The purpose of this study was to evaluate the construct and criterion validity of a newly developed Simulated Driving Assessment (SDA) for novice teen drivers. Methods The SDA's 35-minute simulated drive incorporates 22 variations of the most common teen driver crash configurations. Driving performance was compared for 21 inexperienced teens (age 16–17 years, provisional license ≤90 days) and 17 experienced adults (age 25–50 years, license ≥5 years, drove ≥100 miles per week, no collisions or moving violations ≤3 years). SDA driving performance (Error Score) was based on driving safety measures derived from simulator and eye-tracking data. Negative driving outcomes included simulated collisions or run-off-the-road incidents. A professional driving evaluator/instructor reviewed videos of SDA performance (DEI Score). Results The SDA demonstrated construct validity: 1.) Teens had a higher Error Score than adults (30 vs. 13, p=0.02); 2.) For each additional error committed, the relative risk of a participant's propensity for a simulated negative driving outcome increased by 8% (95% CI: 1.05–1.10, p<0.01). The SDA demonstrated criterion validity: Error Score was correlated with DEI Score (r=−0.66, p<0.001). Conclusions This study supports the concept of validated simulated driving tests like the SDA to assess novice driver skill in complex and hazardous driving scenarios. The SDA, as a standard protocol to evaluate teen driver performance, has the potential to facilitate screening and assessment of teen driving readiness and could be used to guide targeted skill training. PMID:25740939
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnard, J. J.; Hay, M. J.; Logan, B. G.
The simulations provided in this milestone have solidified the theoretical underpinning of direct drive targets and also the ability to design experiments on NDCX II that will enhance our understanding of ion-beam hydrodynamic coupling, and thus be relevant to IFE. For the case of the IFE targets, we have studied hydro and implosion efficiency using HYDRA in ID, a starting point towards the goal of polar direct drive in geometry compatible with liquid wall chambers. Recent analysis of direct drive fusion energy targets using heavy ion beams has found high coupling efficiency of ion beam energy into implosion energy. However,more » to obtain optimal coupling, the ion energy must increase during the pulse in order to penetrate the outflowing ablated material, and deposit the energy close enough to the fuel so that the fuel achieves sufficient implosion velocity. We have computationally explored ID (radial) time dependent models of ion driven direct drive capsule implosions using the Arbitrary Lagrangian-Eulerian (ALE) code HYDRA, to help validate the theoretical analysis done so far, particularly exploring the effects of varying the ion energy and ion current over the course of the pulse. On NDCX II, experiments have been proposed to explore issues of ion penetration of the outflowing plasma over the course of the ion pulse. One possibility is to create a first pulse of ions that heats a planar target, and produces an outflow of material. A second pulse, {approx}10 ns after the first, of higher ion energy (and hence larger projected range) will interact with this outflow before reaching and further heating the target. We have investigated whether the change in range can be tailored to match the evolution of the ablation front. We have carried out simulations using the one-dimensional hydrodynamic code DISH and HYDRA to set parameters for this class of experiments. DISH was upgraded with an ion deposition algorithm, and we have carried out ID (planar) simulations. HYDRA was also used for ID (planar) and 2D (r,z) simulations of potential experiments. We have also explored whether similar physics could be studied using an energy ramp (i.e., a velocity tilt) rather than two separate pulses. We have shown that an optimum occurs in the macropulse duration (with fixed velocity tilt) that maximizes the shock strength. In the area of IFE target design we have continued to explore direct drive targets composed of deuterium-tritium fuel and ablator layers. We have extended our previous target designs at 0.44 MJ drive energy, gain 50, (50 MeV foot, 500 MeV main pulse, Rb ion, which requires a large number of beams due to a high beam space charge constraint) to a power plant scale 3.7 MJ drive energy, gain {approx}150 (220 MeV foot, 2.2 GeV main pulse, Hg ion) that eases requirements on the accelerator. We have studied the effects of two important design choices on ICF target performance. We have shown that increasing the number of foot pulses may reduce the target's in-flight adiabat and consequently improve its compressibility and fusion yield. As in the case of laser drive, the first three shocks are the most important to the target's performance, with additional shocks contributing only marginally to compression and burn. We have also demonstrated that ion range lengthening during the main pulse can further reduce the target adiabat and improve the efficiency with which beam energy is coupled into the target. (Ion range lengthening using two different kinetic energies for the foot and main pulse has previously proven effective in the design of high gain targets).« less
Evaluation of Wavelength Detuning to Mitigate Cross-Beam Energy Transfer Using the Nike Laser
NASA Astrophysics Data System (ADS)
McKenty, P. W.; Delettrez, J. A.; Marozas, J. A.; Weaver, J.; Obenschain, S.; Schmitt, A.
2014-10-01
Cross-beam energy transfer (CBET) has become a serious threat to the overall success of polar-drive-ignition experiments. CBET redirects incident laser light before it can be absorbed into the target, thereby degrading overall target performance. CBET is particularly effective over the equator of the target, which is hydrodynamically very sensitive to such losses. A promising solution uses laser wavelength detuning between beams to break the resonance between them and reduce energy transfer. Testing this process for direct drive has been limited because of the lack of sufficient detuning capabilities. However, the Naval Research Laboratory's Nike laser has the capability of providing a wide range of detuning between its main drive and backlighter beams. This paper explores the design of an experimental platform on Nike to directly evaluate the benefit of frequency detuning in mitigating CBET. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Progress in Direct-Drive Inertial Confinement Fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCrory, R.L.; Meyerhofer, D.D.; Betti, R.
Significant progress in direct-drive inertial confinement fusion (ICF) research has been made since the completion of the 60-beam, 30-kJ UV OMEGA Laser System [T. R. Boehly, Opt. Commun. 133, 495 (1997)] in 1995. A theory of ignition requirements, applicable to any ICF concept, has been developed. Detailed understanding of laser-plasma coupling, electron thermal transport, and hot-electron preheating has lead to the measurement of neutron-averaged areal densities of ~200 mg/cm^2 in cryogenic target implosions. These correspond to an estimated peak fuel density in excess of 100 g/cm^3 and are in good agreement with hydrodynamic simulations. The implosions were performed using anmore » 18-kJ drive pulse designed to put the converging fuel on an adiabat of two. The polar-drive concept will allow direct-drive-ignition research on the National Ignition Facility while it is configured for indirect drive. Advanced ICF ignition concepts—fast ignition [Tabak et al., Phys. Plasmas 1, 1626 (1994)] and shock ignition [R. Betti et al., Phys. Rev. Lett. 98, 155001 (2007)]—have the potential to significantly reduce ignition driver energies and/or provide higher target gain.« less
Progress in direct-drive inertial confinement fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCrory, R. L.; Meyerhofer, D. D.; Betti, R.
Significant progress in direct-drive inertial confinement fusion (ICF) research has been made since the completion of the 60-beam, 30-kJ{sub UV} OMEGA Laser System [Boehly, Opt. Commun. 133, 495 (1997)] in 1995. A theory of ignition requirements, applicable to any ICF concept, has been developed. Detailed understanding of laser-plasma coupling, electron thermal transport, and hot-electron preheating has lead to the measurement of neutron-averaged areal densities of {approx}200 mg/cm{sup 2} in cryogenic target implosions. These correspond to an estimated peak fuel density in excess of 100 g/cm{sup 3} and are in good agreement with hydrodynamic simulations. The implosions were performed using anmore » 18-kJ drive pulse designed to put the converging fuel on an adiabat of two. The polar-drive concept will allow direct-drive-ignition research on the National Ignition Facility while it is configured for indirect drive. Advanced ICF ignition concepts - fast ignition [Tabak et al., Phys. Plasmas 1, 1626 (1994)] and shock ignition [Betti et al., Phys. Rev. Lett. 98, 155001 (2007)] - have the potential to significantly reduce ignition driver energies and/or provide higher target gain.« less
NASA Astrophysics Data System (ADS)
Li, Boyuan; Du, Haiping; Li, Weihua
2016-05-01
Although electric vehicles with in-wheel motors have been regarded as one of the promising vehicle architectures in recent years, the probability of in-wheel motor fault is still a crucial issue due to the system complexity and large number of control actuators. In this study, a modified sliding mode control (SMC) is applied to achieve fault-tolerant control of electric vehicles with four-wheel-independent-steering (4WIS) and four-wheel-independent-driving (4WID). Unlike in traditional SMC, in this approach the steering geometry is re-arranged according to the location of faulty wheels in the modified SMC. Three SMC control laws for longitudinal velocity control, lateral velocity control and yaw rate control are designed based on specific vehicle motion scenarios. In addition the actuator-grouping SMC method is proposed so that driving actuators are grouped and each group of actuators can be used to achieve the specific control target, which avoids the strong coupling effect between each control target. Simulation results prove that the proposed modified SMC can achieve good vehicle dynamics control performance in normal driving and large steering angle turning scenarios. In addition, the proposed actuator-grouping SMC can solve the coupling effect of different control targets and the control performance is improved.
Exploding Pusher Targets for Electron-Ion Coupling Measurements
NASA Astrophysics Data System (ADS)
Whitley, Heather D.; Pino, Jesse; Schneider, Marilyn; Shepherd, Ronnie; Benedict, Lorin; Bauer, Joseph; Graziani, Frank; Garbett, Warren
2015-11-01
Over the past several years, we have conducted theoretical investigations of electron-ion coupling and electronic transport in plasmas. In the regime of weakly coupled plasmas, we have identified models that we believe describe the physics well, but experimental data is still needed to validate the models. We are currently designing spectroscopic experiments to study electron-ion equilibration and/or electron heat transport using exploding pusher (XP) targets for experiments at the National Ignition Facility. Two platforms are being investigated: an indirect drive XP (IDXP) with a plastic ablator and a polar-direct drive XP (PDXP) with a glass ablator. The fill gas for both designs is D2. We propose to use a higher-Z dopant, such as Ar, as a spectroscopic tracer for time-resolved electron and ion temperature measurements. We perform 1D simulations using the ARES hydrodynamic code, in order to produce the time-resolved plasma conditions, which are then post-processed with CRETIN to assess the feasibility of a spectroscopic measurement. We examine target performance with respect to variations in gas fill pressure, ablator thickness, atom fraction of the Ar dopant, and drive energy, and assess the sensitivity of the predicted spectra to variations in the models for electron-ion equilibration and thermal conductivity. Prepared by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-675219.
Simulated Driving Assessment (SDA) for teen drivers: results from a validation study.
McDonald, Catherine C; Kandadai, Venk; Loeb, Helen; Seacrist, Thomas S; Lee, Yi-Ching; Winston, Zachary; Winston, Flaura K
2015-06-01
Driver error and inadequate skill are common critical reasons for novice teen driver crashes, yet few validated, standardised assessments of teen driving skills exist. The purpose of this study is to evaluate the construct and criterion validity of a newly developed Simulated Driving Assessment (SDA) for novice teen drivers. The SDA's 35 min simulated drive incorporates 22 variations of the most common teen driver crash configurations. Driving performance was compared for 21 inexperienced teens (age 16-17 years, provisional license ≤90 days) and 17 experienced adults (age 25-50 years, license ≥5 years, drove ≥100 miles per week, no collisions or moving violations ≤3 years). SDA driving performance (Error Score) was based on driving safety measures derived from simulator and eye-tracking data. Negative driving outcomes included simulated collisions or run-off-the-road incidents. A professional driving evaluator/instructor (DEI Score) reviewed videos of SDA performance. The SDA demonstrated construct validity: (1) teens had a higher Error Score than adults (30 vs. 13, p=0.02); (2) For each additional error committed, the RR of a participant's propensity for a simulated negative driving outcome increased by 8% (95% CI 1.05 to 1.10, p<0.01). The SDA-demonstrated criterion validity: Error Score was correlated with DEI Score (r=-0.66, p<0.001). This study supports the concept of validated simulated driving tests like the SDA to assess novice driver skill in complex and hazardous driving scenarios. The SDA, as a standard protocol to evaluate teen driver performance, has the potential to facilitate screening and assessment of teen driving readiness and could be used to guide targeted skill training. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Driver landmark and traffic sign identification in early Alzheimer's disease.
Uc, E Y; Rizzo, M; Anderson, S W; Shi, Q; Dawson, J D
2005-06-01
To assess visual search and recognition of roadside targets and safety errors during a landmark and traffic sign identification task in drivers with Alzheimer's disease. 33 drivers with probable Alzheimer's disease of mild severity and 137 neurologically normal older adults underwent a battery of visual and cognitive tests and were asked to report detection of specific landmarks and traffic signs along a segment of an experimental drive. The drivers with mild Alzheimer's disease identified significantly fewer landmarks and traffic signs and made more at-fault safety errors during the task than control subjects. Roadside target identification performance and safety errors were predicted by scores on standardised tests of visual and cognitive function. Drivers with Alzheimer's disease are impaired in a task of visual search and recognition of roadside targets; the demands of these targets on visual perception, attention, executive functions, and memory probably increase the cognitive load, worsening driving safety.
Direct-drive inertial confinement fusion: A review
NASA Astrophysics Data System (ADS)
Craxton, R. S.; Anderson, K. S.; Boehly, T. R.; Goncharov, V. N.; Harding, D. R.; Knauer, J. P.; McCrory, R. L.; McKenty, P. W.; Meyerhofer, D. D.; Myatt, J. F.; Schmitt, A. J.; Sethian, J. D.; Short, R. W.; Skupsky, S.; Theobald, W.; Kruer, W. L.; Tanaka, K.; Betti, R.; Collins, T. J. B.; Delettrez, J. A.; Hu, S. X.; Marozas, J. A.; Maximov, A. V.; Michel, D. T.; Radha, P. B.; Regan, S. P.; Sangster, T. C.; Seka, W.; Solodov, A. A.; Soures, J. M.; Stoeckl, C.; Zuegel, J. D.
2015-11-01
The direct-drive, laser-based approach to inertial confinement fusion (ICF) is reviewed from its inception following the demonstration of the first laser to its implementation on the present generation of high-power lasers. The review focuses on the evolution of scientific understanding gained from target-physics experiments in many areas, identifying problems that were demonstrated and the solutions implemented. The review starts with the basic understanding of laser-plasma interactions that was obtained before the declassification of laser-induced compression in the early 1970s and continues with the compression experiments using infrared lasers in the late 1970s that produced thermonuclear neutrons. The problem of suprathermal electrons and the target preheat that they caused, associated with the infrared laser wavelength, led to lasers being built after 1980 to operate at shorter wavelengths, especially 0.35 μm—the third harmonic of the Nd:glass laser—and 0.248 μm (the KrF gas laser). The main physics areas relevant to direct drive are reviewed. The primary absorption mechanism at short wavelengths is classical inverse bremsstrahlung. Nonuniformities imprinted on the target by laser irradiation have been addressed by the development of a number of beam-smoothing techniques and imprint-mitigation strategies. The effects of hydrodynamic instabilities are mitigated by a combination of imprint reduction and target designs that minimize the instability growth rates. Several coronal plasma physics processes are reviewed. The two-plasmon-decay instability, stimulated Brillouin scattering (together with cross-beam energy transfer), and (possibly) stimulated Raman scattering are identified as potential concerns, placing constraints on the laser intensities used in target designs, while other processes (self-focusing and filamentation, the parametric decay instability, and magnetic fields), once considered important, are now of lesser concern for mainline direct-drive target concepts. Filamentation is largely suppressed by beam smoothing. Thermal transport modeling, important to the interpretation of experiments and to target design, has been found to be nonlocal in nature. Advances in shock timing and equation-of-state measurements relevant to direct-drive ICF are reported. Room-temperature implosions have provided an increased understanding of the importance of stability and uniformity. The evolution of cryogenic implosion capabilities, leading to an extensive series carried out on the 60-beam OMEGA laser [Boehly et al., Opt. Commun. 133, 495 (1997)], is reviewed together with major advances in cryogenic target formation. A polar-drive concept has been developed that will enable direct-drive-ignition experiments to be performed on the National Ignition Facility [Haynam et al., Appl. Opt. 46(16), 3276 (2007)]. The advantages offered by the alternative approaches of fast ignition and shock ignition and the issues associated with these concepts are described. The lessons learned from target-physics and implosion experiments are taken into account in ignition and high-gain target designs for laser wavelengths of 1/3 μm and 1/4 μm. Substantial advances in direct-drive inertial fusion reactor concepts are reviewed. Overall, the progress in scientific understanding over the past five decades has been enormous, to the point that inertial fusion energy using direct drive shows significant promise as a future environmentally attractive energy source.
Reagan, Ian J; Brumbelow, Matthew L
2017-02-01
A previous open-road experiment indicated that curve-adaptive HID headlights driven with low beams improved drivers' detection of low conspicuity targets compared with fixed halogen and fixed HID low beam systems. The current study used the same test environment and targets to assess whether drivers' detection of targets was affected by the same three headlight systems when using high beams. Twenty drivers search and responded for 60 8×12inch targets of high or low reflectance that were distributed evenly across straight and curved road sections as they drove at 30 mph on an unlit two-lane rural road. The results indicate that target detection performance was generally similar across the three systems. However, one interaction indicated that drivers saw low reflectance targets on straight road sections from further away when driving with the fixed halogen high beam condition compared with curve-adaptive HID high beam headlights and also indicated a possible benefit for the curve-adaptive HID high beams for high reflectance targets placed on the inside of curves. The results of this study conflict with the previous study of low beams, which showed a consistent benefit for the curve-adaptive HID low beams for targets placed on curves compared with fixed HID and fixed halogen low beam conditions. However, a comparison of mean detection distances from the two studies indicated uniformly longer mean target detection distances for participants driving with high beams and implicates the potential visibility benefits for systems that optimize proper high beam use. Copyright © 2016 Elsevier Ltd. All rights reserved.
Paire-Ficout, Laurence; Lafont, Sylviane; Conte, Fanny; Coquillat, Amandine; Fabrigoule, Colette; Ankri, Joël; Blanc, Frédéric; Gabel, Cécilia; Novella, Jean-Luc; Morrone, Isabella; Mahmoudi, Rachid
2018-05-16
Because cognitive processes decline in the earliest stages of Alzheimer's disease (AD), the driving abilities are often affected. The naturalistic driving approach is relevant to study the driving habits and behaviors in normal or critical situations in a familiar environment of participants. This pilot study analyzed in-car video recordings of naturalistic driving in patients with early-stage AD and in healthy controls, with a special focus on tactical self-regulation behavior. Twenty patients with early-stage AD (Diagnosis and Statistical Manual of Mental Disorders, Fourth Edition [DSM-IV] criteria), and 21 healthy older adults were included in the study. Data collection equipment was installed in their personal vehicles. Two expert psychologists assessed driving performance using a specially designed Naturalistic Driving Assessment Scale (NaDAS), paying particular attention to tactical self-regulation behavior, and they recorded all critical safety events. Poorer driving performance was observed among AD drivers: their tactical self-regulation behavior was of lower quality. AD patients had also twice as many critical events as healthy drivers and three times more "unaware" critical events. This pilot study using a naturalistic approach to accurately show that AD drivers have poorer tactical self-regulation behavior than healthy older drivers. Future deployment of assistance systems in vehicles should specifically target tactical self-regulation components.
Toosizadeh, Nima; Bunting, Matthew; Howe, Carol; Mohler, Jane; Sprinkle, Jonathan; Najafi, Bijan
2014-01-01
Background Motorized mobility scooters (MMS) have become the most acceptable powered assistive device for those with impaired mobility, who have sufficient upper body strength and dexterity, and postural stability. Although several benefits have been attributed to MMS usage, there are likewise risks of use, including injuries and even deaths. Objective The aim of the current review was to summarize results from clinical studies regarding the enhancement of MMS driver safety with a primary focus on improving driving skills/performance using clinical approaches. We addressed three main objectives: 1) to identify and summarize any available evidence (strong, moderate, or weak evidence based on the quality of studies) regarding improved driving skills/performance following training/intervention; 2) to identify types of driving skills/performance that might be improved by training/intervention; and 3) to identify the use of technology in improving MMS performance or training procedure. Methods Articles were searched for in the following medical and engineering electronic databases: PubMed, Cochrane Library, Web of Science, ClinicalTrials.gov, PsycINFO, CINAHL, ERIC, EI Compendix, IEEE Explore, and REHABDATA. Inclusion criteria included: aging adults or those with ambulatory problems; intervention or targeted training; and clinical trial. Outcomes included: MMS skills/performance. Results Six articles met the inclusion criteria and are analyzed in this review. Four of the six articles contained training approaches for MMS drivers including skill trainings using real MMS inside and outside (i.e., in community) and in a 3D virtual environment. The other two studies contain infrastructural assessments (i.e., the minimum space required for safe maneuverability of MMS users) and additional mobility assistance tools to improve maneuverability and to enhance driving performance. Conclusions Results from the current review showed improved driving skills/performance by training, infrastructural assessments, and incorporating mobility assistance tools. MMS driving skills that can be improved through driver training include: weaving, negotiating with and avoiding pedestrian interference, simultaneous reading of signs and obstacle avoidance in path, level driving, forward and reverse driving, figure 8s, turning in place, crossing left slope, maneuvering down a 2-inch curb, and driving up and down inclines. However, several limitations exist in the available literature regarding evidence of improved driving skills/performance following training/intervention, such as small sample sizes, lack of control groups and statistical analysis. PMID:24481257
Robust H ∞ Control for Spacecraft Rendezvous with a Noncooperative Target
Wu, Shu-Nan; Zhou, Wen-Ya; Tan, Shu-Jun; Wu, Guo-Qiang
2013-01-01
The robust H ∞ control for spacecraft rendezvous with a noncooperative target is addressed in this paper. The relative motion of chaser and noncooperative target is firstly modeled as the uncertain system, which contains uncertain orbit parameter and mass. Then the H ∞ performance and finite time performance are proposed, and a robust H ∞ controller is developed to drive the chaser to rendezvous with the non-cooperative target in the presence of control input saturation, measurement error, and thrust error. The linear matrix inequality technology is used to derive the sufficient condition of the proposed controller. An illustrative example is finally provided to demonstrate the effectiveness of the controller. PMID:24027446
ILC TARGET WHEEL RIM FRAGMENT/GUARD PLATE IMPACT ANALYSIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagler, L
2008-07-17
A positron source component is needed for the International Linear Collider Project. The leading design concept for this source is a rotating titanium alloy wheel whose spokes rotate through an intense localized magnetic field. The system is composed of an electric motor, flexible motor/drive-shaft coupling, stainless steel drive-shaft, two Plumber's Block tapered roller bearings, a titanium alloy target wheel, and electromagnet. Surrounding the target wheel and magnet is a steel frame with steel guarding plates intended to contain shrapnel in case of catastrophic wheel failure. Figure 1 is a layout of this system (guard plates not shown for clarity). Thismore » report documents the FEA analyses that were performed at LLNL to help determine, on a preliminary basis, the required guard plate thickness for three potential plate steels.« less
Joo, Yeon Kyoung; Lee-Won, Roselyn J
2016-10-01
For members of a group negatively stereotyped in a domain, making mistakes can aggravate the influence of stereotype threat because negative stereotypes often blame target individuals and attribute the outcome to their lack of ability. Virtual agents offering real-time error feedback may influence performance under stereotype threat by shaping the performers' attributional perception of errors they commit. We explored this possibility with female drivers, considering the prevalence of the "women-are-bad-drivers" stereotype. Specifically, we investigated how in-vehicle voice agents offering error feedback based on responsibility attribution (internal vs. external) and outcome attribution (ability vs. effort) influence female drivers' performance under stereotype threat. In addressing this question, we conducted an experiment in a virtual driving simulation environment that provided moment-to-moment error feedback messages. Participants performed a challenging driving task and made mistakes preprogrammed to occur. Results showed that the agent's error feedback with outcome attribution moderated the stereotype threat effect on driving performance. Participants under stereotype threat had a smaller number of collisions when the errors were attributed to effort than to ability. In addition, outcome attribution feedback moderated the effect of responsibility attribution on driving performance. Implications of these findings are discussed.
Polar-Drive Experiments at the National Ignition Facility
NASA Astrophysics Data System (ADS)
Hohenberger, M.
2014-10-01
To support direct-drive inertial confinement fusion (ICF) experiments at the National Ignition Facility (NIF) in its indirect-drive beam configuration, the polar-drive (PD) concept has been proposed. It requires direct-drive-specific beam smoothing, phase plates, and repointing the NIF beams toward the equator to ensure symmetric target irradiation. First experiments testing the performance of ignition-relevant PD implosions at the NIF have been performed. The goal of these early experiments was to develop a stable, warm implosion platform to investigate laser deposition and laser-plasma instabilities at ignition-relevant plasma conditions, and to develop and validate ignition-relevant models of laser deposition and heat conduction. These experiments utilize the NIF in its current configuration, including beam geometry, phase plates, and beam smoothing. Warm, 2.2-mm-diam plastic shells were imploded with total drive energies ranging from ~ 350 to 750 kJ with peak powers of 60 to 180 TW and peak on-target intensities from 4 ×1014 to 1 . 2 ×1015 W/cm2. Results from these initial experiments are presented, including the level of hot-electron preheat, and implosion symmetry and shell trajectory inferred via self-emission imaging and backlighting. Experiments are simulated with the 2-D hydrodynamics code DRACO including a full 3-D ray trace to model oblique beams, and a model for cross-beam energy transfer (CBET). These simulations indicate that CBET affects the shell symmetry and leads to a loss of energy imparted onto the shell, consistent with the experimental data. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
High-Performance Cryogenic Designs for OMEGA and the National Ignition Facility
NASA Astrophysics Data System (ADS)
Goncharov, V. N.; Collins, T. J. B.; Marozas, J. A.; Regan, S. P.; Betti, R.; Boehly, T. R.; Campbell, E. M.; Froula, D. H.; Igumenshchev, I. V.; McCrory, R. L.; Myatt, J. F.; Radha, P. B.; Sangster, T. C.; Shvydky, A.
2016-10-01
The main advantage of laser symmetric direct drive (SDD) is a significantly higher coupled drive laser energy to the hot-spot internal energy at stagnation compared to that of laser indirect drive. Because of coupling losses resulting from cross-beam energy transfer (CBET), however, reaching ignition conditions on the NIF with SDD requires designs with excessively large in-flight aspect ratios ( 30). Results of cryogenic implosions performed on OMEGA show that such designs are unstable to short-scale nonuniformity growth during shell implosion. Several CBET reduction strategies have been proposed in the past. This talk will discuss high-performing designs using several CBET-mitigation techniques, including using drive laser beams smaller than the target size and wavelength detuning. Designs that are predicted to reach alpha burning regimes as well as a gain of 10 to 40 at the NIF-scale will be presented. Hydrodynamically scaled OMEGA designs with similar CBET-reduction techniques will also be discussed. This material is based upon work supported by the Department Of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goncharov, V. N.; Skupsky, S.; Boehly, T. R.
Irradiation nonuniformities in direct-drive (DD) inertial confinement fusion experiments generate, or ''imprint,'' surface modulations that degrade the symmetry of the implosion and reduce the target performance. To gain physical insight, an analytical model of imprint is developed. The model takes into account the hydrodynamic flow, the dynamics of the conduction zone, and the mass ablation. The important parameters are found to be the time scale for plasma atmosphere formation and the ablation velocity. The model is validated by comparisons to detailed two-dimensional (2D) hydrocode simulations. The results of the model and simulations are in good agreement with a series ofmore » planar-foil imprint experiments performed on the OMEGA laser system [T.R. Boehly, D.L. Brown, R.S. Craxton et al., Opt. Commun. 133, 495 (1997)]. Direct-drive National Ignition Facility's [J.A. Paisner, J.D. Boyes, S.A. Kumpan, W.H. Lowdermilk, and M.S. Sorem, Laser Focus World 30, 75 (1994)] cryogenic targets are shown to have gains larger than 10 when the rms laser-irradiation nonuniformity is reduced by 2D smoothing by spectral dispersion (SSD) used in the current DD target designs. (c)« less
Battery Thermal Characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keyser, Matthew; Saxon, Aron; Powell, Mitchell
2016-06-07
This poster shows the progress in battery thermal characterization over the previous year. NREL collaborated with U.S. DRIVE and USABC battery developers to obtain thermal properties of their batteries, obtained heat capacity and heat generation of cells under various power profiles, obtained thermal images of the cells under various drive cycles, and used the measured results to validate thermal models. Thermal properties are used for the thermal analysis and design of improved battery thermal management systems to support achieve life and performance targets.
Optimized Ion Energy Profiles for Heavy Ion Direct Drive Targets
NASA Astrophysics Data System (ADS)
Hay, Michael J.; Barnard, John J.; Perkins, L. John; Logan, B. Grant
2009-11-01
Recent 1-D implosion calculations [1] have characterized pure-DT targets delivering gains of 50-90 with less than 0.5 MJ of heavy ion direct drive. With a payload fraction of 1/3, these low-aspect ratio targets operate near the peak of rocket efficiency and achieve ˜10% overall coupling efficiencies (vs. the 15-20% efficiencies analytically predicted for less stable, higher-aspect ratio targets). In Ref. 1, the ion energy is ramped directly from a 50 MeV foot pulse to a 500 MeV main pulse. In this paper, we instead tune the ion energy throughout the drive to closely match the beam deposition with the inward progress of the ablation front. We will present the ion energy and intensity time histories that maximize drive efficiency and gain for a single target at constant integrated drive energy. [1] L. J. Perkins, B. G. Logan, J. J. Barnard, and M. J. Hay. ``High Efficiency High Gain Heavy Ion Direct Drive Targets,'' Bulletin of the American Physical Society, vol. 54: DPP, Nov. 2009.
The emotional side of cognitive distraction: Implications for road safety.
Chan, Michelle; Singhal, Anthony
2013-01-01
Driver distraction is estimated to be one of the leading causes of motor vehicle accidents. However, little is known about the role of emotional distraction on driving, despite evidence that attention is highly biased toward emotion. In the present study, we used a dual-task paradigm to examine the potential for driver distraction from emotional information presented on roadside billboards. This purpose was achieved using a driving simulator and three different types of emotional information: neutral words, negative emotional words, and positive emotional words. Participants also responded to target words while driving and completed a surprise free recall task of all the words at the end of the study. The findings suggest that driving performance is differentially affected by the valence (negative versus positive) of the emotional content. Drivers had lower mean speeds when there were emotional words compared to neutral words, and this slowing effect lasted longer when there were positive words. This may be due to distraction effects on driving behavior, which are greater for positive arousing stimuli. Moreover, when required to process non-emotional target stimuli, drivers had faster mean speeds in conditions where the targets were interspersed with emotional words compared to neutral words, and again, these effects lasted longer when there were positive words. On the other hand, negative information led to better memory recall. These unique effects may be due to separate processes in the human attention system, particularly related to arousal mechanisms and their interaction with emotion. We conclude that distraction that is emotion-based can modulate attention and decision-making abilities and have adverse impacts on driving behavior for several reasons. Copyright © 2012 Elsevier Ltd. All rights reserved.
Laboratory analysis of risky driving at 0.05% and 0.08% blood alcohol concentration
Van Dyke, Nicholas A.; Fillmore, Mark T.
2017-01-01
Background The public health costs associated with alcohol-related traffic crashes are a continuing problem for society. One harm reduction strategy has been to employ per se limits for blood alcohol concentrations (BACs) at which drivers can legally operate motor vehicles. This limit is currently 0.08% in all 50 US states. Recently, the National Transportation Safety Board proposed lowering the legal limit to 0.05 % (NTSB, 2013). While research has well-validated the ability of alcohol to impair driving performance and heighten crash-risk at these BACs, relatively little is known about the degree to which alcohol might increase drivers’ risk-taking. Methods Risk-taking was examined in 20 healthy adults who were each tested in a driving simulator following placebo and two doses of alcohol calculated to yield peak BACs of 0.08% and 0.05%, the respective current and proposed BAC limits. The drive test emphasized risk-taking by placing participants in a multiple-lane, high-traffic environment. The primary measure was how close drivers maneuvered relative to other vehicles on the road (i.e., time-to-collision, TTC). Results Alcohol increased risk-taking by decreasing drivers’ TTC at the 0.08% target BAC relative to placebo. Moreover, risk-taking at the 0.05% target was less than risk-taking at 0.08% target BAC. Conclusions These findings provide evidence that reducing the legal BAC limit in the USA to 0.05% would decrease risk-taking among drivers. A clearer understanding of the dose-response relationship between various aspects of driving behaviors, such as drivers’ accepted level of risk while driving, is an important step to improving traffic safety. PMID:28412303
Driving and off-road impairments underlying failure on road testing in Parkinson's disease.
Devos, Hannes; Vandenberghe, Wim; Tant, Mark; Akinwuntan, Abiodun E; De Weerdt, Willy; Nieuwboer, Alice; Uc, Ergun Y
2013-12-01
Parkinson's disease (PD) affects driving ability. We aimed to determine the most critical impairments in specific road skills and in clinical characteristics leading to failure on a road test in PD. In this cross-sectional study, certified driving assessment experts evaluated specific driving skills in 104 active, licensed drivers with PD using a standardized, on-road checklist and issued a global decision of pass/fail. Participants also completed an off-road evaluation assessing demographic features, disease characteristics, motor function, vision, and cognition. The most important driving skills and off-road predictors of the pass/fail outcome were identified using multivariate stepwise regression analyses. Eighty-six (65%) passed and 36 (35%) failed the on-road driving evaluation. Persons who failed performed worse on all on-road items. When adjusted for age and gender, poor performances on lateral positioning at low speed, speed adaptations at high speed, and left turning maneuvers yielded the best model that determined the pass/fail decision (R(2) = 0.56). The fail group performed poorer on all motor, visual, and cognitive tests. Measures of visual scanning, motor severity, PD subtype, visual acuity, executive functions, and divided attention were independent predictors of pass/fail decisions in the multivariate model (R(2) = 0.60). Our study demonstrated that failure on a road test in PD is determined by impairments in specific driving skills and associated with deficits in motor, visual, executive, and visuospatial functions. These findings point to specific driving and off-road impairments that can be targeted in multimodal rehabilitation programs for drivers with PD. © 2013 Movement Disorder Society.
The National Ignition Facility: Transition to a User Facility
NASA Astrophysics Data System (ADS)
Moses, E. I.; Atherton, J.; Lagin, L.; Larson, D.; Keane, C.; MacGowan, B.; Patterson, R.; Spaeth, M.; Van Wonterghem, B.; Wegner, P.; Kauffman, R.
2016-03-01
The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) has been operational since March 2009 and has been transitioning to a user facility supporting ignition science, high energy density science (HEDS), national security applications, and fundamental science. The facility has achieved its design goal of 1.8 MJ and 500 TW of 3ω light on target, and has performed target experiments with 1.9 MJ at peak powers of 410 TW. The facility is on track to perform over 200 target shots this year in support of all of its user communities. The facility has nearly 60 diagnostic systems operational and has shown flexibility in laser pulse shape and performance to meet the requirements of its multiple users. Progress continues on its goal of demonstrating thermonuclear burn in the laboratory. It has performed over 40 indirect-drive experiments with cryogenic-layered capsules. New platforms are being developed for HEDS and fundamental science. Equation-of-state and material strength experiments have been done on a number of materials with pressures of over 50 MBars obtained in diamond, conditions never previously encountered in the laboratory and similar to those found in planetary interiors. Experiments are also in progress investigating radiation transport, hydrodynamic instabilities, and direct drive implosions. NIF continues to develop as an experimental facility. Advanced Radiographic Capability (ARC) is now being installed on NIF for producing high-energy radiographs of the imploded cores of ignition targets and for short pulse laser-plasma interaction experiments. One NIF beam is planned for conversion to two picosecond beams in 2014. Other new diagnostics such as x-ray Thomson scattering, low energy neutron spectrometer, and multi-layer reflecting x-ray optics are also planned. Incremental improvements in laser performance such as improved optics damage performance, beam balance, and back reflection control are being pursued.
Tejero, Pilar; Insa, Beatriz; Roca, Javier
2018-03-01
A group of adult individuals with dyslexia and a matched group of normally reading individuals participated in a driving simulation experiment. Participants were asked to read the word presented on every direction traffic sign encountered along a route, as far as possible from the sign, maintaining driving performance. Word frequency and word length were manipulated as within-subject factors. We analyzed (a) reading accuracy, (b) how far the sign was when the participant started to give the response, (c) where the participant looked during the time leading up to the response, and (d) the variability of the vehicle's speed during that time and during driving on similar segments of the route that did not present the traffic signs. Individuals with dyslexia showed lower levels of performance in the reading task, the roles of word frequency and word length were more influential for them, and there was larger variability of the vehicle's speed during the time they were attempting to read the traffic sign, which did not occur during their driving on similar segments that did not present the targeted traffic signs. Therefore, the specific needs of individuals with dyslexia on the road should be considered in plans aimed at increasing traffic safety and fluidity.
Wester, Anne E; Verster, Joris C; Volkerts, Edmund R; Böcker, Koen B E; Kenemans, J Leon
2010-09-01
Driving is a complex task and is susceptible to inattention and distraction. Moreover, alcohol has a detrimental effect on driving performance, possibly due to alcohol-induced attention deficits. The aim of the present study was to assess the effects of alcohol on simulated driving performance and attention orienting and allocation, as assessed by event-related potentials (ERPs). Thirty-two participants completed two test runs in the Divided Attention Steering Simulator (DASS) with blood alcohol concentrations (BACs) of 0.00%, 0.02%, 0.05%, 0.08% and 0.10%. Sixteen participants performed the second DASS test run with a passive auditory oddball to assess alcohol effects on involuntary attention shifting. Sixteen other participants performed the second DASS test run with an active auditory oddball to assess alcohol effects on dual-task performance and active attention allocation. Dose-dependent impairments were found for reaction times, the number of misses and steering error, even more so in dual-task conditions, especially in the active oddball group. ERP amplitudes to novel irrelevant events were also attenuated in a dose-dependent manner. The P3b amplitude to deviant target stimuli decreased with blood alcohol concentration only in the dual-task condition. It is concluded that alcohol increases distractibility and interference from secondary task stimuli, as well as reduces attentional capacity and dual-task integrality.
Polar-direct-drive experiments on the National Ignition Facility
Hohenberger, M.; Radha, P. B.; Myatt, J. F.; ...
2015-05-11
To support direct-drive inertial confinement fusion experiments at the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)] in its indirect-drive beam configuration, the polar-direct-drive (PDD) concept [S. Skupsky et al., Phys. Plasmas 11, 2763 (2004)] has been proposed. Ignition in PDD geometry requires direct-drive–specific beam smoothing, phase plates, and repointing the NIF beams toward the equator to ensure symmetric target irradiation. First experiments to study the energetics and preheat in PDD implosions at the NIF have been performed. These experiments utilize the NIF in its current configuration, including beammore » geometry, phase plates, and beam smoothing. Room-temperature, 2.2-mm-diam plastic shells filled with D₂ gas were imploded with total drive energies ranging from ~500 to 750 kJ with peak powers of 120 to 180 TW and peak on-target irradiances at the initial target radius from 8 10¹⁴ to 1.2 10¹⁵W/cm². Results from these initial experiments are presented, including measurements of shell trajectory, implosion symmetry, and the level of hot-electron preheat in plastic and Si ablators. Experiments are simulated with the 2-D hydrodynamics code DRACO including a full 3-D ray-trace to model oblique beams, and models for nonlocal electron transport and cross-beam energy transport (CBET). These simulations indicate that CBET affects the shell symmetry and leads to a loss of energy imparted onto the shell, consistent with the experimental data.« less
Wilkins, Luke; Gray, Rob; Gaska, James; Winterbottom, Marc
2013-12-30
A driving simulator was used to examine the relationship between motion perception and driving performance. Although motion perception test scores have been shown to be related to driving safety, it is not clear which combination of tests are the best predictors and whether motion perception training can improve driving performance. In experiment 1, 60 younger drivers (22.4 ± 2.5 years) completed three motion perception tests (2-dimensional [2D] motion-defined letter [MDL] identification, 3D motion in depth sensitivity [MID], and dynamic visual acuity [DVA]) followed by two driving tests (emergency braking [EB] and hazard perception [HP]). In experiment 2, 20 drivers (21.6 ± 2.1 years) completed 6 weeks of motion perception training (using the MDL, MID, and DVA tests), while 20 control drivers (22.0 ± 2.7 years) completed an online driving safety course. The EB performance was measured before and after training. In experiment 1, MDL (r = 0.34) and MID (r = 0.46) significantly correlated with EB score. The change in DVA score as a function of target speed (i.e., "velocity susceptibility") was correlated most strongly with HP score (r = -0.61). In experiment 2, the motion perception training group had a significant decrease in brake reaction time on the EB test from pre- to posttreatment, while there was no significant change for the control group: t(38) = 2.24, P = 0.03. Tests of 3D motion perception are the best predictor of EB, while DVA velocity susceptibility is the best predictor of hazard perception. Motion perception training appears to result in faster braking responses.
Time history prediction of direct-drive implosions on the Omega facility
Laffite, S.; Bourgade, J. L.; Caillaud, T.; ...
2016-01-14
We present in this article direct-drive experiments that were carried out on the Omega facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. Two different pulse shapes were tested in order to vary the implosion stability of the same target whose parameters, dimensions and composition, remained the same. The direct-drive configuration on the Omega facility allows the accurate time-resolvedmeasurement of the scattered light. We show that, provided the laser coupling is well controlled, the implosion time history, assessed by the “bang-time” and the shell trajectory measurements, can be predicted. This conclusion is independent on the pulse shape. Inmore » contrast, we show that the pulse shape affects the implosion stability, assessed by comparing the target performances between prediction and measurement. For the 1-ns square pulse, the measuredneutron number is about 80% of the prediction. Lastly, for the 2-step 2-ns pulse, we test here that this ratio falls to about 20%.« less
A CRISPR Cas9-based gene drive platform for genetic interaction analysis in Candida albicans
Shapiro, Rebecca S.; Chavez, Alejandro; Porter, Caroline B. M.; Hamblin, Meagan; Kaas, Christian S.; DiCarlo, James E.; Zeng, Guisheng; Xu, Xiaoli; Revtovich, Alexey V.; Kirienko, Natalia V.; Wang, Yue; Church, George M.; Collins, James J.
2018-01-01
Candida albicans is the leading cause of fungal infections; yet, complex genetic interaction analysis remains cumbersome in this diploid pathogen. Here, we developed a CRISPR-Cas9-based ‘gene drive array’ (GDA) platform to facilitate efficient genetic analysis in C. albicans. In our system, a modified DNA donor molecule acts as a selfish genetic element, replaces the targeted site, and propagates to replace additional wild-type loci. Using mating-competent C. albicans haploids, each carrying a different gene drive disabling a gene of interest, we are able to create diploid strains that are homozygous double-deletion mutants. We generate double-gene deletion libraries to demonstrate this technology, targeting antifungal efflux and biofilm adhesion factors. We screen these libraries to identify virulence regulators and determine how genetic networks shift under diverse conditions. This platform transforms our ability to perform genetic interaction analysis in C. albicans and is readily extended to other fungal pathogens. PMID:29062088
Time history prediction of direct-drive implosions on the Omega facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laffite, S.; Bourgade, J. L.; Caillaud, T.
We present in this article direct-drive experiments that were carried out on the Omega facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. Two different pulse shapes were tested in order to vary the implosion stability of the same target whose parameters, dimensions and composition, remained the same. The direct-drive configuration on the Omega facility allows the accurate time-resolvedmeasurement of the scattered light. We show that, provided the laser coupling is well controlled, the implosion time history, assessed by the “bang-time” and the shell trajectory measurements, can be predicted. This conclusion is independent on the pulse shape. Inmore » contrast, we show that the pulse shape affects the implosion stability, assessed by comparing the target performances between prediction and measurement. For the 1-ns square pulse, the measuredneutron number is about 80% of the prediction. Lastly, for the 2-step 2-ns pulse, we test here that this ratio falls to about 20%.« less
Time history prediction of direct-drive implosions on the Omega facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laffite, S.; Bourgade, J. L.; Caillaud, T.
We present in this article direct-drive experiments that were carried out on the Omega facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. Two different pulse shapes were tested in order to vary the implosion stability of the same target whose parameters, dimensions and composition, remained the same. The direct-drive configuration on the Omega facility allows the accurate time-resolved measurement of the scattered light. We show that, provided the laser coupling is well controlled, the implosion time history, assessed by the “bang-time” and the shell trajectory measurements, can be predicted. This conclusion is independent on the pulse shape.more » In contrast, we show that the pulse shape affects the implosion stability, assessed by comparing the target performances between prediction and measurement. For the 1-ns square pulse, the measured neutron number is about 80% of the prediction. For the 2-step 2-ns pulse, we test here that this ratio falls to about 20%.« less
Research on Performance of Wire-controlled Hydraulic Steering System Based on Four-wheel Steering
NASA Astrophysics Data System (ADS)
Tao, P.; Jin, X. H.
2018-05-01
In this paper, the steering stability and control strategy of forklift are put forward. Drive based on yawing moment distribution of rotary torque coordination control method, through analyzing the linear two degree of freedom model of forklift truck, forklift yawing angular velocity and mass center side-slip Angle of expectations, as the control target parameters system, using fuzzy controller output driving forklift steering the yawing moment, to drive rotary torque distribution, make the forklift truck to drive horizontal pendulum angular velocity and side-slip Angle tracking reference model very well. In this paper, the lateral stability control system were designed, the joint simulation in MATLAB/Simulink, the simulation results show that under the different partial load, the control system can effectively to control side forklift lateral stability, enhanced the forklift driving safety, for the side forklift steering stability study provides a theoretical basis.
Direct-drive inertial confinement fusion: A review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craxton, R. S.; Anderson, K. S.; Boehly, T. R.
The direct-drive, laser-based approach to inertial confinement fusion (ICF) is reviewed from its inception following the demonstration of the first laser to its implementation on the present generation of high-power lasers. The review focuses on the evolution of scientific understanding gained from target-physics experiments in many areas, identifying problems that were demonstrated and the solutions implemented. The review starts with the basic understanding of laser–plasma interactions that was obtained before the declassification of laser-induced compression in the early 1970s and continues with the compression experiments using infrared lasers in the late 1970s that produced thermonuclear neutrons. The problem of suprathermalmore » electrons and the target preheat that they caused, associated with the infrared laser wavelength, led to lasers being built after 1980 to operate at shorter wavelengths, especially 0.35 μm—the third harmonic of the Nd:glass laser—and 0.248 μm (the KrF gas laser). The main physics areas relevant to direct drive are reviewed. The primary absorption mechanism at short wavelengths is classical inverse bremsstrahlung. Nonuniformities imprinted on the target by laser irradiation have been addressed by the development of a number of beam-smoothing techniques and imprint-mitigation strategies. The effects of hydrodynamic instabilities are mitigated by a combination of imprint reduction and target designs that minimize the instability growth rates. Several coronal plasma physics processes are reviewed. The two-plasmon–decay instability, stimulated Brillouin scattering (together with cross-beam energy transfer), and (possibly) stimulated Raman scattering are identified as potential concerns, placing constraints on the laser intensities used in target designs, while other processes (self-focusing and filamentation, the parametric decay instability, and magnetic fields), once considered important, are now of lesser concern for mainline direct-drive target concepts. Filamentation is largely suppressed by beam smoothing. Thermal transport modeling, important to the interpretation of experiments and to target design, has been found to be nonlocal in nature. Advances in shock timing and equation-of-state measurements relevant to direct-drive ICF are reported. Room-temperature implosions have provided an increased understanding of the importance of stability and uniformity. The evolution of cryogenic implosion capabilities, leading to an extensive series carried out on the 60-beam OMEGA laser [Boehly et al., Opt. Commun. 133, 495 (1997)], is reviewed together with major advances in cryogenic target formation. A polar-drive concept has been developed that will enable direct-drive–ignition experiments to be performed on the National Ignition Facility [Haynam et al., Appl. Opt. 46(16), 3276 (2007)]. The advantages offered by the alternative approaches of fast ignition and shock ignition and the issues associated with these concepts are described. The lessons learned from target-physics and implosion experiments are taken into account in ignition and high-gain target designs for laser wavelengths of 1/3 μm and 1/4 μm. Substantial advances in direct-drive inertial fusion reactor concepts are reviewed. Overall, the progress in scientific understanding over the past five decades has been enormous, to the point that inertial fusion energy using direct drive shows significant promise as a future environmentally attractive energy source.« less
Direct-drive inertial confinement fusion: A review
Craxton, R. S.; Anderson, K. S.; Boehly, T. R.; ...
2015-11-25
In this study, the direct-drive, laser-based approach to inertial confinement fusion (ICF) is reviewed from its inception following the demonstration of the first laser to its implementation on the present generation of high-power lasers. The review focuses on the evolution of scientific understanding gained from target-physics experiments in many areas, identifying problems that were demonstrated and the solutions implemented. The review starts with the basic understanding of laser–plasma interactions that was obtained before the declassification of laser-induced compression in the early 1970s and continues with the compression experiments using infrared lasers in the late 1970s that produced thermonuclear neutrons. Themore » problem of suprathermal electrons and the target preheat that they caused, associated with the infrared laser wavelength, led to lasers being built after 1980 to operate at shorter wavelengths, especially 0.35 um—the third harmonic of the Nd:glass laser—and 0.248 um (the KrF gas laser). The main physics areas relevant to direct drive are reviewed. The primary absorption mechanism at short wavelengths is classical inverse bremsstrahlung. Nonuniformities imprinted on the target by laser irradiation have been addressed by the development of a number of beam-smoothing techniques and imprint-mitigation strategies. The effects of hydrodynamic instabilities are mitigated by a combination of imprint reduction and target designs that minimize the instability growth rates. Several coronal plasma physics processes are reviewed. The two-plasmon–decay instability, stimulated Brillouin scattering (together with cross-beam energy transfer), and (possibly) stimulated Raman scattering are identified as potential concerns, placing constraints on the laser intensities used in target designs, while other processes (self-focusing and filamentation, the parametric decay instability, and magnetic fields), once considered important, are now of lesser concern for mainline direct-drive target concepts. Filamentation is largely suppressed by beam smoothing. Thermal transport modeling, important to the interpretation of experiments and to target design, has been found to be non-local in nature. Advances in shock timing and equation-of-state measurements relevant to direct-drive ICF are reported. Room-temperature implosions have provided an increased understanding of the importance of stability and uniformity. The evolution of cryogenic implosion capabilities, leading to an extensive series carried out on the 60-beam OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)], is reviewed together with major advances in cryogenic target formation. A polar-drive concept has been developed that will enable direct-drive–ignition experiments to be performed on the National Ignition Facility [C. A. Haynam et al., Appl. Opt. 46 (16), 3276 (2007)]. The advantages offered by the alternative approaches of fast ignition and shock ignition and the issues associated with these concepts are described. The lessons learned from target-physics and implosion experiments are taken into account in ignition and high-gain target designs for laser wavelengths of 1/3 μm and 1/4 μm. Substantial advances in direct-drive inertial fusion reactor concepts are reviewed. Overall, the progress in scientific understanding over the past five decades has been enormous, to the point that inertial fusion energy using direct drive shows significant promise as a future environmentally attractive energy source.« less
Direct-drive inertial confinement fusion: A review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craxton, R. S.; Anderson, K. S.; Boehly, T. R.
In this study, the direct-drive, laser-based approach to inertial confinement fusion (ICF) is reviewed from its inception following the demonstration of the first laser to its implementation on the present generation of high-power lasers. The review focuses on the evolution of scientific understanding gained from target-physics experiments in many areas, identifying problems that were demonstrated and the solutions implemented. The review starts with the basic understanding of laser–plasma interactions that was obtained before the declassification of laser-induced compression in the early 1970s and continues with the compression experiments using infrared lasers in the late 1970s that produced thermonuclear neutrons. Themore » problem of suprathermal electrons and the target preheat that they caused, associated with the infrared laser wavelength, led to lasers being built after 1980 to operate at shorter wavelengths, especially 0.35 um—the third harmonic of the Nd:glass laser—and 0.248 um (the KrF gas laser). The main physics areas relevant to direct drive are reviewed. The primary absorption mechanism at short wavelengths is classical inverse bremsstrahlung. Nonuniformities imprinted on the target by laser irradiation have been addressed by the development of a number of beam-smoothing techniques and imprint-mitigation strategies. The effects of hydrodynamic instabilities are mitigated by a combination of imprint reduction and target designs that minimize the instability growth rates. Several coronal plasma physics processes are reviewed. The two-plasmon–decay instability, stimulated Brillouin scattering (together with cross-beam energy transfer), and (possibly) stimulated Raman scattering are identified as potential concerns, placing constraints on the laser intensities used in target designs, while other processes (self-focusing and filamentation, the parametric decay instability, and magnetic fields), once considered important, are now of lesser concern for mainline direct-drive target concepts. Filamentation is largely suppressed by beam smoothing. Thermal transport modeling, important to the interpretation of experiments and to target design, has been found to be non-local in nature. Advances in shock timing and equation-of-state measurements relevant to direct-drive ICF are reported. Room-temperature implosions have provided an increased understanding of the importance of stability and uniformity. The evolution of cryogenic implosion capabilities, leading to an extensive series carried out on the 60-beam OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)], is reviewed together with major advances in cryogenic target formation. A polar-drive concept has been developed that will enable direct-drive–ignition experiments to be performed on the National Ignition Facility [C. A. Haynam et al., Appl. Opt. 46 (16), 3276 (2007)]. The advantages offered by the alternative approaches of fast ignition and shock ignition and the issues associated with these concepts are described. The lessons learned from target-physics and implosion experiments are taken into account in ignition and high-gain target designs for laser wavelengths of 1/3 μm and 1/4 μm. Substantial advances in direct-drive inertial fusion reactor concepts are reviewed. Overall, the progress in scientific understanding over the past five decades has been enormous, to the point that inertial fusion energy using direct drive shows significant promise as a future environmentally attractive energy source.« less
Interactive Tools for Measuring Visual Scanning Performance and Reaction Time
Seeanner, Julia; Hennessy, Sarah; Manganelli, Joseph; Crisler, Matthew; Rosopa, Patrick; Jenkins, Casey; Anderson, Michael; Drouin, Nathalie; Belle, Leah; Truesdail, Constance; Tanner, Stephanie
2017-01-01
Occupational therapists are constantly searching for engaging, high-technology interactive tasks that provide immediate feedback to evaluate and train clients with visual scanning deficits. This study examined the relationship between two tools: the VISION COACH™ interactive light board and the Functional Object Detection© (FOD) Advanced driving simulator scenario. Fifty-four healthy drivers, ages 21–66 yr, were divided into three age groups. Participants performed braking response and visual target (E) detection tasks of the FOD Advanced driving scenario, followed by two sets of three trials using the VISION COACH Full Field 60 task. Results showed no significant effect of age on FOD Advanced performance but a significant effect of age on VISION COACH performance. Correlations showed that participants’ performance on both braking and E detection tasks were significantly positively correlated with performance on the VISION COACH (.37 < r < .40, p < .01). These tools provide new options for therapists. PMID:28218598
Limits of Spatial Attention in Three-Dimensional Space and Dual-task Driving Performance
Andersen, George J.; Ni, Rui; Bian, Zheng; Kang, Julie
2010-01-01
The present study examined the limits of spatial attention while performing two driving relevant tasks that varied in depth. The first task was to maintain a fixed headway distance behind a lead vehicle that varied speed. The second task was to detect a light-change target in an array of lights located above the roadway. In Experiment 1 the light detection task required drivers to encode color and location. The results indicated that reaction time to detect a light-change target increased and accuracy decreased as a function of the horizontal location of the light-change target and as a function of the distance from the driver. In a second experiment the light change task was changed to a singleton search (detect the onset of a yellow light) and the workload of the car following task was systematically varied. The results of Experiment 2 indicated that RT increased as a function of task workload, the 2D position of the light-change target and the distance of the light-change target. A multiple regression analysis indicated that the effect of distance on light detection performance was not due to changes in the projected size of the light target. In Experiment 3 we found that the distance effect in detecting a light change could not be explained by the location of eye fixations. The results demonstrate that when drivers attend to a roadway scene attention is limited in three-dimensional space. These results have important implications for developing tests for assessing crash risk among drivers as well as the design of in vehicle technologies such as head-up displays. PMID:21094336
Caird, Jeff K; Simmons, Sarah M; Wiley, Katelyn; Johnston, Kate A; Horrey, William J
2018-02-01
Objective An up-to-date meta-analysis of experimental research on talking and driving is needed to provide a comprehensive, empirical, and credible basis for policy, legislation, countermeasures, and future research. Background The effects of cell, mobile, and smart phone use on driving safety continues to be a contentious societal issue. Method All available studies that measured the effects of cell phone use on driving were identified through a variety of search methods and databases. A total of 93 studies containing 106 experiments met the inclusion criteria. Coded independent variables included conversation target (handheld, hands-free, and passenger), setting (laboratory, simulation, or on road), and conversation type (natural, cognitive task, and dialing). Coded dependent variables included reaction time, stimulus detection, lane positioning, speed, headway, eye movements, and collisions. Results The overall sample had 4,382 participants, with driver ages ranging from 14 to 84 years ( M = 25.5, SD = 5.2). Conversation on a handheld or hands-free phone resulted in performance costs when compared with baseline driving for reaction time, stimulus detection, and collisions. Passenger conversation had a similar pattern of effect sizes. Dialing while driving had large performance costs for many variables. Conclusion This meta-analysis found that cell phone and passenger conversation produced moderate performance costs. Drivers minimally compensated while conversing on a cell phone by increasing headway or reducing speed. A number of additional meta-analytic questions are discussed. Application The results can be used to guide legislation, policy, countermeasures, and future research.
NASA Astrophysics Data System (ADS)
Solodov, A. A.; Rosenberg, M. J.; Myatt, J. F.; Shaw, J. G.; Seka, W.; Epstein, R.; Short, R. W.; Follett, R. K.; Regan, S. P.; Froula, D. H.; Radha, P. B.; Michel, P.; Chapman, T.; Hohenberger, M.
2017-10-01
Laser-plasma interaction (LPI) instabilities, such as stimulated Raman scattering (SRS) and two-plasmon decay, can be detrimental for direct-drive inertial confinement fusion because of target preheat by the high-energy electrons they generate. The radiation-hydrodynamic code DRACO was used to design planar-target experiments at the National Ignition Facility that generated plasma and interaction conditions relevant to ignition direct-drive designs (IL 1015W/cm2 , Te > 3 keV, density gradient scale lengths of Ln 600 μm). Laser-energy conversion efficiency to hot electrons of 0.5% to 2.5% with temperature of 45 to 60 keV was inferred from the experiment when the laser intensity at the quarter-critical surface increased from 6 to 15 ×1014W/cm2 . LPI was dominated by SRS, as indicated by the measured scattered-light spectra. Simulations of SRS using the LPI code LPSE have been performed and compared with predictions of theoretical models. Implications for ignition-scale direct-drive experiments will be discussed. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Core conditions for alpha heating attained in direct-drive inertial confinement fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bose, A.; Woo, K. M.; Betti, R.
It is shown that direct-drive implosions on the OMEGA laser have achieved core conditions that would lead to significant alpha heating at incident energies available on the National Ignition Facility (NIF) scale. The extrapolation of the experimental results from OMEGA to NIF energy assumes only that the implosion hydrodynamic efficiency is unchanged at higher energies. This approach is independent of the uncertainties in the physical mechanism that degrade implosions on OMEGA, and relies solely on a volumetric scaling of the experimentally observed core conditions. It is estimated that the current best-performing OMEGA implosion [Regan et al., Phys. Rev. Lett. 117,more » 025001 (2016)] extrapolated to a 1.9 MJ laser driver with the same illumination configuration and laser-target coupling would produce 125 kJ of fusion energy with similar levels of alpha heating observed in current highest performing indirect-drive NIF implosions.« less
Core conditions for alpha heating attained in direct-drive inertial confinement fusion
Bose, A.; Woo, K. M.; Betti, R.; ...
2016-07-07
It is shown that direct-drive implosions on the OMEGA laser have achieved core conditions that would lead to significant alpha heating at incident energies available on the National Ignition Facility (NIF) scale. The extrapolation of the experimental results from OMEGA to NIF energy assumes only that the implosion hydrodynamic efficiency is unchanged at higher energies. This approach is independent of the uncertainties in the physical mechanism that degrade implosions on OMEGA, and relies solely on a volumetric scaling of the experimentally observed core conditions. It is estimated that the current best-performing OMEGA implosion [Regan et al., Phys. Rev. Lett. 117,more » 025001 (2016)] extrapolated to a 1.9 MJ laser driver with the same illumination configuration and laser-target coupling would produce 125 kJ of fusion energy with similar levels of alpha heating observed in current highest performing indirect-drive NIF implosions.« less
Core conditions for alpha heating attained in direct-drive inertial confinement fusion.
Bose, A; Woo, K M; Betti, R; Campbell, E M; Mangino, D; Christopherson, A R; McCrory, R L; Nora, R; Regan, S P; Goncharov, V N; Sangster, T C; Forrest, C J; Frenje, J; Gatu Johnson, M; Glebov, V Yu; Knauer, J P; Marshall, F J; Stoeckl, C; Theobald, W
2016-07-01
It is shown that direct-drive implosions on the OMEGA laser have achieved core conditions that would lead to significant alpha heating at incident energies available on the National Ignition Facility (NIF) scale. The extrapolation of the experimental results from OMEGA to NIF energy assumes only that the implosion hydrodynamic efficiency is unchanged at higher energies. This approach is independent of the uncertainties in the physical mechanism that degrade implosions on OMEGA, and relies solely on a volumetric scaling of the experimentally observed core conditions. It is estimated that the current best-performing OMEGA implosion [Regan et al., Phys. Rev. Lett. 117, 025001 (2016)10.1103/PhysRevLett.117.025001] extrapolated to a 1.9 MJ laser driver with the same illumination configuration and laser-target coupling would produce 125 kJ of fusion energy with similar levels of alpha heating observed in current highest performing indirect-drive NIF implosions.
NASA Astrophysics Data System (ADS)
Delettrez, J. A.; Collins, T. J. B.; Shvydky, A.; Moses, G.; Cao, D.; Marinak, M. M.
2012-10-01
A nonlocal, multigroup diffusion model for thermal electron transportfootnotetextG. P. Schurtz, Ph. D. Nicola"i, and M. Busquet, Phys. Plasmas 7, 4238 (2000). has been added to the 2-D hydrodynamic code DRACO. This model has been applied to simulations of polar-drive (PD) NIF ignition designs. Previous simulations were carried out with a constant flux-limiter model in both the radial and transverse directions. Due to the nonsymmetry of PD illumination, these implosions suffer from low-mode nonuniformities that affect their performance. Nonlocal electron transport in both directions is expected to reduce these nonuniformities. The 2-D thermal electron flux from simulations, using either the nonlocal model or the standard flux-limited approach, will be compared and the effect of the nonlocal transport model on the growth of the nonuniformities and on target performance will be presented. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, A. K., E-mail: adavi@lle.rochester.edu; Cao, D.; Michel, D. T.
The angularly resolved mass ablation rates and ablation-front trajectories for Si-coated CH targets were measured in direct-drive inertial confinement fusion experiments to quantify cross-beam energy transfer (CBET) while constraining the hydrodynamic coupling. A polar-direct-drive laser configuration, where the equatorial laser beams were dropped and the polar beams were repointed from a symmetric direct-drive configuration, was used to limit CBET at the pole while allowing it to persist at the equator. The combination of low- and high-CBET conditions observed in the same implosion allowed for the effects of CBET on the ablation rate and ablation pressure to be determined. Hydrodynamic simulationsmore » performed without CBET agreed with the measured ablation rate and ablation-front trajectory at the pole of the target, confirming that the CBET effects on the pole are small. The simulated mass ablation rates and ablation-front trajectories were in excellent agreement with the measurements at all angles when a CBET model based on Randall's equations [C. J. Randall et al., Phys. Fluids 24, 1474 (1981)] was included into the simulations with a multiplier on the CBET gain factor. These measurements were performed on OMEGA and at the National Ignition Facility to access a wide range of plasma conditions, laser intensities, and laser beam geometries. The presence of the CBET gain multiplier required to match the data in all of the configurations tested suggests that additional physics effects, such as intensity variations caused by diffraction, polarization effects, or shortcomings of extending the 1-D Randall model to 3-D, should be explored to explain the differences in observed and predicted drive.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, A. K.; Cao, D.; Michel, D. T.
The angularly-resolved mass ablation rates and ablation front trajectories for Si-coated CH targets were measured in direct-drive inertial confinement fusion experiments to quantify crossbeam energy transfer (CBET) while constraining the hydrodynamic coupling. A polar-direct-drive laser configuration was used, where the equatorial laser beams were dropped from a symmetric direct-drive configuration to suppress CBET at the pole, while allowing it to persist at the equator. The combination of low- and high-CBET conditions in the same implosion allowed the effects of CBET on the ablation rate and ablation pressure to be decoupled from the other physics effects that influence laser-coupling. Hydrodynamic simulationsmore » performed without CBET reproduced the measured ablation rate and ablation front trajectory at the pole of the target, verifying that the other laser-coupling physics effects are well-modeled when CBET effects are negligible. The simulated mass ablation rates and ablation front trajectories were in excellent agreement with the measurements at all angles when a CBET model based on Randall’s equations [C. J. Randall et al., Phys. Fluids 24, 1474 (1981)] was included into the simulations with an optimized multiplier on the CBET gain factor. These measurements were performed on both OMEGA and the National Ignition Facility to access a wide range of plasma conditions, laser intensities, and laser beam geometries. Furthermore, the presence of the CBET gain multiplier required to match the data in all of the configurations tested suggests that additional physics effects, such as intensity variations due to diffraction, shortcomings of extending the 1-D Randall model to 3-D, or polarization effects, should be explored to explain the differences in observed and predicted drive.« less
Davis, A. K.; Cao, D.; Michel, D. T.; ...
2016-04-20
The angularly-resolved mass ablation rates and ablation front trajectories for Si-coated CH targets were measured in direct-drive inertial confinement fusion experiments to quantify crossbeam energy transfer (CBET) while constraining the hydrodynamic coupling. A polar-direct-drive laser configuration was used, where the equatorial laser beams were dropped from a symmetric direct-drive configuration to suppress CBET at the pole, while allowing it to persist at the equator. The combination of low- and high-CBET conditions in the same implosion allowed the effects of CBET on the ablation rate and ablation pressure to be decoupled from the other physics effects that influence laser-coupling. Hydrodynamic simulationsmore » performed without CBET reproduced the measured ablation rate and ablation front trajectory at the pole of the target, verifying that the other laser-coupling physics effects are well-modeled when CBET effects are negligible. The simulated mass ablation rates and ablation front trajectories were in excellent agreement with the measurements at all angles when a CBET model based on Randall’s equations [C. J. Randall et al., Phys. Fluids 24, 1474 (1981)] was included into the simulations with an optimized multiplier on the CBET gain factor. These measurements were performed on both OMEGA and the National Ignition Facility to access a wide range of plasma conditions, laser intensities, and laser beam geometries. Furthermore, the presence of the CBET gain multiplier required to match the data in all of the configurations tested suggests that additional physics effects, such as intensity variations due to diffraction, shortcomings of extending the 1-D Randall model to 3-D, or polarization effects, should be explored to explain the differences in observed and predicted drive.« less
Robust spherical direct-drive design for NI
NASA Astrophysics Data System (ADS)
Masse, Laurent; Hurricane, O.; Michel, P.; Nora, R.; Tabak, M.; Lawrence Livermore Natl Lab Team
2016-10-01
Achieving ignition in a direct-drive or indirect-drive cryogenic implosion is a tremendous challenge. Both approaches need to deal with physic and technologic issues. During the past years, the indirect drive effort on the National Ignition Facility (NIF) has revealed unpredicted lost of performances that force to think to more robust designs and to dig into detailed physics aspects. Encouraging results have been obtained using a strong first shock during the implosion of CH ablator ignition capsules. These ``high-foot'' implosion results in a significantly lower ablation Rayleigh-Taylor instability growth than that of the NIC point design capsule. The trade-off with this design is a higher fuel adiabat that limits both fuel compression and theoretical capsule yield. The purpose of designing this capsule is to recover a more ideal one-dimensional implosion that is in closer agreement to simulation predictions. In the same spirit of spending energy on margin, at the coast of decreased performance, we are presenting here a study on ``robust'' spherical direct drive design for NIF. This 2-Shock direct drive pulse shape results in a high adiabat (>3) and low convergence (<17) implosion designed to produce a near 1D-like implosion. We take a particular attention to design a robust implosion with respect to long-wavelength non uniformity seeded by power imbalance and target offset. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.
A hybrid-drive nonisobaric-ignition scheme for inertial confinement fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, X. T., E-mail: xthe@iapcm.ac.cn; Center for Applied Physics and Technology, HEDPS, Peking University, Beijing 100871; IFSA Collaborative Innovation Center of MoE, Shanghai Jiao-Tong University, Shanghai 200240
A new hybrid-drive (HD) nonisobaric ignition scheme of inertial confinement fusion (ICF) is proposed, in which a HD pressure to drive implosion dynamics increases via increasing density rather than temperature in the conventional indirect drive (ID) and direct drive (DD) approaches. In this HD (combination of ID and DD) scheme, an assembled target of a spherical hohlraum and a layered deuterium-tritium capsule inside is used. The ID lasers first drive the shock to perform a spherical symmetry implosion and produce a large-scale corona plasma. Then, the DD lasers, whose critical surface in ID corona plasma is far from the radiationmore » ablation front, drive a supersonic electron thermal wave, which slows down to a high-pressure electron compression wave, like a snowplow, piling up the corona plasma into high density and forming a HD pressurized plateau with a large width. The HD pressure is several times the conventional ID and DD ablation pressure and launches an enhanced precursor shock and a continuous compression wave, which give rise to the HD capsule implosion dynamics in a large implosion velocity. The hydrodynamic instabilities at imploding capsule interfaces are suppressed, and the continuous HD compression wave provides main pdV work large enough to hotspot, resulting in the HD nonisobaric ignition. The ignition condition and target design based on this scheme are given theoretically and by numerical simulations. It shows that the novel scheme can significantly suppress implosion asymmetry and hydrodynamic instabilities of current isobaric hotspot ignition design, and a high-gain ICF is promising.« less
NASA Astrophysics Data System (ADS)
Bitsche, Otmar; Gutmann, Guenter
Not only sharp competition but also legislation are pushing development of hybrid drive trains. Based on conventional internal combustion engine (ICE) vehicles, these drive trains offer a wide range of benefits from reduced fuel consumption and emission to multifaceted performance improvements. Hybrid electric drive trains may also facilitate the introduction of fuel cells (FC). The battery is the key component for all hybrid drive trains, as it dominates cost and performance issues. The selection of the right battery technology for the specific automotive application is an important task with an impact on costs of development and use. Safety, power, and high cycle life are a must for all hybrid applications. The greatest pressure to reduce cost is in soft hybrids, where lead-acid embedded in a considerate management presents the cheapest solution, with a considerable improvement in performance needed. From mild to full hybridization, an improvement in specific power makes higher costs more acceptable, provided that the battery's service life is equivalent to the vehicle's lifetime. Today, this is proven for the nickel-metal hydride system. Lithium ion batteries, which make use of a multiple safety concept, and with some development anticipated, provide even better prospects in terms of performance and costs. Also, their scalability permits their application in battery electric vehicles—the basis for better performance and enhanced user acceptance. Development targets for the batteries are discussed with a focus on system aspects such as electrical and thermal management and safety.
Liu, Zhian; Zhang, Ming; Xu, Gongcheng; Huo, Congcong; Tan, Qitao; Li, Zengyong; Yuan, Quan
2017-01-01
Driving a vehicle is a complex activity that requires high-level brain functions. This study aimed to assess the change in effective connectivity (EC) between the prefrontal cortex (PFC), motor-related areas (MA) and vision-related areas (VA) in the brain network among the resting, simple-driving and car-following states. Twelve young male right-handed adults were recruited to participate in an actual driving experiment. The brain delta [HbO2] signals were continuously recorded using functional near infrared spectroscopy (fNIRS) instruments. The conditional Granger causality (GC) analysis, which is a data-driven method that can explore the causal interactions among different brain areas, was performed to evaluate the EC. The results demonstrated that the hemodynamic activity level of the brain increased with an increase in the cognitive workload. The connection strength among PFC, MA and VA increased from the resting state to the simple-driving state, whereas the connection strength relatively decreased during the car-following task. The PFC in EC appeared as the causal target, while the MA and VA appeared as the causal sources. However, l-MA turned into causal targets with the subtask of car-following. These findings indicate that the hemodynamic activity level of the cerebral cortex increases linearly with increasing cognitive workload. The EC of the brain network can be strengthened by a cognitive workload, but also can be weakened by a superfluous cognitive workload such as driving with subtasks. PMID:29163083
Estimated time of arrival and debiasing the time saving bias.
Eriksson, Gabriella; Patten, Christopher J D; Svenson, Ola; Eriksson, Lars
2015-01-01
The time saving bias predicts that the time saved when increasing speed from a high speed is overestimated, and underestimated when increasing speed from a slow speed. In a questionnaire, time saving judgements were investigated when information of estimated time to arrival was provided. In an active driving task, an alternative meter indicating the inverted speed was used to debias judgements. The simulated task was to first drive a distance at a given speed, and then drive the same distance again at the speed the driver judged was required to gain exactly 3 min in travel time compared with the first drive. A control group performed the same task with a speedometer and saved less than the targeted 3 min when increasing speed from a high speed, and more than 3 min when increasing from a low speed. Participants in the alternative meter condition were closer to the target. The two studies corroborate a time saving bias and show that biased intuitive judgements can be debiased by displaying the inverted speed. Practitioner Summary: Previous studies have shown a cognitive bias in judgements of the time saved by increasing speed. This simulator study aims to improve driver judgements by introducing a speedometer indicating the inverted speed in active driving. The results show that the bias can be reduced by presenting the inverted speed and this finding can be used when designing in-car information systems.
Jackson, Simon A; Kleitman, Sabina; Aidman, Eugene
2014-01-01
The present study investigated the effects of low cognitive workload and the absence of arousal induced via external physical stimulation (motion) on practice-related improvements in executive (inhibitory) control, short-term memory, metacognitive monitoring and decision making. A total of 70 office workers performed low and moderately engaging passenger tasks in two successive 20-minute simulated drives and repeated a battery of decision making and inhibitory control tests three times—before, between and after these drives. For half the participants, visual simulation was synchronised with (moderately arousing) motion generated through LAnd Motion Platform, with vibration levels corresponding to a well-maintained unsealed road. The other half performed the same simulated drive without motion. Participants' performance significantly improved over the three test blocks, which is indicative of typical practice effects. The magnitude of these improvements was the highest when both motion and moderate cognitive load were present. The same effects declined either in the absence of motion (low arousal) or following a low cognitive workload task, thus suggesting two distinct pathways through which practice-related improvements in cognitive performance may be hampered. Practice, however, degraded certain aspects of metacognitive performance, as participants became less likely to detect incorrect decisions in the decision-making test with each subsequent test block. Implications include consideration of low cognitive load and arousal as factors responsible for performance decline and targets for the development of interventions/strategies in low load/arousal conditions such as autonomous vehicle operations and highway driving.
Simulations of electron transport and ignition for direct-drive fast-ignition targets
NASA Astrophysics Data System (ADS)
Solodov, A. A.; Anderson, K. S.; Betti, R.; Gotcheva, V.; Myatt, J.; Delettrez, J. A.; Skupsky, S.; Theobald, W.; Stoeckl, C.
2008-11-01
The performance of high-gain, fast-ignition fusion targets is investigated using one-dimensional hydrodynamic simulations of implosion and two-dimensional (2D) hybrid fluid-particle simulations of hot-electron transport, ignition, and burn. The 2D/3D hybrid-particle-in-cell code LSP [D. R. Welch et al., Nucl. Instrum. Methods Phys. Res. A 464, 134 (2001)] and the 2D fluid code DRACO [P. B. Radha et al., Phys. Plasmas 12, 056307 (2005)] are integrated to simulate the hot-electron transport and heating for direct-drive fast-ignition targets. LSP simulates the transport of hot electrons from the place where they are generated to the dense fuel core where their energy is absorbed. DRACO includes the physics required to simulate compression, ignition, and burn of fast-ignition targets. The self-generated resistive magnetic field is found to collimate the hot-electron beam, increase the coupling efficiency of hot electrons with the target, and reduce the minimum energy required for ignition. Resistive filamentation of the hot-electron beam is also observed. The minimum energy required for ignition is found for hot electrons with realistic angular spread and Maxwellian energy-distribution function.
NASA Astrophysics Data System (ADS)
Perkins, L. John; Logan, B. Grant; Ho, Darwin; Zimmerman, George; Rhodes, Mark; Blackfield, Donald; Hawkins, Steven
2017-10-01
Imposed magnetic fields of tens of Tesla that increase to greater than 10 kT (100 MGauss) under capsule compression may relax conditions for ignition and propagating burn in indirect-drive ICF targets. This may allow attainment of ignition, or at least significant fusion energy yields, in presently-performing ICF targets on the National Ignition Facility that today are sub-marginal for thermonuclear burn through adverse hydrodynamic conditions at stagnation. Results of detailed 2D radiation-hydrodynamic-burn simulations applied to NIF capsule implosions with low-mode shape perturbations and residual kinetic energy loss indicate that such compressed fields may increase the probability for ignition through range reduction of fusion alpha particles, suppression of electron heat conduction and stabilization of higher-mode RT instabilities. Optimum initial applied fields are around 50 T. Off-line testing has been performed of a hohlraum coil and pulsed power supply that could be integrated on NIF; axial fields of 58T were obtained. Given the full plasma structure at capsule stagnation may be governed by 3-D resistive MHD, the formation of closed magnetic field lines might further augment ignition prospects. Experiments are now required to assess the potential of applied magnetic fields to NIF ICF ignition and burn. Work performed under auspices of U.S. DOE by LLNL under Contract DE-AC52-07NA27344.
Aligning corporate greenhouse-gas emissions targets with climate goals
NASA Astrophysics Data System (ADS)
Krabbe, Oskar; Linthorst, Giel; Blok, Kornelis; Crijns-Graus, Wina; van Vuuren, Detlef P.; Höhne, Niklas; Faria, Pedro; Aden, Nate; Pineda, Alberto Carrillo
2015-12-01
Corporate climate action is increasingly considered important in driving the transition towards a low-carbon economy. For this, it is critical to ensure translation of global goals to greenhouse-gas (GHG) emissions reduction targets at company level. At the moment, however, there is a lack of clear methods to derive consistent corporate target setting that keeps cumulative corporate GHG emissions within a specific carbon budget (for example, 550-1,300 GtCO2 between 2011 and 2050 for the 2 °C target). Here we propose a method for corporate emissions target setting that derives carbon intensity pathways for companies based on sectoral pathways from existing mitigation scenarios: the Sectoral Decarbonization Approach (SDA). These company targets take activity growth and initial performance into account. Next to target setting on company level, the SDA can be used by companies, policymakers, investors or other stakeholders as a benchmark for tracking corporate climate performance and actions, providing a mechanism for corporate accountability.
Magnetic Fields on the National Ignition Facility (MagNIF)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mason, D.; Folta, J.
2016-08-12
A magnetized target capability on the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) has been investigated. Stakeholders’ needs and project feasibility analysis were considered in order to down-select from a wide variety of different potential magnetic field magnitudes and volumes. From the large range of different target platforms, laser configurations, and diagnostics configurations of interest to the stakeholders, the gas-pipe platform has been selected for the first round of magnetized target experiments. Gas pipe targets are routinely shot on the NIF and provide unique value for external collaborators. High-level project goals have been established including an experimentallymore » relevant 20Tesla magnetic field magnitude. The field will be achieved using pulsed power-driven coils. A system architecture has been proposed. The pulsed power drive system will be located in the NIF target bay. This decision provides improved maintainability and mitigates equipment safety risks associated with explosive failure of the drive capacitor. High-level and first-level subsystem requirements have been established. Requirements have been included for two distinct coil designs – full solenoid and quasi-Helmholtz. A Failure Modes and Effects Analysis (FMEA) has been performed and documented. Additional requirements have been derived from the mitigations included in the FMEA document. A project plan is proposed. The plan includes a first phase of electromagnetic simulations to assess whether the design will meet performance requirements, then a second phase of risk mitigation projects to address the areas of highest technical risk. The duration from project kickoff to the first magnetized target shot is approximately 29 months.« less
High Performance Split-Stirling Cooler Program
1982-09-01
or crankcase subassembly includes the two drive cranks 1800 apart, the two motor bearings, the flywheel and target wheel . This assembly is dynamically...DISPLACER SEAL FRICTION REGENERATOR FLOW @ lOPSI E"I’ •’ REGENERATOR RUNOUT COMP. BRG. LUBRICATION "COMP. PISTON SEAL COMP. PISTON SEAL FRICTION INTER
A comparative study of Rayleigh-Taylor and Richtmyer-Meshkov instabilities in 2D and 3D in tantalum
NASA Astrophysics Data System (ADS)
Sternberger, Z.; Maddox, B. R.; Opachich, Y. P.; Wehrenberg, C. E.; Kraus, R. G.; Remington, B. A.; Randall, G. C.; Farrell, M.; Ravichandran, G.
2017-01-01
Driving a shock wave through the interface between two materials with different densities can result in the Richtmyer-Meshkov or Rayleigh-Taylor instability and initial perturbations at the interface will grow. If the shock wave is sufficiently strong, the instability will lead to plastic flow at the interface. Material strength will reduce the amount of plastic flow and suppress growth. While such instabilities have been investigated in 2D, no studies of this phenomena have been performed in 3D on materials with strength. Initial perturbations to seed the hydrodynamic instability were coined into tantalum recovery targets. Two types of perturbations were used, two dimensional (2D) perturbations (hill and valley) and three-dimensional (3D) perturbations (egg crate pattern). The targets were subjected to dynamic loading using the Janus laser at the Jupiter Laser Facility. Shock pressures ranged from 50 GPa up to 150 GPa and were calibrated using VISAR drive targets.
NASA Astrophysics Data System (ADS)
Blancquaert, Yoann; Dezauzier, Christophe; Depre, Jerome; Miqyass, Mohamed; Beltman, Jan
2013-04-01
Continued tightening of overlay control budget in semiconductor lithography drives the need for improved metrology capabilities. Aggressive improvements are needed for overlay metrology speed, accuracy and precision. This paper is dealing with the on product metrology results of a scatterometry based platform showing excellent production results on resolution, precision, and tool matching for overlay. We will demonstrate point to point matching between tool generations as well as between target sizes and types. Nowadays, for the advanced process nodes a lot of information is needed (Higher order process correction, Reticle fingerprint, wafer edge effects) to quantify process overlay. For that purpose various overlay sampling schemes are evaluated: ultra- dense, dense and production type. We will show DBO results from multiple target type and shape for on product overlay control for current and future node down to at least 14 nm node. As overlay requirements drive metrology needs, we will evaluate if the new metrology platform meets the overlay requirements.
Human Mars Ascent Vehicle Performance Sensitivities
NASA Technical Reports Server (NTRS)
Polsgrove, Tara P.; Thomas, Herbert D.
2016-01-01
Human Mars mission architecture studies have shown that the ascent vehicle mass drives performance requirements for the descent and in-space transportation elements. Understanding the sensitivity of Mars ascent vehicle (MAV) mass to various mission and vehicle design choices enables overall transportation system optimization. This paper presents the results of a variety of sensitivity trades affecting MAV performance including: landing site latitude, target orbit, initial thrust to weight ratio, staging options, specific impulse, propellant type and engine design.
LLE Review 117 (October-December 2008)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bittle, W., editor
2009-05-28
This volume of the LLE Review, covering October-December 2008, features 'Demonstration of the Shock-Timing Technique for Ignition Targets at the National Ignition Facility' by T. R. Boehly, V. N. Goncharov, S. X. Hu, J. A. Marozas, T. C. Sangster, D. D. Meyerhofer (LLE), D. Munro, P. M. Celliers, D. G. Hicks, G. W. Collins, H. F. Robey, O. L. Landen (LLNL), and R. E. Olson (SNL). In this article (p. 1) the authors report on a technique to measure the velocity and timing of shock waves in a capsule contained within hohlraum targets. This technique is critical for optimizing themore » drive profiles for high-performance inertial-confinement-fusion capsules, which are compressed by multiple precisely timed shock waves. The shock-timing technique was demonstrated on OMEGA using surrogate hohlraum targets heated to 180 eV and fitted with a re-entrant cone and quartz window to facilitate velocity measurements using velocity interferometry. Cryogenic experiments using targets filled with liquid deuterium further demonstrated the entire timing technique in a hohlraum environment. Direct-drive cryogenic targets with multiple spherical shocks were also used to validate this technique, including convergence effects at relevant pressures (velocities) and sizes. These results provide confidence that shock velocity and timing can be measured in NIF ignition targets, thereby optimizing these critical parameters.« less
Paxion, Julie; Galy, Edith; Berthelon, Catherine
2015-11-01
The purpose of this study was to identify the influence of situation complexity and driving experience on subjective workload and driving performance, and the less costly and the most effective strategies faced with a hazard pedestrian crossing. Four groups of young drivers (15 traditionally trained novices, 12 early-trained novices, 15 with three years of experience and 15 with a minimum of five years of experience) were randomly assigned to three situations (simple, moderately complex and very complex) including unexpected pedestrian crossings, in a driving simulator. The subjective workload was collected by the NASA-TLX questionnaire after each situation. The main results confirmed that the situation complexity and the lack of experience increased the subjective workload. Moreover, the subjective workload, the avoidance strategies and the reaction times influenced the number of collisions depending on situation complexity and driving experience. These results must be taken into account to target the prevention actions. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
A driver-adaptive stability control strategy for sport utility vehicles
NASA Astrophysics Data System (ADS)
Zhu, Shenjin; He, Yuping
2017-08-01
Conventional vehicle stability control (VSC) systems are designed for average drivers. For a driver with a good driving skill, the VSC systems may be redundant; for a driver with a poor driving skill, the VSC intervention may be inadequate. To increase safety of sport utility vehicles (SUVs), this paper proposes a novel driver-adaptive VSC (DAVSC) strategy based on scaling the target yaw rate commanded by the driver. The DAVSC system is adaptive to drivers' driving skills. More control effort would be exerted for drivers with poor driving skills, and vice versa. A sliding mode control (SMC)-based differential braking (DB) controller is designed using a three degrees of freedom (DOF) yaw-plane model. An eight DOF nonlinear yaw-roll model is used to simulate the SUV dynamics. Two driver models, namely longitudinal and lateral, are used to 'drive' the virtual SUV. By integrating the virtual SUV, the DB controller, and the driver models, the performance of the DAVSC system is investigated. The simulations demonstrate the effectiveness of the DAVSC strategy.
Driving while drinking: performance impairments resulting from social drinking.
Charlton, Samuel G; Starkey, Nicola J
2015-01-01
Previous research has shown that the effects of alcohol on drivers' performance can differ depending on whether blood alcohol concentrations are increasing or decreasing. The present research used a more ecologically representative alcohol consumption protocol in order to determine whether the same pattern of driver impairment would occur when drinking occurred in social groups over a longer period of time. Forty-four participants were assigned to one of two alcohol dose conditions or a placebo control group and consumed alcohol in groups of three (typically one participant from each condition) such that they gradually reached their target BAC (.05 or .08) and maintained it for 1 h. The participants completed a series of cognitive tests (Cogstate test battery) and a simulated driving task (driver attention inhibition and reaction test) over the course of their intoxication curve (approximately 4 h). The results showed strong placebo effects on ratings of subjective intoxication. Driving and cognitive performance both showed dose-dependent alcohol impairment, and some measures displayed acute protracted error. The findings provide strong evidence of expectancy effects in contributing to self-perceptions of intoxication. Copyright © 2014 Elsevier Ltd. All rights reserved.
Target size matters: target errors contribute to the generalization of implicit visuomotor learning.
Reichenthal, Maayan; Avraham, Guy; Karniel, Amir; Shmuelof, Lior
2016-08-01
The process of sensorimotor adaptation is considered to be driven by errors. While sensory prediction errors, defined as the difference between the planned and the actual movement of the cursor, drive implicit learning processes, target errors (e.g., the distance of the cursor from the target) are thought to drive explicit learning mechanisms. This distinction was mainly studied in the context of arm reaching tasks where the position and the size of the target were constant. We hypothesize that in a dynamic reaching environment, where subjects have to hit moving targets and the targets' dynamic characteristics affect task success, implicit processes will benefit from target errors as well. We examine the effect of target errors on learning of an unnoticed perturbation during unconstrained reaching movements. Subjects played a Pong game, in which they had to hit a moving ball by moving a paddle controlled by their hand. During the game, the movement of the paddle was gradually rotated with respect to the hand, reaching a final rotation of 25°. Subjects were assigned to one of two groups: The high-target error group played the Pong with a small ball, and the low-target error group played with a big ball. Before and after the Pong game, subjects performed open-loop reaching movements toward static targets with no visual feedback. While both groups adapted to the rotation, the postrotation reaching movements were directionally biased only in the small-ball group. This result provides evidence that implicit adaptation is sensitive to target errors. Copyright © 2016 the American Physiological Society.
Interactive Tools for Measuring Visual Scanning Performance and Reaction Time.
Brooks, Johnell; Seeanner, Julia; Hennessy, Sarah; Manganelli, Joseph; Crisler, Matthew; Rosopa, Patrick; Jenkins, Casey; Anderson, Michael; Drouin, Nathalie; Belle, Leah; Truesdail, Constance; Tanner, Stephanie
Occupational therapists are constantly searching for engaging, high-technology interactive tasks that provide immediate feedback to evaluate and train clients with visual scanning deficits. This study examined the relationship between two tools: the VISION COACH™ interactive light board and the Functional Object Detection © (FOD) Advanced driving simulator scenario. Fifty-four healthy drivers, ages 21-66 yr, were divided into three age groups. Participants performed braking response and visual target (E) detection tasks of the FOD Advanced driving scenario, followed by two sets of three trials using the VISION COACH Full Field 60 task. Results showed no significant effect of age on FOD Advanced performance but a significant effect of age on VISION COACH performance. Correlations showed that participants' performance on both braking and E detection tasks were significantly positively correlated with performance on the VISION COACH (.37 < r < .40, p < .01). These tools provide new options for therapists. Copyright © 2017 by the American Occupational Therapy Association, Inc.
Optimal Sector Sampling for Drive Triage
2013-06-01
known files, which we call target data, that could help identify a drive holding evidence such as child pornography or malware. Triage is needed to sift...we call target data, that could help identify a drive holding evidence such as child pornography or malware. Triage is needed to sift through drives...situations where the user is looking for known data.1 One example is a law enforcement officer searching for evidence of child pornography from a large num
The effects of taboo-related distraction on driving performance.
Chan, Michelle; Madan, Christopher R; Singhal, Anthony
2016-07-01
Roadside billboards containing negative and positive emotional content have been shown to influence driving performance, however, the impact of highly arousing taboo information is unknown. Taboo information more reliably evokes emotional arousal and can lead to greater attentional capture due to its inherent 'shock value.' The objective of the present study was to examine driver distraction associated with four types of information presented on roadside billboards: highly arousing taboo words, moderately arousing positive and negative words, and non-arousing neutral words. Participants viewed blocks of taboo, positive, negative and neutral words presented on roadside billboards while operating a driving simulator. They also responded to target (household-related) words by pressing a button on the steering wheel. At the end of the session, a surprise recall task was completed for all the words they saw while driving. Results showed that taboo words captured the most attention as revealed by better memory recall compared to all the other word types. Interestingly, taboo words were associated with better lane control compared to the other word types. We suggest that taboo-related arousal can enhance attentional focus during a complex task like simulated driving. That is, in a highly arousing situation, attention is selectively narrowed to the road ahead, resulting in better lane control. Copyright © 2016 Elsevier B.V. All rights reserved.
Novel Power Electronics Three-Dimensional Heat Exchanger: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennion, K.; Cousineau, J.; Lustbader, J.
2014-08-01
Electric drive systems for vehicle propulsion enable technologies critical to meeting challenges for energy, environmental, and economic security. Enabling cost-effective electric drive systems requires reductions in inverter power semiconductor area. As critical components of the electric drive system are made smaller, heat removal becomes an increasing challenge. In this paper, we demonstrate an integrated approach to the design of thermal management systems for power semiconductors that matches the passive thermal resistance of the packaging with the active convective cooling performance of the heat exchanger. The heat exchanger concept builds on existing semiconductor thermal management improvements described in literature and patents,more » which include improved bonded interface materials, direct cooling of the semiconductor packages, and double-sided cooling. The key difference in the described concept is the achievement of high heat transfer performance with less aggressive cooling techniques by optimizing the passive and active heat transfer paths. An extruded aluminum design was selected because of its lower tooling cost, higher performance, and scalability in comparison to cast aluminum. Results demonstrated a heat flux improvement of a factor of two, and a package heat density improvement over 30%, which achieved the thermal performance targets.« less
Effects of local defect growth in direct-drive cryogenic implosions on OMEGA
NASA Astrophysics Data System (ADS)
Igumenshchev, I. V.; Goncharov, V. N.; Shmayda, W. T.; Harding, D. R.; Sangster, T. C.; Meyerhofer, D. D.
2013-08-01
Spherically symmetric, low-adiabat (adiabat α ≲ 3) cryogenic direct-drive-implosion experiments on the OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1995)] yield less than 10% of the neutrons predicted in one-dimensional hydrodynamic simulations. Two-dimensional hydrodynamic simulations suggest that this performance degradation can be explained assuming perturbations from isolated defects of submicron to tens-of-micron scale on the outer surface or inside the shell of implosion targets. These defects develop during the cryogenic filling process and typically number from several tens up to hundreds for each target covering from about 0.2% to 1% of its surface. The simulations predict that such defects can significantly perturb the implosion and result in the injection of about 1 to 2 μg of the hot ablator (carbon-deuterium) and fuel (deuterium-tritium) materials from the ablation surface into the targets. Both the hot mass injection and perturbations of the shell reduce the final shell convergence ratio and implosion performance. The injected carbon ions radiatively cool the hot spot, reducing the fuel temperature, and further reducing the neutron yield. The negative effect of local defects can be minimized by decreasing the number and size of these defects and/or using more hydrodynamically stable implosion designs with higher shell adiabat.
Miniaturized haploscope for testing binocular vision
NASA Technical Reports Server (NTRS)
Decker, T. A.
1973-01-01
Device can reproduce virtually all binocular stimulus conditions (target configuration, vergence angle, and accommodative distance) used to test binocular performance. All subsystems of electronic controls are open-loop and solid-state-controlled and, with the exception of vergence angle drive, utilize dc stepping motors as prime movers. Arrangement is also made for readouts of each variable.
Addressing Common Technical challenges in Inertial Confinement Fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haynes, Donald A.
2016-09-22
The implosion phase for Inertial Confinement Fusion (ICF) occurs from initiation of the drive until just before stagnation. Evolution of the shell and fusion fuel during the implosion phase is affected by the initial conditions of the target, the drive history. Poor performing implosions are a result of the behavior that occurs during the implosion phase such as low mode asymmetries, mixing of the ablator into the fuel, and the hydrodynamic evolution of initial target features and defects such as the shell mounting hardware. The ultimate results of these effects can only be measured at stagnation. However, studying the implosionmore » phase can be effective for understanding and mitigating these effects and for of ultimately improving the performance of ICF implosions. As the ICF program moves towards the 2020 milestone to “determine the efficacy of ignition”, it will be important to understand the physics that occurs during the implosion phase. This will require both focused and integrated experiments. Focused experiments will provide the understanding and the evidence needed to support any determination concerning the efficacy of ignition.« less
Jackson, Simon A.; Kleitman, Sabina; Aidman, Eugene
2014-01-01
The present study investigated the effects of low cognitive workload and the absence of arousal induced via external physical stimulation (motion) on practice-related improvements in executive (inhibitory) control, short-term memory, metacognitive monitoring and decision making. A total of 70 office workers performed low and moderately engaging passenger tasks in two successive 20-minute simulated drives and repeated a battery of decision making and inhibitory control tests three times – before, between and after these drives. For half the participants, visual simulation was synchronised with (moderately arousing) motion generated through LAnd Motion Platform, with vibration levels corresponding to a well-maintained unsealed road. The other half performed the same simulated drive without motion. Participants’ performance significantly improved over the three test blocks, which is indicative of typical practice effects. The magnitude of these improvements was the highest when both motion and moderate cognitive load were present. The same effects declined either in the absence of motion (low arousal) or following a low cognitive workload task, thus suggesting two distinct pathways through which practice-related improvements in cognitive performance may be hampered. Practice, however, degraded certain aspects of metacognitive performance, as participants became less likely to detect incorrect decisions in the decision-making test with each subsequent test block. Implications include consideration of low cognitive load and arousal as factors responsible for performance decline and targets for the development of interventions/strategies in low load/arousal conditions such as autonomous vehicle operations and highway driving. PMID:25549327
Owsley, Cynthia; McGwin, Gerald; Antin, Jonathan F; Wood, Joanne M; Elgin, Jennifer
2018-02-07
Older drivers aged ≥70 years old have among the highest rates of motor vehicle collisions (MVC) compared to other age groups. Driving is a highly visual task, and older adults have a high prevalence of vision impairment compared to other ages. Most studies addressing visual risk factors for MVCs by older drivers utilize vehicle accident reports as the primary outcome, an approach with several methodological limitations. Naturalistic driving research methods overcome these challenges and involve installing a high-tech, unobtrusive data acquisition system (DAS) in an older driver's own vehicle. The DAS continuously records multi-channel video of driver and roadway, sensor-based kinematics, GPS location, and presence of nearby objects in front of the vehicle, providing an objective measure of driving exposure. In this naturalistic driving study, the purpose is to examine the relationship between vision and crashes and near-crashes, lane-keeping, turning at intersections, driving performance during secondary tasks demands, and the role of front-seat passengers. An additional aim is to compare results of the on-road driving evaluation by a certified driving rehabilitation specialist to objective indicators of driving performance derived from the naturalistic data. Drivers ≥70 years old are recruited from ophthalmology clinics and a previous population-based study of older drivers, with the goal of recruiting persons with wide ranging visual function. Target samples size is 195 drivers. At a baseline visit, the DAS is installed in the participant's vehicle and a battery of health and functional assessments are administered to the driver including visual-sensory and visual-cognitive tests. The DAS remains installed in the vehicle for six months while the participant goes about his/her normal driving with no imposed study restrictions. After six months, the driver returns for DAS de-installation, repeat vision testing, and an on-road driving evaluation by a certified driving rehabilitation specialist (CDRS). The data streams recorded by the DAS are uploaded to the data coordinating center for analysis. The Alabama VIP Older Driver Study is the first naturalistic older driver study specifically focused on the enrollment of drivers with vision impairment in order to study the relationship between visual dysfunction and driver safety and performance.
Novel characterization of capsule x-ray drive at the National Ignition Facility.
MacLaren, S A; Schneider, M B; Widmann, K; Hammer, J H; Yoxall, B E; Moody, J D; Bell, P M; Benedetti, L R; Bradley, D K; Edwards, M J; Guymer, T M; Hinkel, D E; Hsing, W W; Kervin, M L; Meezan, N B; Moore, A S; Ralph, J E
2014-03-14
Indirect drive experiments at the National Ignition Facility are designed to achieve fusion by imploding a fuel capsule with x rays from a laser-driven hohlraum. Previous experiments have been unable to determine whether a deficit in measured ablator implosion velocity relative to simulations is due to inadequate models of the hohlraum or ablator physics. ViewFactor experiments allow for the first time a direct measure of the x-ray drive from the capsule point of view. The experiments show a 15%-25% deficit relative to simulations and thus explain nearly all of the disagreement with the velocity data. In addition, the data from this open geometry provide much greater constraints on a predictive model of laser-driven hohlraum performance than the nominal ignition target.
Error Analysis and Performance Data from an Automated Azimuth Measuring System,
1981-02-17
microprocessors, tape drives, input and i NM. A detailed error analysis of the output hardware, a dual-axis tiltmeter ystem and methods to improve...performance mounted on the azimuth gimbal of each ALS, and accuracy are presented. Discussion and six tiltmeters arranged on an optical includes selected...velocity air flowing through tubes along the optical paths to each target. 1 . Introduction Temperature sensors are located in each To accurately and
Martinez-Valdes, Eduardo; Negro, Francesco; Falla, Deborah; De Nunzio, Alessandro Marco; Farina, Dario
2018-04-01
Surface electromyographic (EMG) signal amplitude is typically used to compare the neural drive to muscles. We experimentally investigated this association by studying the motor unit (MU) behavior and action potentials in the vastus medialis (VM) and vastus lateralis (VL) muscles. Eighteen participants performed isometric knee extensions at four target torques [10, 30, 50, and 70% of the maximum torque (MVC)] while high-density EMG signals were recorded from the VM and VL. The absolute EMG amplitude was greater for VM than VL ( P < 0.001), whereas the EMG amplitude normalized with respect to MVC was greater for VL than VM ( P < 0.04). Because differences in EMG amplitude can be due to both differences in the neural drive and in the size of the MU action potentials, we indirectly inferred the neural drives received by the two muscles by estimating the synaptic inputs received by the corresponding motor neuron pools. For this purpose, we analyzed the increase in discharge rate from recruitment to target torque for motor units matched by recruitment threshold in the two muscles. This analysis indicated that the two muscles received similar levels of neural drive. Nonetheless, the size of the MU action potentials was greater for VM than VL ( P < 0.001), and this difference explained most of the differences in EMG amplitude between the two muscles (~63% of explained variance). These results indicate that EMG amplitude, even following normalization, does not reflect the neural drive to synergistic muscles. Moreover, absolute EMG amplitude is mainly explained by the size of MU action potentials. NEW & NOTEWORTHY Electromyographic (EMG) amplitude is widely used to compare indirectly the strength of neural drive received by synergistic muscles. However, there are no studies validating this approach with motor unit data. Here, we compared between-muscles differences in surface EMG amplitude and motor unit behavior. The results clarify the limitations of surface EMG to interpret differences in neural drive between muscles.
LDRD Final Report: Advanced Hohlraum Concepts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Ogden S.
Indirect drive inertial confinement fusion (ICF) experiments to date have mostly used cylindrical, laser-heated, gas-filled hohlraums to produce the radiation drive needed to symmetrically implode DT-filled fusion capsules. These hohlraums have generally been unable to produce a symmetric radiation drive through the end of the desired drive pulse, and are plagued with complications due to laser-plasma interactions (LPI) that have made it difficult to predict their performance. In this project we developed several alternate hohlraum concepts. These new hohlraums utilize different hohlraum geometries, radiation shields, and foam materials in an attempt to improve performance relative to cylindrical hohlraums. Each alternatemore » design was optimized using radiation hydrodynamic (RH) design codes to implode a reference DT capsule with a high-density carbon (HDC) ablator. The laser power and energy required to produce the desired time-dependent radiation drive, and the resulting time-dependent radiation symmetry for each new concept were compared to the results for a reference cylindrical hohlraum. Since several of the new designs needed extra laser entrance holes (LEHs), techniques to keep small LEHs open longer, including high-Z foam liners and low-Z wires at the LEH axis, were investigated numerically. Supporting experiments and target fabrication efforts were also done as part of this project. On the Janus laser facility plastic tubes open at one end (halfraums) and filled with SiO 2 or Ta 2O 5 foam were heated with a single 2w laser. Laser propagation and backscatter were measured. Generally the measured propagation was slower than calculated, and the measured laser backscatter was less than calculated. A comparable, scaled up experiment was designed for the NIF facility and four targets were built. Since low density gold foam was identified as a desirable material for lining the LEH and the hohlraum wall, a technique was developed to produce 550 mg/cc gold foam, and a sample of this material was successfully manufactured.« less
Deleterious effects of nonthermal electrons in shock ignition concept.
Nicolaï, Ph; Feugeas, J-L; Touati, M; Ribeyre, X; Gus'kov, S; Tikhonchuk, V
2014-03-01
Shock ignition concept is a promising approach to inertial confinement fusion that may allow obtaining high fusion energy gains with the existing laser technology. However, the spike driving laser intensities in the range of 1-10 PW/cm2 produces the energetic electrons that may have a significant effect on the target performance. The hybrid numerical simulations including a radiation hydrodynamic code coupled to a rapid Fokker-Planck module are used to asses the role of hot electrons in the shock generation and the target preheat in the time scale of 100 ps and spatial scale of 100 μm. It is shown that depending on the electron energy distribution and the target density profile the hot electrons can either increase the shock amplitude or preheat the imploding shell. In particular, the exponential electron energy spectrum corresponding to the temperature of 30 keV in the present HiPER target design preheats the deuterium-tritium shell and jeopardizes its compression. Ways of improving the target performance are suggested.
Linking mind wandering tendency to risky driving in young male drivers.
Albert, Derek A; Ouimet, Marie Claude; Jarret, Julien; Cloutier, Marie-Soleil; Paquette, Martin; Badeau, Nancy; Brown, Thomas G
2018-02-01
Risky driving is a significant contributor to road traffic crashes, especially in young drivers. Transient mind wandering states, an internal form of distraction, are associated with faster driving, reduced headway distance, slower response times, reduced driver vigilance, and increased crash risk. It is unclear whether a trait tendency to mind wander predicts risky driving, however. Mind wandering is also associated with poor executive control, but whether this capacity moderates the putative link between mind wandering tendency and risky driving is uncertain. The present study tested whether mind wandering tendency predicts risky driving behaviour in young male drivers aged 18-21 (N=30) and whether this relationship is mediated by driver vigilance and moderated by executive control capacity. Mind wandering was measured with the Sustained Attention to Response Task (SART) and the Daydreaming Frequency Scale (DDFS). Risky driving was assessed by mean speed in a driving simulator and driver vigilance was quantified by horizontal eye movements measured with eye tracking. Results showed that greater mind wandering tendency based on SART performance significantly predicts faster mean speed, confirming the main hypothesis. Neither driver vigilance mediated nor executive control capacity moderated this relationship as hypothesized. These findings speak to the complexity of individual differences in mind wandering. Overall, mind wandering tendency is a significant marker of risky driving in young drivers, which could guide the development of targeted interventions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Development of VIPER: a simulator for assessing vision performance of warfighters
NASA Astrophysics Data System (ADS)
Familoni, Jide; Thompson, Roger; Moyer, Steve; Mueller, Gregory; Williams, Tim; Nguyen, Hung-Quang; Espinola, Richard L.; Sia, Rose K.; Ryan, Denise S.; Rivers, Bruce A.
2016-05-01
Background: When evaluating vision, it is important to assess not just the ability to read letters on a vision chart, but also how well one sees in real life scenarios. As part of the Warfighter Refractive Eye Surgery Program (WRESP), visual outcomes are assessed before and after refractive surgery. A Warfighter's ability to read signs and detect and identify objects is crucial, not only when deployed in a military setting, but also in their civilian lives. Objective: VIPER, a VIsion PERformance simulator was envisioned as actual video-based simulated driving to test warfighters' functional vision under realistic conditions. Designed to use interactive video image controlled environments at daytime, dusk, night, and with thermal imaging vision, it simulates the experience of viewing and identifying road signs and other objects while driving. We hypothesize that VIPER will facilitate efficient and quantifiable assessment of changes in vision and measurement of functional military performance. Study Design: Video images were recorded on an isolated 1.1 mile stretch of road with separate target sets of six simulated road signs and six objects of military interest, separately. The video footage were integrated with customdesigned C++ based software that presented the simulated drive to an observer on a computer monitor at 10, 20 or 30 miles/hour. VIPER permits the observer to indicate when a target is seen and when it is identified. Distances at which the observer recognizes and identifies targets are automatically logged. Errors in recognition and identification are also recorded. This first report describes VIPER's development and a preliminary study to establish a baseline for its performance. In the study, nine soldiers viewed simulations at 10 miles/hour and 30 miles/hour, run in randomized order for each participant seated at 36 inches from the monitor. Relevance: Ultimately, patients are interested in how their vision will affect their ability to perform daily activities. In the military context, in addition to reading road signs, this includes vision with night sensors and identification of objects of military interest. Once completed and validated, VIPER will be used to evaluate functional performance before and after refractive surgery. Results: This initial study was to prove the principle, and its results at the time of this publication were very preliminary. Nine Soldiers viewed visible-day and IR-day VIPER simulations with civilian and military targets, separately, at 10 and 30 miles/hour. Analyses were performed separately for visible and IR, and also aggregated. Only the civilian targets are discussed in this report. At 10 miles/hour, the population detected civilian road signs at an aggregated average of 90.11 +/- 64.20 m, and identified them at 26.93 +/- 22.27m. At 30 miles/hour, the corresponding distances were 103.03 +/- 58.81 and 26.26 +/- 8.55, respectively. Conclusion: This preliminary report proves the principle and suggests that VIPER could be a useful clinical tool in longitudinal assessment of functional vision in warfighters.
Li, Xiaomeng; Yan, Xuedong; Wu, Jiawei; Radwan, Essam; Zhang, Yuting
2016-12-01
Driver's collision avoidance performance has a direct link to the collision risk and crash severity. Previous studies demonstrated that the distracted driving, such as using a cell phone while driving, disrupted the driver's performance on road. This study aimed to investigate the manner and extent to which cell phone use and driver's gender affected driving performance and collision risk in a rear-end collision avoidance process. Forty-two licensed drivers completed the driving simulation experiment in three phone use conditions: no phone use, hands-free, and hand-held, in which the drivers drove in a car-following situation with potential rear-end collision risks caused by the leading vehicle's sudden deceleration. Based on the experiment data, a rear-end collision risk assessment model was developed to assess the influence of cell phone use and driver's gender. The cell phone use and driver's gender were found to be significant factors that affected the braking performances in the rear-end collision avoidance process, including the brake reaction time, the deceleration adjusting time and the maximum deceleration rate. The minimum headway distance between the leading vehicle and the simulator during the rear-end collision avoidance process was the final output variable, which could be used to measure the rear-end collision risk and judge whether a collision occurred. The results showed that although cell phone use drivers took some compensatory behaviors in the collision avoidance process to reduce the mental workload, the collision risk in cell phone use conditions was still higher than that without the phone use. More importantly, the results proved that the hands-free condition did not eliminate the safety problem associated with distracted driving because it impaired the driving performance in the same way as much as the use of hand-held phones. In addition, the gender effect indicated that although female drivers had longer reaction time than male drivers in critical situation, they were more quickly in braking with larger maximum deceleration rate, and they tended to keep a larger safety margin with the leading vehicle compared to male drivers. The findings shed some light on the further development of advanced collision avoidance technologies and the targeted intervention strategies about cell phone use while driving. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cao, Haotian; Song, Xiaolin; Zhao, Song; Bao, Shan; Huang, Zhi
2017-08-01
Automated driving has received a broad of attentions from the academia and industry, since it is effective to greatly reduce the severity of potential traffic accidents and achieve the ultimate automobile safety and comfort. This paper presents an optimal model-based trajectory following architecture for highly automated vehicle in its driving tasks such as automated guidance or lane keeping, which includes a velocity-planning module, a steering controller and a velocity-tracking controller. The velocity-planning module considering the optimal time-consuming and passenger comforts simultaneously could generate a smooth velocity profile. The robust sliding mode control (SMC) steering controller with adaptive preview time strategy could not only track the target path well, but also avoid a big lateral acceleration occurred in its path-tracking progress due to a fuzzy-adaptive preview time mechanism introduced. In addition, an SMC controller with input-output linearisation method for velocity tracking is built and validated. Simulation results show this trajectory following architecture are effective and feasible for high automated driving vehicle, comparing with the Driver-in-the-Loop simulations performed by an experienced driver and novice driver, respectively. The simulation results demonstrate that the present trajectory following architecture could plan a satisfying longitudinal speed profile, track the target path well and safely when dealing with different road geometry structure, it ensures a good time efficiency and driving comfort simultaneously.
NASA Astrophysics Data System (ADS)
Salazar, William
2003-01-01
The Standard Advanced Dewar Assembly (SADA) is the critical module in the Department of Defense (DoD) standardization effort of scanning second-generation thermal imaging systems. DoD has established a family of SADA's to address requirements for high performance (SADA I), mid-to-high performance (SADA II), and compact class (SADA III) systems. SADA's consist of the Infrared Focal Plane Array (IRFPA), Dewar, Command and Control Electronics (C&CE), and the cryogenic cooler. SADA's are used in weapons systems such as Comanche and Apache helicopters, the M1 Abrams Tank, the M2 Bradley Fighting Vehicle, the Line of Sight Antitank (LOSAT) system, the Improved Target Acquisition System (ITAS), and Javelin's Command Launch Unit (CLU). DOD has defined a family of tactical linear drive coolers in support of the family of SADA's. The Stirling linear drive cryo-coolers are utilized to cool the SADA's Infrared Focal Plane Arrays (IRFPAs) to their operating cryogenic temperatures. These linear drive coolers are required to meet strict cool-down time requirements along with lower vibration output, lower audible noise, and higher reliability than currently fielded rotary coolers. This paper will (1) outline the characteristics of each cooler, (2) present the status and results of qualification tests, and (3) present the status and test results of efforts to increase linear drive cooler reliability.
Methods for Automated Identification of Informative Behaviors in Natural Bioptic Driving
Luo, Gang; Peli, Eli
2012-01-01
Visually impaired people may legally drive if wearing bioptic telescopes in some developed countries. To address the controversial safety issue of the practice, we have developed a low cost in-car recording system that can be installed in study participants’ own vehicles to record their daily driving activities. We also developed a set of automated identification techniques of informative behaviors to facilitate efficient manual review of important segments submerged in the vast amount of uncontrolled data. Here we present the methods and quantitative results of the detection performance for six types of driving maneuvers and behaviors that are important for bioptic driving: bioptic telescope use, turns, curves, intersections, weaving, and rapid stops. The testing data were collected from one normally sighted and two visually impaired subjects across multiple days. The detection rates ranged from 82% up to 100%, and the false discovery rates ranged from 0% to 13%. In addition, two human observers were able to interpret about 80% of targets viewed through the telescope. These results indicate that with appropriate data processing the low-cost system is able to provide reliable data for natural bioptic driving studies. PMID:22514200
NASA Astrophysics Data System (ADS)
Marozas, J. A.; Hohenberger, M.; Rosenberg, M. J.; Turnbull, D.; Collins, T. J. B.; Radha, P. B.; McKenty, P. W.; Zuegel, J. D.; Marshall, F. J.; Regan, S. P.; Sangster, T. C.; Seka, W.; Campbell, E. M.; Goncharov, V. N.; Bowers, M. W.; Di Nicola, J.-M. G.; Erbert, G.; MacGowan, B. J.; Pelz, L. J.; Moody, J.; Yang, S. T.
2018-05-01
Cross-beam energy transfer (CBET) results from two-beam energy exchange via seeded stimulated Brillouin scattering, which detrimentally reduces laser-energy absorption for direct-drive inertial confinement fusion. Consequently, ablation pressure and implosion velocity suffer from the decreased absorption, reducing target performance in both symmetric and polar direct drive. Additionally, CBET alters the time-resolved scattered-light spectra and redistributes absorbed and scattered-light-changing shell morphology and low-mode drive symmetry. Mitigating CBET is demonstrated in inertial confinement implosions at the National Ignition Facility by detuning the laser-source wavelengths (±2.3 Å UV) of the interacting beams. In polar direct drive, wavelength detuning was shown to increase the equatorial region velocity experimentally by 16% and to alter the in-flight shell morphology. These experimental observations are consistent with design predictions of radiation-hydrodynamic simulations that indicate a 10% increase in the average ablation pressure. These results indicate that wavelength detuning successfully mitigates CBET. Simulations predict that optimized phase plates and wavelength-detuning CBET mitigation utilizing the three-legged beam layout of the OMEGA Laser System significantly increase absorption and achieve >100-Gbar hot-spot pressures in symmetric direct drive.
Robust, Flexible Motion Control for the Mars Explorer Rovers
NASA Technical Reports Server (NTRS)
Maimone, Mark; Biesiadecki, Jeffrey
2007-01-01
The Mobility Flight Software, running on computers aboard the Mars Explorer Rover (MER) robotic vehicles Spirit and Opportunity, affords the robustness and flexibility of control to enable safe and effective operation of these vehicles in traversing natural terrain. It can make the vehicles perform specific maneuvers commanded from Earth, and/or can autonomously administer multiple aspects of mobility, including choice of motion, measurement of actual motion, and even selection of targets to be approached. Motion of a vehicle can be commanded by use of multiple layers of control, ranging from motor control at a low level, direct drive operations (e.g., motion along a circular arc, motion along a straight line, or turn in place) at an intermediate level to goal-position driving (that is, driving to a specified location) at a high level. The software can also perform high-level assessment of terrain and selection of safe paths across the terrain: this involves processing of the digital equivalent of a local traversability map generated from images acquired by stereoscopic pairs of cameras aboard the vehicles. Other functions of the software include interacting with the rest of the MER flight software and performing safety checks.
A Quantitative Evaluation of Drive Pattern Selection for Optimizing EIT-Based Stretchable Sensors
Nefti-Meziani, Samia; Carbonaro, Nicola
2017-01-01
Electrical Impedance Tomography (EIT) is a medical imaging technique that has been recently used to realize stretchable pressure sensors. In this method, voltage measurements are taken at electrodes placed at the boundary of the sensor and are used to reconstruct an image of the applied touch pressure points. The drawback with EIT-based sensors, however, is their low spatial resolution due to the ill-posed nature of the EIT reconstruction. In this paper, we show our performance evaluation of different EIT drive patterns, specifically strategies for electrode selection when performing current injection and voltage measurements. We compare voltage data with Signal-to-Noise Ratio (SNR) and Boundary Voltage Changes (BVC), and study image quality with Size Error (SE), Position Error (PE) and Ringing (RNG) parameters, in the case of one-point and two-point simultaneous contact locations. The study shows that, in order to improve the performance of EIT based sensors, the electrode selection strategies should dynamically change correspondingly to the location of the input stimuli. In fact, the selection of one drive pattern over another can improve the target size detection and position accuracy up to 4.7% and 18%, respectively. PMID:28858252
A Quantitative Evaluation of Drive Pattern Selection for Optimizing EIT-Based Stretchable Sensors.
Russo, Stefania; Nefti-Meziani, Samia; Carbonaro, Nicola; Tognetti, Alessandro
2017-08-31
Electrical Impedance Tomography (EIT) is a medical imaging technique that has been recently used to realize stretchable pressure sensors. In this method, voltage measurements are taken at electrodes placed at the boundary of the sensor and are used to reconstruct an image of the applied touch pressure points. The drawback with EIT-based sensors, however, is their low spatial resolution due to the ill-posed nature of the EIT reconstruction. In this paper, we show our performance evaluation of different EIT drive patterns, specifically strategies for electrode selection when performing current injection and voltage measurements. We compare voltage data with Signal-to-Noise Ratio (SNR) and Boundary Voltage Changes (BVC), and study image quality with Size Error (SE), Position Error (PE) and Ringing (RNG) parameters, in the case of one-point and two-point simultaneous contact locations. The study shows that, in order to improve the performance of EIT based sensors, the electrode selection strategies should dynamically change correspondingly to the location of the input stimuli. In fact, the selection of one drive pattern over another can improve the target size detection and position accuracy up to 4.7% and 18%, respectively.
Experiments on the Dynamics and Hydrodynamic Instabilities of Ablatively Accelerated Targets.
1983-02-01
pressure and velocities obtained using the double foil tech - diance nonuniformities has been investigated previously and 430 Appi P"v$ Lett.. Vol 41. No, 5...NRL is evaluating for the Department of Energy the feasibility of using direct laser drive to Implode fusion pellets.t Mission Research Corporation...MRC) has contracted to support this experiment by using its best effort to perform the tasks summarized below: A parametric study shall be performed
NLTE atomic kinetics modeling in ICF target simulations
NASA Astrophysics Data System (ADS)
Patel, Mehul V.; Mauche, Christopher W.; Scott, Howard A.; Jones, Ogden S.; Shields, Benjamin T.
2017-10-01
Radiation hydrodynamics (HYDRA) simulations using recently developed 1D spherical and 2D cylindrical hohlraum models have enabled a reassessment of the accuracy of energetics modeling across a range of NIF target configurations. Higher-resolution hohlraum calculations generally find that the X-ray drive discrepancies are greater than previously reported. We identify important physics sensitivities in the modeling of the NLTE wall plasma and highlight sensitivity variations between different hohlraum configurations (e.g. hohlraum gas fill). Additionally, 1D capsule only simulations show the importance of applying a similar level of rigor to NLTE capsule ablator modeling. Taken together, these results show how improved target performance predictions can be achieved by performing inline atomic kinetics using more complete models for the underlying atomic structure and transitions. Prepared by LLNL under Contract DE-AC52-07NA27344.
Beanland, Vanessa; Filtness, Ashleigh J; Jeans, Rhiannon
2017-03-01
The ability to detect changes is crucial for safe driving. Previous research has demonstrated that drivers often experience change blindness, which refers to failed or delayed change detection. The current study explored how susceptibility to change blindness varies as a function of the driving environment, type of object changed, and safety relevance of the change. Twenty-six fully-licenced drivers completed a driving-related change detection task. Changes occurred to seven target objects (road signs, cars, motorcycles, traffic lights, pedestrians, animals, or roadside trees) across two environments (urban or rural). The contextual safety relevance of the change was systematically manipulated within each object category, ranging from high safety relevance (i.e., requiring a response by the driver) to low safety relevance (i.e., requiring no response). When viewing rural scenes, compared with urban scenes, participants were significantly faster and more accurate at detecting changes, and were less susceptible to "looked-but-failed-to-see" errors. Interestingly, safety relevance of the change differentially affected performance in urban and rural environments. In urban scenes, participants were more efficient at detecting changes with higher safety relevance, whereas in rural scenes the effect of safety relevance has marginal to no effect on change detection. Finally, even after accounting for safety relevance, change blindness varied significantly between target types. Overall the results suggest that drivers are less susceptible to change blindness for objects that are likely to change or move (e.g., traffic lights vs. road signs), and for moving objects that pose greater danger (e.g., wild animals vs. pedestrians). Copyright © 2017 Elsevier Ltd. All rights reserved.
Three-Dimensional Modeling of Low-Mode Asymmetries in OMEGA Cryogenic Implosions
NASA Astrophysics Data System (ADS)
Anderson, K. S.; McKenty, P. W.; Shvydky, A.; Collins, T. J. B.; Forrest, C. J.; Knauer, J. P.; Marozas, J. A.; Marshall, F. J.; Radha, P. B.; Sefkow, A. B.; Marinak, M. M.
2017-10-01
In direct-drive inertial confinement fusion implosions, long-wavelength asymmetries resulting from target offset, laser power imbalance, beam mispointing, etc. can be highly detrimental to target performance. Characterizing the effects of these asymmetry sources requires 3-D simulations performed in full-sphere geometry to accurately capture the evolution of shell perturbations and hot-spot flow. This paper will present 3-D HYDRA simulations characterizing the impact of these perturbation sources on yield and shell modulation. Various simulated observables are generated, and trends are analyzed and compared with experimental data. This material is based on work supported by the Department of Energy National Nuclear Security Administration under Award Numbers DE-NA0001944 and performed under the auspices of the LLNL under Contract No. DE-AC52-07NA27344.
Target studies for the neutrino factory at the Rutherford Appleton laboratory
NASA Astrophysics Data System (ADS)
Drumm, Paul; Densham, Chris; Bennett, Roger
2001-10-01
Target studies at the Rutherford Appleton Laboratory have concentrated on studies of a solid heavy metal target. The suggestion to use a radiatively cooled target which rotates in beam was made shortly after the first NuFact workshop as a means of dissipating large amounts of power at a high temperature, and as an alternative to the proposed water-cooled rotating band and liquid metal jet targets. This paper examines the proposed drive scheme for the target ring, which uses induced currents and magnetic forces to both levitate and drive the target. Estimates of the power required to levitate and drive the target ring and the forces exerted on the moving ring as it enters the target capture solenoid are given. One of the principle concerns in the operation of a solid target is the severe shock stress experienced due to the impact of an intense energetic proton beam in a short time compared to the transit time of sound in the material. Calculations of the stresses induced in the target ring and their evolution with time as well as an initial estimation of the expected power densities and stresses in an existing high power density target are presented.
MacLaren, S. A.; Schneider, M. B.; Widmann, K.; ...
2014-03-13
Here, indirect drive experiments at the National Ignition Facility are designed to achieve fusion by imploding a fuel capsule with x rays from a laser-driven hohlraum. Previous experiments have been unable to determine whether a deficit in measured ablator implosion velocity relative to simulations is due to inadequate models of the hohlraum or ablator physics. ViewFactor experiments allow for the first time a direct measure of the x-ray drive from the capsule point of view. The experiments show a 15%–25% deficit relative to simulations and thus explain nearly all of the disagreement with the velocity data. In addition, the datamore » from this open geometry provide much greater constraints on a predictive model of laser-driven hohlraum performance than the nominal ignition target.« less
The 3600 hp split-torque helicopter transmission
NASA Technical Reports Server (NTRS)
White, G.
1985-01-01
Final design details of a helicopter transmission that is powered by GE twin T 700 engines each rated at 1800 hp are presented. It is demonstrated that in comparison with conventional helicopter transmission arrangements the split torque design offers: weight reduction of 15%; reduction in drive train losses of 9%; and improved reliability resulting from redundant drive paths between the two engines and the main shaft. The transmission fits within the NASA LeRC 3000 hp Test Stand and accepts the existing positions for engine inputs, main shaft, connecting drive shafts, and the cradle attachment points. One necessary change to the test stand involved gear trains of different ratio in the tail drive gearbox. Progressive uprating of engine input power from 3600 to 4500 hp twin engine rating is allowed for in the design. In this way the test transmission will provide a base for several years of analytical, research, and component development effort targeted at improving the performance and reliability of helicopter transmission.
The National Direct-Drive Program: OMEGA to the National Ignition Facility
Regan, S. P.; Goncharov, V. N.; Sangster, T. C.; ...
2017-12-28
The goal of the National Direct-Drive Program is to demonstrate and understand the physics of laser direct drive (LDD). Efforts are underway on OMEGA for the 100-Gbar Campaign to demonstrate and understand the physics for hot-spot conditions and formation relevant for ignition at the 1-MJ scale, and at the National Ignition Facility to develop an understanding of the direct-drive physics at long scale lengths for the MJ Direct-Drive Campaign. For this paper the strategy of the National Direct-Drive Program is described; the requirements for the DT cryogenic fill-tube target being developed for OMEGA are presented; and preliminary LDD implosion measurementsmore » of hydrodynamic mixing seeded by laser imprint, the target-mounting stalk, and microscopic surface debris are reported.« less
The National Direct-Drive Program: OMEGA to the National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Regan, S. P.; Goncharov, V. N.; Sangster, T. C.
The goal of the National Direct-Drive Program is to demonstrate and understand the physics of laser direct drive (LDD). Efforts are underway on OMEGA for the 100-Gbar Campaign to demonstrate and understand the physics for hot-spot conditions and formation relevant for ignition at the 1-MJ scale, and at the National Ignition Facility to develop an understanding of the direct-drive physics at long scale lengths for the MJ Direct-Drive Campaign. For this paper the strategy of the National Direct-Drive Program is described; the requirements for the DT cryogenic fill-tube target being developed for OMEGA are presented; and preliminary LDD implosion measurementsmore » of hydrodynamic mixing seeded by laser imprint, the target-mounting stalk, and microscopic surface debris are reported.« less
Playing shooter and driving videogames improves top-down guidance in visual search.
Wu, Sijing; Spence, Ian
2013-05-01
Playing action videogames is known to improve visual spatial attention and related skills. Here, we showed that playing action videogames also improves classic visual search, as well as the ability to locate targets in a dual search that mimics certain aspects of an action videogame. In Experiment 1A, first-person shooter (FPS) videogame players were faster than nonplayers in both feature search and conjunction search, and in Experiment 1B, they were faster and more accurate in a peripheral search and identification task while simultaneously performing a central search. In Experiment 2, we showed that 10 h of play could improve the performance of nonplayers on each of these tasks. Three different genres of videogames were used for training: two action games and a 3-D puzzle game. Participants who played an action game (either an FPS or a driving game) achieved greater gains on all search tasks than did those who trained using the puzzle game. Feature searches were faster after playing an action videogame, suggesting that players developed a better target template to guide search in a top-down manner. The results of the dual search suggest that, in addition to enhancing the ability to divide attention, playing an action game improves the top-down guidance of attention to possible target locations. The results have practical implications for the development of training tools to improve perceptual and cognitive skills.
de Groot, Stefan; de Winter, Joost C F; López García, José Manuel; Mulder, Max; Wieringa, Peter A
2011-02-01
The aim of this study was to investigate whether concurrent bandwidth feedback improves learning of the lane-keeping task in a driving simulator. Previous research suggests that bandwidth feedback improves learning and that off-target feedback is superior to on-target feedback. This study aimed to extend these findings for the lane-keeping task. Participants without a driver's license drove five 8-min lane-keeping sessions in a driver training simulator: three practice sessions, an immediate retention session, and a delayed retention session I day later. There were four experimental groups (n=15 per group): (a) on-target, receiving seat vibrations when the center of the car was within 0.5 m of the lane center; (b) off-target, receiving seat vibrations when the center of the car was more than 0.5 m away from the lane center; (c) control, receiving no vibrations; and (d) realistic, receiving seat vibrations depending on engine speed. During retention, all groups were provided with the realistic vibrations. During practice, on-target and off-target groups had better lane-keeping performance than the nonaugmented groups, but this difference diminished in the retention phase. Furthermore, during late practice and retention, the off-target group outperformed the on-target group.The off-target group had a higher rate of steering reversal and higher steering entropy than the nonaugmented groups, whereas no clear group differences were found regarding mean speed, mental workload, or self-reported measures. Off-target feedback is superior to on-target feedback for learning the lane-keeping task. This research provides knowledge to researchers and designers of training systems about the value of feedback in simulator-based training of vehicular control.
Method for controlling a vehicle with two or more independently steered wheels
Reister, D.B.; Unseren, M.A.
1995-03-28
A method is described for independently controlling each steerable drive wheel of a vehicle with two or more such wheels. An instantaneous center of rotation target and a tangential velocity target are inputs to a wheel target system which sends the velocity target and a steering angle target for each drive wheel to a pseudo-velocity target system. The pseudo-velocity target system determines a pseudo-velocity target which is compared to a current pseudo-velocity to determine a pseudo-velocity error. The steering angle targets and the steering angles are inputs to a steering angle control system which outputs to the steering angle encoders, which measure the steering angles. The pseudo-velocity error, the rate of change of the pseudo-velocity error, and the wheel slip between each pair of drive wheels are used to calculate intermediate control variables which, along with the steering angle targets are used to calculate the torque to be applied at each wheel. The current distance traveled for each wheel is then calculated. The current wheel velocities and steering angle targets are used to calculate the cumulative and instantaneous wheel slip and the current pseudo-velocity. 6 figures.
Target Control in Logical Models Using the Domain of Influence of Nodes.
Yang, Gang; Gómez Tejeda Zañudo, Jorge; Albert, Réka
2018-01-01
Dynamical models of biomolecular networks are successfully used to understand the mechanisms underlying complex diseases and to design therapeutic strategies. Network control and its special case of target control, is a promising avenue toward developing disease therapies. In target control it is assumed that a small subset of nodes is most relevant to the system's state and the goal is to drive the target nodes into their desired states. An example of target control would be driving a cell to commit to apoptosis (programmed cell death). From the experimental perspective, gene knockout, pharmacological inhibition of proteins, and providing sustained external signals are among practical intervention techniques. We identify methodologies to use the stabilizing effect of sustained interventions for target control in Boolean network models of biomolecular networks. Specifically, we define the domain of influence (DOI) of a node (in a certain state) to be the nodes (and their corresponding states) that will be ultimately stabilized by the sustained state of this node regardless of the initial state of the system. We also define the related concept of the logical domain of influence (LDOI) of a node, and develop an algorithm for its identification using an auxiliary network that incorporates the regulatory logic. This way a solution to the target control problem is a set of nodes whose DOI can cover the desired target node states. We perform greedy randomized adaptive search in node state space to find such solutions. We apply our strategy to in silico biological network models of real systems to demonstrate its effectiveness.
Advanced Video Guidance Sensor (AVGS) Development Testing
NASA Technical Reports Server (NTRS)
Howard, Richard T.; Johnston, Albert S.; Bryan, Thomas C.; Book, Michael L.
2004-01-01
NASA's Marshall Space Flight Center was the driving force behind the development of the Advanced Video Guidance Sensor, an active sensor system that provides near-range sensor data as part of an automatic rendezvous and docking system. The sensor determines the relative positions and attitudes between the active sensor and the passive target at ranges up to 300 meters. The AVGS uses laser diodes to illuminate retro-reflectors in the target, a solid-state camera to detect the return from the target, and image capture electronics and a digital signal processor to convert the video information into the relative positions and attitudes. The AVGS will fly as part of the Demonstration of Autonomous Rendezvous Technologies (DART) in October, 2004. This development effort has required a great deal of testing of various sorts at every phase of development. Some of the test efforts included optical characterization of performance with the intended target, thermal vacuum testing, performance tests in long range vacuum facilities, EMI/EMC tests, and performance testing in dynamic situations. The sensor has been shown to track a target at ranges of up to 300 meters, both in vacuum and ambient conditions, to survive and operate during the thermal vacuum cycling specific to the DART mission, to handle EM1 well, and to perform well in dynamic situations.
What You May Not See Might Slow You Down Anyway: Masked Images and Driving
Lewis-Evans, Ben; de Waard, Dick; Jolij, Jacob; Brookhuis, Karel A.
2012-01-01
Many theories of driver behaviour suggest that unconscious or implicit emotions play a functional role in the shaping and control of behaviour. This has not been experimentally tested however. Therefore, in this study the effects of emotive masked images on driver behaviour were examined. While driving a simulator, participants were repeatedly exposed to negative or neutral emotionally laden target images that were sandwich masked by emotionally neutral images. These images were encountered across two different trials each of which consisted of 3–4 minutes of driving on a rural road. The results indicate an effect of the negative target images primarily in reducing the extent of familiarisation occurring between the first and second experimental drives. This is evident in a reduced decrease in heart rate and a reduced increase in high band heart rate variability and actual travelling speed from the first to second drives if the negative target image was presented in the second drive. In addition to these findings there was no clear effect of the target image on subjective ratings of effort or feelings of risk. There was however an effect of gender, with the majority of the effects found in the study being limited to the larger female dataset. These findings suggest that unconscious or implicit emotional stimuli may well influence driver behaviour without explicit awareness. PMID:22279549
Prefrontal transcranial direct current stimulation improves fundamental vehicle control abilities.
Sakai, Hiroyuki; Uchiyama, Yuji; Tanaka, Satoshi; Sugawara, Sho K; Sadato, Norihiro
2014-10-15
Noninvasive brain stimulation techniques have increasingly attracted the attention of neuroscientists because they enable the identification of the causal role of a targeted brain region. However, few studies have applied such techniques to everyday life situations. Here, we investigate the causal role of the dorsolateral prefrontal cortex (DLPFC) in fundamental vehicle control abilities. Thirteen participants underwent a simulated driving task under prefrontal transcranial direct current stimulation (tDCS) on three separate testing days. Each testing day was randomly assigned to either anodal over the right with cathodal over the left DLPFC, cathodal over the right with anodal over the left DLPFC, or sham stimulation. The driving task required the participants to maintain an inter-vehicle distance to a leading car traveling a winding road with a constant speed. Driving performance was quantified using two metrics: the root-mean-square error of inter-vehicle distance as car-following performance, and the standard deviation of lateral position as lane-keeping performance. Results showed that both car-following and lane-keeping performances were significantly greater for right anodal/left cathodal compared with right cathodal/left cathodal and sham stimulation. These results suggest not only the causal involvement of the DLPFC in driving, but also right hemisphere dominance for vehicle control. The findings of this study indicate that tDCS can be a useful tool to examine the causal role of a specific brain region in ecologically valid environments, and also might be a help to drivers with difficulties in vehicle control. Copyright © 2014 Elsevier B.V. All rights reserved.
Markant, Julie; Worden, Michael S.; Amso, Dima
2015-01-01
Learning through visual exploration often requires orienting of attention to meaningful information in a cluttered world. Previous work has shown that attention modulates visual cortex activity, with enhanced activity for attended targets and suppressed activity for competing inputs, thus enhancing the visual experience. Here we examined the idea that learning may be engaged differentially with variations in attention orienting mechanisms that drive driving eye movements during visual search and exploration. We hypothesized that attention orienting mechanisms that engaged suppression of a previously attended location will boost memory encoding of the currently attended target objects to a greater extent than those that involve target enhancement alone To test this hypothesis we capitalized on the classic spatial cueing task and the inhibition of return (IOR) mechanism (Posner, Rafal, & Choate, 1985; Posner, 1980) to demonstrate that object images encoded in the context of concurrent suppression at a previously attended location were encoded more effectively and remembered better than those encoded without concurrent suppression. Furthermore, fMRI analyses revealed that this memory benefit was driven by attention modulation of visual cortex activity, as increased suppression of the previously attended location in visual cortex during target object encoding predicted better subsequent recognition memory performance. These results suggest that not all attention orienting impacts learning and memory equally. PMID:25701278
Measuring the Ablative Richtmyer-Meshkov Growth of Isolated Defects on Plastic Capsules
NASA Astrophysics Data System (ADS)
Loomis, Eric; Braun, Dave; Batha, Steve; Sedillo, Tom; Evans, Scott; Sorce, Chuck; Landen, Otto
2010-11-01
To achieve thermonuclear ignition at Megajoule class laser systems such as the NIF using inertially confined plasmas, targets must be designed with high in-flight aspect ratios (IFAR) resulting in low shell stability. Recent simulations and experiments have shown that isolated features on the outer surface of an ignition capsule can profoundly impact capsule performance by leading to material jetting or mix into the hotspot. Unfortunately, our ability to accurately predict these effects is uncertain due to disagreement between equation of state (EOS) models. In light of this, we have begun a campaign to measure the growth of isolated defects due to ablative Richtmyer-Meshkov in CH capsules to validate these models. Face- on transmission radiography has been used to measure the evolution of Gaussian bump arrays in plastic targets. Targets were indirectly-driven using Au halfraums to radiation temperatures near 65-75 eV at the Omega laser (Laboratory for Laser Energetics, University of Rochester, NY) simultaneous with x-ray backlighting from a saran (Cl) foil. Shock speed measurements were also made to determine drive conditions in the target. The results from these experiments will aid in the design of ignition drive pulses that minimize bump amplitude at the time of shell acceleration.
The Physics of Advanced High-Gain Targets for Inertial Fusion Energy
NASA Astrophysics Data System (ADS)
Perkins, L. John
2010-11-01
In ca. 2011-2012, the National Ignition Facility is poised to demonstrate fusion ignition and gain in the laboratory for the first time. This key milestone in the development of inertial confinement fusion (ICF) can be expected to engender interest in the development of inertial fusion energy (IFE) and expanded efforts on a number of advanced targets that may achieve high fusion energy gain at lower driver energies. In this tutorial talk, we will discuss the physics underlying ICF ignition and thermonuclear burn, examine the requirements for high gain, and outline candidate R&D programs that will be required to assess the performance of these target concepts under various driver systems including lasers, heavy-ions and pulsed power. Such target concepts include those operating by fast ignition, shock ignition, impact ignition, dual-density, magnetically-insulated, one- and two-sided drive, etc., some of which may have potential to burn advanced, non-DT fusion fuels. We will then delineate the role of such targets in their application to the production of high average fusion power. Here, systems studies of IFE economics suggest that we should strive for target fusion gains of around 100 at drive energies of 1MJ, together with corresponding rep-rates of up to 10Hz and driver electrical efficiencies around 15%. In future years, there may be exciting opportunities to study such ``innovative confinement concepts'' with prospects of fielding them on facilities such as NIF to obtain high fusion energy gains on a single shot basis.
Data fusion for target tracking and classification with wireless sensor network
NASA Astrophysics Data System (ADS)
Pannetier, Benjamin; Doumerc, Robin; Moras, Julien; Dezert, Jean; Canevet, Loic
2016-10-01
In this paper, we address the problem of multiple ground target tracking and classification with information obtained from a unattended wireless sensor network. A multiple target tracking (MTT) algorithm, taking into account road and vegetation information, is proposed based on a centralized architecture. One of the key issue is how to adapt classical MTT approach to satisfy embedded processing. Based on track statistics, the classification algorithm uses estimated location, velocity and acceleration to help to classify targets. The algorithms enables tracking human and vehicles driving both on and off road. We integrate road or trail width and vegetation cover, as constraints in target motion models to improve performance of tracking under constraint with classification fusion. Our algorithm also presents different dynamic models, to palliate the maneuvers of targets. The tracking and classification algorithms are integrated into an operational platform (the fusion node). In order to handle realistic ground target tracking scenarios, we use an autonomous smart computer deposited in the surveillance area. After the calibration step of the heterogeneous sensor network, our system is able to handle real data from a wireless ground sensor network. The performance of system is evaluated in a real exercise for intelligence operation ("hunter hunt" scenario).
Greenwood, Daniel; Davids, Keith; Renshaw, Ian
2014-01-01
Coordination of dynamic interceptive movements is predicated on cyclical relations between an individual's actions and information sources from the performance environment. To identify dynamic informational constraints, which are interwoven with individual and task constraints, coaches' experiential knowledge provides a complementary source to support empirical understanding of performance in sport. In this study, 15 expert coaches from 3 sports (track and field, gymnastics and cricket) participated in a semi-structured interview process to identify potential informational constraints which they perceived to regulate action during run-up performance. Expert coaches' experiential knowledge revealed multiple information sources which may constrain performance adaptations in such locomotor pointing tasks. In addition to the locomotor pointing target, coaches' knowledge highlighted two other key informational constraints: vertical reference points located near the locomotor pointing target and a check mark located prior to the locomotor pointing target. This study highlights opportunities for broadening the understanding of perception and action coupling processes, and the identified information sources warrant further empirical investigation as potential constraints on athletic performance. Integration of experiential knowledge of expert coaches with theoretically driven empirical knowledge represents a promising avenue to drive future applied science research and pedagogical practice.
Marozas, J. A.; Hohenberger, M.; Rosenberg, M. J.; ...
2018-05-25
Here, cross-beam energy transfer (CBET) results from two-beam energy exchange via seeded stimulated Brillouin scattering, which detrimentally reduces laser-energy absorption for direct-drive inertial confinement fusion. Consequently, ablation pressure and implosion velocity suffer from the decreased absorption, reducing target performance in both symmetric and polar direct drive. Additionally, CBET alters the time-resolved scattered-light spectra and redistributes absorbed and scattered-light–changing shell morphology and low-mode drive symmetry. Mitigating CBET is demonstrated in inertial confinement implosions at the National Ignition Facility by detuning the laser-source wavelengths (±2.3 Å UV) of the interacting beams. In polar direct drive, wavelength detuning was shown to increase themore » equatorial region velocity experimentally by 16% and to alter the in-flight shell morphology. These experimental observations are consistent with design predictions of radiation–hydrodynamic simulations that indicate a 10% increase in the average ablation pressure. These results indicate that wavelength detuning successfully mitigates CBET. Simulations predict that optimized phase plates and wavelength-detuning CBET mitigation utilizing the three-legged beam layout of the OMEGA Laser System significantly increase absorption and achieve >100-Gbar hot-spot pressures in symmetric direct drive.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marozas, J. A.; Hohenberger, M.; Rosenberg, M. J.
Here, cross-beam energy transfer (CBET) results from two-beam energy exchange via seeded stimulated Brillouin scattering, which detrimentally reduces laser-energy absorption for direct-drive inertial confinement fusion. Consequently, ablation pressure and implosion velocity suffer from the decreased absorption, reducing target performance in both symmetric and polar direct drive. Additionally, CBET alters the time-resolved scattered-light spectra and redistributes absorbed and scattered-light–changing shell morphology and low-mode drive symmetry. Mitigating CBET is demonstrated in inertial confinement implosions at the National Ignition Facility by detuning the laser-source wavelengths (±2.3 Å UV) of the interacting beams. In polar direct drive, wavelength detuning was shown to increase themore » equatorial region velocity experimentally by 16% and to alter the in-flight shell morphology. These experimental observations are consistent with design predictions of radiation–hydrodynamic simulations that indicate a 10% increase in the average ablation pressure. These results indicate that wavelength detuning successfully mitigates CBET. Simulations predict that optimized phase plates and wavelength-detuning CBET mitigation utilizing the three-legged beam layout of the OMEGA Laser System significantly increase absorption and achieve >100-Gbar hot-spot pressures in symmetric direct drive.« less
Progress of LMJ-relevant implosions experiments on OMEGA
NASA Astrophysics Data System (ADS)
Casner, A.; Philippe, F.; Tassin, V.; Seytor, P.; Monteil, M.-C.; Gauthier, P.; Park, H. S.; Robey, H.; Ross, J.; Amendt, P.; Girard, F.; Villette, B.; Reverdin, C.; Loiseau, P.; Caillaud, T.; Landoas, O.; Li, C. K.; Petrasso, R.; Seguin, F.; Rosenberg, M.; Renaudin, P.
2013-11-01
In preparation of the first ignition attempts on the Laser Mégajoule (LMJ), an experimental program is being pursued on OMEGA to investigate LMJ-relevant hohlraums. First, radiation temperature levels close to 300 eV were recently achieved in reduced-scale hohlraums with modest backscatter losses. Regarding the baseline target design for fusion experiments on LMJ, an extensive experimental database has also been collected for scaled implosions experiments in both empty and gas-filled rugby-shaped hohlraums. We acquired a full picture of hohlraum energetics and implosion dynamics. Not only did the rugby hohlraums show significantly higher x-ray drive energy over the cylindrical hohlraums, but symmetry control by power balance was demonstrated, as well as high-performance D2 implosions enabling the use of a complete suite of neutrons diagnostics. Charged particle diagnostics provide complementary insights into the physics of these x-ray driven implosions. An overview of these results demonstrates our ability to control the key parameters driving the implosion, lending more confidence in extrapolations to ignition-scale targets.
CLIC RF High Power Production Testing Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Syratchev, I.; Riddone, G.; /CERN
The CLIC Power Extraction and Transfer Structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the impedance of the periodically loaded waveguide and generate RF power for the main linac accelerating structure. The demands on the high power production ({approx} 150 MW) and the needs to transport the 100 A drive beam for about 1 km without losses, makes the PETS design rather unique and the operation very challenging. In the coming year, an intense PETS testing program will be implemented. The target is to demonstrate the full performance of the PETS operation.more » The testing program overview and test results available to date are presented.« less
Trillenberg, Peter; Sprenger, Andreas; Talamo, Silke; Herold, Kirsten; Helmchen, Christoph; Verleger, Rolf; Lencer, Rebekka
2017-04-01
Despite many reports on visual processing deficits in psychotic disorders, studies are needed on the integration of visual and non-visual components of eye movement control to improve the understanding of sensorimotor information processing in these disorders. Non-visual inputs to eye movement control include prediction of future target velocity from extrapolation of past visual target movement and anticipation of future target movements. It is unclear whether non-visual input is impaired in patients with schizophrenia. We recorded smooth pursuit eye movements in 21 patients with schizophrenia spectrum disorder, 22 patients with bipolar disorder, and 24 controls. In a foveo-fugal ramp task, the target was either continuously visible or was blanked during movement. We determined peak gain (measuring overall performance), initial eye acceleration (measuring visually driven pursuit), deceleration after target extinction (measuring prediction), eye velocity drifts before onset of target visibility (measuring anticipation), and residual gain during blanking intervals (measuring anticipation and prediction). In both patient groups, initial eye acceleration was decreased and the ability to adjust eye acceleration to increasing target acceleration was impaired. In contrast, neither deceleration nor eye drift velocity was reduced in patients, implying unimpaired non-visual contributions to pursuit drive. Disturbances of eye movement control in psychotic disorders appear to be a consequence of deficits in sensorimotor transformation rather than a pure failure in adding cognitive contributions to pursuit drive in higher-order cortical circuits. More generally, this deficit might reflect a fundamental imbalance between processing external input and acting according to internal preferences.
Event-related potential evidence for the processing efficiency theory.
Murray, N P; Janelle, C M
2007-01-15
The purpose of this study was to examine the central tenets of the processing efficiency theory using psychophysiological measures of attention and effort. Twenty-eight participants were divided equally into either a high or low trait anxiety group. They were then required to perform a simulated driving task while responding to one of four target light-emitting diodes. Cortical activity and dual task performance were recorded under two conditions -- baseline and competition -- with cognitive anxiety being elevated in the competitive session by an instructional set. Although driving speed was similar across sessions, a reduction in P3 amplitude to cue onset in the light detection task occurred for both groups during the competitive session, suggesting a reduction in processing efficiency as participants became more state anxious. Our findings provide more comprehensive and mechanistic evidence for processing efficiency theory, and confirm that increases in cognitive anxiety can result in a reduction of processing efficiency with little change in performance effectiveness.
HIT'nDRIVE: patient-specific multidriver gene prioritization for precision oncology
Hodzic, Ermin; Sauerwald, Thomas; Dao, Phuong; Wang, Kendric; Yeung, Jake; Anderson, Shawn; Vandin, Fabio; Haffari, Gholamreza; Collins, Colin C.; Sahinalp, S. Cenk
2017-01-01
Prioritizing molecular alterations that act as drivers of cancer remains a crucial bottleneck in therapeutic development. Here we introduce HIT'nDRIVE, a computational method that integrates genomic and transcriptomic data to identify a set of patient-specific, sequence-altered genes, with sufficient collective influence over dysregulated transcripts. HIT'nDRIVE aims to solve the “random walk facility location” (RWFL) problem in a gene (or protein) interaction network, which differs from the standard facility location problem by its use of an alternative distance measure: “multihitting time,” the expected length of the shortest random walk from any one of the set of sequence-altered genes to an expression-altered target gene. When applied to 2200 tumors from four major cancer types, HIT'nDRIVE revealed many potentially clinically actionable driver genes. We also demonstrated that it is possible to perform accurate phenotype prediction for tumor samples by only using HIT'nDRIVE-seeded driver gene modules from gene interaction networks. In addition, we identified a number of breast cancer subtype-specific driver modules that are associated with patients’ survival outcome. Furthermore, HIT'nDRIVE, when applied to a large panel of pan-cancer cell lines, accurately predicted drug efficacy using the driver genes and their seeded gene modules. Overall, HIT'nDRIVE may help clinicians contextualize massive multiomics data in therapeutic decision making, enabling widespread implementation of precision oncology. PMID:28768687
Rowe, Richard; Andrews, Elizabeth; Harris, Peter R; Armitage, Christopher J; McKenna, Frank P; Norman, Paul
2016-04-01
Novice motorists are at high crash risk during the first few months of driving. Risky behaviours such as speeding and driving while distracted are well-documented contributors to crash risk during this period. To reduce this public health burden, effective road safety interventions need to target the pre-driving period. We use the Theory of Planned Behaviour (TPB) to identify the pre-driver beliefs underlying intentions to drive over the speed limit (N=77), and while over the legal alcohol limit (N=72), talking on a hand-held mobile phone (N=77) and feeling very tired (N=68). The TPB explained between 41% and 69% of the variance in intentions to perform these behaviours. Attitudes were strong predictors of intentions for all behaviours. Subjective norms and perceived behavioural control were significant, though weaker, independent predictors of speeding and mobile phone use. Behavioural beliefs underlying these attitudes could be separated into those reflecting perceived disadvantages (e.g., speeding increases my risk of crash) and advantages (e.g., speeding gives me a thrill). Interventions that can make these beliefs safer in pre-drivers may reduce crash risk once independent driving has begun. Copyright © 2015 Elsevier Ltd. All rights reserved.
Gherri, Elena; Eimer, Martin
2011-04-01
The ability to drive safely is disrupted by cell phone conversations, and this has been attributed to a diversion of attention from the visual environment. We employed behavioral and ERP measures to study whether the attentive processing of spoken messages is, in itself, sufficient to produce visual-attentional deficits. Participants searched for visual targets defined by a unique feature (Experiment 1) or feature conjunction (Experiment 2), and simultaneously listened to narrated text passages that had to be recalled later (encoding condition), or heard backward-played speech sounds that could be ignored (control condition). Responses to targets were slower in the encoding condition, and ERPs revealed that the visual processing of search arrays and the attentional selection of target stimuli were less efficient in the encoding relative to the control condition. Results demonstrate that the attentional processing of visual information is impaired when concurrent spoken messages are encoded and maintained, in line with cross-modal links in selective attention, but inconsistent with the view that attentional resources are modality-specific. The distraction of visual attention by active listening could contribute to the adverse effects of cell phone use on driving performance.
Assessing the driving performance of older adult drivers: on-road versus simulated driving.
Lee, Hoe C; Cameron, Don; Lee, Andy H
2003-09-01
To validate a laboratory-based driving simulator in measuring on-road driving performance, 129 older adult drivers were assessed with both the simulator and an on-road test. The driving performance of the participants was gauged by appropriate and reliable age-specific assessment criteria, which were found to be negatively correlated with age. Using principal component analysis, two performance indices were developed from the criteria to represent the overall performance in simulated driving and the on-road assessment. There was significant positive association between the two indices, with the simulated driving performance index explaining over two-thirds of the variability of the on-road driving performance index, after adjustment for age and gender of the drivers. The results supported the validity of the driving simulator and it is a safer and more economical method than the on-road testing to assess the driving performance of older adult drivers.
Laser propagation through full-scale, high-gain MagLIF gas pipes using the NIF
NASA Astrophysics Data System (ADS)
Pollock, Bradley; Sefkow, Adam; Goyon, Clement; Strozzi, David; Khan, Shahab; Rosen, Mordy; Campbell, Mike; Logan, Grant; Peterson, Kyle; Moody, John
2016-10-01
The first relevant measurements of laser propagation through surrogate high-gain MagLIF gas pipe targets at full scale have been performed at the NIF, using 30 kJ of laser drive from one quad in a 10 ns pulse at an intensity of 2e14 W/cm2. The unmagnetized pipe is filled with 1 atm of 99%/1% neopentane/Ar, and uses an entrance window of 0.75 um polyimide and an exit window of 0.3 um of Ta backed with 5 um of polyimide. Side-on x-ray emission from the plasma is imaged through the 100 um-thick epoxy wall onto a framing camera at four times during the drive, and is in excellent agreement with pre-shot HYDRA radiation-hydrodynamics modeling. X-ray emission from the Ta exit plane is imaged onto a streak camera to determine the timing and intensity of the laser burning through the pipe, and the Ar emission from the center of the pipe is spectrally- and temporally-resolved to determine the plasma electron temperature. Backscatter is measured throughout the laser drive, and is found to be of significance only when the laser reaches the Ta exit plane and produces SBS. These first results in unmagnetized surrogate gas fills are encouraging since they demonstrate sufficient laser energy absorption and low LPI losses within high-density long-scale-length plasmas for proposed high-gain MagLIF target designs. We will discuss plans to magnetize targets filled with high-density DT gas in future experiments. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.
The effects of texting on driving performance in a driving simulator: the influence of driver age.
Rumschlag, Gordon; Palumbo, Theresa; Martin, Amber; Head, Doreen; George, Rajiv; Commissaris, Randall L
2015-01-01
Distracted driving is a significant contributor to motor vehicle accidents and fatalities, and texting is a particularly significant form of driver distraction that continues to be on the rise. The present study examined the influence of driver age (18-59 years old) and other factors on the disruptive effects of texting on simulated driving behavior. While 'driving' the simulator, subjects were engaged in a series of brief text conversations with a member of the research team. The primary dependent variable was the occurrence of Lane Excursions (defined as any time the center of the vehicle moved outside the directed driving lane, e.g., into the lane for oncoming traffic or onto the shoulder of the road), measured as (1) the percent of subjects that exhibited Lane Excursions, (2) the number of Lane Excursions occurring and (3) the percent of the texting time in Lane Excursions. Multiple Regression analyses were used to assess the influence of several factors on driving performance while texting, including text task duration, texting skill level (subject-reported), texting history (#texts/week), driver gender and driver age. Lane Excursions were not observed in the absence of texting, but 66% of subjects overall exhibited Lane Excursions while texting. Multiple Regression analysis for all subjects (N=50) revealed that text task duration was significantly correlated with the number of Lane Excursions, and texting skill level and driver age were significantly correlated with the percent of subjects exhibiting Lane Excursions. Driver gender was not significantly correlated with Lane Excursions during texting. Multiple Regression analysis of only highly skilled texters (N=27) revealed that driver age was significantly correlated with the number of Lane Excursions, the percent of subjects exhibiting Lane Excursions and the percent of texting time in Lane Excursions. In contrast, Multiple Regression analysis of those drivers who self-identified as not highly skilled texters (N=23) revealed that text task duration was significantly correlated with the number of Lane Excursions. The present studies confirm past reports that texting impairs driving simulator performance. Moreover, the present study demonstrates that for highly skilled texters, the effects of texting on driving are actually worse for older drivers. Given the increasing frequency of texting while driving within virtually all age groups, these data suggest that 'no texting while driving' education and public service messages need to be continued, and they should be expanded to target older drivers as well. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Bo; Xin, Zhaowei; Wei, Dong; Zhang, Xinyu; Wang, Haiwei; Xie, Changsheng
2017-11-01
In order to overcome the difficulty in imaging detection of high-speed moving targets under complex environments, and to get more comprehensive image information of the target, there is a urgent need to develop new high-performance optical imaging components. Compared to traditional lenses which have fixed shapes and immutable focal length, liquid-crystal microlens (LCMs) can not only adjust the focal length without changing the external shape, but also realize many practical functions such as swinging focus, spectral selection, depth of field adjustment, etc. The physical properties of spatial electric fields constructed between electrode plates of the LCMs are directly related to the light-field adjusting performances of LCMs, such as the polarity of electric field, the frequency and amplitude of applied voltage signal. In other words, the optical behaviors of LCMs will be affected remarkably by the parameters of driving voltage signal mentioned above. To implement these important functions flexibly and effectively, the driving voltage signal must be powerful and flexible. It had better to have multiple channels to control the direction of swinging focus, with relatively wide variance range to spread spectrum selection range, and with high precision to ensure accurately controlling LCMs. In addition, special waveforms may be required to support special functions of LCMs. Therefore a digital control device, which meet the requirements mentioned above, is designed, and then LCMs with it can realize imaging detection of targets in complex environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goncharov, V.N.; Knauer, J.P.; McKenty, P.W.
(B204)Hydrodynamic instabilities seeded by laser imprint and surface roughness limit the compression ratio and neutron yield in the direct-drive inertial confinement fusion target designs. New improved-performance designs use adiabat shaping to increase the entropy of only the outer portion of the shell, reducing the instability growth. The inner portion of the shell is kept on a lower entropy to maximize shell compressibility. The adiabat shaping is implemented using a high-intensity picket in front of the main-drive pulse. The picket launches a strong shock that decays as it propagates through the shell. This increases the ablation velocity and reduces the Rayleigh-Taylormore » growth rates. In addition, as shown earlier [T.J.B. Collis and S. Skupsky, Phys. Plasmas 9 275 (2002)], the picket reduces the instability seed due to the laser imprint. To test the results of calculations, a series of the picket pulse implosions of CH capsules were performed on the OMEGA laser system [T.R. Boehly, D .L. Brown, R.S. Craxton, et al., Opt. Commun. 133, 495 (1997)]. The experiments demonstrated a significant improvement in target yields for the pulses with the picket compared to the pulses without the picket. Results of the theory and experiments with adiabat shaping are being extended to future OMEGA and the National Ignition Facility's [J.A. Paisner, J.D. Boyes, S.A. Kumpan, W.H. Lowdermilk, and M.S. Sorem, Laser Focus World 30, 75 (1994)] cryogenic target designs.« less
Object motion perception is shaped by the motor control mechanism of ocular pursuit.
Schweigart, G; Mergner, T; Barnes, G R
2003-02-01
It is still a matter of debate whether the control of smooth pursuit eye movements involves an internal drive signal from object motion perception. We measured human target velocity and target position perceptions and compared them with the presumed pursuit control mechanism (model simulations). We presented normal subjects (Ns) and vestibular loss patients (Ps) with visual target motion in space. Concurrently, a visual background was presented, which was kept stationary or was moved with or against the target (five combinations). The motion stimuli consisted of smoothed ramp displacements with different dominant frequencies and peak velocities (0.05, 0.2, 0.8 Hz; 0.2-25.6 degrees /s). Subjects always pursued the target with their eyes. In a first experiment they gave verbal magnitude estimates of perceived target velocity in space and of self-motion in space. The target velocity estimates of both Ns and Ps tended to saturate at 0.8 Hz and with peak velocities >3 degrees /s. Below these ranges the velocity estimates showed a pronounced modulation in relation to the relative target-to-background motion ('background effect'; for example, 'background with'-motion decreased and 'against'-motion increased perceived target velocity). Pronounced only in Ps and not in Ns, there was an additional modulation in relation to the relative head-to-background motion, which co-varied with an illusion of self-motion in space (circular vection, CV) in Ps. In a second experiment, subjects performed retrospective reproduction of perceived target start and end positions with the same stimuli. Perceived end position was essentially veridical in both Ns and Ps (apart from a small constant offset). Reproduced start position showed an almost negligible background effect in Ns. In contrast, it showed a pronounced modulation in Ps, which again was related to CV. The results were compared with simulations of a model that we have recently presented for velocity control of eye pursuit. We found that the main features of target velocity perception (in terms of dynamics and modulation by background) closely correspond to those of the internal drive signal for target pursuit, compatible with the notion of a common source of both the perception and the drive signal. In contrast, the eye pursuit movement is almost free of the background effect. As an explanation, we postulate that the target-to-background component in the target pursuit drive signal largely neutralises the background-to-eye retinal slip signal (optokinetic reflex signal) that feeds into the eye premotor mechanism as a competitor of the target retinal slip signal. An extension of the model allowed us to simulate also the findings of the target position perception. It is assumed to be represented in a perceptual channel that is distinct from the velocity perception, building on an efference copy of the essentially accurate eye position. We hold that other visuomotor behaviour, such as target reaching with the hand, builds mainly on this target position percept and therefore is not contaminated by the background effect in the velocity percept. Generally, the coincidence of an erroneous velocity percept and an almost perfect eye pursuit movement during background motion is discussed as an instructive example of an action-perception dissociation. This dissociation cannot be taken to indicate that the two functions are internally represented in separate brain control systems, but rather reflects the intimate coupling between both functions.
Microscopic pick-and-place teleoperation
NASA Astrophysics Data System (ADS)
Bhatti, Pamela; Hannaford, Blake; Marbot, Pierre-Henry
1993-03-01
A three degree-of-freedom direct drive mini robot has been developed for biomedical applications. The design approach of the mini robot relies heavily upon electromechanical components from the Winchester disk drive industry. In the current design, the first joint is driven by actuators from a 5.25' drive, and the following joints are driven by actuators typical of 3.5' drives. The system has 5 - 10 micrometers of position repeatability and resolution in all three axes. A mini gripper attachment has been fabricated for the robot to explore manipulation of objects ranging from 50 micrometers to 500 micrometers . Mounted on the robot, the gripper has successfully performed pick and place operations under teleoperated control. The mini robot serves to precisely position the gripper, and a needle-like finger of the gripper deflects so the fingers can grip a target object. The gripper finger capable of motion is fabricated with a piezoelectric bimorph crystal which deflects with an applied DC voltage. The experimental results are promising, and the mini gripper may be modified for future biomedical and micro assembly applications.
Ultraviolet Thomson Scattering from Direct-Drive Coronal Plasmas in Multilayer Targets
NASA Astrophysics Data System (ADS)
Henchen, R. J.; Goncharov, V. N.; Michel, D. T.; Follett, R. K.; Katz, J.; Froula, D. H.
2014-10-01
Ultraviolet (λ4 ω = 263 nm) Thomson scattering (TS) was used to probe ion-acoustic waves (IAW's) and electron plasma waves (EPW's) from direct-drive coronal plasmas. Fifty-nine drive beams (λ3 ω = 351 nm) illuminate a spherical target with a radius of ~ 860 μ m. A series of experiments studied the effect of higher electron temperature near the 3 ω quarter-critical surface (~ 2 . 5 ×1021 cm-3) on laser-plasma interactions resulting from a Si layer in the target. Electron temperatures and densities were measured from 150 to 400 μm from the initial target surface. Standard CH shells were compared to two-layered shells of CH and Si and three-layered shells of CH, Si, and CH. These multilayer targets have less hot-electron energy than standard CH shells as a result of higher electron temperature in the coronal plasmas. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Three-Dimensional Hydrodynamic Simulations of the Effects of Laser Imprint in OMEGA Implosions
NASA Astrophysics Data System (ADS)
Igumenshchev, I. V.; Campbell, E. M.; Goncharov, V. N.; Regan, S. P.; Shvydky, A.; Schmitt, A. J.
2017-10-01
Illumination of direct-drive implosion targets by the OMEGA laser introduces large-amplitude broadband modulations in the absorbed energy from the largest (target size 900- μm) to smallest (speckle size 2- μm) spatial scales. These modulations ``imprint'' perturbations into a target that are amplified because of the secular and Rayleigh-Taylor growths during acceleration and deceleration of the target. The degradation of performance of room-temperature and cryogenic OMEGA implosions caused by these perturbations were simulated in three dimensions using the code ASTER. The highest-resolution simulations resolve perturbation modes as high as l 200 . The high modes l 50to 100 dominate in the perturbation spectrum during the linear growth, while the late-time nonlinear evolution results in domination of modes with l 30to 50 . Smoothing by spectral dispersion reduces the linear-phase mode amplitudes by a factor of 4 and results in substantial improvements in implosion performance that is in good agreement with measurements. The effects of imprint on implosion performance are compared with the effects of other implosion asymmetries, such as those induced because of laser beam imbalance, mistiming and mispointing, and target offset. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
CRISPR/Cas9 gene drives in genetically variable and nonrandomly mating wild populations
Drury, Douglas W.; Dapper, Amy L.; Siniard, Dylan J.; Zentner, Gabriel E.; Wade, Michael J.
2017-01-01
Synthetic gene drives based on CRISPR/Cas9 have the potential to control, alter, or suppress populations of crop pests and disease vectors, but it is unclear how they will function in wild populations. Using genetic data from four populations of the flour beetle Tribolium castaneum, we show that most populations harbor genetic variants in Cas9 target sites, some of which would render them immune to drive (ITD). We show that even a rare ITD allele can reduce or eliminate the efficacy of a CRISPR/Cas9-based synthetic gene drive. This effect is equivalent to and accentuated by mild inbreeding, which is a characteristic of many disease-vectoring arthropods. We conclude that designing such drives will require characterization of genetic variability and the mating system within and among targeted populations. PMID:28560324
CRISPR/Cas9 gene drives in genetically variable and nonrandomly mating wild populations.
Drury, Douglas W; Dapper, Amy L; Siniard, Dylan J; Zentner, Gabriel E; Wade, Michael J
2017-05-01
Synthetic gene drives based on CRISPR/Cas9 have the potential to control, alter, or suppress populations of crop pests and disease vectors, but it is unclear how they will function in wild populations. Using genetic data from four populations of the flour beetle Tribolium castaneum , we show that most populations harbor genetic variants in Cas9 target sites, some of which would render them immune to drive (ITD). We show that even a rare ITD allele can reduce or eliminate the efficacy of a CRISPR/Cas9-based synthetic gene drive. This effect is equivalent to and accentuated by mild inbreeding, which is a characteristic of many disease-vectoring arthropods. We conclude that designing such drives will require characterization of genetic variability and the mating system within and among targeted populations.
NASA Astrophysics Data System (ADS)
Torrisi, Lorenzo
2018-01-01
Measurements of ion acceleration in plasma produced by fs lasers at intensity of the order of 1018 W/cm2 have been performed in different European laboratories. The forward emission in target-normal-sheath-acceleration (TNSA) regime indicated that the maximum energy is a function of the laser parameters, of the irradiation conditions and of the target properties.In particular the laser intensity and contrast play an important role to maximize the ion acceleration enhancing the conversion efficiency. Also the use of suitable prepulses, focal distances and polarized laser light has important roles. Finally the target composition, surface, geometry and multilayered structure, permit to enhance the electric field driving the forward ion acceleration.Experimental measurements will be reported and discussed.
Raytracing and Direct-Drive Targets
NASA Astrophysics Data System (ADS)
Schmitt, Andrew J.; Bates, Jason; Fyfe, David; Eimerl, David
2013-10-01
Accurate simulation of the effects of laser imprinting and drive asymmetries in directly driven targets requires the ability to distinguish between raytrace noise and the intensity structure produced by the spatial and temporal incoherence of optical smoothing. We have developed and implemented a smoother raytrace algorithm for our mpi-parallel radiation hydrodynamics code, FAST3D. The underlying approach is to connect the rays into either sheets (in 2D) or volume-enclosing chunks (in 3D) so that the absorbed energy distribution continuously covers the propagation area illuminated by the laser. We will describe the status and show the different scalings encountered in 2D and 3D problems as the computational size, parallelization strategy, and number of rays is varied. Finally, we show results using the method in current NIKE experimental target simulations and in proposed symmetric and polar direct-drive target designs. Supported by US DoE/NNSA.
Nevin, Paul E; Blanar, Laura; Kirk, Annie Phare; Freedheim, Amy; Kaufman, Robert; Hitchcock, Laura; Maeser, Jennifer D; Ebel, Beth E
2018-01-01
Background In response to the rise of distracted driving, many countries and most US states have adopted laws to restrict the use of handheld phones for drivers. Specific provisions of each law and the overall social mores of distracted driving influence enforceability and impact. Objectives Identify multilevel interdependent factors that influence distracted driving enforcement through the perspective of police officers. Design/methods We conducted focus group discussions with active duty law enforcement officers from three large Washington State counties. Our thematic analysis used descriptive and pattern coding that placed our findings within a social ecological framework to facilitate targeted intervention development. Results Participants reported that the distracted driving law posed challenges for consistent and effective enforcement. They emphasised the need to change social norms around distracted driving, similar to the shifts seen around impaired driving. Many participants were themselves distracted drivers, and their individual knowledge, attitude and beliefs influenced enforcement. Participants suggested that law enforcement leaders and policymakers should develop and implement policies and strategies to prioritise and motivate increased distracted driving enforcement. Conclusions Individual, interpersonal, organisational and societal factors influence enforcement of distracted driving laws. Targeted interventions should be developed to address distracted driving and sustain effective enforcement. PMID:27634839
Multidimensional Analysis of Direct-Drive Plastic-Shell Implosions on OMEGA
NASA Astrophysics Data System (ADS)
Radha, P. B.
2004-11-01
Direct-drive implosions of plastic shells with the OMEGA laser are used as energy-scaled warm surrogates for ignition cryogenic targets designed for use on the National Ignition Facility. Plastic targets involve varying shell thickness (15 to 33 μm), fill pressures (3 to 15 atm), and shell adiabats. The multidimensional hydrodynamics code DRACO is used to evaluate the effects of capsule-surface roughness and illumination nonuniformities on target performance. These simulations indicate that shell stability during the acceleration phase plays a critical role in determining fusion yields. For shells that are thick enough to survive the Rayleigh--Taylor growth, target yields are significantly reduced by growth of the long (ℓ < 10) and intermediate modes (20 < ℓ < 50) occurring from single-beam laser nonuniformities. The neutron production rate for these thick shells truncates relative to one-dimensional (1-D) predictions. The neutron-rate curves for the thinner shells, however, have significantly lower amplitudes and widths closer to 1-D results, indicating shell breakup during the acceleration phase. The simulation results are consistent with experimental observations. Previously, the stability of plastic-shell implosions had been correlated to a static ``mix-width'' at the boundary of the gas and plastic pusher estimated using a variety of experimental observables and an assumption of spherical symmetry. Results of these 2-D simulations provide a comprehensive understanding of warm-target implosion dynamics without assumptions of spherical symmetry and serve to answer the question of the hydrodynamic surrogacy between these plastic-shell implosions and the cryogenic ignition designs.
Experimental demonstration of laser imprint reduction using underdense foams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delorme, B.; Casner, A.; CELIA, University of Bordeaux-CNRS-CEA, F-33400 Talence
2016-04-15
Reducing the detrimental effect of the Rayleigh-Taylor (RT) instability on the target performance is a critical challenge. In this purpose, the use of targets coated with low density foams is a promising approach to reduce the laser imprint. This article presents results of ablative RT instability growth measurements, performed on the OMEGA laser facility in direct-drive for plastic foils coated with underdense foams. The laser beam smoothing is explained by the parametric instabilities developing in the foam and reducing the laser imprint on the plastic (CH) foil. The initial perturbation pre-imposed by the means of a specific phase plate wasmore » shown to be smoothed using different foam characteristics. Numerical simulations of the laser beam smoothing in the foam and of the RT growth are performed with a suite of paraxial electromagnetic and radiation hydrodynamic codes. They confirmed the foam smoothing effect in the experimental conditions.« less
The texting and driving epidemic : changing norms to change behavior.
DOT National Transportation Integrated Search
2013-09-01
This campaign was created to reduce texting and driving and to increase awareness of the serious risks involved with texting and driving. The target audience of the campaign is University of Kansas students. This plan proposes an Anti-Texting and ...
Cox, Daniel J; Kovatchev, Boris P; Anderson, Stacey M; Clarke, William L; Gonder-Frederick, Linda A
2010-11-01
Collisions are more common among drivers with type 1 diabetes than among their nondiabetic spouses. This increased risk appears to be attributable to a subgroup of drivers with type 1 diabetes. The hypothesis tested is that this vulnerable subgroup is more at risk for hypoglycemia and its disruptive effects on driving. Thirty-eight drivers with type 1 diabetes, 16 with (+history) and 22 without (-history) a recent history of recurrent hypoglycemia-related driving mishaps, drove a virtual reality driving simulator and watched a videotape of someone driving a simulator for 30-min periods. Driving and video testing occurred in a double-blind, randomized, crossover manner during euglycemia (5.5 mmol/l) and progressive hypoglycemia (3.9-2.5 mmol/l). Examiners were blind to which subjects were +/-history, whereas subjects were blind to their blood glucose levels and targets. During euglycemia, +history participants reported more autonomic and neuroglycopenic symptoms (P≤0.01) and tended to require more dextrose infusion to maintain euglycemia with the same insulin infusion (P<0.09). During progressive hypoglycemia, these subjects demonstrated less epinephrine release (P=0.02) and greater driving impairments (P=0.03). Findings support the speculation that there is a subgroup of type 1 diabetic drivers more vulnerable to experiencing hypoglycemia-related driving mishaps. This increased vulnerability may be due to more symptom "noise" (more symptoms during euglycemia), making it harder to detect hypoglycemia while driving; possibly greater carbohydrate utilization, rendering them more vulnerable to experiencing hypoglycemia; less hormonal counterregulation, leading to more profound hypoglycemia; and more neuroglycopenia, rendering them more vulnerable to impaired driving.
Low Convergence path to Fusion I: Ignition physics and high margin design
NASA Astrophysics Data System (ADS)
Molvig, Kim; Schmitt, M. J.; McCall, G. H.; Betti, R.; Foula, D. H.; Campbell, E. M.
2016-10-01
A new class of inertial fusion capsules is presented that combines multi-shell targets with laser direct drive at low intensity (280 TW/cm2) to achieve robust ignition. These Revolver targets consist of three concentric metal shells, enclosing a volume of 10s of µg of liquid deuterium-tritium fuel. The inner shell pusher, nominally of gold, is compressed to over 2000 g/cc, effectively trapping the radiation and enabling ignition at low temperature (2.5 keV) and relatively low implosion velocity (20 cm/micro-sec) at a fuel convergence of 9. Ignition is designed to occur well ``upstream'' from stagnation, with implosion velocity at 90% of maximum, so that any deceleration phase mix will occur only after ignition. Mix, in all its non-predictable manifestations, will effect net yield in a Revolver target - but not the achievement of ignition and robust burn. Simplicity of the physics is the dominant principle. There is no high gain requirement. These basic physics elements can be combined into a simple analytic model that generates a complete target design specification given the fuel mass and the kinetic energy needed in the middle (drive) shell (of order 80 kJ). This research supported by the US DOE/NNSA, performed in part at LANL, operated by LANS LLC under contract DE-AC52-06NA25396.
Papantoniou, Panagiotis
2018-04-03
The present research relies on 2 main objectives. The first is to investigate whether latent model analysis through a structural equation model can be implemented on driving simulator data in order to define an unobserved driving performance variable. Subsequently, the second objective is to investigate and quantify the effect of several risk factors including distraction sources, driver characteristics, and road and traffic environment on the overall driving performance and not in independent driving performance measures. For the scope of the present research, 95 participants from all age groups were asked to drive under different types of distraction (conversation with passenger, cell phone use) in urban and rural road environments with low and high traffic volume in a driving simulator experiment. Then, in the framework of the statistical analysis, a correlation table is presented investigating any of a broad class of statistical relationships between driving simulator measures and a structural equation model is developed in which overall driving performance is estimated as a latent variable based on several individual driving simulator measures. Results confirm the suitability of the structural equation model and indicate that the selection of the specific performance measures that define overall performance should be guided by a rule of representativeness between the selected variables. Moreover, results indicate that conversation with the passenger was not found to have a statistically significant effect, indicating that drivers do not change their performance while conversing with a passenger compared to undistracted driving. On the other hand, results support the hypothesis that cell phone use has a negative effect on driving performance. Furthermore, regarding driver characteristics, age, gender, and experience all have a significant effect on driving performance, indicating that driver-related characteristics play the most crucial role in overall driving performance. The findings of this study allow a new approach to the investigation of driving behavior in driving simulator experiments and in general. By the successful implementation of the structural equation model, driving behavior can be assessed in terms of overall performance and not through individual performance measures, which allows an important scientific step forward from piecemeal analyses to a sound combined analysis of the interrelationship between several risk factors and overall driving performance.
A drive through Web 2.0: an exploration of driving safety promotion on Facebook™.
Apatu, Emma J I; Alperin, Melissa; Miner, Kathleen R; Wiljer, David
2013-01-01
This study explored Facebook™ to capture the prevalence of driving safety promotion user groups, obtain user demographic information, to understand if Facebook™ user groups influence reported driving behaviors, and to gather a sense of perceived effectiveness of Facebook™ for driving safety promotion targeted to young adults. In total, 96 driving safety Facebook™ groups (DSFGs) were identified with a total of 33,368 members, 168 administrators, 156 officers, 1,598 wall posts representing 12 countries. A total of 85 individuals participated in the survey. Demographic findings of this study suggest that driving safety promotion can be targeted to young and older adults. Respondents' ages ranged from 18 to 66 years. A total of 62% of respondents aged ≤ 24 years and 57.8% of respondents aged ≥ 25 years reported changing their driving-related behaviors as a result of reading information on the DSFGs to which they belonged. A higher proportion of respondents ≥ 25 years were significantly more likely to report Facebook™ and YouTube™ as an effective technology for driving safety promotion. This preliminary study indicates that DSFGs may be effective tools for driving safety promotion among young adults. More research is needed to understand the cognition of Facebook™ users as it relates to adopting safe driving behavior. The findings from this study present descriptive data to guide public health practitioners for future health promotion activities on Facebook™.
Streaked X Ray Spectra from Polar Direct Drive Capsules with an Equatorial Defect
NASA Astrophysics Data System (ADS)
Murphy, T. J.; Bradley, P. A.; Cobble, J. A.; Hsu, S. C.; Krasheninnikova, N. S.; Magelssen, G. R.; Schmitt, M. J.; Tregillis, I. L.; Wysocki, F. J.
2011-10-01
In the Defect Implosion Experiment (DIME) on Omega, capsules with an equatorial ``trench'' defect have been imploded to study defect-induced mix processes. The capsules contain layers doped with titanium and/or vanadium, with doped layers in contact with the deuterium fill gas on some targets, and separated from the gas by a layer of undoped plastic in others. Streaked x-ray spectra from the capsule implosions provide information on conditions in the mix layer. Polar direct drive was utilized in preparation for experiments planned for the National Ignition Facility in 2012. This work is supported by US DOE/NNSA, performed at LANL, operated by LANS LLC under contract DE-AC52-06NA25396.
Three-Dimensional Hydrodynamic Simulations of OMEGA Implosions
NASA Astrophysics Data System (ADS)
Igumenshchev, I. V.
2016-10-01
The effects of large-scale (with Legendre modes less than 30) asymmetries in OMEGA direct-drive implosions caused by laser illumination nonuniformities (beam-power imbalance and beam mispointing and mistiming) and target offset, mount, and layers nonuniformities were investigated using three-dimensional (3-D) hydrodynamic simulations. Simulations indicate that the performance degradation in cryogenic implosions is caused mainly by the target offsets ( 10 to 20 μm), beampower imbalance (σrms 10 %), and initial target asymmetry ( 5% ρRvariation), which distort implosion cores, resulting in a reduced hot-spot confinement and an increased residual kinetic energy of the stagnated target. The ion temperature inferred from the width of simulated neutron spectra are influenced by bulk fuel motion in the distorted hot spot and can result in up to 2-keV apparent temperature increase. Similar temperature variations along different lines of sight are observed. Simulated x-ray images of implosion cores in the 4- to 8-keV energy range show good agreement with experiments. Demonstrating hydrodynamic equivalence to ignition designs on OMEGA requires reducing large-scale target and laser-imposed nonuniformities, minimizing target offset, and employing high-efficient mid-adiabat (α = 4) implosion designs that mitigate cross-beam energy transfer (CBET) and suppress short-wavelength Rayleigh-Taylor growth. These simulations use a new low-noise 3-D Eulerian hydrodynamic code ASTER. Existing 3-D hydrodynamic codes for direct-drive implosions currently miss CBET and noise-free ray-trace laser deposition algorithms. ASTER overcomes these limitations using a simplified 3-D laser-deposition model, which includes CBET and is capable of simulating the effects of beam-power imbalance, beam mispointing, mistiming, and target offset. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Angular Declination and the Dynamic Perception of Egocentric Distance
Gajewski, Daniel A.; Philbeck, John W.; Wirtz, Philip W.; Chichka, David
2014-01-01
The extraction of the distance between an object and an observer is fast when angular declination is informative, as it is with targets placed on the ground. To what extent does angular declination drive performance when viewing time is limited? Participants judged target distances in a real-world environment with viewing durations ranging from 36–220 ms. An important role for angular declination was supported by experiments showing that the cue provides information about egocentric distance even on the very first glimpse, and that it supports a sensitive response to distance in the absence of other useful cues. Performance was better at 220 ms viewing durations than for briefer glimpses, suggesting that the perception of distance is dynamic even within the time frame of a typical eye fixation. Critically, performance in limited viewing trials was better when preceded by a 15 second preview of the room without a designated target. The results indicate that the perception of distance is powerfully shaped by memory from prior visual experience with the scene. A theoretical framework for the dynamic perception of distance is presented. PMID:24099588
ACCELERATOR TARGET POSITIONER AND CONTROL CIRCUIT THEREFOR
Stone, K.F.; Force, R.J.; Olson, W.W.; Cagle, D.S.
1959-12-15
An apparatus is described for inserting and retracting a target material with respect to the internal beam of a charged particle accelerator and to circuitry for controlling the timing and motion of the target placement. Two drive coils are mounted on the shaft of a target holder arm and disposed within the accelerator magnetic field with one coil at right angles to the other. Control circuitry alternately connects each coil to a current source and to a varying shorting resistance whereby the coils interchangeably produce driving and braking forces which swing the target arm within a ninety degree arc. The target is thus moved into the beam and away from it at high speeds and is brought to rest after each movement without whiplash or vibration.
Benefits of Moderate-Z Ablators for Direct-Drive Inertial Confinement Fusion
NASA Astrophysics Data System (ADS)
Lafon, M.; Betti, R.; Anderson, K. S.; Collins, T. J. B.; Skupsky, S.; McKenty, P. W.
2014-10-01
Control of hydrodynamic instabilities and DT-fuel preheating by hot electrons produced by laser-plasma interaction is crucial in inertial confinement fusion. Moderate- Z ablators have been shown to reduce the laser imprinting on target and suppress the generation of hot electrons from the two-plasmon-decay instability. These results have motivated the use of ablators of higher- Z than pure plastic in direct-drive-ignition target designs for the National Ignition Facility (NIF). Two-dimensional radiation-hydrodynamic simulations assess the robustness of these ignition designs to laser imprint and capsule nonuniformities. The complex behavior of the hydrodynamic stability of mid- Z ablators is investigated through single and multimode simulations. A polar-drive configuration is developed within the NIF Laser System specifications for each ablator material. The use of multilayer ablators is also investigated to enhance the hydrodynamic stability. Results indicate that ignition target designs using mid- Z ablators exhibit good hydrodynamic properties, leading to high target gain for direct-drive implosions on the NIF. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and the Office of Fusion Energy Sciences Number DE-FG02-04ER54786.
Butters, Jennifer; Mann, Robert E; Wickens, Christine M; Boase, Paul
2012-12-01
Driving safety, impaired driving, and legislation to address these concerns remain important issues. It is imperative countermeasures be targeted toward the most appropriate groups. This paper explores the potential relationship between gender and driving attitudes toward safety issues and impaired-driving countermeasures. The data are from the 2007 Impaired Driving Survey commissioned by Transport Canada and Mothers Against Drunk Driving (MADD) Canada. The survey is a, stratified by region, telephone survey of 1,514 Canadian drivers 18years of age and older with a valid driver's license who had driven within the past 30days. The findings illustrate a consistent impact of gender on these issues. Other variables were also identified as relevant factors although less consistently. Current findings suggest that strategies for building support for interventions, or for changing risk perception/concern for risky driving behaviors should be tailored by gender to maximize the potential for behavior change. This information may assist program and policy developers through the identification of more or less receptive target groups. Future research directions are also presented. Copyright © 2012 National Safety Council and Elsevier Ltd. All rights reserved.
Simulated Driving Performance of Adults with ADHD: Comparisons with Alcohol Intoxication
Weafer, Jessica; Camarillo, Daniel; Fillmore, Mark T.; Milich, Richard; Marczinski, Cecile A.
2015-01-01
Previous research has demonstrated that adults with ADHD are more likely to experience driving-related problems, which suggests that they may exhibit poorer driving performance. However, direct experimental evidence of this hypothesis is limited. The current study involved two experiments that evaluated driving performance in adults with ADHD in terms of the types of driving decrements typically associated with alcohol intoxication. Experiment 1 compared the simulated driving performance of 15 adults with ADHD to 23 adult control participants, who performed the task both while sober and intoxicated. Results showed that sober adults with ADHD exhibited decrements in driving performance compared to sober controls, and that the profile of impairment for the sober ADHD group did in fact resemble that of intoxicated drivers at the BAC level for legally impaired driving in the United States. Driving impairment of the intoxicated individuals was characterized by greater deviation of lane position, faster and more abrupt steering maneuvers, and increased speed variability. Experiment 2 was a dose-challenge study in which 8 adults with ADHD and 8 controls performed the driving simulation task under three doses of alcohol: 0.65 g/kg, 0.45 g/kg, and 0.0 g/kg (placebo). Results showed that driving performance in both groups was impaired in response to alcohol, and that individuals with ADHD exhibited generally poorer driving performance than did controls across all dose conditions. Together the findings provide compelling evidence to suggest that the cognitive and behavioral deficits associated with ADHD might impair driving performance in such a manner as to resemble that of an alcohol intoxicated driver. Moreover, alcohol might impair the performance of drivers with ADHD in an additive fashion that could considerably compromise their driving skill even at blood alcohol concentrations below the legal limit. PMID:18540785
Overview of Target Fabrication in Support of Sandia National Laboratories
NASA Astrophysics Data System (ADS)
Schroen, Diana; Breden, Eric; Florio, Joseph; Grine-Jones, Suzi; Holt, Randy; Krych, Wojtek; Metzler, James; Russell, Chris; Stolp, Justin; Streit, Jonathan; Youngblood, Kelly
2004-11-01
Sandia National Laboratories has succeeded in making its pulsed power driver, the Z machine, a valuable testbed for a great variety of experiments. These experiments include ICF, weapon physics, Equation of State and astrophysics. There are four main target types: Dynamic Hohlraum, Double Pinch, Fast Igniter and EOS. The target sizes are comparable to projected NIF sizes. For example, capsules up to 5 mm have been fielded. This talk will focus on the assembly challenges and the use of foams to create these targets. For many targets, diagnostics and capsules are embedded in the foams, and foam dopants have been added. It is the 14 mg/cc foam target with an embedded capsule (containing deuterium) that has reproducibly produced thermonuclear neutrons. For all target types, the characterization and documentation has had to develop to ensure understanding of target performance. To achieve the required resolution we are using a Nikon automated microscope and a custom OMEGA/NIF target assembly system. Our drive for quality has lead us develop a management system that been registered to ISO 9001.
The texting and driving epidemic : changing norms to change behavior, [technical summary].
DOT National Transportation Integrated Search
2013-09-01
TXT L8R is a strategic campaign developed for the Kansas Department of Transportation to reduce texting and driving and to increase awareness of the serious risks involved with texting and driving. The target audience of the campaign is University of...
2011-09-01
supply for the IMU switching 5, 12V ATX power supply for the computer and hard drive An L1/L2 active antenna on small back plane USB to serial...switching 5, 12V ATX power supply for the computer and hard drive Figure 4. UAS Target Location Technology for Ground Based Observers (TLGBO...15V power supply for the IMU H. switching 5, 12V ATX power supply for the computer & hard drive I. An L1/L2 active antenna on a small back
Wang, Lianzhen; Pei, Yulong
2014-09-01
This real road driving study was conducted to investigate the effects of driving time and rest time on the driving performance and recovery of commercial coach drivers. Thirty-three commercial coach drivers participated in the study, and were divided into three groups according to driving time: (a) 2 h, (b) 3 h, and (c) 4 h. The Stanford Sleepiness Scale (SSS) was used to assess the subjective fatigue level of the drivers. One-way ANOVA was employed to analyze the variation in driving performance. The statistical analysis revealed that driving time had a significant effect on the subjective fatigue and driving performance measures among the three groups. After 2 h of driving, both the subjective fatigue and driving performance measures began to deteriorate. After 4 h of driving, all of the driving performance indicators changed significantly except for depth perception. A certain amount of rest time eliminated the negative effects of fatigue. A 15-minute rest allowed drivers to recover from a two-hour driving task. This needed to be prolonged to 30 min for driving tasks of 3 to 4 h of continuous driving. Drivers' attention, reactions, operating ability, and perceptions are all affected in turn after over 2 h of continuous driving. Drivers should take a certain amount of rest to recover from the fatigue effects before they continue driving. Copyright © 2014 National Safety Council and Elsevier Ltd. All rights reserved.
Neurocognitive Correlates of Young Drivers' Performance in a Driving Simulator.
Guinosso, Stephanie A; Johnson, Sara B; Schultheis, Maria T; Graefe, Anna C; Bishai, David M
2016-04-01
Differences in neurocognitive functioning may contribute to driving performance among young drivers. However, few studies have examined this relation. This pilot study investigated whether common neurocognitive measures were associated with driving performance among young drivers in a driving simulator. Young drivers (19.8 years (standard deviation [SD] = 1.9; N = 74)) participated in a battery of neurocognitive assessments measuring general intellectual capacity (Full-Scale Intelligence Quotient, FSIQ) and executive functioning, including the Stroop Color-Word Test (cognitive inhibition), Wisconsin Card Sort Test-64 (cognitive flexibility), and Attention Network Task (alerting, orienting, and executive attention). Participants then drove in a simulated vehicle under two conditions-a baseline and driving challenge. During the driving challenge, participants completed a verbal working memory task to increase demand on executive attention. Multiple regression models were used to evaluate the relations between the neurocognitive measures and driving performance under the two conditions. FSIQ, cognitive inhibition, and alerting were associated with better driving performance at baseline. FSIQ and cognitive inhibition were also associated with better driving performance during the verbal challenge. Measures of cognitive flexibility, orienting, and conflict executive control were not associated with driving performance under either condition. FSIQ and, to some extent, measures of executive function are associated with driving performance in a driving simulator. Further research is needed to determine if executive function is associated with more advanced driving performance under conditions that demand greater cognitive load. Copyright © 2016 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.
Preece, Carissa; Watson, Angela; Kaye, Sherrie-Anne; Fleiter, Judy
2018-08-01
This study applied the Prototype Willingness Model (PWM) to investigate the factors that may predict young drivers' (non-intentional) willingness to text while driving, text while stopped, and engage in high and low levels of speeding. In addition, the study sought to assess whether general optimism bias would predict young drivers' willingness to text and speed over and above the PWM. Licenced drivers (N = 183) aged 17-25 years (M = 19.84, SD = 2.30) in Queensland, Australia completed an online survey. Hierarchical multiple regressions revealed that the PWM was effective in explaining the variance in willingness to perform all four illegal driving behaviours. Particularly, young drivers who possessed favourable attitudes and a positive prototype perception towards these behaviours were more willing to engage in texting and speeding. In contrast to the study's predictions, optimistically biased beliefs decreased young drivers' willingness to text while stopped and engage in high and low levels of speeding. The findings of the study may help inform policy and educational campaigns to better target risky driving behaviours by considering the influence of attitudes, prototypes and the non-intentional pathway that may lead to engagement in texting while driving and stopped and engagement in high and low levels of speeding. Copyright © 2018 Elsevier Ltd. All rights reserved.
Cerezuela, Gemma Pastor; Tejero, Pilar; Chóliz, Mariano; Chisvert, Mauricio; Monteagudo, M José
2004-11-01
This paper aims to study the phenomenon known as 'highway hypnosis' or 'driving without attention mode', which has been defined as a state showing sleepiness signs and attention slip resulting from driving a motor vehicle for a long period in a highly predictable environment with low event occurrence, this being the case with motorways and very familiar roads [Highway hypnosis: a theoretical analysis. In: Gale, A.G., Brown, I.D., Haslegrave, C.M., Moorhead, I., Taylor, S. (Eds.), Vision in Vehicles-III. Elsevier, North-Holland, pp. 467-472]. According to Wertheim's hypothesis on 'highway hypnosis', long-term driving on motorways and conventional roads, e.g. main roads, secondary roads--implies differences in the predictability of the movement pattern of the visual stimulation, in the eye musculature activity and in the type of feedback used in visual information processing (mostly extra-retinal on motorways and retinal and extra-retinal on conventional roads). All this ultimately leads to alertness differences between both road types. Our research is intended to provide empirical evidence from the hypothesis, based on the data recorded during the actual driving experience of a group of subjects on a motorway and a conventional road. We studied whether or not significant alertness differences were found-measured by EEG data relative to time periods of on-target eye-tracking performance--between motorway and conventional road driving. Our results partially support the hypothesis, as drowsiness proved to be higher on motorways than on conventional roads during the final driving period but not during the starting stage, when the opposite trend was noticed. This result could be explained by the fact that during the first driving periods the effects of the stimulus movement predictability had not yet become apparent, since they tend to show after a long drive.
Nevin, Paul E; Blanar, Laura; Kirk, Annie Phare; Freedheim, Amy; Kaufman, Robert; Hitchcock, Laura; Maeser, Jennifer D; Ebel, Beth E
2017-06-01
In response to the rise of distracted driving, many countries and most US states have adopted laws to restrict the use of handheld phones for drivers. Specific provisions of each law and the overall social mores of distracted driving influence enforceability and impact. Identify multilevel interdependent factors that influence distracted driving enforcement through the perspective of police officers. We conducted focus group discussions with active duty law enforcement officers from three large Washington State counties. Our thematic analysis used descriptive and pattern coding that placed our findings within a social ecological framework to facilitate targeted intervention development. Participants reported that the distracted driving law posed challenges for consistent and effective enforcement. They emphasised the need to change social norms around distracted driving, similar to the shifts seen around impaired driving. Many participants were themselves distracted drivers, and their individual knowledge, attitude and beliefs influenced enforcement. Participants suggested that law enforcement leaders and policymakers should develop and implement policies and strategies to prioritise and motivate increased distracted driving enforcement. Individual, interpersonal, organisational and societal factors influence enforcement of distracted driving laws. Targeted interventions should be developed to address distracted driving and sustain effective enforcement. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Aksan, Nazan; Hacker, Sarah D; Sager, Lauren; Dawson, Jeffrey; Anderson, Steven; Rizzo, Matthew
2016-03-01
Forty-two younger (Mean age = 35) and 37 older drivers (Mean age = 77) completed four similar simulated drives. In addition, 32 younger and 30 older drivers completed a standard on-road drive in an instrumented vehicle. Performance in the simulated drives was evaluated using both electronic drive data and video-review of errors. Safety errors during the on-road drive were evaluated by a certified driving instructor blind to simulator performance, using state Department of Transportation criteria. We examined the degree of convergence in performance across the two platforms on various driving tasks including lane change, lane keeping, speed control, stopping, turns, and overall performance. Differences based on age group indicated a pattern of strong relative validity for simulator measures. However, relative rank-order in specific metrics of performance suggested a pattern of moderate relative validity. The findings have implications for the use of simulators in assessments of driving safety as well as its use in training and/or rehabilitation settings.
Aksan, Nazan; Hacker, Sarah D.; Sager, Lauren; Dawson, Jeffrey; Anderson, Steven; Rizzo, Matthew
2017-01-01
Forty-two younger (Mean age = 35) and 37 older drivers (Mean age = 77) completed four similar simulated drives. In addition, 32 younger and 30 older drivers completed a standard on-road drive in an instrumented vehicle. Performance in the simulated drives was evaluated using both electronic drive data and video-review of errors. Safety errors during the on-road drive were evaluated by a certified driving instructor blind to simulator performance, using state Department of Transportation criteria. We examined the degree of convergence in performance across the two platforms on various driving tasks including lane change, lane keeping, speed control, stopping, turns, and overall performance. Differences based on age group indicated a pattern of strong relative validity for simulator measures. However, relative rank-order in specific metrics of performance suggested a pattern of moderate relative validity. The findings have implications for the use of simulators in assessments of driving safety as well as its use in training and/or rehabilitation settings. PMID:28649572
Tippey, Kathryn G; Sivaraj, Elayaraj; Ferris, Thomas K
2017-06-01
This study evaluated the individual and combined effects of voice (vs. manual) input and head-up (vs. head-down) display in a driving and device interaction task. Advances in wearable technology offer new possibilities for in-vehicle interaction but also present new challenges for managing driver attention and regulating device usage in vehicles. This research investigated how driving performance is affected by interface characteristics of devices used for concurrent secondary tasks. A positive impact on driving performance was expected when devices included voice-to-text functionality (reducing demand for visual and manual resources) and a head-up display (HUD) (supporting greater visibility of the driving environment). Driver behavior and performance was compared in a texting-while-driving task set during a driving simulation. The texting task was completed with and without voice-to-text using a smartphone and with voice-to-text using Google Glass's HUD. Driving task performance degraded with the addition of the secondary texting task. However, voice-to-text input supported relatively better performance in both driving and texting tasks compared to using manual entry. HUD functionality further improved driving performance compared to conditions using a smartphone and often was not significantly worse than performance without the texting task. This study suggests that despite the performance costs of texting-while-driving, voice input methods improve performance over manual entry, and head-up displays may further extend those performance benefits. This study can inform designers and potential users of wearable technologies as well as policymakers tasked with regulating the use of these technologies while driving.
NASA Astrophysics Data System (ADS)
Yamanaka, C.
1999-06-01
Inertial confinement fusion (ICF) is an alternative way to control fusion which is based on scaling down a thermonuclear explosion to a small size, applicable for power production, a kind of thermonuclear internal combustion engine. This book extends many interesting topics concerning the research and development on ICF of the last 25 years. It provides a systematic development of the physics basis and also various experimental data on radiation driven implosion. This is a landmark treatise presented at the right time. It is based on the article ``Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain'' by J.D. Lindl, published in Physics of Plasmas, Vol. 2, November 1995, pp. 3933-4024. As is well known, in the United States of America research on the target physics basis for indirect drive remained largely classified until 1994. The indirect drive approaches were closely related to nuclear weapons research at Lawrence Livermore and Los Alamos National Laboratories. In Japan and other countries, inertial confinement fusion research for civil energy has been successfully performed to achieve DT fuel pellet compression up to 1000 times normal density, and indirect drive concepts, such as the `Cannon Ball' scheme, also prevailed at several international conferences. In these circumstances the international fusion community proposed the Madrid Manifesto in 1988, which urged openness of ICF information to promote international collaboration on civil energy research for the future resources of the human race. This proposal was also supported by some of the US scientists. The United States Department of Energy revised its classification guidelines for ICF six years after the Madrid Manifesto. This first book from the USA treating target physics issues, covering topics from implosion dynamics to hydrodynamic stability, ignition physics, high-gain target design and the scope for energy applications is enthusiastically welcomed. The author joined Lawrence Livermore National Laboratory in 1972 to perform intensive theoretical and computational research on implosion and ignition. He was awarded the Edward Teller Medal in 1993. One therefore expects the topics to be treated with authority, and this expectation is well fulfilled. The general treatment throughout the book is to begin with the basic physics of implosion and show how its development leads to an explanation of many fundamental ideas about implosion, via direct drive or indirect drive, particularly ideas associated with radiation transport. This approach is generally successful, with the reader immediately able to relate the theoretical treatments to physical problems. One danger in this approach, however, is that fundamental concepts in implosion often become stressed within the framework of indirect radiation drive of hohlraum targets oriented towards research in the National Ignition Facility. The references in this book to Livermore or Los Alamos internal documents are not yet publicly available, because many are in the process of review for declassification. The reader will have to become accustomed to this situation, which has lasted for a long time but now seems to be gradually improving. The treatise is composed of 13 chapters, including 271 illustrations. An overview of ICF and the historical development of indirect drive in the ICF programme are described in Chapters 1 and 2. Direct drive and indirect drive have different features. The choice of which to use is a very interesting issue. The former has a higher laser-target coupling efficiency but is less uniform in laser irradiation due to discrete beams of lasers. Beam smoothing techniques have a key role in direct drive. The indirect drive by soft X rays which are generated at the inner surface of a hohlraum can have a higher uniform irradiation to reduce the growth of perturbations due to Rayleigh-Taylor (RT) instabilities. The soft X ray drive has much higher ablation rates and is less sensitive to hot electron preheat. A potential disadvantage of indirect drive is the larger scale length of the plasma travelled by the laser beam from the inlet hole to the hohlraum wall. Parametric instabilities in hohlraums have problems because of energy loss and coupling. One of the most important issues for indirect drive is a radiation drive concept which is essentially independent of the driver, such as laser or particle beam. The historical progress of ICF in the USA mainly depended upon the resolution of the fusion database for weaponry. This was a reason to choose indirect drive as the main scheme. Several structures of hohlraum target are described which for a long time were closed to the public. As the minimum energy for ignition depends strongly on the achievable implosion velocity, a great deal of benefit is derived from operating at the highest possible hohlraum temperature and in-flight aspect ratio (IFAR). The conclusion of Chapters 3, 4 and 5 is that achieving an implosion velocity of 3 × 107cm/s with an IFAR-30 Fermi degenerated shell would require a minimum drive temperature of about 200 eV. The hydrodynamic instability, ignition threshold and capsule gain are discussed in Chapter 6. The RT hydrodynamic instability began at the upper limit of the IFAR and hence at the peak implosion velocity. The growth rate of the instability in the acceleration phase was found to be suppressed by the ablation flow at Osaka. Instability during the deceleration phase was primarily stabilized by electron conduction. The combined effects of acceleration, feed-through and deceleration show that the principal modes contributing to perturbations in the fuel have spherical harmonic mode numbers less than about 30-40. The higher modes are rapidly reduced by rarefaction. The lower modes are killed by so-called `fire polishing'. The target uniformity and irradiation uniformity are very effective at suppressing instabilities. The maximum number of e-foldings sets the upper limit of the implosion velocity. This gives the threshold energy of ignition. The minimum capsule energy for ignition for indirect drive is compared with Nuckoll's projections for direct drive. The estimation depends strongly upon the effects of hydrodynamic instability and symmetry in the compressed fuel volume. If the margin of energy is 2, the necessary capsule absorbed energy is about 90 kJ with a radiation temperature of 300 eV. The coupling between driver and capsule is 10-15%, and the driver energy is 0.6-0.9 MJ. The scaling laws for the capsule absorbed power, radius and pulse length with a certain IFAR are given. It is concluded (Chapter 6) that the optimum strategy for gain is operation at the minimum implosion velocity consistent with the desired capsule size and yield, because at the excess implosion velocity the capsules tend to ignite earlier than the optimal point in the compression process. The most crucial issues for the hohlraum target are the coupling efficiency and hohlraum radiation uniformity. Various kinds of devices for hohlraum structures and double cone irradiation schemes have been investigated. These technological developments are energetically described. The implosion symmetry reproducibility (Chapters 7 and 8) for the Precision Nova advanced system meets the requirement of 1% uniformity for ignition experiment time averaged flux. Combined tests of symmetry and hydrodynamic instability as well as the hohlraum plasma conditions estimating the simulated Brillouin scattering (SBS) and simulated Raman scattering (SRS) effects and their influence on the hot electron preheat are summarized in Chapters 9, 10 and 11. The tolerable fraction of hot electrons for keeping the DT fuel preheat at approximately the Fermi specific energy indicates that direct drive capsules are 3 to 4 times larger than the indirect drive capsules. As a conclusion, Chapters 12 and 13 are proudly devoted to the National Ignition Facility and ignition targets. The NIF has a 192 beam, frequency tripled Nd:glass laser system with routine target energies and powers of 1.8 MJ and 500 TW, appropriately pulse shaped. The 192 beams are clustered in groups of 4, so that there are effectively 8 spots in each of the inner cones, and 16 in the outer cones in the hohlraum. Each cluster of 4 beams combines to form an effective f/8 optic. Various kinds of target design are described, for instance, a baseline design 300 eV hohlraum capsule, which absorbs 1.35 MJ of light, an ignition point hydrocarbon (CH) capsule, which is aimed at determining the requirements for symmetry, stability and ignition, and a lower temperature 250 eV capsule with a beryllium ablator, which provides a trade-off between hydroinstabilities and laser-plasma effects. The NIF baseline capsule designs absorb 150 kJ, of which about 25 kJ ends up in the compressed fuel. The central temperature increases to 10 keV when the capsule produces 400 kJ. The fuel energy gain is about 16 at ignition, or when the alpha particle deposition is about 3 times the initial energy delivered to the compressed fuel. The NIF baseline targets are then expected to yield up to 15 MJ and a fuel gain of about 600. Estimates based on NOVA experiments and modelling indicate that SBS, SRS and other plasma hazard processes can be kept within acceptable limits. If these are not attained, the ultimate recourse is to increase the hohlraum size, reduce the laser intensity and reduce the drive temperature to that of the 250 eV design, which has significantly less plasma. The remaining uncertainties can be mitigated by changes in the target design. The author has confidence ignition will be achieved in NIF, which seems to be strongly supported by the Centurion-Halite underground nuclear experiments demonstrating the excellent performance and the basic feasibility of achieving high gain. He thoughtfully adds a comment that developments in direct drive have reached the point where this approach also looks quite promising. NIF will be able to shift rapidly ( <= 1 d) between indirect drive and direct drive. Finally, the short last chapter (Chapter 13) gives an overview on the greatest potential for future ICF power plants. In a book review, questions are usually asked about the readers the book is primarily intended for, whether the book is written at the appropriate level for those readers and whether there are other books that achieve similar objectives. The last section of the Preface states that this book provides an in-depth analysis of theoretical and experimental work on indirect drive ICF classified up to 1994, as well as work carried out throughout the world. It is intended to serve as a reference guide for researchers in the field. Each topic covered contains enough introductory material that the book can also be used at the graduate level by students or newly interested researchers. Most of the laser technology and diagnostic development are not covered at all. To this reviewer that statement is a succinct summary of what the book achieves. Working fusion physicists, particularly in ICF, will find the book to be both instructive and enjoyable. As a secondary market, the book could well be used as a text for a graduate course in laser plasma physics, although some parts are like review papers. As to which books cover some of the same material, W.L. Kruer published Physics of Laser Plasma Interactions (Addison-Wesley, Redwood City, CA, 1988), which is suitable as a textbook for graduate students and also for the plasma physicist in general and C. Yamanaka published Introduction to Laser Fusion (Harwood Academic, Chur, 1991), which is the only book treating implosion physics, lasers, target design and diagnostics prior to the USDOE's declassification. As for the Handbook of Plasma Physics series (edited by M.N. Rosenbluth and R.Z. Sagdeev), Vol. 3, Physics of Laser Plasma (edited by A.H. Rubenchik and S. Witkowski) (Elsevier Science, Amsterdam, 1991) comes to mind. However, this last book is larger, and covers somewhat diverse topics. The typography of the book presently under review is also much to be preferred. In summary, I would strongly recommend the book by Lindl to my colleagues in plasma physics, particularly to those engaged in ICF.
Evaluating the MMI diagnostic on OMEGA direct-drive shots
NASA Astrophysics Data System (ADS)
Baumgaertel, J. A.; Bradley, P. A.; Cobble, J. A.; Fincke, J.; Hakel, P.; Hsu, S. C.; Kanzleiter, R.; Krasheninnikova, N. S.; Murphy, T. J.; Schmitt, M. J.; Shah, R.; Tregillis, I.; Obrey, K.; Mancini, R. C.; Joshi, T.; Johns, H.; Mayes, D.
2013-10-01
The Defect-Induced Mix Experiment (DIME) project utilized Multiple Monochromatic Imagers (MMI) on symmetric and polar direct-drive shots conducted on the OMEGA laser. The MMI provides spatially and spectrally resolved data of capsule implosions and resultant dopant emissions. The capsules had radii of 430 μm, with CH shells that included an inner layer doped with 1-2 atom % Ti, and a gas fill of 5 atm deuterium. Simulations of the target implosion by codes HYDRA and RAGE are post-processed with self-emission and MMI synthetic diagnostic tools and quantitatively compared to the MMI data to determine the utility of using it for mix model validation. MMI data shows the location of dopants, which are used to diagnose mix. Sensitivities of synthetic MMI images and yield to laser drive and mix levels are explored. Finally, RAGE results, clean and with mix, are compared with time-dependent streak camera data. This work is supported by US DOE/NNSA, performed at LANL, operated by LANS LLC under contract DE-AC52-06NA25396.
Subpercent-Scale Control of 3D Low Modes of Targets Imploded in Direct-Drive Configuration on OMEGA
NASA Astrophysics Data System (ADS)
Michel, D. T.; Igumenshchev, I. V.; Davis, A. K.; Edgell, D. H.; Froula, D. H.; Jacobs-Perkins, D. W.; Goncharov, V. N.; Regan, S. P.; Shvydky, A.; Campbell, E. M.
2018-03-01
Multiple self-emission x-ray images are used to measure tomographically target modes 1, 2, and 3 up to the end of the target acceleration in direct-drive implosions on OMEGA. Results show that the modes consist of two components: the first varies linearly with the laser beam-energy balance and the second is static and results from physical effects including beam mistiming, mispointing, and uncertainty in beam energies. This is used to reduce the target low modes of low-adiabat implosions from 2.2% to 0.8% by adjusting the beam-energy balance to compensate these static modes.
Hydrodynamic scaling of the deceleration-phase Rayleigh–Taylor instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bose, A., E-mail: abos@lle.rochester.edu; Woo, K. M.; Betti, R.
2015-07-15
The scaling of the deceleration phase of inertial fusion direct-drive implosions is investigated for OMEGA and National Ignition Facility (NIF)-size targets. It is shown that the deceleration-phase Rayleigh–Taylor instability (RTI) does not scale hydro-equivalently with implosion size. This is because ablative stabilization resulting from thermal conduction and radiation transport in a spherically converging geometry is different on the two scales. As a consequence, NIF-scale implosions show lower hot-spot density and mass ablation velocity, allowing for higher RTI growth. On the contrary, stabilization resulting from density-gradient enhancement, caused by reabsorption of radiation emitted from the hot spot, is higher on NIFmore » implosions. Since the RTI mitigation related to thermal conduction and radiation transport scale oppositely with implosion size, the degradation of implosion performance caused by the deceleration RTI is similar for NIF and OMEGA targets. It is found that a minimum threshold for the no-α Lawson ignition parameter of χ{sub Ω} ≈ 0.2 at the OMEGA scale is required to demonstrate hydro-equivalent ignition at the NIF scale for symmetric direct-drive implosions.« less
Hydrodynamic scaling of the deceleration-phase Rayleigh–Taylor instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bose, A.; Woo, K. M.; Nora, R.
2015-07-02
The scaling of the deceleration phase of inertial fusion direct-drive implosions is investigated for OMEGA and National Ignition Facility (NIF)-size targets. It is shown that the deceleration-phase Rayleigh–Taylor instability (RTI) does not scale hydro-equivalently with implosion size. This is because ablative stabilization resulting from thermal conduction and radiation transport in a spherically converging geometry is different on the two scales. As a consequence, NIF-scale implosions show lower hot-spot density and mass ablation velocity, allowing for higher RTI growth. On the contrary, stabilization resulting from density-gradient enhancement, caused by reabsorption of radiation emitted from the hot spot, is higher on NIFmore » implosions. Since the RTI mitigation related to thermal conduction and radiation transport scale oppositely with implosion size, the degradation of implosion performance caused by the deceleration RTI is similar for NIF and OMEGA targets. It is found that a minimum threshold for the no-α Lawson ignition parameter of ΧΩ ≈ 0.2 at the OMEGA scale is required to demonstrate hydro-equivalent ignition at the NIF scale for symmetric direct-drive implosions.« less
Psychological predictors of college students' cell phone use while driving.
Schlehofer, Michèle M; Thompson, Suzanne C; Ting, Sarah; Ostermann, Sharon; Nierman, Angela; Skenderian, Jessica
2010-07-01
Despite the known risk, many people talk on a phone while driving. This study explored psychological predictors of cell phone use while driving. College students (final N=69) completed a survey and predicted their driving performance both with and without a simultaneous phone conversation. Their actual performance on a driving simulator was then assessed. Cell phone use reduced performance on the simulation task. Further, perceiving oneself as good at compensating for driving distractions, overestimating one's performance on the driving simulator, and high illusory control predicted more frequent cell phone use while driving in everyday life. Finally, those who talked more frequently on a phone while driving had poorer real-world driving records. These findings suggest illusory control and positive illusions partly explain driver's decisions of whether to use cell phones while driving. Copyright 2010 Elsevier Ltd. All rights reserved.
Advances in targeted genome editing.
Perez-Pinera, Pablo; Ousterout, David G; Gersbach, Charles A
2012-08-01
New technologies have recently emerged that enable targeted editing of genomes in diverse systems. This includes precise manipulation of gene sequences in their natural chromosomal context and addition of transgenes to specific genomic loci. This progress has been facilitated by advances in engineering targeted nucleases with programmable, site-specific DNA-binding domains, including zinc finger proteins and transcription activator-like effectors (TALEs). Recent improvements have enhanced nuclease performance, accelerated nuclease assembly, and lowered the cost of genome editing. These advances are driving new approaches to many areas of biotechnology, including biopharmaceutical production, agriculture, creation of transgenic organisms and cell lines, and studies of genome structure, regulation, and function. Genome editing is also being investigated in preclinical and clinical gene therapies for many diseases. Copyright © 2012 Elsevier Ltd. All rights reserved.
Use of external magnetic fields in hohlraum plasmas to improve laser-coupling
Montgomery, D. S.; Albright, B. J.; Barnak, D. H.; ...
2015-01-13
Efficient coupling of laser energy into hohlraum targets is important for indirect drive ignition. Laser-plasma instabilities can reduce coupling, reduce symmetry, and cause preheat. We consider the effects of an external magnetic field on laser-energy coupling in hohlraum targets. Experiments were performed at the Omega Laser Facility using low-Z gas-filled hohlraum targets which were placed in a magnetic coil with B z ≤ 7.5-T. We found that an external field B z = 7.5-T aligned along the hohlraum axis results in up to a 50% increase in plasma temperature as measured by Thomson scattering. As a result, the experiments weremore » modeled using the 2-D magnetohydrodynamics package in HYDRA and were found to be in good agreement.« less
Yamin, Stephanie; Stinchcombe, Arne; Gagnon, Sylvain
2015-01-01
Driving is a multifactorial behaviour drawing on multiple cognitive, sensory, and physical systems. Dementia is a progressive and degenerative neurological condition that impacts the cognitive processes necessary for safe driving. While a number of studies have examined driving among individuals with Alzheimer's disease, less is known about the impact of Dementia with Lewy Bodies (DLB) on driving safety. The present study compared simulated driving performance of 15 older drivers with mild DLB with that of 21 neurologically healthy control drivers. DLB drivers showed poorer performance on all indicators of simulated driving including an increased number of collisions in the simulator and poorer composite indicators of overall driving performance. A measure of global cognitive function (i.e., the Mini Mental State Exam) was found to be related to the overall driving performance. In addition, measures of attention (i.e., Useful Field of View, UFOV) and space processing (Visual Object and Space Perception, VOSP, Test) correlated significantly with a rater's assessment of driving performance. PMID:26713169
Follett, R K; Delettrez, J A; Edgell, D H; Goncharov, V N; Henchen, R J; Katz, J; Michel, D T; Myatt, J F; Shaw, J; Solodov, A A; Stoeckl, C; Yaakobi, B; Froula, D H
2016-04-15
Multilayer direct-drive inertial-confinement-fusion targets are shown to significantly reduce two-plasmon decay (TPD) driven hot-electron production while maintaining high hydrodynamic efficiency. Implosion experiments on the OMEGA laser used targets with silicon layered between an inner beryllium and outer silicon-doped plastic ablator. A factor-of-5 reduction in hot-electron generation (>50 keV) was observed in the multilayer targets relative to pure CH targets. Three-dimensional simulations of the TPD-driven hot-electron production using a laser-plasma interaction code (lpse) that includes nonlinear and kinetic effects show good agreement with the measurements. The simulations suggest that the reduction in hot-electron production observed in the multilayer targets is primarily caused by increased electron-ion collisional damping.
Preliminary design for a reverse Brayton cycle cryogenic cooler
NASA Technical Reports Server (NTRS)
Swift, Walter L.
1993-01-01
A long life, single stage, reverse Brayton cycle cryogenic cooler is being developed for applications in space. The system is designed to provide 5 W of cooling at a temperature of 65 Kelvin with a total cycle input power of less than 200 watts. Key features of the approach include high speed, miniature turbomachines; an all metal, high performance, compact heat exchanger; and a simple, high frequency, three phase motor drive. In Phase 1, a preliminary design of the system was performed. Analyses and trade studies were used to establish the thermodynamic performance of the system and the performance specifications for individual components. Key mechanical features for components were defined and assembly layouts for the components and the system were prepared. Critical materials and processes were identified. Component and brassboard system level tests were conducted at cryogenic temperatures. The system met the cooling requirement of 5 W at 65 K. The system was also operated over a range of cooling loads from 0.5 W at 37 K to 10 W at 65 K. Input power to the system was higher than target values. The heat exchanger and inverter met or exceeded their respective performance targets. The compresssor/motor assembly was marginally below its performance target. The turboexpander met its aerodynamic efficiency target, but overall performance was below target because of excessive heat leak. The heat leak will be reduced to an acceptable value in the engineering model. The results of Phase 1 indicate that the 200 watt input power requirement can be met with state-of-the-art technology in a system which has very flexible integration requirements and negligible vibration levels.
Preliminary design for a reverse Brayton cycle cryogenic cooler
NASA Astrophysics Data System (ADS)
Swift, Walter L.
1993-12-01
A long life, single stage, reverse Brayton cycle cryogenic cooler is being developed for applications in space. The system is designed to provide 5 W of cooling at a temperature of 65 Kelvin with a total cycle input power of less than 200 watts. Key features of the approach include high speed, miniature turbomachines; an all metal, high performance, compact heat exchanger; and a simple, high frequency, three phase motor drive. In Phase 1, a preliminary design of the system was performed. Analyses and trade studies were used to establish the thermodynamic performance of the system and the performance specifications for individual components. Key mechanical features for components were defined and assembly layouts for the components and the system were prepared. Critical materials and processes were identified. Component and brassboard system level tests were conducted at cryogenic temperatures. The system met the cooling requirement of 5 W at 65 K. The system was also operated over a range of cooling loads from 0.5 W at 37 K to 10 W at 65 K. Input power to the system was higher than target values. The heat exchanger and inverter met or exceeded their respective performance targets. The compresssor/motor assembly was marginally below its performance target. The turboexpander met its aerodynamic efficiency target, but overall performance was below target because of excessive heat leak. The heat leak will be reduced to an acceptable value in the engineering model. The results of Phase 1 indicate that the 200 watt input power requirement can be met with state-of-the-art technology in a system which has very flexible integration requirements and negligible vibration levels.
Kim, Hyung-Sik; Choi, Mi-Hyun; Choi, Jin-Seung; Kim, Hyun-Joo; Hong, Sang-Pyo; Jun, Jae-Hoon; Tack, Gye-Rae; Kim, Boseong; Min, Ung-Chan; Lim, Dae-Woon; Chung, Soon-Cheol
2013-10-01
This study investigated the effects of distraction taskssuch as sending a text message with a cellphone and searching navigation with car navigation system-on the driving performance of 29 highly experienced taxi drivers in their 50s. All participants were instructed to drive using a driving simulator for 2 min. while maintaining a constant distance from the vehicle in front and a constant speed. Participants drove without any distractions for the first minute. For an additional minute, they performed Driving Only or performed a task while driving (Driving + Sending Text Message or Driving + Searching Navigation). An unexpected situation, in which the participant had to stop abruptly due to a sudden stop of the preceding vehicle, occurred during this period. Driving performance during the unexpected situation was evaluated by car control variables, medial-lateral coefficient of variation and brake time, and by motion variables such as the jerk-cost function. Compared to Driving Only, jerk-cost function, medial-lateral coefficient of variation, and brake time increased during Driving + Sending Text Message or Driving + Searching Navigation.
Weafer, Jessica; Fillmore, Mark T
2012-04-01
Alcohol effects on behavioral and cognitive mechanisms influence impaired driving performance and decisions to drive after drinking (Barry 1973; Moskowitz and Robinson 1987). To date, research has focused on the ascending limb of the blood alcohol curve, and there is little understanding of how acute tolerance to impairment of these mechanisms might influence driving behavior on the descending limb. To provide an integrated examination of the degree to which alcohol impairment of motor coordination and inhibitory control contributes to driving impairment and decisions to drive on the ascending and descending limbs of the blood alcohol curve. Social-drinking adults (N = 20) performed a testing battery that measured simulated driving performance and willingness to drive, as well as mechanisms related to driving: motor coordination (grooved pegboard), inhibitory control (cued go/no-go task), and subjective intoxication. Performance was tested in response to placebo and a moderate dose of alcohol (0.65 g/kg) twice at comparable blood alcohol concentrations: once on the ascending limb and again on the descending limb. Impaired motor coordination and subjective intoxication showed acute tolerance, whereas driving performance and inhibitory control showed no recovery from impairment. Greater motor impairment was associated with poorer driving performance under alcohol, and poorer inhibitory control was associated with more willingness to drive. Findings suggest that acute tolerance to impairment of motor coordination is insufficient to promote recovery of driving performance and that the persistence of alcohol-induced disinhibition might contribute to risky decisions to drive on the descending limb.
Weafer, Jessica
2015-01-01
Rationale Alcohol effects on behavioral and cognitive mechanisms influence impaired driving performance and decisions to drive after drinking (Barry 1973; Moskowitz and Robinson 1987). To date, research has focused on the ascending limb of the blood alcohol curve, and there is little understanding of how acute tolerance to impairment of these mechanisms might influence driving behavior on the descending limb. Objectives To provide an integrated examination of the degree to which alcohol impairment of motor coordination and inhibitory control contributes to driving impairment and decisions to drive on the ascending and descending limbs of the blood alcohol curve. Methods Social-drinking adults (N=20) performed a testing battery that measured simulated driving performance and willingness to drive, as well as mechanisms related to driving: motor coordination (grooved pegboard), inhibitory control (cued go/no-go task), and subjective intoxication. Performance was tested in response to placebo and a moderate dose of alcohol (0.65 g/kg) twice at comparable blood alcohol concentrations: once on the ascending limb and again on the descending limb. Results Impaired motor coordination and subjective intoxication showed acute tolerance, whereas driving performance and inhibitory control showed no recovery from impairment. Greater motor impairment was associated with poorer driving performance under alcohol, and poorer inhibitory control was associated with more willingness to drive. Conclusions Findings suggest that acute tolerance to impairment of motor coordination is insufficient to promote recovery of driving performance and that the persistence of alcohol-induced disinhibition might contribute to risky decisions to drive on the descending limb. PMID:21960182
The influence of music on mental effort and driving performance.
Ünal, Ayça Berfu; Steg, Linda; Epstude, Kai
2012-09-01
The current research examined the influence of loud music on driving performance, and whether mental effort mediated this effect. Participants (N=69) drove in a driving simulator either with or without listening to music. In order to test whether music would have similar effects on driving performance in different situations, we manipulated the simulated traffic environment such that the driving context consisted of both complex and monotonous driving situations. In addition, we systematically kept track of drivers' mental load by making the participants verbally report their mental effort at certain moments while driving. We found that listening to music increased mental effort while driving, irrespective of the driving situation being complex or monotonous, providing support to the general assumption that music can be a distracting auditory stimulus while driving. However, drivers who listened to music performed as well as the drivers who did not listen to music, indicating that music did not impair their driving performance. Importantly, the increases in mental effort while listening to music pointed out that drivers try to regulate their mental effort as a cognitive compensatory strategy to deal with task demands. Interestingly, we observed significant improvements in driving performance in two of the driving situations. It seems like mental effort might mediate the effect of music on driving performance in situations requiring sustained attention. Other process variables, such as arousal and boredom, should also be incorporated to study designs in order to reveal more on the nature of how music affects driving. Copyright © 2012 Elsevier Ltd. All rights reserved.
Understanding the effects of laser imprint on plastic-target implosions on OMEGA
Hu, S. X.; Michel, D. T.; Davis, A. K.; ...
2016-10-03
Understanding the effects of laser imprint on target performance is critical to the success of direct-drive inertial confinement fusion. Directly measuring the disruption caused by laser imprints to the imploding shell and hot-spot formation, in comparison with multidimensional radiation–hydrodynamic simulations, can provide a clear picture of how laser nonuniformities cause target performance to degrade. With the recently developed x-ray self-emission imaging technique and the state-of-the-art physics models recently implemented in the two-dimensional hydrocode DRACO, a systematic study of laser-imprint effects on warm target implosions on OMEGA has been performed using both experimental results and simulations. By varying the laser-picket intensity,more » the imploding shells were set at different adiabats (from α = 2 to α = 6). As the shell adiabats decreased, it was observed that (1) the measured shell thickness at the time the hot spot lit up became larger than the uniform one-dimensional (1-D) predictions; (2) the hot-spot core emitted earlier than the corresponding 1-D predictions; (3) the measured neutron yield first increased then decreased as the shell adiabat α was reduced; and (4) the hot-spot size reduced as α decreased for cases where SSD (smoothing by spectral dispersion) was on but became larger for low-α shots in cases where SSD was off. Most of these experimental observations are well reproduced by DRACO simulations with laser imprints including modes up to λ max = 200. In addition, these studies identify the importance of laser imprint as the major source of degrading target performance for OMEGA implosions of adiabat α ≤ 3. Mitigating laser imprints is required to improve low-α target performance.« less
Understanding the effects of laser imprint on plastic-target implosions on OMEGA
NASA Astrophysics Data System (ADS)
Hu, S. X.; Michel, D. T.; Davis, A. K.; Betti, R.; Radha, P. B.; Campbell, E. M.; Froula, D. H.; Stoeckl, C.
2016-10-01
Understanding the effects of laser imprint on target performance is critical to the success of direct-drive inertial confinement fusion. Directly measuring the disruption caused by laser imprints to the imploding shell and hot-spot formation, in comparison with multidimensional radiation-hydrodynamic simulations, can provide a clear picture of how laser nonuniformities cause target performance to degrade. With the recently developed x-ray self-emission imaging technique and the state-of-the-art physics models recently implemented in the two-dimensional hydrocode DRACO, a systematic study of laser-imprint effects on warm target implosions on OMEGA has been performed using both experimental results and simulations. By varying the laser-picket intensity, the imploding shells were set at different adiabats (from α = 2 to α = 6). As the shell adiabats decreased, it was observed that (1) the measured shell thickness at the time the hot spot lit up became larger than the uniform one-dimensional (1-D) predictions; (2) the hot-spot core emitted earlier than the corresponding 1-D predictions; (3) the measured neutron yield first increased then decreased as the shell adiabat α was reduced; and (4) the hot-spot size reduced as α decreased for cases where SSD (smoothing by spectral dispersion) was on but became larger for low-α shots in cases where SSD was off. Most of these experimental observations are well reproduced by DRACO simulations with laser imprints including modes up to λmax = 200. These studies identify the importance of laser imprint as the major source of degrading target performance for OMEGA implosions of adiabat α ≤ 3. Mitigating laser imprints is required to improve low-α target performance.
Understanding the effects of laser imprint on plastic-target implosions on OMEGA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, S. X.; Michel, D. T.; Davis, A. K.
Understanding the effects of laser imprint on target performance is critical to the success of direct-drive inertial confinement fusion. Directly measuring the disruption caused by laser imprints to the imploding shell and hot-spot formation, in comparison with multidimensional radiation–hydrodynamic simulations, can provide a clear picture of how laser nonuniformities cause target performance to degrade. With the recently developed x-ray self-emission imaging technique and the state-of-the-art physics models recently implemented in the two-dimensional hydrocode DRACO, a systematic study of laser-imprint effects on warm target implosions on OMEGA has been performed using both experimental results and simulations. By varying the laser-picket intensity,more » the imploding shells were set at different adiabats (from α = 2 to α = 6). As the shell adiabats decreased, it was observed that (1) the measured shell thickness at the time the hot spot lit up became larger than the uniform one-dimensional (1-D) predictions; (2) the hot-spot core emitted earlier than the corresponding 1-D predictions; (3) the measured neutron yield first increased then decreased as the shell adiabat α was reduced; and (4) the hot-spot size reduced as α decreased for cases where SSD (smoothing by spectral dispersion) was on but became larger for low-α shots in cases where SSD was off. Most of these experimental observations are well reproduced by DRACO simulations with laser imprints including modes up to λ max = 200. In addition, these studies identify the importance of laser imprint as the major source of degrading target performance for OMEGA implosions of adiabat α ≤ 3. Mitigating laser imprints is required to improve low-α target performance.« less
Baedorf Kassis, Elias; Loring, Stephen H; Talmor, Daniel
2016-08-01
The driving pressure of the respiratory system has been shown to strongly correlate with mortality in a recent large retrospective ARDSnet study. Respiratory system driving pressure [plateau pressure-positive end-expiratory pressure (PEEP)] does not account for variable chest wall compliance. Esophageal manometry can be utilized to determine transpulmonary driving pressure. We have examined the relationships between respiratory system and transpulmonary driving pressure, pulmonary mechanics and 28-day mortality. Fifty-six patients from a previous study were analyzed to compare PEEP titration to maintain positive transpulmonary end-expiratory pressure to a control protocol. Respiratory system and transpulmonary driving pressures and pulmonary mechanics were examined at baseline, 5 min and 24 h. Analysis of variance and linear regression were used to compare 28 day survivors versus non-survivors and the intervention group versus the control group, respectively. At baseline and 5 min there was no difference in respiratory system or transpulmonary driving pressure. By 24 h, survivors had lower respiratory system and transpulmonary driving pressures. Similarly, by 24 h the intervention group had lower transpulmonary driving pressure. This decrease was explained by improved elastance and increased PEEP. The results suggest that utilizing PEEP titration to target positive transpulmonary pressure via esophageal manometry causes both improved elastance and driving pressures. Treatment strategies leading to decreased respiratory system and transpulmonary driving pressure at 24 h may be associated with improved 28 day mortality. Studies to clarify the role of respiratory system and transpulmonary driving pressures as a prognosticator and bedside ventilator target are warranted.
Plasma Gradient Piston: a new approach to precision pulse shaping
NASA Astrophysics Data System (ADS)
Prisbrey, Shon T.
2011-10-01
We have successfully developed a method to create shaped pressure drives from large shocks that can be applied to a wide variety of experimental platforms. The method consists of transforming a large shock or blast wave into a ramped pressured drive by utilizing a graded density reservoir that unloads across a gap and stagnates against the sample being studied. The utilization of a graded density reservoir, different materials, and a gap transforms the energy in the initial large shock into a quasi-isentropic ramped compression. Control of the ramp history is via the size of the initial shock, the chosen reservoir materials, their densities, the thickness of each density layer, and the gap size. There are two keys to utilizing this approach to create ramped drives: the ability to produce a large shock, and making the layered density reservoir. A number of facilities can produce the strong initial shock (Z, Omega, NIF, Phoenix, high explosives, NIKE, LMJ, pulsed power,...). We have demonstrated ramped drives from 0.5 to 1.5 Mbar utilizing a large shock created at the Omega laser facility. We recently concluded a pair of NIF drive shots where we successfully converted a hohlraum-generated shock into a stepped, ramped pressure drive with a peak pressure of ~4 - 5 Mbar in a Ta sample. We will explain the basic concepts needed for producing a ramped pressure drive, compare experimental data with simulations from Omega (Pmax ~ 1 Mbar) and NIF (Pmax ~ 5-10 Mbar), and present designs for ramped, staged-shock designs up to Pmax ~ 30 Mbar. The approach that we have developed enables precision pulse shaping of the drive (applied pressure vs. time) via target characteristics, as opposed to tailoring laser power vs time or Z-pinch facility current vs time. This enables ramped, quasi-isentropic materials studies to be performed on a wide variety of HED facilities. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-490532.
Casutt, Gianclaudio; Theill, Nathan; Martin, Mike; Keller, Martin; Jäncke, Lutz
2014-01-01
Background: Age-related cognitive decline is often associated with unsafe driving behavior. We hypothesized that 10 active training sessions in a driving simulator increase cognitive and on-road driving performance. In addition, driving simulator training should outperform cognitive training. Methods: Ninety-one healthy active drivers (62–87 years) were randomly assigned to one of three groups: (1) a driving simulator training group, (2) an attention training group (vigilance and selective attention), or (3) a control group. The main outcome variables were on-road driving and cognitive performance. Seventy-seven participants (85%) completed the training and were included in the analyses. Training gains were analyzed using a multiple regression analysis with planned orthogonal comparisons. Results: The driving simulator-training group showed an improvement in on-road driving performance compared to the attention-training group. In addition, both training groups increased cognitive performance compared to the control group. Conclusion: Driving simulator training offers the potential to enhance driving skills in older drivers. Compared to the attention training, the simulator training seems to be a more powerful program for increasing older drivers' safety on the road. PMID:24860497
The Neural Correlates of Driving Performance Identified Using Positron Emission Tomography
ERIC Educational Resources Information Center
Horikawa, E.; Okamura, N.; Tashiro, M.; Sakurada, Y.; Maruyama, M.; Arai, H.; Yamaguchi, K.; Sasaki, H.; Yanai, K.; Itoh, M.
2005-01-01
Driving is a complex behavior involving multiple cognitive domains. To identify neural correlates of driving performance, [^1^5O]H"2O positron emission tomography was performed using a simulated driving task. Compared with the resting condition, simulated driving increased regional cerebral blood flow (rCBF) in the cerebellum, occipital, and…
Gentry-Shields, Jennifer; Bartram, Jamie
2014-01-15
There is a growing awareness of global forces that threaten human health via the water environment. A better understanding of the dynamic between human health and the water environment would enable prediction of the significant driving forces and effective strategies for coping with or preventing them. This report details the use of the Driving Force-Pressure-State-Exposure-Effect-Action (DPSEEA) framework to explore the linkage between water-related diseases and their significant driving forces. The DPSEEA frameworks indicate that a select group of driving forces, including population growth, agriculture, infrastructure (dams and irrigation), and climate change, is at the root cause of key global disease burdens. Construction of the DPSEEA frameworks also allows for the evaluation of public health interventions. Sanitation was found to be a widely applicable and effective intervention, targeting the driver/pressure linkage of most of the water-related diseases examined. Ultimately, the DPSEEA frameworks offer a platform for constituents in both the health and environmental fields to collaborate and commit to a common goal targeting the same driving forces. © 2013.
Understanding Laser-Imprint Effects on Plastic-Target Implosions on OMEGA with New Physics Models
NASA Astrophysics Data System (ADS)
Hu, S. X.; Michel, D. T.; Davis, A. K.; Betti, R.; Radha, P. B.; Campbell, E. M.; Froula, D. H.; Stoeckl, C.
2016-10-01
Using the state-of-the-art physics models (nonlocal thermal transport, cross-beam energy transfer, and first-principles equation of state) recently implemented in our two-dimensional hydrocode DRACO, we have performed a systematic study of laser-imprint effects on plastic-target implosions on OMEGA by both simulations and experiments. Through varying the laser picket intensity, the imploding shells were set at different adiabats ranging from α = 2 to α = 6 . As the shell adiabat α decreases, we observed: (1) the measured shell thickness at the hot spot emission becomes larger than the uniform prediction; (2) the hot-spot core emits and neutron burn starts earlier than the corresponding 1-D prediction; and (3) the measured neutron yields are significantly reduced from their 1-D designs. Most of these experimental observations are well reproduced by our DRACO simulations with laser imprints. These studies clearly identify that laser imprint is the major cause for target performance degradation of OMEGA implosions of α <= 3 . Mitigating laser imprints must be an essential effort to improve low- α target performance in direct-drive inertial confinement fusion ignition attempts. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Scanning properties of a resonant fiber-optic piezoelectric scanner
NASA Astrophysics Data System (ADS)
Li, Zhi; Yang, Zhe; Fu, Ling
2011-12-01
We develop a resonant fiber-optic scanner using four piezoelectric elements arranged as a square tube, which is efficient to manufacture and drive. Using coupled-field model based on finite element method, scanning properties of the scanner, including vibration mode, resonant frequency, and scanning range, are numerically studied. We also physically measure the effects of geometry sizes and drive signals on the scanning properties, thus providing a foundation for general purpose designs. A scanner adopted in a prototype of imaging system, with a diameter of ˜2 mm and driven by a voltage of 10 V (peak to peak), demonstrates the scanning performance by obtaining an image of resolution target bars. The proposed fiber-optic scanner can be applied to micro-endoscopy that requires two-dimensional scanning of fibers.
Lew, Henry L; Poole, John H; Lee, Eun Ha; Jaffe, David L; Huang, Hsiu-Chen; Brodd, Edward
2005-03-01
To evaluate whether driving simulator and road test evaluations can predict long-term driving performance, we conducted a prospective study on 11 patients with moderate to severe traumatic brain injury. Sixteen healthy subjects were also tested to provide normative values on the simulator at baseline. At their initial evaluation (time-1), subjects' driving skills were measured during a 30-minute simulator trial using an automated 12-measure Simulator Performance Index (SPI), while a trained observer also rated their performance using a Driving Performance Inventory (DPI). In addition, patients were evaluated on the road by a certified driving evaluator. Ten months later (time-2), family members observed patients driving for at least 3 hours over 4 weeks and rated their driving performance using the DPI. At time-1, patients were significantly impaired on automated SPI measures of driving skill, including: speed and steering control, accidents, and vigilance to a divided-attention task. These simulator indices significantly predicted the following aspects of observed driving performance at time-2: handling of automobile controls, regulation of vehicle speed and direction, higher-order judgment and self-control, as well as a trend-level association with car accidents. Automated measures of simulator skill (SPI) were more sensitive and accurate than observational measures of simulator skill (DPI) in predicting actual driving performance. To our surprise, the road test results at time-1 showed no significant relation to driving performance at time-2. Simulator-based assessment of patients with brain injuries can provide ecologically valid measures that, in some cases, may be more sensitive than a traditional road test as predictors of long-term driving performance in the community.
The Impact of Age Stereotypes on Older Adults' Hazard Perception Performance and Driving Confidence.
Chapman, Lyn; Sargent-Cox, Kerry; Horswill, Mark S; Anstey, Kaarin J
2016-06-01
This study examined the effect of age-stereotype threat on older adults' performance on a task measuring hazard perception performance in driving. The impact of age-stereotype threat in relation to the value participants placed on driving and pre- and post-task confidence in driving ability was also investigated. Eighty-six adults aged from 65 years of age completed a questionnaire measuring demographic information, driving experience, self-rated health, driving importance, and driving confidence. Prior to undertaking a timed hazard perception task, participants were exposed to either negative or positive age stereotypes. Results showed that age-stereotype threats, while not influencing hazard perception performance, significantly reduced post-driving confidence compared with pre-driving confidence for those in the negative prime condition. This finding builds on the literature that has found that stereotype-based influences cannot simply be understood in terms of performance outcomes alone and may be relevant to factors affected by confidence such as driving cessation decisions. © The Author(s) 2014.
Text messaging during simulated driving.
Drews, Frank A; Yazdani, Hina; Godfrey, Celeste N; Cooper, Joel M; Strayer, David L
2009-10-01
This research aims to identify the impact of text messaging on simulated driving performance. In the past decade, a number of on-road, epidemiological, and simulator-based studies reported the negative impact of talking on a cell phone on driving behavior. However, the impact of text messaging on simulated driving performance is still not fully understood. Forty participants engaged in both a single task (driving) and a dual task (driving and text messaging) in a high-fidelity driving simulator. Analysis of driving performance revealed that participants in the dual-task condition responded more slowly to the onset of braking lights and showed impairments in forward and lateral control compared with a driving-only condition. Moreover, text-messaging drivers were involved in more crashes than drivers not engaged in text messaging. Text messaging while driving has a negative impact on simulated driving performance. This negative impact appears to exceed the impact of conversing on a cell phone while driving. The results increase our understanding of driver distraction and have potential implications for public safety and device development.
Scott-Parker, Bridie; Watson, Barry; King, Mark J; Hyde, Melissa K
2014-08-01
While there is research indicating that many factors influence the young novice driver's increased risk of road crash injury during the earliest stages of their independent driving, there is a need to further understand the relationship between the perceived risky driving behaviour of parents and friends and the risky behaviour of drivers with a Provisional (intermediate) licence. As part of a larger research project, 378 drivers aged 17-25 years (M=18.22, SD=1.59, 113 males) with a Provisional licence completed an online survey exploring the perceived riskiness of their parents' and friends' driving, and the extent to which they pattern (i.e. base) their driving behaviour on the driving of their parents and friends. Young drivers who reported patterning their driving on their friends, and who reported they perceived their friends to be risky drivers, reported more risky driving. The risky driving behaviour of young male drivers was associated with the perceived riskiness of their fathers' driving, whilst for female drivers the perceived riskiness of their mothers' driving approached significance. The development and application of countermeasures targeting the risky behaviour of same-sex parents appears warranted by the robust research findings. In addition, countermeasures need to encourage young people in general to be non-risky drivers; targeting the negative influence of risky peer groups specifically. Social norms interventions may minimise the influence of potentially-overestimated riskiness. Copyright © 2013 Elsevier Ltd. All rights reserved.
Prevalence of teen driver errors leading to serious motor vehicle crashes.
Curry, Allison E; Hafetz, Jessica; Kallan, Michael J; Winston, Flaura K; Durbin, Dennis R
2011-07-01
Motor vehicle crashes are the leading cause of adolescent deaths. Programs and policies should target the most common and modifiable reasons for crashes. We estimated the frequency of critical reasons for crashes involving teen drivers, and examined in more depth specific teen driver errors. The National Highway Traffic Safety Administration's (NHTSA) National Motor Vehicle Crash Causation Survey collected data at the scene of a nationally representative sample of 5470 serious crashes between 7/05 and 12/07. NHTSA researchers assigned a single driver, vehicle, or environmental factor as the critical reason for the event immediately leading to each crash. We analyzed crashes involving 15-18 year old drivers. 822 teen drivers were involved in 795 serious crashes, representing 335,667 teens in 325,291 crashes. Driver error was by far the most common reason for crashes (95.6%), as opposed to vehicle or environmental factors. Among crashes with a driver error, a teen made the error 79.3% of the time (75.8% of all teen-involved crashes). Recognition errors (e.g., inadequate surveillance, distraction) accounted for 46.3% of all teen errors, followed by decision errors (e.g., following too closely, too fast for conditions) (40.1%) and performance errors (e.g., loss of control) (8.0%). Inadequate surveillance, driving too fast for conditions, and distracted driving together accounted for almost half of all crashes. Aggressive driving behavior, drowsy driving, and physical impairments were less commonly cited as critical reasons. Males and females had similar proportions of broadly classified errors, although females were specifically more likely to make inadequate surveillance errors. Our findings support prioritization of interventions targeting driver distraction and surveillance and hazard awareness training. Copyright © 2010 Elsevier Ltd. All rights reserved.
Method for controlling a vehicle with two or more independently steered wheels
Reister, David B.; Unseren, Michael A.
1995-01-01
A method (10) for independently controlling each steerable drive wheel (W.sub.i) of a vehicle with two or more such wheels (W.sub.i). An instantaneous center of rotation target (ICR) and a tangential velocity target (v.sup.G) are inputs to a wheel target system (30) which sends the velocity target (v.sub.i.sup.G) and a steering angle target (.theta..sub.i.sup.G) for each drive wheel (W.sub.i) to a pseudovelocity target system (32). The pseudovelocity target system (32) determines a pseudovelocity target (v.sub.P.sup.G) which is compared to a current pseudovelocity (v.sub.P.sup.m) to determine a pseudovelocity error (.epsilon.). The steering angle targets (.theta..sup.G) and the steering angles (.theta..sup.m) are inputs to a steering angle control system (34) which outputs to the steering angle encoders (36), which measure the steering angles (.theta..sup.m). The pseudovelocity error (.epsilon.), the rate of change of the pseudovelocity error ( ), and the wheel slip between each pair of drive wheels (W.sub.i) are used to calculate intermediate control variables which, along with the steering angle targets (.theta..sup.G) are used to calculate the torque to be applied at each wheel (W.sub.i). The current distance traveled for each wheel (W.sub.i) is then calculated. The current wheel velocities (v.sup.m) and steering angle targets (.theta..sup.G) are used to calculate the cumulative and instantaneous wheel slip (e, ) and the current pseudovelocity (v.sub.P.sup.m).
Structural design considerations for the beam transmission optical system
NASA Technical Reports Server (NTRS)
Macneal, Paul D.; Lou, Michael C.
1993-01-01
The paper describes the JPL study leading to a baseline design of the Beam Transmission Optical System (BTOS), designed for the delivery of laser energy from earth to space targets. The study identified the driving environmental and functional requirements; developed a conceptual design of the BTOS telescope; and performed static, thermal distortion, and model analyses to verify that these requirements are met. The study also identified major areas of concern which should be investigated further.
Assessment of driving-related performance in chronic whiplash using an advanced driving simulator.
Takasaki, Hiroshi; Treleaven, Julia; Johnston, Venerina; Rakotonirainy, Andry; Haines, Andrew; Jull, Gwendolen
2013-11-01
Driving is often nominated as problematic by individuals with chronic whiplash associated disorders (WAD), yet driving-related performance has not been evaluated objectively. The purpose of this study was to test driving-related performance in persons with chronic WAD against healthy controls of similar age, gender and driving experience to determine if driving-related performance in the WAD group was sufficiently impaired to recommend fitness to drive assessment. Driving-related performance was assessed using an advanced driving simulator during three driving scenarios; freeway, residential and a central business district (CBD). Total driving duration was approximately 15min. Five driving tasks which could cause a collision (critical events) were included in the scenarios. In addition, the effect of divided attention (identify red dots projected onto side or rear view mirrors) was assessed three times in each scenario. Driving performance was measured using the simulator performance index (SPI) which is calculated from 12 measures. z-Scores for all SPI measures were calculated for each WAD subject based on mean values of the control subjects. The z-scores were then averaged for the WAD group. A z-score of ≤-2 indicated a driving failing grade in the simulator. The number of collisions over the five critical events was compared between the WAD and control groups as was reaction time and missed response ratio in identifying the red dots. Seventeen WAD and 26 control subjects commenced the driving assessment. Demographic data were comparable between the groups. All subjects completed the freeway scenario but four withdrew during the residential and eight during the CBD scenario because of motion sickness. All scenarios were completed by 14 WAD and 17 control subjects. Mean z-scores for the SPI over the three scenarios was statistically lower in the WAD group (-0.3±0.3; P<0.05) but the score was not below the cut-off point for safe driving. There were no differences in the reaction time and missed response ratio in divided attention tasks between the groups (All P>0.05). Assessment of driving in an advanced driving simulator for approximately 15min revealed that driving-related performance in chronic WAD was not sufficiently impaired to recommend the need for fitness to drive assessment. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knights, Shanna; Harvey, David
The durability of PEM fuel cells is a primary requirement for large scale commercialization of these power systems in transportation and stationary market applications which target operational lifetimes of 5,000 hours and 60,000 hours by 2020, respectively. Key degradation modes contributing to fuel cell lifetime limitations have been largely associated with the platinum-based cathode catalyst layer. Furthermore, as fuel cells are driven to low cost materials and lower catalyst loadings in order to meet the cost targets for commercialization, the catalyst durability has become even more important. While over the past few years significant progress has been made in identifyingmore » the underlying causes of fuel cell degradation and key parameters that greatly influence the degradation rates, many gaps with respect to knowledge of the driving mechanisms still exist; in particular, the acceleration of the mechanisms due to different membrane compositions remains an area not well understood. The focus of this project extension was to enhance the predictive capability of the PEM Fuel Cell Performance & Durability Model called FC-APOLLO (Application Package for Open-source Long Life Operation) by including interaction effects of membrane transport properties such as water transport, changes in proton conductivity, and overall water uptake/adsorption and the state of the catalyst layer local conditions to further understand the driving forces for platinum dissolution.« less
Follett, R. K.; Delettrez, J. A.; Edgell, D. H.; ...
2016-04-15
Multilayer direct-drive inertial-confinement-fusion (ICF) targets are shown to significantly reduce two-plasmon-decay (TPD) driven hot-electron production while maintaining high hydrodynamic efficiency. Implosion experiments on the OMEGA Laser used targets with silicon layered between an inner beryllium and outer silicon-doped plastic ablator. A factor of five reduction in hot-electron generation (> 50 keV) was observed in the multilayer targets relative to pure CH targets. Three-dimensional simulations of the TPD driven hot-electron production using a laser-plasma interaction code (LPSE) that includes nonlinear and kinetic effects show excellent agreement with the measurements. As a result, the simulations suggest that the reduction in hot-electron productionmore » observed in the multilayer targets is primarily due to increased electron-ion collisional damping.« less
NASA Astrophysics Data System (ADS)
Orth, C. D.
2001-03-01
This paper reviews our current understanding of the relative advantages of direct drive (DD) and indirect drive (ID) for a 1 GWe inertial fusion energy (IFE) power plant driven by a diode-pumped solid-state laser (DPSSL). This comparison is motivated by a recent study (1) that shows that the projected cost of electricity (COE) for DD is actually about the same as that for ID even though the target gain for DD can be much larger. We can therefore no longer assume that DD is the ultimate targeting scenario for IFE, and must begin a more rigorous comparison of these two drive options. The comparison begun here shows that ID may actually end up being preferred, but the uncertainties are still rather large.
Van Dyke, Nicholas A; Fillmore, Mark T
2015-12-01
Research indicates that alcohol intoxication and increased demands on drivers' attention from distractions (e.g., passengers and cell phones) contribute to poor driving performance and increased rates of traffic accidents and fatalities. The present study examined the separate and combined effects of alcohol and distraction on simulated driving performance at blood alcohol concentrations (BrACs) below the legal driving limit in the USA (i.e., 0.08 %). Fifty healthy adult drivers (36 men and 14 women) were tested in a driving simulator following a 0.65-g/kg dose of alcohol and a placebo. Drivers completed two drive tests: a distracted drive, which included a two-choice detection task, and an undistracted control drive. Multiple indicators of driving performance, such as drive speed, within-lane deviation, steering rate, and lane exceedances were measured. Alcohol and distraction each impaired measures of driving performance. Moreover, the magnitude of alcohol impairment was increased by at least twofold when tested under the distracting versus the undistracted condition. The findings highlight the need for a clearer understanding of how common distractions impact intoxicated drivers, especially at BrACs that are currently legal for driving in the USA.
ADX: a high field, high power density, advanced divertor and RF tokamak
NASA Astrophysics Data System (ADS)
LaBombard, B.; Marmar, E.; Irby, J.; Terry, J. L.; Vieira, R.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; Baek, S.; Beck, W.; Bonoli, P.; Brunner, D.; Doody, J.; Ellis, R.; Ernst, D.; Fiore, C.; Freidberg, J. P.; Golfinopoulos, T.; Granetz, R.; Greenwald, M.; Hartwig, Z. S.; Hubbard, A.; Hughes, J. W.; Hutchinson, I. H.; Kessel, C.; Kotschenreuther, M.; Leccacorvi, R.; Lin, Y.; Lipschultz, B.; Mahajan, S.; Minervini, J.; Mumgaard, R.; Nygren, R.; Parker, R.; Poli, F.; Porkolab, M.; Reinke, M. L.; Rice, J.; Rognlien, T.; Rowan, W.; Shiraiwa, S.; Terry, D.; Theiler, C.; Titus, P.; Umansky, M.; Valanju, P.; Walk, J.; White, A.; Wilson, J. R.; Wright, G.; Zweben, S. J.
2015-05-01
The MIT Plasma Science and Fusion Center and collaborators are proposing a high-performance Advanced Divertor and RF tokamak eXperiment (ADX)—a tokamak specifically designed to address critical gaps in the world fusion research programme on the pathway to next-step devices: fusion nuclear science facility (FNSF), fusion pilot plant (FPP) and/or demonstration power plant (DEMO). This high-field (⩾6.5 T, 1.5 MA), high power density facility (P/S ˜ 1.5 MW m-2) will test innovative divertor ideas, including an ‘X-point target divertor’ concept, at the required performance parameters—reactor-level boundary plasma pressures, magnetic field strengths and parallel heat flux densities entering into the divertor region—while simultaneously producing high-performance core plasma conditions that are prototypical of a reactor: equilibrated and strongly coupled electrons and ions, regimes with low or no torque, and no fuelling from external heating and current drive systems. Equally important, the experimental platform will test innovative concepts for lower hybrid current drive and ion cyclotron range of frequency actuators with the unprecedented ability to deploy launch structures both on the low-magnetic-field side and the high-magnetic-field side—the latter being a location where energetic plasma-material interactions can be controlled and favourable RF wave physics leads to efficient current drive, current profile control, heating and flow drive. This triple combination—advanced divertors, advanced RF actuators, reactor-prototypical core plasma conditions—will enable ADX to explore enhanced core confinement physics, such as made possible by reversed central shear, using only the types of external drive systems that are considered viable for a fusion power plant. Such an integrated demonstration of high-performance core-divertor operation with steady-state sustainment would pave the way towards an attractive pilot plant, as envisioned in the ARC concept (affordable, robust, compact) (Sorbom et al 2015 Fusion Eng. Des. submitted (arXiv:1409.3540)) that makes use of high-temperature superconductor technology—a high-field (9.25 T) tokamak the size of the Joint European Torus that produces 270 MW of net electricity.
Event-related potentials and secondary task performance during simulated driving.
Wester, A E; Böcker, K B E; Volkerts, E R; Verster, J C; Kenemans, J L
2008-01-01
Inattention and distraction account for a substantial number of traffic accidents. Therefore, we examined the impact of secondary task performance (an auditory oddball task) on a primary driving task (lane keeping). Twenty healthy participants performed two 20-min tests in the Divided Attention Steering Simulator (DASS). The visual secondary task of the DASS was replaced by an auditory oddball task to allow recording of brain activity. The driving task and the secondary (distracting) oddball task were presented in isolation and simultaneously, to assess their mutual interference. In addition to performance measures (lane keeping in the primary driving task and reaction speed in the secondary oddball task), brain activity, i.e. event-related potentials (ERPs), was recorded. Performance parameters on the driving test and the secondary oddball task did not differ between performance in isolation and simultaneous performance. However, when both tasks were performed simultaneously, reaction time variability increased in the secondary oddball task. Analysis of brain activity indicated that ERP amplitude (P3a amplitude) related to the secondary task, was significantly reduced when the task was performed simultaneously with the driving test. This study shows that when performing a simple secondary task during driving, performance of the driving task and this secondary task are both unaffected. However, analysis of brain activity shows reduced cortical processing of irrelevant, potentially distracting stimuli from the secondary task during driving.
Helms Tillery, S I; Taylor, D M; Schwartz, A B
2003-01-01
We have recently developed a closed-loop environment in which we can test the ability of primates to control the motion of a virtual device using ensembles of simultaneously recorded neurons /29/. Here we use a maximum likelihood method to assess the information about task performance contained in the neuronal ensemble. We trained two animals to control the motion of a computer cursor in three dimensions. Initially the animals controlled cursor motion using arm movements, but eventually they learned to drive the cursor directly from cortical activity. Using a population vector (PV) based upon the relation between cortical activity and arm motion, the animals were able to control the cursor directly from the brain in a closed-loop environment, but with difficulty. We added a supervised learning method that modified the parameters of the PV according to task performance (adaptive PV), and found that animals were able to exert much finer control over the cursor motion from brain signals. Here we describe a maximum likelihood method (ML) to assess the information about target contained in neuronal ensemble activity. Using this method, we compared the information about target contained in the ensemble during arm control, during brain control early in the adaptive PV, and during brain control after the adaptive PV had settled and the animal could drive the cursor reliably and with fine gradations. During the arm-control task, the ML was able to determine the target of the movement in as few as 10% of the trials, and as many as 75% of the trials, with an average of 65%. This average dropped when the animals used a population vector to control motion of the cursor. On average we could determine the target in around 35% of the trials. This low percentage was also reflected in poor control of the cursor, so that the animal was unable to reach the target in a large percentage of trials. Supervised adjustment of the population vector parameters produced new weighting coefficients and directional tuning parameters for many neurons. This produced a much better performance of the brain-controlled cursor motion. It was also reflected in the maximum likelihood measure of cell activity, producing the correct target based only on neuronal activity in over 80% of the trials on average. The changes in maximum likelihood estimates of target location based on ensemble firing show that an animal's ability to regulate the motion of a cortically controlled device is not crucially dependent on the experimenter's ability to estimate intention from neuronal activity.
Does attention capacity moderate the effect of driver distraction in older drivers?
Cuenen, Ariane; Jongen, Ellen M M; Brijs, Tom; Brijs, Kris; Lutin, Mark; Van Vlierden, Karin; Wets, Geert
2015-04-01
With age, a decline in attention capacity may occur and this may impact driving performance especially while distracted. Although the effect of distraction on driving performance of older drivers has been investigated, the moderating effect of attention capacity on driving performance during distraction has not been investigated yet. Therefore, the aim was to investigate whether attention capacity has a moderating effect on older drivers' driving performance during visual distraction (experiment 1) and cognitive distraction (experiment 2). In a fixed-based driving simulator, older drivers completed a driving task without and with visual distraction (experiment 1, N=17, mean age 78 years) or cognitive distraction (experiment 2, N=35, mean age 76 years). Several specific driving measures of varying complexity (i.e., speed, lane keeping, following distance, braking behavior, and crashes) were investigated. In addition to these objective driving measures, subjective measures of workload and driving performance were also included. In experiment 1, crash occurrence increased with visual distraction and was negatively related to attention capacity. In experiment 2, complete stops at stop signs decreased, initiation of braking at pedestrian crossings was later, and crash occurrence increased with cognitive distraction. Interestingly, for a measure of lane keeping (i.e., standard deviation of lateral lane position (SDLP)), effects of both types of distraction were moderated by attention capacity. Despite the decrease of driving performance with distraction, participants estimated their driving performance during distraction as good. These results imply that attention capacity is important for driving. Driver assessment and training programs might therefore focus on attention capacity. Nonetheless, it is crucial to eliminate driver distraction as much as possible given the deterioration of performance on several driving measures in those with low and high attention capacity. Copyright © 2015 Elsevier Ltd. All rights reserved.
A simulation study of the effects of alcohol on driving performance in a Chinese population.
Li, Y C; Sze, N N; Wong, S C; Yan, Wei; Tsui, K L; So, F L
2016-10-01
Driving under the influence of alcohol (DUIA) is a significant factor contributing to road traffic crashes, injuries, and fatalities. Although the effects of alcohol on driving performance are widely acknowledged, studies of the effects of alcohol impairment on driving performance and particularly on the control system of Chinese adults are rare. This study attempts to evaluate the effects of alcohol on the driving performance of Chinese adults using a driving simulator. A double-blind experimental study was conducted to evaluate the effects of alcohol impairment on the driving performance of 52 Chinese participants using a driving simulator. A series of simulated driving tests covering two driving modules, including emergency braking (EB) and following braking (FB), at 50km/h and 80km/h were performed. Linear mixed models were established to evaluate driving performance in terms of braking reaction time (BRT), the standard deviation of lateral position (SD-LANE), and the standard deviation of speed (SD-SPEED). Driving performance in terms of BRT and SD-LANE was highly correlated with the level of alcohol consumption, with a one-unit increase in breath alcohol concentration (BrAC) degrading BRT and SD-LANE by 0.3% and 0.2%, respectively. Frequent drinkers generally reacted faster in their BRT than less-frequent drinkers and non-drinkers by 10.2% and 30.6%, respectively. Moreover, alcohol impairment had varying effects on certain aspects of the human control system, and automatic action was less likely to be affected than voluntary action from a psychological viewpoint. The findings should be useful for planning and developing effective measures to combat drink driving in Chinese communities. Copyright © 2016 Elsevier Ltd. All rights reserved.
Blane, Alison
2016-01-01
Glaucoma can result in insidious degradation of the peripheral visual field. This can severely affect everyday life and impact fitness-to-drive. Despite the high prevalence of glaucoma in older adults and the increasing longevity of the overall population, the impact of glaucoma on driving performance, driving practices, and crash risk remains unclear and under examined. This review examines the literature that investigates glaucoma and crash risk, driving performance, cognitive demand, driving self-regulation, and driving cessation in older drivers. A search of the literature relating to driving performance, crash risk, driver self-regulation, and cognitive workload in drivers with glaucoma was conducted between September 2013 and December 2013. This review has identified that the literature related to glaucoma and driving performance, crash risk, cognitive demand, and driving practices in older adults is inconsistent. There is a particular lack of consensus about whether glaucoma is associated with an increased risk of a car crash, although further information available relating to driving performance and driver habits suggests that there is a negative impact of glaucoma. Specifically, when the driving performance of glaucoma patients with moderate to severe visual field loss is assessed using either on-road or off-road techniques, they are found to perform poorly. There is also some debate around the amount of insight glaucoma patients have into the effect of the disease on their driving ability. The research suggests that patients with glaucoma find driving situations (particularly driving at night) increasingly difficult. Furthermore, there appears to be a tendency for drivers with glaucoma to alter their driving habits or to voluntarily cease driving completely; however, this is not the case for all glaucoma patients and the finding may differ depending on the laterality of visual field loss. There is little literature available that investigates glaucoma and its relationship with driving. The few studies that have been conducted are varied in methodology and the results available are highly inconsistent. With an ageing population and heavy reliance on driving for personal mobility, further research into measuring the impact of glaucoma and driving is crucial to ensure a sustained quality of life for the elderly. The potential for future research is discussed.
Hohenberger, M.; Shvydky, A.; Marozas, J. A.; ...
2016-09-07
Direct-drive ignition on the National Ignition Facility (NIF) requires single-beam smoothing to minimize imprinting of laser nonuniformities that can negatively affect implosion performance. One-dimensional, multi-FM smoothing by spectral dispersion (SSD) has been proposed to provide the required smoothing [J. A. Marozas, J. D. Zuegel, and T. J. B. Collins, Bull. Am. Phys. Soc. 55, 294 (2010)]. A prototype multi-FM SSD system has been integrated into the NIF-like beamline of the OMEGA EP Laser System. Experiments have been performed to verify the smoothing performance by measuring Rayleigh–Taylor growth rates in planar targets of laser-imprinted and preimposed surface modulations. Multi-FM 1-D SSDmore » has been observed to reduce imprint levels by ~50% compared to the nominal OMEGA EP SSD system. In conclusion, the experimental results are in agreement with 2-D DRACO simulations using realistic, time-dependent far-field spot-intensity calculations that emulate the effect of SSD.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hohenberger, M., E-mail: mhoh@lle.rochester.edu; Shvydky, A.; Marozas, J. A.
Direct-drive ignition on the National Ignition Facility (NIF) requires single-beam smoothing to minimize imprinting of laser nonuniformities that can negatively affect implosion performance. One-dimensional, multi-FM smoothing by spectral dispersion (SSD) has been proposed to provide the required smoothing [Marozas et al., Bull. Am. Phys. Soc. 55, 294 (2010)]. A prototype multi-FM SSD system has been integrated into the NIF-like beamline of the OMEGA EP Laser System. Experiments have been performed to verify the smoothing performance by measuring Rayleigh–Taylor growth rates in planar targets of laser-imprinted and preimposed surface modulations. Multi-FM 1-D SSD has been observed to reduce imprint levels bymore » ∼50% compared to the nominal OMEGA EP SSD system. The experimental results are in agreement with 2-D DRACO simulations using realistic, time-dependent far-field spot-intensity calculations that emulate the effect of SSD.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hohenberger, M.; Shvydky, A.; Marozas, J. A.
Direct-drive ignition on the National Ignition Facility (NIF) requires single-beam smoothing to minimize imprinting of laser nonuniformities that can negatively affect implosion performance. One-dimensional, multi-FM smoothing by spectral dispersion (SSD) has been proposed to provide the required smoothing [J. A. Marozas, J. D. Zuegel, and T. J. B. Collins, Bull. Am. Phys. Soc. 55, 294 (2010)]. A prototype multi-FM SSD system has been integrated into the NIF-like beamline of the OMEGA EP Laser System. Experiments have been performed to verify the smoothing performance by measuring Rayleigh–Taylor growth rates in planar targets of laser-imprinted and preimposed surface modulations. Multi-FM 1-D SSDmore » has been observed to reduce imprint levels by ~50% compared to the nominal OMEGA EP SSD system. In conclusion, the experimental results are in agreement with 2-D DRACO simulations using realistic, time-dependent far-field spot-intensity calculations that emulate the effect of SSD.« less
Optimal Path to a Laser Fusion Energy Power Plant
NASA Astrophysics Data System (ADS)
Bodner, Stephen
2013-10-01
There was a decision in the mid 1990s to attempt ignition using indirect-drive targets. It is now obvious that this decision was unjustified. The target design was too geometrically complex, too inefficient, and too far above plasma instability thresholds. By that same time, the mid 1990s, there had also been major advances in the direct-drive target concept. It also was not yet ready for a major test. Now, finally, because of significant advances in target designs, laser-target experiments, and laser development, the direct-drive fusion concept is ready for significant enhancements in funding, on the path to commercial fusion energy. There are two laser contenders. A KrF laser is attractive because of its shortest wavelength, broad bandwidth, and superb beam uniformity. A frequency-converted DPSSL has the disadvantage of inherently narrow bandwidth and longer wavelength, but by combining many beams in parallel one might be able to produce at the target the equivalent of an ultra-broad bandwidth. One or both of these lasers may also meet all of the engineering and economic requirements for a reactor. It is time to further develop and evaluate these two lasers as rep-rate systems, in preparation for a future high-gain fusion test.
Driver behavior profiling: An investigation with different smartphone sensors and machine learning
Ferreira, Jair; Carvalho, Eduardo; Ferreira, Bruno V.; de Souza, Cleidson; Suhara, Yoshihiko; Pentland, Alex
2017-01-01
Driver behavior impacts traffic safety, fuel/energy consumption and gas emissions. Driver behavior profiling tries to understand and positively impact driver behavior. Usually driver behavior profiling tasks involve automated collection of driving data and application of computer models to generate a classification that characterizes the driver aggressiveness profile. Different sensors and classification methods have been employed in this task, however, low-cost solutions and high performance are still research targets. This paper presents an investigation with different Android smartphone sensors, and classification algorithms in order to assess which sensor/method assembly enables classification with higher performance. The results show that specific combinations of sensors and intelligent methods allow classification performance improvement. PMID:28394925
Joo, Yeon Kyoung; Lee, Jong-Eun Roselyn
2014-04-01
The present research investigated the possibility of using an in-vehicle voice agent to promote eco-driving. Considering that both types of benefit appeals--egoistic (emphasizing benefits to the self) and altruistic (emphasizing benefits to others)--could be employed to promote eco-driving behavior, we explored the effects of benefit appeals delivered by an in-vehicle voice agent on driving performance. In particular, we tested whether and how the valence (positive vs. negative) of drivers' affective states moderates the effects, drawing on the functionalist affect-cognition framework, which has theorized that positive affect leads people to focus more on self-interest, whereas negative affect leads people to become more sensitive to social norms. An experiment was conducted in which participants, after undergoing affect (happy vs. sad) elicitation, received messages (egoistic vs. altruistic) promoting eco-driving from an in-vehicle voice agent while performing a simulated driving task. Results were partially consistent with the functionalist affect-cognition framework. Happy participants performed better on eco-driving when they were exposed to egoistic appeals than to altruistic appeals. On the other hand, the driving performance data from sad participants did not yield a significant difference between the egoistic condition and the altruistic condition. Participants' driving performance data further revealed that the joint effects of benefit appeals and affective states on safe driving performance mirrored the joint effects on eco-driving performance, confirming a close relationship between the two driving behaviors. Theoretical and practical implications for the use of in-vehicle voice agents and benefit appeals in promoting eco-driving and safe driving are discussed.
Phipps-Nelson, Jo; Redman, Jennifer R; Rajaratnam, Shantha M W
2011-09-01
Breaks are often used by drivers to counteract sleepiness and time-on-task fatigue during prolonged driving. We examined the temporal profile of changes in driving performance, electroencephalogram (EEG) activity and subjective measures of sleepiness and fatigue during prolonged nocturnal driving in a car simulator. In addition, the study examined the impact of regular breaks from driving on performance, sleepiness and fatigue. Healthy volunteers (n=12, 23-45 years) maintained a regular sleep-wake pattern for 14 days and were then in a laboratory from 21:00 to 08:30 hours. The driving simulator scene was designed to simulate monotonous night-time rural driving. Participants drove 4 × 2-h test sessions, with a break from driving of 1 h between each session. During the break participants performed tests assessing sleepiness and fatigue, and psychomotor performance (~30 mins), and then were permitted to sit quietly. They were monitored for wakefulness, and not permitted to nap or ingest caffeine. EEG was recorded during the driving task, and subjective assessments of sleepiness and fatigue were obtained at the start and completion of each session. We found that driving performance deteriorated (2.5-fold), EEG delta, theta and alpha activity increased, and subjective sleepiness and fatigue ratings increased across the testing period. Driving performance and fatigue ratings improved following the scheduled breaks from driving, while the breaks did not affect EEG activity and subjective sleepiness. Time-on-task effects increased through the testing period, indicating that these effects are exacerbated by increasing sleepiness. Breaks from driving without sleep temporarily ameliorate time-on-task fatigue, but provide little benefit to the sleepy driver. © 2010 European Sleep Research Society.
Modeling Driving Performance Using In-Vehicle Speech Data From a Naturalistic Driving Study.
Kuo, Jonny; Charlton, Judith L; Koppel, Sjaan; Rudin-Brown, Christina M; Cross, Suzanne
2016-09-01
We aimed to (a) describe the development and application of an automated approach for processing in-vehicle speech data from a naturalistic driving study (NDS), (b) examine the influence of child passenger presence on driving performance, and (c) model this relationship using in-vehicle speech data. Parent drivers frequently engage in child-related secondary behaviors, but the impact on driving performance is unknown. Applying automated speech-processing techniques to NDS audio data would facilitate the analysis of in-vehicle driver-child interactions and their influence on driving performance. Speech activity detection and speaker diarization algorithms were applied to audio data from a Melbourne-based NDS involving 42 families. Multilevel models were developed to evaluate the effect of speech activity and the presence of child passengers on driving performance. Speech activity was significantly associated with velocity and steering angle variability. Child passenger presence alone was not associated with changes in driving performance. However, speech activity in the presence of two child passengers was associated with the most variability in driving performance. The effects of in-vehicle speech on driving performance in the presence of child passengers appear to be heterogeneous, and multiple factors may need to be considered in evaluating their impact. This goal can potentially be achieved within large-scale NDS through the automated processing of observational data, including speech. Speech-processing algorithms enable new perspectives on driving performance to be gained from existing NDS data, and variables that were once labor-intensive to process can be readily utilized in future research. © 2016, Human Factors and Ergonomics Society.
Zhong, Dongzhou; Xu, Geliang; Luo, Wei; Xiao, Zhenzhen
2017-09-04
According to the principle of complete chaos synchronization and the theory of Hilbert phase transformation, we propose a novel real-time multi-target ranging scheme by using chaotic polarization laser radar in the drive-response vertical-cavity surface-emitting lasers (VCSELs). In the scheme, to ensure each polarization component (PC) of the master VCSEL (MVCSEL) to be synchronized steadily with that of the slave VCSEL, the output x-PC and y-PC from the MVCSEL in the drive system and those in the response system are modulated by the linear electro-optic effect simultaneously. Under this condition, by simulating the influences of some key parameters of the system on the synchronization quality and the relative errors of the two-target ranging, related operating parameters can be optimized. The x-PC and the y-PC, as two chaotic radar sources, are used to implement the real-time ranging for two targets. It is found that the measured distances of the two targets at arbitrary position exhibit strong real-time stability and only slight jitter. Their resolutions are up to millimeters, and their relative errors are very small and less than 2.7%.
NASA Astrophysics Data System (ADS)
Bates, Jason; Schmitt, Andrew; Karasik, Max; Obenschain, Steve
2012-10-01
Using the FAST code, we present numerical studies of the effect of thin metallic layers with high atomic number (high-Z) on the hydrodynamics of directly-driven inertial-confinement-fusion (ICF) targets. Previous experimental work on the NIKE Laser Facility at the U.S. Naval Research Laboratory demonstrated that the use of high-Z layers may be efficacious in reducing laser non-uniformities imprinted on the target during the start-up phase of the implosion. Such a reduction is highly desirable in a direct-drive ICF scenario because laser non-uniformities seed hydrodynamic instabilities that can amplify during the implosion process, prevent uniform compression and spoil high gain. One of the main objectives of the present work is to assess the utility of high-Z layers for achieving greater laser uniformity in polar-drive target designs planned for the National Ignition Facility. To address this problem, new numerical routines have recently been incorporated in the FAST code, including an improved radiation-transfer package and a three-dimensional ray-tracing algorithm. We will discuss these topics, and present initial simulation results for high-Z planar-target experiments planned on the NIKE Laser Facility later this year.
Cognitive Functioning and Driving Simulator Performance in Middle-aged and Older Adults with HIV
Vance, David E.; Fazeli, Pariya L.; Ball, David A.; Slater, Larry Z.; Ross, Lesley A.
2014-01-01
Nearly half of people living with HIV experience cognitive deficits that may impact instrumental activities of daily living. As the number of people aging with HIV increases, concerns mount that disease-related cognitive deficits may be compounded by age-related deficits, which may further compromise everyday functions such as driving. In this cross-sectional pilot study, during a 2.5-hour visit, 26 middle-aged and older adults (40+ years) were administered demographic, health, psychosocial, and driving habits questionnaires; cognitive assessments; and driving simulator tests. Although CD4+T lymphocyte count and viral load were unrelated to driving performance, older age was related to poorer driving. Furthermore, poorer visual speed of processing performance (i.e., Useful Field of View) was related to poorer driving performance (e.g., average gross reaction time). Mixed findings were observed between driving performance and cognitive function on self-reported driving habits of participants. Implications for these findings on nursing practice and research are posited. PMID:24513104
Effect of chronic nonmalignant pain on highway driving performance.
Veldhuijzen, D S; van Wijck, A J M; Wille, F; Verster, J C; Kenemans, J L; Kalkman, C J; Olivier, B; Volkerts, E R
2006-05-01
Most pain patients are treated in an outpatient setting and are engaged in daily activities including driving. Since several studies showed that cognitive functioning may be impaired in chronic nonmalignant pain, the question arises whether or not chronic nonmalignant pain affects driving performance. Therefore, the objective of the present study was to determine the effects of chronic nonmalignant pain on actual highway driving performance during normal traffic. Fourteen patients with chronic nonmalignant pain and 14 healthy controls, matched on age, educational level, and driving experience, participated in the study. Participants performed a standardized on-the-road driving test during normal traffic, on a primary highway. The primary parameter of the driving test is the Standard Deviation of Lateral Position (SDLP). In addition, driving-related skills (tracking, divided attention, and memory) were examined in the laboratory. Subjective assessments, such as pain intensity, and subjective driving quality, were rated on visual analogue scales. The results demonstrated that a subset of chronic nonmalignant pain patients had SDLPs that were higher than the matched healthy controls, indicating worse highway driving performance. Overall, there was a statistically significant difference in highway driving performance between the groups. Further, chronic nonmalignant pain patients rated their subjective driving quality to be normal, although their ratings were significantly lower than those of the healthy controls. No significant effects were found on the laboratory tests.
Angular declination and the dynamic perception of egocentric distance.
Gajewski, Daniel A; Philbeck, John W; Wirtz, Philip W; Chichka, David
2014-02-01
The extraction of the distance between an object and an observer is fast when angular declination is informative, as it is with targets placed on the ground. To what extent does angular declination drive performance when viewing time is limited? Participants judged target distances in a real-world environment with viewing durations ranging from 36-220 ms. An important role for angular declination was supported by experiments showing that the cue provides information about egocentric distance even on the very first glimpse, and that it supports a sensitive response to distance in the absence of other useful cues. Performance was better at 220-ms viewing durations than for briefer glimpses, suggesting that the perception of distance is dynamic even within the time frame of a typical eye fixation. Critically, performance in limited viewing trials was better when preceded by a 15-s preview of the room without a designated target. The results indicate that the perception of distance is powerfully shaped by memory from prior visual experience with the scene. A theoretical framework for the dynamic perception of distance is presented. PsycINFO Database Record (c) 2014 APA, all rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torrisi, L., E-mail: Lorenzo.Torrisi@unime.it; Ceccio, G.; Cannavò, A.
2016-04-15
A 200 mJ laser pulse energy, 39 fs-pulse duration, 10 μm focal spot, p-polarized radiation has been employed to irradiate thin Au foils to produce proton acceleration in the forward direction. Gold foils were employed to produce high density relativistic electrons emission in the forward direction to generate a high electric field driving the ion acceleration. Measurements were performed by changing the focal position in respect of the target surface. Proton acceleration was monitored using fast SiC detectors in time-of-flight configuration. A high proton energy, up to about 20 Me V, with a narrow energy distribution, was obtained in particular conditions dependingmore » on the laser parameters, the irradiation conditions, and a target optimization.« less
Design Alternatives to Improve Access Time Performance of Disk Drives Under DOS and UNIX
NASA Astrophysics Data System (ADS)
Hospodor, Andy
For the past 25 years, improvements in CPU performance have overshadowed improvements in the access time performance of disk drives. CPU performance has been slanted towards greater instruction execution rates, measured in millions of instructions per second (MIPS). However, the slant for performance of disk storage has been towards capacity and corresponding increased storage densities. The IBM PC, introduced in 1982, processed only a fraction of a MIP. Follow-on CPUs, such as the 80486 and 80586, sported 5-10 MIPS by 1992. Single user PCs and workstations, with one CPU and one disk drive, became the dominant application, as implied by their production volumes. However, disk drives did not enjoy a corresponding improvement in access time performance, although the potential still exists. The time to access a disk drive improves (decreases) in two ways: by altering the mechanical properties of the drive or by adding cache to the drive. This paper explores the improvement to access time performance of disk drives using cache, prefetch, faster rotation rates, and faster seek acceleration.
Driving and Multitasking: The Good, the Bad, and the Dangerous.
Nijboer, Menno; Borst, Jelmer P; van Rijn, Hedderik; Taatgen, Niels A
2016-01-01
Previous research has shown that multitasking can have a positive or a negative influence on driving performance. The aim of this study was to determine how the interaction between driving circumstances and cognitive requirements of secondary tasks affect a driver's ability to control a car. We created a driving simulator paradigm where participants had to perform one of two scenarios: one with no traffic in the driver's lane, and one with substantial traffic in both lanes, some of which had to be overtaken. Four different secondary task conditions were combined with these driving scenarios. In both driving scenarios, using a tablet resulted in the worst, most dangerous, performance, while passively listening to the radio or answering questions for a radio quiz led to the best driving performance. Interestingly, driving as a single task did not produce better performance than driving in combination with one of the radio tasks, and even tended to be slightly worse. These results suggest that drivers switch to internally focused secondary tasks when nothing else is available during monotonous or repetitive driving environments. This mind wandering potentially has a stronger interference effect with driving than non-visual secondary tasks.
Driving and Multitasking: The Good, the Bad, and the Dangerous
Nijboer, Menno; Borst, Jelmer P.; van Rijn, Hedderik; Taatgen, Niels A.
2016-01-01
Previous research has shown that multitasking can have a positive or a negative influence on driving performance. The aim of this study was to determine how the interaction between driving circumstances and cognitive requirements of secondary tasks affect a driver's ability to control a car. We created a driving simulator paradigm where participants had to perform one of two scenarios: one with no traffic in the driver's lane, and one with substantial traffic in both lanes, some of which had to be overtaken. Four different secondary task conditions were combined with these driving scenarios. In both driving scenarios, using a tablet resulted in the worst, most dangerous, performance, while passively listening to the radio or answering questions for a radio quiz led to the best driving performance. Interestingly, driving as a single task did not produce better performance than driving in combination with one of the radio tasks, and even tended to be slightly worse. These results suggest that drivers switch to internally focused secondary tasks when nothing else is available during monotonous or repetitive driving environments. This mind wandering potentially has a stronger interference effect with driving than non-visual secondary tasks. PMID:27877147
Van Dyke, Nicholas A.; Fillmore, Mark T.
2015-01-01
Rationale Research indicates that alcohol intoxication and increased demands on drivers’ attention from distractions (e.g. passengers and cell phones) contribute to poor driving performance and increased rates of traffic accidents and fatalities. Objectives The present study examined the separate and combined effects of alcohol and distraction on simulated driving performance at blood alcohol concentrations (BrACs) below the legal driving limit in the United States (i.e. 0.08%). Methods Fifty healthy adult drivers (36 men and 14 women) were tested in a driving simulator following a 0.65 g/kg dose of alcohol and a placebo. Drivers completed two drive tests; a distracted drive, which included a two-choice detection task, and an undistracted control drive. Multiple indicators of driving performance, such as drive speed, within-lane deviation, steering rate, and lane exceedances were measured. Results Alcohol and distraction each impaired measures of driving performance. Moreover, the magnitude of alcohol impairment was increased by at least two-fold when tested under the distracting versus the undistracted condition. Conclusions The findings highlight the need for a clearer understanding of how common distractions impact intoxicated drivers, especially at BrACs that are currently legal for driving in the United States. PMID:26349918
Yamin, Stephanie; Stinchcombe, Arne; Gagnon, Sylvain
2016-06-01
This study sought to predict driving performance of drivers with Alzheimer's disease (AD) using measures of attention, visual processing, and global cognition. Simulated driving performance of individuals with mild AD (n = 20) was contrasted with performance of a group of healthy controls (n = 21). Performance on measures of global cognitive function and specific tests of attention and visual processing were examined in relation to simulated driving performance. Strong associations were observed between measures of attention, notably the Test of Everyday Attention (sustained attention; r = -.651, P = .002) and the Useful Field of View (r = .563, P = .010), and driving performance among drivers with mild AD. The Visual Object and Space Perception Test-object was significantly correlated with the occurrence of crashes (r = .652, P = .002). Tests of global cognition did not correlate with simulated driving outcomes. The results suggest that professionals exercise caution when extrapolating driving performance based on global cognitive indicators. © The Author(s) 2015.
West Virginia’s impaired driving high-visibility enforcement campaign, 2003-2005
DOT National Transportation Integrated Search
2007-08-01
In 2002, West Virginia became a Strategic Evaluation State for the National Highway Traffic Safety Administration's Impaired Driving High-Visibility Enforcement campaign. The State implemented NHTSA's model publicity and enforcement program in target...
Laser-direct-drive program: Promise, challenge, and path forward
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, E. M.; Goncharov, V. N.; Sangster, T. C.
Along with laser-indirect (x-ray)-drive and magnetic-drive target concepts, laser direct drive is a viable approach to achieving ignition and gain with inertial confinement fusion. In the United States, a national program has been established to demonstrate and understand the physics of laser direct drive. The program utilizes the Omega Laser Facility to conduct implosion and coupling physics at the nominally 30-kJ scale and laser–plasma interaction and coupling physics at the MJ scale at the National Ignition Facility. This paper will discuss the motivation and challenges for laser direct drive and the broad-based program presently underway in the United States.
Laser-direct-drive program: Promise, challenge, and path forward
Campbell, E. M.; Goncharov, V. N.; Sangster, T. C.; ...
2017-03-19
Along with laser-indirect (x-ray)-drive and magnetic-drive target concepts, laser direct drive is a viable approach to achieving ignition and gain with inertial confinement fusion. In the United States, a national program has been established to demonstrate and understand the physics of laser direct drive. The program utilizes the Omega Laser Facility to conduct implosion and coupling physics at the nominally 30-kJ scale and laser–plasma interaction and coupling physics at the MJ scale at the National Ignition Facility. This paper will discuss the motivation and challenges for laser direct drive and the broad-based program presently underway in the United States.
Closed-Loop Acoustic Control of Reverberant Room for Satellite Environmental Testing
NASA Astrophysics Data System (ADS)
Janssens, Karl; Bianciardi, Fabio; Sabbatini, Danilo; Debille, Jan; Carrella, Alex
2012-07-01
The full satellite acoustic test is an important milestone in a satellite launch survivability verification campaign. This test is required to verify the satellite’s mechanical design against the high-level acoustic loads induced by the launch vehicle during the atmospheric flight. During the test, the satellite is subjected to a broadband diffuse acoustic field, reproducing the pressure levels observed during launch. The excitation is in most cases provided by a combination of horns for the low frequencies and noise generators for the higher frequencies. Acoustic control tests are commonly performed in reverberant rooms, controlling the sound pressure levels in third octave bands over the specified target spectrum. This paper discusses an automatic feedback control system for acoustic control of large reverberation rooms for satellite environmental testing. The acoustic control system consists of parallel third octave PI (Proportional Integral) feedback controllers that take the reverberation characteristics of the room into consideration. The drive output of the control system is shaped at every control step based on the comparison of the average third octave noise spectrum, measured from a number of microphones in the test room, with the target spectrum. Cross-over filters split the output drive into band- limited signals to feed each of the horns. The control system is realized in several steps. In the first phase, a dynamic process model is developed, including the non-linear characteristics of the horns and the reverberant properties of the room. The model is identified from dynamic experiments using system identification techniques. In the next phase, an adequate control strategy is designed which is capable of reaching the target spectrum in the required time period without overshoots. This control strategy is obtained from model-in-the-loop (MIL) simulations, evaluating the performance of various potential strategies. Finally, the proposed strategy is implemented in real-time and its control performance tested and validated.
NASA Astrophysics Data System (ADS)
Milovich, J. L.; Dewald, E. L.; Pak, A.; Michel, P.; Town, R. P. J.; Bradley, D. K.; Landen, O.; Edwards, M. J.
2016-03-01
Achieving ignition on the National Ignition Facility (NIF) is tied to our ability to control and minimize deviations from sphericity of the capsule implosion. Low-mode asymmetries of the hot spot result from the combined effect of radiation drive asymmetries throughout the laser pulse and initial roughness on the capsule surface. In this paper, we report on simulations and experiments designed to assess, measure, and correct the drive asymmetries produced by the early-time (≈first 2 ns or "picket") period of the laser pulse. The drive asymmetry during the picket is commonly thought to introduce distortions in the hot-spot shape at ignition time. However, a more subtle effect not previously considered is that it also leads to an asymmetry in shock velocity and timing, thereby increasing the fuel adiabat and reducing the margin for ignition. It is shown via hydrodynamic simulations that minimizing this effect requires that the early-time asymmetry be kept below 7.5% in the second Legendre mode (P2), thus keeping the loss of performance margin below ≈10% for a layered implosion. Asymmetries during the picket of the laser pulse are measured using the instantaneous self-emission of a high-Z re-emission sphere in place of an ignition capsule in a hohlraum with large azimuthal diagnostic windows. Three dimensional simulations using the code HYDRA (to capture the effect of non-azimuthal hohlraum features) coupled to a cross-beam energy transfer model [Michel et al., Phys. Plasmas 17, 056305 (2010)] are used to establish the surrogacy of the re-emit target and to assess the early-time drive symmetry. Calculations using this model exhibit the same sensitivity to variations in the relative input powers between the different cones of NIF beams as measured for the "Rev5" CH target [Haan et al., Phys Plasmas 18, 051001 (2011)] and reported by Dewald et al. [Phys. Rev. Lett. 111, 235001 (2013)]. The same methodology applied to recently improved implosions using different hohlraum geometries and picket powers show good agreement with experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milovich, J. L., E-mail: milovich1@llnl.gov; Dewald, E. L.; Pak, A.
2016-03-15
Achieving ignition on the National Ignition Facility (NIF) is tied to our ability to control and minimize deviations from sphericity of the capsule implosion. Low-mode asymmetries of the hot spot result from the combined effect of radiation drive asymmetries throughout the laser pulse and initial roughness on the capsule surface. In this paper, we report on simulations and experiments designed to assess, measure, and correct the drive asymmetries produced by the early-time (≈first 2 ns or “picket”) period of the laser pulse. The drive asymmetry during the picket is commonly thought to introduce distortions in the hot-spot shape at ignition time.more » However, a more subtle effect not previously considered is that it also leads to an asymmetry in shock velocity and timing, thereby increasing the fuel adiabat and reducing the margin for ignition. It is shown via hydrodynamic simulations that minimizing this effect requires that the early-time asymmetry be kept below 7.5% in the second Legendre mode (P{sub 2}), thus keeping the loss of performance margin below ≈10% for a layered implosion. Asymmetries during the picket of the laser pulse are measured using the instantaneous self-emission of a high-Z re-emission sphere in place of an ignition capsule in a hohlraum with large azimuthal diagnostic windows. Three dimensional simulations using the code HYDRA (to capture the effect of non-azimuthal hohlraum features) coupled to a cross-beam energy transfer model [Michel et al., Phys. Plasmas 17, 056305 (2010)] are used to establish the surrogacy of the re-emit target and to assess the early-time drive symmetry. Calculations using this model exhibit the same sensitivity to variations in the relative input powers between the different cones of NIF beams as measured for the “Rev5” CH target [Haan et al., Phys Plasmas 18, 051001 (2011)] and reported by Dewald et al. [Phys. Rev. Lett. 111, 235001 (2013)]. The same methodology applied to recently improved implosions using different hohlraum geometries and picket powers show good agreement with experimental data.« less
The reaction times of drivers aged 20 to 80 during a divided attention driving.
Svetina, Matija
2016-11-16
Many studies addressing age-related changes in driving performance focus on comparing young vs. older drivers, which might lead to the biased conclusion that driving performance decreases only after the age of 65. The main aim of the study was to show that changes in driving performance are progressive throughout the adult years. A sample of 351 drivers aged 20 to 80 was assessed for their reaction times while driving between road cones. The drivers were exposed to 2 conditions varying according to task complexity. In single task conditions, the drivers performed a full stopping maneuver at a given signal; in dual task conditions, the drivers were distracted before the signal for stopping maneuver was triggered. Reaction times were compared across conditions and age groups. The results showed that both reaction times and variability of driving performance increased progressively between the ages of 20 and 80. The increase in both reaction times and variability was greater in the complex task condition. The high-performing quarter of elderly drivers performed equally well or better than younger drivers did. The data clearly supported the claim that driving performance changes steadily across age groups: both mean reaction time and interindividual variability progressively increase with age. In addition, a significant group of older drivers was identified who did not show the expected age-related decrease in performance. The findings have important implications, suggesting that in relation to driving, aging is a progressive phenomenon and may lead to variety of driving performance; age-related studies of driving performance should put more emphasis on investigating changes across the whole driver age range rather than only comparing younger and older drivers.
1990-02-07
performance assessment, human intervention, or operator training. Algorithms on different levels are allowed to deal with the world with different degrees...have on the decisions made by the driver are a complex combination of human factors, driving experience, mission objectives, tactics, etc., and...motion. The distinction here is that the decision making program may I 12 1 I not necessarily make its decisions based on the same factors as the human
Clay, Olivio J; Wadley, Virginia G; Edwards, Jerri D; Roth, David L; Roenker, Daniel L; Ball, Karlene K
2005-08-01
Driving is a complex behavior that requires the utilization of a wide range of individual abilities. Identifying assessments that not only capture individual differences, but also are related to older adults' driving performance would be beneficial. This investigation examines the relationship between the Useful Field of View (UFOV) assessment and objective measures of retrospective or concurrent driving performance, including state-recorded accidents, on-road driving, and driving simulator performance. The PubMed and PsycINFO databases were searched to retrieve eight studies that reported bivariate relationships between UFOV and these objective driving measures. Cumulative meta-analysis techniques were used to combine the effect sizes in an attempt to determine whether the strength of the relationship was stable across studies and to assess whether a sufficient number of studies have been conducted to validate the relationship between UFOV and driving performance. A within-group homogeneity of effect sizes test revealed that the samples could be thought of as being drawn from the same population, Q [7] = 11.29, p (one-tailed) = 0.13. Therefore, the effect sizes of eight studies were combined for the present cumulative meta-analysis. The weighted mean effect size across the studies revealed a large effect (Cohen's d = 0.945), with poorer UFOV performance associated with negative driving outcomes. This relationship was robust across multiple indices of driving performance and several research laboratories. This convergence of evidence across numerous studies using different methodologies confirms the importance of the UFOV assessment as a valid and reliable index of driving performance and safety. Recent prospective studies have confirmed a relationship between UFOV performance and future crashes, further supporting the use of this instrument as a potential screening measure for at-risk older drivers.
Emergence of gamma motor activity in an artificial neural network model of the corticospinal system.
Grandjean, Bernard; Maier, Marc A
2017-02-01
Muscle spindle discharge during active movement is a function of mechanical and neural parameters. Muscle length changes (and their derivatives) represent its primary mechanical, fusimotor drive its neural component. However, neither the action nor the function of fusimotor and in particular of γ-drive, have been clearly established, since γ-motor activity during voluntary, non-locomotor movements remains largely unknown. Here, using a computational approach, we explored whether γ-drive emerges in an artificial neural network model of the corticospinal system linked to a biomechanical antagonist wrist simulator. The wrist simulator included length-sensitive and γ-drive-dependent type Ia and type II muscle spindle activity. Network activity and connectivity were derived by a gradient descent algorithm to generate reciprocal, known target α-motor unit activity during wrist flexion-extension (F/E) movements. Two tasks were simulated: an alternating F/E task and a slow F/E tracking task. Emergence of γ-motor activity in the alternating F/E network was a function of α-motor unit drive: if muscle afferent (together with supraspinal) input was required for driving α-motor units, then γ-drive emerged in the form of α-γ coactivation, as predicted by empirical studies. In the slow F/E tracking network, γ-drive emerged in the form of α-γ dissociation and provided critical, bidirectional muscle afferent activity to the cortical network, containing known bidirectional target units. The model thus demonstrates the complementary aspects of spindle output and hence γ-drive: i) muscle spindle activity as a driving force of α-motor unit activity, and ii) afferent activity providing continuous sensory information, both of which crucially depend on γ-drive.
Taubman-Ben-Ari, Orit; Musicant, Oren; Lotan, Tsippy; Farah, Haneen
2014-11-01
One of the prominent issues in contemporary research on young drivers deals with the mechanisms underlying parents' influences on their offspring's driving behavior. The present study combines two sets of data: the first gathered from in-vehicle data recorders tracking the driving of parents and their teenage sons, and the second derived from self-report questionnaires completed by the young drivers. The aim was to evaluate the contribution of parents' driving behavior, participation in a parent-targeted intervention, and the teen drivers' perception of the family climate for road safety, to the driving behavior of young drivers during solo driving. The data was collected over the course of 12 months, beginning with the licensure of the teen driver, and examined a sample of 166 families who were randomly assigned to one of three intervention groups (receiving different forms of feedback) or a control group (with no feedback). Findings indicate that young male drivers' risky driving events rate was positively associated with that of their parents. In addition, any type of intervention led to a lower rate of risky driving events among young drivers compared to the control group. Finally, a higher perception of parents as not committed to safety and lower perceived parental monitoring were related to a higher risky driving events rate among young drivers. The results highlight the need to consider a complex set of antecedents in parents' attitudes and behavior, as well as the family's safety atmosphere, in order to better understand young drivers' risky driving. The practical implications refer to the effective use of the family as a lever in the attempt to promote safety awareness among young drivers. Copyright © 2014 Elsevier Ltd. All rights reserved.
Louie, Arnold; Fregeau, Christine; Liu, Weiguo; Kulawy, Robert; Drusano, G L
2009-08-01
The dose choice for Pseudomonas aeruginosa remains a matter of debate. The actual exposure targets required for multilog killing of organisms at the primary infection site have not been delineated. We studied Pseudomonas aeruginosa PAO1 using a murine model of pneumonia. We employed a large mathematical model to fit all the concentration-time data in plasma and epithelial lining fluid (ELF) as well as colony counts in lung simultaneously for all drug doses. Penetration into ELF was calculated to be approximately 77.7%, as indexed to the ratio of the area under the concentration-time curve for ELF (AUC(ELF)) to the AUC(plasma). We determined the ELF concentration-time profile required to drive a stasis response as well as 1-, 2-, or 3-log(10)(CFU/g) kill. AUC/MIC ratios of 12.4, 31.2, 62.8, and 127.6 were required to drive these bacterial responses. Emergence of resistance was seen only at the two lowest doses (three of five animals at 50 mg/kg [body weight] and one of five animals at 100 mg/kg). The low exposure targets were likely driven by a low mutational frequency to resistance. Bridging to humans was performed using Monte Carlo simulation. With a 750-mg levofloxacin dose, target attainment rates fell below 90% at 4 mg/liter, 1 mg/liter, and 0.5 mg/liter for 1-, 2-, and 3-log kills, respectively. Given the low exposure targets seen with this strain, we conclude that levofloxacin at a 750-mg dose is not adequate for serious Pseudomonas aeruginosa pneumonia as a single agent. More isolates need to be studied to make these observations more robust.
Laser-Plasma Interactions in Drive Campaign targets on the National Ignition Facility
NASA Astrophysics Data System (ADS)
Hinkel, D. E.; Callahan, D. A.; Moody, J. D.; Amendt, P. A.; Lasinski, B. F.; MacGowan, B. J.; Meeker, D.; Michel, P. A.; Ralph, J.; Rosen, M. D.; Ross, J. S.; Schneider, M. B.; Storm, E.; Strozzi, D. J.; Williams, E. A.
2016-03-01
The Drive campaign [D A Callahan et al., this conference] on the National Ignition Facility (NIF) laser [E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, R. Al-Ayat, Phys. Plasmas 16, 041006 (2009)] has the focused goal of understanding and optimizing the hohlraum for ignition. Both the temperature and symmetry of the radiation drive depend on laser and hohlraum characteristics. The drive temperature depends on the coupling of laser energy to the hohlraum, and the symmetry of the drive depends on beam-to-beam interactions that result in energy transfer [P. A. Michel, S. H. Glenzer, L. Divol, et al, Phys. Plasmas 17, 056305 (2010).] within the hohlraum. To this end, hohlraums are being fielded where shape (rugby vs. cylindrical hohlraums), gas fill composition (neopentane at room temperature vs. cryogenic helium), and gas fill density (increase of ∼ 150%) are independently changed. Cylindrical hohlraums with higher gas fill density show improved inner beam propagation, as should rugby hohlraums, because of the larger radius over the capsule (7 mm vs. 5.75 mm in a cylindrical hohlraum). Energy coupling improves in room temperature neopentane targets, as well as in hohlraums at higher gas fill density. In addition cross-beam energy transfer is being addressed directly by using targets that mock up one end of a hohlraum, but allow observation of the laser beam uniformity after energy transfer. Ideas such as splitting quads into “doublets” by re-pointing the right and left half of quads are also being pursued. LPI results of the Drive campaign will be summarized, and analyses of future directions presented.
Frequency of target crashes for IntelliDrive safety systems
DOT National Transportation Integrated Search
2010-10-01
This report estimates the frequency of different crash types that would potentially be addressed by various categories of Intelligent Transportation Systems as part of the IntelliDriveSM safety systems program. Crash types include light-vehicle crash...
Proactive vs. reactive car driving: EEG evidence for different driving strategies of older drivers
Wascher, Edmund; Getzmann, Stephan
2018-01-01
Aging is associated with a large heterogeneity in the extent of age-related changes in sensory, motor, and cognitive functions. All these functions can influence the performance in complex tasks like car driving. The present study aims to identify potential differences in underlying cognitive processes that may explain inter-individual variability in driving performance. Younger and older participants performed a one-hour monotonous driving task in a driving simulator under varying crosswind conditions, while behavioral and electrophysiological data were recorded. Overall, younger and older drivers showed comparable driving performance (lane keeping). However, there was a large difference in driving lane variability within the older group. Dividing the older group in two subgroups with low vs. high driving lane variability revealed differences between the two groups in electrophysiological correlates of mental workload, consumption of mental resources, and activation and sustaining of attention: Older drivers with high driving lane variability showed higher frontal Alpha and Theta activity than older drivers with low driving lane variability and—with increasing crosswind—a more pronounced decrease in Beta activity. These results suggest differences in driving strategies of older and younger drivers, with the older drivers using either a rather proactive and alert driving strategy (indicated by low driving lane variability and lower Alpha and Beta activity), or a rather reactive strategy (indicated by high driving lane variability and higher Alpha activity). PMID:29352314
BigFoot: a program to reduce risk for indirect drive laser fusion
NASA Astrophysics Data System (ADS)
Thomas, Cliff
2017-10-01
The conventional approach to inertial confinement fusion (ICF) with indirect drive is to design for high convergence (40), DT areal density, and target gain. By construction, this strategy is challenged by low-mode control of the implosion (Legendre P2 and P4), instability, and difficulties interpreting data. Here we consider an alternative - an approach to ICF that emphasizes control. To begin, we optimize for hohlraum predictability, and coupling to the capsule. Rather than focus on density, we work on making a high-energy hotspot we can diagnose and ``tune'' at low convergence (20). Though gain is reduced, this makes it possible to study (and improve) stagnation physics in a regime relevant to ignition (1E16-1E17). Further improvements can then be made with small, incremental increases in areal density, target scale, etc. Details regarding the ``BigFoot'' platform and pulse are reported, including recent findings. Work that could enable additional improvements in capsule stability and hohlraum control will also be discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Klebba, Joseph E.; Galletta, Brian J.; Nye, Jonathan; Plevock, Karen M.; Buster, Daniel W.; Hollingsworth, Natalie A.; Slep, Kevin C.
2015-01-01
Plk4 (Polo-like kinase 4) and its binding partner Asterless (Asl) are essential, conserved centriole assembly factors that induce centriole amplification when overexpressed. Previous studies found that Asl acts as a scaffolding protein; its N terminus binds Plk4’s tandem Polo box cassette (PB1-PB2) and targets Plk4 to centrioles to initiate centriole duplication. However, how Asl overexpression drives centriole amplification is unknown. In this paper, we investigated the Asl–Plk4 interaction in Drosophila melanogaster cells. Surprisingly, the N-terminal region of Asl is not required for centriole duplication, but a previously unidentified Plk4-binding domain in the C terminus is required. Mechanistic analyses of the different Asl regions revealed that they act uniquely during the cell cycle: the Asl N terminus promotes Plk4 homodimerization and autophosphorylation during interphase, whereas the Asl C terminus stabilizes Plk4 during mitosis. Therefore, Asl affects Plk4 in multiple ways to regulate centriole duplication. Asl not only targets Plk4 to centrioles but also modulates Plk4 stability and activity, explaining the ability of overexpressed Asl to drive centriole amplification. PMID:25688134
Lyu, Nengchao; Xie, Lian; Wu, Chaozhong; Fu, Qiang; Deng, Chao
2017-01-01
Complex traffic situations and high driving workload are the leading contributing factors to traffic crashes. There is a strong correlation between driving performance and driving workload, such as visual workload from traffic signs on highway off-ramps. This study aimed to evaluate traffic safety by analyzing drivers’ behavior and performance under the cognitive workload in complex environment areas. First, the driving workload of drivers was tested based on traffic signs with different quantities of information. Forty-four drivers were recruited to conduct a traffic sign cognition experiment under static controlled environment conditions. Different complex traffic signs were used for applying the cognitive workload. The static experiment results reveal that workload is highly related to the amount of information on traffic signs and reaction time increases with the information grade, while driving experience and gender effect are not significant. This shows that the cognitive workload of subsequent driving experiments can be controlled by the amount of information on traffic signs; Second, driving characteristics and driving performance were analyzed under different secondary task driving workload levels using a driving simulator. Drivers were required to drive at the required speed on a designed highway off-ramp scene. The cognitive workload was controlled by reading traffic signs with different information, which were divided into four levels. Drivers had to make choices by pushing buttons after reading traffic signs. Meanwhile, the driving performance information was recorded. Questionnaires on objective workload were collected right after each driving task. The results show that speed maintenance and lane deviations are significantly different under different levels of cognitive workload, and the effects of driving experience and gender groups are significant. The research results can be used to analyze traffic safety in highway environments, while considering more drivers’ cognitive and driving performance. PMID:28218696
Modeling startup and shutdown transient of the microlinear piezo drive via ANSYS
NASA Astrophysics Data System (ADS)
Azin, A. V.; Bogdanov, E. P.; Rikkonen, S. V.; Ponomarev, S. V.; Khramtsov, A. M.
2017-02-01
The article describes the construction-design of the micro linear piezo drive intended for a peripheral cord tensioner in the reflecting surface shape regulator system for large-sized transformable spacecraft antenna reflectors. The research target -the development method of modeling startup and shutdown transient of the micro linear piezo drive. This method is based on application software package ANSYS. The method embraces a detailed description of the calculation stages to determine the operating characteristics of the designed piezo drive. Based on the numerical solutions, the time characteristics of the designed piezo drive are determined.
Leufkens, T R M; Ramaekers, J G; de Weerd, A W; Riedel, W J; Vermeeren, A
2014-07-01
Many older adults report sleep problems and use of hypnotics. Several studies have shown that hypnotics can have acute adverse effects on driving the next morning. It is unclear however whether driving of chronic hypnotic users is impaired. Therapeutic effects on insomnia and development of tolerance may reduce the residual effects on driving. The present study aimed to compare actual driving performance and driving-related skills of chronic hypnotic users to good sleepers. To determine whether insomnia itself affects driving performance, driving and driving-related skills were compared between insomnia patients who do not or infrequently use hypnotics and good sleepers. Twenty-two frequent users of hypnotics (using hypnotics ≥ 4 nights per week for more than 3 months), 20 infrequent users (using hypnotics ≤ 3 nights per week), and 21 healthy, age-matched controls participated in this study. On the night before testing, all subjects were hospitalized for an 8-h sleep recorded by polysomnography. Frequent hypnotic users used their regular medication at bedtime (2330 hours), while infrequent users and controls received no medication. Cognitive performance (word learning, digit span, tracking, divided attention, vigilance, and inhibitory control) was assessed 8.5 h and driving performance between 10 and 11 h after bedtime and dosing. Polysomnographic recordings did not significantly differ between the groups, but the insomnia patients, treated or untreated, still reported subjective sleep complaints. Results show no differences in driving performance and driving-related skills between both groups of insomnia patients and controls. Driving performance in chronic users of hypnotics and untreated insomnia patients is not impaired. For chronic users, this may be due to prescription of relatively safe drugs and low doses. For untreated insomniacs, this corroborates previous findings showing an absence of neuropsychological deficits in this group of patients.
Both texting and eating are associated with impaired simulated driving performance.
Alosco, Michael L; Spitznagel, Mary Beth; Fischer, Kimberly Hall; Miller, Lindsay A; Pillai, Vivek; Hughes, Joel; Gunstad, John
2012-09-01
Distracted driving is a known contributor to traffic accidents, and many states have banned texting while driving. However, little is known about the potential accident risk of other common activities while driving, such as eating. The objective of the current study was to examine the adverse impact of eating/drinking behavior relative to texting and nondistracted behaviors on a simulated driving task. A total of 186 participants were recruited from undergraduate psychology courses over 2 semesters at Kent State University. We utilized the Kent Multidimensional Assessment Driving Simulation (K-MADS) to compare simulated driving performance among participants randomly assigned to texting (N = 45), eating (N = 45), and control (N = 96) conditions. Multivariate analyses of variance (MANOVA) were conducted to examine between-group differences on simulated driving indices. MANOVA analyses indicated that groups differed in simulated driving performance, F(14, 366) = 7.70, P < .001. Both texting and eating produced impaired driving performance relative to controls, though these behaviors had approximately equal effect. Specifically, both texting and eating groups had more collisions, pedestrian strikes, and center line crossings than controls. In addition, the texting group had more road edge excursions than either eating or control participants and the eating group missed more stop signs than controls. These findings suggest that both texting and eating are associated with poorer simulated driving performance. Future work is needed to determine whether these findings generalize to real-world driving and the development of strategies to reduce distracted driving.
The Rocket Equation Improvement under ICF Implosion Experiment
NASA Astrophysics Data System (ADS)
Wang, Yanbin; Zheng, Zhijian
2013-10-01
The ICF explosion process has been studied in details. The rocket equation has been improved in explosive process by introducing the pressure parameter of fuel. Some methods could be drawn by the improved rocket equation. And the methods could be used to improve ICF target design, driving pulse design and experimental design. The First is to increase ablation pressure. The second is to decrease pressure of fuel. The third is to use larger diameter of target sphere. And the forth is to a shorten driving pulse.
Self-Regulation of Driving Behavior in People with Parkinson Disease.
Stolwyk, Renerus J; Scally, Karen A; Charlton, Judith L; Bradshaw, John L; Iansek, Robert; Georgiou-Karistianis, Nellie
2015-06-01
To determine the extent and nature of driving self-regulation in drivers with Parkinson disease (PD) and factors associated with self-regulatory practices. Although people with PD have consistently been shown to have driving impairments, few studies have examined self-regulatory driving practices and their relationship to driving performance. We used a self-report driving questionnaire to examine driving self-regulation in 37 drivers with PD and 37 healthy age-matched controls. We also analyzed factors associated with self-regulatory practices, primarily demographic, disease-related, psychological, and simulated driving performance variables. The drivers with PD reported significantly higher rates of self-perceived decline in their driving ability (P=0.008) and driving significantly shorter distances per week (P=0.004) than controls. Unfamiliar situations (P=0.009), in-car distractions (P<0.001), low visibility conditions (P=0.004), and long journeys (P=0.003) were particularly challenging for the drivers with PD, and their pattern of driving avoidance mirrored these difficulties. The use of self-regulatory strategies among drivers with PD was associated with female sex (rho=0.42, P=0.009) and perceived decline in driving ability (rho=-0.55, P<0.001), but not with age or objective measures of disease severity, cognition, or simulated driving performance. Drivers with PD reported driving less overall and restricting their driving to avoid particularly difficult circumstances. Further research is warranted on effective use of self-regulation strategies to improve driving performance in people with PD.
Antihistamines and driving safety.
O'Hanlon, J F
1988-10-27
The results of two placebo-controlled driving performance studies confirm laboratory data showing that the nonsedating antihistamine terfenadine does not influence the driving performance of users. The amplitude of vehicle weaving calculated for drivers who received this agent did not differ from control values. Neither terfenadine nor loratadine, another nonsedating antihistamine, potentiated the adverse effects of alcohol on driving performance.
Improving Motor and Drive System Performance – A Sourcebook for Industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This sourcebook outlines opportunities to improve motor and drive systems performance. The sourcebook is divided into four main sections: (1) Motor and Drive System Basics: Summarizes important terms, relationships, and system design considerations relating to motor and drive systems. (2) Performance Opportunity Road Map: Details the key components of well-functioning motor and drive systems and opportunities for energy performance opportunities. (3) Motor System Economics: Offers recommendations on how to propose improvement projects based on corporate priorities, efficiency gains, and financial payback periods. (4) Where to Find Help: Provides a directory of organizations associated with motors and drives, as well asmore » resources for additional information, tools, software, videos, and training opportunities.« less
Lee, John D; Roberts, Shannon C; Hoffman, Joshua D; Angell, Linda S
2012-04-01
The aim of this study was to assess how scrolling through playlists on an MP3 player or its aftermarket controller affects driving performance and to examine how drivers adapt device use to driving demands. Drivers use increasingly complex infotainment devices that can undermine driving performance. The goal activation hypothesis suggests that drivers might fail to compensate for these demands, particularly with long tasks and large search set sizes. A total of 50 participants searched for songs in playlists of varying lengths using either an MP3 player or an aftermarket controller while negotiating road segments with traffic and construction in a medium-fidelity driving simulator. Searching through long playlists (580 songs) resulted in poor driving performance and required more long glances (longer than 2 s) to the device compared with other playlist lengths. The aftermarket controller also led to more long glances compared with the MP3 player. Drivers did not adequately adapt their behavior to roadway demand, as evident in their degraded driving performance. No significant performance differences were found between short playlists, the radio-tuning task, and the no-task condition. Selecting songs from long playlists undermined driving performance, and drivers did not sufficiently adapt their use of the device to the roadway demands, consistent with the goal activation hypothesis. The aftermarket controller degraded rather than enhanced performance. Infotainment systems should support drivers in managing distraction. Aftermarket controllers can have the unintended effect of making devices carried into the car less compatible with driving.These results can motivate development of new interfaces as alternatives to scrolling lists.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, J. W., E-mail: li-jiwei@iapcm.ac.cn; He, X. T.; Institute of Applied Physics and Computational Mathematics, P. O. Box 8009, Beijing 100094
In order to reduce the effect of laser imprint in direct-drive ignition scheme a low-density foam buffered target has been proposed. This target is driven by a laser pulse with a low-intensity foot at the early stage of implosion, which heats the foam and elongates the thermal conduction zone between the laser absorption region and ablation front, increasing the thermal smoothing effect. In this paper, a relatively strong foot pulse is adopted to irradiate the critical-density foam buffered target. The stronger foot, near 1 × 10{sup 14 }W/cm{sup 2}, is able to drive a radiative shock in the low-density foam, which helps smoothmore » the shock and further reduce the effect of laser imprint. The radiative shock also forms a double ablation front structure between the two ablation fronts to further stabilize the hydrodynamics, achieving the similar results to a target with a high-Z dopant in the ablator. 2D analysis shows that for the critical-density foam buffered target irradiated by the strong foot pulse, the laser imprint can be reduced due to the radiative shock in the foam and an increased thermal smoothing effect. It seems viable for the critical-density foam buffered target to be driven by a relatively strong foot pulse with the goal of reducing the laser imprint and achieving better implosion symmetry in the direct-drive laser fusion.« less
NASA Astrophysics Data System (ADS)
Vondran, Gary; Chao, Hui; Lin, Xiaofan; Beyer, Dirk; Joshi, Parag; Atkins, Brian; Obrador, Pere
2006-02-01
To run a targeted campaign involves coordination and management across numerous organizations and complex process flows. Everything from market analytics on customer databases, acquiring content and images, composing the materials, meeting the sponsoring enterprise brand standards, driving through production and fulfillment, and evaluating results; all processes are currently performed by experienced highly trained staff. Presented is a developed solution that not only brings together technologies that automate each process, but also automates the entire flow so that a novice user could easily run a successful campaign from their desktop. This paper presents the technologies, structure, and process flows used to bring this system together. Highlighted will be how the complexity of running a targeted campaign is hidden from the user through technologies, all while providing the benefits of a professionally managed campaign.
Verster, Joris C; Volkerts, Edmund R; Verbaten, Marinus N
2002-08-01
Alprazolam is prescribed for the treatment of anxiety and panic disorder. Most users are presumably involved in daily activities such as driving. However, the effects of alprazolam on driving ability have never been investigated. This study was conducted to determine the effects of alprazolam (1 mg) on driving ability, memory and psychomotor performance. Twenty healthy volunteers participated in a randomized, double-blind, placebo-controlled crossover study. One hour after oral administration, subjects performed a standardized driving test on a primary highway during normal traffic. They were instructed to drive with a constant speed (90 km/h) while maintaining a steady lateral position within the right traffic lane. Primary performance measures were the Standard Deviation of Lateral Position (SDLP) and the Standard Deviation of Speed (SDS). After the driving test, subjective driving quality, mental effort, and mental activation during driving were assessed. A laboratory test battery was performed 2.5 h after treatment administration, comprising the Sternberg Memory Scanning Test, a Continuous Tracking Test, and a Divided Attention Test. Relative to placebo, alprazolam caused serious driving impairment, as expressed by a significantly increased SDLP (F(1,19) = 97.3, p <.0001) and SDS (F(1,19) = 30.4, p <.0001). This was confirmed by subjective assessments showing significantly impaired driving quality (F(1,19) = 16.4, p <.001), decreased alertness (F(1,19) = 43.4, p <.0001), decreased mental activation (F(1,19) = 5.7, p <.03) and increased mental effort during driving (F(1,19) = 26.4, p <.0001). Furthermore, alprazolam significantly impaired performance on the laboratory tests. In conclusion, alprazolam users must be warned not to drive an automobile or operate potentially dangerous machinery.
Bringing MapReduce Closer To Data With Active Drives
NASA Astrophysics Data System (ADS)
Golpayegani, N.; Prathapan, S.; Warmka, R.; Wyatt, B.; Halem, M.; Trantham, J. D.; Markey, C. A.
2017-12-01
Moving computation closer to the data location has been a much theorized improvement to computation for decades. The increase in processor performance, the decrease in processor size and power requirement combined with the increase in data intensive computing has created a push to move computation as close to data as possible. We will show the next logical step in this evolution in computing: moving computation directly to storage. Hypothetical systems, known as Active Drives, have been proposed as early as 1998. These Active Drives would have a general-purpose CPU on each disk allowing for computations to be performed on them without the need to transfer the data to the computer over the system bus or via a network. We will utilize Seagate's Active Drives to perform general purpose parallel computing using the MapReduce programming model directly on each drive. We will detail how the MapReduce programming model can be adapted to the Active Drive compute model to perform general purpose computing with comparable results to traditional MapReduce computations performed via Hadoop. We will show how an Active Drive based approach significantly reduces the amount of data leaving the drive when performing several common algorithms: subsetting and gridding. We will show that an Active Drive based design significantly improves data transfer speeds into and out of drives compared to Hadoop's HDFS while at the same time keeping comparable compute speeds as Hadoop.
Effects of fatigue on driving performance under different roadway geometries: a simulator study.
Du, Hongji; Zhao, Xiaohua; Zhang, Xingjian; Zhang, Yunlong; Rong, Jian
2015-01-01
This article examines the effects of fatigue on driving performance under different roadway geometries using a driving simulator. Twenty-four participants each completed a driving scenario twice: while alert and while experiencing fatigue. The driving scenario was composed of straight road segments and curves; there were 6 curves with 3 radius values (i.e., 200, 500, and 800 m) and 2 turning directions (i.e., left and right). Analysis was conducted on driving performance measures such as longitudinal speed, steering wheel movements, and lateral position. RESULTS confirmed that decremental changes in driving performance due to fatigue varied among road conditions. On straight segments, drivers' abilities to steer and maintain lane position were impaired, whereas on curves we found decremental changes in the quality of longitudinal speed as well as steering control and keeping the vehicle in the lane. Moreover, the effects of fatigue on driving performance were relative to the radius and direction of the curve. Fatigue impaired drivers' abilities to control the steering wheel, and the impairment proved more obvious on curves. The degree varied significantly as the curve radius changed. Drivers tended to drive closer to the right side due to fatigue, and the impairment in maintaining lane position became more obvious as the right-turn curve radius decreased. Driver fatigue has detrimental effects on driving performance, and the effects differ under different roadway geometries.
Texting while driving: is speech-based text entry less risky than handheld text entry?
He, J; Chaparro, A; Nguyen, B; Burge, R J; Crandall, J; Chaparro, B; Ni, R; Cao, S
2014-11-01
Research indicates that using a cell phone to talk or text while maneuvering a vehicle impairs driving performance. However, few published studies directly compare the distracting effects of texting using a hands-free (i.e., speech-based interface) versus handheld cell phone, which is an important issue for legislation, automotive interface design and driving safety training. This study compared the effect of speech-based versus handheld text entries on simulated driving performance by asking participants to perform a car following task while controlling the duration of a secondary text-entry task. Results showed that both speech-based and handheld text entries impaired driving performance relative to the drive-only condition by causing more variation in speed and lane position. Handheld text entry also increased the brake response time and increased variation in headway distance. Text entry using a speech-based cell phone was less detrimental to driving performance than handheld text entry. Nevertheless, the speech-based text entry task still significantly impaired driving compared to the drive-only condition. These results suggest that speech-based text entry disrupts driving, but reduces the level of performance interference compared to text entry with a handheld device. In addition, the difference in the distraction effect caused by speech-based and handheld text entry is not simply due to the difference in task duration. Copyright © 2014 Elsevier Ltd. All rights reserved.
Age and visual impairment decrease driving performance as measured on a closed-road circuit.
Wood, Joanne M
2002-01-01
In this study the effects of visual impairment and age on driving were investigated and related to visual function. Participants were 139 licensed drivers (young, middle-aged, and older participants with normal vision, and older participants with ocular disease). Driving performance was assessed during the daytime on a closed-road driving circuit. Visual performance was assessed using a vision testing battery. Age and visual impairment had a significant detrimental effect on recognition tasks (detection and recognition of signs and hazards), time to complete driving tasks (overall course time, reversing, and maneuvering), maneuvering ability, divided attention, and an overall driving performance index. All vision measures were significantly affected by group membership. A combination of motion sensitivity, useful field of view (UFOV), Pelli-Robson letter contrast sensitivity, and dynamic acuity could predict 50% of the variance in overall driving scores. These results indicate that older drivers with either normal vision or visual impairment had poorer driving performance compared with younger or middle-aged drivers with normal vision. The inclusion of tests such as motion sensitivity and the UFOV significantly improve the predictive power of vision tests for driving performance. Although such measures may not be practical for widespread screening, their application in selected cases should be considered.
2-Shock layered tuning campaign
NASA Astrophysics Data System (ADS)
Masse, Laurent; Dittrich, T.; Khan, S.; Kyrala, G.; Ma, T.; MacLaren, S.; Ralph, J.; Salmonson, J.; Tipton, R.; Los Alamos Natl Lab Team; Lawrence Livermore Natl Lab Team
2016-10-01
The 2-Shock platform has been developed to maintain shell sphericity throughout the compression phase of an indirect-drive target implosion and produce a stagnating hot spot in a quasi 1D-like manner. A sub-scale, 1700 _m outer diameter, and thick, 200 _m, uniformly Silicon doped, gas-filled plastic capsule is driven inside a nominal size 5750 _m diameter ignition hohlraum. The hohlraum fill is near vacuum to reduce back-scatter and improve laser/drive coupling. A two-shock pulse of about 1 MJ of laser energy drives the capsule. The thick capsule prevents ablation front feed-through to the imploded core. This platform has demonstrated its efficiency to tune a predictable and reproducible 1-D implosion with a nearly round shape. It has been shown that the high foot performance was dominated by the local defect growth due to the ablation front instability and by the hohlraum radiation asymmetries. The idea here is to take advantage of this 2-Shock platform to design a 1D-like layered implosion and eliminates the deleterious effects of radiation asymmetries and ablation front instability growth. We present the design work and our first experimental results of this near one-dimensional 2-Shock layered design. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.
Three-dimensional hydrodynamic simulations of OMEGA implosions
NASA Astrophysics Data System (ADS)
Igumenshchev, I. V.; Michel, D. T.; Shah, R. C.; Campbell, E. M.; Epstein, R.; Forrest, C. J.; Glebov, V. Yu.; Goncharov, V. N.; Knauer, J. P.; Marshall, F. J.; McCrory, R. L.; Regan, S. P.; Sangster, T. C.; Stoeckl, C.; Schmitt, A. J.; Obenschain, S.
2017-05-01
The effects of large-scale (with Legendre modes ≲ 10) asymmetries in OMEGA direct-drive implosions caused by laser illumination nonuniformities (beam-power imbalance and beam mispointing and mistiming), target offset, and variation in target-layer thickness were investigated using the low-noise, three-dimensional Eulerian hydrodynamic code ASTER. Simulations indicate that these asymmetries can significantly degrade the implosion performance. The most important sources of the asymmetries are the target offsets ( ˜10 to 20 μm), beam-power imbalance ( σrms˜10 %), and variations ( ˜5 %) in target-layer thickness. Large-scale asymmetries distort implosion cores, resulting in a reduced hot-spot confinement and an increased residual kinetic energy of implosion targets. The ion temperature inferred from the width of simulated neutron spectra is influenced by bulk fuel motion in the distorted hot spot and can result in up to an ˜1 -keV increase in apparent temperature. Similar temperature variations along different lines of sight are observed. Demonstrating hydrodynamic equivalence to ignition designs on OMEGA requires a reduction in large-scale target and laser-imposed nonuniformities, minimizing target offset, and employing highly efficient mid-adiabat (α = 4) implosion designs, which mitigate cross-beam energy transfer and suppress short-wavelength Rayleigh-Taylor growth.
Three-dimensional hydrodynamic simulations of OMEGA implosions
Igumenshchev, I. V.; Michel, D. T.; Shah, R. C.; ...
2017-03-30
Here, the effects of large-scale (with Legendre modes ≲10) asymmetries in OMEGA direct-drive implosions caused by laser illumination nonuniformities (beam-power imbalance and beam mispointing and mistiming), target offset, and variation in target-layer thickness were investigated using the low-noise, three-dimensional Eulerian hydrodynamic code ASTER. Simulations indicate that these asymmetries can significantly degrade the implosion performance. The most important sources of the asymmetries are the target offsets (~10 to 20 μm), beam-power imbalance (σ rms ~ 10%), and variations (~5%) in target-layer thickness. Large-scale asymmetries distort implosion cores, resulting in a reduced hot-spot confinement and an increased residual kinetic energy of implosionmore » targets. The ion temperature inferred from the width of simulated neutron spectra is influenced by bulk fuel motion in the distorted hot spot and can result in up to an ~1 -keV increase in apparent temperature. Similar temperature variations along different lines of sight are observed. Demonstrating hydrodynamic equivalence to ignition designs on OMEGA requires a reduction in large-scale target and laser-imposed nonuniformities, minimizing target offset, and employing highly efficient mid-adiabat (α = 4) implosion designs, which mitigate cross-beam energy transfer and suppress short-wavelength Rayleigh–Taylor growth.« less
Three-dimensional hydrodynamic simulations of OMEGA implosions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Igumenshchev, I. V.; Michel, D. T.; Shah, R. C.
Here, the effects of large-scale (with Legendre modes ≲10) asymmetries in OMEGA direct-drive implosions caused by laser illumination nonuniformities (beam-power imbalance and beam mispointing and mistiming), target offset, and variation in target-layer thickness were investigated using the low-noise, three-dimensional Eulerian hydrodynamic code ASTER. Simulations indicate that these asymmetries can significantly degrade the implosion performance. The most important sources of the asymmetries are the target offsets (~10 to 20 μm), beam-power imbalance (σ rms ~ 10%), and variations (~5%) in target-layer thickness. Large-scale asymmetries distort implosion cores, resulting in a reduced hot-spot confinement and an increased residual kinetic energy of implosionmore » targets. The ion temperature inferred from the width of simulated neutron spectra is influenced by bulk fuel motion in the distorted hot spot and can result in up to an ~1 -keV increase in apparent temperature. Similar temperature variations along different lines of sight are observed. Demonstrating hydrodynamic equivalence to ignition designs on OMEGA requires a reduction in large-scale target and laser-imposed nonuniformities, minimizing target offset, and employing highly efficient mid-adiabat (α = 4) implosion designs, which mitigate cross-beam energy transfer and suppress short-wavelength Rayleigh–Taylor growth.« less
NASA Astrophysics Data System (ADS)
McKenty, P. W.; Collins, T. J. B.; Marozas, J. A.; Campbell, E. M.; Molvig, K.; Schmitt, M.
2017-10-01
The direct-drive ignition design Revolver employs a triple-shell target using a beryllium ablator, a copper driver, and an eventual gold pusher. Symmetric numerical calculations indicate that each of the three shells exhibit low convergence ( 3to 5) resulting in a modest gain (G 4) for 1.7 MJ of incident laser energy. Studies are now underway to evaluate the robustness of this design employing polar direct drive (PDD) at the National Ignition Facility. Integral to these calculations is the leveraging of illumination conditioning afforded by research done to demonstrate ignition for a traditional PDD hot-spot target design. Two-dimensional simulation results, employing nonlocal electron-thermal transport and cross-beam energy transport, will be presented that indicate ignition using PDD. A study of the allowed levels of long-wavelength perturbations (target offset and power imbalance) not precluding ignition will also be examined. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Mahy, Caitlin E V; Voigt, Babett; Ballhausen, Nicola; Schnitzspahn, Katharina; Ellis, Judi; Kliegel, Matthias
2015-01-01
The present study investigated whether developmental changes in cognitive control may underlie improvements of time-based prospective memory. Five-, 7-, 9-, and 11-year-olds (N = 166) completed a driving simulation task (ongoing task) in which they had to refuel their vehicle at specific points in time (PM task). The availability of cognitive control resources was experimentally manipulated by imposing a secondary task that required divided attention. Children completed the driving simulation task both in a full-attention condition and a divided-attention condition where they had to carry out a secondary task. Results revealed that older children performed better than younger children on the ongoing task and PM task. Children performed worse on the ongoing and PM tasks in the divided-attention condition compared to the full-attention condition. With respect to time monitoring in the final interval prior to the PM target, divided attention interacted with age such that older children's time monitoring was more negatively affected by the secondary task compared to younger children. Results are discussed in terms of developmental shifts from reactive to proactive monitoring strategies.
NASA Astrophysics Data System (ADS)
Husin, Zhafir Aizat; Sulaiman, Erwan; Khan, Faisal; Mazlan, Mohamed Mubin Aizat; Othman, Syed Muhammad Naufal Syed
2015-05-01
This paper presents a new structure of 12slot-14pole field excitation flux switching motor (FEFSM) as an alternative candidate of non-Permanent Magnet (PM) machine for HEV drives. Design study, performance analysis and optimization of field excitation flux switching machine with non-rare-earth magnet for hybrid electric vehicle drive applications is done. The stator of projected machine consists of iron core made of electromagnetic steels, armature coils and field excitation coils as the only field mmf source. The rotor is consisted of only stack of iron and hence, it is reliable and appropriate for high speed operation. The design target is a machine with the maximum torque, power and power density, more than 210Nm, 123kW and 3.5kW/kg, respectively, which competes with interior permanent magnet synchronous machine used in existing hybrid electric vehicle. Some design feasibility studies on FEFSM based on 2D-FEA and deterministic optimization method will be applied to design the proposed machine.
Assessing Cognitive Ability and Simulator-Based Driving Performance in Poststroke Adults
Falkmer, Torbjörn; Willstrand, Tania Dukic
2017-01-01
Driving is an important activity of daily living, which is increasingly relied upon as the population ages. It has been well-established that cognitive processes decline following a stroke and these processes may influence driving performance. There is much debate on the use of off-road neurological assessments and driving simulators as tools to predict driving performance; however, the majority of research uses unlicensed poststroke drivers, making the comparability of poststroke adults to that of a control group difficult. It stands to reason that in order to determine whether simulators and cognitive assessments can accurately assess driving performance, the baseline should be set by licenced drivers. Therefore, the aim of this study was to assess differences in cognitive ability and driving simulator performance in licensed community-dwelling poststroke drivers and controls. Two groups of licensed drivers (37 poststroke and 43 controls) were assessed using several cognitive tasks and using a driving simulator. The poststroke adults exhibited poorer cognitive ability; however, there were no differences in simulator performance between groups except that the poststroke drivers demonstrated less variability in driver headway. The application of these results as a prescreening toolbox for poststroke drivers is discussed. PMID:28559646
Active colloids as mobile microelectrodes for unified label-free selective cargo transport.
Boymelgreen, Alicia M; Balli, Tov; Miloh, Touvia; Yossifon, Gilad
2018-02-22
Utilization of active colloids to transport both biological and inorganic cargo has been widely examined in the context of applications ranging from targeted drug delivery to sample analysis. In general, carriers are customized to load one specific target via a mechanism distinct from that driving the transport. Here we unify these tasks and extend loading capabilities to include on-demand selection of multiple nano/micro-sized targets without the need for pre-labelling or surface functionalization. An externally applied electric field is singularly used to drive the active cargo carrier and transform it into a mobile floating electrode that can attract (trap) or repel specific targets from its surface by dielectrophoresis, enabling dynamic control of target selection, loading and rate of transport via the electric field parameters. In the future, dynamic selectivity could be combined with directed motion to develop building blocks for bottom-up fabrication in applications such as additive manufacturing and soft robotics.
Cognitive deficits are associated with poorer simulated driving in older adults with heart failure
2013-01-01
Background Cognitive impairment is prevalent in older adults with heart failure (HF) and associated with reduced functional independence. HF patients appear at risk for reduced driving ability, as past work in other medical samples has shown cognitive dysfunction to be an important contributor to driving performance. The current study examined whether cognitive dysfunction was independently associated with reduced driving simulation performance in a sample of HF patients. Methods 18 persons with HF (67.72; SD = 8.56 year) completed echocardiogram and a brief neuropsychological test battery assessing global cognitive function, attention/executive function, memory and motor function. All participants then completed the Kent Multidimensional Assessment Driving Simulation (K-MADS), a driving simulator scenario with good psychometric properties. Results The sample exhibited an average Mini Mental State Examination (MMSE) score of 27.83 (SD = 2.09). Independent sample t-tests showed that HF patients performed worse than healthy adults on the driving simulation scenario. Finally, partial correlations showed worse attention/executive and motor function were independently associated with poorer driving simulation performance across several indices reflective of driving ability (i.e., centerline crossings, number of collisions, % of time over the speed limit, among others). Conclusion The current findings showed that reduced cognitive function was associated with poor simulated driving performance in older adults with HF. If replicated using behind-the-wheel testing, HF patients may be at elevated risk for unsafe driving and routine driving evaluations in this population may be warranted. PMID:24499466
The performance of pile driving systems : inspection manual.
DOT National Transportation Integrated Search
1986-12-01
A study was undertaken on the performance of pile driving systems and the existiny technology for the measurement of performance parameters was reviewed, This report is an inspection manual for use by pile driving inspectors and engineers to ascertai...
Venkatesan, Umesh M; Festa, Elena K; Ott, Brian R; Heindel, William C
2018-05-01
Patients with Alzheimer's disease (AD) demonstrate deficits in cross-cortical feature binding distinct from age-related changes in selective attention. This may have consequences for driving performance given its demands on multisensory integration. We examined the relationship of visuospatial search and binding to driving in patients with early AD and elderly controls (EC). Participants (42 AD; 37 EC) completed search tasks requiring either luminance-motion (L-M) or color-motion (C-M) binding, analogs of within and across visual processing stream binding, respectively. Standardized road test (RIRT) and naturalistic driving data (CDAS) were collected alongside clinical screening measures. Patients performed worse than controls on most cognitive and driving indices. Visual search and clinical measures were differentially related to driving behavior across groups. L-M search and Trail Making Test (TMT-B) were associated with RIRT performance in controls, while C-M binding, TMT-B errors, and Clock Drawing correlated with CDAS performance in patients. After controlling for demographic and clinical predictors, L-M reaction time significantly predicted RIRT performance in controls. In patients, C-M binding made significant contributions to CDAS above and beyond demographic and clinical predictors. RIRT and C-M binding measures accounted for 51% of variance in CDAS performance in patients. Whereas selective attention is associated with driving behavior in EC, cross-cortical binding appears most sensitive to driving in AD. This latter relationship may emerge only in naturalistic settings, which better reflect patients' driving behavior. Visual integration may offer distinct insights into driving behavior, and thus has important implications for assessing driving competency in early AD. (JINS, 2018, 24, 486-497).
Ebnali, Mahdi; Ahmadnezhad, Pedram; Shateri, Alireza; Mazloumi, Adel; Ebnali Heidari, Majid; Nazeri, Ahmad Reza
2016-09-01
Using in-vehicle audio technologies such as audio systems and voice messages is regarded as a common secondary task. Such tasks, known as the sources of non-visual distraction, affect the driving performance. Given the elderly drivers' cognitive limitations, driving can be even more challenging to drivers. The current study examined how listening to economic news, as a cognitively demanding secondary task, affects elderly subjects' driving performance and whether their comprehension accuracy is associated with these effects. Participants of the study (N=22) drove in a real condition with and without listening to economic news. Measurements included driving performance (speed control, forward crash risk, and lateral lane position) and task performance (comprehension accuracy). The mean driving speed, duration of driving in unsafe zones and numbers of overtaking decreased significantly when drivers were engaged in the dual-task condition. Moreover, the cognitive secondary task led to a higher speed variability. Our results demonstrate that there was not a significant relationship between the lane changes and the activity of listening to economic news. However, a meaningful difference was observed between general comprehension and deep comprehension on the one hand and driving performance on the other. Another aspect of our study concerning the drivers' ages and their comprehension revealed a significant relationship between age above 75 and comprehension level. Drivers aging 75 and older showed a lower level of deep comprehension. Our study demonstrates that elderly drivers compensated driving performance with safety margin adoption while they were cognitively engaged. In this condition, however, maintaining speed proved more demanding for drivers aging 75 and older. Copyright © 2016 Elsevier Ltd. All rights reserved.
Generalized speed and cost rate in transitionless quantum driving
NASA Astrophysics Data System (ADS)
Xu, Zhen-Yu; You, Wen-Long; Dong, Yu-Li; Zhang, Chengjie; Yang, W. L.
2018-03-01
Transitionless quantum driving, also known as counterdiabatic driving, is a unique shortcut technique to adiabaticity, enabling a fast-forward evolution to the same target quantum states as those in the adiabatic case. However, as nothing is free, the fast evolution is obtained at the cost of stronger driving fields. Here, given the system initially gets prepared in equilibrium states, we construct relations between the dynamical evolution speed and the cost rate of transitionless quantum driving in two scenarios: one that preserves the transitionless evolution for a single energy eigenstate (individual driving), and the other that maintains all energy eigenstates evolving transitionlessly (collective driving). Remarkably, we find that individual driving may cost as much as collective driving, in contrast to the common belief that individual driving is more economical than collective driving in multilevel systems. We then present a potentially practical proposal to demonstrate the above phenomena in a three-level Landau-Zener model using the electronic spin system of a single nitrogen-vacancy center in diamond.
Cox, Daniel J; Brown, Timothy; Ross, Veerle; Moncrief, Matthew; Schmitt, Rose; Gaffney, Gary; Reeve, Ron
2017-08-01
Investigate how novice drivers with autism spectrum disorder (ASD) differ from experienced drivers and whether virtual reality driving simulation training (VRDST) improves ASD driving performance. 51 novice ASD drivers (mean age 17.96 years, 78% male) were randomized to routine training (RT) or one of three types of VRDST (8-12 sessions). All participants followed DMV behind-the-wheel training guidelines for earning a driver's license. Participants were assessed pre- and post-training for driving-specific executive function (EF) abilities and tactical driving skills. ASD drivers showed worse baseline EF and driving skills than experienced drivers. At post-assessment, VRDST significantly improved driving and EF performance over RT. This study demonstrated feasibility and potential efficacy of VRDST for novice ASD drivers.
Positive effects of Red Bull® Energy Drink on driving performance during prolonged driving.
Mets, Monique A J; Ketzer, Sander; Blom, Camilla; van Gerven, Maartje H; van Willigenburg, Gitta M; Olivier, Berend; Verster, Joris C
2011-04-01
The purpose of this study was to examine if Red Bull® Energy Drink can counteract sleepiness and driving impairment during prolonged driving. Twenty-four healthy volunteers participated in this double-blind placebo-controlled crossover study. After 2 h of highway driving in the STISIM driving simulator, subjects had a 15-min break and consumed Red Bull® Energy Drink (250 ml) or placebo (Red Bull® Energy Drink without the functional ingredients: caffeine, taurine, glucuronolactone, B vitamins (niacin, pantothenic acid, B6, B12), and inositol) before driving for two additional hours. A third condition comprised 4 h of uninterrupted driving. Primary parameter was the standard deviation of lateral position (SDLP), i.e., the weaving of the car. Secondary parameters included SD speed, subjective driving quality, sleepiness, and mental effort to perform the test. No significant differences were observed during the first 2 h of driving. Red Bull® Energy Drink significantly improved driving relative to placebo: SDLP was significantly reduced during the 3rd (p < 0.046) and 4th hour of driving (p < 0.011). Red Bull® Energy Drink significantly reduced the standard deviation of speed (p < 0.004), improved subjective driving quality (p < 0.0001), and reduced mental effort to perform the test (p < 0.024) during the 3rd hour of driving. Subjective sleepiness was significantly decreased during both the 3rd and 4th hour of driving after Red Bull® Energy Drink (p < 0.001 and p < 0.009, respectively). Relative to uninterrupted driving, Red Bull® Energy Drink significantly improved each parameter. Red Bull® Energy Drink significantly improves driving performance and reduces driver sleepiness during prolonged highway driving.
ON Cone Bipolar Cell Axonal Synapses in the OFF Inner Plexiform Layer of the Rabbit Retina
Lauritzen, J. Scott; Anderson, James R.; Jones, Bryan W.; Watt, Carl B.; Mohammed, Shoeb; Hoang, John V.; Marc, Robert E.
2012-01-01
Analysis of the rabbit retinal connectome RC1 reveals that the division between the ON and OFF inner plexiform layer (IPL) is not structurally absolute. ON cone bipolar cells make non-canonical axonal synapses onto specific targets and receive amacrine cell synapses in the nominal OFF layer, creating novel motifs, including inhibitory crossover networks. Automated transmission electron microscope (ATEM) imaging, molecular tagging, tracing, and rendering of ≈ 400 bipolar cells reveals axonal ribbons in 36% of ON cone bipolar cells, throughout the OFF IPL. The targets include GABA-positive amacrine cells (γACs), glycine-positive amacrine cells (GACs) and ganglion cells. Most ON cone bipolar cell axonal contacts target GACs driven by OFF cone bipolar cells, forming new architectures for generating ON-OFF amacrine cells. Many of these ON-OFF GACs target ON cone bipolar cell axons, ON γACs and/or ON-OFF ganglion cells, representing widespread mechanisms for OFF to ON crossover inhibition. Other targets include OFF γACs presynaptic to OFF bipolar cells, forming γAC-mediated crossover motifs. ON cone bipolar cell axonal ribbons drive bistratified ON-OFF ganglion cells in the OFF layer and provide ON drive to polarity-appropriate targets such as bistratified diving ganglion cells (bsdGCs). The targeting precision of ON cone bipolar cell axonal synapses shows that this drive incidence is necessarily a joint distribution of cone bipolar cell axonal frequency and target cell trajectories through a given volume of the OFF layer. Such joint distribution sampling is likely common when targets are sparser than sources and when sources are coupled, as are ON cone bipolar cells. PMID:23042441
Classifying visuomotor workload in a driving simulator using subject specific spatial brain patterns
Dijksterhuis, Chris; de Waard, Dick; Brookhuis, Karel A.; Mulder, Ben L. J. M.; de Jong, Ritske
2013-01-01
A passive Brain Computer Interface (BCI) is a system that responds to the spontaneously produced brain activity of its user and could be used to develop interactive task support. A human-machine system that could benefit from brain-based task support is the driver-car interaction system. To investigate the feasibility of such a system to detect changes in visuomotor workload, 34 drivers were exposed to several levels of driving demand in a driving simulator. Driving demand was manipulated by varying driving speed and by asking the drivers to comply to individually set lane keeping performance targets. Differences in the individual driver's workload levels were classified by applying the Common Spatial Pattern (CSP) and Fisher's linear discriminant analysis to frequency filtered electroencephalogram (EEG) data during an off line classification study. Several frequency ranges, EEG cap configurations, and condition pairs were explored. It was found that classifications were most accurate when based on high frequencies, larger electrode sets, and the frontal electrodes. Depending on these factors, classification accuracies across participants reached about 95% on average. The association between high accuracies and high frequencies suggests that part of the underlying information did not originate directly from neuronal activity. Nonetheless, average classification accuracies up to 75–80% were obtained from the lower EEG ranges that are likely to reflect neuronal activity. For a system designer, this implies that a passive BCI system may use several frequency ranges for workload classifications. PMID:23970851
Hybrid-drive implosion system for ICF targets
Mark, James W.
1988-08-02
Hybrid-drive implosion systems (20,40) for ICF targets (10,22,42) are described which permit a significant increase in target gain at fixed total driver energy. The ICF target is compressed in two phases, an initial compression phase and a final peak power phase, with each phase driven by a separate, optimized driver. The targets comprise a hollow spherical ablator (12) surroundingly disposed around fusion fuel (14). The ablator is first compressed to higher density by a laser system (24), or by an ion beam system (44), that in each case is optimized for this initial phase of compression of the target. Then, following compression of the ablator, energy is directly delivered into the compressed ablator by an ion beam driver system (30,48) that is optimized for this second phase of operation of the target. The fusion fuel (14) is driven, at high gain, to conditions wherein fusion reactions occur. This phase separation allows hydrodynamic efficiency and energy deposition uniformity to be individually optimized, thereby securing significant advantages in energy gain. In additional embodiments, the same or separate drivers supply energy for ICF target implosion.
Hybrid-drive implosion system for ICF targets
Mark, James W.
1988-01-01
Hybrid-drive implosion systems (20,40) for ICF targets (10,22,42) are described which permit a significant increase in target gain at fixed total driver energy. The ICF target is compressed in two phases, an initial compression phase and a final peak power phase, with each phase driven by a separate, optimized driver. The targets comprise a hollow spherical ablator (12) surroundingly disposed around fusion fuel (14). The ablator is first compressed to higher density by a laser system (24), or by an ion beam system (44), that in each case is optimized for this initial phase of compression of the target. Then, following compression of the ablator, energy is directly delivered into the compressed ablator by an ion beam driver system (30,48) that is optimized for this second phase of operation of the target. The fusion fuel (14) is driven, at high gain, to conditions wherein fusion reactions occur. This phase separation allows hydrodynamic efficiency and energy deposition uniformity to be individually optimized, thereby securing significant advantages in energy gain. In additional embodiments, the same or separate drivers supply energy for ICF target implosion.
Hybrid-drive implosion system for ICF targets
Mark, J.W.K.
1987-10-14
Hybrid-drive implosion systems for ICF targets are described which permit a significant increase in target gain at fixed total driver energy. The ICF target is compressed in two phases, an initial compression phase and a final peak power phase, with each phase driven by a separate, optimized driver. The targets comprise a hollow spherical ablator surroundingly disposed around fusion fuel. The ablator is first compressed to higher density by a laser system, or by an ion beam system, that in each case is optimized for this initial phase of compression of the target. Then, following compression of the ablator, energy is directly delivered into the compressed ablator by an ion beam driver system that is optimized for this second phase of operation of the target. The fusion fuel is driven, at high gain, to conditions wherein fusion reactions occur. This phase separation allows hydrodynamic efficiency and energy deposition uniformity to be individually optimized, thereby securing significant advantages in energy gain. In additional embodiments, the same or separate drivers supply energy for ICF target implosion. 3 figs.
Visual Target Tracking on the Mars Exploration Rovers
NASA Technical Reports Server (NTRS)
Kim, Won S.; Biesiadecki, Jeffrey J.; Ali, Khaled S.
2008-01-01
Visual Target Tracking (VTT) has been implemented in the new Mars Exploration Rover (MER) Flight Software (FSW) R9.2 release, which is now running on both Spirit and Opportunity rovers. Applying the normalized cross-correlation (NCC) algorithm with template image magnification and roll compensation on MER Navcam images, VTT tracks the target and enables the rover to approach the target within a few cm over a 10 m traverse. Each VTT update takes 1/2 to 1 minute on the rovers, 2-3 times faster than one Visual Odometry (Visodom) update. VTT is a key element to achieve a target approach and instrument placement over a 10-m run in a single sol in contrast to the original baseline of 3 sols. VTT has been integrated into the MER FSW so that it can operate with any combination of blind driving, Autonomous Navigation (Autonav) with hazard avoidance, and Visodom. VTT can either guide the rover towards the target or simply image the target as the rover drives by. Three recent VTT operational checkouts on Opportunity were all successful, tracking the selected target reliably within a few pixels.
Drivers of improved health sector performance in Rwanda: a qualitative view from within.
Sayinzoga, Felix; Bijlmakers, Leon
2016-04-08
Rwanda has achieved great improvements in several key health indicators, including maternal mortality and other health outcomes. This raises the question: what has made this possible, and what makes Rwanda so unique? We describe the results of a web-based survey among district health managers in Rwanda who gave their personal opinions on the factors that drive performance in the health sector, in particular those that determine maternal health service coverage and outcomes. The questionnaire covered the six health systems building blocks that make up the WHO framework for health systems analysis, and two additional clusters of factors that are not directly covered by the framework: community health and determinants beyond the health sector. Community health workers and health insurance come out as factors that are considered to have contributed most to Rwanda's remarkable achievements in the past decade. The results also indicate the importance of other health system features, such as managerial skills and the culture of continuous monitoring of key indicators. In addition, there are factors beyond the health sector per se, such as the widespread determination of people to increase performance and achieve targets. This determination appears multi-levelled and influenced by both intrinsic and extrinsic motivation. It is the comprehensiveness and combination of interventions that drive performance in Rwanda, rather than a single health systems strengthening intervention or a set of interventions that target a specific disease. There is need for policy makers and scholars to acknowledge the complexity of health systems, and the fact that they are dynamic and influenced by society's fabric, including the overall culture of performance management in the public sector. Rwanda's robust model is difficult to replicate and fast-tracking elsewhere in the world of some of the interventions that form part of its success will require a holistic approach.
Narad, Megan; Garner, Annie A; Brassell, Anne A; Saxby, Dyani; Antonini, Tanya N; O'Brien, Kathleen M; Tamm, Leanne; Matthews, Gerald; Epstein, Jeffery N
2013-10-01
This study extends the literature regarding attention-deficit/hyperactivity disorder (ADHD)-related driving impairments to a newly licensed, adolescent population. To investigate the combined risks of adolescence, ADHD, and distracted driving (cell phone conversation and text messaging) on driving performance. Adolescents aged 16 to 17 years with (n = 28) and without (n = 33) ADHD engaged in a simulated drive under 3 conditions (no distraction, cell phone conversation, and texting). During each condition, one unexpected event (eg, another car suddenly merging into driver's lane) was introduced. Cell phone conversation, texting, and no distraction while driving. Self-report of driving history, average speed, standard deviation of speed, standard deviation of lateral position, and braking reaction time during driving simulation. Adolescents with ADHD reported fewer months of driving experience and a higher proportion of driving violations than control subjects. After controlling for months of driving history, adolescents with ADHD demonstrated more variability in speed and lane position than control subjects. There were no group differences for braking reaction time. Furthermore, texting negatively impacted the driving performance of all participants as evidenced by increased variability in speed and lane position. To our knowledge, this study is one of the first to investigate distracted driving in adolescents with ADHD and adds to a growing body of literature documenting that individuals with ADHD are at increased risk for negative driving outcomes. Furthermore, texting significantly impairs the driving performance of all adolescents and increases existing driving-related impairment in adolescents with ADHD, highlighting the need for education and enforcement of regulations against texting for this age group.
Bodala, Indu P; Abbasi, Nida I; Yu Sun; Bezerianos, Anastasios; Al-Nashash, Hasan; Thakor, Nitish V
2017-07-01
Eye tracking offers a practical solution for monitoring cognitive performance in real world tasks. However, eye tracking in dynamic environments is difficult due to high spatial and temporal variation of stimuli, needing further and thorough investigation. In this paper, we study the possibility of developing a novel computer vision assisted eye tracking analysis by using fixations. Eye movement data is obtained from a long duration naturalistic driving experiment. Source invariant feature transform (SIFT) algorithm was implemented using VLFeat toolbox to identify multiple areas of interest (AOIs). A new measure called `fixation score' was defined to understand the dynamics of fixation position between the target AOI and the non target AOIs. Fixation score is maximum when the subjects focus on the target AOI and diminishes when they gaze at the non-target AOIs. Statistically significant negative correlation was found between fixation score and reaction time data (r =-0.2253 and p<;0.05). This implies that with vigilance decrement, the fixation score decreases due to visual attention shifting away from the target objects resulting in an increase in the reaction time.
Effects of Age-Related Macular Degeneration on Driving Performance
Wood, Joanne M.; Black, Alex A.; Mallon, Kerry; Kwan, Anthony S.; Owsley, Cynthia
2018-01-01
Purpose To explore differences in driving performance of older adults with age-related macular degeneration (AMD) and age-matched controls, and to identify the visual determinants of driving performance in this population. Methods Participants included 33 older drivers with AMD (mean age [M] = 76.6 ± 6.1 years; better eye Age-Related Eye Disease Study grades: early [61%] and intermediate [39%]) and 50 age-matched controls (M = 74.6 ± 5.0 years). Visual tests included visual acuity, contrast sensitivity, visual fields, and motion sensitivity. On-road driving performance was assessed in a dual-brake vehicle by an occupational therapist (masked to drivers' visual status). Outcome measures included driving safety ratings (scale of 1–10, where higher values represented safer driving), types of driving behavior errors, locations at which errors were made, and number of critical errors (CE) requiring an instructor intervention. Results Drivers with AMD were rated as less safe than controls (4.8 vs. 6.2; P = 0.012); safety ratings were associated with AMD severity (early: 5.5 versus intermediate: 3.7), even after adjusting for age. Drivers with AMD had higher CE rates than controls (1.42 vs. 0.36, respectively; rate ratio 3.05, 95% confidence interval 1.47–6.36, P = 0.003) and exhibited more observation, lane keeping, and gap selection errors and made more errors at traffic light–controlled intersections (P < 0.05). Only motion sensitivity was significantly associated with driving safety in the AMD drivers (P = 0.005). Conclusions Drivers with early and intermediate AMD can exhibit impairments in their driving performance, particularly during complex driving situations; motion sensitivity was most strongly associated with driving performance. These findings have important implications for assessing the driving ability of older drivers with visual impairment. PMID:29340641
Barkley, Russell A; Murphy, Kevin R; O'Connell, Trisha; Connor, Daniel F
2005-01-01
Numerous studies have documented an increased frequency of vehicular crashes, traffic citations, driving performance deficits, and driving-related cognitive impairments in teens and adults with attention deficit hyperactivity disorder. The present study evaluated the effects of two single, acute doses of methylphenidate (10 and 20 mg) and a placebo on the driving performance of 53 adults with ADHD (mean age=37 years, range=18-65) using a virtual reality driving simulator, examiner and self-ratings of simulator performance, and a continuous performance test (CPT) to evaluate attention and inhibition. A double-blind, drug-placebo, within-subjects crossover design was used in which all participants were tested at baseline and then experienced all three drug conditions. A significant beneficial effect for the high dose of medication was observed on impulsiveness on CPT, variability of steering in the standard driving course, and driving speed during the obstacle course. A beneficial effect of the low dose of medication also was evident on turn signal use during the standard driving course. An apparent practice effect was noted on some of the simulator measures between the baseline and subsequent testing sessions that may have interacted with and thereby obscured drug effects on those measures. The results, when placed in the context of prior studies of stimulants on driving performance, continue to recommend their clinical use as one means of reducing the driving risks in ADHD teens and adults. Given the significantly higher risk of adverse driving outcomes associated with ADHD, industry needs to better screen for ADHD among employees who drive as part of employment so as to improve safety and reduce costs. Use of stimulants to treat the adult ADHD driver may reduce safety risks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olszewski, Mitchell
The U.S. Department of Energy (DOE) announced in May 2011 a new cooperative research effort comprising DOE, the U.S. Council for Automotive Research (composed of automakers Ford Motor Company, General Motors Company, and Chrysler Group), Tesla Motors, and representatives of the electric utility and petroleum industries. Known as U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability), it represents DOE's commitment to developing public-private partnerships to fund high risk-high reward research into advanced automotive technologies. The new partnership replaces and builds upon the partnership known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research') that ran frommore » 2002 through 2010 and the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machines (PEEM) subprogram within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the PEEM subprogram has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The PEEM subprogram supports the efforts of the U.S. DRIVE partnership through a three phase approach intended to: (1) identify overall propulsion and vehicle related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component R&D activities; (2) develop and validate individual subsystems and components, including EMs and PE; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), battery electric vehicles, and fuel-cell-powered automobiles that meet the goals of the VTP. A key element in making these advanced vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, efficiency, and cost targets for the PE and EM subsystems of the traction drive system. Areas of development include: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency with the ability to accommodate higher temperature environments while achieving high reliability; (3) converter concepts that use methods of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) new onboard battery charging concepts that result in decreased cost and size; (5) more effective thermal control through innovative packaging technologies; and (6) integrated motor-inverter traction drive system concepts. ORNL's PEEM research program conducts fundamental research, evaluates hardware, and assists in the technical direction of the VTP Advanced Power Electronics and Electric Motors (APEEM) program. In this role, ORNL serves on the U.S. DRIVE Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. DOE's continuing R&D into advanced vehicle technologies for transportation offers the possibility of reducing the nation's dependence on foreign oil and the negative economic impacts of crude oil price fluctuations. It also supports the Administration's goal of deploying 1 million PHEVs by 2015.« less
Does correcting astigmatism with toric lenses improve driving performance?
Cox, Daniel J; Banton, Thomas; Record, Steven; Grabman, Jesse H; Hawkins, Ronald J
2015-04-01
Driving is a vision-based activity of daily living that impacts safety. Because visual disruption can compromise driving safety, contact lens wearers with astigmatism may pose a driving safety risk if they experience residual blur from spherical lenses that do not correct their astigmatism or if they experience blur from toric lenses that rotate excessively. Given that toric lens stabilization systems are continually improving, this preliminary study tested the hypothesis that astigmats wearing toric contact lenses, compared with spherical lenses, would exhibit better overall driving performance and driving-specific visual abilities. A within-subject, single-blind, crossover, randomized design was used to evaluate driving performance in 11 young adults with astigmatism (-0.75 to -1.75 diopters cylinder). Each participant drove a highly immersive, virtual reality driving simulator (210 degrees field of view) with (1) no correction, (2) spherical contact lens correction (ACUVUE MOIST), and (3) toric contact lens correction (ACUVUE MOIST for Astigmatism). Tactical driving skills such as steering, speed management, and braking, as well as operational driving abilities such as visual acuity, contrast sensitivity, and foot and arm reaction time, were quantified. There was a main effect for type of correction on driving performance (p = 0.05). Correction with toric lenses resulted in significantly safer tactical driving performance than no correction (p < 0.05), whereas correction with spherical lenses did not differ in driving safety from no correction (p = 0.118). Operational tests differentiated corrected from uncorrected performance for both spherical (p = 0.008) and toric (p = 0.011) lenses, but they were not sensitive enough to differentiate toric from spherical lens conditions. Given previous research showing that deficits in these tactical skills are predictive of future real-world collisions, these preliminary data suggest that correcting low to moderate astigmatism with toric lenses may be important to driving safety. Their merits relative to spherical lens correction require further investigation.
Subpercent-Scale Control of 3D Low Modes of Targets Imploded in Direct-Drive Configuration on OMEGA
Michel, D. T.; Igumenshchev, I. V.; Davis, A. K.; ...
2018-03-23
In a series of direct-drive implosions on OMEGA, multiple time resolved x-ray images were used to tomographically measure their 3-D modes 1, 2, and 3 at a convergence ratio of ~3. Results show that the target modes vary linearly with the laser modes and are not affected by the Rayleigh–Taylor growth or lateral heat transport. This indicates that the residual modes (resulting from physical effects including beam mistiming, mispointing, and laser energy calibration) are approximately constant between shots. Lastly, this demonstrates that the low-mode amplitudes can be mitigated within by adjusting the laser-energy balance to compensate the residual target modes.
Subpercent-Scale Control of 3D Low Modes of Targets Imploded in Direct-Drive Configuration on OMEGA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michel, D. T.; Igumenshchev, I. V.; Davis, A. K.
In a series of direct-drive implosions on OMEGA, multiple time resolved x-ray images were used to tomographically measure their 3-D modes 1, 2, and 3 at a convergence ratio of ~3. Results show that the target modes vary linearly with the laser modes and are not affected by the Rayleigh–Taylor growth or lateral heat transport. This indicates that the residual modes (resulting from physical effects including beam mistiming, mispointing, and laser energy calibration) are approximately constant between shots. Lastly, this demonstrates that the low-mode amplitudes can be mitigated within by adjusting the laser-energy balance to compensate the residual target modes.
Cox, Daniel J; Punja, Mohan; Powers, Katie; Merkel, R Lawrence; Burket, Roger; Moore, Melissa; Thorndike, Frances; Kovatchev, Boris
2006-11-01
Inattention is a major contributor to driving mishaps and is especially problematic among adolescent drivers with ADHD, possibly contributing to their 2 to 4 times higher incidence of collisions. Manual transmission has been demonstrated to be associated with greater arousal. This study tests the hypotheses that manual transmission, compared to automatic transmission, would be associated with better attention and performance on a driving simulator. Ten adolescent drivers with ADHD practice driving on the simulator in the manual and automatic mode. Employing a single-blind, cross-over design, participants drive the simulator at 19:30 and 22:30 hr for 30 min in both transmissions and rate their attention to driving. Subjectively, participants report being more attentive while driving in manual transmission mode. Objectively, participants drive safer in the manual transmission mode. Although in need of replication, this pilot study suggests a behavioral intervention to improve driving performance among ADHD adolescents.
Assessment of driving-related skills for older drivers : traffic tech.
DOT National Transportation Integrated Search
2010-04-01
Relating behind-the-wheel driving performance to performance : on office-based screening tools is challenging. It is : important to use tools that are predictive of poor driving : performance (sensitivity), but also to find tools that do not : have h...
DOT National Transportation Integrated Search
2006-12-01
This report contains analyses of driving performance data from the Advanced Collision Avoidance System (ACAS) Field Operational Test (FOT), with data from nearly 100 drivers and over 100,000 miles of driving. The analyses compared normal and distract...
Park, Si-Woon; Choi, Eun Seok; Lim, Mun Hee; Kim, Eun Joo; Hwang, Sung Il; Choi, Kyung-In; Yoo, Hyun-Chul; Lee, Kuem Ju; Jung, Hi-Eun
2011-03-01
To find an association between cognitive-perceptual problems of older drivers and unsafe driving performance during simulated automobile driving in a virtual environment. Cross-sectional study. A driver evaluation clinic in a rehabilitation hospital. Fifty-five drivers aged 65 years or older and 48 drivers in their late twenties to early forties. All participants underwent evaluation of cognitive-perceptual function and driving performance, and the results were compared between older and younger drivers. The association between cognitive-perceptual function and driving performance was analyzed. Cognitive-perceptual function was evaluated with the Cognitive Perceptual Assessment for Driving (CPAD), a computer-based assessment tool consisting of depth perception, sustained attention, divided attention, the Stroop test, the digit span test, field dependency, and trail-making test A and B. Driving performance was evaluated with use of a virtual reality-based driving simulator. During simulated driving, car crashes were recorded, and an occupational therapist observed unsafe performances in controlling speed, braking, steering, vehicle positioning, making lane changes, and making turns. Thirty-five older drivers did not pass the CPAD test, whereas all of the younger drivers passed the test. When using the driving simulator, a significantly greater number of older drivers experienced car crashes and demonstrated unsafe performance in controlling speed, steering, and making lane changes. CPAD results were associated with car crashes, steering, vehicle positioning, and making lane changes. Older drivers who did not pass the CPAD test are 4 times more likely to experience a car crash, 3.5 times more likely to make errors in steering, 2.8 times more likely to make errors in vehicle positioning, and 6.5 times more likely to make errors in lane changes than are drivers who passed the CPAD test. Unsafe driving performance and car crashes during simulated driving were more prevalent in older drivers than in younger drivers. Unsafe performance in steering, vehicle positioning, making lane changes, and car crashes were associated with cognitive-perceptual dysfunction. Copyright © 2011 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Alcohol effects on simulated driving performance and self-perceptions of impairment in DUI offenders
Van Dyke, Nicholas; Fillmore, Mark T.
2014-01-01
Drivers with a history of driving under the influence (DUI) of alcohol self-report heightened impulsivity and display reckless driving behaviors as indicated by increased rates of vehicle crashes, moving violations, and traffic tickets. Such poor behavioral self-regulation could also increase sensitivity to the disruptive effects of alcohol on driving performance. The present study examined the degree to which DUI drivers display an increased sensitivity to the acute impairing effects of alcohol on simulated driving performance and overestimate their driving fitness following alcohol consumption. Adult drivers with a history of DUI and a demographically-matched group of drivers with no history of DUI (controls) were tested following a 0.65 g/kg alcohol and a placebo. Results indicated that alcohol impaired several measures of driving performance and there was no difference between DUI offenders and controls in these impairments. However, following alcohol DUI drivers self-reported a greater ability and willingness to drive compared with controls. These findings indicate that drivers with a history of DUI might perceive themselves as more fit to drive after drinking which could play an important role in their decisions to drink and drive. PMID:25347077
Driver fatigue and highway driving: a simulator study.
Ting, Ping-Huang; Hwang, Jiun-Ren; Doong, Ji-Liang; Jeng, Ming-Chang
2008-06-09
Long duration of driving is a significant cause of fatigue-related accidents on motorways or major roadways. The fatigue caused by driving for extended periods acutely impairs driver alertness and performance and can compromise transportation safety. This study quantitatively measured the progression of driver fatigue and identified the conservative safe duration of continuous highway driving. Thirty young male subjects were analyzed during 90 min of laboratory-simulated highway driving. Sleepiness ratings (SSS) and reaction time (RT) tests were used to assess impairment of driver alertness and vigilance. Additionally, various measures of driving performance recorded throughout the experiment were used to measure temporal deterioration of driver performance from alert to fatigued using principal component analysis (PCA). The analytical results revealed that SSS scores, reaction times (RTs) and unstable driving performance significantly increased over time, indicating that excessive driving time is a significant fatigue factor and potential cause of fatigue-related accidents. Moreover, the analytical results indicated that 80 min was the safe limit for monotonous highway driving. Based on the experimental findings of this study, public awareness of the adverse affects of driver fatigue during long-distance driving should be enhanced. This study provides explicit information of fatigue development that can be used to prevent fatigue-related accidents.
Van Dyke, Nicholas; Fillmore, Mark T
2014-12-01
Drivers with a history of driving under the influence (DUI) of alcohol self-report heightened impulsivity and display reckless driving behaviors as indicated by increased rates of vehicle crashes, moving violations, and traffic tickets. Such poor behavioral self-regulation could also increase sensitivity to the disruptive effects of alcohol on driving performance. The present study examined the degree to which DUI drivers display an increased sensitivity to the acute impairing effects of alcohol on simulated driving performance and overestimate their driving fitness following alcohol consumption. Adult drivers with a history of DUI and a demographically matched group of drivers with no history of DUI (controls) were tested following a 0.65 g/kg alcohol and a placebo. Results indicated that alcohol impaired several measures of driving performance, and there was no difference between DUI offenders and controls in these impairments. However, following alcohol, DUI drivers self-reported a greater ability and willingness to drive compared with controls. These findings indicate that drivers with a history of DUI might perceive themselves as more fit to drive after drinking, which could play an important role in their decisions to drink and drive. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Narad, Megan; Garner, Annie A.; Brassell, Anne A.; Saxby, Dyani; Antonini, Tanya N.; O'Brien, Kathleen M.; Tamm, Leanne; Matthews, Gerald; Epstein, Jeffery N.
2013-01-01
Importance This study extends the literature regarding Attention-Deficit/Hyperactivity Disorder (ADHD) related driving impairments to a newly-licensed, adolescent population. Objective To investigate the combined risks of adolescence, ADHD, and distracted driving (cell phone conversation and text messaging) on driving performance. Design Adolescents with and without ADHD engaged in a simulated drive under three conditions (no distraction, cell phone conversation, texting). During each condition, one unexpected event (e.g., car suddenly merging into driver's lane) was introduced. Setting Driving simulator. Participants Adolescents aged 16–17 with ADHD (n=28) and controls (n=33). Interventions/Main Exposures Cell phone conversation, texting, and no distraction while driving. Outcome Measures Self-report of driving history; Average speed, standard deviation of speed, standard deviation of lateral position, braking reaction time during driving simulation. Results Adolescents with ADHD reported fewer months of driving experience and a higher proportion of driving violations than controls. After controlling for months of driving history, adolescents with ADHD demonstrated more variability in speed and lane position than controls. There were no group differences for braking reaction time. Further, texting negatively impacted the driving performance of all participants as evidenced by increased variability in speed and lane position. Conclusions This study, one of the first to investigate distracted driving in adolescents with ADHD, adds to a growing body of literature documenting that individuals with ADHD are at increased risk for negative driving outcomes. Furthermore, texting significantly impairs the driving performance of all adolescents and increases existing driving-related impairment in adolescents with ADHD, highlighting the need for education and enforcement of regulations against texting for this age group. PMID:23939758
Texting while driving using Google Glass™: Promising but not distraction-free.
He, Jibo; Choi, William; McCarley, Jason S; Chaparro, Barbara S; Wang, Chun
2015-08-01
Texting while driving is risky but common. This study evaluated how texting using a Head-Mounted Display, Google Glass, impacts driving performance. Experienced drivers performed a classic car-following task while using three different interfaces to text: fully manual interaction with a head-down smartphone, vocal interaction with a smartphone, and vocal interaction with Google Glass. Fully manual interaction produced worse driving performance than either of the other interaction methods, leading to more lane excursions and variable vehicle control, and higher workload. Compared to texting vocally with a smartphone, texting using Google Glass produced fewer lane excursions, more braking responses, and lower workload. All forms of texting impaired driving performance compared to undistracted driving. These results imply that the use of Google Glass for texting impairs driving, but its Head-Mounted Display configuration and speech recognition technology may be safer than texting using a smartphone. Copyright © 2015 Elsevier Ltd. All rights reserved.
Moták, Ladislav; Bayssac, Laëtitia; Taillard, Jacques; Sagaspe, Patricia; Huet, Nathalie; Terrier, Patrice; Philip, Pierre; Daurat, Agnès
2014-06-01
The adverse effects of benzodiazepines on driving are widely recognised. The aims of this study were both to determine the impact of naturalistic conversation on the driving ability of drivers under a benzodiazepine, and to measure the accuracy of drivers' assessments of the joint effects of the benzodiazepine and conversation. Sixteen healthy male participants (29.69 ± 3.30 years) underwent a randomised, crossover, double-blind, placebo-controlled study with the benzodiazepine lorazepam (2mg). They drove 200 km (125 miles) on a motorway in the morning. We measured two driving ability-related variables (i.e., lane-keeping performance), and collected a set of self-assessed variables (i.e., self-assessment of driving performance) during two 10-min sequences of interest (no conversation vs. conversation). An analysis of variance revealed an interaction whereby lane-keeping performance under lorazepam was worse in the no-conversation condition than in the conversation condition. No such difference was detected under placebo. Pearson's correlation coefficients revealed that self-assessments were (i) not at all predictive of lane-keeping when performed before the drive, but (ii) moderately predictive of lane-keeping performance when performed during or after the drive. We conclude that conversation with a passenger may contribute to safer lane-keeping when driving under a benzodiazepine. Moreover, a degree of awareness may be attained after some experience of driving under the influence of this type of medication. Copyright © 2014 Elsevier Ltd. All rights reserved.
CR-Calculus and adaptive array theory applied to MIMO random vibration control tests
NASA Astrophysics Data System (ADS)
Musella, U.; Manzato, S.; Peeters, B.; Guillaume, P.
2016-09-01
Performing Multiple-Input Multiple-Output (MIMO) tests to reproduce the vibration environment in a user-defined number of control points of a unit under test is necessary in applications where a realistic environment replication has to be achieved. MIMO tests require vibration control strategies to calculate the required drive signal vector that gives an acceptable replication of the target. This target is a (complex) vector with magnitude and phase information at the control points for MIMO Sine Control tests while in MIMO Random Control tests, in the most general case, the target is a complete spectral density matrix. The idea behind this work is to tailor a MIMO random vibration control approach that can be generalized to other MIMO tests, e.g. MIMO Sine and MIMO Time Waveform Replication. In this work the approach is to use gradient-based procedures over the complex space, applying the so called CR-Calculus and the adaptive array theory. With this approach it is possible to better control the process performances allowing the step-by-step Jacobian Matrix update. The theoretical bases behind the work are followed by an application of the developed method to a two-exciter two-axis system and by performance comparisons with standard methods.
Takasaki, Hiroshi; Treleaven, Julia; Johnston, Venerina; Van den Hoorn, Wolbert; Rakotonirainy, Andry; Jull, Gwendolen
2014-08-01
Individuals with chronic whiplash-associated disorders (WADs) often note driving as a difficult task. This study's aims were to (1) compare, while driving, neck motor performance, mental effort, and fatigue in individuals with chronic WAD against healthy controls and (2) investigate the relationships of these variables and neck pain to self-reported driving difficulty in the WAD group. This study involved 14 participants in each group (WAD and control). Measures included self-reported driving difficulty and measures of neck pain intensity, overall fatigue, mental effort, and neck motor performance (head rotation and upper trapezius activity) while driving a simulator. The WAD group had greater absolute path of head rotation in a simulated city area and used greater mental effort (P = 0.04), but there were no differences in other measures while driving compared with the controls (all P ≥ 0.05). Self-reported driving difficulty correlated moderately with neck pain intensity, fatigue level, and maximum velocity of head rotation while driving in the WAD group (all P < 0.05). Individuals with chronic WAD do not seem to have impaired neck motor performance while driving yet use greater mental effort. Neck pain, fatigue, and maximum head rotation velocity could be potential contributors to self-reported driving difficulty in this group.
Targets of opportunity : community based alcohol programs
DOT National Transportation Integrated Search
1988-04-01
Targets of Opportunity (TOP), were comprehensive community based programs addressing the drinking and driving concerns within a particular community. The program incorporated six elements: 1) General deterrence - public information,leducation and enf...
Allison, Samantha; Babulal, Ganesh M; Stout, Sarah H; Barco, Peggy P; Carr, David B; Fagan, Anne M; Morris, John C; Roe, Catherine M; Head, Denise
2018-01-01
Older adults experience impaired driving performance, and modify their driving habits, including limiting amount and spatial extent of travel. Alzheimer disease (AD)-related pathology, as well as spatial navigation difficulties, may influence driving performance and driving behaviors in clinically normal older adults. We examined whether AD biomarkers [cerebrospinal fluid (CSF) concentrations of Aβ42, tau, and ptau181] were associated with lower self-reported spatial navigation abilities, and whether navigation abilities mediated the relationship of AD biomarkers with driving performance and extent. Clinically normal older adults (n=112; aged 65+) completed an on-road driving test, the Santa Barbara Sense of Direction scale (self-report measure of spatial navigation ability), and the Driving Habits Questionnaire for an estimate of driving extent (composite of driving exposure and driving space). All participants had a lumbar puncture to obtain CSF. CSF Aβ42, but not tau or ptau181, was associated with self-reported navigation ability. Lower self-reported navigation was associated with reduced driving extent, but not driving errors. Self-reported navigation mediated the relationship between CSF Aβ42 and driving extent. Findings suggest that cerebral amyloid deposition is associated with lower perceived ability to navigate the environment, which may lead older adults with AD pathology to limit their driving extent.
Optimizing digital 8mm drive performance
NASA Technical Reports Server (NTRS)
Schadegg, Gerry
1993-01-01
The experience of attaching over 350,000 digital 8mm drives to 85-plus system platforms has uncovered many factors which can reduce cartridge capacity or drive throughput, reduce reliability, affect cartridge archivability and actually shorten drive life. Some are unique to an installation. Others result from how the system is set up to talk to the drive. Many stem from how applications use the drive, the work load that's present, the kind of media used and, very important, the kind of cleaning program in place. Digital 8mm drives record data at densities that rival those of disk technology. Even with technology this advanced, they are extremely robust and, given proper usage, care and media, should reward the user with a long productive life. The 8mm drive will give its best performance using high-quality 'data grade' media. Even though it costs more, good 'data grade' media can sustain the reliability and rigorous needs of a data storage environment and, with proper care, give users an archival life of 30 years or more. Various factors, taken individually, may not necessarily produce performance or reliability problems. Taken in combination, their effects can compound, resulting in rapid reductions in a drive's serviceable life, cartridge capacity, or drive performance. The key to managing media is determining the importance one places upon their recorded data and, subsequently, setting media usage guidelines that can deliver data reliability. Various options one can implement to optimize digital 8mm drive performance are explored.
NASA Technical Reports Server (NTRS)
Mitchell, Diane Kuhl; Wojciechowski, Josephine; Samms, Charneta
2012-01-01
A challenge facing the U.S. National Highway Traffic Safety Administration (NHTSA), as well as international safety experts, is the need to educate car drivers about the dangers associated with performing distraction tasks while driving. Researchers working for the U.S. Army Research Laboratory have developed a technique for predicting the increase in mental workload that results when distraction tasks are combined with driving. They implement this technique using human performance modeling. They have predicted workload associated with driving combined with cell phone use. In addition, they have predicted the workload associated with driving military vehicles combined with threat detection. Their technique can be used by safety personnel internationally to demonstrate the dangers of combining distracter tasks with driving and to mitigate the safety risks.
Associations Between Driving Performance and Engaging in Secondary Tasks: A Systematic Review
Ferdinand, Alva O.
2014-01-01
We conducted a systematic review and meta-analysis of the literature examining the relationship between driving performance and engaging in secondary tasks. We extracted data from abstracts of 206 empirical articles published between 1968 and 2012 and developed a logistic regression model to identify correlates of a detrimental relationship between secondary tasks and driving performance. Of 350 analyses, 80% reported finding a detrimental relationship. Studies using experimental designs were 37% less likely to report a detrimental relationship (P = .014). Studies examining mobile phone use while driving were 16% more likely to find such a relationship (P = .009). Quasi-experiments can better determine the effects of secondary tasks on driving performance and consequently serve to inform policymakers interested in reducing distracted driving and increasing roadway safety. PMID:24432925
Suppression of laser nonuniformity imprinting using a thin high-z coating.
Karasik, Max; Weaver, J L; Aglitskiy, Y; Oh, J; Obenschain, S P
2015-02-27
Imprinting of laser nonuniformity is a limiting factor in direct-drive inertial confinement fusion experiments, particularly when available laser smoothing is limited. A thin (∼400 Å) high-Z metal coating is found to substantially suppress laser imprint for planar targets driven by pulse shapes and intensities relevant to implosions on the National Ignition Facility while retaining low adiabat target acceleration. A hybrid of indirect and direct drive, this configuration results in initial ablation by x rays from the heated high-Z layer, creating a large standoff for perturbation smoothing.
Mitsopoulos-Rubens, Eve; Trotter, Margaret J; Lenné, Michael G
2011-05-01
Interface design is an important factor in assessing the potential effects on safety of interacting with an in-vehicle information system while driving. In the current study, the layout of information on a visual display was manipulated to explore its effect on driving performance in the context of music selection. The comparative effects of an auditory-verbal (cognitive) task were also explored. The driving performance of 30 participants was assessed under both baseline and dual task conditions using the Lane Change Test. Concurrent completion of the music selection task with driving resulted in significant impairment to lateral driving performance (mean lane deviation and percentage of correct lane changes) relative to the baseline, and significantly greater mean lane deviation relative to the combined driving and the cognitive task condition. The magnitude of these effects on driving performance was independent of layout concept, although significant differences in subjective workload estimates and performance on the music selection task across layout concepts highlights that potential uncertainty regarding design use as conveyed through layout concept could be disadvantageous. The implications of these results for interface design and safety are discussed. Copyright © 2010 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Assessing drivers' response during automated driver support system failures with non-driving tasks.
Shen, Sijun; Neyens, David M
2017-06-01
With the increase in automated driver support systems, drivers are shifting from operating their vehicles to supervising their automation. As a result, it is important to understand how drivers interact with these automated systems and evaluate their effect on driver responses to safety critical events. This study aimed to identify how drivers responded when experiencing a safety critical event in automated vehicles while also engaged in non-driving tasks. In total 48 participants were included in this driving simulator study with two levels of automated driving: (a) driving with no automation and (b) driving with adaptive cruise control (ACC) and lane keeping (LK) systems engaged; and also two levels of a non-driving task (a) watching a movie or (b) no non-driving task. In addition to driving performance measures, non-driving task performance and the mean glance duration for the non-driving task were compared between the two levels of automated driving. Drivers using the automated systems responded worse than those manually driving in terms of reaction time, lane departure duration, and maximum steering wheel angle to an induced lane departure event. These results also found that non-driving tasks further impaired driver responses to a safety critical event in the automated system condition. In the automated driving condition, driver responses to the safety critical events were slower, especially when engaged in a non-driving task. Traditional driver performance variables may not necessarily effectively and accurately evaluate driver responses to events when supervising autonomous vehicle systems. Thus, it is important to develop and use appropriate variables to quantify drivers' performance under these conditions. Copyright © 2017 Elsevier Ltd and National Safety Council. All rights reserved.
Sobanski, E; Sabljic, D; Alm, B; Dittmann, R W; Wehmeier, P M; Skopp, G; Strohbeck-Kühner, P
2013-08-01
To investigate effects of a 12-week treatment with atomoxetine (ATX) on driving performance in real traffic, driving-related neuropsychological performance tests and self-evaluation of driving in adult patients with ADHD compared to an untreated control group with ADHD. Parallel group design with an ATX and a waiting list group. At baseline and endpoint patients were evaluated with a standardized on-road driving test (SDBO), a driving-related neuropsychological test battery (Act and React Test System [ART2020]), and subjective measures of driving performance (one-week driving diary, Driver Coping Questionnaire). Forty-three of the 64 included patients completed the study (n=22 ATX, n=21 controls). Mean intervention period was 11.9±3.0 weeks, mean daily ATX dosage was 71.6±14.9mg. At endpoint, 60.1% of patients treated with ATX and 0% of waiting list group had reduced ADHD symptoms by greater or equal to 30%. In SDBO, ATX group reduced driving errors in three of four driving performance categories (attention, P<0.05; risk-related self-control, P<0.005; driver skills, P<0.001), number of driving errors remained stable in control group. At endpoint, 47.6% of control group and 18.2% of ATX group (P<0.05) did not fulfil the driving fitness criteria according to German Guidelines (percentile rank less or equal to 16 in one or more subtests in ART2020). Total number of self-reported critical traffic situations decreased from 12.0 to 6.8 per week in ATX group (P<0.05) and remained stable in controls by 9.3 and 9.9 at baseline and endpoint (ns). Coping strategies with stressful traffic situations did not change within both groups. Our study provides first evidence that treatment with ATX improves driving performance in real traffic in adults with ADHD. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Driver Performance in the Moments Surrounding a Microsleep
Boyle, Linda Ng; Tippin, Jon; Paul, Amit; Rizzo, Matthew
2009-01-01
This study examined if individuals who are at increased risk for drowsy-driving because of obstructive sleep apnea syndrome (OSAS), have impairments in driving performance in the moments during microsleep episodes as opposed to during periods of wakefulness. Twenty-four licensed drivers diagnosed with OSAS based on standard clinical and polysomnographic criteria, participated in an hour-long drive in a high-fidelity driving simulator with synchronous electroencephalographic (EEG) recordings for identification of microsleeps. The drivers showed significant deterioration in vehicle control during the microsleep episodes compared to driving performance in the absence of microsleeps on equivalent segments of roadway. The degree of performance decrement correlated with microsleep duration, particularly on curved roads. Results indicate that driving performance deteriorates during microsleep episodes. Detecting microsleeps in real-time and identifying how these episodes of transition between wakefulness and sleep impair driver performance is relevant to the design and implementation of countermeasures such as drowsy driver detection and alerting systems that use EEG technology. PMID:20090864
Neuroendocrine integration of nutritional signals on reproduction.
Evans, Maggie C; Anderson, Greg M
2017-02-01
Reproductive function in mammals is energetically costly and therefore tightly regulated by nutritional status. To enable this integration of metabolic and reproductive function, information regarding peripheral nutritional status must be relayed centrally to the gonadotropin-releasing hormone (GNRH) neurons that drive reproductive function. The metabolically relevant hormones leptin, insulin and ghrelin have been identified as key mediators of this 'metabolic control of fertility'. However, the neural circuitry through which they act to exert their control over GNRH drive remains incompletely understood. With the advent of Cre-LoxP technology, it has become possible to perform targeted gene-deletion and gene-rescue experiments and thus test the functional requirement and sufficiency, respectively, of discrete hormone-neuron signaling pathways in the metabolic control of reproductive function. This review discusses the findings from these investigations, and attempts to put them in context with what is known from clinical situations and wild-type animal models. What emerges from this discussion is clear evidence that the integration of nutritional signals on reproduction is complex and highly redundant, and therefore, surprisingly difficult to perturb. Consequently, the deletion of individual hormone-neuron signaling pathways often fails to cause reproductive phenotypes, despite strong evidence that the targeted pathway plays a role under normal physiological conditions. Although transgenic studies rarely reveal a critical role for discrete signaling pathways, they nevertheless prove to be a good strategy for identifying whether a targeted pathway is absolutely required, critically involved, sufficient or dispensable in the metabolic control of fertility. © 2017 Society for Endocrinology.
Flight-Ready TDLAS Combustion Sensor for the HIFiRE 2 Hypersonic Research Program
2009-09-01
Noise Sources 20 5.7 Total System Performance 21 6.0 ZOLO ARCHITECTURE 22 7.0 DESIGN DETAILS 23 7.1 Laser and Drive Electronics 23 7.2 Fiber Couplers...targets 8 2 Tunable Diode Laser Absorption Spectroscopy experiment 9 3 Light absorption by water vapor near 1393 nm 10 4a light transmission vs time 10...20 13 multimode fiber modal noise 21 14 TDLAS sensor architecture 22 15 sensor exploded view 23 16 sensor outline and mounting 23 17 laser power and
Direct Drive Fusion Energy Shock Ignition Designs for Sub-MJ Lasers
2008-09-01
FUSION ENERGY SHOCK IGNITION DESIGNS FOR SUB-MJ LASERS Andrew J. Schmitt, J. W. Bates, S. P. Obenschain, and S. T. Zalesak Plasma Physics Division, Naval Research Laboratory, Washington DC 20375 andrew.schmitt@nrl.navy.mil D. E. Fyfe LCP&FD, Naval Research Laboratory, Washington DC 20375 R. Betti Fusion Science Center and Laboratory for Laser Energetics, University of Rochester, Rochester NY New approaches in target design have increased the pos- sibility that useful fusion power can be generated with sub-MJ lasers. We have performed many 1D and 2D
Exploring an alternative transportation program to reduce impaired driving.
DOT National Transportation Integrated Search
2001-11-01
This study assessed the impact of an alternate ride home for persons who wanted to plan ahead for instances when they may be too impaired to drive, specifically targeting persons between the ages of 29 and 49. First, a series of focus groups was cond...
Cox, Daniel J; Merkel, R Lawrence; Moore, Melissa; Thorndike, Frances; Muller, Carrie; Kovatchev, Boris
2006-09-01
Automobile accidents are the leading cause of death among adolescents, and collisions are 2 to 4 times more likely to occur among adolescents with attention-deficit/hyperactivity disorder. Studies have demonstrated that stimulants improve driving performance. This study compared 2 long-acting stimulant medications during daytime and evening driving evaluations. Adolescent drivers with attention-deficit/hyperactivity disorder were compared on a driving simulator after taking 72 mg of OROS methylphenidate, 30 mg of mixed amphetamine salts extended release, or placebo in a randomized, double-blind, placebo-controlled, crossover study design. During laboratory testing, adolescents drove a driving simulator at 5:00 pm, 8:00 pm, and 11:00 pm. Driving performance was rated by adolescents and investigators. The study included 35 adolescent drivers with attention-deficit/hyperactivity disorder (19 boys/16 girls). The mean age was 17.8 years. The overall Impaired Driving Score demonstrated that OROS methylphenidate led to better driving performance compared with placebo and mixed amphetamine salts extended release, whereas mixed amphetamine salts extended release demonstrated no statistical improvement over placebo. Specifically, relative to placebo, OROS methylphenidate resulted in less time driving off the road, fewer instances of speeding, less erratic speed control, more time executing left turns, and less inappropriate use of brakes. OROS methylphenidate and mixed amphetamine salts extended release worked equally well for male and female adolescents and equally as well with teenagers who have combined and inattentive subtypes of attention-deficit/hyperactivity disorder. This study validates the use of stimulants to improve driving performance in adolescents with attention-deficit/hyperactivity disorder. In the study, OROS methylphenidate promoted significantly improved driving performance compared with placebo and mixed amphetamine salts extended release.
Mirman, Jessica H; Albert, W Dustin; Curry, Allison E; Winston, Flaura K; Fisher Thiel, Megan C; Durbin, Dennis R
2014-11-01
The large contribution of inexperience to the high crash rate of newly licensed teens suggests that they enter licensure with insufficient skills. In a prior analysis, we found moderate support for a direct effect of a web-based intervention, the TeenDrivingPlan (TDP), on teens' driving performance. The purpose of the present study was to identify the mechanisms by which TDP may be effective and to extend our understanding of how teens learn to drive. A randomized controlled trial conducted with teen permit holders and parent supervisors (N = 151 dyads) was used to determine if the effect of TDP on driver performance operated through five hypothesized mediators: (1) parent-perceived social support; (2) teen-perceived social support; (3) parent engagement; (4) practice quantity; and (5) practice diversity. Certified driving evaluators, blinded to teens' treatment allocation, assessed teens' driving performance 24 weeks after enrollment. Mediator variables were assessed on self-report surveys administered periodically over the study period. Exposure to TDP increased teen-perceived social support, parent engagement, and practice diversity. Both greater practice quantity and diversity were associated with better driving performance, but only practice diversity mediated the relationship between TDP and driver performance. Practice diversity is feasible to change and increases teens' likelihood of completing a rigorous on-road driving assessment just before licensure. Future research should continue to identify mechanisms that diversify practice driving, explore complementary ways to help families optimize the time they spend on practice driving, and evaluate the long-term effectiveness of TDP. Copyright © 2014 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.
Koppel, Sjaan; Charlton, Judith L; Langford, Jim; Di Stefano, Marilyn; MacDonald, Wendy; Vlahodimitrakou, Zafiroula; Mazer, Barbara L; Gelinas, Isabelle; Vrkljan, Brenda; Eliasz, Kinga; Myers, Anita; Tuokko, Holly A; Marshall, Shawn C
2016-06-01
This study examined a cohort of 227 older drivers and investigated the relationship between performance on the electronic Driver Observation Schedule (eDOS) driving task and: (1) driver characteristics; (2) functional abilities; (3) perceptions of driving comfort and abilities; and (4) self-reported driving restrictions. Participants (male: 70%; age: M = 81.53 years, SD = 3.37 years) completed a series of functional ability measures and scales on perceived driving comfort, abilities, and driving restrictions from the Year 2 Candrive/Ozcandrive assessment protocol, along with an eDOS driving task. Observations of participants' driving behaviours during the driving task were recorded for intersection negotiation, lane-changing, merging, low-speed maneuvers, and maneuver-free driving. eDOS driving task scores were high (M = 94.74; SD = 5.70) and significantly related to participants' perceived driving abilities, reported frequency of driving in challenging situations, and number of driving restrictions. Future analyses will explore potential changes in driving task scores over time.
Liu, Yung-Ching; Ho, Chin Heng
2010-08-01
A study using simulator methodology was conducted to investigate the effects of (1) different blood alcohol concentrations (BAC) of 0, 0.05, 0.08, and 0.10 percent and (2) post-alcohol impairment (where BAC approximately 0%) on driving behavior and subsidiary cognitive task performance. Two driving sessions were investigated, that is, drunk driving and post-alcohol driving, with each requiring approximately 20 min of driving. In addition to driving safely, participants were instructed to perform the critical flicker fusion (CFF) test and completed the NASA-TLX mental workload questionnaire. Eight licensed drivers (6 males, 2 females) participated in this 2 (road complexities) x 2 (simulated driving sessions) x 4 (levels of BAC) within-subjects experiment. The study revealed that higher BAC levels were associated with lower performing driving behavior. The driver's mental workload reached the highest values in the post-alcohol session. In terms of tasks involving divided attention, the traffic sign distance estimation showed significant deterioration with increased BAC levels. The relationship between drunk-driving behavior and alcohol dosage was supported in this study. Noticeably, no significant difference was found between drunk driving and post-alcohol driving, indicating that even in the post-alcohol situation, the impairment still remained significant enough to jeopardize traffic safety as much as it does in the case of drunk driving. In real-life situations, adopting a rest-time strategy to avoid post-alcohol impairment effects may not be the most appropriate solution by drivers; rather, drivers should be given some tests to verify the probability of post-alcohol effects on driving.
Bajaj, Jasmohan S; Heuman, Douglas M; Wade, James B; Gibson, Douglas P; Saeian, Kia; Wegelin, Jacob A; Hafeezullah, Muhammad; Bell, Debulon E; Sterling, Richard K; Stravitz, R. Todd; Fuchs, Michael; Luketic, Velimir; Sanyal, Arun J
2010-01-01
Background & Aims Patients with cirrhosis and minimal hepatic encephalopathy (MHE) have driving difficulties but the effects of therapy on driving performance have not been assessed. We evaluated whether performance on a driving simulator improves in patients with MHE following treatment with rifaximin. Methods Patients with MHE who were current drivers were randomly assigned to placebo or rifaximin groups and followed for 8 weeks (n=42). Patients underwent driving simulation (driving and navigation tasks) at the start (baseline) and end of the study. We evaluated patients’ cognitive abilities, quality-of-life (using the Sickness Impact Profile [SIP]), serum levels of ammonia, levels of inflammatory cytokines, and MELD scores. The primary outcome was percent who improved in driving performance, calculated by: total driving errors=speeding + illegal turns + collisions. Results Over the 8-week study period, patients given rifaximin made significantly greater improvements than those given placebo in avoiding total driving errors (76% vs. 31%, P=0.013), speeding (81% vs. 33%, P=0.005), and illegal turns (62% vs. 19%, P=0.01). Of patients given rifaximin, 91% improved their cognitive performance, compared with 61% of patients given placebo (P=0.01); they also made improvements in the psycho-social dimension of the SIP, compared with the placebo group (P=0.04). Adherence to the assigned drug averaged 92%. Neither group had changes in ammonia levels or MELD scores, but patients in the rifaximin group had increased levels of the anti-inflammatory cytokine interleukin-10. Conclusions Patients with MHE significantly improve driving simulator performance following treatment with rifaximin, compared with placebo. PMID:20849805
Driving Performance Under Alcohol in Simulated Representative Driving Tasks
Kenntner-Mabiala, Ramona; Kaussner, Yvonne; Jagiellowicz-Kaufmann, Monika; Hoffmann, Sonja; Krüger, Hans-Peter
2015-01-01
Abstract Comparing drug-induced driving impairments with the effects of benchmark blood alcohol concentrations (BACs) is an approved approach to determine the clinical relevance of findings for traffic safety. The present study aimed to collect alcohol calibration data to validate findings of clinical trials that were derived from a representative test course in a dynamic driving simulator. The driving performance of 24 healthy volunteers under placebo and with 0.05% and 0.08% BACs was measured in a double-blind, randomized, crossover design. Trained investigators assessed the subjects’ driving performance and registered their driving errors. Various driving parameters that were recorded during the simulation were also analyzed. Generally, the participants performed worse on the test course (P < 0.05 for the investigators’ assessment) under the influence of alcohol. Consistent with the relevant literature, lane-keeping performance parameters were sensitive to the investigated BACs. There were significant differences between the alcohol and placebo conditions in most of the parameters analyzed. However, the total number of errors was the only parameter discriminating significantly between all three BAC conditions. In conclusion, data show that the present experimental setup is suitable for future psychopharmacological research. Thereby, for each drug to be investigated, we recommend to assess a profile of various parameters that address different levels of driving. On the basis of this performance profile, the total number of driving errors is recommended as the primary endpoint. However, this overall endpoint should be completed by a specifically sensitive parameter that is chosen depending on the effect known to be induced by the tested drug. PMID:25689289
The Maintenance of Wakefulness Test and driving simulator performance.
Banks, Siobhan; Catcheside, Peter; Lack, Leon C; Grunstein, Ron R; McEvoy, R Doug
2005-11-01
It has been suggested that the Maintenance of Wakefulness Test (MWT) may be clinically useful to assess fitness to drive, yet little is known about the actual relationship between sleep latency and driving performance. This study examined the ability of 2 MWT trials to predict driving-simulator performance in healthy individuals. Experimental. NA. Twenty healthy volunteers (mean age 22.8 years; 9 men). NA. The MWT and driving-simulator performance were examined under 2 conditions-partial sleep deprivation and a combination of partial sleep deprivation and alcohol consumption. Each subject was studied a week apart, with the order randomly assigned. Subjects completed a nighttime 70-minute AusEd driving simulation task and two 40-minute MWT trials, 1 before (MWT1) and 1 after (MWT2) the driving task. In the sleep-deprived condition, the MWT1 sleep latency was inversely correlated with braking reaction time. During the partial sleep deprivation and alcohol condition, the number of microsleeps during the driving task, steering deviation, braking reaction time, and crashes all negatively correlated with the MWT1 sleep latency. Additionally, construction of a receiver-operator characteristic curve revealed that MWT1 sleep latency in the partial sleep deprivation plus alcohol condition significantly discriminated subjects who had a crash from those who did not. These results indicate that sleep latency on the MWT is a reasonable predictor of driving simulator performance in sleepy, alcohol-impaired, normal subjects. Further research is needed to examine the relationship between daytime MWT results and driving simulator performance in sleepy patients (eg, those with obstructive sleep apnea) and in experimentally sleep-deprived normal subjects.
Name that tune: Mitigation of driver fatigue via a song naming game
Trumbo, Michael C.; Jones, Aaron P.; Robinson, Charles S. H.; ...
2017-09-18
Fatigued driving contributes to a substantial number of motor vehicle accidents each year. Music listening is often employed as a countermeasure during driving in order to mitigate the effects of fatigue. And though music listening has been established as a distractor in the sense that it increases cognitive load during driving, it is possible that increased cognitive load is desirable under particular circumstances. For instance, during situations that typically result in cognitive underload, such as driving in a low-traffic monotonous stretch of highway, it may be beneficial for cognitive load to increase, thereby necessitating allocation of greater cognitive resources tomore » the task of driving and attenuating fatigue. Here, we employed a song-naming game as a countermeasure to fatigued driving in a simulated monotonous environment. During the first driving session, we established that driving performance deteriorates in the absence of an intervention following 30 min of simulated driving. During the second session, we found that a song-naming game employed at the point of fatigue onset was an effective countermeasure, as reflected by simulated driving performance that met or exceeded fresh driving behavior and was significantly better relative to fatigued performance during the first driving session.« less
Name that tune: Mitigation of driver fatigue via a song naming game
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trumbo, Michael C.; Jones, Aaron P.; Robinson, Charles S. H.
Fatigued driving contributes to a substantial number of motor vehicle accidents each year. Music listening is often employed as a countermeasure during driving in order to mitigate the effects of fatigue. And though music listening has been established as a distractor in the sense that it increases cognitive load during driving, it is possible that increased cognitive load is desirable under particular circumstances. For instance, during situations that typically result in cognitive underload, such as driving in a low-traffic monotonous stretch of highway, it may be beneficial for cognitive load to increase, thereby necessitating allocation of greater cognitive resources tomore » the task of driving and attenuating fatigue. Here, we employed a song-naming game as a countermeasure to fatigued driving in a simulated monotonous environment. During the first driving session, we established that driving performance deteriorates in the absence of an intervention following 30 min of simulated driving. During the second session, we found that a song-naming game employed at the point of fatigue onset was an effective countermeasure, as reflected by simulated driving performance that met or exceeded fresh driving behavior and was significantly better relative to fatigued performance during the first driving session.« less
Positron emission tomography with [ 18F]-FDG in oncology
NASA Astrophysics Data System (ADS)
Talbot, J. N.; Petegnief, Y.; Kerrou, K.; Montravers, F.; Grahek, D.; Younsi, N.
2003-05-01
Positron Emission Tomography (PET) is a several decade old imaging technique that has more recently demonstrated its utility in clinical applications. The imaging agents used for PET contain a positron emmiter coupled to a molecule that drives the radionuclide to target organs or to tissues performing the targetted biological function. PET is then part of functional imaging. As compared to conventional scintigraphy that uses gamma photons, the coincidence emission of two 511 keV annihilation photons in opposite direction that finally results from by beta plus decay makes it possible for PET to get rid of the collimators that greatly contribute to the poor resolution of scintigraphy. In this article, the authors describe the basics of physics for PET imaging and report on the clinical performances of the most commonly used PET tracer: [ 18F]-fluorodeoxyglucose (FDG). A recent and promising development in this field is fusion of images coming from different imaging modalities. New PET machines now include a CT and this fusion is therefore much easier.
Unsworth, Nash; Spillers, Gregory J; Brewer, Gene A
2012-01-01
In two experiments, the locus of individual differences in working memory capacity and long-term memory recall was examined. Participants performed categorical cued and free recall tasks, and individual differences in the dynamics of recall were interpreted in terms of a hierarchical-search framework. The results from this study are in accordance with recent theorizing suggesting a strong relation between working memory capacity and retrieval from long-term memory. Furthermore, the results also indicate that individual differences in categorical recall are partially due to differences in accessibility. In terms of accessibility of target information, two important factors drive the difference between high- and low-working-memory-capacity participants. Low-working-memory-capacity participants fail to utilize appropriate retrieval strategies to access cues, and they also have difficulty resolving cue overload. Thus, when low-working-memory-capacity participants were given specific cues that activated a smaller set of potential targets, their recall performance was the same as that of high-working-memory-capacity participants.
Alosco, Michael L.; Penn, Marc S.; Spitznagel, Mary Beth; Cleveland, Mary Jo; Ott, Brian R.
2015-01-01
OBJECTIVE. Reduced physical fitness secondary to heart failure (HF) may contribute to poor driving; reduced physical fitness is a known correlate of cognitive impairment and has been associated with decreased independence in driving. No study has examined the associations among physical fitness, cognition, and driving performance in people with HF. METHOD. Eighteen people with HF completed a physical fitness assessment, a cognitive test battery, and a validated driving simulator scenario. RESULTS. Partial correlations showed that poorer physical fitness was correlated with more collisions and stop signs missed and lower scores on a composite score of attention, executive function, and psychomotor speed. Cognitive dysfunction predicted reduced driving simulation performance. CONCLUSION. Reduced physical fitness in participants with HF was associated with worse simulated driving, possibly because of cognitive dysfunction. Larger studies using on-road testing are needed to confirm our findings and identify clinical interventions to maximize safe driving. PMID:26122681
A decrease in brain activation associated with driving when listening to someone speak.
Just, Marcel Adam; Keller, Timothy A; Cynkar, Jacquelyn
2008-04-18
Behavioral studies have shown that engaging in a secondary task, such as talking on a cellular telephone, disrupts driving performance. This study used functional magnetic resonance imaging (fMRI) to investigate the impact of concurrent auditory language comprehension on the brain activity associated with a simulated driving task. Participants steered a vehicle along a curving virtual road, either undisturbed or while listening to spoken sentences that they judged as true or false. The dual-task condition produced a significant deterioration in driving accuracy caused by the processing of the auditory sentences. At the same time, the parietal lobe activation associated with spatial processing in the undisturbed driving task decreased by 37% when participants concurrently listened to sentences. The findings show that language comprehension performed concurrently with driving draws mental resources away from the driving and produces deterioration in driving performance, even when it does not require holding or dialing a phone.
A Decrease in Brain Activation Associated with Driving When Listening to Someone Speak
Just, Marcel Adam; Keller, Timothy A.; Cynkar, Jacquelyn
2009-01-01
Behavioral studies have shown that engaging in a secondary task, such as talking on a cellular telephone, disrupts driving performance. This study used functional magnetic resonance imaging (fMRI) to investigate the impact of concurrent auditory language comprehension on the brain activity associated with a simulated driving task. Participants steered a vehicle along a curving virtual road, either undisturbed or while listening to spoken sentences that they judged as true or false. The dual task condition produced a significant deterioration in driving accuracy caused by the processing of the auditory sentences. At the same time, the parietal lobe activation associated with spatial processing in the undisturbed driving task decreased by 37% when participants concurrently listened to sentences. The findings show that language comprehension performed concurrently with driving draws mental resources away from the driving and produces deterioration in driving performance, even when it does not require holding or dialing a phone. PMID:18353285
A multimodal assessment of driving performance in HIV infection.
Marcotte, T D; Wolfson, T; Rosenthal, T J; Heaton, R K; Gonzalez, R; Ellis, R J; Grant, I
2004-10-26
To examine if HIV-seropositive (HIV+) individuals are at risk for impaired driving. Sixty licensed drivers (40 HIV+, 20 HIV-) completed a neuropsychological (NP) test battery and driving assessments. Eleven HIV+ subjects were NP-impaired. Driving-related skills were assessed using 1) two driving simulations (examining accident avoidance and navigational abilities), 2) the Useful Field of View (UFOV) test, and 3) an on-road evaluation. HIV+ NP-impaired subjects had greater difficulty than cognitively intact subjects on all driving measures, whereas the HIV- and HIV+ NP-normal groups performed similarly. On the UFOV, the HIV+ NP-impaired group had worse performance on Visual Processing and Divided Attention tasks but not in overall risk classification. They also had a higher number of simulator accidents (1.3 vs 2.0; p = 0.03), were less efficient at completing the navigation task (3.2 vs 9.2 blocks; p = 0.001), and were more likely to fail the on-road evaluation (6 vs 36%; p = 0.02). Impairment in Executive Functioning was the strongest NP predictor of failing the on-road drive test. NP performance and both simulations independently contributed to a model predicting 48% of the variance in on-road performance. HIV+ NP-impaired individuals are at increased risk for on-road driving impairments, whereas HIV+ individuals with normal cognition are not at a significantly higher risk than HIV- subjects. Executive Functioning is most strongly associated with impaired on-road performance. Cognitive and simulator testing may each provide data in identifying driving-impaired individuals.
Electric-Drive Vehicle Thermal Performance Benchmarking | Transportation
studies are as follows: Characterize the thermal resistance and conductivity of various layers in the Research | NREL Electric-Drive Vehicle Thermal Performance Benchmarking Electric-Drive Vehicle Thermal Performance Benchmarking A photo of the internal components of an automotive inverter. NREL
77 FR 12907 - Visual-Manual NHTSA Driver Distraction Guidelines for In-Vehicle Electronic Devices
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-02
... impact of task performance while driving on driving safety and time-based acceptance criteria for... feedback). The proposed NHTSA Guidelines list certain secondary, non-driving related tasks that, based on... cannot be used by the driver to perform such tasks while the driver is driving. For all other secondary...
DOT National Transportation Integrated Search
1998-04-01
The effect on driving performance of using a speed, steering, and gap control system (SSGCS) and a collision warning system (CWS) was assessed in an experiment conducted in the Iowa Driving Simulator. Driving performance data were obtained from 52 dr...
Driving Simulator Performance of Veterans from the Iraq and Afghanistan Wars
2013-01-01
abilities among this cohort who self-report poorer driving safety postdeployment. OIF/OEF Veterans (n = 25) and age- and education-matched civilian...more poorly on an objective evaluation of driving safety and that the presence of PTSD could be associated with worse performance on this standardized driving simulator assessment.
Louie, Arnold; Fregeau, Christine; Liu, Weiguo; Kulawy, Robert; Drusano, G. L.
2009-01-01
The dose choice for Pseudomonas aeruginosa remains a matter of debate. The actual exposure targets required for multilog killing of organisms at the primary infection site have not been delineated. We studied Pseudomonas aeruginosa PAO1 using a murine model of pneumonia. We employed a large mathematical model to fit all the concentration-time data in plasma and epithelial lining fluid (ELF) as well as colony counts in lung simultaneously for all drug doses. Penetration into ELF was calculated to be approximately 77.7%, as indexed to the ratio of the area under the concentration-time curve for ELF (AUCELF) to the AUCplasma. We determined the ELF concentration-time profile required to drive a stasis response as well as 1-, 2-, or 3-log10(CFU/g) kill. AUC/MIC ratios of 12.4, 31.2, 62.8, and 127.6 were required to drive these bacterial responses. Emergence of resistance was seen only at the two lowest doses (three of five animals at 50 mg/kg [body weight] and one of five animals at 100 mg/kg). The low exposure targets were likely driven by a low mutational frequency to resistance. Bridging to humans was performed using Monte Carlo simulation. With a 750-mg levofloxacin dose, target attainment rates fell below 90% at 4 mg/liter, 1 mg/liter, and 0.5 mg/liter for 1-, 2-, and 3-log kills, respectively. Given the low exposure targets seen with this strain, we conclude that levofloxacin at a 750-mg dose is not adequate for serious Pseudomonas aeruginosa pneumonia as a single agent. More isolates need to be studied to make these observations more robust. PMID:19364849
Minimizing driver errors: examining factors leading to failed target tracking and detection.
DOT National Transportation Integrated Search
2013-06-01
Driving a motor vehicle is a common practice for many individuals. Although driving becomes : repetitive and a very habitual task, errors can occur that lead to accidents. One factor that can be a : cause for such errors is a lapse in attention or a ...
Theunissen, Eef L; Vermeeren, Annemiek; Ramaekers, Johannes G
2006-01-01
Previous studies have demonstrated that the antihistamines mequitazine, cetirizine and dexchlorpheniramine produce mild sedation after single doses. It is unknown, however, whether acute sedation persists after repeated dosing. Therefore, this study assessed the effects of repeated dosing of these antihistamines on driving and psychomotor performance. Sixteen healthy volunteers were treated with mequitazine 10 mg q.a.m., cetirizine 10 mg q.a.m., dexchlorpheniramine Repetab 6 mg b.i.d. and placebo for four separate 8-day periods. Drug effects were assessed on days 1 and 8 using on-the-road driving tests (highway driving and car following), psychomotor tests (tracking and divided attention) and subjective questionnaires. Dexchlorpheniramine and mequitazine significantly impaired driving performance on the highway driving test on the first day; dexchlorpheniramine increased Standard Deviation of Lateral Position by 2 cm [95% confidence interval (CI) 0.5, 3.8] and mequitazine by 2.5 cm (CI 1.0, 4.3). These effects on driving performance disappeared after 8 days of treatment. No effect of treatment was found on car following, tracking and divided attention. Although subjective ratings confirmed that subjects knew their driving had been impaired in the mequitazine and dexchlorpheniramine condition after completion of the highway driving test on day 1, they did not expect their driving to be affected before the start of the test. Cetirizine did not impair performance on any of the tests. Single doses of mequitazine 10 mg and dexchlorpheniramine Repetab 6 mg cause mild driving impairment. However, when taken over several days, the impairing effect wears off, possibly as a result of tolerance.
Attitudinal segmentaion of drivers in Pakistan: The potential for effective road safety campaigns.
Batool, Zahara; Carsten, Oliver
2018-05-01
Deviant driving behaviors are considered as the main cause of Road Traffic Accidents in Pakistan. This research is founded on the premise that driving behaviors are mediated by attitudinal and motivational factors. It advocates that rather than simply aggregating drivers' responses or a-priori classification of them based on their personal characteristics, adoption of segmentation technique is more useful to look at multiple factors provoking aberrant driving behavior in combination and not just in isolation. For this, the study generated an Attitudinal Questionnaire, inspired by the Ajzen's Theory of Planned Behavior (TPB: Ajzen, 1991), and extended violation-scale of modified Driver Behavior Questionnaire (DBQ: Lawton et al., 1997). Attitudinal and behavioral items are first factor analyzed. Then, cluster analysis is performed on extracted attitudinal factors which classified sample driving population into four relatively homogenous and distinct groups of drivers. The results demonstrated the explanatory utility of the market segmentation approach to systematically relate the interaction between attitudes, behaviors and socio-demographic characteristics of drivers. It is concluded that the approach is successful in distinguishing safe drivers from unsafe driver and therefore, can legitimately form the basis of road safety interventions. Finally, the findings are used to recommend targeted information-based road safety solutions with a focus on the diverse characteristics of each of the identified segments. Copyright © 2017 Elsevier Ltd. All rights reserved.
Driving Under the Influence (of Language).
Barrett, Daniel Paul; Bronikowski, Scott Alan; Yu, Haonan; Siskind, Jeffrey Mark
2017-06-09
We present a unified framework which supports grounding natural-language semantics in robotic driving. This framework supports acquisition (learning grounded meanings of nouns and prepositions from human sentential annotation of robotic driving paths), generation (using such acquired meanings to generate sentential description of new robotic driving paths), and comprehension (using such acquired meanings to support automated driving to accomplish navigational goals specified in natural language). We evaluate the performance of these three tasks by having independent human judges rate the semantic fidelity of the sentences associated with paths. Overall, machine performance is 74.9%, while the performance of human annotators is 83.8%.
Highly automated driving, secondary task performance, and driver state.
Merat, Natasha; Jamson, A Hamish; Lai, Frank C H; Carsten, Oliver
2012-10-01
A driving simulator study compared the effect of changes in workload on performance in manual and highly automated driving. Changes in driver state were also observed by examining variations in blink patterns. With the addition of a greater number of advanced driver assistance systems in vehicles, the driver's role is likely to alter in the future from an operator in manual driving to a supervisor of highly automated cars. Understanding the implications of such advancements on drivers and road safety is important. A total of 50 participants were recruited for this study and drove the simulator in both manual and highly automated mode. As well as comparing the effect of adjustments in driving-related workload on performance, the effect of a secondary Twenty Questions Task was also investigated. In the absence of the secondary task, drivers' response to critical incidents was similar in manual and highly automated driving conditions. The worst performance was observed when drivers were required to regain control of driving in the automated mode while distracted by the secondary task. Blink frequency patterns were more consistent for manual than automated driving but were generally suppressed during conditions of high workload. Highly automated driving did not have a deleterious effect on driver performance, when attention was not diverted to the distracting secondary task. As the number of systems implemented in cars increases, an understanding of the implications of such automation on drivers' situation awareness, workload, and ability to remain engaged with the driving task is important.
Zingg, Christina; Puelschen, Dietrich; Soyka, Michael
2009-12-01
The relationship between performance in neuropsychological tests and actual driving performance is unclear and results of studies on this topic differ. This makes it difficult to use neuropsychological tests to assess driving ability. The ability to compensate cognitive deficits plays a crucial role in this context. We compared neuropsychological test results and self-evaluation ratings between three groups: driving offenders with a psychiatric diagnosis relevant for driving ability (mainly alcohol dependence), driving offenders without such a diagnosis and a control group of non-offending drivers. Subjects were divided into two age categories (19-39 and 40-66 years). It was assumed that drivers with a psychiatric diagnosis relevant for driving ability and younger driving offenders without a psychiatric diagnosis would be less able to adequately assess their own capabilities than the control group. The driving offenders with a psychiatric diagnosis showed poorer concentration, reactivity, cognitive flexibility and problem solving, and tended to overassess their abilities in intelligence and attentional functions, compared to the other two groups. Conversely, younger drivers rather underassessed their performance.
Keijzer, Merel; de Bot, Kees
2018-01-01
Cognitive advantages for bilinguals have inconsistently been observed in different populations, with different operationalisations of bilingualism, cognitive performance, and the process by which language control transfers to cognitive control. This calls for studies investigating which aspects of multilingualism drive a cognitive advantage, in which populations and under which conditions. This study reports on two cognitive tasks coupled with an extensive background questionnaire on health, wellbeing, personality, language knowledge and language use, administered to 387 older adults in the northern Netherlands, a small but highly multilingual area. Using linear mixed effects regression modeling, we find that when different languages are used frequently in different contexts, enhanced attentional control is observed. Subsequently, a PLS regression model targeting also other influential factors yielded a two-component solution whereby only more sensitive measures of language proficiency and language usage in different social contexts were predictive of cognitive performance above and beyond the contribution of age, gender, income and education. We discuss these findings in light of previous studies that try to uncover more about the nature of bilingualism and the cognitive processes that may drive an advantage. With an unusually large sample size our study advocates for a move away from dichotomous, knowledge-based operationalisations of multilingualism and offers new insights for future studies at the individual level. PMID:29783764
Design and model for the giant magnetostrictive actuator used on an electronic controlled injector
NASA Astrophysics Data System (ADS)
Xue, Guangming; Zhang, Peilin; He, Zhongbo; Li, Ben; Rong, Ce
2017-05-01
Giant magnetostrictive actuator (GMA) may be a promising candidate actuator to drive an electronic controlled injector as giant magnetostrictive material (GMM) has excellent performances as large output, fast response and high operating stability etc. To meet the driving requirement of the injector, the GMA should produce maximal shortening displacement when energized. An unbiased GMA with a ‘T’ shaped output rod is designed to reach the target. Furthermore, an open-hold-fall type driving voltage is exerted on the actuator coil to accelerate the response speed of the coil current. The actuator displacement is modeled from establishing the sub-models of coil current, magnetic field within GMM rod, magnetization and magnetostrictive strain sequentially. Two modifications are done to make the model more accurate. Firstly, consider the model fails to compute the transient-state response precisely, a dead-zone and delay links are embedded into the coil current sub-model. Secondly, as the magnetization and magnetostrictive strain sub-models just influence the change rule of the transient-state response the linear magnetostrictive strain-magnetic field sub-model is introduced. From experimental results, the modified model with linear magnetostrictive stain expression can predict the actuator displacement quite effectively.
Allan, Claire; Coxon, Kristy; Bundy, Anita; Peattie, Laura; Keay, Lisa
2016-06-01
Safety concerns together with aging of the driving population has prompted research into clinic-based driving assessments. This study investigates the relationship between the DriveSafe and DriveAware assessments and restriction of driving. Community-dwelling adults aged more than 75 (n = 380) were recruited in New South Wales, Australia. Questionnaires were administered to assess driving habits and functional assessments to assess driving-related function. Self-reported restriction was prevalent in this cross-sectional sample (62%) and was related to DriveSafe scores and personal circumstances but not DriveAware scores. DriveSafe scores were correlated with better performance on the Trail-Making Test (TMT; β = -2.94, p < .0001) and better contrast sensitivity (β = 48.70, p < .0001). Awareness was associated with better performance on the TMT (β = 0.08, p < .0001). Our data suggest that DriveSafe and DriveAware are sensitive to deficits in vision and cognition, and drivers with worse DriveSafe scores self-report restricting their driving. © The Author(s) 2015.
Sensitivity of Double-Shell Ignition Capsules to Asymmetric Drive
NASA Astrophysics Data System (ADS)
Tregillis, I. L.; Magelssen, G. R.; Delamater, N. D.; Gunderson, M. A.; Hoffman, N. M.
2007-11-01
Double-shell (DS) targets [1] present an alternative approach to ignition via the cryogenic single-shell point design [2]. Although these targets present unique fabrication challenges, they embody many attractive features, including non-cryogenic fielding and low threshold temperatures (˜4 keV) for volume ignition [3-4]. We have used 2D radiation-hydrodynamic modeling to survey the behavior of DS targets under asymmetric temperature drive in rugby vacuum hohlraums. The yield is robust against deviations from symmetric illumination, varying smoothly as a function of the imposed P2 and P4 amplitudes. Ignition occurs even when 10% or more of the drive is contained in Legendre P2 or P4 components, with yield reductions on the order of 50% for the most extreme cases investigated here. [1] P. Amendt et al., Phys. of Plasmas 9, 2221 (2002) [2] D. A. Callahan et al., Phys. of Plasmas 13, 56307 (2005) [3] P. Amendt et al., Phys. Rev. Lett. 94, 65004 (2005) [4] W. S. Varnum et al., Phys. Rev. Lett. 84, 5153 (2000)
Ultraviolet Thomson Scattering from Direct-Drive Coronal Plasmas
NASA Astrophysics Data System (ADS)
Henchen, R. J.; Goncharov, V. N.; Michel, D. T.; Follett, R. K.; Katz, J.; Froula, D. H.
2013-10-01
Ultraviolet (λ4 ω = 263 nm) Thomson scattering (TS) was used to probe ion-acoustic waves (IAW's) and electron plasma waves (EPW's) from direct-drive coronal plasmas. Fifty-nine drive beams (λ3 ω = 351 nm) illuminate a spherical target with a radius of ~860 μm. Advances in the ultraviolet (UV) TS diagnostic at the Omega Laser Facility provide the ability to detect deep UV photons (~190 nm) and allow access to scattered light from EPW's propagating near the 3 ω quarter-critical surface (~2.5 × 1021 cm-3) . A series of experiments studied the effects of ablator materials on coronal plasma conditions. Electron temperatures and densities were measured from 150 μm to 400 μm from the initial target surface. Standard CH shells were compared to three-layered shells consisting of Si doped CH, Si, and Be. Early analysis indicates that these multilayered targets have less hot-electron energy as a result of higher electron temperature in the coronal plasma. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Reservoir-engineered entanglement in a hybrid modulated three-mode optomechanical system
NASA Astrophysics Data System (ADS)
Liao, Chang-Geng; Chen, Rong-Xin; Xie, Hong; Lin, Xiu-Min
2018-04-01
We propose an effective approach for generating highly pure and strong cavity-mechanical entanglement (or optical-microwave entanglement) in a hybrid modulated three-mode optomechanical system. By applying two-tone driving to the cavity and modulating the coupling strength between two mechanical oscillators (or between a mechanical oscillator and a transmission line resonator), we obtain an effective Hamiltonian where an intermediate mechanical mode acting as an engineered reservoir cools the Bogoliubov modes of two target system modes via beam-splitter-like interactions. In this way, the two target modes are driven to two-mode squeezed states in the stationary limit. In particular, we discuss the effects of cavity-driving detuning on the entanglement and the purity. It is found that the cavity-driving detuning plays a critical role in the goal of acquiring highly pure and strongly entangled steady states.
Hohlraum energetics scaling to 520 TW on the National Ignition Facilitya)
NASA Astrophysics Data System (ADS)
Kline, J. L.; Callahan, D. A.; Glenzer, S. H.; Meezan, N. B.; Moody, J. D.; Hinkel, D. E.; Jones, O. S.; MacKinnon, A. J.; Bennedetti, R.; Berger, R. L.; Bradley, D.; Dewald, E. L.; Bass, I.; Bennett, C.; Bowers, M.; Brunton, G.; Bude, J.; Burkhart, S.; Condor, A.; Di Nicola, J. M.; Di Nicola, P.; Dixit, S. N.; Doeppner, T.; Dzenitis, E. G.; Erbert, G.; Folta, J.; Grim, G.; Glenn, S.; Hamza, A.; Haan, S. W.; Heebner, J.; Henesian, M.; Hermann, M.; Hicks, D. G.; Hsing, W. W.; Izumi, N.; Jancaitis, K.; Jones, O. S.; Kalantar, D.; Khan, S. F.; Kirkwood, R.; Kyrala, G. A.; LaFortune, K.; Landen, O. L.; Lagin, L.; Larson, D.; Pape, S. Le; Ma, T.; MacPhee, A. G.; Michel, P. A.; Miller, P.; Montincelli, M.; Moore, A. S.; Nikroo, A.; Nostrand, M.; Olson, R. E.; Pak, A.; Park, H. S.; Patel, J. P.; Pelz, L.; Ralph, J.; Regan, S. P.; Robey, H. F.; Rosen, M. D.; Ross, J. S.; Schneider, M. B.; Shaw, M.; Smalyuk, V. A.; Strozzi, D. J.; Suratwala, T.; Suter, L. J.; Tommasini, R.; Town, R. P. J.; Van Wonterghem, B.; Wegner, P.; Widmann, K.; Widmayer, C.; Wilkens, H.; Williams, E. A.; Edwards, M. J.; Remington, B. A.; MacGowan, B. J.; Kilkenny, J. D.; Lindl, J. D.; Atherton, L. J.; Batha, S. H.; Moses, E.
2013-05-01
Indirect drive experiments have now been carried out with laser powers and energies up to 520 TW and 1.9 MJ. These experiments show that the energy coupling to the target is nearly constant at 84% ± 3% over a wide range of laser parameters from 350 to 520 TW and 1.2 to 1.9 MJ. Experiments at 520 TW with depleted uranium hohlraums achieve radiation temperatures of ˜330 ± 4 eV, enough to drive capsules 20 μm thicker than the ignition point design to velocities near the ignition goal of 370 km/s. A series of three symcap implosion experiments with nearly identical target, laser, and diagnostics configurations show the symmetry and drive are reproducible at the level of ±8.5% absolute and ±2% relative, respectively.
NASA Astrophysics Data System (ADS)
Perkins, L. J.; Ho, D. D.-M.; Logan, B. G.; Zimmerman, G. B.; Rhodes, M. A.; Strozzi, D. J.; Blackfield, D. T.; Hawkins, S. A.
2017-06-01
We examine the potential that imposed magnetic fields of tens of Tesla that increase to greater than 10 kT (100 MGauss) under implosion compression may relax the conditions required for ignition and propagating burn in indirect-drive inertial confinement fusion (ICF) targets. This may allow the attainment of ignition, or at least significant fusion energy yields, in presently performing ICF targets on the National Ignition Facility (NIF) that today are sub-marginal for thermonuclear burn through adverse hydrodynamic conditions at stagnation [Doeppner et al., Phys. Rev. Lett. 115, 055001 (2015)]. Results of detailed two-dimensional radiation-hydrodynamic-burn simulations applied to NIF capsule implosions with low-mode shape perturbations and residual kinetic energy loss indicate that such compressed fields may increase the probability for ignition through range reduction of fusion alpha particles, suppression of electron heat conduction, and potential stabilization of higher-mode Rayleigh-Taylor instabilities. Optimum initial applied fields are found to be around 50 T. Given that the full plasma structure at capsule stagnation may be governed by three-dimensional resistive magneto-hydrodynamics, the formation of closed magnetic field lines might further augment ignition prospects. Experiments are now required to further assess the potential of applied magnetic fields to ICF ignition and burn on NIF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dougan, A D; Trombino, D; Dunlop, W
The Naval Postgraduate School has been conducting Tactical Network Topology (TNT) Maritime Interdiction Operations (MIO) experiments with Lawrence Livermore National Laboratory (LLNL) since early in 2005. In this work, we are investigating cutting edge technology to evaluate use of networks, advanced sensors and collaborative technology for globally-supported maritime interdiction operations. Some examples of our research include communications in harsh environments, between moving ships at sea; small boat drive-by radiation detection; network-centric collaboration with global partners; situational awareness; prototype sensors & biometric instruments. Since 2006, we have studied the concept of using a small vessel with fixed radiation sensors to domore » initial searches for illicit radioactive materials. In our work, we continue to evaluate concepts of operation for small boat monitoring. For example, in San Francisco Bay we established a simulated choke point using two RHIBs. Each RHIB had a large sodium iodide radiation sensor on board, mounted on the side nearest to the passing potential target boats. Once detections were made, notification over the network prompted a chase RHIB also equipped with a radiation sensor to further investigate the potential target. We have also used an unmanned surface vessel (USV) carrying a radiation sensor to perform the initial discovery. The USV was controlled remotely and to drive by boats in different configurations. The potential target vessels were arranged in a line, as a choke point and randomly spaced in the water. Search plans were problematic when weather, waves and drift complicated the ability to stay in one place. A further challenge is to both detect and identify the radioactive materials during the drive-by. Our radiation detection system, ARAM, Adaptable Radiation Area Monitor, is able to detect, alarm and quickly identify plausible radionuclides in real time. We have performed a number of experiments to better understand parameters of vessel speed, time, shielding, and distance in this complex three-dimensional space. At the NMIOTC in September 2009, we employed a dual detector portal followed by a chase. In this event, the challenge was to maintain communications after a lapse. When the chase went past the line-of sight reach of the Tactical Operational Center's (TOC) antenna, with interference from a fortress island in Suda Bay, Wave Relay extended the network for continued observation. Sodium iodide radiation detectors were mounted on two Hellenic Navy SEAL fast boats. After making the detection one of the portal boats maintained line-of sight while the other pursued the target vessel. Network access via Wave Relay antennas was maintained until the conclusion of the chase scenario. Progress has been made in the detection of radioactive materials in the maritime environment. The progression of the TNT MIO experiments has demonstrated the potential of the hardware to solve the problems encountered in this physically challenging environment. There continue to be interesting opportunities for research and development. These experiments provide a variety of platforms and motivated participants to perform real-world testing as solutions are made available.« less
The utility of the AusEd driving simulator in the clinical assessment of driver fatigue.
Desai, Anup V; Wilsmore, Brad; Bartlett, Delwyn J; Unger, Gunnar; Constable, Ben; Joffe, David; Grunstein, Ronald R
2007-08-01
Several driving simulators have been developed which range in complexity from PC based driving tasks to advanced "real world" simulators. The AusEd driving simulator is a PC based task, which was designed to be conducive to and test for driver fatigue. This paper describes the AusEd driving simulator in detail, including the technical requirements, hardware, screen and file outputs, and analysis software. Some aspects of the test are standardized, while others can be modified to suit the experimental situation. The AusEd driving simulator is sensitive to performance decrement from driver fatigue in the laboratory setting, potentially making it useful as a laboratory or office based test for driver fatigue risk management. However, more research is still needed to correlate laboratory based simulator performance with real world driving performance and outcomes.
Useful field of view predicts driving in the presence of distracters.
Wood, Joanne M; Chaparro, Alex; Lacherez, Philippe; Hickson, Louise
2012-04-01
The Useful Field of View (UFOV) test has been shown to be highly effective in predicting crash risk among older adults. An important question which we examined in this study is whether this association is due to the ability of the UFOV to predict difficulties in attention-demanding driving situations that involve either visual or auditory distracters. Participants included 92 community-living adults (mean age 73.6 ± 5.4 years; range 65-88 years) who completed all three subtests of the UFOV involving assessment of visual processing speed (subtest 1), divided attention (subtest 2), and selective attention (subtest 3); driving safety risk was also classified using the UFOV scoring system. Driving performance was assessed separately on a closed-road circuit while driving under three conditions: no distracters, visual distracters, and auditory distracters. Driving outcome measures included road sign recognition, hazard detection, gap perception, time to complete the course, and performance on the distracter tasks. Those rated as safe on the UFOV (safety rating categories 1 and 2), as well as those responding faster than the recommended cut-off on the selective attention subtest (350 msec), performed significantly better in terms of overall driving performance and also experienced less interference from distracters. Of the three UFOV subtests, the selective attention subtest best predicted overall driving performance in the presence of distracters. Older adults who were rated as higher risk on the UFOV, particularly on the selective attention subtest, demonstrated poorest driving performance in the presence of distracters. This finding suggests that the selective attention subtest of the UFOV may be differentially more effective in predicting driving difficulties in situations of divided attention which are commonly associated with crashes.
The influence of daily sleep patterns of commercial truck drivers on driving performance
Chen, Guang Xiang; Fang, Youjia; Guo, Feng; Hanowski, Richard J.
2016-01-01
Fatigued and drowsy driving has been found to be a major cause of truck crashes. Lack of sleep is the number one cause of fatigue and drowsiness. However, there are limited data on the sleep patterns (sleep duration, sleep percentage in the duration of non-work period, and the time when sleep occurred) of truck drivers in non-work periods and the impact on driving performance. This paper examined sleep patterns of 96 commercial truck drivers during non-work periods and evaluated the influence these sleep patterns had on truck driving performance. Data were from the Naturalistic Truck Driving Study. Each driver participated in the study for approximately four weeks. A shift was defined as a non-work period followed by a work period. A total of 1397 shifts were identified. Four distinct sleep patterns were identified based on sleep duration, sleep start/end point in a non-work period, and the percentage of sleep with reference to the duration of non-work period. Driving performance was measured by safety-critical events, which included crashes, near-crashes, crash-relevant conflicts, and unintentional lane deviations. Negative binomial regression was used to evaluate the association between the sleep patterns and driving performance, adjusted for driver demographic information. The results showed that the sleep pattern with the highest safety-critical event rate was associated with shorter sleep, sleep in the early stage of a non-work period, and less sleep between 1 a.m. and 5 a.m. This study also found that male drivers, with fewer years of commercial vehicle driving experience and higher body mass index, were associated with deteriorated driving performance and increased driving risk. The results of this study could inform hours-of-service policy-making and benefit safety management in the trucking industry. PMID:26954762
Veldstra, Janet L; Brookhuis, Karel A; de Waard, Dick; Molmans, Barbara H W; Verstraete, Alain G; Skopp, Gisela; Jantos, Ricarda
2012-08-01
An increasing number of fatal road-accidents have been reported in which ecstasy was found in the blood of drivers. Although, ecstasy is frequently found to have been used in combination with alcohol, studies on the acute effects of ecstasy co-administered with alcohol on driving performance are relatively rare. The present study was designed to establish the extent of driver impairment as a consequence of ecstasy or combined ecstasy and alcohol use as compared to driving under the influence of 0.3‰, 0.5‰ and 0.8‰ alcohol. Furthermore, subjective performance was also assessed. Alcohol and ecstasy mainly influenced automated driving performance such as lateral and speed control. However, small to no effects of the substances were found on more complex driving behaviour. Overall, variance within the different driving measures was high especially when participants were treated with 3.4-methylenedioxy-methamphetamine (MDMA) and alcohol. Furthermore, equivalence testing showed that combined use may lead to impaired driving for some, but not all, drivers. Participants rated their own performance to be slightly worse than normal in both studies. Since driving was actually seriously deteriorated, this was a falsely positive assessment of their condition. The dissociation between subjective perceptions and objective performance decrements are important notions for traffic safety since this may affect a driver's judgement of whether or not it is safe to drive. For example, an intoxicated individual might decide to drive because the feelings of alertness caused by MDMA cloud the impairing effects of other drugs such as alcohol, thereby creating a potentially serious risk for traffic safety.
ERIC Educational Resources Information Center
Cox, Daniel J.; Merkel, R. Lawrence; Penberthy, Jennifer Kim; Kovatchev, Boris; Hankin, Cheryl S.
2004-01-01
Objective: Adolescents with attention-deficit/hyperactivity disorder (ADHD) are at high risk for driving accidents. One dose of methylphenidate (MPH) improves simulator driving performances of ADHD-diagnosed adolescents at 1.5 hours post-dose. However, little is known about the effects of different MPH delivery profiles on driving performance…
Marijuana and actual driving performance
DOT National Transportation Integrated Search
1993-11-01
This report concerns the effects of marijuana smoking on actual driving performance. It presents the results of one pilot and three actual driving studies. The pilot study's major purpose was to establish the THC dose current marijuana users smoke to...
Effects of naturalistic cell phone conversations on driving performance.
Rakauskas, Michael E; Gugerty, Leo J; Ward, Nicholas J
2004-01-01
The prevalence of automobile drivers talking on cell phones is growing, but the effect of that behavior on driving performance is unclear. Also unclear is the relationship between the difficulty level of a phone conversation and the resulting distraction. This study used a driving simulator to determine the effect that easy and difficult cell phone conversations have on driving performance. Cell phone use caused participants to have higher variation in accelerator pedal position, drive more slowly with more variation in speed, and report a higher level of workload regardless of conversation difficulty level. Drivers may cope with the additional stress of phone conversations by enduring higher workloads or setting reduced performance goals. Because an increasing number of people talk on the phone while driving, crashes caused by distracted drivers using cell phones will cause disruptions in business, as well as injury, disability, and permanent loss of personnel.
Sherman, Maxwell A; Lee, Shane; Law, Robert; Haegens, Saskia; Thorn, Catherine A; Hämäläinen, Matti S; Moore, Christopher I; Jones, Stephanie R
2016-08-16
Human neocortical 15-29-Hz beta oscillations are strong predictors of perceptual and motor performance. However, the mechanistic origin of beta in vivo is unknown, hindering understanding of its functional role. Combining human magnetoencephalography (MEG), computational modeling, and laminar recordings in animals, we present a new theory that accounts for the origin of spontaneous neocortical beta. In our MEG data, spontaneous beta activity from somatosensory and frontal cortex emerged as noncontinuous beta events typically lasting <150 ms with a stereotypical waveform. Computational modeling uniquely designed to infer the electrical currents underlying these signals showed that beta events could emerge from the integration of nearly synchronous bursts of excitatory synaptic drive targeting proximal and distal dendrites of pyramidal neurons, where the defining feature of a beta event was a strong distal drive that lasted one beta period (∼50 ms). This beta mechanism rigorously accounted for the beta event profiles; several other mechanisms did not. The spatial location of synaptic drive in the model to supragranular and infragranular layers was critical to the emergence of beta events and led to the prediction that beta events should be associated with a specific laminar current profile. Laminar recordings in somatosensory neocortex from anesthetized mice and awake monkeys supported these predictions, suggesting this beta mechanism is conserved across species and recording modalities. These findings make several predictions about optimal states for perceptual and motor performance and guide causal interventions to modulate beta for optimal function.
EBF factors drive expression of multiple classes of target genes governing neuronal development.
Green, Yangsook S; Vetter, Monica L
2011-04-30
Early B cell factor (EBF) family members are transcription factors known to have important roles in several aspects of vertebrate neurogenesis, including commitment, migration and differentiation. Knowledge of how EBF family members contribute to neurogenesis is limited by a lack of detailed understanding of genes that are transcriptionally regulated by these factors. We performed a microarray screen in Xenopus animal caps to search for targets of EBF transcriptional activity, and identified candidate targets with multiple roles, including transcription factors of several classes. We determined that, among the most upregulated candidate genes with expected neuronal functions, most require EBF activity for some or all of their expression, and most have overlapping expression with ebf genes. We also found that the candidate target genes that had the most strongly overlapping expression patterns with ebf genes were predicted to be direct transcriptional targets of EBF transcriptional activity. The identification of candidate targets that are transcription factor genes, including nscl-1, emx1 and aml1, improves our understanding of how EBF proteins participate in the hierarchy of transcription control during neuronal development, and suggests novel mechanisms by which EBF activity promotes migration and differentiation. Other candidate targets, including pcdh8 and kcnk5, expand our knowledge of the types of terminal differentiated neuronal functions that EBF proteins regulate.
MERIANS, A. S.; TUNIK, E.; FLUET, G. G.; QIU, Q.; ADAMOVICH, S. V.
2017-01-01
Aim Upper-extremity interventions for hemiparesis are a challenging aspect of stroke rehabilitation. Purpose of this paper is to report the feasibility of using virtual environments (VEs) in combination with robotics to assist recovery of hand-arm function and to present preliminary data demonstrating the potential of using sensory manipulations in VE to drive activation in targeted neural regions. Methods We trained 8 subjects for 8 three hour sessions using a library of complex VE’s integrated with robots, comparing training arm and hand separately to training arm and hand together. Instrumented gloves and hand exoskeleton were used for hand tracking and haptic effects. Haptic Master robotic arm was used for arm tracking and generating three-dimensional haptic VEs. To investigate the use of manipulations in VE to drive neural activations, we created a “virtual mirror” that subjects used while performing a unimanual task. Cortical activation was measured with functional MRI (fMRI) and transcranial magnetic stimulation. Results Both groups showed improvement in kinematics and measures of real-world function. The group trained using their arm and hand together showed greater improvement. In a stroke subject, fMRI data suggested virtual mirror feedback could activate the sensorimotor cortex contralateral to the reflected hand (ipsilateral to the moving hand) thus recruiting the lesioned hemisphere. Conclusion Gaming simulations interfaced with robotic devices provide a training medium that can modify movement patterns. In addition to showing that our VE therapies can optimize behavioral performance, we show preliminary evidence to support the potential of using specific sensory manipulations to selectively recruit targeted neural circuits. PMID:19158659
NASA Astrophysics Data System (ADS)
Wang, Song-Bai; Chen, Ye-Hong; Wu, Qi-Cheng; Shi, Zhi-Cheng; Huang, Bi-Hua; Song, Jie; Xia, Yan
2018-07-01
A scheme is proposed to implement quantum state engineering (QSE) in a four-state system via counterdiabatic driving. In the scheme, single- and multi-mode driving methods are used respectively to drive the system to a target state at a predefined time. It is found that a fast QSE can be realized by utilizing simply designed pulses. In addition, a beneficial discussion on the energy consumption between the single- and multi-mode driving protocols shows that the multi-mode driving method seems to have a wider range of applications than the single-mode driving method with respect to different parameters. Finally, the scheme is also helpful for implementing the generalization QSE in high-dimensional systems via the concept of a dressed state. Therefore, the scheme can be implemented with the present experimental technology, which is useful in quantum information processing.
Name that tune: Mitigation of driver fatigue via a song naming game.
Trumbo, Michael C; Jones, Aaron P; Robinson, Charles S H; Cole, Kerstan; Morrow, James D
2017-11-01
Fatigued driving contributes to a substantial number of motor vehicle accidents each year. Music listening is often employed as a countermeasure during driving in order to mitigate the effects of fatigue. Though music listening has been established as a distractor in the sense that it increases cognitive load during driving, it is possible that increased cognitive load is desirable under particular circumstances. For instance, during situations that typically result in cognitive underload, such as driving in a low-traffic monotonous stretch of highway, it may be beneficial for cognitive load to increase, thereby necessitating allocation of greater cognitive resources to the task of driving and attenuating fatigue. In the current study, we employed a song-naming game as a countermeasure to fatigued driving in a simulated monotonous environment. During the first driving session, we established that driving performance deteriorates in the absence of an intervention following 30min of simulated driving. During the second session, we found that a song-naming game employed at the point of fatigue onset was an effective countermeasure, as reflected by simulated driving performance that met or exceeded fresh driving behavior and was significantly better relative to fatigued performance during the first driving session. Copyright © 2017. Published by Elsevier Ltd.
Controlling the Shannon Entropy of Quantum Systems
Xing, Yifan; Wu, Jun
2013-01-01
This paper proposes a new quantum control method which controls the Shannon entropy of quantum systems. For both discrete and continuous entropies, controller design methods are proposed based on probability density function control, which can drive the quantum state to any target state. To drive the entropy to any target at any prespecified time, another discretization method is proposed for the discrete entropy case, and the conditions under which the entropy can be increased or decreased are discussed. Simulations are done on both two- and three-dimensional quantum systems, where division and prediction are used to achieve more accurate tracking. PMID:23818819
Controlling the shannon entropy of quantum systems.
Xing, Yifan; Wu, Jun
2013-01-01
This paper proposes a new quantum control method which controls the Shannon entropy of quantum systems. For both discrete and continuous entropies, controller design methods are proposed based on probability density function control, which can drive the quantum state to any target state. To drive the entropy to any target at any prespecified time, another discretization method is proposed for the discrete entropy case, and the conditions under which the entropy can be increased or decreased are discussed. Simulations are done on both two- and three-dimensional quantum systems, where division and prediction are used to achieve more accurate tracking.
Low Fuel Convergence Path to Direct-Drive Fusion Ignition
Molvig, Kim; Schmitt, Mark J.; Albright, Brian James; ...
2016-06-24
A new class of inertial fusion capsules is presented that combines multishell targets with laser direct drive at low intensity (2.8 × 10 14 W/cm 2) to achieve robust ignition. The targets consist of three concentric, heavy, metal shells, enclosing a volume of tens of μg of liquid deuterium-tritium fuel. Ignition is designed to occur well “upstream” from stagnation, with minimal pusher deceleration to mitigate interface Rayleigh-Taylor growth. As a result, laser intensities below thresholds for laser plasma instability and cross beam energy transfer facilitate high hydrodynamic efficiency (~10%).
Simple Sensitivity Analysis for Orion GNC
NASA Technical Reports Server (NTRS)
Pressburger, Tom; Hoelscher, Brian; Martin, Rodney; Sricharan, Kumar
2013-01-01
The performance of Orion flight software, especially its GNC software, is being analyzed by running Monte Carlo simulations of Orion spacecraft flights. The simulated performance is analyzed for conformance with flight requirements, expressed as performance constraints. Flight requirements include guidance (e.g. touchdown distance from target) and control (e.g., control saturation) as well as performance (e.g., heat load constraints). The Monte Carlo simulations disperse hundreds of simulation input variables, for everything from mass properties to date of launch.We describe in this paper a sensitivity analysis tool (Critical Factors Tool or CFT) developed to find the input variables or pairs of variables which by themselves significantly influence satisfaction of requirements or significantly affect key performance metrics (e.g., touchdown distance from target). Knowing these factors can inform robustness analysis, can inform where engineering resources are most needed, and could even affect operations. The contributions of this paper include the introduction of novel sensitivity measures, such as estimating success probability, and a technique for determining whether pairs of factors are interacting dependently or independently. The tool found that input variables such as moments, mass, thrust dispersions, and date of launch were found to be significant factors for success of various requirements. Examples are shown in this paper as well as a summary and physics discussion of EFT-1 driving factors that the tool found.
Nowosielski, Robert J; Trick, Lana M; Toxopeus, Ryan
2018-02-01
Distracted driving (driving while performing a secondary task) causes many collisions. Most research on distracted driving has focused on operating a cell-phone, but distracted driving can include eating while driving, conversing with passengers or listening to music or audiobooks. Although the research has focused on the deleterious effects of distraction, there may be situations where distraction improves driving performance. Fatigue and boredom are also associated with collision risk and it is possible that secondary tasks can help alleviate the effects of fatigue and boredom. Furthermore, it has been found that individuals with high levels of executive functioning as measured by the OSPAN (Operation Span) task show better driving while multitasking. In this study, licensed drivers were tested in a driving simulator (a car body surrounded by screens) that simulated simple or complex roads. Road complexity was manipulated by increasing traffic, scenery, and the number of curves in the drive. Participants either drove, or drove while listening to an audiobook. Driving performance was measured in terms of braking response time to hazards (HRT): the time required to brake in response to pedestrians or vehicles that suddenly emerged from the periphery into the path of the vehicle, speed, standard deviation of speed, standard deviation of lateral position (SDLP). Overall, braking times to hazards were higher on the complex drive than the simple one, though the effects of secondary tasks such as audiobooks were especially deleterious on the complex drive. In contrast, on the simple drive, driving while listening to an audiobook lead to faster HRT. We found evidence that individuals with high OSPAN scores had faster HRTs when listening to an audiobook. These results suggest that there are environmental and individual factors behind difference in the allocation of attention while listening to audiobooks while driving. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pizza, Fabio; Contardi, Sara; Mondini, Susanna; Trentin, Lino; Cirignotta, Fabio
2009-01-01
Study Objectives: To test the reliability of a driving-simulation test for the objective measurement of daytime alertness compared with the Multiple Sleep Latency Test (MSLT) and with the Maintenance of Wakefulness Test (MWT), and to test the ability to drive safely, in comparison with on-road history, in the clinical setting of untreated severe obstructive sleep apnea. Design: N/A. Setting: Sleep laboratory. Patients or Participants: Twenty-four patients with severe obstructive sleep apnea and reported daytime sleepiness varying in severity (as measured by the Epworth Sleepiness Scale). Interventions: N/A. Measurements and Results: Patients underwent MSLT and MWT coupled with 4 sessions of driving-simulation test on 2 different days randomly distributed 1 week apart. Simulated-driving performance (in terms of lane-position variability and crash occurrence) was correlated with sleep latency on the MSLT and more significantly on the MWT, showing a predictive validity toward the detection of sleepy versus alert patients with obstructive sleep apnea. In addition, patients reporting excessive daytime sleepiness or a history of car crashes showed poorer performances on the driving simulator. Conclusions: A simulated driving test is a suitable tool for objective measurement of daytime alertness in patients with obstructive sleep apnea. Further studies are needed to clarify the association between simulated-driving performance and on-road crash risk of patients with sleep disordered breathing. Citation: Pizza F; Contardi S; Mondini S; Trentin L; Cirignotta F. Daytime sleepiness and driving performance in patients with obstructive sleep apnea: comparison of the MSLT, the MWT, and a simulated driving task. SLEEP 2009;32(3):382-391. PMID:19294958
Correlation between driving errors and vigilance level: influence of the driver's age.
Campagne, Aurelie; Pebayle, Thierry; Muzet, Alain
2004-01-01
During long and monotonous driving at night, most drivers progressively show signs of visual fatigue and loss of vigilance. Their capacity to maintain adequate driving performance usually is affected and varies with the age of the driver. The main question is to know, on one hand, if occurrence of fatigue and drowsiness is accompanied by a modification in the driving performance of the driver and, on the other hand, if this relationship partially depends on the driver's age. Forty-six male drivers, divided into three age categories: 20-30, 40-50, and 60-70 years, performed a 350-km motorway driving session at night on a driving simulator. Driving errors were measured in terms of number of running-off-the-road incidents (RORI) and large speed deviations. The evolution of physiological vigilance level was evaluated using electroencephalography (EEG) recording. In older drivers, in comparison with young and middle-aged drivers, the degradation of driving performance was correlated to the evolution of lower frequency waking EEG (i.e., theta). Contrary to young and middle-aged drivers, the deterioration of the vigilance level attested by EEG correlated with the increase in gravity of all studied driving errors in older drivers. Thus, depending on the age category considered, only part of the driving errors would constitute a relevant indication as for the occurrence of a state of low arousal.
NASA Astrophysics Data System (ADS)
Campanari, Stefano; Manzolini, Giampaolo; Garcia de la Iglesia, Fernando
This work presents a study of the energy and environmental balances for electric vehicles using batteries or fuel cells, through the methodology of the well to wheel (WTW) analysis, applied to ECE-EUDC driving cycle simulations. Well to wheel balances are carried out considering different scenarios for the primary energy supply. The fuel cell electric vehicles (FCEV) are based on the polymer electrolyte membrane (PEM) technology, and it is discussed the possibility to feed the fuel cell with (i) hydrogen directly stored onboard and generated separately by water hydrolysis (using renewable energy sources) or by conversion processes using coal or natural gas as primary energy source (through gasification or reforming), (ii) hydrogen generated onboard with a fuel processor fed by natural gas, ethanol, methanol or gasoline. The battery electric vehicles (BEV) are based on Li-ion batteries charged with electricity generated by central power stations, either based on renewable energy, coal, natural gas or reflecting the average EU power generation feedstock. A further alternative is considered: the integration of a small battery to FCEV, exploiting a hybrid solution that allows recovering energy during decelerations and substantially improves the system energy efficiency. After a preliminary WTW analysis carried out under nominal operating conditions, the work discusses the simulation of the vehicles energy consumption when following standardized ECE-EUDC driving cycle. The analysis is carried out considering different hypothesis about the vehicle driving range, the maximum speed requirements and the possibility to sustain more aggressive driving cycles. The analysis shows interesting conclusions, with best results achieved by BEVs only for very limited driving range requirements, while the fuel cell solutions yield best performances for more extended driving ranges where the battery weight becomes too high. Results are finally compared to those of conventional internal combustion engine vehicles, showing the potential advantages of the different solutions considered in the paper and indicating the possibility to reach the target of zero-emission vehicles (ZEV).
Effects of age and auditory and visual dual tasks on closed-road driving performance.
Chaparro, Alex; Wood, Joanne M; Carberry, Trent
2005-08-01
This study investigated how driving performance of young and old participants is affected by visual and auditory secondary tasks on a closed driving course. Twenty-eight participants comprising two age groups (younger, mean age = 27.3 years; older, mean age = 69.2 years) drove around a 5.1-km closed-road circuit under both single and dual task conditions. Measures of driving performance included detection and identification of road signs, detection and avoidance of large low-contrast road hazards, gap judgment, lane keeping, and time to complete the course. The dual task required participants to verbally report the sums of pairs of single-digit numbers presented through either a computer speaker (auditorily) or a dashboard-mounted monitor (visually) while driving. Participants also completed a vision and cognitive screening battery, including LogMAR visual acuity, Pelli-Robson letter contrast sensitivity, the Trails test, and the Digit Symbol Substitution (DSS) test. Drivers reported significantly fewer signs, hit more road hazards, misjudged more gaps, and increased their time to complete the course under the dual task (visual and auditory) conditions compared with the single task condition. The older participants also reported significantly fewer road signs and drove significantly more slowly than the younger participants, and this was exacerbated for the visual dual task condition. The results of the regression analysis revealed that cognitive aging (measured by the DSS and Trails test) rather than chronologic age was a better predictor of the declines seen in driving performance under dual task conditions. An overall z score was calculated, which took into account both driving and the secondary task (summing) performance under the two dual task conditions. Performance was significantly worse for the auditory dual task compared with the visual dual task, and the older participants performed significantly worse than the young subjects. These findings demonstrate that multitasking had a significant detrimental impact on driving performance and that cognitive aging was the best predictor of the declines seen in driving performance under dual task conditions. These results have implications for use of mobile phones or in-vehicle navigational devices while driving, especially for older adults.
Driving performance in a power wheelchair simulator.
Archambault, Philippe S; Tremblay, Stéphanie; Cachecho, Sarah; Routhier, François; Boissy, Patrick
2012-05-01
A power wheelchair simulator can allow users to safely experience various driving tasks. For such training to be efficient, it is important that driving performance be equivalent to that in a real wheelchair. This study aimed at comparing driving performance in a real and in a simulated environment. Two groups of healthy young adults performed different driving tasks, either in a real power wheelchair or in a simulator. Smoothness of joystick control as well as the time necessary to complete each task were recorded and compared between the two groups. Driving strategies were analysed from video recordings. The sense of presence, of really being in the virtual environment, was assessed through a questionnaire. Smoothness of joystick control was the same in the real and virtual groups. Task completion time was higher in the simulator for the more difficult tasks. Both groups showed similar strategies and difficulties. The simulator generated a good sense of presence, which is important for motivation. Performance was very similar for power wheelchair driving in the simulator or in real life. Thus, the simulator could potentially be used to complement training of individuals who require a power wheelchair and use a regular joystick. [Box: see text].
Curbing the DUI offender’s self-efficacy to drink and drive: A laboratory study
Roberts, Walter; Fillmore, Mark T.
2017-01-01
Background People arrested for driving under the influence of alcohol (DUI) are at high risk to reoffend. One reason for this high rate of recidivism among DUI offenders is that these individuals systematically underestimate the degree to which alcohol impairs their ability to drive. This study compared perceived and objective driving ability following alcohol and performance feedback in drivers with and without a history of DUI. Method Adult drivers with (n = 20) and without (n = 20) a history of DUI arrest attended two dose challenge sessions where they received 0.64 g/kg alcohol or placebo, completed a simulated driving task, and provided measures of subjective impairment. They attended a third retesting session where they received feedback that they were impaired by alcohol. They received 0.64 g/kg alcohol and their objective and perceived driving ability was retested. Results Both groups showed significant impairment of driving performance following 0.64 g/kg alcohol compared to placebo. DUI offenders rated themselves as less impaired than controls. After performance feedback, self-reported impairment during the alcohol retest increased for DUI offenders but not for controls. There was no effect of performance feedback on objective driving ability. Conclusions These results support the notion that under alcohol DUI offenders characteristically perceive themselves as better able to drive than non-offenders. These perceptions can be tempered by performance feedback. To the extent that perceived ability to drive safely after drinking contributes to DUI and its recidivism, feedback geared towards lowering this self-efficacy could reduce willingness to engage in this behavior. PMID:28152449
Regarding the optimization of O1-mode ECRH and the feasibility of EBW startup on NSTX-U
NASA Astrophysics Data System (ADS)
Lopez, N. A.; Poli, F. M.
2018-06-01
Recently published scenarios for fully non-inductive startup and operation on the National Spherical Torus eXperiment Upgrade (NSTX-U) (Menard et al 2012 Nucl. Fusion 52 083015) show Electron Cyclotron Resonance Heating (ECRH) as an important component in preparing a target plasma for efficient High Harmonic Fast Wave and Neutral Beam heating. The modeling of the propagation and absorption of EC waves in the evolving plasma is required to define the most effective window of operation, and to optimize the launcher geometry for maximal heating and current drive during this window. Here, we extend a previous optimization of O1-mode ECRH on NSTX-U to account for the full time-dependent performance of the ECRH using simulations performed with TRANSP. We find that the evolution of the density profile has a prominent role in the optimization by defining the time window of operation, which in certain cases may be a more important metric to compare launcher performance than the average power absorption. This feature cannot be captured by analysis on static profiles, and should be accounted for when optimizing ECRH on any device that operates near the cutoff density. Additionally, the utility of the electron Bernstein wave (EBW) in driving current and generating closed flux surfaces in the early startup phase has been demonstrated on a number of devices. Using standalone GENRAY simulations, we find that efficient EBW current drive is possible on NSTX-U if the injection angle is shifted below the midplane and aimed towards the top half of the vacuum vessel. However, collisional damping of the EBW is projected to be significant, in some cases accounting for up to 97% of the absorbed EBW power.
Regarding the optimization of O1-mode ECRH and the feasibility of EBW startup on NSTX-U
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez, Nicolas; Poli, Francesca M.
Recently published scenarios for fully non-inductive startup and operation on the National Spherical Torus eXperiment Upgrade (NSTX-U) [Menard J et al 2012 Nucl. Fusion 52 083015] show Electron Cyclotron Resonance Heating (ECRH) as an important component in preparing a target plasma for efficient High Harmonic Fast Wave and Neutral Beam heating. The modelling of the propagation and absorption of EC waves in the evolving plasma is required to define the most effective window of operation, and to optimize the launcher geometry for maximal heating and current drive during this window. Here in this paper, we extend a previous optimization ofmore » O1-mode ECRH on NSTX-U to account for the full time-dependent performance of the ECRH using simulations performed with TRANSP. We find that the evolution of the density profile has a prominent role in the optimization by defining the time window of operation, which in certain cases may be a more important metric to compare launcher performance than the average power absorption. This feature cannot be captured by analysis on static profiles, and should be accounted for when optimizing ECRH on any device that operates near the cutoff density. Additionally, the utility of the electron Bernstein wave (EBW) in driving current and generating closed flux surfaces in the early startup phase has been demonstrated on a number of devices. Using standalone GENRAY simulations, we find that efficient EBW current drive is possible on NSTX-U if the injection angle is shifted below the midplane and aimed towards the top half of the vacuum vessel. However, collisional damping of the EBW is projected to be significant, in some cases accounting for up to 97\\% of the absorbed EBW power.« less
Regarding the optimization of O1-mode ECRH and the feasibility of EBW startup on NSTX-U
Lopez, Nicolas; Poli, Francesca M.
2018-03-29
Recently published scenarios for fully non-inductive startup and operation on the National Spherical Torus eXperiment Upgrade (NSTX-U) [Menard J et al 2012 Nucl. Fusion 52 083015] show Electron Cyclotron Resonance Heating (ECRH) as an important component in preparing a target plasma for efficient High Harmonic Fast Wave and Neutral Beam heating. The modelling of the propagation and absorption of EC waves in the evolving plasma is required to define the most effective window of operation, and to optimize the launcher geometry for maximal heating and current drive during this window. Here in this paper, we extend a previous optimization ofmore » O1-mode ECRH on NSTX-U to account for the full time-dependent performance of the ECRH using simulations performed with TRANSP. We find that the evolution of the density profile has a prominent role in the optimization by defining the time window of operation, which in certain cases may be a more important metric to compare launcher performance than the average power absorption. This feature cannot be captured by analysis on static profiles, and should be accounted for when optimizing ECRH on any device that operates near the cutoff density. Additionally, the utility of the electron Bernstein wave (EBW) in driving current and generating closed flux surfaces in the early startup phase has been demonstrated on a number of devices. Using standalone GENRAY simulations, we find that efficient EBW current drive is possible on NSTX-U if the injection angle is shifted below the midplane and aimed towards the top half of the vacuum vessel. However, collisional damping of the EBW is projected to be significant, in some cases accounting for up to 97\\% of the absorbed EBW power.« less
Oliver, Michele L.; Nigg, Joel T.; Cassavaugh, Nicholas D.; Backs, Richard W.
2015-01-01
Objective The present study examined the role of negative emotions on driving performance in relation to ADHD, by comparing young adults scoring high on measures of ADHD (n = 20) with a control group (n = 22). Method The authors used cardiorespiratory physiological measures, simulated driving behavior, and self-report to examine how participants with high and low ADHD symptoms responded to frustration and to determine how frustration affected simulated driving performance. Results Groups did not differ in operational driving skills, but participants with high ADHD symptoms reported more frustration and exhibited more impairment at the tactical level of driving performance than the controls. There was significant suppression of respiratory sinus arrhythmia from resting baseline during tasks, but it did not differ between groups during driving. Conclusion This article proposes that remedial driver training for ADHD populations should focus more on the control of negative emotions rather than on attention or fundamental driving skills. PMID:21490175
Control x-ray deformable mirrors with few measurements
NASA Astrophysics Data System (ADS)
Huang, Lei; Xue, Junpeng; Idir, Mourad
2016-09-01
After years of development from a concept to early experimental stage, X-ray Deformable Mirrors (XDMs) are used in many synchrotron/free-electron laser facilities as a standard x-ray optics tool. XDM is becoming an integral part of the present and future large x-ray and EUV projects and will be essential in exploiting the full potential of the new sources currently under construction. The main objective of using XDMs is to correct wavefront errors or to enable variable focus beam sizes at the sample. Due to the coupling among the N actuators of a DM, it is usually necessary to perform a calibration or training process to drive the DM into the target shape. Commonly, in order to optimize the actuators settings to minimize slope/height errors, an initial measurement need to be collected, with all actuators set to 0, and then either N or 2N measurements are necessary learn each actuator behavior sequentially. In total, it means that N+1 or 2N+1 scans are required to perform this learning process. When the actuators number N is important and the actuator response or the necessary metrology is slow then this learning process can be time consuming. In this work, we present a fast and accurate method to drive an x-ray active bimorph mirror to a target shape with only 3 or 4 measurements. Instead of sequentially measuring and calculating the influence functions of all actuators and then predicting the voltages needed for any desired shape, the metrology data are directly used to "guide" the mirror from its current status towards the particular target slope/height via iterative compensations. The feedback for the iteration process is the discrepancy in curvature calculated by using B-spline fitting of the measured height/slope data. In this paper, the feasibility of this simple and effective approach is demonstrated with experiments.
Visual and cognitive predictors of driving safety in Parkinson's disease patients
Amick, M.M.; Grace, J.; Ott, B.R.
2012-01-01
This study assessed the clinical utility of contrast sensitivity (CS) relative to attention, executive function, and visuospatial abilities for predicting driving safety in participants with Parkinson's disease (PD). Twenty-five, non-demented PD patients completed measures of contrast sensitivity, visuospatial skills, executive functions, and attention. All PD participants also underwent a formal on-road driving evaluation. Of the 25 participants, 11 received a marginal or unsafe rating on the road test. Poorer driving performance was associated with worse performance on measures of CS, visuospatial constructions, set shifting, and attention. While impaired driving was associated with a range of cognitive and visual abilities, only a composite measure of executive functioning and visuospatial abilities, and not CS or attentional skills, predicted driving performance. These findings suggest that neuropsychological tests, which are multifactorial in nature and require visual perception and visual spatial judgments are the most useful screening measures for hazardous driving in PD patients. PMID:17851032
Visual and cognitive predictors of driving safety in Parkinson's disease patients.
Amick, M M; Grace, J; Ott, B R
2007-11-01
This study assessed the clinical utility of contrast sensitivity (CS) relative to attention, executive function, and visuospatial abilities for predicting driving safety in participants with Parkinson's disease (PD). Twenty-five, non-demented PD patients completed measures of contrast sensitivity, visuospatial skills, executive functions, and attention. All PD participants also underwent a formal on-road driving evaluation. Of the 25 participants, 11 received a marginal or unsafe rating on the road test. Poorer driving performance was associated with worse performance on measures of CS, visuospatial constructions, set shifting, and attention. While impaired driving was associated with a range of cognitive and visual abilities, only a composite measure of executive functioning and visuospatial abilities, and not CS or attentional skills, predicted driving performance. These findings suggest that neuropsychological tests, which are multifactorial in nature and require visual perception and visual spatial judgments are the most useful screening measures for hazardous driving in PD patients.
Blane, Alison; Falkmer, Torbjörn; Lee, Hoe C; Dukic Willstrand, Tania
2018-01-01
Background Safe driving is a complex activity that requires calibration. This means the driver can accurately assess the level of task demand required for task completion and can accurately evaluate their driving capability. There is much debate on the calibration ability of post-stroke drivers. Objectives The aim of this study was to assess the cognition, self-rated performance, and estimation of task demand in a driving simulator with post-stroke drivers and controls. Methods A between-groups study design was employed, which included a post-stroke driver group and a group of similarly aged older control drivers. Both groups were observed driving in two simulator-based driving scenarios and asked to complete the NASA Task Load Index (TLX) to assess their perceived task demand and self-rate their driving performance. Participants also completed a battery of psychometric tasks to assess attention and executive function, which was used to determine whether post-stroke cognitive impairment impacted on calibration. Results There was no difference in the amount of perceived task demand required to complete the driving task. Despite impairments in cognition, the post-stroke drivers were not more likely to over-estimate their driving abilities than controls. On average, the post-stroke drivers self-rated themselves more poorly than the controls and this rating was related to cognitive ability. Conclusion This study suggests that post-stroke drivers may be aware of their deficits and adjust their driving behavior. Furthermore, using self-performance measures alongside a driving simulator and cognitive assessments may provide complementary fitness-to-drive assessments, as well as rehabilitation tools during post-stroke recovery.
Stolwyk, Renerus J; Charlton, Judith L; Ross, Pamela E; Bédard, Michel; Marshall, Shawn; Gagnon, Sylvain; Gooden, James R; Ponsford, Jennie L
2018-01-15
To characterise on-road driving performance in individuals with traumatic brain injury who fail on-road driving assessment, compared with both those who pass assessment and healthy controls, and the injury and cognitive factors associated with driving performance. Cross-sectional. Forty eight participants with traumatic brain injury (Age M = 40.50 SD = 14.62, 77% male, post-traumatic amnesia days M = 28.74 SD =27.68) and 48 healthy matched controls completed a standardised on-road driving assessment in addition to cognitive measures. Individuals with traumatic brain injury who passed on-road driving assessment performed no differently from controls while individuals with traumatic brain injury who failed the assessment demonstrated significantly worse driving performance relative to controls across a range of driving manoeuvres and error types including observation of on-road environment, speed control, gap selection, lane position, following distance and basic car control. Longer time post-injury and reduced visual perception were both significantly correlated with reduced driving skills. This exploratory study indicated that drivers with traumatic brain injury who failed on-road assessment demonstrated a heterogeneous pattern of impaired driving manoeuvres, characterised by skill deficits across both operational (e.g., basic car control and lane position) and tactical domains (e.g., following distance, gap selection, and observation) of driving. These preliminary findings can be used for implementation of future driving assessments and rehabilitation programs. Implications for rehabilitation Clinicians should be aware that the majority of individuals with traumatic brain injury were deemed fit to resume driving following formal on-road assessment, despite having moderate to very severe traumatic brain injuries. Drivers with traumatic brain injury who failed an on-road assessment demonstrated a heterogeneous pattern of impaired skills including errors with observation, speed regulation, gap selection, and vehicle control and accordingly had difficulty executing a diverse range of common driving manoeuvres. Comprehensive, formal on-road assessments, incorporating a range of skills, and manoeuvres, are needed to evaluate readiness to return to driving following traumatic brain injury. Individually tailored driver rehabilitation programs need to address these heterogeneous skill deficits to best support individuals to make a successful return to driving post-traumatic brain injury.
Constructing a publically available distracted driving database and research tool.
Atchley, Paul; Tran, Ashleigh V; Salehinejad, Mohammad Ali
2017-02-01
The goal of the current work was to create a publicly available visualization tool of distracted driving research, the purpose of which is to allow the public and other stakeholders to empirically inform questions of their choice that may bear on policy discussions. Fifty years of distracted driving research was used to design a comprehensive database of studies that evaluated the effects of distraction on driving performance. Distraction sources (e.g., texting, talking, visual distraction) and performance measures were defined, and the sample of studies were evaluated and categorized by their measures. The final product yielded 342 studies using various methodologies. Across all measures, 1297 found distractions degraded driving performance, 54 found distraction improved driving performance, and 257 found distraction had no effect on driving performance. An analysis of the most common phone distractions (texting and talking) showed that texting almost always results in degraded performance. Aggregate data reveal no difference in performance decrements for hand-held or hands-free phones even though single studies of those variables vary in their outcomes. This project illustrates how scientific research can be made publically available for use by a diverse audience of stakeholders. An important result of this project is that data aggregated along a simple set of characteristics such as whether or not performance is decreased, improved or not affected, can reveal trends in the data that are less clear from any individual study. Copyright © 2016 Elsevier Ltd. All rights reserved.
Devlin, Anna; McGillivray, Jane; Charlton, Judith; Lowndes, Georgia; Etienne, Virginie
2012-11-01
While there is a large body of research indicating that individuals with moderate to severe dementia are unfit to drive, relatively little is known about the driving performance of older drivers with mild cognitive impairment (MCI). The aim of the current study was to examine the driving performance of older drivers with MCI on approach to intersections, and to investigate how their healthy counterparts perform on the same driving tasks using a portable driving simulator. Fourteen drivers with MCI and 14 age-matched healthy older drivers (aged 65-87 years) completed a 10-min simulator drive in an urban environment. The simulator drive consisted of stop-sign controlled and signal-controlled intersections. Drivers were required to stop at the stop-sign controlled intersections and to decide whether or not to proceed through a critical light change at the signal-controlled intersections. The specific performance measures included; approach speed, number of brake applications on approach to the intersection (either excessive or minimal), failure to comply with stop signs, and slower braking response times on approach to a critical light change. MCI patients in our sample performed more poorly than controls across a number of variables. However, because the trends failed to reach statistical significance it will be important to replicate the study using a larger sample to qualify whether the results can be generalised to the broader population. Copyright © 2012 Elsevier Ltd. All rights reserved.
Liu, Yung-Ching; Fu, Shing-Mei
2007-06-01
This study examines the changes in driving behavior and cognitive performance of drivers with different breath alcohol concentration (BrAC) levels. Eight licensed drivers, aged between 20 and 30 years, with BrAC levels of 0.00, 0.25, 0.4 and 0.5 mg/l performed simulated driving tests under high- and low-load conditions. Subjects were asked to assess their subjective psychological load at specified intervals and perform various tasks. The outcome was measured in terms of reaction times for task completion, accuracy rates, and driver's driving behavior. The effects of BrAC vary depending on the task. Performance of tasks involving attention shift, information processing, and short-term memory showed significant deterioration with increasing BrAC, while dangerous external vehicle driving behavior occurred only when the BrAC reached 0.4 mg/l and the deterioration was marked. We can conclude that the cognitive faculty is the first to be impaired by drinking resulting in deteriorated performance in tasks related to divided attention, short-term memory, logical reasoning, followed by visual perception. On the other hand, increasing alcohol dose may not pose an immediate impact on the external vehicle driving behavior but may negatively affect the driver's motor behavior even at low BrAC levels. Experience and will power could compensate for the negative influence of alcohol enabling the drivers to remain in full steering control. This lag between alcohol consumption and impaired driving performance may mislead the drivers in thinking that they are still capable of safe steering and cause them to ignore the potential dangers of drunk driving.
The impact of driving cessation on older Kuwaiti adults: implications to occupational therapy.
Al-Hassani, Samar B; Alotaibi, Naser M
2014-07-01
Older adults consider driving as a fundamental part of their identity and independence. In most western countries, driving cessation has been recognized as a major issue affecting their health and well-being. This study aimed to compare older Kuwaiti adults who were active drivers and those who had ceased driving, and to explore the impact of driving cessation on the psychological well-being and lifestyle of older ex-drivers. Participants included 114 community-dwelling older adults aged 55 years and older. A questionnaire based on the driving rehabilitation literature was administered along with the Geriatric Depression Scale (GDS). Results indicated that active drivers did not place greater importance on driving and spend more time in leisure pursuits. The overarching feelings following driving cessation were loss of control over one's life and an increased sense of dependency. Driving cessation also contributed to a reduced ability to perform family duties, and it was associated with giving up previously performed leisure activities. Our findings indicate that driving cessation adversely affects older adults' independence and role performance. Older ex-drivers may require assistance and intervention to facilitate their psychological well-being and community participation.
NASA Astrophysics Data System (ADS)
Nowakowski, C.; Friedman, D.; Green, P.
2001-10-01
The purpose of the current experiment is to provide a preliminary driving simulator assessment of several hands-free design solutions with regard to the task of answering the phone while driving. Specifically, the following questions were examined: (1) Does the location of a caller ID display and the phone buttons (two HUD (Head Up Display) locations vs. phone cradle) affect either the time to answer the phone or driving performance; (2) Does the presence or absence of a ring affect either the time to answer the phone or driving performance; (3) Does increased driving workload (visual demand) affect either the time to answer the phone or driving performance; (4) What were the initial driver reactions to a HUD-based call timer.
Design and Implementation of High Interaction Client Honeypot for Drive-by-Download Attacks
NASA Astrophysics Data System (ADS)
Akiyama, Mitsuaki; Iwamura, Makoto; Kawakoya, Yuhei; Aoki, Kazufumi; Itoh, Mitsutaka
Nowadays, the number of web-browser targeted attacks that lead users to adversaries' web sites and exploit web browser vulnerabilities is increasing, and a clarification of their methods and countermeasures is urgently needed. In this paper, we introduce the design and implementation of a new client honeypot for drive-by-download attacks that has the capacity to detect and investigate a variety of malicious web sites. On the basis of the problems of existing client honeypots, we enumerate the requirements of a client honeypot: 1) detection accuracy and variety, 2) collection variety, 3) performance efficiency, and 4) safety and stability. We improve our system with regard to these requirements. The key features of our developed system are stepwise detection focusing on exploit phases, multiple crawler processing, tracking of malware distribution networks, and malware infection prevention. Our evaluation of our developed system in a laboratory experiment and field experiment indicated that its detection variety and crawling performance are higher than those of existing client honeypots. In addition, our system is able to collect information for countermeasures and is secure and stable for continuous operation. We conclude that our system can investigate malicious web sites comprehensively and support countermeasures.
Driver distraction by smartphone use (WhatsApp) in different age groups.
Ortiz, C; Ortiz-Peregrina, S; Castro, J J; Casares-López, M; Salas, C
2018-08-01
This paper investigates the effect that texting with WhatsApp, one of the most common applications for instant messaging, exerts on driving performance. Because distracted driving also affects older drivers, who can have seriously compromised vision, we also analysed the associations between visual-function parameters and driving performance. A total of 75 drivers, experienced in sending WhatsApp messages (≥10WhatsApp messages/week), participated in this study and were divided into four age categories. Visual-function tests included contrast sensitivity with and without glare, retinal straylight and objective assessment of optical quality. Simulated driving performance was assessed under a baseline driving condition (without distraction) as well as a texting condition (WhatsApp messages) while driving. The participants used their own mobile phone. Lastly, objective results of driving performance were compared with subjective self-report data from the Driver Behaviour Questionnaire (DBQ). The analysis indicated that functional changes occurring with age, such as a lower contrast sensitivity and greater retinal straylight, were correlated with a higher number of collisions, longer distances driven outside the lane, and greater standard deviation of lateral position (SDLP). The results showed a significant main effect of age for the driving-performance parameters. Also, compared to the baseline, texting WhatsApp messages while driving worsens driving performance for all age groups, most notably among older participants. Thus, the older drivers' SDLP was ∼14% higher than that for the baseline average of all the other drivers and rose to 29% under distraction, reflecting the impact of secondary tasks. The negative effect of the use of the smartphone during driving was also reflected in the number of collisions, with a greater risk of accidents in all the groups of drivers (by 8.3% for young adults, 25.0% for adults, 80.5% for middle-aged adults, and 134.5% for older drivers). Lastly, participants' subjective responses indicated that younger drivers (18-24 years) had a higher risk of deliberately violating safe driving practices (p < 0.05). The present study demonstrates that texting WhatsApp messages while driving significantly impairs the ability to drive safely, with older drivers being the group most adversely affected. It would be recommendable to include other nonstandard vision tests, which have shown associations with driving performance, in the examination for driver licensing. This would help raise the awareness of older drivers concerning their visual limitations, permitting them to adopt compensatory measures to improve their driving safety. Nevertheless, it is also necessary to raise awareness among the younger drivers of the risks involved in behaviour behind the wheel. Copyright © 2018 Elsevier Ltd. All rights reserved.
Distinct retinal pathways drive spatial orientation behaviors in zebrafish navigation.
Burgess, Harold A; Schoch, Hannah; Granato, Michael
2010-02-23
Navigation requires animals to adjust ongoing movements in response to pertinent features of the environment and select between competing target cues. The neurobiological basis of navigational behavior in vertebrates is hard to analyze, partly because underlying neural circuits are experience dependent. Phototaxis in zebrafish is a hardwired navigational behavior, performed at a stage when larvae swim by using a small repertoire of stereotyped movements. We established conditions to elicit robust phototaxis behavior and found that zebrafish larvae deploy directional orienting maneuvers and regulate forward swimming speed to navigate toward a target light. Using genetic analysis and targeted laser ablations, we show that retinal ON and OFF pathways play distinct roles during phototaxis. The retinal OFF pathway controls turn movements via retinotectal projections and establishes correct orientation by causing larvae to turn away from nontarget areas. In contrast, the retinal ON pathway activates the serotonergic system to trigger rapid forward swimming toward the target. Computational simulation of phototaxis with an OFF-turn, ON-approach algorithm verifies that our model accounts for key features of phototaxis and provides a simple and robust mechanism for behavioral choice between competing targets. Copyright 2010 Elsevier Ltd. All rights reserved.
Goh, Rachel L Z; Kong, Yu Xiang George; McAlinden, Colm; Liu, John; Crowston, Jonathan G; Skalicky, Simon E
2018-01-01
To evaluate the use of smartphone-based virtual reality to objectively assess activity limitation in glaucoma. Cross-sectional study of 93 patients (54 mild, 22 moderate, 17 severe glaucoma). Sociodemographics, visual parameters, Glaucoma Activity Limitation-9 and Visual Function Questionnaire - Utility Index (VFQ-UI) were collected. Mean age was 67.4 ± 13.2 years; 52.7% were male; 65.6% were driving. A smartphone placed inside virtual reality goggles was used to administer the Virtual Reality Glaucoma Visual Function Test (VR-GVFT) to participants, consisting of three parts: stationary, moving ball, driving. Rasch analysis and classical validity tests were conducted to assess performance of VR-GVFT. Twenty-four of 28 stationary test items showed acceptable fit to the Rasch model (person separation 3.02, targeting 0). Eleven of 12 moving ball test items showed acceptable fit (person separation 3.05, targeting 0). No driving test items showed acceptable fit. Stationary test person scores showed good criterion validity, differentiating between glaucoma severity groups ( P = 0.014); modest convergence validity, with mild to moderate correlation with VFQ-UI, better eye (BE) mean deviation, BE pattern deviation, BE central scotoma, worse eye (WE) visual acuity, and contrast sensitivity (CS) in both eyes ( R = 0.243-0.381); and suboptimal divergent validity. Multivariate analysis showed that lower WE CS ( P = 0.044) and greater age ( P = 0.009) were associated with worse stationary test person scores. Smartphone-based virtual reality may be a portable objective simulation test of activity limitation related to glaucomatous visual loss. The use of simulated virtual environments could help better understand the activity limitations that affect patients with glaucoma.
Goh, Rachel L. Z.; McAlinden, Colm; Liu, John; Crowston, Jonathan G.; Skalicky, Simon E.
2018-01-01
Purpose To evaluate the use of smartphone-based virtual reality to objectively assess activity limitation in glaucoma. Methods Cross-sectional study of 93 patients (54 mild, 22 moderate, 17 severe glaucoma). Sociodemographics, visual parameters, Glaucoma Activity Limitation-9 and Visual Function Questionnaire – Utility Index (VFQ-UI) were collected. Mean age was 67.4 ± 13.2 years; 52.7% were male; 65.6% were driving. A smartphone placed inside virtual reality goggles was used to administer the Virtual Reality Glaucoma Visual Function Test (VR-GVFT) to participants, consisting of three parts: stationary, moving ball, driving. Rasch analysis and classical validity tests were conducted to assess performance of VR-GVFT. Results Twenty-four of 28 stationary test items showed acceptable fit to the Rasch model (person separation 3.02, targeting 0). Eleven of 12 moving ball test items showed acceptable fit (person separation 3.05, targeting 0). No driving test items showed acceptable fit. Stationary test person scores showed good criterion validity, differentiating between glaucoma severity groups (P = 0.014); modest convergence validity, with mild to moderate correlation with VFQ-UI, better eye (BE) mean deviation, BE pattern deviation, BE central scotoma, worse eye (WE) visual acuity, and contrast sensitivity (CS) in both eyes (R = 0.243–0.381); and suboptimal divergent validity. Multivariate analysis showed that lower WE CS (P = 0.044) and greater age (P = 0.009) were associated with worse stationary test person scores. Conclusions Smartphone-based virtual reality may be a portable objective simulation test of activity limitation related to glaucomatous visual loss. Translational Relevance The use of simulated virtual environments could help better understand the activity limitations that affect patients with glaucoma. PMID:29372112
Brain activity during driving with distraction: an immersive fMRI study
Schweizer, Tom A.; Kan, Karen; Hung, Yuwen; Tam, Fred; Naglie, Gary; Graham, Simon J.
2013-01-01
Introduction: Non-invasive measurements of brain activity have an important role to play in understanding driving ability. The current study aimed to identify the neural underpinnings of human driving behavior by visualizing the areas of the brain involved in driving under different levels of demand, such as driving while distracted or making left turns at busy intersections. Materials and Methods: To capture brain activity during driving, we placed a driving simulator with a fully functional steering wheel and pedals in a 3.0 Tesla functional magnetic resonance imaging (fMRI) system. To identify the brain areas involved while performing different real-world driving maneuvers, participants completed tasks ranging from simple (right turns) to more complex (left turns at busy intersections). To assess the effects of driving while distracted, participants were asked to perform an auditory task while driving analogous to speaking on a hands-free device and driving. Results: A widely distributed brain network was identified, especially when making left turns at busy intersections compared to more simple driving tasks. During distracted driving, brain activation shifted dramatically from the posterior, visual and spatial areas to the prefrontal cortex. Conclusions: Our findings suggest that the distracted brain sacrificed areas in the posterior brain important for visual attention and alertness to recruit enough brain resources to perform a secondary, cognitive task. The present findings offer important new insights into the scientific understanding of the neuro-cognitive mechanisms of driving behavior and lay down an important foundation for future clinical research. PMID:23450757
Brijs, Kris; Cuenen, Ariane; Brijs, Tom; Ruiter, Robert A C; Wets, Geert
2014-05-01
The disproportionately large number of traffic accidents of young novice drivers highlights the need for an effective driver education program. The Goals for Driving Education (GDE) matrix shows that driver education must target both lower and higher levels of driver competences. Research has indicated that current education programs do not emphasize enough the higher levels, for example awareness and insight. This has raised the importance of insight programs. On the Road (OtR), a Flemish post-license driver education program, is such an insight program that aims to target these higher levels. The program focus is on risky driving behavior like speeding and drink driving. In addition, the program addresses risk detection and risk-related knowledge. The goal of the study was to do an effect evaluation of this insight program at immediate post-test and 2 months follow-up. In addition, the study aimed to generalize the results of this program to comparable programs in order to make usable policy recommendations. A questionnaire based on the Theory of Planned Behavior (TPB) was used in order to measure participants' safety consciousness of speeding and drink driving. Moreover, we focused on risk detection and risk-related knowledge. Participants (N=366) were randomly assigned to a baseline-follow-up group or a post-test-follow-up group. Regarding speeding and driving, we found OtR to have little effect on the TPB variables. Regarding risk detection, we found no significant effect, even though participants clearly needed substantial improvement when stepping into the program. Regarding risk-related knowledge, the program did result in a significant improvement at post-test and follow-up. It is concluded that the current program format is a good starting point, but that it requires further attention to enhance high level driving skills. Program developers are encouraged to work in a more evidence-based manner when they select target variables and methods to influence these variables. Copyright © 2014 Elsevier Ltd. All rights reserved.
Impact of External Cue Validity on Driving Performance in Parkinson's Disease
Scally, Karen; Charlton, Judith L.; Iansek, Robert; Bradshaw, John L.; Moss, Simon; Georgiou-Karistianis, Nellie
2011-01-01
This study sought to investigate the impact of external cue validity on simulated driving performance in 19 Parkinson's disease (PD) patients and 19 healthy age-matched controls. Braking points and distance between deceleration point and braking point were analysed for red traffic signals preceded either by Valid Cues (correctly predicting signal), Invalid Cues (incorrectly predicting signal), and No Cues. Results showed that PD drivers braked significantly later and travelled significantly further between deceleration and braking points compared with controls for Invalid and No-Cue conditions. No significant group differences were observed for driving performance in response to Valid Cues. The benefit of Valid Cues relative to Invalid Cues and No Cues was significantly greater for PD drivers compared with controls. Trail Making Test (B-A) scores correlated with driving performance for PDs only. These results highlight the importance of external cues and higher cognitive functioning for driving performance in mild to moderate PD. PMID:21789275
Techer, Franck; Jallais, Christophe; Corson, Yves; Moreau, Fabien; Ndiaye, Daniel; Piechnick, Bruno; Fort, Alexandra
2017-01-01
Driver internal state, including emotion, can have negative impacts on road safety. Studies have shown that an anger state can provoke aggressive behavior and impair driving performance. Apart from driving, anger can also influence attentional processing and increase the benefits taken from auditory alerts. However, to our knowledge, no prior event-related potentials study assesses this impact on attention during simulated driving. Therefore, the aim of this study was to investigate the impact of anger on attentional processing and its consequences on driving performance. For this purpose, 33 participants completed a simulated driving scenario once in an anger state and once during a control session. Results indicated that anger impacted driving performance and attention, provoking an increase in lateral variations while reducing the amplitude of the visual N1 peak. The observed effects were discussed as a result of high arousal and mind-wandering associated with anger. This kind of physiological data may be used to monitor a driver's internal state and provide specific assistance corresponding to their current needs. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
State all-driver distracted driving laws and high school students' texting while driving behavior.
Qiao, Nan; Bell, Teresa Maria
2016-01-01
Texting while driving is highly prevalent among adolescents and young adults in the United States. Texting while driving can significantly increase the risk of road crashes and is associated with other risky driving behaviors. Most states have enacted distracted driving laws to prohibit texting while driving. This study examines effects of different all-driver distracted driving laws on texting while driving among high school students. High school student data were extracted from the 2013 National Youth Risk Behavior Survey. Distracted driving law information was collected from the National Conference of State Legislatures. The final sample included 6,168 high school students above the restricted driving age in their states and with access to a vehicle. Logistic regression was applied to estimate odds ratios of laws on texting while driving. All-driver text messaging bans with primary enforcement were associated with a significant reduction in odds of texting while driving among high school students (odds ratio = 0.703; 95% confidence interval, 0.513-0.964), whereas all-driver phone use bans with primary enforcement did not have a significant association with texting while driving (odds ratio = 0.846; 95% confidence interval, 0.501-1.429). The findings indicate that all-driver distracted driving laws that specifically target texting while driving as opposed to all types of phone use are effective in reducing the behavior among high school students.
Metacognition of Multi-Tasking: How Well Do We Predict the Costs of Divided Attention?
Finley, Jason R.; Benjamin, Aaron S.; McCarley, Jason S.
2014-01-01
Risky multi-tasking, such as texting while driving, may occur because people misestimate the costs of divided attention. In two experiments, participants performed a computerized visual-manual tracking task in which they attempted to keep a mouse cursor within a small target that moved erratically around a circular track. They then separately performed an auditory n-back task. After practicing both tasks separately, participants received feedback on their single-task tracking performance and predicted their dual-task tracking performance before finally performing the two tasks simultaneously. Most participants correctly predicted reductions in tracking performance under dual-task conditions, with a majority overestimating the costs of dual-tasking. However, the between-subjects correlation between predicted and actual performance decrements was near zero. This combination of results suggests that people do anticipate costs of multi-tasking, but have little metacognitive insight on the extent to which they are personally vulnerable to the risks of divided attention, relative to other people. PMID:24490818
Metacognition of multitasking: How well do we predict the costs of divided attention?
Finley, Jason R; Benjamin, Aaron S; McCarley, Jason S
2014-06-01
Risky multitasking, such as texting while driving, may occur because people misestimate the costs of divided attention. In two experiments, participants performed a computerized visual-manual tracking task in which they attempted to keep a mouse cursor within a small target that moved erratically around a circular track. They then separately performed an auditory n-back task. After practicing both tasks separately, participants received feedback on their single-task tracking performance and predicted their dual-task tracking performance before finally performing the 2 tasks simultaneously. Most participants correctly predicted reductions in tracking performance under dual-task conditions, with a majority overestimating the costs of dual-tasking. However, the between-subjects correlation between predicted and actual performance decrements was near 0. This combination of results suggests that people do anticipate costs of multitasking, but have little metacognitive insight on the extent to which they are personally vulnerable to the risks of divided attention, relative to other people. PsycINFO Database Record (c) 2014 APA, all rights reserved.
The Effects of Dextromethorphan on Driving Performance and the Standardized Field Sobriety Test.
Perry, Paul J; Fredriksen, Kristian; Chew, Stephanie; Ip, Eric J; Lopes, Ingrid; Doroudgar, Shadi; Thomas, Kelan
2015-09-01
Dextromethorphan (DXM) is abused most commonly among adolescents as a recreational drug to generate a dissociative experience. The objective of the study was to assess driving with and without DXM ingestion. The effects of one-time maximum daily doses of DXM 120 mg versus a guaifenesin 400 mg dose were compared among 40 healthy subjects using a crossover design. Subjects' ability to drive was assessed by their performance in a driving simulator (STISIM® Drive driving simulator software) and by conducting a standardized field sobriety test (SFST) administered 1-h postdrug administration. The one-time dose of DXM 120 mg did not demonstrate driving impairment on the STISIM® Drive driving simulator or increase SFST failures compared to guaifenesin 400 mg. Doses greater than the currently recommended maximum daily dose of 120 mg are necessary to perturb driving behavior. © 2015 American Academy of Forensic Sciences.
Flexible electronic control system based on FPGA for liquid-crystal microlens
NASA Astrophysics Data System (ADS)
Zhang, Bo; Xin, Zhaowei; Li, Dapeng; Wei, Dong; Zhang, Xinyu; Wang, Haiwei; Xie, Changsheng
2018-02-01
Traditional imaging based on common optical lens can only be used to collect intensity information of incident beams, but actually lightwave also carries other mode information about targets and environment, including: spectrum, wavefront, and depth of target, and so on. It is very important to acquire those information mentioned for efficiently detecting and identifying targets in complex background. There is a urgent need to develop new high-performance optical imaging components. The liquid-crystal microlens (LCMs) only by applying spatial electrical field to change optical performance, have demonstrated remarkable advantages comparing conventional lenses, and therefore show a widely application prospect. Because the physical properties of the spatial electric fields between electrode plates in LCMs are directly related to the light-field performances of LCMs, the quality of voltage signal applied to LCMs needs high requirements. In this paper, we design and achieve a new type of digital voltage equipment with a wide adjustable voltage range and high precise voltage to effectively drive and adjust LCMs. More importantly, the device primarily based on field-programmable gate array(FPGA) can generate flexible and stable voltage signals to cooperate with the various functions of LCMs. Our experiments show that through the electronic control system, the LCMs already realize several significant functions including: electrically swing focus, wavefront imaging, electrically tunable spectral imaging and light-field imaging.
Ultrafast probing of magnetic field growth inside a laser-driven solenoid
NASA Astrophysics Data System (ADS)
Goyon, C.; Pollock, B. B.; Turnbull, D. P.; Hazi, A.; Divol, L.; Farmer, W. A.; Haberberger, D.; Javedani, J.; Johnson, A. J.; Kemp, A.; Levy, M. C.; Grant Logan, B.; Mariscal, D. A.; Landen, O. L.; Patankar, S.; Ross, J. S.; Rubenchik, A. M.; Swadling, G. F.; Williams, G. J.; Fujioka, S.; Law, K. F. F.; Moody, J. D.
2017-03-01
We report on the detection of the time-dependent B-field amplitude and topology in a laser-driven solenoid. The B-field inferred from both proton deflectometry and Faraday rotation ramps up linearly in time reaching 210 ± 35 T at the end of a 0.75-ns laser drive with 1 TW at 351 nm. A lumped-element circuit model agrees well with the linear rise and suggests that the blow-off plasma screens the field between the plates leading to an increased plate capacitance that converts the laser-generated hot-electron current into a voltage source that drives current through the solenoid. ALE3D modeling shows that target disassembly and current diffusion may limit the B-field increase for longer laser drive. Scaling of these experimental results to a National Ignition Facility (NIF) hohlraum target size (˜0.2 cm3 ) indicates that it is possible to achieve several tens of Tesla.
Ultrafast probing of magnetic field growth inside a laser-driven solenoid.
Goyon, C; Pollock, B B; Turnbull, D P; Hazi, A; Divol, L; Farmer, W A; Haberberger, D; Javedani, J; Johnson, A J; Kemp, A; Levy, M C; Grant Logan, B; Mariscal, D A; Landen, O L; Patankar, S; Ross, J S; Rubenchik, A M; Swadling, G F; Williams, G J; Fujioka, S; Law, K F F; Moody, J D
2017-03-01
We report on the detection of the time-dependent B-field amplitude and topology in a laser-driven solenoid. The B-field inferred from both proton deflectometry and Faraday rotation ramps up linearly in time reaching 210 ± 35 T at the end of a 0.75-ns laser drive with 1 TW at 351 nm. A lumped-element circuit model agrees well with the linear rise and suggests that the blow-off plasma screens the field between the plates leading to an increased plate capacitance that converts the laser-generated hot-electron current into a voltage source that drives current through the solenoid. ALE3D modeling shows that target disassembly and current diffusion may limit the B-field increase for longer laser drive. Scaling of these experimental results to a National Ignition Facility (NIF) hohlraum target size (∼0.2cm^{3}) indicates that it is possible to achieve several tens of Tesla.
Effects of Non-Driving Related Task Modalities on Takeover Performance in Highly Automated Driving.
Wandtner, Bernhard; Schömig, Nadja; Schmidt, Gerald
2018-04-01
Aim of the study was to evaluate the impact of different non-driving related tasks (NDR tasks) on takeover performance in highly automated driving. During highly automated driving, it is allowed to engage in NDR tasks temporarily. However, drivers must be able to take over control when reaching a system limit. There is evidence that the type of NDR task has an impact on takeover performance, but little is known about the specific task characteristics that account for performance decrements. Thirty participants drove in a simulator using a highly automated driving system. Each participant faced five critical takeover situations. Based on assumptions of Wickens's multiple resource theory, stimulus and response modalities of a prototypical NDR task were systematically manipulated. Additionally, in one experimental group, the task was locked out simultaneously with the takeover request. Task modalities had significant effects on several measures of takeover performance. A visual-manual texting task degraded performance the most, particularly when performed handheld. In contrast, takeover performance with an auditory-vocal task was comparable to a baseline without any task. Task lockout was associated with faster hands-on-wheel times but not altered brake response times. Results showed that NDR task modalities are relevant factors for takeover performance. An NDR task lockout was highly accepted by the drivers and showed moderate benefits for the first takeover reaction. Knowledge about the impact of NDR task characteristics is an enabler for adaptive takeover concepts. In addition, it might help regulators to make decisions on allowed NDR tasks during automated driving.
Monolayer-Mediated Growth of Organic Semiconductor Films with Improved Device Performance.
Huang, Lizhen; Hu, Xiaorong; Chi, Lifeng
2015-09-15
Increased interest in wearable and smart electronics is driving numerous research works on organic electronics. The control of film growth and patterning is of great importance when targeting high-performance organic semiconductor devices. In this Feature Article, we summarize our recent work focusing on the growth, crystallization, and device operation of organic semiconductors intermediated by ultrathin organic films (in most cases, only a monolayer). The site-selective growth, modified crystallization and morphology, and improved device performance of organic semiconductor films are demonstrated with the help of the inducing layers, including patterned and uniform Langmuir-Blodgett monolayers, crystalline ultrathin organic films, and self-assembled polymer brush films. The introduction of the inducing layers could dramatically change the diffusion of the organic semiconductors on the surface and the interactions between the active layer with the inducing layer, leading to improved aggregation/crystallization behavior and device performance.
Evidence that convergence rather than accommodation controls intermittent distance exotropia.
Horwood, Anna M; Riddell, Patricia M
2012-03-01
This study considered whether vergence drives accommodation or accommodation drives vergence during the control of distance exotropia for near fixation. High accommodative convergence to accommodation (AC/A) ratios are often used to explain this control, but the role of convergence to drive accommodation (the CA/C relationship) is rarely considered. Atypical CA/C characteristics could equally, or better, explain common clinical findings. Nineteen distance exotropes, aged 4-11 years, were compared while controlling their deviation with 27 non-exotropic controls aged 5-9 years. Simultaneous vergence and accommodation responses were measured to a range of targets incorporating different combinations of blur, disparity and looming cues at four fixation distances between 2 m and 33 cm. Stimulus and response AC/A and CA/C ratios were calculated. Accommodation responses for near targets (p = 0.017) and response gains (p = 0.026) were greater in the exotropes than in the controls. Despite higher clinical stimulus AC/A ratios, the distance exotropes showed lower laboratory response AC/A ratios (p = 0.02), but significantly higher CA/C ratios (p = 0.02). All the exotropes, whether the angle changed most with lenses ('controlled by accommodation') or on occlusion ('controlled by fusion'), used binocular disparity not blur as their main cue to target distance. Increased vergence demand to control intermittent distance exotropia for near also drives significantly more accommodation. Minus lens therapy is more likely to act by correcting overaccommodation driven by controlling convergence, rather than by inducing blur-driven vergence. The use of convergence as a major drive to accommodation explains many clinical characteristics of distance exotropia, including apparently high near stimulus AC/A ratios. © 2012 The Authors. Acta Ophthalmologica © 2012 Acta Ophthalmologica Scandinavica Foundation.
Evidence that convergence rather than accommodation controls intermittent distance exotropia
Horwood, Anna M; Riddell, Patricia M
2015-01-01
Purpose This study considered whether vergence drives accommodation or accommodation drives vergence during the control of distance exotropia for near fixation. High accommodative convergence to accommodation (AC/A) ratios are often used to explain this control, but the role of convergence to drive accommodation (the CA/C relationship) is rarely considered. Atypical CA/C characteristics could equally, or better, explain common clinical findings. Methods 19 distance exotropes, aged 4-11 years, were compared while controlling their deviation with 27 non-exotropic controls aged 5-9 years. Simultaneous vergence and accommodation responses were measured to a range of targets incorporating different combinations of blur, disparity and looming cues at four fixation distances between 2m and 33cm. Stimulus and response AC/A and CA/C ratios were calculated. Results Accommodation responses for near targets (p=0.017) response gains (p=0.026) were greater in the exotropes than the controls. Despite higher clinical stimulus AC/A ratios, the distance exotropes showed lower laboratory response AC/A ratios (p=0.02), but significantly higher CA/C ratios (p=0.02). All the exotropes, whether the angle changed most with lenses (“controlled by accommodation”) or on occlusion (“controlled by fusion”), used binocular disparity not blur as their main cue to target distance. Conclusions Increased vergence demand to control intermittent distance exotropia for near also drives significantly more accommodation. Minus lens therapy is more likely to act by correcting over-accommodation driven by controlling convergence, rather than by inducing blur-driven vergence. The use of convergence as a major drive to accommodation explains many clinical characteristics of distance exotropia, including apparently high near stimulus AC/A ratios. PMID:22280437
Jake Matijevic Contact Target for Curiosity
2012-09-19
The drive by NASA Mars rover Curiosity during the mission 43rd Martian day ended with this rock front of the rover. The rover team has assessed it as a suitable target for the first use of Curiosity contact instruments on a rock.
Effect of Energetic Plasma Flux on Flowing Liquid Lithium Surfaces
NASA Astrophysics Data System (ADS)
Kalathiparambil, Kishor; Jung, Soonwook; Christenson, Michael; Fiflis, Peter; Xu, Wenyu; Szott, Mathew; Ruzic, David
2014-10-01
An operational liquid lithium system with steady state flow driven by thermo-electric magneto-hydrodynamic force and capable of constantly refreshing the plasma exposed surface have been demonstrated at U of I. To evaluate the system performance in reactor relevant conditions, specifically to understand the effect of disruptive plasma events on the performance of the liquid metal PFCs, the setup was integrated to a pulsed plasma generator. A coaxial plasma generator drives the plasma towards a theta pinch which preferentially heats the ions, simulating ELM like flux, and the plasma is further guided towards the target chamber which houses the flowing lithium system. The effect of the incident flux is examined using diagnostic tools including triple Langmuir probe, calorimeter, rogowski coils, Ion energy analyzers, and fast frame spectral image acquisition with specific optical filters. The plasma have been well characterized and a density of ~1021 m-3, with electron temperature ~10 - 20 eV is measured, and final plasma velocities of 34 - 74 kms-1 have been observed. Calorimetric measurements using planar molybdenum targets indicate a maximum plasma energy (with 6 kV plasma gun and 20 kV theta pinch) of 0.08 MJm-2 with plasma divergence effects resulting in marginal reduction of 40 +/- 23 J in plasma energy. Further results from the other diagnostic tools, using the flowing lithium targets and the planar targets coated with lithium will be presented. DOE DE-SC0008587.
ERIC Educational Resources Information Center
Cox, Daniel J.; Brown, Timothy; Ross, Veerle; Moncrief, Matthew; Schmitt, Rose; Gaffney, Gary; Reeve, Ron
2017-01-01
Investigate how novice drivers with autism spectrum disorder (ASD) differ from experienced drivers and whether virtual reality driving simulation training (VRDST) improves ASD driving performance. 51 novice ASD drivers (mean age 17.96 years, 78% male) were randomized to routine training (RT) or one of three types of VRDST (8-12 sessions). All…
An Electric Propulsion "Shepherd" for Active Debris Removal that Utilizes Ambient Gas as Propellant
NASA Technical Reports Server (NTRS)
Matney, Mark J.
2013-01-01
There is a growing consensus among the space debris technical community that limiting the long ]term growth of debris in Low-Earth Orbit (LEO) requires that space users limit the accumulation of mass in orbit. This is partially accomplished by mitigation measures for current and future LEO systems, but there is now interest in removing mass that has already accumulated in LEO from more than 50 years of space activity (termed "Active Debris Removal", or ADR). Many ADR proposals face complex technical issues of how to grapple with uncooperative targets. Some researchers have suggested the use of conventional ion thrusters to gently "blow" on objects to gradually change their orbits, without ever having to come into physical contact with the target. The chief drawback with these methods is the cost per object removed. Typically, a space "tug" or an ion-drive "shepherd" can only remove a few objects per mission due to limited propellant. Unless a costeffective way that removes tens of objects per mission can be found, it is not clear that any of the ideas so far proposed will be economically viable. In this paper, a modified version of the ion-drive "shepherd" is proposed that uses ambient atmospheric gases in LEO as propellant for the ion drives. This method has the potential to greatly extend the operational lifetime of an ADR mission, as the only mission limit is the lifetime of the components of the satellite itself, not on its fuel supply. An ambient-gas ion-drive "shepherd" would the local atmospheric drag on an object by ionizing and accelerating the ambient gas the target would have encountered anyway, thereby hastening its decay. Also, the "shepherd" satellite itself has a great deal of flexibility to maneuver back to high altitude and rendezvous with its next target using the ion drive not limited by fuel supply. However, the amount of available ambient gas is closely tied to the altitude of the spacecraft. It may be possible to use a "hybrid" approach that supplements high-altitude ion-drive operations with stored gas, and transitions to ambient gas at lower altitudes. This paper will include realistic numbers on the estimated times needed to deorbit objects from different orbit regimes using drives that either partially or completely take advantage of ambient gas. It will conclude with recommendations on whether this is a viable candidate for future ADR efforts.
An Electric Propulsion "Shepherd" for Active Debris Removal that Utilizes Ambient Gas as Propellant
NASA Technical Reports Server (NTRS)
Matney, Mark
2013-01-01
There is a growing consensus among the space debris technical community that limiting the long-term growth of debris in Low-Earth Orbit (LEO) requires that space users limit the accumulation of mass in orbit. This is partially accomplished by mitigation measures for current and future LEO systems, but there is now interest in removing mass that has already accumulated in LEO from more than 50 years of space activity (termed "Active Debris Removal", or ADR). Many ADR proposals face complex technical issues of how to grapple with uncooperative targets. Some researchers have suggested the use of conventional ion thrusters to gently "blow" on objects to gradually change their orbits, without ever having to come into physical contact with the target. The chief drawback with these methods is the cost per object removed. Typically, a space "tug" or an ion-drive "shepherd" can only remove a few objects per mission due to limited propellant. Unless a cost-effective way that removes tens of objects per mission can be found, it is not clear that any of the ideas so far proposed will be economically viable. In this paper, a modified version of the ion-drive "shepherd" is proposed that uses ambient atmospheric gases in LEO as propellant for the ion drives. This method has the potential to greatly extend the operational lifetime of an ADR mission, as the only mission limit is the lifetime of the components of the satellite itself, not on its fuel supply. An ambient-gas ion-drive "shepherd" would enhance the local atmospheric drag on an object by ionizing and accelerating the ambient gas the target would have encountered anyway, thereby hastening its decay. Also, the "shepherd" satellite itself has a great deal of flexibility to maneuver back to high altitude and rendezvous with its next target using the ion drive not limited by fuel supply. However, the amount of available ambient gas is closely tied to the altitude of the spacecraft. It may be possible to use a "hybrid" approach that supplements high-altitude ion-drive operations with stored gas, and transitions to ambient gas at lower altitudes. This paper will include realistic numbers on the estimated times needed to deorbit objects from different orbit regimes using drives that either partially or completely take advantage of ambient gas. It will conclude with recommendations on whether this is a viable candidate for future ADR efforts.
Driving Comparisons Between Young Adults with Autism Spectrum Disorder and Typical Development.
Patrick, Kristina E; Hurewitz, Felicia; McCurdy, Mark D; Agate, Frederic Taylor; Daly, Brian P; Tarazi, Reem A; Chute, Douglas L; Schultheis, Maria T
2018-05-18
Many individuals with autism spectrum disorder (ASD) are reluctant to pursue driving because of concerns about their ability to drive safely. This study aimed to assess differences in simulated driving performance in young adults with ASD and typical development, examining relationships between driving performance and the level of experience (none, driver's permit, licensed) across increasingly difficult driving environments. Participants included 50 English-speaking young adults (16-26 years old) with ASD matched for sex, age, and licensure with 50 typically-developing (TD) peers. Participants completed a structured driving assessment using a virtual-reality simulator that included increasingly complex environmental demands. Differences in mean speed and speed and lane variability by diagnostic group and driving experience were analyzed using multilevel linear modeling. Young adults with ASD demonstrated increased variability in speed and lane positioning compared with controls, even during low demand tasks. When driving demands became more complex, group differences were moderated by driving experience such that licensed drivers with ASD drove similarly to TD licensed drivers for most tasks, whereas unlicensed drivers with ASD had more difficulty with speed and lane management than TD drivers. Findings suggest that young adults with ASD may have more difficulty with basic driving skills than peers, particularly in the early stages of driver training. Increased difficulty compared with peers increases as driving demands become more complex, suggesting that individuals with ASD may benefit from a slow and gradual approach to driver training. Future studies should evaluate predictors of driving performance, on-road driving, and ASD-specific driving interventions.
Extended driving impairs nocturnal driving performances.
Sagaspe, Patricia; Taillard, Jacques; Akerstedt, Torbjorn; Bayon, Virginie; Espié, Stéphane; Chaumet, Guillaume; Bioulac, Bernard; Philip, Pierre
2008-01-01
Though fatigue and sleepiness at the wheel are well-known risk factors for traffic accidents, many drivers combine extended driving and sleep deprivation. Fatigue-related accidents occur mainly at night but there is no experimental data available to determine if the duration of prior driving affects driving performance at night. Participants drove in 3 nocturnal driving sessions (3-5 am, 1-5 am and 9 pm-5 am) on open highway. Fourteen young healthy men (mean age [+/-SD] = 23.4 [+/-1.7] years) participated Inappropriate line crossings (ILC) in the last hour of driving of each session, sleep variables, self-perceived fatigue and sleepiness were measured. Compared to the short (3-5 am) driving session, the incidence rate ratio of inappropriate line crossings increased by 2.6 (95% CI, 1.1 to 6.0; P<.05) for the intermediate (1-5 am) driving session and by 4.0 (CI, 1.7 to 9.4; P<.001) for the long (9 pm-5 am) driving session. Compared to the reference session (9-10 pm), the incidence rate ratio of inappropriate line crossings were 6.0 (95% CI, 2.3 to 15.5; P<.001), 15.4 (CI, 4.6 to 51.5; P<.001) and 24.3 (CI, 7.4 to 79.5; P<.001), respectively, for the three different durations of driving. Self-rated fatigue and sleepiness scores were both positively correlated to driving impairment in the intermediate and long duration sessions (P<.05) and increased significantly during the nocturnal driving sessions compared to the reference session (P<.01). At night, extended driving impairs driving performances and therefore should be limited.
ERIC Educational Resources Information Center
Cox, Stephany M.; Cox, Daniel J.; Kofler, Michael J.; Moncrief, Matthew A.; Johnson, Ronald J.; Lambert, Ann E.; Cain, Sarah A.; Reeve, Ronald E.
2016-01-01
Previous studies have shown that individuals with autism spectrum disorder (ASD) demonstrate poorer driving performance than their peers and are less likely to obtain a driver's license. This study aims to examine the relationship between driving performance and executive functioning for novice drivers, with and without ASD, using a driving…
Overview | Office of Cancer Genomics
The Therapeutically Applicable Research to Generate Effective Treatments (TARGET) initiative uses comprehensive molecular characterization to determine the genetic changes that drive the initiation and progression of hard-to-treat childhood cancers. TARGET aims to identify therapeutic targets and prognostic markers so that new, more effective treatment strategies can be developed and applied. Novel pediatric cancer treatments are needed because:
In Patients With Cirrhosis, Driving Simulator Performance Is Associated With Real-life Driving.
Lauridsen, Mette M; Thacker, Leroy R; White, Melanie B; Unser, Ariel; Sterling, Richard K; Stravitz, Richard T; Matherly, Scott; Puri, Puneet; Sanyal, Arun J; Gavis, Edith A; Luketic, Velimir; Siddiqui, Muhammad S; Heuman, Douglas M; Fuchs, Michael; Bajaj, Jasmohan S
2016-05-01
Minimal hepatic encephalopathy (MHE) has been linked to higher real-life rates of automobile crashes and poor performance in driving simulation studies, but the link between driving simulator performance and real-life automobile crashes has not been clearly established. Furthermore, not all patients with MHE are unsafe drivers, but it is unclear how to distinguish them from unsafe drivers. We investigated the link between performance on driving simulators and real-life automobile accidents and traffic violations. We also aimed to identify features of unsafe drivers with cirrhosis and evaluated changes in simulated driving skills and MHE status after 1 year. We performed a study of outpatients with cirrhosis (n = 205; median 55 years old; median model for end-stage liver disease score, 9.5; none with overt hepatic encephalopathy or alcohol or illicit drug use within previous 6 months) seen at the Virginia Commonwealth University and McGuire Veterans Administration Medical Center, from November 2008 through April 2014. All participants were given paper-pencil tests to diagnose MHE (98 had MHE; 48%), and 163 patients completed a standardized driving simulation. Data were collected on traffic violations and automobile accidents from the Virginia Department of Motor Vehicles and from participants' self-assessments when they entered the study, and from 73 participants 1 year later. Participants also completed a questionnaire about alcohol use and cessation patterns. The driving simulator measured crashes, run-time, road center and edge excursions, and illegal turns during navigation; before and after each driving simulation session, patients were asked to rate their overall driving skills. Drivers were classified as safe or unsafe based on crashes and violations reported on official driving records; simulation results were compared with real-life driving records. Multivariable regression analyses of real-life crashes and violations was performed using data on demographics, cirrhosis details, MHE status, and alcohol cessation patterns, at baseline and at 1 year. Drivers categorized as unsafe had more crashes and made more illegal turns on the driving simulator than drivers categorized as safe; a higher proportion of subjects with MHE were categorized as unsafe drivers at baseline (16%) than subjects without MHE (7%; P = .02), and at 1-year follow-up (18% vs 0%; P = .02). Alcohol cessation within <1 year and illegal turns during simulator navigation tasks were associated with real-life automobile crashes and MHE in regression analysis; road edge excursions in the simulator were associated with real-life traffic violations. Personal assessment of driving skills improved after each simulation episode. In a study of 205 patients with cirrhosis, we associated results from driving simulation tests with real-life driving records and MHE. Traffic safety counseling should focus on patients with cirrhosis who recently quit consuming alcohol and perform poorly on driving simulation. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.
Correlation between Driver Subjective Fatigue and Bus Lateral Position in a Driving Simulator.
Gharagozlou, Faramarz; Mazloumi, Adel; Saraji, Gebraeil Nasl; Nahvi, Ali; Ashouri, Mohammadreza; Mozaffari, Hamed
2015-08-01
Driver fatigue as a leading cause of death in the transportation industry can impair the driving performance in long-distance driving task. Studies on the links of driver subjective fatigue and the bus lateral position are still an exploratory issue that requires further investigation. This study aimed to determine the correlation between the driver subjective fatigue and the bus lateral position in a driving simulator. This descriptive-analytical research was conducted on 30 professional male bus drivers participated in a two-hour driving session. The driver subjective fatigue was assessed by the Fatigue Visual Analogue Scale (F-VAS) at 10-min intervals. Simultaneously, the performance measures of lane drifting as the mean and standard deviation of the bus lateral position (SDLP) were calculated during the simulated driving task. Descriptive statistics and the Spearman correlation coefficient were used to describe and analyze the data. Fatigue levels had an increasing trend as the time-on-task of driving increased. Time-on-task of driving had the greatest effect on the fatigue self-evaluation (r = 0.605, p < 0.0001). The results showed a significant correlation between fatigue self-evaluation and bus lateral position (r = 0.567, p < 0.0001). As the time of driving increased, driving performance was affected adversely, as shown by the increase in the SDLP. Even so, the effect of individual differences on driving performance should not be overlooked. This work concludes that predicting the state of a driver fatigue based on the group mean data has some complications for any application.
Correlation between Driver Subjective Fatigue and Bus Lateral Position in a Driving Simulator
Gharagozlou, Faramarz; Mazloumi, Adel; Saraji, Gebraeil Nasl; Nahvi, Ali; Ashouri, Mohammadreza; Mozaffari, Hamed
2015-01-01
Background: Driver fatigue as a leading cause of death in the transportation industry can impair the driving performance in long-distance driving task. Studies on the links of driver subjective fatigue and the bus lateral position are still an exploratory issue that requires further investigation. This study aimed to determine the correlation between the driver subjective fatigue and the bus lateral position in a driving simulator. Methods: This descriptive-analytical research was conducted on 30 professional male bus drivers participated in a two-hour driving session. The driver subjective fatigue was assessed by the Fatigue Visual Analogue Scale (F-VAS) at 10-min intervals. Simultaneously, the performance measures of lane drifting as the mean and standard deviation of the bus lateral position (SDLP) were calculated during the simulated driving task. Descriptive statistics and the Spearman correlation coefficient were used to describe and analyze the data. Results: Fatigue levels had an increasing trend as the time-on-task of driving increased. Time-on-task of driving had the greatest effect on the fatigue self-evaluation (r = 0.605, p < 0.0001). The results showed a significant correlation between fatigue self-evaluation and bus lateral position (r = 0.567, p < 0.0001). Conclusion: As the time of driving increased, driving performance was affected adversely, as shown by the increase in the SDLP. Even so, the effect of individual differences on driving performance should not be overlooked. This work concludes that predicting the state of a driver fatigue based on the group mean data has some complications for any application. PMID:26396734
Quantitative assessment of driving performance in Parkinson's disease
Wood, J; Worringham, C; Kerr, G; Mallon, K; Silburn, P
2005-01-01
Objectives: The primary aim of this study was to determine how Parkinson's disease (PD) affects driving performance. It also examined whether changes in driver safety were related to specific clinical disease markers or an individual's self rating of driving ability. Methods: The driving performance of 25 patients with idiopathic PD and 21 age matched controls was assessed on a standardised open road route by an occupational therapist and driving instructor, to provide overall safety ratings and specific driving error scores. Results: The drivers with PD were rated as significantly less safe (p<0.05) than controls, and more than half of the drivers with PD would not have passed a state based driving test. The driver safety ratings were more strongly related to disease duration (r = –0.60) than to their on time Unified Parkinson's Disease Rating Scale (r = –0.24). Drivers with PD made significantly more errors than the control group during manoeuvres that involved changing lanes and lane keeping, monitoring their blind spot, reversing, car parking, and traffic light controlled intersections. The driving instructor also had to intervene to avoid an incident significantly more often for drivers with PD than for controls. Interestingly, driver safety ratings were unrelated to an individual's rating of their own driving performance, and this was the case for all participants. Conclusions: As a group, drivers with PD are less safe to drive than age matched controls. Standard clinical markers cannot reliably predict driver safety. Further studies are required to ascertain whether the identified driving difficulties can be ameliorated. PMID:15654027
Space shuttle onboard navigation console expert/trainer system
NASA Technical Reports Server (NTRS)
Wang, Lui; Bochsler, Dan
1987-01-01
A software system for use in enhancing operational performance as well as training ground controllers in monitoring onboard Space Shuttle navigation sensors is described. The Onboard Navigation (ONAV) development reflects a trend toward following a structured and methodical approach to development. The ONAV system must deal with integrated conventional and expert system software, complex interfaces, and implementation limitations due to the target operational environment. An overview of the onboard navigation sensor monitoring function is presented, along with a description of guidelines driving the development effort, requirements that the system must meet, current progress, and future efforts.
Extending HHG spectroscopy to new molecular species
NASA Astrophysics Data System (ADS)
McGrath, F.; Hawkins, P.; Simpson, E.; Siegel, T.; Diveki, Z.; Austin, D.; Zair, A.; Castillejo, M.; Marangos, J. P.
2014-03-01
We present technical and experimental advances for performing HHG experiments in a range of substituted benzene molecules starting in the liquid phase. We demonstrate sub 3% fluctutaions in the harmonic signal generated in a benzene vapour backed continuous flow gas jet using a mid-IR laser source. The longer drive wavelength is necessary as the target molecules have low ionization potential and exhibit femtosecond timescale dynamics. We present the acquisition of stable and reproducible harmonic spectra from a range of substituted benzene molecules and the dependence of HHG upon the ellipticity of the laser beam was measured for a number of molecules.
Chambers, David W
2002-01-01
Some practices "wing it," some pick outcomes after the fact in order to look good. But neither of these approaches creates much confidence that next year will be okay, let alone better. Using measurement to improve practice requires understanding the interplay among mission, vision, core values, key success factors, and performance indicators. Combined intelligently, these five elements drive strategic planning and budgeting. They also lead to monitoring progress toward success. This is best done with a balanced scorecard that includes leading and lagging indicators of mission and vision. Indicators should be sampled to represent the practice and monitored against targets to propel the practice toward success.
Prolate-Spheroid (``Rugby-Shaped'') Hohlraum for Inertial Confinement Fusion
NASA Astrophysics Data System (ADS)
Vandenboomgaerde, M.; Bastian, J.; Casner, A.; Galmiche, D.; Jadaud, J.-P.; Laffite, S.; Liberatore, S.; Malinie, G.; Philippe, F.
2007-08-01
A novel rugby-ball shaped hohlraum is designed in the context of the indirect-drive scheme of inertial-confinement fusion (ICF). Experiments were performed on the OMEGA laser and are the first use of rugby hohlraums for ICF studies. Analysis of experimental data shows that the hohlraum energetics is well understood. We show that the rugby-ball shape exhibits advantages over cylinder, in terms of temperature and of symmetry control of the capsule implosion. Simulations indicate that rugby hohlraum driven targets may be candidates for ignition in a context of early Laser MegaJoule experiments with reduced laser energy.
Preliminary report of the Hepatic Encephalopathy Assessment Driving Simulator (HEADS) score.
Baskin-Bey, Edwina S; Stewart, Charmaine A; Mitchell, Mary M; Bida, John P; Rosenthal, Theodore J; Nyberg, Scott L
2008-01-01
Audiovisual simulations of real-life driving (ie, driving simulators) have been used to assess neurologic dysfunction in a variety of medical applications. However, the use of simulated driving to assess neurologic impairment in the setting of liver disease (ie, hepatic encephalopathy) is limited. The aim of this analysis was to develop a scoring system based on simulated driving performance to assess mild cognitive impairment in cirrhotic patients with hepatic encephalopathy. This preliminary analysis was conducted as part of the Hepatic Encephalopathy Assessment Driving Simulator (HEADS) pilot study. Cirrhotic volunteers initially underwent a battery of neuropsychological tests to identify those cirrhotic patients with mild cognitive impairment. Performance during an audiovisually simulated course of on-road driving was then compared between mildly impaired cirrhotic patients and healthy volunteers. A scoring system was developed to quantify the likelihood of cognitive impairment on the basis of data from the simulated on-road driving. Mildly impaired cirrhotic patients performed below the level of healthy volunteers on the driving simulator. Univariate logistic regression and correlation models indicated that several driving simulator variables were significant predictors of cognitive impairment. Five variables (run time, total map performance, number of collisions, visual divided attention response, and average lane position) were incorporated into a quantitative model, the HEADS scoring system. The HEADS score (0-9 points) showed a strong correlation with cognitive impairment as measured by area under the receiver-operator curve (.89). The HEADS system appears to be a promising new tool for the assessment of mild hepatic encephalopathy.
Saccadic eye movement performance as an indicator of driving ability in elderly drivers.
Schmitt, Kai-Uwe; Seeger, Rolf; Fischer, Hartmut; Lanz, Christian; Muser, Markus; Walz, Felix; Schwarz, Urs
2015-01-01
Regular checking of the fitness to drive of elderly car-license holders is required in some countries, and this will become increasingly important as more countries face aging populations. The present study investigated whether the analysis of saccadic eye movements could be used as a screening method for the assessment of driving ability. Three different paradigms (prosaccades, antisaccades, and visuovisual interactive (VVI) saccades) were used to test saccadic eye movements in 144 participants split into four groups: elderly drivers who came to the attention of road authorities for suspected lack of fitness to drive, a group of elderly drivers who served as a comparison group, a group of neurology patients with established brain lesion diagnoses, and a young comparison group. The group of elderly drivers with suspected deficits in driving skills also underwent a medical examination and a practical on-road driving test. The results of the saccadic eye tests of the different groups were compared. Antisaccade results indicated a strong link to driving behaviour: elderly drivers who were not fit to drive exhibited a poor performance on the antisaccade task and the performance in the VVI task was also clearly poorer in this group. Testing saccadic eye movements appears to be a promising and efficient method for screening large numbers of people such as elderly drivers. This study indicated a link between antisaccade performance and the ability to drive. Hence, measuring saccadic eye movements should be considered as a tool for screening the fitness to drive.
Philip, Pierre; Chaufton, Cyril; Taillard, Jacques; Sagaspe, Patricia; Léger, Damien; Raimondi, Monika; Vakulin, Andrew; Capelli, Aurore
2013-08-01
Sleepiness at the wheel is a risk factor for traffic accidents. Past studies have demonstrated the validity of the Maintenance of Wakefulness Test (MWT) scores as a predictor of driving impairment in untreated patients with obstructive sleep apnea syndrome (OSAS), but there is limited information on the validity of the maintenance of wakefulness test by MWT in predicting driving impairment in patients with hypersomnias of central origin (narcolepsy or idiopathic hypersomnia). The aim of this study was to compare the MWT scores with driving performance in sleep disorder patients and controls. 19 patients suffering from hypersomnias of central origin (9 narcoleptics and 10 idiopathic hypersomnia), 17 OSAS patients and 14 healthy controls performed a MWT (4×40-minute trials) and a 40-minute driving session on a real car driving simulator. Participants were divided into 4 groups defined by their MWT sleep latency scores. The groups were pathological (sleep latency 0-19 min), intermediate (20-33 min), alert (34-40 min) and control (>34 min). The main driving performance outcome was the number of inappropriate line crossings (ILCs) during the 40 minute drive test. Patients with pathological MWT sleep latency scores (0-19 min) displayed statistically significantly more ILC than patients from the intermediate, alert and control groups (F (3, 46)=7.47, p<0.001). Pathological sleep latencies on the MWT predicted driving impairment in patients suffering from hypersomnias of central origin as well as in OSAS patients. MWT is an objective measure of daytime sleepiness that appears to be useful in estimating the driving performance in sleepy patients. Copyright © 2013 Elsevier B.V. All rights reserved.
Augmented Reality Cues and Elderly Driver Hazard Perception
Schall, Mark C.; Rusch, Michelle L.; Lee, John D.; Dawson, Jeffrey D.; Thomas, Geb; Aksan, Nazan; Rizzo, Matthew
2013-01-01
Objective Evaluate the effectiveness of augmented reality (AR) cues in improving driving safety in elderly drivers who are at increased crash risk due to cognitive impairments. Background Cognitively challenging driving environments pose a particular crash risk for elderly drivers. AR cueing is a promising technology to mitigate risk by directing driver attention to roadway hazards. This study investigates whether AR cues improve or interfere with hazard perception in elderly drivers with age-related cognitive decline. Methods Twenty elderly (Mean= 73 years, SD= 5 years), licensed drivers with a range of cognitive abilities measured by a speed of processing (SOP) composite participated in a one-hour drive in an interactive, fixed-base driving simulator. Each participant drove through six, straight, six-mile-long rural roadway scenarios following a lead vehicle. AR cues directed attention to potential roadside hazards in three of the scenarios, and the other three were uncued (baseline) drives. Effects of AR cueing were evaluated with respect to: 1) detection of hazardous target objects, 2) interference with detecting nonhazardous secondary objects, and 3) impairment in maintaining safe distance behind a lead vehicle. Results AR cueing improved the detection of hazardous target objects of low visibility. AR cues did not interfere with detection of nonhazardous secondary objects and did not impair ability to maintain safe distance behind a lead vehicle. SOP capacity did not moderate those effects. Conclusion AR cues show promise for improving elderly driver safety by increasing hazard detection likelihood without interfering with other driving tasks such as maintaining safe headway. PMID:23829037
NASA Astrophysics Data System (ADS)
Wu, Kai; Wang, Jian-Ping
2017-05-01
The heating performance of magnetic nanoparticles (MNPs) under an alternating magnetic field (AMF) is dependent on several factors. Optimizing these factors improves the heating efficiency for cancer therapy and meanwhile lowers the MNP treatment dosage. AMF is one of the most easily controllable variables to enhance the efficiency of heat generation. This paper investigated the optimal magnetic field strength and frequency for an assembly of magnetite nanoparticles. For hyperthermia treatment in clinical applications, monodispersed NPs are forming nanoclusters in target regions where a strong magnetically interactive environment is anticipated, which leads to a completely different situation than MNPs in ferrofluids. Herein, the energy barrier model is revisited and Néel relaxation time is tailored for high MNP packing densities. AMF strength and frequency are customized for different magnetite NPs to achieve the highest power generation and the best hyperthermia performance.
Predicting driving performance in older adults: we are not there yet!
Bédard, Michel; Weaver, Bruce; Darzins, Peteris; Porter, Michelle M
2008-08-01
We set up this study to determine the predictive value of approaches for which a statistical association with driving performance has been documented. We determined the statistical association (magnitude of association and probability of occurrence by chance alone) between four different predictors (the Mini-Mental State Examination, Trails A test, Useful Field of View [UFOV], and a composite measure of past driving incidents) and driving performance. We then explored the predictive value of these measures with receiver operating characteristic (ROC) curves and various cutoff values. We identified associations between the predictors and driving performance well beyond the play of chance (p < .01). Nonetheless, the predictors had limited predictive value with areas under the curve ranging from .51 to .82. Statistical associations are not sufficient to infer adequate predictive value, especially when crucial decisions such as whether one can continue driving are at stake. The predictors we examined have limited predictive value if used as stand-alone screening tests.
Wilson, Mark; Smith, Nickolas C; Chattington, Mark; Ford, Mike; Marple-Horvat, Dilwyn E
2006-11-01
We tested some of the key predictions of processing efficiency theory using a simulated rally driving task. Two groups of participants were classified as either dispositionally high or low anxious based on trait anxiety scores and trained on a simulated driving task. Participants then raced individually on two similar courses under counterbalanced experimental conditions designed to manipulate the level of anxiety experienced. The effort exerted on the driving tasks was assessed though self-report (RSME), psychophysiological measures (pupil dilation) and visual gaze data. Efficiency was measured in terms of efficiency of visual processing (search rate) and driving control (variability of wheel and accelerator pedal) indices. Driving performance was measured as the time taken to complete the course. As predicted, increased anxiety had a negative effect on processing efficiency as indexed by the self-report, pupillary response and variability of gaze data. Predicted differences due to dispositional levels of anxiety were also found in the driving control and effort data. Although both groups of drivers performed worse under the threatening condition, the performance of the high trait anxious individuals was affected to a greater extent by the anxiety manipulation than the performance of the low trait anxious drivers. The findings suggest that processing efficiency theory holds promise as a theoretical framework for examining the relationship between anxiety and performance in sport.
Exploring the association between working memory and driving performance in Parkinson's disease.
Vardaki, Sophia; Devos, Hannes; Beratis, Ion; Yannis, George; Papageorgiou, Sokratis G
2016-05-18
The aim of this study was to explore whether varying levels of operational and tactical driving task demand differentially affect drivers with Parkinson's disease (PD) and control drivers in their sign recall. Study participants aged between 50 and 70 years included a group of drivers with PD (n = 10) and a group of age- and sex-matched control drivers (n = 10). Their performance in a sign recall task was measured using a driving simulator. Drivers in the control group performed better than drivers with PD in a sign recall task, but this trend was not statistically significant (P =.43). In addition, regardless of group membership, subjects' performance differed according to varying levels of task demand. Performance in the sign recall task was more likely to drop with increasing task demand (P =.03). This difference was significant when the variation in task demand was associated with a cognitive task; that is, when drivers were required to apply the instructions from working memory. Although the conclusions drawn from this study are tentative, the evidence presented here is encouraging with regard to the use of a driving simulator to examine isolated cognitive functions underlying driving performance in PD. With an understanding of its limitations, such driving simulation in combination with functional assessment batteries measuring physical, visual, and cognitive abilities could comprise one component of a multitiered system to evaluate medical fitness to drive.
Verster, Joris C; Roth, Thomas
2012-03-01
There are various methods to examine driving ability. Comparisons between these methods and their relationship with actual on-road driving is often not determined. The objective of this study was to determine whether laboratory tests measuring driving-related skills could adequately predict on-the-road driving performance during normal traffic. Ninety-six healthy volunteers performed a standardized on-the-road driving test. Subjects were instructed to drive with a constant speed and steady lateral position within the right traffic lane. Standard deviation of lateral position (SDLP), i.e., the weaving of the car, was determined. The subjects also performed a psychometric test battery including the DSST, Sternberg memory scanning test, a tracking test, and a divided attention test. Difference scores from placebo for parameters of the psychometric tests and SDLP were computed and correlated with each other. A stepwise linear regression analysis determined the predictive validity of the laboratory test battery to SDLP. Stepwise regression analyses revealed that the combination of five parameters, hard tracking, tracking and reaction time of the divided attention test, and reaction time and percentage of errors of the Sternberg memory scanning test, together had a predictive validity of 33.4%. The psychometric tests in this test battery showed insufficient predictive validity to replace the on-the-road driving test during normal traffic.
Jongen, Stefan; van der Sluiszen, Nick N J J M; Brown, Dennis; Vuurman, Eric F P M
2018-05-01
Driving experience and alcohol are two factors associated with a higher risk of crash involvement in young novice drivers. Driving a car is a complex task involving multiple tasks leading to dividing attention. The aim of this study was to compare the single and combined effects of a low and moderate dose of alcohol on single- and dual-task performance between young novice and more experienced young drivers during actual driving. Nine healthy novice drivers were compared with 9 more experienced drivers in a three-way, placebo-controlled, cross-over study design. Driving performance was measured in actual traffic, with standard deviation of lateral position as the primary outcome variable. Secondary task performance was measured with an auditory word learning test during driving. Results showed that standard deviation of lateral position increased dose-dependently at a blood alcohol concentration (BAC) of 0.2 and 0.5 g/L in both novice and experienced drivers. Secondary task performance was impaired in both groups at a BAC of 0.5 g/L. Furthermore, it was found that driving performance in novice drivers was already impaired at a BAC of 0.2 g/L during dual-task performance. The findings suggest that young inexperienced drivers are especially vulnerable to increased mental load while under the influence of alcohol. © 2018 The Authors Human Psychopharmacology: Clinical and Experimental Published by John Wiley & Sons Ltd.
Adjusting the Rear View Mirror: An Examination of Youth Driving Culture
ERIC Educational Resources Information Center
Tilleczek, Kate C.
2011-01-01
The majority of deaths for contemporary young people are related to injuries sustained in motor vehicle accidents. Most prevention efforts targeted at addressing the issue are less than effective and do not address youth driving as a culture. This article presents findings from an ethnographic study that attempts to understand the ways in which…
1980-03-01
a driver and emphasizes the potential applied value of this theoretical approach in improving driving safety . From a pragmatic point of view, it is...distance, there is less spare time to react after an essential target has been recognized. Because driving safety is of crucial importance under all con
High risk of near-crash driving events following night-shift work
Lee, Michael L.; Howard, Mark E.; Horrey, William J.; Liang, Yulan; Anderson, Clare; Shreeve, Michael S.; O’Brien, Conor S.; Czeisler, Charles A.
2016-01-01
Night-shift workers are at high risk of drowsiness-related motor vehicle crashes as a result of circadian disruption and sleep restriction. However, the impact of actual night-shift work on measures of drowsiness and driving performance while operating a real motor vehicle remains unknown. Sixteen night-shift workers completed two 2-h daytime driving sessions on a closed driving track at the Liberty Mutual Research Institute for Safety: (i) a postsleep baseline driving session after an average of 7.6 ± 2.4 h sleep the previous night with no night-shift work, and (ii) a postnight-shift driving session following night-shift work. Physiological measures of drowsiness were collected, including infrared reflectance oculography, electroencephalography, and electrooculography. Driving performance measures included lane excursions, near-crash events, and drives terminated because of failure to maintain control of the vehicle. Eleven near-crashes occurred in 6 of 16 postnight-shift drives (37.5%), and 7 of 16 postnight-shift drives (43.8%) were terminated early for safety reasons, compared with zero near-crashes or early drive terminations during 16 postsleep drives (Fishers exact: P = 0.0088 and P = 0.0034, respectively). Participants had a significantly higher rate of lane excursions, average Johns Drowsiness Scale, blink duration, and number of slow eye movements during postnight-shift drives compared with postsleep drives (3.09/min vs. 1.49/min; 1.71 vs. 0.97; 125 ms vs. 100 ms; 35.8 vs. 19.1; respectively, P < 0.05 for all). Night-shift work increases driver drowsiness, degrading driving performance and increasing the risk of near-crash drive events. With more than 9.5 million Americans working overnight or rotating shifts and one-third of United States commutes exceeding 30 min, these results have implications for traffic and occupational safety. PMID:26699470
High risk of near-crash driving events following night-shift work.
Lee, Michael L; Howard, Mark E; Horrey, William J; Liang, Yulan; Anderson, Clare; Shreeve, Michael S; O'Brien, Conor S; Czeisler, Charles A
2016-01-05
Night-shift workers are at high risk of drowsiness-related motor vehicle crashes as a result of circadian disruption and sleep restriction. However, the impact of actual night-shift work on measures of drowsiness and driving performance while operating a real motor vehicle remains unknown. Sixteen night-shift workers completed two 2-h daytime driving sessions on a closed driving track at the Liberty Mutual Research Institute for Safety: (i) a postsleep baseline driving session after an average of 7.6 ± 2.4 h sleep the previous night with no night-shift work, and (ii) a postnight-shift driving session following night-shift work. Physiological measures of drowsiness were collected, including infrared reflectance oculography, electroencephalography, and electrooculography. Driving performance measures included lane excursions, near-crash events, and drives terminated because of failure to maintain control of the vehicle. Eleven near-crashes occurred in 6 of 16 postnight-shift drives (37.5%), and 7 of 16 postnight-shift drives (43.8%) were terminated early for safety reasons, compared with zero near-crashes or early drive terminations during 16 postsleep drives (Fishers exact: P = 0.0088 and P = 0.0034, respectively). Participants had a significantly higher rate of lane excursions, average Johns Drowsiness Scale, blink duration, and number of slow eye movements during postnight-shift drives compared with postsleep drives (3.09/min vs. 1.49/min; 1.71 vs. 0.97; 125 ms vs. 100 ms; 35.8 vs. 19.1; respectively, P < 0.05 for all). Night-shift work increases driver drowsiness, degrading driving performance and increasing the risk of near-crash drive events. With more than 9.5 million Americans working overnight or rotating shifts and one-third of United States commutes exceeding 30 min, these results have implications for traffic and occupational safety.
Support for stroke patients in resumption of driving: patient survey and driving simulator trial
Hitosugi, Masahito; Takehara, Itaru; Watanabe, Shu; Hayashi, Yasufumi; Tokudome, Shogo
2011-01-01
Background: Encouragement of stroke patients to resume driving is important to promote their reintegration into the community. Limited rehabilitation has been performed in this regard, owing to lack of specific knowledge on the part of medical staff. To establish an effective support program for stroke patients who wish to resume driving, we propose comprehensive training by medical staff using a driving simulator. Methods: A survey of stroke patients admitted to the Tokyo Metropolitan Rehabilitation Hospital was first performed. A questionnaire was sent to 525 patients. Of 218 responses, the answers of 118 patients who had been driving before their stroke were analyzed. More than 80% of stroke patients did not obtain enough information about resuming driving during their hospital stay, and 38.1% of patients would have liked to have had driving training with a simulator. From these results, we set out to determine the effect of driving training using a realistic and technically advanced driving simulator. Twenty-four stroke patients and 20 healthy controls were included in the study. Results: Repeat training with the simulator resulted in an increased ability to perform braking and an improvement in driving ability. The majority of stroke patients who had the mental and physical ability to drive a car were likely to be assessed as being able to resume driving as a result of the training program. Conclusion: This study indicates that comprehensive support by medical staff and provision of adequate information about resumption of driving and the opportunity for training on a driving simulator are likely to aid resumption of driving by stroke patients, thus enhancing their rehabilitation and social reintegration. PMID:21475633
Wade, Joshua; Weitlauf, Amy; Broderick, Neill; Swanson, Amy; Zhang, Lian; Bian, Dayi; Sarkar, Medha; Warren, Zachary; Sarkar, Nilanjan
2017-11-01
Individuals with Autism Spectrum Disorder (ASD), compared to typically-developed peers, may demonstrate behaviors that are counter to safe driving. The current work examines the use of a novel simulator in two separate studies. Study 1 demonstrates statistically significant performance differences between individuals with (N = 7) and without ASD (N = 7) with regards to the number of turning-related driving errors (p < 0.01). Study 2 shows that both the performance-based feedback group (N = 9) and combined performance- and gaze-sensitive feedback group (N = 8) achieved statistically significant reductions in driving errors following training (p < 0.05). These studies are the first to present results of fine-grained measures of visual attention of drivers and an adaptive driving intervention for individuals with ASD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aines, Roger D; Spadaccini, Christopher M; Stolaroff, Joshuah K
Method and apparatus for separating a target substance from a fluid or mixture. Capsules having a coating and stripping solvents encapsulated in the capsules are provided. The coating is permeable to the target substance. The capsules having a coating and stripping solvents encapsulated in the capsules are exposed to the fluid or mixture. The target substance migrates through the coating and is taken up by the stripping solvents. The target substance is separated from the fluid or mixture by driving off the target substance from the capsules.
AEGIS Automated Targeting for the MSL ChemCam Instrument
NASA Astrophysics Data System (ADS)
Estlin, T.; Anderson, R. C.; Blaney, D. L.; Bornstein, B.; Burl, M. C.; Castano, R.; Gaines, D.; Judd, M.; Thompson, D. R.; Wiens, R. C.
2013-12-01
The Autonomous Exploration for Gathering Increased Science (AEGIS) system enables automated science data collection by a planetary rover. AEGIS has been in use on the Mars Exploration Rover (MER) mission Opportunity rover since 2010 to provide onboard targeting of the MER Panoramic Camera based on scientist-specified objectives. AEGIS is now being applied for use with the Mars Science Laboratory (MSL) mission ChemCam spectrometer. ChemCam uses a Laser Induced Breakdown Spectrometer (LIBS) to analyze the elemental composition of rocks and soil from up to seven meters away. ChemCam's tightly-focused laser beam (350-550 um) enables targeting of very fine-scale terrain features. AEGIS is being applied in two ways to help ChemCam collect valuable science data. The first application is to enable automated targeting of ChemCam during or after or in the middle of long drives. The majority of ChemCam measurements are collected by allowing the science team to select specific targets in rover images. However this requires the rover to stay in the same area while images are downlinked, analyzed for targets, and new commands uplinked. The only data that can be acquired without this communication cycle is via blind targeting, where measurements are often of soil patches vs. instead of more valuable targets such as rocks with specific properties. AEGIS is being applied to automatically analyze images onboard and select targets for ChemCam analysis. This approach allows the rover to autonomously select and sequence targeted measurements in an opportunistic fashion at different points along the rover's drive path. Rock targets can be prioritized for measurement based on various geologically relevant features, including size, shape and albedo. A second application is to enable intelligent pointing refinement of ChemCam when acquiring data of small targets, such as veins or concretions that are only a few millimeters wide. Due to backlash and other pointing challenges, it can often require several downlink cycles for LIBS measurements to be acquired on small targets. Often targets must first be imaged using the high resolution ChemCam Remote Micro Imager (RMI) and then ground analysis performed to enable a fine-tuned pointing correction on the next commanding cycle. AEGIS is being applied to analyze RMI images onboard and automatically determine the pointing refinement necessary to acquire LIBS data on small targets. This significantly decreases the amount of time and resources required to acquire ChemCam data on such targets. Work is currently in progress to adapt AEGIS algorithm for these applications and integrate the system with MSL flight software. Once integration and testing is complete, AEGIS will be uploaded to the spacecraft for operational use.
Partially Turboelectric Aircraft Drive Key Performance Parameters
NASA Technical Reports Server (NTRS)
Jansen, Ralph H.; Duffy, Kirsten P.; Brown, Gerald V.
2017-01-01
The purpose of this paper is to propose electric drive specific power, electric drive efficiency, and electrical propulsion fraction as the key performance parameters for a partially turboelectric aircraft power system and to investigate their impact on the overall aircraft performance. Breguet range equations for a base conventional turbofan aircraft and a partially turboelectric aircraft are found. The benefits and costs that may result from the partially turboelectric system are enumerated. A break even analysis is conducted to find the minimum allowable electric drive specific power and efficiency, for a given electrical propulsion fraction, that can preserve the range, fuel weight, operating empty weight, and payload weight of the conventional aircraft. Current and future power system performance is compared to the required performance to determine the potential benefit.
Falls Risk and Simulated Driving Performance in Older Adults
Gaspar, John G.; Neider, Mark B.; Kramer, Arthur F.
2013-01-01
Declines in executive function and dual-task performance have been related to falls in older adults, and recent research suggests that older adults at risk for falls also show impairments on real-world tasks, such as crossing a street. The present study examined whether falls risk was associated with driving performance in a high-fidelity simulator. Participants were classified as high or low falls risk using the Physiological Profile Assessment and completed a number of challenging simulated driving assessments in which they responded quickly to unexpected events. High falls risk drivers had slower response times (~2.1 seconds) to unexpected events compared to low falls risk drivers (~1.7 seconds). Furthermore, when asked to perform a concurrent cognitive task while driving, high falls risk drivers showed greater costs to secondary task performance than did low falls risk drivers, and low falls risk older adults also outperformed high falls risk older adults on a computer-based measure of dual-task performance. Our results suggest that attentional differences between high and low falls risk older adults extend to simulated driving performance. PMID:23509627
On-Road Driving Performance by Persons with Hemianopia and Quadrantanopia
Wood, Joanne M.; McGwin, Gerald; Elgin, Jennifer; Vaphiades, Michael S.; Braswell, Ronald A.; DeCarlo, Dawn K.; Kline, Lanning B.; Meek, G. Christine; Searcey, Karen; Owsley, Cynthia
2009-01-01
Purpose This study was designed to examine the on-road driving performance of drivers with hemianopia and quadrantanopia compared with age-matched controls. Methods Participants included persons with hemianopia or quadrantanopia and those with normal visual fields. Visual and cognitive function tests were administered, including confirmation of hemianopia and quadrantanopia through visual field testing. Driving performance was assessed using a dual-brake vehicle and monitored by a certified driving rehabilitation specialist. The route was 14.1 miles of city and interstate driving. Two “back-seat” evaluators masked to drivers’ clinical characteristics independently assessed driving performance using a standard scoring system. Results Participants were 22 persons with hemianopia and 8 with quadrantanopia (mean age, 53 ± 20 years) and 30 participants with normal fields (mean age, 52 ± 19 years). Inter-rater agreement for back-seat evaluators was 96%. All drivers with normal fields were rated as safe to drive, while 73% (16/22) of hemianopic and 88% (7/8) of quadrantanopic drivers received safe ratings. Drivers with hemianopia or quadrantanopia who displayed on-road performance problems tended to have difficulty with lane position, steering steadiness, and gap judgment compared to controls. Clinical characteristics associated with unsafe driving were slowed visual processing speed, reduced contrast sensitivity and visual field sensitivity. Conclusions Some drivers with hemianopia or quadrantanopia are fit to drive compared with age-matched control drivers. Results call into question the fairness of governmental policies that categorically deny licensure to persons with hemianopia or quadrantanopia without the opportunity for on-road evaluation. PMID:18936138
Philip, Pierre; Chaufton, Cyril; Taillard, Jacques; Capelli, Aurore; Coste, Olivier; Léger, Damien; Moore, Nicholas; Sagaspe, Patricia
2014-03-01
Patients with excessive daytime sleepiness (EDS) are at high risk for driving accidents, and physicians are concerned by the effect of alerting drugs on driving skills of sleepy patients. No study has up to now investigated the effect of modafinil (a reference drug to treat EDS in patients with hypersomnia) on on-road driving performance of patients suffering from central hypersomnia. The objective is to evaluate in patients with central hypersomnia the effect of a wake-promoting drug on real driving performance and to assess the relationship between objective sleepiness and driving performance. Randomized, crossover, double-blind placebo-controlled trial conducted among 13 patients with narcolepsy and 14 patients with idiopathic hypersomnia. Patients were randomly assigned to receive modafinil (400 mg) or placebo for 5 days prior to the driving test. Each condition was separated by at least 3 weeks of washout. Mean number of Inappropriate Line Crossings, Standard Deviation of Lateral Position of the vehicle and mean sleep latency in the Maintenance of Wakefulness Test were assessed. Modafinil reduced the mean number of Inappropriate Line Crossings and Standard Deviation of Lateral Position of the vehicle compared to placebo (F(1,25) = 4.88, P < 0.05 and F(1,25) = 3.87, P = 0.06 tendency). Mean sleep latency at the Maintenance of Wakefulness Test significantly correlated with the mean number of Inappropriate Line Crossings (r = -0.41, P < 0.001). Modafinil improves driving performance in patients with narcolepsy and idiopathic hypersomnia. The Maintenance of Wakefulness Test is a suitable clinical tool to assess fitness to drive in this population.
Philip, Pierre; Chaufton, Cyril; Taillard, Jacques; Capelli, Aurore; Coste, Olivier; Léger, Damien; Moore, Nicholas; Sagaspe, Patricia
2014-01-01
Study Objective: Patients with excessive daytime sleepiness (EDS) are at high risk for driving accidents, and physicians are concerned by the effect of alerting drugs on driving skills of sleepy patients. No study has up to now investigated the effect of modafinil (a reference drug to treat EDS in patients with hypersomnia) on on-road driving performance of patients suffering from central hypersomnia. The objective is to evaluate in patients with central hypersomnia the effect of a wake-promoting drug on real driving performance and to assess the relationship between objective sleepiness and driving performance. Design and Participants: Randomized, crossover, double-blind placebo-controlled trial conducted among 13 patients with narcolepsy and 14 patients with idiopathic hypersomnia. Patients were randomly assigned to receive modafinil (400 mg) or placebo for 5 days prior to the driving test. Each condition was separated by at least 3 weeks of washout. Measurements: Mean number of Inappropriate Line Crossings, Standard Deviation of Lateral Position of the vehicle and mean sleep latency in the Maintenance of Wakefulness Test were assessed. Results: Modafinil reduced the mean number of Inappropriate Line Crossings and Standard Deviation of Lateral Position of the vehicle compared to placebo (F(1,25) = 4.88, P < 0.05 and F(1,25) = 3.87, P = 0.06 tendency). Mean sleep latency at the Maintenance of Wakefulness Test significantly correlated with the mean number of Inappropriate Line Crossings (r = -0.41, P < 0.001). Conclusions: Modafinil improves driving performance in patients with narcolepsy and idiopathic hypersomnia. The Maintenance of Wakefulness Test is a suitable clinical tool to assess fitness to drive in this population. Citation: Philip P; Chaufton C; Taillard J; Capelli A; Coste O; Léger D; Moore N; Sagaspe P. Modafinil improves real driving performance in patients with hypersomnia: a randomized double-blind placebo-controlled crossover clinical trial. SLEEP 2014;37(3):483-487. PMID:24587570
The influence of daily sleep patterns of commercial truck drivers on driving performance.
Chen, Guang Xiang; Fang, Youjia; Guo, Feng; Hanowski, Richard J
2016-06-01
Fatigued and drowsy driving has been found to be a major cause of truck crashes. Lack of sleep is the number one cause of fatigue and drowsiness. However, there are limited data on the sleep patterns (sleep duration, sleep percentage in the duration of non-work period, and the time when sleep occurred) of truck drivers in non-work periods and the impact on driving performance. This paper examined sleep patterns of 96 commercial truck drivers during non-work periods and evaluated the influence these sleep patterns had on truck driving performance. Data were from the Naturalistic Truck Driving Study. Each driver participated in the study for approximately four weeks. A shift was defined as a non-work period followed by a work period. A total of 1397 shifts were identified. Four distinct sleep patterns were identified based on sleep duration, sleep start/end point in a non-work period, and the percentage of sleep with reference to the duration of non-work period. Driving performance was measured by safety-critical events, which included crashes, near-crashes, crash-relevant conflicts, and unintentional lane deviations. Negative binomial regression was used to evaluate the association between the sleep patterns and driving performance, adjusted for driver demographic information. The results showed that the sleep pattern with the highest safety-critical event rate was associated with shorter sleep, sleep in the early stage of a non-work period, and less sleep between 1 a.m. and 5 a.m. This study also found that male drivers, with fewer years of commercial vehicle driving experience and higher body mass index, were associated with deteriorated driving performance and increased driving risk. The results of this study could inform hours-of-service policy-making and benefit safety management in the trucking industry. Published by Elsevier Ltd.
NASA Technical Reports Server (NTRS)
Haapala, C.
1999-01-01
This is the Performance Verification Report, Antenna Drive Subassembly, Antenna Drive Subsystem, METSAT AMSU-A2 (P/N 1331200-2, SN: 108), for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).
Diplopia and driving: a problematic issue.
Righi, Stefano; Boffano, Paolo; Guglielmi, Valeria; Rossi, Paolo; Martorina, Massimo
2014-10-01
The aim of this article was to review the literature regarding diplopia and driving license and to review the West European legislations about this topic, in order to obtain appropriate indications for hospitals specialists and patients. A systematic review of articles published about diplopia and driving was performed. In addition a review of West European national legislations about driving license regulations for medical illnesses was performed, in addition to the European Union Directive on driving licenses. In the literature, the presence of diplopia has not been considered a reliable predictor of the safety of driving behavior, or it has not appeared to be a contraindication for driving according to some authors who were unable to demonstrate significant differences on driving simulator performance between subjects with chronic stable diplopia and control subjects. Nevertheless, in all western European legislations, acute diplopia constitutes an important limitation for driving, thus making the knowledge of current regulations fundamental for specialists involved in managing patients with diplopia. Ophthalmologists and maxillofacial/head and neck surgeons, may advise patients before hospital discharge about current legislations in their respective countries. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Alcohol, Drugs and Driving: Implications for Evaluating Driver Impairment
Brown, Timothy; Milavetz, Gary; Murry, Daryl J.
2013-01-01
Impaired driving is a significant traffic safety problem, and alcohol and drugs taken before driving contribute substantially to this problem. With the increase in use of prescription medication and the decriminalization of some drugs, it has become increasingly important to understand the manifestation of driver impairment. Building upon previous alcohol research conducted at the National Advanced Driving Simulator (NADS), this study enrolled commercial bus drivers to evaluate the effect of triazolam on driving performance to assess difference between placebo, 0.125, and 0.25 mg doses in a randomized and double-blind design. On each of three randomized visits, subjects drove a simulator scenario that had previously been used to demonstrate effects of alcohol on driving performance. Plasma triazolam levels were obtained before the simulator drive. The protocol included participants receiving study medication and placebo over a 3-week period of time one to two weeks apart. The simulator drives used for this analysis occurred approximately 140 minutes after dosing—after the subjects had completed four bus simulator drives and neuropsychological tests over a 2-hour period of time surrounding dosing. The driving scenario contained representative situations on three types of roadways (urban, freeway, and rural) under nighttime driving conditions. Lane keeping performance (ability to drive straight in the lane) under the three doses of triazolam demonstrates that at the 0.25 mg dose, statistically significant effects on performance are observed, but no effects are found at the 0.125 mg level when testing at this time period after dosing. This differs from the effects of alcohol, which shows impairing effects at a 0.05% blood alcohol concentration (BAC) and a greater effect at 0.10% BAC. These results demonstrate the importance of understanding how different types of drugs affect driving performance in realistic driving environments. Although some compounds may have an effect that correlates linearly to dosage, that is not always the case. An understanding of these differences and how they vary across driving tasks is essential to developing a robust evaluation protocol that can accurately describe the effects of a wide variety of drugs on driver impairment. This information can be used to reduce the risk of deleterious effects of therapeutic medications while ensuring their safe and beneficial use. PMID:24406943
Critical Science Issues for Direct Drive Inertial Fusion Energy
NASA Astrophysics Data System (ADS)
Dahlburg, Jill P.; Gardner, John H.; Schmitt, Andrew J.; Obenschain, S. P.
1998-09-01
There are several topics that require resolution prior to the construction of an Inertial Fusion Energy [IFE] laboratory Engineering Test Facility [ETF]: a pellet that produces high gain; a pellet fabrication system that cost-effectively and rapidly manufactures these pellets; a sufficiently uniform and durable high repetition-rate laser pellet driver; a practical target injection system that provides accurate pellet aiming; and, a target chamber that will survive the debris and radiation of repeated high-gain pellet implosions. In this summary we describe the science issues and opportunities that are involved in the design of a successful high gain direct drive Inertial Confinement Fusion [ICF] pellet.
LLE Review Quarterly Report (January-March 2002). Volume 90
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donaldson, William R.
2002-03-01
This volume of the LLE Review, covering January-March 2002, features “First Results from Cryogenic Target Implosions on OMEGA” by C. Stoeckl et al. (p. 49). This article describes initial results from direct-drive spherical cryogenic target implosions on the 60-beam OMEGA laser system. These experiments are part of the scientific base leading to direct-drive ignition implosions planned for the National Ignition Facility (NIF). Results shown include neutron yield, secondary-neutron and proton yields, the time of peak neutron emission, and both time-integrated and time-resolved x-ray images of the imploding core. The experimental values are compared with 1-D numerical simulations. The target withmore » an ice-layer nonuniformity of srms = 9 mm showed 30% of the 1-D predicted neutron yield. These initial results are encouraging for future cryogenic implosions on OMEGA and the NIF. Other articles in this issue are titled the following: Equation-of-State Measurements of Porous Materials on OMEGA: Numerical Modeling; Observations of Modulated Shock Waves in Solid Targets Driven by Spatially Modulated Laser Beams; Time-Dependent Electron Thermal Flux Inhibition in direct-Drive Laser Implosions; Precision Spectral Sculpting of Broadband FM Pulses Amplified in a Narrowband Medium; Electric-Field-Induced Motion of Polymer Cholesteric Liquid Crystal Flakes in a Moderately Conductive Fluid; and, Femtosecond Response of a Freestanding LT-GaAs Photoconductive Switch.« less