Science.gov

Sample records for driven advanced oxidation

  1. Decontamination of soil washing wastewater using solar driven advanced oxidation processes.

    PubMed

    Bandala, Erick R; Velasco, Yuridia; Torres, Luis G

    2008-12-30

    Decontamination of soil washing wastewater was performed using two different solar driven advanced oxidation processes (AOPs): the photo-Fenton reaction and the cobalt/peroxymonosulfate/ultraviolet (Co/PMS/UV) process. Complete sodium dodecyl sulphate (SDS), the surfactant agent used to enhance soil washing process, degradation was achieved when the Co/PMS/UV process was used. In the case of photo-Fenton reaction, almost complete SDS degradation was achieved after the use of almost four times the actual energy amount required by the Co/PMS/UV process. Initial reaction rate in the first 15min (IR15) was determined for each process in order to compare them. Highest IR15 value was determined for the Co/PMS/UV process (0.011mmol/min) followed by the photo-Fenton reaction (0.0072mmol/min) and the dark Co/PMS and Fenton processes (IR15=0.002mmol/min in both cases). Organic matter depletion in the wastewater, as the sum of surfactant and total petroleum hydrocarbons present (measured as chemical oxygen demand, COD), was also determined for both solar driven processes. It was found that, for the case of COD, the highest removal (69%) was achieved when photo-Fenton reaction was used whereas Co/PMS/UV process yielded a slightly lower removal (51%). In both cases, organic matter removal achieved was over 50%, which can be consider proper for the coupling of the tested AOPs with conventional wastewater treatment processes such as biodegradation.

  2. Recent advances in ruthenium complex-based light-driven water oxidation catalysts.

    PubMed

    Xue, Long-Xin; Meng, Ting-Ting; Yang, Wei; Wang, Ke-Zhi

    2015-11-01

    The light driven splitting of water is one of the most attractive approaches for direct conversion of solar energy into chemical energy in the future. Ruthenium complexes as the water oxidation catalysts (WOCs) and light sensitizers have attracted increasing attention, and have made a great progress. This mini-review highlights recent progress on ruthenium complex-based photochemical and photoelectrochemical water oxidation catalysts. The recent representative examples of these ruthenium complexes that are in homogeneous solution or immobilized on solid electrodes, are surveyed. In particular, special attention has been paid on the supramolecular dyads with photosensitizer and WOC being covalently hold together, and grafted onto the solid electrode.

  3. Novel MoSe2 hierarchical microspheres for applications in visible-light-driven advanced oxidation processes

    NASA Astrophysics Data System (ADS)

    Dai, Chu; Qing, Enping; Li, Yong; Zhou, Zhaoxin; Yang, Chao; Tian, Xike; Wang, Yanxin

    2015-11-01

    Advanced oxidation processes as a green technology have been adopted by combining the semiconductor catalyst MoSe2 with H2O2 under visible radiation. And novel three-dimensional self-assembled molybdenum diselenide (MoSe2) hierarchical microspheres from nanosheets were produced by using organic, selenium cyanoacetic acid sodium (NCSeCH2COONa) as the source of Se. The obtained products possess good crystallinity and present hierarchical structures with the average diameter of 1 μm. The band gap of MoSe2 microspheres is 1.68 eV and they present excellent photocatalytic activity under visible light irradiation in the MoSe2-H2O2 system. This effective photocatalytic mechanism was investigated in this study and can be attributed to visible-light-driven advanced oxidation processes.

  4. Novel MoSe2 hierarchical microspheres for applications in visible-light-driven advanced oxidation processes.

    PubMed

    Dai, Chu; Qing, Enping; Li, Yong; Zhou, Zhaoxin; Yang, Chao; Tian, Xike; Wang, Yanxin

    2015-12-21

    Advanced oxidation processes as a green technology have been adopted by combining the semiconductor catalyst MoSe2 with H2O2 under visible radiation. And novel three-dimensional self-assembled molybdenum diselenide (MoSe2) hierarchical microspheres from nanosheets were produced by using organic, selenium cyanoacetic acid sodium (NCSeCH2COONa) as the source of Se. The obtained products possess good crystallinity and present hierarchical structures with the average diameter of 1 μm. The band gap of MoSe2 microspheres is 1.68 eV and they present excellent photocatalytic activity under visible light irradiation in the MoSe2-H2O2 system. This effective photocatalytic mechanism was investigated in this study and can be attributed to visible-light-driven advanced oxidation processes.

  5. Fully solar-driven thermo- and electrochemistry for advanced oxidation processes (STEP-AOPs) of 2-nitrophenol wastewater.

    PubMed

    Nie, Chunhong; Shao, Nan; Wang, Baohui; Yuan, Dandan; Sui, Xin; Wu, Hongjun

    2016-07-01

    The STEP (Solar Thermal Electrochemical Process) for Advanced Oxidation Processes (AOPs, combined to STEP-AOPs), fully driven by solar energy without the input of any other forms of energy and chemicals, is introduced and demonstrated from the theory to experiments. Exemplified by the persistent organic pollutant 2-nitrophenol in water, the fundamental model and practical system are exhibited for the STEP-AOPs to efficiently transform 2-nitrophenol into carbon dioxide, water, and the other substances. The results show that the STEP-AOPs system performs more effectively than classical AOPs in terms of the thermodynamics and kinetics of pollutant oxidation. Due to the combination of solar thermochemical reactions with electrochemistry, the STEP-AOPs system allows the requisite electrolysis voltage of 2-nitrophenol to be experimentally decreased from 1.00 V to 0.84 V, and the response current increases from 18 mA to 40 mA. STEP-AOPs also greatly improve the kinetics of the oxidation at 30 °C and 80 °C. As a result, the removal rate of 2-nitrophenol after 1 h increased from 19.50% at 30 °C to 32.70% at 80 °C at constant 1.90 V. Mechanistic analysis reveals that the oxidation pathway is favorably changed because of thermal effects. The tracking of the reaction displayed that benzenediol and hydroquinone are initial products, with maleic acid and formic acid as sequential carboxylic acid products, and carbon dioxide as the final product. The theory and experiments on STEP-AOPs system exemplified by the oxidation of 2-nitrophenol provide a broad basis for extension of the STEP and AOPs for rapid and efficient treatment of organic wastewater.

  6. Advances in Electrically Driven Thermal Management

    NASA Technical Reports Server (NTRS)

    Didion, Jeffrey R.

    2017-01-01

    Electrically Driven Thermal Management is a vibrant technology development initiative incorporating ISS based technology demonstrations, development of innovative fluid management techniques and fundamental research efforts. The program emphasizes high temperature high heat flux thermal management required for future generations of RF electronics and power electronic devices. This presentation reviews i.) preliminary results from the Electrohydrodynamic (EHD) Long Term Flight Demonstration launched on STP-H5 payload in February 2017 ii.) advances in liquid phase flow distribution control iii.) development of the Electrically Driven Liquid Film Boiling Experiment under the NASA Microgravity Fluid Physics Program.

  7. ADVANCED OXIDATION PROCESS

    SciTech Connect

    Dr. Colin P. Horwitz; Dr. Terrence J. Collins

    2003-11-04

    The removal of recalcitrant sulfur species, dibenzothiophene and its derivatives, from automotive fuels is an integral component in the development of cleaner burning and more efficient automobile engines. Oxidative desulfurization (ODS) wherein the dibenzothiophene derivative is converted to its corresponding sulfoxide and sulfone is an attractive approach to sulfur removal because the oxidized species are easily extracted or precipitated and filtered from the hydrocarbon phase. Fe-TAML{reg_sign} activators of hydrogen peroxide (TAML is Tetra-Amido-Macrocyclic-Ligand) catalytically convert dibenzothiophene and its derivatives rapidly and effectively at moderate temperatures (50-60 C) and ambient pressure to the corresponding sulfoxides and sulfones. The oxidation process can be performed in both aqueous systems containing alcohols such as methanol, ethanol, or t-butanol, and in a two-phase hydrocarbon/aqueous system containing tert-butanol or acetonitrile. In the biphasic system, essentially complete conversion of the DBT to its oxidized products can be achieved using slightly longer reaction times than in homogeneous solution. Among the key features of the technology are the mild reaction conditions, the very high selectivity where no over oxidation of the sulfur compounds occurs, the near stoichiometric use of hydrogen peroxide, the apparent lack of degradation of sensitive fuel components, and the ease of separation of oxidized products.

  8. Deterministic and Advanced Statistical Modeling of Wind-Driven Sea

    DTIC Science & Technology

    2015-07-06

    COVERED (From - To) 01/09/2010-06/07/2015 4. TITLE AND SUBTITLE Deterministic and advanced statistical modeling of wind-driven sea 5a. CONTRACT...Technical Report Deterministic and advanced statistical modeling of wind-driven sea Vladimir Zakharov, Andrei Pushkarev Waves and Solitons LLC, 1719 W...Development of accurate and fast advanced statistical and dynamical nonlinear models of ocean surface waves, based on first physical principles, which will

  9. Solid State Cooling with Advanced Oxide Materials

    DTIC Science & Technology

    2014-06-03

    Properties and Response of Epitaxial Oxide Thin Films for Advanced Devices, Workshop on Oxide Electronics (Sept. 2011, Napa , CA) [Invited] 19. L. W. Martin...Properties and Response of Epitaxial Oxide Thin Films for Advanced Devices, Workshop on Oxide Electronics (Sept. 2011, Napa , CA) [Invited] 19. L. W

  10. Light-driven water oxidation for solar fuels

    PubMed Central

    Young, Karin J.; Martini, Lauren A.; Milot, Rebecca L.; III, Robert C. Snoeberger; Batista, Victor S.; Schmuttenmaer, Charles A.; Crabtree, Robert H.; Brudvig, Gary W.

    2014-01-01

    Light-driven water oxidation is an essential step for conversion of sunlight into storable chemical fuels. Fujishima and Honda reported the first example of photoelectrochemical water oxidation in 1972. In their system, TiO2 was irradiated with ultraviolet light, producing oxygen at the anode and hydrogen at a platinum cathode. Inspired by this system, more recent work has focused on functionalizing nanoporous TiO2 or other semiconductor surfaces with molecular adsorbates, including chromophores and catalysts that absorb visible light and generate electricity (i.e., dye-sensitized solar cells) or trigger water oxidation at low overpotentials (i.e., photocatalytic cells). The physics involved in harnessing multiple photochemical events for multielectron reactions, as required in the four-electron water oxidation process, has been the subject of much experimental and computational study. In spite of significant advances with regard to individual components, the development of highly efficient photocatalytic cells for solar water splitting remains an outstanding challenge. This article reviews recent progress in the field with emphasis on water-oxidation photoanodes inspired by the design of functionalized thin film semiconductors of typical dye-sensitized solar cells. PMID:25364029

  11. Advanced motor driven clamped borehole seismic receiver

    DOEpatents

    Engler, Bruce P.; Sleefe, Gerard E.; Striker, Richard P.

    1993-01-01

    A borehole seismic tool including a borehole clamp which only moves perpendicular to the borehole. The clamp is driven by an electric motor, via a right angle drive. When used as a seismic receiver, the tool has a three part housing, two of which are hermetically sealed. Accelerometers or geophones are mounted in one hermetically sealed part, the electric meter in the other hermetically sealed part, and the clamp and right angle drive in the third part. Preferably the tool includes cable connectors at both ends. Optionally a shear plate can be added to the clamp to extend the range of the tool.

  12. Advanced motor driven clamped borehole seismic receiver

    DOEpatents

    Engler, B.P.; Sleefe, G.E.; Striker, R.P.

    1993-02-23

    A borehole seismic tool is described including a borehole clamp which only moves perpendicular to the borehole. The clamp is driven by an electric motor, via a right angle drive. When used as a seismic receiver, the tool has a three part housing, two of which are hermetically sealed. Accelerometers or geophones are mounted in one hermetically sealed part, the electric motor in the other hermetically sealed part, and the clamp and right angle drive in the third part. Preferably the tool includes cable connectors at both ends. Optionally a shear plate can be added to the clamp to extend the range of the tool.

  13. Advanced oxidation scanning probe lithography

    NASA Astrophysics Data System (ADS)

    Ryu, Yu K.; Garcia, Ricardo

    2017-04-01

    Force microscopy enables a variety of approaches to manipulate and/or modify surfaces. Few of those methods have evolved into advanced probe-based lithographies. Oxidation scanning probe lithography (o-SPL) is the only lithography that enables the direct and resist-less nanoscale patterning of a large variety of materials, from metals to semiconductors; from self-assembled monolayers to biomolecules. Oxidation SPL has also been applied to develop sophisticated electronic and nanomechanical devices such as quantum dots, quantum point contacts, nanowire transistors or mechanical resonators. Here, we review the principles, instrumentation aspects and some device applications of o-SPL. Our focus is to provide a balanced view of the method that introduces the key steps in its evolution, provides some detailed explanations on its fundamentals and presents current trends and applications. To illustrate the capabilities and potential of o-SPL as an alternative lithography we have favored the most recent and updated contributions in nanopatterning and device fabrication.

  14. Advanced oxidation scanning probe lithography.

    PubMed

    Ryu, Yu K; Garcia, Ricardo

    2017-04-07

    Force microscopy enables a variety of approaches to manipulate and/or modify surfaces. Few of those methods have evolved into advanced probe-based lithographies. Oxidation scanning probe lithography (o-SPL) is the only lithography that enables the direct and resist-less nanoscale patterning of a large variety of materials, from metals to semiconductors; from self-assembled monolayers to biomolecules. Oxidation SPL has also been applied to develop sophisticated electronic and nanomechanical devices such as quantum dots, quantum point contacts, nanowire transistors or mechanical resonators. Here, we review the principles, instrumentation aspects and some device applications of o-SPL. Our focus is to provide a balanced view of the method that introduces the key steps in its evolution, provides some detailed explanations on its fundamentals and presents current trends and applications. To illustrate the capabilities and potential of o-SPL as an alternative lithography we have favored the most recent and updated contributions in nanopatterning and device fabrication.

  15. Recent advances in laser-driven neutron sources

    NASA Astrophysics Data System (ADS)

    Alejo, A.; Ahmed, H.; Green, A.; Mirfayzi, S. R.; Borghesi, M.; Kar, S.

    2016-11-01

    Due to the limited number and high cost of large-scale neutron facilities, there has been a growing interest in compact accelerator-driven sources. In this context, several potential schemes of laser-driven neutron sources are being intensively studied employing laser-accelerated electron and ion beams. In addition to the potential of delivering neutron beams with high brilliance, directionality and ultra-short burst duration, a laser-driven neutron source would offer further advantages in terms of cost-effectiveness, compactness and radiation confinement by closed-coupled experiments. Some of the recent advances in this field are discussed, showing improvements in the directionality and flux of the laser-driven neutron beams.

  16. Oxide driven strength evolution of silicon surfaces

    DOE PAGES

    Grutzik, Scott J.; Milosevic, Erik; Boyce, Brad L.; ...

    2015-11-19

    Previous experiments have shown a link between oxidation and strength changes in single crystal silicon nanostructures but provided no clues as to the mechanisms leading to this relationship. Using atomic force microscope-based fracture strength experiments, molecular dynamics modeling, and measurement of oxide development with angle resolved x-ray spectroscopy we study the evolution of strength of silicon (111) surfaces as they oxidize and with fully developed oxide layers. We find that strength drops with partial oxidation but recovers when a fully developed oxide is formed and that surfaces intentionally oxidized from the start maintain their high initial strengths. MD simulations showmore » that strength decreases with the height of atomic layer steps on the surface. These results are corroborated by a completely separate line of testing using micro-scale, polysilicon devices, and the slack chain method in which strength recovers over a long period of exposure to the atmosphere. Lastly, combining our results with insights from prior experiments we conclude that previously described strength decrease is a result of oxidation induced roughening of an initially flat silicon (1 1 1) surface and that this effect is transient, a result consistent with the observation that surfaces flatten upon full oxidation.« less

  17. Oxide driven strength evolution of silicon surfaces

    SciTech Connect

    Grutzik, Scott J.; Milosevic, Erik; Boyce, Brad L.; Zehnder, Alan T.

    2015-11-19

    Previous experiments have shown a link between oxidation and strength changes in single crystal silicon nanostructures but provided no clues as to the mechanisms leading to this relationship. Using atomic force microscope-based fracture strength experiments, molecular dynamics modeling, and measurement of oxide development with angle resolved x-ray spectroscopy we study the evolution of strength of silicon (111) surfaces as they oxidize and with fully developed oxide layers. We find that strength drops with partial oxidation but recovers when a fully developed oxide is formed and that surfaces intentionally oxidized from the start maintain their high initial strengths. MD simulations show that strength decreases with the height of atomic layer steps on the surface. These results are corroborated by a completely separate line of testing using micro-scale, polysilicon devices, and the slack chain method in which strength recovers over a long period of exposure to the atmosphere. Lastly, combining our results with insights from prior experiments we conclude that previously described strength decrease is a result of oxidation induced roughening of an initially flat silicon (1 1 1) surface and that this effect is transient, a result consistent with the observation that surfaces flatten upon full oxidation.

  18. Oxidation of advanced steam turbine alloys

    SciTech Connect

    Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.

    2006-03-01

    Advanced or ultra supercritical (USC) steam power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections.

  19. Advanced metal oxide varistor concepts

    NASA Astrophysics Data System (ADS)

    Philipp, H. R.; Mahan, G. D.; Levinson, L. M.

    1984-07-01

    Zinc oxide varistors are ZnO-based ceramic semiconductor devices with highly nonlinear current-voltage characteristics similar to back-to-back Zener diodes but with much greater current, voltage, and energy-handling capabilities. Zinc oxide varistors have proven useful in a variety of applications, particularly as high-quality voltage suppression devices for the protection of ac and dc electric power transmission systems against the effects of transient overvoltages due to switching surges and lightning strikes. Simple varistor systems that use Bi or Pr as the varistor-forming additive and Co or Mn as the varistor-performance ingredient were studied. Commercial varistor materials generally use Bi as the varistor-forming ingredient, and the sintering process in such material probably proceeds in the liquid phase. Varistor materials that use Pr as the varistor-forming ingredient are also produced commercially.

  20. Oxidation-driven surface dynamics on NiAl(100)

    PubMed Central

    Qin, Hailang; Chen, Xidong; Li, Liang; Sutter, Peter W.; Zhou, Guangwen

    2015-01-01

    Atomic steps, a defect common to all crystal surfaces, can play an important role in many physical and chemical processes. However, attempts to predict surface dynamics under nonequilibrium conditions are usually frustrated by poor knowledge of the atomic processes of surface motion arising from mass transport from/to surface steps. Using low-energy electron microscopy that spatially and temporally resolves oxide film growth during the oxidation of NiAl(100) we demonstrate that surface steps are impermeable to oxide film growth. The advancement of the oxide occurs exclusively on the same terrace and requires the coordinated migration of surface steps. The resulting piling up of surface steps ahead of the oxide growth front progressively impedes the oxide growth. This process is reversed during oxide decomposition. The migration of the substrate steps is found to be a surface-step version of the well-known Hele-Shaw problem, governed by detachment (attachment) of Al atoms at step edges induced by the oxide growth (decomposition). By comparing with the oxidation of NiAl(110) that exhibits unimpeded oxide film growth over substrate steps we suggest that whenever steps are the source of atoms used for oxide growth they limit the oxidation process; when atoms are supplied from the bulk, the oxidation rate is not limited by the motion of surface steps. PMID:25548155

  1. Oxidation-driven surface dynamics on NiAl(100)

    DOE PAGES

    Qin, Hailang; Chen, Xidong; Li, Liang; ...

    2014-12-29

    Atomic steps, a defect common to all crystal surfaces, can play an important role in many physical and chemical processes. However, attempts to predict surface dynamics under nonequilibrium conditions are usually frustrated by poor knowledge of the atomic processes of surface motion arising from mass transport from/to surface steps. Using low-energy electron microscopy that spatially and temporally resolves oxide film growth during the oxidation of NiAl(100) we demonstrate that surface steps are impermeable to oxide film growth. The advancement of the oxide occurs exclusively on the same terrace and requires the coordinated migration of surface steps. The resulting piling upmore » of surface steps ahead of the oxide growth front progressively impedes the oxide growth. This process is reversed during oxide decomposition. The migration of the substrate steps is found to be a surface-step version of the well-known Hele-Shaw problem, governed by detachment (attachment) of Al atoms at step edges induced by the oxide growth (decomposition). As a result, by comparing with the oxidation of NiAl(110) that exhibits unimpeded oxide film growth over substrate steps, we suggest that whenever steps are the source of atoms used for oxide growth they limit the oxidation process; when atoms are supplied from the bulk, the oxidation rate is not limited by the motion of surface steps.« less

  2. Oxidation-driven surface dynamics on NiAl(100)

    NASA Astrophysics Data System (ADS)

    Qin, Hailang; Chen, Xidong; Li, Liang; Sutter, Peter W.; Zhou, Guangwen

    2015-01-01

    Atomic steps, a defect common to all crystal surfaces, can play an important role in many physical and chemical processes. However, attempts to predict surface dynamics under nonequilibrium conditions are usually frustrated by poor knowledge of the atomic processes of surface motion arising from mass transport from/to surface steps. Using low-energy electron microscopy that spatially and temporally resolves oxide film growth during the oxidation of NiAl(100) we demonstrate that surface steps are impermeable to oxide film growth. The advancement of the oxide occurs exclusively on the same terrace and requires the coordinated migration of surface steps. The resulting piling up of surface steps ahead of the oxide growth front progressively impedes the oxide growth. This process is reversed during oxide decomposition. The migration of the substrate steps is found to be a surface-step version of the well-known Hele-Shaw problem, governed by detachment (attachment) of Al atoms at step edges induced by the oxide growth (decomposition). By comparing with the oxidation of NiAl(110) that exhibits unimpeded oxide film growth over substrate steps we suggest that whenever steps are the source of atoms used for oxide growth they limit the oxidation process; when atoms are supplied from the bulk, the oxidation rate is not limited by the motion of surface steps.

  3. Oxidation-driven surface dynamics on NiAl(100)

    SciTech Connect

    Qin, Hailang; Chen, Xidong; Li, Liang; Sutter, Peter W.; Zhou, Guangwen

    2014-12-29

    Atomic steps, a defect common to all crystal surfaces, can play an important role in many physical and chemical processes. However, attempts to predict surface dynamics under nonequilibrium conditions are usually frustrated by poor knowledge of the atomic processes of surface motion arising from mass transport from/to surface steps. Using low-energy electron microscopy that spatially and temporally resolves oxide film growth during the oxidation of NiAl(100) we demonstrate that surface steps are impermeable to oxide film growth. The advancement of the oxide occurs exclusively on the same terrace and requires the coordinated migration of surface steps. The resulting piling up of surface steps ahead of the oxide growth front progressively impedes the oxide growth. This process is reversed during oxide decomposition. The migration of the substrate steps is found to be a surface-step version of the well-known Hele-Shaw problem, governed by detachment (attachment) of Al atoms at step edges induced by the oxide growth (decomposition). As a result, by comparing with the oxidation of NiAl(110) that exhibits unimpeded oxide film growth over substrate steps, we suggest that whenever steps are the source of atoms used for oxide growth they limit the oxidation process; when atoms are supplied from the bulk, the oxidation rate is not limited by the motion of surface steps.

  4. Oxidation of alloys for advanced steam turbines

    SciTech Connect

    Holcomb, Gordon R.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Ziomek-Moroz, M.; Alman, David E.

    2005-01-01

    Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections.

  5. HANDBOOK ON ADVANCED PHOTOCHEMICAL OXIDATION PROCESSES

    EPA Science Inventory

    This handbook summarizes commercial-scale system performance and cost data for advanced photochemical oxidation (APO) treatment of contaminated water, air, and solids. Similar information from pilot- and bench-scale evaluations of APO processes is also included to supplement the...

  6. HANDBOOK ON ADVANCED NONPHOTOCHEMICAL OXIDATION PROCESSES

    EPA Science Inventory

    The purpose of this handbook is to summarize commercial-scale system performance and cost data for advanced nonphotochemical oxidation (ANPO) treatment of contaminated water, air, and soil. Similar information from pilot-and bench-scale evaluations of ANPO processes is also inclu...

  7. Degradation of formaldehyde by advanced oxidation processes.

    PubMed

    Guimarães, José Roberto; Farah, Carolina Rittes Turato; Maniero, Milena Guedes; Fadini, Pedro Sérgio

    2012-09-30

    The degradation of formaldehyde in an aqueous solution (400 mg L(-1)) was studied using photolysis, peroxidation and advanced oxidation processes (UV/H(2)O(2), Fenton and photo-Fenton). Photolysis was the only process tested that did not reduce formaldehyde concentration; however, only advanced oxidation processes (AOPs) significantly decreased dissolved organic carbon (DOC). UV/H(2)O(2) and photo-Fenton AOPs were used to degrade formaldehyde at the highest concentrations (1200-12,000 mg L(-1)); the processes were able to reduce CH(2)O by 98% and DOC by 65%. Peroxidation with ultraviolet light (UV/H(2)O(2)) improved the efficiency of treatment of effluent from an anatomy laboratory. The effluent's CH(2)O content was reduced by 91%, DOC by 48%, COD by 46% and BOD by 53% in 420 min of testing.

  8. Advanced oxidation process sanitization of eggshell surfaces.

    PubMed

    Gottselig, Steven M; Dunn-Horrocks, Sadie L; Woodring, Kristy S; Coufal, Craig D; Duong, Tri

    2016-06-01

    The microbial quality of eggs entering the hatchery represents an important critical control point for biosecurity and pathogen reduction programs in integrated poultry production. The development of safe and effective interventions to reduce microbial contamination on the surface of eggs will be important to improve the overall productivity and microbial food safety of poultry and poultry products. The hydrogen peroxide (H2O2) and ultraviolet (UV) light advanced oxidation process is a potentially important alternative to traditional sanitizers and disinfectants for egg sanitation. The H2O2/UV advanced oxidation process was demonstrated previously to be effective in reducing surface microbial contamination on eggs. In this study, we evaluated treatment conditions affecting the efficacy of H2O2/UV advanced oxidation in order to identify operational parameters for the practical application of this technology in egg sanitation. The effect of the number of application cycles, UV intensity, duration of UV exposure, and egg rotation on the recovery of total aerobic bacteria from the surface of eggs was evaluated. Of the conditions evaluated, we determined that reduction of total aerobic bacteria from naturally contaminated eggs was optimized when eggs were sanitized using 2 repeated application cycles with 5 s exposure to 14 mW cm(-2) UV light, and that rotation of the eggs between application cycles was unnecessary. Additionally, using these optimized conditions, the H2O2/UV process reduced Salmonella by greater than 5 log10 cfu egg(-1) on the surface of experimentally contaminated eggs. This study demonstrates the potential for practical application of the H2O2/UV advanced oxidation process in egg sanitation and its effectiveness in reducing Salmonella on eggshell surfaces.

  9. Novel imazethapyr detoxification applying advanced oxidation processes.

    PubMed

    Stathis, Ioannis; Hela, Dimitra G; Scrano, Laura; Lelario, Filomena; Emanuele, Lucia; Bufo, Sabino A

    2011-01-01

    Different degradation methods have been applied to assess the suitability of advanced oxidation process (AOPs) to promote mineralization of imazethapyr [(RS)-5-ethyl-2-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)nicotinic acid], a widely used imidazolinone class herbicide, the persistence of which has been demonstrated in surface and ground waters destined to human uses. Independent of the oxidation process assessed, the decomposition of imazethapyr always followed a pseudo-first order kinetic. The direct UV-irradiation (UV) of the herbicide as well as its oxidation with ozone (O₃), and hydrogen peroxide tied to UV-irradiation (H₂O₂/UV) were sufficiently slow to permit the identification of intermediate products, the formation pathway of which has been proposed. Ozonation joined to UV-irradiation (O₃/UV), ozonation joined to titanium dioxide photo-catalysis (TiO₂/UV+O₃), sole photo-catalysis (TiO₂/UV), and photo-catalysis reinforced with hydrogen peroxide-oxidation (TiO₂/UV+H₂O₂) were characterized by a faster degradation and rapid formation of a lot of small molecules, which were quickly degraded to complete mineralization. The most effective oxidation methods were those using titanium dioxide photo-catalysis enhanced either by ozonation or hydrogen peroxide. Most of all, these last processes were useful to avoid the development of dangerous by-products.

  10. Induced effects of advanced oxidation processes.

    PubMed

    Liu, Peng; Li, Chaolin; Zhao, Zhuanjun; Lu, Gang; Cui, Haibo; Zhang, Wenfang

    2014-02-07

    Hazardous organic wastes from industrial, military, and commercial activities represent one of the greatest challenges to human beings. Advanced oxidation processes (AOPs) are alternatives to the degradation of those organic wastes. However, the knowledge about the exact mechanisms of AOPs is still incomplete. Here we report a phenomenon in the AOPs: induced effects, which is a common property of combustion reaction. Through analysis EDTA oxidation processes by Fenton and UV-Fenton system, the results indicate that, just like combustion, AOPs are typical induction reactions. One most compelling example is that pre-feeding easily oxidizable organic matter can promote the oxidation of refractory organic compound when it was treated by AOPs. Connecting AOPs to combustion, it is possible to achieve some helpful enlightenment from combustion to analyze, predict and understand AOPs. In addition, we assume that maybe other oxidation reactions also have induced effects, such as corrosion, aging and passivation. Muchmore research is necessary to reveal the possibilities of induced effects in those fields.

  11. Induced effects of advanced oxidation processes

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Li, Chaolin; Zhao, Zhuanjun; Lu, Gang; Cui, Haibo; Zhang, Wenfang

    2014-02-01

    Hazardous organic wastes from industrial, military, and commercial activities represent one of the greatest challenges to human beings. Advanced oxidation processes (AOPs) are alternatives to the degradation of those organic wastes. However, the knowledge about the exact mechanisms of AOPs is still incomplete. Here we report a phenomenon in the AOPs: induced effects, which is a common property of combustion reaction. Through analysis EDTA oxidation processes by Fenton and UV-Fenton system, the results indicate that, just like combustion, AOPs are typical induction reactions. One most compelling example is that pre-feeding easily oxidizable organic matter can promote the oxidation of refractory organic compound when it was treated by AOPs. Connecting AOPs to combustion, it is possible to achieve some helpful enlightenment from combustion to analyze, predict and understand AOPs. In addition, we assume that maybe other oxidation reactions also have induced effects, such as corrosion, aging and passivation. Muchmore research is necessary to reveal the possibilities of induced effects in those fields.

  12. ADVANCED OXIDATION TECHNOLOGIES FOR THE TREATMENT OF CONTAMINATED GROUNDWATER

    EPA Science Inventory

    This paper presents information on two pilot-field appliations of advanced oxidation technologies for contaminated groundwater with organis. The two UV/oxidation technologies were developed by Ultrox International of Santa Ana, California and Peroxidatrion Systems, Inc. of Tucso...

  13. Commercial applications of electron beam advanced oxidation technology

    NASA Astrophysics Data System (ADS)

    Curry, Randy D.; Bosma, John T.

    1995-03-01

    Emerging commercial applications of electron-beam advanced oxidation technology offer a significant advancement in the treatment of waste steams. Both electron beam and X-ray (Brehmsstrahlung) advanced oxidation processes have been shown to be effective in the destruction of volatile and semivolatile organic compounds. Emerging commercial applications, however, far exceed in scope current applications of oxidation technologies for the destruction of simple semivolatile and volatile organic compounds in water. Emerging applications include direct treatment of contaminated soil, removal of metal ions from water and sterilization of water, sludges, and food. Application of electron beam advanced oxidation technologies are reviewed, along with electron- beam-generated X-ray (Brehmsstrahlung) advanced oxidation processes. Advantages of each technology are discussed along with advanced accelerator technologies which are applicable for commercial processing of waste streams. An overview of the U.S. companies and laboratories participating in this research area are included in this discussion.

  14. Iron oxides stimulate sulfate-driven anaerobic methane oxidation in seeps

    PubMed Central

    Sivan, Orit; Antler, Gilad; Turchyn, Alexandra V.; Marlow, Jeffrey J.; Orphan, Victoria J.

    2014-01-01

    Seep sediments are dominated by intensive microbial sulfate reduction coupled to the anaerobic oxidation of methane (AOM). Through geochemical measurements of incubation experiments with methane seep sediments collected from Hydrate Ridge, we provide insight into the role of iron oxides in sulfate-driven AOM. Seep sediments incubated with 13C-labeled methane showed co-occurring sulfate reduction, AOM, and methanogenesis. The isotope fractionation factors for sulfur and oxygen isotopes in sulfate were about 40‰ and 22‰, respectively, reinforcing the difference between microbial sulfate reduction in methane seeps versus other sedimentary environments (for example, sulfur isotope fractionation above 60‰ in sulfate reduction coupled to organic carbon oxidation or in diffusive sedimentary sulfate–methane transition zone). The addition of hematite to these microcosm experiments resulted in significant microbial iron reduction as well as enhancing sulfate-driven AOM. The magnitude of the isotope fractionation of sulfur and oxygen isotopes in sulfate from these incubations was lowered by about 50%, indicating the involvement of iron oxides during sulfate reduction in methane seeps. The similar relative change between the oxygen versus sulfur isotopes of sulfate in all experiments (with and without hematite addition) suggests that oxidized forms of iron, naturally present in the sediment incubations, were involved in sulfate reduction, with hematite addition increasing the sulfate recycling or the activity of sulfur-cycling microorganisms by about 40%. These results highlight a role for natural iron oxides during bacterial sulfate reduction in methane seeps not only as nutrient but also as stimulator of sulfur recycling. PMID:25246590

  15. RF-driven advanced modes of ITER operation

    SciTech Connect

    Garcia, J.; Artaud, J. F.; Basiuk, V.; Decker, J.; Giruzzi, G.; Hawkes, N.; Imbeaux, F.; Litaudon, X.; Mailloux, J.; Peysson, Y.; Schneider, M.; Brix, M.

    2009-11-26

    The impact of the Radio Frequency heating and current drive systems on the ITER advanced scenarios is analyzed by means of the CRONOS suite of codes for integrated tokamak modelling. As a first step, the code is applied to analyze a high power advanced scenario discharge of JET in order to validate both the heating and current drive modules and the overall simulation procedure. Then, ITER advanced scenarios, based on Radio Frequency systems, are studied on the basis of previous results. These simulations show that both hybrid and steady-state scenarios could be possible within the ITER specifications, using RF heating and current drive only.

  16. RF-driven advanced modes of ITER operation

    NASA Astrophysics Data System (ADS)

    Garcia, J.; Artaud, J. F.; Basiuk, V.; Brix, M.; Decker, J.; Giruzzi, G.; Hawkes, N.; Imbeaux, F.; Litaudon, X.; Mailloux, J.; Peysson, Y.; Schneider, M.

    2009-11-01

    The impact of the Radio Frequency heating and current drive systems on the ITER advanced scenarios is analyzed by means of the CRONOS suite of codes for integrated tokamak modelling. As a first step, the code is applied to analyze a high power advanced scenario discharge of JET in order to validate both the heating and current drive modules and the overall simulation procedure. Then, ITER advanced scenarios, based on Radio Frequency systems, are studied on the basis of previous results. These simulations show that both hybrid and steady-state scenarios could be possible within the ITER specifications, using RF heating and current drive only.

  17. Advanced oxidation technologies for chemical demilitarization

    SciTech Connect

    Rosocha, L.A.; Korzekwa, R.A.; Monagle, M.; Coogan, J.J.; Tennant, R.A.; Brown, L.F.; Currier, R.P.

    1996-12-31

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory. The main project objective was to establish a technical basis for future program development in the area of chemical warfare agent destruction using a Los Alamos-developed advanced oxidation process: a two-stage device consisting of thermal packed-bed reactor (PBR) and a nonthermal plasma (NTP) reactor. Various compounds were evaluated as potential surrogates for chemical warfare (CW) agents. Representative effluent mass balances were projected for future comparisons with incinerators. The design and construction of lab-scale PBR/NTP reactors (consisting of a liquid injection and metering system, electric furnace, condensers, chemical traps, plasma reactors, power supplies, and chemical diagnostics) has been completed. This equipment, the experience gained from chemical-processing experiments, process modeling, and an initial demonstration of the feasibility of closed-loop operation, have provided a technical basis for further demonstrations and program development efforts.

  18. Advances in Optimizing Weather Driven Electric Power Systems.

    NASA Astrophysics Data System (ADS)

    Clack, C.; MacDonald, A. E.; Alexander, A.; Dunbar, A. D.; Xie, Y.; Wilczak, J. M.

    2014-12-01

    The importance of weather-driven renewable energies for the United States (and global) energy portfolio is growing. The main perceived problems with weather-driven renewable energies are their intermittent nature, low power density, and high costs. The National Energy with Weather System Simulator (NEWS) is a mathematical optimization tool that allows the construction of weather-driven energy sources that will work in harmony with the needs of the system. For example, it will match the electric load, reduce variability, decrease costs, and abate carbon emissions. One important test run included existing US carbon-free power sources, natural gas power when needed, and a High Voltage Direct Current power transmission network. This study shows that the costs and carbon emissions from an optimally designed national system decrease with geographic size. It shows that with achievable estimates of wind and solar generation costs, that the US could decrease its carbon emissions by up to 80% by the early 2030s, without an increase in electric costs. The key requirement would be a 48 state network of HVDC transmission, creating a national market for electricity not possible in the current AC grid. These results were found without the need for storage. Further, we tested the effect of changing natural gas fuel prices on the optimal configuration of the national electric power system. Another test that was carried out was an extension to global regions. The extension study shows that the same properties found in the US study extend to the most populous regions of the planet. The extra test is a simplified version of the US study, and is where much more research can be carried out. We compare our results to other model results.

  19. SULFATE RADICAL-BASED ADVANCED OXIDATION PROCESSES- ACS MEETING

    EPA Science Inventory

    This paper will present an overview of sulfate radical-based advanced oxidation technologies for the destruction of environmentally toxic chemicals in wastewater, industrial water, groundwater and sources of water supply. The paper will include fundamental aspects of the generati...

  20. Advanced scheme for high-yield laser driven nuclear reactions

    NASA Astrophysics Data System (ADS)

    Margarone, D.; Picciotto, A.; Velyhan, A.; Krasa, J.; Kucharik, M.; Mangione, A.; Szydlowsky, A.; Malinowska, A.; Bertuccio, G.; Shi, Y.; Crivellari, M.; Ullschmied, J.; Bellutti, P.; Korn, G.

    2015-01-01

    The use of a low contrast nanosecond laser pulse with a relatively low intensity (3  ×  1016 W cm-2) allowed the enhancing of the yield of induced nuclear reactions in advanced solid targets. In particular the ‘ultraclean’ proton-boron fusion reaction, producing energetic alpha particles without neutron generation, was chosen. A spatially well-defined layer of boron dopants in a hydrogen-enriched silicon substrate was used as a target. A combination of the specific target composition and the laser pulse temporal shape allowed the enhancing of the yield of alpha particles up to 109 per steradian. This result can be ascribed to the interaction of the long-laser pre-pulse with the target and to the optimal target geometry and composition.

  1. Magnetically-Driven Isentropic Compression Status and Future Advances

    NASA Astrophysics Data System (ADS)

    Deeney, Christopher

    2005-07-01

    Since the development of magnetically driven isentropic compression experiments (ICE) on the Z accelerator by Asay et al, this technique has continued to grow in maturity. At lower pressures, isentropic compression has been employed to identify and then study phase transitions and their kinetics. In addition, experiments have used the same techniques to study re-solidification, the response of explosives, and the crush up of porous materials. Most of these experiments rely on the ability of ICE to generate very smooth ramps that can be applied to multiple samples for relative experiments. For equation of state studies, the intrinsic accuracy and peak pressures continue to demand improvement in understanding, analysis techniques and diagnostics. We have spent significant effort in these areas over the last few years because we believe that we must demonstrate a well characterized and understood method to obtain accurate EOS data with well-behaved materials to give confidence in future comparisons between ICE data and calculations of material properties. In our presentation, we will discuss the status of Z experiments, our recent data at multi-megabar pressures with aluminum and other materials, and the status of our analysis abilities. We will also discuss the need for future improvements in diagnostics plus the anticipated capabilities of the ZR facility and the small pulser. This work was supported by the United States Department of Energy's National Nuclear Security Administration under contract No. DE-AC04-94AL85000. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company..

  2. Oxidation-Reduction Resistance of Advanced Copper Alloys

    NASA Technical Reports Server (NTRS)

    Greenbauer-Seng, L. (Technical Monitor); Thomas-Ogbuji, L.; Humphrey, D. L.; Setlock, J. A.

    2003-01-01

    Resistance to oxidation and blanching is a key issue for advanced copper alloys under development for NASA's next generation of reusable launch vehicles. Candidate alloys, including dispersion-strengthened Cu-Cr-Nb, solution-strengthened Cu-Ag-Zr, and ODS Cu-Al2O3, are being evaluated for oxidation resistance by static TGA exposures in low-p(O2) and cyclic oxidation in air, and by cyclic oxidation-reduction exposures (using air for oxidation and CO/CO2 or H2/Ar for reduction) to simulate expected service environments. The test protocol and results are presented.

  3. New developments advance forced-oxidation FGD

    SciTech Connect

    Ellison, W.; Kutemeyer, P.M.

    1983-02-01

    In the US, many utility companies are specifying forced oxidation to help to stabilize the sludge from wet-limestone scrubbers. This technique is already used in Japan and West Germany. The oxidized sludge can be more easily dewatered and thus requires considerably less disposal area than is needed for ponding the FGD sludge. The solids can also be upgraded to a commercial-grade gypsum. The processes required and the systems currently in use in Japan and West Germany are described.

  4. ADVANCED OXIDATION: OXALATE DECOMPOSITION TESTING WITH OZONE

    SciTech Connect

    Ketusky, E.; Subramanian, K.

    2012-02-29

    At the Savannah River Site (SRS), oxalic acid is currently considered the preferred agent for chemically cleaning the large underground Liquid Radioactive Waste Tanks. It is applied only in the final stages of emptying a tank when generally less than 5,000 kg of waste solids remain, and slurrying based removal methods are no-longer effective. The use of oxalic acid is preferred because of its combined dissolution and chelating properties, as well as the fact that corrosion to the carbon steel tank walls can be controlled. Although oxalic acid is the preferred agent, there are significant potential downstream impacts. Impacts include: (1) Degraded evaporator operation; (2) Resultant oxalate precipitates taking away critically needed operating volume; and (3) Eventual creation of significant volumes of additional feed to salt processing. As an alternative to dealing with the downstream impacts, oxalate decomposition using variations of ozone based Advanced Oxidation Process (AOP) were investigated. In general AOPs use ozone or peroxide and a catalyst to create hydroxyl radicals. Hydroxyl radicals have among the highest oxidation potentials, and are commonly used to decompose organics. Although oxalate is considered among the most difficult organic to decompose, the ability of hydroxyl radicals to decompose oxalate is considered to be well demonstrated. In addition, as AOPs are considered to be 'green' their use enables any net chemical additions to the waste to be minimized. In order to test the ability to decompose the oxalate and determine the decomposition rates, a test rig was designed, where 10 vol% ozone would be educted into a spent oxalic acid decomposition loop, with the loop maintained at 70 C and recirculated at 40L/min. Each of the spent oxalic acid streams would be created from three oxalic acid strikes of an F-area simulant (i.e., Purex = high Fe/Al concentration) and H-area simulant (i.e., H area modified Purex = high Al/Fe concentration) after nearing

  5. Efficient chemical and visible-light-driven water oxidation using nickel complexes and salts as precatalysts.

    PubMed

    Chen, Gui; Chen, Lingjing; Ng, Siu-Mui; Lau, Tai-Chu

    2014-01-01

    Chemical and visible-light-driven water oxidation catalyzed by a number of Ni complexes and salts have been investigated at pH 7-9 in borate buffer. For chemical oxidation, [Ru(bpy)3](3+) (bpy = 2,2'-bipyridine) was used as the oxidant, with turnover numbers (TONs) >65 and a maximum turnover frequency (TOFmax) >0.9 s(-1). Notably, simple Ni salts such as Ni(NO3 )2 are more active than Ni complexes that bear multidentate N-donor ligands. The Ni complexes and salts are also active catalysts for visible-light-driven water oxidation that uses [Ru(bpy)3](2+) as the photosensitizer and S2 O8 (2-) as the sacrificial oxidant; a TON>1200 was obtained at pH 8.5 by using Ni(NO3)2 as the catalyst. Dynamic light scattering measurements revealed the formation of nanoparticles in chemical and visible-light-driven water oxidation by the Ni catalysts. These nanoparticles aggregated during water oxidation to form submicron particles that were isolated and shown to be partially reduced β-NiOOH by various techniques, which include SEM, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, XRD, and IR spectroscopy. These results suggest that the Ni complexes and salts act as precatalysts that decompose under oxidative conditions to form an active nickel oxide catalyst. The nature of this active oxide catalyst is discussed.

  6. Steam Oxidation of Advanced Steam Turbine Alloys

    SciTech Connect

    Holcomb, Gordon R.

    2008-01-01

    Power generation from coal using ultra supercritical steam results in improved fuel efficiency and decreased greenhouse gas emissions. Results of ongoing research into the oxidation of candidate nickel-base alloys for ultra supercritical steam turbines are presented. Exposure conditions range from moist air at atmospheric pressure (650°C to 800°C) to steam at 34.5 MPa (650°C to 760°C). Parabolic scale growth coupled with internal oxidation and reactive evaporation of chromia are the primary corrosion mechanisms.

  7. Air-Driven Potassium Iodide-Mediated Oxidative Photocyclization of Stilbene Derivatives.

    PubMed

    Matsushima, Tomoya; Kobayashi, Sayaka; Watanabe, Soichiro

    2016-09-02

    A new method has been developed for the potassium iodide-mediated oxidative photocyclization of stilbene derivatives. Compared with conventional iodine-mediated oxidative photocyclization reactions, this new method requires shorter reaction times and affords cyclized products in yields of 45-97%. This reaction proceeds with a catalytic amount of potassium iodide and works in an air-driven manner without the addition of an external scavenger. The radical-mediated oxidative photocyclization of stilbene derivatives using TEMPO was also investigated.

  8. Charge transport-driven selective oxidation of graphene.

    PubMed

    Lee, Young Keun; Choi, Hongkyw; Lee, Changhwan; Lee, Hyunsoo; Goddeti, Kalyan C; Moon, Song Yi; Doh, Won Hui; Baik, Jaeyoon; Kim, Jin-Soo; Choi, Jin Sik; Choi, Choon-Gi; Park, Jeong Young

    2016-06-02

    Due to the tunability of the physical, electrical, and optical characteristics of graphene, precisely controlling graphene oxidation is of great importance for potential applications of graphene-based electronics. Here, we demonstrate a facile and precise way for graphene oxidation controlled by photoexcited charge transfer depending on the substrate and bias voltage. It is observed that graphene on TiO2 is easily oxidized under UV-ozone treatment, while graphene on SiO2 remains unchanged. The mechanism for the selective oxidation of graphene on TiO2 is associated with charge transfer from the TiO2 to the graphene. Raman spectra were used to investigate the graphene following applied bias voltages on the graphene/TiO2 diode under UV-ozone exposure. We found that under a reverse bias of 0.6 V on the graphene/TiO2 diode, graphene oxidation was accelerated under UV-ozone exposure, thus confirming the role of charge transfer between the graphene and the TiO2 that results in the selective oxidation of the graphene. The selective oxidation of graphene can be utilized for the precise, nanoscale patterning of the graphene oxide and locally patterned chemical doping, finally leading to the feasibility and expansion of a variety of graphene-based applications.

  9. Advanced launch system. Advanced development oxidizer turbopump program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    On May 19, 1989, Pratt & Whitney was awarded contract NAS8-37595 by the National Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville Alabama for an Advanced Development Program (ADP) to design, develop and demonstrate a highly reliable low cost, liquid oxygen turbopump for the Advanced Launch System (ALS). The ALS had an overall goal of reducing the cost of placing payloads in orbit by an order of magnitude. This goal would require a substantial reduction in life cycle costs, with emphasis on recurring costs, compared to current launch vehicles. Engine studies supporting these efforts were made for the Space Transportation Main Engine (STME). The emphasis on low cost required design simplification of components and subsystems such that the ground maintenance and test operations was minimized. The results of the Oxygen Turbopump ADP technology effort would provide data to be used in the STME. Initially the STME baseline was a gas generator cycle engine with a vacuum thrust level of 580,000 lbf. This was later increased to 650,000 lbf and the oxygen turbopump design approach was changed to reflect the new thrust level. It was intended that this ADP program be conducted in two phases. Phase 1, a basic phase, would encompass the preliminary design effort, and Phase II, an optional contract phase to cover design, fabrication and test evaluation of an oxygen turbopump at a component test facility at the NASA John C. Stennis Space Center in Mississippi. The basic phase included preliminary design and analysis, evaluation of low cost concepts, and evaluation of fabrication techniques. The option phase included design of the pump and support hardware, analysis of the final configuration to ensure design integrity, fabrication of hardware to demonstrate low cost, DVS Testing of hardware to verify the design, assembly of the turbopump and full scale turbopump testing. In December 1990, the intent of this ADP to support the design and development was

  10. Charge transport-driven selective oxidation of graphene

    NASA Astrophysics Data System (ADS)

    Lee, Young Keun; Choi, Hongkyw; Lee, Changhwan; Lee, Hyunsoo; Goddeti, Kalyan C.; Moon, Song Yi; Doh, Won Hui; Baik, Jaeyoon; Kim, Jin-Soo; Choi, Jin Sik; Choi, Choon-Gi; Park, Jeong Young

    2016-06-01

    Due to the tunability of the physical, electrical, and optical characteristics of graphene, precisely controlling graphene oxidation is of great importance for potential applications of graphene-based electronics. Here, we demonstrate a facile and precise way for graphene oxidation controlled by photoexcited charge transfer depending on the substrate and bias voltage. It is observed that graphene on TiO2 is easily oxidized under UV-ozone treatment, while graphene on SiO2 remains unchanged. The mechanism for the selective oxidation of graphene on TiO2 is associated with charge transfer from the TiO2 to the graphene. Raman spectra were used to investigate the graphene following applied bias voltages on the graphene/TiO2 diode under UV-ozone exposure. We found that under a reverse bias of 0.6 V on the graphene/TiO2 diode, graphene oxidation was accelerated under UV-ozone exposure, thus confirming the role of charge transfer between the graphene and the TiO2 that results in the selective oxidation of the graphene. The selective oxidation of graphene can be utilized for the precise, nanoscale patterning of the graphene oxide and locally patterned chemical doping, finally leading to the feasibility and expansion of a variety of graphene-based applications.Due to the tunability of the physical, electrical, and optical characteristics of graphene, precisely controlling graphene oxidation is of great importance for potential applications of graphene-based electronics. Here, we demonstrate a facile and precise way for graphene oxidation controlled by photoexcited charge transfer depending on the substrate and bias voltage. It is observed that graphene on TiO2 is easily oxidized under UV-ozone treatment, while graphene on SiO2 remains unchanged. The mechanism for the selective oxidation of graphene on TiO2 is associated with charge transfer from the TiO2 to the graphene. Raman spectra were used to investigate the graphene following applied bias voltages on the graphene/TiO2

  11. Process for light-driven hydrocarbon oxidation at ambient temperatures

    DOEpatents

    Shelnutt, John A.

    1990-01-01

    A photochemical reaction for the oxidation of hydrocarbons uses molecular oxygen as the oxidant. A reductive photoredox cycle that uses a tin(IV)- or antimony(V)-porphyrin photosensitizer generates the reducing equivalents required to activate oxygen. This artificial photosynthesis system drives a catalytic cycle, which mimics the cytochrome P.sub.450 reaction, to oxidize hydrocarbons. An iron(III)- or manganese(III)-porphyrin is used as the hydrocarbon-oxidation catalyst. Methylviologen can be used as a redox relay molecule to provide for electron-transfer from the reduced photosensitizer to the Fe or Mn porphyrin. The system is long-lived and may be used in photo-initiated spectroscopic studies of the reaction to determine reaction rates and intermediates.

  12. Oxidation of artificial sweetener sucralose by advanced oxidation processes: a review.

    PubMed

    Sharma, Virender K; Oturan, Mehmet; Kim, Hyunook

    2014-01-01

    Sucralose, a chlorinated carbohydrate, has shown its increased use as an artificial sweetener and persistently exists in wastewater treatment plant effluents and aquatic environment. This paper aims to review possible degradation of sucralose and related carbohydrates by biological, electrochemical, chemical, and advanced oxidation processes. Biodegradation of sucralose in waterworks did not occur significantly. Electrochemical oxidation of carbohydrates may be applied to seek degradation of sucralose. The kinetics of the oxidation of sucralose and the related carbohydrates by different oxidative species is compared. Free chlorine, ozone, and ferrate did not show any potential to degrade sucralose in water. Advanced oxidation processes, generating highly strong oxidizing agent hydroxyl radicals ((•)OH), have demonstrated effectiveness in transforming sucralose in water. The mechanism of oxidation of sucralose by (•)OH is briefly discussed.

  13. AWAKE, The Advanced Proton Driven Plasma Wakefield Acceleration Experiment at CERN

    NASA Astrophysics Data System (ADS)

    Gschwendtner, E.; Adli, E.; Amorim, L.; Apsimon, R.; Assmann, R.; Bachmann, A.-M.; Batsch, F.; Bauche, J.; Berglyd Olsen, V. K.; Bernardini, M.; Bingham, R.; Biskup, B.; Bohl, T.; Bracco, C.; Burrows, P. N.; Burt, G.; Buttenschön, B.; Butterworth, A.; Caldwell, A.; Cascella, M.; Chevallay, E.; Cipiccia, S.; Damerau, H.; Deacon, L.; Dirksen, P.; Doebert, S.; Dorda, U.; Farmer, J.; Fedosseev, V.; Feldbaumer, E.; Fiorito, R.; Fonseca, R.; Friebel, F.; Gorn, A. A.; Grulke, O.; Hansen, J.; Hessler, C.; Hofle, W.; Holloway, J.; Hüther, M.; Jaroszynski, D.; Jensen, L.; Jolly, S.; Joulaei, A.; Kasim, M.; Keeble, F.; Li, Y.; Liu, S.; Lopes, N.; Lotov, K. V.; Mandry, S.; Martorelli, R.; Martyanov, M.; Mazzoni, S.; Mete, O.; Minakov, V. A.; Mitchell, J.; Moody, J.; Muggli, P.; Najmudin, Z.; Norreys, P.; Öz, E.; Pardons, A.; Pepitone, K.; Petrenko, A.; Plyushchev, G.; Pukhov, A.; Rieger, K.; Ruhl, H.; Salveter, F.; Savard, N.; Schmidt, J.; Seryi, A.; Shaposhnikova, E.; Sheng, Z. M.; Sherwood, P.; Silva, L.; Soby, L.; Sosedkin, A. P.; Spitsyn, R. I.; Trines, R.; Tuev, P. V.; Turner, M.; Verzilov, V.; Vieira, J.; Vincke, H.; Wei, Y.; Welsch, C. P.; Wing, M.; Xia, G.; Zhang, H.

    2016-09-01

    The Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) aims at studying plasma wakefield generation and electron acceleration driven by proton bunches. It is a proof-of-principle R&D experiment at CERN and the world's first proton driven plasma wakefield acceleration experiment. The AWAKE experiment will be installed in the former CNGS facility and uses the 400 GeV/c proton beam bunches from the SPS. The first experiments will focus on the self-modulation instability of the long (rms 12 cm) proton bunch in the plasma. These experiments are planned for the end of 2016. Later, in 2017/2018, low energy ( 15 MeV) electrons will be externally injected into the sample wakefields and be accelerated beyond 1 GeV. The main goals of the experiment will be summarized. A summary of the AWAKE design and construction status will be presented.

  14. Polarization-driven catalysis via ferroelectric oxide surfaces.

    PubMed

    Kakekhani, Arvin; Ismail-Beigi, Sohrab

    2016-07-20

    The surface chemistry and physics of oxide ferroelectric surfaces with a fixed polarization state have been studied experimentally for some time. Here, we discuss the possibility of using these materials in a different mode, namely under cyclically changing polarization conditions achievable via periodic perturbations by external fields (e.g., temperature, strain or electric field). We use Density Functional Theory (DFT) and electronic structure analysis to understand the polarization-dependent surface physics and chemistry of ferroelectric oxide PbTiO3 as an example of this class of materials. This knowledge is then applied to design catalytic cycles for industrially important reactions including NOx direct decomposition and SO2 oxidation into SO3. The possibility of catalyzing direct partial oxidation of methane to methanol is also investigated. More generally, we discuss how using ferroelectrics under cyclically changing polarization conditions can help overcome some of the fundamental challenges facing the catalysis community such as the limitations imposed by the Sabatier principle and scaling relations.

  15. Two-dimensional oxides: multifunctional materials for advanced technologies.

    PubMed

    Pacchioni, Gianfranco

    2012-08-13

    The last decade has seen spectacular progress in the design, preparation, and characterization down to the atomic scale of oxide ultrathin films of few nanometers thickness grown on a different material. This has paved the way towards several sophisticated applications in advanced technologies. By playing around with the low-dimensionality of the oxide layer, which sometimes leads to truly two-dimensional systems, one can exploit new properties and functionalities that are not present in the corresponding bulk materials or thick films. In this review we provide some clues about the most recent advances in the design of these systems based on modern electronic structure theory and on their preparation and characterization with specifically developed growth techniques and analytical methods. We show how two-dimensional oxides can be used in mature technologies by providing added value to existing materials, or in new technologies based on completely new paradigms. The fields in which two-dimensional oxides are used are classified based on the properties that are exploited, chemical or physical. With respect to chemical properties we discuss use of oxide ultrathin films in catalysis, solid oxide fuel cells, gas sensors, corrosion protection, and biocompatible materials; regarding the physical properties we discuss metal-oxide field effect transistors and memristors, spintronic devices, ferroelectrics and thermoelectrics, and solar energy materials.

  16. Recent advances of lanthanum-based perovskite oxides for catalysis

    SciTech Connect

    Zhu, Huiyuan; Zhang, Pengfei; Dai, Sheng

    2015-09-21

    There is a need to reduce the use of noble metal elements especially in the field of catalysis, where noble metals are ubiquitously applied. To this end, perovskite oxides, an important class of mixed oxide, have been attracting increasing attention for decades as potential replacements. Benefiting from the extraordinary tunability of their compositions and structures, perovskite oxides can be rationally tailored and equipped with targeted physical and chemical properties e.g. redox behavior, oxygen mobility, and ion conductivity for enhanced catalysis. Recently, the development of highly efficient perovskite oxide catalysts has been extensively studied. This review article summarizes the recent development of lanthanum-based perovskite oxides as advanced catalysts for both energy conversion applications and traditional heterogeneous reactions.

  17. Recent advances of lanthanum-based perovskite oxides for catalysis

    DOE PAGES

    Zhu, Huiyuan; Zhang, Pengfei; Dai, Sheng

    2015-09-21

    There is a need to reduce the use of noble metal elements especially in the field of catalysis, where noble metals are ubiquitously applied. To this end, perovskite oxides, an important class of mixed oxide, have been attracting increasing attention for decades as potential replacements. Benefiting from the extraordinary tunability of their compositions and structures, perovskite oxides can be rationally tailored and equipped with targeted physical and chemical properties e.g. redox behavior, oxygen mobility, and ion conductivity for enhanced catalysis. Recently, the development of highly efficient perovskite oxide catalysts has been extensively studied. This review article summarizes the recent developmentmore » of lanthanum-based perovskite oxides as advanced catalysts for both energy conversion applications and traditional heterogeneous reactions.« less

  18. Advanced oxidation processes with coke plant wastewater treatment.

    PubMed

    Krzywicka, A; Kwarciak-Kozłowska, A

    2014-01-01

    The aim of this study was to determine the most efficient method of coke wastewater treatment. This research examined two processes - advanced oxidation with Fenton and photo-Fenton reaction. It was observed that the use of ultraviolet radiation with Fenton process had a better result in removal of impurities.

  19. Advanced materials for solid oxide fuel cells

    SciTech Connect

    Armstrong, T.R.; Stevenson, J.

    1995-08-01

    The purpose of this research is to improve the properties of the current state-of-the-art materials used for solid oxide fuel cells (SOFCs). The objectives are to: (1) develop materials based on modifications of the state-of-the-art materials; (2) minimize or eliminate stability problems in the cathode, anode, and interconnect; (3) Electrochemically evaluate (in reproducible and controlled laboratory tests) the current state-of-the-art air electrode materials and cathode/electrolyte interfacial properties; (4) Develop accelerated electrochemical test methods to evaluate the performance of SOFCs under controlled and reproducible conditions; and (5) Develop and test materials for use in low-temperature SOFCs. The goal is to modify and improve the current state-of-the-art materials and minimize the total number of cations in each material to avoid negative effects on the materials properties. Materials to reduce potential deleterious interactions, (3) improve thermal, electrical, and electrochemical properties, (4) develop methods to synthesize both state-of-the-art and alternative materials for the simultaneous fabricatoin and consolidation in air of the interconnections and electrodes with the solid electrolyte, and (5) understand electrochemical reactions at materials interfaces and the effects of component composition and processing on those reactions.

  20. Advanced Launch System advanced development oxidizer turbopump program: Technical implementation plan

    NASA Technical Reports Server (NTRS)

    Ferlita, F.

    1989-01-01

    The Advanced Launch Systems (ALS) Advanced Development Oxidizer Turbopump Program has designed, fabricated and demonstrated a low cost, highly reliable oxidizer turbopump for the Space Transportation Engine that minimizes the recurring cost for the ALS engines. Pratt and Whitney's (P and W's) plan for integrating the analyses, testing, fabrication, and other program efforts is addressed. This plan offers a comprehensive description of the total effort required to design, fabricate, and test the ALS oxidizer turbopump. The proposed ALS oxidizer turbopump reduces turbopump costs over current designs by taking advantage of design simplicity and state-of-the-art materials and producibility features without compromising system reliability. This is accomplished by selecting turbopump operating conditions that are within known successful operating regions and by using proven manufacturing techniques.

  1. Terahertz-Driven Nonlinear Spin Response of Antiferromagnetic Nickel Oxide

    NASA Astrophysics Data System (ADS)

    Baierl, S.; Mentink, J. H.; Hohenleutner, M.; Braun, L.; Do, T.-M.; Lange, C.; Sell, A.; Fiebig, M.; Woltersdorf, G.; Kampfrath, T.; Huber, R.

    2016-11-01

    Terahertz magnetic fields with amplitudes of up to 0.4 Tesla drive magnon resonances in nickel oxide while the induced dynamics is recorded by femtosecond magneto-optical probing. We observe distinct spin-mediated optical nonlinearities, including oscillations at the second harmonic of the 1 THz magnon mode. The latter originate from coherent dynamics of the longitudinal component of the antiferromagnetic order parameter, which are probed by magneto-optical effects of second order in the spin deflection. These observations allow us to dynamically disentangle electronic from lattice-related contributions to magnetic linear birefringence and dichroism—information so far only accessible by ultrafast THz spin control. The nonlinearities discussed here foreshadow physics that will become essential in future subcycle spin switching.

  2. Liquid crystallinity driven highly aligned large graphene oxide composites

    NASA Astrophysics Data System (ADS)

    Lee, Kyung Eun; Oh, Jung Jae; Yun, Taeyeong; Kim, Sang Ouk

    2015-04-01

    Graphene is an emerging graphitic carbon materials, consisting of sp2 hybridized two dimensinal honeycomb structure. It has been widely studied to incorporate graphene with polymer to utilize unique property of graphene and reinforce electrical, mechanical and thermal property of polymer. In composite materials, orientation control of graphene significantly influences the property of composite. Until now, a few method has been developed for orientation control of graphene within polymer matrix. Here, we demonstrate facile fabrication of high aligned large graphene oxide (LGO) composites in polydimethylsiloxane (PDMS) matrix exploiting liquid crystallinity. Liquid crystalline aqueous dispersion of LGO is parallel oriented within flat confinement geometry. Freeze-drying of the aligned LGO dispersion and subsequent infiltration with PDMS produce highly aligned LGO/PDMS composites. Owing to the large shape anisotropy of LGO, liquid crystalline alignment occurred at low concentration of 2 mg/ml in aqueous dispersion, which leads to the 0.2 wt% LGO loaded composites.

  3. Light-driven oxidation of polysaccharides by photosynthetic pigments and a metalloenzyme

    PubMed Central

    Cannella, D.; Möllers, K. B.; Frigaard, N.-U.; Jensen, P. E.; Bjerrum, M. J.; Johansen, K. S.; Felby, C.

    2016-01-01

    Oxidative processes are essential for the degradation of plant biomass. A class of powerful and widely distributed oxidative enzymes, the lytic polysaccharide monooxygenases (LPMOs), oxidize the most recalcitrant polysaccharides and require extracellular electron donors. Here we investigated the effect of using excited photosynthetic pigments as electron donors. LPMOs combined with pigments and reducing agents were exposed to light, which resulted in a never before seen 100-fold increase in catalytic activity. In addition, LPMO substrate specificity was broadened to include both cellulose and hemicellulose. LPMO enzymes and pigment derivatives common in the environment of plant-degrading organisms thus form a highly reactive and stable light-driven system increasing the turnover rate and versatility of LPMOs. This light-driven system may find applications in biotechnology and chemical processing. PMID:27041218

  4. Light-driven oxidation of polysaccharides by photosynthetic pigments and a metalloenzyme.

    PubMed

    Cannella, D; Möllers, K B; Frigaard, N-U; Jensen, P E; Bjerrum, M J; Johansen, K S; Felby, C

    2016-04-04

    Oxidative processes are essential for the degradation of plant biomass. A class of powerful and widely distributed oxidative enzymes, the lytic polysaccharide monooxygenases (LPMOs), oxidize the most recalcitrant polysaccharides and require extracellular electron donors. Here we investigated the effect of using excited photosynthetic pigments as electron donors. LPMOs combined with pigments and reducing agents were exposed to light, which resulted in a never before seen 100-fold increase in catalytic activity. In addition, LPMO substrate specificity was broadened to include both cellulose and hemicellulose. LPMO enzymes and pigment derivatives common in the environment of plant-degrading organisms thus form a highly reactive and stable light-driven system increasing the turnover rate and versatility of LPMOs. This light-driven system may find applications in biotechnology and chemical processing.

  5. Insights on slab-driven mantle flow from advances in three-dimensional modelling

    NASA Astrophysics Data System (ADS)

    Jadamec, Margarete A.

    2016-10-01

    The wealth of seismic observations collected over the past 20 years has raised intriguing questions about the three-dimensional (3D) nature of the mantle flow field close to subduction zones and provided a valuable constraint for how the plate geometry may influence mantle flow proximal to the slab. In geodynamics, there has been a new direction of subduction zone modelling that has explored the 3D nature of slab-driven mantle flow, motivated in part by the observations from shear wave splitting, but also by the observed variations in slab geometries worldwide. Advances in high-performance computing are now allowing for an unprecedented level of detail to be incorporated into numerical models of subduction. This paper summarizes recent advances from 3D geodynamic models that reveal the complex nature of slab-driven mantle flow, including trench parallel flow, toroidal flow around slab edges, mantle upwelling at lateral slab edges, and small scale convection within the mantle wedge. This implies slab-driven mantle deformation zones occur in the asthenosphere proximal to the slab, wherein the mantle may commonly flow in a different direction and rate than the surface plates, implying laterally variable plate-mantle coupling. The 3D slab-driven mantle flow can explain, in part, the lateral transport of geochemical signatures in subduction zones. In addition, high-resolution geographically referenced models can inform the interpretation of slab structure, where seismic data are lacking. The incorporation of complex plate boundaries into high-resolution, 3D numerical models opens the door to a new avenue of research in model construction, data assimilation, and modelling workflows, and gives 3D immersive visualization a new role in scientific discovery.

  6. Impact of leachate composition on the advanced oxidation treatment.

    PubMed

    Oulego, Paula; Collado, Sergio; Laca, Adriana; Díaz, Mario

    2016-01-01

    Advanced oxidation processes (AOPs) are gaining importance as an alternative to the biological or physicochemical treatments for the management of leachates. In this work, it has been studied the effect of the characteristics of the leachate (content in humic acids, landfill age and degree of stabilization) on the wet oxidation process and final quality of the treated effluent. A high concentration of humic acids in the leachate had a positive effect on the COD removal because this fraction is more easily oxidizable. Additionally, it has been demonstrated that the simultaneous presence of humic acid and the intermediates generated during the oxidation process improved the degradation of this acid, since such intermediates are stronger initiators of free radicals than the humic acid itself. Similar values of COD removals (49% and 51%) and biodegradability indices (0.30 and 0.35) were observed, after 8 h of wet oxidation, for the stabilised leachate (biologically pretreated) and the raw one, respectively. Nevertheless, final colour removal was much higher for the stabilised leachate, achieving values up to 91%, whereas for the raw one only 56% removal was attained for the same reaction time. Besides, wet oxidation treatment was more efficient for the young leachate than for the old one, with final COD conversions of 60% and 37%, respectively. Eventually, a triangular "three-lump" kinetic model, which considered direct oxidation to CO2 and partial oxidation through intermediate compounds, was here proposed.

  7. Liquid crystallinity driven highly aligned large graphene oxide composites

    SciTech Connect

    Lee, Kyung Eun; Oh, Jung Jae; Yun, Taeyeong; Kim, Sang Ouk

    2015-04-15

    Graphene is an emerging graphitic carbon materials, consisting of sp{sup 2} hybridized two dimensinal honeycomb structure. It has been widely studied to incorporate graphene with polymer to utilize unique property of graphene and reinforce electrical, mechanical and thermal property of polymer. In composite materials, orientation control of graphene significantly influences the property of composite. Until now, a few method has been developed for orientation control of graphene within polymer matrix. Here, we demonstrate facile fabrication of high aligned large graphene oxide (LGO) composites in polydimethylsiloxane (PDMS) matrix exploiting liquid crystallinity. Liquid crystalline aqueous dispersion of LGO is parallel oriented within flat confinement geometry. Freeze-drying of the aligned LGO dispersion and subsequent infiltration with PDMS produce highly aligned LGO/PDMS composites. Owing to the large shape anisotropy of LGO, liquid crystalline alignment occurred at low concentration of 2 mg/ml in aqueous dispersion, which leads to the 0.2 wt% LGO loaded composites. - Graphical abstract: Liquid crystalline LGO aqueous dispersions are spontaneous parallel aligned between geometric confinement for highly aligned LGO/polymer composite fabrication. - Highlights: • A simple fabrication method for highly aligned LGO/PDMS composites is proposed. • LGO aqueous dispersion shows nematic liquid crystalline phase at 0.8 mg/ml. • In nematic phase, LGO flakes are highly aligned by geometric confinement. • Infiltration of PDMS into freeze-dried LGO allows highly aligned LGO/PDMS composites.

  8. Advanced treatment of sodium acetate in water by ozone oxidation.

    PubMed

    Yang, De-Min; Yuan, Jian-Mei

    2014-02-01

    Ozone oxidation is an advanced oxidation process for treatment of organic and inorganic wastewater. In this paper, sodium acetate (according to chemical oxygen demand [COD]) was selected as the model pollutant in water, and the degradation efficiencies and mechanism of sodium acetate in water by ozone oxidation were investigated. The results showed that the ozone oxidation was an effective treatment technology for advanced treatment of sodium acetate in water; the COD removal rate obtained the maximum value of 45.89% from sodium acetate solution when the pH value was 10.82, ozone concentration was 100 mg/L, reaction time was 30 minutes, and reaction temperature was 25 degrees C. The COD removal rate increased first and decreased subsequently with the bicarbonate (HCO3-) concentration from 0 to 200 mg/L, the largest decline being 20.35%. The COD removal rate declined by 25.38% with the carbonate (CO3(2-)) concentration from 0 to 200 mg/L; CO3(2-) has a more obvious scavenging effect to inhibit the formation of hydroxyl free radicals than HCO3-. Calcium chloride (CaCl2) and calcium hydroxide (Ca(OH)2) could enhance the COD removal rate greatly; they could reach 77.35 and 96.53%, respectively, after a reaction time of 30 minutes, which was increased by 31.46 and 50.64%, respectively, compared with only ozone oxidation. It was proved that the main ozone oxidation product of sodium acetate was carbon dioxide (CO2), and the degradation of sodium acetate in the ozone oxidation process followed the mechanism of hydroxyl free radicals.

  9. Increased Hepatic Fatty Acids Uptake and Oxidation by LRPPRC-Driven Oxidative Phosphorylation Reduces Blood Lipid Levels

    PubMed Central

    Lei, Shi; Sun, Run-zhu; Wang, Di; Gong, Mei-zhen; Su, Xiang-ping; Yi, Fei; Peng, Zheng-wu

    2016-01-01

    Hyperlipidemia is one of the major risk factors of atherosclerosis and other cardiovascular diseases. This study aimed to investigate the impact of leucine rich pentatricopeptide repeat containing protein (LRPPRC)-driven hepatic oxidative phoshorylation on blood lipid levels. The hepatic LRPPRC level was modulated by liver-specific transgenic or adeno-associated virus 8 carried shRNA targeting Lrpprc (aav-shLrpprc). Mice were fed with a high fat diet to induce obesity. Gene expression was analyzed by quantitative real-time PCR and / or western blot. The hepatic ATP level, hepatic and serum lipids contents, and mitochondria oxidative phosphorylation (OxPhos) complex activities were measured using specific assay kits. The uptake and oxidation of fatty acid by hepatocytes were assessed using 14C-palmitate. LRPPRC regulated the expression of genes encoded by mitochondrial genome but not those by nuclear genome involved in mitochondria biogenesis, OxPhos, and lipid metabolism. Increased OxPhos in liver mediated by LRPPRC resulted in the increase of hepatic ATP level. Lrpprc promoted palmitate uptake and oxidation by hypatocytes. The hepatic and serum triglyceride and total cholesterol levels were inversely associated with the hepatic LRPPRC level. These data demonstrated that LRPPRC-driven hepatic OxPhos could promote fatty acids uptake and oxidation by hepatocytes and reduce both hepatic and circulating triglyceride and cholesterol levels. PMID:27462273

  10. Evaluation of advanced oxidation process for the treatment of groundwater

    SciTech Connect

    Garland, S.B. II ); Peyton, G.R. ); Rice, L.E. . Kansas City Div.)

    1990-01-01

    An advanced oxidation process utilizing ozone, ultraviolet radiation, and hydrogen peroxide was selected for the removal of chlorinated hydrocarbons, particularly trichlorethene and 1,2-dichlorethene, from groundwater underlying the US Department of Energy Kansas City Plant. Since the performance of this process for the removal of organics from groundwater is not well-documented, an evaluation was initiated to determine the performance of the treatment plant, document the operation and maintenance costs experience, and evaluate contaminant removal mechanisms. 11 refs., 3 figs.

  11. Trace element cycling through iron oxide minerals during redox-driven dynamic recrystallization

    SciTech Connect

    Frierdich, Andrew J.; Luo, Yun; Catalano, Jeffrey G.

    2011-11-17

    Microbially driven iron redox cycling in soil and sedimentary systems, including during diagenesis and fluid migration, may activate secondary abiotic reactions between aqueous Fe(II) and solid Fe(III) oxides. These reactions catalyze dynamic recrystallization of iron oxide minerals through localized and simultaneous oxidative adsorption of Fe(II) and reductive dissolution of Fe(III). Redox-active trace elements undergo speciation changes during this process, but the impact redox-driven recrystallization has on redox-inactive trace elements associated with iron oxides is uncertain. Here we demonstrate that Ni is cycled through the minerals goethite and hematite during redox-driven recrystallization. X-ray absorption spectroscopy demonstrates that during this process adsorbed Ni becomes progressively incorporated into the minerals. Kinetic studies using batch reactors containing aqueous Fe(II) and Ni preincorporated into iron oxides display substantial release of Ni to solution. We conclude that iron oxide recrystallization activated by aqueous Fe(II) induces cycling of Ni through the mineral structure, with adsorbed Ni overgrown in regions of Fe(II) oxidative adsorption and incorporated Ni released in regions of reductive dissolution of structural Fe(III). The redistribution of Ni among the mineral bulk, mineral surface, and aqueous solution appears to be thermodynamically controlled and catalyzed by Fe(II). Our work suggests that important proxies for ocean composition on the early Earth may be invalid, identifies new processes controlling micronutrient availability in soil, sedimentary, and aquatic ecosystems, and points toward a mechanism for trace element mobilization during diagenesis and enrichment in geologic fluids.

  12. Electrochemical advanced oxidation processes: today and tomorrow. A review.

    PubMed

    Sirés, Ignasi; Brillas, Enric; Oturan, Mehmet A; Rodrigo, Manuel A; Panizza, Marco

    2014-01-01

    In recent years, new advanced oxidation processes based on the electrochemical technology, the so-called electrochemical advanced oxidation processes (EAOPs), have been developed for the prevention and remediation of environmental pollution, especially focusing on water streams. These methods are based on the electrochemical generation of a very powerful oxidizing agent, such as the hydroxyl radical ((•)OH) in solution, which is then able to destroy organics up to their mineralization. EAOPs include heterogeneous processes like anodic oxidation and photoelectrocatalysis methods, in which (•)OH are generated at the anode surface either electrochemically or photochemically, and homogeneous processes like electro-Fenton, photoelectro-Fenton, and sonoelectrolysis, in which (•)OH are produced in the bulk solution. This paper presents a general overview of the application of EAOPs on the removal of aqueous organic pollutants, first reviewing the most recent works and then looking to the future. A global perspective on the fundamentals and experimental setups is offered, and laboratory-scale and pilot-scale experiments are examined and discussed.

  13. Alloys for advanced steam turbines--Oxidation behavior

    SciTech Connect

    Holcomb, G.R.

    2007-10-01

    Advanced or ultra supercritical (USC) steam power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy (DOE) include power generation from coal at 60% efficiency, which would require steam temperatures of up to 760°C. Current research on the oxidation of candidate materials for advanced steam turbines is presented with a focus on a methodology for estimating chromium evaporation rates from protective chromia scales. The high velocities and pressures of advanced steam turbines lead to evaporation predictions as high as 5 × 10-8 kg m-2s-1 of CrO2(OH)2(g) at 760°C and 34.5 MPa. This is equivalent to 0.077 mm per year of solid Cr loss.

  14. FPIC: A Key Next Step for Stability Studies of Advanced Beam Driven FRCs

    NASA Astrophysics Data System (ADS)

    Dettrick, Sean; Barnes, Dan; Ceccherini, Francesco; Galeotti, Laura; Guerrero, Victor; Hendrix, Doug; Hubbard, Kevin; Milroy, Richard; Necas, Ales; TAE Team

    2015-11-01

    The goal of the C-2U experiment is to use neutral beam heating and edge biasing to sustain an advanced beam-driven FRC for many milliseconds, longer than the growth times of known instabilities and the resistive wall time. To guide the experiment further into unexplored parameter regimes, it is desirable to have a stability code suitable for beam-driven FRC plasmas, in which the bulk of ion orbits are not Larmor-like and hence gyrokinetic approximations are inapplicable. Fully kinetic ions are required for stability simulations of beam driven FRCs, as are multiple ion species, end boundary conditions, and a resistive boundary. To meet these challenges a new 3D quasineutral hybrid code, FPIC, is being developed. FPIC has a choice of zero electron mass and finite electron mass Ohm's law solvers. Uniform staggered grids, finite differencing, and cut cell boundaries are used to simplify and optimize the PIC while allowing arbitrary boundary shapes. Finite resistivity of the boundary is implemented by coupling free-space exterior solutions to the cut-cell edges. The code is MPI parallelized and the particle push is GPU accelerated. Code benchmarks will be presented including the stability of the FRC tilt mode.

  15. Colloidal metal oxide nanocrystal catalysis by sustained chemically driven ligand displacement.

    PubMed

    De Roo, Jonathan; Van Driessche, Isabel; Martins, José C; Hens, Zeger

    2016-05-01

    Surface chemistry is a key enabler for colloidal nanocrystal applications. In this respect, metal oxide nanocrystals (NCs) stand out from other NCs as carboxylic acid ligands adsorb on their surface by dissociation to carboxylates and protons, the latter proving essential in electron transfer reactions. Here, we show that this binding motif sets the stage for chemically driven ligand displacement where the binding of amines or alcohols to HfO2 NCs is promoted by the conversion of a bound carboxylic acid into a non-coordinating amide or ester. Furthermore, the sustained ligand displacement, following the addition of excess carboxylic acid, provides a catalytic pathway for ester formation, whereas the addition of esters leads to NC-catalysed transesterification. Because sustained, chemically driven ligand displacement leaves the NCs-including their surface composition-unchanged and preserves colloidal stability, metal oxide nanocrystals are thus turned into effective nanocatalysts that bypass the tradeoff between colloidal stability and catalytic activity.

  16. Colloidal metal oxide nanocrystal catalysis by sustained chemically driven ligand displacement

    NASA Astrophysics Data System (ADS)

    de Roo, Jonathan; van Driessche, Isabel; Martins, José C.; Hens, Zeger

    2016-05-01

    Surface chemistry is a key enabler for colloidal nanocrystal applications. In this respect, metal oxide nanocrystals (NCs) stand out from other NCs as carboxylic acid ligands adsorb on their surface by dissociation to carboxylates and protons, the latter proving essential in electron transfer reactions. Here, we show that this binding motif sets the stage for chemically driven ligand displacement where the binding of amines or alcohols to HfO2 NCs is promoted by the conversion of a bound carboxylic acid into a non-coordinating amide or ester. Furthermore, the sustained ligand displacement, following the addition of excess carboxylic acid, provides a catalytic pathway for ester formation, whereas the addition of esters leads to NC-catalysed transesterification. Because sustained, chemically driven ligand displacement leaves the NCs--including their surface composition--unchanged and preserves colloidal stability, metal oxide nanocrystals are thus turned into effective nanocatalysts that bypass the tradeoff between colloidal stability and catalytic activity.

  17. Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films.

    PubMed

    Sun, Ke; Saadi, Fadl H; Lichterman, Michael F; Hale, William G; Wang, Hsin-Ping; Zhou, Xinghao; Plymale, Noah T; Omelchenko, Stefan T; He, Jr-Hau; Papadantonakis, Kimberly M; Brunschwig, Bruce S; Lewis, Nathan S

    2015-03-24

    Reactively sputtered nickel oxide (NiOx) films provide transparent, antireflective, electrically conductive, chemically stable coatings that also are highly active electrocatalysts for the oxidation of water to O2(g). These NiOx coatings provide protective layers on a variety of technologically important semiconducting photoanodes, including textured crystalline Si passivated by amorphous silicon, crystalline n-type cadmium telluride, and hydrogenated amorphous silicon. Under anodic operation in 1.0 M aqueous potassium hydroxide (pH 14) in the presence of simulated sunlight, the NiOx films stabilized all of these self-passivating, high-efficiency semiconducting photoelectrodes for >100 h of sustained, quantitative solar-driven oxidation of water to O2(g).

  18. Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films

    PubMed Central

    Sun, Ke; Saadi, Fadl H.; Lichterman, Michael F.; Hale, William G.; Wang, Hsin-Ping; Zhou, Xinghao; Plymale, Noah T.; Omelchenko, Stefan T.; He, Jr-Hau; Papadantonakis, Kimberly M.; Brunschwig, Bruce S.; Lewis, Nathan S.

    2015-01-01

    Reactively sputtered nickel oxide (NiOx) films provide transparent, antireflective, electrically conductive, chemically stable coatings that also are highly active electrocatalysts for the oxidation of water to O2(g). These NiOx coatings provide protective layers on a variety of technologically important semiconducting photoanodes, including textured crystalline Si passivated by amorphous silicon, crystalline n-type cadmium telluride, and hydrogenated amorphous silicon. Under anodic operation in 1.0 M aqueous potassium hydroxide (pH 14) in the presence of simulated sunlight, the NiOx films stabilized all of these self-passivating, high-efficiency semiconducting photoelectrodes for >100 h of sustained, quantitative solar-driven oxidation of water to O2(g). PMID:25762067

  19. A polarized liquid-liquid interface meets visible light-driven catalytic water oxidation.

    PubMed

    Rastgar, Shokoufeh; Pilarski, Martin; Wittstock, Gunther

    2016-09-15

    Hyperbranched nanostructured bismuth vanadate at a chemically polarized water/organic interface is applied for efficient visible light-driven catalytic oxidation of water in the presence of [Co(bpy)3](PF6)3 as an organic soluble electron acceptor. The photocurrent response originating from the transfer of photo-excited electrons in BiVO4 to [Co(bpy)3](3+) is measured by scanning electrochemical microscopy.

  20. Mineralization of the biocide chloroxylenol by electrochemical advanced oxidation processes.

    PubMed

    Skoumal, Marcel; Arias, Conchita; Cabot, Pere Lluís; Centellas, Francesc; Garrido, José Antonio; Rodríguez, Rosa María; Brillas, Enric

    2008-04-01

    Electrochemical advanced oxidation processes (EAOPs) are environmentally friendly methods based on the destruction of organic pollutants in wastewaters with in situ electrogenerated hydroxyl radical. This species is formed in anodic oxidation (AO) from water oxidation at the anode and in indirect electro-oxidation methods like electro-Fenton (EF) and photoelectro-Fenton (PEF) also from reaction between catalytic Fe2+ and H2O2 continuously produced at the O2-diffusion cathode. The PEF method involves the irradiation of the treated solution with UVA light to enhance the photolysis of organics including Fe(III) complexes. In this work, the oxidation power of such EAOPs to decontaminate synthetic wastewaters of the biocide chloroxylenol (4-chloro-3,5-dimethylphenol) at pH 3.0 is comparatively examined with an undivided electrolytic cell containing a Pt or boron-doped diamond (BDD) anode and a stainless steel or O2-diffusion cathode. The initial chlorine is released as Cl(-) ion, which remains stable in the medium using Pt or is oxidized to Cl2 on BDD. The biocide solutions can be completely decontaminated using AO with a BDD anode, as well as PEF with a Pt or BDD anode. The PEF procedure with a BDD anode is the most powerful method leading to total mineralization in about 300 min, practically independent of current density. When current density rises, the degradation rate of processes increases, but they become less efficient due to the larger enhancement of waste reactions of oxidants. Chloroxylenol is much more rapidly removed in EF and PEF than in AO. 2,6-dimethylhydroquinone, 2,6-dimethyl-p-benzoquinone and 3,5-dimethyl-2-hydroxy-p-benzoquinone are identified as aromatic by-products, and maleic, malonic, pyruvic, acetic and oxalic acids are found as generated carboxylic acids. A general pathway for chloroxylenol mineralization by all EAOPs including the above by-products is proposed.

  1. Homogenous and heterogenous advanced oxidation of two commercial reactive dyes.

    PubMed

    Balcioglu, I A; Arslan, I; Sacan, M T

    2001-07-01

    Two commercial reactive dyes, the azo dye Reactive Black 5 and the copper phythalocyanine dye Reactive Blue 21, have been treated at a concentration of 75 mg l(-1) by titanium dioxide mediated photocatalytic (TiO2/UV), dark and UV-light assisted Fenton (Fe2+/H2O2) and Fenton-like (Fe3+/H2O2) processes in acidic medium. For the treatment of Reactive Black 5, all investigated advanced oxidation processes were quite effective in terms of colour, COD as well as TOC removal. Moreover, the relative growth inhibition of the azo dye towards the marine algae Dunaliella tertiolecta that was initially 70%, did not exhibit an increase during the studied advanced oxidation reactions and complete detoxification at the end of the treatment period could be achieved for all investigated treatment processes. However, for Reactive Blue 21, abatement in COD and UV-VIS absorbance values was mainly due to the adsorption of the dye on the photocatalyst surface and/or the coagulative effect of Fe3+/Fe2+ ions. Although only a limited fraction of the copper phythalocyanine dye underwent oxidative degradation, 47% of the total copper in the dye was already released after 1 h photocatalytic treatment.

  2. Nanophase transition metal oxides show large thermodynamically driven shifts in oxidation-reduction equilibria.

    PubMed

    Navrotsky, Alexandra; Ma, Chengcheng; Lilova, Kristina; Birkner, Nancy

    2010-10-08

    Knowing the thermodynamic stability of transition metal oxide nanoparticles is important for understanding and controlling their role in a variety of industrial and environmental systems. Using calorimetric data on surface energies for cobalt, iron, manganese, and nickel oxide systems, we show that surface energy strongly influences their redox equilibria and phase stability. Spinels (M(3)O(4)) commonly have lower surface energies than metals (M), rocksalt oxides (MO), and trivalent oxides (M(2)O(3)) of the same metal; thus, the contraction of the stability field of the divalent oxide and expansion of the spinel field appear to be general phenomena. Using tabulated thermodynamic data for bulk phases to calculate redox phase equilibria at the nanoscale can lead to errors of several orders of magnitude in oxygen fugacity and of 100 to 200 kelvin in temperature.

  3. Degradation of wine industry wastewaters by photocatalytic advanced oxidation.

    PubMed

    Navarro, P; Sarasa, J; Sierra, D; Esteban, S; Ovelleiro, J L

    2005-01-01

    Wine industry wastewaters contain a high concentration of organic biodegradable compounds as well as a great amount of suspended solids. These waters are difficult to treat by conventional biological processes because they are seasonal and a great flow variation exists. Photocatalytic advanced oxidation is a promising technology for waters containing high amounts of organic matter. In this study we firstly investigated the application of H2O2 as oxidant combined with light (artificial or natural) in order to reduce the organic matter in samples from wine industry effluents. Secondly, we studied its combination with heterogeneous catalysts: titanium dioxide and clays containing iron minerals. The addition of photocatalysts to the system reduces the required H2O2 concentration. Although the H2O2/TiO2 system produces higher efficiencies, the H2O2/clays system requires a H2O2 dosage between three and six times lower.

  4. Comparison of different advanced oxidation processes for phenol degradation.

    PubMed

    Esplugas, Santiago; Giménez, Jaime; Contreras, Sandra; Pascual, Esther; Rodríguez, Miguel

    2002-02-01

    Advanced Oxidation Processes (O3, O3/H2O2, UV, UV/O3, UV/H2O2, O3/UV/H2O2, Fe2+ /H2O2 and photocatalysis) for degradation of phenol in aqueous solution have been studied in earlier works. In this paper, a comparison of these techniques is undertaken: pH influence, kinetic constants, stoichiometric coefficient and optimum oxidant/pollutant ratio. Of the tested processes, Fenton reagent was found to the fastest one for phenol degradation. However, lower costs were obtained with ozonation. In the ozone combinations, the best results were achieved with single ozonation. As for the UV processes, UV/H2O2 showed the highest degradation rate.

  5. Computational Fluid Dynamics Simulation of Flows in an Oxidation Ditch Driven by a New Surface Aerator.

    PubMed

    Huang, Weidong; Li, Kun; Wang, Gan; Wang, Yingzhe

    2013-11-01

    In this article, we present a newly designed inverse umbrella surface aerator, and tested its performance in driving flow of an oxidation ditch. Results show that it has a better performance in driving the oxidation ditch than the original one with higher average velocity and more uniform flow field. We also present a computational fluid dynamics model for predicting the flow field in an oxidation ditch driven by a surface aerator. The improved momentum source term approach to simulate the flow field of the oxidation ditch driven by an inverse umbrella surface aerator was developed and validated through experiments. Four kinds of turbulent models were investigated with the approach, including the standard k-ɛ model, RNG k-ɛ model, realizable k-ɛ model, and Reynolds stress model, and the predicted data were compared with those calculated with the multiple rotating reference frame approach (MRF) and sliding mesh approach (SM). Results of the momentum source term approach are in good agreement with the experimental data, and its prediction accuracy is better than MRF, close to SM. It is also found that the momentum source term approach has lower computational expenses, is simpler to preprocess, and is easier to use.

  6. Advanced oxidation processes in azo dye wastewater treatment.

    PubMed

    Papić, Sanja; Koprivanac, Natalija; Bozić, Ana Loncarić; Vujević, Dinko; Dragicević, Savka Kusar; Kusić, Hrvoje; Peternel, Igor

    2006-06-01

    The chemical degradation of synthetic azo dyes color index (C.I.) Acid Orange 7, C.I. Direct Orange 39, and C.I. Mordant Yellow 10 has been studied by the following advanced oxidation processes: Fenton, Fenton-like, ozonation, peroxone without or with addition of solid particles, zeolites HY, and NH4ZSM5. Spectrophotometric (UV/visible light spectrum) and total organic carbon measurements were used for determination of process efficiency and reaction kinetics. The degradation rates are evaluated by determining their rate constants. The different hydroxyl radical generation processes were comparatively studied, and the most efficient experimental conditions for the degradation of organic azo dyes solutions were determined.

  7. Observation of Energetic Particle Driven Modes Relevant to Advanced Tokamak Regimes

    SciTech Connect

    R. Nazikian; B. Alper; H.L. Berk; D. Borba; C. Boswell; R.V. Budny; K.H. Burrell; C.Z. Cheng; E.J. Doyle; E. Edlund; R.J. Fonck; A. Fukuyama; N.N. Gorelenkov; C.M. Greenfield; D.J. Gupta; M. Ishikawa; R.J. Jayakumar; G.J. Kramer; Y. Kusama; R.J. La Haye; G.R. McKee; W.A. Peebles; S.D. Pinches; M. Porkolab; J. Rapp; T.L. Rhodes; S.E. Sharapov; K. Shinohara; J.A. Snipes; W.M. Solomon; E.J. Strait; M. Takechi; M.A. Van Zeeland; W.P. West; K.L. Wong; S. Wukitch; L. Zeng

    2004-10-21

    Measurements of high-frequency oscillations in JET [Joint European Torus], JT-60U, Alcator C-Mod, DIII-D, and TFTR [Tokamak Fusion Test Reactor] plasmas are contributing to a new understanding of fast ion-driven instabilities relevant to Advanced Tokamak (AT) regimes. A model based on the transition from a cylindrical-like frequency-chirping mode to the Toroidal Alfven Eigenmode (TAE) has successfully encompassed many of the characteristics seen in experiments. In a surprising development, the use of internal density fluctuation diagnostics has revealed many more modes than has been detected on edge magnetic probes. A corollary discovery is the observation of modes excited by fast particles traveling well below the Alfven velocity. These observations open up new opportunities for investigating a ''sea of Alfven Eigenmodes'' in present-scale experiments, and highlight the need for core fluctuation and fast ion measurements in a future burning-plasma experiment.

  8. Efficient Light-Driven Water Oxidation Catalysis by Dinuclear Ruthenium Complexes.

    PubMed

    Berardi, Serena; Francàs, Laia; Neudeck, Sven; Maji, Somnath; Benet-Buchholz, Jordi; Meyer, Franc; Llobet, Antoni

    2015-11-01

    Mastering the light-induced four-electron oxidation of water to molecular oxygen is a key step towards the achievement of overall water splitting to produce alternative solar fuels. In this work, we report two rugged molecular pyrazolate-based diruthenium complexes that efficiently catalyze visible-light-driven water oxidation. These complexes were fully characterized both in the solid state (by X-ray diffraction analysis) and in solution (spectroscopically and electrochemically). Benchmark performances for homogeneous oxygen production have been obtained for both catalysts in the presence of a photosensitizer and a sacrificial electron acceptor at pH 7, and a turnover frequency of up to 11.1 s(-1) and a turnover number of 5300 were obtained after three successive catalytic runs. Under the same experimental conditions with the same setup, the pyrazolate-based diruthenium complexes outperform other well-known water oxidation catalysts owing to both electrochemical and mechanistic aspects.

  9. Hydrothermal fabrication of selectively doped organic assisted advanced ZnO nanomaterial for solar driven photocatalysis.

    PubMed

    Namratha, K; Byrappa, K; Byrappa, S; Venkateswarlu, P; Rajasekhar, D; Deepthi, B K

    2015-08-01

    Hydrothermal fabrication of selectively doped (Ag(+)+Pd(3+)) advanced ZnO nanomaterial has been carried out under mild pressure temperature conditions (autogeneous; 150°C). Gluconic acid has been used as a surface modifier to effectively control the particle size and morphology of these ZnO nanoparticles. The experimental parameters were tuned to achieve optimum conditions for the synthesis of selectively doped ZnO nanomaterials with an experimental duration of 4 hr. These selectively doped ZnO nanoparticles were characterized using powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), UV-Vis spectroscopy and scanning electron microscopy (SEM). The solar driven photocatalytic studies have been carried out for organic dyes, i.e., Procion MX-5B dye, Cibacron Brilliant Yellow dye, Indigo Carmine dye, separately and all three mixed, by using gluconic acid modified selectively doped advanced ZnO nanomaterial. The influence of catalyst, its concentration and initial dye concentration resulted in the photocatalytic efficiency of 89% under daylight.

  10. Oxidation of caffeine and related methylxanthines in ascorbate and polyphenol-driven Fenton-type oxidations.

    PubMed

    Stadler, R H; Richoz, J; Turesky, R J; Welti, D H; Fay, L B

    1996-03-01

    Caffeine and related methylxanthines were subjected to free radical mediated oxidation by incubation with Fe(3+)-EDTA/ascorbate and Fe(3+)-EDTA/polyphenolics. The reaction mixtures were analysed by reverse-phase HPLC, revealing the corresponding C-8 hydroxylated analogues as the major products of hydroxyl radical mediated attack. Further oxidation products of caffeine, analysed by liquid chromatography-mass spectrometry (LC-MS), were the N1-, N3- and N7-demethylated methylxanthine analogues theobromine, paraxanthine and theophylline, respectively. Isolable amounts of the imidazole ring operated 6-amino-5-(N-formylmethyl-amino)-1,3-dimethyl-uracil (1,3,7-DAU) derivative were also detected, which was characterised by 1H NMR and mass spectroscopy. The identified products indicate that the pertinent chemical reactions, i.e. C-8 hydroxylation, demethylations, and C8-N9 bond scission, are comparable to the primary metabolic pathways of caffeine in humans. The influence of pH, transition metals, hydrogen peroxide, free radical scavengers and metal chelators on caffeine oxidation was studied. This report illustrates that natural food-borne reactants can aid in identifying specific chemical markers of free radical induced damage. Furthermore, potentially anti-and pro-oxidative reactions can be elucidated which may be important in assessing the impact of nutrient additives and supplements on the shelf life and stability of foods and beverages.

  11. Anodic oxidation with doped diamond electrodes: a new advanced oxidation process.

    PubMed

    Kraft, Alexander; Stadelmann, Manuela; Blaschke, Manfred

    2003-10-31

    Boron-doped diamond anodes allow to directly produce OH* radicals from water electrolysis with very high current efficiencies. This has been explained by the very high overvoltage for oxygen production and many other anodic electrode processes on diamond anodes. Additionally, the boron-doped diamond electrodes exhibit a high mechanical and chemical stability. Anodic oxidation with diamond anodes is a new advanced oxidation process (AOP) with many advantages compared to other known chemical and photochemical AOPs. The present work reports on the use of diamond anodes for the chemical oxygen demand (COD) removal from several industrial wastewaters and from two synthetic wastewaters with malic acid and ethylenediaminetetraacetic (EDTA) acid. Current efficiencies for the COD removal between 85 and 100% have been found. The formation and subsequent removal of by-products of the COD oxidation has been investigated for the first time. Economical considerations of this new AOP are included.

  12. The Role of Ultrasound on Advanced Oxidation Processes.

    PubMed

    Babu, Sundaram Ganesh; Ashokkumar, Muthupandian; Neppolian, Bernaurdshaw

    2016-10-01

    This chapter describes the use of ultrasound in remediation of wastewater contaminated with organic pollutants in the absence and presence of other advanced oxidation processes (AOPs) such as sonolysis, sono-ozone process, sonophotocatalysis, sonoFenton systems and sonophoto-Fenton methods in detail. All these methods are explained with the suitable literature illustrations. In most of the cases, hybrid AOPs (combination of ultrasound with one or more AOPs) resulted in superior efficacy to that of individual AOP. The advantageous effects such as additive and synergistic effects obtained by operating the hybrid AOPs are highlighted with appropriate examples. It is worth to mention here that the utilization of ultrasound is not only restricted in preparation of modern active catalysts but also extensively used for the wastewater treatment. Interestingly, ultrasound coupled AOPs are operationally simple, efficient, and environmentally benign, and can be readily applied for large scale industrial processes which make them economically viable.

  13. Design Principles for Metal Oxide Redox Materials for Solar-Driven Isothermal Fuel Production

    PubMed Central

    Michalsky, Ronald; Botu, Venkatesh; Hargus, Cory M; Peterson, Andrew A; Steinfeld, Aldo

    2015-01-01

    The performance of metal oxides as redox materials is limited by their oxygen conductivity and thermochemical stability. Predicting these properties from the electronic structure can support the screening of advanced metal oxides and accelerate their development for clean energy applications. Specifically, reducible metal oxide catalysts and potential redox materials for the solar-thermochemical splitting of CO2 and H2O via an isothermal redox cycle are examined. A volcano-type correlation is developed from available experimental data and density functional theory. It is found that the energy of the oxygen-vacancy formation at the most stable surfaces of TiO2, Ti2O3, Cu2O, ZnO, ZrO2, MoO3, Ag2O, CeO2, yttria-stabilized zirconia, and three perovskites scales with the Gibbs free energy of formation of the bulk oxides. Analogously, the experimental oxygen self-diffusion constants correlate with the transition-state energy of oxygen conduction. A simple descriptor is derived for rapid screening of oxygen-diffusion trends across a large set of metal oxide compositions. These general trends are rationalized with the electronic charge localized at the lattice oxygen and can be utilized to predict the surface activity, the free energy of complex bulk metal oxides, and their oxygen conductivity. PMID:26855639

  14. Thermal-driven attachment of gold nanoparticles prepared with ascorbic acid onto indium tin oxide surfaces

    NASA Astrophysics Data System (ADS)

    Aziz, Md. Abdul; Oyama, Munetaka

    2013-05-01

    Thermal-driven attachment of gold nanoparticles (AuNPs), of which size was less than 50 nm, onto the surfaces of indium tin oxide (ITO) is reported as a new phenomenon. This was permitted by preparing AuNPs via the reduction of hydrogen tetrachloroaurate (HAuCl4) with ascorbic acid (AA). While the AuNPs prepared via the AA reduction sparsely attached on the surface of ITO even at room temperature, a heat-up treatment at ca. 75 °C caused denser attachment of AuNPs on ITO surfaces. The attached density and the homogeneity after the thermal treatment were better than those of AuNP/ITO prepared using 3-aminopropyl-trimethoxysilane linker molecules. The denser attachment was observed similarly both by the immersion of ITO samples after the preparations of AuNPs by AA and by the in situ preparation of AuNPs with AA together with ITO samples. Thus, it is considered that the thermal-driven attachment of AuNPs would occur after the formation of AuNPs in the aqueous solutions, not via the growth of AuNPs on ITO surfaces. The preparation of AuNPs with AA would be a key for the thermal-driven attachment because the same attachments were not observed for AuNPs prepared with citrate ions or commercially available tannic acid-capped AuNPs.

  15. Cytosolic and chloroplastic DHARs cooperate in oxidative stress-driven activation of the salicylic acid pathway.

    PubMed

    Rahantaniaina, Marie-Sylviane; Li, Shengchun; Chatel-Innocenti, Gilles; Tuzet, Andrée; Issakidis-Bourguet, Emmanuelle; Mhamdi, Amna; Noctor, Graham

    2017-04-05

    The complexity of plant antioxidative systems gives rise to many unresolved questions. One relates to the functional importance of dehydroascorbate reductases (DHARs) in interactions between ascorbate and glutathione. To investigate this issue, we produced a complete set of loss-of-function mutants for the three annotated Arabidopsis DHARs. The combined loss of DHAR1 and DHAR3 expression decreased extractable activity to very low levels but had little effect on phenotype or ascorbate and glutathione pools in standard conditions. An analysis of the subcellular localization of the DHARs in Arabidopsis lines stably transformed with GFP fusion proteins revealed that DHAR1 and DHAR2 are cytosolic while DHAR3 is chloroplastic, with no evidence for peroxisomal or mitochondrial localizations. When the mutations were introduced into an oxidative stress genetic background (cat2), the dhar1 dhar2 combination decreased glutathione oxidation and inhibited cat2-triggered induction of the salicylic acid pathway. These effects were reversed in cat2 dhar1 dhar2 dhar3 complemented with any of the three DHARs. The data suggest that (1) DHAR can be decreased to negligible levels without marked effects on ascorbate pools; (2) the cytosolic isoforms are particularly important in coupling intracellular H2O2 metabolism to glutathione oxidation; (3) DHAR-dependent glutathione oxidation influences redox-driven salicylic acid accumulation.

  16. Oxidative stress in aging: advances in proteomic approaches.

    PubMed

    Ortuño-Sahagún, Daniel; Pallàs, Mercè; Rojas-Mayorquín, Argelia E

    2014-01-01

    Aging is a gradual, complex process in which cells, tissues, organs, and the whole organism itself deteriorate in a progressive and irreversible manner that, in the majority of cases, implies pathological conditions that affect the individual's Quality of Life (QOL). Although extensive research efforts in recent years have been made, the anticipation of aging and prophylactic or treatment strategies continue to experience major limitations. In this review, the focus is essentially on the compilation of the advances generated by cellular expression profile analysis through proteomics studies (two-dimensional [2D] electrophoresis and mass spectrometry [MS]), which are currently used as an integral approach to study the aging process. Additionally, the relevance of the oxidative stress factors is discussed. Emphasis is placed on postmitotic tissues, such as neuronal, muscular, and red blood cells, which appear to be those most frequently studied with respect to aging. Additionally, models for the study of aging are discussed in a number of organisms, such as Caenorhabditis elegans, senescence-accelerated probe-8 mice (SAMP8), naked mole-rat (Heterocephalus glaber), and the beagle canine. Proteomic studies in specific tissues and organisms have revealed the extensive involvement of reactive oxygen species (ROS) and oxidative stress in aging.

  17. An advanced oxidation process using ionized gas for wastewater treatment.

    PubMed

    Lee, Eun Ju; Chung, Paul Gene; Kwak, Dong Heui; Kim, Lee Hyung; Kim, Min Jeong

    2010-01-01

    This study on removing non-degradable materials in wastewater focused primarily on advanced oxidation methods such as ozone, ozone/UV and ozone/H2O2. Wastewater treatment using an ionized gas from plasma has been actively progressing. The ionized gas involves reactive species such as O2+, O2- cluster, O radical and OH radical. Since the ionized gas method has such outstanding characteristics as relatively simple structures, non-calorification, non-toxicity and low electricity consumption, it evidently of interest as a new process. A series of experiments were conducted to demonstrate the feasibility of ionized gas as a useful element for the diminution of nondegradable organic matters. On the other hand, a large amount of organic matters were changed to hydrophilic and the compounds containing aromatic functional group gradually decreased. The results implied that the ionized gas has been able to degrade the non-biodegradable organic matters. Therefore, the oxidation process by using an ionized gas process could be considered as an effective alternative unit in water and wastewater treatment plants.

  18. Oxidative Stress in Aging: Advances in Proteomic Approaches

    PubMed Central

    Ortuño-Sahagún, Daniel; Pallàs, Mercè; Rojas-Mayorquín, Argelia E.

    2014-01-01

    Aging is a gradual, complex process in which cells, tissues, organs, and the whole organism itself deteriorate in a progressive and irreversible manner that, in the majority of cases, implies pathological conditions that affect the individual's Quality of Life (QOL). Although extensive research efforts in recent years have been made, the anticipation of aging and prophylactic or treatment strategies continue to experience major limitations. In this review, the focus is essentially on the compilation of the advances generated by cellular expression profile analysis through proteomics studies (two-dimensional [2D] electrophoresis and mass spectrometry [MS]), which are currently used as an integral approach to study the aging process. Additionally, the relevance of the oxidative stress factors is discussed. Emphasis is placed on postmitotic tissues, such as neuronal, muscular, and red blood cells, which appear to be those most frequently studied with respect to aging. Additionally, models for the study of aging are discussed in a number of organisms, such as Caenorhabditis elegans, senescence-accelerated probe-8 mice (SAMP8), naked mole-rat (Heterocephalus glaber), and the beagle canine. Proteomic studies in specific tissues and organisms have revealed the extensive involvement of reactive oxygen species (ROS) and oxidative stress in aging. PMID:24688629

  19. A unique isotopic fingerprint during sulfate-driven anaerobic oxidation of methane

    NASA Astrophysics Data System (ADS)

    Antler, G.; Turchyn, A. V.; Herut, B.; Sivan, O.

    2014-12-01

    Bacterial sulfate reduction is responsible for the majority of anaerobic methane oxidation in modern marine sediments. This sulfate-driven AOM can often metabolize all the methane produced within marine sediments, preventing any from reaching the overlying ocean. In certain areas, however, methane concentrations are high enough to form bubbles, which can reach the seafloor, only partially metabolized through sulfate-driven AOM; these areas where methane bubbles into the ocean are called cold seeps, or methane seeps. We use the sulfur and oxygen isotopes of sulfate (d34SSO4 and d18OSO4) in locations where sulfate-driven AOM is occurring both in methane seeps as well as lower flux methane transition zones to show that in methane seeps, the d34SSO4 and d18OSO4 data during the coupled sulfate reduction fall into a very narrow range and with a close to linear relationship (slope 0.37± 0.01 (R^2= 0.98, n=52, 95% confidence interval). In the studied environments, considerably different physical properties exist, excluding the possibility that this linear relationship can be attributed to physical processes such as diffusion, advection or mixing of two end-members. This unique isotopic signature emerges during bacterial sulfate reduction by methane in 'cold' seeps and differs when sulfate is reduced by either organic matter oxidation or by a slower, diffusive flux of methane within marine sediments. We show also that this unique isotope fingerprint is preserved in the rock record in authigenic build-ups of carbonates and barite associated with methane seeps, and may serve as a powerful tool for identifying catastrophic methane release in the geological record.

  20. Overview of the C-2U Advanced Beam-Driven FRC Experimental Program

    NASA Astrophysics Data System (ADS)

    Gota, H.; Binderbauer, M. W.; Tajima, T.; Putvinski, S.; Tuszewski, M.; Barnes, D.; Dettrick, S.; Garate, E.; Korepanov, S.; Smirnov, A.; Thompson, M. C.; Yang, X.; Ivanov, A. A.; the TAE Team

    2015-11-01

    The world's largest compact toroid (CT) device, C-2, has recently been upgraded to C-2U at Tri Alpha Energy to seek for a sustainment of field-reversed configuration (FRC) plasma by neutral-beam (NB) injection. The C-2 experimental program was successfully completed with dramatic improvements in confinement and stability of FRC plasmas, as well as demonstrated plasma pressure increase and plasma heating by NB injection. To enhance the NB injection effect and further improve the FRC performance, the C-2U experimental program has started with following key system upgrades: (i) increased total NB input power to 10 + MW (15 keV hydrogen) with tilted injection angle; (ii) enhanced edge-biasing capability for stability control; (iii) upgraded particle inventory control systems. The initial C-2U experiment has already demonstrated much further improvements, revealing advanced beam-driven FRC plasmas. In the best operating regime we have successfully achieved plasma sustainment up to 5 + ms; while, in the longer-pulsed regime the plasma lifetime can be extended up to the end of NB pulse-duration (8 + ms). The overall C-2U experimental program and the initial experimental results will be presented at the meeting.

  1. Advancing data reuse in phyloinformatics using an ontology-driven Semantic Web approach.

    PubMed

    Panahiazar, Maryam; Sheth, Amit P; Ranabahu, Ajith; Vos, Rutger A; Leebens-Mack, Jim

    2013-01-01

    Phylogenetic analyses can resolve historical relationships among genes, organisms or higher taxa. Understanding such relationships can elucidate a wide range of biological phenomena, including, for example, the importance of gene and genome duplications in the evolution of gene function, the role of adaptation as a driver of diversification, or the evolutionary consequences of biogeographic shifts. Phyloinformaticists are developing data standards, databases and communication protocols (e.g. Application Programming Interfaces, APIs) to extend the accessibility of gene trees, species trees, and the metadata necessary to interpret these trees, thus enabling researchers across the life sciences to reuse phylogenetic knowledge. Specifically, Semantic Web technologies are being developed to make phylogenetic knowledge interpretable by web agents, thereby enabling intelligently automated, high-throughput reuse of results generated by phylogenetic research. This manuscript describes an ontology-driven, semantic problem-solving environment for phylogenetic analyses and introduces artefacts that can promote phyloinformatic efforts to promote accessibility of trees and underlying metadata. PhylOnt is an extensible ontology with concepts describing tree types and tree building methodologies including estimation methods, models and programs. In addition we present the PhylAnt platform for annotating scientific articles and NeXML files with PhylOnt concepts. The novelty of this work is the annotation of NeXML files and phylogenetic related documents with PhylOnt Ontology. This approach advances data reuse in phyloinformatics.

  2. Treatment of real industrial wastewater using the combined approach of advanced oxidation followed by aerobic oxidation.

    PubMed

    Ramteke, Lokeshkumar P; Gogate, Parag R

    2016-05-01

    Fenton oxidation and ultrasound-based pretreatment have been applied to improve the treatment of real industrial wastewater based on the use of biological oxidation. The effect of operating parameters such as Fe(2+) loading, contact time, initial pH, and hydrogen peroxide loading on the extent of chemical oxygen demand (COD) reduction and change in biochemical oxygen demand (BOD5)/COD ratio has been investigated. The optimum operating conditions established for the pretreatment were initial pH of 3.0, Fe(2+) loading of 2.0, and 2.5 g L(-1) for the US/Fenton/stirring and Fenton approach, respectively, and temperature of 25 °C with initial H2O2 loading of 1.5 g L(-1). The use of pretreatment resulted in a significant increase in the BOD5/COD ratio confirming the production of easily digestible intermediates. The effect of the type of sludge in the aerobic biodegradation was also investigated based on the use of primary activated sludge (PAS), modified activated sludge (MAS), and activated sludge (AS). Enhanced removal of the pollutants as well as higher biomass yield was observed for MAS as compared to PAS and AS. The use of US/Fenton/stirring pretreatment under the optimized conditions followed by biological oxidation using MAS resulted in maximum COD removal at 97.9 %. The required hydraulic retention time for the combined oxidation system was also significantly lower as compared to only biological oxidation operation. Kinetic studies revealed that the reduction in the COD followed a first-order kinetic model for advanced oxidation and pseudo first-order model for biodegradation. The study clearly established the utility of the combined technology for the effective treatment of real industrial wastewater.

  3. Iron(3) oxide-based nanoparticles as catalysts in advanced organic aqueous oxidation.

    PubMed

    Zelmanov, Grigory; Semiat, Raphael

    2008-01-01

    Water contaminated with dissolved organic matter is an important issue to resolve for all-purpose uses. The catalytic behavior of iron-based nanocatalysts was investigated for the treatment of contaminated water in the advanced chemical oxidation process. In this study, typical organic contaminants, such as ethylene glycol and phenol, were chosen to simulate common contaminants. It was shown that the two substances are efficiently destroyed by the Fenton-like reaction using iron(3) oxide-based nanocatalysts in the presence of hydrogen peroxide without the need for UV or visible radiation sources at room temperature. A strong effect of nanocatalyst concentration on reaction rate was shown. The kinetic reaction was found and the reaction rate coefficient k was calculated.

  4. Tin doping speeds up hole transfer during light-driven water oxidation at hematite photoanodes.

    PubMed

    Dunn, Halina K; Feckl, Johann M; Müller, Alexander; Fattakhova-Rohlfing, Dina; Morehead, Samuel G; Roos, Julian; Peter, Laurence M; Scheu, Christina; Bein, Thomas

    2014-11-28

    Numerous studies have shown that the performance of hematite photoanodes for light-driven water splitting is improved substantially by doping with various metals, including tin. Although the enhanced performance has commonly been attributed to bulk effects such as increased conductivity, recent studies have noted an impact of doping on the efficiency of the interfacial transfer of holes involved in the oxygen evolution reaction. However, the methods used were not able to elucidate the origin of this improved efficiency, which could originate from passivation of surface electron-hole recombination or catalysis of the oxygen evolution reaction. The present study used intensity-modulated photocurrent spectroscopy (IMPS), which is a powerful small amplitude perturbation technique that can de-convolute the rate constants for charge transfer and recombination at illuminated semiconductor electrodes. The method was applied to examine the kinetics of water oxidation on thin solution-processed hematite model photoanodes, which can be Sn-doped without morphological change. We observed a significant increase in photocurrent upon Sn-doping, which is attributed to a higher transfer efficiency. The kinetic data obtained using IMPS show that Sn-doping brings about a more than tenfold increase in the rate constant for water oxidation by photogenerated holes. This result provides the first demonstration that Sn-doping speeds up water oxidation on hematite by increasing the rate constant for hole transfer.

  5. Stable Solar-Driven Water Oxidation to O2(g) by Ni-Oxide-Coated Silicon Photoanodes.

    PubMed

    Sun, Ke; McDowell, Matthew T; Nielander, Adam C; Hu, Shu; Shaner, Matthew R; Yang, Fan; Brunschwig, Bruce S; Lewis, Nathan S

    2015-02-19

    Semiconductors with small band gaps (<2 eV) must be stabilized against corrosion or passivation in aqueous electrolytes before such materials can be used as photoelectrodes to directly produce fuels from sunlight. In addition, incorporation of electrocatalysts on the surface of photoelectrodes is required for efficient oxidation of H2O to O2(g) and reduction of H2O or H2O and CO2 to fuels. We report herein the stabilization of np(+)-Si(100) and n-Si(111) photoanodes for over 1200 h of continuous light-driven evolution of O2(g) in 1.0 M KOH(aq) by an earth-abundant, optically transparent, electrocatalytic, stable, conducting nickel oxide layer. Under simulated solar illumination and with optimized index-matching for proper antireflection, NiOx-coated np(+)-Si(100) photoanodes produced photocurrent-onset potentials of -180 ± 20 mV referenced to the equilibrium potential for evolution of O2(g), photocurrent densities of 29 ± 1.8 mA cm(-2) at the equilibrium potential for evolution of O2(g), and a solar-to-O2(g) conversion figure-of-merit of 2.1%.

  6. Mechanistic study of the visible-light-driven photocatalytic inactivation of bacteria by graphene oxide-zinc oxide composite

    NASA Astrophysics Data System (ADS)

    Wu, Dan; An, Taicheng; Li, Guiying; Wang, Wei; Cai, Yuncheng; Yip, Ho Yin; Zhao, Huijun; Wong, Po Keung

    2015-12-01

    The visible-light-driven (VLD) photocatalytic activity of graphene oxide-zinc oxide (GO-ZnO) composite prepared by a simple hydrothermal method was evaluated toward the inactivation of Escherichia coli K-12. The results showed that GO-ZnO composite had excellent VLD photocatalytic bacterial inactivation activity, comparing with those of ZnO and GO, which was attributed to the strong interaction between ZnO and GO in the composite. Accordingly, an interaction induced VLD photocatalytic inactivation mechanism of the strong interaction of GO with ZnO within the GO-ZnO composite was proposed. GO served as a photosensitizer and facilitated the charge separation and transfer, thus boosted the massive production of reactive oxygen species such as rad OHbulk, which was identified as the major reactive species from conduction band of ZnO, and resulted in a remarkable enhancement of bacterial inactivation efficiency. Moreover, GO-ZnO composite showed obviously superior photocatalytic bacterial inactivation within 10 min under natural solar light irradiation, indicating that GO-ZnO composite has great potential in wastewater treatment and environmental protection.

  7. Climate change-driven treeline advances in the Urals alter soil microbial communities

    NASA Astrophysics Data System (ADS)

    Djukic, Ika; Moiseev, Pavel; Hagedorn, Frank

    2016-04-01

    Climatic warming may affect microbial communities and their functions either directly through increased temperatures or indirectly by changes in vegetation. Treelines are temperature-limited vegetation boundaries from tundra to forests. In unmanaged regions of the Ural mountains, there is evidence that the forest-tundra ecotone has shifted upward in response to climate warming during the 20th century. Little is known about the effects of the treeline advances on the microbial structure and function and hence they feedbacks on the belowground carbon and nitrogen cycling In our study, we aimed to estimate how ongoing upward shifts of the treeline ecotone might affect soil biodiversity and its function and hence soil carbon (C) and nitrogen (N) dynamics in the Southern and Polar Ural mountains. Along altitudinal gradients reaching from the tundra to forests, we determined the soil microbial community composition (using Phospholipid Fatty Acids method) and quantified the activity of several extracellular enzymes involved in the C and nutrient cycling. In addition, we measured C pools in biomass and soils and quantified C and N mineralization. The results for the top soils, both in South Urals and in the Polar Ural, indicate a close link between climate change driven vegetation changes and soil microbial communities. The observed changes in microbial structure are induced through the resulting more favorable conditions than due to a shift in litter quality. The activities of chitinase were significantly higher under trees than under herbaceous plants, while activities of cellulase and protease declined with altitude from the tundra to the closed forest. In contrast to enzymatic activities, soil carbon stocks did not change significantly with altitude very likely as a result of a balancing out of increased C inputs from vegetation by an enhanced C output through mineralization with forest expansion. The accelerated organic matter turnover in the forest than in the tundra

  8. OH radical monitoring technologies for AOP advanced oxidation process.

    PubMed

    Han, S K; Nam, S N; Kang, J W

    2002-01-01

    This study has been conducted to investigate OH radical monitoring technologies for the advanced oxidation process (AOP). OH radicals can be measured directly or indirectly through electron paramagnetic resonance (EPR), hydrogen peroxide method and probe compounds such as pCBA. Among the various AOPs, we focused on the application of EPR technique for *OH monitoring in the ultrasonic irradiation process. EPR method is a valuable tool and has a high sensitivity for radical measuring. Our study was performed with 20 kHz ultrasonic processor in 20 ml DMPO (1 mM) solution. The amount of DMPO-OH adduct with hyperfine constants aN = aH = 1.49 mT and g-value 2.0054, coincided with those of the DMPO-OH adduct depends on the reaction time of the sonication. Also, we have found that at least, *OH was accumulated by 2 x 10(-10) M for 10 min sonication, when 60% of the initial amount was destroyed through *OH monitoring using a probe compound. With these results, we could assume that recombination of *OH to form hydrogen peroxide occurs at the interfacial region.

  9. First-principles data-driven discovery of transition metal oxides for artificial photosynthesis

    NASA Astrophysics Data System (ADS)

    Yan, Qimin

    We develop a first-principles data-driven approach for rapid identification of transition metal oxide (TMO) light absorbers and photocatalysts for artificial photosynthesis using the Materials Project. Initially focusing on Cr, V, and Mn-based ternary TMOs in the database, we design a broadly-applicable multiple-layer screening workflow automating density functional theory (DFT) and hybrid functional calculations of bulk and surface electronic and magnetic structures. We further assess the electrochemical stability of TMOs in aqueous environments from computed Pourbaix diagrams. Several promising earth-abundant low band-gap TMO compounds with desirable band edge energies and electrochemical stability are identified by our computational efforts and then synergistically evaluated using high-throughput synthesis and photoelectrochemical screening techniques by our experimental collaborators at Caltech. Our joint theory-experiment effort has successfully identified new earth-abundant copper and manganese vanadate complex oxides that meet highly demanding requirements for photoanodes, substantially expanding the known space of such materials. By integrating theory and experiment, we validate our approach and develop important new insights into structure-property relationships for TMOs for oxygen evolution photocatalysts, paving the way for use of first-principles data-driven techniques in future applications. This work is supported by the Materials Project Predictive Modeling Center and the Joint Center for Artificial Photosynthesis through the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract No. DE-AC02-05CH11231. Computational resources also provided by the Department of Energy through the National Energy Supercomputing Center.

  10. Superoxide Dismutase 1 Protects Hepatocytes from Type I Interferon-Driven Oxidative Damage

    PubMed Central

    Bhattacharya, Anannya; Hegazy, Ahmed N.; Deigendesch, Nikolaus; Kosack, Lindsay; Cupovic, Jovana; Kandasamy, Richard K.; Hildebrandt, Andrea; Merkler, Doron; Kühl, Anja A.; Vilagos, Bojan; Schliehe, Christopher; Panse, Isabel; Khamina, Kseniya; Baazim, Hatoon; Arnold, Isabelle; Flatz, Lukas; Xu, Haifeng C.; Lang, Philipp A.; Aderem, Alan; Takaoka, Akinori; Superti-Furga, Giulio; Colinge, Jacques; Ludewig, Burkhard; Löhning, Max; Bergthaler, Andreas

    2015-01-01

    Summary Tissue damage caused by viral hepatitis is a major cause of morbidity and mortality worldwide. Using a mouse model of viral hepatitis, we identified virus-induced early transcriptional changes in the redox pathways in the liver, including downregulation of superoxide dismutase 1 (Sod1). Sod1−/− mice exhibited increased inflammation and aggravated liver damage upon viral infection, which was independent of T and NK cells and could be ameliorated by antioxidant treatment. Type I interferon (IFN-I) led to a downregulation of Sod1 and caused oxidative liver damage in Sod1−/− and wild-type mice. Genetic and pharmacological ablation of the IFN-I signaling pathway protected against virus-induced liver damage. These results delineate IFN-I mediated oxidative stress as a key mediator of virus-induced liver damage and describe a mechanism of innate-immunity-driven pathology, linking IFN-I signaling with antioxidant host defense and infection-associated tissue damage. Video Abstract PMID:26588782

  11. Chemically derived luminescent graphene oxide nanosheets and its sunlight driven photocatalytic activity against methylene blue dye

    NASA Astrophysics Data System (ADS)

    Kumar, Sumeet; Kumar, Ashok

    2016-12-01

    In the present work, graphene oxide (GO) nanosheets (NSs) have been synthesized with precise control over their thickness and molecular structure. The existence of oxygen containing functional groups on GO NSs through chemical treatment confers remarkable optical properties on GO. XRD, TEM, Raman and FTIR techniques were used to confirm the phase and degree of oxidation, morphology, structural information and chemical structure of the synthesized GO NSs. UV-Vis. spectroscopy was employed to study the optical absorption properties of the synthesized GO NSs. The excitation wavelength dependent PL measurements of the synthesized GO NSs were carried out which could be useful for the design and development of GO based next generation optoelectronic devices. The most fascinating luminescent property of synthesized GO NSs is that its luminescence peak position can be easily tuned by only varying the excitation wavelength without significant changes in its size and chemical composition. In order to study the photocatalytic degradation of methylene blue (MB) dye using GO NSs as a photocatalyst, a sunlight driven photocatalytic activity has been performed. The degradation rate of MB dye becomes fast when GO NSs are added to the dye solution. The photodegradation efficiency of GO NSs is calculated to be 60%. The present results indicate that synthesized GO NSs can be used as sunlight active photocatalyst. The optimistic response to sunlight irradiation validates the potential of GO NSs in solar energy conversion.

  12. Cerebral non-oxidative carbohydrate consumption in humans driven by adrenaline.

    PubMed

    Seifert, Thomas S; Brassard, Patrice; Jørgensen, Thomas B; Hamada, Ahmad J; Rasmussen, Peter; Quistorff, Bjørn; Secher, Niels H; Nielsen, Henning B

    2009-01-15

    During brain activation, the decrease in the ratio between cerebral oxygen and carbohydrate uptake (6 O(2)/(glucose + (1)/(2) lactate); the oxygen-carbohydrate index, OCI) is attenuated by the non-selective beta-adrenergic receptor antagonist propranolol, whereas OCI remains unaffected by the beta(1)-adrenergic receptor antagonist metroprolol. These observations suggest involvement of a beta(2)-adrenergic mechanism in non-oxidative metabolism for the brain. Therefore, we evaluated the effect of adrenaline (0.08 microg kg(-1) min(-1) i.v. for 15 min) and noradrenaline (0.5, 0.1 and 0.15 microg kg(-1) min(-1) i.v. for 20 min) on the arterial to internal jugular venous concentration differences (a-v diff) of O(2), glucose and lactate in healthy humans. Adrenaline (n = 10) increased the arterial concentrations of O(2), glucose and lactate (P < 0.05) and also increased the a-v diff for glucose from 0.6 +/- 0.1 to 0.8 +/- 0.2 mM (mean +/- s.d.; P < 0.05). The a-v diff for lactate shifted from a net cerebral release to an uptake and OCI was lowered from 5.1 +/- 1.5 to 3.6 +/- 0.4 (P < 0.05) indicating an 8-fold increase in the rate of non-oxidative carbohydrate uptake during adrenaline infusion (P < 0.01). Conversely, noradrenaline (n = 8) did not affect the OCI despite an increase in the a-v diff for glucose (P < 0.05). These results support that non-oxidative carbohydrate consumption for the brain is driven by a beta(2)-adrenergic mechanism, giving neurons an abundant provision of energy when plasma adrenaline increases.

  13. Methane Uptake in Forest Soils is Driven by Diffusivity and Methane Oxidizer Community Size

    NASA Astrophysics Data System (ADS)

    Sullivan, B. W.; Hart, S. C.; Kolb, T. E.

    2008-12-01

    Upland forest soils are the only known terrestrial biological sink of methane, but the mechanisms controlling methane uptake are poorly understood. Methane uptake is the result of bacterial and archaeal 'methane oxidizer' activity. Temperature, water content, and substrate availability have all been described as potential mechanisms governing methane uptake in soils. We measured methane uptake in soil across two ecological different gradients in an attempt to determine controls on methane uptake in semi-arid soils. We measured the uptake of atmospheric methane in situ across a gradient of northern Arizona, USA ponderosa pine forest disturbance. This gradient included an unthinned, unburned forest, a mechanically thinned forest, and a former forest site that completely burned 10 years prior to measurements. In laboratory incubations, we measured potential methane uptake across a soil chronosequence of basalt-cinder derived soils from 0.001 to 3 million years old by exposing soils to 10x ambient levels of methane. This chronosequence has a gradient of soil texture, which will influence the air filled pore space, and consequently methane diffusion. Both gradients experience distinct dry and wet seasons during the growing season. Our field measurements suggest that methane uptake is greatest when the forest floor is thinnest and the soil is most dry. Our laboratory incubations suggest that, during the dry season, potential methane uptake is driven by diffusion, but that during the wet season potential methane uptake is a function of methane oxidizer community size. Methane uptake patterns across both gradients demonstrates the importance of diffusion and methane oxidizer community size as codominant controlling factors.

  14. Modular advanced oxidation process enabled by cathodic hydrogen peroxide production.

    PubMed

    Barazesh, James M; Hennebel, Tom; Jasper, Justin T; Sedlak, David L

    2015-06-16

    Hydrogen peroxide (H2O2) is frequently used in combination with ultraviolet (UV) light to treat trace organic contaminants in advanced oxidation processes (AOPs). In small-scale applications, such as wellhead and point-of-entry water treatment systems, the need to maintain a stock solution of concentrated H2O2 increases the operational cost and complicates the operation of AOPs. To avoid the need for replenishing a stock solution of H2O2, a gas diffusion electrode was used to generate low concentrations of H2O2 directly in the water prior to its exposure to UV light. Following the AOP, the solution was passed through an anodic chamber to lower the solution pH and remove the residual H2O2. The effectiveness of the technology was evaluated using a suite of trace contaminants that spanned a range of reactivity with UV light and hydroxyl radical (HO(•)) in three different types of source waters (i.e., simulated groundwater, simulated surface water, and municipal wastewater effluent) as well as a sodium chloride solution. Irrespective of the source water, the system produced enough H2O2 to treat up to 120 L water d(-1). The extent of transformation of trace organic contaminants was affected by the current density and the concentrations of HO(•) scavengers in the source water. The electrical energy per order (EEO) ranged from 1 to 3 kWh m(-3), with the UV lamp accounting for most of the energy consumption. The gas diffusion electrode exhibited high efficiency for H2O2 production over extended periods and did not show a diminution in performance in any of the matrices.

  15. Modular Advanced Oxidation Process Enabled by Cathodic Hydrogen Peroxide Production

    PubMed Central

    2015-01-01

    Hydrogen peroxide (H2O2) is frequently used in combination with ultraviolet (UV) light to treat trace organic contaminants in advanced oxidation processes (AOPs). In small-scale applications, such as wellhead and point-of-entry water treatment systems, the need to maintain a stock solution of concentrated H2O2 increases the operational cost and complicates the operation of AOPs. To avoid the need for replenishing a stock solution of H2O2, a gas diffusion electrode was used to generate low concentrations of H2O2 directly in the water prior to its exposure to UV light. Following the AOP, the solution was passed through an anodic chamber to lower the solution pH and remove the residual H2O2. The effectiveness of the technology was evaluated using a suite of trace contaminants that spanned a range of reactivity with UV light and hydroxyl radical (HO•) in three different types of source waters (i.e., simulated groundwater, simulated surface water, and municipal wastewater effluent) as well as a sodium chloride solution. Irrespective of the source water, the system produced enough H2O2 to treat up to 120 L water d–1. The extent of transformation of trace organic contaminants was affected by the current density and the concentrations of HO• scavengers in the source water. The electrical energy per order (EEO) ranged from 1 to 3 kWh m–3, with the UV lamp accounting for most of the energy consumption. The gas diffusion electrode exhibited high efficiency for H2O2 production over extended periods and did not show a diminution in performance in any of the matrices. PMID:26039560

  16. Remediation of a winery wastewater combining aerobic biological oxidation and electrochemical advanced oxidation processes.

    PubMed

    Moreira, Francisca C; Boaventura, Rui A R; Brillas, Enric; Vilar, Vítor J P

    2015-05-15

    Apart from a high biodegradable fraction consisting of organic acids, sugars and alcohols, winery wastewaters exhibit a recalcitrant fraction containing high-molecular-weight compounds as polyphenols, tannins and lignins. In this context, a winery wastewater was firstly subjected to a biological oxidation to mineralize the biodegradable fraction and afterwards an electrochemical advanced oxidation process (EAOP) was applied in order to mineralize the refractory molecules or transform them into simpler ones that can be further biodegraded. The biological oxidation led to above 97% removals of dissolved organic carbon (DOC), chemical oxygen demand (COD) and 5-day biochemical oxygen demand (BOD5), but was inefficient on the degradation of a bioresistant fraction corresponding to 130 mg L(-1) of DOC, 380 mg O2 L(-1) of COD and 8.2 mg caffeic acid equivalent L(-1) of total dissolved polyphenols. Various EAOPs such as anodic oxidation with electrogenerated H2O2 (AO-H2O2), electro-Fenton (EF), UVA photoelectro-Fenton (PEF) and solar PEF (SPEF) were then applied to the recalcitrant effluent fraction using a 2.2 L lab-scale flow plant containing an electrochemical cell equipped with a boron-doped diamond (BDD) anode and a carbon-PTFE air-diffusion cathode and coupled to a photoreactor with compound parabolic collectors (CPCs). The influence of initial Fe(2+) concentration and current density on the PEF process was evaluated. The relative oxidative ability of EAOPs increased in the order AO-H2O2 < EF < PEF ≤ SPEF. The SPEF process using an initial Fe(2+) concentration of 35 mg L(-1), current density of 25 mA cm(-2), pH of 2.8 and 25 °C reached removals of 86% on DOC and 68% on COD after 240 min, regarding the biologically treated effluent, along with energy consumptions of 45 kWh (kg DOC)(-1) and 5.1 kWh m(-3). After this coupled treatment, color, odor, COD, BOD5, NH4(+), NO3(-) and SO4(2-) parameters complied with the legislation targets and, in addition, a total

  17. Oxidative decomposition of p-nitroaniline in water by solar photo-Fenton advanced oxidation process.

    PubMed

    Sun, Jian-Hui; Sun, Sheng-Peng; Fan, Mao-Hong; Guo, Hui-Qin; Lee, Yi-Fan; Sun, Rui-Xia

    2008-05-01

    The degradation of p-nitroaniline (PNA) in water by solar photo-Fenton advanced oxidation process was investigated in this study. The effects of different reaction parameters including pH value of solutions, dosages of hydrogen peroxide and ferrous ion, initial PNA concentration and temperature on the degradation of PNA have been studied. The optimum conditions for the degradation of PNA in water were considered to be: the pH value at 3.0, 10 mmol L(-1) H(2)O(2), 0.05 mmol L(-1) Fe(2+), 0.072-0.217 mmol L(-1) PNA and temperature at 20 degrees C. Under the optimum conditions, the degradation efficiencies of PNA were more than 98% within 30 min reaction. The degradation characteristic of PNA showed that the conjugated pi systems of the aromatic ring in PNA molecules were effectively destructed. The experimental results indicated solar photo-Fenton process has more advantages compared with classical Fenton process, such as higher oxidation power, wider working pH range, lower ferrous ion usage, etc. Furthermore, the present study showed the potential use of solar photo-Fenton process for PNA containing wastewater treatment.

  18. IRON-PEROXYMONOSULFATE: A NOVEL SULFATE RADICAL BASED ADVANCED OXIDATION TECHNOLOGY FOR DEGRADATION OF PCBS

    EPA Science Inventory

    This study investigates the degradation of recalcitrant polychlorinated biphenyl (PCBs) using sulfate radical-based advanced oxidation technologies. Sulfate radicals are generated through coupling of peroxymonosulfate (PMS) with iron (Fe(II), Fe(III)). Sulfate radicals have very ...

  19. Demonstrating Advanced Oxidation Coupled with Biodegradation for Removal of Carbamazepine (WERF Report INFR6SG09)

    EPA Science Inventory

    Carbamazepine is an anthropogenic pharmaceutical found in wastewater effluents that is quite resistant to removal by conventional wastewater treatment processes. Hydroxyl radical-based advanced oxidation processes can transform carbamazepine into degradation products but cannot m...

  20. Multifunctional Oxide Films for Advanced Multifunction RF Systems

    DTIC Science & Technology

    2007-09-14

    layers . Methods for the dielectric characterization of the epitaxial oxide films have been evaluated and applied in collaboration with Dr. Lanagan (Penn...quality MgO epitaxial layers that will be used for the integration of tunable oxides on SiC and IIl-nitride substrates or templates. A study of the impact...likely cause for increased dielectric losses. Control of layer stoichiometry: Oxides exhibit high densities of vacancy-type defects. This is known to lead

  1. Evaluation of Resin Dissolution Using an Advanced Oxidation Process - 13241

    SciTech Connect

    Goulart de Araujo, Leandro; Vicente de Padua Ferreira, Rafael; Takehiro Marumo, Julio; Passos Piveli, Roque; Campos, Fabio

    2013-07-01

    The ion-exchange resin is widely used in nuclear reactors, in cooling water purification and removing radioactive elements. Because of the long periods of time inside the reactor system, the resin becomes radioactive. When the useful life of them is over, its re-utilization becomes inappropriate, and for this reason, the resin is considered radioactive waste. The most common method of treatment is the immobilization of spent ion exchange resin in cement in order to form a solid monolithic matrix, which reduces the radionuclides release into the environment. However, the characteristic of contraction and expansion of the resin limits its incorporation in 10%, resulting in high cost in its direct immobilization. Therefore, it is recommended the utilization of a pre-treatment, capable of reducing the volume and degrading the resin, which would increase the load capacity in the immobilization. This work aims to develop a method of degradation of ion spent resins from the nuclear research reactor of Nuclear and Energy Research Institute (IPEN/CNEN-SP), Brazil, using the Advanced Oxidative Process (AOP) with Fenton's reagent (hydrogen peroxide and ferrous sulphate as catalyst). The resin evaluated was a mixture of cationic (IR 120P) and anionic (IRA 410) resins. The reactions were conducted by varying the concentration of the catalyst (25, 50, 100 e 150 mM) and the volume of the hydrogen peroxide, at three different temperatures, 50, 60 and 70 deg. C. The time of reaction was three hours. Total organic carbon content was determined periodically in order to evaluate the degradation as a function of time. The concentration of 50 mM of catalyst was the most effective in degrading approximately 99%, using up to 330 mL of hydrogen peroxide. The most effective temperature was about 60 deg. C, because of the decomposition of hydrogen peroxide in higher temperatures. TOC content was influenced by the concentration of the catalyst, interfering in the beginning of the degradation

  2. Orbital driven impurity spin effect on the magnetic order of quasi-3D cupric oxide

    NASA Astrophysics Data System (ADS)

    Ganga, B. G.; Santhosh, P. N.; Nanda, B. R. K.

    2017-04-01

    Density functional calculations are performed to study the magnetic order of the severely distorted square planar cupric oxide (CuO) and local spin disorder in it in the presence of the transition metal impurities M (=Cr, Mn, Fe, Co and Ni). The distortion in the crystal structure, arisen to reduce the band energy by minimizing the covalent interaction, creates two crisscrossing zigzag spin-1/2 chains. From the spin dimer analysis we find that while the spin chain along ≤ft[1 0 \\bar{1}\\right] has strong Heisenberg type antiferromagnetic coupling (J ~ 127 meV), along ≤ft[1 0 1\\right] it exhibits weak, but robust, ferromagnetic coupling (J ~ 9 meV) mediated by reminiscent p-d covalent interactions. The impurity effect on the magnetic ordering is independent of M and purely orbital driven. If the given spin-state of M is such that the {{d}{{x2}-{{y}2}}} orbital is spin-polarized, then the original long-range ordering is maintained. However, if {{d}{{x2}-{{y}2}}} orbital is unoccupied, the absence of corresponding covalent interaction breaks the weak ferromagnetic coupling and a spin-flip takes place at the impurity site leading to breakdown of the long range magnetic ordering.

  3. Orbital driven impurity spin effect on the magnetic order of quasi-3D cupric oxide.

    PubMed

    Ganga, B G; Santhosh, P N; Nanda, B R K

    2017-04-20

    Density functional calculations are performed to study the magnetic order of the severely distorted square planar cupric oxide (CuO) and local spin disorder in it in the presence of the transition metal impurities M (=Cr, Mn, Fe, Co and Ni). The distortion in the crystal structure, arisen to reduce the band energy by minimizing the covalent interaction, creates two crisscrossing zigzag spin-1/2 chains. From the spin dimer analysis we find that while the spin chain along [Formula: see text] has strong Heisenberg type antiferromagnetic coupling (J ~ 127 meV), along [Formula: see text] it exhibits weak, but robust, ferromagnetic coupling (J ~ 9 meV) mediated by reminiscent p-d covalent interactions. The impurity effect on the magnetic ordering is independent of M and purely orbital driven. If the given spin-state of M is such that the [Formula: see text] orbital is spin-polarized, then the original long-range ordering is maintained. However, if [Formula: see text] orbital is unoccupied, the absence of corresponding covalent interaction breaks the weak ferromagnetic coupling and a spin-flip takes place at the impurity site leading to breakdown of the long range magnetic ordering.

  4. Importance of Plasmonic Heating on Visible Light Driven Photocatalysis of Gold Nanoparticle Decorated Zinc Oxide Nanorods

    PubMed Central

    Bora, Tanujjal; Zoepfl, David; Dutta, Joydeep

    2016-01-01

    Herein we explore the role of localized plasmonic heat generated by resonantly excited gold (Au) NPs on visible light driven photocatalysis process. Au NPs are deposited on the surface of vertically aligned zinc oxide nanorods (ZnO NRs). The localized heat generated by Au NPs under 532 nm continuous laser excitation (SPR excitation) was experimentally probed using Raman spectroscopy by following the phonon modes of ZnO. Under the resonant excitation the temperature at the surface of the Au-ZnO NRs reaches up to about 300 °C, resulting in almost 6 times higher apparent quantum yield (AQY) for photocatalytic degradation of methylene blue (MB) compared to the bare ZnO NRs. Under solar light irradiation the Au-ZnO NRs demonstrated visible light photocatalytic activity twice that of what was achieved with bare ZnO NRs, while significantly reduced the activation energy required for the photocatalytic reactions allowing the reactions to occur at a faster rate. PMID:27242172

  5. Electrochemically driven biocatalysis of the oxygenase domain of neuronal nitric oxide synthase in indium tin oxide nanoparticles/polyvinyl alcohol nanocomposite.

    PubMed

    Xu, Xuan; Wollenberger, Ulla; Qian, Jing; Lettau, Katrin; Jung, Christiane; Liu, Songqin

    2013-12-01

    Nitric oxide synthase (NOS) plays a critical role in a number of key physiological and pathological processes. Investigation of electron-transfer reactions in NOS would contribute to a better understanding of the nitric oxide (NO) synthesis mechanism. Herein, we describe an electrochemically driven catalytic strategy, using a nanocomposite that consisted of the oxygenase domain of neuronal NOS (D290nNOSoxy), indium tin oxide (ITO) nanoparticles and polyvinyl alcohol (PVA). Fast direct electron transfer between electrodes and D290nNOSoxy was observed with the heterogeneous electron transfer rate constant (ket) of 154.8 ± 0.1s(-1) at the scan rate of 5 Vs(-1). Moreover, the substrate N(ω)-hydroxy-L-arginine (NHA) was used to prove the concept of electrochemically driven biocatalysis of D290nNOSoxy. In the presence of the oxygen cosubstrate and tetrahydrobiopterin (BH4) cofactor, the addition of NHA caused the decreases of both oxidation current at +0.1 V and reduction current at potentials ranging from -0.149 V to -0.549 V vs Ag/AgCl. Thereafter, a series of control experiments such as in the absence of BH4 or D290nNOSoxy were performed. All the results demonstrated that D290nNOSoxy biocatalysis was successfully driven by electrodes in the presence of BH4 and oxygen. This novel bioelectronic system showed potential for further investigation of NOS and biosensor applications.

  6. Nox control for high nitric oxide concentration flows through combustion-driven reduction

    DOEpatents

    Yeh, James T.; Ekmann, James M.; Pennline, Henry W.; Drummond, Charles J.

    1989-01-01

    An improved method for removing nitrogen oxides from concentrated waste gas streams, in which nitrogen oxides are ignited with a carbonaceous material in the presence of substoichiometric quantities of a primary oxidant, such as air. Additionally, reductants may be ignited along with the nitrogen oxides, carbonaceous material and primary oxidant to achieve greater reduction of nitrogen oxides. A scrubber and regeneration system may also be included to generate a concentrated stream of nitrogen oxides from flue gases for reduction using this method.

  7. Diagnostic Overview of the C-2U Advanced Beam-Driven Field-Reversed Configuration Plasma Experiment

    NASA Astrophysics Data System (ADS)

    Thompson, Matthew; Gota, Hiroshi; Putvinski, Sergei; Tuszewski, Michel; Binderbauer, Michl; The TAE Team

    2015-11-01

    The C-2U experiment at Tri Alpha Energy seeks to study the evolution of advanced beam-driven field-reversed configuration (FRC) plasmas sustained by neutral beam (NB) injection for 5 + ms. Data on the FRC plasma performance is provided by a comprehensive suite of diagnostics including magnetic sensors, interferometry, Thomson scattering, spectroscopy, bolometry, reflectometry, and NB-related fast-ion/neutral diagnostics. While many of these diagnostic systems were inherited from the preceding experiment C-2, C-2U has a variety of new and upgraded diagnostic systems: multi-chord far-infrared polarimetry, multiple fast imaging cameras with selectable atomic line filters, proton detector arrays, and 100 channel bolometer units capable of observing multiple regions of the spectrum simultaneously. In addition, extensive ongoing work focuses on advanced methods of measuring separatrix shape that will both improve accuracy and facilitate active control of the FRC plasma.

  8. Study of Plasma Liner Driven Magnetized Target Fusion Via Advanced Simulations

    SciTech Connect

    Samulyak, Roman V.; Parks, Paul

    2013-08-31

    The feasibility of the plasma liner driven Magnetized Target Fusion (MTF) via terascale numerical simulations will be assessed. In the MTF concept, a plasma liner, formed by merging of a number (60 or more) of radial, highly supersonic plasma jets, implodes on the target in the form of two compact plasma toroids, and compresses it to conditions of the fusion ignition. By avoiding major difficulties associated with both the traditional laser driven inertial confinement fusion and solid liner driven MTF, the plasma liner driven MTF potentially provides a low-cost and fast R&D path towards the demonstration of practical fusion energy. High fidelity numerical simulations of full nonlinear models associated with the plasma liner MTF using state-of-art numerical algorithms and terascale computing are necessary in order to resolve uncertainties and provide guidance for future experiments. At Stony Brook University, we have developed unique computational capabilities that ideally suite the MTF problem. The FronTier code, developed in collaboration with BNL and LANL under DOE funding including SciDAC for the simulation of 3D multi-material hydro and MHD flows, has beenbenchmarked and used for fundamental and engineering problems in energy science applications. We have performed 3D simulations of converging supersonic plasma jets, their merger and the formation of the plasma liner, and a study of the corresponding oblique shock problem. We have studied the implosion of the plasma liner on the magnetized plasma target by resolving Rayleigh-Taylor instabilities in 2D and 3D and other relevant physics and estimate thermodynamic conditions of the target at the moment of maximum compression and the hydrodynamic efficiency of the method.

  9. Advances in Statistical and Deterministic Modeling of Wind-Driven Seas

    DTIC Science & Technology

    2011-09-30

    Shemdin , O.H,Measurements of wind velocity and pressure with wave follower during MARSEN, J.Geophys.Res., 88, C14, 9841-9849, 1983. [4] S.I. Badulin, A.N...Wind-Driven Seas Zakharov Vladimir, Pushkarev Andrei Waves and Solitons LLC 1719 W. Marlette Ave. Phoenix, AZ 85015 phone: +1 (602) 748-4286 e...nonlinear models of ocean surface waves , based on first physical principles, which will improve and accelerate both long term ocean surface waves

  10. Photocatalytic oxidation of organic dyes with visible-light-driven codoped TiO2 photocatalysts

    NASA Astrophysics Data System (ADS)

    Zhang, Dongfang; Zeng, Fanbin

    2011-06-01

    A novel copper (II) and zinc (II) codoped TiO2 photocatalyst was synthesized by a modified sol-gel method using titanium (IV) isopropoxide, Zn(NO3)2 · 6H2O and copper(Il) nitrate as precursors. The samples were characterized by X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS) and photo-luminescence spectra (PL). The XRD results showed undoped and Zn, Cu-codoped TiO2 nanoparticles mainly including anatase phase and a tiny amount of Zn- and Cu-oxides exist in the mixed system, which is attributed to the decomposition of copper and zinc nitrates in the TiO2 gel to form CuO and ZnO and randomly dispersed on the TiO2 surface. On the basis of the optical characterization results, we found that the codoping of copper (II) and zinc (II) resulted a red shift of adsorption and lower recombination probability between electrons and holes, which were the reasons for high photocatalytic activity of Zn, Cu-codoped TiO2 nanoparticles under visible light (λ > 400 nm). The photocatalytic activity of samples was tested for degradation of methyl orange (MO) in solutions. The results indicated that the visible-light driven capability of the codoped catalyst were much higher than that of the pure TiO2 catalyst under visible irradiation. Because of the synergetic effect of copper (II) and zinc (II) element, the Zn, Cu-codoped TiO2 catalyst will show higher quantum yield and enhance absorption of visible light. In the end, a key mechanism was proposed in order to account for the enhanced activity.

  11. Advanced oxide dispersion strengthened sheet alloys for improved combustor durability

    NASA Technical Reports Server (NTRS)

    Henricks, R. J.

    1981-01-01

    Burner design modifications that will take advantage of the improved creep and cyclic oxidation resistance of oxide dispersion strengthened (ODS) alloys while accommodating the reduced fatigue properties of these materials were evaluated based on preliminary analysis and life predictions, on construction and repair feasibility, and on maintenance and direct operating costs. Two designs - the film cooled, segmented louver and the transpiration cooled, segmented twin Wall - were selected for low cycle fatigue (LCF) component testing. Detailed thermal and structural analysis of these designs established the strain range and temprature at critical locations resulting in predicted lives of 10,000 cycles for MA 956 alloy. The ODs alloys, MA 956 and HDA 8077, demonstrated a 167 C (300 F) temperature advantage over Hastelloy X alloy in creep strength and oxidation resistance. The MA 956 alloy was selected for mechanical property and component test evaluations. The MA 956 alloy was superior to Hastelloy X in LCF component testing of the film cooled, segmented louver design.

  12. Electrocatalyst advances for hydrogen oxidation in phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Stonehart, P.

    1984-01-01

    The important considerations that presently exist for achieving commercial acceptance of fuel cells are centered on cost (which translates to efficiency) and lifetime. This paper addresses the questions of electrocatalyst utilization within porous electrode structures and the preparation of low-cost noble metal electrocatalyst combinations with extreme dispersions of the metal. Now that electrocatalyst particles can be prepared with dimensions of 10 A, either singly or in alloy combinations, a very large percentage of the noble metal atoms in a crystallite are available for reaction. The cost savings for such electrocatalysts in the present commercially driven environment are considerable.

  13. Thermochemical Compatibility and Oxidation Resistance of Advanced LWR Fuel Cladding

    SciTech Connect

    Besmann, T. M.; Yamamoto, Y.; Unocic, K. A.

    2016-06-21

    We assessed the thermochemical compatibility of potential replacement cladding materials for zirconium alloys in light water reactors. Considered were FeCrAl steel (similar to Kanthal APMT), Nb-1%Zr (similar to PWC-11), and a hybrid SiC-composite with a metallic barrier layer. The niobium alloy was also seen as requiring an oxidation protective layer, and a diffusion silicide was investigated. Metallic barrier layers for the SiC-composite reviewed included a FeCrAl alloy, Nb-1%Zr, and chromium. Thermochemical calculations were performed to determine oxidation behavior of the materials in steam, and for hybrid SiC-composites possible interactions between the metallic layer and SiC. Additionally, experimental exposures of SiC-alloy reaction couples at 673K, 1073K, and 1273K for 168 h in an inert atmosphere were made and microanalysis performed. Whereas all materials were determined to oxidize under higher oxygen partial pressures in the steam environment, these varied by material with expected protective oxides forming. Finally, the computed and experimental results indicate the formation of liquid phase eutectic in the FeCrAl-SiC system at the higher temperatures.

  14. Thermochemical Compatibility and Oxidation Resistance of Advanced LWR Fuel Cladding

    DOE PAGES

    Besmann, T. M.; Yamamoto, Y.; Unocic, K. A.

    2016-06-21

    We assessed the thermochemical compatibility of potential replacement cladding materials for zirconium alloys in light water reactors. Considered were FeCrAl steel (similar to Kanthal APMT), Nb-1%Zr (similar to PWC-11), and a hybrid SiC-composite with a metallic barrier layer. The niobium alloy was also seen as requiring an oxidation protective layer, and a diffusion silicide was investigated. Metallic barrier layers for the SiC-composite reviewed included a FeCrAl alloy, Nb-1%Zr, and chromium. Thermochemical calculations were performed to determine oxidation behavior of the materials in steam, and for hybrid SiC-composites possible interactions between the metallic layer and SiC. Additionally, experimental exposures of SiC-alloymore » reaction couples at 673K, 1073K, and 1273K for 168 h in an inert atmosphere were made and microanalysis performed. Whereas all materials were determined to oxidize under higher oxygen partial pressures in the steam environment, these varied by material with expected protective oxides forming. Finally, the computed and experimental results indicate the formation of liquid phase eutectic in the FeCrAl-SiC system at the higher temperatures.« less

  15. In vitro oxidation of fibrinogen promotes functional alterations and formation of advanced oxidation protein products, an inflammation mediator.

    PubMed

    Torbitz, Vanessa Dorneles; Bochi, Guilherme Vargas; de Carvalho, José Antônio Mainardi; de Almeida Vaucher, Rodrigo; da Silva, José Edson Paz; Moresco, Rafael Noal

    2015-01-01

    Fibrinogen (FB) is a soluble blood plasma protein and is a key molecule involved in coagulation. Oxidative modification of proteins, such as the formation of advanced oxidation protein products (AOPP), a heterogeneous family of protein compounds structurally modified and derived from oxidative stress, may be associated with the pathophysiology of a number of chronic inflammatory diseases. Therefore, the aim of this study was to determine whether the formation of this mediator of inflammation occurs from FB and whether its generation is associated with structural changes. Results of the present study suggest that the oxidation of FB may provoke the formation of AOPP, which in turn, may promote functional alterations in FB, thus causing changes in its structural domains and increasing its procoagulant activity.

  16. Novel fibrous catalyst in advanced oxidation of photographic processing effluents.

    PubMed

    Yang, Zhuxian; Ishtchenko, Vera V; Huddersman, Katherine D

    2006-01-01

    A novel fibrous catalyst was used to destroy the pollutants in Kodak Non-Silver-Bearing (NSB) photographic processing effluents with high chemical oxygen demand (COD) value. The oxidation activity of the catalyst was evaluated in terms of COD reduction of the effluent. The effects of concentrations of hydrogen peroxide and effluent, amount of catalyst, reaction time and temperature on the COD reduction were studied. In addition, the combination of catalysis with UV treatment on the COD reduction of the effluent was also investigated. Based on the experimental results, room temperature is preferred for the catalytic oxidation of NSB effluent. It was found that COD reduction of the effluent depends on the amount of hydrogen peroxide added to the feed in relation to the mass of catalyst used. Significant COD reduction (up to 52%) is achieved after 4 hours of catalytic treatment. Extending the duration of catalysis up to 24 hours gives further slight decrease in COD value.

  17. Advances in metal-induced oxidative stress and human disease.

    PubMed

    Jomova, Klaudia; Valko, Marian

    2011-05-10

    Detailed studies in the past two decades have shown that redox active metals like iron (Fe), copper (Cu), chromium (Cr), cobalt (Co) and other metals undergo redox cycling reactions and possess the ability to produce reactive radicals such as superoxide anion radical and nitric oxide in biological systems. Disruption of metal ion homeostasis may lead to oxidative stress, a state where increased formation of reactive oxygen species (ROS) overwhelms body antioxidant protection and subsequently induces DNA damage, lipid peroxidation, protein modification and other effects, all symptomatic for numerous diseases, involving cancer, cardiovascular disease, diabetes, atherosclerosis, neurological disorders (Alzheimer's disease, Parkinson's disease), chronic inflammation and others. The underlying mechanism of action for all these metals involves formation of the superoxide radical, hydroxyl radical (mainly via Fenton reaction) and other ROS, finally producing mutagenic and carcinogenic malondialdehyde (MDA), 4-hydroxynonenal (HNE) and other exocyclic DNA adducts. On the other hand, the redox inactive metals, such as cadmium (Cd), arsenic (As) and lead (Pb) show their toxic effects via bonding to sulphydryl groups of proteins and depletion of glutathione. Interestingly, for arsenic an alternative mechanism of action based on the formation of hydrogen peroxide under physiological conditions has been proposed. A special position among metals is occupied by the redox inert metal zinc (Zn). Zn is an essential component of numerous proteins involved in the defense against oxidative stress. It has been shown, that depletion of Zn may enhance DNA damage via impairments of DNA repair mechanisms. In addition, Zn has an impact on the immune system and possesses neuroprotective properties. The mechanism of metal-induced formation of free radicals is tightly influenced by the action of cellular antioxidants. Many low-molecular weight antioxidants (ascorbic acid (vitamin C), alpha

  18. Advanced theory of driven birdcage resonator with losses for biomedical magnetic resonance imaging and spectroscopy.

    PubMed

    Novikov, Alexander

    2011-02-01

    A complete time-dependent physics theory of symmetric unperturbed driven hybrid birdcage resonator was developed for general application. In particular, the theory can be applied for radiofrequency (RF) coil engineering, computer simulations of coil-sample interaction, etc. Explicit time dependence is evaluated for different forms of driving voltage. The major steps of the solution development are shown and appropriate explanations are given. Green's functions and spectral density formula were developed for any form of periodic driving voltage. The concept of distributed power losses based on transmission line theory is developed for evaluation of local losses of a coil. Three major types of power losses are estimated as equivalent series resistances in the circuit of the birdcage resonator. Values of generated resistances in legs and end-rings are estimated. An application of the theory is shown for many practical cases. Experimental curve of B(1) field polarization dependence is measured for eight-sections birdcage coil. It was shown that the steady-state driven resonance frequencies do not depend on damping factor unlike the free oscillation (transient) frequencies. An equivalent active resistance is generated due to interaction of RF electromagnetic field with a sample. Resistance of the conductor (enhanced by skin effect), Eddy currents and dielectric losses are the major types of losses which contribute to the values of generated resistances. A biomedical sample for magnetic resonance imaging and spectroscopy is the source of the both Eddy current and dielectric losses of a coil. As demonstrated by the theory, Eddy current loss is the major effect of coil shielding.

  19. ADX: A high Power Density, Advanced RF-Driven Divertor Test Tokamak for PMI studies

    NASA Astrophysics Data System (ADS)

    Whyte, Dennis; ADX Team

    2015-11-01

    The MIT PSFC and collaborators are proposing an advanced divertor experiment, ADX; a divertor test tokamak dedicated to address critical gaps in plasma-material interactions (PMI) science, and the world fusion research program, on the pathway to FNSF/DEMO. Basic ADX design features are motivated and discussed. In order to assess the widest range of advanced divertor concepts, a large fraction (>50%) of the toroidal field volume is purpose-built with innovative magnetic topology control and flexibility for assessing different surfaces, including liquids. ADX features high B-field (>6 Tesla) and high global power density (P/S ~ 1.5 MW/m2) in order to access the full range of parallel heat flux and divertor plasma pressures foreseen for reactors, while simultaneously assessing the effect of highly dissipative divertors on core plasma/pedestal. Various options for efficiently achieving high field are being assessed including the use of Alcator technology (cryogenic cooled copper) and high-temperature superconductors. The experimental platform would also explore advanced lower hybrid current drive and ion-cyclotron range of frequency actuators located at the high-field side; a location which is predicted to greatly reduce the PMI effects on the launcher while minimally perturbing the core plasma. The synergistic effects of high-field launchers with high total B on current and flow drive can thus be studied in reactor-relevant boundary plasmas.

  20. High sensitivity far infrared laser diagnostics for the C-2U advanced beam-driven field-reversed configuration plasmas.

    PubMed

    Deng, B H; Beall, M; Schroeder, J; Settles, G; Feng, P; Kinley, J S; Gota, H; Thompson, M C

    2016-11-01

    A high sensitivity multi-channel far infrared laser diagnostics with switchable interferometry and polarimetry operation modes for the advanced neutral beam-driven C-2U field-reversed configuration (FRC) plasmas is described. The interferometer achieved superior resolution of 1 × 10(16) m(-2) at >1.5 MHz bandwidth, illustrated by measurement of small amplitude high frequency fluctuations. The polarimetry achieved 0.04° instrument resolution and 0.1° actual resolution in the challenging high density gradient environment with >0.5 MHz bandwidth, making it suitable for weak internal magnetic field measurements in the C-2U plasmas, where the maximum Faraday rotation angle is less than 1°. The polarimetry resolution data is analyzed, and high resolution Faraday rotation data in C-2U is presented together with direct evidences of field reversal in FRC magnetic structure obtained for the first time by a non-perturbative method.

  1. Advanced oxidation protein products (AOPP) for monitoring oxidative stress in critically ill patients: a simple, fast and inexpensive automated technique.

    PubMed

    Selmeci, László; Seres, Leila; Antal, Magda; Lukács, Júlia; Regöly-Mérei, Andrea; Acsády, György

    2005-01-01

    Oxidative stress is known to be involved in many human pathological processes. Although there are numerous methods available for the assessment of oxidative stress, most of them are still not easily applicable in a routine clinical laboratory due to the complex methodology and/or lack of automation. In research into human oxidative stress, the simplification and automation of techniques represent a key issue from a laboratory point of view at present. In 1996 a novel oxidative stress biomarker, referred to as advanced oxidation protein products (AOPP), was detected in the plasma of chronic uremic patients. Here we describe in detail an automated version of the originally published microplate-based technique that we adapted for a Cobas Mira Plus clinical chemistry analyzer. AOPP reference values were measured in plasma samples from 266 apparently healthy volunteers (university students; 81 male and 185 female subjects) with a mean age of 21.3 years (range 18-33). Over a period of 18 months we determined AOPP concentrations in more than 300 patients in our department. Our experiences appear to demonstrate that this technique is especially suitable for monitoring oxidative stress in critically ill patients (sepsis, reperfusion injury, heart failure) even at daily intervals, since AOPP exhibited rapid responses in both directions. We believe that the well-established relationship between AOPP response and induced damage makes this simple, fast and inexpensive automated technique applicable in daily routine laboratory practice for assessing and monitoring oxidative stress in critically ill or other patients.

  2. Simulation of fast-ion-driven Alfvén eigenmodes on the Experimental Advanced Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Hu, Youjun; Todo, Y.; Pei, Youbin; Li, Guoqiang; Qian, Jinping; Xiang, Nong; Zhou, Deng; Ren, Qilong; Huang, Juan; Xu, Liqing

    2016-02-01

    Kinetic-MHD hybrid simulations are carried out to investigate possible fast-ion-driven modes on the Experimental Advanced Superconducting Tokamak. Three typical kinds of fast-ion-driven modes, namely, toroidicity-induced Alfvén eigenmodes, reversed shear Alfvén eigenmodes, and energetic-particle continuum modes, are observed simultaneously in the simulations. The simulation results are compared with the results of an ideal MHD eigenvalue code, which shows agreement with respect to the mode frequency, dominant poloidal mode numbers, and radial location. However, the modes in the hybrid simulations take a twisted structure on the poloidal plane, which is different from the results of the ideal MHD eigenvalue code. The twist is due to the radial phase variation of the eigenfunction, which may be attributed to the non-perturbative kinetic effects of the fast ions. By varying the stored energy of fast ions to change the fast ion drive in the simulations, it is demonstrated that the twist (i.e., the radial phase variation) is positively correlated with the fast ion drive.

  3. Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries.

    PubMed

    Wu, Hao Bin; Chen, Jun Song; Hng, Huey Hoon; Lou, Xiong Wen David

    2012-04-21

    The search for new electrode materials for lithium-ion batteries (LIBs) has been an important way to satisfy the ever-growing demands for better performance with higher energy/power densities, improved safety and longer cycle life. Nanostructured metal oxides exhibit good electrochemical properties, and they are regarded as promising anode materials for high-performance LIBs. In this feature article, we will focus on three different categories of metal oxides with distinct lithium storage mechanisms: tin dioxide (SnO(2)), which utilizes alloying/dealloying processes to reversibly store/release lithium ions during charge/discharge; titanium dioxide (TiO(2)), where lithium ions are inserted/deinserted into/out of the TiO(2) crystal framework; and transition metal oxides including iron oxide and cobalt oxide, which react with lithium ions via an unusual conversion reaction. For all three systems, we will emphasize that creating nanomaterials with unique structures could effectively improve the lithium storage properties of these metal oxides. We will also highlight that the lithium storage capability can be further enhanced through designing advanced nanocomposite materials containing metal oxides and other carbonaceous supports. By providing such a rather systematic survey, we aim to stress the importance of proper nanostructuring and advanced compositing that would result in improved physicochemical properties of metal oxides, thus making them promising negative electrodes for next-generation LIBs.

  4. Dinitrogenase-Driven Photobiological Hydrogen Production Combats Oxidative Stress in Cyanothece sp. Strain ATCC 51142

    SciTech Connect

    Sadler, Natalie C.; Bernstein, Hans C.; Melnicki, Matthew R.; Charania, Moiz A.; Hill, Eric A.; Anderson, Lindsey N.; Monroe, Matthew E.; Smith, Richard D.; Beliaev, Alexander S.; Wright, Aaron T.; Nojiri, H.

    2016-10-14

    ABSTRACT

    Photobiologically synthesized hydrogen (H2) gas is carbon neutral to produce and clean to combust, making it an ideal biofuel.Cyanothecesp. strain ATCC 51142 is a cyanobacterium capable of performing simultaneous oxygenic photosynthesis and H2production, a highly perplexing phenomenon because H2evolving enzymes are O2sensitive. We employed a system-levelin vivochemoproteomic profiling approach to explore the cellular dynamics of protein thiol redox and how thiol redox mediates the function of the dinitrogenase NifHDK, an enzyme complex capable of aerobic hydrogenase activity. We found that NifHDK responds to intracellular redox conditions and may act as an emergency electron valve to prevent harmful reactive oxygen species formation in concert with other cell strategies for maintaining redox homeostasis. These results provide new insight into cellular redox dynamics useful for advancing photolytic bioenergy technology and reveal a new understanding for the biological function of NifHDK.

    IMPORTANCEHere, we demonstrate that high levels of hydrogen synthesis can be induced as a protection mechanism against oxidative stress via the dinitrogenase enzyme complex inCyanothecesp. strain ATCC 51142. This is a previously unknown feature of cyanobacterial dinitrogenase, and we anticipate that it may represent a strategy to exploit cyanobacteria for efficient and scalable hydrogen production. We utilized a chemoproteomic approach to capture thein situdynamics of reductant partitioning within the cell, revealing proteins and reactive thiols that may be involved in redox sensing and signaling. Additionally, this method is widely applicable across biological systems to achieve a greater understanding of how cells navigate their environment

  5. Photovoltaic-driven organic electrosynthesis and efforts toward more sustainable oxidation reactions

    PubMed Central

    Nguyen, Bichlien H; Perkins, Robert J; Smith, Jake A

    2015-01-01

    Summary The combination of visible light, photovoltaics, and electrochemistry provides a convenient, inexpensive platform for conducting a wide variety of sustainable oxidation reactions. The approach presented in this article is compatible with both direct and indirect oxidation reactions, avoids the need for a stoichiometric oxidant, and leads to hydrogen gas as the only byproduct from the corresponding reduction reaction. PMID:25815081

  6. Polyethylene Oxidation in Total Hip Arthroplasty: Evolution and New Advances

    PubMed Central

    Gómez-Barrena, Enrique; Medel, Francisco; Puértolas, José Antonio

    2009-01-01

    Ultra-high molecular weight polyethylene (UHMWPE) remains the gold standard acetabular bearing material for hip arthroplasty. Its successful performance has shown consistent results and survivorship in total hip replacement (THR) above 85% after 15 years, with different patients, surgeons, or designs. As THR results have been challenged by wear, oxidation, and liner fracture, relevant research on the material properties in the past decade has led to the development and clinical introduction of highly crosslinked polyethylenes (HXLPE). More stress on the bearing (more active, overweighted, younger patients), and more variability in the implantation technique in different small and large Hospitals may further compromise the clinical performance for many patients. The long-term in vivo performance of these materials remains to be proven. Clinical and retrieval studies after more than 5 years of in vivo use with HXLPE in THR are reviewed and consistently show a substantial decrease in wear rate. Moreover, a second generation of improved polyethylenes is backed by in vitro data and awaits more clinical experience to confirm the experimental improvements. Also, new antioxidant, free radical scavengers, candidates and the reinforcement of polyethylene through composites are currently under basic research. Oxidation of polyethylene is today significantly reduced by present formulations, and this forgiving, affordable, and wellknown material is still reliable to meet today’s higher requirements in total hip replacement. PMID:20111694

  7. Effects of temperature and acidic pre-treatment on Fenton-driven oxidation of MTBE-spent granular activated carbon

    SciTech Connect

    Kan, E.; Huling, S.G.

    2009-03-01

    The effects of temperature and acidic pretreatment on Fenton-driven chemical oxidation of methyl tert-butyl ether (MTBE)-spent granular activated carbon (GAC, derived from bituminous coal) were investigated. Limiting factors in MTBE removal in GAC include the heterogeneous distribution of amended Fe, and slow intraparticle diffusive transport of MTBE and hydrogen peroxide (H{sub 2}O{sub 2}) into the 'reactive zone'. Acid pretreatment of GAC before Fe amendment altered the surface chemistry of the GAC, lowered the pH point of zero charge, and resulted in greater penetration and more uniform distribution of Fe in GAC. This led to a condition where Fe, MTBE, and H{sub 2}O{sub 2} coexisted over a larger volume of the GAC contributing to greater MTBE oxidation and removal. H{sub 2}O{sub 2} reaction and MTBE removal in GAC increased with temperature. Modeling H{sub 2}O{sub 2} transport and reaction in GAC indicated that H{sub 2}O{sub 2} penetration was inversely proportional with temperature and tortuosity, and occurred over a larger fraction of the total volume of small GAC particles (0.3 mm diameter) relative to large particles (1.2 mm diameter). Acidic pretreatment of GAC, Fe-amendment, elevated reaction temperature, and use of small GAC particles are operational parameters that improve Fenton-driven oxidation of MTBE in GAC. 29 refs., 6 figs., 1 tab.

  8. Tertiary treatment of a municipal wastewater toward pharmaceuticals removal by chemical and electrochemical advanced oxidation processes.

    PubMed

    Moreira, Francisca C; Soler, J; Alpendurada, M F; Boaventura, Rui A R; Brillas, Enric; Vilar, Vítor J P

    2016-11-15

    This study focuses on the degradation of pharmaceuticals from a municipal wastewater after secondary treatment by applying various advanced oxidation processes (AOPs) and electrochemical AOPs (EAOPs) like UVC, H2O2/UVC, anodic oxidation (AO), AO with electrogenerated H2O2 (AO-H2O2), AO-H2O2/UVC and photoelectro-Fenton (PEF) using either UVC radiation (PEF-UVC) or UVA radiation (PEF-UVA). The municipal wastewater after secondary treatment was spiked with 5.0 mg L(-1) of trimethoprim (TMP) antibiotic. The efficiency of processes to remove TMP followed the order UVC < AO-H2O2 < PEF-UVA < AO ≈ PEF-UVC < AO-H2O2/UVC < PEF-UVA (pH = 2.8) < H2O2/UVC ≈ PEF-UVC (pH = 2.8), using neutral pH, except when identified. While the UVC radiation alone led to a very low TMP removal, the H2O2/UVC process promoted a very high TMP degradation due to the production of hydroxyl radicals (OH) by H2O2 cleavage. In the AO-H2O2/UVC process, the electrogeneration of H2O2 can avoid the risks associated with the transportation, storage and manipulation of this oxidant and, furthermore, OH at the anode surface are also formed. Nevertheless, low contents of H2O2 were detected mainly at the beginning of the reaction, leading to a lower initial reaction rate when compared with the H2O2/UVC system. In the PEF-UVC, the addition of iron at neutral pH led to the visible formation of insoluble iron oxides that can filter the light. At pH 2.8, the iron remained dissolved, thereby promoting the Fenton's reaction and increasing the organics removal. The UVA-driven processes showed limited efficiency when compared with those using UVC light. For all processes with H2O2 electrogeneration, the active chlorine species can be scavenged by the H2O2, diminishing the efficiency of the processes. This can explain the lower efficiency of AO-H2O2 when compared with AO. Moreover, the degradation of the MWWTP effluent spiked with 18 pharmaceuticals in μg L(-1) during AO process was assessed

  9. A Multi-layer, Data-driven Advanced Reasoning Tool for Intelligent Data Mining and Analysis for Smart Grids

    SciTech Connect

    Lu, Ning; Du, Pengwei; Greitzer, Frank L.; Guo, Xinxin; Hohimer, Ryan E.; Pomiak, Yekaterina G.

    2012-12-31

    This paper presents the multi-layer, data-driven advanced reasoning tool (M-DART), a proof-of-principle decision support tool for improved power system operation. M-DART will cross-correlate and examine different data sources to assess anomalies, infer root causes, and anneal data into actionable information. By performing higher-level reasoning “triage” of diverse data sources, M-DART focuses on early detection of emerging power system events and identifies highest priority actions for the human decision maker. M-DART represents a significant advancement over today’s grid monitoring technologies that apply offline analyses to derive model-based guidelines for online real-time operations and use isolated data processing mechanisms focusing on individual data domains. The development of the M-DART will bridge these gaps by reasoning about results obtained from multiple data sources that are enabled by the smart grid infrastructure. This hybrid approach integrates a knowledge base that is trained offline but tuned online to capture model-based relationships while revealing complex causal relationships among data from different domains.

  10. Advanced scheme for high-yield laser driven proton-boron fusion reaction

    NASA Astrophysics Data System (ADS)

    Margarone, D.; Picciotto, A.; Velyhan, A.; Krasa, J.; Kucharik, M.; Morrissey, M.; Mangione, A.; Szydlowsky, A.; Malinowska, A.; Bertuccio, G.; Shi, Y.; Crivellari, M.; Ullschmied, J.; Bellutti, P.; Korn, G.

    2015-02-01

    A low contrast nanosecond laser pulse with relatively low intensity (3 × 1016 W cm-2) was used to enhance the yield of induced nuclear reactions in advanced solid targets. In particular the "ultraclean" proton-boron fusion reaction, producing energetic alpha-particles without neutron generation, was chosen. A spatially well-defined layer of boron dopants in a hydrogen-enriched silicon substrate was used as target. The combination of the specific target geometry and the laser pulse temporal shape allowed enhancing the yield of alpha-particles up to 109 per steradian, i.e 100 times higher than previous experimental achievements. Moreover the alpha particle stream presented a clearly peaked angular and energy distribution, which make this secondary source attractive for potential applications. This result can be ascribed to the interaction of the long laser pre-pulse with the target and to the optimal target geometry and composition.

  11. An advanced protocol-driven transition from parenteral prostanoids to inhaled trepostinil in pulmonary arterial hypertension

    PubMed Central

    Agarwal, Manyoo; Rischard, Franz; De Marco, Teresa

    2016-01-01

    Abstract Patients with pulmonary arterial hypertension (PAH) often require parenteral prostanoids to improve symptoms and signs of PAH. Complications of parenteral prostanoids—such as catheter-related infections and intolerable adverse effects—may develop, prompting transition to inhaled prostanoids. We report a prospective, protocol-driven transition from parenteral prostanoids to inhaled prostanoids with monitoring of exercise gas exchange and acute hemodynamics. Three PAH centers recruited patients transitioning from parenteral prostanoids to inhaled trepostinil. Rigid inclusion criteria were used, including parenteral prostanoid dose < 30 ng/kg/min, New York Heart Association functional class (FC) < 3, and pulmonary vascular resistance (PVR) < 6 Wood units. Of the 9 patients meeting initial inclusion criteria, 3 were excluded. In the remaining patients, the parenteral prostanoid was reduced and the inhaled prostanoid was increased over 24–36 hours with continuous hemodynamic monitoring. Exercise capacity and FC were measured at baseline and weeks 1, 4, and 12. All patients were successfully weaned from parenteral prostanoids. An acute PVR decrease was seen with most inhaled prostanoid doses, but PVR varied throughout the transition. Patients tolerated inhaled prostanoids for 9–12 breaths 4 times a day with no treatment-limiting adverse events. At week 12, FC was unchanged, and all patients continued to receive inhaled prostanoids without serious adverse events or additional PAH therapy. In 5 of 6 patients, 6-minute walk distance and peak V˙O2 were within 10% of baseline. Using a strict transition protocol and rigid patient selection criteria, the parenteral prostanoid to inhaled prostanoid transition appeared safe and well tolerated and did not result in clinical deterioration over 12 weeks. Hemodynamic variability noted acutely during transition in our study did not adversely affect successful transition. (Trial registration: Clinical

  12. Power, resolution and bias: recent advances in insect phylogeny driven by the genomic revolution.

    PubMed

    Yeates, David K; Meusemann, Karen; Trautwein, Michelle; Wiegmann, Brian; Zwick, Andreas

    2016-02-01

    Our understanding on the phylogenetic relationships of insects has been revolutionised in the last decade by the proliferation of next generation sequencing technologies (NGS). NGS has allowed insect systematists to assemble very large molecular datasets that include both model and non-model organisms. Such datasets often include a large proportion of the total number of protein coding sequences available for phylogenetic comparison. We review some early entomological phylogenomic studies that employ a range of different data sampling protocols and analyses strategies, illustrating a fundamental renaissance in our understanding of insect evolution all driven by the genomic revolution. The analysis of phylogenomic datasets is challenging because of their size and complexity, and it is obvious that the increasing size alone does not ensure that phylogenetic signal overcomes systematic biases in the data. Biases can be due to various factors such as the method of data generation and assembly, or intrinsic biological feature of the data per se, such as similarities due to saturation or compositional heterogeneity. Such biases often cause violations in the underlying assumptions of phylogenetic models. We review some of the bioinformatics tools available and being developed to detect and minimise systematic biases in phylogenomic datasets. Phylogenomic-scale data coupled with sophisticated analyses will revolutionise our understanding of insect functional genomics. This will illuminate the relationship between the vast range of insect phenotypic diversity and underlying genetic diversity. In combination with rapidly developing methods to estimate divergence times, these analyses will also provide a compelling view of the rates and patterns of lineagenesis (birth of lineages) over the half billion years of insect evolution.

  13. Early experience with digital advance care planning and directives, a novel consumer-driven program

    PubMed Central

    Yang, Zhiyong; Spivey, Christy; Boardman, Bonnie; Courtney, Maureen

    2016-01-01

    Barriers to traditional advance care planning (ACP) and advance directive (AD) creation have limited the promise of ACP/AD for individuals and families, the healthcare team, and society. Our objectives were to determine the results of a digital ACP/AD through which consumers create, store, locate, and retrieve their ACP/AD at no charge and with minimal physician involvement, and the ACP/AD can be integrated into the electronic health record. The authors chose 900 users of MyDirectives, a digital ACP/AD tool, to achieve proportional representation of all 50 states by population size and then reviewed their responses. The 900 participants had an average age of 50.8 years (SD = 16.6); 84% of the men and 91% of the women were in self-reported good health when signing their ADs. Among the respondents, 94% wanted their physicians to consult a supportive and palliative care team if they were seriously ill; nearly 85% preferred cessation of life-sustaining treatments during their final days; 76% preferred to spend their final days at home or in a hospice; and 70% would accept attempted cardiopulmonary resuscitation in limited circumstances. Most respondents wanted an autopsy under certain conditions, and 62% wished to donate their organs. In conclusion, analysis of early experience with this ACP/AD platform demonstrates that individuals of different ages and conditions can engage in an interrogatory process about values, develop ADs that are more nuanced than traditional paper-based ADs in reflecting those values, and easily make changes to their ADs. Online ADs have the potential to remove barriers to ACP/AD and thus further improve patient-centered end-of-life care. PMID:27365867

  14. Dietary advanced lipid oxidation endproducts are risk factors to human health.

    PubMed

    Kanner, Joseph

    2007-09-01

    Lipid oxidation in foods is one of the major degradative processes responsible for losses in food quality. The oxidation of unsaturated fatty acids results in significant generation of dietary advanced lipid oxidation endproducts (ALEs) which are in part cytotoxic and genotoxic compounds. The gastrointestinal tract is constantly exposed to dietary oxidized food compounds, after digestion a part of them are absorbed into the lymph or directly into the blood stream. After ingestion of oxidized fats animals and human have been shown to excrete in urine increase amounts of malondialdehyde but also lipophilic carbonyl compounds. Oxidized cholesterol in the diet was found to be a source of oxidized lipoproteins in human serum. Some of the dietary ALEs, which are absorbed from the gut to the circulatory system, seems to act as injurious chemicals that activate an inflammatory response which affects not only circulatory system but also organs such as liver, kidney, lung, and the gut itself. We believe that repeated consumption of oxidized fat in the diet poses a chronic threat to human health. High concentration of dietary antioxidants could prevent lipid oxidation and ALEs generation not only in foods but also in stomach condition and thereby potentially decrease absorption of ALEs from the gut. This could explains the health benefit of diets containing large amounts of dietary antioxidants such those present in fruits and vegetables, or products such as red-wine or tea consuming during the meal.

  15. Development of Advanced Oxide Dispersion Strengthened Tungsten Heavy Alloy for Penetrator Application

    DTIC Science & Technology

    2005-09-30

    preparation, sintering, cyclic heat-treatment, swaging , and annealing processes, on microstructures and static/dynamic mechanical properties of ODS tungsten ... tungsten / tungsten contiguity. The swaging and annealing processes of ODS tungsten heavy alloy increase the tensile strength with decreasing the...Final Report for 2nd Year Contract of AOARD 034032 Development of Advanced Oxide Dispersion Strengthened Tungsten Heavy Alloy for

  16. TiO2-Based Advanced Oxidation Nanotechnologies For Water Purification And Reuse

    EPA Science Inventory

    TiO2 photocatalysis, one of the UV-based advanced oxidation technologies (AOTs) and nanotechnologies (AONs), has attracted great attention for the development of efficient water treatment and purification systems due to the effectiveness of TiO2 to generate ...

  17. DESTRUCTION OF PAHS AND PCBS IN WATER USING SULFATE RADICAL-BASED CATALYTIC ADVANCED OXIDATION PROCESSES

    EPA Science Inventory

    A new class of advanced oxidation processes (AOPs) based on sulfate radicals is being tested for the degradation of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in aqueous solution. These AOPs are based on the generation of sulfate radicals through...

  18. DEMONSTRATION OF THE HIPOX ADVANCED OXIDATION TECHNOLOGY FOR THE TREATMENT OF MTBE-CONTAMINATED GROUNDWATER

    EPA Science Inventory

    The HiPOx technology is an advanced oxidation process that incorporates high-precision delivery of ozone and hydrogen peroxide to chemically destroy organic contaminants with the promise of minimizing bromate formation. A MTBE-contaminated groundwater from the Ventura County Nav...

  19. A comparison of single oxidants versus advanced oxidation processes as chlorine-alternatives for wild blueberry processing (Vaccinium angustifolium).

    PubMed

    Crowe, Kristi M; Bushway, Alfred A; Bushway, Rodney J; Davis-Dentici, Katherine; Hazen, Russell A

    2007-05-01

    Advanced oxidation processes and single chemical oxidants were evaluated for their antimicrobial efficacy against common spoilage bacteria isolated from lowbush blueberries. Predominant bacterial flora were identified using biochemical testing with the assessment of relative abundance using non-selective and differential media. Single chemical oxidants evaluated for postharvest processing of lowbush blueberries included 1% hydrogen peroxide, 100 ppm chlorine, and 1 ppm aqueous ozone while advanced oxidation processes (AOPs) included combinations of 1% hydrogen peroxide/UV, 100 ppm chlorine/UV, and 1 ppm ozone/1% hydrogen peroxide/UV. Enterobacter agglomerans and Pseudomonas fluorescens were found to comprise 90-95% of the bacterial flora on lowbush blueberries. Results of inoculation studies reveal significant log reductions (p< or 5) in populations of E. agglomerans and P. fluorescens on all samples receiving treatment with 1% hydrogen peroxide, 1% hydrogen peroxide/UV, 1 ppm ozone, or a combined ozone/hydrogen peroxide/UV treatment as compared to chlorine treatments and unwashed control berries. Although population reductions approached 2.5 log CFU/g, microbial reductions among these treatments were not found to be significantly different (p< or 5) from each other despite the synergistic potential that should result from AOPs; furthermore, as a single oxidant, UV inactivation of inoculated bacteria was minimal and did not prove effective as a non-aqueous bactericidal process for fresh pack blueberries. Overall, results indicate that hydrogen peroxide and ozone, as single chemical oxidants, are as effective as AOPs and could be considered as chlorine-alternatives in improving the microbiological quality of lowbush blueberries.

  20. Degenerate epitaxy-driven defects in monolayer silicon oxide on ruthenium

    NASA Astrophysics Data System (ADS)

    Mathur, Shashank; Vlaic, Sergio; Machado-Charry, Eduardo; Vu, Anh-Duc; Guisset, Valérie; David, Philippe; Hadji, Emmanuel; Pochet, Pascal; Coraux, Johann

    2015-10-01

    The structure of the ultimately thin crystalline allotrope of silicon oxide, prepared on a ruthenium surface, is unveiled down to the atomic scale with chemical sensitivity, owing to high resolution scanning tunneling microscopy and first principles calculations. An ordered oxygen lattice is imaged which coexists with the two-dimensional monolayer oxide. This coexistence signals a displacive transformation from an oxygen-reconstructed Ru(0001) to silicon oxide, along which laterally shifted domains form, each with equivalent and degenerate epitaxial relationships with the substrate. The unavoidable character of defects at the boundaries between these domains appeals for the development of alternative methods capable of producing single-crystalline two-dimensional oxides.

  1. Advances in Understanding the Actions of Nitrous Oxide

    PubMed Central

    Emmanouil, Dimitris E; Quock, Raymond M

    2007-01-01

    Nitrous oxide (N2O) has been used for well over 150 years in clinical dentistry for its analgesic and anxiolytic properties. This small and simple inorganic chemical molecule has indisputable effects of analgesia, anxiolysis, and anesthesia that are of great clinical interest. Recent studies have helped to clarify the analgesic mechanisms of N2O, but the mechanisms involved in its anxiolytic and anesthetic actions remain less clear. Findings to date indicate that the analgesic effect of N2O is opioid in nature, and, like morphine, may involve a myriad of neuromodulators in the spinal cord. The anxiolytic effect of N2O, on the other hand, resembles that of benzodiazepines and may be initiated at selected subunits of the γ-aminobutyric acid type A (GABAA) receptor. Similarly, the anesthetic effect of N2O may involve actions at GABAA receptors and possibly at N-methyl-D-aspartate receptors as well. This article reviews the latest information on the proposed modes of action for these clinicaleffects of N2O. PMID:17352529

  2. Advanced oxidation for the treatment of chlorpyrifos in aqueous solution.

    PubMed

    Ismail, M; Khan, Hasan M; Sayed, Murtaza; Cooper, William J

    2013-10-01

    Chlorpyrifos is an organophosphate pesticide and is significant because of its extensive use, persistence in the environment, wide distribution, and its toxicity may lead to lung and central nervous system damage, developmental and autoimmune disorders and vomiting. In the present study, the irradiation of chlorpyrifos in aqueous solution by (60)Co γ-rays was conducted on a laboratory scale and the removal efficiency of chlorpyrifos was investigated. The SPME-GC-ECD method was used for analysis of chlorpyrifos. Aqueous solutions of different concentrations of target compound (200-1000 μg L(-1)) were irradiated through 30-575 Gy. Gamma irradiation showed 100% degradation for a 500 μg L(-1) solution at an absorbed dose of 575 Gy (the dose rate was 300 Gy h(-1)). The radiolysis of chlorpyrifos was pseudo-first order (decay) with respect to dose. The dose constants determined in this study ranged from 8.2×10(-3) to 2.6×10(-2) Gy(-1), and decreased with an increase in the initial concentration of chlorpyrifos, while the radiation chemical yield (G-value) for the loss of chlorpyrifos was found to decrease with increasing absorbed dose. The effect of saturated solutions of N2 and N2O, and radical scavengers tert-butanol, iso-propanol, H2O2, NaNO3 and NaNO2 on the degradation of chlorpyrifos were also studied. The results showed that the oxidative OH was the most important in the degradation of chlorpyrifos, while the reductive radicals, aqueous electron and H, were of less importance for the degradation of chlorpyrifos. The inorganic by-products Cl(-), SO4(2-) and PO4(3-) were quantitatively determined by IC.

  3. Advanced alternate planar geometry solid oxide fuel cells

    SciTech Connect

    Elangovan, S.; Prouse, D.; Khandkar, A.; Donelson, R.; Marianowski, L. )

    1992-11-01

    The potential of high temperature Solid Oxide Fuel Cells as high performance, high efficiency energy conversion device is well known. Investigation of several cell designs have been undertaken by various researchers to derive the maximum performance benefit from the device while maintaining a lower cost of production to meet the commercialization cost target. The present investigation focused on the planar SOFC design which allows for the use of mature low cost production processes to be employed. A novel design concept was investigated which allows for improvements in performance through increased interface stability, and lowering of cost through enhanced structural integrity and the use of low cost metal interconnects. The new cell design consisted of a co-sintered porous/dense/porous zirconia layer with the electrode material infiltrated into the porous layers. The two year program conducted by a team involving Ceramatec and the Institute of Gas Technology, culminated in a multi-cell stack test that exhibited high performance. Considerable progress was achieved in the selection of cell components, and establishing and optimizing the cell and stack fabrication parameters. It was shown that the stack components exhibited high conductivities and low creep at the operating temperature. The inter-cell resistive losses were shown to be small through out-of-cell characterization. The source of performance loss was identified to be the anode electrolyte interface. This loss however can be minimized by improving the anode infiltration technique. Manifolding and sealing of the planar devices posed considerable challenge. Even though the open circuit voltage was 250 mV/cell lower than theoretical, the two cell stack had a performance of 300 mA/cm[sup 2] at 0.4V/cell with an area specific resistance of 1 [Omega]-cm[sup 2]/cell. improvements in manifolding are expected to provide much higher performance.

  4. Advanced alternate planar geometry solid oxide fuel cells. Final report

    SciTech Connect

    Elangovan, S.; Prouse, D.; Khandkar, A.; Donelson, R.; Marianowski, L.

    1992-11-01

    The potential of high temperature Solid Oxide Fuel Cells as high performance, high efficiency energy conversion device is well known. Investigation of several cell designs have been undertaken by various researchers to derive the maximum performance benefit from the device while maintaining a lower cost of production to meet the commercialization cost target. The present investigation focused on the planar SOFC design which allows for the use of mature low cost production processes to be employed. A novel design concept was investigated which allows for improvements in performance through increased interface stability, and lowering of cost through enhanced structural integrity and the use of low cost metal interconnects. The new cell design consisted of a co-sintered porous/dense/porous zirconia layer with the electrode material infiltrated into the porous layers. The two year program conducted by a team involving Ceramatec and the Institute of Gas Technology, culminated in a multi-cell stack test that exhibited high performance. Considerable progress was achieved in the selection of cell components, and establishing and optimizing the cell and stack fabrication parameters. It was shown that the stack components exhibited high conductivities and low creep at the operating temperature. The inter-cell resistive losses were shown to be small through out-of-cell characterization. The source of performance loss was identified to be the anode electrolyte interface. This loss however can be minimized by improving the anode infiltration technique. Manifolding and sealing of the planar devices posed considerable challenge. Even though the open circuit voltage was 250 mV/cell lower than theoretical, the two cell stack had a performance of 300 mA/cm{sup 2} at 0.4V/cell with an area specific resistance of 1 {Omega}-cm{sup 2}/cell. improvements in manifolding are expected to provide much higher performance.

  5. Mineralization of paracetamol in aqueous solution with advanced oxidation processes.

    PubMed

    Torun, Murat; Gültekin, Özge; Şolpan, Dilek; Güven, Olgun

    2015-01-01

    Paracetamol is a common analgesic drug widely used in all regions of the world more than hundred tonnes per year and it poses a great problem for the aquatic environment. Its phenolic intermediates are classified as persistent organic pollutants and toxic for the environment as well as human beings. In the present study, the irradiation of aqueous solutions of paracetamol with 60Co gamma-rays was examined on a laboratory scale and its degradation path was suggested with detected radiolysis products. The synergic effect of ozone on gamma-irradiation was investigated by preliminary ozonation before irradiation which reduced the irradiation dose from 5 to 3 kGy to completely remove paracetamol and its toxic intermediate hydroquinone from 6 to 4 kGy as well as increasing the radiation chemical yield (Gi values 1.36 and 1.66 in the absence and presence of ozone, respectively). The observed amount of formed hydroquinone was also decreased in the presence of ozone. There is a decrease in pH from 6.4 to 5.2 and dissolved oxygen consumed, which is up to 0.8 mg l(-1), to form some peroxyl radicals used for oxidation. Analytical measurements were carried out with gas chromatography/mass spectrometry and ion chromatography (IC) both qualitatively and quantitatively. Amounts of paracetamol and hydroquinone were measured with gas chromatography after trimethylsilane derivatization. Small aliphatic acids, such as acetic acid, formic acid and oxalic acid, were measured quantitatively with IC as well as inorganic ions (nitrite and nitrate) in which their yields increase with irradiation.

  6. Advanced alternate planar geometry solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Elangovan, S.; Prouse, D.; Khandkar, A.; Donelson, R.; Marianowski, L.

    1992-11-01

    The potential of high temperature Solid Oxide Fuel Cells (SOFC) as high performance, high efficiency energy conversion devices is well known. Investigation of several cell designs have been undertaken by various researchers to derive the maximum performance benefit from the device while maintaining a lower cost of production to meet the commercialization cost target. The present investigation focused on the planar SOFC design which allows for the use of mature low cost production processes. A novel design concept was investigated which allows for the following: improvements in performance through increased interface stability, and lowering of cost through enhanced structural integrity and the use of low cost metal interconnects. The new cell design consisted of a co-sintered porous/dense/porous zirconia layer with the electrode material infiltrated into the porous layers. The two year program conducted by a team involving Ceramatec and the Institute of Gas Technology culminated in a multi-cell stack test that exhibited high performance. Considerable progress was achieved in the selection of cell components and establishing and optimizing the cell and stack fabrication parameters. It was shown that the stack components exhibited high conductivities and low creep at the operating temperature. The inter-cell resistive losses were shown to be small through out-of-cell characterization. The source of performance loss was identified to be the anode electrolyte interface. This loss however can be minimized by improving the anode infiltration technique. Manifolding and sealing of the planar devices posed considerable challenge. Even though the open circuit voltage was 250 mV/cell lower than theoretical, the two cell stack had a performance of 300 mA/sq cm at 0.4V/cell with an area specific resistance of 1 Ohm-sq cm/cell. Improvements in manifolding are expected to provide much higher performance.

  7. Nanophase Manganese Oxides: Chemisorbed Water and Small Particle Size Promote Large Thermodynamically Driven Shifts in Oxidation-Reduction Equilibria

    NASA Astrophysics Data System (ADS)

    Birkner, N.; Navrotsky, A.

    2011-12-01

    Manganese oxides are important in terrestrial and Martian settings, and changes in oxidation state (Mn 2+, 3+, 4+) produce different phases. This study focuses on changes in redox energetics at the nanoscale in the Mn-O system with water present. Nanophase hausmannite (Mn3O4), bixbyite (Mn2O3), and pyrolusite (MnO2) were synthesized using minor modifications of previously published methods, stored at room temperature, and then analyzed by powder-XRD, BET surface area measurement, and TGA for total water content. High-temperature oxide-melt drop solution calorimetry was performed on a series of characterized samples with known surface area and water content. The differential heat of water adsorption as a function of coverage was also measured. The surface enthalpies of manganese oxide phases, hausmannite (Mn3O4), bixbyite (Mn2O3), and pyrolusite (MnO2), were determined using the data from high-temperature oxide melt calorimetry and water adsorption calorimetry. Surface energy for the hydrous Mn3O4 tetragonal spinel phase is 0.96±0.08 J/m2, for Mn2O3 cubic phase is 1.29±0.10 J/m2, and for MnO2 cubic rutile phase is 1.64±0.10 J/m2. Surface energy for the anhydrous Mn3O4 is 1.31±0.08 J/m2, for Mn2O3 is 1.57±0.10 J/m2, and for MnO2 is 1.99±0.10 J/m2. Supporting preliminary findings, the spinel phase (hausmannite) has a lower surface energy than bixbyite, while the latter has a smaller surface energy than pyrolusite. We also observed phase changes, some of them rapidly reversible, associated with water adsorption/desorption for the nanophase manganese oxide assemblages. There are geochemical consequences. (1) At the nanoscale, both the pyrolusite/bixbyite and bixbyite/hausmannite equilibria are shifted to higher oxygen fugacity because the reduced phase has the lower surface energy. (2) The ready inter-conversion of phases with different oxidation states under aqueous conditions implies that, after a manganese oxide nanophase forms, it can easily transform to other

  8. Reaction-driven surface restructuring and selectivity control in allylic alcohol catalytic aerobic oxidation over Pd.

    PubMed

    Lee, Adam F; Ellis, Christine V; Naughton, James N; Newton, Mark A; Parlett, Christopher M A; Wilson, Karen

    2011-04-20

    Synchronous, time-resolved DRIFTS/MS/XAS cycling studies of the vapor-phase selective aerobic oxidation of crotyl alcohol over nanoparticulate Pd have revealed surface oxide as the desired catalytically active phase, with dynamic, reaction-induced Pd redox processes controlling selective versus combustion pathways.

  9. P450BM3 fused to phosphite dehydrogenase allows phosphite-driven selective oxidations.

    PubMed

    Beyer, Nina; Kulig, Justyna K; Bartsch, Anette; Hayes, Martin A; Janssen, Dick B; Fraaije, Marco W

    2017-03-01

    To facilitate the wider application of the NADPH-dependent P450BM3, we fused the monooxygenase with a phosphite dehydrogenase (PTDH). The resulting monooxygenase-dehydrogenase fusion enzyme acts as a self-sufficient bifunctional catalyst, accepting phosphite as a cheap electron donor for the regeneration of NADPH.The well-expressed fusion enzyme was purified and analyzed in comparison to the parent enzymes. Using lauric acid as substrate for P450BM3, it was found that the fusion enzyme had similar substrate affinity and hydroxylation selectivity while it displayed a significantly higher activity than the non-fused monooxygenase. Phosphite-driven conversions of lauric acid at restricted NADPH concentrations confirmed multiple turnovers of the cofactor. Interestingly, both the fusion enzyme and the native P450BM3 displayed enzyme concentration dependent activity and the fused enzyme reached optimal activity at a lower enzyme concentration. This suggests that the fusion enzyme has an improved tendency to form functional oligomers.To explore the constructed phosphite-driven P450BM3 as a biocatalyst, conversions of the drug compounds omeprazole and rosiglitazone were performed. PTDH-P450BM3 driven by phosphite was found to be more efficient in terms of total turnover when compared with P450BM3 driven by NADPH. The results suggest that PTDH-P450BM3 is an attractive system for use in biocatalytic and drug metabolism studies.

  10. IRON OPTIMIZATION FOR FENTON-DRIVEN OXIDATION OF MTBE-SPENT GRANULAR ACTIVATED CARBON

    EPA Science Inventory

    Fenton-driven chemical regeneration of granular activated carbon (GAC) is accomplished through the addition of H2O2 and iron (Fe) to spent GAC. The overall objective of this treatment process is to transform target contaminants into less toxic byproducts, re-establish the sorpti...

  11. Inflammation-induced chondrocyte hypertrophy is driven by receptor for advanced glycation end products.

    PubMed

    Cecil, Denise L; Johnson, Kristen; Rediske, John; Lotz, Martin; Schmidt, Ann Marie; Terkeltaub, Robert

    2005-12-15

    The multiligand receptor for advanced glycation end products (RAGE) mediates certain chronic vascular and neurologic degenerative diseases accompanied by low-grade inflammation. RAGE ligands include S100/calgranulins, a class of low-molecular-mass, calcium-binding polypeptides, several of which are chondrocyte expressed. Here, we tested the hypothesis that S100A11 and RAGE signaling modulate osteoarthritis (OA) pathogenesis by regulating a shift in chondrocyte differentiation to hypertrophy. We analyzed human cartilages and cultured human articular chondrocytes, and used recombinant human S100A11, soluble RAGE, and previously characterized RAGE-specific blocking Abs. Normal human knee cartilages demonstrated constitutive RAGE and S100A11 expression, and RAGE and S100A11 expression were up-regulated in OA cartilages studied by immunohistochemistry. CXCL8 and TNF-alpha induced S100A11 expression and release in cultured chondrocytes. Moreover, S100A11 induced cell size increase and expression of type X collagen consistent with chondrocyte hypertrophy in vitro. CXCL8-induced, IL-8-induced, and TNF-alpha-induced but not retinoic acid-induced chondrocyte hypertrophy were suppressed by treatment with soluble RAGE or RAGE-specific blocking Abs. Last, via transfection of dominant-negative RAGE and dominant-negative MAPK kinase 3, we demonstrated that S100A11-induced chondrocyte type X collagen expression was dependent on RAGE-mediated p38 MAPK pathway activation. We conclude that up-regulated chondrocyte expression of the RAGE ligand S100A11 in OA cartilage, and RAGE signaling through the p38 MAPK pathway, promote inflammation-associated chondrocyte hypertrophy. RAGE signaling thereby has the potential to contribute to the progression of OA.

  12. Treeline advances along the Urals mountain range - driven by improved winter conditions?

    PubMed

    Hagedorn, Frank; Shiyatov, Stepan G; Mazepa, Valeriy S; Devi, Nadezhda M; Grigor'ev, Andrey A; Bartysh, Alexandr A; Fomin, Valeriy V; Kapralov, Denis S; Terent'ev, Maxim; Bugman, Harald; Rigling, Andreas; Moiseev, Pavel A

    2014-11-01

    High-altitude treelines are temperature-limited vegetation boundaries, but little quantitative evidence exists about the impact of climate change on treelines in untouched areas of Russia. Here, we estimated how forest-tundra ecotones have changed during the last century along the Ural mountains. In the South, North, Sub-Polar, and Polar Urals, we compared 450 historical and recent photographs and determined the ages of 11,100 trees along 16 altitudinal gradients. In these four regions, boundaries of open and closed forests (crown covers above 20% and 40%) expanded upwards by 4 to 8 m in altitude per decade. Results strongly suggest that snow was an important driver for these forest advances: (i) Winter precipitation has increased substantially throughout the Urals (~7 mm decade(-1) ), which corresponds to almost a doubling in the Polar Urals, while summer temperatures have only changed slightly (~0.05°C decade(-1) ). (ii) There was a positive correlation between canopy cover, snow height and soil temperatures, suggesting that an increasing canopy cover promotes snow accumulation and, hence, a more favorable microclimate. (iii) Tree age analysis showed that forest expansion mainly began around the year 1900 on concave wind-sheltered slopes with thick snow covers, while it started in the 1950s and 1970s on slopes with shallower snow covers. (iv) During the 20th century, dominant growth forms of trees have changed from multistemmed trees, resulting from harsh winter conditions, to single-stemmed trees. While 87%, 31%, and 93% of stems appearing before 1950 were from multistemmed trees in the South, North and Polar Urals, more than 95% of the younger trees had a single stem. Currently, there is a high density of seedlings and saplings in the forest-tundra ecotone, indicating that forest expansion is ongoing and that alpine tundra vegetation will disappear from most mountains of the South and North Urals where treeline is already close to the highest peaks.

  13. Application of UV based advanced oxidation to treat sulfolane in an aqueous medium.

    PubMed

    Yu, Linlong; Mehrabani-Zeinabad, Mitra; Achari, Gopal; Langford, Cooper H

    2016-10-01

    Several oxidative methods were studied to degrade sulfolane in an aqueous medium. These include UVA and UVC irradiation with suitable photoactive oxidants, including ozone, H2O2, and TiO2 based photocatalysis and their combinations. Since sulfolane lacks absorption bands in the UV range beyond 200 nm, initiation of reactions depends on the spectra and photochemistry of the oxidants. Among all the advanced oxidation processes investigated, combinations of (a) UVC with H2O2 and O3 (b) UVC with H2O2 and (c) UVC with O3 led to the highest rate of sulfolane loss in synthetic water samples. Experiments on sulfolane contaminated groundwater samples also indicated that these three combinations can efficiently degrade sulfolane. Furthermore, a synergistic effect was observed in the combination of H2O2 and O3 photolysis.

  14. Recent advances (2010-2015) in studies of cerium oxide nanoparticles' health effects.

    PubMed

    Li, Yan; Li, Peng; Yu, Hua; Bian, Ying

    2016-06-01

    Cerium oxide nanoparticles, widespread applied in our life, have attracted much concern for their human health effects. However, most of the works addressing cerium oxide nanoparticles toxicity have only used in vitro models or in vivo intratracheal instillation methods. The toxicity studies have varied results and not all are conclusive. The information about risk assessments derived from epidemiology studies is severely lacking. The knowledge of occupational safety and health (OSH) for exposed workers is very little. Thus this review focuses on recent advances in studies of toxicokinetics, antioxidant activity and toxicity. Additionally, aim to extend previous health effects assessments of cerium oxide nanoparticles, we summarize the epidemiology studies of engineered cerium oxide nanoparticles used as automotive diesel fuel additive, aerosol particulate matter in air pollution, other industrial ultrafine and nanoparticles (e.g., fumes particles generated in welding and flame cutting processes).

  15. Oxygen Penalty for Waste Oxidation in an Advanced Life Support System: A Systems Approach

    NASA Technical Reports Server (NTRS)

    Pisharody, Suresh; Wignarajah, K.; Fisher, John

    2002-01-01

    Oxidation is one of a number of technologies that are being considered for waste management and resource recovery from waste materials generated on board space missions. Oxidation processes are a very effective and efficient means of clean and complete conversion of waste materials to sterile products. However, because oxidation uses oxygen there is an "oxygen penalty" associated either with resupply of oxygen or with recycling oxygen from some other source. This paper is a systems approach to the issue of oxygen penalty in life support systems and presents findings on the oxygen penalty associated with an integrated oxidation-Sabatier-Oxygen Generation System (OGS) for waste management in an Advanced Life Support System. The findings reveal that such an integrated system can be operated to form a variety of useful products without a significant oxygen penalty.

  16. A pilot scale comparison of advanced oxidation processes for estrogenic hormone removal from municipal wastewater effluent.

    PubMed

    Pešoutová, Radka; Stříteský, Luboš; Hlavínek, Petr

    2014-01-01

    This study investigates the oxidation of selected endocrine disrupting compounds (estrone, 17β-estradiol, estriol and 17α-ethinylestradiol) during ozonation and advanced oxidation of biologically treated municipal wastewater effluents in a pilot scale. Selected estrogenic substances were spiked in the treated wastewater at levels ranging from 1.65 to 3.59 μg · L(-1). All estrogens were removed by ozonation by more than 99% at ozone doses ≥1.8 mg · L(-1). At a dose of 4.4 · mg L(-1) ozonation reduced concentrations of estrone, 17β-estradiol, estriol and 17α-ethinylestradiol by 99.8, 99.7, 99.9 and 99.7%, respectively. All tested advanced oxidation processes (AOPs) achieved high removal rates but they were slightly lower compared to ozonation. The lower removal rates for all tested advanced oxidation processes are caused by the presence of naturally occurring hydroxyl radical scavengers - carbonates and bicarbonates.

  17. Biological efficacy and toxic effect of emergency water disinfection process based on advanced oxidation technology.

    PubMed

    Tian, Yiping; Yuan, Xiaoli; Xu, Shujing; Li, Rihong; Zhou, Xinying; Zhang, Zhitao

    2015-12-01

    An innovative and removable water treatment system consisted of strong electric field discharge and hydrodynamic cavitation based on advanced oxidation technologies was developed for reactive free radicals producing and waterborne pathogens eliminating in the present study. The biological efficacy and toxic effects of this advanced oxidation system were evaluated during water disinfection treatments. Bench tests were carried out with synthetic microbial-contaminated water, as well as source water in rainy season from a reservoir of Dalian city (Liaoning Province, China). Results showed that high inactivation efficiency of Escherichia coli (>5 log) could be obtained for synthetic contaminated water at a low concentration (0.5-0.7 mg L(-1)) of total oxidants in 3-10 s. The numbers of wild total bacteria (108 × 10(3) CFU mL(-1)) and total coliforms (260 × 10(2) MPN 100 mL(-1)) in source water greatly reduced to 50 and 0 CFU mL(-1) respectively after treated by the advanced oxidation system, which meet the microbiological standards of drinking water, and especially that the inactivation efficiency of total coliforms could reach 100%. Meanwhile, source water qualities were greatly improved during the disinfection processes. The values of UV254 in particular were significantly reduced (60-80%) by reactive free radicals. Moreover, the concentrations of possible disinfection by-products (formaldehyde and bromide) in treated water were lower than detection limits, indicating that there was no harmful effect on water after the treatments. These investigations are helpful for the ecotoxicological studies of advanced oxidation system in the treatments of chemical polluted water or waste water. The findings of this work suggest that the developed water treatment system is ideal in the acute phases of emergencies, which also could offer additional advantages over a wide range of applications in water pollution control.

  18. Pathway-Driven Approaches of Interaction between Oxidative Balance and Genetic Polymorphism on Metabolic Syndrome

    PubMed Central

    2017-01-01

    Despite evidences of association between basic redox biology and metabolic syndrome (MetS), few studies have evaluated indices that account for multiple oxidative effectors for MetS. Oxidative balance score (OBS) has indicated the role of oxidative stress in chronic disease pathophysiology. In this study, we evaluated OBS as an oxidative balance indicator for estimating risk of MetS with 6414 study participants. OBS is a multiple exogenous factor score for development of disease; therefore, we investigated interplay between oxidative balance and genetic variation for development of MetS focusing on biological pathways by using gene-set-enrichment analysis. As a result, participants in the highest quartile of OBS were less likely to be at risk for MetS than those in the lowest quartile. In addition, persons in the highest quartile of OBS had the lowest level of inflammatory markers including C-reactive protein and WBC. With GWAS-based pathway analysis, we found that VEGF signaling pathway, glutathione metabolism, and Rac-1 pathway were significantly enriched biological pathways involved with OBS on MetS. These findings suggested that mechanism of angiogenesis, oxidative stress, and inflammation can be involved in interaction between OBS and genetic variation on risk of MetS. PMID:28191276

  19. Dual wavelength imaging of a scrape-off layer in an advanced beam-driven field-reversed configuration

    NASA Astrophysics Data System (ADS)

    Osin, D.; Schindler, T.

    2016-11-01

    A dual wavelength imaging system has been developed and installed on C-2U to capture 2D images of a He jet in the Scrape-Off Layer (SOL) of an advanced beam-driven Field-Reversed Configuration (FRC) plasma. The system was designed to optically split two identical images and pass them through 1 nm FWHM filters. Dual wavelength images are focused adjacent on a large format CCD chip and recorded simultaneously with a time resolution down to 10 μs using a gated micro-channel plate. The relatively compact optical system images a 10 cm plasma region with a spatial resolution of 0.2 cm and can be used in a harsh environment with high electro-magnetic noise and high magnetic field. The dual wavelength imaging system provides 2D images of either electron density or temperature by observing spectral line pairs emitted by He jet atoms in the SOL. A large field of view, combined with good space and time resolution of the imaging system, allows visualization of macro-flows in the SOL. First 2D images of the electron density and temperature observed in the SOL of the C-2U FRC are presented.

  20. Integrated magnetic and kinetic control of advanced tokamak plasmas on DIII-D based on data-driven models

    NASA Astrophysics Data System (ADS)

    Moreau, D.; Walker, M. L.; Ferron, J. R.; Liu, F.; Schuster, E.; Barton, J. E.; Boyer, M. D.; Burrell, K. H.; Flanagan, S. M.; Gohil, P.; Groebner, R. J.; Holcomb, C. T.; Humphreys, D. A.; Hyatt, A. W.; Johnson, R. D.; La Haye, R. J.; Lohr, J.; Luce, T. C.; Park, J. M.; Penaflor, B. G.; Shi, W.; Turco, F.; Wehner, W.; the ITPA-IOS Group members; experts

    2013-06-01

    The first real-time profile control experiments integrating magnetic and kinetic variables were performed on DIII-D in view of regulating and extrapolating advanced tokamak scenarios to steady-state devices and burning plasma experiments. Device-specific, control-oriented models were obtained from experimental data using a generic two-time-scale method that was validated on JET, JT-60U and DIII-D under the framework of the International Tokamak Physics Activity for Integrated Operation Scenarios (Moreau et al 2011 Nucl. Fusion 51 063009). On DIII-D, these data-driven models were used to synthesize integrated magnetic and kinetic profile controllers. The neutral beam injection (NBI), electron cyclotron current drive (ECCD) systems and ohmic coil provided the heating and current drive (H&CD) sources. The first control actuator was the plasma surface loop voltage (i.e. the ohmic coil), and the available beamlines and gyrotrons were grouped to form five additional H&CD actuators: co-current on-axis NBI, co-current off-axis NBI, counter-current NBI, balanced NBI and total ECCD power from all gyrotrons (with off-axis current deposition). Successful closed-loop experiments showing the control of (a) the poloidal flux profile, Ψ(x), (b) the poloidal flux profile together with the normalized pressure parameter, βN, and (c) the inverse of the safety factor profile, \\bar{\\iota}(x)=1/q(x) , are described.

  1. Self-Driven Desalination and Advanced Treatment of Wastewater in a Modularized Filtration Air Cathode Microbial Desalination Cell.

    PubMed

    Zuo, Kuichang; Wang, Zhen; Chen, Xi; Zhang, Xiaoyuan; Zuo, Jiaolan; Liang, Peng; Huang, Xia

    2016-07-05

    Microbial desalination cells (MDCs) extract organic energy from wastewater for in situ desalination of saline water. However, to desalinate salt water, traditional MDCs often require an anolyte (wastewater) and a catholyte (other synthetic water) to produce electricity. Correspondingly, the traditional MDCs also produced anode effluent and cathode effluent, and may produce a concentrate solution, resulting in a low production of diluate. In this study, nitrogen-doped carbon nanotube membranes and Pt carbon cloths were utilized as filtration material and cathode to fabricate a modularized filtration air cathode MDC (F-MDC). With real wastewater flowing from anode to cathode, and finally to the middle membrane stack, the diluate volume production reached 82.4%, with the removal efficiency of salinity and chemical oxygen demand (COD) reached 93.6% and 97.3% respectively. The final diluate conductivity was 68 ± 12 μS/cm, and the turbidity was 0.41 NTU, which were sufficient for boiler supplementary or industrial cooling. The concentrate production was only 17.6%, and almost all the phosphorus and salt, and most of the nitrogen were recovered, potentially allowing the recovery of nutrients and other chemicals. These results show the potential utility of the modularized F-MDC in the application of municipal wastewater advanced treatment and self-driven desalination.

  2. Evidence for roles of radicals in protein oxidation in advanced human atherosclerotic plaque.

    PubMed Central

    Fu, S; Davies, M J; Stocker, R; Dean, R T

    1998-01-01

    Oxidative damage might be important in atherogenesis. Oxidized lipids are present at significant concentrations in advanced human plaque, although tissue antioxidants are mostly present at normal concentrations. Indirect evidence of protein modification (notably derivatization of lysine) or oxidation has been obtained by immunochemical methods; the specificities of these antibodies are unclear. Here we present chemical determinations of six protein-bound oxidation products: dopa, o-tyrosine, m-tyrosine, dityrosine, hydroxyleucine and hydroxyvaline, some of which reflect particularly oxy-radical-mediated reaction pathways, which seem to involve mainly the participation of transition- metal ions. We compared the relative abundance of these oxidation products in normal intima, and in human carotid plaque samples with that observed after radiolytically generated hydroxyl radical attack on BSA in vitro. The close similarities in relative abundances in the latter two circumstances indicate that hydroxyl radical damage might occur in plaque. The relatively higher level of dityrosine in plaque than that observed after radiolysis suggests the additional involvement of HOCl-mediated reactions in advanced plaque. PMID:9677308

  3. Advanced Multi-Component Defect Cluster Oxide Doped Zirconia-Yttria Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    1990-01-01

    The advantages of using ceramic thermal barrier coatings in gas turbine engine hot sections include increased fuel efficiency and improved engine reliability. However, current thermal barrier coatings will not have the low thermal conductivity and necessary sintering resistance under higher operating temperatures and thermal gradients required by future advanced ultra-efficient and low-emission aircraft engines. In this paper, a novel oxide defect cluster design approach is described for achieving low thermal conductivity and excellent thermal stability of the thermal barrier coating systems. This approach utilizes multi-component rare earth and other metal cluster oxide dopants that are incorporated in the zirconia-yttria based systems, thus significantly reducing coating thermal conductivity and sintering resistance by effectively promoting the formation of thermodynamically stable, essentially immobile defect clusters and/or nanoscale phases. The performance of selected plasma-sprayed cluster oxide thermal barrier coating systems has been evaluated. The advanced multi-component thermal barrier coating systems were found to have significantly lower initial and long-term thermal conductivities, and better high temperature stability. The effect of oxide cluster dopants on coating thermal conductivity, sintering resistance, oxide grain growth behavior and durability will be discussed.

  4. Advanced Multi-Component Defect Cluster Oxide Doped Zirconia-Yttria Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    2003-01-01

    The advantages of using ceramic thermal barrier coatings in gas turbine engine hot sections include increased fuel efficiency and improved engine reliability. However, current thermal barrier coatings will not have the low thermal conductivity and necessary sintering resistance under higher operating temperatures and thermal gradients required by future advanced ultra efficient and low emission aircraft engines. In this paper, a novel oxide defect cluster design approach is described for achieving low thermal conductivity and excellent thermal stability of the thermal barrier coating systems. This approach utilizes multi-component rare earth and other metal cluster oxide dopants that are incorporated in the zirconia-yttna based systems, thus significantly reducing coating thermal conductivity and sintering resistance by effectively promoting the formation of thermodynamically stable, essentially immobile defect clusters and/or nanoscale phases. The performance of selected plasma-sprayed cluster oxide thermal barrier coating systems has been evaluated. The advanced multi-component thermal barrier coating systems were found to have significantly lower initial and long-term thermal conductivities, and better high temperature stability. The effect of oxide cluster dopants on coating thermal conductivity, sintering resistance, oxide grain growth behavior and durability will be discussed.

  5. Efficient removal of insecticide "imidacloprid" from water by electrochemical advanced oxidation processes.

    PubMed

    Turabik, Meral; Oturan, Nihal; Gözmen, Belgin; Oturan, Mehmet A

    2014-01-01

    The oxidative degradation of imidacloprid (ICP) has been carried out by electrochemical advanced oxidation processes (EAOPs), anodic oxidation, and electro-Fenton, in which hydroxyl radicals are generated electrocatalytically. Carbon-felt cathode and platinum or boron-doped diamond (BDD) anodes were used in electrolysis cell. To determine optimum operating conditions, the effects of applied current and catalyst concentration were investigated. The decay of ICP during the oxidative degradation was well fitted to pseudo-first-order reaction kinetics and absolute rate constant of the oxidation of ICP by hydroxyl radicals was found to be k abs(ICP) = 1.23 × 10(9) L mol(-1) s(-1). The results showed that both anodic oxidation and electro-Fenton process with BDD anode exhibited high mineralization efficiency reaching 91 and 94% total organic carbon (TOC) removal at 2 h, respectively. For Pt-EF process, mineralization efficiency was also obtained as 71%. The degradation products of ICP were identified and a plausible general oxidation mechanism was proposed. Some of the main reaction intermediates such as 6-chloronicotinic acid, 6-chloronicotinaldehyde, and 6-hydroxynicotinic acid were determined by GC-MS analysis. Before complete mineralization, formic, acetic, oxalic, and glyoxylic acids were identified as end-products. The initial chlorine and organic nitrogen present in ICP were found to be converted to inorganic anions Cl(-), NO₃(-), and NH₄(+).

  6. In Vitro Oxidation of Collagen Promotes the Formation of Advanced Oxidation Protein Products and the Activation of Human Neutrophils.

    PubMed

    Bochi, Guilherme Vargas; Torbitz, Vanessa Dorneles; de Campos, Luízi Prestes; Sangoi, Manuela Borges; Fernandes, Natieli Flores; Gomes, Patrícia; Moretto, Maria Beatriz; Barbisan, Fernanda; da Cruz, Ivana Beatrice Mânica; Moresco, Rafael Noal

    2016-04-01

    The accumulation of advanced oxidation protein products (AOPPs) has been linked to several pathological conditions. Here, we investigated collagen as a potential source for AOPP formation and determined the effects of hypochlorous acid (HOCl)-treated collagen (collagen-AOPPs) on human neutrophil activity. We also assessed whether alpha-tocopherol could counteract these effects. Exposure to HOCl increased the levels of collagen-AOPPs. Collagen-AOPPs also stimulated the production of AOPPs, nitric oxide (NO), superoxide radicals (O2(-)), and HOCl by neutrophils. Collagen-AOPPs induced apoptosis and decreased the number of viable cells. Alpha-tocopherol prevented the formation of collagen-AOPPs, strongly inhibited the collagen-AOPP-induced production of O2(-) and HOCl, and increased the viability of neutrophils. Our results suggest that collagen is an important protein that interacts with HOCl to form AOPPs, and consequently, collagen-AOPP formation is related to human neutrophil activation and cell death.

  7. Reduced TiO2-Graphene Oxide Heterostructure As Broad Spectrum-Driven Efficient Water-Splitting Photocatalysts.

    PubMed

    Li, Lihua; Yu, Lili; Lin, Zhaoyong; Yang, Guowei

    2016-04-06

    The reduced TiO2-graphene oxide heterostructure as an alternative broad spectrum-driven efficient water splitting photocatalyst has become a really interesting topic, however, its syntheses has many flaws, e.g., tedious experimental steps, time-consuming, small scale production, and requirement of various additives, for example, hydrazine hydrate is widely used as reductant to the reduction of graphene oxide, which is high toxicity and easy to cause the second pollution. For these issues, herein, we reported the synthesis of the reduced TiO2-graphene oxide heterostructure by a facile chemical reduction agent-free one-step laser ablation in liquid (LAL) method, which achieves extended optical response range from ultraviolet to visible and composites TiO(2-x) (reduced TiO2) nanoparticle and graphene oxide for promoting charge conducting. 30.64% Ti(3+) content in the reduced TiO2 nanoparticles induces the electronic reconstruction of TiO2, which results in 0.87 eV decrease of the band gap for the visible light absorption. TiO(2-x)-graphene oxide heterostructure achieved drastically increased photocatalytic H2 production rate, up to 23 times with respect to the blank experiment. Furthermore, a maximum H2 production rate was measured to be 16 mmol/h/g using Pt as a cocatalyst under the simulated sunlight irradiation (AM 1.5G, 135 mW/cm(2)), the quantum efficiencies were measured to be 5.15% for wavelength λ = 365 ± 10 nm and 1.84% for λ = 405 ± 10 nm, and overall solar energy conversion efficiency was measured to be 14.3%. These findings provided new insights into the broad applicability of this methodology for accessing fascinate photocatalysts.

  8. Degradation of 4-chlorophenol by microwave irradiation enhanced advanced oxidation processes.

    PubMed

    Zhihui, Ai; Peng, Yang; Xiaohua, Lu

    2005-08-01

    In this work the synergistic effects of several microwave assisted advanced oxidation processes (MW/AOPs) were studied for the degradation of 4-chlorophenol (4-CP). The efficiencies of the degradation of 4-CP in dilute aqueous solution for a variety of AOPs with or without MW irradiation were compared. The results showed that the synergistic effects between MW and H2O2, UV/H2O2, TiO2 photocatalytic oxidation (PCO) resulted in a high degradation efficiency for 4-CP. The potential of MW/AOPs for treatment of industrial wastewater is discussed.

  9. Oxidative stress responses of Daphnia magna exposed to effluents spiked with emerging contaminants under ozonation and advanced oxidation processes.

    PubMed

    Oropesa, Ana Lourdes; Novais, Sara C; Lemos, Marco F L; Espejo, Azahara; Gravato, Carlos; Beltrán, Fernando

    2017-01-01

    Integration of conventional wastewater treatments with advanced oxidation processes (AOPs) has become of great interest to remove pharmaceuticals and their metabolites from wastewater. However, application of these technologies generates reactive oxygen species (ROS) that may reach superficial waters through effluents from sewage treatment plants. The main objective of the present study was to elucidate if ROS present in real effluents after biological and then chemical (single ozonation, solar photolytic ozonation, solar photocatalytic ozonation (TiO2, Fe3O4) and solar photocatalytic oxidation (TiO2)) treatments induce oxidative stress in Daphnia magna. For this, the activity of two antioxidant enzymes (superoxide dismutase and catalase) and the level of lipid peroxidation were determined in Daphnia. The results of oxidative stress biomarkers studied suggest that D. magna is able to cope with the superoxide ion radical (O2·(-)) present in the treated effluent due to single ozonation by mainly inducing the antioxidant activity superoxide dismutase, thus preventing lipid peroxidation. Lethal effects (measured in terms of immobility) were not observed in these organisms after exposure to any solution. Therefore, in order to probe the ecological efficiency of urban wastewater treatments, studies on lethal and sublethal effects in D. magna would be advisable.

  10. Identification of transformation products during advanced oxidation of diatrizoate: Effect of water matrix and oxidation process.

    PubMed

    Azerrad, Sara P; Lütke Eversloh, Christian; Gilboa, Maayan; Schulz, Manoj; Ternes, Thomas; Dosoretz, Carlos G

    2016-10-15

    Removal of micropollutants from reverse osmosis (RO) brines of wastewater desalination by oxidation processes is influenced by the scavenging capacity of brines components, resulting in the accumulation of transformation products (TPs) rather than complete mineralization. In this work the iodinated contrast media diatrizoate (DTZ) was used as model compound due to its relative resistance to oxidation. Identification of TPs was performed in ultrapure water (UPW) and RO brines applying nonthermal plasma (NTP) and UVA-TiO2 as oxidation techniques. The influence of main RO brines components in the formation and accumulation of TPs, such as chloride, bicarbonate alkalinity and humic acid, was also studied during UVA-TiO2. DTZ oxidation pattern in UPW resulted similar in both UVA-TiO2 and NTP achieving 66 and 61% transformation, respectively. However, DTZ transformation in RO brines was markedly lower in UVA-TiO2 (9%) than in NTP (27%). These differences can be attributed to the synergic effect of RO brines components during NTP. Moreover, reactive species other than hydroxyl radical contributed to DTZ transformation, i.e., direct photolysis in UVA-TiO2 and direct photolysis + O3 in NTP accounted for 16 and 23%, respectively. DTZ transformation led to iodide formation in both oxidation techniques but it further oxidized to iodate by ozone in NTP. In total 14 transformation products were identified in UPW of which 3 were present only in UVA-TiO2 and 2 were present exclusively in NTP; 5 of the 14 TPs were absent in RO brines. Five of them were new and were denoted as TP-474A/B, TP-522, TP-586, TP-602, TP-628. TP-522 (mono-chlorinated) was elucidated only in presence of high chloride titer-synthetic water matrix in NTP, most probably formed by active chlorine species generated in situ. TPs accumulation in RO brines was markedly different in comparison to UPW. This denotes the influence of RO brines components in the formation of reactive species that could further attack

  11. Chemically Driven Enhancement of Oxygen Reduction Electrocatalysis in Supported Perovskite Oxides.

    PubMed

    Lee, Daehee; Tan, Jeiwan; Chae, Keun Hwa; Jeong, Beomgyun; Soon, Aloysius; Ahn, Sung-Jin; Kim, Joosun; Moon, Jooho

    2017-01-05

    Perovskite oxides have the capacity to efficiently catalyze the oxygen reduction reaction (ORR), which is of fundamental importance for electrochemical energy conversion. While the perovskite catalysts have been generally utilized with a support, the role of the supports, regarded as inert toward the ORR, has been emphasized mostly in terms of the thermal stability of the catalyst system and as an ancillary transport channel for oxygen ions during the ORR. We demonstrate a novel approach to improving the catalytic activity of perovskite oxides for solid oxide fuel cells by controlling the oxygen-ion conducting oxide supports. Catalytic activities of (La0.8Sr0.2)0.95MnO3 perovskite thin-film placed on different oxide supports are characterized by electrochemical impedance spectroscopy and X-ray absorption spectroscopy. These analyses confirm that the strong atomic orbital interactions between the support and the perovskite catalyst enhance the surface exchange kinetics by ∼2.4 times, in turn, improving the overall ORR activity.

  12. Adaptation of intertidal biofilm communities is driven by metal ion and oxidative stresses

    PubMed Central

    Zhang, Weipeng; Wang, Yong; Lee, On On; Tian, Renmao; Cao, Huiluo; Gao, Zhaoming; Li, Yongxin; Yu, Li; Xu, Ying; Qian, Pei-Yuan

    2013-01-01

    Marine organisms in intertidal zones are subjected to periodical fluctuations and wave activities. To understand how microbes in intertidal biofilms adapt to the stresses, the microbial metagenomes of biofilms from intertidal and subtidal zones were compared. The genes responsible for resistance to metal ion and oxidative stresses were enriched in both 6-day and 12-day intertidal biofilms, including genes associated with secondary metabolism, inorganic ion transport and metabolism, signal transduction and extracellular polymeric substance metabolism. In addition, these genes were more enriched in 12-day than 6-day intertidal biofilms. We hypothesize that a complex signaling network is used for stress tolerance and propose a model illustrating the relationships between these functions and environmental metal ion concentrations and oxidative stresses. These findings show that bacteria use diverse mechanisms to adapt to intertidal zones and indicate that the community structures of intertidal biofilms are modulated by metal ion and oxidative stresses. PMID:24212283

  13. Adaptation of intertidal biofilm communities is driven by metal ion and oxidative stresses.

    PubMed

    Zhang, Weipeng; Wang, Yong; Lee, On On; Tian, Renmao; Cao, Huiluo; Gao, Zhaoming; Li, Yongxin; Yu, Li; Xu, Ying; Qian, Pei-Yuan

    2013-11-11

    Marine organisms in intertidal zones are subjected to periodical fluctuations and wave activities. To understand how microbes in intertidal biofilms adapt to the stresses, the microbial metagenomes of biofilms from intertidal and subtidal zones were compared. The genes responsible for resistance to metal ion and oxidative stresses were enriched in both 6-day and 12-day intertidal biofilms, including genes associated with secondary metabolism, inorganic ion transport and metabolism, signal transduction and extracellular polymeric substance metabolism. In addition, these genes were more enriched in 12-day than 6-day intertidal biofilms. We hypothesize that a complex signaling network is used for stress tolerance and propose a model illustrating the relationships between these functions and environmental metal ion concentrations and oxidative stresses. These findings show that bacteria use diverse mechanisms to adapt to intertidal zones and indicate that the community structures of intertidal biofilms are modulated by metal ion and oxidative stresses.

  14. Single Sublattice Endotaxial Phase Separation Driven by Charge Frustration in a Complex Oxide

    PubMed Central

    2013-01-01

    Complex transition-metal oxides are important functional materials in areas such as energy and information storage. The cubic ABO3 perovskite is an archetypal example of this class, formed by the occupation of small octahedral B-sites within an AO3 network defined by larger A cations. We show that introduction of chemically mismatched octahedral cations into a cubic perovskite oxide parent phase modifies structure and composition beyond the unit cell length scale on the B sublattice alone. This affords an endotaxial nanocomposite of two cubic perovskite phases with distinct properties. These locally B-site cation-ordered and -disordered phases share a single AO3 network and have enhanced stability against the formation of a competing hexagonal structure over the single-phase parent. Synergic integration of the distinct properties of these phases by the coherent interfaces of the composite produces solid oxide fuel cell cathode performance superior to that expected from the component phases in isolation. PMID:23750709

  15. The study of leachate treatment by using three advanced oxidation process based wet air oxidation.

    PubMed

    Karimi, Behroz; Ehrampoush, Mohammad Hassan; Ebrahimi, Asghar; Mokhtari, Mehdi

    2013-01-02

    Wet air oxidation is regarded as appropriate options for wastewater treatment with average organic compounds. The general purpose of this research is to determine the efficiency of three wet air oxidation methods, wet oxidation with hydrogen peroxide and absorption with activated carbon in removing organic matter and nitrogenous compounds from Isfahan's urban leachate. A leachate sample with the volume of 1.5 liters entered into a steel reactor with the volume of three liters and was put under a 10-bar pressure, at temperatures of 100, 200, and 300° as well as three retention times of 30, 60, and 90 minutes. The sample was placed at 18 stages of leachate storage ponds in Isfahan Compost Plant with the volume of 20 liters, using three WPO, WAO methods and a combination of WAO/GAC for leachate pre-treatment. Thirty percent of pure oxygen and hydrogen peroxide were applied as oxidation agents. The COD removal efficiency in WAO method is 7.8-33.3%, in BOD is 14.7-50.6%, the maximum removal percentage (efficiency) for NH4-N is 53.3% and for NO3-N is 56.4-73.9%. The removal efficiency of COD and BOD5 is 4.6%-34 and 24%-50 respectively in WPO method. Adding GAC to the reactor, the removal efficiency of all parameters was improved. The maximum removal efficiency was increased 48% for COD, 31%-43.6 for BOD5 by a combinational method, and the ratio of BOD5/COD was also increased to 90%. In this paper, WAO and WPO process was used for Leachate pre-treatment and WAO/GAC combinational process was applied for improving the organic matter removal and leachate treatment; it was also determined that the recent process is much more efficient in removing resistant organic matter.

  16. The study of leachate treatment by using three advanced oxidation process based wet air oxidation

    PubMed Central

    2013-01-01

    Wet air oxidation is regarded as appropriate options for wastewater treatment with average organic compounds. The general purpose of this research is to determine the efficiency of three wet air oxidation methods, wet oxidation with hydrogen peroxide and absorption with activated carbon in removing organic matter and nitrogenous compounds from Isfahan's urban leachate. A leachate sample with the volume of 1.5 liters entered into a steel reactor with the volume of three liters and was put under a 10-bar pressure, at temperatures of 100, 200, and 300° as well as three retention times of 30, 60, and 90 minutes. The sample was placed at 18 stages of leachate storage ponds in Isfahan Compost Plant with the volume of 20 liters, using three WPO, WAO methods and a combination of WAO/GAC for leachate pre-treatment. Thirty percent of pure oxygen and hydrogen peroxide were applied as oxidation agents. The COD removal efficiency in WAO method is 7.8-33.3%, in BOD is 14.7-50.6%, the maximum removal percentage (efficiency) for NH4-N is 53.3% and for NO3-N is 56.4-73.9%. The removal efficiency of COD and BOD5 is 4.6%-34 and 24%-50 respectively in WPO method. Adding GAC to the reactor, the removal efficiency of all parameters was improved. The maximum removal efficiency was increased 48% for COD, 31%-43.6 for BOD5 by a combinational method, and the ratio of BOD5/COD was also increased to 90%. In this paper, WAO and WPO process was used for Leachate pre-treatment and WAO/GAC combinational process was applied for improving the organic matter removal and leachate treatment; it was also determined that the recent process is much more efficient in removing resistant organic matter. PMID:23369258

  17. Pre-treatment of penicillin formulation effluent by advanced oxidation processes.

    PubMed

    Arslan-Alaton, Idil; Dogruel, Serdar

    2004-08-09

    A variety of advanced oxidation processes (AOPs; O3/OH-, H2O2/UV, Fe2+/H2O2, Fe3+/H2O2, Fe2+/H2O2/UV and Fe3+/H2O2/UV) have been applied for the oxidative pre-treatment of real penicillin formulation effluent (average COD0 = 1395 mg/L; TOC0 = 920 mg/L; BOD(5,0) approximately 0 mg/L). For the ozonation process the primary involvement of free radical species such as OH* in the oxidative reaction could be demonstrated via inspection of ozone absorption rates. Alkaline ozonation and the photo-Fenton's reagents both appeared to be the most promising AOPs in terms of COD (49-66%) and TOC (42-52%) abatement rates, whereas the BOD5 of the originally non-biodegradable effluent could only be improved to a value of 100 mg/L with O3/pH = 3] treatment (BOD5/COD, f = 0.08). Evaluation on COD and TOC removal rates per applied active oxidant (AOx) and oxidant (Ox) on a molar basis revealed that alkaline ozonation and particularly the UV-light assisted Fenton processes enabling good oxidation yields (1-2 mol COD and TOC removal per AOx and Ox) by far outweighed the other studied AOPs. Separate experimental studies conducted with the penicillin active substance amoxicillin trihydrate indicated that the aqueous antibiotic substance can be completely eliminated after 40 min advanced oxidation applying photo-Fenton's reagent (pH = 3; Fe(2+):H2O2 molar ratio = 1:20) and alkaline ozonation (at pH = 11.5), respectively.

  18. Advanced Catalysts for the Ambient Temperature Oxidation of Carbon Monoxide and Formaldehyde

    NASA Technical Reports Server (NTRS)

    Nalette, Tim; Eldridge, Christopher; Yu, Ping; Alpetkin, Gokhan; Graf, John

    2010-01-01

    The primary applications for ambient temperature carbon monoxide (CO) oxidation catalysts include emergency breathing masks and confined volume life support systems, such as those employed on the Shuttle. While Hopcalite is typically used in emergency breathing masks for terrestrial applications, in the 1970s, NASA selected a 2% platinum (Pt) on carbon for use on the Shuttle since it is more active and also more tolerant to water vapor. In the last 10-15 years there have been significant advances in ambient temperature CO oxidation catalysts. Langley Research Center developed a monolithic catalyst for ambient temperature CO oxidation operating under stoichiometric conditions for closed loop carbon dioxide (CO2) laser applications which is also advertised as having the potential to oxidize formaldehyde (HCHO) at ambient temperatures. In the last decade it has been discovered that appropriate sized nano-particles of gold are highly active for CO oxidation, even at sub-ambient temperatures, and as a result there has been a wealth of data reported in the literature relating to ambient/low temperature CO oxidation. In the shorter term missions where CO concentrations are typically controlled via ambient temperature oxidation catalysts, formaldehyde is also a contaminant of concern, and requires specially treated carbons such as Calgon Formasorb as untreated activated carbon has effectively no HCHO capacity. This paper examines the activity of some of the newer ambient temperature CO and formaldehyde (HCHO) oxidation catalysts, and measures the performance of the catalysts relative to the NASA baseline Ambient Temperature Catalytic Oxidizer (ATCO) catalyst at conditions of interest for closed loop trace contaminant control systems.

  19. Infrared spectroscopy study of electrochromic nanocrystalline tungsten oxide films made by reactive advanced gas deposition

    NASA Astrophysics Data System (ADS)

    Solis, J. L.; Hoel, A.; Lantto, V.; Granqvist, C. G.

    2001-03-01

    Nanocrystalline W oxide films were produced by advanced reactive gas deposition. The material consisted of ˜6 nm diameter tetragonal crystallites, as found from x-ray diffraction and electron microscopy. Optoelectrochemical measurements demonstrated electrochromism upon Li+ intercalation/deintercalation, and infrared absorption spectroscopy gave clear evidence for longitudinal and transversal optical modes being modified following the lithiation. Our data were consistent with ionic transport predominantly in disordered grain boundaries and intercrystalline regions and with electrochromism being associated with small polaron formation.

  20. Metal Organic Chemical Vapor Deposition of Oxide Films for Advanced Applications

    DTIC Science & Technology

    2000-06-01

    recirculating forced convection flow in the system. Samples are heated by a fixed radiative heater below the rotating susceptor. Thermophoresis ...technology. FOCUS ON ZINC OXIDE TCO A natural outgrowth of display technology efforts is the development of advanced transparent and...studies emphasized surface morphology and preferred orientation effects , rather than the electrical and optical properties of ZnO films[1]. ZnO ceramics

  1. Nitrite-Driven Nitrous Oxide Production Under Aerobic Soil Conditions: Kinetics and Biochemical Controls

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrite (NO2-) can accumulate during nitrification in soil following fertilizer application. While the role of NO2- as a substrate regulating nitrous oxide (N2O) production is recognized, kinetic data are not available that allow for estimating N2O production or soil-to-atmosphere fluxes as a functi...

  2. Direct Light-Driven Water Oxidation by a Ladder-Type Conjugated Polymer Photoanode

    PubMed Central

    2015-01-01

    A conjugated polymer known for high stability (poly[benzimidazobenzophenanthroline], coded as BBL) is examined as a photoanode for direct solar water oxidation. In aqueous electrolyte with a sacrificial hole acceptor (SO32–), photoelectrodes show a morphology-dependent performance. Films prepared by a dispersion-spray method with a nanostructured surface (feature size of ∼20 nm) gave photocurrents up to 0.23 ± 0.02 mA cm–2 at 1.23 VRHE under standard simulated solar illumination. Electrochemical impedance spectroscopy reveals a constant flat-band potential over a wide pH range at +0.31 VNHE. The solar water oxidation photocurrent with bare BBL electrodes is found to increase with increasing pH, and no evidence of semiconductor oxidation was observed over a 30 min testing time. Characterization of the photo-oxidation reaction suggests H2O2 or •OH production with the bare film, while functionalization of the interface with 1 nm of TiO2 followed by a nickel–cobalt catalyst gave solar photocurrents of 20–30 μA cm–2, corresponding with O2 evolution. Limitations to photocurrent production are discussed. PMID:26576469

  3. Comparison of different advanced oxidation processes for the degradation of two fluoroquinolone antibiotics in aqueous solutions.

    PubMed

    Bobu, Maria; Yediler, Ayfer; Siminiceanu, Ilie; Zhang, Feifang; Schulte-Hostede, Sigurd

    2013-01-01

    In this study a comparative assessment using various advanced oxidation processes (UV/H(2)O(2), UV/H(2)O(2)/Fe(II), O(3), O(3)/UV, O(3)/UV/H(2)O(2) and O(3)/UV/H(2)O(2)/Fe(II)) was attempted to degrade efficiently two fluoroquinolone drugs ENR [enrofloxacin (1-Cyclopropyl-7-(4-ethyl-1-piperazinyl)-6-fluoro-1,4-dihydro-4-oxo-3-quinolonecarboxylic acid)] and CIP [ciprofloxacin (1-cyclopropyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-quinoline-3-carboxylic acid)] in aqueous solutions at a concentrations of 0.15 mM for each drug. The efficiency of the applied oxidation processes (AOPs) has been estimated by the conversion of the original substrate (X(ENR) and X(CIP)) and the reduction of chemical oxygen demand (COD), total organic carbon (TOC). Special emphasis was laid on the effect of varying reaction pH as well as of the applied oxidant doses on the observed reaction kinetics for each advanced oxidation processes. High degradation efficiencies, particularly in terms of rates of TOC and COD abatement, were obtained for photo-Fenton assisted ozonation [O(3)/UV/H(2)O(2)/Fe(II)], compared to other advanced oxidation processes. At pH 3 and 25°C best results for the degradation of both investigated drugs were achieved when 10 mM H(2)O(2), 0.5 mM Fe(II) and an initial dose of 8.5 mg L(-1) ozone were applied. In addition, the evolution of toxicity of the reaction mixtures for different AOPs has been studied by the bioluminescence test (LUMIStox 300).

  4. Gas-phase advanced oxidation for effective, efficient in situ control of pollution.

    PubMed

    Johnson, Matthew S; Nilsson, Elna J K; Svensson, Erik A; Langer, Sarka

    2014-01-01

    In this article, gas-phase advanced oxidation, a new method for pollution control building on the photo-oxidation and particle formation chemistry occurring in the atmosphere, is introduced and characterized. The process uses ozone and UV-C light to produce in situ radicals to oxidize pollution, generating particles that are removed by a filter; ozone is removed using a MnO2 honeycomb catalyst. This combination of in situ processes removes a wide range of pollutants with a comparatively low specific energy input. Two proof-of-concept devices were built to test and optimize the process. The laboratory prototype was built of standard ventilation duct and could treat up to 850 m(3)/h. A portable continuous-flow prototype built in an aluminum flight case was able to treat 46 m(3)/h. Removal efficiencies of >95% were observed for propane, cyclohexane, benzene, isoprene, aerosol particle mass, and ozone for concentrations in the range of 0.4-6 ppm and exposure times up to 0.5 min. The laboratory prototype generated a OH(•) concentration derived from propane reaction of (2.5 ± 0.3) × 10(10) cm(-3) at a specific energy input of 3 kJ/m(3), and the portable device generated (4.6 ± 0.4) × 10(9) cm(-3) at 10 kJ/m(3). Based on these results, in situ gas-phase advanced oxidation is a viable control strategy for most volatile organic compounds, specifically those with a OH(•) reaction rate higher than ca. 5 × 10(-13) cm(3)/s. Gas-phase advanced oxidation is able to remove compounds that react with OH and to control ozone and total particulate mass. Secondary pollution including formaldehyde and ultrafine particles might be generated, depending on the composition of the primary pollution.

  5. Application of advanced oxidation processes for the treatment of cyanide containing effluent.

    PubMed

    Kim, Y J; Qureshi, T I; Min, K S

    2003-10-01

    Batch experiments were carried out for the removal of cyanide in the effluent of plating industry by the application of advanced oxidation processes. Four systems with different modes of oxidation in combination of ultra violet (UV) light with hydrogen peroxide and/or ozone were investigated. Of all the applied systems, UV-light with two oxidants, i.e. O3 (32 mg min(-1)), and H2O2 (1.36 g l(-1)) was found successful in bringing down the amount of cyanide from 157.32 mg l(-1) to 1.0 mg l(-1), which is the limit set by the Ministry of Environment of Korea for cyanide-containing discharges. Other systems, however, could not bring the cyanide abatement to the targeted value even with higher dosage of oxidants and an extended period of reaction time. Regardless of the oxidation modes applied, all the heavy metal ions in the treated effluent were reduced to 90%. Ultra violet light with the combination of two oxidants had the economic preference over the other systems since a relatively lower dosage of UV-light (2484 W-S cm(-2)) was found effective at achieving the targeted level of cyanide removal.

  6. Treatment of yellow water by membrane separations and advanced oxidation methods.

    PubMed

    Lazarova, Z; Spendlingwimmer, R

    2008-01-01

    Comparative experimental study is performed on purification of yellow wastewaters separated and collected in solarCity, Linz, Austria. Three membrane methods (micro-, ultra-, and nano-filtration), and two advanced oxidations (gamma radiation and electrochemical oxidation) were applied. Best results concerning the removal of pharmaceuticals and hormones from urine by membrane separation were achieved using the membrane NF-200 (FilmTec). Pharmaceuticals (ibuprofen and diclofenac), and hormones (oestrone, beta-oestradiol, ethenyloestradiol, oestriol) were removed completely from urine. NF-separation also has some disadvantages: losses of urea, and lowering the conductivity in the product (permeate). The retentates (concentrates) received have to be treated further by oxidation to destroy the "problem" compounds. The results showed that electrochemical oxidation is more suitable than gamma radiation. Gamma-radiation with intensities higher than 10 kGy has to be applied for efficiently destroying of ibuprofen, and especially diclofenac. A high quantity of intermediate "problem" substances with oestrone structure was formed during the gamma oxidation of hormone containing urine samples. The electrochemical oxidation can be successfully applied for elimination of pharmaceuticals such as diclofenac, and hormones (oestrone, beta-oestradiol) from yellow wastewater without loss of urea (nitrogen fertiliser).

  7. Sub-100 fJ and sub-nanosecond thermally driven threshold switching in niobium oxide crosspoint nanodevices.

    PubMed

    Pickett, Matthew D; Williams, R Stanley

    2012-06-01

    We built and measured the dynamical current versus time behavior of nanoscale niobium oxide crosspoint devices which exhibited threshold switching (current-controlled negative differential resistance). The switching speeds of 110 × 110 nm(2) devices were found to be Δt(ON) = 700 ps and Δt(OFF) = 2:3 ns while the switching energies were of the order of 100 fJ. We derived a new dynamical model based on the Joule heating rate of a thermally driven insulator-to-metal phase transition that accurately reproduced the experimental results, and employed the model to estimate the switching time and energy scaling behavior of such devices down to the 10 nm scale. These results indicate that threshold switches could be of practical interest in hybrid CMOS nanoelectronic circuits.

  8. Photo-driven oxidation of water on α-Fe2O3 surfaces: An ab initio study

    NASA Astrophysics Data System (ADS)

    Nguyen, Manh-Thuong; Seriani, Nicola; Piccinin, Simone; Gebauer, Ralph

    2014-02-01

    Adopting the theoretical scheme developed by the Nørskov group [see, for example, Nørskov et al., J. Phys. Chem. B 108, 17886 (2004)], we conducted a density functional theory study of photo-driven oxidation processes of water on various terminations of the clean hematite (α-Fe2O3) (0001) surface, explicitly taking into account the strong correlation among the 3d states of iron through the Hubbard U parameter. Six best-known terminations, namely, Fe-Fe-O_3- (we call S_1), O-Fe-Fe- (S_2), O_2-Fe-Fe-(S_3), O_3-Fe-Fe- (S_4), Fe-O_3-Fe- (S_5), and O-Fe-O_3-(S_6), are first exposed to water, the stability of resulting surfaces is investigated under photoelectrochemical conditions by considering different chemical reactions (and their reaction free energies) that lead to surfaces covered by O atoms or/and OH groups. Assuming that the water splitting reaction is driven by the redox potential for photogenerated holes with respect to the normal hydrogen electrode, UVB, at voltage larger than UVB, most 3-oxygen terminated substrates are stable. These results thus suggest that the surface, hydroxylated in the dark, should release protons under illumination. Considering the surface free energy of all the possible terminations shows that O_3-S_5 and O_3-S_1 are the most thermodynamically stable. While water oxidation process on the former requires an overpotential of 1.22 V, only 0.84 V is needed on the latter.

  9. Spin-orbit driven magnetic insulating state with Jeff=1/2 character in a 4d oxide

    DOE PAGES

    Calder, S.; Li, Ling; Okamoto, Satoshi; ...

    2015-11-30

    The unusual magnetic and electronic ground states of 5d iridates has been shown to be driven by intrinsically enhanced spin-orbit coupling (SOC). The influence of appreciable but reduced SOC in creating the manifested magnetic insulating states in 4d oxides is less clear, with one hurdle being the existence of such compounds. Here we present experimental and theoretical results on Sr4RhO6 that reveal SOC dominated behavior. Neutron measurements show the octahedra are both spatially separated and locally ideal, making the electronic ground state susceptible to alterations by SOC. Magnetic ordering is observed with a similar structure to an analogous Jeff=1/2 Mottmore » iridate. We consider the underlying role of SOC in this rhodate with density functional theory and x-ray absorption spectroscopy and find a magnetic insulating ground state with Jeff =1/2 character.The unusual magnetic and electronic ground states of 5d iridates have been shown to be driven by intrinsically enhanced spin-orbit coupling (SOC). The influence of appreciable but reduced SOC in creating the manifested magnetic insulating states in 4d oxides is less clear, with one hurdle being the existence of such compounds. Here, we present experimental and theoretical results on Sr4RhO6 that reveal SOC dominated behavior. Neutron measurements show the octahedra are both spatially separated and locally ideal, making the electronic ground state susceptible to alterations by SOC. Magnetic ordering is observed with a similar structure to an analogous Jeff=1/2 Mott iridate. We consider the underlying role of SOC in this rhodate with density functional theory and x-ray absorption spectroscopy, and find a magnetic insulating ground state with Jeff=12 character.« less

  10. Mixed Molybdenum Oxides with Superior Performances as an Advanced Anode Material for Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Wu, Di; Shen, Rui; Yang, Rong; Ji, Wenxu; Jiang, Meng; Ding, Weiping; Peng, Luming

    2017-03-01

    A simple and effective carbon-free strategy is carried out to prepare mixed molybdenum oxides as an advanced anode material for lithium-ion batteries. The new material shows a high specific capacity up to 930.6 mAh·g‑1, long cycle-life (>200 cycles) and high rate capability. 1D and 2D solid-state NMR, as well as XRD data on lithiated sample (after discharge) show that the material is associated with both insertion/extraction and conversion reaction mechanisms for lithium storage. The well mixed molybdenum oxides at the microscale and the involvement of both mechanisms are considered as the key to the better electrochemical properties. The strategy can be applied to other transition metal oxides to enhance their performance as electrode materials.

  11. Degradation of chelating agents in aqueous solution using advanced oxidation process (AOP).

    PubMed

    Sillanpää, Mika E T; Kurniawan, Tonni Agustiono; Lo, Wai-hung

    2011-06-01

    This article presents an overview with critical analysis of technical applicability of advanced oxidation process (AOP) in removing chelating agents from aqueous solution. Apart from the effect of metals for chelating agents as a major influencing factor, selected information such as pH, oxidant's dose, concentrations of pollutants and treatment performance is presented. The performance of individual AOP is compared. It is evident from our literature survey that photocatalysis with UV irradiation alone or coupled with TiO(2), ozonation and Fenton's oxidation are frequently applied to mineralize target pollutants. Overall, the selection of the most suitable AOP depends on the characteristics of effluents, technical applicability, discharge standard, regulatory requirements and environmental impacts.

  12. Regeneration of siloxane-exhausted activated carbon by advanced oxidation processes.

    PubMed

    Cabrera-Codony, Alba; Gonzalez-Olmos, Rafael; Martín, Maria J

    2015-03-21

    In the context of the biogas upgrading, siloxane exhausted activated carbons need to be regenerated in order to avoid them becoming a residue. In this work, two commercial activate carbons which were proved to be efficient in the removal of octamethylcyclotetrasiloxane (D4) from biogas, have been regenerated through advanced oxidation processes using both O3 and H2O2. After the treatment with O3, the activated carbon recovered up to 40% of the original adsorption capacity while by the oxidation with H2O2 the regeneration efficiency achieved was up to 45%. In order to enhance the H2O2 oxidation, activated carbon was amended with iron. In this case, the regeneration efficiency increased up to 92%.

  13. Mixed Molybdenum Oxides with Superior Performances as an Advanced Anode Material for Lithium-Ion Batteries.

    PubMed

    Wu, Di; Shen, Rui; Yang, Rong; Ji, Wenxu; Jiang, Meng; Ding, Weiping; Peng, Luming

    2017-03-15

    A simple and effective carbon-free strategy is carried out to prepare mixed molybdenum oxides as an advanced anode material for lithium-ion batteries. The new material shows a high specific capacity up to 930.6 mAh·g(-1), long cycle-life (>200 cycles) and high rate capability. 1D and 2D solid-state NMR, as well as XRD data on lithiated sample (after discharge) show that the material is associated with both insertion/extraction and conversion reaction mechanisms for lithium storage. The well mixed molybdenum oxides at the microscale and the involvement of both mechanisms are considered as the key to the better electrochemical properties. The strategy can be applied to other transition metal oxides to enhance their performance as electrode materials.

  14. Mixed Molybdenum Oxides with Superior Performances as an Advanced Anode Material for Lithium-Ion Batteries

    PubMed Central

    Wu, Di; Shen, Rui; Yang, Rong; Ji, Wenxu; Jiang, Meng; Ding, Weiping; Peng, Luming

    2017-01-01

    A simple and effective carbon-free strategy is carried out to prepare mixed molybdenum oxides as an advanced anode material for lithium-ion batteries. The new material shows a high specific capacity up to 930.6 mAh·g−1, long cycle-life (>200 cycles) and high rate capability. 1D and 2D solid-state NMR, as well as XRD data on lithiated sample (after discharge) show that the material is associated with both insertion/extraction and conversion reaction mechanisms for lithium storage. The well mixed molybdenum oxides at the microscale and the involvement of both mechanisms are considered as the key to the better electrochemical properties. The strategy can be applied to other transition metal oxides to enhance their performance as electrode materials. PMID:28294179

  15. Steam Oxidation Behavior of Advanced Steels and Ni-Based Alloys at 800 °C

    NASA Astrophysics Data System (ADS)

    Dudziak, T.; Boroń, L.; Deodeshmukh, V.; Sobczak, J.; Sobczak, N.; Witkowska, M.; Ratuszek, W.; Chruściel, K.

    2017-02-01

    This publication studies the steam oxidation behavior of advanced steels (309S, 310S and HR3C) and Ni-based alloys (Haynes® 230®, alloy 263, alloy 617 and Haynes® 282®) exposed at 800 °C for 2000 h under 1 bar pressure, in a pure water steam system. The results revealed that all exposed materials showed relatively low weight gain, with no spallation of the oxide scale within the 2000 h of exposure. XRD analysis showed that Ni-based alloys developed an oxide scale consisting of four main phases: Cr2O3 (alloy 617, Haynes® 282®, alloy 263 and Haynes® 230®), MnCr2O4 (alloy 617, Haynes® 282® and Haynes® 230®), NiCr2O4 (alloy 617) and TiO2 (alloy 263, Haynes® 282®). In contrast, advanced steels showed the development of Cr2O3, MnCr2O4, Mn7SiO12, FeMn(SiO4) and SiO2 phases. The steel with the highest Cr content showed the formation of Fe3O4 and the thickest oxide scale.

  16. Steam Oxidation Behavior of Advanced Steels and Ni-Based Alloys at 800 °C

    NASA Astrophysics Data System (ADS)

    Dudziak, T.; Boroń, L.; Deodeshmukh, V.; Sobczak, J.; Sobczak, N.; Witkowska, M.; Ratuszek, W.; Chruściel, K.

    2017-03-01

    This publication studies the steam oxidation behavior of advanced steels (309S, 310S and HR3C) and Ni-based alloys (Haynes® 230®, alloy 263, alloy 617 and Haynes® 282®) exposed at 800 °C for 2000 h under 1 bar pressure, in a pure water steam system. The results revealed that all exposed materials showed relatively low weight gain, with no spallation of the oxide scale within the 2000 h of exposure. XRD analysis showed that Ni-based alloys developed an oxide scale consisting of four main phases: Cr2O3 (alloy 617, Haynes® 282®, alloy 263 and Haynes® 230®), MnCr2O4 (alloy 617, Haynes® 282® and Haynes® 230®), NiCr2O4 (alloy 617) and TiO2 (alloy 263, Haynes® 282®). In contrast, advanced steels showed the development of Cr2O3, MnCr2O4, Mn7SiO12, FeMn(SiO4) and SiO2 phases. The steel with the highest Cr content showed the formation of Fe3O4 and the thickest oxide scale.

  17. Advanced Oxide Material Systems for 1650 C Thermal/Environmental Barrier Coating Applications

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Fox, Dennis S.; Bansal, Narottam P.; Miller, Robert A.

    2004-01-01

    Advanced thermal and environmental barrier coatings (TEBCs) are being developed for low-emission SiC/SiC ceramic matrix composite (CMC) combustor and vane applications to extend the CMC liner and vane temperature capability to 1650 C (3000 F) in oxidizing and water-vapor-containing combustion environments. The advanced 1650 C TEBC system is required to have a better high-temperature stability, lower thermal conductivity, and more resistance to sintering and thermal stress than current coating systems under engine high-heat-flux and severe thermal cycling conditions. In this report, the thermal conductivity and water vapor stability of selected candidate hafnia-, pyrochlore- and magnetoplumbite-based TEBC materials are evaluated. The effects of dopants on the materials properties are also discussed. The test results have been used to downselect the TEBC materials and help demonstrate the feasibility of advanced 1650 C coatings with long-term thermal cycling durability.

  18. An efficient bismuth tungstate visible-light-driven photocatalyst for breaking down nitric oxide.

    PubMed

    Li, Guisheng; Zhang, Dieqing; Yu, Jimmy C; Leung, Michael K H

    2010-06-01

    This paper reports a photocatalytic removal of 400 ppb level of NO in air under visible light irradiation by utilizing three-dimensional (3D) hierarchical bismuth tungstate (Bi(2)WO(6)) microspheres. A facile microwave-assisted hydrothermal method involving bismuth nitrate and sodium wolframate was developed to synthesize the photocatalyst. The Bi(2)WO(6) samples were characterized by using X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), Raman and ultraviolet-visible reflectance (UV-vis) spectroscopy. The relationship between the physicochemical property and the photocatalytic performance of the as prepared samples is discussed. The present work demonstrates that the 3D hierarchical Bi(2)WO(6) microspheres are effective visible-light-driven photocatalytic functional materials for air purification.

  19. Online monitoring of Escherichia coli and Bacillus thuringiensis spore inactivation after advanced oxidation treatment.

    PubMed

    Sherchan, Samendra P; Snyder, Shane A; Gerba, Charles P; Pepper, Ian L

    2014-01-01

    Various studies have shown that advanced oxidation processes (AOPs) such as UV light in combination with hydrogen peroxide is an efficient process for the removal of a large variety of emerging contaminants including microorganisms. The mechanism of destruction in the presence of hydrogen peroxide (H2O2) is the enhanced formation of hydroxyl (·OH) radicals, which have a high oxidation potential. The goal of this study was to utilize in-line advanced oxidation to inactivate microbes, and document the inactivation via an in-line, real-time sensor. Escherichia coli cells and Bacillus thuringiensis spores were exposed to UV/H2O2 treatment in DI water, and the online sensor BioSentry(®) was evaluated for its potential to monitor inactivation in real-time. B. thuringiensis was selected as a non-pathogenic surrogate for B. anthracis, the causative agent of anthrax and a proven biological weapon. UV radiation and UV/H2O2 exposure resulted in a >6 log10 reduction of the viable culturable counts of E. coli vegetative cells, and a 3 log10 reduction of B. thuringiensis spores. Scanning electron microscopy of the treated samples revealed severe damage on the surface of most E. coli cells, yet there was no significant change observed in the morphology of the B. thuringiensis spores. Following AOP exposure, the BioSentry sensor showed an increase in the categories of unknown, rod and spores counts, but overall, did not correspond well with viable count assays. Data from this study show that advanced oxidation processes effectively inactivate E. coli vegetative cells, but not B. thuringiensis spores, which were more resistant to AOP. Further, the BioSentry in-line sensor was not successful in documenting destruction of the microbial cells in real-time.

  20. New advanced surface modification technique: titanium oxide ceramic surface implants: long-term clinical results

    NASA Astrophysics Data System (ADS)

    Szabo, Gyorgy; Kovacs, Lajos; Barabas, Jozsef; Nemeth, Zsolt; Maironna, Carlo

    2001-11-01

    The purpose of this paper is to discuss the background to advanced surface modification technologies and to present a new technique, involving the formation of a titanium oxide ceramic coating, with relatively long-term results of its clinical utilization. Three general techniques are used to modify surfaces: the addition or removal of material and the change of material already present. Surface properties can also be changed without the addition or removal of material, through the laser or electron beam thermal treatment. The new technique outlined in this paper relates to the production of a corrosion-resistant 2000-2500 A thick, ceramic oxide layer with a coherent crystalline structure on the surface of titanium implants. The layer is grown electrochemically from the bulk of the metal and is modified by heat treatment. Such oxide ceramic-coated implants have a number of advantageous properties relative to implants covered with various other coatings: a higher external hardness, a greater force of adherence between the titanium and the oxide ceramic coating, a virtually perfect insulation between the organism and the metal (no possibility of metal allergy), etc. The coated implants were subjected to various physical, chemical, electronmicroscopic, etc. tests for a qualitative characterization. Finally, these implants (plates, screws for maxillofacial osteosynthesis and dental root implants) were applied in surgical practice for a period of 10 years. Tests and the experience acquired demonstrated the good properties of the titanium oxide ceramic-coated implants.

  1. Enhancing hydrophilicity and water permeability of PET track-etched membranes by advanced oxidation process

    NASA Astrophysics Data System (ADS)

    Korolkov, Ilya V.; Mashentseva, Anastassiya A.; Güven, Olgun; Zdorovets, Maxim V.; Taltenov, Abzal A.

    2015-12-01

    In this study we present results on the application of advanced oxidation systems for effective and non-toxic oxidation of poly(ethylene terephthalate) track-etched membranes (PET TeMs) to improve their wettability and water transport properties. Two oxidizing systems: H2O2 under UV irradiation (H2O2/UV) and Fenton system under visible light (Fenton/H2O2/Vis) were compared. The surface of functionalized PET TeMs was characterized by using colorimetric assay, contact angle measurements and X-ray photoelectron spectroscopy (XPS). Results clearly showed that water permeability of PET TeMs treated with H2O2/UV was improved by 28 ± 5% compared with etched-only membrane, the same parameter was found to increase by 13 ± 4% in the case of Fenton/H2O2/Vis treatment. The proposed oxidation technique is very simple, environment friendly and not requiring special equipment or expensive chemicals. The surface hydrophilicity of the membranes stored for 360 days in air between paper sheets was analyzed by contact angle test, colorimetric assay to measure concentration of carboxylic groups on the surface with toluidine blue and XPS analysis. The hydrophilic properties of oxidized PET TeMs were found to be stable for a long period of time.

  2. Integration of advanced oxidation processes at mild conditions in wet scrubbers for odourous sulphur compounds treatment.

    PubMed

    Vega, Esther; Martin, Maria J; Gonzalez-Olmos, Rafael

    2014-08-01

    The effectiveness of different advanced oxidation processes on the treatment of a multicomponent aqueous solution containing ethyl mercaptan, dimethyl sulphide and dimethyl disulphide (0.5 mg L(-1) of each sulphur compound) was investigated with the objective to assess which one is the most suitable treatment to be coupled in wet scrubbers used in odour treatment facilities. UV/H2O2, Fenton, photo-Fenton and ozone treatments were tested at mild conditions and the oxidation efficiency obtained was compared. The oxidation tests were carried out in magnetically stirred cylindrical quartz reactors using the same molar concentration of oxidants (hydrogen peroxide or ozone). The results show that ozone and photo-Fenton are the most efficient treatments, achieving up to 95% of sulphur compounds oxidation and a mineralisation degree around 70% in 10 min. Furthermore, the total costs of the treatments taking into account the capital and operational costs were also estimated for a comparative purpose. The economic analysis revealed that the Fenton treatment is the most economical option to be integrated in a wet scrubber to remove volatile organic sulphur compounds, as long as there are no space constraints to install the required reactor volume. In the case of reactor volume limitation or retrofitting complexities, the ozone and photo-Fenton treatments should be considered as viable alternatives.

  3. Hydrogen Oxidation-Driven Hot Electron Flow Detected by Catalytic Nanodiodes

    SciTech Connect

    Hervier, Antoine; Renzas, J. Russell; Park, Jeong Y.; Somorjai, Gabor A.

    2009-07-20

    Hydrogen oxidation on platinum is shown to be a surface catalytic chemical reaction that generates a steady state flux of hot (>1 eV) conduction electrons. These hot electrons are detected as a steady-state chemicurrent across Pt/TiO{sub 2} Schottky diodes whose Pt surface is exposed to hydrogen and oxygen. Kinetic studies establish that the chemicurrent is proportional to turnover frequency for temperatures ranging from 298 to 373 K for P{sub H2} between 1 and 8 Torr and P{sub O2} at 760 Torr. Both chemicurrent and turnover frequency exhibit a first order dependence on P{sub H2}.

  4. Determining oxidative and non-oxidative genotoxic effects driven by estuarine sediment contaminants on a human hepatoma cell line.

    PubMed

    Pinto, M; Costa, P M; Louro, H; Costa, M H; Lavinha, J; Caeiro, S; Silva, M J

    2014-04-15

    Estuarine sediments may be reservoirs of hydrophilic and hydrophobic pollutants, many of which are acknowledged genotoxicants, pro-mutagens and even potential carcinogens for humans. Still, studies aiming at narrowing the gap between ecological and human health risk of sediment-bound contaminant mixtures are scarce. Taking an impacted estuary as a case study (the Sado, SW Portugal), HepG2 (human hepatoma) cells were exposed in vitro for 48 h to extracts of sediments collected from two areas (urban/industrial and Triverine/agricultural), both contaminated by distinct mixtures of organic and inorganic toxicants, among which are found priority mutagens such as benzo[a]pyrene. Comparatively to a control test, extracts of sediments from both impacted areas produced deleterious effects in a dose-response manner. However, sediment extracts from the industrial area caused lower replication index plus higher cytotoxicity and genotoxicity (concerning total DNA strand breakage and clastogenesis), with emphasis on micronucleus induction. On the other hand, extracts from the rural area induced the highest oxidative damage to DNA, as revealed by the FPG (formamidopyrimidine-DNA glycosylase) enzyme in the Comet assay. Although the estuary, on its whole, has been classified as moderately contaminated, the results suggest that the sediments from the industrial area are significantly genotoxic and, furthermore, elicit permanent chromosome damage, thus potentially being more mutagenic than those from the rural area. The results are consistent with contamination by pro-mutagens like polycyclic aromatic hydrocarbons (PAHs), potentiated by metals. The sediments from the agriculture-influenced area likely owe their genotoxic effects to metals and other toxicants, probably pesticides and fertilizers, and able to induce reactive oxygen species without the formation of DNA strand breakage. The findings suggest that the mixtures of contaminants present in the assayed sediments are genotoxic

  5. Aging induces cardiac diastolic dysfunction, oxidative stress, accumulation of advanced glycation endproducts and protein modification.

    PubMed

    Li, Shi-Yan; Du, Min; Dolence, E Kurt; Fang, Cindy X; Mayer, Gabriele E; Ceylan-Isik, Asli F; LaCour, Karissa H; Yang, Xiaoping; Wilbert, Christopher J; Sreejayan, Nair; Ren, Jun

    2005-04-01

    Evidence suggests that aging, per se, is a major risk factor for cardiac dysfunction. Oxidative modification of cardiac proteins by non-enzymatic glycation, i.e. advanced glycation endproducts (AGEs), has been implicated as a causal factor in the aging process. This study was designed to examine the role of aging on cardiomyocyte contractile function, cardiac protein oxidation and oxidative modification. Mechanical properties were evaluated in ventricular myocytes from young (2-month) and aged (24-26-month) mice using a MyoCam system. The mechanical indices evaluated were peak shortening (PS), time-to-PS (TPS), time-to-90% relengthening (TR90) and maximal velocity of shortening/relengthening (+/- dL/dt). Oxidative stress and protein damage were evaluated by glutathione and glutathione disulfide (GSH/GSSG) ratio and protein carbonyl content, respectively. Activation of NAD(P)H oxidase was determined by immunoblotting. Aged myocytes displayed a larger cell cross-sectional area, prolonged TR90, and normal PS, +/- dL/dt and TPS compared with young myocytes. Aged myocytes were less tolerant of high stimulus frequency (from 0.1 to 5 Hz) compared with young myocytes. Oxidative stress and protein oxidative damage were both elevated in the aging group associated with significantly enhanced p47phox but not gp91phox expression. In addition, level of cardiac AGEs was approximately 2.5-fold higher in aged hearts than young ones determined by AGEs-ELISA. A group of proteins with a molecular range between 50 and 75 kDa with pI of 4-7 was distinctively modified in aged heart using one- or two-dimension SDS gel electrophoresis analysis. These data demonstrate cardiac diastolic dysfunction and reduced stress tolerance in aged cardiac myocytes, which may be associated with enhanced cardiac oxidative damage, level of AGEs and protein modification by AGEs.

  6. A solid oxide photoelectrochemical cell with UV light-driven oxygen storage in mixed conducting electrodes.

    PubMed

    Walch, Gregor; Rotter, Bernhard; Brunauer, Georg Christoph; Esmaeili, Esmaeil; Opitz, Alexander Karl; Kubicek, Markus; Summhammer, Johann; Ponweiser, Karl; Fleig, Jürgen

    2017-01-28

    A single crystalline SrTiO3 working electrode in a zirconia-based solid oxide electrochemical cell is illuminated by UV light at temperatures of 360-460 °C. In addition to photovoltaic effects, this leads to the build-up of a battery-type voltage up to more than 300 mV. After switching off UV light, this voltage only slowly decays. It is caused by UV-induced oxygen incorporation into the mixed conducting working electrode and thus by changes of the oxygen stoichiometry δ in SrTiO3-δ under UV illumination. These changes of the oxygen content could be followed in time-dependent voltage measurements and also manifest themselves in time-dependent resistance changes during and after UV illumination. Discharge currents measured after UV illumination reveal that a large fraction of the existing oxygen vacancies in SrTiO3 become filled under UV light. Additional measurements on cells with TiO2 thin film electrodes show the broader applicability of this novel approach for transforming light into chemical energy and thus the feasibility of solid oxide photoelectrochemical cells (SOPECs) in general and of a "light-charged oxygen battery" in particular.

  7. Gold-TiO2-Nickel catalysts for low temperature-driven CO oxidation reaction

    NASA Astrophysics Data System (ADS)

    Hinojosa-Reyes, Mariana; Zanella, Rodolfo; Maturano-Rojas, Viridiana; Rodríguez-González, Vicente

    2016-04-01

    Nickel-doped-TiO2 catalysts were prepared by the sol-gel method and surface modified with gold nanoparticles (AuNPs) by the urea-deposition-precipitation technique. The as-synthesized catalysts were characterized by X-ray diffraction, Raman and XPS spectroscopies, N2 physisorption, STEM-HAADF microscopy and TPR hydrogen consumption. The Au/TiO2-Ni catalysts were evaluated catalytically performing CO oxidation reactions. The catalyst with nickel content of 1 wt. % (Au/TiO2-Ni 1) showed the highest CO conversion with respect to the high-nickel-content or bare/commercial TiO2 at 0 °C. In situ DRIFTS showed a strong participation of both nickel due to the presence of surface-nickel-metallic nanoparticles formed during the CO adsorption process at reaction temperatures above 200 °C, and surface-bridged-nickel-CO species. A minor deactivation rate was observed for the Au/TiO2-Ni 1 catalyst in comparison with the Au/TiO2 one. The oxygen vacancies that were created on the sol-gel-doped TiO2 improved the catalytic behavior during the performance of CO oxidation reactions, and inhibited the AuNP sintering.

  8. A solid oxide photoelectrochemical cell with UV light-driven oxygen storage in mixed conducting electrodes

    PubMed Central

    Walch, Gregor; Rotter, Bernhard; Brunauer, Georg Christoph; Esmaeili, Esmaeil; Opitz, Alexander Karl; Kubicek, Markus; Summhammer, Johann; Ponweiser, Karl

    2017-01-01

    A single crystalline SrTiO3 working electrode in a zirconia-based solid oxide electrochemical cell is illuminated by UV light at temperatures of 360–460 °C. In addition to photovoltaic effects, this leads to the build-up of a battery-type voltage up to more than 300 mV. After switching off UV light, this voltage only slowly decays. It is caused by UV-induced oxygen incorporation into the mixed conducting working electrode and thus by changes of the oxygen stoichiometry δ in SrTiO3–δ under UV illumination. These changes of the oxygen content could be followed in time-dependent voltage measurements and also manifest themselves in time-dependent resistance changes during and after UV illumination. Discharge currents measured after UV illumination reveal that a large fraction of the existing oxygen vacancies in SrTiO3 become filled under UV light. Additional measurements on cells with TiO2 thin film electrodes show the broader applicability of this novel approach for transforming light into chemical energy and thus the feasibility of solid oxide photoelectrochemical cells (SOPECs) in general and of a “light-charged oxygen battery” in particular. PMID:28261480

  9. Anaerobic methane oxidation driven by microbial reduction of natural organic matter in a tropical wetland.

    PubMed

    Valenzuela, Edgardo I; Prieto-Davó, Alejandra; López-Lozano, Nguyen E; Hernández-Eligio, Alberto; Vega-Alvarado, Leticia; Juárez, Katy; García-González, Ana Sarahí; López, Mercedes G; Cervantes, Francisco J

    2017-03-24

    Wetlands constitute the main natural source of methane on Earth due to their high content of natural organic matter (NOM), but key drivers such as electron acceptors supporting methanotrophic activities in these habitats are poorly understood. We performed anoxic incubations using freshly collected sediment along with water samples harvested from a tropical wetland, amended with (13)C-methane (0.67 atm) to test the capacity of its microbial community to perform anaerobic methane oxidation (AOM) linked to the reduction of the humic fraction of its NOM. Collected evidence demonstrates that electron-accepting functional groups (e.g. quinones) present in NOM fueled AOM by serving as terminal electron acceptor. Indeed, while sulfate reduction was the predominant process accounting for up to 42.5% of the AOM activities, microbial reduction of NOM concomitantly occurred. Furthermore, enrichment of wetland sediment with external NOM provided complementary electron-accepting capacity, which reduction accounted for ∼100 nmol (13)C-CH4 oxidized cm(-3) d(-1) Spectroscopic evidence showed that quinone moieties were heterogeneously distributed in the wetland sediment, and that their reduction occurred during the course of AOM. Moreover, an enrichment derived from wetland sediments performing AOM linked to NOM reduction stoichiometrically oxidized methane coupled to the reduction of the humic analogue, anthraquinone-2,6-disulfonate. Microbial populations potentially involved in AOM coupled to microbial reduction of NOM were dominated by divergent biota from putative AOM-associated archaea. We estimate that this microbial process could potentially contribute to the suppression of up to 114 Tg CH4 yr(-1) in coastal wetlands and more than 1,300 Tg yr(-1) considering the global wetland area.Importance Identifying key processes governing methane emissions from natural systems is of major importance considering the global warming effects triggered by this greenhouse gas. AOM coupled

  10. Unipolar assembly of zinc oxide rods manifesting polarity-driven collective luminescence

    PubMed Central

    Gautam, Ujjal K.; Imura, Masataka; Rout, Chandra Sekhar; Bando, Yoshio; Fang, Xiaosheng; Dierre, Benjamin; Sakharov, Leonid; Govindaraj, A.; Sekiguchi, Takashi; Golberg, Dmitri; Rao, C. N. R.

    2010-01-01

    Oriented assemblies of small crystals forming larger structures are common in nature and crucial for forthcoming technologies as they circumvent the difficulties of structural manipulation at microscopic scale. We have discovered two distinctive concentric assemblies of zinc oxide rods, wherein each rod has an intrinsically positive and a negative polar end induced by the noncentrosymmetric arrangement of Zn and O atoms. All the rods in a single assembly emanate out of a central core maintaining a single polar direction. Due to growth along the two polar surfaces with different atomic arrangements, these assemblies are distinct in their intrinsic properties and exhibit strong UV luminescence in the exterior of Zn-polar assemblies, unlike the O-polar assemblies. Although novel applications can be envisioned, these observations suggest that hierarchical organization with respect to internal asymmetry might be widespread in natural crystal assemblies. PMID:20643960

  11. High-temperature electromagnons in the magnetically induced multiferroic cupric oxide driven by intersublattice exchange.

    PubMed

    Jones, S P P; Gaw, S M; Doig, K I; Prabhakaran, D; Hétroy Wheeler, E M; Boothroyd, A T; Lloyd-Hughes, J

    2014-04-29

    Magnetically induced ferroelectric multiferroics present an exciting new paradigm in the design of multifunctional materials, by intimately coupling magnetic and polar order. Magnetoelectricity creates a novel quasiparticle excitation--the electromagnon--at terahertz frequencies, with spectral signatures that unveil important spin interactions. To date, electromagnons have been discovered at low temperature (<70 K) and predominantly in rare-earth compounds such as RMnO3. Here we demonstrate using terahertz time-domain spectroscopy that intersublattice exchange in the improper multiferroic cupric oxide (CuO) creates electromagnons at substantially elevated temperatures (213-230 K). Dynamic magnetoelectric coupling can therefore be achieved in materials, such as CuO, that exhibit minimal static cross-coupling. The electromagnon strength and energy track the static polarization, highlighting the importance of the underlying cycloidal spin structure. Polarized neutron scattering and terahertz spectroscopy identify a magnon in the antiferromagnetic ground state, with a temperature dependence that suggests a significant role for biquadratic exchange.

  12. Biodegradability of iopromide products after UV/H₂O₂ advanced oxidation.

    PubMed

    Keen, Olya S; Love, Nancy G; Aga, Diana S; Linden, Karl G

    2016-02-01

    Iopromide is an X-ray and MRI contrast agent that is virtually non-biodegradable and persistent through typical wastewater treatment processes. This study determined whether molecular transformation of iopromide in a UV/H2O2 advanced oxidation process (AOP) can result in biodegradable products. The experiments used iopromide labeled with carbon-14 on the aromatic ring to trace degradation of iopromide through UV/H2O2 advanced oxidation and subsequent biodegradation. The biotransformation assay tracked the formation of radiolabeled (14)CO2 which indicated full mineralization of the molecule. The results indicated that AOP formed biodegradable iopromide products. There was no (14)C released from the pre-AOP samples, but up to 20% of all radiolabeled carbon transformed into (14)CO2 over the course of 42 days of biodegradation after iopromide was exposed to advanced oxidation (compared to 10% transformation in inactivated post-AOP controls). In addition, the quantum yield of photolysis of iopromide was determined using low pressure (LP) and medium pressure (MP) mercury lamps as 0.069 ± 0.005 and 0.080 ± 0.007 respectively. The difference in the quantum yields for the two UV sources was not statistically significant at the 95% confidence interval (p = 0.08), which indicates the equivalency of using LP or MP UV sources for iopromide treatment. The reaction rate between iopromide and hydroxyl radicals was measured to be (2.5 ± 0.2) × 10(9) M(-1) s(-1). These results indicate that direct photolysis is a dominant degradation pathway in UV/H2O2 AOP treatment of iopromide. Other iodinated contrast media may also become biodegradable after exposure to UV or UV/H2O2.

  13. Oxidative degradation of endotoxin by advanced oxidation process (O3/H2O2 & UV/H2O2).

    PubMed

    Oh, Byung-Taek; Seo, Young-Suk; Sudhakar, Dega; Choe, Ji-Hyun; Lee, Sang-Myeong; Park, Youn-Jong; Cho, Min

    2014-08-30

    The presence of endotoxin in water environments may pose a serious public health hazard. We investigated the effectiveness of advanced oxidative processes (AOP: O3/H2O2 and UV/H2O2) in the oxidative degradation of endotoxin. In addition, we measured the release of endotoxin from Escherichia coli following typical disinfection methods, such as chlorine, ozone alone and UV, and compared it with the use of AOPs. Finally, we tested the AOP-treated samples in their ability to induce tumor necrosis factor alpha (TNF-α) in mouse peritoneal macrophages. The production of hydroxyl radical in AOPs showed superior ability to degrade endotoxin in buffered solution, as well as water samples from Korean water treatment facilities, with the ozone/H2O2 being more efficient compared to UV/H2O2. In addition, the AOPs proved effective not only in eliminating E. coli in the samples, but also in endotoxin degradation, while the standard disinfection methods lead to the release of endotoxin following the bacteria destruction. Furthermore, in the experiments with macrophages, the AOPs-deactivated endotoxin lead to the smallest induction of TNF-α, which shows the loss of inflammation activity, compared to ozone treatment alone. In conclusion, these results suggest that AOPs offer an effective and mild method for endotoxin degradation in the water systems.

  14. Reduction of antibiotic resistance genes in municipal wastewater effluent by advanced oxidation processes.

    PubMed

    Zhang, Yingying; Zhuang, Yao; Geng, Jinju; Ren, Hongqiang; Xu, Ke; Ding, Lili

    2016-04-15

    This study investigated the reduction of antibiotic resistance genes (ARGs), intI1 and 16S rRNA genes, by advanced oxidation processes (AOPs), namely Fenton oxidation (Fe(2+)/H2O2) and UV/H2O2 process. The ARGs include sul1, tetX, and tetG from municipal wastewater effluent. The results indicated that the Fenton oxidation and UV/H2O2 process could reduce selected ARGs effectively. Oxidation by the Fenton process was slightly better than that of the UV/H2O2 method. Particularly, for the Fenton oxidation, under the optimal condition wherein Fe(2+)/H2O2 had a molar ratio of 0.1 and a H2O2 concentration of 0.01molL(-1) with a pH of 3.0 and reaction time of 2h, 2.58-3.79 logs of target genes were removed. Under the initial effluent pH condition (pH=7.0), the removal was 2.26-3.35 logs. For the UV/H2O2 process, when the pH was 3.5 with a H2O2 concentration of 0.01molL(-1) accompanied by 30min of UV irradiation, all ARGs could achieve a reduction of 2.8-3.5 logs, and 1.55-2.32 logs at a pH of 7.0. The Fenton oxidation and UV/H2O2 process followed the first-order reaction kinetic model. The removal of target genes was affected by many parameters, including initial Fe(2+)/H2O2 molar ratios, H2O2 concentration, solution pH, and reaction time. Among these factors, reagent concentrations and pH values are the most important factors during AOPs.

  15. Advanced treatment of biologically pretreated coking wastewater by electrochemical oxidation using boron-doped diamond electrodes.

    PubMed

    Zhu, Xiuping; Ni, Jinren; Lai, Peng

    2009-09-01

    Electrochemical oxidation is a promising technology to treatment of bio-refractory wastewater. Coking wastewater contains high concentration of refractory and toxic compounds and the water quality usually cannot meet the discharge standards after conventional biological treatment processes. This paper initially investigated the electrochemical oxidation using boron-doped diamond (BDD) anode for advanced treatment of coking wastewater. Under the experimental conditions (current density 20-60mAcm(-2), pH 3-11, and temperature 20-60 degrees C) using BDD anode, complete mineralization of organic pollutants was almost achieved, and surplus ammonia-nitrogen (NH(3)-N) was further removed thoroughly when pH was not adjusted or at alkaline value. Moreover, the TOC and NH(3)-N removal rates in BDD anode cell were much greater than those in other common anode systems such as SnO(2) and PbO(2) anodes cells. Given the same target to meet the National Discharge Standard of China, the energy consumption of 64kWhkgCOD(-1) observed in BDD anode system was only about 60% as much as those observed in SnO(2) and PbO(2) anode systems. Further investigation revealed that, in BDD anode cell, organic pollutants were mainly degraded by reaction with free hydroxyl radicals and electrogenerated oxidants (S(2)O(8)(2-), H(2)O(2), and other oxidants) played a less important role, while direct electrochemical oxidation and indirect electrochemical oxidation mediated by active chlorine can be negligible. These results showed great potential of BDD anode system in engineering application as a final treatment of coking wastewater.

  16. Post-treatment of reclaimed waste water based on an electrochemical advanced oxidation process

    NASA Technical Reports Server (NTRS)

    Verostko, Charles E.; Murphy, Oliver J.; Hitchens, G. D.; Salinas, Carlos E.; Rogers, Tom D.

    1992-01-01

    The purification of reclaimed water is essential to water reclamation technology life-support systems in lunar/Mars habitats. An electrochemical UV reactor is being developed which generates oxidants, operates at low temperatures, and requires no chemical expendables. The reactor is the basis for an advanced oxidation process in which electrochemically generated ozone and hydrogen peroxide are used in combination with ultraviolet light irradiation to produce hydroxyl radicals. Results from this process are presented which demonstrate concept feasibility for removal of organic impurities and disinfection of water for potable and hygiene reuse. Power, size requirements, Faradaic efficiency, and process reaction kinetics are discussed. At the completion of this development effort the reactor system will be installed in JSC's regenerative water recovery test facility for evaluation to compare this technique with other candidate processes.

  17. Ozone catalysed with solids as an advanced oxidation process for landfill leachate treatment.

    PubMed

    Tizaoui, C; Mansouri, L; Bousselmi, L

    2007-01-01

    Heterogeneous catalytic ozonation (HCO) of wastewater is gaining both research and industrial interests. It is proved to be an advanced oxidation process since it involves hydroxyl radicals as oxidation species. Few studies have been carried out to test HCO in the treatment of landfill leachates. This work has been carried out to test three types of catalysts: activated carbon (AC), expanded perlite (EP) and titanium dioxide (TiO2) combined with ozone at 80 g/m3 gas concentration for the treatment of a leachate generated by Jebel Chakir landfill site near Tunis-capital of Tunisia. The work has shown a reduction in COD of about 45% and an increase in biodegradability (BOD5/COD) from 0.1 to 0.34. A catalyst concentration of 0.7 g/L was found optimal for the treatment of the leachate.

  18. Advanced oxidation process using hydrogen peroxide/microwave system for solubilization of phosphate.

    PubMed

    Liao, Ping Huang; Wong, Wayne T; Lo, Kwang Victor

    2005-01-01

    An advanced oxidation process (AOP) combining hydrogen peroxide and microwave heating was used for the solubilization of phosphate from secondary municipal sludge from an enhanced biological phosphorus removal process. The microwave irradiation is used as a generator agent of oxidizing radicals as well as a heating source in the process. This AOP process could facilitate the release of a large amount of the sludge-bound phosphorus from the sewage sludge. More than 84% of the total phosphorous could be released at a microwave heating time of 5 min at 170 degrees C. This innovative process has the potential of being applied to simple sludge treatment processes in domestic wastewater treatment and to the recovery of phosphorus from the wastewater.

  19. Comparison of various advanced oxidation processes for the degradation of phenylurea herbicides.

    PubMed

    Kovács, Krisztina; Farkas, János; Veréb, Gábor; Arany, Eszter; Simon, Gergő; Schrantz, Krisztina; Dombi, András; Hernádi, Klára; Alapi, Tünde

    2016-01-01

    Various types of advanced oxidation processes (AOPs), such as UV photolysis, ozonation, heterogeneous photocatalysis and their combinations were comparatively examined at the same energy input in a home-made reactor. The oxidative transformations of the phenylurea herbicides fenuron, monuron and diuron were investigated. The initial rates of transformation demonstrated that UV photolysis was highly efficient in the cases of diuron and monuron. Ozonation proved to be much more effective in the transformation of fenuron than in those of the chlorine containing monuron and diuron. In heterogeneous photocatalysis, the rate of decomposition decreased with increase of the number of chlorine atoms in the target molecule. Addition of ozone to UV-irradiated solutions and/or TiO2-containing suspensions markedly increased the initial rates of degradation. Dehalogenation of monuron and diuron showed that each of these procedures is suitable for the simultaneous removal of chlorinated pesticides and their chlorinated intermediates. Heterogeneous photocatalysis was found to be effective in the mineralization.

  20. Remediation of phenol, lignin and paper effluents by advanced oxidative processes.

    PubMed

    Peralta-Zamora, P; Wypych, F; Carneiro, L M; Vaz, S R

    2004-12-01

    The tremendous environmental impact of pulping and bleaching effluents and the relatively low efficiency of the current biological remediation processes represent one of the most important problems of the paper industry. In this work the efficiency of heterogeneous and homogeneous advanced oxidative processes was evaluated toward the degradation of model substrates (phenol and lignin) and the remediation of paper effluents. Best results were found by application of the UV-H2O2 system, with almost total discoloration of both pulping and bleaching effluents and typical COD removal higher than 60%, at reaction times of 120 min. In view of the reported results, and mainly on account of the simplicity of the UV-H2O2 system, shows good potential for the advanced process to remediation of recalcitrant effluents like those studied in this present work.

  1. Advanced Oxide Material Systems For 1650 C Thermal/Environmental Barrier Coating Applications

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Fox, Dennis S.; Bansal, Narottam P.; Miller, Robert A.

    2004-01-01

    Advanced thermal/environmental barrier coatings (T/EBCs) are being developed for low emission SiC/SiC ceramic matrix composite (CMC) combustor and vane applications to extend the CMC liner and vane temperature capability to 1650 C (3000 F) in oxidizing and water-vapor containing combustion environments. The 1650 C T/EBC system is required to have better thermal stability, lower thermal conductivity, and improved sintering and thermal stress resistance than current coating systems. In this paper, the thermal conductivity, water vapor stability and cyclic durability of selected candidate zirconia-/hafnia-, pyrochlore- and magnetoplumbite-based T/EBC materials are evaluated. The test results have been used to downselect the T/EBC coating materials, and help demonstrate advanced 1650OC coatings feasibility with long-term cyclic durability.

  2. Controlling Magnetism in Spin-Orbit-Driven Oxides with Epitaxial Strain

    NASA Astrophysics Data System (ADS)

    Clancy, Patrick

    2015-03-01

    The layered perovskite iridates Sr2IrO4andBa2IrO4 are the prototypical spin-orbital Mott insulators, displaying a novel jeff = 1/2 ground state driven by strong 5d spin-orbit coupling effects. Efforts to understand, and ultimately control, this spin-orbit-induced ground state have led to a surge of interest in thin film iridates, which offer unique opportunities for the tuning of electronic and magnetic properties via epitaxial strain. We have performed complementary resonant magnetic x-ray scattering (RMXS) and resonant inelastic x-ray scattering (RIXS) measurements on epitaxial thin film samples of Sr2IrO4andBa2IrO4. By measuring 13 to 50 nm films grown on a variety of different substrates (PSO, GSO, STO, LSAT), we are able to investigate the impact of applied tensile and compressive strain on the magnetic structure, correlation lengths, and characteristic excitations of these materials. We find that the dispersion of the low-lying magnetic and orbital excitations is strongly affected by strain-induced structural changes, and show that epitaxial strain provides an effective method for tuning three distinct energy scales: the magnetic ordering temperature (TN) , the magnetic exchange interactions (J), and the non-cubic crystal field splitting (ΔCEF) . Perhaps most strikingly, we demonstrate that hard x-ray RIXS can be used to perform detailed magnetic dispersion measurements on thin film samples of 13 nm (~5 unit cells) or less. Work performed in collaboration with H. Gretarsson, A. Lupascu, J.A. Sears, Z. Nie, Y.-J. Kim (University of Toronto), Z. Islam, M.H. Upton, J. Kim, D. Casa, T. Gog, A.H. Said (Argonne National Laboratory), J. Nichols, J. Terzic, S.S.A. Seo, G. Cao (University of Kentucky), M. Uchida, D.G. Schlom, K.M. Shen (Cornell University), H. Stoll (University of Stuttgart), V.M. Katukuri, L.Hozoi, J. van den Brink (IFW Dresden).

  3. Oxide semiconductor thin-film transistors: a review of recent advances.

    PubMed

    Fortunato, E; Barquinha, P; Martins, R

    2012-06-12

    Transparent electronics is today one of the most advanced topics for a wide range of device applications. The key components are wide bandgap semiconductors, where oxides of different origins play an important role, not only as passive component but also as active component, similar to what is observed in conventional semiconductors like silicon. Transparent electronics has gained special attention during the last few years and is today established as one of the most promising technologies for leading the next generation of flat panel display due to its excellent electronic performance. In this paper the recent progress in n- and p-type oxide based thin-film transistors (TFT) is reviewed, with special emphasis on solution-processed and p-type, and the major milestones already achieved with this emerging and very promising technology are summarizeed. After a short introduction where the main advantages of these semiconductors are presented, as well as the industry expectations, the beautiful history of TFTs is revisited, including the main landmarks in the last 80 years, finishing by referring to some papers that have played an important role in shaping transparent electronics. Then, an overview is presented of state of the art n-type TFTs processed by physical vapour deposition methods, and finally one of the most exciting, promising, and low cost but powerful technologies is discussed: solution-processed oxide TFTs. Moreover, a more detailed focus analysis will be given concerning p-type oxide TFTs, mainly centred on two of the most promising semiconductor candidates: copper oxide and tin oxide. The most recent data related to the production of complementary metal oxide semiconductor (CMOS) devices based on n- and p-type oxide TFT is also be presented. The last topic of this review is devoted to some emerging applications, finalizing with the main conclusions. Related work that originated at CENIMAT|I3N during the last six years is included in more detail, which

  4. Removal of PCBs in contaminated soils by means of chemical reduction and advanced oxidation processes.

    PubMed

    Rybnikova, V; Usman, M; Hanna, K

    2016-09-01

    Although the chemical reduction and advanced oxidation processes have been widely used individually, very few studies have assessed the combined reduction/oxidation approach for soil remediation. In the present study, experiments were performed in spiked sand and historically contaminated soil by using four synthetic nanoparticles (Fe(0), Fe/Ni, Fe3O4, Fe3 - x Ni x O4). These nanoparticles were tested firstly for reductive transformation of polychlorinated biphenyls (PCBs) and then employed as catalysts to promote chemical oxidation reactions (H2O2 or persulfate). Obtained results indicated that bimetallic nanoparticles Fe/Ni showed the highest efficiency in reduction of PCB28 and PCB118 in spiked sand (97 and 79 %, respectively), whereas magnetite (Fe3O4) exhibited a high catalytic stability during the combined reduction/oxidation approach. In chemical oxidation, persulfate showed higher PCB degradation extent than hydrogen peroxide. As expected, the degradation efficiency was found to be limited in historically contaminated soil, where only Fe(0) and Fe/Ni particles exhibited reductive capability towards PCBs (13 and 18 %). In oxidation step, the highest degradation extents were obtained in presence of Fe(0) and Fe/Ni (18-19 %). The increase in particle and oxidant doses improved the efficiency of treatment, but overall degradation extents did not exceed 30 %, suggesting that only a small part of PCBs in soil was available for reaction with catalyst and/or oxidant. The use of organic solvent or cyclodextrin to improve the PCB availability in soil did not enhance degradation efficiency, underscoring the strong impact of soil matrix. Moreover, a better PCB degradation was observed in sand spiked with extractable organic matter separated from contaminated soil. In contrast to fractions with higher particle size (250-500 and <500 μm), no PCB degradation was observed in the finest fraction (≤250 μm) having higher organic matter content. These findings

  5. Efficiency of advanced oxidation processes in lowering bisphenol A toxicity and oestrogenic activity in aqueous samples.

    PubMed

    Plahuta, Maja; Tišler, Tatjana; Toman, Mihael Jožef; Pintar, Albin

    2014-03-01

    Bisphenol A (BPA) is a well-known endocrine disruptor with adverse oestrogen-like effects eliciting adverse effects in humans and wildlife. For this reason it is necessary to set up an efficient removal of BPA from wastewaters, before they are discharged into surface waters. The aim of this study was to compare the efficiency of BPA removal from aqueous samples with photolytic, photocatalytic, and UV/H₂O₂ oxidation. BPA solutions were illuminated with different bulbs (halogen; 17 W UV, 254 nm; and 150 W UV, 365 nm) with or without the TiO₂ P-25 catalyst or H₂O₂ (to accelerate degradation). Acute toxicity and oestrogenic activity of treated samples were determined using luminescent bacteria (Vibrio fischeri), water fleas (Daphnia magna), zebrafish embryos (Danio rerio), and Yeast Estrogen Screen (YES) assay with genetically modified yeast Saccharomyces cerevisiae. The results confirmed that BPA is toxic and oestrogenically active. Chemical analysis showed a reduction of BPA levels after photolytic treatment and 100 % conversion of BPA by photocatalytic and UV/H₂O₂ oxidation. The toxicity and oestrogenic activity of BPA were largely reduced in photolytically treated samples. Photocatalytic oxidation, however, either did not reduce BPA toxic and oestrogenic effects or even increased them in comparison with the baseline, untreated BPA solution. Our findings suggest that chemical analysis is not sufficient to determine the efficiency of advanced oxidation processes in removing pollutants from water and needs to be complemented with biological tests.

  6. Occurrence and Removal of Organic Micropollutants in Landfill Leachates Treated by Electrochemical Advanced Oxidation Processes.

    PubMed

    Oturan, Nihal; van Hullebusch, Eric D; Zhang, Hui; Mazeas, Laurent; Budzinski, Hélène; Le Menach, Karyn; Oturan, Mehmet A

    2015-10-20

    In recent years, electrochemical advanced oxidation processes have been shown to be an effective alternative for the removal of refractory organic compounds from water. This study is focused on the effective removal of recalcitrant organic matter (micropollutants, humic substances, etc.) present in municipal solid waste landfill leachates. A mixture of eight landfill leachates has been studied by the electro-Fenton process using a Pt or boron-doped diamond (BDD) anode and a carbon felt cathode or by the anodic oxidation process with a BDD anode. These processes exhibit great oxidation ability due to the in situ production of hydroxyl radicals ((•)OH), a highly powerful oxidizing species. Both electrochemical processes were shown to be efficient in the removal of dissolved total organic carbon (TOC) from landfill leachates. Regarding the electro-Fenton process, the replacement of the classical anode Pt by the anode BDD allows better performance in terms of dissolved TOC removal. The occurrence and removal yield of 19 polycyclic aromatic hydrocarbons, 15 volatile organic compounds, 7 alkylphenols, 7 polychlorobiphenyls, 5 organochlorine pesticides, and 2 polybrominated diphenyl ethers in landfill leachate were also investigated. Both electrochemical processes allow one to reach a quasicomplete removal (about 98%) of these organic micropollutants.

  7. Degradation of the commercial surfactant nonylphenol ethoxylate by advanced oxidation processes.

    PubMed

    da Silva, Salatiel Wohlmuth; Klauck, Cláudia Regina; Siqueira, Marco Antônio; Bernardes, Andréa Moura

    2015-01-23

    Four different oxidation process, namely direct photolysis (DP) and three advanced oxidation processes (heterogeneous photocatalysis - HP, eletrochemical oxidation - EO and photo-assisted electrochemical oxidation - PEO) were applied in the treatment of wastewater containing nonylphenol ethoxylate (NPnEO). The objective of this work was to determine which treatment would be the best option in terms of degradation of NPnEO without the subsequent generation of toxic compounds. In order to investigate the degradation of the surfactant, the processes were compared in terms of UV/Vis spectrum, mineralization (total organic carbon), reaction kinetics, energy efficiency and phytotoxicity. A solution containing NPnEO was prepared as a surrogate of the degreasing wastewater, was used in the processes. The results showed that the photo-assisted processes degrade the surfactant, producing biodegradable intermediates in the reaction. On the other hand, the electrochemical process influences the mineralization of the surfactant. The process of PEO carried out with a 250W lamp and a current density of 10mA/cm(2) showed the best results in terms of degradation, mineralization, reaction kinetics and energy consumption, in addition to not presenting phytotoxicity. Based on this information, this process can be a viable alternative for treating wastewater containing NPnEO, avoiding the contamination of water resources.

  8. Degradation of herbicide 4-chlorophenoxyacetic acid by advanced electrochemical oxidation methods.

    PubMed

    Boye, Birame; Dieng, Momar M; Brillas, Enric

    2002-07-01

    The herbicide 4-chlorophenoxyacetic acid (4-CPA) has been degraded in aqueous medium by advanced electrochemical oxidation processes such as electro-Fenton and photoelectro-Fenton with UV light, using an undivided cell containing a Pt anode. In these environmentally clean methods, the main oxidant is the hydroxyl radical produced from Fenton's reaction between Fe2+ added to the medium and H2O2 electrogenerated from an 02-diffusion cathode. Solutions of a 4-CPA concentration <400 ppm within the pH range of 2.0-6.0 at 35 degrees C can be completely mineralized at low current by photoelectro-Fenton, while electro-Fenton leads to ca. 80% of mineralization. 4-CPA is much more slowly degraded by anodic oxidation in the absence and presence of electrogenerated H2O2. 4-Chlorophenol, 4-chlorocatechol, and hydroquinone are identified as aromatic intermediates by CG-MS and quantified by reverse-phase chromatography. Further oxidation of these chloroderivatives yields stable chloride ions. Generated carboxylic acids such as glycolic, glyoxylic, formic, malic, maleic, fumaric, and oxalic are followed by ion exclusion chromatography. The highest mineralization rate found for photoelectro-Fenton is accounted for by the fast photodecomposition of complexes of Fe3+ with such short-chain acids, mainly oxalic acid, under the action of UV light.

  9. Combining Advanced Oxidation Processes: Assessment Of Process Additivity, Synergism, And Antagonism

    SciTech Connect

    Peters, Robert W.; Sharma, M.P.; Gbadebo Adewuyi, Yusuf

    2007-07-01

    This paper addresses the process interactions from combining integrated processes (such as advanced oxidation processes (AOPs), biological operations, air stripping, etc.). AOPs considered include: Fenton's reagent, ultraviolet light, titanium dioxide, ozone (O{sub 3}), hydrogen peroxide (H{sub 2}O{sub 2}), sonication/acoustic cavitation, among others. A critical review of the technical literature has been performed, and the data has been analyzed in terms of the processes being additive, synergistic, or antagonistic. Predictions based on the individual unit operations are made and compared against the behavior of the combined unit operations. The data reported in this paper focus primarily on treatment of petroleum hydrocarbons and chlorinated solvents. (authors)

  10. Recent advances in synthesis and surface modification of superparamagnetic iron oxide nanoparticles with silica

    NASA Astrophysics Data System (ADS)

    Sodipo, Bashiru Kayode; Aziz, Azlan Abdul

    2016-10-01

    Research on synthesis of superparamagnetic iron oxide nanoparticles (SPION) and its surface modification for biomedical applications is of intense interest. Due to superparamagnetic property of SPION, the nanoparticles have large magnetic susceptibility, single magnetic domain and controllable magnetic behaviour. However, owing to easy agglomeration of SPION, surface modification of the magnetic particles with biocompatible materials such as silica nanoparticle has gained much attention in the last decade. In this review, we present recent advances in synthesis of SPION and various routes of producing silica coated SPION.

  11. US-UK Collaboration on Fossil Energy Advanced Materials: Task 1—Steam Oxidation

    SciTech Connect

    Holcomb, Gordon R.; Tylczak, Joseph; Carney, Casey

    2016-04-19

    This presentation goes over the following from the US-UK collaboration on Fossil Energy Advanced Materials: Task 1, Steam Oxidation: US-led or co-led deliverables, Phase II products (US), 2011-present, Phase III products, Phase III Plan, an explanation of sCO2 compared with sH2O, an explanation of Ni-base Alloys, an explanation of 300 Series (18Cr-8Ni)/E-Brite, an explanation of the typical Microchannel HX Fabrication process, and an explanation of diffusion bonded Ni-base superalloys.

  12. Sono-bromination of aromatic compounds based on the ultrasonic advanced oxidation processes.

    PubMed

    Fujita, Mitsue; Lévêque, Jean-Marc; Komatsu, Naoki; Kimura, Takahide

    2015-11-01

    A novel, mild "sono-halogenation" of various aromatic compounds with potassium halide was investigated under ultrasound in a biphasic carbon tetrachloride/water medium. The feasibility study was first undertaken with the potassium bromide and then extended to chloride and iodide analogues. This methodology could be considered as a new expansion of the ultrasonic advanced oxidation processes (UAOPs) into a synthetic aspect as the developed methodology is linked to the sonolytic disappearance of carbon tetrachloride. Advantages of the present method are not only that the manipulation of the bromination is simple and green, but also that the halogenating agents used are readily available, inexpensive, and easy-handling.

  13. Treatment of statin compounds by advanced oxidation processes: Kinetic considerations and destruction mechanisms

    NASA Astrophysics Data System (ADS)

    Razavi, Behnaz; Song, Weihua; Santoke, Hanoz; Cooper, William J.

    2011-03-01

    This study examined the use of advanced oxidation/reduction processes (AO/RPs) for the destruction of cholesterol lowering statin pharmaceuticals. AO/RPs which utilize the oxidizing hydroxyl radical ( rad OH) and reducing aqueous electron (e -aq), to degrade chemical contaminants are alternatives to traditional water treatment methods, and are alternatives as water reuse becomes more generally implemented. Four major statin pharmaceuticals, fluvastatin, lovastatin, pravastatin and simvastatin, were studied, and the absolute bimolecular reaction rate constants with rad OH determined, (6.96±0.16)×10 9, (2.92±0.06)×10 9, (4.16±0.13)×10 9, and (3.13±0.15)×10 9 M -1 s -1, and for e -aq (2.31±0.06)×10 9, (0.45±0.01)×10 9, (1.26±0.01)×10 9, and (0.69±0.02)×10 9 M -1 s -1, respectively. To provide additional information on the radicals formed upon oxidation, transient spectra were measured and the overall reaction efficiency determined. Radical-based destruction mechanisms for destruction of the statins are proposed based on the LC-MS determination of the stable reaction by-products formed using 137Cs γ-irradiation of statin solutions. Knowing the reaction rates, reaction efficiencies and destruction mechanisms of these compounds is essential for the consideration of the use of advanced oxidation/reduction processes for the destruction of statins in aqueous systems.

  14. Biogenic concrete protection driven by the formate oxidation by Methylocystis parvus OBBP

    PubMed Central

    Ganendra, Giovanni; Wang, Jianyun; Ramos, Jose A.; Derluyn, Hannelore; Rahier, Hubert; Cnudde, Veerle; Ho, Adrian; Boon, Nico

    2015-01-01

    The effectiveness of Microbiologically Induced Carbonate Precipitation (MICP) from the formate oxidation by Methylocystis parvus OBBP as an alternative process for concrete protection was investigated. MICP was induced on Autoclaved Aerated Concrete (AAC), the model material, by immersing the material in 109 M. parvus cells mL−1 containing 5 g L−1 of calcium formate. A 2 days immersion of the material gave the maximum weight increase of the specimens (38 ± 19 mg) and this was likely due to the deposition of calcium carbonate, biomass, and unconverted calcium formate. The solid deposition mainly occurred in the micropores of the specimen, close to the outer surface. A significantly lower water absorption was observed in the bacterially treated specimens compared to the non-treated ones (up to 2.92 ± 0.91 kg m−2) and this could be attributed to the solid deposition. However, the sonication test demonstrated that the bacterial treatment did not give a consolidating effect to the material. Overall, compared to the currently employed urea hydrolysis process, the formate-based MICP by M. parvus offers a more environmentally friendly approach for the biotechnological application to protect concrete. PMID:26284061

  15. Are sperm capacitation and apoptosis the opposite ends of a continuum driven by oxidative stress?

    PubMed Central

    Aitken, Robert J; Baker, Mark A; Nixon, Brett

    2015-01-01

    This chapter explores the possibility that capacitation and apoptosis are linked processes joined by their common dependence on the continued generation of reactive oxygen species (ROS). According to this model capacitation is initiated in spematozoa following their release into the female reproductive tract as a consequence of intracellular ROS generation, which stimulates intracellular cAMP generation, inhibits tyrosine phosphatase activity and enhances the formation of oxysterols prior to their removal from the sperm surface by albumin. The continued generation of ROS by capacitating populations of spermatozoa eventually overwhelms the limited capacity of these cells to protect themselves from oxidative stress. As a result the over-capacitation of spermatozoa leads to a state of senescence and the activation of a truncated intrinsic apoptotic cascade characterized by enhanced mitochondrial ROS generation, lipid peroxidation, motility loss, caspase activation and phosphatidylserine externalization. The latter may be particularly important in instructing phagocytic leukocytes that the removal of senescent, moribund spermatozoa should be a silent process unaccompanied by the generation of proinflammatory cytokines. These observations reveal the central role played by redox chemistry in defining the life and death of spermatozoa. A knowledge of these mechanisms may help us to engineer novel solutions to both support and preserve the functionality of these highly specialized cells. PMID:25999358

  16. Nonlocal Spin Diffusion Driven by Giant Spin Hall Effect at Oxide Heterointerfaces.

    PubMed

    Jin, Mi-Jin; Moon, Seon Young; Park, Jungmin; Modepalli, Vijayakumar; Jo, Junhyeon; Kim, Shin-Ik; Koo, Hyun Cheol; Min, Byoung-Chul; Lee, Hyun-Woo; Baek, Seung-Hyub; Yoo, Jung-Woo

    2017-01-11

    A two-dimensional electron gas emerged at a LaAlO3/SrTiO3 interface is an ideal system for "spin-orbitronics" as the structure itself strongly couple the spin and orbital degree of freedom through the Rashba spin-orbit interaction. One of core experiments toward this direction is the nonlocal spin transport measurement, which has remained elusive due to the low spin injection efficiency to this system. Here we bypass the problem by generating a spin current not through the spin injection from outside but instead through the inherent spin Hall effect and demonstrate the nonlocal spin transport. The analysis on the nonlocal spin voltage, confirmed by the signature of a Larmor spin precession and its length dependence, displays that both D'yakonov-Perel' and Elliott-Yafet mechanisms involve in the spin relaxation at low temperature. Our results show that the oxide heterointerface is highly efficient in spin-charge conversion with exceptionally strong spin Hall coefficient γ ∼ 0.15 ± 0.05 and could be an outstanding platform for the study of coupled charge and spin transport phenomena and their electronic applications.

  17. BiVO(4)/CuWO(4) heterojunction photoanodes for efficient solar driven water oxidation.

    PubMed

    Pilli, Satyananda Kishore; Deutsch, Todd G; Furtak, Thomas E; Brown, Logan D; Turner, John A; Herring, Andrew M

    2013-03-07

    BiVO(4)/CuWO(4) heterojunction electrodes were prepared using spray deposition of a highly porous bismuth vanadate film onto the surface of an electrodeposited three dimensional network connected copper tungstate. Bilayer BiVO(4)/CuWO(4)/fluorine doped tin oxide glass (FTO) electrodes demonstrated higher photocurrent magnitudes than either with BiVO(4)/FTO or CuWO(4)/FTO electrodes in 1.0 M Na(2)SO(4) electrolyte buffered at pH 7. The photocurrent is enhanced by the formation of the heterojunction that aids charge carrier collection brought about by the band edge offsets. When the pH 7 buffered electrolytes contained 1.0 M bicarbonate is employed instead of 1.0 M sulfate, the charge transfer resistance was decreased. This led to nearly 1.8 times the photocurrent density at 1.0 V vs. Ag/AgCl. The photocurrent was stable over 24 hours in bicarbonate electrolyte.

  18. Biogenic concrete protection driven by the formate oxidation by Methylocystis parvus OBBP.

    PubMed

    Ganendra, Giovanni; Wang, Jianyun; Ramos, Jose A; Derluyn, Hannelore; Rahier, Hubert; Cnudde, Veerle; Ho, Adrian; Boon, Nico

    2015-01-01

    The effectiveness of Microbiologically Induced Carbonate Precipitation (MICP) from the formate oxidation by Methylocystis parvus OBBP as an alternative process for concrete protection was investigated. MICP was induced on Autoclaved Aerated Concrete (AAC), the model material, by immersing the material in 10(9) M. parvus cells mL(-1) containing 5 g L(-1) of calcium formate. A 2 days immersion of the material gave the maximum weight increase of the specimens (38 ± 19 mg) and this was likely due to the deposition of calcium carbonate, biomass, and unconverted calcium formate. The solid deposition mainly occurred in the micropores of the specimen, close to the outer surface. A significantly lower water absorption was observed in the bacterially treated specimens compared to the non-treated ones (up to 2.92 ± 0.91 kg m(-2)) and this could be attributed to the solid deposition. However, the sonication test demonstrated that the bacterial treatment did not give a consolidating effect to the material. Overall, compared to the currently employed urea hydrolysis process, the formate-based MICP by M. parvus offers a more environmentally friendly approach for the biotechnological application to protect concrete.

  19. Are sperm capacitation and apoptosis the opposite ends of a continuum driven by oxidative stress?

    PubMed

    Aitken, Robert J; Baker, Mark A; Nixon, Brett

    2015-01-01

    This chapter explores the possibility that capacitation and apoptosis are linked processes joined by their common dependence on the continued generation of reactive oxygen species (ROS). According to this model capacitation is initiated in spematozoa following their release into the female reproductive tract as a consequence of intracellular ROS generation, which stimulates intracellular cAMP generation, inhibits tyrosine phosphatase activity and enhances the formation of oxysterols prior to their removal from the sperm surface by albumin. The continued generation of ROS by capacitating populations of spermatozoa eventually overwhelms the limited capacity of these cells to protect themselves from oxidative stress. As a result the over-capacitation of spermatozoa leads to a state of senescence and the activation of a truncated intrinsic apoptotic cascade characterized by enhanced mitochondrial ROS generation, lipid peroxidation, motility loss, caspase activation and phosphatidylserine externalization. The latter may be particularly important in instructing phagocytic leukocytes that the removal of senescent, moribund spermatozoa should be a silent process unaccompanied by the generation of proinflammatory cytokines. These observations reveal the central role played by redox chemistry in defining the life and death of spermatozoa. A knowledge of these mechanisms may help us to engineer novel solutions to both support and preserve the functionality of these highly specialized cells.

  20. Assessment of the weather research and forecasting model generalized parameterization schemes for advancement of precipitation forecasting in monsoon-driven river basins

    NASA Astrophysics Data System (ADS)

    Sikder, Safat; Hossain, Faisal

    2016-09-01

    Some of the world's largest and flood-prone river basins experience a seasonal flood regime driven by the monsoon weather system. Highly populated river basins with extensive rain-fed agricultural productivity such as the Ganges, Indus, Brahmaputra, Irrawaddy, and Mekong are examples of monsoon-driven river basins. It is therefore appropriate to investigate how precipitation forecasts from numerical models can advance flood forecasting in these basins. In this study, the Weather Research and Forecasting model was used to evaluate downscaling of coarse-resolution global precipitation forecasts from a numerical weather prediction model. Sensitivity studies were conducted using the TOPSIS analysis to identify the likely best set of microphysics and cumulus parameterization schemes, and spatial resolution from a total set of 15 combinations. This identified best set can pinpoint specific parameterizations needing further development to advance flood forecasting in monsoon-dominated regimes. It was found that the Betts-Miller-Janjic cumulus parameterization scheme with WRF Single-Moment 5-class, WRF Single-Moment 6-class, and Thompson microphysics schemes exhibited the most skill in the Ganges-Brahmaputra-Meghna basins. Finer spatial resolution (3 km) without cumulus parameterization schemes did not yield significant improvements. The short-listed set of the likely best microphysics-cumulus parameterization configurations was found to also hold true for the Indus basin. The lesson learned from this study is that a common set of model parameterization and spatial resolution exists for monsoon-driven seasonal flood regimes at least in South Asian river basins.

  1. WO3/W:BiVO4/BiVO4 graded photoabsorber electrode for enhanced photoelectrocatalytic solar light driven water oxidation.

    PubMed

    Choi, Junghyun; Sudhagar, Pitchaimuthu; Kim, Joo Hyun; Kwon, Jiseok; Kim, Jeonghyun; Terashima, Chiaki; Fujishima, Akira; Song, Taeseup; Paik, Ungyu

    2017-02-08

    We demonstrate the dual advantages of graded photoabsorbers in mesoporous metal oxide-based hetero interfacial photoanodes in improving photogenerated charge carrier (e(-)/h(+)) separation for the solar light-driven water-oxidation process. The pre-deposition of sol-gel-derived, tungsten-doped bismuth vanadate (W:BiVO4) onto a primary BiVO4 water oxidation layer forms graded interfaces, which facilitate charge transfer from the primary photoabsorber to the charge transport layer, thereby superseding the thickness-controlled charge recombination at the BiVO4 water oxidation catalyst. As a result, the WO3/BiVO4 hetero photoanode containing the photoactive W:BiVO4 interfacial layer showed 130% higher photocurrent than that of the interfacial layer-free hetero photoelectrode owing to the enhanced charge separation led water oxidation process.

  2. Temperature-driven growth of reduced graphene oxide/copper nanocomposites for glucose sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Wu, Zhong; Xu, Chen; Liu, Lei; Hu, Wenbin

    2016-12-01

    A one-spot method was developed for the synthesis of graphene sheet decorated with copper nanoparticles using different reduction temperatures via a molecular level mixing process. Here, we demonstrate that the reduction temperature is a crucial determinant of the properties of reduced graphene oxide (RGO)/metal composite and its electrocatalytic application in glucose sensing. To show this, we prepared a series of RGO/Cu composites at different reduction temperatures and examined the change rules of size, loading and dispersion of Cu particles, and the reduction extent of the RGO. Results showed that the Cu particle size increased with increasing reduction temperatures due to the Ostwald ripening process. Meanwhile, the Cu loading decreased with increasing reduction temperatures and the aggregation had not appeared in the high Cu loading situation. Additionally, the increasing reduction temperatures led to the decreasing concentrations of various oxygen-containing functional group of RGO with various degrees. The cyclic voltammogram showed that the RGO/metal composites fabricated under lower reduction temperatures exhibited higher electrocatalytic activity for glucose sensing, which was attributed to the higher surface area from larger loading of RGO/metal composites with smaller particle size. It can be concluded that the above factors play more significant roles in electrocatalytic efficiency than the decreased electron transfer rate between RGO and Cu within a certain range. These results highlight the importance of the reduction temperature influencing the properties of the RGO/metal composite and its application. We believe that these findings can be of great value in the further developing RGO/metal-based sensors for electrochemical detection of different analytes in emerging fields.

  3. Cadmium sulfide quantum dots supported on gallium and indium oxide for visible-light-driven hydrogen evolution from water.

    PubMed

    Pan, Yun-xiang; Zhuang, Huaqiang; Hong, Jindui; Fang, Zheng; Liu, Hai; Liu, Bin; Huang, Yizhong; Xu, Rong

    2014-09-01

    In this work, CdS quantum dots (QDs) supported on Ga2O3 and In2O3 are applied for visible-light-driven H2 evolution from aqueous solutions that contain lactic acid. With Pt as the cocatalyst, the H2 evolution rates on CdS/Pt/Ga2O3 and CdS/Pt/In2O3 are as high as 995.8 and 1032.2 μmol h(-1), respectively, under visible light (λ>420 nm) with apparent quantum efficiencies of 43.6 and 45.3% obtained at 460 nm, respectively. These are much higher than those on Pt/CdS (108.09 μmol h(-1)), Pt/Ga2O3 (0.12 μmol h(-1)), and Pt/In2O3 (0.05 μmol h(-1)). The photocatalysts have been characterized thoroughly and their band structures and photocurrent responses have been measured. The band alignment between the CdS QDs and In2O3 can lead to interfacial charge separation, which cannot occur between the CdS QDs and Ga2O3. Among the various possible factors that contribute to the high H2 evolution rates on CdS/Pt/oxide, the surface properties of the metal oxides play important roles, which include (i) the anchoring of CdS QDs and Pt nanoparticles for favorable interactions and (ii) the efficient trapping of photogenerated electrons from the CdS QDs because of surface defects (such as oxygen defects) based on photoluminescence and photocurrent studies.

  4. A summary and assessment of oxidation driven volatility experiments at the INEL and their application to fusion reactor safety assessments

    SciTech Connect

    McCarthy, K.A.; Smolik, G.R.; Harms, S.L.

    1994-09-01

    This report contains a summary and assessment of oxidation-driven volatility tests through March 1994 at the Idaho National Engineering Laboratory. Materials tested include a Cu alloy in air and steam, PCA stainless steel (similar to 316SS) in air and steam, AMCR-033 steel in air, HT-9 steel in air and steam, a Nb alloy in air and steam, a W alloy in air and steam, and two V alloys in air with a limited number of tests in steam. We give a brief description of the tests, including alloy compositions and test temperatures. For many materials, our results indicate that both volatility and oxide spalling are responsible for mobilizing mass, thus we refer to our measurements as mass flux or mobility flux. We plot mobility data for each element and present curve fits to the data. We include a section on how the mobility information is used in safety assessments. We calculate the early dose inventory of a first wall made of each material tested (the early dose to the maximum exposed individual that would result if all the material were mobilized and transported to the site boundary), and the early dose that would result when mobility fractions are considered in the calculation. We use this information to assess the data by determining which elements are the most important and concentrating on providing the mobility data for those elements. We discuss where more data are needed, and our plans for obtaining that data. Additionally, we discuss what must be done to produce a database that will withstand regulatory scrutiny.

  5. Transformation products of pharmaceuticals in surface waters and wastewater formed during photolysis and advanced oxidation processes - degradation, elucidation of byproducts and assessment of their biological potency.

    PubMed

    Fatta-Kassinos, D; Vasquez, M I; Kümmerer, K

    2011-10-01

    The significance of transformation products of pharmaceuticals resulting from the parent compounds during natural and technical photolytic processes and advanced oxidation processes has only recently started to attract the interest of the scientific community. Even though relevant studies have now started to produce important knowledge, still many gaps exist that hinder the in-depth and broad understanding of the extent of the potential problems stemming from the presence of such compounds in the environment and the applicability of such techniques for wastewater and potable water treatment. The great diversity of pharmaceutical compounds, the variety of processes and conditions applied by the various research groups active in the field, and the endless list of potential biological endpoints that could potentially be explored, coupled with the limitations related to the analytical capabilities presently available, are some of the crucial parameters that characterize this challenging research direction. This review paper tries to highlight some of the most relevant studies performed so far and to summarize the parameters that prevent scientists from reaching comprehensive conclusions in relation to the formation, fate, and effects of transformation products of pharmaceutical compounds during photo-driven and advanced oxidation processes.

  6. Advances in Instrumentation for Quantification of Isotopic Nitrous Oxide from ppb levels to 100%

    NASA Astrophysics Data System (ADS)

    Dong, F.; Gupta, M.; Leen, J.; Provencal, R. A.; Owano, T. G.; Baer, D. S.

    2013-12-01

    The isotopic composition of trace gases provides information of their origin and fate that cannot be determined from their concentration measurements alone. Biological source and loss processes, like bacterial production of nitrous oxide, are typically accompanied by isotopic selectivity associated with the kinetics of bond formation and destruction. Of the three important biologically mediated greenhouse gases (CO2, CH4 and N2O), the understanding of nitrous oxide isotopic budget in air lags behind the other two gases primarily due to the relatively low concentration of N2O in ambient air (~320 ppb). Furthermore, the origin of nitrates in rivers, lakes, ocean and other water supplies may be determined from analyses of isotopic nitrous oxide produced via chemical reduction or biological conversion. These processes can produce nitrous oxide at levels considerably greater than those present in ambient air. To date, analyses of isotopic nitrous oxide requires either pre-concentration of samples containing low concentrations or dilution of samples with high concentrations. We report significant advances of instrumentation for real-time measurements of site-specific isotopic nitrogen (δ15Nα, δ15Nβ, δ15N, δ18O) and mixing ratio [N2O] of nitrous oxide over a very wide range of mole fractions in air. Specifically, LGR's Isotopic N2O Analyzer can report site-specific isotopic nitrogen and isotopic oxygen continuously in flows ranging from 0.2 to over 20 ppm (parts per million) nitrous oxide in air (with preconcentration or dilution). Furthermore, for samples of limited volume, a batch technique may be used for similar isotopic measurements in discrete samples containing 0.2 ppm to 100% nitrous oxide (e.g., sample volumes from bacterial digestion can be as little as 1-10 mL). This novel technology, which employs cavity enhanced absorption spectroscopy (Off-Axis ICOS) and a mid-infrared laser (4.56 microns) and does not require any cryogenic components, has been

  7. Nitrous oxide emission budgets and land-use-driven hotspots for organic soils in Europe

    NASA Astrophysics Data System (ADS)

    Leppelt, T.; Dechow, R.; Gebbert, S.; Freibauer, A.; Lohila, A.; Augustin, J.; Drösler, M.; Fiedler, S.; Glatzel, S.; Höper, H.; Järveoja, J.; Lærke, P. E.; Maljanen, M.; Mander, Ü.; Mäkiranta, P.; Minkkinen, K.; Ojanen, P.; Regina, K.; Strömgren, M.

    2014-12-01

    Organic soils are a main source of direct emissions of nitrous oxide (N2O), an important greenhouse gas (GHG). Observed N2O emissions from organic soils are highly variable in space and time, which causes high uncertainties in national emission inventories. Those uncertainties could be reduced when relating the upscaling process to a priori-identified key drivers by using available N2O observations from plot scale in empirical approaches. We used the empirical fuzzy modelling approach MODE to identify main drivers for N2O and utilize them to predict the spatial emission pattern of European organic soils. We conducted a meta-study with a total amount of 659 annual N2O measurements, which was used to derive separate models for different land use types. We applied our models to available, spatially explicit input driver maps to upscale N2O emissions at European level and compared the inventory with recently published IPCC emission factors. The final statistical models explained up to 60% of the N2O variance. Our study results showed that cropland and grasslands emitted the highest N2O fluxes 0.98 ± 1.08 and 0.58 ± 1.03 g N2O-N m-2 a-1, respectively. High fluxes from cropland sites were mainly controlled by low soil pH value and deep-drained groundwater tables. Grassland hotspot emissions were strongly related to high amount of N-fertilizer inputs and warmer winter temperatures. In contrast, N2O fluxes from natural peatlands were predominantly low (0.07 ± 0.27 g N2O-N m-2 a-1) and we found no relationship with the tested drivers. The total inventory for direct N2O emissions from organic soils in Europe amount up to 149.5 Gg N2O-N a-1, which also included fluxes from forest and peat extraction sites and exceeds the inventory calculated by IPCC emission factors of 87.4 Gg N2O-N a-1. N2O emissions from organic soils represent up to 13% of total European N2O emissions reported in the European Union (EU) greenhouse gas inventory of 2011 from only 7% of the EU area

  8. Organic Nitrogen-Driven Stimulation of Arbuscular Mycorrhizal Fungal Hyphae Correlates with Abundance of Ammonia Oxidizers.

    PubMed

    Bukovská, Petra; Gryndler, Milan; Gryndlerová, Hana; Püschel, David; Jansa, Jan

    2016-01-01

    Large fraction of mineral nutrients in natural soil environments is recycled from complex and heterogeneously distributed organic sources. These sources are explored by both roots and associated mycorrhizal fungi. However, the mechanisms behind the responses of arbuscular mycorrhizal (AM) hyphal networks to soil organic patches of different qualities remain little understood. Therefore, we conducted a multiple-choice experiment examining hyphal responses to different soil patches within the root-free zone by two AM fungal species (Rhizophagus irregularis and Claroideoglomus claroideum) associated with Medicago truncatula, a legume forming nitrogen-fixing root nodules. Hyphal colonization of the patches was assessed microscopically and by quantitative real-time PCR (qPCR) using AM taxon-specific markers, and the prokaryotic and fungal communities in the patches (pooled per organic amendment treatment) were profiled by 454-amplicon sequencing. Specific qPCR markers were then designed and used to quantify the abundance of prokaryotic taxa showing the strongest correlation with the pattern of AM hyphal proliferation in the organic patches as per the 454-sequencing. The hyphal density of both AM fungi increased due to nitrogen (N)-containing organic amendments (i.e., chitin, DNA, albumin, and clover biomass), while no responses as compared to the non-amended soil patch were recorded for cellulose, phytate, or inorganic phosphate amendments. Abundances of several prokaryotes, including Nitrosospira sp. (an ammonium oxidizer) and an unknown prokaryote with affiliation to Acanthamoeba endosymbiont, which were frequently recorded in the 454-sequencing profiles, correlated positively with the hyphal responses of R. irregularis to the soil amendments. Strong correlation between abundance of these two prokaryotes and the hyphal responses to organic soil amendments by both AM fungi was then confirmed by qPCR analyses using all individual replicate patch samples. Further

  9. Organic Nitrogen-Driven Stimulation of Arbuscular Mycorrhizal Fungal Hyphae Correlates with Abundance of Ammonia Oxidizers

    PubMed Central

    Bukovská, Petra; Gryndler, Milan; Gryndlerová, Hana; Püschel, David; Jansa, Jan

    2016-01-01

    Large fraction of mineral nutrients in natural soil environments is recycled from complex and heterogeneously distributed organic sources. These sources are explored by both roots and associated mycorrhizal fungi. However, the mechanisms behind the responses of arbuscular mycorrhizal (AM) hyphal networks to soil organic patches of different qualities remain little understood. Therefore, we conducted a multiple-choice experiment examining hyphal responses to different soil patches within the root-free zone by two AM fungal species (Rhizophagus irregularis and Claroideoglomus claroideum) associated with Medicago truncatula, a legume forming nitrogen-fixing root nodules. Hyphal colonization of the patches was assessed microscopically and by quantitative real-time PCR (qPCR) using AM taxon-specific markers, and the prokaryotic and fungal communities in the patches (pooled per organic amendment treatment) were profiled by 454-amplicon sequencing. Specific qPCR markers were then designed and used to quantify the abundance of prokaryotic taxa showing the strongest correlation with the pattern of AM hyphal proliferation in the organic patches as per the 454-sequencing. The hyphal density of both AM fungi increased due to nitrogen (N)-containing organic amendments (i.e., chitin, DNA, albumin, and clover biomass), while no responses as compared to the non-amended soil patch were recorded for cellulose, phytate, or inorganic phosphate amendments. Abundances of several prokaryotes, including Nitrosospira sp. (an ammonium oxidizer) and an unknown prokaryote with affiliation to Acanthamoeba endosymbiont, which were frequently recorded in the 454-sequencing profiles, correlated positively with the hyphal responses of R. irregularis to the soil amendments. Strong correlation between abundance of these two prokaryotes and the hyphal responses to organic soil amendments by both AM fungi was then confirmed by qPCR analyses using all individual replicate patch samples. Further

  10. Uniform distribution of graphene oxide sheets into a poly-vinylidene fluoride nanoparticle matrix through shear-driven aggregation.

    PubMed

    Sheng, Xinxin; Xie, Delong; Zhang, Xinya; Zhong, Li; Wu, Hua; Morbidelli, Massimo

    2016-07-06

    A general methodology has been developed for preparing nanocomposites with uniform, random distribution of fillers in polymer matrices, purely based on intense shear-driven aggregation, while avoiding filler aggregation. This procedure is demonstrated for a binary colloid composed of graphene oxide (GO) sheets and poly-vinylidene fluoride (PVDF) nanoparticles (NPs), both negatively charged and stable at rest. On the other hand, the PVDF NPs are shear-active (i.e. aggregation occurs under intensive shear), while the GO sheets are shear-inactive. It is found that when the two suspensions are mixed and the resulting binary colloid is forced to pass through a microchannel (MC) device (at a very high shear rate, G = 1.2 × 10(6) s(-1)), the shear-inactive GO sheets are captured and well distributed inside the PVDF NP clusters or gels. In addition, it is shown that in order to have 100% capture efficiency for the GO sheets, a minimum solid content of the binary colloid is required, which can be identified experimentally as the minimum leading to gelation after passing through the MC only one time.

  11. Diffused sunlight driven highly synergistic pathway for complete mineralization of organic contaminants using reduced graphene oxide supported photocatalyst.

    PubMed

    Babu, Sundaram Ganesh; Ramalingam Vinoth; Neppolian, Bernaurdshaw; Dionysiou, Dionysios D; Ashokkumar, Muthupandian

    2015-06-30

    Diffused sunlight is found to be an effective light source for the efficient degradation and mineralization of organic pollutant (methyl orange as a probe) by sono-photocatalytic degradation using reduced graphene oxide (rGO) supported CuO-TiO2 photocatalyst. The prepared catalysts are characterized by XRD, XPS, UV-vis DRS, PL, photoelectrochemical, SEM-EDS and TEM. A 10 fold synergy is achieved for the first time by combining sonochemical and photocatalytic degradation under diffused sunlight. rGO loading augments the activity of bare CuO-TiO2 more than two fold. The ability of rGO in storing, transferring, and shuttling electrons at the heterojunction between TiO2 and CuO facilitates the separation of photogenerated electron-hole pairs, as evidenced by the photoluminescence results. The complete mineralization of MO and the by-products within a short span of time is confirmed by TOC analysis. Further, hydroxyl radical mediated degradation under diffused sunlight is confirmed by LC-MS. This system shows similar activity for the degradation of methylene blue and 4-chlorophenol indicating the versatility of the catalyst for the degradation of various pollutants. This investigation is likely to open new possibilities for the development of highly efficient diffused sunlight driven TiO2 based photocatalysts for the complete mineralization of organic contaminants.

  12. Advanced oxidation processes coupled with electrocoagulation for the exhaustive abatement of Cr-EDTA.

    PubMed

    Durante, Christian; Cuscov, Marco; Isse, Abdirisak Ahmed; Sandonà, Giancarlo; Gennaro, Armando

    2011-02-01

    Using Cr-EDTA as a model system, a two-step method has been investigated for the abatement of persistent chromium complexes in water. The treatment consists of an oxidative decomposition of the organic ligands by means of ozonization or electrochemical oxidation at a boron doped diamond (BDD) electrode, followed by removal of the metal via electrochemical coagulation. In the designed synthetic waste, EDTA has been used both as a chelating agent and as a mimic of the organic content of a typical wastewater provided by a purification leather plant. A crucial point evaluated is the influence of the oxidative pretreatment on the chemical modification of the synthetic waste and hence on the electrocoagulation efficacy. Because of the great stability of Cr complexes, such as Cr-EDTA, the classical coagulation methods, based on ligand exchange between Cr(III) and Fe(II) or Fe(III), are ineffective toward Cr abatement in the presence of organic substances. On the contrary, when advanced oxidation processes (AOPs), such as ozonization or electrooxidation at a BDD anode are applied in series with electrocoagulation (EC), complete abatement of the recalcitrant Cr fraction can be achieved. ECs have been carried out by using Fe sacrificial anodes, with alternating polarization and complete Cr abatement (over 99%) has been obtained with modest charge consumption. It has been found that Cr(III) is first oxidized to Cr(VI) in the AOP preceding EC. Then, during EC, Cr(VI) is mainly reduced back to Cr(III) by electrogenerated Fe(II). Thus, Cr is mainly eliminated as Cr(III). However, a small fraction of Cr(VI) goes with the precipitate as confirmed by XPS analysis of the sludge.

  13. Application of electrochemical advanced oxidation processes to the mineralization of the herbicide diuron.

    PubMed

    Pipi, Angelo R F; Sirés, Ignasi; De Andrade, Adalgisa R; Brillas, Enric

    2014-08-01

    Here, solutions with 0.185mM of the herbicide diuron of pH 3.0 have been treated by electrochemical advanced oxidation processes (EAOPs) like electrochemical oxidation with electrogenerated H2O2 (EO-H2O2), electro-Fenton (EF) and UVA photoelectro-Fenton (PEF) or solar PEF (SPEF). Trials were performed in stirred tank reactors of 100mL and in a recirculation flow plant of 2.5L using a filter-press reactor with a Pt or boron-doped diamond (BDD) anode and an air-diffusion cathode for H2O2 electrogeneration. Oxidant hydroxyl radicals were formed from water oxidation at the anode and/or in the bulk from Fenton's reaction between added Fe(2+) and generated H2O2. In both systems, the relative oxidation ability of the EAOPs increased in the sequence EO-H2O2

  14. Analytical tools employed to determine pharmaceutical compounds in wastewaters after application of advanced oxidation processes.

    PubMed

    Afonso-Olivares, Cristina; Montesdeoca-Esponda, Sarah; Sosa-Ferrera, Zoraida; Santana-Rodríguez, José Juan

    2016-12-01

    Today, the presence of contaminants in the environment is a topic of interest for society in general and for the scientific community in particular. A very large amount of different chemical substances reaches the environment after passing through wastewater treatment plants without being eliminated. This is due to the inefficiency of conventional removal processes and the lack of government regulations. The list of compounds entering treatment plants is gradually becoming longer and more varied because most of these compounds come from pharmaceuticals, hormones or personal care products, which are increasingly used by modern society. As a result of this increase in compound variety, to address these emerging pollutants, the development of new and more efficient removal technologies is needed. Different advanced oxidation processes (AOPs), especially photochemical AOPs, have been proposed as supplements to traditional treatments for the elimination of pollutants, showing significant advantages over the use of conventional methods alone. This work aims to review the analytical methodologies employed for the analysis of pharmaceutical compounds from wastewater in studies in which advanced oxidation processes are applied. Due to the low concentrations of these substances in wastewater, mass spectrometry detectors are usually chosen to meet the low detection limits and identification power required. Specifically, time-of-flight detectors are required to analyse the by-products.

  15. Electrochemical advanced oxidation and biological processes for wastewater treatment: a review of the combined approaches.

    PubMed

    Ganzenko, Oleksandra; Huguenot, David; van Hullebusch, Eric D; Esposito, Giovanni; Oturan, Mehmet A

    2014-01-01

    As pollution becomes one of the biggest environmental challenges of the twenty-first century, pollution of water threatens the very existence of humanity, making immediate action a priority. The most persistent and hazardous pollutants come from industrial and agricultural activities; therefore, effective treatment of this wastewater prior to discharge into the natural environment is the solution. Advanced oxidation processes (AOPs) have caused increased interest due to their ability to degrade hazardous substances in contrast to other methods, which mainly only transfer pollution from wastewater to sludge, a membrane filter, or an adsorbent. Among a great variety of different AOPs, a group of electrochemical advanced oxidation processes (EAOPs), including electro-Fenton, is emerging as an environmental-friendly and effective treatment process for the destruction of persistent hazardous contaminants. The only concern that slows down a large-scale implementation is energy consumption and related investment and operational costs. A combination of EAOPs with biological treatment is an interesting solution. In such a synergetic way, removal efficiency is maximized, while minimizing operational costs. The goal of this review is to present cutting-edge research for treatment of three common and problematic pollutants and effluents: dyes and textile wastewater, olive processing wastewater, and pharmaceuticals and hospital wastewater. Each of these types is regarded in terms of recent scientific research on individual electrochemical, individual biological and a combined synergetic treatment.

  16. Inactivation of adenovirus using low-dose UV/H2O2 advanced oxidation.

    PubMed

    Bounty, Sarah; Rodriguez, Roberto A; Linden, Karl G

    2012-12-01

    Adenovirus has consistently been observed to be the most resistant known pathogen to disinfection by ultraviolet light. This has had an impact on regulations set by the United States Environmental Protection Agency regarding the use of UV disinfection for virus inactivation in groundwater and surface water. In this study, enhancement of UV inactivation of adenovirus was evaluated when hydrogen peroxide was added to create an advanced oxidation process (AOP). While 4 log reduction of adenovirus was determined to require a UV dose (UV fluence) of about 200 mJ/cm(2) from a low pressure (LP) UV source (emitting at 253.7 nm), addition of 10 mg/L H(2)O(2) achieved 4 log inactivation at a dose of 120 mJ/cm(2). DNA damage was assessed using a novel nested PCR approach, and similar levels of DNA damage between the two different treatments were noted, suggesting the AOP enhancement in inactivation was not due to additional DNA damage. Hydroxyl radicals produced in the advanced oxidation process are likely able to damage parts of the virus not targeted by LPUV, such as attachment proteins, enhancing the UV-induced inactivation. The AOP-enhanced inactivation potential was modeled in three natural waters. This research sheds light on the inactivation mechanisms of viruses with ultraviolet light and in the presence of hydroxyl radicals and provides a practical means to enhance inactivation of this UV-resistant virus.

  17. Drinking water treatment of priority pesticides using low pressure UV photolysis and advanced oxidation processes.

    PubMed

    Sanches, Sandra; Barreto Crespo, Maria T; Pereira, Vanessa J

    2010-03-01

    This study reports the efficiency of low pressure UV photolysis for the degradation of pesticides identified as priority pollutants by the European Water Framework Directive 2000/60/EC. Direct low pressure UV photolysis and advanced oxidation processes (using hydrogen peroxide and titanium dioxide) experiments were conducted in laboratory grade water, surface water, and groundwater. LP direct photolysis using a high UV fluence (1500 mJ/cm(2)) was found to be extremely efficient to accomplish the degradation of all pesticides except isoproturon, whereas photolysis using hydrogen peroxide and titanium dioxide did not significantly enhance their removal. In all matrices tested the experimental photolysis of the pesticides followed the same trend: isoproturon degradation was negligible, alachlor, pentachlorophenol, and atrazine showed similar degradation rate constants, whereas diuron and chlorfenvinphos were highly removed. The degradation trend observed for the selected compounds followed the decadic molar absorption coefficients order with exception of isoproturon probably due to its extremely low quantum yield. Similar direct photolysis rate constants were obtained for each pesticide in the different matrices tested, showing that the water components did not significantly impact degradation. Extremely similar photolysis rate constants were also obtained in surface water for individual compounds when compared to mixtures. The model fluence and time-based rate constants reported were very similar to the direct photolysis experimental results obtained, while overestimating the advanced oxidation results. This model was used to predict how degradation of isoproturon, the most resilient compound, could be improved.

  18. Degradation of estrone in water and wastewater by various advanced oxidation processes.

    PubMed

    Sarkar, Shubhajit; Ali, Sura; Rehmann, Lars; Nakhla, George; Ray, Madhumita B

    2014-08-15

    A comprehensive study was conducted to determine the relative efficacy of various advanced oxidation processes such as O3, H2O2, UV, and combinations of UV/O3, UV/H2O2 for the removal of estrone (E1) from pure water and secondary effluent. In addition to the parent compound (E1) removal, performance of the advanced oxidation processes was characterized using removal of total organic carbon (TOC), and estrogenicity of the effluent. Although E1 removal was high for all the AOPs, intermediates formed were more difficult to degrade leading to slow TOC removal. Energy calculations and cost analysis indicated that, although UV processes have low electricity cost, ozonation is the least cost option ($ 0.34/1000 gallons) when both capital and operating costs were taken into account. Ozonation also is superior to the other tested AOPs due to higher removal of TOC and estrogenicity. The rate of E1 removal decreased linearly with the background TOC in water, however, E1 degradation in the secondary effluent from a local wastewater treatment plant was not affected significantly due to the low COD values in the effluent.

  19. Degradation of diethyl phthalate in treated effluents from an MBR via advanced oxidation processes: effects of nitrate on oxidation and a pilot-scale AOP operation.

    PubMed

    Park, J H; Park, C G; Lee, J W; Ko, K B

    2010-01-01

    The major objective of this study was to delineate the oxidation of diethyl phthalate (DEP) in water, using bench-scale UV/H2O2 and O3/H2O2 processes, and to determine the effects of nitrate (NO(3-)-N, 5 mg L(-1)) on this oxidation. The oxidation of DEP was also investigated through a pilot-scale advanced oxidation process (AOP), into which a portion of the effluent from a pilot-scale membrane bioreactor (MBR) plant was pumped. The bench-scale operation showed that DEP could be oxidized via solely UV oxidation or O3 oxidation. The adverse effect of nitrate on the DEP oxidation was remarkable in the UV/H2O2 process, and the nitrate clearly reduced its oxidation. The adverse effect of nitrate on O3 oxidation was also observed. It was noted, however, that the nitrate clearly enhanced the DEP oxidation in the O3/H2O2 process. A series of pilot-scale AOP operations indicated that the addition of H2O2 enhanced DEP oxidation in both the UV/H2O2 and O3/H2O2 processes. No noticeable adverse effect of nitrate was observed in the NO(3-)-N concentration of about 6.0 mg L(-1), which was naturally contained in the treatment stream. About 52% and 61% of the DEP were oxidized by each of these two oxidation processes in this pilot-scale operation. Both the UV/H2O2 and O3/H2O2 processes appeared to be desirable alternatives for DEP oxidation in treatment effluent streams.

  20. Stability of 6:2 fluorotelomer sulfonate in advanced oxidation processes: degradation kinetics and pathway.

    PubMed

    Yang, Xiaoling; Huang, Jun; Zhang, Kunlun; Yu, Gang; Deng, Shubo; Wang, Bin

    2014-03-01

    Perfluorooctane sulfonate (PFOS), a widely used mist suppressant in hard chrome electroplating industry, has been listed in the Stockholm Convention for global ban. 6:2 Fluorotelomer sulfonate (6:2 FTS) acid and salts have been adopted as alternative products in the market, but no data about their abiotic degradation has been reported. In the present study, the degradability of 6:2 FTS potassium salt (6:2 FTS-K) was evaluated under various advanced oxidation processes, including ultraviolet (UV) irradiation, UV with hydrogen peroxide (H2O2), alkaline ozonation (O3, pH = 11), peroxone (O3/H2O2), and Fenton reagent oxidation (Fe(2+)/H2O2). UV/H2O2 was found to be the most effective approach, where the degradation of 6:2 FTS-K followed the pseudo-first-order kinetics. The intermediates were mainly shorter chain perfluoroalkyl carboxylic acid (C7 to C2), while sulfate (SO4 (2-)) and fluoride (F(-)) were found to be the final products. The high yields of SO4 (2-) and F(-) indicate that 6:2 FTS-K can be nearly completely desulfonated and defluorinated under UV/H2O2 condition. The degradation should firstly begin with the substitution of hydrogen atom by hydroxyl radicals, followed by desulfonation, carboxylation, and sequential "flake off" of CF2 unit. Compared with PFOS which is inert in most advanced oxidation processes, 6:2 FTS-K is more degradable as the alternative.

  1. Advanced oxidation treatment of physico-chemically pre-treated olive mill industry effluent.

    PubMed

    Gomec, Cigdem Y; Erdim, Esra; Turan, Ilknur; Aydin, Ali F; Ozturk, Izzet

    2007-08-01

    In this study, the applicability of physico-chemical methods was investigated for the pre-treatment of the olive mill effluents prior to the discharge into the common sewerage ending with a municipal wastewater treatment plant. The samples were taken from an olive oil industry operated as three-phase process located in Turkey. Various pre-treatment methods including acid craking, polyelectrolyte and lime additions were applied. Advanced oxidation study using Fenton's process was also investigated following pre-treatment by acid cracking and cationic polyelectrolyte. Acid cracking alone gave satisfactory treatment efficiencies and polyelectrolite additions to the acid-cracked samples enhanced treatment efficiency. Since a complete treatment plant is available at the end of the sewer system, results indicated that the effluents of the investigated industry could be discharged into the municipal sewerage in the case of total chemical oxygen demand (COD(tot)), suspended solid (SS) and volatile suspended solid (VSS) concentrations according to the Turkish Water Pollution Control Regulation after pre-treatment with 5 ppm anionic polyelectrolyte following acid cracking. The minimum COD(tot), SS and VSS removals were observed when raw wastewater was pre-treated with lime and the discharge standards to the municipal sewer system could not be met. Advanced oxidation with Fenton's process was applied after acid cracking and cationic polyelectrolyte treatment in order to investigate further reduction in chemical oxygen demand (COD) concentration for minimizing the influence of this industrial discharge on the existing municipal wastewater treatment plant. Results indicated that COD(tot) removal increased up to 89% from 74% after Fenton's oxidation for the acid cracked samples in which cationic polyelectrolite (10 ppm) was added.

  2. Performance evaluation of different solar advanced oxidation processes applied to the treatment of a real textile dyeing wastewater.

    PubMed

    Manenti, Diego R; Soares, Petrick A; Silva, Tânia F C V; Módenes, Aparecido N; Espinoza-Quiñones, Fernando R; Bergamasco, Rosângela; Boaventura, Rui A R; Vilar, Vítor J P

    2015-01-01

    The performance of different solar-driven advanced oxidation processes (AOPs), such as TiO2/UV, TiO2/H2O2/UV, and Fe(2+)/H2O2/UV-visible in the treatment of a real textile effluent using a pilot plant with compound parabolic collectors (CPCs), was investigated. The influence of the main photo-Fenton reaction variables such as iron concentration (20-100 mg Fe(2+) L(-1)), pH (2.4-4.5), temperature (10-50 °C), and irradiance (22-68 WUV m(-2)) was evaluated in a lab-scale prototype using artificial solar radiation. The real textile wastewater presented a beige color, with a maximum absorbance peak at 641 nm, alkaline pH (8.1), moderate organic content (dissolved organic carbon (DOC) = 129 mg C L(-1) and chemical oxygen demand (COD) = 496 mg O2 L(-1)), and high conductivity mainly associated to the high concentration of chloride (1.1 g Cl(-) L(-1)), sulfate (0.4 g SO 4 (2 -) L(- 1)), and sodium (1.2 g Na(+) L(-1)) ions. Although all the processes tested contributed to complete decolorization and effective mineralization, the most efficient process was the solar photo-Fenton with an optimum catalyst concentration of 60 mg Fe(2+) L(-1), leading to 70 % mineralization (DOCfinal = 41 mg C L(-1); CODfinal < 150 mg O2 L(-1)) at pH 3.6, requiring a UV energy dose of 3.5 kJUV L(-1) (t 30 W = 22.4 min; [Formula: see text]; [Formula: see text]) and consuming 18.5 mM of H2O2.

  3. Advanced oxidation process based on the Cr(III)/Cr(VI) redox cycle.

    PubMed

    Bokare, Alok D; Choi, Wonyong

    2011-11-01

    Oxidative degradation of aqueous organic pollutants, using 4-chlorophenol (4-CP) as a main model substrate, was achieved with the concurrent H(2)O(2)-mediated transformation of Cr(III) to Cr(VI). The Fenton-like oxidation of 4-CP is initiated by the reaction between the aquo-complex of Cr(III) and H(2)O(2), which generates HO(•) along with the stepwise oxidation of Cr(III) to Cr(VI). The Cr(III)/H(2)O(2) system is inactive in acidic condition, but exhibits maximum oxidative capacity at neutral and near-alkaline pH. Since we previously reported that Cr(VI) can also activate H(2)O(2) to efficiently generate HO(•), the dual role of H(2)O(2) as an oxidant of Cr(III) and a reductant of Cr(VI) can be utilized to establish a redox cycle of Cr(III)-Cr(VI)-Cr(III). As a result, HO(•) can be generated using both Cr(III)/H(2)O(2) and Cr(VI)/H(2)O(2) reactions, either concurrently or sequentially. The formation of HO(•) was confirmed by monitoring the production of p-hydroxybenzoic acid from [benzoic acid + HO(•)] as a probe reaction and by quenching the degradation of 4-CP in the presence of methanol as a HO(•) scavenger. The oxidation rate of 4-CP in the Cr(III)/H(2)O(2) solution was highly influenced by pH, which is ascribed to the hydrolysis of Cr(III)(H(2)O)(n) into Cr(III)(H(2)O)(n-m)(OH)(m) and the subsequent condensation to oligomers. The present study proposes that the Cr(III)/H(2)O(2) combined with Cr(VI)/H(2)O(2) process is a viable advanced oxidation process that operates over a wide pH range using the reusable redox cycle of Cr(III) and Cr(VI).

  4. Advanced oxidation protein products and total antioxidant activity in colorectal carcinoma.

    PubMed

    Avinash, S S; Anitha, M; Vinodchandran; Rao, Gayathri M; Sudha, K; Shetty, Beena V

    2009-01-01

    The present study was designed to assess the levels of advanced oxidation protein products (AOPP) and percent hemolysis (that indirectly indicates the degree of membrane damage secondary to lipid peroxidation) in colorectal carcinoma. Glutathione (GSH), total thiols and albumin were measured to determine the antioxidant status. Considering the dynamic interaction between various antioxidants in the body, we measured the total antioxidant activity (AOA). Globulin was measured to assess the inflammatory response secondary to oxidative stress. Investigations were conducted in 45 cases of recently diagnosed primary colorectal adenocarcinoma. As control, 45 age and sex matched healthy persons were chosen. GSH was estimated in whole blood, percent hemolysis in RBC suspension and other parameters in plasma. We observed a very high significant increase (P<0.001) in AOPP, percent hemolysis and a highly significant increase (P<0.01) in globulin in colorectal carcinoma. We observed a very high significant decrease (P<0.001) in whole blood GSH, total thiols, albumin, AOA and a significant decrease (P<0.05) in plasma GSH in colorectal carcinoma. A very high significant negative correlation between percent hemolysis and AOA and an apparent negative correlation between total thiols and AOPP was seen in colorectal carcinoma. This demonstrated oxidative stress, decreased antioxidant status and secondary inflammatory response in colorectal carcinoma.

  5. Toxicological and chemical assessment of arsenic-contaminated groundwater after electrochemical and advanced oxidation treatments.

    PubMed

    Radić, Sandra; Crnojević, Helena; Vujčić, Valerija; Gajski, Goran; Gerić, Marko; Cvetković, Želimira; Petra, Cvjetko; Garaj-Vrhovac, Vera; Oreščanin, Višnja

    2016-02-01

    Owing to its proven toxicity and mutagenicity, arsenic is regarded a principal pollutant in water used for drinking. The objective of this study was the toxicological and chemical evaluation of groundwater samples obtained from arsenic enriched drinking water wells before and after electrochemical and ozone-UV-H2O2-based advanced oxidation processes (EAOP). For this purpose, acute toxicity test with Daphnia magna and chronic toxicity test with Lemna minor L. were employed as well as in vitro bioassays using human peripheral blood lymphocytes (HPBLs). Several oxidative stress parameters were estimated in L.minor. Physicochemical analysis showed that EAOP treatment was highly efficient in arsenic but also in ammonia and organic compound removal from contaminated groundwater. Untreated groundwater caused only slight toxicity to HPBLs and D. magna in acute experiments. However, 7-day exposure of L. minor to raw groundwater elicited genotoxicity, a significant growth inhibition and oxidative stress injury. The observed genotoxicity and toxicity of raw groundwater samples was almost completely eliminated by EAOP treatment. Generally, the results obtained with L. minor were in agreement with those obtained in the chemical analysis suggesting the sensitivity of the model organism in monitoring of arsenic-contaminated groundwater. In parallel to chemical analysis, the implementation of chronic toxicity bioassays in a battery is recommended in the assessment of the toxic and genotoxic potential of such complex mixtures.

  6. Recent Progress in Self‐Supported Metal Oxide Nanoarray Electrodes for Advanced Lithium‐Ion Batteries

    PubMed Central

    Zhang, Feng

    2016-01-01

    The rational design and fabrication of electrode materials with desirable architectures and optimized properties has been demonstrated to be an effective approach towards high‐performance lithium‐ion batteries (LIBs). Although nanostructured metal oxide electrodes with high specific capacity have been regarded as the most promising alternatives for replacing commercial electrodes in LIBs, their further developments are still faced with several challenges such as poor cycling stability and unsatisfying rate performance. As a new class of binder‐free electrodes for LIBs, self‐supported metal oxide nanoarray electrodes have many advantageous features in terms of high specific surface area, fast electron transport, improved charge transfer efficiency, and free space for alleviating volume expansion and preventing severe aggregation, holding great potential to solve the mentioned problems. This review highlights the recent progress in the utilization of self‐supported metal oxide nanoarrays grown on 2D planar and 3D porous substrates, such as 1D and 2D nanostructure arrays, hierarchical nanostructure arrays, and heterostructured nanoarrays, as anodes and cathodes for advanced LIBs. Furthermore, the potential applications of these binder‐free nanoarray electrodes for practical LIBs in full‐cell configuration are outlined. Finally, the future prospects of these self‐supported nanoarray electrodes are discussed. PMID:27711259

  7. Mechanistic Study of the Validity of Using Hydroxyl Radical Probes To Characterize Electrochemical Advanced Oxidation Processes.

    PubMed

    Jing, Yin; Chaplin, Brian P

    2017-02-21

    The detection of hydroxyl radicals (OH(•)) is typically accomplished by using reactive probe molecules, but prior studies have not thoroughly investigated the suitability of these probes for use in electrochemical advanced oxidation processes (EAOPs), due to the neglect of alternative reaction mechanisms. In this study, we investigated the suitability of four OH(•) probes (coumarin, p-chlorobenzoic acid, terephthalic acid, and p-benzoquinone) for use in EAOPs. Experimental results indicated that both coumarin and p-chlorobenzoic acid are oxidized via direct electron transfer reactions, while p-benzoquinone and terephthalic acid are not. Coumarin oxidation to form the OH(•) adduct product 7-hydroxycoumarin was found at anodic potentials lower than that necessary for OH(•) formation. Density functional theory (DFT) simulations found a thermodynamically favorable and non-OH(•) mediated pathway for 7-hydroxycoumarin formation, which is activationless at anodic potentials > 2.10 V/SHE. DFT simulations also provided estimates of E° values for a series of OH(•) probe compounds, which agreed with voltammetry results. Results from this study indicated that terephthalic acid is the most appropriate OH(•) probe compound for the characterization of electrochemical and catalytic systems.

  8. Degradation of triketone herbicides, mesotrione and sulcotrione, using advanced oxidation processes.

    PubMed

    Jović, Milica; Manojlović, Dragan; Stanković, Dalibor; Dojčinović, Biljana; Obradović, Bratislav; Gašić, Uroš; Roglić, Goran

    2013-09-15

    Degradation of two triketone herbicides, mesotrione and sulcotrione, was studied using four different advanced oxidation processes (AOPs): ozonization, dielectric barrier discharge (DBD reactor), photocatalysis and Fenton reagent, in order to find differences in mechanism of degradation. Degradation products were identified by high performance liquid chromatography (HPLC-DAD) and UHPLC-Orbitrap-MS analyses. A simple mechanism of degradation for different AOP was proposed. Thirteen products were identified during all degradations for both pesticides. It was assumed that the oxidation mechanisms in the all four technologies were not based only on the production and use of the hydroxyl radical, but they also included other kinds of oxidation mechanisms specific for each technology. Similarity was observed between degradation mechanism of ozonation and DBD. The greatest difference in the products was found in Fenton degradation which included the opening of benzene ring. When degraded with same AOP pesticides gave at the end of treatment the same products. Global toxicity and COD value of samples was determined after all degradations. Real water sample was used to study influence of organic matter on pesticide degradation. These results could lead to accurate estimates of the overall effects of triketone herbicides on environmental ecosystems and also contributed to the development of improved removal processes.

  9. Recent Progress in Self-Supported Metal Oxide Nanoarray Electrodes for Advanced Lithium-Ion Batteries.

    PubMed

    Zhang, Feng; Qi, Limin

    2016-09-01

    The rational design and fabrication of electrode materials with desirable architectures and optimized properties has been demonstrated to be an effective approach towards high-performance lithium-ion batteries (LIBs). Although nanostructured metal oxide electrodes with high specific capacity have been regarded as the most promising alternatives for replacing commercial electrodes in LIBs, their further developments are still faced with several challenges such as poor cycling stability and unsatisfying rate performance. As a new class of binder-free electrodes for LIBs, self-supported metal oxide nanoarray electrodes have many advantageous features in terms of high specific surface area, fast electron transport, improved charge transfer efficiency, and free space for alleviating volume expansion and preventing severe aggregation, holding great potential to solve the mentioned problems. This review highlights the recent progress in the utilization of self-supported metal oxide nanoarrays grown on 2D planar and 3D porous substrates, such as 1D and 2D nanostructure arrays, hierarchical nanostructure arrays, and heterostructured nanoarrays, as anodes and cathodes for advanced LIBs. Furthermore, the potential applications of these binder-free nanoarray electrodes for practical LIBs in full-cell configuration are outlined. Finally, the future prospects of these self-supported nanoarray electrodes are discussed.

  10. Critical review of electrochemical advanced oxidation processes for water treatment applications.

    PubMed

    Chaplin, Brian P

    2014-05-01

    Electrochemical advanced oxidation processes (EAOPs) have emerged as novel water treatment technologies for the elimination of a broad-range of organic contaminants. Considerable validation of this technology has been performed at both the bench-scale and pilot-scale, which has been facilitated by the development of stable electrode materials that efficiently generate high yields of hydroxyl radicals (OH˙) (e.g., boron-doped diamond (BDD), doped-SnO2, PbO2, and substoichiometic- and doped-TiO2). Although a promising new technology, the mechanisms involved in the oxidation of organic compounds during EAOPs and the corresponding environmental impacts of their use have not been fully addressed. In order to unify the state of knowledge, identify research gaps, and stimulate new research in these areas, this review critically analyses published research pertaining to EAOPs. Specific topics covered in this review include (1) EAOP electrode types, (2) oxidation pathways of select classes of contaminants, (3) rate limitations in applied settings, and (4) long-term sustainability. Key challenges facing EAOP technologies are related to toxic byproduct formation (e.g., ClO4(-) and halogenated organic compounds) and low electro-active surface areas. These challenges must be addressed in future research in order for EAOPs to realize their full potential for water treatment.

  11. Evaluation of the advanced mixed oxide fuel test FO-2 irradiated in Fast Flux Test Facility

    SciTech Connect

    Gilpin, L.L.; Baker, R.B.; Chastain, S.A.

    1989-05-01

    The advanced mixed-oxide (UO/sub 2/-PuO/sub 2/) test assembly, FO-2, irradiated in the Fast Flux Test Facility (FFTF), is undergoing postirradiation examination (PIE). This is one of the first FFTF tests examined that used the advanced ferrite-martensite alloy, HT9, which is highly resistant to irradiation swelling. The FO-2 includes the first annular fueled pins irradiated in FFTF to undergo destructive examination. The FO-2 is a lead assembly for the ongoing FFTF Core Demonstration Experiment (CDE) (Leggett and Omberg 1987) and was designed to evaluate the effects of fuel design variables, such as pellet density, smeared density, and fuel form (annular or solid fuel), on advanced pin performance. The assembly contains a total of 169 fuel pins of twelve different types. The test was irradiated for 312 equivalent full power days (EFPD) in FFTF. It had a peak pin power of 13.7 kW/ft and reached a peak burnup of 65.2 MWd/kgM with a peak fast fluence of 9.9 /times/ 10/sup 22/ n/cm/sup 2/ (E > 0.1 MeV). This document discusses the test and its results. 6 refs., 19 figs., 4 tabs.

  12. Jet outflow and open field line measurements on the C-2U advanced beam-driven field-reversed configuration plasma experiment

    NASA Astrophysics Data System (ADS)

    Sheftman, D.; Gupta, D.; Roche, T.; Thompson, M. C.; Giammanco, F.; Conti, F.; Marsili, P.; Moreno, C. D.

    2016-11-01

    Knowledge and control of the axial outflow of plasma particles and energy along open-magnetic-field lines are of crucial importance to the stability and longevity of the advanced beam-driven field-reversed configuration plasma. An overview of the diagnostic methods used to perform measurements on the open field line plasma on C-2U is presented, including passive Doppler impurity spectroscopy, microwave interferometry, and triple Langmuir probe measurements. Results of these measurements provide the jet ion temperature and axial velocity, electron density, and high frequency density fluctuations.

  13. Advanced TEM characterization of oxide nanoparticles in ODS Fe–12Cr–5Al alloys

    DOE PAGES

    Unocic, Kinga A; Hoelzer, David T; Pint, Bruce A

    2016-01-01

    For oxide nanoparticles present in three oxide-dispersion-strengthened (ODS) Fe–12Cr–5Al alloys containing additions of (1) Y2O3 (125Y), (2) Y2O3 + ZrO2 (125YZ), and (3) Y2O3 + HfO2 (125YH), were investigated using transmission and scanning transmission electron microscopy. Furthermore, in all three alloys nano-sized (<3.5 nm) oxide particles distributed uniformly throughout the microstructure were characterized using advanced electron microscopy techniques. In the 125Y alloy, mainly Al2O3 and yttrium–aluminum garnet (YAG) phases (Y3Al5O12) were present, while in the 125YZ alloy, additional Zr(C,N) precipitates were identified. The 125YH alloy had the most complex precipitation sequence whereby in addition to the YAG and Al2O3 phases,more » Hf(C,N), Y2Hf2O7, and HfO2 precipitates were also found. The presence of HfO2 was mainly due to the incomplete incorporation of HfO2 powder during mechanical alloying of the 125YH alloy. The alloy having the highest total number density of the oxides, the smallest grain size, and the highest Vickers hardness was the 125YZ alloy indicating, that Y2O3 + ZrO2 additions had the strongest effect on grain size and tensile properties. Finally, high-temperature mechanical testing will be addressed in the near future, while irradiation studies are underway to investigate the irradiation resistance of these new ODS FeCrAl alloys.« less

  14. Sequential ozone advanced oxidation and biological oxidation processes to remove selected pharmaceutical contaminants from an urban wastewater.

    PubMed

    Espejo, Azahara; Aguinaco, Almudena; García-Araya, J F; Beltrán, Fernando J

    2014-01-01

    Sequential treatments consisting in a chemical process followed by a conventional biological treatment, have been applied to remove mixtures of nine contaminants of pharmaceutical type spiked in a primary sedimentation effluent of a municipal wastewater. Combinations of ozone, UVA black light (BL) and Fe(III) or Fe₃O₄ catalysts constituted the chemical systems. Regardless of the Advanced Oxidation Process (AOP), the removal of pharmaceutical compounds was achieved in 1 h of reaction, while total organic carbon (TOC) only diminished between 3.4 and 6%. Among selected ozonation systems to be implemented before the biological treatment, the application of ozone alone in the pre-treatment stage is recommended due to the increase of the biodegradability observed. The application of ozone followed by the conventional biological treatment leads high TOC and COD removal rates, 60 and 61%, respectively, and allows the subsequent biological treatment works with shorter hydraulic residence time (HRT). Moreover, the influence of the application of AOPs before and after a conventional biological process was compared, concluding that the decision to take depends on the characterization of the initial wastewater with pharmaceutical compounds.

  15. Incorporation of electrochemical advanced oxidation processes in a multistage treatment system for sanitary landfill leachate.

    PubMed

    Moreira, Francisca C; Soler, J; Fonseca, Amélia; Saraiva, Isabel; Boaventura, Rui A R; Brillas, Enric; Vilar, Vítor J P

    2015-09-15

    The current study has proved the technical feasibility of including electrochemical advanced oxidation processes (EAOPs) in a multistage strategy for the remediation of a sanitary landfill leachate that embraced: (i) first biological treatment to remove the biodegradable organic fraction, oxidize ammonium and reduce alkalinity, (ii) coagulation of the bio-treated leachate to precipitate humic acids and particles, followed by separation of the clarified effluent, and (iii) oxidation of the resulting effluent by an EAOP to degrade the recalcitrant organic matter and increase its biodegradability so that a second biological process for removal of biodegradable organics and nitrogen content could be applied. The influence of current density on an UVA photoelectro-Fenton (PEF) process was firstly assessed. The oxidation ability of various EAOPs such as electro-Fenton (EF) with two distinct initial total dissolved iron concentrations ([TDI]0), PEF and solar PEF (SPEF) was further evaluated and these processes were compared with their analogous chemical ones. A detailed assessment of the two first treatment stages was made and the biodegradability enhancement during the SPEF process was determined by a Zahn-Wellens test to define the ideal organics oxidation state to stop the EAOP and apply the second biological treatment. The best current density was 200 mA cm(-2) for a PEF process using a BDD anode, [TDI]0 of 60 mg L(-1), pH 2.8 and 20 °C. The relative oxidation ability of EAOPs increased in the order EF with 12 mg [TDI]0 L(-1) < EF with 60 mg [TDI]0 L(-1) < PEF with 60 mg [TDI]0 L(-1) ≤ SPEF with 60 mg [TDI]0 L(-1), using the abovementioned conditions. While EF process was much superior to the Fenton one, the superiority of PEF over photo-Fenton was less evident and SPEF attained similar degradation to solar photo-Fenton. To provide a final dissolved organic carbon (DOC) of 163 mg L(-1) to fulfill the discharge limits into the environment after

  16. Amorphous mixed-metal hydroxide nanostructures for advanced water oxidation catalysts

    NASA Astrophysics Data System (ADS)

    Gao, Y. Q.; Liu, X. Y.; Yang, G. W.

    2016-02-01

    The design of highly efficient, durable, and earth-abundant catalysts for the oxygen evolution reaction (OER) is crucial in order to promote energy conversion and storage processes. Here, we synthesize amorphous mixed-metal (Ni-Fe) hydroxide nanostructures with a homogeneous distribution of Ni/Fe as well as a tunable Ni/Fe ratio by a simple, facile, green and low-cost electrochemical technique, and we demonstrate that the synthesized amorphous nanomaterials possess ultrahigh activity and super long-term cycle stability in the OER process. The amorphous Ni0.71Fe0.29(OH)x nanostructure affords a current density of 10 mA cm-2 at an overpotential of a mere 0.296 V and a small Tafel slope of 58 mV dec-1, while no deactivation is detected in the CV testing even up to 30 000 cycles, which suggests the promising application of these amorphous nanomaterials in electrochemical oxidation. Meanwhile, the distinct catalytic activities among these amorphous Ni-Fe hydroxide nanostructures prompts us to take notice of the composition of the alloy hydroxides/oxides when studying their catalytic properties, which opens an avenue for the rational design and controllable preparation of such amorphous nanomaterials as advanced OER electrocatalysts.The design of highly efficient, durable, and earth-abundant catalysts for the oxygen evolution reaction (OER) is crucial in order to promote energy conversion and storage processes. Here, we synthesize amorphous mixed-metal (Ni-Fe) hydroxide nanostructures with a homogeneous distribution of Ni/Fe as well as a tunable Ni/Fe ratio by a simple, facile, green and low-cost electrochemical technique, and we demonstrate that the synthesized amorphous nanomaterials possess ultrahigh activity and super long-term cycle stability in the OER process. The amorphous Ni0.71Fe0.29(OH)x nanostructure affords a current density of 10 mA cm-2 at an overpotential of a mere 0.296 V and a small Tafel slope of 58 mV dec-1, while no deactivation is detected in the CV

  17. Controlled synthesis of uniform BiVO4 microcolumns and advanced visible-light-driven photocatalytic activity for the degradation of metronidazole-contained wastewater.

    PubMed

    Yu, Chongfei; Dong, Shuying; Feng, Jinglan; Sun, Jingyu; Hu, Limin; Li, Yukun; Sun, Jianhui

    2014-02-01

    Well-defined, uniform bismuth vanadate (BiVO4) microcolumns were synthesized through a refined hydrothermal route. During the fabrication process, a detailed orthogonal design on the synthetic conditions was performed, aiming to optimize the experimental parameters to produce BiVO4 materials (BiVO4 (Opt.)) with the most prominent visible-light-driven photocatalytic efficiency, where the catalytic activities of the synthesized materials were evaluated via the decolorization of methylene blue under visible light irradiation. The BiVO4 (Opt.) were then targetedly produced according to the determined optimal conditions and well characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, ultraviolet and visible diffuse-reflectance spectroscopy and photoluminescence spectroscopy. Compared with the commercial P25-TiO2 photocatalysts, the as-synthesized BiVO4 (Opt.) displayed superior visible-light-driven photocatalytic activities for the degradation of metronidazole-contained wastewater with the presence of H2O2. The degradation efficiency of metronidazole reached up to 70 % within 180 min, leading to a brief speculation on the possibly major steps of the visible-light-driven photocatalytic process. The current study provides a distinctive route to design novel shaped BiVO4 architectures with advanced photocatalytic capacities for the treatment of organic pollutants in the aqueous environment.

  18. Advanced treatment of biologically pretreated coal gasification wastewater by a novel integration of catalytic ultrasound oxidation and membrane bioreactor.

    PubMed

    Jia, Shengyong; Han, Hongjun; Zhuang, Haifeng; Xu, Peng; Hou, Baolin

    2015-01-01

    Laboratorial scale experiments were conducted to investigate a novel system integrating catalytic ultrasound oxidation (CUO) with membrane bioreactor (CUO-MBR) on advanced treatment of biologically pretreated coal gasification wastewater. Results indicated that CUO with catalyst of FeOx/SBAC (sewage sludge based activated carbon (SBAC) which loaded Fe oxides) represented high efficiencies in eliminating TOC as well as improving the biodegradability. The integrated CUO-MBR system with low energy intensity and high frequency was more effective in eliminating COD, BOD5, TOC and reducing transmembrane pressure than either conventional MBR or ultrasound oxidation integrated MBR. The enhanced hydroxyl radical oxidation, facilitation of substrate diffusion and improvement of cell enzyme secretion were the mechanisms for CUO-MBR performance. Therefore, the integrated CUO-MBR was the promising technology for advanced treatment in engineering applications.

  19. Advanced oxidation processes for wastewater treatment using a plasma/ozone combination system

    NASA Astrophysics Data System (ADS)

    Takeuchi, Nozomi; Kamiya, Yu; Saeki, Ryo; Tachibana, Kosuke; Yasuoka, Koichi

    2014-10-01

    Advanced oxidation process (AOP) using OH radicals is a promising method for the decomposition of persistent organic compounds in wastewater. Although many types of plasma reactors have been developed for the AOP, they are unsuitable for the complete decomposition of highly concentrated organic compounds. The reason for the incomplete decomposition is that OH radicals, particularly at a high density, recombine among themselves to form hydrogen peroxide. We have developed a combination plasma reactor in which ozone gas is fed, so that the generated hydrogen peroxide is re-converted to OH radicals. Pulsed plasmas generated within oxygen bubbles supply not only OH radicals but also hydrogen peroxide into wastewater. The total organic carbon (TOC) of the wastewater was more than 1 gTOC/L. The TOC values decreased linearly with time, and the persistent compounds which could not be decomposed by ozone were completely mineralized within 8 h of operation.

  20. Evaluation of copper slag to catalyze advanced oxidation processes for the removal of phenol in water.

    PubMed

    Huanosta-Gutiérrez, T; Dantas, Renato F; Ramírez-Zamora, R M; Esplugas, S

    2012-04-30

    The aim of this work was to evaluate the use of copper slag to catalyze phenol degradation in water by advanced oxidation processes (AOPs). Copper slag was tested in combination with H(2)O(2) (slag/H(2)O(2)) and H(2)O(2)/UV (slag/H(2)O(2)/UV). The studied methods promoted the complete photocatalytic degradation of phenol. Besides, they were able to reduce about 50% the TOC content in the samples. Slag/H(2)O(2)/UV and slag/H(2)O(2) treatments have favored biodegradability increment along the reaction time. Nevertheless, the irradiated method achieved higher values of the biodegradability indicator (BOD(5)/TOC). The toxicity assessment indicated the formation of more toxic compounds in both treatments. However, the control of the reaction time would minimize the environmental impact of the effluents.

  1. Advanced Oxidation of Tartrazine and Brilliant Blue with Pulsed Ultraviolet Light Emitting Diodes.

    PubMed

    Scott, Robert; Mudimbi, Patrick; Miller, Michael E; Magnuson, Matthew; Willison, Stuart; Phillips, Rebecca; Harper, Willie F

    2017-01-01

      This study investigated the effect of ultraviolet light-emitting diodes (UVLEDs) coupled with hydrogen peroxide as an advanced oxidation process (AOP) for the degradation of two test chemicals. Brilliant Blue FCF consistently exhibited greater degradation than tartrazine, with 83% degradation after 300 minutes at the 100% duty cycle compared with only 17% degradation of tartrazine under the same conditions. These differences are attributable to the structural properties of the compounds. Duty cycle was positively correlated with the first-order rate constants (k) for both chemicals but, interestingly, negatively correlated with the normalized first-order rate constants (k/duty cycle). Synergistic effects of both hydraulic mixing and LED duty cycle were manifested as novel oscillations in the effluent contaminant concentration. Further, LED output and efficiency were dependent upon duty cycle and less efficient over time perhaps due to heating effects on semiconductor performance.

  2. Nitric Oxide Dysregulation in Platelets from Patients with Advanced Huntington Disease

    PubMed Central

    Maglione, Vittorio; Damato, Antonio; Amico, Enrico; Formisano, Luigi; Vecchione, Carmine; Squitieri, Ferdinando

    2014-01-01

    Nitric oxide (NO) is a biologically active inorganic molecule involved in the regulation of many physiological processes, such as control of blood flow, platelet adhesion, endocrine function, neurotransmission and neuromodulation. In the present study, for the first time, we investigated the modulation of NO signaling in platelets of HD patients. We recruited 55 patients with manifest HD and 28 gender- and age-matched healthy controls. Our data demonstrated that NO-mediated vasorelaxation, when evoked by supernatant from insulin-stimulated HD platelets, gradually worsens along disease course. The defective vasorelaxation seems to stem from a faulty release of NO from platelets of HD patients and, it is associated with impairment of eNOS phosphorylation (Ser1177) and activity. This study provides important insights about NO metabolism in HD and raises the hypothesis that the decrease of NO in platelets of HD individuals could be a good tool for monitoring advanced stages of the disease. PMID:24587005

  3. Pretreatment of whole blood using hydrogen peroxide and UV irradiation. Design of the advanced oxidation process.

    PubMed

    Bragg, Stefanie A; Armstrong, Kristie C; Xue, Zi-Ling

    2012-08-15

    A new process to pretreat blood samples has been developed. This process combines the Advanced Oxidation Process (AOP) treatment (using H(2)O(2) and UV irradiation) with acid deactivation of the enzyme catalase in blood. A four-cell reactor has been designed and built in house. The effect of pH on the AOP process has been investigated. The kinetics of the pretreatment process shows that at high C(H(2)O(2),t=0), the reaction is zeroth order with respect to C(H(2)O(2)) and first order with respect to C(blood). The rate limiting process is photon flux from the UV lamp. Degradation of whole blood has been compared with that of pure hemoglobin samples. The AOP pretreatment of the blood samples has led to the subsequent determination of chromium and zinc concentrations in the samples using electrochemical methods.

  4. Can activated sludge treatments and advanced oxidation processes remove organophosphorus flame retardants?

    PubMed

    Cristale, Joyce; Ramos, Dayana D; Dantas, Renato F; Machulek Junior, Amilcar; Lacorte, Silvia; Sans, Carme; Esplugas, Santiago

    2016-01-01

    This study aims to determine the occurrence of 10 OPFRs (including chlorinated, nonchlorinated alkyl and aryl compounds) in influent, effluent wastewaters and partitioning into sludge of 5 wastewater treatment plants (WWTP) in Catalonia (Spain). All target OPFRs were detected in the WWTPs influents, and the total concentration ranged from 3.67 µg L(-1) to 150 µg L(-1). During activated sludge treatment, most OPFRs were accumulated in the sludge at concentrations from 35.3 to 9980 ng g(-1) dw. Chlorinated compounds tris(2-chloroethyl) phosphate (TCEP), tris(2-chloroisopropyl) phosphate (TCIPP) and tris(2,3-dichloropropyl) phosphate (TDCPP) were not removed by the conventional activated sludge treatment and they were released by the effluents at approximately the same inlet concentration. On the contrary, aryl compounds tris(methylphenyl) phosphate (TMPP) and 2-ethylhexyl diphenyl phosphate (EHDP) together with alkyl tris(2-ethylhexyl) phosphate (TEHP) were not detected in any of the effluents. Advanced oxidation processes (UV/H2O2 and O3) were applied to investigate the degradability of recalcitrant OPFRs in WWTP effluents. Those detected in the effluent sample (TCEP, TCIPP, TDCPP, tributyl phosphate (TNBP), tri-iso-butyl phosphate (TIBP) and tris(2-butoxyethyl) phosphate (TBOEP)) had very low direct UV-C photolysis rates. TBOEP, TNBP and TIBP were degraded by UV/H2O2 and O3. Chlorinated compounds TCEP, TDCPP and TCIPP were the most recalcitrant OPFR to the advanced oxidation processes applied. The study provides information on the partitioning and degradability pathways of OPFR within conventional activated sludge WWTPs.

  5. Combined treatment technology based on synergism between hydrodynamic cavitation and advanced oxidation processes.

    PubMed

    Gogate, Parag R; Patil, Pankaj N

    2015-07-01

    The present work highlights the novel approach of combination of hydrodynamic cavitation and advanced oxidation processes for wastewater treatment. The initial part of the work concentrates on the critical analysis of the literature related to the combined approaches based on hydrodynamic cavitation followed by a case study of triazophos degradation using different approaches. The analysis of different combinations based on hydrodynamic cavitation with the Fenton chemistry, advanced Fenton chemistry, ozonation, photocatalytic oxidation, and use of hydrogen peroxide has been highlighted with recommendations for important design parameters. Subsequently degradation of triazophos pesticide in aqueous solution (20 ppm solution of commercially available triazophos pesticide) has been investigated using hydrodynamic cavitation and ozonation operated individually and in combination for the first time. Effect of different operating parameters like inlet pressure (1-8 bar) and initial pH (2.5-8) have been investigated initially. The effect of addition of Fenton's reagent at different loadings on the extent of degradation has also been investigated. The combined method of hydrodynamic cavitation and ozone has been studied using two approaches of injecting ozone in the solution tank and at the orifice (at the flow rate of 0.576 g/h and 1.95 g/h). About 50% degradation of triazophos was achieved by hydrodynamic cavitation alone under optimized operating parameters. About 80% degradation of triazophos was achieved by combination of hydrodynamic cavitation and Fenton's reagent whereas complete degradation was achieved using combination of hydrodynamic cavitation and ozonation. TOC removal of 96% was also obtained for the combination of ozone and hydrodynamic cavitation making it the best treatment strategy for removal of triazophos.

  6. Inhibition of oxidative phosphorylation suppresses the development of osimertinib resistance in a preclinical model of EGFR-driven lung adenocarcinoma.

    PubMed

    Martin, Matthew J; Eberlein, Cath; Taylor, Molly; Ashton, Susan; Robinson, David; Cross, Darren

    2016-12-27

    Metabolic plasticity is an emerging hallmark of cancer, and increased glycolysis is often observed in transformed cells. Small molecule inhibitors that target driver oncogenes can potentially inhibit the glycolytic pathway. Osimertinib (AZD9291) is a novel EGFR tyrosine kinase inhibitor (TKI) that is potent and selective for sensitising (EGFRm) and T790M resistance mutations. Clinical studies have shown osimertinib to be efficacious in patients with EGFRm/ T790M advanced NSCLC who have progressed after EGFR-TKI treatment. However experience with targeted therapies suggests that acquired resistance may emerge. Thus there is a need to characterize resistance mechanisms and to devise ways to prevent, delay or overcome osimertinib resistance. We show here that osimertinib suppresses glycolysis in parental EGFR-mutant lung adenocarcinoma lines, but has not in osimertinib-resistant cell lines. Critically, we show osimertinib treatment induces a strict dependence on mitochondrial oxidative phosphorylation (OxPhos), as OxPhos inhibitors significantly delay the long-term development of osimertinib resistance in osimertinib-sensitive lines. Accordingly, growth conditions which promote a less glycolytic phenotype confer a degree of osimertinib resistance. Our data support a model in which the combination of osimertinib and OxPhos inhibitors can delay or prevent resistance in osimertinib-naïve tumour cells, and represents a novel strategy that warrants further pre-clinical investigation.

  7. Inhibition of oxidative phosphorylation suppresses the development of osimertinib resistance in a preclinical model of EGFR-driven lung adenocarcinoma

    PubMed Central

    Martin, Matthew J.; Eberlein, Cath; Taylor, Molly; Ashton, Susan; Robinson, David; Cross, Darren

    2016-01-01

    Metabolic plasticity is an emerging hallmark of cancer, and increased glycolysis is often observed in transformed cells. Small molecule inhibitors that target driver oncogenes can potentially inhibit the glycolytic pathway. Osimertinib (AZD9291) is a novel EGFR tyrosine kinase inhibitor (TKI) that is potent and selective for sensitising (EGFRm) and T790M resistance mutations. Clinical studies have shown osimertinib to be efficacious in patients with EGFRm/ T790M advanced NSCLC who have progressed after EGFR-TKI treatment. However experience with targeted therapies suggests that acquired resistance may emerge. Thus there is a need to characterize resistance mechanisms and to devise ways to prevent, delay or overcome osimertinib resistance. We show here that osimertinib suppresses glycolysis in parental EGFR-mutant lung adenocarcinoma lines, but has not in osimertinib-resistant cell lines. Critically, we show osimertinib treatment induces a strict dependence on mitochondrial oxidative phosphorylation (OxPhos), as OxPhos inhibitors significantly delay the long-term development of osimertinib resistance in osimertinib-sensitive lines. Accordingly, growth conditions which promote a less glycolytic phenotype confer a degree of osimertinib resistance. Our data support a model in which the combination of osimertinib and OxPhos inhibitors can delay or prevent resistance in osimertinib-naïve tumour cells, and represents a novel strategy that warrants further pre-clinical investigation. PMID:27861144

  8. Responses to oxidative and heavy metal stresses in cyanobacteria: recent advances.

    PubMed

    Cassier-Chauvat, Corinne; Chauvat, Franck

    2014-12-31

    Cyanobacteria, the only known prokaryotes that perform oxygen-evolving photosynthesis, are receiving strong attention in basic and applied research. In using solar energy, water, CO2 and mineral salts to produce a large amount of biomass for the food chain, cyanobacteria constitute the first biological barrier against the entry of toxics into the food chain. In addition, cyanobacteria have the potential for the solar-driven carbon-neutral production of biofuels. However, cyanobacteria are often challenged by toxic reactive oxygen species generated under intense illumination, i.e., when their production of photosynthetic electrons exceeds what they need for the assimilation of inorganic nutrients. Furthermore, in requiring high amounts of various metals for growth, cyanobacteria are also frequently affected by drastic changes in metal availabilities. They are often challenged by heavy metals, which are increasingly spread out in the environment through human activities, and constitute persistent pollutants because they cannot be degraded. Consequently, it is important to analyze the protection against oxidative and metal stresses in cyanobacteria because these ancient organisms have developed most of these processes, a large number of which have been conserved during evolution. This review summarizes what is known regarding these mechanisms, emphasizing on their crosstalk.

  9. Responses to Oxidative and Heavy Metal Stresses in Cyanobacteria: Recent Advances

    PubMed Central

    Cassier-Chauvat, Corinne; Chauvat, Franck

    2014-01-01

    Cyanobacteria, the only known prokaryotes that perform oxygen-evolving photosynthesis, are receiving strong attention in basic and applied research. In using solar energy, water, CO2 and mineral salts to produce a large amount of biomass for the food chain, cyanobacteria constitute the first biological barrier against the entry of toxics into the food chain. In addition, cyanobacteria have the potential for the solar-driven carbon-neutral production of biofuels. However, cyanobacteria are often challenged by toxic reactive oxygen species generated under intense illumination, i.e., when their production of photosynthetic electrons exceeds what they need for the assimilation of inorganic nutrients. Furthermore, in requiring high amounts of various metals for growth, cyanobacteria are also frequently affected by drastic changes in metal availabilities. They are often challenged by heavy metals, which are increasingly spread out in the environment through human activities, and constitute persistent pollutants because they cannot be degraded. Consequently, it is important to analyze the protection against oxidative and metal stresses in cyanobacteria because these ancient organisms have developed most of these processes, a large number of which have been conserved during evolution. This review summarizes what is known regarding these mechanisms, emphasizing on their crosstalk. PMID:25561236

  10. Optimizing the electrical excitation of an atmospheric pressure plasma advanced oxidation process.

    PubMed

    Olszewski, P; Li, J F; Liu, D X; Walsh, J L

    2014-08-30

    The impact of pulse-modulated generation of atmospheric pressure plasma on the efficiency of organic dye degradation has been investigated. Aqueous samples of methyl orange were exposed to low temperature air plasma and the degradation efficiency was determined by absorbance spectroscopy. The plasma was driven at a constant frequency of 35kHz with a duty cycle of 25%, 50%, 75% and 100%. Relative concentrations of dissolved nitrogen oxides, pH, conductivity and the time evolution of gas phase ozone were measured to identify key parameters responsible for the changes observed in degradation efficiency. The results indicate that pulse modulation significantly improved dye degradation efficiency, with a plasma pulsed at 25% duty showing a two-fold enhancement. Additionally, pulse modulation led to a reduction in the amount of nitrate contamination added to the solution by the plasma. The results clearly demonstrate that optimization of the electrical excitation of the plasma can enhance both degradation efficiency and the final water quality.

  11. Advanced oxidation degradation kinetics as a function of ultraviolet LED duty cycle.

    PubMed

    Duckworth, Kelsey; Spencer, Michael; Bates, Christopher; Miller, Michael E; Almquist, Catherine; Grimaila, Michael; Magnuson, Matthew; Willison, Stuart; Phillips, Rebecca; Racz, LeeAnn

    2015-01-01

    Ultraviolet (UV) light emitting diodes (LEDs) may be a viable option as a UV light source for advanced oxidation processes (AOPs) utilizing photocatalysts or oxidizing agents such as hydrogen peroxide. The effect of UV-LED duty cycle, expressed as the percentage of time the LED is powered, was investigated in an AOP with hydrogen peroxide, using methylene blue (MB) to assess contaminant degradation. The UV-LED AOP degraded the MB at all duty cycles. However, adsorption of MB onto the LED emitting surface caused a linear decline in reactor performance over time. With regard to the effect of duty cycle, the observed rate constant of MB degradation, after being adjusted to account for the duty cycle, was greater for 5 and 10% duty cycles than higher duty cycles, providing a value approximately 160% higher at 5% duty cycle than continuous operation. This increase in adjusted rate constant at low duty cycles, as well as contaminant fouling of the LED surface, may impact design and operational considerations for pulsed UV-LED AOP systems.

  12. Solar-Enhanced Advanced Oxidation Processes for Water Treatment: Simultaneous Removal of Pathogens and Chemical Pollutants.

    PubMed

    Tsydenova, Oyuna; Batoev, Valeriy; Batoeva, Agniya

    2015-08-14

    The review explores the feasibility of simultaneous removal of pathogens and chemical pollutants by solar-enhanced advanced oxidation processes (AOPs). The AOPs are based on in-situ generation of reactive oxygen species (ROS), most notably hydroxyl radicals •OH, that are capable of destroying both pollutant molecules and pathogen cells. The review presents evidence of simultaneous removal of pathogens and chemical pollutants by photocatalytic processes, namely TiO2 photocatalysis and photo-Fenton. Complex water matrices with high loads of pathogens and chemical pollutants negatively affect the efficiency of disinfection and pollutant removal. This is due to competition between chemical substances and pathogens for generated ROS. Other possible negative effects include light screening, competitive photon absorption, adsorption on the catalyst surface (thereby inhibiting its photocatalytic activity), etc. Besides, some matrix components may serve as nutrients for pathogens, thus hindering the disinfection process. Each type of water/wastewater would require a tailor-made approach and the variables that were shown to influence the processes-catalyst/oxidant concentrations, incident radiation flux, and pH-need to be adjusted in order to achieve the required degree of pollutant and pathogen removal. Overall, the solar-enhanced AOPs hold promise as an environmentally-friendly way to substitute or supplement conventional water/wastewater treatment, particularly in areas without access to centralized drinking water or sewage/wastewater treatment facilities.

  13. Microwaves and their coupling to advanced oxidation processes: enhanced performance in pollutants degradation.

    PubMed

    Nascimento, Ulisses M; Azevedo, Eduardo B

    2013-01-01

    This review assesses microwaves (MW) coupled to advanced oxidation processes (AOPs) for pollutants degradation, as well as the basic theory and mechanisms of MW dielectric heating. We addressed the following couplings: MW/H2O2, MW/UV/H2O2, MW/Fenton, MW/US, and MW/UV/TiO2, as well as few studies that tested alternative oxidants and catalysts. Microwave Discharge Electrodeless Lamps (MDELs) are being extensively used with great advantages over ballasts. In their degradation studies, researchers generally employed domestic ovens with minor adaptations. Non-thermal effects and synergies between UV and MW radiation play an important role in the processes. Published papers so far report degradation enhancements between 30 and 1,300%. Unfortunately, how microwaves enhance pollutants is still obscure and real wastewaters scarcely studied. Based on the results surveyed in the literature, MW/AOPs are promising alternatives for treating/remediating environmental pollutants, whenever one considers high degradation yields, short reaction times, and small costs.

  14. Removal of artificial sweetener aspartame from aqueous media by electrochemical advanced oxidation processes.

    PubMed

    Lin, Heng; Oturan, Nihal; Wu, Jie; Sharma, Virender K; Zhang, Hui; Oturan, Mehmet A

    2017-01-01

    The degradation and mineralization of aspartame (ASP) in aqueous solution were investigated, for the first time, by electrochemical advanced oxidation processes (EAOPs) in which hydroxyl radicals were formed concomitantly in the bulk from Fenton reaction via in situ electrogenerated Fenton's reagent and at the anode surface from the water oxidation. Experiments were performed in an undivided cylindrical glass cell with a carbon-felt cathode and a Pt or boron-doped diamond (BDD) anode. The effect of Fe(2+) concentration and applied current on the degradation and mineralization kinetics of ASP was evaluated. The absolute rate constant for the reaction between ASP and OH was determined as (5.23 ± 0.02) × 10(9) M(-1) s(-1) by using the competition kinetic method. Almost complete mineralization of ASP was achieved with BDD anode at 200 mA constant current electrolysis. The formation and generation of the formed carboxylic acids (as ultimate end products before complete mineralization) and released inorganic ion were monitored by ion-exclusion high performance liquid chromatography (HPLC) and ion chromatography techniques, respectively. The global toxicity of the treated ASP solution during treatment was assessed by the Microtox(®) method using V. fischeri bacteria luminescence inhibition.

  15. Advanced oxidation treatment of pulp mill effluent for TOC and toxicity removals.

    PubMed

    Catalkaya, Ebru Cokay; Kargi, Fikret

    2008-05-01

    Pulp mill effluent was treated by different advanced oxidation processes (AOPs) consisting of UV, UV/H2O2, TiO2-assisted photo-catalysis (UV/TiO2) and UV/H2O2/TiO2 in lab-scale reactors for total organic carbon (TOC) and toxicity removals. Effects of some operating parameters such as the initial pH, oxidant and catalyst concentrations on TOC and toxicity removals were investigated. Almost every method resulted in some degree of TOC and toxicity removal from the pulp mill effluent. However, the TiO2-assisted photo-catalysis (UV/TiO2) resulted in the highest TOC and toxicity removals under alkaline conditions when compared with the other AOPs tested. Approximately, 79.6% TOC and 94% toxicity removals were obtained by the TiO2-assisted photo-catalysis (UV/TiO2) with a titanium dioxide concentration of 0.75gl(-1) at pH 11 within 60min.

  16. Amorphous mixed-metal hydroxide nanostructures for advanced water oxidation catalysts.

    PubMed

    Gao, Y Q; Liu, X Y; Yang, G W

    2016-03-07

    The design of highly efficient, durable, and earth-abundant catalysts for the oxygen evolution reaction (OER) is crucial in order to promote energy conversion and storage processes. Here, we synthesize amorphous mixed-metal (Ni-Fe) hydroxide nanostructures with a homogeneous distribution of Ni/Fe as well as a tunable Ni/Fe ratio by a simple, facile, green and low-cost electrochemical technique, and we demonstrate that the synthesized amorphous nanomaterials possess ultrahigh activity and super long-term cycle stability in the OER process. The amorphous Ni0.71Fe0.29(OH)x nanostructure affords a current density of 10 mA cm(-2) at an overpotential of a mere 0.296 V and a small Tafel slope of 58 mV dec(-1), while no deactivation is detected in the CV testing even up to 30 000 cycles, which suggests the promising application of these amorphous nanomaterials in electrochemical oxidation. Meanwhile, the distinct catalytic activities among these amorphous Ni-Fe hydroxide nanostructures prompts us to take notice of the composition of the alloy hydroxides/oxides when studying their catalytic properties, which opens an avenue for the rational design and controllable preparation of such amorphous nanomaterials as advanced OER electrocatalysts.

  17. Degradation and changes in toxicity and biodegradability of tetracycline during ozone/ultraviolet-based advanced oxidation.

    PubMed

    Luu, Huyen Trang; Lee, Kisay

    2014-01-01

    Advanced oxidation processes (AOPs) composed of O3, H2O2 and ultraviolet (UV) were applied to degrade tetracycline (TC). Degradation efficiency was evaluated in terms of changes in absorbance (ABS) and total organic carbon (TOC). The change in biotoxicity was monitored with Escherichia coli and Vibrio fischeri. The improvement in biodegradability during oxidation was demonstrated through 5-day biochemical oxygen demand/chemical oxygen demand ratio and aerobic biological treatment. The combination of O3/H2O2/UV and O3/UV showed the best performance for the reductions in ABS and TOC. However, mineralization and detoxification were not perfect under the experimental conditions that were used in this study. Therefore, for the ultimate treatment of TC compounds, it is suggested that AOP treatment is followed by biological treatment, utilizing enhanced biodegradability. In this study, aerobic biological treatment by Pseudomonas putida was performed for O3/UV-treated TC. It was confirmed that O3/UV treatment improved TOC reduction and facilitated complete mineralization in biological treatment.

  18. Treatment of winery wastewater by electrochemical methods and advanced oxidation processes.

    PubMed

    Orescanin, Visnja; Kollar, Robert; Nad, Karlo; Mikelic, Ivanka Lovrencic; Gustek, Stefica Findri

    2013-01-01

    The aim of this research was development of new system for the treatment of highly polluted wastewater (COD = 10240 mg/L; SS = 2860 mg/L) originating from vine-making industry. The system consisted of the main treatment that included electrochemical methods (electro oxidation, electrocoagulation using stainless steel, iron and aluminum electrode sets) with simultaneous sonication and recirculation in strong electromagnetic field. Ozonation combined with UV irradiation in the presence of added hydrogen peroxide was applied for the post-treatment of the effluent. Following the combined treatment, the final removal efficiencies of the parameters color, turbidity, suspended solids and phosphates were over 99%, Fe, Cu and ammonia approximately 98%, while the removal of COD and sulfates was 77% and 62%, respectively. A new approach combining electrochemical methods with ultrasound in the strong electromagnetic field resulted in significantly better removal efficiencies for majority of the measured parameters compared to the biological methods, advanced oxidation processes or electrocoagulation. Reduction of the treatment time represents another advantage of this new approach.

  19. Decolorization and degradation of reactive yellow HF aqueous solutions by electrochemical advanced oxidation processes.

    PubMed

    Bedolla-Guzman, A; Feria-Reyes, R; Gutierrez-Granados, S; Peralta-Hernández, Juan M

    2016-07-29

    Textile manufacturing is the one responsible for water bodies' contamination through the discharge of colored wastes. This work presents the study of reactive yellow HF (RYHF) dye degradation under two different electrochemical advanced oxidation processes (EAOP), namely anodic oxidation (AO) and electro-Fenton (EF)/boron-doped diamond (BDD) process. For the AO, 100 and 300 mg/L solutions using Pt and BDD as anodes in a 100 mL stirred tank cell were used, with a supporting electrolyte of 0.05 mol/L of Na2SO4 at pH 3 under 30 and 50 mA/cm(2) current density. The EF/BDD process was carried out in a flow reactor at 4 and 7 L/min to degrade 100, 200, and 300 mg/L RYHF solutions under 50 and 80 mA/cm(2). UV-Vis determinations were used for decolorization evaluation, while high-performance liquid chromatography (HPLC) method provided information on dye degradation rate.

  20. Inactivation of dinoflagellate Scripsiella trochoidea in synthetic ballast water by advanced oxidation processes.

    PubMed

    Yang, Zhishan; Jiang, Wenju; Zhang, Yi; Lim, T M

    2015-01-01

    Ship-borne ballast water contributes significantly to the transfer of non-indigenous species across aquatic environments. To reduce the risk of bio-invasion, ballast water should be treated before discharge. In this study, the efficiencies of several conventional and advanced oxidation processes were investigated for potential ballast water treatment, using a marine dinoflagellate species, Scripsiella trochoidea, as the indicator organism. A stable and consistent culture was obtained and treated by ultraviolet (UV) light, ozone (O3), hydrogen peroxide (H2O2), and their various combinations. UV apparently inactivated the cells after only 10 s of irradiation, but subsequently photo-reactivation of the cells was observed for all methods involving UV. O3 exhibited 100% inactivation efficiency after 5 min treatment, while H2O2 only achieved maximum 80% inactivation in the same duration. Combined methods, e.g. UV/O3 and UV/H2O2, were found to inhibit photo-reactivation and improve treatment efficiency to some degree, indicating the effectiveness of using combined treatment processes. The total residual oxidant (TRO) levels of the methods were determined, and the results indicated that UV and O3 generated the lowest and highest TRO, respectively. The synergic effect of combined processes on TRO generation was found to be insignificant, and thus UV/O3 was recommended as a potentially suitable treatment process for ballast water.

  1. Feasibility studies: UV/chlorine advanced oxidation treatment for the removal of emerging contaminants.

    PubMed

    Sichel, C; Garcia, C; Andre, K

    2011-12-01

    UV/chlorine (UV/HOCl and UV/ClO(2)) Advanced Oxidation Processes (AOPs) were assessed with varying process layout and compared to the state of the art UV/H(2)O(2) AOP. The process comparison focused on the economical and energy saving potential of the UV/chlorine AOP. Therefore the experiments were performed at technical scale (250 L/h continuous flow reactor) and at process energies, oxidant and model contaminant concentrations expected in full scale reference plants. As model compounds the emerging contaminants (ECs): desethylatrazine, sulfamethoxazole, carbamazepine, diclofenac, benzotriazole, tolyltriazole, iopamidole and 17α-ethinylestradiol (EE2) were degraded at initial compound concentrations of 1 μg/L in tap water and matrixes with increased organic load (46 mg/L DOC). UV/chlorine AOP organic by-product forming potential was assessed for trihalomethanes (THMs) and N-Nitrosodimethylamine (NDMA). A process design was evaluated which can considerably reduce process costs, energy consumption and by-product generation from UV/HOCl AOPs.

  2. Unexpected toxicity to aquatic organisms of some aqueous bisphenol A samples treated by advanced oxidation processes.

    PubMed

    Tišler, Tatjana; Erjavec, Boštjan; Kaplan, Renata; Şenilă, Marin; Pintar, Albin

    2015-01-01

    In this study, photocatalytic and catalytic wet-air oxidation (CWAO) processes were used to examine removal efficiency of bisphenol A from aqueous samples over several titanate nanotube-based catalysts. Unexpected toxicity of bisphenol A (BPA) samples treated by means of the CWAO process to some tested species was determined. In addition, the CWAO effluent was recycled five- or 10-fold in order to increase the number of interactions between the liquid phase and catalyst. Consequently, the inductively coupled plasma mass spectrometry (ICP-MS) analysis indicated higher concentrations of some toxic metals like chromium, nickel, molybdenum, silver, and zinc in the recycled samples in comparison to both the single-pass sample and the photocatalytically treated solution. The highest toxicity of five- and 10-fold recycled solutions in the CWAO process was observed in water fleas, which could be correlated to high concentrations of chromium, nickel, and silver detected in tested samples. The obtained results clearly demonstrated that aqueous samples treated by means of advanced oxidation processes should always be analyzed using (i) chemical analyses to assess removal of BPA and total organic carbon from treated aqueous samples, as well as (ii) a battery of aquatic organisms from different taxonomic groups to determine possible toxicity.

  3. Combined advanced oxidation and biological treatment processes for the removal of pesticides from aqueous solutions.

    PubMed

    Lafi, Walid K; Al-Qodah, Z

    2006-09-01

    Advanced oxidation processes were combined with biological treatment processes in this study to remove both pesticides and then the COD load from aqueous solutions. It was found that O(3) and O(3)/UV oxidation systems were able to reach 90 and 100%, removal of the pesticide Deltamethrin, respectively, in a period of 210 min. The use of O(3) combined with UV radiation enhances pesticides degradation and the residual pesticide reaches zero in the case of Deltamethrin. The combined O(3)/UV system can reduce COD up to 20% if the pH of the solution is above 4. Both pesticide degradation and COD removal in the combined O(3)/UV system follow the pseudo-first-order kinetics and the parameters of this model were evaluated. The application of the biological treatment to remove the bulk COD from different types of feed solution was investigated. More than 95% COD removal was achieved when treated wastewater by the O(3)/UV system was fed to the bioreactor. The parameters of the proposed Grau model were estimated.

  4. Solar-Enhanced Advanced Oxidation Processes for Water Treatment: Simultaneous Removal of Pathogens and Chemical Pollutants

    PubMed Central

    Tsydenova, Oyuna; Batoev, Valeriy; Batoeva, Agniya

    2015-01-01

    The review explores the feasibility of simultaneous removal of pathogens and chemical pollutants by solar-enhanced advanced oxidation processes (AOPs). The AOPs are based on in-situ generation of reactive oxygen species (ROS), most notably hydroxyl radicals •OH, that are capable of destroying both pollutant molecules and pathogen cells. The review presents evidence of simultaneous removal of pathogens and chemical pollutants by photocatalytic processes, namely TiO2 photocatalysis and photo-Fenton. Complex water matrices with high loads of pathogens and chemical pollutants negatively affect the efficiency of disinfection and pollutant removal. This is due to competition between chemical substances and pathogens for generated ROS. Other possible negative effects include light screening, competitive photon absorption, adsorption on the catalyst surface (thereby inhibiting its photocatalytic activity), etc. Besides, some matrix components may serve as nutrients for pathogens, thus hindering the disinfection process. Each type of water/wastewater would require a tailor-made approach and the variables that were shown to influence the processes—catalyst/oxidant concentrations, incident radiation flux, and pH—need to be adjusted in order to achieve the required degree of pollutant and pathogen removal. Overall, the solar-enhanced AOPs hold promise as an environmentally-friendly way to substitute or supplement conventional water/wastewater treatment, particularly in areas without access to centralized drinking water or sewage/wastewater treatment facilities. PMID:26287222

  5. Effects of advanced oxidation pretreatment on residual aluminum control in high humic acid water purification.

    PubMed

    Wang, Wendong; Li, Hua; Ding, Zhenzhen; Wang, Xiaochang

    2011-01-01

    Due to the formation of disinfection by-products and high concentrations of Al residue in drinking water purification, humic substances are a major component of organic matter in natural waters and have therefore received a great deal of attention in recent years. We investigated the effects of advanced oxidation pretreatment methods usually applied for removing dissolved organic matters on residual Al control. Results showed that the presence of humic acid increased residual Al concentration notably. With 15 mg/L of humic acid in raw water, the concentrations of soluble aluminum and total aluminum in the treated water were close to the quantity of Al addition. After increasing coagulant dosage from 12 to 120 mg/L, the total-Al in the treated water was controlled to below 0.2 mg/L. Purification systems with ozonation, chlorination, or potassium permanganate oxidation pretreatment units had little effects on residual Al control; while UV radiation decreased Al concentration notably. Combined with ozonation, the effects of UV radiation were enhanced. Optimal dosages were 0.5 mg O3/mg C and 3 hr for raw water with 15 mg/L of humic acid. Under UV light radiation, the combined forces or bonds that existed among humic acid molecules were destroyed; adsorption sites increased positively with radiation time, which promoted adsorption of humic acid onto polymeric aluminum and Al(OH)3(s). This work provides a new solution for humic acid coagulation and residual Al control for raw water with humic acid purification.

  6. Recent Advances in Superparamagnetic Iron Oxide Nanoparticles for Cellular Imaging and Targeted Therapy Research

    PubMed Central

    Wang, Yi-Xiang J.; Xuan, Shouhu; Port, Marc; Idee, Jean-Marc

    2013-01-01

    Advances of nanotechnology have led to the development of nanomaterials with both potential diagnostic and therapeutic applications. Among them, superparamagnetic iron oxide (SPIO) nanoparticles have received particular attention. Over the past decade, various SPIOs with unique physicochemical and biological properties have been designed by modifying the particle structure, size and coating. This article reviews the recent advances in preparing SPIOs with novel properties, the way these physicochemical properties of SPIOs influence their interaction with cells, and the development of SPIOs in liver and lymph nodes magnetic resonance imaging (MRI) contrast. Cellular uptake of SPIO can be exploited in a variety of potential clinical applications, including stem cell and inflammation cell tracking and intra-cellular drug delivery to cancerous cells which offers higher intra-cellular concentration. When SPIOs are used as carrier vehicle, additional advantages can be achieved including magnetic targeting and hyperthermia options, as well as monitoring with MRI. Other potential applications of SPIO include magnetofection and gene delivery, targeted retention of labeled stem cells, sentinel lymph nodes mapping, and magnetic force targeting and cell orientation for tissue engineering. PMID:23621536

  7. Decomposition of two haloacetic acids in water using UV radiation, ozone and advanced oxidation processes.

    PubMed

    Wang, Kunping; Guo, Jinsong; Yang, Min; Junji, Hirotsuji; Deng, Rongsen

    2009-03-15

    The decomposition of two haloacetic acids (HAAs), dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), from water was studied by means of single oxidants: ozone, UV radiation; and by the advanced oxidation processes (AOPs) constituted by combinations of O(3)/UV radiation, H(2)O(2)/UV radiation, O(3)/H(2)O(2), O(3)/H(2)O(2)/UV radiation. The concentrations of HAAs were analyzed at specified time intervals to elucidate the decomposition of HAAs. Single O(3) or UV did not result in perceptible decomposition of HAAs within the applied reaction time. O(3)/UV showed to be more suitable for the decomposition of DCAA and TCAA in water among the six methods of oxidation. Decomposition of DCAA was easier than TCAA by AOPs. For O(3)/UV in the semi-continuous mode, the effective utilization rate of ozone for HAA decomposition decreased with ozone addition. The kinetics of HAAs decomposition by O(3)/UV and the influence of coexistent humic acids and HCO(3)(-) on the decomposition process were investigated. The decomposition of the HAAs by the O(3)/UV accorded with the pseudo-first-order mode under the constant initial dissolved O(3) concentration and fixed UV radiation. The pseudo-first-order rate constant for the decomposition of DCAA was more than four times that for TCAA. Humic acids can cause the H(2)O(2) accumulation and the decrease in rate constants of HAAs decomposition in the O(3)/UV process. The rate constants for the decomposition of DCAA and TCAA decreased by 41.1% and 23.8%, respectively, when humic acids were added at a concentration of 1.2mgTOC/L. The rate constants decreased by 43.5% and 25.9%, respectively, at an HCO(3)(-) concentration of 1.0mmol/L.

  8. Insights into real cotton-textile dyeing wastewater treatment using solar advanced oxidation processes.

    PubMed

    Soares, Petrick A; Silva, Tânia F C V; Manenti, Diego R; Souza, Selene M A G U; Boaventura, Rui A R; Vilar, Vítor J P

    2014-01-01

    Different advanced oxidation processes (AOPs) were applied to the treatment of a real cotton-textile dyeing wastewater as a pre-oxidation step to enhance the biodegradability of the recalcitrant compounds, which can be further oxidized using a biological process. Tests were conducted on a lab-scale prototype using artificial solar radiation and at pilot scale with compound parabolic collectors using natural solar radiation. The cotton-textile dyeing wastewater presents a lilac color, with a maximum absorbance peak at 641 nm, alkaline pH (pH = 8.2), moderate organic content (DOC = 152 mg C L(-1), COD = 684 mg O2 L(-1)) and low-moderate biodegradability (40 % after 28 days in Zahn-Wellens test). All the tested processes contributed to an effective decolorization and mineralization, but the most efficient process was the solar-photo-Fenton with an optimum catalyst concentration of 60 mg Fe(2+) L(-1), leading to 98.5% decolorization and 85.5% mineralization after less than 0.1 and 5.8 kJUV L(-1), respectively. In order to achieve a final wastewater with a COD below 250 mg O2 L(-1) (discharge limit into water bodies imposed by the Portuguese Legislation-Portaria no. 423/97 of 25 June 1997), considering the combination of a solar-photo-Fenton reaction with a biological process, the phototreatment energy required is 0.5 kJUV L(-1), consuming 7.5 mM hydrogen peroxide, resulting in 58.4% of mineralization [Formula: see text].

  9. Manufacture and engine test of advanced oxide dispersion strengthened alloy turbine vanes. [for space shuttle thermal protection

    NASA Technical Reports Server (NTRS)

    Bailey, P. G.

    1977-01-01

    Oxide-Dispersion-strengthened (ODS) Ni-Cr-Al alloy systems were exploited for turbine engine vanes which would be used for the space shuttle thermal protection system. Available commercial and developmental advanced ODS alloys were evaluated, and three were selected based on established vane property goals and manufacturing criteria. The selected alloys were evaluated in an engine test. Candidate alloys were screened by strength, thermal fatigue resistance, oxidation and sulfidation resistance. The Ni-16Cr (3 to 5)Al-ThO2 system was identified as having attractive high temperature oxidation resistance. Subsequent work also indicated exceptional sulfidation resistance for these alloys.

  10. Advanced H2O2 oxidation for diethyl phthalate degradation in treated effluents: effect of nitrate on oxidation and a pilot-scale AOP operation.

    PubMed

    Ko, K B; Park, C G; Moon, T H; Ahn, Y H; Lee, J K; Ahn, K H; Park, J H; Yeom, I T

    2008-01-01

    One of the objectives of this study was to delineate the effect of nitrate on diethyl phthalate (DEP) oxidation by conducting a bench-scale ultraviolet (UV)/H2O2 and O3/H2O2 operations as suggested in a previous study. We also aim to investigate DEP oxidation at various UV doses and H2O2 concentrations by performing a pilot-scale advanced oxidation processes (AOP) system, into which a portion of the effluent from a pilot-scale membrane bioreactor (MBR) plant was pumped. In the bench-scale AOP operation, the O3 oxidation alone as well as the UV irradiation without H2O2 addition could be among the desirable alternatives for the efficient removal of DEP dissolved in aqueous solutions at a low DEP concentration range of 85+/-15 microg/L. The adverse effect in the UV/H2O2 process was significantly greater than that in the UV oxidation alone, and its oxidation was almost halved by the nitrate. However, the nitrate clearly enhanced the DEP oxidation in the O3 oxidation and O3/H2O2 process. Especially, the addition of nitrate almost doubled the DEP oxidation efficiency in the O3/H2O2 process. The series of pilot-scale AOP operations confirmed that about 30-50% of DEP dissolved in the treated MBR effluent streams was, at least, oxidized by the O3 oxidation alone as well as the UV irradiation without H2O2 addition. The UV photolysis of H2O2 was most effective for DEP degradation with an H2O2 concentration of 40 mg/L at a UV dose of 500 mJ/cm2.

  11. Effect Of Inorganic, Synthetic And Naturally Occurring Chelating Agents On Fe(II) Mediated Advanced Oxidation Of Chlorophenols

    EPA Science Inventory

    This study examines the feasibility and application of Advanced Oxidation Technologies (AOTs) for the treatment of chlorophenols that are included in US EPA priority pollutant list. A novel class of sulfate/hydroxyl radical-based homogeneous AOTs (Fe(II)/PS, Fe(II)/PMS, Fe(II)/H...

  12. ADVANCED OXIDATION PROCESSES (AOPS) FOR DESTRUCTION OF METHYL TERTIARY BUTYL ETHER (MTBE -AN UNREGULATED CONTAMINANT) IN DRINKING WATER

    EPA Science Inventory

    Advanced oxidation processes (AOPs) provide a promising treatment option for the destruction of MTBE directly in surface and ground waters. An ongoing study is evaluating the ability of three AOPs; hydrogen peroxide/ozone (H2O2/ O3), ultraviolet irradiation/ozone (UV/O3) and ultr...

  13. Mission-Driven Expected Impact: Assessing Scholarly Output for 2013 Association to Advance Collegiate Schools of Business Standards

    ERIC Educational Resources Information Center

    Goulet, Laurel R.; Lopes, Kevin J.; White, John Bryan

    2016-01-01

    As of the 2016-2017 academic year, all schools undergoing Association to Advance Collegiate Schools of Business accreditation will be assessed on the new standards that were ratified in 2013, which include the assessment of the impact of portfolios of intellectual contributions. The authors discuss key ideas underlying a business school's research…

  14. Advanced oxidation protein products are more related to metabolic syndrome components than biomarkers of lipid peroxidation.

    PubMed

    Venturini, Danielle; Simão, Andréa Name Colado; Dichi, Isaias

    2015-09-01

    Although advanced oxidation protein products (AOPPs) have been reported as the most appropriate parameter for determination of oxidative stress in patients with metabolic syndrome (MetS), a direct comparison between protein and lipid peroxidation has not been performed yet. The aim of this study was to compare protein peroxidation with lipid peroxidation measured by 2 different methodologies (tert-butyl hydroperoxide-initiated chemiluminescence and ferrous oxidation-xylenol orange assay). The hypothesis of this study was that AOPPs would be more related to MetS than to oxidative markers of lipid peroxidation. This cross-sectional study evaluated 76 patients with MetS and 20 healthy subjects. Prooxidant-antioxidant index (PAI) assessed as AOPP/total radical-trapping antioxidant parameter ratio progressively increased (P < .05) according to the number of MetS components, whereas AOPPs and total radical-trapping antioxidant parameter increased (P < .05) when 5 components were compared with 3 components. Spearman test showed a positive correlation between AOPPs and waist circumference (r = 0.318, P < .01), fasting glucose (r = 0.250, P < .05), homeostasis model assessment insulin resistance (r = 0.043, P < .01), triacylglycerol (r = 0.713, P < .0001), highly sensitive C-reactive protein (r = 0.275, P < .05), and uric acid (r = 0.356, P < .01), whereas there was an inverse correlation with high-density lipoprotein cholesterol (r = -0.399, P < .001). Prooxidant-antioxidant index demonstrated a positive correlation with waist circumference (r = 0.386, P < .01), fasting glucose (r = 0.388, P < .01), fasting insulin (r = 0.344, P < .05), homeostasis model assessment insulin resistance (r = 0.519, P < .001), triacylglycerol (r = 0.687, P < .0001), highly sensitive C-reactive protein (r = 0.278, P < .05), and uric acid (r = 0.557, P < .0001), whereas there was an inverse correlation with high-density lipoprotein cholesterol (r = -0.480, P < .0001). In conclusion, protein

  15. Advanced TEM characterization of oxide nanoparticles in ODS Fe–12Cr–5Al alloys

    SciTech Connect

    Unocic, Kinga A; Hoelzer, David T; Pint, Bruce A

    2016-01-01

    For oxide nanoparticles present in three oxide-dispersion-strengthened (ODS) Fe–12Cr–5Al alloys containing additions of (1) Y2O3 (125Y), (2) Y2O3 + ZrO2 (125YZ), and (3) Y2O3 + HfO2 (125YH), were investigated using transmission and scanning transmission electron microscopy. Furthermore, in all three alloys nano-sized (<3.5 nm) oxide particles distributed uniformly throughout the microstructure were characterized using advanced electron microscopy techniques. In the 125Y alloy, mainly Al2O3 and yttrium–aluminum garnet (YAG) phases (Y3Al5O12) were present, while in the 125YZ alloy, additional Zr(C,N) precipitates were identified. The 125YH alloy had the most complex precipitation sequence whereby in addition to the YAG and Al2O3 phases, Hf(C,N), Y2Hf2O7, and HfO2 precipitates were also found. The presence of HfO2 was mainly due to the incomplete incorporation of HfO2 powder during mechanical alloying of the 125YH alloy. The alloy having the highest total number density of the oxides, the smallest grain size, and the highest Vickers hardness was the 125YZ alloy indicating, that Y2O3 + ZrO2 additions had the strongest effect on grain size and tensile properties. Finally, high-temperature mechanical testing will be addressed in the near future, while irradiation studies are underway to investigate the irradiation resistance of these new ODS FeCrAl alloys.

  16. In Situ Atomic Scale Visualization Of Surface Kinetics Driven Dynamics Of Oxide Growth On A Ni–Cr Surface

    SciTech Connect

    Luo, Langli; Zou, Lianfeng; Schreiber, Daniel K.; Olszta, Matthew J.; Baer, Donald R.; Bruemmer, Stephen M.; Zhou, Guangwen; Wang, Chong M.

    2016-01-20

    We report in situ atomic-scale visualization of the dynamical three-dimensional (3D) growth of NiO during initial oxidation of Ni-10at%Cr using environmental transmission electron microscopy (ETEM). Despite the thermodynamic preference for Cr2O3 formation, cubic NiO oxides nucleated and grew epitaxially as the dominating oxide phase on the Ni-Cr (100) surface during initial oxidation. The growth of NiO islands proceeds through step-by-step adatom mechanism in 3D, which is sustained by surface diffusion of Ni and O atoms. Although the shapes of oxide islands are controlled by strain energy between oxide and alloy substrate, local surface kinetic variations can lead to the change of surface planes of oxide islands. These results demonstrate that surface diffusion dominates initial oxidation of Ni-Cr in these test conditions.

  17. Application of advanced oxidation processes for cleaning of industrial water generated in wet dedusting of shaft furnace gases.

    PubMed

    Czaplicka, Marianna; Kurowski, Ryszard; Jaworek, Katarzyna; Bratek, Łukasz

    2013-01-01

    The paper presents results of studies into advanced oxidation processes in 03 and 03/UV systems. An advanced oxidation process (AOP) was conducted to reduce the load of impurities in circulating waters from wet de-dusting of shaft furnace gases. Besides inorganic impurities, i.e. mainly arsenic compounds (16 g As L(-1) on average), lead, zinc, chlorides and sulphates, the waters also contain some organic material. The organic material is composed of a complex mixture that contains, amongst others, aliphatic compounds, phenol and its derivatives, pyridine bases, including pyridine, and its derivatives. The test results show degradation of organic and inorganic compounds during ozonation and photo-oxidation processes. Analysis of the solutions from the processes demonstrated that the complex organic material in the industrial water was oxidized in ozonation and in photo-oxidation, which resulted in formation of aldehydes and carboxylic acids. Kinetic degradation of selected pollutants is presented. Obtained results indicated that the O3/UV process is more effective in degradation of organic matter than ozonation. Depending on the process type, precipitation of the solid phase was observed. The efficiency of solid-phase formation was higher in photo-oxidation with ozone. It was found that the precipitated solid phase is composed mainly of arsenic, iron and oxygen.

  18. Optimization of stabilized leachate treatment using ozone/persulfate in the advanced oxidation process

    SciTech Connect

    Abu Amr, Salem S.; Aziz, Hamidi Abdul; Adlan, Mohd Nordin

    2013-06-15

    Highlights: ► Ozone and persulfate reagent (O{sub 3}/S{sub 2}O{sub 8}{sup 2-}) was used to treat stabilized leachate. ► Central composite design (CCD) with response surface methodology (RSM) was applied. ► Operating variables including ozone and persulfate dosage, pH variance, and reaction time. ► Optimum removal of COD, color, and NH{sub 3}–N was 72%, 96%, and 76%, respectively. ► A good value of ozone consumption (OC) obtained with 0.60 (kg O{sub 3}/kg COD). - Abstract: The objective of this study was to investigate the performance of employing persulfate reagent in the advanced oxidation of ozone to treat stabilized landfill leachate in an ozone reactor. A central composite design (CCD) with response surface methodology (RSM) was applied to evaluate the relationships between operating variables, such as ozone and persulfate dosages, pH, and reaction time, to identify the optimum operating conditions. Quadratic models for the following four responses proved to be significant with very low probabilities (<0.0001): COD, color, NH{sub 3}–N, and ozone consumption (OC). The obtained optimum conditions included a reaction time of 210 min, 30 g/m{sup 3} ozone, 1 g/1 g COD{sub 0}/S{sub 2}O{sub 8}{sup 2-} ratio, and pH 10. The experimental results were corresponded well with predicted models (COD, color, and NH{sub 3}–N removal rates of 72%, 96%, and 76%, respectively, and 0.60 (kg O{sub 3}/kg COD OC). The results obtained in the stabilized leachate treatment were compared with those from other treatment processes, such as ozone only and persulfate S{sub 2}O{sub 8}{sup 2-} only, to evaluate its effectiveness. The combined method (i.e., O{sub 3}/S{sub 2}O{sub 8}{sup 2-}) achieved higher removal efficiencies for COD, color, and NH{sub 3}–N compared with other studied applications. Furthermore, the new method is more efficient than ozone/Fenton in advanced oxidation process in the treatment of the same studied leachate.

  19. Porous nano-structured Co3O4 anode materials generated from coordination-driven self-assembled aggregates for advanced lithium ion batteries.

    PubMed

    Ge, Danhua; Geng, Hongbo; Wang, Jiaqing; Zheng, Junwei; Pan, Yue; Cao, Xueqin; Gu, Hongwei

    2014-08-21

    A simple and scalable coordination-derived method for the synthesis of porous Co3O4 hollow nanospheres is described here. The initially formed coordination-driven self-assembled aggregates (CDSAAs) could act as the precursor followed by calcination treatment. Then the porous hollow Co3O4 nanospheres are obtained, in which the primary Co3O4 nanoparticles are inter-dispersed. When the nanospheres are used as anode materials for lithium storage, they show excellent coulombic efficiency, high lithium storage capacity and superior cycling performance. In view of the facile synthesis and excellent electrochemical performance obtained, this protocol to fabricate special porous hollow frameworks could be further extended to other metal oxides and is expected to improve the practicality of superior cycle life anode materials with large volume excursions for the development of the next generation of LIBs.

  20. Removal of COD from a stabilized landfill leachate by physicochemical and advanced oxidative process.

    PubMed

    Cheibub, Ana F; Campos, Juacyara C; da Fonseca, Fabiana V

    2014-01-01

    This work investigated the effectiveness of a physicochemical and oxidative process for the removal of chemical oxygen demand (COD) from stabilized landfill leachates. The application of these technologies for landfill leachate treatment greatly depends on the optimal operating conditions for a specific leachate. Coagulation-flocculation followed by H2O2, Fenton and photo-Fenton processes was evaluated. Advanced oxidation processes were evaluated in the raw leachate and the leachate pretreated by coagulation-flocculation. Via the coagulation process, at 30 sec and a stirring speed of 150 rpm followed by flocculation and settling steps, 53% COD was removed at an optimal dose of 1400 mg L(-1) and pH 4.0. Moreover, from the POA evaluated, the Fenton process was determined to be the most effective process for removing COD from the leachate pretreated by coagulation-flocculation, reaching 83.3% COD removal with 1330 mg L(-1) of H2O2 and 266 mg L(-1) of Fe(2+). The photo-Fenton process applied directly to the raw effluent was effective for the removal of COD; a 75% reduction in COD was observed in tests using 2720 mg L(-1) of H2O2 and 544 mg L(-1) of Fe(2+). Due to the variability in the composition of the Gramacho landfill leachate, the combination of coagulation-flocculation and the Fenton process is an effective technology for reducing the COD in samples of this leachate.

  1. Medium-high frequency ultrasound and ozone based advanced oxidation for amoxicillin removal in water.

    PubMed

    Kıdak, Rana; Doğan, Şifa

    2017-01-28

    In this study, treatment of an antibiotic compound amoxicillin by medium-high frequency ultrasonic irradiation and/or ozonation has been studied. Ultrasonic irradiation process was carried out in a batch reactor for aqueous amoxicillin solutions at three different frequencies (575, 861 and 1141kHz). The applied ultrasonic power was 75W and the diffused power was calculated as 14.6W/L. The highest removal was achieved at 575kHz ultrasonic frequency (>99%) with the highest pseudo first order reaction rate constant 0.04min(-1) at pH 10 but the mineralization achieved was around 10%. Presence of alkalinity and humic acid species had negative effect on the removal efficiency (50% decrease). To improve the poor outcomes, ozonation had been applied with or without ultrasound. Ozone removed the amoxicillin at a rate 50 times faster than ultrasound. Moreover, due to the synergistic effect, coupling of ozone and ultrasound gave rise to rate constant of 2.5min(-1) (625 times higher than ultrasound). In the processes where ozone was used, humic acid did not show any significant effect because the rate constant was so high that ozone has easily overcome the scavenging effects of natural water constituents. Furthermore, the intermediate compounds, after the incomplete oxidation mechanisms, has been analyzed to reveal the possible degradation pathways of amoxicillin through ultrasonic irradiation and ozonation applications. The outcomes of the intermediate compounds experiments and the toxicity was investigated to give a clear explanation about the safety of the resulting solution. The relevance of all the results concluded that hybrid advanced oxidation system was the best option for amoxicillin removal.

  2. Advanced glycation end products, oxidative stress and metalloproteinases are altered in the cerebral microvasculature during aging.

    PubMed

    Safciuc, Florentina; Constantin, Alina; Manea, Adrian; Nicolae, Manuela; Popov, Doina; Raicu, Monica; Alexandru, Dorin; Constantinescu, Elena

    2007-11-01

    Biological aging is associated with an increased incidence of cerebrovascular disease. Recent findings indicate that oxidative stress promoting age-related changes of cerebral circulation are involved in neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease. The aim of this study was to evaluate the contribution of cerebral microvessels to the oxidative stress during brain aging, by: (i) assessment of precursors for advanced glycation end products (AGE) formation, (ii) activities of antioxidant enzymes, namely superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione disulfide reductase (GR), and (iii) the activities of metalloproteinases (MMPs), MMP-2 and MMP-9, involved in synaptogenesis and memory consolidation. The experiments were performed on two groups of male Wistar rats: 15 young (3-6 months old) and 15 aged (18-24 months old) animals. The cerebral microvessels were isolated by mechanical homogenization, the concentration of protein carbonyls and the activity of antioxidant enzymes were evaluated by spectrophotometry, and gelatin SDS-PAGE zymography was employed to evaluate MMP-2 and MMP-9 activities. The results showed that, by comparison with young rats, aged brain microvessels contain: (i) approximately 106 % increase of protein carbonyls production; (ii) approximately 68% higher GPx activity, unmodified activities of SOD and GR; (iii) approximately 30% diminishment in MMP-2 activity, and the specific occurrence of MMP-9 enzyme. The data suggest that the age-related changes of microvessels could increase the propensity for cerebral diseases and might represent, at least in part, a prerequisite for the deterioration of mental and physical status in the elderly.

  3. Advanced treatment of wet-spun acrylic fiber manufacturing wastewater using three-dimensional electrochemical oxidation.

    PubMed

    Zheng, Tianlong; Wang, Qunhui; Shi, Zhining; Fang, Yue; Shi, Shanshan; Wang, Juan; Wu, Chuanfu

    2016-12-01

    A three-dimensional electrochemical oxidation (3D-EC) reactor with introduction of activated carbon (AC) as particle micro-electrodes was applied for the advanced treatment of secondary wastewater effluent of a wet-spun acrylic fiber manufacturing plant. Under the optimized conditions (current density of 500A/m(2), circulation rate of 5mL/min, AC dosage of 50g, and chloride concentration of 1.0g/L), the average removal efficiencies of chemical oxygen demand (CODcr), NH3-N, total organic carbon (TOC), and ultraviolet absorption at 254nm (UV254) of the 3D-EC reactor were 64.5%, 60.8%, 46.4%, and 64.8%, respectively; while the corresponding effluent concentrations of CODcr, NH3-N, TOC, and UV254 were 76.6, 20.1, and 42.5mg/L, and 0.08Abs/cm, respectively. The effluent concentration of CODcr was less than 100mg/L, which showed that the treated wastewater satisfied the demand of the integrated wastewater discharge standard (GB 8978-1996). The 3D-EC process remarkably improved the treatment efficiencies with synergistic effects for CODcr, NH3-N, TOC, and UV254 during the stable stage of 44.5%, 38.8%, 27.2%, and 10.9%, respectively, as compared with the sum of the efficiencies of a two-dimensional electrochemical oxidation (2D-EC) reactor and an AC adsorption process, which was ascribed to the numerous micro-electrodes of AC in the 3D-EC reactor. Gas chromatography mass spectrometry (GC-MS) analysis revealed that electrochemical treatment did not generate more toxic organics, and it was proved that the increase in acute biotoxicity was caused primarily by the production of free chlorine.

  4. Applicability of fluidized bed reactor in recalcitrant compound degradation through advanced oxidation processes: a review.

    PubMed

    Tisa, Farhana; Abdul Raman, Abdul Aziz; Wan Daud, Wan Mohd Ashri

    2014-12-15

    Treatment of industrial waste water (e.g. textile waste water, phenol waste water, pharmaceutical etc) faces limitation in conventional treatment procedures. Advanced oxidation processes (AOPs) do not suffer from the limits of conventional treatment processes and consequently degrade toxic pollutants more efficiently. Complexity is faced in eradicating the restrictions of AOPs such as sludge formation, toxic intermediates formation and high requirement for oxidants. Increased mass-transfer in AOPs is an alternate solution to this problem. AOPs combined with Fluidized bed reactor (FBR) can be a potential choice compared to fixed bed or moving bed reactor, as AOP catalysts life-span last for only maximum of 5-10 cycles. Hence, FBR-AOPs require lesser operational and maintenance cost by reducing material resources. The time required for AOP can be minimized using FBR and also treatable working volume can be increased. FBR-AOP can process from 1 to 10 L of volume which is 10 times more than simple batch reaction. The mass transfer is higher thus the reaction time is lesser. For having increased mass transfer sludge production can be successfully avoided. The review study suggests that, optimum particle size, catalyst to reactor volume ratio, catalyst diameter and liquid or gas velocity is required for efficient FBR-AOP systems. However, FBR-AOPs are still under lab-scale investigation and for industrial application cost study is needed. Cost of FBR-AOPs highly depends on energy density needed and the mechanism of degradation of the pollutant. The cost of waste water treatment containing azo dyes was found to be US$ 50 to US$ 500 per 1000 gallons where, the cost for treating phenol water was US$ 50 to US$ 800 per 1000 gallons. The analysis for FBR-AOP costs has been found to depend on the targeted pollutant, degradation mechanism (zero order, 1st order and 2nd order) and energy consumptions by the AOPs.

  5. Formation of nitroaromatic compounds in advanced oxidation processes: Photolysis versus photocatalysis

    SciTech Connect

    Dzengel, J.; Theurich, J.; Bahnemann, D.W.

    1999-01-15

    There is a growing demand for efficient treatment of organic polluted wastewaters by advanced oxidation processes (AOPs). Besides optimization of the processes, the detailed understanding of degradation mechanisms and interactions of organic pollutants with inorganic substrates is important for technical applications of AOPs. Therefore, the aim of the present study was to investigate the influence of nitrate ions on the photooxidation of phenol for various AOPs at different pH values. Three different oxidation processes were compared in these studies: direct photolysis, TiO{sub 2}/UV, and H{sub 2}O{sub 2}/UV. Special emphasis has been laid on the analysis of byproducts especially on the formation of nitroaromatic compounds. The formation of intermediates as well as the depletion of phenol were monitored by HPLC technique. The total organic carbon content, TOC, was measured to monitor the mineralization. Highest degradation rates and lowest concentrations of intermediates were observed with TiO{sub 2}/UV being the AOP. Formation of highly toxic nitrophenols was only observed when homogeneous AOPs were employed. For the TiO{sub 2}/UV process no formation of Nitroaromatic byproducts occurred. At pH 5 formation of nitrophenols was observed employing direct photolysis in the presence of NO{sub 2}{sup {minus}}, while with H{sub 2}O{sub 2}/UV nitrophenols were detected only when the concentration of NO{sub 2}{sup {minus}} was higher than that of H{sub 2}O{sub 2}. At pH 11 no nitroaromatic intermediates were found for any AOPs compared in this study.

  6. [Effects of organic pollutants in drinking water on the removal of dimethyl phthalate by advanced oxidation processes].

    PubMed

    Rui, Min; Gao, Nai-yun; Xu, Bin; Li, Fu-sheng; Zhao, Jian-fu; Le, Lin-sheng

    2006-12-01

    Humic acids were used to simulate natural organic compounds in water for the investigation of DMP oxidation by three different AOPs (advanced oxidation processes) of UV-H2O2, O3 and UV-O3. The results showed that pseudo-first-order reaction equation could describe the oxidation of DMP by UV-H2O2 perfectly, which was strongly affected humic acids in water. The relationship between pseudo-first-order reaction rate and TOC value could be expressed as K = 0. 162 0 [TOC]-0.8171. It was also found that humic acids in the water exhibited obvious influence on the oxidation of DMP by UV-O3. However, effect of humic acids on the oxidation of DMP by ozone was not obvious. It was also analyzed that oxidation of DMP was dominated by ozone oxidation both in ozonation process and UV-O3 process; the importance of "OH in the oxidation of DMP was enhanced as the concentration of DMP decreased in UV-O3 process. The degree of impact form humic acids towards different AOPs could be ranked in a decreasing order as UV-H2O3, UV-O3, 03.

  7. Dechlorination of chlorophenols found in pulp bleach plant E-1 effluents by advanced oxidation processes.

    PubMed

    Wang, Rui; Chen, Chen-Loung; Gratzl, Josef S

    2005-05-01

    Studies were conducted on the response of 2,4,6-trichlorophenol (1), 2,3,4,5-tetrachloro-phenol (2) and 4,5-dichloroguaiacol (3) toward advanced oxidation processes, such as UV-, O2/UV-, H2O2/UV-, O3/UV- and O3-H2O2/UV-photolyses with irradiation of 254 nm photons. The compounds 1-3 are among the chlorophenols found in the Kraft-pulp bleach plant E-1 effluents. The studies were extended to treatment of these compounds with ozonation and O3-H2O2 oxidation systems in alkaline aqueous solution. Except for the O2/UV-photolysis of 1 and H2O2/UV-photolysis of 2, the dechlorination of 1-3 by O2/UV- and H2O2/UV-potolyses were less effective than the corresponding N2UV-potolysis of 1-3. Guaiacol-type chlorophenols were more readily able to undergo dechlorination than non-guaiacol type chlorophenols by N2/UV-, O2/UV- and H2O2/UV-potolyses. In addition, the efficiency for the dechlorination of 1-3 by N2/UV-, O2/UV- and H2O2/UV-potolyses appeared to be dependent upon the inductive and resonance effects of substituents as well as number and position of chlorine substituent in the aromatic ring of the compounds. The dechlorination of 2 by treatment with O3 alone is slightly more effective than the corresponding the O3/UV-photlysis, whereas the dechlorination of 2 by treatment with the combination of O3 and H2O2 was slightly less effective than the corresponding O3-H2O2/UV-photolysis. In contrast, the dechlorination of 3 on treatment with O3 alone was slightly less effective than the corresponding the O3/UV-photolysis, whereas the dechlorination of 3 on treatment with the combination of O3 and H2O2 was slightly more effective than the corresponding the O3-H2O2/UV-photolysis. In the dechlorination of 2 and 3, chemical species derived from ozone and hydrogen peroxide in alkaline solution were dominant reactions in the O3/UV- and O3-H2O2/UV-photolysis systems as in the O3 and O3-H2O2 oxidation systems. Possible dechlorination mechanisms involved were discussed on the basis of

  8. Development of nanomaterial-enabled advanced oxidation techniques for treatment of organic micropollutants

    NASA Astrophysics Data System (ADS)

    Oulton, Rebekah Lynn

    Increasing demand for limited fresh water resources necessitates that alternative water sources be developed. Nonpotable reuse of treated wastewater represents one such alternative. However, the ubiquitous presence of organic micropollutants such as pharmaceuticals and personal care products (PPCPs) in wastewater effluents limits use of this resource. Numerous investigations have examined PPCP fate during wastewater treatment, focusing on their removal during conventional and advanced treatment processes. Analysis of influent and effluent data from published studies reveals that at best 1-log10 concentration unit of PPCP removal can generally be achieved with conventional treatment. In contrast, plants employing advanced treatment methods, particularly ozonation and/or membranes, remove most PPCPs often to levels below analytical detection limits. However, membrane treatment is cost prohibitive for many facilities, and ozone treatment can be very selective. Ozone-recalcitrant compounds require the use of Advanced Oxidation Processes (AOPs), which utilize highly reactive hydroxyl radicals (*OH) to target resistant pollutants. Due to cost and energy use concerns associated with current AOPs, alternatives such as catalytic ozonation are under investigation. Catalytic ozonation uses substrates such as activated carbon to promote *OH formation during ozonation. Here, we show that multi-walled carbon nanotubes (MWCNTs) represent another viable substrate, promoting *OH formation during ozonation to levels exceeding activated carbon and equivalent to conventional ozone-based AOPs. Via a series of batch reactions, we observ a strong correlation between *OH formation and MWCNT surface oxygen concentrations. Results suggest that deprotonated carboxyl groups on the CNT surface are integral to their reactivity toward ozone and corresponding *OH formation. From a practical standpoint, we show that industrial grade MWCNTs exhibit similar *OH production as their research

  9. Cork boiling wastewater treatment and reuse through combination of advanced oxidation technologies.

    PubMed

    Ponce-Robles, L; Miralles-Cuevas, S; Oller, I; Agüera, A; Trinidad-Lozano, M J; Yuste, F J; Malato, S

    2016-08-12

    Industrial preparation of cork consists of its immersion for approximately 1 hour in boiling water. The use of herbicides and pesticides in oak tree forests leads to absorption of these compounds by cork; thus, after boiling process, they are present in wastewater. Cork boiling wastewater shows low biodegradability and high acute toxicity involving partial inhibition of their biodegradation when conventional biological treatment is applied. In this work, a treatment line strategy based on the combination of advanced physicochemical technologies is proposed. The final objective is the reuse of wastewater in the cork boiling process; thus, reducing consumption of fresh water in the industrial process itself. Coagulation pre-treatment with 0.5 g/L of FeCl3 attained the highest turbidity elimination (86 %) and 29 % of DOC elimination. Similar DOC removal was attained when using 1 g/L of ECOTAN BIO (selected for ozonation tests), accompanied of 64 % of turbidity removal. Ozonation treatments showed less efficiency in the complete oxidation of cork boiling wastewater, compared to solar photo-Fenton process, under the studied conditions. Nanofiltration system was successfully employed as a final purification step with the aim of obtaining a high-quality reusable permeate stream. Monitoring of unknown compounds by LC-QTOF-MS allowed the qualitative evaluation of the whole process. Acute and chronic toxicity as well as biodegradability assays were performed throughout the whole proposed treatment line.

  10. Using advanced oxidation treatment for biofilm inactivation by varying water vapor content in air plasma

    NASA Astrophysics Data System (ADS)

    Ryota, Suganuma; Koichi, Yasuoka

    2015-09-01

    Biofilms are caused by environmental degradation in food factories and medical facilities. The inactivation of biofilms involves making them react with chemicals including chlorine, hydrogen peroxide, and ozone, although inactivation using chemicals has a potential problem because of the hazardous properties of the residual substance and hydrogen peroxide, which have slow reaction velocity. We successfully performed an advanced oxidation process (AOP) using air plasma. Hydrogen peroxide and ozone, which were used for the formation of OH radicals in our experiment, were generated by varying the amount of water vapor supplied to the plasma. By varying the content of the water included in the air, the main product was changed from air plasma. When we increased the water content in the air, hydrogen peroxide was produced, while ozone peroxide was produced when we decreased the water content in the air. By varying the amount of water vapor, we realized a 99.9% reduction in the amount of bacteria in the biofilm when we discharged humidified air only. This work was supported by JSPS KAKENHI Grant Number 25630104.

  11. Conventional and advanced oxidation processes used in disinfection of treated urban wastewater.

    PubMed

    Rodríguez-Chueca, J; Ormad, M P; Mosteo, R; Sarasa, J; Ovelleiro, J L

    2015-03-01

    The purpose of the current study is to compare the inactivation of Escherichia coli in wastewater effluents using conventional treatments (chlorination) and advanced oxidation processes (AOPs) such as UV irradiation, hydrogen peroxide (H2O2)/solar irradiation, and photo-Fenton processes. In addition, an analysis of the operational costs of each treatment is carried out taking into account the optimal dosages of chemicals used. Total inactivation of bacteria (7.5 log) was achieved by means of chlorination and UV irradiation. However, bacterial regrowth was observed 6 hours after the completion of UV treatment, obtaining a disinfection value around 3 to 4 log. On the other hand, the combination H2O2/solar irradiation achieved a maximum inactivation of E. coli of 3.30 ± 0.35 log. The photo-Fenton reaction achieved a level of inactivation of 4.87 ± 0.10 log. The order of disinfection, taking into account the reagent/cost ratio of each treatment, is as follows: chlorination > UV irradiation > photo-Fenton > H2O2/sunlight irradiation.

  12. Removal of natural organic matter from drinking water by advanced oxidation processes.

    PubMed

    Matilainen, Anu; Sillanpää, Mika

    2010-06-01

    Over the past 10-20years the amount of the natural organic matter (NOM) has been increased in raw water supplies on several areas. The presence of NOM causes many problems in drinking water treatment processes, including: (i) negative effect on water quality by colour, taste and odor problems, (ii) increased coagulant and disinfectant dose requirements (which in turn results increased sludge and potential harmful disinfection by-product formation), (iii) promoted biological growth in distribution system, and (iv) increased levels of complexed heavy metals and adsorbed organic pollutants. Thus, more efficient methods for the removal of NOM have emerged. Among these are advanced oxidation processes (AOPs). These include O(3)/H(2)O(2), O(3)/UV, UV/H(2)O(2), TiO(2)/UV, H(2)O(2)/catalyst, Fenton and photo-Fenton prosesses as well as ultrasound. In the present work, an overview of the recent research studies dealing with AOP methods for the removal of NOM and related compounds from drinking water is presented.

  13. Response surface methodology for ozonation of trifluralin using advanced oxidation processes in an airlift photoreactor

    NASA Astrophysics Data System (ADS)

    Behin, J.; Farhadian, N.

    2016-06-01

    Degradation of trifluralin, as a wide used pesticide, was investigated by advance oxidation process comprising O3/UV/H2O2 in a concentric tube airlift photoreactor. Main and interactive effects of three independent factors including pH (5-9), superficial gas velocity (0.05-0.15 cm/s) and time (20-60 min) on the removal efficiency were assessed using central composite face-centered design and response surface method (RSM). The RSM allows to solve multivariable equations and to estimate simultaneously the relative importance of several contributing parameters even in the presence of complex interaction. Airlift photoreactor imposed a synergistic effect combining good mixing intensity merit with high ozone transfer rate. Mixing in the airlift photoreactor enhanced the UV light usage efficiency and its availability. Complete degradation of trifluralin was achieved under optimum conditions of pH 9 and superficial gas velocity 0.15 cm/s after 60 min of reaction time. Under these conditions, degradation of trifluralin was performed in a bubble column photoreactor of similar volume and a lower efficiency was observed.

  14. Energy efficient--advanced oxidation process for treatment of cyanide containing automobile industry wastewater.

    PubMed

    Mudliar, R; Umare, S S; Ramteke, D S; Wate, S R

    2009-05-30

    Destruction of cyanide (CN) from an automobile industry wastewater by advance oxidation process (AOP) has been evaluated. The operating conditions (in an indigenously designed photoreactor) for three different treatment strategies have been optimized. The treatment strategies involved use of, ultra violet light (UV), hydrogen peroxide (H(2)O(2)) and ozone (O(3)) in various combinations. Treatment of automobile industry wastewater (250 mg/L CN) showed fastest CN destruction, which was significantly (P<0.05) faster than that observed with synthetic wastewater (with similar CN concentration). A combined application of H(2)O(2)/O(3) was found to be the best option for maximum CN destruction. This treatment allows CN to reach the regional/international limit (of 0.02 mg/L) for safe industrial wastewater discharges to the receiving water bodies. The specific energy consumption by the photoreactor following this treatment was comparable to that obtained by conventional treatments, which use photocatalyst. Since the present treatment does not use catalyst, it provides an excellent energy efficient and economical option for treatment and safe disposal of CN containing industrial wastewater.

  15. Measurement of hydrogen peroxide in an advanced oxidation process using an automated biosensor.

    PubMed

    Modrzejewska, B; Guwy, A J; Dinsdale, R; Hawkes, D L

    2007-01-01

    A hydrogen peroxide biosensor was used to monitor hydrogen peroxide concentrations in a UV/hydrogen peroxide immobilised Fenton advanced oxidation process (AOP). The biosensor is based on gas phase monitoring and thus is more resistant to fouling from the liquid phase constituents of industrial processes. The biosensor is supplied with catalase continually, therefore overcoming any problems with enzyme degradation, which would occur in an immobilised enzyme biosensor. The biosensors response was linear within the experimental range 30-400mg H(2)O(2)l(-1) with a R(2) correlation of 0.99. The hydrogen peroxide monitor was used to monitor residual peroxide in an AOP, operated with a step overload of hydrogen peroxide, with correlation factors of 0.96-0.99 compared to offline hydrogen peroxide determinations by UV spectroscopy. Sparging the sample with nitrogen was found to be effective in reducing the interference from dissolved gases produced with the AOP itself. It is proposed that this biosensor could be used to improve the effectiveness of AOPs via hydrogen peroxide control.

  16. Removal of emerging contaminants in sewage water subjected to advanced oxidation with ozone.

    PubMed

    Ibáñez, M; Gracia-Lor, E; Bijlsma, L; Morales, E; Pastor, L; Hernández, F

    2013-09-15

    Advanced oxidation processes (AOP) based on ozone treatments, assisted by ultrasounds, have been investigated at a pilot-plant scale in order to evaluate the removal of emerging contaminants in sewage water. Around 60 emerging contaminants, mainly pharmaceuticals from different therapeutically classes and drugs of abuse, have been determined in urban wastewater samples (treated and untreated) by LC-MS/MS. In a first step, the removal efficiency of these contaminants in conventional sewage water treatment plants was evaluated. Our results indicate that most of the compounds were totally or partially removed during the treatment process of influent wastewater. Up to 30 contaminants were quantified in the influent and effluent samples analysed, being antibiotics, anti-inflammatories, cholesterol lowering statin drugs and angiotensin II receptor antagonists the most frequently detected. Regarding drugs of abuse, cocaine and its metabolite benzoylecgonine were the most frequent. In a second step, the effectiveness of AOP in the removal of emerging contaminants remaining in the effluent was evaluated. Ozone treatments have been proven to be highly efficient in the removal, notably decreasing the concentrations for most of the emerging contaminants present in the water samples. The use of ultrasounds, alone or assisting ozone treatments, has been shown less effective, being practically unnecessary.

  17. LiNiFe-based layered structure oxide and composite for advanced single layer fuel cells

    NASA Astrophysics Data System (ADS)

    Zhu, Bin; Fan, Liangdong; Deng, Hui; He, Yunjune; Afzal, Muhammad; Dong, Wenjing; Yaqub, Azra; Janjua, Naveed K.

    2016-06-01

    A layered structure metal oxide, LiNi0.1Fe0.90O2-δ (LNF), is explored for the advanced single layer fuel cells (SLFCs). The temperature dependent impedance profiles and concentration cells (hydrogen concentration, oxygen concentration, and H2/air atmospheres) tests prove LNF to be an intrinsically electronic conductor in air while mixed electronic and proton conductor in H2/air environment. SLFCs constructed by pure LNF materials show significant short circuiting reflected by a low device OCV and power output (175 mW cm-2 at 500 °C) due to high intrinsic electronic conduction. The power output is improved up to 640 and 760 mW cm-2, respectively at 500 and 550 °C by compositing LNF with ion conducting material, e.g., samarium doped ceria (SDC), to balance the electronic and ionic conductivity; both reached at 0.1 S cm-1 level. Such an SLFC gives super-performance and simplicity over the conventional 3-layer (anode, electrolyte and cathode) FCs, suggesting strong scientific and commercial impacts.

  18. Use of advanced oxidation processes to improve the biodegradability of mature landfill leachates.

    PubMed

    de Morais, Josmaria Lopes; Zamora, Patricio Peralta

    2005-08-31

    Two advanced oxidative processes (Fe2+/H2O2/UV and H2O2/UV systems) were used for the pre-treatment of mature landfill leachate with the objective of improving its overall biodegradability, evaluated in terms of BOD5/COD ratio, up to a value compatible with biological treatment. At optimized experimental conditions (2000 mgL(-1) of H2O2 and 10 mgL(-1) of Fe2+ for the photo-Fenton system, and 3000 mgL(-1) of H2O2 for the H2O2/UV system), both methods showed suitability for partial removal of chemical oxygen demand (COD), total organic carbon (TOC) and color. The biodegradability was significantly improved (BOD5/COD from 0.13 to 0.37 or 0.42) which allowed an almost total removal of COD and color by a sequential activated sludge process. In addition, gel permeation chromatography (GPC) has showed a substantial agreement on the cleavage of large organic compound into smaller ones.

  19. Formation of disinfection by-products in the ultraviolet/chlorine advanced oxidation process.

    PubMed

    Wang, Ding; Bolton, James R; Andrews, Susan A; Hofmann, Ron

    2015-06-15

    Disinfection by-product (DBP) formation may be a concern when applying ultraviolet light and free chlorine (UV/chlorine) as an advanced oxidation process (AOP) for drinking water treatment, due to typically large chlorine doses (e.g. 5-10 mg L(-1) as free chlorine). A potential mitigating factor is the low chlorine contact times for this AOP treatment (e.g. seconds). Full-scale and pilot-scale test results showed minimal trihalomethane (THM) and haloacetic acid (HAA) formation during UV/chlorine treatment, while dichloroacetonitrile (DCAN) and bromochloroacetonitrile (BCAN) were produced rapidly. Adsorbable organic halide (AOX) formation was significant when applying the UV/chlorine process in water that had not been previously chlorinated, while little additional formation was observed in prechlorinated water. Chlorine photolysis led to chlorate and bromate formation, equivalent to approximately 2-17% and 0.01-0.05% of the photolyzed chlorine, respectively. No perchlorate or chlorite formation was observed. During simulated secondary disinfection of AOP-treated water, DBP formation potential for THMs, HAAs, HANs, and AOX was observed to increase approximately to the same extent as was observed for pretreatment using the more common AOP of UV combined with hydrogen peroxide (UV/H2O2).

  20. Evaluation of the relationship between bulk organic precursors and disinfection byproduct formation for advanced oxidation processes.

    PubMed

    Mayer, Brooke K; Daugherty, Erin; Abbaszadegan, Morteza

    2015-02-01

    Advanced oxidation processes (AOPs) are gaining traction as they offer mineralization potential rather than transferring contaminants between media. However, AOPs operated with limited energy and/or chemical inputs can exacerbate disinfection byproduct (DBP) formation, even as precursors such as dissolved organic carbon, UV254, and specific UV absorbance (SUVA) decrease. This study examined the relationship between DBP precursors and formation using TiO2 photocatalysis experiments, external AOP and non-AOP data, and predictive DBP models. The top-performing indicator, SUVA, generally correlated positively with trihalomethanes and haloacetic acids, but limited-energy photocatalysis yielded contrasting negative correlations. The accuracy of predicted DBP values from models based on bulk parameters was generally poor, regardless of use and extent of AOP treatment and type of source water. Though performance improved for scenarios bounded by conditions used in model development, only 0.5% of the model/dataset pairings satisfied all measured parameter boundary conditions, thereby introducing skepticism toward model usefulness. Study findings suggest that caution should be employed when using bulk indicators and/or models as a metric for AOP mitigation of DBP formation potential, particularly for limited-energy/chemical inputs.

  1. Advanced oxidation of a commercially important nonionic surfactant: investigation of degradation products and toxicity.

    PubMed

    Karci, Akin; Arslan-Alaton, Idil; Bekbolet, Miray

    2013-12-15

    The evolution of degradation products and changes in acute toxicity during advanced oxidation of the nonionic surfactant nonylphenol decaethoxylate (NP-10) with the H2O2/UV-C and photo-Fenton processes were investigated. H2O2/UV-C and photo-Fenton processes ensured complete removal of NP-10, which was accompanied by the generation of polyethylene glycols with 3-8 ethoxy units. Formation of aldehydes and low carbon carboxylic acids was evidenced. According to the acute toxicity tests carried out with Vibrio fischeri, degradation products being more inhibitory than the original NP-10 solution were formed after the H2O2/UV-C process, whereas the photo-Fenton process appeared to be toxicologically safer since acute toxicity did not increase relative to the original NP-10 solution after treatment. Temporal evolution of the acute toxicity was strongly correlated with the identified carboxylic acids being formed during the application of H2O2/UV-C and photo-Fenton processes.

  2. Treatment of dairy manure using the microwave enhanced advanced oxidation process under a continuous mode operation.

    PubMed

    Yu, Yang; Lo, Ing W; Liao, Ping H; Lo, Kwang V

    2010-11-01

    The microwave enhanced advanced oxidation process (MW/H(2)O(2)-AOP) was used to treat dairy manure for solubilization of nutrients and organic matters. This study investigated the effectiveness of the MW/H(2)O(2)-AOP under a continuous mode of operation, and compared the results to those of batch operations. The main factors affecting solubilization by the MW/H(2)O(2)-AOP were heating temperature and hydrogen peroxide dosage. Soluble chemical oxygen demand (SCOD) and volatile fatty acids (VFA) increased with an increase of microwave (MW) heating temperature; very high concentrations were obtained at 90°C. Insignificant amounts of ammonia and reducing sugars were released in all runs. An acidic pH condition was required for phosphorus solubilisation from dairy manure. The best yield was obtained at 90°C with an acid dosage of 1.0 %; about 92 % of total phosphorus and 90 % of total chemical oxygen demand were in the soluble forms. The MW/H(2)O(2)-AOP operated in a continuous operation mode showed pronounced synergistic effects between hydrogen peroxide and microwave irradiation when compared to a batch system under similar operating conditions, resulting in much better yields.

  3. Treating solid dairy manure using microwave-enhanced advanced oxidation process.

    PubMed

    Kenge, Anju A; Liao, Ping H; Lo, Kwang V

    2009-08-01

    The microwave enhanced advanced oxidation process (MW/H(2)O(2)-AOP) was used to treat separated solid dairy manure for nutrient release and solids reduction. The MW/H(2)O(2)-AOP was conducted at a microwave temperature of 120 degrees C for 10 minutes, and at three pH conditions of 3.5, 7.3 and 12. The hydrogen peroxide dosage at approximately 2 mL per 1% TS for a 30 mL sample was used in this study, reflecting a range of 0.53-0.75 g H(2)O(2)/g dry sludge. The results indicated that substantial quantities of nutrients could be released into the solution at pH of 3.5. However, at neutral and basic conditions only volatile fatty acids and soluble chemical oxygen demand could be released. The analyses on orthophosphate, soluble chemical oxygen demands and volatile fatty acids were re-examined for dairy manure. It was found that the orthophosphate concentration for untreated samples at a higher % total solids (TS) was suppressed and lesser than actual. To overcome this difficulty, the initial orthophosphate concentration had to be measured at 0.5% TS.

  4. Microwave enhanced advanced oxidation process for treating dairy manure at low pH.

    PubMed

    Lo, Kwang V; Chan, Winnie W I; Yawson, Selina K; Liao, Ping H

    2012-01-01

    This study investigated the treatment of dairy manure using the microwave enhanced advanced oxidation process (MW-AOP) at pH 2. An experimental design was developed based on a statistical program using response surface methodology to explore the effects of temperature, hydrogen peroxide dosage and heating time on sugar production, nutrient release and solids destruction. Temperature, hydrogen peroxide dosage and acid concentration were key factors affecting reducing sugar production. The highest reducing sugar yield of 7.4% was obtained at 160°C, 0 mL, 15 min heating time, and no H(2)O(2) addition. Temperature was a dominant factor for an increase of soluble chemical oxygen demand (SCOD) in the treated dairy manure. The important factors for volatile fatty acids (VFA) production were microwave temperature and hydrogen peroxide dosage. Temperature was the most important parameter, and heating time, to a lesser extent affecting orthophosphate release. Heating time, hydrogen peroxide dosage and temperature were significant factors for ammonia release. There was a maximum of 96% and 196% increase in orthophosphate and ammonia concentration, respectively at 160°C, 0.5 mL H(2)O(2) and 15 min heating time. The MW-AOP is an effective method in dairy manure treatment for sugar production, nutrient solubilisation, and solids disintegration.

  5. Simulation for Supporting Scale-Up of a Fluidized Bed Reactor for Advanced Water Oxidation

    PubMed Central

    Abdul Raman, Abdul Aziz; Daud, Wan Mohd Ashri Wan

    2014-01-01

    Simulation of fluidized bed reactor (FBR) was accomplished for treating wastewater using Fenton reaction, which is an advanced oxidation process (AOP). The simulation was performed to determine characteristics of FBR performance, concentration profile of the contaminants, and various prominent hydrodynamic properties (e.g., Reynolds number, velocity, and pressure) in the reactor. Simulation was implemented for 2.8 L working volume using hydrodynamic correlations, continuous equation, and simplified kinetic information for phenols degradation as a model. The simulation shows that, by using Fe3+ and Fe2+ mixtures as catalyst, TOC degradation up to 45% was achieved for contaminant range of 40–90 mg/L within 60 min. The concentration profiles and hydrodynamic characteristics were also generated. A subsequent scale-up study was also conducted using similitude method. The analysis shows that up to 10 L working volume, the models developed are applicable. The study proves that, using appropriate modeling and simulation, data can be predicted for designing and operating FBR for wastewater treatment. PMID:25309949

  6. The effect of advanced oxidation processes on leachate biodegradation in recycling lysimeters.

    PubMed

    Ledakowicz, Stanisław; Kaczorek, Katarzyna

    2004-06-01

    Landfill processes were simulated in laboratory-scale bioreactors--lysimeters. The changes in leachate characteristics as well as the influence of advanced oxidation processes (AOPs) on the processes taking place in the sanitary landfill were investigated. Lysimeters were filled with material simulating municipal waste in the city of Lodz, Poland. Compost in the amount of 30% w/w and the methanogens inoculum were added in order to enhance development of a methanogenic phase. The leachate produced in lysimeters was recirculated. In order to investigate the influence of AOPs implementation on processes taking place in landfills two runs in lysimeters were performed, each lasting about 250 days. The leachate composition and biogas composition and production changes showed trends that confirmed that the bench-scale lysimeters appeared suitable to simulate processes taking place in the landfill. The application of AOPs to the leachate recirculated into the lysimeters did not bring about unequivocally positive effects. The ozonation of the leachate, implemented at the beginning of the methanogenic phase, caused slight acceleration (about 2 weeks) of the biodegradation, whereas employment of H2O2/UV led to the inhibition of anaerobic processes.

  7. Degradation of diclofenac by advanced oxidation and reduction processes: kinetic studies, degradation pathways and toxicity assessments.

    PubMed

    Yu, Hui; Nie, Er; Xu, Jun; Yan, Shuwen; Cooper, William J; Song, Weihua

    2013-04-01

    Many pharmaceutical compounds and metabolites are found in surface and ground waters suggesting their ineffective removal by conventional wastewater treatment technologies. Advanced oxidation/reduction processes (AO/RPs), which utilize free radical reactions to directly degrade chemical contaminants, are alternatives to traditional water treatment. This study reports the absolute rate constants for reaction of diclofenac sodium and model compound (2, 6-dichloraniline) with the two major AO/RP radicals: the hydroxyl radical (•OH) and hydrated electron (e(aq)(-)). The bimolecular reaction rate constants (M(-1) s(-1)) for diclofenac for •OH was (9.29 ± 0.11) × 10(9), and for e(-)(aq) was (1.53 ± 0.03) ×10(9). To provide a better understanding of the decomposition of the intermediate radicals produced by hydroxyl radical reactions, transient absorption spectra are observed from 1 - 250 μs. In addition, preliminary degradation mechanisms and major products were elucidated using (60)Co γ-irradiation and LC-MS. The toxicity of products was evaluated using luminescent bacteria. These data are required for both evaluating the potential use of AO/RPs for the destruction of these compounds and for studies of their fate and transport in surface waters where radical chemistry may be important in assessing their lifetime.

  8. Removal of disinfection by-product precursors with ozone-UV advanced oxidation process.

    PubMed

    Chin, A; Bérubé, P R

    2005-05-01

    The efficacy of using ozone (O3), ultraviolet irradiation (UV) and the combined O3-UV advanced oxidation process (AOP) to remove 2 classes of disinfection by-product (DBP) precursors from raw surface water samples have been evaluated and compared. In particular, trihalomethane and haloacetic acids formation potentials were measured. Laboratory batch scale experiments were carried out as a function of ozone and UV dosage in order to study the removal kinetics. It is concluded that the combined O3-UV AOP is more effective than either the ozone or UV treatment alone. Ozone-UV AOP is capable of mineralizing up to 50% of the total organic carbon from the raw source water at an ozone dose of 0.62+/-0.019 mg O3/mL and a UV dose of 1.61 W s/cm2. In addition, O3-UV AOP can reduce trihalomethane formation potential by roughly 80% and haloacetic acids formation potential by roughly 70% at the same ozone and UV dosage.

  9. Characteristics of Toluene Treatment by Combination of Surface Discharge and Ad-vance Oxidation Processes

    NASA Astrophysics Data System (ADS)

    Shimosaki, Mitsuaki; Hayashi, Nobuya; Yamabe, Chobei

    2004-09-01

    Recently, decomposition of the toluene has been studied using several types of discharges, and the decom-position was 70% using the surface discharge. In order to improve the decomposition rate of toluene and to con-trol byproducts, combination of surface discharges and Advanced Oxidation Process was developed for the treat-ment of volatile organic compound. The oxygen radical was generated by irradiation of ultraviolet rays (253.7 nm) to ozone, which was able to decompose toxic substances such as toluene. UV rays from UV light tube irradiated to ozone which generated by the surface discharge to generate oxygen radical. Toluene was decomposed efficiently by the surface discharge and oxygen radical. The maximum decomposition rate of toluene was achieved to be ap-proximately 98%, when discharge power exceeded 3.5 kV. Measured byproducts were water vapor, carbon monoxide, carbon dioxide and formic acid. However, formic acid was generated in the case of low discharge power (below 3 kV), it was decomposed to water, carbon monoxide and carbon dioxide, when discharge power exceeded 3 kV.

  10. Bioelectro-Fenton: evaluation of a combined biological-advanced oxidation treatment for pharmaceutical wastewater.

    PubMed

    Ganzenko, Oleksandra; Trellu, Clement; Papirio, Stefano; Oturan, Nihal; Huguenot, David; van Hullebusch, Eric D; Esposito, Giovanni; Oturan, Mehmet A

    2017-01-31

    Electro-Fenton (EF), an advanced oxidation process, can be combined with a biological process for efficient treatment of wastewater containing refractory pollutants such as pharmaceuticals. In this study, a biological process was implemented in a sequencing batch reactor (SBR), which was either preceded or followed by EF treatment. The main goal was to evaluate the potential of two sequences of a combined electrochemical-biological process: EF/SBR and SBR/EF for the treatment of real wastewater spiked with 0.1 mM of caffeine and 5-fluorouracil. The biological removal of COD and pharmaceuticals was improved by extending the acclimation time and increasing concentration of biomass in the SBR. Hardly biodegradable caffeine and COD were completely removed during the EF post-treatment (SBR/EF). During the EF/SBR sequence, complete removal of pharmaceuticals was achieved by EF within 30 min at applied current 800 mA. With a current of 500 and 800 mA, the initially very low BOD5/COD ratio increased up to 0.38 and 0.58, respectively, after 30 min. The efficiency of the biological post-treatment was influenced by the biodegradability enhancement after EF pre-treatment. The choice of an adequate sequence of such a combined process is significantly related to the wastewater characteristics as well as the treatment objectives.

  11. Inhibition of Notch pathway arrests PTEN-deficient advanced prostate cancer by triggering p27-driven cellular senescence

    PubMed Central

    Revandkar, Ajinkya; Perciato, Maria Luna; Toso, Alberto; Alajati, Abdullah; Chen, Jingjing; Gerber, Hermeto; Dimitrov, Mitko; Rinaldi, Andrea; Delaleu, Nicolas; Pasquini, Emiliano; D'Antuono, Rocco; Pinton, Sandra; Losa, Marco; Gnetti, Letizia; Arribas, Alberto; Fraering, Patrick; Bertoni, Francesco; Nepveu, Alain; Alimonti, Andrea

    2016-01-01

    Activation of NOTCH signalling is associated with advanced prostate cancer and treatment resistance in prostate cancer patients. However, the mechanism that drives NOTCH activation in prostate cancer remains still elusive. Moreover, preclinical evidence of the therapeutic efficacy of NOTCH inhibitors in prostate cancer is lacking. Here, we provide evidence that PTEN loss in prostate tumours upregulates the expression of ADAM17, thereby activating NOTCH signalling. Using prostate conditional inactivation of both Pten and Notch1 along with preclinical trials carried out in Pten-null prostate conditional mouse models, we demonstrate that Pten-deficient prostate tumours are addicted to the NOTCH signalling. Importantly, we find that pharmacological inhibition of γ-secretase promotes growth arrest in both Pten-null and Pten/Trp53-null prostate tumours by triggering cellular senescence. Altogether, our findings describe a novel pro-tumorigenic network that links PTEN loss to ADAM17 and NOTCH signalling, thus providing the rational for the use of γ-secretase inhibitors in advanced prostate cancer patients. PMID:27941799

  12. The complex behavior of the Pd 7 cluster supported on TiO 2 (110) during CO oxidation: adsorbate-driven promoting effect

    DOE PAGES

    An, Wei; Liu, Ping

    2016-09-07

    When using the TiO2(110)-supported Pd7 cluster as a model catalyst, we identified the dynamics of supported metal nanoparticles using density functional theory calculations, at the sub-nanometer scale and under reactive environments. Increasing the CO coverage can induce a structural transformation from Pd7-3D/TiO2(110) at low coverage to Pd7-2D/TiO2(110) at the saturation coverage wherein CO saturation-driven Pd7-2D/TiO2(110) structure displays superior CO oxidation activity at the interfacial sites, which are highly active for catalyzing O2 dissociation and CO oxidation via bifunctional synergy.

  13. The complex behavior of the Pd 7 cluster supported on TiO 2 (110) during CO oxidation: adsorbate-driven promoting effect

    SciTech Connect

    An, Wei; Liu, Ping

    2016-09-07

    When using the TiO2(110)-supported Pd7 cluster as a model catalyst, we identified the dynamics of supported metal nanoparticles using density functional theory calculations, at the sub-nanometer scale and under reactive environments. Increasing the CO coverage can induce a structural transformation from Pd7-3D/TiO2(110) at low coverage to Pd7-2D/TiO2(110) at the saturation coverage wherein CO saturation-driven Pd7-2D/TiO2(110) structure displays superior CO oxidation activity at the interfacial sites, which are highly active for catalyzing O2 dissociation and CO oxidation via bifunctional synergy.

  14. Visible-Light-Driven Oxidation of Primary C-H Bonds over CdS with Dual Co-catalysts Graphene and TiO2

    NASA Astrophysics Data System (ADS)

    Yang, Min-Quan; Zhang, Yanhui; Zhang, Nan; Tang, Zi-Rong; Xu, Yi-Jun

    2013-11-01

    Selective activation of primary C-H bonds for fine chemicals synthesis is of crucial importance for the sustainable exploitation of available feedstocks. Here, we report a viable strategy to synthesize ternary GR-CdS-TiO2 composites with an intimate spatial integration and sheet-like structure, which is afforded by assembling two co-catalysts, graphene and TiO2, into the semiconductor CdS matrix with specific morphology as a visible light harvester. The GR-CdS-TiO2 composites are able to serve as a highly selective visible-light-driven photocatalyst for oxidation of saturated primary C-H bonds using benign oxygen as oxidant under ambient conditions. This work demonstrates a wide, promising scope of adopting co-catalyst strategy to design more efficient semiconductor-based photocatalyst toward selective activation of C-H bonds using solar light and molecular oxygen.

  15. Reduction of organic trace compounds and fresh water consumption by recovery of advanced oxidation processes treated industrial wastewater.

    PubMed

    Bierbaum, S; Öller, H-J; Kersten, A; Klemenčič, A Krivograd

    2014-01-01

    Ozone (O(3)) has been used successfully in advanced wastewater treatment in paper mills, other sectors and municipalities. To solve the water problems of regions lacking fresh water, wastewater treated by advanced oxidation processes (AOPs) can substitute fresh water in highly water-consuming industries. Results of this study have shown that paper strength properties are not impaired and whiteness is slightly impaired only when reusing paper mill wastewater. Furthermore, organic trace compounds are becoming an issue in the German paper industry. The results of this study have shown that AOPs are capable of improving wastewater quality by reducing organic load, colour and organic trace compounds.

  16. Diagnostic suite of the C-2U advanced beam-driven field-reversed configuration plasma experiment

    NASA Astrophysics Data System (ADS)

    Thompson, M. C.; Gota, H.; Putvinski, S.; Tuszewski, M.; Binderbauer, M.

    2016-11-01

    The C-2U experiment at Tri Alpha Energy studies the evolution of field-reversed configuration (FRC) plasmas sustained by neutral beam injection. Data on the FRC plasma performance are provided by a comprehensive suite of diagnostics that includes magnetic sensors, interferometry, Thomson scattering, spectroscopy, bolometry, reflectometry, neutral particle analyzers, and fusion product detectors. While many of these diagnostic systems were inherited from the preceding experiment C-2, C-2U has a variety of new and upgraded diagnostic systems: multi-chord far-infrared polarimetry, multiple fast imaging cameras with selectable atomic line filters, proton detector arrays, and 100 channel bolometer units capable of observing multiple regions of the spectrum simultaneously. In addition, extensive ongoing work focuses on advanced methods of measuring separatrix shape and plasma current profile that will facilitate equilibrium reconstruction and active control of the FRC plasma.

  17. Diagnostic suite of the C-2U advanced beam-driven field-reversed configuration plasma experiment.

    PubMed

    Thompson, M C; Gota, H; Putvinski, S; Tuszewski, M; Binderbauer, M

    2016-11-01

    The C-2U experiment at Tri Alpha Energy studies the evolution of field-reversed configuration (FRC) plasmas sustained by neutral beam injection. Data on the FRC plasma performance are provided by a comprehensive suite of diagnostics that includes magnetic sensors, interferometry, Thomson scattering, spectroscopy, bolometry, reflectometry, neutral particle analyzers, and fusion product detectors. While many of these diagnostic systems were inherited from the preceding experiment C-2, C-2U has a variety of new and upgraded diagnostic systems: multi-chord far-infrared polarimetry, multiple fast imaging cameras with selectable atomic line filters, proton detector arrays, and 100 channel bolometer units capable of observing multiple regions of the spectrum simultaneously. In addition, extensive ongoing work focuses on advanced methods of measuring separatrix shape and plasma current profile that will facilitate equilibrium reconstruction and active control of the FRC plasma.

  18. Research and Development on Advanced Graphite Materials. Volume 34- Oxidation-Resistance Coatings for Graphite

    DTIC Science & Technology

    1963-06-01

    this table are the oxides of scandium, actinium , and the rare earths, which are thought to be refractory, but for which the melt- ing-point data are...Oxide NbO, 1772 Zinc Oxide ZnO 1975 Gallium Oxide Ga’O, 1740 Zirconium Oxide ZrOs Z687 Silicon Oxide SiO 1723 Note: Scandium. actinium , and certain...except actinium , thorium, I protactinium and uranium, are synthetic. Uranium and protactinium dioxides have high melting points (2280 ° C and 2290 * C

  19. Advanced oxidation protein products in plasma: stability during storage and correlation with other clinical characteristics.

    PubMed

    Matteucci, E; Biasci, E; Giampietro, O

    2001-12-01

    Proteins are susceptible to free radical damage. We measured advanced oxidation protein products (AOPP) in the plasma of 56 hospitalised patients. Concentrations of AOPP were expressed as chloramine-T equivalents by measuring absorbance in acidic conditions at 340 nm in the presence of potassium iodide. We also determined erythrocyte sedimentation rate (ESR), circulating urea, creatinine, glucose, uric acid, electrolytes, lipids, total proteins and fractions and fibrinogen. Twenty-four samples were processed both immediately and after 7, 15, 30, 90, 180 and 438 days of storage at both at -20 degrees C and -80 degrees C (aliquots were frozen and thawed only once) to evaluate AOPP stability. The remaining 32 samples were also processed for thiobarbituric-acid-reactive substances (TBARS). Mean AOPP concentration in all 56 patients was 48.3+/-37.2 microM. Mean basal concentration of AOPP in the 24 plasma samples (55.0+/-47.1 microM) showed no significant change at each intermediate determination, yet significantly increased after 438 days of storage both at -80 degrees C (96.6+/-83.2, p<0.01) and, markedly, at -20 degrees C (171.3+/-94.6, p<0.001). TBARS concentration was 1.59+/-0.65 micromol/l. Multiple regression analysis evidenced that AOPP concentration was positively correlated (multiple r=0.62, p<0.001) with serum urea and triglycerides, but negatively correlated with patient age (indeed, serum albumin and total proteins decreased with increasing age, r=0.3, p<0.05). TBARS concentration was associated with ESR and serum glucose (multiple r=0.73, p<0.001), yet positively with AOPP (r=0.39, simple p<0.05). We conclude that AOPP remain stable during sample storage both at -20 degrees C and -80 degrees C for 6 months. Renal failure and hypertriglyceridemia probably enhance the in vivo process of AOPP formation. Oxidative damage as measured by TBARS may be increased because of exposure to hyperglycemia causing nonenzymatic glycation of plasma proteins.

  20. Mineralization of the recalcitrant oxalic and oxamic acids by electrochemical advanced oxidation processes using a boron-doped diamond anode.

    PubMed

    Garcia-Segura, Sergi; Brillas, Enric

    2011-04-01

    Oxalic and oxamic acids are the ultimate and more persistent by-products of the degradation of N-aromatics by electrochemical advanced oxidation processes (EAOPs). In this paper, the kinetics and oxidative paths of these acids have been studied for several EAOPs using a boron-doped diamond (BDD) anode and a stainless steel or an air-diffusion cathode. Anodic oxidation (AO-BDD) in the presence of Fe(2+) (AO-BDD-Fe(2+)) and under UVA irradiation (AO-BDD-Fe(2+)-UVA), along with electro-Fenton (EF-BDD), was tested. The oxidation of both acids and their iron complexes on BDD was clarified by cyclic voltammetry. AO-BDD allowed the overall mineralization of oxalic acid, but oxamic acid was removed much more slowly. Each acid underwent a similar decay in AO-BDD-Fe(2+) and EF-BDD, as expected if its iron complexes were not attacked by hydroxyl radicals in the bulk. The faster and total mineralization of both acids was achieved in AO-BDD-Fe(2+)-UVA due to the high photoactivity of their Fe(III) complexes that were continuously regenerated by oxidation of their Fe(II) complexes. Oxamic acid always released a larger proportion of NH(4)(+) than NO(3)(-) ion, as well as volatile NO(x) species. Both acids were independently oxidized at the anode in AO-BDD, but in AO-BDD-Fe(2+)-UVA oxamic acid was more slowly degraded as its content decreased, without significant effect on oxalic acid decay. The increase in current density enhanced the oxidation power of the latter method, with loss of efficiency. High Fe(2+) contents inhibited the oxidation of Fe(II) complexes by the competitive oxidation of Fe(2+) to Fe(3+). Low current densities and Fe(2+) contents are preferable to remove more efficiently these acids by the most potent AO-BDD-Fe(2+)-UVA method.

  1. History of Resistance Welding Oxide Dispersion Strengthened Cladding and other High Temperature Materials at Center for Advanced Energy Studies

    SciTech Connect

    Larry Zirker; Nathan Jerred; Dr. Indrajit Charit; James Cole

    2012-03-01

    Research proposal 08-1079, 'A Comparative Study of Welded ODS Cladding Materials for AFCI/GNEP,' was funded in 2008 under an Advanced Fuel Cycle Initiative (AFCI) Research and Development Funding Opportunity, number DE-PS07-08ID14906. Th proposal sought to conduct research on joining oxide dispersion strengthen (ODS) tubing material to a solid end plug. This document summarizes the scientific and technical progress achieved during the project, which ran from 2008 to 2011.

  2. Systemic activation of NF-κB driven luciferase activity in transgenic mice fed advanced glycation end products modified albumin.

    PubMed

    Nass, Norbert; Bayreuther, Kristina; Simm, Andreas

    2017-04-01

    Advanced glycation end products (AGEs) are stable end products of the Maillard reaction and accumulate with progressing ageing and degenerative diseases. Significant amounts of AGE-modified peptides are also consumed with processed food. AGEs bind to specific receptors, especially the receptor of AGEs (RAGE). Activation of RAGE then evokes intracellular signalling, finally resulting in the activation of the NF-κB transcription factor and therefore a proinflammatory state. We here analysed, whether NF-κB is activated in short term upon feeding an AGE-modified protein in-vivo. Transgenic mice expressing firefly luciferase under the control of an NF-κB responsive promoter were intraperitoneally injected or fed with AGE-modified- or control albumin and luciferase expression was analysed by in-vivo imaging and by in-vitro by determination of luciferase enzyme activity in heart, lung, gut, spleen, liver and kidney. In all organs, an activation of the luciferase reporter gene was observed in response to AGE-BSA feeding, however with different intensity and timing. The gut exhibited highest luciferase activity and this activity peaked 6-8 h post AGE-feeding. In heart and kidney, luciferase activity increased for up to 12 h post feeding. All other organs tested, exhibited highest activity at 10 h after AGE-consumption. Altogether, these data demonstrate that feeding AGE-modified protein resulted in a transient and systemic activation of the NF-κB reporter.

  3. Comparison of different advanced oxidation process to reduce toxicity and mineralisation of tannery wastewater.

    PubMed

    Schrank, S G; José, H J; Moreira, R F P M; Schröder, H Fr

    2004-01-01

    Many organic compounds contained in wastewater are resistant to conventional chemical and/or biological treatment. Because of this reason different degradation techniques are studied as an alternative to biological and classical physico-chemical processes. Advanced Oxidation Processes (AOPs) probably have developed to become the best options in the near future. AOP while making use of different reaction systems, are all characterised by the same chemical feature: production of OH radicals (*OH). The versatility of AOPs is also enhanced by the fact that they offer different possibilities for OH radical production, thus allowing them to conform to specific treatment requirements. The main problem with AOPs is their high cost. The application of solar technologies to these processes could help to diminish that problem by reducing the energy consumption required for generating UV radiation. In this work, different AOPs (O3, TiO2/UV, Fenton and H2O2/UV) were examined to treat tannery wastewater or as a pre-treatment step for improving the biodegradation of tannery wastewater, at different pH and dosage of the chemicals. Under certain circumstances retardation in biodegradation and/or an increase in toxicity may be observed within these treatment steps. Two different bioassays (Daphnia magna and Vibrio fischeri) have been used for testing the progress of toxicity during the treatment. In parallel other objectives were to analyse and identify organic compounds present in the untreated wastewater and arising degradation products in AOP treated wastewater samples. For this purpose substance specific techniques, e.g., gas chromatography-mass spectrometry (GC-MS) in positive electron impact (El(+)) mode and atmospheric pressure ionisation (API) in combination with flow injection analysis (FIA) or liquid chromatography-mass and tandem mass spectrometry (LC-MS or LC-MS-MS) were performed.

  4. Transformation of polyfluorinated compounds in natural waters by advanced oxidation processes.

    PubMed

    Anumol, Tarun; Dagnino, Sonia; Vandervort, Darcy R; Snyder, Shane A

    2016-02-01

    The presence of perfluorocarboxylic acids (PFCAs) in source and finished drinking waters is a concern with studies showing bioaccumulation and adverse toxicological effects in wildlife and potentially humans. Per/Polyfluoroalkyl substances (PFAS) such as fluorotelomer alcohols have been identified as precursors for PFCAs in biological pathways. In this study, we investigated the fate of 6:2 and 8:2 homologues of the fluorotelomer unsaturated carboxylic acids (FTUCAs) during advanced oxidation process (AOPs). Results showed 6:2 FTUCA and 8:2 FTUCA transformed into 6-C PFCA (PFHxA) and 8-C PFCA (PFOA) respectively with very little other PFCA formation for all AOPs. The degradation of 6:2 FTUCA and 8:2 FTUCA was greater in the GW compared to SW for the ozone processes but similar for UV/H2O2. The formation of n-C PFCA followed O3>O3/H2O2 at same dose and UV/H2O2 had much lower formation at the doses tested. Non-targeted analysis with the LC-MS-qTOF indicated the production of other PFCAs which contribute to the total mass balance, although no intermediate product was discovered indicating a rapid and direct transformation from the FTUCAs to the PFCAs and/or significant volatilization of intermediates. With the use of AOPs essential to water reuse treatment schemes, this work raises concerns over the risk of potential formation of PFCAs in the treatment and their adverse health effects in finished drinking water.

  5. Biological assessment of bisphenol A degradation in water following direct photolysis and UV advanced oxidation.

    PubMed

    Chen, Pei-Jen; Linden, Karl G; Hinton, David E; Kashiwada, Shosaku; Rosenfeldt, Erik J; Kullman, Seth W

    2006-11-01

    Endocrine disrupting compounds (EDCs) are exogenous environmental chemicals that can interfere with normal hormone function and present a potential threat to both environmental and human health. The fate, distribution and degradation of EDCs is a subject of considerable investigation. To date, several studies have demonstrated that conventional water treatment processes are ineffective for removal of most EDCs and in some instances produce multiple unknown transformation products. In this study we have investigated the use of direct photolysis with low-pressure (LP) Hg UV lamps and UV+hydrogen peroxide (H(2)O(2)) advanced oxidation process (AOP) for the degradation of a prototypic endocrine disrupter, bisphenol A (BPA), in laboratory water. Removal rates of BPA and formation of degradation products were determined by high performance liquid chromatography (HPLC) analysis. Changes in estrogenic activity were evaluated using both in vitro yeast estrogen screen (YES) and in vivo vitellogenin (VTG) assays with Japanese medaka fish (Oryzias latipes). Our results demonstrate that UV alone did not effectively degrade BPA. However, UV in combination with H(2)O(2) significantly removed BPA parent compound and aqueous estrogenic activity in vitro and in vivo. Removal rates of in vivo estrogenic activity were significantly lower than those observed in vitro, demonstrating differential sensitivities of these bioassays and that certain UV/AOP metabolites may retain estrogenic activity. Furthermore, the UV/H(2)O(2) AOP was effective for reducing larval lethality in treated BPA solutions, suggesting BPA degradation occurred and that the degradation process did not result in the production of acutely toxic intermediates.

  6. Decolorization of Reactive Red 2 by advanced oxidation processes: Comparative studies of homogeneous and heterogeneous systems.

    PubMed

    Wu, Chung-Hsin; Chang, Chung-Liang

    2006-02-06

    This study investigated the decolorization of the Reactive Red 2 in water using advanced oxidation processes (AOPs): UV/TiO2, UV/SnO2, UV/TiO2+SnO2, O3, O3+MnO2, UV/O3 and UV/O3+TiO2+SnO2. Kinetic analyses indicated that the decolorization rates of Reactive Red 2 could be approximated as pseudo-first-order kinetics for both homogeneous and heterogeneous systems. The decolorization rate at pH 7 exceeded pH 4 and 10 in UV/TiO2 and UV/TiO2+SnO2 systems, respectively. However, the rate constants in the systems (including O3) demonstrated the order of pH 10>pH 7>pH 4. The UV/TiO2+SnO2 and O3+MnO2 systems exhibited a greater decolorization rate than the UV/TiO2 and O3 systems, respectively. Additionally, the promotion of rate depended on pH. The variation of dye concentration influenced the decolorization efficiency of heterogeneous systems more significant than homogeneous systems. Experimental results verified that decolorization and desulfuration occurred at nearly the same rate. Moreover, the decolorization rate constants at pH 7 in various systems followed the order of UV/O3 > or = O3+MnO2 > or = UV/O3+TiO2+SnO2 > O3 > UV/TiO2+SnO2 > or = UV/TiO2 > UV/SnO2.

  7. Oxidized low-density lipoprotein is associated with advanced-stage prostate cancer.

    PubMed

    Wan, Fangning; Qin, Xiaojian; Zhang, Guiming; Lu, Xiaolin; Zhu, Yao; Zhang, Hailiang; Dai, Bo; Shi, Guohai; Ye, Dingwei

    2015-05-01

    Clinical and epidemiological data suggest coronary artery disease shares etiology with prostate cancer (PCa). The aim of this work was to assess the effects of several serum markers reported in cardiovascular disease on PCa. Serum markers (oxidized low-density lipoprotein [ox-LDL], apolipoprotein [apo] B100, and apoB48) in peripheral blood samples from 50 patients from Fudan University Shanghai Cancer Center (FUSCC) with localized or lymph node metastatic PCa were investigated in this study. Twenty-five samples from normal individuals were set as controls. We first conducted enzyme-linked immunosorbent assay analysis to select candidate markers that were significantly different between these patients and controls. Then, the clinical relevance between OLR1 (the ox-LDL receptor) expression and PCa was analyzed in The Cancer Genome Atlas (TCGA) cohort. We also investigated the function of ox-LDL in PCa cell lines in vitro. Phosphorylation protein chips were used to analyze cell signaling pathways in ox-LDL-treated PC-3 cells. The ox-LDL level was found to be significantly correlated with N stage of prostate cancer. OLR1 expression was correlated with lymph node metastasis in the TCGA cohort. In vitro, ox-LDL stimulated the proliferation, migration, and invasion of LNCaP and PC-3 in a dose-dependent manner. The results of phosphoprotein microarray illustrated that ox-LDL could influence multiple signaling pathways of PC-3. Activation of proliferation promoting signaling pathways (including β-catenin, cMyc, NF-κB, STAT1, STAT3) as well as apoptosis-associating signaling pathways (including p27, caspase-3) demonstrated that ox-LDL had complicated effects on prostate cancer. Increased serum ox-LDL level and OLR1 expression may indicate advanced-stage PCa and lymph node metastasis. Moreover, ox-LDL could stimulate PCa proliferation, migration, and invasion in vitro.

  8. Re-engineering an artificial sweetener: transforming sucralose residuals in water via advanced oxidation.

    PubMed

    Keen, Olya S; Linden, Karl G

    2013-07-02

    Sucralose is an artificial sweetener persistently present in wastewater treatment plant effluents and aquatic environments impacted by human activity. It has a potential to accumulate in the water cycle due to its resistance to common water and wastewater treatment processes. This study examined UV/H2O2 advanced oxidation and found that hydroxyl substitution of the chlorine atoms on the sucralose molecule can form a carbohydrate consisting of fructose and sugar alcohol, very similar to environmentally benign sucrose. The second-order reaction rate constant for loss of parent molecule via reaction with hydroxyl radical was determined to be (1.56 ± 0.03)·10(9) M(-1)s(-1). The degradation pathway involves substitution of a single chlorine by a hydroxyl group, with cyclic moiety being a preferential site for initial dechlorination. Further reaction leads to full dechlorination of the molecule, presumably via hydroxyl group substitution as well. No direct photolysis by UV wavelengths above 200 nm was observed. Because of its photostability when exposed to UV wavelengths ≥200 nm, known stability with ozone, limits of quantification by mass spectrometry close to or below environmental concentrations (<5 μg/L) without preconcentration, and otherwise stable nature, sucralose can be used as an in situ hydroxyl radical probe for UV-based and ozone-based AOP processes. As a compound safe for human consumption, sucralose makes a suitable full scale hydroxyl radical probe fit even for drinking water treatment plant applications. Its main drawback as a probe is lack of UV detection and as a result a need for mass spectrometry analysis.

  9. Effects of inorganics on the degradation of micropollutants with vacuum UV (VUV) advanced oxidation.

    PubMed

    Duca, Clara; Imoberdorf, Gustavo; Mohseni, Madjid

    2017-02-21

    This research focused on the effects of inorganic water constituents on the efficiency of vacuum UV (VUV) for the degradation of micropollutants in surface water supplies. Atrazine was used as a model miropollutant, and bicarbonate, sulphate, and nitrate were used as the most common inorganic constituents in the water matrix. First, the absorbance of radiation at 254 and 185 nm was measured in the presence of different ions. At 254 nm, only nitrate showed a measurable absorption coefficient of [Formula: see text] = 3.51 M[Formula: see text] cm[Formula: see text], and all other ions showed a molar absorption coefficient below the detection limit. However, at 185 nm, all the ions showed high absorption coefficients, with nitrate giving the highest absorption coefficient of [Formula: see text] = 5568 M[Formula: see text] cm[Formula: see text]. Second, the hydroxyl radical (HO[Formula: see text]) scavenging effects of the same inorganic ions were evaluated; nitrate and bicarbonate showed a negative effect during the UV/H2O2 and VUV advanced oxidation processes. Sulfate was photolyzed with 185 nm UV to form HO[Formula: see text], and for this reason, it assisted the degradation of the target micropollutant, as demonstrated by increases in the degradation rate constant. An additional component of this work involved developing a method for measuring the quantum yield of atrazine at 185 nm. This made it possible to distinguish the contribution of OH radical attach from that of direct photolysis towards the degradation of atrazine.

  10. On-the-Fly Kinetic Monte Carlo Simulation of Aqueous Phase Advanced Oxidation Processes.

    PubMed

    Guo, Xin; Minakata, Daisuke; Crittenden, John

    2015-08-04

    We have developed an on-the-fly kinetic Monte Carlo (KMC) model to predict the degradation mechanisms and fates of intermediates and byproducts that are produced during aqueous-phase advanced oxidation processes (AOPs). The on-the-fly KMC model is composed of a reaction pathway generator, a reaction rate constant estimator, a mechanistic reduction module, and a KMC solver. The novelty of this work is that we develop the pathway as we march forward in time rather than developing the pathway before we use the KMC method to solve the equations. As a result, we have fewer reactions to consider, and we have greater computational efficiency. We have verified this on-the-fly KMC model for the degradation of polyacrylamide (PAM) using UV light and titanium dioxide (i.e., UV/TiO2). Using the on-the-fly KMC model, we were able to predict the time-dependent profiles of the average molecular weight for PAM. The model provided detailed and quantitative insights into the time evolution of the molecular weight distribution and reaction mechanism. We also verified our on-the-fly KMC model for the destruction of (1) acetone, (2) trichloroethylene (TCE), and (3) polyethylene glycol (PEG) for the ultraviolet light and hydrogen peroxide AOP. We demonstrated that the on-the-fly KMC model can achieve the same accuracy as the computer-based first-principles KMC (CF-KMC) model, which has already been validated in our earlier work. The on-the-fly KMC is particularly suitable for molecules with large molecular weights (e.g., polymers) because the degradation mechanisms for large molecules can result in hundreds of thousands to even millions of reactions. The ordinary differential equations (ODEs) that describe the degradation pathways cannot be solved using traditional numerical methods, but the KMC can solve these equations.

  11. Integrated processes for produced water polishing: Enhanced flotation/sedimentation combined with advanced oxidation processes.

    PubMed

    Jiménez, Silvia; Micó, María M; Arnaldos, Marina; Ferrero, Enrique; Malfeito, Jorge J; Medina, Francisco; Contreras, Sandra

    2017-02-01

    In this study, bench scale dissolved air flotation (DAF) and settling processes have been studied and compared to a novel flotation technology based on the use of glass microspheres of limited buoyancy and its combination with conventional DAF, (Enhanced DAF or E-DAF). They were evaluated as pretreatments for advanced oxidation processes (AOPs) to polish produced water (PW) for reuse purposes. Settling and E-DAF without air injection showed adequate turbidity and oil and grease (O&G) removals, with eliminations higher than 87% and 90% respectively, employing 70 mg L(-1) of FeCl3 and 83 min of settling time, and 57.9 mg L(-1) of FeCl3, 300 mg L(-1) of microspheres and a flocculation rate of 40 rpm in the E-DAF process. A linear correlation was observed between final O&G concentration and turbidity after E-DAF. In order to polish the O&G content of the effluent even further, to remove soluble compounds as phenol and to take advantage of residual iron after these treatments, Fenton and photo-Fenton reactions were essayed. After 6 h of the Fenton reaction at pH 3, the addition of 1660 mg L(-1) of H2O2 and 133 mg L(-1) of iron showed a maximum O&G elimination of 57.6% and a phenol removal up to 80%. Photo-Fenton process showed better results after 3 h, adding 600 mg L(-1) of H2O2 and 300 mg L(-1) of iron, at pH 3, with a higher fraction of elimination of the O&G content (73.7%) and phenol (95%) compared to the conventional Fenton process.

  12. Physical and chemical effects of direct aqueous advanced oxidation processing on green sand foundry mold materials

    NASA Astrophysics Data System (ADS)

    Clobes, Jason Kenneth

    Iron foundries using the common green sand molding process have increasingly been incorporating aqueous advanced oxidation (AO) systems to reduce the consumption of sand system bentonite clay and coal raw materials by and to decrease their volatile organic compound (VOC) emissions. These AO systems typically use a combination of sonication, ozone aeration, and hydrogen peroxide to treat and recycle slurries of sand system baghouse dust, which is rich in clay and coal. While the overall effects of AO on raw material consumption and organic emissions are known, the mechanisms behind these effects are not well understood. This research examined the effects of bench-scale direct aqueous AO processing on green sand mold materials at the micro level. Bench-scale AO processing, including acoustic sonication, ozone/oxygen aeration, and hydrogen peroxide dramatically decreased the particle sizes of both western bentonite and foundry sand system baghouse dust. Bench-scale AO processing was shown to effectively separate the clay material from the larger silica and coal particles and to extensively break up the larger clay agglomerates. The acoustic sonication component of AO processing was the key contributor to enhanced clay recovery. Acoustic sonication alone was slightly more effective than combined component AO in reducing the particle sizes of the baghouse dust and in the recovery of clay yields in the supernatant during sedimentation experiments. Sedimentation separation results correlated well with the increase in small particle concentrations due to AO processing. Clay suspension viscosity decreased with AO processing due to enhanced dispersion of the particles. X-ray diffraction of freeze-dried baghouse dust indicated that AO processing does not rehydrate calcined montmorillonite and does not increase the level of interlayer water hydration in the dry clays. Zeta potential measurements indicated that AO processing also does not produce any large changes in the

  13. Aspects of decontamination of ivermectin and praziquantel from environmental waters using advanced oxidation technology.

    PubMed

    Havlíková, Lucie; Šatínský, Dalibor; Solich, Petr

    2016-02-01

    Recently performed environmental risk assessments of ivermectin demonstrated the need to complete the information regarding the fate of ivermectin in environment. There is also a lack of information concerning the fate and stability of praziquantel. The forced degradation study and photocatalytic degradation pathways in aqueous TiO2 suspensions of the two anthelmintics ivermectin and praziquantel were investigated and compared. The degradation efficiency increased for both compounds with the increase in the TiO2 concentration from 0.25 to 2.00 g L(-1), and then remained constant. The estimated k-values were from 0.36 h(-1) to 0.64 h(-1) for IVE and from 0.29 h(-1) to 0.47 h(-1) for PZQ, respectively. The degradation rate was not significantly impacted by the change of the pH value (pH 3, 5, 7, and 9) at 2.0 g L(-1) of TiO2. The photo degradation was about 90% for both compounds after 5 h of irradiation and it was significantly inhibited in the presence of iodide anion and isopropyl alcohol, which indicated, that hydroxyl radicals as well as holes contributed to the degradation of both anthelmintics. The contribution of hydroxyl radicals and holes was 92.1% for IVE and 93.2% for PZQ, respectively. Photocatalytic process of ivermectin resulted in three degradation intermediates; another two were formed during acidic and basic hydrolysis. Praziquantel underwent degradation to six degradation intermediates; four of them were formed under photocatalytic irradiation. The intermediates were identified using UHPLC-MS/MS. UV/TiO2 photolysis has been found as an effective advanced oxidation technology for the decontamination of ivermectin and praziquantel.

  14. Advanced oxidation protein products inhibit differentiation and activate inflammation in 3T3-L1 preadipocytes.

    PubMed

    Zhou, Qiu Gen; Peng, Xin; Hu, Li Li; Xie, Di; Zhou, Min; Hou, Fan Fan

    2010-10-01

    Accumulation of advanced oxidation protein products (AOPPs) is prevalent in metabolic syndromes, a condition with impaired preadipocytes differentiation. In the present study, we tested the hypothesis that AOPPs disturb preadipocyte differentiation. Exposure of 3T3-L1 preadipocytes to increased levels of AOPPs inhibited accumulation of intracellular triglyceride and decreased the expression of the essential markers of matured adipocytes, such as adipocyte fatty-acid-binding protein (aP2), CAAT/enhancer-binding protein (C/EBP)-alpha, and peroxisome proliferator-activated receptor (PPAR)-gamma, in response to standard adipogenic induction. Inhibitory effects of AOPPs on preadipocytes differentiation was time sensitive, which occurred at the early stage of differentiation. In the presence of AOPPs, induction of preadipocytes differentiation resulted in upregulated expression of C/EBP homologous protein (CHOP) and CUG-Triplet repeat-binding protein (CUGBP), two important inhibitors of preadipocytes differentiation. In addition, treatment with AOPPs increased abundance of C/EBP-beta-liver enriched inhibitory protein (C/EBP-beta-LIP), a truncated C/EBP-beta isoform without adipogenic activity. Moreover, AOPPs-treated preadipocytes expressed a macrophage marker F4/80 and overexpressed tumor necrosis factor-alpha and interleukin-6 via nuclear factor-kappaB (NF-kappaB)-dependent pathway. However, blocking inflammation with NF-kappaB inhibitor failed to improve AOPPs-induced inhibition of preadipocytes differentiation. These data suggest that accumulation of AOPPs may inhibit differentiation of preadipocytes and activate inflammation in these cells. This information might have implication for understanding the impairment of preadipocytes differentiation and fat inflammation seen in metabolic syndrome.

  15. Use of solar advanced oxidation processes for wastewater treatment: Follow-up on degradation products, acute toxicity, genotoxicity and estrogenicity.

    PubMed

    Brienza, M; Mahdi Ahmed, M; Escande, A; Plantard, G; Scrano, L; Chiron, S; Bufo, S A; Goetz, V

    2016-04-01

    Wastewater tertiary treatment by advanced oxidation processes is thought to produce a treated effluent with lower toxicity than the initial influent. Here we performed tertiary treatment of a secondary effluent collected from a Waste Water Treatment Plant via homogeneous (solar/HSO5(-)/Fe(2+)) and heterogeneous (solar/TiO2) solar advanced oxidation aiming at the assessment of their effectiveness in terms of contaminants' and toxicity abatement in a plain solar reactor. A total of 53 organic contaminants were qualitatively identified by liquid chromatography coupled to high-resolution mass spectrometry after solid phase extraction. Solar advanced oxidation totally or partially removed the major part of contaminants detected within 4.5 h. Standard toxicity tests were performed using Vibrio fischeri, Daphnia magna, Pseudokirchneriella subcapitata and Brachionus calyciflorus organisms to evaluate acute and chronic toxicity in the secondary or tertiary effluents, and the EC50% was calculated. Estrogenic and genotoxic tests were carried out in an attempt to obtain an even sharper evaluation of potential hazardous effects due to micropollutants or their degradation by-products in wastewater. Genotoxic effects were not detected in effluent before or after treatment. However, we observed relevant estrogenic activity due to the high sensitivity of the HELN ERα cell line.

  16. Advancing Long Tail Data Capture and Access Through Trusted, Community-Driven Data Services at the IEDA Data Facility

    NASA Astrophysics Data System (ADS)

    Lehnert, K. A.; Carbotte, S. M.; Ferrini, V.; Hsu, L.; Arko, R. A.; Walker, J. D.; O'hara, S. H.

    2012-12-01

    Substantial volumes of data in the Earth Sciences are collected in small- to medium-size projects by individual investigators or small research teams, known as the 'Long Tail' of science. Traditionally, these data have largely stayed 'in the dark', i.e. they have not been properly archived, and have therefore been inaccessible and underutilized. The primary reason has been the lack of appropriate infrastructure, from adequate repositories to resources and support for investigators to properly manage their data, to community standards and best practices. Lack of credit for data management and for the data themselves has contributed to the reluctance of investigators to share their data. IEDA (Integrated Earth Data Applications), a NSF-funded data facility for solid earth geoscience data, has developed a comprehensive suite of data services that are designed to address the concerns and needs of investigators. IEDA's data publication service registers datasets with DOI and ensures their proper citation and attribution. IEDA is working with publishers on advanced linkages between datasets in the IEDA repository and scientific online articles to facilitate access to the data, enhance their visibility, and augment their use and citation. IEDA's investigator support ranges from individual support for data management to tools, tutorials, and virtual or face-to-face workshops that guide and assist investigators with data management planning, data submission, and data documentation. A critical aspect of IEDA's concept has been the disciplinary expertise within the team and its strong liaison with the science community, as well as a community-based governance. These have been fundamental to gain the trust and support of the community that have lead to significantly improved data preservation and access in the communities served by IEDA.

  17. Ethylene/propylene oxide block copolymer interfacial phenomena in relation to coal cleaning by advanced flotation methods

    SciTech Connect

    McCloy, J.L.; Chander, S.

    1995-12-01

    Surface tension of aqueous ethylene/propylene oxide (EO/PO) block copolymer reagents were measured to understand their role in advanced coal flotation. Coal flotation is one of the most promising methods for separating the combustible matter in coal from ash forming minerals. The use of EO/PO block copolymer reagents enhances the rejection of ash minerals during coal flotation procedures. Since the mechanism whereby this enhancement is achieved is not known very well, an investigation of the surface tension characteristics of EO/PO block copolymer reagents was performed at various concentrations. Data obtained were used to compute adsorption densities at the liquid/gas interface. The adsorption characteristics of nine different EO/PO block copolymers were determined to examine the effect of percent ethylene oxide and formula weight. These studies predict that flotation experiments are most efficient when surfactants with low ethylene oxide percentages are utilized.

  18. Advanced treatment of biologically pretreated coal gasification wastewater by a novel integration of heterogeneous Fenton oxidation and biological process.

    PubMed

    Xu, Peng; Han, Hongjun; Zhuang, Haifeng; Hou, Baolin; Jia, Shengyong; Xu, Chunyan; Wang, Dexin

    2015-04-01

    Laboratorial scale experiments were conducted in order to investigate a novel system integrating heterogeneous Fenton oxidation (HFO) with anoxic moving bed biofilm reactor (ANMBBR) and biological aerated filter (BAF) process on advanced treatment of biologically pretreated coal gasification wastewater (CGW). The results indicated that HFO with the prepared catalyst (FeOx/SBAC, sewage sludge based activated carbon (SBAC) which loaded Fe oxides) played a key role in eliminating COD and COLOR as well as in improving the biodegradability of raw wastewater. The surface reaction and hydroxyl radicals (OH) oxidation were the mechanisms for FeOx/SBAC catalytic reaction. Compared with ANMBBR-BAF process, the integrated system was more effective in abating COD, BOD5, total phenols (TPs), total nitrogen (TN) and COLOR and could shorten the retention time. Therefore, the integrated system was a promising technology for engineering applications.

  19. Almanac 2011: acute coronary syndromes. The national society journals present selected research that has driven recent advances in clinical cardiology.

    PubMed

    Knight, Charles J; Timmis, Adam D

    2011-12-01

    This overview highlights some recent advances in the epidemiology, diagnosis, risk stratification and treatment of acute coronary syndromes. The sheer volume of new studies reflects the robust state of global cardiovascular research but the focus here is on findings that are of most interest to the practising cardiologist. Incidence and mortality rates for myocardial infarction are in decline, probably owing to a combination of lifestyle changes, particularly smoking cessation, and improved pharmacological and interventional treatment. Troponins remain central for diagnosis and new high-sensitivity assays are further lowering detection thresholds and improving outcomes. The incremental diagnostic value of other circulating biomarkers remains unclear and for risk stratification simple clinical algorithms such as the GRACE score have proved more useful. Primary PCI with minimal treatment delay is the most effective reperfusion strategy in ST elevation myocardial infarction (STEMI). Radial access is associated with less bleeding than with the femoral approach, but outcomes appear similar. Manual thrombectomy limits distal embolisation and infarct size while drug-eluting stents reduce the need for further revascularisation procedures. Non-culprit disease is best dealt with electively as a staged procedure after primary PCI has been completed. The development of antithrombotic and antiplatelet regimens for primary PCI continues to evolve, with new indications for fondaparinux and bivalirudin as well as small-molecule glycoprotein (GP)IIb/IIIa inhibitors. If timely primary PCI is unavailable, fibrinolytic treatment remains an option but a strategy of early angiographic assessment is recommended for all patients. Non-ST segment elevation myocardial infarction(NSTEMI) is now the dominant phenotype and out-comes after the acute phase are significantly worse than for STEMI. Many patients with NSTEMI remain undertreated and there is a large body of recent work seeking to

  20. AOX removal from industrial wastewaters using advanced oxidation processes: assessment of a combined chemical-biological oxidation.

    PubMed

    Luyten, J; Sniegowski, K; Van Eyck, K; Maertens, D; Timmermans, S; Liers, Sven; Braeken, L

    2013-01-01

    In this paper, the abatement of adsorbable halogenated organic compounds (AOX) from an industrial wastewater containing relatively high chloride concentrations by a combined chemical and biological oxidation is assessed. For chemical oxidation, the O(3)/UV, H(2)O(2)/UV and photo-Fenton processes are evaluated on pilot scale. Biological oxidation is simulated in a 4 h respirometry experiment with periodic aeration. The results show that a selective degradation of AOX with respect to the matrix compounds (expressed as chemical oxygen demand) could be achieved. For O(3)/UV, lowering the ratio of O(3) dosage to UV intensity leads to a better selectivity for AOX. During O(3)-based experiments, the AOX removal is generally less than during the H(2)O(2)-based experiments. However, after biological oxidation, the AOX levels are comparable. For H(2)O(2)/UV, optimal operating parameters for UV and H(2)O(2) dosage are next determined in a second run with another wastewater sample.

  1. Novel RGO/α-FeOOH supported catalyst for Fenton oxidation of phenol at a wide pH range using solar-light-driven irradiation.

    PubMed

    Wang, Ying; Fang, Jiasheng; Crittenden, John C; Shen, Chanchan

    2017-01-23

    A novel solar-light-driven (SLD) Fenton catalyst was developed by reducing the ferrous-ion onto graphene oxide (GO) and forming reduced graphene oxide/α-FeOOH composites (RF) via in-situ induced self-assembly process. The RF was supported on several mesoporous supports (i.e., Al-MCM-41, MCM-41 and γ-Al2O3). The activity, stability and energy use for phenol oxidation were systematically studied for a wide pH range. Furthermore, the catalytic mechanism at acid and alkaline aqueous conditions was also elucidated. The results showed that Fe(II) was reduced onto GO nanosheets and α-FeOOH crystals were formed during the self-assembly process. Compared with Fenton reaction without SLD irradiation, the visible light irradiation not only dramatically accelerated the rate of Fenton-based reactions, but also extended the operating pH for the Fenton reaction (from 4.0 to 8.0). The phenol oxidation on RF supported catalysts was fitting well with the pseudo-first-order kinetics, and needed low initiating energy, insensitive to the reacting temperature changes (273-318K). The Al-MCM-41 supported RF was a more highly energy-efficient catalyst with the prominent catalytic activity at wide operating pHs. During the reaction, OH radicals were generated by the SLD irradiation from H2O2 reduction and H2O oxidation in the Fe(Ⅱ)/Fe(Ⅲ) and Fe(Ⅲ)/Fe(Ⅳ) cycling processes.

  2. The oxidant and laser power-dependent plasmon-driven surface photocatalysis reaction of p-aminothiophenol dimerizing into p,p'-dimercaptoazobenzene on Au nanoparticles.

    PubMed

    Tan, Enzhong; Yin, Penggang; Yu, Chunna; Yu, Ge; Zhao, Chang

    2016-09-05

    Recently, plasmon-driven surface photocatalysis (PDSPC) reactions have attracted more and more attention by means of surface-enhanced Raman scattering (SERS) because we can in situ monitor the reaction process and determine the final products and their quantities by the real-time SERS spectrum. In this work, self-assembly AuNPs with both high catalytic activity and strong SERS effect were used as a bifunctional platform for in situ monitoring of PDSPC reactions. p-Aminothiophenol (PATP), a famous model molecule, was selected as a probe molecule and FeCl3 and NaClO were selected as oxidants. In this way, oxidation reaction of PATP dimerizing into p,p'-dimercaptoazobenzene (DMAB) has been investigated by SERS, and the results show that oxidant and laser power can alter the conversion rate of the reaction. This work provides a novel approach for controlling PDSPC reaction rate, which may be useful for understanding the mechanism of PDSPC reactions.

  3. Challenges of Electrical Measurements of Advanced Gate Dielectrics in Metal-Oxide-Semiconductor Devices

    NASA Astrophysics Data System (ADS)

    Vogel, Eric M.; Brown, George A.

    2003-09-01

    Experimental measurements and simulations are used to provide an overview of key issues with the electrical characterization of metal-oxide-semiconductor (MOS) devices with ultra-thin oxide and alternate gate dielectrics. Experimental issues associated with the most common electrical characterization method, capacitance-voltage (C-V), are first described. Issues associated with equivalent oxide thickness extraction and comparison, interface state measurement, extrinsic defects, and defect generation are then overviewed.

  4. A kinetic model for advanced oxidation processes of aromatic hydrocarbons in water: Application to phenanthrene and nitrobenzene

    SciTech Connect

    Beltran, F.J.; Rivas, J.; Alvarez, P.M.; Alonso, M.A.; Acedo, B.

    1999-11-01

    A kinetic model for the advanced oxidation (ozonation alone, UV radiation alone, ozone plus hydrogen peroxide, ozone plus UV radiation, and UV radiation plus hydrogen peroxide) of aromatic hydrocarbons in water is proposed and tested with experimental results of the oxidation of nitrobenzene and phenanthrene, two aromatic hydrocarbons of different reactivity with ozone. The kinetic model leads to good results in the case that the compound treated reacts exclusively with ozone, that is, without the contribution of hydroxyl radical oxidation as in the case of phenanthrene oxidation. In this case, it is not necessary to account for intermediate reactions to have good predictions of experimental remaining concentrations of ozonation processes. On the contrary, when the aromatic hydrocarbon s mainly removed by hydroxyl radicals (case of nitrobenzene), mole balance equations of intermediates have to be included for the experimental concentrations to be reproduced. For so doing, the kinetic parameters, such as rate constants of reactions between ozone and hydroxyl radical with intermediates and their corresponding quantum yields at 254 nm, were also determined. The kinetic model, however, is unable to reproduce, with accuracy, the experimental results of the ozone-UV radiation oxidation system.

  5. Comprehensive study on effects of water matrices on removal of pharmaceuticals by three different kinds of advanced oxidation processes.

    PubMed

    Tokumura, Masahiro; Sugawara, Asato; Raknuzzaman, Mohammad; Habibullah-Al-Mamun, Md; Masunaga, Shigeki

    2016-09-01

    Simple semi-theoretical models were developed to estimate the performance of three different kinds of advanced oxidation processes (AOPs) in the degradation of pharmaceuticals. The AOPs included the photo-Fenton process as an example of a liquid-liquid reaction, the TiO2 photocatalytic oxidation process as a solid-liquid reaction, and the combined ozone and hydrogen peroxide oxidation process as a gas-liquid reaction; the effects of the aqueous matrices (CESs: co-existing substances) of actual wastewater on the removal of pharmaceuticals (carbamazepine and diclofenac) was taken into account. By comparing the characteristic parameters of the models, obtained from the experiments using pure water and actual wastewater, the effects of CESs on the respective removal mechanisms could be separately and quantitatively evaluated. As a general tendency, the AOPs proceeded less effectively (were inhibited) in the matrices containing CESs, as observed with the use of a lower initial concentration of pharmaceuticals. The inhibition mechanisms differed for the three types of AOPs. In the photo-Fenton process, the Fenton reaction was improved by the incorporation of CESs, while the photo-reduction reaction was significantly inhibited. In the TiO2 photocatalytic oxidation process, competition between the pharmaceuticals and CESs for adsorption on the catalyst surface was a less significant inhibitory factor than the scavenger effects of the CESs. The combined ozone and hydrogen peroxide oxidation process was most strongly inhibited by CESs among the AOPs investigated in this study.

  6. Systemic toxicity induced by paclitaxel in vivo is associated with the solvent cremophor EL through oxidative stress-driven mechanisms.

    PubMed

    Campos, Fernanda C; Victorino, Vanessa J; Martins-Pinge, Marli Cardoso; Cecchini, Alessandra L; Panis, Carolina; Cecchini, Rubens

    2014-06-01

    The toxic effects of paclitaxel (PTX) and its solubilizing agent cremophor EL (CREL) have been well established in vitro; however, the in vivo mechanisms underlying this toxicity remain unclear. Thus, the aim of this study was to analyze the in vivo toxicity induced by infusion of PTX and CREL and to investigate the involvement of oxidative stress as a potential mechanism for this toxicity. We treated male Wistar rats with PTX and/or CREL for 1h using human-equivalent doses (PTX+CREL/ethanol+NaCl 175mg/m(2) or CREL+ethanol+NaCl) and sacrificed immediately or 24h after these drug infusions to systemic biochemical evaluations. Hidrosoluble vitamin E (vitE, Trolox) was added as a control in some groups. The oxidative profile was determined by measuring erythrocyte and plasma lipid peroxidation, superoxide dismutase and catalase activities, reduced glutathione (GSH) levels, red blood cell (RBC) counts, hemoglobin profile, plasma total radical-trapping antioxidant parameter (TRAP), plasma lipid peroxidation, nitric oxide levels and malondialdehyde levels. Our findings showed that CREL infusion triggered immediate high plasma lipid peroxidation and augmented TRAP, while PTX caused immediate TRAP consumption and metahemoglobin formation. Pronounced oxidative effects were detected 24h after infusion, when CREL treatment enhanced RBC counts and plasma lipid peroxidation, increased catalase activity, and decreased TRAP levels. On the other hand, after 24h, PTX-infused rats showed reduced catalase activity and reduced metahemoglobin levels. These data indicate the existence of a continuous oxidative stress generation during CREL-PTX treatment and highlight CREL as primarily responsible for the in vivo oxidative damage to RBCs.

  7. Advanced oxidation of natural organic matter using hydrogen peroxide and iron-coated pumice particles.

    PubMed

    Kitis, M; Kaplan, S S

    2007-08-01

    The oxidative removal of natural organic matter (NOM) from waters using hydrogen peroxide and iron-coated pumice particles as heterogeneous catalysts was investigated. Two NOM sources were tested: humic acid solution and a natural source water. Iron coated pumice removed about half of the dissolved organic carbon (DOC) concentration at a dose of 3000 mg l(-1) in 24 h by adsorption only. Original pumice and peroxide dosed together provided UV absorbance reductions as high as 49%, mainly due to the presence of metal oxides including Al(2)O(3), Fe(2)O(3) and TiO(2) in the natural pumice, which are known to catalyze the decomposition of peroxide forming strong oxidants. Coating the original pumice particles with iron oxides significantly enhanced the removal of NOM with peroxide. A strong linear correlation was found between iron contents of coated pumices and UV absorbance reductions. Peroxide consumption also correlated with UV absorbance reduction. Control experiments proved the effective coating and the stability of iron oxide species bound on pumice surfaces. Results overall indicated that in addition to adsorptive removal of NOM by metal oxides on pumice surfaces, surface reactions between iron oxides and peroxide result in the formation of strong oxidants, probably like hydroxyl radicals, which further oxidize both adsorbed NOM and remaining NOM in solution, similar to those in Fenton-like reactions.

  8. Degradation of a commercial textile biocide with advanced oxidation processes and ozone.

    PubMed

    Arslan-Alaton, Idil

    2007-01-01

    The occurrence of significant amounts of biocidal finishing agents in the environment as a consequence of intensive textile finishing activities has become a subject of major public health concern and scientific interest only recently. In the present study, the treatment efficiency of selected, well-known advanced oxidation processes (Fenton, Photo-Fenton, TiO(2)/UV-A, TiO(2)/UV-A/H(2)O(2)) and ozone was compared for the degradation and detoxification of a commercial textile biocide formulation containing a 2,4,4'-trichloro-2'-hydroxydiphenyl ether as the active ingredient. The aqueous biocide solution was prepared to mimic typical effluent originating from the antimicrobial finishing operation (BOD(5,o) < or =5 mg/L; COD(o)=200 mg/L; DOC(o) (dissolved organic carbon)=58 mg/L; AOX(o) (adsorbable organic halogens)=48 mg/L; LC(50,o) (lethal concentration causing 50% death or immobilization in Daphnia magna)=8% v/v). Ozonation experiments were conducted at different ozone doses (500-900 mg/h) and initial pH (7-12) to assess the effect of ozonation on degradation (COD, DOC removal), dearomatization (UV(280) and UV(254) abatement), dechlorination (AOX removal) and detoxification (changes in LC(50)). For the Fenton experiments, the effect of varying ferrous iron catalyst concentrations and UV-A light irradiation (the Photo-Fenton process) was examined. In the heterogenous photocatalytic experiments, Degussa P25-type TiO(2) was used as the catalyst and the effect of reaction pH (3, 7 and 12) and H(2)O(2) addition on the photocatalytic treatment efficiency was examined. Although in the photochemical (i.e. Photo-Fenton, TiO(2)/UV-A and TiO(2)/UV-A/H(2)O(2)) experiments appreciably higher COD and DOC removal efficiencies were obtained, ozonation appeared to be equally effective to achieve dearomatization (UV(280) abatement) at all studied reaction pH. During ozonation of the textile biocide effluent, AOX abatement proceeded significantly faster than dearomatization and was

  9. Kinetics and pathways of ibuprofen degradation by the UV/chlorine advanced oxidation process.

    PubMed

    Xiang, Yingying; Fang, Jingyun; Shang, Chii

    2016-03-01

    The UV/chlorine advanced oxidation process (AOP), which forms reactive species such as hydroxyl radicals (HO) and reactive chlorine species (RCS) such as chlorine atoms (Cl) and Cl2(-), is being considered as an alternative to the UV/H2O2 AOP for the degradation of emerging contaminants. This study investigated the kinetics and pathways of the degradation of a recalcitrant pharmaceutical and personal care product (PPCP)-ibuprofen (IBP)-by the UV/chlorine AOP. The degradation of IBP followed the pseudo first-order kinetics. The first-order rate constant was 3.3 times higher in the UV/chlorine AOP than in the UV/H2O2 AOP for a given chemical molar dosage at pH 6. The first-order rate constant decreased from 3.1 × 10(-3) s(-1) to 5.5 × 10(-4) s(-1) with increasing pH from 6 to 9. Both HO and RCS contributed to the degradation, and the contribution of RCS increased from 22% to 30% with increasing pH from 6 to 9. The degradation was initiated by HO-induced hydroxylation and Cl-induced chlorine substitution, and sustained through decarboxylation, demethylation, chlorination and ring cleavage to form more stable products. Significant amounts of chlorinated intermediates/byproducts were formed from the UV/chlorine AOP, and four chlorinated products were newly identified. The yield of total organic chlorine (TOCl) was 31.6 μM after 90% degradation of 50 μM IBP under the experimental conditions. The known disinfection by-products (DBPs) comprised 17.4% of the TOCl. The effects of water matrix in filtered drinking water on the degradation were not significant, demonstrating the practicality of the UV/chlorine AOP for the control of some refractory PPCPs. However, the toxicity of the chlorinated products should be further assessed.

  10. Kinetics and mechanisms of cylindrospermopsin destruction by sulfate radical-based advanced oxidation processes.

    PubMed

    He, Xuexiang; de la Cruz, Armah A; O'Shea, Kevin E; Dionysiou, Dionysios D

    2014-10-15

    Cylindrospermopsin (CYN) is a potent cyanobacterial toxin frequently found in water bodies worldwide raising concerns over the safety of drinking and recreational waters. A number of technologies have been investigated to remove and/or degrade cyanotoxins with advanced oxidation processes (AOPs) being among the most promising and effective for water detoxification. In this study, the degradation of CYN by sulfate radical-based UV-254 nm-AOPs was evaluated. The UV/S2O8(2-) (UV/peroxydisulfate) was more efficient than UV/HSO5(-) (UV/peroxysulfate) and UV/H2O2 (UV/hydrogen peroxide) processes when natural water samples were used as reaction matrices. The observed UV fluence based pseudo-first-order rate constants followed the expected order of radical quantum yields. The presence of 200 μM natural organic matter (NOM) as carbon slightly inhibited the destruction of CYN; 1.24 mg L(-1)NO3(-) (nitrate) had no significant influence on the removal efficiency and 50 μg L(-1) Fe(2+) [iron (2+)] or Cu(2+) [copper (2+)] improved the performance of UV/S2O8(2-). The addition of tert-butyl alcohol (t-BuOH; hydroxyl radical scavenger) in the reaction yielded byproducts that indicated specific sites in CYN preferentially attacked by sulfate radicals (SRs). The predominant CYN degradation byproduct was P448 consistent with fragmentation of the C5C6 bond of the uracil ring. The subsequent formation of P420 and P392 through a stepwise loss of carbonyl group(s) further supported the fragmentation pathway at C5C6. The byproduct P432 was identified exclusively as mono-hydroxylation of CYN at tricyclic guanidine ring, whereas P414 was detected as dehydrogenation at the tricyclic ring. The elimination of sulfate group and the opening of tricyclic ring were also observed. The possible degradation pathways of CYN by SR-AOP were presented.

  11. Mechanistic modeling of vacuum UV advanced oxidation process in an annular photoreactor.

    PubMed

    Crapulli, F; Santoro, D; Sasges, M R; Ray, A K

    2014-11-01

    A novel mechanistic model that describes the vacuum UV advanced oxidation process in an annular photoreactor initiated by 172 nm and 185 nm (in combination with 253.7 nm, with and without exogenous H2O2) is presented in this paper. The model was developed from first principles by incorporating the vacuum UV-AOP kinetics into the theoretical framework of in-series continuous flow stirred tank reactors. After conducting a sensitivity analysis, model predictions were compared against experiments conducted under a variety of conditions: (a) photo-induced formation of hydrogen peroxide by water photolysis at 172 nm (for both air- and oxygen-saturated conditions); (b) photo-induced formation of hydrogen peroxide by water photolysis at 185 + 253.7 nm (in the presence of formic acid, with and without the initial addition of hydrogen peroxide); (c) direct photolysis of hydrogen peroxide by 253.7 nm; (d) degradation of formic acid by 185 + 253.7 nm (with and without initial addition of hydrogen peroxide); and (e) degradation of formic acid by 253.7 nm (with the addition of exogenous hydrogen peroxide). In all cases, the model was able to accurately predict the time-dependent profiles of hydrogen peroxide and formic acid concentrations. Two newly recognized aspects associated with water photolysis were identified through the use of the validated model. Firstly, unlike the 185 nm and 253.7 nm cases, water photolysis by the 172 nm wavelength revealed a depth of photoactive water layer an order of magnitude greater (∼230-390 μm, depending on the specific operating conditions) than the 1-log photon penetration layer (∼18 μm). To further investigate this potentially very important finding, a computational fluid dynamics model was set up to assess the role of transport mechanisms and species distributions within the photoreactor annulus. The model confirmed that short-lived hydroxyl radicals were present at a radial distance far beyond the ∼18 μm photon

  12. A model of nitrous oxide evolution from soil driven by rainfall events. I - Model structure and sensitivity. II - Model applications

    NASA Technical Reports Server (NTRS)

    Changsheng, LI; Frolking, Steve; Frolking, Tod A.

    1992-01-01

    Simulations of N2O and CO2 emissions from soils were conducted with a rain-event driven, process-oriented model (DNDC) of nitrogen and carbon cycling processes in soils. The magnitude and trends of simulated N2O (or N2O + N2) and CO2 emissions were consistent with the results obtained in field experiments. The successful simulation of these emissions from the range of soil types examined demonstrates that the DNDC will be a useful tool for the study of linkages among climate, soil-atmosphere interactions, land use, and trace gas fluxes.

  13. Complement Component C1q Mediates Mitochondria-Driven Oxidative Stress in Neonatal Hypoxic–Ischemic Brain Injury

    PubMed Central

    Ten, Vadim S.; Yao, Jun; Ratner, Veniamin; Sosunov, Sergey; Fraser, Deborah A.; Botto, Marina; Baalasubramanian, Sivasankar; Morgan, B. Paul; Silverstein, Samuel; Stark, Raymond; Polin, Richard; Vannucci, Susan J.; Pinsky, David; Starkov, Anatoly A.

    2010-01-01

    Hypoxic–ischemic (HI) brain injury in infants is a leading cause of lifelong disability. We report a novel pathway mediating oxidative brain injury after hypoxia–ischemia in which C1q plays a central role. Neonatal mice incapable of classical or terminal complement activation because of C1q or C6 deficiency or pharmacologically inhibited assembly of membrane attack complex were subjected to hypoxia–ischemia. Only C1q−/− mice exhibited neuroprotection coupled with attenuated oxidative brain injury. This was associated with reduced production of reactive oxygen species (ROS) in C1q−/− brain mitochondria and preserved activity of the respiratory chain. Compared with C1q+/+ neurons, cortical C1q−/− neurons exhibited resistance to oxygen– glucose deprivation. However, postischemic exposure to exogenous C1q increased both mitochondrial ROS production and mortality of C1q−/− neurons. This C1q toxicity was abolished by coexposure to antioxidant Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid). Thus, the C1q component of complement, accelerating mitochondrial ROS emission, exacerbates oxidative injury in the developing HI brain. The terminal complement complex is activated in the HI neonatal brain but appeared to be nonpathogenic. These findings have important implications for design of the proper therapeutic interventions against HI neonatal brain injury by highlighting a pathogenic priority of C1q-mediated mitochondrial oxidative stress over the C1q deposition-triggered terminal complement activation. PMID:20147536

  14. Development of TMI Logistic Fuel Solid Oxide Fuel Cell (SOFC) for Advanced Military Power Generation Systems

    DTIC Science & Technology

    2007-11-02

    Power generation systems based on the Technology Management, Inc. (TMI) solid oxide fuel cell (SOFC) are an optional modality for military...integrated system using TMI’s proprietary sulfur-tolerant planar solid oxide fuel cell (SOFC) and steam reformer, integrated into a compact unit which

  15. Recent advances on iron oxide magnetic nanoparticles as sorbents of organic pollutants in water and wastewater treatment.

    PubMed

    Gutierrez, Angela M; Dziubla, Thomas D; Hilt, J Zach

    2017-02-23

    The constant growth in population worldwide over the past decades continues to put forward the need to provide access to safe, clean water to meet human needs. There is a need for cost-effective technologies for water and wastewater treatment that can meet the global demands and the rigorous water quality standards and at the same maximizing pollutant efficiency removal. Current remediation technologies have failed in keeping up with these factors without becoming cost-prohibitive. Most recently, nanotechnology has been sought as the best alternative to increase access to water supplies by remediating those already contaminated and offering ways to access unconventional sources. The use of iron oxide magnetic nanoparticles as nanoadsorbents has led way to a new class of magnetic separation strategies for water treatment. This review focuses on highlighting some of the most recent advances in core-shell iron oxide magnetic nanoparticles and nanocomposites containing iron oxide nanoparticles currently being developed for water and wastewater treatment of organic pollutants. We discuss the novelty of these novel materials and the insight gained from their advances that can help develop cost-effective reusable technologies for scale-up and commercial use.

  16. Some ozone advanced oxidation processes to improve the biological removal of selected pharmaceutical contaminants from urban wastewater.

    PubMed

    Espejo, Azahara; Aguinaco, Almudena; Amat, Ana M; Beltrán, Fernando J

    2014-01-01

    Removal of nine pharmaceutical compounds--acetaminophen (AAF), antipyrine (ANT), caffeine (CAF), carbamazepine (CRB), diclofenac (DCF), hydrochlorothiazide (HCT), ketorolac (KET), metoprolol (MET) and sulfamethoxazole (SMX)-spiked in a primary sedimentation effluent of a municipal wastewater has been studied with sequential aerobic biological and ozone advanced oxidation systems. Combinations of ozone, UVA black light and Fe(III) or Fe3O4 constituted the chemical systems. During the biological treatment (hydraulic residence time, HRT = 24 h), only AAF and CAF were completely eliminated, MET, SMX and HCT reached partial removal rates and the rest of compounds were completely refractory. With any ozone advanced oxidation process applied, the remaining pharmaceuticals disappear in less than 10 min. Fe3O4 or Fe(III) photocatalytic ozonation leads to 35% mineralization compared to 13% reached during ozonation alone after about 30-min reaction. Also, biodegradability of the treated wastewater increased 50% in the biological process plus another 150% after the ozonation processes. Both untreated and treated wastewater was non-toxic for Daphnia magna (D. magna) except when Fe(III) was used in photocatalytic ozonation. In this case, toxicity was likely due to the ferryoxalate formed in the process. Kinetic information on ozone processes reveals that pharmaceuticals at concentrations they have in urban wastewater are mainly removed through free radical oxidation.

  17. Evaluation of the advanced mixed-oxide fuel test FO-2 irradiated in the FFTF (Fast Flux Test Facility)

    SciTech Connect

    Burley Gilpin, L.L.; Chastain, S.A.; Baker, R.B.

    1989-01-01

    The advanced mixed-oxide (UO{sub 2}-PuO{sub 2}) test assembly, FO-2, irradiated in the Fast Flux Test Facility (FFTF) is undergoing postirradiation examination. This is one of the first FFTF tests examined that used the advanced ferrite-martensite alloy, HT9, which is highly resistant to irradiation swelling. The FO-2 includes the first annular fueled pins irradiated in FFTF to undergo destructive examination. The FO-2 is a lead assembly for the ongoing FFTF Core Demonstration Experiment (CDE) and was designed to evaluate the effects of fuel design variables, such as pellet density, smeared density, and fuel form (annular or solid fuel), on advanced pin performance. The assembly contains a total of 169 fuel pins of 12 different types. Two L (annular) fuel pins, GF02L04 (FFTF and transient tested) and GF02L09 (FFTF only), were destructively examined. Evaluation of the FO-2 fuel pins and assembly shows the excellent and predictable performance of the mixed-oxide fuels with HT9 structural material. This, combined with the robust behavior of the pins in transient tests, and the continued excellent performance of the CDE indicate this is a superior fuel system for liquid-metal reactors. It offers greatly reduced deformation during irradiation, while maintaining good operating characteristics.

  18. Oxidative stress-driven mechanisms of nordihydroguaiaretic acid-induced apoptosis in FL5.12 cells

    SciTech Connect

    Deshpande, Vaidehee S. . E-mail: vaidehee@hotmail.com; Kehrer, James P.

    2006-08-01

    Nordihydroguaiaretic acid (NDGA), a general lipoxygenase (LOX) enzyme inhibitor, induces apoptosis independently of its activity as a LOX inhibitor in murine pro-B lymphocytes (FL.12 cells) by a mechanism that is still not fully understood. Glutathione depletion, oxidative processes and mitochondrial depolarization appear to contribute to the apoptosis induced by NDGA. The current data demonstrate that NDGA (20 {mu}M)-induced apoptosis in FL5.12 cells is partially protected by N-acetylcysteine (NAC) (10 mM) and dithiothreitol (DTT) (500 {mu}M) pretreatment, confirming a role for oxidative processes. In addition, the treatment of FL5.12 cells with NDGA led to an increase in phosphorylation and activation of the MAP kinases ERK, JNK and p38. Although pretreatment with ERK inhibitors (PD98059 or U0126) abolished ERK phosphorylation in response to NDGA, neither inhibitor had any effect on NDGA-induced apoptosis. SP600125, a JNK inhibitor, did not have any effect on NDGA-induced phosphorylation of JNK nor apoptosis. Pretreatment with the p38 inhibitor SB202190 attenuated NDGA-induced apoptosis by 30% and also abolished p38 phosphorylation, compared to NDGA treatment alone. NAC, but not DTT, also decreased the phosphorylation of p38 and JNK supporting a role for oxidative processes in activating these kinases. Neither NAC nor DTT blocked the phosphorylation of ERK suggesting that this activation is not related to oxidative stress. The release of cytochrome c and activation of caspase-3 induced by NDGA were inhibited by NAC. SB202190 slightly attenuated caspase-3 activation and had no effect on the release of cytochrome c. These data suggest that several independent mechanisms, including oxidative reactions, activation of p38 kinase and cytochrome c release contribute to NDGA-induced apoptosis.

  19. Flexible full color organic light-emitting diode display on polyimide plastic substrate driven by amorphous indium gallium zinc oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Park, Jin-Seong; Kim, Tae-Woong; Stryakhilev, Denis; Lee, Jae-Sup; An, Sung-Guk; Pyo, Yong-Shin; Lee, Dong-Bum; Mo, Yeon Gon; Jin, Dong-Un; Chung, Ho Kyoon

    2009-07-01

    We have fabricated 6.5 in. flexible full-color top-emission active matrix organic light-emitting diode display on a polyimide (PI) substrate driven amorphous indium gallium zinc oxide thin-film transistors (a-IGZO TFTs). The a-IGZO TFTs exhibited field-effect mobility (μFE) of 15.1 cm2/V s, subthreshold slope of 0.25 V/dec, threshold voltage (VTH) of 0.9 V. The electrical characteristics of TFTs on PI substrate, including a bias-stress instability after 1 h long gate bias at 15 V, were indistinguishable from those on glass substrate and showed high degree of spatial uniformity. TFT samples on 10 μm thick PI substrate withstood bending down to R =3 mm under tension and compression without any performance degradation.

  20. Recent Advances in Preparation, Structure, Properties and Applications of Graphite Oxide.

    PubMed

    Srivastava, Suneel Kumar; Pionteck, Jürgen

    2015-03-01

    Graphite oxide, also referred as graphitic oxide or graphitic acid, is an oxidized bulk product of graphite with a variable composition. However, it did not receive immense attention until it was identified as an important and easily obtainable precursor for the preparation of graphene. This inspired many researchers to explore facts related to graphite oxide in exploiting its fascinating features. The present article culminates up-dated review on different preparative methods, morphology and characterization of physical/chemical properties of graphite oxide by XRD, XPS, FTIR, Raman, NMR, UV-visible, and DRIFT analyses. Finally, recent developments on intercalation and applications of GO in multifaceted areas of catalysis, sensor, supercapacitors, water purification, hydrogen storage and magnetic shielding etc. has also been reviewed.

  1. Recent Advances in the Synthesis and Stabilization of Nickel and Nickel Oxide Nanoparticles: A Green Adeptness

    PubMed Central

    Rani, Aneela

    2016-01-01

    Green protocols for the synthesis of nanoparticles have been attracting a lot of attention because they are eco-friendly, rapid, and cost-effective. Nickel and nickel oxide nanoparticles have been synthesized by green routes and characterized for impact of green chemistry on the properties and biological effects of nanoparticles in the last five years. Green synthesis, properties, and applications of nickel and nickel oxide nanoparticles have been reported in the literature. This review summarizes the synthesis of nickel and nickel oxide nanoparticles using different biological systems. This review also provides comparative overview of influence of chemical synthesis and green synthesis on structural properties of nickel and nickel oxide nanoparticles and their biological behavior. It concludes that green methods for synthesis of nickel and nickel oxide nanoparticles are better than chemical synthetic methods. PMID:27413375

  2. 2 Gbit/s 0.5 μm complementary metal-oxide semiconductor optical transceiver with event-driven dynamic power-on capability

    NASA Astrophysics Data System (ADS)

    Wang, Xingle; Kiamilev, Fouad; Gui, Ping; Wang, Xiaoqing; Ekman, Jeremy; Zuo, Yongrong; Blankenberg, Jason; Haney, Michael

    2006-06-01

    A 2 Gb/s0.5 μm complementary metal-oxide semiconductor optical transceiver designed for board- or backplane level power-efficient interconnections is presented. The transceiver supports optical wake-on-link (OWL), an event-driven dynamic power-on technique. Depending on external events, the transceiver resides in either the active mode or the sleep mode and switches accordingly. The active-to-sleep transition shuts off the normal, gigabit link and turns on dedicated circuits to establish a low-power (~1.8 mW), low data rate (less than 100 Mbits/s) link. In contrast the normal, gigabit link consumes over 100 mW. Similarly the sleep-to-active transition shuts off the low-power link and turns on the normal, gigabit link. The low-power link, sharing the same optical channel with the normal, gigabit link, is used to achieve transmitter/receiver pair power-on synchronization and greatly reduces the power consumption of the transceiver. A free-space optical platform was built to evaluate the transceiver performance. The experiment successfully demonstrated the event-driven dynamic power-on operation. To our knowledge, this is the first time a dynamic power-on scheme has been implemented for optical interconnects. The areas of the circuits that implement the low-power link are approximately one-tenth of the areas of the gigabit link circuits.

  3. Spin-orbit driven magnetic insulating state with Jeff=1/2 character in a 4d oxide

    SciTech Connect

    Calder, S.; Li, Ling; Okamoto, Satoshi; Choi, Yongseong; Mukherjee, Rupam; Haskel, Daniel; Mandrus, D.

    2015-11-30

    The unusual magnetic and electronic ground states of 5d iridates has been shown to be driven by intrinsically enhanced spin-orbit coupling (SOC). The influence of appreciable but reduced SOC in creating the manifested magnetic insulating states in 4d oxides is less clear, with one hurdle being the existence of such compounds. Here we present experimental and theoretical results on Sr4RhO6 that reveal SOC dominated behavior. Neutron measurements show the octahedra are both spatially separated and locally ideal, making the electronic ground state susceptible to alterations by SOC. Magnetic ordering is observed with a similar structure to an analogous Jeff=1/2 Mott iridate. We consider the underlying role of SOC in this rhodate with density functional theory and x-ray absorption spectroscopy and find a magnetic insulating ground state with Jeff =1/2 character.The unusual magnetic and electronic ground states of 5d iridates have been shown to be driven by intrinsically enhanced spin-orbit coupling (SOC). The influence of appreciable but reduced SOC in creating the manifested magnetic insulating states in 4d oxides is less clear, with one hurdle being the existence of such compounds. Here, we present experimental and theoretical results on Sr4RhO6 that reveal SOC dominated behavior. Neutron measurements show the octahedra are both spatially separated and locally ideal, making the electronic ground state susceptible to alterations by SOC. Magnetic ordering is observed with a similar structure to an analogous Jeff=1/2 Mott iridate. We consider the underlying role of SOC in this rhodate with density functional theory and x-ray absorption spectroscopy, and find a magnetic insulating ground state with Jeff=12 character.

  4. Unique and facile solvothermal synthesis of mesoporous WO3 using a solid precursor and a surfactant template as a photoanode for visible-light-driven water oxidation

    PubMed Central

    2014-01-01

    Mesoporous tungsten trioxide (WO3) was prepared from tungstic acid (H2WO4) as a tungsten precursor with dodecylamine (DDA) as a template to guide porosity of the nanostructure by a solvothermal technique. The WO3 sample (denoted as WO3-DDA) prepared with DDA was moulded on an electrode to yield efficient performance for visible-light-driven photoelectrochemical (PEC) water oxidation. Powder X-ray diffraction (XRD) data of the WO3-DDA sample calcined at 400°C indicate a crystalline framework of the mesoporous structure with disordered arrangement of pores. N2 physisorption studies show a Brunauer-Emmett-Teller (BET) surface area up to 57 m2 g-1 together with type IV isotherms and uniform distribution of a nanoscale pore size in the mesopore region. Scanning electron microscopy (SEM) images exhibit well-connected tiny spherical WO3 particles with a diameter of ca. 5 to 20 nm composing the mesoporous network. The WO3-DDA electrode generated photoanodic current density of 1.1 mA cm-2 at 1.0 V versus Ag/AgCl under visible light irradiation, which is about three times higher than that of the untemplated WO3. O2 (1.49 μmol; Faraday efficiency, 65.2%) was evolved during the 1-h photoelectrolysis for the WO3-DDA electrode under the conditions employed. The mesoporous electrode turned out to work more efficiently for visible-light-driven water oxidation relative to the untemplated WO3 electrode. PMID:25313301

  5. Photo-driven oxidation of water on α-Fe{sub 2}O{sub 3} surfaces: An ab initio study

    SciTech Connect

    Nguyen, Manh-Thuong Seriani, Nicola; Piccinin, Simone

    2014-02-14

    Adopting the theoretical scheme developed by the Nørskov group [see, for example, Nørskov et al., J. Phys. Chem. B 108, 17886 (2004)], we conducted a density functional theory study of photo-driven oxidation processes of water on various terminations of the clean hematite (α-Fe{sub 2}O{sub 3}) (0001) surface, explicitly taking into account the strong correlation among the 3d states of iron through the Hubbard U parameter. Six best-known terminations, namely, Fe − Fe −O{sub 3}− (we call S{sub 1}), O− Fe − Fe − (S{sub 2}), O{sub 2}− Fe − Fe −(S{sub 3}), O{sub 3}− Fe − Fe − (S{sub 4}), Fe −O{sub 3}− Fe − (S{sub 5}), and O− Fe −O{sub 3}−(S{sub 6}), are first exposed to water, the stability of resulting surfaces is investigated under photoelectrochemical conditions by considering different chemical reactions (and their reaction free energies) that lead to surfaces covered by O atoms or/and OH groups. Assuming that the water splitting reaction is driven by the redox potential for photogenerated holes with respect to the normal hydrogen electrode, U{sub VB}, at voltage larger than U{sub VB}, most 3-oxygen terminated substrates are stable. These results thus suggest that the surface, hydroxylated in the dark, should release protons under illumination. Considering the surface free energy of all the possible terminations shows that O{sub 3}–S{sub 5} and O{sub 3}–S{sub 1} are the most thermodynamically stable. While water oxidation process on the former requires an overpotential of 1.22 V, only 0.84 V is needed on the latter.

  6. The evaluation of the oxidative stress for patients receiving neoadjuvant chemoradiotherapy for locally advanced rectal cancer

    PubMed Central

    Serbanescu, GL; Gruia, MI; Bara, M; Anghel, RM

    2017-01-01

    Hypothesis: Nowadays, rectal cancer is an important healthcare challenge that affects many thousands of people each year worldwide, being diagnosed especially after the age of 50 years. Objective: This study attempted to evaluate the oxidative stress in patients with rectal cancer. Methods and results: 30 patients from the “Prof. Dr. Al. Trestioreanu” Institute of Oncology in Bucharest were treated with neoadjuvant radiochemotherapy during 2014 and 2016 and were included in the clinical study. Blood samples were obtained in dynamics during the treatment. From the blood samples, the serum was separated and used to identify the biochemical oxidative stress parameters. Results: Regarding the determination of lipid peroxides, albumin thiols, the cuprum oxidase activity of ceruloplasmin, the values registered in the dynamic of the treatment highlighted their increase to a maximum at the treatment’s endpoint due to an important oxidative stress. Regarding the serum values for total antioxidants, the results pointed out the activation of the natural protection systems, which in time were overwhelmed, due to the installed oxidative stress. Conclusion: Part of the cytotoxic effect of radiotherapy was due to the production of oxidative stress. The cell was constantly exposed to the cytotoxic action of the reactive oxygen species. The obtained results indicated the dual relation to which the tumoral cell exposed itself and the installed oxidative stress, respectively, the oxidative stress being a cause or a consequence of the malign transformation. Abbreviations: CT = computed tomography, MRI = magnetic resonance imaging, ESMO = European Society for Medical Oncology, ECOG = performance status scale PMID:28255388

  7. The evaluation of the oxidative stress for patients receiving neoadjuvant chemoradiotherapy for locally advanced rectal cancer.

    PubMed

    Serbanescu, G L; Gruia, M I; Bara, M; Anghel, R M

    2017-01-01

    Hypothesis: Nowadays, rectal cancer is an important healthcare challenge that affects many thousands of people each year worldwide, being diagnosed especially after the age of 50 years. Objective: This study attempted to evaluate the oxidative stress in patients with rectal cancer. Methods and results: 30 patients from the "Prof. Dr. Al. Trestioreanu" Institute of Oncology in Bucharest were treated with neoadjuvant radiochemotherapy during 2014 and 2016 and were included in the clinical study. Blood samples were obtained in dynamics during the treatment. From the blood samples, the serum was separated and used to identify the biochemical oxidative stress parameters. Results: Regarding the determination of lipid peroxides, albumin thiols, the cuprum oxidase activity of ceruloplasmin, the values registered in the dynamic of the treatment highlighted their increase to a maximum at the treatment's endpoint due to an important oxidative stress. Regarding the serum values for total antioxidants, the results pointed out the activation of the natural protection systems, which in time were overwhelmed, due to the installed oxidative stress. Conclusion: Part of the cytotoxic effect of radiotherapy was due to the production of oxidative stress. The cell was constantly exposed to the cytotoxic action of the reactive oxygen species. The obtained results indicated the dual relation to which the tumoral cell exposed itself and the installed oxidative stress, respectively, the oxidative stress being a cause or a consequence of the malign transformation. Abbreviations: CT = computed tomography, MRI = magnetic resonance imaging, ESMO = European Society for Medical Oncology, ECOG = performance status scale.

  8. Reversible wettability of electron-beam deposited indium-tin-oxide driven by ns-UV irradiation

    SciTech Connect

    Persano, Luana; Del Carro, Pompilio; Pisignano, Dario

    2012-04-09

    Indium tin oxide (ITO) is one of the most widely used semiconductor oxides in the field of organic optoelectronics, especially for the realization of anode contacts. Here the authors report on the control of the wettability properties of ITO films deposited by reactive electron beam deposition and irradiated by means of nanosecond-pulsed UV irradiation. The enhancement of the surface water wettability, with a reduction of the water contact angle larger than 50 deg., is achieved by few tens of seconds of irradiation. The analyzed photo-induced wettability change is fully reversible in agreement with a surface-defect model, and it can be exploited to realize optically transparent, conductive surfaces with controllable wetting properties for sensors and microfluidic circuits.

  9. Nanostructured bismuth vanadate-based materials for solar-energy-driven water oxidation: a review on recent progress

    NASA Astrophysics Data System (ADS)

    Huang, Zhen-Feng; Pan, Lun; Zou, Ji-Jun; Zhang, Xiangwen; Wang, Li

    2014-11-01

    Water oxidation is the key step for both photocatalytic water splitting and CO2 reduction, but its efficiency is very low compared with the photocatalytic reduction of water. Bismuth vanadate (BiVO4) is the most promising photocatalyst for water oxidation and has become a hot topic for current research. However, the efficiency achieved with this material to date is far away from the theoretical solar-to-hydrogen conversion efficiency, mainly due to the poor photo-induced electron transportation and the slow kinetics of oxygen evolution. Fortunately, great breakthroughs have been made in the past five years in both improving the efficiency and understanding the related mechanism. This review is aimed at summarizing the recent experimental and computational breakthroughs in single crystals modified by element doping, facet engineering, and morphology control, as well as macro/mesoporous structure construction, and composites fabricated by homo/hetero-junction construction and co-catalyst loading. We aim to provide guidelines for the rational design and fabrication of highly efficient BiVO4-based materials for water oxidation.

  10. Nanostructured bismuth vanadate-based materials for solar-energy-driven water oxidation: a review on recent progress.

    PubMed

    Huang, Zhen-Feng; Pan, Lun; Zou, Ji-Jun; Zhang, Xiangwen; Wang, Li

    2014-11-06

    Water oxidation is the key step for both photocatalytic water splitting and CO₂ reduction, but its efficiency is very low compared with the photocatalytic reduction of water. Bismuth vanadate (BiVO₄) is the most promising photocatalyst for water oxidation and has become a hot topic for current research. However, the efficiency achieved with this material to date is far away from the theoretical solar-to-hydrogen conversion efficiency, mainly due to the poor photo-induced electron transportation and the slow kinetics of oxygen evolution. Fortunately, great breakthroughs have been made in the past five years in both improving the efficiency and understanding the related mechanism. This review is aimed at summarizing the recent experimental and computational breakthroughs in single crystals modified by element doping, facet engineering, and morphology control, as well as macro/mesoporous structure construction, and composites fabricated by homo/hetero-junction construction and co-catalyst loading. We aim to provide guidelines for the rational design and fabrication of highly efficient BiVO₄-based materials for water oxidation.

  11. Degradation of 2,4-dinitrophenol using a combination of hydrodynamic cavitation, chemical and advanced oxidation processes.

    PubMed

    Bagal, Manisha V; Gogate, Parag R

    2013-09-01

    In the present work, degradation of 2,4-dinitrophenol (DNP), a persistent organic contaminant with high toxicity and very low biodegradability has been investigated using combination of hydrodynamic cavitation (HC) and chemical/advanced oxidation. The cavitating conditions have been generated using orifice plate as a cavitating device. Initially, the optimization of basic operating parameters have been done by performing experiments over varying inlet pressure (over the range of 3-6 bar), temperature (30 °C, 35 °C and 40 °C) and solution pH (over the range of 3-11). Subsequently, combined treatment strategies have been investigated for process intensification of the degradation process. The effect of HC combined with chemical oxidation processes such as hydrogen peroxide (HC/H2O2), ferrous activated persulfate (HC/Na2S2O8/FeSO4) and HC coupled with advanced oxidation processes such as conventional Fenton (HC/FeSO4/H2O2), advanced Fenton (HC/Fe/H2O2) and Fenton-like process (HC/CuO/H2O2) on the extent of degradation of DNP have also been investigated at optimized conditions of pH 4, temperature of 35 °C and inlet pressure of 4 bar. Kinetic study revealed that degradation of DNP fitted first order kinetics for all the approaches under investigation. Complete degradation with maximum rate of DNP degradation has been observed for the combined HC/Fenton process. The energy consumption analysis for hydrodynamic cavitation based process has been done on the basis of cavitational yield. Degradation intermediates have also been identified and quantified in the current work. The synergistic index calculated for all the combined processes indicates HC/Fenton process is more feasible than the combination of HC with other Fenton like processes.

  12. Cell signaling and receptors in toxicity of advanced glycation end products (AGEs): α-dicarbonyls, radicals, oxidative stress and antioxidants.

    PubMed

    Kovacic, Peter; Somanathan, Ratnasamy

    2011-10-01

    Considerable attention has been paid to the toxicity of advanced glycation end products (AGEs), including relation to various illnesses. AGEs, generated nonenzymatically from carbohydrates and proteins, comprises large numbers of simple and more complicated compounds. Many reports deal with a role for receptors (RAGE) and cell signaling, including illnesses and aging. Reactive oxygen species appear to participate in signaling. RAGE include angiotensin II type 1 receptors. Many signaling pathways are involved, such as kinases, p38, p21, TGF-β, NF-κβ, TNF-α, JNK and STAT. A recent review puts focus on α-dicarbonyl metabolites, formed by carbohydrate oxidation, and imine derivatives from protein condensation, as a source via electron transfer (ET) of ROS and oxidative stress (OS). The toxic species have been related to illnesses and aging. Antioxidants alleviate the adverse effects.

  13. Dechlorination and decolorization of chloro-organics in pulp bleach plant E-1 effluents by advanced oxidation processes.

    PubMed

    Wang, Rui; Chen, Chen-Loung; Gratzl, Josef S

    2004-09-01

    Studies were conducted on the composition of chloro-organics in kraft-pulp bleach plant E-1 effluents and their response toward advanced oxidation processes, such as UV-, O(2)/UV-, O(3)/UV- and O(3)-H(2)O(2)/UV-photolysis processes with irradiation of 254 nm photons. The studies were extended to ozonation and O(3)-H(2)O(2) oxidation systems in alkaline aqueous solution. The effects of process variables included initial pH, addition of oxidant to the UV-photolysis system on the decolorization and dechlorination of the chloro-organics the E-1 bleaching effluents were also studied. The decolorization and dechlorination rate constants are increased in the presence of molecular oxygen in the UV-photolysis systems, but are decreased on addition of hydrogen peroxide. The dechlorination rate constants are increased appreciably on oxidation with ozone alone and a combination of ozone and hydrogen peroxide as compared to those of the corresponding UV-photolysis systems under aerial atmosphere.

  14. Advanced oxidation of iodinated X-ray contrast media in reverse osmosis brines: the influence of quenching.

    PubMed

    Azerrad, Sara P; Gur-Reznik, Shirra; Heller-Grossman, Lilly; Dosoretz, Carlos G

    2014-10-01

    Among the main restrictions for the implementation of advanced oxidation processes (AOPs) for removal of micropollutants present in reverse osmosis (RO) brines of secondary effluents account the quenching performed by background organic and inorganic constituents. Natural organic matter (NOM) and soluble microbial products (SMP) are the main effluent organic matter constituents. The inorganic fraction is largely constituted by chlorides and bicarbonate alkalinity with sodium and calcium as main counterions. The quenching influence of these components, separately and their mixture, in the transformation of model compounds by UVA/TiO2 was studied applying synthetic brines solutions mimicking 2-fold concentrated RO secondary effluents brines. The results were validated using fresh RO brines. Diatrizoate (DTZ) and iopromide (IOPr) were used as model compound. They have been found to exhibit relative high resistance to oxidation process and therefore represent good markers for AOPs techniques. Under the conditions applied, oxidization of DTZ in the background of RO brines was strongly affected by quenching effects. The major contribution to quenching resulted from organic matter (≈70%) followed by bicarbonate alkalinity (≈30%). NOM displayed higher quenching than SMP in spite of its relative lower concentration. Multivalent cations, i.e., Ca(+2), were found to decrease effectiveness of the technique due to agglomeration of the catalyst. However this influence was lowered in presence of NOM. Different patterns of transformation were found for each model compound in which a delayed deiodination was observed for iopromide whereas diatrizoate oxidation paralleled deiodination.

  15. The catalytic synergetic effect of carbon nanotubes on CuO during advanced oxidation processes: A theoretical account

    NASA Astrophysics Data System (ADS)

    Qin, Wu; Wei, Li; Wang, Lei; Dong, Changqing; Xiao, Xianbin; Zheng, Zongming; Yang, Yongping

    2013-05-01

    Following our previous work on the synergy between graphene and catalyst particle [1], we discuss how carbon nanotubes (CNTs) affect the catalytic reactivity of CuO during advanced oxidation processes using density functional theory calculations. CNTs act as electron donor and regulate the electronic structure of CuO during each reaction step because the 2p orbitals of the C atoms hybridise with the 4d orbitals of the Cu atoms rather than the 2p orbitals of the O atoms. An electric field guides charge transfer through the interface between the CNTs and CuO, which modifies the electronic state of CuO/CNTs for catalytic reactions.

  16. Monolithic solid oxide fuel cell technology advancement for coal-based power generation. Annual report, October 1991--September 1992

    SciTech Connect

    Not Available

    1993-05-01

    The program is being conducted by a team consisting of AlliedSignal Aerospace Systems & Equipment (ASE) (formerly AiResearch Los Angeles Division) and Argonne National Laboratory (ANL). The objective of the program is to advance materials and fabrication methodologies to develop a monolithic solid oxide fuel cell (MSOFC) system capable of meeting performance, life, and cost goals for coal-based power generation. The program focuses on materials research and development, fabrication process development, cell/stack performance testing and characterization, cost and system analysis, and quality development.

  17. Eco-Friendly Magnetic Iron Oxide Pillared Montmorillonite for Advanced Catalytic Degradation of Dichlorophenol

    EPA Science Inventory

    Eco-friendly pillared montmorillonites, in which the pillars consist of iron oxide are expected to have interesting and unusual magnetic properties that are applicable for environmental decontamination. Completely “green” and effective composite was synthesized using mild reactio...

  18. Removal of C.I. Reactive Red 2 by low pressure UV/chlorine advanced oxidation.

    PubMed

    Wu, Qianyuan; Li, Yue; Wang, Wenlong; Wang, Ting; Hu, Hongying

    2016-03-01

    Azo dyes are commonly found as pollutants in wastewater from the textile industry, and can cause environmental problems because of their color and toxicity. The removal of a typical azo dye named C.I. Reactive Red 2 (RR2) during low pressure ultraviolet (UV)/chlorine oxidation was investigated in this study. UV irradiation at 254nm and addition of free chlorine provided much higher removal rates of RR2 and color than UV irradiation or chlorination alone. Increasing the free chlorine dose enhanced the removal efficiency of RR2 and color by UV/chlorine oxidation. Experiments performed with nitrobenzene (NB) or benzoic acid (BA) as scavengers showed that radicals (especially OH) formed during UV/chlorine oxidation are important in the RR2 removal. Addition of HCO3(-) and Cl(-) to the RR2 solution did not inhibit the removal of RR2 during UV/chlorine oxidation.

  19. Advanced oxidation protein products induce chondrocyte apoptosis via receptor for advanced glycation end products-mediated, redox-dependent intrinsic apoptosis pathway.

    PubMed

    Wu, Qian; Zhong, Zhao-Ming; Zhu, Si-Yuan; Liao, Cong-Rui; Pan, Ying; Zeng, Ji-Huan; Zheng, Shuai; Ding, Ruo-Ting; Lin, Qing-Song; Ye, Qing; Ye, Wen-Bin; Li, Wei; Chen, Jian-Ting

    2016-01-01

    Pro-inflammatory cytokine-induced chondrocyte apoptosis is a primary cause of cartilage destruction in the progression of rheumatoid arthritis (RA). Advanced oxidation protein products (AOPPs), a novel pro-inflammatory mediator, have been confirmed to accumulate in patients with RA. However, the effect of AOPPs accumulation on chondrocyte apoptosis and the associated cellular mechanisms remains unclear. The present study demonstrated that the plasma formation of AOPPs was enhanced in RA rats compared with normal. Then, chondrocyte were treated with AOPPs-modified rat serum albumin (AOPPs-RSA) in vitro. Exposure of chondrocyte to AOPPs activated nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and increased expression of NADPH oxidase subunits, which was mediated by receptor for advanced glycation end products (RAGE), but not scavenger receptor CD36. Moreover, AOPPs challenge triggered NADPH oxidase-dependent ROS generation which induced mitochondrial dysfunction and endoplasmic reticulum stress resulted in activation of caspase family that eventually lead to apoptosis. Lastly, blockade of RAGE, instead of CD36, largely attenuated these signals. Our study demonstrated first time that AOPPs induce chondrocyte apoptosis via RAGE-mediated and redox-dependent intrinsic apoptosis pathway in vitro. These data implicates that AOPPs may represent a novel pathogenic factor that contributes to RA progression. Targeting AOPPs-triggered cellular mechanisms might emerge as a promising therapeutic option for patients with RA.

  20. Recent Advances in Modeling Transition Metal Oxides for Photo-electrochemistry

    NASA Astrophysics Data System (ADS)

    Caspary Toroker, Maytal

    Computational research offers a wide range of opportunities for materials science and engineering, especially in the energy arena where there is a need for understanding how material composition and structure control energy conversion, and for designing materials that could improve conversion efficiency. Potential inexpensive materials for energy conversion devices are metal oxides. However, their conversion efficiency is limited by at least one of several factors: a too large band gap for efficiently absorbing solar energy, similar conduction and valence band edge characters that may lead to unfavorably high electron-hole recombination rates, a valence band edge that is not positioned well for oxidizing water, low stability, low electronic conductivity, and low surface reactivity. I will show how we model metal oxides with ab-initio methods, primarily DFT +U. Our previous results show that doping with lithium, sodium, or hydrogen could improve iron (II) oxide's electronic properties, and alloying with zinc or nickel could improve iron (II) oxide's optical properties. Furthermore, doping nickel (II) oxide with lithium could improve several key properties including solar energy absorption. In this talk I will highlight new results on our understanding of the mechanism of iron (III) oxide's surface reactivity. Our theoretical insights bring us a step closer towards understanding how to design better materials for photo-electrochemistry. References: 1. O. Neufeld and M. Caspary Toroker, ``Pt-doped Fe2O3 for enhanced water splitting efficiency: a DFT +U study'', J. Phys. Chem. C 119, 5836 (2015). 2. M. Caspary Toroker, ``Theoretical Insights into the Mechanism of Water Oxidation on Non-stoichiometric and Ti - doped Fe2O3 (0001)'', J. Phys. Chem. C, 118, 23162 (2014). This research was supported by the Morantz Energy Research Fund, the Nancy and Stephen Grand Technion Energy Program, the I-CORE Program of the Planning and Budgeting Committee, and The Israel Science

  1. Proximity Driven Commensurate Pinning in YBa2Cu3O7 through All-Oxide Magnetic Nanostructures.

    PubMed

    Rocci, M; Azpeitia, J; Trastoy, J; Perez-Muñoz, A; Cabero, M; Luccas, R F; Munuera, C; Mompean, F J; Garcia-Hernandez, M; Bouzehouane, K; Sefrioui, Z; Leon, C; Rivera-Calzada, A; Villegas, J E; Santamaria, J

    2015-11-11

    The design of artificial vortex pinning landscapes is a major goal toward large scale applications of cuprate superconductors. Although disordered nanometric inclusions have shown to modify their vortex phase diagram and to produce enhancements of the critical current ( MacManus-Driscoll , J. L. ; Foltyn , S. R. ; Jia , Q. X. ; Wang , H. ; Serquis , A. ; Civale , L. ; Maiorov , B. ; Hawley , M. E. ; Maley , M. P. ; Peterson , D. E. Nat. Mater. 2004 , 3 , 439 - 443 and Yamada , Y. ; Takahashi , K. ; Kobayashi , H. ; Konishi , M. ; Watanabe , T. ; Ibi , A. ; Muroga , T. ; Miyata , S. ; Kato , T. ; Hirayama , T. ; Shiohara , Y. Appl. Phys. Lett. 2005 , 87 , 1 - 3 ), the effect of ordered oxide nanostructures remains essentially unexplored. This is due to the very small nanostructure size imposed by the short coherence length, and to the technological difficulties in the nanofabrication process. Yet, the novel phenomena occurring at oxide interfaces open a wide spectrum of technological opportunities to interplay with the superconductivity in cuprates. Here, we show that the unusual long-range suppression of the superconductivity occurring at the interface between manganites and cuprates affects vortex nucleation and provides a novel vortex pinning mechanism. In particular, we show evidence of commensurate pinning in YBCO films with ordered arrays of LCMO ferromagnetic nanodots. Vortex pinning results from the proximity induced reduction of the condensation energy at the vicinity of the magnetic nanodots, and yields an enhanced friction between the nanodot array and the moving vortex lattice in the liquid phase. This result shows that all-oxide ordered nanostructures constitute a powerful, new route for the artificial manipulation of vortex matter in cuprates.

  2. Graphene oxide quantum dot-sensitized porous titanium dioxide microsphere: Visible-light-driven photocatalyst based on energy band engineering.

    PubMed

    Zhang, Yu; Qi, Fuyuan; Li, Ying; Zhou, Xin; Sun, Hongfeng; Zhang, Wei; Liu, Daliang; Song, Xi-Ming

    2017-03-11

    We report a novel graphene oxide quantum dot (GOQD)-sensitized porous TiO2 microsphere for efficient photoelectric conversion. Electro-chemical analysis along with the Mott-Schottky equation reveals conductivity type and energy band structure of the two semiconductors. Based on their energy band structures, visible light-induced electrons can transfer from the p-type GOQD to the n-type TiO2. Enhanced photocurrent and photocatalytic activity in visible light further confirm the enhanced separation of electrons and holes in the nanocomposite.

  3. High catalytic activity of heteropolynuclear cyanide complexes containing cobalt and platinum ions: visible-light driven water oxidation.

    PubMed

    Yamada, Yusuke; Oyama, Kohei; Gates, Rachel; Fukuzumi, Shunichi

    2015-05-04

    A near-stoichiometric amount of O2 was evolved as observed in the visible-light irradiation of an aqueous buffer (pH 8) containing [Ru(II) (2,2'-bipyridine)3 ] as a photosensitizer, Na2 S2 O8 as a sacrificial electron acceptor, and a heteropolynuclear cyanide complex as a water-oxidation catalyst. The heteropolynuclear cyanide complexes exhibited higher catalytic activity than a polynuclear cyanide complex containing only Co(III) or Pt(IV) ions as C-bound metal ions. The origin of the synergistic effect between Co and Pt ions is discussed in relation to electronic and local atomic structures of the complexes.

  4. Mesoporous α-Fe2O3 thin films synthesized via the sol-gel process for light-driven water oxidation.

    PubMed

    Hamd, Wael; Cobo, Saioa; Fize, Jennifer; Baldinozzi, Gianguido; Schwartz, Wilfrid; Reymermier, Maryse; Pereira, Alexandre; Fontecave, Marc; Artero, Vincent; Laberty-Robert, Christel; Sanchez, Clement

    2012-10-14

    This work reports a facile and cost-effective method for synthesizing photoactive α-Fe(2)O(3) films as well as their performances when used as photoanodes for water oxidation. Transparent α-Fe(2)O(3) mesoporous films were fabricated by template-directed sol-gel chemistry coupled with the dip-coating approach, followed by annealing at various temperatures from 350 °C to 750 °C in air. α-Fe(2)O(3) films were characterized by X-ray diffraction, XPS, FE-SEM and electrochemical measurements. The photoelectrochemical performance of α-Fe(2)O(3) photoanodes was characterized and optimized through the deposition of Co-based co-catalysts via different methods (impregnation, electro-deposition and photo-electro-deposition). Interestingly, the resulting hematite films heat-treated at relatively low temperature (500 °C), and therefore devoid of any extrinsic dopant, achieve light-driven water oxidation under near-to-neutral (pH = 8) aqueous conditions after decoration with a Co catalyst. The onset potential is 0.75 V vs. the reversible hydrogen electrode (RHE), thus corresponding to 450 mV light-induced underpotential, although modest photocurrent density values (40 μA cm(-2)) are obtained below 1.23 V vs. RHE. These new materials with a very large interfacial area in contact with the electrolyte and allowing for a high loading of water oxidation catalysts open new avenues for the optimization of photo-electrochemical water splitting.

  5. Meso-porous α-Fe{sub 2}O{sub 3} thin films synthesized via the sol-gel process for light-driven water oxidation

    SciTech Connect

    Hamd, Wael; Laberty-Robert, Christel; Sanchez, Clement; Cobo, Saioa; Fize, Jennifer; Artero, Vincent; Baldinozzi, Gianguido; Schwartz, Wilfrid; Reymermier, Maryse; Pereira, Alexandre

    2012-07-01

    This work reports a facile and cost-effective method for synthesizing photoactive α-Fe{sub 2}O{sub 3} films as well as their performances when used as photoanodes for water oxidation. Transparent α-Fe{sub 2}O{sub 3} meso-porous films were fabricated by template-directed sol-gel chemistry coupled with the dip-coating approach, followed by annealing at various temperatures from 350 degrees C to 750 degrees C in air. α-Fe{sub 2}O{sub 3} films were characterized by X-ray diffraction, XPS, FE-SEM and electrochemical measurements. The photoelectrochemical performance of α-Fe{sub 2}O{sub 3} photoanodes was characterized and optimized through the deposition of Co-based co-catalysts via different methods (impregnation, electro-deposition and photo-electro-deposition). Interestingly, the resulting hematite films heat-treated at relatively low temperature (500 degrees C), and therefore devoid of any extrinsic dopant, achieve light-driven water oxidation under near-to-neutral (pH = 8) aqueous conditions after decoration with a Co catalyst. The onset potential is 0.75 V vs. the reversible hydrogen electrode (RHE), thus corresponding to 450 mV light-induced under potential, although modest photocurrent density values (40 μAcm{sup -2}) are obtained below 1.23 V vs. RHE. These new materials with a very large interfacial area in contact with the electrolyte and allowing for a high loading of water oxidation catalysts open new avenues for the optimization of photo-electrochemical water splitting. (authors)

  6. Synthesis, characterization and photocatalytic activity of visible-light-driven reduced graphene oxide-CeO2 nanocomposite

    NASA Astrophysics Data System (ADS)

    Kaur, J.; Anand, K.; Anand, K.; Thangaraj, R.; Singh, R. C.

    2016-10-01

    Reduced graphene oxide (RGO) and CeO2 nanocomposite fabricated by a facile hydrothermal method was studied as a photocatalyst for the degradation of methylene blue (MB) under natural sunlight. The reduction of graphene oxide and decoration of CeO2 nanocubes was accomplished simultaneously in one hydrothermal step. The structural, optical and photocatalytic properties of synthesized samples were probed by X-ray diffraction, Raman spectroscopy, field-emission scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, UV-Vis diffuse reflectance spectra and photoluminescence spectra. RGO/CeO2 nanocomposite exhibited distinctive structural features comprising well-dispersed CeO2 nanocubes on the RGO surface without any agglomeration. RGO/CeO2 nanocomposite displayed a great MB absorptivity, significant band gap narrowing and photoluminescence quenching phenomenon concurrently, which was ascribed to unique properties of RGO sheets. The photocatalytic activity results revealed that there was a remarkable enhancement in reaction rate with RGO/CeO2 nanocomposite in comparison to its counterparts (Blank CeO2 and CNT/CeO2 nanocomposite). The degradation efficiency of RGO/CeO2, CNT/CeO2 and CeO2 was found to be 91.2, 75 and 64 % within 180 min respectively.

  7. Photocatalytic oxidation of trace carbamazepine in aqueous solution by visible-light-driven Znln2S4: Performance and mechanism.

    PubMed

    Bo, Longli; He, Kebo; Tan, Na; Gao, Bo; Feng, Qiqi; Liu, Jiadong; Wang, Lei

    2017-04-01

    In this work, visible-light-driven Znln2S4 photocatalyst (band gap 1.98 eV, absorption wavelength 300-600 nm) was synthesized by a facile hydrothermal method for photocatalytic degradation of trace pharmaceutical carbamazepine (CBZ) in aqueous solution, and characterized by UV-Vis diffusive reflectance spectroscopy, BET, SEM and XRD, respectively. It demonstrated that a complete degradation of CBZ was achieved with an optimal Znln2S4 dosage of 30 mg/L under a 100 W iodine-gallium lamp irradiation of 20 min, which afforded the reaction rate constant and half-life being respectively 10.44 times higher and 1/8 less than that obtained by a direct photolysis without Znln2S4 photocatalyst. A negligible influence of initial solution pH on photocatalytic degradation of CBZ was confirmed under the given pH range of 5.0-9.0. The degradation efficiency of CBZ was slightly decreased from 91% to 84% after five consecutive cycles. Hydroxy radical (·OH) plays an important role in CBZ degradation accompanying a synergistic effect of photogenerated hole (h(+)) and O2(-) active species during reaction. Further, 44 intermediates were detected by LCMS-IT-TOF technique and tentative degrading pathways were proposed on the basis of the experimental results.

  8. Solar-Driven Water Oxidation and Decoupled Hydrogen Production Mediated by an Electron-Coupled-Proton Buffer

    PubMed Central

    2016-01-01

    Solar-to-hydrogen photoelectrochemical cells (PECs) have been proposed as a means of converting sunlight into H2 fuel. However, in traditional PECs, the oxygen evolution reaction and the hydrogen evolution reaction are coupled, and so the rate of both of these is limited by the photocurrents that can be generated from the solar flux. This in turn leads to slow rates of gas evolution that favor crossover of H2 into the O2 stream and vice versa, even through ostensibly impermeable membranes such as Nafion. Herein, we show that the use of the electron-coupled-proton buffer (ECPB) H3PMo12O40 allows solar-driven O2 evolution from water to proceed at rates of over 1 mA cm–2 on WO3 photoanodes without the need for any additional electrochemical bias. No H2 is produced in the PEC, and instead H3PMo12O40 is reduced to H5PMo12O40. If the reduced ECPB is subjected to a separate electrochemical reoxidation, then H2 is produced with full overall Faradaic efficiency. PMID:27159121

  9. Recent advances in nanostructured Nb-based oxides for electrochemical energy storage.

    PubMed

    Yan, Litao; Rui, Xianhong; Chen, Gen; Xu, Weichuan; Zou, Guifu; Luo, Hongmei

    2016-04-28

    For the past five years, nanostructured niobium-based oxides have emerged as one of the most prominent materials for batteries, supercapacitors, and fuel cell technologies, for instance, TiNb2O7 as an anode for lithium-ion batteries (LIBs), Nb2O5 as an electrode for supercapacitors (SCs), and niobium-based oxides as chemically stable electrochemical supports for fuel cells. Their high potential window can prevent the formation of lithium dendrites, and their rich redox chemistry (Nb(5+)/Nb(4+), Nb(4+)/Nb(3+)) makes them very promising electrode materials. Their unique chemical stability under acid conditions is favorable for practical fuel-cell operation. In this review, we summarized recent progress made concerning the use of niobium-based oxides as electrodes for batteries (LIBs, sodium-ion batteries (SIBs), and vanadium redox flow batteries (VRBs)), SCs, and fuel cell applications. Moreover, crystal structures, charge storage mechanisms in different crystal structures, and electrochemical performances in terms of the specific capacitance/capacity, rate capability, and cycling stability of niobium-based oxides are discussed. Insights into the future research and development of niobium-based oxide compounds for next-generation electrochemical devices are also presented. We believe that this review will be beneficial for research scientists and graduate students who are searching for promising electrode materials for batteries, SCs, and fuel cells.

  10. Recent advances in nanostructured Nb-based oxides for electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Yan, Litao; Rui, Xianhong; Chen, Gen; Xu, Weichuan; Zou, Guifu; Luo, Hongmei

    2016-04-01

    For the past five years, nanostructured niobium-based oxides have emerged as one of the most prominent materials for batteries, supercapacitors, and fuel cell technologies, for instance, TiNb2O7 as an anode for lithium-ion batteries (LIBs), Nb2O5 as an electrode for supercapacitors (SCs), and niobium-based oxides as chemically stable electrochemical supports for fuel cells. Their high potential window can prevent the formation of lithium dendrites, and their rich redox chemistry (Nb5+/Nb4+, Nb4+/Nb3+) makes them very promising electrode materials. Their unique chemical stability under acid conditions is favorable for practical fuel-cell operation. In this review, we summarized recent progress made concerning the use of niobium-based oxides as electrodes for batteries (LIBs, sodium-ion batteries (SIBs), and vanadium redox flow batteries (VRBs)), SCs, and fuel cell applications. Moreover, crystal structures, charge storage mechanisms in different crystal structures, and electrochemical performances in terms of the specific capacitance/capacity, rate capability, and cycling stability of niobium-based oxides are discussed. Insights into the future research and development of niobium-based oxide compounds for next-generation electrochemical devices are also presented. We believe that this review will be beneficial for research scientists and graduate students who are searching for promising electrode materials for batteries, SCs, and fuel cells.

  11. Decolorization and mineralization of Allura Red AC aqueous solutions by electrochemical advanced oxidation processes.

    PubMed

    Thiam, Abdoulaye; Sirés, Ignasi; Garrido, José A; Rodríguez, Rosa M; Brillas, Enric

    2015-06-15

    The decolorization and mineralization of solutions containing 230 mg L(-1) of the food azo dye Allura Red AC at pH 3.0 have been studied upon treatment by electrochemical oxidation with electrogenerated H2O2 (EO-H2O2), electro-Fenton (EF) and photoelectro-Fenton (PEF). Experiments were performed with a stirred tank reactor containing a boron-doped diamond (BDD) or Pt anode and an air-diffusion cathode to generate H2O2. The main oxidants were hydroxyl radicals formed at the anode surface from water oxidation and in the bulk from Fenton's reaction between H2O2 and added Fe(2+). The oxidation ability increased in the sequence EO-H2O2 < EF < PEF and faster degradation was always obtained using BDD. PEF process with BDD yielded almost total mineralization following similar trends in SO4(2-), ClO4(-) and NO3(-) media, whereas in Cl(-) medium, mineralization was inhibited by the formation of recalcitrant chloroderivatives. GC-MS analysis confirmed the cleavage of the −N=N− bond with formation of two main aromatics in SO4(2-) medium and three chloroaromatics in Cl(-) solutions. The effective oxidation of final oxalic and oxamic acids by BDD along with the photolysis of Fe(III)-oxalate species by UVA light accounted for the superiority of PEF with BDD. NH4(+), NO3(-) and SO4(2-) ions were released during the mineralization.

  12. DEVELOPMENT OF REACTION-DRIVEN IONIC TRANSPORT MEMBRANES (ITMs) TECHNOLOGY: PHASE IV/BUDGET PERIOD 6 “Development of ITM Oxygen Technology for Integration in IGCC and Other Advanced Power Generation Systems”

    SciTech Connect

    David, Studer

    2012-03-01

    Air Products and Chemicals, along with development participants and in association with the U.S. Department of Energy, has made substantial progress in developing a novel air separation technology. Unlike conventional cryogenic processes, this method uses high-temperature ceramic membranes to produce high-purity oxygen. The membranes selectively transport oxygen ions with high flux and infinite theoretical selectivity. Reaction-driven ceramic membranes are fabricated from non-porous, multi-component metallic oxides, operate at temperatures typically over 700°C, and have exceptionally high oxygen flux and selectivity. Oxygen from low-pressure air permeates as oxygen ions through the ceramic membrane and is consumed through chemical reactions, thus creating a chemical driving force that pulls oxygen ions across the membrane at high rates. The oxygen reacts with a hydrocarbon fuel in a partial oxidation process to produce a hydrogen and carbon monoxide mixture – synthesis gas. This project expands the partial-oxidation scope of ITM technology beyond natural gas feed and investigates the potential for ITM reaction-driven technology to be used in conjunction with gasification and pyrolysis technologies to provide more economical routes for producing hydrogen and synthesis gas. This report presents an overview of the ITM reaction-driven development effort, including ceramic materials development, fabrication and testing of small-scale ceramic modules, ceramic modeling, and the investigation of gasifier integration schemes

  13. Degradation of endocrine disrupting chemicals bisphenol A, ethinyl estradiol, and estradiol during UV photolysis and advanced oxidation processes.

    PubMed

    Rosenfeldt, Erik J; Linden, Karl G

    2004-10-15

    The degradation of three endocrine disrupting chemicals (EDCs), bisphenol A, ethinyl estradiol, and estradiol, was investigated via ultraviolet (UV) radiation photolysis and the UV/hydrogen peroxide advanced oxidation process (AOP). These EDCs have been detected at low levels in wastewaters and surface waters in both the United States and European countries, can cause adverse effects on humans and wildlife via interactions with the endocrine system, and thus must be treated before entering the public drinking water supply. Because many EDCs can only be partially removed with conventional water treatment systems, there is a need to evaluate alternative treatment processes. For each EDC tested, direct UV photolysis quantum yields were derived for use with both monochromatic low-pressure (LP) UV lamps and polychromatic medium-pressure (MP) UV lamps and second-order hydroxyl radical rate constants were developed. These parameters were utilized to successfully model UV treatment of the EDCs in laboratory and natural waters. The polychromatic MP UV radiation source was more effective for direct photolysis degradation as compared to conventional LP UV lamps emitting monochromatic UV 254 nm radiation. However, in all cases the EDCs were more effectively degraded utilizing UV/H2O2 advanced oxidation as compared to direct UV photolysis treatment.

  14. Degradation of carbamazepine by UV/chlorine advanced oxidation process and formation of disinfection by-products.

    PubMed

    Zhou, Shiqing; Xia, Ying; Li, Ting; Yao, Tian; Shi, Zhou; Zhu, Shumin; Gao, Naiyun

    2016-08-01

    Pharmaceuticals in water are commonly found and are not efficiently removed by current treatment processes. Degradation of antiepileptic drug carbamazepine (CBZ) by UV/chlorine advanced oxidation process was systematically investigated in this study. The results showed that the UV/chlorine process was more effective at degrading CBZ than either UV or chlorination alone. The CBZ degradation followed pseudo-first order reaction kinetics, and the degradation rate constants (kobs) were affected by the chlorine dose, solution pH, and natural organic matter concentration to different degrees. Degradation of CBZ greatly increased with increasing chlorine dose and decreasing solution pH during the UV/chlorine process. Additionally, the presence of natural organic matter in the solution inhibited the degradation of CBZ. UV photolysis, chlorination, and reactive species (hydroxyl radical •OH and chlorine atoms •Cl) were identified as responsible for CBZ degradation in the UV/chlorine process. Finally, a degradation pathway for CBZ in the UV/chlorine process was proposed and the formation potentials of carbonaceous and nitrogenous disinfection by-products were evaluated. Enhanced formation of trichloroacetic acid, dichloroacetonitrile, and trichloronitromethane precursors should be considered when applying UV/chlorine advanced oxidation process to drinking water.

  15. Application of effect-directed analysis to identify mutagenic nitrogenous disinfection by-products of advanced oxidation drinking water treatment.

    PubMed

    Vughs, D; Baken, K A; Kolkman, A; Martijn, A J; de Voogt, P

    2016-07-22

    Advanced oxidation processes are important barriers for organic micropollutants in (drinking) water treatment. It is however known that medium pressure UV/H2O2 treatment may lead to mutagenicity in the Ames test, which is no longer present after granulated activated carbon (GAC) filtration. Many nitrogen-containing disinfection by-products (N-DBPs) result from the reaction of photolysis products of nitrate with (photolysis products of) natural organic material (NOM) during medium pressure UV treatment of water. Identification of the N-DBPs and the application of effect-directed analysis to combine chemical screening results with biological activity would provide more insight into the relation of specific N-DBPs with the observed mutagenicity and was the subject of this study. To this end, fractions of medium pressure UV-treated and untreated water extracts were prepared using preparative HPLC and tested using the Ames fluctuation test. In addition, high-resolution mass spectrometry was performed on all fractions to assess the presence of N-DBPs. Based on toxicity data and read across analysis, we could identify five N-DBPs that are potentially genotoxic and were present in relatively high concentrations in the fractions in which mutagenicity was observed. The results of this study offer opportunities to further evaluate the identity and potential health concern of N-DBPs formed during advanced oxidation UV drinking water treatment.

  16. Degradation of antibiotic activity during UV/H2O2 advanced oxidation and photolysis in wastewater effluent.

    PubMed

    Keen, Olya S; Linden, Karl G

    2013-11-19

    Trace levels of antibiotics in treated wastewater effluents may present a human health risk due to the rise of antibacterial activity in the downstream environments. Advanced oxidation has a potential to become an effective treatment technology for transforming trace antibiotics in wastewater effluents, but residual or newly generated antibacterial properties of transformation products are a concern. This study demonstrates the effect of UV photolysis and UV/H2O2 advanced oxidation on transformation of 6 antibiotics, each a representative of a different structural class, in pure water and in two different effluents and reports new or confirmatory photolysis quantum yields and hydroxyl radical rate constants. The decay of the parent compound was monitored with HPLC/ITMS, and the corresponding changes in antibacterial activity were measured using bacterial inhibition assays. No antibacterially active products were observed following treatment for four of the six antibiotics (clindamycin, ciprofloxacin, penicillin-G, and trimethoprim). The remaining two antibiotics (erythromycin and doxycycline) showed some intermediates with antibacterial activity at low treatment doses. The antibacterially active products lost activity as the UV dose increased past 500 mJ/cm(2). Active products were observed only in wastewater effluents and not in pure water, suggesting that complex secondary reactions controlled by the composition of the matrix were responsible for their formation. This outcome emphasizes the importance of bench-scale experiments in realistic water matrices. Most importantly, the results indicate that photosensitized processes during high dose wastewater disinfection may be creating antibacterially active transformation products from some common antibiotics.

  17. Thermal Properties of Oxides With Magnetoplumbite Structure for Advanced Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Zhu, Dongming; Eslamloo-Grami, Maryam

    2007-01-01

    Oxides having magnetoplumbite structure are promising candidate materials for applications as high temperature thermal barrier coatings because of their high thermal stability, high thermal expansion, and low thermal conductivity. In this study, powders of LaMgAl11O19, GdMgAl11O19, SmMgAl11O19, and Gd0.7Yb0.3MgAl11O19 magnetoplumbite oxides were synthesized by citric acid sol-gel method and hot pressed into disk specimens. The thermal expansion coefficients (CTE) of these oxide materials were measured from room temperature to 1500 C. The average CTE value was found to be approx.9.6x10(exp -6)/C. Thermal conductivity of these magnetoplumbite-based oxide materials was also evaluated using steady-state laser heat flux test method. The effects of doping on thermal properties were also examined. Thermal conductivity of the doped Gd0.7Yb0.3MgAl11O19 composition was found to be lower than that of the undoped GdMgAl11O19. In contrast, thermal expansion coefficient was found to be independent of the oxide composition and appears to be controlled by the magnetoplumbite crystal structure. Thermal conductivity testing of LaMgAl11O19 and LaMnAl11O19 magnetoplumbite oxide coatings plasma sprayed on NiCrAlY/Rene N5 superalloy substrates indicated resistance of these coatings to sintering even at temperatures as high as 1600 C.

  18. Nanowire Metal-Oxide-Semiconductor Field-Effect Transistors with Small Subthreshold Swing Driven by Body-Bias Effect

    NASA Astrophysics Data System (ADS)

    Nishiguchi, Katsuhiko; Fujiwara, Akira

    2012-08-01

    We demonstrate metal-oxide-semiconductor field-effect transistors (MOSFETs) with small subthreshold swing (SS). The MOSFETs have a nanowire channel and three gates. A parasitic bipolar transistor formed in a fully depleted silicon-on-insulator MOSFET applies body bias to the MOSFET's channel and thus reduces the SS. Additionally, triple-gate operation makes the drain voltage smaller and provides current characteristics with a high on/off ratio and small hysteresis. As a result, SSs of the n- and p-type MOSFETs reach 6.6 and 5.2 mV/dec, respectively, in the range of current of six orders of magnitude. These features promise MOSFETs with low power consumption.

  19. Mixed Brownian alignment and Néel rotations in superparamagnetic iron oxide nanoparticle suspensions driven by an ac field

    PubMed Central

    Shah, Saqlain A.; Reeves, Daniel B.; Ferguson, R. Matthew; Weaver, John B.

    2015-01-01

    Superparamagnetic iron oxide nanoparticles with highly nonlinear magnetic behavior are attractive for biomedical applications like magnetic particle imaging and magnetic fluid hyperthermia. Such particles display interesting magnetic properties in alternating magnetic fields and here we document experiments that show differences between the magnetization dynamics of certain particles in frozen and melted states. This effect goes beyond the small temperature difference (ΔT ~ 20 °C) and we show the dynamics to be a mixture of Brownian alignment of the particles and Néel rotation of their moments occurring in liquid particle suspensions. These phenomena can be modeled in a stochastic differential equation approach by postulating log-normal distributions and partial Brownian alignment of an effective anisotropy axis. We emphasize that precise particle-specific characterization through experiments and nonlinear simulations is necessary to predict dynamics in solution and optimize their behavior for emerging biomedical applications including magnetic particle imaging. PMID:26504371

  20. Fatty Acid Oxidation-Driven Src Links Mitochondrial Energy Reprogramming and Regulation of Oncogenic Properties in Triple Negative Breast Cancer

    PubMed Central

    Park, Jun Hyoung; Vithayathil, Sajna; Kumar, Santosh; Sung, Pi-Lin; Dobrolecki, Lacey Elizabeth; Putluri, Vasanta; Bhat, Vadiraja B.; Bhowmik, Salil Kumar; Gupta, Vineet; Arora, Kavisha; Wu, Danli; Tsouko, Efrosini; Zhang, Yiqun; Maity, Suman; Donti, Taraka R.; Graham, Brett H.; Frigo, Daniel E.; Coarfa, Cristian; Yotnda, Patricia; Putluri, Nagireddy; Sreekumar, Arun; Lewis, Michael T.; Creighton, Chad J.; Wong, Lee-Jun C.; Kaipparettu, Benny Abraham

    2016-01-01

    Summary Transmitochondrial cybrids and multiple OMICs approaches were used to understand mitochondrial reprogramming and mitochondria-regulated cancer pathways in triple negative breast cancer (TNBC). Analysis of cybrids and established breast cancer (BC) cell lines showed that metastatic TNBC maintains high levels of ATP through fatty acid β-oxidation (FAO) and activates Src oncoprotein through autophosphorylation at Y419. Manipulation of FAO including the knocking down of carnitine palmitoyltransferase-1 (CPT1) and 2 (CPT2), the rate-limiting proteins of FAO, and analysis of patient-derived xenograft models, confirmed the role of mitochondrial FAO in Src activation and metastasis. Analysis of TCGA and other independent BC clinical data further reaffirmed the role of mitochondrial FAO and CPT genes in Src regulation and their significance in BC metastasis. PMID:26923594

  1. Fatty Acid Oxidation-Driven Src Links Mitochondrial Energy Reprogramming and Oncogenic Properties in Triple-Negative Breast Cancer.

    PubMed

    Park, Jun Hyoung; Vithayathil, Sajna; Kumar, Santosh; Sung, Pi-Lin; Dobrolecki, Lacey Elizabeth; Putluri, Vasanta; Bhat, Vadiraja B; Bhowmik, Salil Kumar; Gupta, Vineet; Arora, Kavisha; Wu, Danli; Tsouko, Efrosini; Zhang, Yiqun; Maity, Suman; Donti, Taraka R; Graham, Brett H; Frigo, Daniel E; Coarfa, Cristian; Yotnda, Patricia; Putluri, Nagireddy; Sreekumar, Arun; Lewis, Michael T; Creighton, Chad J; Wong, Lee-Jun C; Kaipparettu, Benny Abraham

    2016-03-08

    Transmitochondrial cybrids and multiple OMICs approaches were used to understand mitochondrial reprogramming and mitochondria-regulated cancer pathways in triple-negative breast cancer (TNBC). Analysis of cybrids and established breast cancer (BC) cell lines showed that metastatic TNBC maintains high levels of ATP through fatty acid β oxidation (FAO) and activates Src oncoprotein through autophosphorylation at Y419. Manipulation of FAO including the knocking down of carnitine palmitoyltransferase-1A (CPT1) and 2 (CPT2), the rate-limiting proteins of FAO, and analysis of patient-derived xenograft models confirmed the role of mitochondrial FAO in Src activation and metastasis. Analysis of TCGA and other independent BC clinical data further reaffirmed the role of mitochondrial FAO and CPT genes in Src regulation and their significance in BC metastasis.

  2. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide emissions from coal-fired boilers

    SciTech Connect

    Sorge, J.N.; Menzies, B.; Smouse, S.M.; Stallings, J.W.

    1995-09-01

    Technology project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide NOx emissions from coal-fired boilers. The primary objective of the demonstration is to determine the long-term NOx reduction performance of advanced overfire air (AOFA), low NOx burners (LNB), and advanced digital control/optimization methodologies applied in a stepwise fashion to a 500 MW boiler. The focus of this paper is to report (1) on the installation of three on-line carbon-in-ash monitors and (2) the design and results to date from the advanced digital control/optimization phase of the project.

  3. Total reflection X-ray fluorescence trace mercury determination by trapping complexation: Application in advanced oxidation technologies

    NASA Astrophysics Data System (ADS)

    Custo, Graciela; Litter, Marta I.; Rodríguez, Diana; Vázquez, Cristina

    2006-11-01

    It is well known that Hg species cause high noxious effects on the health of living organisms even at very low levels (5 μg/L). Quantification of this element is an analytical challenge due to the peculiar physicochemical properties of all Hg species. The regulation of the maximal allowable Hg concentration led to search for sensitive methods for its determination. Total reflection X-ray fluorescence is a proved instrumental analytical tool for the determination of trace elements. In this work, the use of total reflection X-ray fluorescence for Hg quantification is investigated. However, experimental determination by total reflection X-ray fluorescence requires depositing a small volume of sample on the reflector and evaporation of the solvent until dryness to form a thin film. Because of volatilization of several Hg forms, a procedure to capture these volatile species in liquid samples by using complexing agents is proposed. Acetate, oxalic acid, ethylenediaminetetracetic acid and ammonium pyrrolidine-dithiocarbamate were assayed for trapping the analytes into the solution during the preparation of the sample and onto the reflector during total reflection X-ray fluorescence measurements. The proposed method was applied to evaluate Hg concentration during TiO 2-heterogeneous photocatalysis, one of the most known advanced oxidation technologies. Advanced oxidation technologies are processes for the treatment of effluents in waters and air that involve the generation of very active oxidative and reductive species. In heterogeneous photocatalysis, Hg is transformed to several species under ultraviolet illumination in the presence of titanium dioxide. Total reflection X-ray fluorescence was demonstrated to be applicable in following the extent of the heterogeneous photocatalysis reaction by determining non-transformed Hg in the remaining solution.

  4. Oxidative stress, redox signaling pathways, and autophagy in cachectic muscles of male patients with advanced COPD and lung cancer.

    PubMed

    Puig-Vilanova, Ester; Rodriguez, Diego A; Lloreta, Josep; Ausin, Pilar; Pascual-Guardia, Sergio; Broquetas, Joan; Roca, Josep; Gea, Joaquim; Barreiro, Esther

    2015-02-01

    Muscle dysfunction and wasting are predictors of mortality in advanced COPD and malignancies. Redox imbalance and enhanced protein catabolism are underlying mechanisms in COPD. We hypothesized that the expression profile of several biological markers share similarities in patients with cachexia associated with either COPD or lung cancer (LC). In vastus lateralis of cachectic patients with either LC (n=10) or advanced COPD (n=16) and healthy controls (n=10), markers of redox balance, inflammation, proteolysis, autophagy, signaling pathways, mitochondrial function, muscle structure, and sarcomere damage were measured using laboratory and light and electron microscopy techniques. Systemic redox balance and inflammation were also determined. All subjects were clinically evaluated. Compared to controls, in both cachectic groups of patients, a similar expression profile of different biological markers was observed in their muscles: increased levels of muscle protein oxidation and ubiquitination (p<0.05, both), which positively correlated (r=0.888), redox-sensitive signaling pathways (NF-κB and FoxO) were activated (p<0.05, all), fast-twitch fiber sizes were atrophied, muscle structural abnormalities and sarcomere disruptions were significantly greater (p<0.05, both). Structural and functional protein levels were lower in muscles of both cachectic patient groups than in controls (p<0.05, all). However, levels of autophagy markers including ultrastructural autophagosome counts were increased only in muscles of cachectic COPD patients (p<0.05). Systemic oxidative stress and inflammation levels were also increased in both patient groups compared to controls (p<0.005, both). Oxidative stress and redox-sensitive signaling pathways are likely to contribute to the etiology of muscle wasting and sarcomere disruption in patients with respiratory cachexia: LC and COPD.

  5. Development of Predictive Models for the Degradation of Halogenated Disinfection Byproducts during the UV/H2O2 Advanced Oxidation Process.

    PubMed

    Chuang, Yi-Hsueh; Parker, Kimberly M; Mitch, William A

    2016-10-18

    Previous research has demonstrated that the reverse osmosis and advanced oxidation processes (AOPs) used to purify municipal wastewater to potable quality have difficulty removing low molecular weight halogenated disinfection byproducts (DBPs) and industrial chemicals. Because of the wide range of chemical characteristics of these DBPs, this study developed methods to predict their degradation within the UV/H2O2 AOP via UV direct photolysis and hydroxyl radical ((•)OH) reaction, so that DBPs most likely to pass through the AOP could be predicted. Among 26 trihalomethanes, haloacetonitriles, haloacetaldehydes, halonitromethanes and haloacetamides, direct photolysis rate constants (254 nm) varied by ∼3 orders of magnitude, with rate constants increasing with Br and I substitution. Quantum yields varied little (0.12-0.59 mol/Einstein), such that rate constants were driven by the orders of magnitude variation in molar extinction coefficients. Quantum chemical calculations indicated a strong correlation between molar extinction coefficients and decreasing energy gaps between the highest occupied and lowest unoccupied orbitals (i.e., ELUMO-EHOMO). Rate constants for 37 trihalomethanes, haloacetonitriles, haloacetaldehydes, halonitromethanes, haloacetamides, and haloacetic acids with (•)OH measured by gamma radiolysis spanned 4 orders of magnitude. Based on these rate constants, a quantitative structure-reactivity relationship model (Group Contribution Method) was developed which predicted (•)OH rate constants for 5 additional halogenated compounds within a factor of 2. A kinetics model combining the molar extinction coefficients, quantum yields and (•)OH rate constants predicted experimental DBP loss in a lab-scale UV/H2O2 AOP well. Highlighting the difficulty associated with degrading these DBPs, at the 500-1000 mJ/cm(2) UV fluence applied in potable reuse trains, 50% removal would be achieved generally only for compounds with several -Br or -I substituents

  6. TiO2-graphene oxide nanocomposite as advanced photocatalytic materials

    PubMed Central

    2013-01-01

    Background Graphene oxide composites with photocatalysts may exhibit better properties than pure photocatalysts via improvement of their textural and electronic properties. Results TiO2-Graphene Oxide (TiO2 - GO) nanocomposite was prepared by thermal hydrolysis of suspension with graphene oxide (GO) nanosheets and titania peroxo-complex. The characterization of graphene oxide nanosheets was provided by using an atomic force microscope and Raman spectroscopy. The prepared nanocomposites samples were characterized by Brunauer–Emmett–Teller surface area and Barrett–Joiner–Halenda porosity, X-ray Diffraction, Infrared Spectroscopy, Raman Spectroscopy and Transmission Electron Microscopy. UV/VIS diffuse reflectance spectroscopy was employed to estimate band-gap energies. From the TiO2 - GO samples, a 300 μm thin layer on a piece of glass 10×15 cm was created. The photocatalytic activity of the prepared layers was assessed from the kinetics of the photocatalytic degradation of butane in the gas phase. Conclusions The best photocatalytic activity under UV was observed for sample denoted TiGO_100 (k = 0.03012 h-1), while sample labeled TiGO_075 (k = 0.00774 h-1) demonstrated the best activity under visible light. PMID:23445868

  7. Synthesis of bacteria promoted reduced graphene oxide-nickel sulfide networks for advanced supercapacitors.

    PubMed

    Zhang, Haiming; Yu, Xinzhi; Guo, Di; Qu, Baihua; Zhang, Ming; Li, Qiuhong; Wang, Taihong

    2013-08-14

    Supercapacitors with potential high power are useful and have attracted much attention recently. Graphene-based composites have been demonstrated to be promising electrode materials for supercapacitors with enhanced properties. To improve the performance of graphene-based composites further and realize their synthesis with large scale, we report a green approach to synthesize bacteria-reduced graphene oxide-nickel sulfide (BGNS) networks. By using Bacillus subtilis as spacers, we deposited reduced graphene oxide/Ni3S2 nanoparticle composites with submillimeter pores directly onto substrate by a binder-free electrostatic spray approach to form BGNS networks. Their electrochemical capacitor performance was evaluated. Compared with stacked reduced graphene oxide-nickel sulfide (GNS) prepared without the aid of bacteria, BGNS with unique nm-μm structure exhibited a higher specific capacitance of about 1424 F g(-1) at a current density of 0.75 A g(-1). About 67.5% of the capacitance was retained as the current density increased from 0.75 to 15 A g(-1). At a current density of 75 A g(-1), a specific capacitance of 406 F g(-1) could still remain. The results indicate that the reduced graphene oxide-nickel sulfide network promoted by bacteria is a promising electrode material for supercapacitors.

  8. Theoretical comparison of advanced methods for calculating nitrous oxide fluxes using non-steady state chambers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several flux-calculation (FC) schemes are available for determining soil-to-atmosphere emissions of nitrous oxide (N2O) and other trace gases using data from non-steady-state flux chambers. Recently developed methods claim to provide more accuracy in estimating the true pre-deployment flux (f0) comp...

  9. Development of mutagenicity during degradation of N-nitrosamines by advanced oxidation processes.

    PubMed

    Mestankova, Hana; Schirmer, Kristin; Canonica, Silvio; von Gunten, Urs

    2014-12-01

    Development of mutagenicity of five N-nitrosamines (N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine (NDEA), N-nitrosodi-n-propylamine (NDPA), N-nitrosopyrrolidine (NPYR) and N-nitrosodiphenylamine (NDPhA)) was investigated during oxidative processes involving UV-photolysis, ozone and OH radicals. The mutagenicity was detected by the Ames test with 3 different strains, TA98, TAMix and YG7108, a strain which is sensitive for N-nitrosamines, in presence and absence of metabolic activation (S9). UV photolysis of mutagenic N-nitrosamines (NDMA, NDEA, NDPA and NPYR) leads to the removal of their specific mutagenic activity as detected in YG7108 in the presence of S9. A formation of mutagens during UV photolysis was detected only in case of NDPhA in the strain TA98. Oxidation products of NDMA, NDEA and NDPhA did not show any significant mutagenicity in the strains used, whereas oxidation of NDPA and NPYR by hydroxyl radicals seems to lead to the formation of direct mutagens (mutagenic in the absence of S9) in YG7108 and TAMix. Oxidation by hydroxyl radicals of N-nitrosamines with chains longer than ethyl can mimic metabolic activation of N-nitrosamines in vivo.

  10. Effects of Doping on Thermal Conductivity of Pyrochlore Oxides for Advanced Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Zhu, Dongming; Eslamloo-Grami, Maryam

    2006-01-01

    Pyrochlore oxides of general composition, A2B2O7, where A is a 3(+) cation (La to Lu) and B is a 4(+) cation (Zr, Hf, Ti, etc.) have high melting point, relatively high coefficient of thermal expansion, and low thermal conductivity which make them suitable for applications as high-temperature thermal barrier coatings. The effect of doping at the A site on the thermal conductivity of a pyrochlore oxide La2Zr2O7, has been investigated. Oxide powders of various compositions La2Zr2O7, La(1.7)Gd(0.3)Zr2O7, La(1.7)Yb(0.3)Zr2O7 and La(1.7)Gd(0.15)Yb(0.15)Zr2O7 were synthesized by the citric acid sol-gel method. These powders were hot pressed into discs and used for thermal conductivity measurements using a steady-state laser heat flux test technique. The rare earth oxide doped pyrochlores La(1.7)Gd(0.3)Zr2O7, La(1.7)Yb(0.3)Zr2O7 and La(1.7)Gd(0.15)Yb(0.15)Zr2O7 had lower thermal conductivity than the un-doped La2Zr2O7. The Gd2O3 and Yb2O3 co-doped composition showed the lowest thermal conductivity.

  11. Computational consideration on advanced oxidation degradation of phenolic preservative, methylparaben, in water: mechanisms, kinetics, and toxicity assessments.

    PubMed

    Gao, Yanpeng; An, Taicheng; Fang, Hansun; Ji, Yuemeng; Li, Guiying

    2014-08-15

    Hydroxyl radicals ((•)OH) are strong oxidants that can degrade organic pollutants in advanced oxidation processes (AOPs). The mechanisms, kinetics, and toxicity assessment of the (•)OH-initiated oxidative degradation of the phenolic preservative, methylparaben (MPB), were systematically investigated using a computational approach, as the supplementary information for experimental data. Results showed that MPB can be initially attacked by (•)OH via OH-addition and H-abstraction routes. Among these routes, the (•)OH addition to the C atom at the ortho-position of phenolic hydroxyl group was the most significant route. However, the methyl-H-abstraction route also cannot be neglected. Further, the formed transient intermediates, OH-adduct ((•)MPB-OH1) and dehydrogenated radical ((•)MPB(-H)α), could be easily transformed to several stable degradation products in the presence of O2 and (•)OH. To better understand the potential toxicity of MPB and its products to aquatic organisms, both acute and chronic toxicities were assessed computationally at three trophic levels. Both MPB and its products, particularly the OH-addition products, are harmful to aquatic organisms. Therefore, the application of AOPs to remove MPB should be carefully performed for safe water treatment.

  12. Recent advances in biosynthetic modeling of nitric oxide reductases and insights gained from nuclear resonance vibrational and other spectroscopic studies

    SciTech Connect

    Chakraborty, Saumen; Reed, Julian; Sage, Timothy; Branagan, Nicole C.; Petrik, Igor D.; Miner, Kyle D.; Hu, Michael Y.; Zhao, Jiyong; Alp, E. Ercan; Lu, Yi

    2015-10-05

    This Forum Article focuses on recent advances in structural and spectroscopic studies of biosynthetic models of nitric oxide reductases (NORs). NORs are complex metalloenzymes found in the denitrification pathway of Earth's nitrogen cycle where they catalyze the proton-dependent twoelectron reduction of nitric oxide (NO) to nitrous oxide (N2O). While much progress has been made in biochemical and biophysical studies of native NORs and their variants, a. clear mechanistic understanding of this important metalloenzyme related to its function is still elusive. We report herein UV vis and nuclear resonance vibrational spectroscopy (NRVS) studies of mononitrosylated intermediates of the NOR reaction of a biosynthetic model. The ability to selectively substitute metals at either heme or nonheme metal sites allows the introduction of independent 57Fe probe atoms at either site, as well as allowing the preparation of analogues of stable reaction intermediates by replacing either metal with a redox inactive metal. Together with previous structural and spectroscopic results, we summarize insights gained from studying these biosynthetic models toward understanding structural features responsible for the NOR activity and its mechanism. As a result, the outlook on NOR modeling is also discussed, with an emphasis on the design of models capable of catalytic turnovers designed based on close mimics of the secondary coordination sphere of native NORs.

  13. Advanced Electrochemical Oxidation of 1,4-Dioxane via Dark Catalysis by Novel Titanium Dioxide (TiO2) Pellets.

    PubMed

    Jasmann, Jeramy R; Borch, Thomas; Sale, Tom C; Blotevogel, Jens

    2016-08-16

    1,4-dioxane is an emerging groundwater contaminant with significant regulatory implications. Because it is resistant to traditional groundwater treatments, remediation of 1,4-dioxane is often limited to costly ex situ UV-based advanced oxidation. By varying applied voltage, electrical conductivity, seepage velocity, and influent contaminant concentration in flow-through reactors, we show that electrochemical oxidation is a viable technology for in situ and ex situ treatment of 1,4-dioxane under a wide range of environmental conditions. Using novel titanium dioxide (TiO2) pellets, we demonstrate for the first time that this prominent catalyst can be activated in the dark even when electrically insulated from the electrodes. TiO2-catalyzed reactors achieved efficiencies of greater than 97% degradation of 1,4-dioxane, up to 4.6 times higher than noncatalyzed electrolytic reactors. However, the greatest catalytic enhancement (70% degradation versus no degradation without catalysis) was observed in low-ionic-strength water, where conventional electrochemical approaches notoriously fail. The TiO2 pellet's dark-catalytic oxidation activity was confirmed on the pharmaceutical lamotrigine and the industrial solvent chlorobenzene, signifying that electrocatalytic treatment has tremendous potential as a transformative remediation technology for persistent organic pollutants in groundwater and other aqueous environments.

  14. Establishment of a novel advanced oxidation process for economical and effective removal of SO2 and NO.

    PubMed

    Hao, Runlong; Zhao, Yi; Yuan, Bo; Zhou, Sihan; Yang, Shuo

    2016-11-15

    SO2 and NO have caused serious haze in China. For coping with the terrible problem, this paper proposed a novel advanced oxidation process of ultraviolet (UV) catalyzing vaporized H2O2 for simultaneous removal of SO2 and NO. Effects of various factors on simultaneous removal of SO2 and NO were investigated, such as the mass concentration of H2O2, the UV energy density, the UV wavelength, the H2O2 pH, the temperatures of H2O2 vaporization and UV-catalysis, the flue gas residence time, the concentrations of SO2, NO and O2, and radical scavenger. The removal efficiencies of 100% for SO2 and 87.8% for NO were obtained under the optimal conditions. The proposed approach has some superiorities, i.e. less dosage and high utilization of oxidant, short flue gas residence time and inhibiting the competition between SO2 and NO for oxidants. The results indicated that the desulfurization process was dominated by the absorption by HA-Na, whereas the denitrification was primarily affected by the H2O2 dosage, UV energy density and H2O2 pH. Interestingly, an appropriate amount of SO2 was beneficial for NO removal. The reaction mechanism was speculated based on the characterizations of removal products by XRD, FT-IR and IC.

  15. Elimination study of the chemotherapy drug tamoxifen by different advanced oxidation processes: Transformation products and toxicity assessment.

    PubMed

    Ferrando-Climent, Laura; Gonzalez-Olmos, Rafael; Anfruns, Alba; Aymerich, Ignasi; Corominas, Lluis; Barceló, Damià; Rodriguez-Mozaz, Sara

    2017-02-01

    Tamoxifen is a chemotherapy drug considered as recalcitrant contaminant (with low biodegradability in conventional activated sludge wastewater treatment), bioaccumulative, ubiquitous, and potentially hazardous for the environment. This work studies the removal of Tamoxifen from water by advanced oxidation processes, paying special attention to the formation of transformation products (TPs) and to the evolution of toxicity (using the Microtox(®) bioassay) during the oxidation processes. Five types of treatments were evaluated combining different technologies based on ozone, hydrogen peroxide and UV radiation: i) O3, ii) O3/UV, iii) O3/H2O2 (peroxone), iv) UV and v) UV/H2O2. Complete removal of tamoxifen was achieved after 30 min for all the treatments carried out with O3 while a residual concentration (about 10% of initial one) was observed in the treatments based on UV and UV/H2O2 after 4 h of reaction. Eight TPs were tentatively identified and one (non-ionizable molecule) was suspected to be present by using ultra high performance liquid chromatography coupled to high resolution mass spectrometry. An increase of toxicity was observed during all the oxidation processes. In the case of ozone-based treatments that increase was attributed to the presence of some of the TPs identified, whereas in the case of UV-based treatments there was no clear correlation between toxicity and the identified TPs.

  16. Complementary Metal-Oxide-Silicon (CMOS)-Memristor Hybrid Nanoelectronics for Advanced Encryption Standard (AES) Encryption

    DTIC Science & Technology

    2016-04-01

    reliability were developed and integrated with CMOS circuitry to establish an efficient hybrid nanoelectronic computing module for Advanced...node integrated with the memristors without leaving the CMOS foundry setting. 15. SUBJECT TERMS nanoelectronics, CMOS, memristor, crossbar 16...Table of Contents 1. SUMMARY ..................................................................................................................... 1 2

  17. Effects of plant-derived polyphenols on TNF-alpha and nitric oxide production induced by advanced glycation endproducts.

    PubMed

    Chandler, Dave; Woldu, Ameha; Rahmadi, Anton; Shanmugam, Kirubakaran; Steiner, Nicole; Wright, Elise; Benavente-García, Obdulio; Schulz, Oliver; Castillo, Julián; Münch, Gerald

    2010-07-01

    Advanced glycation endproducts (AGEs) accumulate on protein deposits including the beta-amyloid plaques in Alzheimer's disease. AGEs interact with the "receptor for advanced glycation endproducts", and transmit their signals using intracellular reactive oxygen species as second messengers. Ultimately, AGEs induce the expression of a variety of pro-inflammatory markers including the tumor necrosis factor (TNF-alpha) and inducible nitric oxide (NO) synthase. Antioxidants that act intracellularly, including polyphenols, have been shown to scavenge these "signaling" reactive oxygen species, and thus perform in an anti-inflammatory capacity. This study tested the pure compounds apigenin and diosmetin as well as extracts from silymarin, uva ursi (bearberry) and green olive leaf for their ability to attenuate AGE-induced NO and TNF-alpha production. All five tested samples inhibited BSA-AGE-induced NO production in a dose-dependent manner. Apigenin and diosmetin were most potent, and exhibited EC(50) values approximately 10 microM. In contrast, TNF-alpha expression was only reduced by apigenin, diosmetin and silymarin; not by the bearberry and green olive leaf extracts. In addition, the silymarin and bearberry extracts caused significant cell death at concentrations >or=10 microg/mL and >or=50 microg/mL, respectively. In conclusion, we suggest that plant-derived polyphenols might offer therapeutic opportunities to delay the progression of AGE-mediated and receptor for advanced glycation endproducts-mediated neuro-inflammatory diseases including Alzheimer's disease.

  18. Reduced graphene oxide wrapped Fe3O4-Co3O4 yolk-shell nanostructures for advanced catalytic oxidation based on sulfate radicals

    NASA Astrophysics Data System (ADS)

    Zhang, Lishu; Yang, Xijia; Han, Erfen; Zhao, Lijun; Lian, Jianshe

    2017-02-01

    In this work, we designed and synthesized a high performance catalyst of reduced graphene oxide (RGO) wrapped Fe3O4-Co3O4 (RGO/Fe3O4-Co3O4) yolk-shell nanostructures for advanced catalytic oxidation based on sulfate radicals. The synergistic catalytic action of the RGO/Fe3O4-Co3O4 yolk-shell nanostructures activate the peroxymonosulfate (PMS) to produce sulfate radicals (SO4rad -) for organic dyes degradation, and the Orange II can be almost completely degradated in 5 min. Meanwhile the RGO wrapping prevents the loss of cobalt in the catalytic process, and the RGO/Fe3O4-Co3O4 can be recycled after catalyzed reaction due to the presence of magnetic iron core. What's more, it can maintain almost the same high catalytic activity even after 10 cycles through repeated NaBH4 reduction treatment. Hence, RGO/Fe3O4-Co3O4 yolk-shell nanostructures possess a great opportunity to become a promising candidate for waste water treatment in industry.

  19. Theoretical Study of Triboelectric-Potential Gated/Driven Metal-Oxide-Semiconductor Field-Effect Transistor.

    PubMed

    Peng, Wenbo; Yu, Ruomeng; He, Yongning; Wang, Zhong Lin

    2016-04-26

    Triboelectric nanogenerator has drawn considerable attentions as a potential candidate for harvesting mechanical energies in our daily life. By utilizing the triboelectric potential generated through the coupling of contact electrification and electrostatic induction, the "tribotronics" has been introduced to tune/control the charge carrier transport behavior of silicon-based metal-oxide-semiconductor field-effect transistor (MOSFET). Here, we perform a theoretical study of the performances of tribotronic MOSFET gated by triboelectric potential in two working modes through finite element analysis. The drain-source current dependence on contact-electrification generated triboelectric charges, gap separation distance, and externally applied bias are investigated. The in-depth physical mechanism of the tribotronic MOSFET operations is thoroughly illustrated by calculating and analyzing the charge transfer process, voltage relationship to gap separation distance, and electric potential distribution. Moreover, a tribotronic MOSFET working concept is proposed, simulated and studied for performing self-powered FET and logic operations. This work provides a deep understanding of working mechanisms and design guidance of tribotronic MOSFET for potential applications in micro/nanoelectromechanical systems (MEMS/NEMS), human-machine interface, flexible electronics, and self-powered active sensors.

  20. Photo-Oxidative Stress-Driven Mutagenesis and Adaptive Evolution on the Marine Diatom Phaeodactylum tricornutum for Enhanced Carotenoid Accumulation.

    PubMed

    Yi, Zhiqian; Xu, Maonian; Magnusdottir, Manuela; Zhang, Yuetuan; Brynjolfsson, Sigurdur; Fu, Weiqi

    2015-09-29

    Marine diatoms have recently gained much attention as they are expected to be a promising resource for sustainable production of bioactive compounds such as carotenoids and biofuels as a future clean energy solution. To develop photosynthetic cell factories, it is important to improve diatoms for value-added products. In this study, we utilized UVC radiation to induce mutations in the marine diatom Phaeodactylum tricornutum and screened strains with enhanced accumulation of neutral lipids and carotenoids. Adaptive laboratory evolution (ALE) was also used in parallel to develop altered phenotypic and biological functions in P. tricornutum and it was reported for the first time that ALE was successfully applied on diatoms for the enhancement of growth performance and productivity of value-added carotenoids to date. Liquid chromatography-mass spectrometry (LC-MS) was utilized to study the composition of major pigments in the wild type P. tricornutum, UV mutants and ALE strains. UVC radiated strains exhibited higher accumulation of fucoxanthin as well as neutral lipids compared to their wild type counterpart. In addition to UV mutagenesis, P. tricornutum strains developed by ALE also yielded enhanced biomass production and fucoxanthin accumulation under combined red and blue light. In short, both UV mutagenesis and ALE appeared as an effective approach to developing desired phenotypes in the marine diatoms via electromagnetic radiation-induced oxidative stress.

  1. Photo-Oxidative Stress-Driven Mutagenesis and Adaptive Evolution on the Marine Diatom Phaeodactylum tricornutum for Enhanced Carotenoid Accumulation

    PubMed Central

    Yi, Zhiqian; Xu, Maonian; Magnusdottir, Manuela; Zhang, Yuetuan; Brynjolfsson, Sigurdur; Fu, Weiqi

    2015-01-01

    Marine diatoms have recently gained much attention as they are expected to be a promising resource for sustainable production of bioactive compounds such as carotenoids and biofuels as a future clean energy solution. To develop photosynthetic cell factories, it is important to improve diatoms for value-added products. In this study, we utilized UVC radiation to induce mutations in the marine diatom Phaeodactylum tricornutum and screened strains with enhanced accumulation of neutral lipids and carotenoids. Adaptive laboratory evolution (ALE) was also used in parallel to develop altered phenotypic and biological functions in P. tricornutum and it was reported for the first time that ALE was successfully applied on diatoms for the enhancement of growth performance and productivity of value-added carotenoids to date. Liquid chromatography-mass spectrometry (LC-MS) was utilized to study the composition of major pigments in the wild type P. tricornutum, UV mutants and ALE strains. UVC radiated strains exhibited higher accumulation of fucoxanthin as well as neutral lipids compared to their wild type counterpart. In addition to UV mutagenesis, P. tricornutum strains developed by ALE also yielded enhanced biomass production and fucoxanthin accumulation under combined red and blue light. In short, both UV mutagenesis and ALE appeared as an effective approach to developing desired phenotypes in the marine diatoms via electromagnetic radiation-induced oxidative stress. PMID:26426027

  2. Advanced experimental analysis of controls on microbial Fe(III) oxide reduction. First year progress report

    SciTech Connect

    Roden, E.E.; Urrutia, M.M.

    1997-07-01

    'The authors have made considerable progress toward a number of project objectives during the first several months of activity on the project. An exhaustive analysis was made of the growth rate and biomass yield (both derived from measurements of cell protein production) of two representative strains of Fe(III)-reducing bacteria (Shewanellaalga strain BrY and Geobactermetallireducens) growing with different forms of Fe(III) as an electron acceptor. These two fundamentally different types of Fe(III)-reducing bacteria (FeRB) showed comparable rates of Fe(III) reduction, cell growth, and biomass yield during reduction of soluble Fe(III)-citrate and solid-phase amorphous hydrous ferric oxide (HFO). Intrinsic growth rates of the two FeRB were strongly influenced by whether a soluble or a solid-phase source of Fe(III) was provided: growth rates on soluble Fe(III) were 10--20 times higher than those on solid-phase Fe(III) oxide. Intrinsic FeRB growth rates were comparable during reduction of HF0 and a synthetic crystalline Fe(III) oxide (goethite). A distinct lag phase for protein production was observed during the first several days of incubation in solid-phase Fe(III) oxide medium, even though Fe(III) reduction proceeded without any lag. No such lag between protein production and Fe(III) reduction was observed during growth with soluble Fe(III). This result suggested that protein synthesis coupled to solid-phase Fe(III) oxide reduction in batch culture requires an initial investment of energy (generated by Fe(III) reduction), which is probably needed for s