Documentation Driven Development for Complex Real-Time Systems
2004-12-01
This paper presents a novel approach for development of complex real - time systems , called the documentation-driven development (DDD) approach. This... time systems . DDD will also support automated software generation based on a computational model and some relevant techniques. DDD includes two main...stakeholders to be easily involved in development processes and, therefore, significantly improve the agility of software development for complex real
Chen, Xi; Liang, Peng; Zhang, Xiaoyuan; Huang, Xia
2016-09-01
Bioelectrochemical systems (BESs) are integrated water treatment technologies that generate electricity using organic matter in wastewater. In situ use of bioelectricity can direct the migration of ionic substances in a BES, thereby enabling water desalination, resource recovery, and valuable substance production. Recently, much attention has been placed on the microbial desalination cells in BESs to drive water desalination, and various configurations have optimized electricity generation and desalination performance and also coupled hydrogen production, heavy metal reduction, and other reactions. In addition, directional transport of other types of charged ions can remediate polluted groundwater, recover nutrient, and produce valuable substances. To better promote the practical application, the use of BESs as directional drivers of ionic substances requires further optimization to improve energy use efficiency and treatment efficacy. This article reviews existing researches on BES-driven directional ion transport to treat wastewater and identifies a few key factors involved in efficiency optimization. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zuo, Kuichang; Wang, Zhen; Chen, Xi; Zhang, Xiaoyuan; Zuo, Jiaolan; Liang, Peng; Huang, Xia
2016-07-05
Microbial desalination cells (MDCs) extract organic energy from wastewater for in situ desalination of saline water. However, to desalinate salt water, traditional MDCs often require an anolyte (wastewater) and a catholyte (other synthetic water) to produce electricity. Correspondingly, the traditional MDCs also produced anode effluent and cathode effluent, and may produce a concentrate solution, resulting in a low production of diluate. In this study, nitrogen-doped carbon nanotube membranes and Pt carbon cloths were utilized as filtration material and cathode to fabricate a modularized filtration air cathode MDC (F-MDC). With real wastewater flowing from anode to cathode, and finally to the middle membrane stack, the diluate volume production reached 82.4%, with the removal efficiency of salinity and chemical oxygen demand (COD) reached 93.6% and 97.3% respectively. The final diluate conductivity was 68 ± 12 μS/cm, and the turbidity was 0.41 NTU, which were sufficient for boiler supplementary or industrial cooling. The concentrate production was only 17.6%, and almost all the phosphorus and salt, and most of the nitrogen were recovered, potentially allowing the recovery of nutrients and other chemicals. These results show the potential utility of the modularized F-MDC in the application of municipal wastewater advanced treatment and self-driven desalination.
Drivers of an urban community's acceptance of a large desalination scheme for drinking water
NASA Astrophysics Data System (ADS)
Gibson, Fiona L.; Tapsuwan, Sorada; Walker, Iain; Randrema, Elodie
2015-09-01
Changing climates and growing populations have prompted policy makers to shift to more climate resilient, technology-driven water sources, such as seawater desalination. Desalination is a prominent water resource in the Middle East but countries in other parts of the world with similar scarcity issues and good access to sea water, such as Australia, have been comparatively slow to adopt it. This paper explores attitudes to desalination in Perth, Western Australia, and the factors that influence its acceptance. We compared individuals' acceptance of desalination over two time periods by using identical surveys administered in 2007 and 2012. We then examined the attitudinal factors - attitudes towards desalination and attitudes towards the environment - that influence acceptance. Acceptance of desalination was reasonably high and stable at both times (74% and 73% in 2007 and 2012 respectively). We found that respondents' attitudes to perceived outcomes and benefits, fairness, environmental obligation and risk were important predictors of their acceptance of desalination in both surveys. However the weight given to these aspects varied over time. The findings show that there is still mixed community sentiment towards desalination, which helps to explain why acceptance has not increased since desalination was introduced in 2006.
Iskander, Syeed Md; Novak, John T; He, Zhen
2018-05-01
In this work, a microbial desalination cell (MDC) was employed to desalinate the FO treated leachate for reduction of both salinity and chemical oxygen demand (COD). The FO recovered 51.5% water from a raw leachate and the recovery increased to 83.5% from the concentrated leachate after desalination in the MDC fed with either acetate or another leachate as an electron source and at a different hydraulic retention time (HRT). Easily-degraded substrate like acetate and a long HRT resulted in a low conductivity desalinated effluent. Ammonia was also recovered in the MDC cathode with a recovery efficiency varying from 11 to 64%, affected by current generation and HRT. Significant COD reduction, as high as 65.4%, was observed in the desalination chamber and attributed to the decrease of both organic and inorganic compounds via diffusion and electricity-driven movement. Copyright © 2018 Elsevier Ltd. All rights reserved.
Seventeen-Year Nationwide Trends in Antihypertensive Drug Use in Denmark.
Sundbøll, Jens; Adelborg, Kasper; Mansfield, Kathryn E; Tomlinson, Laurie A; Schmidt, Morten
2017-12-15
Recent trends in use of antihypertensive drugs are unknown. From Danish nationwide prescription data, we obtained information on primary care use of angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers, beta blockers, diuretics, aldosterone receptor antagonists, and calcium channel blockers. During 1999 to 2015, the use of antihypertensive drugs per 1,000 inhabitants/day increased from 184 to 379 defined daily doses (DDD), corresponding to a rise in the prevalence proportion of users from ≈20% to ≈35%. From 1999 to 2015, a notable increase was observed for angiotensin-converting enzyme inhibitors (from 29 to 105 DDD per 1,000 inhabitants/day ≈260%) and angiotensin II receptor blockers (from 13 to 73 DDD per 1,000 inhabitants/day ≈520%). For diuretics the use remained stable, with a slight decrease (from 89 to 81 DDD per 1,000 inhabitants/day ≈-10%). The use of aldosterone receptor antagonists increased until 2007 and remained unchanged at around 3.5 DDD per 1,000 inhabitants/day thereafter (average change ≈65%). The use of beta blockers doubled during the study period (from 17 to 34 DDD per 1,000 inhabitants/day ≈100%), entirely driven by increasing use of metoprolol. Similar trends were observed for calcium channel blockers (from 34 to 82 DDD per 1,000 inhabitants/day ≈140%), where amlodipine drove the overall increase. In conclusion, antihypertensive drug use has increased remarkably during the past 2 decades. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Skaugen, Thomas; Haddeland, Ingjerd
2014-05-01
A new parameter-parsimonious rainfall-runoff model, DDD (Distance Distribution Dynamics) has been run operationally at the Norwegian Flood Forecasting Service for approximately a year. DDD has been calibrated for, altogether, 104 catchments throughout Norway, and provide runoff forecasts 8 days ahead on a daily temporal resolution driven by precipitation and temperature from the meteorological forecast models AROME (48 hrs) and EC (192 hrs). The current version of DDD differs from the standard model used for flood forecasting in Norway, the HBV model, in its description of the subsurface and runoff dynamics. In DDD, the capacity of the subsurface water reservoir M, is the only parameter to be calibrated whereas the runoff dynamics is completely parameterised from observed characteristics derived from GIS and runoff recession analysis. Water is conveyed through the soils to the river network by waves with celerities determined by the level of saturation in the catchment. The distributions of distances between points in the catchment to the nearest river reach and of the river network give, together with the celerities, distributions of travel times, and, consequently unit hydrographs. DDD has 6 parameters less to calibrate in the runoff module than the HBV model. Experiences using DDD show that especially the timing of flood peaks has improved considerably and in a comparison between DDD and HBV, when assessing timeseries of 64 years for 75 catchments, DDD had a higher hit rate and a lower false alarm rate than HBV. For flood peaks higher than the mean annual flood the median hit rate is 0.45 and 0.41 for the DDD and HBV models respectively. Corresponding number for the false alarm rate is 0.62 and 0.75 For floods over the five year return interval, the median hit rate is 0.29 and 0.28 for the DDD and HBV models, respectively with false alarm rates equal to 0.67 and 0.80. During 2014 the Norwegian flood forecasting service will run DDD operationally at a 3h temporal resolution. Running DDD at a 3h resolution will give a better prediction of flood peaks in small catchments, where the averaging over 24 hrs will lead to a underestimation of high events, and we can better describe the progress floods in larger catchments. Also, at a 3h temporal resolution we make better use of the meteorological forecasts that for long have been provided at a very detailed temporal resolution.
NASA Astrophysics Data System (ADS)
Ranjitha, P. Raj; Ratheesh, R.; Jayakumar, J. S.; Balakrishnan, Shankar
2018-02-01
Availability and utilization of energy and water are the top most global challenges being faced by the new millennium. At the present state water scarcity has become a global as well as a regional challenge. 40 % of world population faces water shortage. Challenge of water scarcity can be tackled only with increase in water supply beyond what is obtained from hydrological cycle. This can be achieved either by desalinating the sea water or by reusing the waste water. High energy requirement need to be overcome for either of the two processes. Of many desalination technologies, humidification dehumidification (HDH) technology powered by solar energy is widely accepted for small scale production. Detailed optimization studies on system have the potential to effectively utilize the solar energy for brackish water desalination. Dehumidification technology, specifically, require further study because the dehumidifier effectiveness control the energetic performance of the entire HDH system. The reason attributes to the high resistance involved to diffuse dilute vapor through air in a dehumidifier. The present work intends to optimize the design of a bubble column dehumidifier for a solar energy driven desalination process. Optimization is carried out using Matlab simulation. Design process will identify the unique needs of a bubble column dehumidifier in HDH system.
Kim, Young-Deuk; Thu, Kyaw; Ng, Kim Choon; Amy, Gary L; Ghaffour, Noreddine
2016-09-01
In this paper, a hybrid desalination system consisting of vacuum membrane distillation (VMD) and adsorption desalination (AD) units, designated as VMD-AD cycle, is proposed. The synergetic integration of the VMD and AD is demonstrated where a useful effect of the AD cycle is channelled to boost the operation of the VMD process, namely the low vacuum environment to maintain the high pressure gradient across the microporous hydrophobic membrane. A solar-assisted multi-stage VMD-AD hybrid desalination system with temperature modulating unit is first designed, and its performance is then examined with a mathematical model of each component in the system and compared with the VMD-only system with temperature modulating and heat recovery units. The total water production and water recovery ratio of a solar-assisted 24-stage VMD-AD hybrid system are found to be about 21% and 23% higher, respectively, as compared to the VMD-only system. For the solar-assisted 24-stage VMD-AD desalination system having 150 m(2) of evacuated-tube collectors and 10 m(3) seawater storage tanks, both annual collector efficiency and solar fraction are close to 60%. Copyright © 2016 Elsevier Ltd. All rights reserved.
Constructing Black Titania with Unique Nanocage Structure for Solar Desalination.
Zhu, Guilian; Xu, Jijian; Zhao, Wenli; Huang, Fuqiang
2016-11-23
Solar desalination driven by solar radiation as heat source is freely available, however, hindered by low efficiency. Herein, we first design and synthesize black titania with a unique nanocage structure simultaneously with light trapping effect to enhance light harvesting, well-crystallized interconnected nanograins to accelerate the heat transfer from titania to water and with opening mesopores (4-10 nm) to facilitate the permeation of water vapor. Furthermore, the coated self-floating black titania nanocages film localizes the temperature increase at the water-air interface rather than uniformly heating the bulk of the water, which ultimately results in a solar-thermal conversion efficiency as high as 70.9% under a simulated solar light with an intensity of 1 kW m -2 (1 sun). This finding should inspire new black materials with rationally designed structure for superior solar desalination performance.
Membraneless seawater desalination
Crooks, Richard A.; Knust, Kyle N.; Perdue, Robbyn K.
2018-04-03
Disclosed are microfluidic devices and systems for the desalination of water. The devices and systems can include an electrode configured to generate an electric field gradient in proximity to an intersection formed by the divergence of two microfluidic channels from an inlet channel. Under an applied bias and in the presence of a pressure driven flow of saltwater, the electric field gradient can preferentially direct ions in saltwater into one of the diverging microfluidic channels, while desalted water flows into second diverging channel. Also provided are methods of using the devices and systems described herein to decrease the salinity of water.
ERIC Educational Resources Information Center
Briggs, Linda L.
2007-01-01
Today, as difficult as it is for large institutions to keep software and hardware up-to-date, the challenge and expense of keeping up is only amplified for smaller colleges and universities. In the area of data-driven decision-making (DDD), the challenge can be even greater. Because smaller schools are pressed for time and resources on nearly all…
Wang, Peng; Chung, Tai-Shung
2012-09-01
The severe global water scarcity and record-high fossil oil price have greatly stimulated the research interests on new desalination technologies which can be driven by renewable energy or waste energy. In this study, a hybrid desalination process comprising freeze desalination and membrane distillation (FD-MD) processes was developed and explored in an attempt to utilize the waste cold energy released from re-gasification of liquefied natural gas (LNG). The concept of this technology was demonstrated using indirect-contact freeze desalination (ICFD) and direct-contact membrane distillation (DCMD) configurations. By optimizing the ICFD operation parameters, namely, the usage of nucleate seeds, operation duration and feed concentration, high quality drinkable water with a low salinity ∼0.144 g/L was produced in the ICFD process. At the same time, using the optimized hollow fiber module length and packing density in the DCMD process, ultra pure water with a low salinity of 0.062 g/L was attained at a condition of high energy efficiency (EE). Overall, by combining FD and MD processes and adopting the optimized operation parameters, the hybrid FD-MD system has been successfully demonstrated. A high total water recovery of 71.5% was achieved, and the water quality obtained met the standard for drinkable water. In addition, with results from specific energy calculation, it was proven that the hybrid process is an energy-saving process and utilization of LNG cold energy could greatly reduce the total energy consumption. Copyright © 2012 Elsevier Ltd. All rights reserved.
Use of Low-Temperature Geothermal Energy for Desalination in the Western United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turchi, Craig S.; Akar, Sertac; Cath, Tzahi
2015-11-01
This joint project between the National Renewable Energy Laboratory and the Colorado School of Mines has examined the potential of using low-temperature geothermal resources for desalination. The temperature range in question is not well suited for electricity generation, but can be used for direct heating. Accordingly, the best integration approaches use thermal desalination technologies such as multi-effect distillation (MED) or membrane distillation (MD), rather than electric-driven technologies such as reverse osmosis (RO). The examination of different desalination technologies led to the selection of MD for pairing with geothermal energy. MD operates at near-ambient pressure and temperatures less than 100°C withmore » hydrophobic membranes. The technology is modular like RO, but the equipment costs are lower. The thermal energy demands of MD are higher than MED, but this is offset by an ability to run at lower temperatures and a low capital cost. Consequently, a geothermal-MD system could offer a low capital cost and, if paired with low-cost geothermal energy, a low operating cost. The target product water cost is $1.0 to $1.5 per cubic meter depending on system capacity and the cost of thermal energy.« less
Vane, Leland M.
2017-01-01
BACKGROUND When water is recovered from a saline source, a brine concentrate stream is produced. Management of the brine stream can be problematic, particularly in inland regions. An alternative to brine disposal is recovery of water and possibly salts from the concentrate. RESULTS This review provides an overview of desalination technologies and discusses the thermodynamic efficiencies and operational issues associated with the various technologies particularly with regard to high salinity streams. CONCLUSION Due to the high osmotic pressures of the brine concentrates, reverse osmosis, the most common desalination technology, is impractical. Mechanical vapor compression which, like reverse osmosis, utilizes mechanical work to operate, is reported to have the highest thermodynamic efficiency of the desalination technologies for treatment of salt-saturated brines. Thermally-driven processes, such as flash evaporation and distillation, are technically able to process saturated salt solutions, but suffer from low thermodynamic efficiencies. This inefficiency could be offset if an inexpensive source of waste or renewable heat could be used. Overarching issues posed by high salinity solutions include corrosion and the formation of scales/precipitates. These issues limit the materials, conditions, and unit operation designs that can be used. PMID:29225395
Vane, Leland M
2017-03-08
When water is recovered from a saline source, a brine concentrate stream is produced. Management of the brine stream can be problematic, particularly in inland regions. An alternative to brine disposal is recovery of water and possibly salts from the concentrate. This review provides an overview of desalination technologies and discusses the thermodynamic efficiencies and operational issues associated with the various technologies particularly with regard to high salinity streams. Due to the high osmotic pressures of the brine concentrates, reverse osmosis, the most common desalination technology, is impractical. Mechanical vapor compression which, like reverse osmosis, utilizes mechanical work to operate, is reported to have the highest thermodynamic efficiency of the desalination technologies for treatment of salt-saturated brines. Thermally-driven processes, such as flash evaporation and distillation, are technically able to process saturated salt solutions, but suffer from low thermodynamic efficiencies. This inefficiency could be offset if an inexpensive source of waste or renewable heat could be used. Overarching issues posed by high salinity solutions include corrosion and the formation of scales/precipitates. These issues limit the materials, conditions, and unit operation designs that can be used.
Nakayama, Daichi; Mok, Yeongbong; Noh, Minwoo; Park, Jeongseon; Kang, Sunyoung; Lee, Yan
2014-03-21
Lower critical solution temperature (LCST) phase transition of glycol ether (GE)-water mixtures induces an abrupt change in osmotic pressure driven by a mild temperature change. The temperature-controlled osmotic change was applied for the forward osmosis (FO) desalination. Among three GEs evaluated, di(ethylene glycol) n-hexyl ether (DEH) was selected as a potential FO draw solute. A DEH-water mixture with a high osmotic pressure could draw fresh water from a high-salt feed solution such as seawater through a semipermeable membrane at around 10 °C. The water-drawn DEH-water mixture was phase-separated into a water-rich phase and a DEH-rich phase at around 30 °C. The water-rich phase with a much reduced osmotic pressure released water into a low-salt solution, and the DEH-rich phase was recovered into the initial DEH-water mixture. The phase separation behaviour, the residual GE concentration in the water-rich phase, the osmotic pressure of the DEH-water mixture, and the osmotic flux between the DEH-water mixture and salt solutions were carefully analysed for FO desalination. The liquid-liquid phase separation of the GE-water mixture driven by the mild temperature change between 10 °C and 30 °C is very attractive for the development of an ideal draw solute for future practical FO desalination.
Yeast fuel cell: Application for desalination
NASA Astrophysics Data System (ADS)
Mardiana, Ummy; Innocent, Christophe; Cretin, Marc; Buchari, Buchari; Gandasasmita, Suryo
2016-02-01
Yeasts have been implicated in microbial fuel cells as biocatalysts because they are non-pathogenic organisms, easily handled and robust with a good tolerance in different environmental conditions. Here we investigated baker's yeast Saccharomyces cerevisiae through the oxidation of glucose. Yeast was used in the anolyte, to transfer electrons to the anode in the presence of methylene blue as mediator whereas K3Fe(CN)6 was used as an electron acceptor for the reduction reaction in the catholyte. Power production with biofuel cell was coupled with a desalination process. The maximum current density produced by the cell was 88 mA.m-2. In those conditions, it was found that concentration of salt was removed 64% from initial 0.6 M after 1-month operation. This result proves that yeast fuel cells can be used to remove salt through electrically driven membrane processes and demonstrated that could be applied for energy production and desalination. Further developments are in progress to improve power output to make yeast fuel cells applicable for water treatment.
NASA Astrophysics Data System (ADS)
Chen, Wei; Chen, Shuyu; Liang, Tengfei; Zhang, Qiang; Fan, Zhongli; Yin, Hang; Huang, Kuo-Wei; Zhang, Xixiang; Lai, Zhiping; Sheng, Ping
2018-04-01
Freshwater flux and energy consumption are two important benchmarks for the membrane desalination process. Here, we show that nanoporous carbon composite membranes, which comprise a layer of porous carbon fibre structures grown on a porous ceramic substrate, can exhibit 100% desalination and a freshwater flux that is 3-20 times higher than existing polymeric membranes. Thermal accounting experiments demonstrated that the carbon composite membrane saved over 80% of the latent heat consumption. Theoretical calculations combined with molecular dynamics simulations revealed the unique microscopic process occurring in the membrane. When the salt solution is stopped at the openings to the nanoscale porous channels and forms a meniscus, the vapour can rapidly transport across the nanoscale gap to condense on the permeate side. This process is driven by the chemical potential gradient and aided by the unique smoothness of the carbon surface. The high thermal conductivity of the carbon composite membrane ensures that most of the latent heat is recovered.
Firth, Clair L; Käsbohrer, Annemarie; Schleicher, Corina; Fuchs, Klemens; Egger-Danner, Christa; Mayerhofer, Martin; Schobesberger, Hermann; Köfer, Josef; Obritzhauser, Walter
2017-01-01
Antimicrobial use in livestock production is an important contemporary issue, which is of public interest worldwide. Antimicrobials are not freely available to Austrian farmers and can only be administered to livestock by veterinarians, or by farmers who are trained members of the Animal Health Service. Since 2015, veterinarians have been required by law to report antimicrobials dispensed to farmers for use in food-producing animals. The study presented here went further than the statutory framework, and collected data on antimicrobials dispensed to farmers and those administered by veterinarians. Seventeen veterinary practices were enrolled in the study via convenience sampling. These veterinarians were asked to contact interested dairy farmers regarding participation in the study (respondent-driven sampling). Data were collected from veterinary practice software between 1st October 2015 and 30th September 2016. Electronic data (89.4%) were transferred via an online interface and paper records (10.6%) were entered by the authors. Antimicrobial treatments with respect to udder disease were analysed by number of defined daily doses per cow and year (nDDD vet /cow/year), based on the European Medicines Agency technical unit, Defined Daily Dose for animals (DDD vet ). Descriptive statistics and the Wilcoxon rank sum test were used to analyse the results. Antimicrobial use data from a total of 248 dairy farms were collected during the study, 232 of these farms treated cows with antibiotics; dry cow therapy was excluded from the current analysis. The mean number of DDD vet /cow/year for the antimicrobial treatment of all udder disease was 1.33 DDD vet /cow/year. Of these treatments, 0.73 DDD vet /cow/year were classed as highest priority critically important antimicrobials (HPCIAs), according to the World Health Organization (WHO) definition. The Wilcoxon rank sum test determined a statistically significant difference between the median number of DDD vet /cow/year for acute and chronic mastitis treatment ( W = 10,734, p < 0.001). The most commonly administered antimicrobial class for the treatment of acute mastitis was beta-lactams. Intramammary penicillin was used at a mean of 0.63 DDD vet /cow/year, followed by the third generation cephalosporin, cefoperazone, (a HPCIA) at 0.60 DDD vet /cow/year. Systemic antimicrobial treatments were used at a lower overall level than intramammary treatments for acute mastitis. This study demonstrated that Austrian dairy cows in the study population were treated with antimicrobial substances for udder diseases at a relatively low frequency, however, a substantial proportion of these treatments were with substances considered critically important for human health. While it is vital that sick cows are treated, reductions in the overall use of antimicrobials, and critically important substances in particular, are still possible.
Ion selection of charge-modified large nanopores in a graphene sheet
NASA Astrophysics Data System (ADS)
Zhao, Shijun; Xue, Jianming; Kang, Wei
2013-09-01
Water desalination becomes an increasingly important approach for clean water supply to meet the rapidly growing demand of population boost, industrialization, and urbanization. The main challenge in current desalination technologies lies in the reduction of energy consumption and economic costs. Here, we propose to use charged nanopores drilled in a graphene sheet as ion exchange membranes to promote the efficiency and capacity of desalination systems. Using molecular dynamics simulations, we investigate the selective ion transport behavior of electric-field-driven KCl electrolyte solution through charge modified graphene nanopores. Our results reveal that the presence of negative charges at the edge of graphene nanopore can remarkably impede the passage of Cl- while enhance the transport of K+, which is an indication of ion selectivity for electrolytes. We further demonstrate that this selectivity is dependent on the pore size and total charge number assigned at the nanopore edge. By adjusting the nanopore diameter and electric charge on the graphene nanopore, a nearly complete rejection of Cl- can be realized. The electrical resistance of nanoporous graphene, which is a key parameter to evaluate the performance of ion exchange membranes, is found two orders of magnitude lower than commercially used membranes. Our results thus suggest that graphene nanopores are promising candidates to be used in electrodialysis technology for water desalinations with a high permselectivity.
Grimmsmann, T; Himmel, W
2010-07-01
Defined daily doses (DDD) are used to analyse drug utilisation. For frequently prescribed drug groups, we studied to what extent the DDD correspond to the average prescribed daily doses (PDD). We analysed all drugs prescribed for more than three months to insured of a large health insurance fund in Mecklenburg-Vorpommern, one federal state in Germany. PDD for plain ACE inhibitors, selective beta-antagonists and some antidiabetics (sulfonylurea compounds) were calculated and compared with their DDD. During the study period, about 38 500 patients received continuous prescriptions of each ACE inhibitors or selective beta-antagonists, and about 9 000 of sulfonylurea compounds. PDD differed from DDD in varying degrees. For ACE inhibitors, PDD ranged between 1.5 DDD (for captopril) and 3.5 (for ramipril). The PDD for beta antagonists were on average 0.9 DDD, similar for bisoprolol (0.8 DDD) and metoprolol (0.9 DDD). As for oral antidiabetics, doctors prescribed 1.0 DDD glibenclamid per day and patient and 2.0 DDD glimepirid. Depending on differences between DDD and PDD, real daily costs for drug therapy differed from the theoretical costs per DDD, for example in the case of ramipril they were 0.24 euros compared to 0.07 euros. The PDD were much higher than the DDD for several frequently prescribed drugs. Consequently, the daily drug costs exceeded the drug costs based on DDD. Evaluations of drug costs on the basis for DDD require careful interpretation. Moreover, the number of DDD alone is not a valid measurement for the appropriateness of drug therapy and can only give a rough estimate of the number of patients treated, at least for the drug groups in this study. Copyright Georg Thieme Verlag KG Stuttgart . New York
Code of Federal Regulations, 2010 CFR
2010-07-01
... (40 CFR Part 63, Subpart A) to Subpart DDD of Part 63 1 Table 1 to Subpart DDD of Part 63 Protection... Hazardous Air Pollutants for Mineral Wool Production Pt. 63, Subpt. DDD, Table 1 Table 1 to Subpart DDD of Part 63—Applicability of General Provisions (40 CFR Part 63, Subpart A) to Subpart DDD of Part 63...
Code of Federal Regulations, 2011 CFR
2011-07-01
... (40 CFR Part 63, Subpart A) to Subpart DDD of Part 63 1 Table 1 to Subpart DDD of Part 63 Protection... Hazardous Air Pollutants for Mineral Wool Production Pt. 63, Subpt. DDD, Table 1 Table 1 to Subpart DDD of Part 63—Applicability of General Provisions (40 CFR Part 63, Subpart A) to Subpart DDD of Part 63...
NASA Astrophysics Data System (ADS)
Shahzad, Muhammad Wakil; Ng, Kim Choon; Thu, Kyaw
2016-06-01
Power and desalination cogeneration plants are common in many water scared courtiers. Designers and planners for cogeneration face tough challenges in deciding the options:- Is it better to operate a power plant (PP) with the reverse osmosis (i.e., PP+RO) or the thermally-driven multi-effect distillation/multi-stage flashed (PP+MED/MSF) methods. From literature, the RO methods are known to be energy efficient whilst the MED/MSF are known to have excellent thermodynamic synergies as only low pressure and temperature steam are used. Not with-standing the challenges of severe feed seawater of the Gulf, such as the frequent harmful algae blooms (HABs) and high silt contents, this presentation presents a quantitative analyses using the exergy and energetic approaches in evaluating the performances of a real cogeneration plant that was recently proposed in the eastern part of Saudi Arabia. We demonstrate that the process choice of PP+RO versus PP+MED depends on the inherent efficiencies of individual process method which is closely related to innovative process design. In this connection, a method of primary fuel cost apportionment for a co-generation plant with a MED desalination is presented. We show that an energy approach, that captures the quality of expanding steam, is a better method over the conventional work output (energetic) and the energy method seems to be over-penalizing a thermally-driven MED by as much as 22% in the operating cost of water.
Suto, Jun-ichi; Satou, Kunio
2015-02-01
The A(y) allele at the agouti locus causes obesity and promotes linear growth in mice. However, body weight gain stops between 16 and 17 weeks after birth, and then, body weight decreases gradually in DDD.Cg-A(y) male mice. Body weight loss is a consequence of diabetes mellitus, which is genetically controlled mainly by a quantitative trait locus (QTL) on chromosome 4. This study aimed to further characterize diabetes mellitus and body weight loss in DDD.Cg-A(y) males. The number of β-cells was markedly reduced, and plasma insulin levels were very low in the DDD.Cg-A(y) males. Using a backcross progeny of DDD × (B6 × DDD.Cg-A(y)) F1-A(y), we identified one significant QTL for plasma insulin levels on distal chromosome 4, which was coincidental with QTL for hyperglycemia and lower body weight. The DDD allele was associated with decreased plasma insulin levels. When the DDD.Cg-A(y) males were housed under three different housing conditions [group housing (4 or 5 DDD.Cg-A(y) and DDD males), individual housing (single DDD.Cg-A(y) male) and single male housing with females (single DDD.Cg-A(y) male with DDD.Cg-A(y) or DDD females)], diabetes mellitus and body weight loss were most severely expressed in individually housed mice. Thus, the severity of diabetes and body weight loss in the DDD.Cg-A(y) males was strongly influenced by the housing conditions. These results demonstrate that both genetic and nongenetic environmental factors are involved in the development of diabetes mellitus and body weight loss in the DDD.Cg-A(y) males.
SUTO, Jun-ichi; SATOU, Kunio
2014-01-01
The Ay allele at the agouti locus causes obesity and promotes linear growth in mice. However, body weight gain stops between 16 and 17 weeks after birth, and then, body weight decreases gradually in DDD.Cg-Ay male mice. Body weight loss is a consequence of diabetes mellitus, which is genetically controlled mainly by a quantitative trait locus (QTL) on chromosome 4. This study aimed to further characterize diabetes mellitus and body weight loss in DDD.Cg-Ay males. The number of β-cells was markedly reduced, and plasma insulin levels were very low in the DDD.Cg-Ay males. Using a backcross progeny of DDD × (B6 × DDD.Cg-Ay) F1-Ay, we identified one significant QTL for plasma insulin levels on distal chromosome 4, which was coincidental with QTL for hyperglycemia and lower body weight. The DDD allele was associated with decreased plasma insulin levels. When the DDD.Cg-Ay males were housed under three different housing conditions [group housing (4 or 5 DDD.Cg-Ay and DDD males), individual housing (single DDD.Cg-Ay male) and single male housing with females (single DDD.Cg-Ay male with DDD.Cg-Ay or DDD females)], diabetes mellitus and body weight loss were most severely expressed in individually housed mice. Thus, the severity of diabetes and body weight loss in the DDD.Cg-Ay males was strongly influenced by the housing conditions. These results demonstrate that both genetic and nongenetic environmental factors are involved in the development of diabetes mellitus and body weight loss in the DDD.Cg-Ay males. PMID:25373882
Chen, Xi; Yip, Ngai Yin
2018-02-20
Current practice of using thermally driven methods to treat hypersaline brines is highly energy-intensive and costly. While conventional reverse osmosis (RO) is the most efficient desalination technique, it is confined to purifying seawater and lower salinity sources. Hydraulic pressure restrictions and elevated energy demand render RO unsuitable for high-salinity streams. Here, we propose an innovative cascading osmotically mediated reverse osmosis (COMRO) technology to overcome the limitations of conventional RO. The innovation utilizes the novel design of bilateral countercurrent reverse osmosis stages to depress the hydraulic pressure needed by lessening the osmotic pressure difference across the membrane, and simultaneously achieve energy savings. Instead of the 137 bar required by conventional RO to desalinate 70 000 ppm TDS hypersaline feed, the highest operating pressure in COMRO is only 68.3 bar (-50%). Furthermore, up to ≈17% energy saving is attained by COMRO (3.16 kWh/m 3 , compared to 3.79 kWh/m 3 with conventional RO). When COMRO is employed to boost the recovery of seawater desalination to 70% from the typical 35-50%, energy savings of up to ≈33% is achieved (2.11 kWh/m 3 , compared to 3.16 kWh/m 3 with conventional RO). Again, COMRO can operate at a moderate hydraulic pressure of 80 bar (25% lower than 113 bar of conventional RO). This study highlights the encouraging potential of energy-efficient COMRO to access unprecedented high recovery rates and treat hypersaline brines at moderate hydraulic pressures, thus extending the capabilities of membrane-based technologies for high-salinity desalination.
Current Status and Future Challenges in Risk-Based Radiation Engineering
NASA Technical Reports Server (NTRS)
Pellish, Jonathan A.
2017-01-01
This presentation covers the basis and challenges for radiation effects in electronic systems. The three main types of radiation effects in electronics are: 1) total ionizing dose (TID), 2) total non-ionizing dose (TNID) / displacement damage dose (DDD), and 3) single-event effect (SEE). Some content on relevant examples of effects, current concerns, and possible environmental model-driven solutions are also included.
Davy, Jean-Marc; Hoffmann, Ellen; Frey, Axel; Jocham, Kurt; Rossi, Stefano; Dupuis, Jean-Marc; Frabetti, Lorenzo; Ducloux, Pascale; Prades, Emmanuel; Jauvert, Gaël
2012-04-01
SafeR performance versus DDD/automatic mode conversion (DDD/AMC) and DDD with a 250-ms atrioventricular (AV) delay (DDD/LD) modes was assessed toward ventricular pacing (Vp) reduction. After a 1-month run-in phase, recipients of dual-chamber pacemakers without persistent AV block and persistent atrial fibrillation (AF) were randomly assigned to SafeR, DDD/AMC, or DDD/LD in a 1:1:1 design. The main endpoint was the percentage of Vp (%Vp) at 2 months and 1 year after randomization, ascertained from device memories. Secondary endpoints include %Vp at 1 year according to pacing indication and 1-year AF incidence based on automatic mode switch device stored episodes. Among 422 randomized patients (73.2±10.6 years, 50% men, sinus node dysfunction 47.4%, paroxysmal AV block 30.3%, bradycardia-tachycardia syndrome 21.8%), 141 were assigned to SafeR versus 146 to DDD/AMC and 135 to DDD/LD modes. Mean %Vp at 2 months was 3.4±12.6% in SafeR versus 33.6±34.7% and 14.0±26.0% in DDD/AMC and DDD/LD modes, respectively (P<0.0001 for both). At 1 year, mean %Vp in SafeR was 4.5±15.3% versus 37.9±34.4% and 16.7±28.0% in DDD/AMC and DDD/LD modes, respectively (P<0.0001 for both). The proportion of patients in whom Vp was completely eliminated was significantly higher in SafeR (69%) versus DDD/AMC (15%) and DDD/LD (45%) modes (P<0.0001 for both), regardless of pacing indication. The absolute risk of developing permanent AF or of remaining in AF for >30% of the time was 5.4% lower in SafeR than in the DDD pacing group (ns). In this selected patient population, SafeR markedly suppressed unnecessary Vp compared with DDD modes. ©2012, The Authors. Journal compilation ©2012 Wiley Periodicals, Inc.
Tang, Li; Iddya, Arpita; Zhu, Xiaobo; Dudchenko, Alexander V; Duan, Wenyan; Turchi, Craig; Vanneste, Johann; Cath, Tzahi Y; Jassby, David
2017-11-08
The desalination of inland brackish groundwater offers the opportunity to provide potable drinking water to residents and industrial cooling water to industries located in arid regions. Geothermal brines are used to generate electricity, but often contain high concentrations of dissolved salt. Here, we demonstrate how the residual heat left in spent geothermal brines can be used to drive a membrane distillation (MD) process and recover desalinated water. Porous polypropylene membranes were coated with a carbon nanotube (CNT)/poly(vinyl alcohol) layer, resulting in composite membranes having a binary structure that combines the hydrophobic properties critical for MD with the hydrophilic and conductive properties of the CNTs. We demonstrate that the addition of the CNT layer increases membrane flux due to enhanced heat transport from the bulk feed to the membrane surface, a result of CNT's high thermal transport properties. Furthermore, we show how hydroxide ion generation, driven by water electrolysis on the electrically conducting membrane surface, can be used to efficiently dissolve silicate scaling that developed during the process of desalinating the geothermal brine, negating the need for chemical cleaning.
Chiral effects in adrenocorticolytic action of o,p'-DDD (mitotane) in human adrenal cells.
Asp, V; Cantillana, T; Bergman, A; Brandt, I
2010-03-01
Adrenocortical carcinoma (ACC) is a rare malignant disease with poor prognosis. The main pharmacological choice, o,p'-DDD (mitotane), produces severe adverse effects. Since o,p'-DDD is a chiral molecule and stereoisomers frequently possess different pharmacokinetic and/or pharmacodynamic properties, we isolated the two o,p'-DDD enantiomers, (R)-(+)-o,p'-DDD and (S)-(-)-o,p'-DDD, and determined their absolute structures. The effects of each enantiomer on cell viability and on cortisol and dehydroepiandrosterone (DHEA) secretion in the human adrenocortical cell line H295R were assessed. We also assayed the o,p'-DDD racemate and the m,p'- and p,p'-isomers. The results show small but statistically significant differences in activity of the o,p'-DDD enantiomers for all parameters tested. The three DDD isomers were equally potent in decreasing cell viability, but p,p'-DDD affected hormone secretion slightly less than the o,p'- and m,p'-isomers. The small chiral differences in direct effects on target cells alone do not warrant single enantiomer administration, but might reach importance in conjunction with possible stereochemical effects on pharmacokinetic processes in vivo.
NASA Astrophysics Data System (ADS)
Zhang, Y. Z.; Wang, P.; Chen, X. L.; Li, C. Y.; Gao, X.; Zhu, D.; Xie, B. B.; Qin, Q. L.; Zhang, X. Y.; Su, H. N.; Zhou, B. C.; Xun, L.
2015-12-01
The microbial cleavage of dimethylsulfoniopropionate (DMSP) generates volatile dimethyl sulfide (DMS) and is an important step in global sulfur and carbon cycles. DddP is a DMSP lyase in marine bacteria and the deduced dddP gene product is abundant in marine metagenomic data sets. However, DddP belongs to the M24 peptidase family according to sequence alignment. Peptidases hydrolyze C-N bonds but DddP is deduced to cleave C-S bonds. Mechanisms responsible for this striking functional shift are currently unknown. We determined the structures of DMSP lyase RlDddP (the DddP from Ruegeria lacuscaerulensis ITI_1157) bound to inhibitory 2-(N-morpholino) ethanesulfonic acid or PO43- and of two mutants of RlDddP bound to acrylate. Based on structural, mutational and biochemical analyses, we characterized a new ion-shift catalytic mechanism of RlDddP for DMSP cleavage. Further, we suggested the structural mechanism leading to the loss of peptidase activity and the subsequent development of DMSP lyase activity in DddP. This study sheds light on the catalytic mechanism and the divergent evolution of DddP, leading to a better understanding of marine bacterial DMSP catabolism and global DMS production.
Razmjou, Amir; Barati, Mohammad Reza; Simon, George P; Suzuki, Kiyonori; Wang, Huanting
2013-06-18
Freshwater shortage is one of the most pressing global issues. Forward osmosis (FO) desalination technology is emerging for freshwater production from saline water, which is potentially more energy-efficient than the current reverse osmosis process. However, the lack of a suitable draw solute is the major hurdle for commercial implementation of the FO desalination technology. We have previously reported that thermoresponsive hydrogels can be used as the draw agent for a FO process, and this new hydrogel-driven FO process holds promise for further development for practical application. In the present work, magnetic field-induced heating is explored for the purpose of developing a more effective way to recover water from swollen hydrogel draw agents. The composite hydrogel particles are prepared by copolymerization of sodium acrylate and N-isopropylacrylamide in the presence of magnetic nanoparticles (γ-Fe2O3, <50 nm). The results indicate that the magnetic heating is an effective and rapid method for dewatering of hydrogels by generating the heat more uniformly throughout the draw agent particles, and thus, a dense skin layer commonly formed via conventional heating from the outside of the particle is minimized. The FO dewatering performance is affected by the loading of magnetic nanoparticles and magnetic field intensity. Significantly enhanced liquid water recovery (53%) is achieved under magnetic heating, as opposed to only around 7% liquid water recovery obtained via convection heating. Our study shows that the magnetic heating is an attractive alternative stimulus for the extraction of highly desirable liquid water from the draw agent in the polymer hydrogel-driven forward osmosis process.
Drug exposure in register-based research—An expert-opinion based evaluation of methods
Taipale, Heidi; Koponen, Marjaana; Tolppanen, Anna-Maija; Hartikainen, Sirpa; Ahonen, Riitta; Tiihonen, Jari
2017-01-01
Background In register-based pharmacoepidemiological studies, construction of drug exposure periods from drug purchases is a major methodological challenge. Various methods have been applied but their validity is rarely evaluated. Our objective was to conduct an expert-opinion based evaluation of the correctness of drug use periods produced by different methods. Methods Drug use periods were calculated with three fixed methods: time windows, assumption of one Defined Daily Dose (DDD) per day and one tablet per day, and with PRE2DUP that is based on modelling of individual drug purchasing behavior. Expert-opinion based evaluation was conducted with 200 randomly selected purchase histories of warfarin, bisoprolol, simvastatin, risperidone and mirtazapine in the MEDALZ-2005 cohort (28,093 persons with Alzheimer’s disease). Two experts reviewed purchase histories and judged which methods had joined correct purchases and gave correct duration for each of 1000 drug exposure periods. Results The evaluated correctness of drug use periods was 70–94% for PRE2DUP, and depending on grace periods and time window lengths 0–73% for tablet methods, 0–41% for DDD methods and 0–11% for time window methods. The highest rate of evaluated correct solutions for each method class were observed for 1 tablet per day with 180 days grace period (TAB_1_180, 43–73%), and 1 DDD per day with 180 days grace period (1–41%). Time window methods produced at maximum only 11% correct solutions. The best performing fixed method TAB_1_180 reached highest correctness for simvastatin 73% (95% CI 65–81%) whereas 89% (95% CI 84–94%) of PRE2DUP periods were judged as correct. Conclusions This study shows inaccuracy of fixed methods and the urgent need for new data-driven methods. In the expert-opinion based evaluation, the lowest error rates were observed with data-driven method PRE2DUP. PMID:28886089
Parallel Performance of Linear Solvers and Preconditioners
2014-01-01
are produced by a discrete dislocation dynamics ( DDD ) simulation and change with each timestep of the DDD simulation as the dislocation structure...evolves. However, the coefficient—or stiffness matrix— remains constant during the DDD simulation and some expensive matrix factorizations only occur once...discrete dislocation dynamics ( DDD ) simulations. This can be achieved by coupling a DDD simulator for bulk material (Arsenlis et al., 2007) to a
Suto, Jun-ichi; Satou, Kunio
2013-05-04
Mice carrying the A(y) allele at the agouti locus become obese and are heavier than their non-A(y) littermates. However, this does not hold true for the genetic background of the DDD mouse strain. At 22 weeks of age, DDD.Cg-A(y) females are heavier than DDD females, whereas DDD.Cg-A(y) males are lighter than DDD males. This study aimed to determine the possible cause and identify the genes responsible for the lower body weight of DDD.Cg-A(y) males. Growth curves of DDD.Cg-A(y) mice were analyzed and compared with those of B6.Cg-A(y) mice from 5 to 25 weeks. In DDD.Cg-A(y) males, body weight gain stopped between 16 and 17 weeks and the body weight gradually decreased; thus, the lower body weight was a consequence of body weight loss. Quantitative trait locus (QTL) mapping was performed in backcrossed (BC) males of DDD × (B6 × DDD.Cg-A(y)) F(1)-A(y) mice. For the body weight at 25 weeks, significant QTLs were identified on chromosomes 1 and 4. The DDD allele was associated with a lower body weight at both loci. In particular, the QTL on chromosome 4 interacted with the A(y) allele. Furthermore, suggestive QTLs for plasma glucose and high molecular weight adiponectin levels were coincidentally mapped to chromosome 4. The DDD allele was associated with increased glucose and decreased adiponectin levels. When the body weight at 25 weeks and plasma glucose levels were considered as dependent and independent variables, respectively, BC A(y) males were classified into two groups according to statistical analysis using the partition method. Mice of one group had significantly higher glucose and lower adiponectin levels than those of the other group and exhibited body weight loss as observed with DDD-A(y) males. The lower body weight of DDD.Cg-A(y) male mice was a consequence of body weight loss. Diabetes mellitus has been suggested to be a possible contributory factor causing body weight loss. The QTL on distal chromosome 4 contained the major responsible genes. This QTL interacted with the Ay allele, implying the reason why body weight loss occurs in DDD.Cg-Ay but not in DDD males.
Lacroix, Martin; Hontela, Alice
2003-08-01
The mechanisms of action of o,p'-DDD on adrenal steroidogenesis were investigated in vitro in rainbow trout (Oncorhynchus mykiss). Acute exposures to o,p'-DDD inhibited ACTH-stimulated cortisol secretion while cell viability decreased significantly only at the highest concentration tested (200 microM o,p'-DDD). Stimulation of cortisol secretion with a cAMP analogue (dibutyryl-cAMP) was inhibited at a higher concentration than that needed to inhibit ACTH-stimulated cortisol synthesis in cells exposed to o,p'-DDD. Forskolin-stimulated cortisol secretion and cAMP production, and NaF-stimulated cAMP production were inhibited in a concentration-dependent manner by o,p'-DDD. In contrast, basal cortisol secretion was stimulated while basal cAMP production was unaffected by o,p'-DDD. Pregnenolone-stimulated cortisol secretion was enhanced by o,p'-DDD at a physiologically relevant pregnenolone concentration, while o,p'-DDD inhibited cortisol secretion when a pharmacological concentration of pregnenolone was used. Our results suggest that the cAMP generation step is a target in o,p'-DDD-mediated disruption of ACTH-stimulated adrenal steroidogenesis in rainbow trout but that other downstream targets such as steroidogenic enzymes responsible for cortisol synthesis might also be affected.
Tang, Li; Iddya, Arpita; Zhu, Xiaobo; ...
2017-10-13
The desalination of inland brackish groundwater offers the opportunity to provide potable drinking water to residents and industrial cooling water to industries located in arid regions. Geothermal brines are used to generate electricity, but often contain high concentrations of dissolved salt. Here in this paper, we demonstrate how the residual heat left in spent geothermal brines can be used to drive a membrane distillation (MD) process and recover desalinated water. Porous polypropylene membranes were coated with a carbon nanotube (CNT)/poly(vinyl alcohol) layer, resulting in composite membranes having a binary structure that combines the hydrophobic properties critical for MD with themore » hydrophilic and conductive properties of the CNTs. We demonstrate that the addition of the CNT layer increases membrane flux due to enhanced heat transport from the bulk feed to the membrane surface, a result of CNT's high thermal transport properties. Furthermore, we show how hydroxide ion generation, driven by water electrolysis on the electrically conducting membrane surface, can be used to efficiently dissolve silicate scaling that developed during the process of desalinating the geothermal brine, negating the need for chemical cleaning.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Li; Iddya, Arpita; Zhu, Xiaobo
The desalination of inland brackish groundwater offers the opportunity to provide potable drinking water to residents and industrial cooling water to industries located in arid regions. Geothermal brines are used to generate electricity, but often contain high concentrations of dissolved salt. Here in this paper, we demonstrate how the residual heat left in spent geothermal brines can be used to drive a membrane distillation (MD) process and recover desalinated water. Porous polypropylene membranes were coated with a carbon nanotube (CNT)/poly(vinyl alcohol) layer, resulting in composite membranes having a binary structure that combines the hydrophobic properties critical for MD with themore » hydrophilic and conductive properties of the CNTs. We demonstrate that the addition of the CNT layer increases membrane flux due to enhanced heat transport from the bulk feed to the membrane surface, a result of CNT's high thermal transport properties. Furthermore, we show how hydroxide ion generation, driven by water electrolysis on the electrically conducting membrane surface, can be used to efficiently dissolve silicate scaling that developed during the process of desalinating the geothermal brine, negating the need for chemical cleaning.« less
2013-01-01
Background Mice carrying the Ay allele at the agouti locus become obese and are heavier than their non-Ay littermates. However, this does not hold true for the genetic background of the DDD mouse strain. At 22 weeks of age, DDD.Cg-Ay females are heavier than DDD females, whereas DDD.Cg-Ay males are lighter than DDD males. This study aimed to determine the possible cause and identify the genes responsible for the lower body weight of DDD.Cg-Ay males. Results Growth curves of DDD.Cg-Ay mice were analyzed and compared with those of B6.Cg-Ay mice from 5 to 25 weeks. In DDD.Cg-Ay males, body weight gain stopped between 16 and 17 weeks and the body weight gradually decreased; thus, the lower body weight was a consequence of body weight loss. Quantitative trait locus (QTL) mapping was performed in backcrossed (BC) males of DDD × (B6 × DDD.Cg-Ay) F1-Ay mice. For the body weight at 25 weeks, significant QTLs were identified on chromosomes 1 and 4. The DDD allele was associated with a lower body weight at both loci. In particular, the QTL on chromosome 4 interacted with the Ay allele. Furthermore, suggestive QTLs for plasma glucose and high molecular weight adiponectin levels were coincidentally mapped to chromosome 4. The DDD allele was associated with increased glucose and decreased adiponectin levels. When the body weight at 25 weeks and plasma glucose levels were considered as dependent and independent variables, respectively, BC Ay males were classified into two groups according to statistical analysis using the partition method. Mice of one group had significantly higher glucose and lower adiponectin levels than those of the other group and exhibited body weight loss as observed with DDD-Ay males. Conclusions The lower body weight of DDD.Cg-Ay male mice was a consequence of body weight loss. Diabetes mellitus has been suggested to be a possible contributory factor causing body weight loss. The QTL on distal chromosome 4 contained the major responsible genes. This QTL interacted with the Ay allele, implying the reason why body weight loss occurs in DDD.Cg-Ay but not in DDD males. PMID:23641944
Molecularly Defined Nanostructures Based on a Novel AAA-DDD Triple Hydrogen-Bonding Motif.
Papmeyer, Marcus; Vuilleumier, Clément A; Pavan, Giovanni M; Zhurov, Konstantin O; Severin, Kay
2016-01-26
A facile and flexible method for the synthesis of a new AAA-DDD triple hydrogen-bonding motif is described. Polytopic supramolecular building blocks with precisely oriented AAA and DDD groups are thus accessible in few steps. These building blocks were used for the assembly of large macrocycles featuring four AAA-DDD interactions and a macrobicyclic complex with a total of six AAA-DDD interactions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rajagopalan, Parthasarathi; Tracey, Heather; Chen, Zhoumou; Bandyopadhyaya, Acintya; Veeraraghavan, Sridhar; Rajagopalan, Desikan R; Salvemini, Daniela; McPhee, Ian; Viswanadha, Srikant; Rajagopalan, Raghavan
2014-07-15
DDD-028 (4), a novel pentacyclic pyridoindolobenzazepine derivative was evaluated in vitro for receptor binding affinity and in vivo for analgesic activity using rodent models of neuropathic and inflammatory pain. DDD-028 does not bind to opioid, cannabinoid, dopamine, or histamine receptors. DDD-028 is very active even at the low oral dose of 1-5 mg/kg in both neuropathic, (spinal nerve ligation and chronic constriction injury) and inflammatory (Complete Freund's Adjuvant Induced) models of pain. DDD-028 appears to be about 6-fold more potent than pregabalin and indomethacin. Visual observation of all the animals used in these studies indicated that DDD-028 is well tolerated without any sedation. Thus, DDD-028 seems to be a promising candidate for the treatment of neuropathic and inflammatory pain without the possible side effects or abuse potential associated with opioid or cannabinoid activities. Copyright © 2014 Elsevier Ltd. All rights reserved.
Interindividual differences in o,p'-DDD enantiomer kinetics examined in Göttingen minipigs.
Cantillana, T; Lindström, V; Eriksson, L; Brandt, I; Bergman, A
2009-06-01
Five minipigs were given a single oral dose of a racemic mixture of o,p'-DDD (30 mg kg(-1)b.w., EF=0.49). Blood plasma and subcutaneous adipose tissue were collected for analysis, at different time-points over 180 d. At the end of the experiment also liver, kidney and brain tissue were collected. Low concentrations of o,p'-DDD still remained after 180 d in plasma (mean 0.5+/-0.3 ng g(-1)f.w.) and in adipose tissue (mean 40+/-40 ng g(-1)f.w.). The mean concentrations in liver and kidney were 500+/-300 pg g(-1)f.w. and 90+/-50 pg g(-1)f.w., respectively. The enantiomers of o,p'-DDD were isolated by HPLC and the absolute configuration of the enantiomers were determined by X-ray crystallography and polarimetry as R-(+)-o,p'-DDD and S-(-)-o,p'-DDD. The enantiomer fractions (EFs) of o,p'-DDD were determined in plasma, adipose tissue and kidney using GC/ECD equipped with a chiral column. The EFs of o,p'-DDD in the individual minipigs showed large variability, ranging from 0.2 to 0.6 after 24h in plasma and from 0.2 to 0.7 after 90 d in adipose tissue. Hence in two of the minipigs, the S-(-)-o,p'-DDD enantiomer was dominating while the other enantiomer, R-(+)-o,p'-DDD was dominating in three minipigs. We propose that a yet not identified factor related to polymorphism, regulating the metabolism and/or elimination of the enantiomeric o,p'-DDD, is responsible for the differences in enantiomeric retention of the compound in the minipigs.
Palmisano, Pietro; Dell'Era, Gabriele; Russo, Vincenzo; Zaccaria, Maria; Mangia, Rolando; Bortnik, Miriam; De Vecchi, Federica; Giubertoni, Ailia; Patti, Fabiana; Magnani, Andrea; Nigro, Gerardo; Rago, Anna; Occhetta, Eraldo; Accogli, Michele
2018-05-01
Closed-loop stimulation (CLS) seemed promising in preventing the recurrence of vasovagal syncope (VVS) in patients with a cardioinhibitory response to head-up tilt test (HUTT) compared with conventional pacing. We hypothesized that the better results of this algorithm are due to its quick reaction in high-rate pacing delivered in the early phase of vasovagal reflex, which increase the cardiac output and the blood pressure preventing loss of consciousness. This prospective, randomized, single-blind, multicentre study was designed as an intra-patient comparison and enrolled 30 patients (age 62.2 ± 13.5 years, males 60.0%) with cardioinhibitory VVS, carrying a dual-chamber pacemaker incorporating CLS algorithm. Two HUTTs were performed one week apart: one during DDD-CLS 60-130/min pacing and the other during DDD 60/min pacing; patients were randomly and blindly assigned to two groups: in one the first HUTT was performed in DDD-CLS (n = 15), in the other in DDD (n = 15). Occurrence of syncope and haemodynamic variations induced by HUTT was recorded during the tests. Compared with DDD, DDD-CLS significantly reduced the occurrence of syncope induced by HUTT (30.0% vs. 76.7%; P < 0.001). In the patients who had syncope in both DDD and DDD-CLS mode, DDD-CLS significantly delayed the onset of syncope during HUTT (from 20.8 ± 3.9 to 24.8 ± 0.9 min; P = 0.032). The maximum fall in systolic blood pressure recorded during HUTT was significantly lower in DDD-CLS compared with DDD (43.2 ± 30.3 vs. 65.1 ± 25.8 mmHg; P = 0.004). In patients with cardioinhibitory VVS, CLS reduces the occurrence of syncope induced by HUTT, compared with DDD pacing. When CLS is not able to abort the vasovagal reflex, it seems to delay the onset of syncope.
Geochemical processes during managed aquifer recharge with desalinated seawater
NASA Astrophysics Data System (ADS)
Ganot, Y.; Holtzman, R.; Weisbrod, N.; Russak, A.; Katz, Y.; Kurtzman, D.
2017-12-01
In this work we study the geochemical processes along the variably-saturated zone during managed aquifer recharge (MAR) with reverse-osmosis desalinated seawater (DSW) to an infiltration pond at the Menashe site, located above the Israeli coastal aquifer. The DSW is post-treated by calcite dissolution (remineralization) in order to meet the Israeli desalinated water quality criteria. Suction cups and monitoring wells inside the pond were used to monitor water quality during two MAR events on 2015 and 2016. Results show that cation exchange is dominant, driven by the high Ca2+ concentration in the post-treated DSW. Stable isotope analysis shows that the composition of the shallow groundwater is similar to the recharged DSW, but with enrichment of Mg2+, Na+, Ca2+ and HCO3-. A calibrated variably-saturated reactive transport model was used to predict the geochemical evolution during 50 years of MAR with two water quality scenarios: post-treated DSW and soft DSW (without post-treatment). The latter scenario was aimed to test soil-aquifer-treatment as an alternative post-treatment technique. In terms of water quality, the results of the two scenarios were found within the range of the desalinated water criteria. Mg2+ enrichment was stable ( 2.5 mg L-1), higher than the zero concentration found in the Israeli DSW. Calcite content reduction was low (<1%) along the variably-saturated profile, after 50 years of MAR. This suggests that using soil-aquifer-treatment as a remineralization technique for DSW is potentially a sustainable practice, which is limited only by the current hydraulic capacity of the Menashe MAR site.
Zhang, Yang; Pinoy, Luc; Meesschaert, Boudewijn; Van der Bruggen, Bart
2013-09-17
In isolated locations, remote areas, or islands, potable water is precious because of the lack of drinking water treatment facilities and energy supply. Thus, a robust and reliable water treatment system based on natural energy is needed to reuse wastewater or to desalinate groundwater/seawater for provision of drinking water. In this work, a hybrid membrane system combining electrodialysis (ED) and forward osmosis (FO), driven by renewable energy (solar energy), denoted as EDFORD (ED-FO Renewable energy Desalination), is proposed to produce high-quality water (potable) from secondary wastewater effluent or brackish water. In this hybrid membrane system, feedwater (secondary wastewater effluent or synthetic brackish water) was drawn to the FO draw solution while the organic and inorganic substances (ions, compounds, colloids and particles) were rejected. The diluted draw solution was then pumped to the solar energy driven ED. In the ED unit, the diluted draw solution was desalted and high-quality water was produced; the concentrate was recycled to the FO unit and reused as the draw solution. Results show that the water produced from this system contains a low concentration of total organic carbon (TOC), carbonate, and cations derived from the feedwater; had a low conductivity; and meets potable water standards. The water production cost considering the investment for membranes and solar panel is 3.32 to 4.92 EUR m(-3) (for 300 days of production per year) for a small size potable water production system.
Vertebral degenerative disc disease severity evaluation using random forest classification
NASA Astrophysics Data System (ADS)
Munoz, Hector E.; Yao, Jianhua; Burns, Joseph E.; Pham, Yasuyuki; Stieger, James; Summers, Ronald M.
2014-03-01
Degenerative disc disease (DDD) develops in the spine as vertebral discs degenerate and osseous excrescences or outgrowths naturally form to restabilize unstable segments of the spine. These osseous excrescences, or osteophytes, may progress or stabilize in size as the spine reaches a new equilibrium point. We have previously created a CAD system that detects DDD. This paper presents a new system to determine the severity of DDD of individual vertebral levels. This will be useful to monitor the progress of developing DDD, as rapid growth may indicate that there is a greater stabilization problem that should be addressed. The existing DDD CAD system extracts the spine from CT images and segments the cortical shell of individual levels with a dual-surface model. The cortical shell is unwrapped, and is analyzed to detect the hyperdense regions of DDD. Three radiologists scored the severity of DDD of each disc space of 46 CT scans. Radiologists' scores and features generated from CAD detections were used to train a random forest classifier. The classifier then assessed the severity of DDD at each vertebral disc level. The agreement between the computer severity score and the average radiologist's score had a quadratic weighted Cohen's kappa of 0.64.
Allelic Variants of Complement Genes Associated with Dense Deposit Disease
Abrera-Abeleda, Maria Asuncion; Nishimura, Carla; Frees, Kathy; Jones, Michael; Maga, Tara; Katz, Louis M.; Zhang, Yuzhou
2011-01-01
The alternative pathway of the complement cascade plays a role in the pathogenesis of dense deposit disease (DDD). Deficiency of complement factor H and mutations in CFH associate with the development of DDD, but it is unknown whether allelic variants in other complement genes also associate with this disease. We studied patients with DDD and identified previously unreported sequence alterations in several genes in addition to allelic variants and haplotypes common to patients with DDD. We found that the likelihood of developing DDD increases with the presence of two or more risk alleles in CFH and C3. To determine the functional consequence of this finding, we measured the activity of the alternative pathway in serum samples from phenotypically normal controls genotyped for variants in CFH and C3. Alternative pathway activity was higher in the presence of variants associated with DDD. Taken together, these data confirm that DDD is a complex genetic disease and may provide targets for the development of disease-specific therapies. PMID:21784901
An AAA-DDD triply hydrogen-bonded complex easily accessible for supramolecular polymers.
Han, Yi-Fei; Chen, Wen-Qiang; Wang, Hong-Bo; Yuan, Ying-Xue; Wu, Na-Na; Song, Xiang-Zhi; Yang, Lan
2014-12-15
For a complementary hydrogen-bonded complex, when every hydrogen-bond acceptor is on one side and every hydrogen-bond donor is on the other, all secondary interactions are attractive and the complex is highly stable. AAA-DDD (A=acceptor, D=donor) is considered to be the most stable among triply hydrogen-bonded sequences. The easily synthesized and further derivatized AAA-DDD system is very desirable for hydrogen-bonded functional materials. In this case, AAA and DDD, starting from 4-methoxybenzaldehyde, were synthesized with the Hantzsch pyridine synthesis and Friedländer annulation reaction. The association constant determined by fluorescence titration in chloroform at room temperature is 2.09×10(7) M(-1) . The AAA and DDD components are not coplanar, but form a V shape in the solid state. Supramolecular polymers based on AAA-DDD triply hydrogen bonded have also been developed. This work may make AAA-DDD triply hydrogen-bonded sequences easily accessible for stimuli-responsive materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Maritime Operations in Disconnected, Intermittent, and Low-Bandwidth Environments
2013-06-01
of a Dynamic Distributed Database ( DDD ) is a core element enabling the distributed operation of networks and applications, as described in this...document. The DDD is a database containing all the relevant information required to reconfigure the applications, routing, and other network services...optimize application configuration. Figure 5 gives a snapshot of entries in the DDD . In current testing, the DDD is replicated using Domino
Marchandise, Sébastien; Scavée, Christophe; le Polain de Waroux, Jean-Benoit; de Meester, Christophe; Vanoverschelde, Jean-Louis; Debbas, Nadia
2012-04-01
This prospective non-randomized single-centre registry compared clinical outcome, pacing parameters, and long-term survival in patients receiving VDD or DDD pacemaker (PMs) for symptomatic atrioventricular (AV) block. Single-lead VDD (n= 166) and DDD (n= 254) PMs were implanted in 420 successive patients with isolated AV block between January 2001 and December 2009. At the end of the follow-up period [median 25 (1-141) months], there was no difference in the incidence of atrial fibrillation [11.2% in the VDD group; 11.4% in the DDD group (P= 0.95)], myocardial infarction [31.1% in the VDD group; 25.2% in the DDD group (P= 0.20)], or dilated cardiomyopathy [9.9% in the VDD group; 8.9% in the DDD group (P= 0.74)]. At last follow-up, 65.9% of the VDD PMs and 89.3% of the DDD PMs were still programmed in their original mode with good atrial sensing. Due to permanent atrial fibrillation, 7.9% patients out of the VDD group had been switched to VVIR mode and 8.7% patients out of the DDD group to VVIR or DDIR mode. The P-wave amplitude was poor (sensed P-wave <0.5 mV) in 19.1% of the VDD PM and 1.6% of the DDD PM (P< 0.001) and 7.1% of the VDD patients and 0.4% of the DDD patients had been switched to VVIR pacing mode due to P-wave undersensing and AV dissociation (P= 0.003). Symptomatic atrial undersensing requiring upgrading was similar in both groups. The overall survival, adjusted for age, was not significantly different in the VDD and the DDD group (log rank: 0.26). Moreover, Cox survival analysis excluded the pacing mode as a significant predictor of mortality [hazard ratio (HR) = 0.79, confidence interval (CI) (0.46-1.35), P= 0.39]. Comparing VDD and DDD pacing, a significantly larger number of VDD-paced patients developed poor atrial signal detection without clinical impact. However, atrial under sensing did not influence the incidence of atrial fibrillation, myocardial infarction, dilated cardiomyopathy, or mortality.
Faour, Mhamad; Anderson, Joshua T; Haas, Arnold R; Percy, Rick; Woods, Stephen T; Ahn, Uri M; Ahn, Nicholas U
2017-05-01
Retrospective cohort comparative study. To evaluate presurgical and surgical factors that affect return to work (RTW) status after multilevel cervical fusion, and to compare outcomes after multilevel cervical fusion for degenerative disc disease (DDD) versus radiculopathy. Cervical fusion provides more than 90% of symptomatic relief for radiculopathy and myelopathy. However, cervical fusion for DDD without radiculopathy is considered controversial. In addition, multilevel fusion is associated with poorer surgical outcomes with increased levels fused. Data of cervical comorbidities was collected from Ohio Bureau of Workers' Compensation for subjects with work-related injuries. The study population included subjects who underwent multilevel cervical fusion. Patients with radiculopathy or DDD were identified. Multivariate logistic regression was performed to identify factors that affect RTW status. Surgical and functional outcomes were compared between groups. Stable RTW status within 3 years after multilevel cervical fusion was negatively affected by: fusion for DDD, age > 55 years, preoperative opioid use, initial psychological evaluation before surgery, injury-to-surgery > 2 years and instrumentation.DDD group had lower rate of achieving stable RTW status (P= 0.0001) and RTW within 1 year of surgery (P= 0.0003) compared with radiculopathy group. DDD patients were less likely to have a stable RTW status [odds ratio, OR = 0.63 (0.50-0.79)] or RTW within 1 year after surgery [OR = 0.65 (0.52-0.82)].DDD group had higher rate of opioid use (P= 0.001), and higher rate of disability after surgery (P= 0.002). Multiple detriments affect stable RTW status after multilevel cervical fusion including DDD. DDD without radiculopathy was associated with lower RTW rates, less likelihood to return to work, higher disability, and higher opioid use after surgery. Multilevel cervical fusion for DDD may be counterproductive. Future studies should investigate further treatment options of DDD, and optimize patient selection criteria for surgical intervention. 3.
Brummett, Adam E.; Schnicker, Nicholas J.; Crider, Alexander; Todd, Jonathan D.; Dey, Mishtu
2015-01-01
The osmolyte dimethylsulfoniopropionate (DMSP) is a key nutrient in marine environments and its catabolism by bacteria through enzymes known as DMSP lyases generates dimethylsulfide (DMS), a gas of importance in climate regulation, the sulfur cycle, and signaling to higher organisms. Despite the environmental significance of DMSP lyases, little is known about how they function at the mechanistic level. In this study we biochemically characterize DddW, a DMSP lyase from the model roseobacter Ruegeria pomeroyi DSS-3. DddW is a 16.9 kDa enzyme that contains a C-terminal cupin domain and liberates acrylate, a proton, and DMS from the DMSP substrate. Our studies show that as-purified DddW is a metalloenzyme, like the DddQ and DddP DMSP lyases, but contains an iron cofactor. The metal cofactor is essential for DddW DMSP lyase activity since addition of the metal chelator EDTA abolishes its enzymatic activity, as do substitution mutations of key metal-binding residues in the cupin motif (His81, His83, Glu87, and His121). Measurements of metal binding affinity and catalytic activity indicate that Fe(II) is most likely the preferred catalytic metal ion with a nanomolar binding affinity. Stoichiometry studies suggest DddW requires one Fe(II) per monomer. Electronic absorption and electron paramagnetic resonance (EPR) studies show an interaction between NO and Fe(II)-DddW, with NO binding to the EPR silent Fe(II) site giving rise to an EPR active species (g = 4.29, 3.95, 2.00). The change in the rhombicity of the EPR signal is observed in the presence of DMSP, indicating that substrate binds to the iron site without displacing bound NO. This work provides insight into the mechanism of DMSP cleavage catalyzed by DddW. PMID:25993446
Horváth, László; Fekete, Klára; Márton, Sándor; Fekete, István
2017-04-01
Background Although defined daily doses (DDD) for antiepileptic drugs (AED) have been assigned only in combination therapy, based on the literature, most patients take them in monotherapy. Furthermore, discrepancies between DDD and prescribed daily dose (PDD) were observed. Objective First, to determine PDDs of AEDs and to reveal PDD/DDD ratio among seizure free versus not seizure free patients in everyday clinical practice. Second, to test the applicability of 75% cut-off of DDD to achieve seizure freedom. Furthermore, to find out what factors might influence PDD. Setting Outpatient data files at a Hungarian university hospital were studied. Methods A retrospective, 20-year cross-sectional database was compiled from 1282 epileptic outpatients' files. Main outcome measure Seizure freedom and PDD were used as outcome measures. Results The mean DDD% of all prescribed AEDs increased steadily from monotherapy, through bitherapy towards polytherapy (p < 0.0001). Most seizure free patients took AEDs in doses in the range of ≤75% of DDDs in monotherapy and bitherapy. Older AEDs (carbamazepine and valproate) were given in a significantly higher mean dose in bitherapy in the seizure free group. Among the newer types, only levetiracetam and lamotrigine had a significantly higher DDD% in mono-, bi-, and polytherapy. Confirmed by logistic regression analysis, gender, age, type of epilepsy, and number of AEDs had a significant impact on the value of 75% DDD. Conclusion No significant unfavourable impact of the lower ratio of PDD/DDD on the outcome of achieving seizure freedom has been confirmed. As a measure of seizure freedom, 75% of DDD may be used, although individual therapy must be emphasised. Precisely quantified DDD would provide a more accurate calculation of other derived values.
Moro, Eugenio; Caprioglio, Francesco; Berton, Giuseppe; Marcon, Carlo; Riva, Umberto; Corbucci, Giorgio; Delise, Pietro
2005-09-01
The aim of this study was to compare VVI, VVIR and DDD modes in patients with indication to dual-chamber stimulation, depending on left ventricular function. Two groups of patients were implanted with a DDD pacemaker: Group I with ejection fraction > 40% and Group II with ejection fraction < 40%. Patients with a history of atrial arrhythmia or retrograde conduction were excluded. At follow-up (1 month each) quality of life (QoL), patient preference and echo parameters were collected. At hospital discharge all patients were programmed in DDD for 1 month and then randomized to VVI or VVIR mode. At the end of the period in VVI or VVIR mode each patient underwent a control period in DDD and then was programmed in VVIR or VVI mode. Seventeen patients out of 23 preferred DDD mode and 6 did not perceive any subjective difference among DDD, VVI and VVIR modes (4/9 in Group I and 2/14 in Group II, p = 0.0017). QoL was significantly different between the two groups and at each follow-up showed the best values in DDD. The correlation between QoL and Tei index was 0.62 in Group I (p < 0.001) and 0.35 in Group II (p = 0.001). Neither ejection fraction nor fractional shortening showed any significant difference during the three phases of the study. Most patients preferred the DDD mode. The Tei index showed a good correlation with QoL and both QoL and Tei index significantly improved with DDD mode as compared to VVI and VVIR.
Suto, Jun-ichi
2011-07-01
I have developed a congenic mouse strain for the A(y) allele at the agouti locus in an inbred DDD/Sgn strain, DDD.Cg-A(y). DDD.Cg-A(y) females are extremely obese and significantly heavier than B6.Cg-A(y) females. The objectives of this study were to determine the genetic basis of obesity in DDD.Cg-A(y) mice, and to determine whether or not their high body weight was due to the presence of DDD background-specific modifiers. I performed quantitative trait locus (QTL) analyses for body weight and body mass index in two types of F(2) mice [F2 A(y) (F(2) mice carrying the A(y) allele) and F(2) non-A(y) (F2 mice without the A(y) allele)] produced by crossing C57BL/6J females and DDD.Cg-A(y) males. The results of the QTL analysis of F(2) A(y) mice were very similar to those obtained for F(2) non-A(y) mice. It was unlikely that the high body weight of DDD.Cg-A(y) mice was due to the presence of specific modifiers. When both F(2) datasets were merged and analyzed, four significant body weight QTLs were identified on chromosomes 6, 9, and 17 (2 loci) and four significant obesity QTLs were identified on chromosomes 1, 6, 9, and 17. Although the presence of DDD background-specific modifiers was not confirmed, a multifactorial basis of obesity in DDD.Cg-A(y) females was thus revealed.
Takahashi, Masao; Badenco, Nicolas; Monteau, Jacques; Gandjbakhch, Estelle; Extramiana, Fabrice; Urena, Marina; Karam, Nicole; Marijon, Eloi; Algalarrondo, Vincent; Teiger, Emmanuel; Lellouche, Nicolas
2018-03-14
This study aimed to assess the impact of pacemaker mode programming on clinical outcomes in patients with high-degree atrioventricular conduction disturbance (AVCD) after transcatheter aortic valve implantation (TAVI). Although high-degree AVCD after TAVI can receive pacemaker, recovery of the AVCD is often observed. Specific pacemaker algorithms (AAI-DDD mode switch) are available which favor spontaneous atrioventricular conduction. Of 1,621 consecutive multi-center TAVI patients, 269 (16.4%) received pacemaker. We retrospectively included 91 patients with persistent high-degree AVCD at hospital discharge. Pacemaker dependency was defined as absence, inadequate intrinsic ventricular rhythm, or ventricular pacing time > 95% on pacemaker interrogation during follow-up. Comparison of heart failure hospitalization and death between conventional DDD (cDDD) and other modes was examined (AAI-DDD and VVI). During a mean follow-up duration of 13 months, the pacemaker dependency rate was 52.8%. Patients with cDDD mode (N = 36: 40.0%) had significantly more pacemaker dependency. Multivariate analysis showed that cDDD mode was independently associated with pacemaker dependency (odds ratio = 3.63, P = 0.03). Moreover, cDDD patients had a significant higher incidence of heart failure hospitalization (Hospitalization: cDDD vs. others = 45.4% vs. 18.2%, P = 0.03) and had a higher incidence of mortality (Death: cDDD vs. the others = 27.0% vs. 4.4%, P = 0.06). Up to half of patients implanted for high-degree AVCD after TAVI had conduction recovery. Patients with cDDD programming at hospital discharge had more pacemaker dependency and a worse cardiac prognosis. Thus, pacemaker mode should be systematically set to promote spontaneous atrioventricular conduction in patients with pacemaker implantation after TAVI. © 2018 Wiley Periodicals, Inc.
Prevention and management of silica scaling in membrane distillation using pH adjustment
Bush, John A.; Vanneste, Johan; Gustafson, Emily M.; ...
2018-02-27
Membrane scaling by silica is a major challenge in desalination, particularly for inland desalination of brackish groundwater or geothermal resources, which often contain high concentrations of silica and dissolved solids. Adjustment of feed pH may reduce silica scaling risk, which is important for inland facilities that operate at high water recoveries to reduce brine disposal costs. However, water recovery of reverse osmosis is also limited due to increased osmotic pressure with feed water concentration. Membrane distillation (MD) is a thermally driven membrane desalination technique that is not limited by increased osmotic pressure of the feed. In this investigation, pH adjustmentmore » was tested as a strategy to reduce silica scaling risk in the MD process. With feed water pH less than 5 or higher than 10, scaling impacts were negligible at silica concentrations up to 600 mg/L. Scaling rates were highest at neutral pH between 6 and 8. Cleaning strategies were also explored to remove silica scale from membranes. Cleaning using NaOH solutions at pH higher than 11 to induce dissolution of silica scale was effective at temporarily restoring performance; however, some silica remained on membrane surfaces and scaling upon re-exposure to supersaturated silica concentrations occurred faster than with new membranes.« less
Prevention and management of silica scaling in membrane distillation using pH adjustment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bush, John A.; Vanneste, Johan; Gustafson, Emily M.
Membrane scaling by silica is a major challenge in desalination, particularly for inland desalination of brackish groundwater or geothermal resources, which often contain high concentrations of silica and dissolved solids. Adjustment of feed pH may reduce silica scaling risk, which is important for inland facilities that operate at high water recoveries to reduce brine disposal costs. However, water recovery of reverse osmosis is also limited due to increased osmotic pressure with feed water concentration. Membrane distillation (MD) is a thermally driven membrane desalination technique that is not limited by increased osmotic pressure of the feed. In this investigation, pH adjustmentmore » was tested as a strategy to reduce silica scaling risk in the MD process. With feed water pH less than 5 or higher than 10, scaling impacts were negligible at silica concentrations up to 600 mg/L. Scaling rates were highest at neutral pH between 6 and 8. Cleaning strategies were also explored to remove silica scale from membranes. Cleaning using NaOH solutions at pH higher than 11 to induce dissolution of silica scale was effective at temporarily restoring performance; however, some silica remained on membrane surfaces and scaling upon re-exposure to supersaturated silica concentrations occurred faster than with new membranes.« less
Roncero, Octavio; Aguado, Alfredo; Batista-Romero, Fidel A; Bernal-Uruchurtu, Margarita I; Hernández-Lamoneda, Ramón
2015-03-10
A variant of the density difference driven optimized embedding potential (DDD-OEP) method, proposed by Roncero et al. (J. Chem. Phys. 2009, 131, 234110), has been applied to the calculation of excited states of Br2 within small water clusters. It is found that the strong interaction of Br2 with the lone electronic pair of the water molecules makes necessary to optimize specific embedding potentials for ground and excited electronic states, separately and using the corresponding densities. Diagnosis and convergence studies are presented with the aim of providing methods to be applied for the study of chromophores in solution. Also, some preliminary results obtained for the study of electronic states of Br2 in clathrate cages are presented.
Stacked microbial desalination cells to enhance water desalination efficiency.
Chen, Xi; Xia, Xue; Liang, Peng; Cao, Xiaoxin; Sun, Haotian; Huang, Xia
2011-03-15
Microbial desalination cell (MDC) is a new method to obtain clean water from brackish water using electricity generated from organic matters by exoelectrogenic bacteria. Anions and cations, derived from salt solution filled in the desalination chamber between the anode and cathode, move to the anode and cathode chambers under the force of electrical field, respectively. On the basis of the primitive single-desalination-chambered MDC, stacked microbial desalination cells (SMDCs) were developed in order to promote the desalination rate in the present study. The effects of desalination chamber number and external resistance were investigated. Results showed that a remarkable increase in the total desalination rate (TDR) could be obtained by means of increasing the desalination cell number and reducing the external resistance, which caused the charge transfer efficiency increased since the SMDCs enabled more pairs of ions separated while one electron passed through the external circuit. The maximum TDR of 0.0252 g/h was obtained using a two-desalination-chambered SMDC with an external resistance of 10 Ω, which was 1.4 times that of single-desalination-chambered MDC. SMDCs proved to be an effective approach to increase the total water desalination rate if provided a proper desalination chamber number and external resistance.
de Campos, Nelson Leonardo Kerdahi Leite; de Andrade, Rubens Ramos; Fellicio, Marcello Laneza; Martins, Antônio Sergio; Garzesi, André Monti; Garcia, Leonardo Rufino; Takeda, Tassya Bueno
2017-01-01
Introduction The pacemaker implantation VDD is considered simpler, faster, less expensive and causes fewer complications compared to DDD. However, the VDD pacemaker has not been widely used in many centers, perhaps for fear of dysfunction of the sinus node and the reduction of atrial sensitivity by the pacemaker during follow-up after implantation. Objective To compare patients with DDD and VDD pacemakers regarding the evolution of chronic atrial fibrillation (AF) and length of stay outside this postoperative arrhythmia. Methods It was included 158 patients with dual chamber pacemakers, 48 DDD and 110 VDD. Follow-up period: between January 1, 1999 and December 31, 2015. The mean follow-up of patients with DDD was 5.35 years and the VDD, 4.74 years. The percentage of each group (DDD and VDD) which evolved to AF during follow-up was assessed. Also, it was made an actuarial study with the respective curves indicating the time free from AF for each group. Patients were classified according to the diagnosis that led to pacemaker implantation and the degree of heart failure. Results The percentage of patients who developed AF was higher in DDD group (10.42%) than in VDD group (6.36%), but without statistical significance. Patients with DDD and VDD remained free of AF for similar period. Conclusion Considering the results, the VDD pacemaker continues to be a good option to the DDD for routine use in cases properly indicated. PMID:29211212
Campos, Nelson Leonardo Kerdahi Leite de; Andrade, Rubens Ramos de; Fellicio, Marcello Laneza; Martins, Antônio Sergio; Garzesi, André Monti; Garcia, Leonardo Rufino; Takeda, Tassya Bueno
2017-01-01
The pacemaker implantation VDD is considered simpler, faster, less expensive and causes fewer complications compared to DDD. However, the VDD pacemaker has not been widely used in many centers, perhaps for fear of dysfunction of the sinus node and the reduction of atrial sensitivity by the pacemaker during follow-up after implantation. To compare patients with DDD and VDD pacemakers regarding the evolution of chronic atrial fibrillation (AF) and length of stay outside this postoperative arrhythmia. It was included 158 patients with dual chamber pacemakers, 48 DDD and 110 VDD. Follow-up period: between January 1, 1999 and December 31, 2015. The mean follow-up of patients with DDD was 5.35 years and the VDD, 4.74 years. The percentage of each group (DDD and VDD) which evolved to AF during follow-up was assessed. Also, it was made an actuarial study with the respective curves indicating the time free from AF for each group. Patients were classified according to the diagnosis that led to pacemaker implantation and the degree of heart failure. The percentage of patients who developed AF was higher in DDD group (10.42%) than in VDD group (6.36%), but without statistical significance. Patients with DDD and VDD remained free of AF for similar period. Considering the results, the VDD pacemaker continues to be a good option to the DDD for routine use in cases properly indicated.
Kapural, Leonardo; Mekhail, Nagy; Korunda, Zdenko; Basali, Ayman
2004-08-01
Symptomatic degenerative disc disease (DDD) may lead to significant deterioration of quality of life and increased disability. Intradiscal thermal annuloplasty (IDTA) is a minimally invasive treatment for painful DDD. We hypothesized that there may be an improvement in pain scores and the pain disability index (PDI) of patients who have multilevel DDD after IDTA. Patients 24-66 yr old, male and female with multilevel DDD (MDDD) and matched 1 or 2 level DDD (1,2-DDD) patients were enrolled in the study. Visual analog pain scale (VAS) score and PDI were observed for 12 mo. The 1,2-DDD patient group had a 2.5 +/- 2.4 VAS score at 12 mo after annuloplasty compared to 7.7 +/- 2 before the procedure. The MDDD VAS score was 4.9 +/- 2.9 at 12 mo compared to 7.4 +/- 1.8 before the procedure. Similar improvements in PDI were found. The pain relief and PDI were significantly better in patients with 1,2-DDD than in the MDDD group (P = 0.0037 and P = 0.041, respectively). We concluded that IDTA is an effective treatment of discogenic pain and that the number of discs affected by degeneration is an important determinant of the procedure outcome.
Song, Zhenqiang; Li, Jing; Li, Chunshen
2016-01-01
In the study, type 2 diabetic rat model was established using streptozotocin (STZ) combined with a high-fat diet, and the rats were divided into control and diabetic groups. Diabetic groups were further divided into nonintervening, simvastatin, Didang Decoction (DDD) early-phase intervening, DDD mid-phase intervening, and DDD late-phase intervening groups. The expression level of MLCK was detected using Western Blot analysis, and the levels of cyclic adenosine monophosphate (cAMP), protein kinase C (PKC), and protein kinase A (PKA) were examined using Real Time PCR. Under the electron microscope, the cells in the early-DDD-intervention group and the simvastatin group were significantly more continuous and compact than those in the diabetic group. Compared with the control group, the expression of cAMP-1 and PKA was decreased in all diabetic groups, whereas the expression of MLCK and PKC was increased in early- and mid-phase DDD-intervening groups (P < 0.05); compared with the late-phase DDD-intervening group, the expression of cAMP-1 and PKA was higher, but the level of MLCK and PKC was lower in early-phase DDD-intervening group (P < 0.05). In conclusion, the early use of DDD improves the permeability of vascular endothelial cells by regulating the MLCK signaling pathway. PMID:27703477
Zeng, Yin-Xin; Qiao, Zong-Yun; Yu, Yong; Li, Hui-Rong; Luo, Wei
2016-09-08
Dimethylsulfoniopropionate (DMSP), which is the major source of organic sulfur in the world's oceans, plays a significant role in the global sulfur cycle. This compound is rapidly degraded by marine bacteria either by cleavage to dimethylsulfide (DMS) or demethylation to 3-methylmercaptopropionate (MMPA). The diversity of genes encoding bacterial demethylation (dmdA) and DMS production (dddL and dddP) were measured in Arctic Kongsfjorden. Both dmdA and dddL genes were detected in all stations along a transect from the outer to the inner fjord, while dddP gene was only found in the outer and middle parts of the fjord. The dmdA gene was completely confined to the Roseobacter clade, while the dddL gene was confined to the genus Sulfitobacter. Although the dddP gene pool was also dominated by homologs from the Roseobacter clade, there were a few dddP genes showing close relationships to both Alphaproteobacter and Gammaproteobacter. The results of this study suggest that the Roseobacter clade may play an important role in DMSP catabolism via both demethylation and cleavage pathways in surface waters of Kongsfjorden during summer.
NASA Astrophysics Data System (ADS)
Zeng, Yin-Xin; Qiao, Zong-Yun; Yu, Yong; Li, Hui-Rong; Luo, Wei
2016-09-01
Dimethylsulfoniopropionate (DMSP), which is the major source of organic sulfur in the world’s oceans, plays a significant role in the global sulfur cycle. This compound is rapidly degraded by marine bacteria either by cleavage to dimethylsulfide (DMS) or demethylation to 3-methylmercaptopropionate (MMPA). The diversity of genes encoding bacterial demethylation (dmdA) and DMS production (dddL and dddP) were measured in Arctic Kongsfjorden. Both dmdA and dddL genes were detected in all stations along a transect from the outer to the inner fjord, while dddP gene was only found in the outer and middle parts of the fjord. The dmdA gene was completely confined to the Roseobacter clade, while the dddL gene was confined to the genus Sulfitobacter. Although the dddP gene pool was also dominated by homologs from the Roseobacter clade, there were a few dddP genes showing close relationships to both Alphaproteobacter and Gammaproteobacter. The results of this study suggest that the Roseobacter clade may play an important role in DMSP catabolism via both demethylation and cleavage pathways in surface waters of Kongsfjorden during summer.
Collado, Roberto; Losa, Juan Emilio; Álvaro, Elena Alba; Toro, Piedad; Moreno, Leonor; Pérez, Montserrat
2015-12-01
Monitoring antimicrobial consumption in hospitals is a necessary measure. The indicators commonly employed do not clearly reflect the antibiotic selection pressure. The objective of this study is to evaluate two different methods that analyze antimicrobial consumption based on DDD, per stay and per discharge, before and after the implementation an antimicrobial stewardship program. Comparative pre-post study of antimicrobial consumption with the implementation of an antimicrobial stewardship program using DDD per 100 bed-days and DDD per 100 discharges as indicators. Hospital bed days remained stable and discharges increased slightly along the period of study Antibiotic consumption in DDD per 100 bed-days decreased by 2.5% versus 3.8% when expressed as DDD per 100 discharges. Antifungal consumption decreased by more than 50%. When average hospital stay decreases, reductions in the consumption of antimicrobials with an antimicrobial stewardship program system occur at the expense of reducing the number of patients receiving treatment, while increases occur due to longer durations of treatment.
Structure/property relationships in polymer membranes for water purification and energy applications
NASA Astrophysics Data System (ADS)
Geise, Geoffrey
Providing sustainable supplies of purified water and energy is a critical global challenge for the future, and polymer membranes will play a key role in addressing these clear and pressing global needs for water and energy. Polymer membrane-based processes dominate the desalination market, and polymer membranes are crucial components in several rapidly developing power generation and storage applications that rely on membranes to control rates of water and/or ion transport. Much remains unknown about the influence of polymer structure on intrinsic water and ion transport properties, and these relationships must be developed to design next generation polymer membrane materials. For desalination applications, polymers with simultaneously high water permeability and low salt permeability are desirable in order to prepare selective membranes that can efficiently desalinate water, and a tradeoff relationship between water/salt selectivity and water permeability suggests that attempts to prepare such materials should rely on approaches that do more than simply vary polymer free volume. One strategy is to functionalize hydrocarbon polymers with fixed charge groups that can ionize upon exposure to water, and the presence of charged groups in the polymer influences transport properties. Additionally, in many emerging energy applications, charged polymers are exposed to ions that are very different from sodium and chloride. Specific ion effects have been observed in charged polymers, and these effects must be understood to prepare charged polymers that will enable emerging energy technologies. This presentation discusses research aimed at further understanding fundamental structure/property relationships that govern water and ion transport in charged polymer films considered for desalination and electric potential field-driven applications that can help address global needs for clean water and energy.
2015-01-01
polycrystalline magnesium (Mg) was studied using three-dimensional discrete dislocation dynamics ( DDD ). A systematic interaction model between dislocations...and f1012g tension twin boundaries (TBs) was proposed and introduced into the DDD framework. In addition, a nominal grain boundary (GB) model based...dynamics ( DDD ). A systematic interaction model between dislocations and f10 12g tension twin boundaries (TBs) was proposed and introduced into the DDD
[Antibiotic consumption in active French soldiers in 2007].
Desjeux, G; Balaire, C; Thevenin-Garron, V
2009-07-01
Analysis of antibiotic consumption among active duty soldiers can contribute to the development of actions designed to avoid unsuitable population exposure to antibiotics. This survey was conducted among active soldiers to establish a reference year for refund data on antibiotic prescriptions by gender and age. Another aim was to use the refund data among soldiers to learn more about the pattern of antibiotic prescriptions by general practitioners. A standardized dose of antibiotics prescribed by general practitioners in 2007 for the active duty military population in France was determined from an analysis of the Health fund database. The defined daily dose (DDD), as well as the DDD/1000 contributors to the national healthcare insurance fund, was then used as a technical unit of measurement. For the military population under study, the DDD was 15.76 per 1000 people. It was higher for women than for men (25.1 DDD for 1000 women vs 14.2 DDD for 1000 men). The DDD increased regularly with age: from 11.4 DDD for 1000 people aged less than 20 to 19.3 DDD for 1000 people aged over 50. Military physicians accounted for only 4% of the prescribing practitioners. Careful analysis of antibiotic consumption together with closer cooperation between the military healthcare center and the National healthcare fund will enable the development of a prevention policy concerning health and better control of infectious risk.
The role of transient receptor potential channels in joint diseases.
Krupkova, O; Zvick, J; Wuertz-Kozak, K
2017-10-10
Transient receptor potential channels (TRP channels) are cation selective transmembrane receptors with diverse structures, activation mechanisms and physiological functions. TRP channels act as cellular sensors for a plethora of stimuli, including temperature, membrane voltage, oxidative stress, mechanical stimuli, pH and endogenous, as well as, exogenous ligands, thereby illustrating their versatility. As such, TRP channels regulate various functions in both excitable and non-excitable cells, mainly by mediating Ca2+ homeostasis. Dysregulation of TRP channels is implicated in many pathologies, including cardiovascular diseases, muscular dystrophies and hyperalgesia. However, the importance of TRP channel expression, physiological function and regulation in chondrocytes and intervertebral disc (IVD) cells is largely unexplored. Osteoarthritis (OA) and degenerative disc disease (DDD) are chronic age-related disorders that significantly affect the quality of life by causing pain, activity limitation and disability. Furthermore, currently available therapies cannot effectively slow-down or stop progression of these diseases. Both OA and DDD are characterised by reduced tissue cellularity, enhanced inflammatory responses and molecular, structural and mechanical alterations of the extracellular matrix, hence affecting load distribution and reducing joint flexibility. However, knowledge on how chondrocytes and IVD cells sense their microenvironment and respond to its changes is still limited. In this review, we introduced six families of mammalian TRP channels, their mechanisms of activation, as well as, activation-driven cellular consequences. We summarised the current knowledge on TRP channel expression and activity in chondrocytes and IVD cells, as well as, the significance of TRP channels as therapeutic targets for the treatment of OA and DDD.
Pol, M; Ruegg, P L
2007-01-01
The objective of this study was to develop a method to quantify antimicrobial drug usage and treatment practices on conventional and organic dairy farms that had been recruited to represent a broad spectrum of potential exposure to antimicrobial drugs. Data on disease prevalence and treatment practices of organic (n = 20) and conventional (n = 20) farms were obtained during a farm visit using a survey instrument. A standardized estimate of antimicrobial drug usage was developed using a defined daily dose (DDD) of selected compounds. Density of antimicrobial drug usage was expressed as the number of DDD per adult cow per year. Differences in prevalence and management of selected diseases between conventional and organic farms were identified. The overall estimated prevalence of selected diseases was greater for conventional farms compared with organic farms. Organic farmers reported use of a variety of nonantimicrobial compounds for treatment and prevention of disease. Conventional farmers reported that penicillin was the compound most commonly used for dry cow therapy and cephapirin was most commonly used for treatment of clinical mastitis. On conventional farms, the estimated overall exposure to antimicrobial drugs was 5.43 DDD per cow per year composed of 3.58 and 1.85 DDD of intramammary and parenteral antimicrobial drugs, respectively. Of total intramammary antimicrobial drug usage, treatment of clinical mastitis contributed 2.02 DDD compared with 1.56 DDD attributed to the use of dry cow therapy. Of total parenteral treatments, the distribution of exposure was 0.52 (dry cow therapy), 1.43 (clinical mastitis treatment), 0.39 (treatment of foot disease), 0.14 (treatment of respiratory disease), and 0.32 (treatment of metritis) DDD. For treatments of foot infections (0.33 DDD), respiratory infections (0.07 DDD), and metritis (0.19 DDD), the mean density of ceftiofur usage was significantly greater compared with other compounds.
Isolation of Brazilian marine fungi capable of growing on DDD pesticide.
Ortega, Scarlet Nere; Nitschke, Marcia; Mouad, Ana Maria; Landgraf, Maria Diva; Rezende, Maria Olímpia Oliveira; Seleghim, Mirna Helena Regali; Sette, Lara Durães; Porto, André Luiz Meleiro
2011-02-01
The fungi Aspergillus sydowii Ce15, Aspergillus sydowii Ce19, Aspergillus sydowii Gc12, Bionectria sp. Ce5, Penicillium miczynskii Gc5, Penicillium raistrickii Ce16 and Trichoderma sp. Gc1, isolated from marine sponges Geodia corticostylifera and Chelonaplysylla erecta, were evaluated for their ability to grow in the presence of DDD pesticide. Increasing concentrations of DDD pesticide, i.e., 5.0 mg (1.56 × 10⁻¹² mmol), 10.0 mg (3.12 × 10⁻²) mmol) and 15.0 mg (4.68 × 10⁻² mmol) in solid and liquid culture media were tested. The fungi Trichoderma sp. Gc1 and Penicillium miczynskii Gc5 were able to grow in the presence of up to 15.0 mg of DDD, suggesting their potential for biodegradation. A 100% degradation of DDD was attained in liquid culture medium when Trichoderma sp. Gc1 was previously cultivated for 5 days and supplemented with 5.0 mg of DDD in the presence of hydrogen peroxide. However, the quantitative analysis showed that DDD was accumulated on mycelium and biodegradation level reached a maximum value of 58% after 14 days.
Microfluidic desalination techniques and their potential applications.
Roelofs, S H; van den Berg, A; Odijk, M
2015-09-07
In this review we discuss recent developments in the emerging research field of miniaturized desalination. Traditionally desalination is performed to convert salt water into potable water and research is focused on improving performance of large-scale desalination plants. Microfluidic desalination offers several new opportunities in comparison to macro-scale desalination, such as providing a platform to increase fundamental knowledge of ion transport on the nano- and microfluidic scale and new microfluidic sample preparation methods. This approach has also lead to the development of new desalination techniques, based on micro/nanofluidic ion-transport phenomena, which are potential candidates for up-scaling to (portable) drinking water devices. This review assesses microfluidic desalination techniques on their applications and is meant to contribute to further implementation of microfluidic desalination techniques in the lab-on-chip community.
Re-use of explanted DDD pacemakers as VDD- clinical utility and cost effectiveness.
Namboodiri, K K N; Sharma, Y P; Bali, H K; Grover, A
2004-01-01
Re-use of DDD pulse generators explanted from patients died of unrelated causes is associated with an additional cost of two transvenous leads if implanted as DDD itself, and high rate of infection according to some studies. We studied the clinical and economical aspects of reutilization of explanted DDD pacemakers programmed to VDD mode. Out of 28 patients who received VDD pacemaker during the period, October 2000- September 2001 in the Department of Cardiology, PGIMER, Chandigarh, 5 poor patients were implanted with explanted DDD pulse generators programmed to VDD mode. Each implantation was planned and carried out according to a standard protocol. The age ranged from 45 to 75 (mean-61) years. The indications for pacing were complete heart block (4) and second degree AV block (1). The clinical profile, costs and complications, if any were noted and followed up at regular intervals. The results were compared with patients who received new DDD pulse generators during this period. The additional cost for the atrial lead was not required in these patients. None of these patients had any local site infection. Compared to the two-lead system, the single lead system provided more rapid implantation and minimized complications associated with placement of an atrial lead. The explanted DDD pacemaker can be safely reused as VDD mode with same efficacy in selected patient population. This is associated with lower cost and complications compared to reimplantation as DDD itself.
40 CFR 129.101 - DDT, DDD and DDE.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 22 2011-07-01 2011-07-01 false DDT, DDD and DDE. 129.101 Section 129.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS TOXIC POLLUTANT EFFLUENT STANDARDS Toxic Pollutant Effluent Standards and Prohibitions § 129.101 DDT, DDD and DDE...
Lumbar Facet Joint Motion in Patients with Degenerative Disc Disease at Affected and Adjacent Levels
Li, Weishi; Wang, Shaobai; Xia, Qun; Passias, Peter; Kozanek, Michal; Wood, Kirkham; Li, Guoan
2013-01-01
Study Design Controlled laboratory study. Objective To evaluate the effect of lumbar degenerative disc diseases (DDDs) on motion of the facet joints during functional weight-bearing activities. Summary of Background Data It has been suggested that DDD adversely affects the biomechanical behavior of the facet joints. Altered facet joint motion, in turn, has been thought to associate with various types of lumbar spine pathology including facet degeneration, neural impingement, and DDD progression. However, to date, no data have been reported on the motion patterns of the lumbar facet joint in DDD patients. Methods Ten symptomatic patients of DDD at L4–S1 were studied. Each participant underwent magnetic resonance images to obtain three-dimensional models of the lumbar vertebrae (L2–S1) and dual fluoroscopic imaging during three characteristic trunk motions: left-right torsion, left-right bending, and flexion-extension. In vivo positions of the vertebrae were reproduced by matching the three-dimensional models of the vertebrae to their outlines on the fluoroscopic images. The kinematics of the facet joints and the ranges of motion (ROMs) were compared with a group of healthy participants reported in a previous study. Results In facet joints of the DDD patients, there was no predominant axis of rotation and no difference in ROMs was found between the different levels. During left-right torsion, the ROMs were similar between the DDD patients and the healthy participants. During left-right bending, the rotation around mediolateral axis at L4–L5, in the DDD patients, was significantly larger than that of the healthy participants. During flexion-extension, the rotations around anterioposterior axis at L4–L5 and around craniocaudal axis at the adjacent level (L3–L4), in the DDD patients, were also significantly larger, whereas the rotation around mediolateral axis at both L2–L3 and L3–L4 levels in the DDD patients were significantly smaller than those of the healthy participants. Conclusion DDD alters the ROMs of the facet joints. The rotations can increase significantly not only at the DDD levels but also at their adjacent levels when compared to those of the healthy participants. The increase in rotations did not occur around the primary rotation axis of the torso motion but around the coupled axes. This hypermobility in coupled rotations might imply a biomechanical mechanism related to DDD. PMID:21270686
Reductive dechlorination of DDT to DDD by yeast
Kallman, Burton J.; Andrews, Austin K.
1963-01-01
Labeled DDD [ 1,1-dichlor-o-2,2-bis(p-chlorophenyl)-ethane] was formed from C14-labeled DDT in the presence of yeast. The formation of DDD from DDE [1,1-dichloro-2,2-bis (p-chlorophenyl)-ethylene] was not observed, indicating that a reductive dechlorination of DDT occurs.
Brandt, Jaden; Alkabanni, Wajd; Alessi-Severini, Silvia; Leong, Christine
2018-04-04
Drug utilization research on benzodiazepines remains important for measuring trends in consumption within and across borders over time for the sake of monitoring prescribing patterns and identifying potential population safety concerns. The defined daily dose (DDD) system by the World Health Organization (WHO) remains the internationally accepted standard for measuring drug consumption; however, beyond consumption, DDD-based results are difficult to interpret when individual agents are compared with one another or are pooled into a total class-based estimate. The diazepam milligram equivalent (DME) system provides approximate conversions between benzodiazepines and Z-drugs (i.e. zopiclone, zolpidem, zaleplon) based on their pharmacologic potency. Despite this, conversion of total dispensed benzodiazepine quantities into DME values retains diazepam milligrams as the total unit of measurement, which is also impractical for population-level interpretation. In this paper, we propose the use of an integrated DME-DDD metric to obviate the limitations encountered when the component metrics are used in isolation. Through a case example, we demonstrate significant change in results between the DDD and DME-DDD method. Unlike the DDD method, the integrated DME-DDD metric offers estimation of population pharmacologic exposure, and enables superior interpretation of drug utilization results, especially for drug class summary reporting.
Hehemann, Jan-Hendrik; Law, Adrienne; Redecke, Lars; Boraston, Alisdair B.
2014-01-01
Marine microbes degrade dimethylsulfoniopropionate (DMSP), which is produced in large quantities by marine algae and plants, with DMSP lyases into acrylate and the gas dimethyl sulfide (DMS). Approximately 10% of the DMS vents from the sea into the atmosphere and this emission returns sulfur, which arrives in the sea through rivers and runoff, back to terrestrial systems via clouds and rain. Despite their key role in this sulfur cycle DMSP lyases are poorly understood at the molecular level. Here we report the first X-ray crystal structure of the putative DMSP lyase RdDddP from Roseobacter denitrificans, which belongs to the abundant DddP family. This structure, determined to 2.15 Å resolution, shows that RdDddP is a homodimeric metalloprotein with a binuclear center of two metal ions located 2.7 Å apart in the active site of the enzyme. Consistent with the crystallographic data, inductively coupled plasma mass spectrometry (ICP-MS) and total reflection X-ray fluorescence (TRXF) revealed the bound metal species to be primarily iron. A 3D structure guided analysis of environmental DddP lyase sequences elucidated the critical residues for metal binding are invariant, suggesting all proteins in the DddP family are metalloenzymes. PMID:25054772
ZVI (Fe0) desalination: catalytic partial desalination of saline aquifers
NASA Astrophysics Data System (ADS)
Antia, David D. J.
2018-05-01
Globally, salinization affects between 100 and 1000 billion m3 a-1 of irrigation water. The discovery that zero valent iron (ZVI, Fe0) could be used to desalinate water (using intra-particle catalysis in a diffusion environment) raises the possibility that large-scale in situ desalination of aquifers could be undertaken to support agriculture. ZVI desalination removes NaCl by an adsorption-desorption process in a multi-stage cross-coupled catalytic process. This study considers the potential application of two ZVI desalination catalyst types for in situ aquifer desalination. The feasibility of using ZVI catalysts when placed in situ within an aquifer to produce 100 m3 d-1 of partially desalinated water from a saline aquifer is considered.
Polić-Vižintin, Marina; Tripković, Ingrid; Štimac, Danijela; Šostar, Zvonimir; Orban, Mirjana
2016-12-01
The aim was to determine distribution and trends in the outpatient utilization of antipsychotics to evaluate the rationality of antipsychotic drug prescribing during the ten year period. The epidemiological method of descriptive and analytical observation was used. Data on drug utilization from Zagreb Municipal Pharmacy were used to calculate the number of defined daily doses (DDD) and DDD per 1000 inhabitants per day (DDD/TID) using the World Health Organization Anatomical-Therapeutic-Chemical methodology. The ratio of typical versus atypical antipsychotics served as an indicator on assessing the rationality of the utilization. Data on the use of anticholinergics in the treatment of neuroleptic side effects were also included. Outpatient utilization of antipsychotics showed a declining pattern from 14.17 in 2001 to 8.42 DDD/TID in 2010. The utilization of atypical antipsychotics increased by 60% (from 3.68 to 5.89 DDD/TID), while the utilization of typical antipsychotics decreased by 76% (from 10.49 to 2.53 DDD/TID). The drugs showing the largest increase were olanzapine (from 1.21 to 2.78 DDD/TID) and quetiapine (from 0 to 0.68 DDD/TID). The typical/atypical antipsychotic ratio changed from 1:0.4 in 2001 to 1:2.3 in 2010. A 2.3-fold decrease was recorded in the utilization of anticholinergics (from 2.05 to 0.91 DDD/TID). Total consumption of neuroleptics significantly decreased. A decrease was also recorded in the utilization of anticholinergics. Study results pointed to two favorable features, i.e. low use of typical antipsychotics and the ratio of typical and atypical antipsychotics. Implementation of the new clinical guidelines for nervous system disorders and updating of the list of reimbursable drugs with the addition of new ones contributed to the observed improvement in the prescribing patterns during the study period. Using the WHO ATC/DDD methodology and rationality indicators in the assessment of trends in the outpatient utilization of psychopharmaceuticals over a ten-year period proved efficient in the evaluation of prescribing rationality.
Ehlers, Ina; Betson, Tatiana R.; Vetter, Walter; Schleucher, Jürgen
2014-01-01
The persistent organic pollutant DDT (1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane) is still indispensable in the fight against malaria, although DDT and related compounds pose toxicological hazards. Technical DDT contains the dichloro congener DDD (1-chloro-4-[2,2-dichloro-1-(4-chlorophenyl)ethyl]benzene) as by-product, but DDD is also formed by reductive degradation of DDT in the environment. To differentiate between DDD formation pathways, we applied deuterium NMR spectroscopy to measure intramolecular deuterium distributions (2H isotopomer abundances) of DDT and DDD. DDD formed in the technical DDT synthesis was strongly deuterium-enriched at one intramolecular position, which we traced back to 2H/1H fractionation of a chlorination step in the technical synthesis. In contrast, DDD formed by reductive degradation was strongly depleted at the same position, which was due to the incorporation of 2H-depleted hydride equivalents during reductive degradation. Thus, intramolecular isotope distributions give mechanistic information on reaction pathways, and explain a puzzling difference in the whole-molecule 2H/1H ratio between DDT and DDD. In general, our results highlight that intramolecular isotope distributions are essential to interpret whole-molecule isotope ratios. Intramolecular isotope information allows distinguishing pathways of DDD formation, which is important to identify polluters or to assess DDT turnover in the environment. Because intramolecular isotope data directly reflect isotope fractionation of individual chemical reactions, they are broadly applicable to elucidate transformation pathways of small bioactive molecules in chemistry, physiology and environmental science. PMID:25350380
Bernheim, Alain; Ammann, Peter; Sticherling, Christian; Burger, Peter; Schaer, Beat; Brunner-La Rocca, Hans Peter; Eckstein, Jens; Kiencke, Stephanie; Kaiser, Christoph; Linka, Andre; Buser, Peter; Pfisterer, Matthias; Osswald, Stefan
2005-05-03
We aimed to compare the hemodynamic effects of right-atrial-paced (DDD) and right-atrial-sensed (VDD) biventricular paced rhythm on cardiac resynchronization therapy (CRT). Cardiac resynchronization therapy improves hemodynamics in patients with severe heart failure and left ventricular (LV) dyssynchrony. However, the impact of active right atrial pacing on resynchronization therapy is unknown. Seventeen CRT patients were studied 10 months (range: 1 to 46 months) after implantation. At baseline, the programmed atrioventricular delay was optimized by timing LV contraction properly at the end of atrial contraction. In both modes the acute hemodynamic effects were assessed by multiple Doppler echocardiographic parameters. Compared to DDD pacing, VDD pacing resulted in much better improvement of intraventricular dyssynchrony assessed by the septal-to-posterior wall motion delay (VDD 106 +/- 83 ms vs. DDD 145 +/- 95 ms; p = 0.001), whereas the interventricular mechanical delay (difference between onset of pulmonary and aortic outflow) did not differ (VDD 20 +/- 21 ms vs. DDD 18 +/- 17 ms; p = NS). Furthermore, VDD pacing significantly prolonged the rate-corrected LV filling period (VDD 458 +/- 123 ms vs. DDD 371 +/- 94 ms; p = 0.0001) and improved the myocardial performance index (VDD 0.60 +/- 0.18 vs. DDD 0.71 +/- 0.23; p < 0.01). Our findings suggest that avoidance of right atrial pacing results in a higher degree of LV resynchronization, in a substantial prolongation of the LV filling period, and in an improved myocardial performance. Thus, the VDD mode seems to be superior to the DDD mode in CRT patients.
Membrane Desalination: Where Are We, and What Can We Learn from Fundamentals?
Imbrogno, Joseph; Belfort, Georges
2016-06-07
Although thermal desalination technology provides potable water in arid regions (e.g., Israel and the Gulf), its relatively high cost has limited application to less arid regions with large populations (e.g., California). Energy-intensive distillation is currently being replaced with less costly pressure- and electrically driven membrane-based processes. Reverse osmosis (RO) is a preferred membrane technology owing to process and pre- and posttreatment improvements that have significantly reduced energy requirements and cost. Further technical advances will require a deeper understanding of the fundamental science underlying RO. This includes determining the mechanism for water selectivity; elucidating the behavior of molecular water near polar and apolar surfaces, as well as the advantages and limitations of hydrophobic versus hydrophilic pores; learning the rules of selective water transport from nature; and designing synthetic analogs for selective water transport. Molecular dynamics simulations supporting experiments will play an important role in advancing these efforts. Finally, future improvements in RO are limited by inherent technical mass transfer limitations.
[Quality prescription indicators in defined daily doses. Are we getting it right?].
Caamaño-Isorna, Francisco; Alvarez-Gil, Rosa
2008-01-01
Quality prescription indicators of use potential level (UPLI) are defined as the proportion that represents consumption of specific active principles as opposed to the total consumption of the anatomical therapeutic category. The UPLIs that have gradually been defined in Spain employ the defined daily dose (DDD) as the unit of measurement. Although the DDD is not necessarily the same as the therapeutic equivalent dose (TED), some authors have argued that the DDD is a standard unit of measurement and is therefore valid. However, this view may not be correct, given that the relationships between the TED and the DDD differ, depending on the drug, even within the same anatomical therapeutic category. Therefore, the use of DDDs in UPLI s may lead to prescription of a medicine being encouraged or discouraged depending on its TED/DDD ratio.
Impact of socio-economic growth on desalination in the US.
Ziolkowska, Jadwiga R; Reyes, Reuben
2016-02-01
In 2013, around 1336 desalination plants in the United States (US) provided purified water mainly to municipalities, the industry sector and for power generation. In 2013 alone, ∼200 million m(3) of water were desalinated; the amount that could satisfy annual municipal water consumption of more than 1.5 million people in the US. Desalination has proven to be a reliable water supply source in many countries around the world, with the total global desalination capacity of ∼60 million m(3)/day in 2013. Desalination has been used to mitigate water scarcity and lessen the pressure on water resources. Currently, data and information about desalination are still limited, while extensive socio-economic analyses are missing. This paper presents an econometric model to fill this gap. It evaluates the impact of selected socio-economic variables on desalination development in the US in the time span 1970-2013. The results show that the GDP and population growth have significantly impacted the desalination sector over the analyzed time period. The insights into the economics of desalination provided with this paper can be used to further evaluate cost-effectiveness of desalination both in the US and in other countries around the world. Copyright © 2015 Elsevier Ltd. All rights reserved.
A field assessment of long-term laboratory sediment toxicity tests with the amphipod Hyalella azteca
Ingersoll, Christopher G.; Wang, Ning; Hayward, Jeannie M. R.; Jones, John R.; Jones, Susan B.; Ireland, D. Scott
2005-01-01
Response of the amphipod Hyalella azteca exposed to contaminated sediments for 10 to 42 d in laboratory toxicity tests was compared to responses observed in controlled three-month invertebrate colonization exposures conducted in a pond. Sediments evaluated included a sediment spiked with dichlorodiphenyldichloroethane (DDD) or dilutions of a field sediment collected from the Grand Calumet River (GCR) in Indiana (USA) (contaminated with organic compounds and metals). Consistent effects were observed at the highest exposure concentrations (400 ??g DDD/goc [DDD concentrations normalized to grams of organic carbon (goc) in sedimentl or 4% GCR sediment) on survival, length, and reproduction of amphipods in the laboratory and on abundance of invertebrates colonizing sediments in the field. Effect concentrations for DDD observed for 10-d length and 42-d reproduction of amphipods (e.g., chronic value [ChV] of 66 ??g DDD/goc and 25% inhibition concentration [IC25] of 68 ??g DDD/goc for reproduction) were similar to the lowest effect concentrations for DDD measured on invertebrates colonizing sediment the field. Effect concentrations for GCR sediment on 28-d survival and length and 42-d reproduction and length of amphipods (i.e., ChVs of 0.20-0.66% GCR sediment) provided more conservative effect concentrations compared to 10-d survival or length of amphipods in the laboratory or the response of invertebrates colonizing sediment in the field (e.g., ChVs of 2.2% GCR sediment). Results of this study indicate that use of chronic laboratory toxicity tests with H. azteca and benthic colonization studies should be used to provide conservative estimates of impacts on benthic communities exposed to contaminated sediments. Bioaccumulation of DDD by oligochaetes colonizing the DDD-spiked sediment was similar to results of laboratory sediment tests previously conducted with the oligochaete Lumbriculus variegates, confirming that laboratory exposures can be used to estimate bioaccumulation by oligochaetes exposed in the field. ?? 2005 SETAC.
Microbial desalination cells packed with ion-exchange resin to enhance water desalination rate.
Morel, Alexandre; Zuo, Kuichang; Xia, Xue; Wei, Jincheng; Luo, Xi; Liang, Peng; Huang, Xia
2012-08-01
A novel configuration of microbial desalination cell (MDC) packed with ion-exchange resin (R-MDC) was proposed to enhance water desalination rate. Compared with classic MDC (C-MDC), an obvious increase in desalination rate (DR) was obtained by R-MDC. With relatively low concentration (10-2 g/L NaCl) influents, the DR values of R-MDC were about 1.5-8 times those of C-MDC. Ion-exchange resins packed in the desalination chamber worked as conductor and thus counteracted the increase in ohmic resistance during treatment of low concentration salt water. Ohmic resistances of R-MDC stabilized at 3.0-4.7 Ω. By contrast, the ohmic resistances of C-MDC ranged from 5.5 to 12.7 Ω, which were 55-272% higher than those of R-MDC. Remarkable improvement in desalination rate helped improve charge efficiency for desalination in R-MDC. The results first showed the potential of R-MDC in the desalination of water with low salinity. Copyright © 2012 Elsevier Ltd. All rights reserved.
A prototype for communitising technology: Development of a smart salt water desalination device
NASA Astrophysics Data System (ADS)
Fakharuddin, F. M.; Fatchurrohman, N.; Puteh, S.; Puteri, H. M. A. R.
2018-04-01
Desalination is defined as the process that removes minerals from saline water or commonly known as salt water. Seawater desalination is becoming an attractive source of drinking water in coastal states as the costs for desalination declines. The purpose of this study is to develop a small scale desalination device and able to do an analysis of the process flow by using suitable sensors. Thermal technology was used to aid the desalination process. A graphical user interface (GUI) for the interface was made to enable the real time data analysis of the desalination device. ArduinoTM microcontroller was used in this device in order to develop an automatic device.
Developmentally Disabled Persons in Family Settings: Report No. 2.
ERIC Educational Resources Information Center
Cox, Wendy M.; Wilson, Wendell L.
The second in a series of three reports, this document presents findings of clients of Washington's Division of Developmental Disabilities (DDD), ages 22-29, who were living with their families at age 18 but now live elsewhere (group B). Findings are based on telephone interviews with families of 224 DDD clients and analysis of DDD records. The…
Developmentally Disabled Persons in Family Settings: Report No. 3.
ERIC Educational Resources Information Center
Cox, Wendy M.; Wilson, Wendell L.
The final part of a three part study of developmentally disabled persons in Washington State, this document focuses on clients of the Division of Developmental Disabilities (DDD), ages 19 through 26, who appeared to be eligible for DDD services but were not enrolled with the DDD (group C). Telephone interviews were conducted with parents of 55…
Preliminary design studies on a nuclear seawater desalination system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wibisono, A. F.; Jung, Y. H.; Choi, J.
2012-07-01
Seawater desalination is one of the most promising technologies to provide fresh water especially in the arid region. The most used technology in seawater desalination are thermal desalination (MSF and MED) and membrane desalination (RO). Some developments have been done in the area of coupling the desalination plant with a nuclear reactor to reduce the cost of energy required in thermal desalination. The coupling a nuclear reactor to a desalination plant can be done either by using the co-generation or by using dedicated heat from a nuclear system. The comparison of the co-generation nuclear reactor with desalination plant, dedicated nuclearmore » heat system, and fossil fueled system will be discussed in this paper using economical assessment with IAEA DEEP software. A newly designed nuclear system dedicated for the seawater desalination will also be suggested by KAIST (Korea Advanced Inst. of Science and Technology) research team and described in detail within this paper. The suggested reactor system is using gas cooled type reactor and in this preliminary study the scope of design will be limited to comparison of two cases in different operating temperature ranges. (authors)« less
Albertsen, Andi Eie; Nielsen, Jens Cosedis; Poulsen, Steen Hvitfeldt; Mortensen, Peter Thomas; Pedersen, Anders Kirstein; Hansen, Peter Steen; Jensen, Henrik Kjaerulf; Egeblad, Henrik
2008-02-01
Increasing evidence from randomized trials and experimental studies indicates that right ventricular (RV) pacing may induce congestive heart failure. We studied regional left ventricular (LV) dyssynchrony and global LV function in 50 consecutive patients with sick sinus syndrome (SSS) randomized to either atrial pacing [AAI(R)] or dual chamber RV-pacing [DDD(R)]. Fifty consecutive patients were randomized to AAI(R) or DDD(R)-pacing. Tissue-Doppler imaging was used to quantify LV dyssynchrony in terms of number of segments with delayed longitudinal contraction (DLC). Left ventricular ejection fraction (LVEF) was measured using three-dimensional echocardiography. Dyssynchrony was more pronounced in the DDD(R)-group than in the AAI(R)-group at the 12 months follow-up (P < 0.05). This reflected a significant increase of dyssynchrony in the DDD(R)-group from baseline to the 12 months follow-up (1.3 +/- 1 to 2.1 +/- 1 segments displaying DLC per patient), P < 0.05. No change was observed in the AAI(R)-group (1.6 +/- 2 to 1.3 +/- 2 segments displaying DLC per patient, NS). No difference in LVEF, NYHA or NT-proBNP was observed between AAI(R)- and DDD(R)-mode after 12 months of pacing although LVEF decreased significantly in the DDD(R)-group from baseline (63.1 +/- 8%) to the 12 months follow-up (59.3 +/- 8%, P < 0.05), while LVEF remained unchanged in the AAI(R)-group (61.5 +/- 11% at baseline vs. 62.3 +/- 7% after 12 months, NS. In patients with SSS, DDD(R)-pacing but not AAI(R)-pacing induces significant LV desynchronization and reduction of LVEF.
Liao, Jo-Nan; Chao, Tze-Fan; Tuan, Ta-Chuan; Kong, Chi-Woon; Chen, Shih-Ann
2016-08-01
A permanent pacemaker (PPM) with dual chamber pacing (DDD) offers atrioventricular synchronization for patients with atrioventricular block (AVB). Single lead atrial synchronous ventricular pacing mode (VDD) is an alternative, but there are concerns about its efficacy and risk of atrial undersensing. Whether VDD can be a good alternative in patients with AVB remains unknown. The aim of the present study was to compare the long-term risk of mortality of VDD with DDD pacing.A total of 207 patients undergoing PPM implantations for AVB with VDD mode were enrolled from 2000 to 2013. Another 828 age- and sex-matched patients undergoing DDD implantations during the same period of time were selected as the control group in a 1 to 4 ratio. The study endpoint was mortality.A total of 1035 patients (64.3% male) were followed up for 46.5 ± 43.2 months. The mean ages were 75.0 years for VDD, and 74.9 years for DDD. The Kaplan-Meier survival analysis showed no significant difference in long-term survival between the VDD and DDD groups (log-rank P = 0.313). After adjustment for baseline characteristics, the VDD and DDD groups had a similar long-term prognosis with an adjusted hazard ratio of 0.875 (P = 0.445). Further analyses for the risk of cardiovascular and noncardiovascular deaths also showed no significant differences between the 2 groups.The long-term prognosis of VDD mode is comparable to that of DDD mode. Single lead VDD can be considered as an alternative choice in patients with AVB without sinus nodal dysfunction.
Teno, Luiz Antonio Castilho; Costa, Roberto; Martinelli Filho, Martino; Castilho, Fabian Cecchi Teno; Ruiz, Ivan
2007-02-01
Evaluate the clinical and functional behavior of the ventricular and atrioventricular stimulation modes in the elective replacement of pulse generator in patients with chagasic cardiopathy and atrioventricular block. Twenty-seven patients under ventricular and atrioventricular stimulation were comparatively evaluated at the beginning of the study, and alternately in ventricular and atrioventricular modes in two 90-day phases, with regard to: the clinical behavior evaluated according to quality of life and functional class, and the functional behavior evaluated by transthoracic echocardiography and the six-minute walk test. The statistical analysis was performed with patients at baseline, and under ventricular and atrioventricular modes, using the chi-square test and the repeated measures analysis of variance, and taking into consideration a 0.05 level of significance. The mean quality-of-life scores were: functional capacity (VVI 71.3+/-18.2 , DDD 69.3+/-20.4); overall health status (VVI 68.1+/-21.8, DDD 69.4+/-19.4) and vitality (VVI 64.8+/-24.6 , DDD 67.6+/-25.5); on echocardiography: LVEF (VVI 52.5+/-12.8 , DDD 51.8+/-14.9), LVDD (VVI 53.0+/-7.7 , DDD 42.4+/-7.8), LA (VVI 38.6+/-5.4 DDD 38.5+/-5.1), and in the six-minute walk test: distance walked (VVI 463.4+/-84.7, DDD 462.6+/-63.4). There were four cases of complications, three of them associated with the change in stimulation mode. This study showed no differences between the two stimulation modes in the clinical behavior assessed by quality of life and functional class, and in the functional behavior, evaluated according to the ecochardiographic findings and the six-minute walk test.
Formal development of a clock synchronization circuit
NASA Technical Reports Server (NTRS)
Miner, Paul S.
1995-01-01
This talk presents the latest stage in formal development of a fault-tolerant clock synchronization circuit. The development spans from a high level specification of the required properties to a circuit realizing the core function of the system. An abstract description of an algorithm has been verified to satisfy the high-level properties using the mechanical verification system EHDM. This abstract description is recast as a behavioral specification input to the Digital Design Derivation system (DDD) developed at Indiana University. DDD provides a formal design algebra for developing correct digital hardware. Using DDD as the principle design environment, a core circuit implementing the clock synchronization algorithm was developed. The design process consisted of standard DDD transformations augmented with an ad hoc refinement justified using the Prototype Verification System (PVS) from SRI International. Subsequent to the above development, Wilfredo Torres-Pomales discovered an area-efficient realization of the same function. Establishing correctness of this optimization requires reasoning in arithmetic, so a general verification is outside the domain of both DDD transformations and model-checking techniques. DDD represents digital hardware by systems of mutually recursive stream equations. A collection of PVS theories was developed to aid in reasoning about DDD-style streams. These theories include a combinator for defining streams that satisfy stream equations, and a means for proving stream equivalence by exhibiting a stream bisimulation. DDD was used to isolate the sub-system involved in Torres-Pomales' optimization. The equivalence between the original design and the optimized verified was verified in PVS by exhibiting a suitable bisimulation. The verification depended upon type constraints on the input streams and made extensive use of the PVS type system. The dependent types in PVS provided a useful mechanism for defining an appropriate bisimulation.
Degradation of chlorinated pesticide DDT by litter-decomposing basidiomycetes.
Suhara, Hiroto; Adachi, Ai; Kamei, Ichiro; Maekawa, Nitaro
2011-11-01
One hundred and two basidiomycete strains (93 species in 41 genera) that prefer a soil environment were examined for screening of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) biodegradation. Three strains within two litter-decomposing genera, Agrocybe and Marasmiellus, were selected for their DDT biotransformation capacity. Eight metabolites; 1,1-dichloro-2,2-bis(4-chlorophenyl)ethane (DDD), two monohydroxy-DDTs, monohydroxy-DDD, 2,2-dichloro-1,1-bis(4-chlorophenyl)ethanol, putative 2,2-bis(4-chlorophenyl)ethanol and two unidentified compounds were detected from the culture with Marasmiellus sp. TUFC10101. A P450 inhibitor, 1-ABT, inhibited the formation of monohydroxy-DDTs and monohydroxy-DDD from DDT and DDD, respectively. These results indicated that oxidative pathway which was catalyzed by P450 monooxygenase exist beside reductive dechlorination of DDT. Monohydroxylation of the aromatic rings of DDT (and DDD) by fungal P450 is reported here for the first time.
Dechlorination of DDT, DDD and DDE in soil (slurry) phase using magnesium/palladium system.
Gautam, Sumit Kumar; Suresh, Sumathi
2006-12-01
Mg0/Pd4+ was able to dechlorinate >99% of extractable DDT (initial concentration of 10 mg DDT kg(-1) of soil) and >90% of extractable DDT (initial concentration of 50 mg DDT kg(-1) of soil) in soil slurry. Mg0/Pd4+ was also found to be effective in dechlorinating of 50 mg kg(-1) DDD and DDE, in soil aged for varying time periods. GC-MS analyses revealed the formation of 1,1-diphenylethane as an end product from DDT, DDE and DDD. To the best of our knowledge this is the first report describing the application Mg0/Pd4+ system for remediation of DDT, DDD and DDE contaminated soil. We conclude that reductive dechlorination reaction catalyzed by Mg0/Pd4+ may be a promising system to remediate soil contaminated with DDT and its dechlorinated products such as DDD and DDE.
Metallic single-walled carbon nanotube for ionized radiation detection
NASA Astrophysics Data System (ADS)
Banadaki, Yaser M.; Srivastava, Ashok; Sharifi, Safura
2016-04-01
In this paper, we have explored the feasibility of a metallic single-walled carbon nanotube (SWCNT) as a radiation detector. The effect of SWCNTs' exposure to different ion irradiations is considered with the displacement damage dose (DDD) methodology. The analytical model of the irradiated resistance of metallic SWCNT has been developed and verified by the experimental data for increasing DDD from 1012 MeV/g to 1017 MeV/g. It has been found that the resistance variation of SWCNT by increasing DDD can be significant depending on the length and diameter of SWCNT, such that the DDD as low as 1012 (MeV/g) can be detected using the SWCNT with 1cm length and 5nm diameter. Increasing the length and diameter of SWCNT can result in both the higher radiation sensitivity of resistance and the extension of detection range to lower DDD.
2015-02-04
dislocation dynamics models ( DDD ), continuum representations). Coupling of these models is difficult. Coupling of atomistics and DDD models has been...explored to some extent, but the coupling between DDD and continuum models of the evolution of large populations of dislocations is essentially unexplored
;background-color:#ddd;border-bottom:3px solid #aaa;padding:8px;margin-top:12px;height:auto;overflow:hidden }#how_use_car{clear:both;background-color:#ddd;border-bottom:3px solid #aaa;padding:8px;margin-top:20px ;height:auto;overflow:hidden}#results{clear:both;background-color:#ddd;border-bottom:3px solid #aaa;padding:8px
Does football cause an increase in degenerative disease of the lumbar spine?
Gerbino, Peter G; d'Hemecourt, Pierre A
2002-02-01
Degenerative disease of the lumbar spine is exceedingly common. Whether any specific activity increases the likelihood of developing degenerative disc disease (DDD) or facet degeneration (FD) has enormous implications. Within the field of occupational medicine there are specific activities, occupations, and morphologic characteristics that have been related to low back pain. Several specific risk factors have been conclusively linked to low back pain, and in particular DDD and FD. Within the sport of American football, there has long been the feeling that many athletes have or will develop low back pain, DDD, and FD. Proving that certain risk factors present in football will predictably lead to an increase in LBP, DDD, and FD is more difficult. At this time, it can be said that football players, in general, increase their risk of developing low back pain, DDD, and FD as their years of involvement with their sport increase. Because specific spine injuries like fracture, disc herniation, and spondylolysis are more frequent in football players, the resulting DDD and FD are greater than that of the general population. The weightlifting and violent hyperextension that are part of American football are independent risk factors for degenerative spine disease.
A Precise Drunk Driving Detection Using Weighted Kernel Based on Electrocardiogram.
Wu, Chung Kit; Tsang, Kim Fung; Chi, Hao Ran; Hung, Faan Hei
2016-05-09
Globally, 1.2 million people die and 50 million people are injured annually due to traffic accidents. These traffic accidents cost $500 billion dollars. Drunk drivers are found in 40% of the traffic crashes. Existing drunk driving detection (DDD) systems do not provide accurate detection and pre-warning concurrently. Electrocardiogram (ECG) is a proven biosignal that accurately and simultaneously reflects human's biological status. In this letter, a classifier for DDD based on ECG is investigated in an attempt to reduce traffic accidents caused by drunk drivers. At this point, it appears that there is no known research or literature found on ECG classifier for DDD. To identify drunk syndromes, the ECG signals from drunk drivers are studied and analyzed. As such, a precise ECG-based DDD (ECG-DDD) using a weighted kernel is developed. From the measurements, 10 key features of ECG signals were identified. To incorporate the important features, the feature vectors are weighted in the customization of kernel functions. Four commonly adopted kernel functions are studied. Results reveal that weighted feature vectors improve the accuracy by 11% compared to the computation using the prime kernel. Evaluation shows that ECG-DDD improved the accuracy by 8% to 18% compared to prevailing methods.
Use of and barriers to access to opioid analgesics: a worldwide, regional, and national study.
Berterame, Stefano; Erthal, Juliana; Thomas, Johny; Fellner, Sarah; Vosse, Benjamin; Clare, Philip; Hao, Wei; Johnson, David T; Mohar, Alejandro; Pavadia, Jagjit; Samak, Ahmed Kamal Eldin; Sipp, Werner; Sumyai, Viroj; Suryawati, Sri; Toufiq, Jallal; Yans, Raymond; Mattick, Richard P
2016-04-16
Despite opioid analgesics being essential for pain relief, use has been inadequate in many countries. We aim to provide up-to-date worldwide, regional, and national data for changes in opioid analgesic use, and to analyse the relation of impediments to use of these medicines. We calculated defined daily doses for statistical purposes (S-DDD) per million inhabitants per day of opioid analgesics worldwide and for regions and countries from 2001 to 2013, and we used generalised estimating equation analysis to assess longitudinal change in use. We compared use data against the prevalence of some health disorders needing opioid use. We surveyed 214 countries or territories about impediments to availability of these medicines, and used regression analyses to establish the strength of associations between impediments and use. The S-DDD of opioid analgesic use more than doubled worldwide between 2001-03 and 2011-13, from 1417 S-DDD (95% CI -732 to 3565; totalling about 3.01 billion defined daily doses per annum) to 3027 S-DDD (-1162 to 7215; totalling about 7.35 billion defined daily doses per annum). Substantial increases occurred in North America (16,046 S-DDD [95% CI 4032-28,061] to 31,453 S-DDD [8121-54,785]), western and central Europe (3079 S-DDD [1274-4883] to 9320 S-DDD [3969-14,672]), and Oceania (2275 S-DDD [763-3787] to 9136 S-DDD [2508-15,765]). Countries in other regions have shown no substantial increase in use. Impediments to use included an absence of training and awareness in medical professionals, fear of dependence, restricted financial resources, issues in sourcing, cultural attitudes, fear of diversion, international trade controls, and onerous regulation. Higher number of impediments reported was significantly associated with lower use (unadjusted incidence rate ratio 0.39 [95% CI 0.29-0.52]; p<0.0001), but not when adjusted for gross domestic product and human development index (0.91 [0.73-1.14]; p=0.4271). Use of opioid analgesics has increased, but remains low in Africa, Asia, Central America, the Caribbean, South America, and eastern and southeastern Europe. Identified impediments to use urgently need to be addressed by governments and international agencies. International Narcotics Control Board, UN. Copyright © 2016 Elsevier Ltd. All rights reserved.
Maxwell, M; Howie, J G; Pryde, C J
1998-01-01
BACKGROUND: Prescribing matters (particularly budget setting and research into prescribing variation between doctors) have been handicapped by the absence of credible measures of the volume of drugs prescribed. AIM: To use the defined daily dose (DDD) method to study variation in the volume and cost of drugs prescribed across the seven main British National Formulary (BNF) chapters with a view to comparing different methods of setting prescribing budgets. METHOD: Study of one year of prescribing statistics from all 129 general practices in Lothian, covering 808,059 patients: analyses of prescribing statistics for 1995 to define volume and cost/volume of prescribing for one year for 10 groups of practices defined by the age and deprivation status of their patients, for seven BNF chapters; creation of prescribing budgets for 1996 for each individual practice based on the use of target volume and cost statistics; comparison of 1996 DDD-based budgets with those set using the conventional historical approach; and comparison of DDD-based budgets with budgets set using a capitation-based formula derived from local cost/patient information. RESULTS: The volume of drugs prescribed was affected by the age structure of the practices in BNF Chapters 1 (gastrointestinal), 2 (cardiovascular), and 6 (endocrine), and by deprivation structure for BNF Chapters 3 (respiratory) and 4 (central nervous system). Costs per DDD in the major BNF chapters were largely independent of age, deprivation structure, or fundholding status. Capitation and DDD-based budgets were similar to each other, but both differed substantially from historic budgets. One practice in seven gained or lost more than 100,000 Pounds per annum using DDD or capitation budgets compared with historic budgets. The DDD-based budget, but not the capitation-based budget, can be used to set volume-specific prescribing targets. CONCLUSIONS: DDD-based and capitation-based prescribing budgets can be set using a simple explanatory model and generalizable methods. In this study, both differed substantially from historic budgets. DDD budgets could be created to accommodate new prescribing strategies and raised or lowered to reflect local intentions to alter overall prescribing volume or cost targets. We recommend that future work on setting budgets and researching prescribing variations should be based on DDD statistics. PMID:10024703
Gray, Andrew Lofts; Santa-Ana-Tellez, Yared; J Wirtz, Veronika
2016-12-01
To assess the impact of mandatory offer of generic substitution, introduced in South Africa in May 2003, on private sector sales of generic and originator medicines for chronic diseases. Private sector sales data (June 2001 to May 2005) were obtained from IMS Health for proton pump inhibitors (PPIs; ATC code A02BC), HMG-CoA reductase inhibitors (statins; C10AA), dihydropyridine calcium antagonists (C08CA), angiotensin-converting enzyme inhibitors (ACE-I; C09AA) and selective serotonin reuptake inhibitors (SSRIs; N06AB). Monthly sales were expressed as defined daily doses per 1000 insured population per month (DDD/TIM). Interrupted time-series models were used to estimate the changes in slope and level of medicines use after the policy change. ARIMA models were used to correct for autocorrelation and stationarity. Only the SSRIs saw a significant rise in level of generic utilisation (0.2 DDD/TIM; P < 0.001) and a fall in originator usage (-0.1 DDD/TIM; P < 0.001) after the policy change. Utilisation of generic PPIs fell (level 0.06 DDD/TIM, P = 0.048; slope 0.01 DDD/TIM, P = 0.043), but utilisation of originator products also grew (level 0.05 DDD/TIM, P < 0.001; slope 0.003, P = 0.001). Generic calcium antagonists and ACE-I showed an increase in slope (0.01 DDD/TIM, P = 0.016; 0.02 DDD/TIM, P < 0.001), while the originators showed a decrease in slope (-0.003 DDD/TIM, P = 0.046; -0.01 DDD/TIM, P < 0.001). There were insufficient data on generic statin use before the policy change to allow for analysis. The mandatory offer of generic substitution appeared to have had a quantifiable effect on utilisation patterns in the 2 years after May 2003. Managed care interventions that were already in place before the intervention may have blunted the extent of the changes seen in this period. Generic policies are an important enabling provision for cost-containment efforts. However, decisions taken outside of official policy may anticipate or differ from that policy, with important consequences. © 2016 John Wiley & Sons Ltd.
Long-term follow-up of DDD pacing mode.
Ulman, Mateusz; Dębski, Maciej; Ząbek, Andrzej; Haberka, Kazimierz; Lelakowski, Jacek; Małecka, Barbara
2014-01-01
The aim of this study was to determine the long-term survival of DDD pacing and identify the main reasons for its loss. The study group consisted of 496 patients in whom a DDD pacing system was implanted between October 1984 and March 2002 and who were followed up until July 2010. The follow-up period was 152.1 ± 35.5 months. The patients' mean age at the time of implantation was 59.5 ± 12.5 years, and 53.5% were male; 58% had sick sinus syndrome (SSS), 26% had atrioventricular block (AVB), 15% had both of these indications simultaneously, and 1% had other indications. The incidence of lead malfunction, progression to chronic atrial fibrillation (AF), and the rate of infective complications was analysed. During the follow-up, 369 patients remained in DDD mode stimulation. DDD mode survival rate at one, five, ten and 15 years was, respectively, 96%, 86%, 77% and 72%. The most common reason for reprogramming out of DDD mode was the development of permanent AF in 65 (13.1%) patients. The occurrence of chronic AF was associated with a prior history of paroxysmal AF (p = 0.0001), SSS (p = 0.0215), and older age at time of implantation (p = 0.0068) compared to patients who remained in sinus rhythm. Lead malfunction caused loss of DDD mode pacing in 56 (11.3%) patients. Atrial leads were damaged in 37 patients, ventricular in 12 patients, and both leads in seven patients. The subclavian vein puncture was correlated with the mechanical damage of the atrial lead (p = 0.02935) compared to cephalic vein access. At the moment of complication, the patients with a dysfunctional lead were significantly younger than those who progressed to chronic AF(p = 0.0019). Infective complications which caused temporary loss of DDD pacing were observed in six patients: five had pocket infection and one had lead-dependent infective endocarditis. 1. Effective DDD pacing from the originally implanted system was noted in a high percentage (72%) of patients in long-term observation (15 years). 2. Progression to permanent AF is the most common reason for loss of DDD pacing;a history of paroxysmal AF and old age are the risk factors. 3. Subclavian vein puncture is associated with a higher rate of atrial lead damage.
A charge-driven molecular water pump.
Gong, Xiaojing; Li, Jingyuan; Lu, Hangjun; Wan, Rongzheng; Li, Jichen; Hu, Jun; Fang, Haiping
2007-11-01
Understanding and controlling the transport of water across nanochannels is of great importance for designing novel molecular devices, machines and sensors and has wide applications, including the desalination of seawater. Nanopumps driven by electric or magnetic fields can transport ions and magnetic quanta, but water is charge-neutral and has no magnetic moment. On the basis of molecular dynamics simulations, we propose a design for a molecular water pump. The design uses a combination of charges positioned adjacent to a nanopore and is inspired by the structure of channels in the cellular membrane that conduct water in and out of the cell (aquaporins). The remarkable pumping ability is attributed to the charge dipole-induced ordering of water confined in the nanochannels, where water can be easily driven by external fields in a concerted fashion. These findings may provide possibilities for developing water transport devices that function without osmotic pressure or a hydrostatic pressure gradient.
Nielsen, Suzanne; Gisev, Natasa; Bruno, Raimondo; Hall, Wayne; Cohen, Milton; Larance, Briony; Campbell, Gabrielle; Shanahan, Marian; Blyth, Fiona; Lintzeris, Nicholas; Pearson, Sallie; Mattick, Richard; Degenhardt, Louisa
2017-05-01
To assess how well the defined daily dose (DDD) metric reflects opioid utilisation among chronic non-cancer pain patients. Descriptive, cross-sectional study, utilising a 7-day medication diary. Community-based treatment settings, Australia. A sample of 1101 people prescribed opioids for chronic non-cancer pain. Opioid dose data was collected via a self-completed 7-day medication diary capturing names, strengths and doses of each medication taken in the past week. Median daily dose was calculated for each opioid. Comparisons were made to the World Health Organization's (WHO) DDD metric. WHO DDDs ranged from 0.6 to 7.1 times the median opioid doses used by the sample. For transdermal fentanyl and oral hydromorphone, the median dose was comparable with the DDD. The DDD for methadone was 0.6 times lower than the median doses used by this sample of chronic pain patients. In contrast, the DDD for oxycodone and transdermal buprenorphine, the most commonly used strong opioids for chronic pain in Australia, was two to seven times higher than actual doses used. For many opioids, there are key differences between the actual doses used in clinical practice and the WHO's DDDs. The interpretation of opioid utilisation studies using population-level DDDs may be limited, and a recalibration of the DDD for many opioids or the reporting of opioid utilisation in oral morphine equivalent doses is recommended. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
2015-08-01
21 Figure 4. Data-based proportion of DDD , DDE and DDT in total DDx in fish and sediment by... DDD dichlorodiphenyldichloroethane DDE dichlorodiphenyldichloroethylene DDT dichlorodiphenyltrichloroethane DoD Department of Defense ERM... DDD ) at the other site. The spatially-explicit model consistently predicts tissue concentrations that closely match both the average and the
Life Cycle Assessment for desalination: a review on methodology feasibility and reliability.
Zhou, Jin; Chang, Victor W-C; Fane, Anthony G
2014-09-15
As concerns of natural resource depletion and environmental degradation caused by desalination increase, research studies of the environmental sustainability of desalination are growing in importance. Life Cycle Assessment (LCA) is an ISO standardized method and is widely applied to evaluate the environmental performance of desalination. This study reviews more than 30 desalination LCA studies since 2000s and identifies two major issues in need of improvement. The first is feasibility, covering three elements that support the implementation of the LCA to desalination, including accounting methods, supporting databases, and life cycle impact assessment approaches. The second is reliability, addressing three essential aspects that drive uncertainty in results, including the incompleteness of the system boundary, the unrepresentativeness of the database, and the omission of uncertainty analysis. This work can serve as a preliminary LCA reference for desalination specialists, but will also strengthen LCA as an effective method to evaluate the environment footprint of desalination alternatives. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kanna, Rishi M; Shetty, Ajoy Prasad; Rajasekaran, S
2014-02-01
Existing research on lumbar disc degeneration has remained inconclusive regarding its etiology, pathogenesis, symptomatology, prevention, and management. Degenerative disc disease (DDD) and disc prolapse (DP) are common diseases affecting the lumbar discs. Although they manifest clinically differently, existing studies on disc degeneration have included patients with both these features, leading to wide variations in observations. The possible relationship or disaffect between DDD and DP is not fully evaluated. To analyze the patterns of lumbar disc degeneration in patients with chronic back pain and DDD and those with acute DP. Prospective, magnetic resonance imaging-based radiological study. Two groups of patients (aged 20-50 years) were prospectively studied. Group 1 included patients requiring a single level microdiscectomy for acute DP. Group 2 included patients with chronic low back pain and DDD. Discs were assessed by magnetic resonance imaging through Pfirmann grading, Schmorl nodes, Modic changes, and the total end-plate damage score for all the five lumbar discs. Group 1 (DP) had 91 patients and group 2 (DDD) had 133 patients. DP and DDD patients differed significantly in the number, extent, and severity of degeneration. DDD patients had a significantly higher number of degenerated discs than DP patients (p<.000). The incidence of multilevel and pan-lumbar degeneration was also significantly higher in DDD group. The pattern of degeneration also differed in both the groups. DDD patients had predominant upper lumbar involvement, whereas DP patients had mainly lower lumbar degeneration. Modic changes were more common in DP patients, especially at the prolapsed level. Modic changes were present in 37% of prolapsed levels compared with 9.9% of normal discs (p<.00). The total end-plate damage score had a positive correlation with disc degeneration in both the groups. Further the mean total end-plate damage score at prolapsed level was also significantly higher. The results suggest that patients with disc prolapse, and those with back pain with DDD are clinically and radiologically different groups of patients with varying patterns, severity, and extent of disc degeneration. This is the first study in literature to compare and identify significant differences in these two commonly encountered patient groups. In patients with single-level DP, the majority of the other discs are nondegenerate, the lower lumbar spine is predominantly involved and the end-plate damage is higher. Patients with back pain and DDD have larger number of degenerate discs, early multilevel degeneration, and predominant upper lumbar degeneration. The knowledge that these two groups of patients are different clinically and radiologically is critical for our improved understanding of the disease and for future studies on disc degeneration and disc prolapse. Copyright © 2014 Elsevier Inc. All rights reserved.
Osmotically-assisted desalination method and system
Achilli, Andrea; Childress, Amy E.; Cath, Tzahi Y.
2014-08-12
Systems and methods for osmotically assisted desalination include using a pressurized concentrate from a pressure desalination process to pressurize a feed to the desalination process. The depressurized concentrate thereby produced is used as a draw solution for a pressure-retarded osmosis process. The pressure-retarded osmosis unit produces a pressurized draw solution stream that is used to pressurize another feed to the desalination process. In one example, the feed to the pressure-retarded osmosis process is impaired water.
NASA Astrophysics Data System (ADS)
Bertin, N.; Upadhyay, M. V.; Pradalier, C.; Capolungo, L.
2015-09-01
In this paper, we propose a novel full-field approach based on the fast Fourier transform (FFT) technique to compute mechanical fields in periodic discrete dislocation dynamics (DDD) simulations for anisotropic materials: the DDD-FFT approach. By coupling the FFT-based approach to the discrete continuous model, the present approach benefits from the high computational efficiency of the FFT algorithm, while allowing for a discrete representation of dislocation lines. It is demonstrated that the computational time associated with the new DDD-FFT approach is significantly lower than that of current DDD approaches when large number of dislocation segments are involved for isotropic and anisotropic elasticity, respectively. Furthermore, for fine Fourier grids, the treatment of anisotropic elasticity comes at a similar computational cost to that of isotropic simulation. Thus, the proposed approach paves the way towards achieving scale transition from DDD to mesoscale plasticity, especially due to the method’s ability to incorporate inhomogeneous elasticity.
Discrete Dislocation Dynamics Simulations of Twin Size-Effects in Magnesium
2015-01-01
deformation induced softening. Over the past two decades, discrete dislocation dynamics ( DDD ) has been one of the most efficient methods to capture...14] and intermittent behavior [15] of the FCC and BCC materials. More recently, DDD simulations of Mg investigated a number of important effects...plays an important and sometimes dominant role in the mechanical behavior of both single crystals and polycrystals. As a result, such DDD simulations
Quantitative trait loci that control body weight in DDD/Sgn and C57BL/6J inbred mice.
Suto, Jun-Ichi; Kojima, Misaki
2017-02-01
Inbred DDD/Sgn mice are heavier than inbred C57BL/6J mice. In the present study, we performed quantitative trait loci (QTL) mapping for body weight using R/qtl in reciprocal F 2 male populations between the two strains. We identified four significant QTL on Chrs 1, 2, 5, and 17 (proximal region). The DDD/Sgn allele was associated with increased body weight at QTL on Chrs 1 and 5, and the DDD/Sgn allele was associated with decreased body weight at QTL on Chrs 2 and 17. A multiple regression analysis indicated that the detected QTL explain 30.94 % of the body weight variation. Because DDD/Sgn male mice have extremely high levels of circulating testosterone relative to other inbred mouse strains, we performed QTL mapping for plasma testosterone level to examine the effect of testosterone levels on body weight. We identified one suggestive QTL on Chr 5, which overlapped with body weight QTL. The DDD/Sgn allele was associated with increased testosterone level. Thus, we confirmed that there was a genetic basis for the changes in body weight and testosterone levels in male mice. These findings provide insights into the genetic mechanism by which body weight is controlled in male mice.
A clinical comparison between a new dual-chamber pacing mode-AAIsafeR and DDD mode.
Xue-Jun, Ren; Zhihong, Han; Ye, Wang; Huifeng, Du; Jinrong, Zhang; Fang, Chen; Jihong, Guo
2010-02-01
The aim of this study was to compare the cross-follow-up results in DDD or AAISafeR mode and to describe the safety and effectiveness of this pacing mode. The Symphony 2450/2550 cardiac pacemakers were implanted in 30 patients with sick sinus syndrome between February 2006 and September 2006. They were randomized to the DDD mode or AAISafeR mode for 3 months and then crossed over to the alternate pacing modality for an additional 3 months. No AAISafeR-related adverse event was observed. All documented episodes of paroxysmal atrial ventricular block caused the immediate switch of the pacing mode from AAI to DDD. The cumulative percent ventricular pacing was significantly reduced in the AAISafeR mode compared with the DDD mode (0.9% [0%-3%] versus 51.3% [2%-91%] P = 0.001; 2.94% [0%-18%] versus 41.18% [0%-65%] P = 0.0001). After 3 months in DDD mode, left atrial diameter, left ventricular enddiastolic diameter, and left ventricular end-systolic diameter increased significantly and left ventricular ejection fraction decreased. However, no obvious changes appeared in 3 months of AAISafeR mode. Switches to DDD occurred during follow-up in 21 patients due to different-degree atrial ventricular block. The AAISafeR mode substantially reduces the amount of unnecessary right ventricular pacing in the bradycardia population and effectively prevents the deleterious effects on cardiac performance. An international randomized study will further ascertain the efficacy of this new pacing mode specifically in the prevention of heart failure hospitalization and atrial fibrillation.
DDD versus VVIR pacing in patients, ages 70 and over, with complete heart block.
Ouali, Sana; Neffeti, Elyes; Ghoul, Karima; Hammas, Sami; Kacem, Slim; Gribaa, Rim; Remedi, Fahmi; Boughzela, Essia
2010-05-01
Dual-chamber pacing is believed to have an advantage over single-chamber ventricular pacing. The aim of the study was to determine whether elderly patients with implanted pacemaker for complete atrioventricular block gain significant benefit from dual-chamber (DDD) compared with single-chamber ventricular demand (VVIR). The study was designed as a double-blind randomized two-period crossover study-each pacing mode was maintained for 3 months. Thirty patients (eight men, mean age 76.5 +/- 4.3 years) with implanted PM were submitted to a standard protocol, which included an interview, functional class assessment, quality of life (QoL) questionnaires, 6-minute walk test, and transthoracic echocardiographic examinations. QoL was measured by the SF-36. All these parameters were obtained on DDD mode pacing and VVIR mode pacing. Paired data were compared. QoL was significantly different between the two groups and showed the best values in DDD. Overall, no patient preferred VVIR mode, 18 preferred DDD mode, and 12 expressed no preference. No differences in mean walking distances were observed between patients with single-chamber and dual-chamber pacing. VVI pacing elicited marked decrease in left ventricle ejection fraction and significant enlargement of the left atrium. DDD pacing resulted in significant increase of the peak systolic velocities in lateral mitral annulus and septal mitral annulus. Early diastolic velocities on both sides of mitral annulus did not change. In active elderly patients with complete heart block, DDD pacing is associated with improved quality of life and systolic ventricular function compared with VVI pacing.
Kim, Won Ho; Joung, Boyoung; Shim, Jaemin; Park, Jong Sung; Hwang, Eui-Seock; Pak, Hui-Nam; Kim, Sungsoon
2010-01-01
Purpose The optimal pacing mode with either single chamber atrial pacemaker (AAI or AAIR) or dual chamber pacemaker (DDD or DDDR) is still not clear in sinus-node dysfunction (SND) and intact atrioventricular (AV) conduction. Materials and Methods Patients who were implanted with permanent pacemaker using AAI(R) (n = 73) or DDD(R) (n = 113) were compared. Results The baseline characteristics were comparable between the two groups, with a mean follow-up duration of 69 months. The incidence of death did not show statistical difference. However, the incidence of hospitalization for congestive heart failure (CHF) was significantly lower in the AAI(R) group (0%) than the DDD(R) group (8.8%, p = 0.03). Also, atrial fibrillation (AF) was found in 2.8% in the AAI(R) group, which was statistically different from 15.2% of patients in the DDD(R) group (p = 0.01). Four patients (5.5%) with AAI(R) developed AV block, and subsequently switched to DDD(R) pacing. The risk of AF was lower in the patients implanted with AAI(R) than those with DDD(R) [hazard ratio (HR), 0.84; 95% confidence interval, 0.72 to 0.97, p = 0.02]. Conclusion In patients with SND and intact AV conduction, AAI(R) pacing can achieve a better clinical outcome in terms of occurrence of CHF and AF than DDD(R) pacing. These findings support AAI(R) pacing as the preferred pacing mode in patients with SND and intact AV conduction. PMID:20879047
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaturvedi, L.; Keyes, C.G. Jr.; Swanberg, C.A.
The water requirements and availability for New Mexico are described. The possibility of using geothermal resources for desalination of the state's saline water sources is discussed. The following aspects of the problem are covered: resource evaluation, geothermal desalination technology, potential geothermal desalination sites, saline and geothermal aquifer well fields design, geothermal desalination plant waste brine disposal, process water pumping and brine disposal unit costs, environmental considerations, and legal and institutional considerations. (MHR)
Ma, Jihong; Zou, Chunbin; Guo, Lida; Seneviratne, Danushka S.; Tan, Xinping; Kwon, Yong-Kook; An, Jiyan; Bowser, Robert; DeFrances, Marie C.; Zarnegar, Reza
2013-01-01
Met, the transmembrane tyrosine kinase receptor for hepatocyte growth factor (HGF) is known to function as a potent anti-apoptotic mediator in normal and neoplastic cells. Herein we report that intracellular cytoplasmic tail of Met has evolved to harbor a tandem pair of Caspase-3 cleavage sites, which bait, trap and disable the active site of Caspase-3, thereby blocking the execution of apoptosis. We call this Caspase-3 cleavage motif the ‘Death Defying Domain’ (DDD). This site consists of the following sequence: DNAD-DEVD-T (where the hyphens denote caspase cleavage sites). Through functional and mechanistic studies, we show that upon DDD cleavage by Caspase-3, the resulting DEVD-T peptide acts as a competitive inhibitor and entraps the active site of Caspase-3 akin to DEVD-CHO, which is a potent, synthetic inhibitor of Caspase-3 activity. By gain and loss-of-function studies using restoration of DDD expression in DDD deficient hepatocytic cells, we found that both Caspase-3 sites in DDD are necessary for inhibition of Caspase-3 and promotion of cell survival. Employing mutagenesis studies, we show that DDD could operate independently of Met’s enzymatic activity as determined by using kinase-dead human Met mutant constructs. Studies of both human liver cancer tissues and cell lines uncovered that DDD cleavage and entrapment of Caspase-3 by DDD occur in vivo, further proving that this site has physiological and pathophysiological relevance. Conclusion Our findings show that Met can directly inhibit Caspase-3 via a novel mechanism and promote hepato-cyte survival. Results presented here will further our understanding of the mechanisms that control not only normal tissue homeostasis but also abnormal tissue growth such as cancer and degenerative diseases in which apoptotic caspases are at play. PMID:24122846
Korableva, A A; Yudina, E V; Ziganshina, L E
Irrational medicine use including excessive use and abuse of antibiotics remains a crucial problem for the healthcare systems. In this regard, studies examining approaches to improving the clinical use of medicines are highly important. to assess the efficacy rate of management for the rational use of antibiotics in surgical departments of a multi-disciplinary hospital. The intervention complex combined the research, educational, and methodological activities: local protocols for perioperative antibiotic prophylaxis (PABP) for various surgical departments were developed; local PABP protocols were discussed with the physicians of specialized surgical departments; official order on implementation of PABP was issued; the list of drug prescriptions for registration of the first pre-operative antibiotic dose was changed; audit and feedback processes were introduced as well as consultations of a clinical pharmacologist were implemented. We assessed the efficacy rate of the interventions basing on the changes in consumption of antibiotics (both quantitatively and qualitatively) at surgical departments of a hospital using ATC/DDD methodology. Comparison of the studied outcomes was performed before and after the intervention implementation and between the departments (vascular and abdominal surgery). The consumption of antibacterial agents (ATCJ01) was measured as a number of defined daily doses (DDD) per 100 bed-days (DDD/100 bed-days, indicator recommended by the World Health Organization, WHO) and DDD per 100 treated patients (DDD/100 treated patients). From 2006 to 2012, a decrease in antibacterial consumption in surgical departments by 188 DDD/100 treated patients was observed. We obtained the opposite results when using an indicator of DDD/100 bed-days (increase by 2.5 DDD/100 bed-days) which could be explained by the dependence on indices of overall hospital work and its changes during the examined period. Observed changes in antibacterial consumption varied in different surgical departments. The most pronounced positive changes were noted in the department of vascular surgery: decrease in total antibacterial consumption by 298 DDD/100 treated patients, decrease in the use of cephalosporins of the III generation from 141 to 38 DDD/100 treated patients. These positive changes were accompanied by the same (low) level of consumption/use of reserve antibiotics. In the department of abdominal surgery, there was no decrease in total antibiotic consumption, as well as in consumption of broad-spectrum cephalosporins of the III generation and fluoroquinolones, and we observed an increase in the use of reserve antibiotics (carbapenems) during the study period. Positive changes in antibiotic consumption were associated with the positive attitude of the manager/head of the department towards interventions: we observed the most pronounced decrease in antibiotic consumption straight after the publication of the administrative order on perioperative antibacterial prophylaxis. The combination of scientific, educational, and methodological interventions is effective for improving antibiotic application. The study results provide the rationale for analyzing the drug consumption using the DDD/100 treated patients measure in addition to the WHO-recommended indicator of DDD/100 bed-days which depends on overall hospital performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gingerich, Daniel B; Bartholomew, Timothy V; Mauter, Meagan S
With the Environmental Protection Agency’s recent Effluent Limitation Guidelines for Steam Electric Generators, power plants are having to install and operate new wastewater technologies. Many plants are evaluating desalination technologies as possible compliance options. However, the desalination technologies under review that can reduce wastewater volume or treat to a zero-liquid discharges standard have a significant energy penalty to the plant. Waste heat, available from the exhaust gas or cooling water from coal-fired power plants, offers an opportunity to drive wastewater treatment using thermal desalination technologies. One such technology is forward osmosis (FO). Forward osmosis utilizes an osmotic pressure gradient tomore » passively pull water from a saline or wastewater stream across a semi-permeable membrane and into a more concentrated draw solution. This diluted draw solution is then fed into a distillation column, where the addition of low temperature waste heat can drive the separation to produce a reconcentrated draw solution and treated water for internal plant reuse. The use of low-temperature waste heat decouples water treatment from electricity production and eliminates the link between reducing water pollution and increasing air emissions from auxiliary electricity generation. In order to evaluate the feasibility of waste heat driven FO, we first build a model of an FO system for flue gas desulfurization (FGD) wastewater treatment at coal-fired power plants. This model includes the FO membrane module, the distillation column for draw solution recovery, and waste heat recovery from the exhaust gas. We then add a costing model to account for capital and operating costs of the forward osmosis system. We use this techno-economic model to optimize waste heat driven FO for the treatment of FGD wastewater. We apply this model to three case studies: the National Energy Technology Laboratory (NETL) 550 MW model coal fired power plant without carbon capture and sequestration, the NETL 550 MW model coal fired power plant with carbon capture and sequestration, and Plant Bowen in Eularhee, Georgia. For each case, we identify the design that minimizes the cost of wastewater treatment given the safely recoverable waste heat. We benchmark the cost minimum waste-heat forward osmosis solutions to two conventional options that rely on electricity, reverse osmosis and mechanical vapor recompression. Furthermore, we quantify the environmental damages from the emissions of carbon dioxide and criteria air pollutants for each treatment option. With this information we can assess the trade-offs between treatment costs, energy consumption, and air emissions between the treatment options.« less
Zuo, Kuichang; Cai, Jiaxiang; Liang, Shuai; Wu, Shijia; Zhang, Changyong; Liang, Peng; Huang, Xia
2014-08-19
The architecture and performance of microbial desalination cell (MDC) have been significantly improved in the past few years. However, the application of MDC is still limited in a scope of small-scale (milliliter) reactors and high-salinity-water desalination. In this study, a large-scale (>10 L) stacked MDC packed with mixed ion-exchange resins was fabricated and operated in the batch mode with a salt concentration of 0.5 g/L NaCl, a typical level of domestic wastewater. With circulation flow rate of 80 mL/min, the stacked resin-packed MDC (SR-MDC) achieved a desalination efficiency of 95.8% and a final effluent concentration of 0.02 g/L in 12 h, which is comparable with the effluent quality of reverse osmosis in terms of salinity. Moreover, the SR-MDC kept a stable desalination performance (>93%) when concentrate volume decreased from 2.4 to 0.1 L (diluate/concentrate volume ratio increased from 1:1 to 1:0.04), where only 0.875 L of nonfresh water was consumed to desalinate 1 L of saline water. In addition, the SR-MDC achieved a considerable desalination rate (95.4 mg/h), suggesting a promising application for secondary effluent desalination through deriving biochemical electricity from wastewater.
Zhang, Yifeng; Angelidaki, Irini
2015-02-01
High ammonia concentration in anaerobic reactors can seriously inhibit the anaerobic digestion process. In this study, a submersible microbial desalination cell (SMDC) was developed as an innovative method to lower the ammonia level in a continuous stirred tank reactor (CSTR) by in situ ammonia recovery and electricity production. In batch experiment, the ammonia concentration in the CSTR decreased from 6 to 0.7 g-N/L during 30 days, resulting in an average recovery rate of 80 g-N/m(2)/d. Meanwhile, a maximum power density of 0.71±0.5 W/m(2) was generated at 2.85 A/m(2). Both current driven NH4(+) migration and free NH3 diffusion were identified as the mechanisms responsible for the ammonia transportation. With an increase in initial ammonia concentration and a decrease in external resistance, the SMDC performance was enhanced. In addition, the coexistence of other cations in CSTR or cathode had no negative effect on the ammonia transportation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Desalination: Status and Federal Issues
2009-12-30
on one side and lets purified water through. Reverse osmosis plants have fewer problems with corrosion and usually have lower energy requirements...Texas) and cities are actively researching and investigating the feasibility of large-scale desalination plants for municipal water supplies...desalination research and development, and in construction and operational costs of desalination demonstration projects and full-scale plants
Corrosion and Protection of Metal in the Seawater Desalination
NASA Astrophysics Data System (ADS)
Hou, Xiangyu; Gao, Lili; Cui, Zhendong; Yin, Jianhua
2018-01-01
Seawater desalination develops rapid for it can solve water scarcity efficiently. However, corrosion problem in the seawater desalination system is more serious than that in normal water. So, it is important to pay attention to the corrosion and protection of metal in seawater desalination. The corrosion characteristics and corrosion types of metal in the seawater desalination system are introduced in this paper; In addition, corrosion protect methods and main influencing factors are stated, the latest new technologies about anti-corrosion with quantum energy assisted and magnetic inhibitor are presented.
Hermansson, Veronica; Cantillana, Tatiana; Hovander, Lotta; Bergman, Ake; Ljungvall, Karl; Magnusson, Ulf; Törneke, Karolina; Brandt, Ingvar
2008-02-01
The pharmacokinetics of the adrenocorticolytic drug candidate 3-Methylsulphonyl-DDE (3-MeSO2-DDE) and the anticancer drug o,p'-DDD (mitotane) were studied in Göttingen minipigs. The animals were given 3-MeSO2-DDE or o,p'-DDD as single oral doses (30 mg/kg). Concentrations in plasma and subcutaneous fat were measured by gas chromatography at different time points during 180 days. Maximal plasma concentrations appeared within 24 h for both compounds, but were about 2 times higher for 3-MeSO2DDE. o,p'-DDD plasma concentrations declined rapidly to low levels during 4 days. 3-MeSO2-DDE also decreased rapidly, but remained at high concentrations throughout the study. In fat, 3-MeSO2-DDE reached about 25-fold higher levels than o,p'-DDD at 30 days, and both substances were eliminated slowly from this tissue. 3-MeSO2-DDE liver concentrations were about 18-fold higher than those in plasma at 180 days. In contrast, o,p'-DDD liver and plasma levels were about equal at 180 days. o,p'-DDD had roughly 45 times larger CL/F than 3-MeSO2-DDE, confirming that the elimination of this compound was more rapid. Both compounds were characterised by their localisation and retention in fat tissue, and the individual size of the fat stores clearly determined the plasma concentrations. It is concluded that although 3-MeSO2-DDE is an interesting candidate for therapeutic use due to its potential characteristics to specifically target adrenocortical tumour cells the slow elimination of the compound might make it challenging to design appropriate dosage regimes.
Long-term outcome in patients receiving permanent pacemaker implantation for atrioventricular block
Liao, Jo-Nan; Chao, Tze-Fan; Tuan, Ta-Chuan; Kong, Chi-Woon; Chen, Shih-Ann
2016-01-01
Abstract A permanent pacemaker (PPM) with dual chamber pacing (DDD) offers atrioventricular synchronization for patients with atrioventricular block (AVB). Single lead atrial synchronous ventricular pacing mode (VDD) is an alternative, but there are concerns about its efficacy and risk of atrial undersensing. Whether VDD can be a good alternative in patients with AVB remains unknown. The aim of the present study was to compare the long-term risk of mortality of VDD with DDD pacing. A total of 207 patients undergoing PPM implantations for AVB with VDD mode were enrolled from 2000 to 2013. Another 828 age- and sex-matched patients undergoing DDD implantations during the same period of time were selected as the control group in a 1 to 4 ratio. The study endpoint was mortality. A total of 1035 patients (64.3% male) were followed up for 46.5 ± 43.2 months. The mean ages were 75.0 years for VDD, and 74.9 years for DDD. The Kaplan–Meier survival analysis showed no significant difference in long-term survival between the VDD and DDD groups (log-rank P = 0.313). After adjustment for baseline characteristics, the VDD and DDD groups had a similar long-term prognosis with an adjusted hazard ratio of 0.875 (P = 0.445). Further analyses for the risk of cardiovascular and noncardiovascular deaths also showed no significant differences between the 2 groups. The long-term prognosis of VDD mode is comparable to that of DDD mode. Single lead VDD can be considered as an alternative choice in patients with AVB without sinus nodal dysfunction. PMID:27583889
Albertsen, Andi E; Nielsen, Jens C; Poulsen, Steen H; Mortensen, Peter T; Pedersen, Anders K; Hansen, Peter S; Jensen, Henrik K; Egeblad, Henrik
2008-03-01
We aimed to investigate whether biventricular (BiV) pacing minimizes left ventricular (LV) dyssynchrony and preserves LV ejection fraction (LVEF) as compared with standard dual-chamber DDD(R) pacing in consecutive patients with high-grade atrio-ventricular (AV) block. Fifty patients were randomized to DDD(R) pacing or BiV pacing. LVEF was measured using three-dimensional echocardiography. Tissue-Doppler imaging was used to quantify LV dyssynchrony in terms of number of segments with delayed longitudinal contraction (DLC). LVEF was not different between groups after 12 months (P = 0.18). In the DDD(R) group LVEF decreased significantly from 59.7(57.4-61.4)% at baseline to 57.2(52.1-60.6)% at 12 months of follow-up (P = 0.03), whereas LVEF remained unchanged in the BiV group [58.9(47.1-61.7)% at baseline vs. 60.1(55.2-63.3)% after 12 months (P = 0.15)]. Dyssynchrony was more prominent in the DDD(R) group than in the BiV group at baseline (2.2 +/- 2.2 vs. 1.4 +/- 1.3 segments with DLC per patient, P = 0.10); and at 12 month follow-up (1.8 +/- 1.9 vs. 0.8 +/- 0.9 segments with DLC per patient, P = 0.02). NT-proBNP was unchanged in the DDD(R) group during follow-up (122 +/- 178 pmol/L vs. 91 +/- 166 pmol/L, NS) but decreased significantly in the BiV-group (from 198 +/- 505 pmol/L to 86 +/- 95 pmol/L after 12 months, P = 0.02). BiV pacing minimizes LV dyssynchrony, preserves LV function, and reduces NT-proBNP in contrast to DDD(R) pacing in patients with high-grade AV block.
Bioavailability to grains of rice of aged and fresh DDD and DDE in soils.
Yao, Fenxia; Yu, Guifen; Bian, Yongrong; Yang, Xinglun; Wang, Fang; Jiang, Xin
2007-05-01
DDT had been widely used around the world before 1980s and is still under production and use for non-agricultural purposes in China. Because of their special physicochemical properties, p,p'-DDT and its main metabolites, p,p'-DDD and p,p'-DDE, accumulated and persisted in the environment, presenting potential menace on biota. A green-house study was conducted to determine the bioavailability of p,p'-DDD and p,p'-DDE to grains of rice and the influences of traditional Chinese farming practices on their bioaccumulation. Paddy rice and dry rice were grown in submerged paddy soils and non-submerged upland soils, respectively. Two types of soil, Hydragric Anthrosols (An) and Hydragric Acrisols (Ac), were employed. Bioaccumulation factors (BAFs) of DDE ranged from 0.67 for rice grown in non-submerged An to 0.84 in submerged An in the control group, whilst BAFs were all below 0.04 in experimental groups. BAFs of DDD varied from 1.39 for submerged An to 2.26 for submerged Ac in original soils. In contrast, BAFs were between 0.05 for non-submerged Ac and 0.08 for submerged An in DDD-contaminated soils. Flooding seemed to have two contradictory effects on the DDE/DDD accumulation by rice: on one hand, it made the pollutants more mobile and bioavailable; while on the other hand, it enhanced the degradation and binding of POPs. Adding rice straw to the soils protected DDE from being taken up yet promoted DDD accumulation by rice. Furthermore, the distinct inorganic component of the soils might also play an important role in the environmental activities of POPs.
Mai, Kien T; Ball, Christopher G; Kos, Zuzana; Belanger, Eric C; Islam, Shahidul; Sekhon, Harman
2014-07-01
Cystoscopic urine obtained before the resection of low-grade urothelial carcinoma (LGUC), with adequate cytological sampling of the tumor, frequently revealed the presence of three-dimensional cell groups with disordered nuclei and cellular discohesion (3DDD). 936 cystoscopic urine specimens were categorized into five groups: Group 1 (80 specimens) with biopsy-proven LGUC within 6 months of cytologic examination, Group 2 (23 specimens) with biopsy proven LGUC within 6 to 36 months of cytologic examination, Group 3 (527 specimens) with a history of LGUC but no tumor for a period of greater than 3 years, Group 4 (300 specimens) with no association with LGUC, and Group 5 (6 specimens) with urinary lithiasis. Specimens with scant cellularity accounted for 20% of those in Group 1. For 3DDD in detecting LGUC in adequate cystoscopic urine, the sensitivity was 70%, specificity was 94%. Two- or three-dimensional cell groups with ordered nuclei and/or cellular non-discohesion were often seen in specimens from Groups 4 or 5. The 3DDD was present in a significant number of cases with concurrent negative cystoscopic findings but also positive LGUC in ensuing follow-up. In these cases, 3DDD with or without tumor identified at concurrent cystoscopy were found to be morphologically similar. Furthermore, the presence of 3DDD in 8% of Group 3 likely represents urothelial dysplasia that is not cystoscopically detectable. The high specificity and sensitivity of 3DDD is demonstrated. These findings are consistent with the decreased cell adhesion and disordered nuclear arrangement of low grade urothelial neoplasia. © 2013 Wiley Periodicals, Inc.
Patterns of antibacterials use in intensive care units.
Santos, Edilson Floriano Dos; Lauria-Pires, Liana
2010-06-01
To know and compare the patterns of antimicrobials use in intensive care units (ICUs) based on the Anatomical Therapeutic Chemical/Defined Daily Dose (ATC/DDD) system. a prospective cohort study was conducted in three medical-surgical intensive care units, two of them in public hospitals and one in a private hospital. Simple random, independent samples of patients admitted from 10/2004 to 09/2005 to the selected intensive care units were used. The antibiotics use was assessed using the ATC/DDD system. The amount of antibacterials used in each intensive care unit, in grams, was transformed in daily defined dose (DDD). The number of DDDs was divided by the number of patient-days, multiplied by one thousand, to obtain the average density of consumption (DC) per thousand patient-days (DDD1000). 1,728 patients-days and 2,918.6 DDDs were examined in the three intensive care units, corresponding to an average density of consumption of 1,689.0 DDD1000. The median number of DDDs of antibiotics use in the public hospitals intensive care units was significantly higher (p=0.002) versus the private hospitals intensive care unit. The consumption of antibiotics in the private hospitals intensive care unit (DC=2,191.7 DDD1000) was significantly higher (p<0.001) versus the intensive care units of public hospitals (1,499.5 DDD1000). The most used antibiotics groups in the three intensive care units were 3rd generation cephalosporins, penicillins/betalactamases inhibitors, carbapenems and fluorquinolones. The pattern of antibiotics use in the three examined intensive care units was not uniform. The private hospitals intensive care unit used a significantly larger amount versus the public hospitals intensive care units. Nevertheless, the most used antibiotics groups were similar in the three intensive care units.
Comparison of DDD versus VVIR pacing modes in elderly patients with atrioventricular block.
Kılıçaslan, Barış; Vatansever Ağca, Fahriye; Kılıçaslan, Esin Evren; Kınay, Ozan; Tigen, Kürşat; Cakır, Cayan; Nazlı, Cem; Ergene, Oktay
2012-06-01
Dual-chamber pacing is believed to have an advantage over single-chamber ventricular pacing. The aim of this study was to determine whether elderly patients who have implanted pacemakers for complete atrioventricular block gain significant benefits from dual-chamber (DDD) pacemakers compared with single chamber ventricular (VVIR) pacemakers. This study was designed as a randomized, two-period crossover study-each pacing mode was maintained for 1 month. Thirty patients (16 men, mean age 68.87 ± 6.89 years) with implanted DDD pacemakers were submitted to a standard protocol, which included an interview, pacemaker syndrome assessment, health related quality of life (HRQoL) questionnaires assessed by an SF-36 test, 6-minute walk test (6MWT), and transthoracic echocardiographic examinations. All of these parameters were obtained on both DDD and VVIR mode pacing. Paired data were compared. HRQoL scores were similar, and 6MWT results did not differ between the two groups. VVIR pacing elicited significant enlargement of the left atrium and impaired left ventricular diastolic functions as compared with DDD pacing. Two patients reported subclinical pacemaker syndrome, but this was not statistically significant. Our study revealed that in active elderly patients with complete heart block, DDD pacing and VVIR pacing yielded similar improvements in QoL and exercise performance. However, after a short follow-up period, we noted that VVIR pacing caused significant left atrial enlargement and impaired left ventricular diastolic functions.
Dukhin, Stanislav S.; Labib, Mohamed E.
2016-01-01
Current drug delivery devices (DDD) are mainly based on the use of diffusion as the main transport process. Diffusion-driven processes can only achieve low release rate because diffusion is a slow process. This represents a serious obstacle in the realization of recent successes in the suppression of lymphatic metastasis and in the prevention of limb and organ transplant rejection. Surprisingly, it was overlooked that there is a more favorable drug release mode which can be achieved when a special DDD is implanted near lymphatics. This opportunity can be realized when the interstitial fluid flow penetrates a drug delivery device of proper design and allows such fluid to flow out of it. This design is based on hollow fibers loaded with drug and whose hydrodynamic permeability is much higher than that of the surrounding tissue. The latter is referred to as hollow fiber of high hydrodynamic permeability (HFHP). The interstitial flow easily penetrates the hollow fiber membrane as well as its lumen with a higher velocity than that in the adjacent tissue. The interstitial liquid stream entering the lumen becomes almost saturated with drug as it flows out of the HFHP. This is due to the drug powder dissolution in the lumens of HFHP which forms a strip of drug solution that crosses the interstitium and finally enters the lymphatics. This hydrodynamically-driven release (HDR) may exceed the concomitant diffusion-driven release (DDR) by one or even two orders of magnitude. The hydrodynamics of the two-compartment media is sufficient for developing the HDR theory which is detailed in this paper. Convective diffusion theory for two compartments (membrane of hollow fiber and adjacent tissue) is required for exact quantification when a small contribution of DDR to predominating HDR is present. Hence, modeling is important for HDR which would lead to establishing a new branch in physico-chemical hydrodynamics. The release rate achieved with the use of HFHP increases proportional to the number of hollow fibers in the fabric employed in drug delivery. Based on this contribution, it is now possible to simultaneously provide high release rates and long release durations, thus overcoming a fundamental limitation in drug delivery. Perhaps this breakthrough in long-term drug delivery has potential applications in targeting lymphatics and in treating cancer and cancer metastasis without causing the serious side effects of systemic drugs. PMID:28579697
Lee, Gloria; Plaksin, Joseph; Ramasamy, Ravichandran; Gold-von Simson, Gabrielle
2018-01-01
Drug discovery and development (DDD) is a collaborative, dynamic process of great interest to researchers, but an area where there is a lack of formal training. The Drug Development Educational Program (DDEP) at New York University was created in 2012 to stimulate an improved, multidisciplinary DDD workforce by educating early stage scientists as well as a variety of other like-minded students. The first course of the program emphasizes post-compounding aspects of DDD; the second course focuses on molecular signaling pathways. In five years, 196 students (candidates for PhD, MD, Master’s degree, and post-doctoral MD/PhD) from different schools (Medicine, Biomedical Sciences, Dentistry, Engineering, Business, and Education) completed the course(s). Pre/post surveys demonstrate knowledge gain across all course topics. 26 students were granted career development awards (73% women, 23% underrepresented minorities). Some graduates of their respective degree-granting/post-doctoral programs embarked on DDD related careers. This program serves as a framework for other academic institutions to develop compatible programs designed to train a more informed DDD workforce. PMID:29657854
Advances in Discrete Dislocation Dynamics Modeling of Size-Affected Plasticity
NASA Astrophysics Data System (ADS)
El-Awady, Jaafar A.; Fan, Haidong; Hussein, Ahmed M.
In dislocation-mediated plasticity of crystalline materials, discrete dislocation dynamics (DDD) methods have been widely used to predict the plastic deformation in a number of technologically important problems. These simulations have led to significant improvement in the understanding of the different mechanism that controls the mechanical properties of crystalline materials, which can greatly accelerate the future development of materials with superior properties. This chapter provides an overview of different practical applications of both two-dimensional and three-dimensional DDD simulations in the field of size-affected dislocation-mediated plasticity. The chapter is divided into two major tracks. First, DDD simulations focusing on aspects of modeling size-dependent plasticity in single crystals in uniaxial micro-compression/tension, microtorsion, microbending, and nanoindentation are discussed. Special attention is directed towards the role of cross-slip and dislocation nucleation on the overall response. Second, DDD simulations focusing on the role of interfaces, including grain and twin boundaries, on dislocation-mediated plasticity are discussed. Finally, a number of challenges that are withholding DDD simulations from reaching their full potential are discussed.
Complete dechlorination of DDE/DDD using magnesium/palladium system.
Gautam, Sumit Kumar; Suresh, Sumathi
2007-04-01
Kinetic studies on the dechlorination of 1,1-dichloro-2,2 bis (4,-chlorophenyl) ethane (DDD) and 1,1,dichloro-2,2 bis (4,-chlorophenyl) ethylene (DDE) in 0.05% biosurfactant revealed that the reaction follows second-order kinetics. The rate of reaction was dependent on the presence of acid, initial concentrations of the target compound, and zerovalent magnesium/tetravalent palladium. Gas chromatography-mass spectrometry analyses of DDE dechlorination revealed the formation of a completely dechlorinated hydrocarbon skeleton, with diphenylethane as the end product, thereby implying the removal of all four chlorine atoms of DDE. In the case of DDD, we identified two partially dechlorinated intermediates [namely, 1,1-dichloro-2, 2 bis (phenyl) ethane and 1, chloro-2, 2 bis (phenyl) ethane] and diphenylethane as the end product. On the basis of products formed from DDD dehalogenation, we propose the removal of aryl chlorine atoms as a first step. Our investigation reveals that biosurfactant may be an attractive solubilizing agent for DDT and its residues. The magnesium/palladium system is a promising option because of its high reactivity and ability to achieve complete dechlorination of DDE and DDD.
Integrated processes for desalination and salt production: A mini-review
NASA Astrophysics Data System (ADS)
Wenten, I. Gede; Ariono, Danu; Purwasasmita, Mubiar; Khoirudin
2017-03-01
The scarcity of fresh water due to the rapid growth of population and industrial activities has increased attention on desalination process as an alternative freshwater supply. In desalination process, a large volume of saline water is treated to produce freshwater while a concentrated brine is discharged back into the environment. The concentrated brine contains a high concentration of salt and also chemicals used during desalination operations. Due to environmental impacts arising from improper treatment of the brine and more rigorous regulations of the pollution control, many efforts have been devoted to minimize, treat, or reuse the rejected brine. One of the most promising alternatives for brine handling is reusing the brine which can reduce pollution, minimize waste volume, and recover valuable salt. Integration of desalination and salt production can be implemented to reuse the brine by recovering water and the valuable salts. The integrated processes can achieve zero liquid discharge, increase water recovery, and produce the profitable salt which can reduce the overall desalination cost. This paper gives an overview of desalination processes and the brine impacts. The integrated processes, including their progress and advantages in dual-purpose desalination and salt production are discussed.
Liu, Haizhou; Schonberger, Kenneth D; Korshin, Gregory V; Ferguson, John F; Meyerhofer, Paul; Desormeaux, Erik; Luckenbach, Heidi
2010-07-01
This study examined effects of desalinated water on the corrosion of and metal release from copper and lead-containing materials. A jar test protocol was employed to examine metal release from copper and lead-tin coupons exposed to water chemistries with varying blending ratios of desalinated water, alkalinities, pHs and orthophosphate levels. Increasing fractions of desalinated water in the blends resulted in non-monotonic changes of copper and lead release, with generally lower metal concentrations in the presence of desalinated water, especially when its contribution increased from 80% to 100%. SEM examination showed that the increased fractions of desalinated water were associated with pronounced changes of the morphology of the corrosion scales, likely due to the influence of natural organic matter. This hypothesis was corroborated by the existence of correlations between changes of the zeta-potential of representative minerals (malachite and hydrocerussite) and metal release. For practical applications, maintaining pH at 7.8 and adding 1 mg/L orthophosphate as PO(4) were concluded to be adequate to decrease copper and lead release. Lower alkalinity of desalinated water was beneficial for blends containing 50% or more desalinated water. Copyright 2010 Elsevier Ltd. All rights reserved.
Liu, Haizhou; Schonberger, Kenneth D; Peng, Ching-Yu; Ferguson, John F; Desormeaux, Erik; Meyerhofer, Paul; Luckenbach, Heidi; Korshin, Gregory V
2013-07-01
This study examined effects of blending desalinated water with conventionally treated surface water on iron corrosion and release from corroding metal surfaces and pre-existing scales exposed to waters having varying fractions of desalinated water, alkalinities, pH values and orthophosphate levels. The presence of desalinated water resulted in markedly decreased 0.45 μm-filtered soluble iron concentrations. However, higher fractions of desalinated water in the blends were also associated with more fragile corroding surfaces, lower retention of iron oxidation products and release of larger iron particles in the bulk water. SEM, XRD and XANES data showed that in surface water, a dense layer of amorphous ferrihydrite phase predominated in the corrosion products. More crystalline surface phases developed in the presence of desalinated water. These solid phases transformed from goethite to lepidocrocite with increased fraction of desalinated water. These effects are likely to result from a combination of chemical parameters, notably variations of the concentrations of natural organic matter, calcium, chloride and sulfate when desalinated and conventionally treated waters are blended. Copyright © 2013 Elsevier Ltd. All rights reserved.
The salinity gradient power generating system integrated into the seawater desalination system
NASA Astrophysics Data System (ADS)
Zhu, Yongqiang; Wang, Wanjun; Cai, Bingqian; Hao, Jiacheng; Xia, Ruihua
2017-01-01
Seawater desalination is an important way to solve the problem of fresh water shortage. Low energy efficiency and high cost are disadvantages existing in seawater desalination. With huge reserve and the highest energy density among different types of marine energy, salinity gradient energy has a bright application prospect. The promotion of traditional salinity gradient power generating systems is hindered by its low efficiency and specific requirements on site selection. This paper proposes a salinity gradient power generating system integrated into the seawater desalination system which combines the salinity gradient power generating system and the seawater desalination system aiming to remedy the aforementioned deficiency and could serve as references for future seawater desalination and salinity gradient energy exploitation. The paper elaborates on the operating principles of the system, analyzes the detailed working process, and estimates the energy output and consumption of the system. It is proved that with appropriate design, the energy output of the salinity gradient power generating system can satisfy the demand of the seawater desalination system.
DDE and DDD residues correlated with mortality of experimental birds
Stickel, William H.; Stickel, Lucille F.; Coon, Francis B.; Deichmann, William B.; Peñalver, Rafael A.; Radomski, Jack L.
1970-01-01
Nearly everywhere in nature are found DDE and DDD, which are metabolites of DDT, and they often become concentrated through food chains. DDD is also a commercial insecticide. large amounts of both are frequently found in birds, but the significance of these amounts has puzzled many owrkers. Studies at Clear Lake, California1 gave some data on DDD danger levels, but less is known of DDE, the member of the DDT group that is most frequent and most abundant in nature. Although DDE is toxic, relatively alrge residues are found in apparently healthy animals. As one step in untanglig the problem, it seemed important to determine the residue levels that indicate danger to life. earlier work with DDR and dieldrin has shown the value of this approach.2-5, 1 2
Geochemical Processes During Managed Aquifer Recharge With Desalinated Seawater
NASA Astrophysics Data System (ADS)
Ganot, Y.; Holtzman, R.; Weisbrod, N.; Russak, A.; Katz, Y.; Kurtzman, D.
2018-02-01
We study geochemical processes along the variably-saturated zone during managed aquifer recharge (MAR) with reverse-osmosis desalinated seawater (DSW). The DSW, post-treated at the desalination plant by calcite dissolution (remineralization) to meet the Israeli water quality standards, is recharged into the Israeli Coastal Aquifer through an infiltration pond. Water quality monitoring during two MAR events using suction cups and wells inside the pond indicates that cation exchange is the dominant subsurface reaction, driven by the high Ca2+ concentration in the post-treated DSW. Stable isotope analysis shows that the shallow groundwater composition is similar to the recharged DSW, except for enrichment of Mg2+, Na+, Ca2+, and HCO3-. A calibrated variably-saturated reactive transport model is used to predict the geochemical evolution during 50 years of MAR for two water quality scenarios: (i) post-treated DSW (current practice) and (ii) soft DSW (lacking the remineralization post-treatment process). The latter scenario was aimed to test soil-aquifer-treatment (SAT) as an alternative post-treatment technique. Both scenarios provide an enrichment of ˜2.5 mg L-1 in Mg2+ due to cation exchange, compared to practically zero Mg2+ currently found in the Israeli DSW. Simulations of the alternative SAT scenario provide Ca2+ and HCO3- remineralization due to calcite dissolution at levels that meet the Israeli standard for DSW. The simulated calcite content reduction in the sediments below the infiltration pond after 50 years of MAR was low (<1%). Our findings suggest that remineralization using SAT for DSW is a potentially sustainable practice at MAR sites overlying calcareous sandy aquifers.
2015-01-01
still necessary. One such model that could bridge this gap is discrete dis- location dynamics ( DDD ) simulations, in which both the time- and length-scale...limitations from atomic simulations are greatly reduced. Over the past two decades, two-dimen- sional (2D) and three-dimensional (3D) DDD methods have...dislocation ensem- bles according to physics-based rules [27–34]. The physics that can be incorporated in DDD simulations can range http://dx.doi.org
Impact of Over-the-Counter Restrictions on Antibiotic Consumption in Brazil and Mexico
Santa-Ana-Tellez, Yared; Mantel-Teeuwisse, Aukje K.; Dreser, Anahi; Leufkens, Hubert G. M.; Wirtz, Veronika J.
2013-01-01
Background In Latin American countries over-the-counter (OTC) dispensing of antibiotics is common. In 2010, both Mexico and Brazil implemented policies to enforce existing laws of restricting consumption of antibiotics only to patients presenting a prescription. The objective of the present study is therefore to evaluate the impact of OTC restrictions (2010) on antibiotics consumption in Brazil and Mexico. Methods and Findings Retail quarterly sales data in kilograms of oral and injectable antibiotics between January 2007 and June 2012 for Brazil and Mexico were obtained from IMS Health. The unit of analysis for antibiotics consumption was the defined daily dose per 1,000 inhabitants per day (DDD/TID) according to the WHO ATC classification system. Interrupted time series analysis was conducted using antihypertensives as reference group to account for changes occurring independently of the OTC restrictions directed at antibiotics. To reduce the effect of (a) seasonality and (b) autocorrelation, dummy variables and Prais-Winsten regression were used respectively. Between 2007 and 2012 total antibiotic usage increased in Brazil (from 5.7 to 8.5 DDD/TID, +49.3%) and decreased in Mexico (10.5 to 7.5 DDD/TID, −29.2%). Interrupted time series analysis showed a change in level of consumption of −1.35 DDD/TID (p<0.01) for Brazil and −1.17 DDD/TID (p<0.00) for Mexico. In Brazil the penicillins, sulfonamides and macrolides consumption had a decrease in level after the intervention of 0.64 DDD/TID (p = 0.02), 0.41 (p = 0.02) and 0.47 (p = 0.01) respectively. While in Mexico it was found that only penicillins and sulfonamides had significant changes in level of −0.86 DDD/TID (p<0.00) and −0.17 DDD/TID (p = 0.07). Conclusions Despite different overall usage patterns of antibiotics in Brazil and Mexico, the effect of the OTC restrictions on antibiotics usage was similar. In Brazil the trend of increased usage of antibiotics was tempered after the OTC restrictions; in Mexico the trend of decreased usage was boosted. PMID:24146761
A new method for water desalination using microbial desalination cells.
Cao, Xiaoxin; Huang, Xia; Liang, Peng; Xiao, Kang; Zhou, Yingjun; Zhang, Xiaoyuan; Logan, Bruce E
2009-09-15
Current water desalination techniques are energy intensive and some use membranes operated at high pressures. It is shown here that water desalination can be accomplished without electrical energy input or high water pressure by using a source of organic matter as the fuel to desalinate water. A microbial fuel cell was modified by placing two membranes between the anode and cathode, creating a middle chamber for water desalination between the membranes. An anion exchange membrane was placed adjacent to the anode, and a cation exchange membrane was positioned next to the cathode. When current was produced by bacteria on the anode, ionic species in the middle chamber were transferred into the two electrode chambers, desalinating the water in the middle chamber. Proof-of-concept experiments for this approach, using what we call a microbial desalination cell (MDC), was demonstrated using water at different initial salt concentrations (5, 20, and 35 g/L) with acetate used as the substrate for the bacteria. The MDC produced a maximum of 2 W/m2 (31 W/m3) while at the same time removing about 90% of the salt in a single desalination cycle. As the salt was removed from the middle chamber the ohmic resistance of the MDC (measured using electrochemical impedance spectroscopy) increased from 25 Omega to 970 Omega at the end of the cycle. This increased resistance was reflected by a continuous decrease in the voltage produced over the cycle. These results demonstrate for the first time the possibility for a new method for water desalination and power production that uses only a source of biodegradable organic matter and bacteria.
Shaffer, Devin L; Arias Chavez, Laura H; Ben-Sasson, Moshe; Romero-Vargas Castrillón, Santiago; Yip, Ngai Yin; Elimelech, Menachem
2013-09-03
In the rapidly developing shale gas industry, managing produced water is a major challenge for maintaining the profitability of shale gas extraction while protecting public health and the environment. We review the current state of practice for produced water management across the United States and discuss the interrelated regulatory, infrastructure, and economic drivers for produced water reuse. Within this framework, we examine the Marcellus shale play, a region in the eastern United States where produced water is currently reused without desalination. In the Marcellus region, and in other shale plays worldwide with similar constraints, contraction of current reuse opportunities within the shale gas industry and growing restrictions on produced water disposal will provide strong incentives for produced water desalination for reuse outside the industry. The most challenging scenarios for the selection of desalination for reuse over other management strategies will be those involving high-salinity produced water, which must be desalinated with thermal separation processes. We explore desalination technologies for treatment of high-salinity shale gas produced water, and we critically review mechanical vapor compression (MVC), membrane distillation (MD), and forward osmosis (FO) as the technologies best suited for desalination of high-salinity produced water for reuse outside the shale gas industry. The advantages and challenges of applying MVC, MD, and FO technologies to produced water desalination are discussed, and directions for future research and development are identified. We find that desalination for reuse of produced water is technically feasible and can be economically relevant. However, because produced water management is primarily an economic decision, expanding desalination for reuse is dependent on process and material improvements to reduce capital and operating costs.
Purification of High Salinity Brine by Multi-Stage Ion Concentration Polarization Desalination
Kim, Bumjoo; Kwak, Rhokyun; Kwon, Hyukjin J.; Pham, Van Sang; Kim, Minseok; Al-Anzi, Bader; Lim, Geunbae; Han, Jongyoon
2016-01-01
There is an increasing need for the desalination of high concentration brine (>TDS 35,000 ppm) efficiently and economically, either for the treatment of produced water from shale gas/oil development, or minimizing the environmental impact of brine from existing desalination plants. Yet, reverse osmosis (RO), which is the most widely used for desalination currently, is not practical for brine desalination. This paper demonstrates technical and economic feasibility of ICP (Ion Concentration Polarization) electrical desalination for the high saline water treatment, by adopting multi-stage operation with better energy efficiency. Optimized multi-staging configurations, dependent on the brine salinity values, can be designed based on experimental and numerical analysis. Such an optimization aims at achieving not just the energy efficiency but also (membrane) area efficiency, lowering the true cost of brine treatment. ICP electrical desalination is shown here to treat brine salinity up to 100,000 ppm of Total Dissolved Solids (TDS) with flexible salt rejection rate up to 70% which is promising in a various application treating brine waste. We also demonstrate that ICP desalination has advantage of removing both salts and diverse suspended solids simultaneously, and less susceptibility to membrane fouling/scaling, which is a significant challenge in the membrane processes. PMID:27545955
Why do local communities support or oppose seawater desalination?
NASA Astrophysics Data System (ADS)
Mirza Ordshahi, B.; Heck, N.; Faraola, S.; Paytan, A.; Haddad, B.; Potts, D. C.
2016-12-01
Freshwater shortages have become a global problem due to increasing water consumption and environmental changes which are reducing the reliability of traditional water resources. One option to address water shortages in coastal areas is the use of seawater desalination. Desalination technology is particularly valued for the production of high quality drinking water and consistent production. However, seawater desalination is controversial due to potential environmental, economic, and societal impacts and lack of public support for this water supply method. Compared to alternative potable water production methods, such as water recycling, little is known about public attitudes towards seawater desalination and factors that shape local support or rejection. Our research addresses this gap and explores variables that influence support for proposed desalination plants in the Monterey Bay region, where multiple facilities have been proposed in recent years. Data was collected via a questionnaire-based survey among a random sample of coastal residents and marine stakeholders between June-July, 2016. Findings of the study identify the influence of socio-demographic variables, knowledge about desalination, engagement in marine activities, perception of the environmental context, and the existence of a National Marine Sanctuary on local support. Research outcome provide novel insights into public attitudes towards desalination and enhances our understanding of why communities might support or reject this water supply technology.
Purification of High Salinity Brine by Multi-Stage Ion Concentration Polarization Desalination
NASA Astrophysics Data System (ADS)
Kim, Bumjoo; Kwak, Rhokyun; Kwon, Hyukjin J.; Pham, Van Sang; Kim, Minseok; Al-Anzi, Bader; Lim, Geunbae; Han, Jongyoon
2016-08-01
There is an increasing need for the desalination of high concentration brine (>TDS 35,000 ppm) efficiently and economically, either for the treatment of produced water from shale gas/oil development, or minimizing the environmental impact of brine from existing desalination plants. Yet, reverse osmosis (RO), which is the most widely used for desalination currently, is not practical for brine desalination. This paper demonstrates technical and economic feasibility of ICP (Ion Concentration Polarization) electrical desalination for the high saline water treatment, by adopting multi-stage operation with better energy efficiency. Optimized multi-staging configurations, dependent on the brine salinity values, can be designed based on experimental and numerical analysis. Such an optimization aims at achieving not just the energy efficiency but also (membrane) area efficiency, lowering the true cost of brine treatment. ICP electrical desalination is shown here to treat brine salinity up to 100,000 ppm of Total Dissolved Solids (TDS) with flexible salt rejection rate up to 70% which is promising in a various application treating brine waste. We also demonstrate that ICP desalination has advantage of removing both salts and diverse suspended solids simultaneously, and less susceptibility to membrane fouling/scaling, which is a significant challenge in the membrane processes.
To cope with the rising demand for fresh water, desalination of brackish groundwater and seawater is increasingly being viewed as a pragmatic option for augmenting fresh water supplies. The large scale deployment of desalination is likely to demonstrably increase electricity use,...
NASA Astrophysics Data System (ADS)
Borjas, Zulema; Esteve-Núñez, Abraham; Ortiz, Juan Manuel
2017-07-01
Microbial Desalination Cells constitute an innovative technology where microbial fuel cell and electrodialysis merge in the same device for obtaining fresh water from saline water with no energy-associated cost for the user. In this work, an anodic biofilm of the electroactive bacteria Geobacter sulfurreducens was able to efficiently convert the acetate present in synthetic waste water into electric current (j = 0.32 mA cm-2) able to desalinate water. .Moreover, we implemented an efficient start-up protocol where desalination up to 90% occurred in a desalination cycle (water production:0.308 L m-2 h-1, initial salinity: 9 mS cm-1, final salinity: <1 mS cm-1) using a filter press-based MDC prototype without any energy supply (excluding peristaltic pump energy). This start-up protocol is not only optimized for time but also simplifies operational procedures making it a more feasible strategy for future scaling-up of MDCs either as a single process or as a pre-treatment method combined with other well established desalination technologies such as reverse osmosis (RO) or reverse electrodialysis.
Smith, Richard J.H; Harris, Claire L.; Pickering, Matthew C.
2011-01-01
Dense deposit disease (DDD) is an orphan disease that primarily affects children and young adults without sexual predilection. Studies of its pathophysiology have shown conclusively that it is caused by fluid-phase dysregulation of the alternative pathway of complement, however the role played by genetics and autoantibodies like C3 nephritic factors must be more thoroughly defined if we are to make an impact in the clinical management of this disease. There are currently no mechanism-directed therapies to offer affected patients, half of whom progress to end stage renal failure disease within 10 years of diagnosis. Transplant recipients face the dim prospect of disease recurrence in their allografts, half of which ultimately fail. More detailed genetic and complement studies of DDD patients may make it possible to identify protective factors prognostic for naïve kidney and transplant survival, or conversely risk factors associated with progression to renal failure and allograft loss. The pathophysiology of DDD suggests that a number of different treatments warrant consideration. As advances are made in these areas, there will be a need to increase healthcare provider awareness of DDD by making resources available to clinicians to optimize care for DDD patients. PMID:21601923
Ma, Jin; Pan, Li-Bo; Yang, Xiao-Yang; Liu, Xiao-Ling; Tao, Shi-Yang; Zhao, Long; Qin, Xiao-Peng; Sun, Zai-Jin; Hou, Hong; Zhou, Yong-Zhang
2016-11-01
We collected and analyzed 128 surface soil samples from Xiangfen County for dichlorodiphenyltrichloroethane (DDT), dichlorodiphenyldichloroethane (DDD), and dichlorodiphenyldichloroethylene (DDE). Total DDT concentrations (DDTs; sum of p,p'-DDD, p,p'-DDE, and p,p'-DDT) ranged from ND to 427.81 ng g(-1) (dry weight, dw), with a mean of 40.26 ng g(-1) (dw). Among the three compounds, p,p'-DDD was the most dominant. The DDTs in Xiangfen County soils mainly originated from historical DDT use, but there were also new inputs likely related to dicofol use. The DDTs in Xiangfen County soils were mainly degraded under anaerobic conditions, and direct degradation to DDD was the main degradation route. Regions with relatively high concentrations of DDTs were mainly located in North and South Xiangfen County. In these regions, many soil samples contained p,p'-DDT as the predominant pollutant, suggestive of extensive new inputs of DDT. A health risk assessment revealed that there are no serious long-term health impacts of exposure to DDTs in soil, for adults or children. Copyright © 2016 Elsevier Ltd. All rights reserved.
Liu, Guangli; Zhou, Ying; Luo, Haiping; Cheng, Xing; Zhang, Renduo; Teng, Wenkai
2015-12-01
The aim of this study was to investigate different microbial electrolysis desalination cells for malic acid production. The systems included microbial electrolysis desalination and chemical-production cell (MEDCC), microbial electrolysis desalination cell (MEDC) with bipolar membrane and anion exchange membrane (BP-A MEDC), MEDC with bipolar membrane and cation exchange membrane (BP-C MEDC), and modified microbial desalination cell (M-MDC). The microbial electrolysis desalination cells performed differently in terms of malic acid production and energy consumption. The MEDCC performed best with the highest malic acid production rate (18.4 ± 0.6 mmol/Lh) and the lowest energy consumption (0.35 ± 0.14 kWh/kg). The best performance of MEDCC was attributable to the neutral pH condition in the anode chamber, the lowest internal resistance, and the highest Geobacter percentage of the anode biofilm population among all the reactors. Copyright © 2015 Elsevier Ltd. All rights reserved.
Pasta, Mauro; Wessells, Colin D; Cui, Yi; La Mantia, Fabio
2012-02-08
Water desalination is an important approach to provide fresh water around the world, although its high energy consumption, and thus high cost, call for new, efficient technology. Here, we demonstrate the novel concept of a "desalination battery", which operates by performing cycles in reverse on our previously reported mixing entropy battery. Rather than generating electricity from salinity differences, as in mixing entropy batteries, desalination batteries use an electrical energy input to extract sodium and chloride ions from seawater and to generate fresh water. The desalination battery is comprised by a Na(2-x)Mn(5)O(10) nanorod positive electrode and Ag/AgCl negative electrode. Here, we demonstrate an energy consumption of 0.29 Wh l(-1) for the removal of 25% salt using this novel desalination battery, which is promising when compared to reverse osmosis (~ 0.2 Wh l(-1)), the most efficient technique presently available. © 2012 American Chemical Society
Low-cost, light-switched, forward-osmosis desalination system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warner, John C.
The looming water crisis is the second largest issue facing humanity after energy. In order to meet the increasing demand for clean water, new efficient and low-cost methods of water purification must be developed. A promising method for dry regions with sea borders is the desalination of seawater. While there remain many disadvantages to current desalination techniques, such as environmental pollution and high cost, there is a strong opportunity for new technology development in this area. In this Phase I program, the development of a light-switchable, low-cost desalination system was explored. The system requires photoselective switching of water solubility. Ninemore » new light-switchable spiropyran-based small molecule and polymeric materials were synthesized, and methods to evaluate their desalination potential were developed and utilized. Severable promising spiropyran analogues proved to be photoswitchable, but so far sufficient photoswitchablity of solubility for a commercial desalination system was not achieved. More development is required.« less
40 CFR 52.29 - Visibility long-term strategies.
Code of Federal Regulations, 2010 CFR
2010-07-01
... listed where applicable in Subparts B through DDD of this part. The provisions of this section have been incorporated into the applicable implementation plan for various States, as provided in Subparts B through DDD...
40 CFR 52.29 - Visibility long-term strategies.
Code of Federal Regulations, 2011 CFR
2011-07-01
... listed where applicable in Subparts B through DDD of this part. The provisions of this section have been incorporated into the applicable implementation plan for various States, as provided in Subparts B through DDD...
NASA Astrophysics Data System (ADS)
Stein, Shaked; Russak, Amos; Sivan, Orit; Yechieli, Yospeh; Oren, Yoram; Kasher, Roni
2015-04-01
In arid countries with access to marine water seawater desalination is becoming an important water source in order to deal with the water scarcity and population growth. Seawater reverse osmosis (RO) facilities use open seawater intake, which requires pretreatment processes to remove particles in order to avoid fouling of the RO membrane. In small and medium size desalination facilities, an alternative water source can be saline groundwater in coastal aquifers. Using saline groundwater from boreholes near the shore as feed water may have the advantage of natural filtration and low organic content. It will also reduce operation costs of pretreatment. Another advantage of using groundwater is its availability in highly populated areas, where planning of large RO desalination plants is difficult and expensive due to real-estate prices. Pumping saline groundwater underneath the freshwater-seawater interface (FSI) might shift the interface towards the sea, thus rehabilitating the fresh water reservoirs in the aquifer. In this research, we tested the potential use of saline groundwater in the coastal aquifer of Israel as feed water for desalination using field work and desalination experiments. Specifically, we sampled the groundwater from a pumping well 100 m from the shore of Tel-Aviv and sea water from the desalination plant in Ashqelon, Israel. We used an RO cross flow system in a pilot plant in order to compare between the two water types in terms of permeate flux, permeate flux decline, salt rejection of the membrane and the fouling on the membrane. The feed, brine and fresh desalinated water from the outlet of the desalination system were chemically analyzed and compared. Field measurements of dissolved oxygen, temperature, pH and salinity were also conducted in situ. Additionally, SDI (silt density index), which is an important index for desalination, and total organic carbon that has a key role in organic fouling and development of biofouling, were measured and compared. The results have shown that using saline groundwater underneath the FSI as a resource for RO desalination process is beneficial in terms of fluxes: the flux reduction in the seawater desalination was 16% of the initial flux, while the flux reduction with the saline groundwater was only 9%. The SDI and total organic carbon were lower in saline groundwater than in seawater, which support the flux results. Therefore, using saline groundwater as feed water for desalination may be advantageous because of lower operational costs and reduced applied pressure needed and energy usage.
Effects of freshwater leaching on potential bioavailability of heavy metals in tidal flat soils.
Li, Hui; Lu, Jun; Li, Qu-Sheng; He, Bao-Yan; Mei, Xiu-Qin; Yu, Dan-Ping; Xu, Zhi-Min; Guo, Shi-Hong; Chen, Hui-Jun
2016-02-01
Leaching experiments were conducted to investigate the effects of desalination levels and sediment depths on potential bioavailability of heavy metal (Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in tidal flat soils. The data showed that both the desalination levels (p < 0.001) and soil depths (p < 0.001) had significant effects on the concentrations of acid-volatile sulfide (AVS). AVS concentrations generally exhibited increasing trends with an increase in depth and decreasing trends with enhanced desalination levels. The desalination levels had significant (p < 0.05) effects on the concentrations of simultaneously extracted metal (SEM; Cd, Cr, Cu, Fe, Mn, Pb, and Zn). Moreover, the concentrations of SEM (Cd, Cr, Cu, Fe, Mn, Pb, and Zn) generally tended to decrease with an increase in the desalination level. The desalination treatment significantly reduced the ratios of SEM/AVS compared with control. However, the ratios of SEM/AVS increased with enhanced desalination levels in treatments. Results reveal that low desalination treatment is better for reducing toxicity to benthic organisms than high desalination treatment. Since these reclaimed tidal flats with low desalinisation are suitable for saline water aquaculture, transforming the present land use of reclaimed tidal flats from fresh water aquaculture into saline water aquaculture may reduce health risk of heavy metals remained in sediments. These results will also contribute to our understanding of the dynamic behavior of heavy metals in the reclamation of tidal flats during leaching and the role of the ratio of SEM/AVS predictions on assessing the ecological risks of reclaimed tidal flats.
Solar-Powered Desalination: A Modelling and Experimental Study
NASA Astrophysics Data System (ADS)
Leblanc, Jimmy; Andrews, John
2007-10-01
Water shortage is becoming one of the major problems worldwide. As such, desalination technologies have been implemented to meet growing demands for fresh water. Among the desalination technologies, thermal desalination, including multi stage flash (MSF) and multi effect evaporation (MEE), is the current leading desalination process. Reverse osmosis (RO) is also being increasingly used. Despite technological improvements, thermal desalination and reverse osmosis continue to be intensive fossil-fuel consumers and contribute to increased levels of greenhouse gases. As energy costs rise, thermal desalination by solar energy and/or low cost waste heat is likely to become increasingly attractive. As part of a project investigating the productive use of saline land and the development of sustainable desalination systems, the feasibility of producing potable water from seawater or brackish water using desalination systems powered by renewable energy in the form of low-temperature solar-thermal sources has been studied. A salinity-gradient solar pond and an evacuated tube solar collector system have been used as heat sources. Solar ponds combine solar energy collection with long-term storage and can provide reliable thermal energy at temperature ranges from 50 to 90 °C. A visual basic computer model of the different multi-stage flash desalination processes coupled with a salinity-gradient solar pond was developed to determine which process is preferable in regards to performance and greenhouse impact. The governing mathematical equations are derived from mass balances, heat energy balances, and heat transfer characteristics. Using the results from the modelling, a small-scale solar-powered desalination system, capable of producing up to 500 litres of fresh water per day, was designed and manufactured. This single-stage flash system consists of two main units: the heat supply and storage system and the flash desalination unit. Two different condenser heat exchanger materials were investigated: copper-nickel and a commercially available plastic. The modelling and design of a three effects MEE system is also discussed. The effects of the important design and operating parameters (recovery ratio, thermal energy, parasitic electrical energy, distillate production and solar collection area) controlling the cost of fresh water determined both from the computer simulation and experimental results are presented and analysed in this paper. Future work in the overall research program is also outlined.
Rituximab fails where eculizumab restores renal function in C3nef-related DDD.
Rousset-Rouvière, Caroline; Cailliez, Mathilde; Garaix, Florentine; Bruno, Daniele; Laurent, Daniel; Tsimaratos, Michel
2014-06-01
Dense deposit disease (DDD), a C3 glomerulopathy (C3G), is a rare disease with unfavorable progression towards end-stage kidney disease. The pathogenesis of DDD is due to cytotoxic effects related to acquired or genetic dysregulation of the complement alternative pathway, which is at times accompanied by the production of C3 nephritic factor (C3NeF), an auto-antibody directed against the alternative C3 convertase. Available treatments include plasma exchange, CD20-targeted antibodies, and a terminal complement blockade via the anti-C5 monoclonal antibody eculizumab. We report here the case of an 8-year-old child with C3NeF and refractory DDD who presented with a nephritic syndrome. She tested positive for C3NeF activity; C3 was undetectable. Genetic analyses of the alternative complement pathway were normal. Methylprednisolone pulses and mycophenolate mofetil treatment resulted in complete recovery of renal function and a reduction in proteinuria. Corticosteroids were tapered and then withdrawn. Four months after corticosteroid discontinuation, hematuria and proteinuria recurred, and a renal biopsy confirmed an active DDD with a majority of extracapillary crescents. Despite an increase in immunosuppressive drugs, including methylprednisolone pulses and rituximab therapy, the patient suffered acute renal failure within 3 weeks, requiring dialysis. Eculizumab treatment resulted in a quick and impressive response. Hematuria very quickly resolved, kidney function improved, and no further dialysis was required. The patient received bimonthly eculizumab injections of 600 mg, allowing for normalization of renal function and reduction of proteinuria to <0.5 g per day. Since then, she continues to receive eculizumab. Complement regulation pathway-targeted therapy may be a specific and useful treatment for rapidly progressing DDD prior to the development of glomerulosclerosis. Our data provide evidence supporting the pivotal role of complement alternative pathway abnormalities in C3G with DDD.
1. Historic American Buildings Survey Frank O. Branzetti, Photographer July ...
1. Historic American Buildings Survey Frank O. Branzetti, Photographer July 9, 1940 (ddd) 6- MILE STONE, at 540 HANCOCK ST., QUINCY - Milestones H, I, CCC, DDD & EEE, Various Quincy locations, Quincy, Norfolk County, MA
Processing of Cryo-EM Movie Data.
Ripstein, Z A; Rubinstein, J L
2016-01-01
Direct detector device (DDD) cameras dramatically enhance the capabilities of electron cryomicroscopy (cryo-EM) due to their improved detective quantum efficiency (DQE) relative to other detectors. DDDs use semiconductor technology that allows micrographs to be recorded as movies rather than integrated individual exposures. Movies from DDDs improve cryo-EM in another, more surprising, way. DDD movies revealed beam-induced specimen movement as a major source of image degradation and provide a way to partially correct the problem by aligning frames or regions of frames to account for this specimen movement. In this chapter, we use a self-consistent mathematical notation to explain, compare, and contrast several of the most popular existing algorithms for computationally correcting specimen movement in DDD movies. We conclude by discussing future developments in algorithms for processing DDD movies that would extend the capabilities of cryo-EM even further. © 2016 Elsevier Inc. All rights reserved.
Using Solar Energy to Desalinate Water.
ERIC Educational Resources Information Center
Tabor, Harry Z.
1978-01-01
Material presented is adapted from Desalination with Solar Energy, a paper presented before the International Symposium on Energy Sources and Development, held in Spain in 1977. Desalination systems energized by the sun, conditions governing their efficiency, and their costs are discussed. (HM)
Zhu, Yanxia; Liang, Yuhong; Zhu, Hongxia; Lian, Cuihong; Wang, Liang; Wang, Yiwei; Gu, Hongsheng; Zhou, Guangqian; Yu, Xiaoping
2017-06-27
Disc degenerative disease (DDD) is believed to originate in the nucleus pulposus (NP) region therefore, it is important to obtain a greater number of active NP cells for the study and therapy of DDD. Human induced pluripotent stem cells (iPSCs) are a powerful tool for modeling the development of DDD in humans, and have the potential to be applied in regenerative medicine. NP cells were isolated from DDD patients following our improved method, and then the primary NP cells were reprogramed into iPSCs with Sendai virus vectors encoding 4 factors. Successful reprogramming of iPSCs was verified by the expression of surface markers and presence of teratoma. Differentiation of iPSCs into NP-like cells was performed in a culture plate or in hydrogel, whereby skin fibroblast derived-iPSCs were used as a control. Results demonstrated that iPSCs derived from NP cells displayed a normal karyotype, expressed pluripotency markers, and formed teratoma in nude mice. NP induction of iPSCs resulted in the expression of NP cell specific matrix proteins and related genes. Non-induced NP derived-iPSCs also showed some NP-like phenotype. Furthermore, NP-derived iPSCs differentiate much better in hydrogel than that in a culture plate. This is a novel method for the generation of iPSCs from NP cells of DDD patients, and we have successfully differentiated these iPSCs into NP-like cells in hydrogel. This method provides a novel treatment of DDD by using patient-specific NP cells in a relatively simple and straightforward manner.
Determination of the optimal atrioventricular interval in sick sinus syndrome during DDD pacing.
Kato, Masaya; Dote, Keigo; Sasaki, Shota; Goto, Kenji; Takemoto, Hiroaki; Habara, Seiji; Hasegawa, Daiji; Matsuda, Osamu
2005-09-01
Although the AAI pacing mode has been shown to be electromechanically superior to the DDD pacing mode in sick sinus syndrome (SSS), there is evidence suggesting that during AAI pacing the presence of natural ventricular activation pattern is not enough for hemodynamic benefit to occur. Myocardial performance index (MPI) is a simply measurable Doppler-derived index of combined systolic and diastolic myocardial performance. The aim of this study was to investigate whether AAI pacing mode is electromechanically superior to the DDD mode in patients with SSS by using Doppler-derived MPI. Thirty-nine SSS patients with dual-chamber pacing devices were evaluated by using Doppler echocardiography in AAI mode and DDD mode. The optimal atrioventricular (AV) interval in DDD mode was determined and atrial stimulus-R interval was measured in AAI mode. The ratio of the atrial stimulus-R interval to the optimal AV interval was defined as relative AV interval (rAVI) and the ratio of MPI in AAI mode to that in DDD mode was defined as relative MPI (rMPI). The rMPI was significantly correlated with atrial stimulus-R interval and rAVI (r = 0.57, P = 0.0002, and r = 0.67, P < 0.0001, respectively). A cutoff point of 1.73 for rAVI provided optimum sensitivity and specificity for rMPI >1 based on the receiver operator curves. Even though the intrinsic AV conduction is moderately prolonged, some SSS patients with dual-chamber pacing devices benefit from the ventricular pacing with optimal AV interval. MPI is useful to determine the optimal pacing mode in acute experiment.
Emerging desalination technologies for water treatment: a critical review.
Subramani, Arun; Jacangelo, Joseph G
2015-05-15
In this paper, a review of emerging desalination technologies is presented. Several technologies for desalination of municipal and industrial wastewater have been proposed and evaluated, but only certain technologies have been commercialized or are close to commercialization. This review consists of membrane-based, thermal-based and alternative technologies. Membranes based on incorporation of nanoparticles, carbon nanotubes or graphene-based ones show promise as innovative desalination technologies with superior performance in terms of water permeability and salt rejection. However, only nanocomposite membranes have been commercialized while others are still under fundamental developmental stages. Among the thermal-based technologies, membrane distillation and adsorption desalination show the most promise for enhanced performance with the availability of a waste heat source. Several alternative technologies have also been developed recently; those based on capacitive deionization have shown considerable improvements in their salt removal capacity and feed water recovery. In the same category, microbial desalination cells have been shown to desalinate high salinity water without any external energy source, but to date, scale up of the process has not been methodically evaluated. In this paper, advantages and drawbacks of each technology is discussed along with a comparison of performance, water quality and energy consumption. Copyright © 2015 Elsevier Ltd. All rights reserved.
Numerical Study on Natural Vacuum Solar Desalination System with Varying Heat Source Temperature
NASA Astrophysics Data System (ADS)
Ambarita, H.
2017-03-01
A natural vacuum desalination unit with varying low grade heat source temperature is investigated numerically. The objective is to explore the effects of the variable temperature of the low grade heat source on performances and characteristics of the desalination unit. The specifications of the desalination unit are naturally vacuumed with surface area of seawater in evaporator and heating coil are 0.2 m2 and 0.188 m2, respectively. Temperature of the heating coil is simulated based on the solar radiation in the Medan city. A program to solve the governing equations in forward time step marching technique is developed. Temperature of the evaporator, fresh water production rate, and thermal efficiency of the desalination unit are analysed. Simulation is performed for 9 hours, it starts from 8.00 and finishes at 17.00 of local time. The results show that, the desalination unit with operation time of 9 hours can produce 5.705 L of freshwater and thermal efficiency is 81.8 %. This reveals that varying temperature of the heat source of natural vacuum desalination unit shows better performance in comparison with constant temperature of the heat source.
Multi-objective Optimization of Solar-driven Hollow-fiber Membrane Distillation Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nenoff, Tina M.; Moore, Sarah E.; Mirchandani, Sera
Securing additional water sources remains a primary concern for arid regions in both the developed and developing world. Climate change is causing fluctuations in the frequency and duration of precipitation, which can be can be seen as prolonged droughts in some arid areas. Droughts decrease the reliability of surface water supplies, which forces communities to find alternate primary water sources. In many cases, ground water can supplement the use of surface supplies during periods of drought, reducing the need for above-ground storage without sacrificing reliability objectives. Unfortunately, accessible ground waters are often brackish, requiring desalination prior to use, and underdevelopedmore » infrastructure and inconsistent electrical grid access can create obstacles to groundwater desalination in developing regions. The objectives of the proposed project are to (i) mathematically simulate the operation of hollow fiber membrane distillation systems and (ii) optimize system design for off-grid treatment of brackish water. It is anticipated that methods developed here can be used to supply potable water at many off-grid locations in semi-arid regions including parts of the Navajo Reservation. This research is a collaborative project between Sandia and the University of Arizona.« less
Towards Enhanced Performance Thin-film Composite Membranes via Surface Plasma Modification
Reis, Rackel; Dumée, Ludovic F.; Tardy, Blaise L.; Dagastine, Raymond; Orbell, John D.; Schutz, Jürg A.; Duke, Mikel C.
2016-01-01
Advancing the design of thin-film composite membrane surfaces is one of the most promising pathways to deal with treating varying water qualities and increase their long-term stability and permeability. Although plasma technologies have been explored for surface modification of bulk micro and ultrafiltration membrane materials, the modification of thin film composite membranes is yet to be systematically investigated. Here, the performance of commercial thin-film composite desalination membranes has been significantly enhanced by rapid and facile, low pressure, argon plasma activation. Pressure driven water desalination tests showed that at low power density, flux was improved by 22% without compromising salt rejection. Various plasma durations and excitation powers have been systematically evaluated to assess the impact of plasma glow reactions on the physico-chemical properties of these materials associated with permeability. With increasing power density, plasma treatment enhanced the hydrophilicity of the surfaces, where water contact angles decreasing by 70% were strongly correlated with increased negative charge and smooth uniform surface morphology. These results highlight a versatile chemical modification technique for post-treatment of commercial membrane products that provides uniform morphology and chemically altered surface properties. PMID:27363670
Rotating carbon nanotube membrane filter for water desalination
NASA Astrophysics Data System (ADS)
Tu, Qingsong; Yang, Qiang; Wang, Hualin; Li, Shaofan
2016-05-01
We have designed a porous nanofluidic desalination device, a rotating carbon nanotube membrane filter (RCNT-MF), for the reverse osmosis desalination that can turn salt water into fresh water. The concept as well as design strategy of RCNT-MF is modeled, and demonstrated by using molecular dynamics simulation. It has been shown that the RCNT-MF device may significantly improve desalination efficiency by combining the centrifugal force propelled reverse osmosis process and the porous CNT-based fine scale selective separation technology.
Rotating carbon nanotube membrane filter for water desalination
Tu, Qingsong; Yang, Qiang; Wang, Hualin; Li, Shaofan
2016-01-01
We have designed a porous nanofluidic desalination device, a rotating carbon nanotube membrane filter (RCNT-MF), for the reverse osmosis desalination that can turn salt water into fresh water. The concept as well as design strategy of RCNT-MF is modeled, and demonstrated by using molecular dynamics simulation. It has been shown that the RCNT-MF device may significantly improve desalination efficiency by combining the centrifugal force propelled reverse osmosis process and the porous CNT-based fine scale selective separation technology. PMID:27188982
1998-04-01
desalination plants.”14 Kuwait and Qatar are almost entirely dependant on desalination plants already for their drinking water and with Qatar’s only aquifer ...rivers), below ground aquifers , and desalination facilities; the focus of this paper. Mary E. Morris most succinctly describes the basic water issues in...with different players and different issues: The first set involves the Jordan and Yarmuk River systems, as well as the West Bank and Gaza aquifers
Fthenakis, Vasilis; Atia, Adam A.; Morin, Olivier; ...
2015-01-28
Increased water demand and increased drought episodes in the Middle East and other regions necessitate an expansion in desalination projects and create a great market opportunity for photovoltaics (PV). PV-powered desalination has previously been regarded as not being a cost-competitive solution when compared with conventionally powered desalination; however, the decline in PV costs over the last few years has changed this outlook. Here, this article presents up-to-date performance and cost analysis of reverse osmosis (RO) desalination powered with PV connected to the Saudi Arabian grid. Reference cases include relatively small (i.e., producing 6550 m 3 water per day) and largemore » (i.e., 190 000 m 3/day) desalination plants using seawater at a salinity of 40 000 ppm. We used data from a King Abdullah University for Science and Technology presentation and Hybrid Optimization Model for Electric Renewables 2.81 Energy Modeling Software (HOMER Energy LLC) in tandem with Desalination Economic Evaluation Program 4.0 (International Atomic Energy Agency) desalination software to analyze the techno-economic feasibility of these plants. The first phase of our work entailed a comparison between dual-axis high concentration PV (CPV) equipped with triple junction III/V solar cells and CdTe PV-powered RO systems. The estimated levelized cost of electricity from CPV is 0.16/kWh dollars, whereas that from CdTe PV is $0.10/kWh dollars and 0.09/kWh dollars for fixed-tilt and one-axis tracking systems, respectively. These costs are higher than the price of diesel-based grid electricity in the region because diesel fuel is heavily subsidized in Saudi Arabia.« less
NASA Astrophysics Data System (ADS)
Multsch, Sebastian; Alquwaizany, Abdulaziz S.; Lehnert, Karl-H.; Frede, Hans-Georg; Breuer, Lutz
2015-04-01
The agriculture sector consumes with 88 % a majority of the almost fossil water resources in the Kingdom of Saudi Arabia (KSA). Irrigation with saline water has been highlighted to be a promising technique to reduce fresh water consumption. Current desalination techniques, further developments, salt tolerant crop types and improved irrigation systems can potentially redesign future perspectives for irrigation agriculture, in particular by considering the growing desalination capacity in KSA (5 million m3 day-1 in 2003). Hence, we have analyzed the potential of using desalinated and partial desalinated seawater for growing crops in KSA by considering scenarios of salinity levels and desalination costs. The desalination process has been modelled with the ROSA© software considering a reverse osmosis (RO) plant. The spatial decision support system SPARE:WATER has been applied to assess the water footprint of crops (WFcrop). In order to maintain high crop yields, salts need to be washed out from the rooting zone, which requires the application of additional salt-free water. Therefore, high crop yields come along with additional water requirements and increased desalination effort and increased costs for proving high quality water. As an example, growing wheat with partial desalinated seawater from the Arabian Gulf with a RO plant has been investigated. Desalination reduces the salinity level from 76 dS m-1 to 0.5 dS m-1 considering two RO cycles, with cost of desalinized water in the range of 0.5 to 1.2 m-3. We acknowledge that cost only refer to desalination without considering others such as transport, water pumping or crop fertilization. The study shows that Boron is the most problematic salt component, because it is difficult to remove by RO and toxic in high concentrations for crops (wheat threshold of 0.5 to 1.0 mg l-1). The nationwide average WFcrop of wheat under surface irrigation is 2,628 m3 t-1 considering high water quality of 1 dS m-1 and 3,801 m3 t-1 at 12 dS m-1. Using sprinkler or drip irrigation systems the WFcrop decreases of about 20 % and 34 %, respectively. It can be shown that a salinity level larger than 9 dS m-1 increases leaching water requirement of wheat over proportional and that a salinity level of 9 dS m-1 reduces cost for irrigation water by about 11 % in comparison to the irrigation with nearly fresh water quality of 1 dS m-1. A trade-off analyses reveals that making desalinated seawater use profitable, cost need to be reduced below 0.2 m-3 for sprinkler and drip irrigation and even below 0.1 m-3 for widespread used surface irrigation systems. The authors gratefully acknowledge the support of the King Abdulaziz City for Science and Technology (KACST), Saudi Arabia, for funding the research Project No. 33-900 entitled 'Technology for desalinated seawater use in agriculture'.
The look of into Desalination and Natural Hazard
NASA Astrophysics Data System (ADS)
Arregoitia Sarabia, C. A.
2012-04-01
Today due to climate change and population growth, cities and especially larger cities have become more water stressed. Thus the growing demand for drinkable water due to water scarcity in different World regions and its reliable supply, have persuaded humans to construct desalination plants. Today, the implementation of different large-scale desalination methods is increasing. Desalination is a separation process that consists on the removal of salts from water (seawater or brackish water) to make it suitable for other purposes. Some important environmental aspects for a desalination plant are the location of the plant, brine disposal and energy considerations. However these issues become affected when natural adversity happens. Desalination processes used are normally classified in thermal and membrane. The energy required by these processes could be of any form of heat, electrical or mechanical depending on the separation process. These types of energy derive from fossil fuels, which conditions the desalination sustainability -environmental and economical. To improve this reality, the desalination industry is making a great research effort related to novel technologies, the use of renewable energies, and brine management. Presently desalination membrane technologies are preferred over thermal ones (based on evaporation) since they allow for continuous operations close to ambient temperatures. Moreover, the offer for a wider selection of large equipment and modules is increasing. This makes it possible to design processes according to potable needs as well as ease the use of membranes and other separation technologies together. Traditionally the location of the plant is an obvious matter where selection of site should be determined by considerations of mainly energy supply available and distance in relation to feed water intake, disposal site and end-user. This means locating these plants in coastal areas or inland locations and look for a solution to then naturally dispose their brine waste. However, a desalination plant can be affected by different natural hazards depending on where they are located and therefore they should be considered when determining the optimum site for it. A natural hazard is an unexpected or uncontrollable natural event of unusual intensity that threatens people's lives or their activities. Atmospheric hazards are weather-related events, whereas geologic hazards happen on or within the Earth's surface. However, it is important to understand that the capricious force of nature can trigger catastrophes that could impact households, communities and even threaten life across the world depending on the desalination plant location. Little work has been undertaken so far to explore the impact of desalination technology when a natural event arrives. Therefore, this paper looks at the different desalination technologies and their role and impact when a natural hazard occurs because they can either be a mitigation source for water scarcity or can be turned into a greater disaster. An example is presented Keywords: desalination, water, natural hazards and megacities
Multilayer Nanoporous Graphene Membranes for Water Desalination.
Cohen-Tanugi, David; Lin, Li-Chiang; Grossman, Jeffrey C
2016-02-10
While single-layer nanoporous graphene (NPG) has shown promise as a reverse osmosis (RO) desalination membrane, multilayer graphene membranes can be synthesized more economically than the single-layer material. In this work, we build upon the knowledge gained to date toward single-layer graphene to explore how multilayer NPG might serve as a RO membrane in water desalination using classical molecular dynamic simulations. We show that, while multilayer NPG exhibits similarly promising desalination properties to single-layer membranes, their separation performance can be designed by manipulating various configurational variables in the multilayer case. This work establishes an atomic-level understanding of the effects of additional NPG layers, layer separation, and pore alignment on desalination performance, providing useful guidelines for the design of multilayer NPG membranes.
Impact of Desalination on Physical and Mechanical Properties of Lanzhou Loess
NASA Astrophysics Data System (ADS)
Bing, Hui; Zhang, Ying; Ma, Min
2017-12-01
Soluble salt in soil has a significant influence on the physical and mechanical properties of the soil. We performed desalination experiments on Lanzhou loess, a typical sulfate saline soil, to study the effects of salt on the physical and mechanical properties of the loess and compare variations in the soil properties after desalination. The Atterberg limits of the soil increased after desalination as a result of changes in the soil particle composition and grain refinement. The shear and uniaxial compressive strength of the soil increased as a result of decreased calcitic cementation and other changes to the soil structure. Scanning electron microstructure (SEM) and mercury intrusion porosimetry (MIP) procedures revealed changes to the microstructure and pore-size distribution of the Lanzhou loess after desalination.
Solar membrane distillation: desalination for the Navajo Nation.
Karanikola, Vasiliki; Corral, Andrea F; Mette, Patrick; Jiang, Hua; Arnoldand, Robert G; Ela, Wendell P
2014-01-01
Provision of clean water is among the most serious, long-term challenges in the world. To an ever increasing degree, sustainable water supply depends on the utilization of water of impaired initial quality. This is particularly true in developing nations and in water-stressed areas such as the American Southwest. One clear example is the Navajo Nation. The reservation covers 27,000 square miles, mainly in northeastern Arizona. Low population density coupled with water scarcity and impairment makes provision of clean water particularly challenging. The Navajos rely primarily on ground water, which is often present in deep aquifers or of brackish quality. Commonly, reverse osmosis (RO) is chosen to desalinate brackish ground water, since RO costs are competitive with those of thermal desalination, even for seawater applications. However, both conventional thermal distillation and RO are energy intensive, complex processes that discourage decentralized or rural implementation. In addition, both technologies demand technical experience for operation and maintenance, and are susceptible to scaling and fouling unless extensive feed pretreatment is employed. Membrane distillation (MD), driven by vapor pressure gradients, can potentially overcome many of these drawbacks. MD can operate using low-grade, sub-boiling sources of heat and does not require extensive operational experience. This presentation discusses a project on the Navajo Nation, Arizona (Native American tribal lands) that is designed to investigate and deploy an autonomous (off-grid) system to pump and treat brackish groundwater using solar energy. Βench-scale, hollow fiber MD experiment results showed permeate water fluxes from 21 L/m2·d can be achieved with transmembrane temperature differences between 40 and 80˚C. Tests run with various feed salt concentrations indicate that the permeate flux decreases only about 25% as the concentration increases from 0 to 14% (w/w), which is four times seawater salt concentration. The quality of the permeate water remains constant at about 1 mg/L regardless of the changes in the influent salt concentration. A nine-month MD field trial, using hollow fiber membranes and completely off-the-shelf components demonstrated that a scaled-up solar-driven MD system was practical and economically viable. Based on these results, a pilot scale unit will be constructed and deployed on the tribal lands.
Dynamic data driven bidirectional reflectance distribution function measurement system
NASA Astrophysics Data System (ADS)
Nauyoks, Stephen E.; Freda, Sam; Marciniak, Michael A.
2014-09-01
The bidirectional reflectance distribution function (BRDF) is a fitted distribution function that defines the scatter of light off of a surface. The BRDF is dependent on the directions of both the incident and scattered light. Because of the vastness of the measurement space of all possible incident and reflected directions, the calculation of BRDF is usually performed using a minimal amount of measured data. This may lead to poor fits and uncertainty in certain regions of incidence or reflection. A dynamic data driven application system (DDDAS) is a concept that uses an algorithm on collected data to influence the collection space of future data acquisition. The authors propose a DDD-BRDF algorithm that fits BRDF data as it is being acquired and uses on-the-fly fittings of various BRDF models to adjust the potential measurement space. In doing so, it is hoped to find the best model to fit a surface and the best global fit of the BRDF with a minimum amount of collection space.
NASA Astrophysics Data System (ADS)
Ziolkowska, J. R.; Scanlon, B. R.; Young, M.
2013-12-01
Water desalination is anticipated to become a prospective solution for mitigating future water shortages in Texas. As of 2010, 46 municipal brackish water desalination plants were operating in Texas with an estimated total desalination capacity of about 120 million gallons per day (2.3% of state water use) (TWDB 2010; TWDB 2013). In 2011, 99% of the State of Texas suffered extreme drought, with large portions suffering through exceptional drought. This event was classified as the one-year drought of record. Moreover, the growing population of Texas and the subsequent growing water demand create an immediate need for long-term planning for a reliable and efficient water supply. Desalination, even though acknowledged as a reliable option in many countries in the world, requires high investment costs and energy inputs. Current costs of desalinated water can range between US1.09/1,000 gallons and US3.7/1,000 gallons (Arroyo and Shirazi 2012), which are about two to three times higher than water costs from conventional sources (San Antonio Water System 2012; AustinTexas.gov 2013). Economic efficiency is still the main factor determining future developments of desalination investments in Texas, and the technology is still emerging. While currently only investment, maintenance and total capital costs per unit water are considered as factors determining viability of a desalination plant, this study aims at depicting a broader picture of socio-economic impacts related to the construction project itself, both in the immediate region and adjacent communities and interlinked sectors. This study presents an Input-Output model for the brackish water desalination plant in San Antonio, with the first stage expected to be completed in 2016. By using multi-regional and sectoral multipliers, the analysis shows that constructing the desalination plant can create 2,050 jobs in the San Antonio region, while it will add 316 more jobs in other regions in Texas by 2016. Construction will also create US133.9M of total added value in the San Antonio region and US36.6M in Texas. The total number of new jobs in the San Antonio region (3,718) and added value of US$262.8M is expected after completing the last construction phase in 2026. This study presents a broad picture of development patterns of desalination plants in Texas and the US, as well as future opportunities and challenges for this technology. It emphasizes the necessity of evaluating economic and social direct, indirect, and induced effects of desalination plants on a macro level, rather than focusing solely on the direct investment costs and costs of desalinated water provided to consumers.
45. AUXILIARY CHAMBER BETWEEN CHAMBER AND CONCRETE ENCLOSURE (LOCATION DDD), ...
45. AUXILIARY CHAMBER BETWEEN CHAMBER AND CONCRETE ENCLOSURE (LOCATION DDD), VIEW LOOKING EAST. LEAD ENCLOSED PIPING IS DRAIN FROM BOILER CHAMBER No. 1 - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA
p,p\\'-Dichlorodiphenyl dichloroethane (DDD)
Integrated Risk Information System (IRIS)
p , p ' - Dichlorodiphenyl dichloroethane ( DDD ) ; CASRN 72 - 54 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard
Dense Deposit Disease in Korean Children: A Multicenter Clinicopathologic Study
Park, Se Jin; Kim, Yong-Jin; Ha, Tae-Sun; Lim, Beom Jin; Jeong, Hyeon Joo; Park, Yong Hoon; Lee, Dae Yeol; Kim, Pyung Kil; Kim, Kyo Sun; Chung, Woo Yeong
2012-01-01
The purpose of this study was to investigate the clinical, laboratory, and pathologic characteristics of dense deposit disease (DDD) in Korean children and to determine whether these characteristics differ between Korean and American children with DDD. In 2010, we sent a structured protocol about DDD to pediatric nephrologists throughout Korea. The data collected were compared with previously published data on 14 American children with DDD. Korean children had lower 24-hr urine protein excretion and higher serum albumin levels than American children. The light microscopic findings revealed that a higher percentage of Korean children had membranoproliferative glomerulonephritis patterns (Korean, 77.8%; American, 28.6%, P = 0.036), whereas a higher percentage of American children had crescents (Korean, 0%; American, 78.6%, P < 0.001). The findings from the electron microscopy revealed that Korean children were more likely to have segmental electron dense deposits in the lamina densa of the glomerular basement membrane (Korean, 100%; American, 28.6%, P = 0.002); mesangial deposit was more frequent in American children (Korean, 66.7%; American, 100%, P = 0.047). The histological findings revealed that Korean children with DDD were more likely to show membranoproliferative glomerulonephritis patterns than American children. The degree of proteinuria and hypoalbuminemia was milder in Korean children than American children. PMID:23091320
Ellis, Steven G; Booij, Kees; Kaputa, Mike
2008-07-01
Semipermeable membrane devices (SPMDs) spiked with the performance reference compound PCB29 were deployed 6.1 m above the sediments of Lake Chelan, Washington, for a period of 27 d, to estimate the dissolved concentrations of 4,4'-DDT, 4,4'-DDE, and 4,4'-DDD. Water concentrations were estimated using methods proposed in 2002 and newer equations published in 2006 to determine how the application of the newer equations affects historical SPMD data that used the older method. The estimated concentrations of DDD, DDE, and DDD calculated using the older method were 1.5-2.9 times higher than the newer method. SPMD estimates from both methods were also compared to dissolved and particulate DDT concentrations measured directly by processing large volumes of water through a large-volume solid-phase extraction device (Infiltrex 300). SPMD estimates of DDD+DDE+DDT (SigmaDDT) using the older and newer methods were lower than Infiltrex concentrations by factors of 1.1 and 2.3, respectively. All measurements of DDT were below the Washington State water quality standards for the protection of human health (0.59 ng l(-1)) and aquatic life (1.0 ng l(-1)).
Energy and air emission effects of water supply.
Stokes, Jennifer R; Horvath, Arpad
2009-04-15
Life-cycle air emission effects of supplying water are explored using a hybrid life-cycle assessment For the typically sized U.S. utility analyzed, recycled water is preferable to desalination and comparable to importation. Seawater desalination has an energy and air emission footprint that is 1.5-2.4 times larger than that of imported water. However, some desalination modes fare better; brackish groundwater is 53-66% as environmentally intensive as seawater desalination. The annual water needs (326 m3) of a typical Californian that is met with imported water requires 5.8 GJ of energy and creates 360 kg of CO2 equivalent emissions. With seawater desalination, energy use would increase to 14 GJ and 800 kg of CO2 equivalent emissions. Meeting the water demand of California with desalination would consume 52% of the state's electricity. Supply options were reassessed using alternative electricity mixes, including the average mix of the United States and several renewable sources. Desalination using solar thermal energy has lower greenhouse gas emissions than that of imported and recycled water (using California's electricity mix), but using the U.S. mix increases the environmental footprint by 1.5 times. A comparison with a more energy-intensive international scenario shows that CO2 equivalent emissions for desalination in Dubai are 1.6 times larger than in California. The methods, decision support tool (WEST), and results of this study should persuade decision makers to make informed water policy choices by including energy consumption and material use effects in the decision-making process.
Synergies of solar energy use in the desalination of seawater: A case study in northern Chile
NASA Astrophysics Data System (ADS)
Servert, Jorge F.; Cerrajero, Eduardo; Fuentealba, Edward L.
2016-05-01
The mining industry is a great consumer of water for hydrometallurgical processes. Despite the efforts in minimizing the use of fresh water through reuse, recycling and process intensification, water demand for mining is expected to rise a 40% from 2013 to 2020. For seawater to be an alternative to groundwater, it must be pumped up to the mine (thousands of meters uphill) and desalinated. These processes require intensive energy and investment in desalination and piping/pumping facilities. A conventional solution for this process would be desalination by reverse osmosis at sea level, powered by electricity from the grid, and further pumping of the desalinated water uphill. This paper compares the feasibility of two solar technologies versus the "conventional" option. LCOW (Levelized Cost of Water) was used as a comparative indicator among the studied solutions, with values for a lifetime of 10, 15, 20 and 25 years, calculated using a real discount rate equal to 12%. The LCOW is lower in all cases for the RO + grid solution. The cost of desalination, ignoring the contribution of pumping, is similar for the three technologies from twenty years of operation. The use of solar energy to desalinate sea water for consumption in the mines of the Atacama region is technically feasible. However, due to the extra costs from pumping whole seawater, and not just the desalinated water, solar solutions are less competitive than the conventional process.
As an outcome of this project data on the applicability of protein polymer membranes for application to water desalination will be obtained. This will provide information on the stability and permeability of these membranes under simulated desalination conditions. The struct...
Improvement of water desalination technologies in reverse osmosis plants
NASA Astrophysics Data System (ADS)
Vysotskii, S. P.; Konoval'chik, M. V.; Gul'ko, S. E.
2017-07-01
The strengthening of requirements for the protection of surface-water sources and increases in the cost of reagents lead to the necessity of using membrane (especially, reverse osmosis) technologies of water desalination as an alternative to ion-exchange technologies. The peculiarities of using reverse osmosis technologies in the desalination of waters with an increased salinity have been discussed. An analogy has been made between the dependence of the adsorptive capacity of ion-exchange resins on the reagent consumption during ion exchange and the dependence of the specific ion flux on the voltage in the electrodialysis and productivity of membrane elements on the excess of the pressure of source water over the osmotic pressure in reverse osmosis. It has been proposed to regulate the number of water desalination steps in reverse osmosis plants, which makes it possible to flexibly change the productivity of equipment and the level of desalinization, depending on the requirements for the technological process. It is shown that the selectivity of reverse osmotic membranes with respect to bivalent ions (calcium, magnesium, and sulfates) is approximately four times higher than the selectivity with respect to monovalent ions (sodium and chlorine). The process of desalination in reverse osmosis plants depends on operation factors, such as the salt content and ion composition of source water, the salt content of the concentrate, and the temperatures of solution and operating pressure, and the design features of devices, such as the length of the motion of the desalination water flux, the distance between membranes, and types of membranes and turbulators (spacers). To assess the influence of separate parameters on the process of reverse osmosis desalination of water solutions, we derived criteria equations by compiling problem solution matrices on the basis of the dimensional method, taking into account the Huntley complement. The operation of membrane elements was analyzed and the dependence of the output of desalinated water (permeate) through the membranes on the pressure of influent water for desalination and the dependence of the permeate output on the water viscosity and the dependence of the specific permeate output on the velocity and length of the motion of the desalination water flux were built. The values of the optimum pressure of source influent water for desalination in a reverse osmosis device were found. Provided the current prices for membrane elements (800 to 1200 USD) and cost of electricity (0.06-0.1 USD), the optimum pressure is 1.0 to 1.4 MPa.
40 CFR 63.1316 - PET and polystyrene affected sources-emissions control provisions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... appropriate, and are not required to comply with the requirements specified in 40 CFR part 60, subpart DDD... requirements specified in 40 CFR part 60, subpart DDD. Compliance can be based on either organic HAP or TOC. (1...
40 CFR 63.1316 - PET and polystyrene affected sources-emissions control provisions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... appropriate, and are not required to comply with the requirements specified in 40 CFR part 60, subpart DDD... requirements specified in 40 CFR part 60, subpart DDD. Compliance can be based on either organic HAP or TOC. (1...
Leopold, Christine; Mantel-Teeuwisse, Aukje Katja; Vogler, Sabine; de Joncheere, Kees; Laing, Richard Ogilvie; Leufkens, Hubert G M
2013-10-01
Previous studies have suggested that medicines prices in Europe converge over time as a result of policy measures such as external price referencing. To explore whether ex-factory prices of on-patented medicines in Western European countries have converged over a recent period of time. Prices of ten on-patent medicines in five years (2007, 2008, 2010, 2011, 2012) of 15 European countries were analyzed. The unit of analysis was the ex-factory price in Euro per defined daily dose (exchange rate indexed to 2007). A score (deviation from the average price) per country as well as the ranges were calculated for all medicines. The prices between countries and selected products varied to a great extent from as low as an average price of € 1.3/DDD for sitagliptin in 2010-2012 to an average of € 221.5/DDD for alemtuzumab in 2011. Between 2008 and 2012, a price divergence was seen which was fully driven by two countries, Germany (up to 27% more expensive than the average) and Greece (up to 32% cheaper than the average). All other countries had stable prices and centered around the country average. Prices of less expensive as well as expensive medicines remained relatively stable or decreased over time, while only the price of sirolimus relatively increased. Our study period included the time of the recession and several pricing policy measures may have affected the prices of medicines. Instead of the expected price convergence we observed a price divergence driven by price changes in only two of the 15 countries. All other European countries remained stable around the country average. Further research is needed to expand the study to a bigger sample size, and include prescribing data and Eastern European countries. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Science Communication and Desalination Research: Water Experts' Views
ERIC Educational Resources Information Center
Schibeci, R. A.; Williams, A. J.
2014-01-01
Access to clean drinking water is a major problem for many people across the world. Desalination is being increasingly used in many countries to provide this important resource. Desalination technology has received varying degrees of support in the communities in which this technology has been adopted. Productive communication suggests we…
Forward-Osmosis Desalination with Poly(Ionic Liquid) Hydrogels as Smart Draw Agents.
Fan, Xuelin; Liu, Huili; Gao, Yating; Zou, Zhu; Craig, Vincent S J; Zhang, Guangzhao; Liu, Guangming
2016-06-01
The combination of high desalination efficiency, negligible draw-solute leakage, nontoxicity, ease of regeneration, and effective separation to produce liquid water makes the smart draw agents developed here highly suited for forward-osmosis desalination. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2004-01-01
Parsons Company and Texas Water Development Board, 1967; Schultz and others, 1967; Morris and Prehn , 1971; and Stucky and Arnwine, 1971). Desalination is...Inland desalination operations commonly dispose of concentrate using evaporation ponds (Morris and Prehn , 1971; Stucky and Arnwine, 1971) or deep-well...New Mexico, 1976). The potential contribution of desalination to water supply in New Mexico has been discussed by Morris and Prehn (1971) and Stucky
Nanostructured materials for water desalination.
Humplik, T; Lee, J; O'Hern, S C; Fellman, B A; Baig, M A; Hassan, S F; Atieh, M A; Rahman, F; Laoui, T; Karnik, R; Wang, E N
2011-07-22
Desalination of seawater and brackish water is becoming an increasingly important means to address the scarcity of fresh water resources in the world. Decreasing the energy requirements and infrastructure costs of existing desalination technologies remains a challenge. By enabling the manipulation of matter and control of transport at nanometer length scales, the emergence of nanotechnology offers new opportunities to advance water desalination technologies. This review focuses on nanostructured materials that are directly involved in the separation of water from salt as opposed to mitigating issues such as fouling. We discuss separation mechanisms and novel transport phenomena in materials including zeolites, carbon nanotubes, and graphene with potential applications to reverse osmosis, capacitive deionization, and multi-stage flash, among others. Such nanostructured materials can potentially enable the development of next-generation desalination systems with increased efficiency and capacity.
Nanostructured materials for water desalination
NASA Astrophysics Data System (ADS)
Humplik, T.; Lee, J.; O'Hern, S. C.; Fellman, B. A.; Baig, M. A.; Hassan, S. F.; Atieh, M. A.; Rahman, F.; Laoui, T.; Karnik, R.; Wang, E. N.
2011-07-01
Desalination of seawater and brackish water is becoming an increasingly important means to address the scarcity of fresh water resources in the world. Decreasing the energy requirements and infrastructure costs of existing desalination technologies remains a challenge. By enabling the manipulation of matter and control of transport at nanometer length scales, the emergence of nanotechnology offers new opportunities to advance water desalination technologies. This review focuses on nanostructured materials that are directly involved in the separation of water from salt as opposed to mitigating issues such as fouling. We discuss separation mechanisms and novel transport phenomena in materials including zeolites, carbon nanotubes, and graphene with potential applications to reverse osmosis, capacitive deionization, and multi-stage flash, among others. Such nanostructured materials can potentially enable the development of next-generation desalination systems with increased efficiency and capacity.
NASA Astrophysics Data System (ADS)
Li, Yan; Styczynski, Jordyn; Huang, Yuankai; Xu, Zhiheng; McCutcheon, Jeffrey; Li, Baikun
2017-07-01
Simultaneous removal of nitrogen in municipal wastewater, metal in industrial wastewater and saline in seawater was achieved in an integrated microbial desalination cell-microbial electrolysis cell (MDC-MEC) system. Batch tests showed that more than 95.1% of nitrogen was oxidized by nitrification in the cathode of MDC and reduced by heterotrophic denitrification in the anode of MDC within 48 h, leading to the total nitrogen removal rate of 4.07 mg L-1 h-1. Combining of nitrogen removal and desalination in MDC effectively solved the problem of pH fluctuation in anode and cathode, and led to 63.7% of desalination. Power generation of MDC (293.7 mW m-2) was 2.9 times higher than the one without salt solution. The electric power of MDC was harvested by a capacitor circuit to supply metal reduction in a MEC, and 99.5% of lead (II) was removed within 48 h. A kinetic MDC model was developed to elucidate the correlation of voltage output and desalination efficiency. Ratio of wastewater and sea water was calculated for MDC optimal operation. Energy balance of nutrient removal, metal removal and desalination in the MDC-MEC system was positive (0.0267 kW h m-3), demonstrating the promise of utilizing low power output of MDCs.
An exergy approach to efficiency evaluation of desalination
NASA Astrophysics Data System (ADS)
Ng, Kim Choon; Shahzad, Muhammad Wakil; Son, Hyuk Soo; Hamed, Osman A.
2017-05-01
This paper presents an evaluation process efficiency based on the consumption of primary energy for all types of practical desalination methods available hitherto. The conventional performance ratio has, thus far, been defined with respect to the consumption of derived energy, such as the electricity or steam, which are susceptible to the conversion losses of power plants and boilers that burned the input primary fuels. As derived energies are usually expressed by the units, either kWh or Joules, these units cannot differentiate the grade of energy supplied to the processes accurately. In this paper, the specific energy consumption is revisited for the efficacy of all large-scale desalination plants. In today's combined production of electricity and desalinated water, accomplished with advanced cogeneration concept, the input exergy of fuels is utilized optimally and efficiently in a temperature cascaded manner. By discerning the exergy destruction successively in the turbines and desalination processes, the relative contribution of primary energy to the processes can be accurately apportioned to the input primary energy. Although efficiency is not a law of thermodynamics, however, a common platform for expressing the figures of merit explicit to the efficacy of desalination processes can be developed meaningfully that has the thermodynamic rigor up to the ideal or thermodynamic limit of seawater desalination for all scientists and engineers to aspire to.
Forward Osmosis in India: Status and Comparison with Other Desalination Technologies
2014-01-01
With an increase in demand of freshwater and depleting water sources, it is imperative to switch to seawater as a regular source of water supply. However, due to the high total dissolved solid content, it has to be desalinated to make it drinkable. While desalination technologies have been used for many years, mass deployment of such technologies poses a number of challenges like high energy requirements as well as high negative environmental impact through side products and CO2 emissions. The purpose of this paper is to present a sustainable technology for desalination. Forward osmosis, an emerging technology, is compared with the other commonly used technologies worldwide, namely, multieffect distillation, multistage flash distillation, and reverse osmosis as well as other emerging technologies like vapour compression, solar humidification dehumidification, nanofiltration, and freezing desalination. As energy consumption and associated greenhouse gas emissions are one of the major concerns of desalination, this paper concludes that forward osmosis is an emerging sustainable technology for seawater desalination. This paper then presents the challenges involved in the application of forward osmosis in India and presents a plant setup. In the end, the cost comparison of a forward osmosis and reverse osmosis plant has been done and it was concluded that forward osmosis is economically better as well. PMID:27350984
Forward Osmosis in India: Status and Comparison with Other Desalination Technologies.
Mehta, Dhruv; Gupta, Lovleen; Dhingra, Rijul
2014-01-01
With an increase in demand of freshwater and depleting water sources, it is imperative to switch to seawater as a regular source of water supply. However, due to the high total dissolved solid content, it has to be desalinated to make it drinkable. While desalination technologies have been used for many years, mass deployment of such technologies poses a number of challenges like high energy requirements as well as high negative environmental impact through side products and CO2 emissions. The purpose of this paper is to present a sustainable technology for desalination. Forward osmosis, an emerging technology, is compared with the other commonly used technologies worldwide, namely, multieffect distillation, multistage flash distillation, and reverse osmosis as well as other emerging technologies like vapour compression, solar humidification dehumidification, nanofiltration, and freezing desalination. As energy consumption and associated greenhouse gas emissions are one of the major concerns of desalination, this paper concludes that forward osmosis is an emerging sustainable technology for seawater desalination. This paper then presents the challenges involved in the application of forward osmosis in India and presents a plant setup. In the end, the cost comparison of a forward osmosis and reverse osmosis plant has been done and it was concluded that forward osmosis is economically better as well.
Hellerstein, Marc K
2008-01-01
Contemporary drug discovery and development (DDD) is dominated by a molecular target-based paradigm. Molecular targets that are potentially important in disease are physically characterized; chemical entities that interact with these targets are identified by ex vivo high-throughput screening assays, and optimized lead compounds enter testing as drugs. Contrary to highly publicized claims, the ascendance of this approach has in fact resulted in the lowest rate of new drug approvals in a generation. The primary explanation for low rates of new drugs is attrition, or the failure of candidates identified by molecular target-based methods to advance successfully through the DDD process. In this essay, I advance the thesis that this failure was predictable, based on modern principles of metabolic control that have emerged and been applied most forcefully in the field of metabolic engineering. These principles, such as the robustness of flux distributions, address connectivity relationships in complex metabolic networks and make it unlikely a priori that modulating most molecular targets will have predictable, beneficial functional outcomes. These same principles also suggest, however, that unexpected therapeutic actions will be common for agents that have any effect (i.e., that complexity can be exploited therapeutically). A potential operational solution (pathway-based DDD), based on observability rather than predictability, is described, focusing on emergent properties of key metabolic pathways in vivo. Recent examples of pathway-based DDD are described. In summary, the molecular target-based DDD paradigm is built on a naïve and misleading model of biologic control and is not heuristically adequate for advancing the mission of modern therapeutics. New approaches that take account of and are built on principles described by metabolic engineers are needed for the next generation of DDD.
Shurrab, Mohammed; Healey, Jeff S; Haj-Yahia, Saleem; Kaoutskaia, Anna; Boriani, Giuseppe; Carrizo, Aldo; Botto, Gianluca; Newman, David; Padeletti, Luigi; Connolly, Stuart J; Crystal, Eugene
2017-02-01
Several pacing modalities across multiple manufacturers have been introduced to minimize unnecessary right ventricular pacing. We conducted a meta-analysis to assess whether ventricular pacing reduction modalities (VPRM) influence hard clinical outcomes in comparison to standard dual-chamber pacing (DDD). An electronic search was performed using Cochrane Central Register, PubMed, Embase, and Scopus. Only randomized controlled trials (RCT) were included in this analysis. Outcomes of interest included: frequency of ventricular pacing (VP), incident persistent/permanent atrial fibrillation (PerAF), all-cause hospitalization and all-cause mortality. Odds ratios (OR) were reported for dichotomous variables. Seven RCTs involving 4119 adult patients were identified. Ventricular pacing reduction modalities were employed in 2069 patients: (MVP, Medtronic Inc.) in 1423 and (SafeR, Sorin CRM, Clamart) in 646 patients. Baseline demographics and clinical characteristics were similar between VPRM and DDD groups. The mean follow-up period was 2.5 ± 0.9 years. Ventricular pacing reduction modalities showed uniform reduction in VP in comparison to DDD groups among all individual studies. The incidence of PerAF was similar between both groups {8 vs. 10%, OR 0.84 [95% confidence interval (CI) 0.57; 1.24], P = 0.38}. Ventricular pacing reduction modalities showed no significant differences in comparison to DDD for all-cause hospitalization or all-cause mortality [9 vs. 11%, OR 0.82 (95% CI 0.65; 1.03), P= 0.09; 6 vs. 6%, OR 0.97 (95% CI 0.74; 1.28), P = 0.84, respectively]. Novel VPRM measures effectively reduce VP in comparison to standard DDD. When actively programmed, VPRM did not improve clinical outcomes and were not superior to standard DDD programming in reducing incidence of PerAF, all-cause hospitalization, or all-cause mortality.
Tett, Susan E; Sketris, Ingrid; Cooke, Charmaine; van Zanten, Sander Veldhuyzen; Barozzi, Nadia
2013-07-01
This study aimed to compare use of histamine H2 receptor antagonists (H2RAs) and proton pump inhibitors (PPIs), 2001-2005, in the elderly and social security beneficiaries in Australia (AUS) and Nova Scotia, Canada (NS). Prescription dispensing data were collected for all subsidised H2RAs and PPIs. In AUS, dispensing data for concession beneficiaries were obtained from the Pharmaceutical Benefits Scheme database. In NS, data were sourced from the Pharmacare database. Relevant population data were used to convert to World Health Organisation Anatomic Therapeutic Chemical defined daily doses (2005) per 1000 beneficiaries per day (DDD/1000/day). Overall use of gastroprotective agents was similar and rising in NS and AUS (100-160 DDD/1000/day) over this 5-year time window. However, the proportion of this use accounted for by PPIs was far higher in AUS (over 85% by 2005) than in NS (23% rising to 35% over the 5 years). In AUS, PPI use rose from 50 to about 140 DDD/1000/day over the 5 years, whereas PPI use in NS rose slowly to less than 60 DDD/1000/day by 2005. H2RA use in NS was always high (over 100 DDD/1000/day), whereas in AUS, H2RA use fell from 54 to around 24 DDD/1000/day over this period. AUS had much higher use of PPIs than NS over 2001-2005. The proportion of PPIs in all gastroprotective agents rose in AUS to be nearly 90%. The differences in utilisation during this time window could lead to differences in health outcomes from either lower gastro-intestinal bleeding risk or higher long-term adverse effects of PPIs. Copyright © 2013 John Wiley & Sons, Ltd.
Li, Chun-Yang; Wei, Tian-Di; Zhang, Sheng-Hui; Chen, Xiu-Lan; Gao, Xiang; Wang, Peng; Xie, Bin-Bin; Su, Hai-Nan; Qin, Qi-Long; Zhang, Xi-Ying; Yu, Juan; Zhang, Hong-Hai; Zhou, Bai-Cheng; Yang, Gui-Peng; Zhang, Yu-Zhong
2014-01-01
The microbial cleavage of dimethylsulfoniopropionate (DMSP) generates volatile DMS through the action of DMSP lyases and is important in the global sulfur and carbon cycles. When released into the atmosphere from the oceans, DMS is oxidized, forming cloud condensation nuclei that may influence weather and climate. Six different DMSP lyase genes are found in taxonomically diverse microorganisms, and dddQ is among the most abundant in marine metagenomes. Here, we examine the molecular mechanism of DMSP cleavage by the DMSP lyase, DddQ, from Ruegeria lacuscaerulensis ITI_1157. The structures of DddQ bound to an inhibitory molecule 2-(N-morpholino)ethanesulfonic acid and of DddQ inactivated by a Tyr131Ala mutation and bound to DMSP were solved. DddQ adopts a β-barrel fold structure and contains a Zn2+ ion and six highly conserved hydrophilic residues (Tyr120, His123, His125, Glu129, Tyr131, and His163) in the active site. Mutational and biochemical analyses indicate that these hydrophilic residues are essential to catalysis. In particular, Tyr131 undergoes a conformational change during catalysis, acting as a base to initiate the β-elimination reaction in DMSP lysis. Moreover, structural analyses and molecular dynamics simulations indicate that two loops over the substrate-binding pocket of DddQ can alternate between “open” and “closed” states, serving as a gate for DMSP entry. We also propose a molecular mechanism for DMS production through DMSP cleavage. Our study provides important insight into the mechanism involved in the conversion of DMSP into DMS, which should lead to a better understanding of this globally important biogeochemical reaction. PMID:24395783
Bruyndonckx, Robin; Hens, Niel; Aerts, Marc; Goossens, Herman; Molenberghs, Geert; Coenen, Samuel
2014-07-01
To complement analyses of the linear trend and seasonal fluctuation of European outpatient antibiotic use expressed in defined daily doses (DDD) by analyses of data in packages, to assess the agreement between both measures and to study changes in the number of DDD per package over time. Data on outpatient antibiotic use, aggregated at the level of the active substance (WHO version 2011) were collected from 2000 to 2007 for 31 countries and expressed in DDD and packages per 1000 inhabitants per day (DID and PID, respectively). Data expressed in DID and PID were analysed separately using non-linear mixed models while the agreement between these measurements was analysed through a joint non-linear mixed model. The change in DDD per package over time was studied with a linear mixed model. Total outpatient antibiotic and penicillin use in Europe and their seasonal fluctuation significantly increased in DID, but not in PID. The use of combinations of penicillins significantly increased in DID and in PID. Broad-spectrum penicillin use did not increase significantly in DID and decreased significantly in PID. For all but one subgroup, country-specific deviations moved in the same direction whether measured in DID or PID. The correlations are not perfect. The DDD per package increased significantly over time for all but one subgroup. Outpatient antibiotic use in Europe shows contrasting trends, depending on whether DID or PID is used as the measure. The increase of the DDD per package corroborates the recommendation to adopt PID to monitor outpatient antibiotic use in Europe. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Ping, Qingyun; Abu-Reesh, Ibrahim M; He, Zhen
2016-11-01
Boron removal is an arising issue in desalination plants due to boron's toxicity. As an emerging treatment concept, bioelectrochemical systems (BES) can achieve potentially cost-effective boron removal by taking advantage of cathodic-produced alkali. Prior studies have demonstrated successful removal of boron in microbial desalination cells (MDCs) and microbial fuel cells (MFCs), both of which are representative BES. Herein, mathematical models were developed to further evaluate boron removal by different BES and understand the key operating factors. The models delivered very good prediction of the boron concentration in the MDC integrated with Donnan Dialysis (DD) system with the lowest relative root-mean-square error (RMSE) of 0.00%; the predication of the MFC performance generated the highest RMSE of 18.55%. The model results of salt concentration, solution pH, and current generation were well fitted with experimental data for RMSE values mostly below 10%. The long term simulation of the MDC-DD system suggests that the accumulation of salt in the catholyte/stripping solution could have a positive impact on the removal of boron due to osmosis-driven convection. The current generation in the MDC may have little influence on the boron removal, while in the MFC the current-driven electromigration can contribute up to 40% of boron removal. Osmosis-induced convection transport of boron could be the major driving force for boron removal to a low level <2mgL(-1). The ratio between the anolyte and the catholyte flow rates should be kept >22.2 in order to avoid boron accumulation in the anolyte effluent. Copyright © 2016 Elsevier B.V. All rights reserved.
Prognosis of intervertebral disc loss from diagnosis of degenerative disc disease
NASA Astrophysics Data System (ADS)
Li, S.; Lin, A.; Tay, K.; Romano, W.; Osman, Said
2015-03-01
Degenerative Disc Disease (DDD) is one of the most common causes of low back pain, and is a major factor in limiting the quality of life of an individual usually as they enter older stages of life, the disc degeneration reduces the shock absorption available which in turn causes pain. Disc loss is one of the central processes in the pathogenesis of DDD. In this study, we investigated whether the image texture features quantified from magnetic resonance imaging (MRI) could be appropriate markers for diagnosis of DDD and prognosis of inter-vertebral disc loss. The main objective is to use simple image based biomarkers to perform prognosis of spinal diseases using non-invasive procedures. Our results from 65 subjects proved the higher success rates of the combination marker compared to the individual markers and in the future, we will extend the study to other spine regions to allow prognosis and diagnosis of DDD for a wider region.
Residues of DDT in brains and bodies of birds that died on dosage and in survivors
Stickel, L.F.; Stickel, W.H.; Christensen, R.
1966-01-01
Residues of 1,1 ,l-trichloro-2,2-bis(p-chlorophenyl)-ethane (DDT) and 1,1 -dichloro-2.2-bis(p-chlorophenyl)-ethane (DDD) in brains of cowbirds (Molothrus ater) killed hy dietary dosage of DDT were similar in birds that died after various lengths of time on dosage and in birds that died of delayed effects after as much as 40 days on clean food, Residues of DDT and DDD, but not of 1,1 -dichloro-2.2-bis-(p-chlorophenyl)-ethylene (DDE), were much lower in survivors 112 days after dosage. The relative importance of DDT and DDD in brains could nlot he determined, but DDE appeared not to be critical. Residues in brains of cowbirds were similar to those reported for robins, sparrows, eagles, and white rats. Residues in livers and carcass remainders (with the possible exception of DDD in the liver) appeared unsuitable for diagnosing the cause of death.
NASA Astrophysics Data System (ADS)
Siam, M. S.; Alqatari, S.; Ibrahim, H. D.; AlAloula, R. A.; Alrished, M.; AlSaati, A.; Eltahir, E. A. B.
2016-12-01
Increasing water demand in Saudi Arabia due to rapid population growth has forced the rapid expansion of seawater desalination plants in order to meet both current and future freshwater needs. Saudi Arabia has a huge potential for solar energy, hence, solar-powered desalination plants provide an opportunity to sustainably address the freshwater demand in the kingdom without relying on fossil fuels energy. However, the desert climate of Saudi Arabia and limited access to the open ocean imposes several challenges to the expansion and sustainability of solar-powered desalination plants. For example, the frequent and intense dust storms that occur in the region can degrade solar panels and significantly reduce their efficiency. Moreover, the high salinity Arabian Gulf is both the source of feedwater and sink of hypersaline discharge (brine) for many plants in the east of the Kingdom, and the brine may alter the salinity, temperature and movement of the water thereby reducing the quality of the feedwater to the desalination plants. Here, we propose a framework to investigate the different interactions between climate, dust, solar power generation and seawater desalination in order to identify optimal parameters such as locations of solar panels and seawater intake for sustainable implementation of solar-powered desalination plants. This framework integrates several numerical models including regional climate, hydrodynamics, Photovoltaics (PV) and Photovoltaic-Reverse Osmosis (PV-RO) models that are used to investigate these interactions for a solar-powered desalination plant at AlKhafji on the Northeastern coast of Saudi Arabia.
AAA-DDD triple hydrogen bond complexes.
Blight, Barry A; Camara-Campos, Amaya; Djurdjevic, Smilja; Kaller, Martin; Leigh, David A; McMillan, Fiona M; McNab, Hamish; Slawin, Alexandra M Z
2009-10-07
Experiment and theory both suggest that the AAA-DDD pattern of hydrogen bond acceptors (A) and donors (D) is the arrangement of three contiguous hydrogen bonding centers that results in the strongest association between two species. Murray and Zimmerman prepared the first example of such a system (complex 3*2) and determined the lower limit of its association constant (K(a)) in CDCl(3) to be 10(5) M(-1) by (1)H NMR spectroscopy (Murray, T. J. and Zimmerman, S. C. J. Am. Chem. Soc. 1992, 114, 4010-4011). The first cationic AAA-DDD pair (3*4(+)) was described by Bell and Anslyn (Bell, D. A. and Anslyn, E. A. Tetrahedron 1995, 51, 7161-7172), with a K(a) > 5 x 10(5) M(-1) in CH(2)Cl(2) as determined by UV-vis spectroscopy. We were recently able to quantify the strength of a neutral AAA-DDD arrangement using a more chemically stable AAA-DDD system, 6*2, which has an association constant of 2 x 10(7) M(-1) in CH(2)Cl(2) (Djurdjevic, S., Leigh, D. A., McNab, H., Parsons, S., Teobaldi, G. and Zerbetto, F. J. Am. Chem. Soc. 2007, 129, 476-477). Here we report on further AA(A) and DDD partners, together with the first precise measurement of the association constant of a cationic AAA-DDD species. Complex 6*10(+)[B(3,5-(CF(3))(2)C(6)H(3))(4)(-)] has a K(a) = 3 x 10(10) M(-1) at RT in CH(2)Cl(2), by far the most strongly bound triple hydrogen bonded system measured to date. The X-ray crystal structure of 6*10(+) with a BPh(4)(-) counteranion shows a planar array of three short (NH...N distances 1.95-2.15 A), parallel (but staggered rather than strictly linear; N-H...N angles 165.4-168.8 degrees), primary hydrogen bonds. These are apparently reinforced, as theory predicts, by close electrostatic interactions (NH-*-N distances 2.78-3.29 A) between each proton and the acceptor atoms of the adjacent primary hydrogen bonds.
Effects of adrenolytic mitotane on drug elimination pathways assessed in vitro.
Theile, Dirk; Haefeli, Walter Emil; Weiss, Johanna
2015-08-01
Mitotane (1,1-dichloro-2-(o-chlorophenyl)-2-(p-chlorophenyl)ethane, o,p'-DDD) represents one of the most active drugs for the treatment of adrenocortical carcinoma. Its metabolites 1,1-(o,p'-dichlorodiphenyl) acetic acid (=o,p'-DDA) and 1,1-(o,p'-dichlorodiphenyl)-2,2 dichloroethene (=o,p'-DDE) partly contribute to its pharmacological effects. Because mitotane has a narrow therapeutic index and causes pharmacokinetic drug-drug interactions, knowledge about these compounds' effects on drug metabolizing and transporting proteins is crucial. Using quantitative real-time polymerase chain reaction, our study confirmed the strong inducing effects of o,p'-DDD on mRNA expression of cytochrome P450 3A4 (CYP3A4, 30-fold) and demonstrated that other enzymes and transporters are also induced (e.g., CYP1A2, 8.4-fold; ABCG2 (encoding breast resistance cancer protein, BCRP), 4.2-fold; ABCB1 (encoding P-glycoprotein, P-gp) 3.4-fold). P-gp induction was confirmed at the protein level. o,p'-DDE revealed a similar induction profile, however, with less potency and o,p'-DDA had only minor effects. Reporter gene assays clearly confirmed o,p'-DDD to be a PXR activator and for the first time demonstrated that o,p'-DDE and o,p'-DDA also activate PXR albeit with lower potency. Using isolated, recombinant CYP enzymes, o,p'-DDD and o,p'-DDE were shown to strongly inhibit CYP2C19 (IC50 = 0.05 and 0.09 µM). o,p'-DDA exhibited only minor inhibitory effects. In addition, o,p'-DDD, o,p'-DDE, and o,p'-DDA are demonstrated to be neither substrates nor inhibitors of BCRP or P-gp function. In summary, o,p'-DDD and o,p'-DDE might be potential perpetrators in pharmacokinetic drug-drug interactions through induction of drug-metabolizing enzymes or drug transporters and by potent inhibition of CYP2C19. In tumors over-expressing BCRP or P-gp, o,p'-DDD and its metabolites should retain their efficacy due to a lack of substrate characteristics.
Price analysis of multiple sclerosis disease-modifying therapies marketed in the United States.
Bin Sawad, Aseel; Seoane-Vazquez, Enrique; Rodriguez-Monguio, Rosa; Turkistani, Fatema
2016-11-01
This study assessed trends in the average wholesale price (AWP) at the market entry of disease-modifying therapies (DMTs) approved by Food and Drug Administration (FDA) in the period 1987-2014. DMT regulatory information was derived from the FDA website. The AWPs per unit at market entry data were derived from the Red Book (Truven Health Analytics Inc.). The AWP history for each DMT was collected from its date of approval to 31 December 2014. The FDA approved label defined daily dose (DDD) for adult patients was obtained from FDA approved labels. The AWP per DDD and the AWP/DDD per year of therapy were computed. Descriptive statistics, Wilcoxon tests, t-test, and multiple linear regression were performed. The statistical significance level was set at 0.05. The FDA approved 12 multiple sclerosis (MS) DMTs, including five new drug applications (NDAs) and seven biologic license applications (BLAs) as of 31 December 2014. The FDA granted orphan designation to five DMTs. There was one DMT approved by the FDA in the 1980s, three in the 1990s, three in 2000s, and five in the period 2010-2014. The market entry inflation-adjusted AWP per DDD was $10.23 for the first DMT (mitoxantrone hydrochloride) that was approved in the 1980s. The median market entry inflation-adjusted AWP per DDD was $12.41 (interquartile range [IQR] = 4.51) for DMTs approved in the 1990s, $71.26 (IQR = 58.35) in the 2000s, and $172.56 (IQR = 84.97) in the period 2010-2014. The median AWP per DDD was statistically significantly different (p = 0.011) for orphan (median = $41.82, IQR = 56.077) compared to non-orphan drugs (median = $171.32, IQR = 199.29). Year of market entry was positively associated with DMT prices at US market entry (p = 0.01). The AWP per DDD for DMTs at market entry increased substantially over time. The increase in DMTs prices exceeded the general consumer price index.
Meng, Fanyu; Jiang, Junqiu; Zhao, Qingliang; Wang, Kun; Zhang, Guodong; Fan, Qingxin; Wei, Liangliang; Ding, Jing; Zheng, Zhen
2014-04-01
Microbial desalination cells (MDCs) with common liquid anodic substrate exhibit a slow startup and destructive pH drop, and abiotic cathodes have high cost and low sustainability. A biocathode MDC with dewatered sludge as fuel was developed for synergistic desalination, electricity generation and sludge stabilization. Experimental results indicated that the startup period was reduced to 3d, anodic pH was maintained between 6.6 and 7.6, and high stability was shown under long-term operation (300d). When initial NaCl concentrations were 5 and 10g/L, the desalinization rates during stable operation were 46.37±1.14% and 40.74±0.89%, respectively. The maximum power output of 3.178W/m(3) with open circuit voltage (OCV) of 1.118V was produced on 130d. After 300d, 25.71±0.15% of organic matter was removed. These results demonstrated that dewatered sludge was an appropriate anodic substrate to enhance MDC stability for desalination and electricity generation. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Faraola, S.; Heck, N.; Mirza Ordshahi, B.; Paytan, A.; Petersen, K. L.; Haddad, B.; Potts, D. C.
2016-12-01
The current lack of available freshwater in California has brought about the consideration of utilizing seawater desalination to provide a consistent drinking water source for local residents of coastal areas. Public literacy about this technology and its impacts on the ocean is vital to making informed policy decisions about marine resources and ecosystems, which may empower local communities to become more involved stewards of the ocean. Our study evaluates public literacy about seawater desalination and its impacts on the ocean. Data was collected using a questionnaire-based survey from a randomly selected sample of residents and marine stakeholders in coastal communities around Monterey Bay. The study explored (1) self-assessed and accurate knowledge about marine impacts from seawater desalination and (2) what shapes public literacy concerning pertinent ocean issues in communities near a National Marine Sanctuary. Our findings show to what extent the public is prepared to engage in meaningful discussions about marine issues and seawater desalination and if an understanding of the ocean shapes perceptions on saltwater desalination.
Guo, Zhaowei; Ma, Yuanyuan; Dong, Xiaoli; Hou, Mengyan; Wang, Yonggang; Xia, Yongyao
2018-06-11
Ever-increasing freshwater scarcity and energy crisis problems require efficient seawater desalination and energy storage technologies; however, each target is generally considered separately. Herein, a hybrid sodium-ion supercapacitor, involving a carbon-coated nano-NaTi 2 (PO 4 ) 3 -based battery anode and an activated-carbon-based capacitive cathode, is developed to combine desalination and energy storage in one device. On charge, the supercapacitor removes salt in a flowing saltwater electrolyte through Cl - electrochemical adsorption at the cathode and Na + intercalation at the anode. Discharge delivers useful electric energy and regenerates the electrodes. This supercapacitor can be used not only for energy storage with promising electrochemical performance (i.e., high power, high efficiency, and long cycle life), but also as a desalination device with desalination capacity of 146.8 mg g -1 , much higher than most reported capacitive and battery desalination devices. Finally, we demonstrate renewables to usable electric energy and desalted water through combining commercial photovoltaics and this hybrid supercapacitor. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Choi, Siwon; Kim, Bumjoo; Han, Jongyoon
2017-06-13
Conventional water treatment process is composed of multiple stages, including desalination (salt removal) and pre/post-treatment of desalination to remove particles, chemicals, and other potential foulants for desalination. In this work, we developed a microfluidic proof-of-concept for a single device water treatment system, which removes both salt ions and non-salt contaminants. Our system combines electrocoagulation (EC), a versatile contaminant removal process, and ion concentration polarization (ICP) desalination, which is an electromembrane desalination process. We demonstrated a continuous EC-ICP operation that removed >95% of suspended solids and reduced the salinity from brackish range (20 mM NaCl) to a potable level (<8.6 mM NaCl). We also demonstrated that our system is flexible in terms of the type and concentration of contaminants it can handle. Combining two different electrochemical processes into a single system, we can reduce unnecessary voltage drop by having a shared anode, and achieve both seamless integration and energy efficient operation. Our system will find applications as a small-scale water treatment system, if properly scaled up in the future.
The end of scarcity? Water desalination as the new cornucopia for Mediterranean Spain
NASA Astrophysics Data System (ADS)
March, Hug; Saurí, David; Rico-Amorós, Antonio M.
2014-11-01
In this paper we explore the new orientation taken by Spanish water policy since the beginning of the 21st century and very specifically the shift towards desalination as an alternative to other water supply options such as river regulation or inter-basin water transfers. Desalination has been seen as the cure for everything that dams and inter-basin water transfers were unable to solve, including droughts, scarcities, social conflicts, environmental impacts, and political rivalries among the different Spanish regions. Desalination also means a new and powerful element in water planning and management that could provide water for the continuous expansion of the urban and tourist growth machine in Mediterranean Spain and thus relax possible water constraints on this growth. However, by 2012 most new desalination plants along the Mediterranean coast remained almost idle. Focusing on the case of the Mancomunidad de los Canales del Taibillla in South-eastern Spain, our aim is to develop a critical, integrated and reflexive perspective on the use of desalination as a source of water for urban and regional growth.
Who is Eligible for DDD Services? Report No. 5.24.
ERIC Educational Resources Information Center
Kohlenberg, Elizabeth; And Others
The effects of broadening the definition of eligibility for services from the Washington State Division of Developmental Disabilities (DDD) are analyzed. Five different definitions are discussed. The existing definition includes: (1) "statutory conditions," which includes persons who are mentally retarded or have difficulty carrying out…
Desalinated drinking water in the GCC countries - The need to address consumer perceptions.
Shomar, Basem; Hawari, Jalal
2017-10-01
The Gulf Cooperation Council (GCC) countries consist of Bahrain, Kuwait, Oman, Qatar, Saudi Arabia, and the United Arab Emirates. These countries depend mainly on seawater desalination to meet their water needs. Although great emphasis is given to characterize desalinated water for its physicochemical and microbial properties, e.g. presence of metals, other organic contaminants and for bacteria, sensorial characteristics including smell, taste and color have not received the same attention. This is possibly attributed to the fact that inhabitants of GCC States do not use desalinated tap water for drinking consumption, rather they depend on locally produced or imported bottled water where color, taste and odor are not problematic. To address the consumer needs and perceptions of drinking desalinated water in GCC countries, water quality standards and guidelines, should respond to the public concern about other sensorial characteristics (organoleptic properties) including taste, odor, and trigeminal sensations. Often the root causes of color and smell in water are attributed to the presence of organic and inorganic contaminants and to bacterial growth which is frequently accompanied by the production of metabolites and byproducts that are obnoxious. The unpleasant sensorial problems associated with desalinated drinking tap water may constitute the driving force for most people in GCC countries to depend on bottled water. To encourage people in the GCC countries to consume desalinated tap water, it is essential that water testing include measurements of physicochemical properties, biofilm presence and organoleptic parameters to improve overall water quality. This review highlights the contribution of organoleptics for consumers of desalinated tap water. It extends water quality research to be addressed by standards for organoleptic parameters in desalinated drinking water. Accordingly, consumer awareness and outreach campaigns should be implemented to encourage people to drink tap water in the GCC countries. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Prakash; Aghajanzadeh, Arian; Sheaffer, Paul
The U.S. Department of Energy (DOE) has set a goal to reduce the cost of seawater desalination systems to $0.50/ cubic meter (m 3) through the development of technology pathways to reduce energy, capital, operating, soft, and system integration costs.1 In support of this goal and to evaluate the technology pathways to lower the energy and carbon intensity of desalination while also reducing the total water cost, DOE is undertaking a comprehensive study of the energy consumption and carbon dioxide (CO 2) emissions for desalination technologies and systems. This study is being undertaken in two phases. Phase 1, Survey ofmore » Available Information in Support of the Energy-Water Bandwidth Study of Desalination Systems, collected the background information that will underpin Phase 2, the Energy Water Bandwidth Study for Desalination Systems. This report (Volume 1) summarizes the results from Phase 1. The results from Phase 2 will be summarized in Volume 2: Energy Water Bandwidth Study for Desalination Systems (Volume 2). The analysis effort for Phase 2 will utilize similar methods as other industry-specific Energy Bandwidth Studies developed by DOE,2 which has provided a framework to evaluate and compare energy savings potentials within and across manufacturing sectors at the macroscale. Volume 2 will assess the current state of desalination energy intensity and reduction potential through the use of advanced and emerging technologies. For the purpose of both phases of study, energy intensity is defined as the amount of energy required per unit of product water output (for example, kilowatt-hours per cubic meter of water produced). These studies will expand the scope of previous sectorial bandwidth studies by also evaluating CO 2 intensity and reduction opportunities and informing a techno-economic analysis of desalination systems. Volume 2 is expected to be completed in 2017.« less
Maesato, Akira; Higa, Satoshi; Lin, Yenn-Jiang; Chinen, Ichiro; Ishigaki, Sugako; Yajima, Machiko; Masuzaki, Hiroaki; Chen, Shih-Ann
2011-01-01
Predictors of T wave oversensing with implantable cardioverter-defibrillator (ICD) systems remains to be clarified. Thirteen consecutive patients who underwent ICD implantations were included. The depolarization (R) and repolarization (T) of bipolar electrograms during baseline, AAI and DDD modes, and an isoproterenol (ISO) infusion were evaluated. The R wave amplitude during DDD was significantly lower as compared to that during the other conditions in all high-pass filter settings. In contrast, there was no significant difference in the T wave amplitude during the DDD as compared to the other conditions. With the DDD, there was a significantly higher incidence of a T/R ratio of greater than 0.25 as compared to that with the other conditions. T wave amplitude in Brugada syndrome was significantly higher than that in non-Brugada syndrome. The existence of Brugada syndrome and T/R ratio during the AAI with a high-pass filter setting of 10/20 Hz was an excellent predictor of T wave oversensing in the follow-up period. DDD had a significant impact on the R wave amplitude reduction and the T/R ratio during AAI can be predictors of T wave oversensing. These findings have important implications for inappropriate shocks due to T wave oversensing.
NASA Astrophysics Data System (ADS)
Huang, Minsheng; Li, Zhenhuan
2015-12-01
To investigate the mechanical behavior of the microlayered metallic thin films (MMMFs) at elevated temperature, an enhanced discrete-continuous model (DCM), which couples rather than superposes the two-dimensional climb/glide-enabled discrete dislocation dynamics (2D-DDD) with the linearly elastic finite element method (FEM), is developed in this study. In the present coupling scheme, two especial treatments are made. One is to solve how the plastic strain captured by the DDD module is transferred properly to the FEM module as an eigen-strain; the other is to answer how the stress field computationally obtained by the FEM module is transferred accurately to the DDD module to drive those discrete dislocations moving correctly. With these two especial treatments, the interactions between adjacent dislocations and between dislocation pile-ups and inter-phase boundaries (IBs), which are crucial to the strengthening effect in MMMFs, are carefully taken into account. After verified by comparing the computationally predicted results with the theoretical solutions for a dislocation residing in a homogeneous material and nearby a bi-material interface, this 2D-DDD/FEM coupling scheme is used to model the tensile mechanical behaviors of MMMFs at elevated temperature. The strengthening mechanism of MMMFs and the layer thickness effect are studied in detail, with special attentions to the influence of dislocation climb on them.
Desalination of brick masonry and stone carvings in Capitullum hall of Riga Dome Cathedral
NASA Astrophysics Data System (ADS)
Grave, J.; Krage, L.; Lusis, R.; Vitina, I.
2011-12-01
The construction of Riga Dome Cathedral and its Capithullum hall were initiated in 1211. Through centuries they were damaged a lot due to migration of soluble salts and moisture. During the last restoration (1888-1891) a lot of mistakes were conceded and subsequently some of probable solutions for restoration were unsuccessful. In 2009 the new restoration stage in Capithullum hall was started. Two types of desalination methods were used in hall - desalination with lime-sand plaster and poultice of lignin. Both quantitative and semiquantitative chemical analyses were performed in order to appreciate the desalination process.
Saline solutions: the quest for fresh water.
Reuther, C G
2000-01-01
Despite steady advances in the technology, desalination remains one of the most expensive ways to produce potable water. But as water scarcity forces communities to find new sources of drinking water, scientists are developing innovations that may soon make desalination a reasonable option for many more communities. The newest approach to desalination is membrane systems, which include reverse osmosis and electrodialysis systems. Current research seeks to make these systems more effective and less likely to produce environmentally hazardous by-products. Many facilities use traditional distillation to desalinate water, and efforts are being made to combine membranes and distillation for more efficient systems. PMID:10656867
Li, Xiuqiang; Xu, Weichao; Tang, Mingyao; Zhou, Lin; Zhu, Bin; Zhu, Shining; Zhu, Jia
2016-01-01
Because it is able to produce desalinated water directly using solar energy with minimum carbon footprint, solar steam generation and desalination is considered one of the most important technologies to address the increasingly pressing global water scarcity. Despite tremendous progress in the past few years, efficient solar steam generation and desalination can only be achieved for rather limited water quantity with the assistance of concentrators and thermal insulation, not feasible for large-scale applications. The fundamental paradox is that the conventional design of direct absorber−bulk water contact ensures efficient energy transfer and water supply but also has intrinsic thermal loss through bulk water. Here, enabled by a confined 2D water path, we report an efficient (80% under one-sun illumination) and effective (four orders salinity decrement) solar desalination device. More strikingly, because of minimized heat loss, high efficiency of solar desalination is independent of the water quantity and can be maintained without thermal insulation of the container. A foldable graphene oxide film, fabricated by a scalable process, serves as efficient solar absorbers (>94%), vapor channels, and thermal insulators. With unique structure designs fabricated by scalable processes and high and stable efficiency achieved under normal solar illumination independent of water quantity without any supporting systems, our device represents a concrete step for solar desalination to emerge as a complementary portable and personalized clean water solution. PMID:27872280
Li, Xiuqiang; Xu, Weichao; Tang, Mingyao; Zhou, Lin; Zhu, Bin; Zhu, Shining; Zhu, Jia
2016-12-06
Because it is able to produce desalinated water directly using solar energy with minimum carbon footprint, solar steam generation and desalination is considered one of the most important technologies to address the increasingly pressing global water scarcity. Despite tremendous progress in the past few years, efficient solar steam generation and desalination can only be achieved for rather limited water quantity with the assistance of concentrators and thermal insulation, not feasible for large-scale applications. The fundamental paradox is that the conventional design of direct absorber-bulk water contact ensures efficient energy transfer and water supply but also has intrinsic thermal loss through bulk water. Here, enabled by a confined 2D water path, we report an efficient (80% under one-sun illumination) and effective (four orders salinity decrement) solar desalination device. More strikingly, because of minimized heat loss, high efficiency of solar desalination is independent of the water quantity and can be maintained without thermal insulation of the container. A foldable graphene oxide film, fabricated by a scalable process, serves as efficient solar absorbers (>94%), vapor channels, and thermal insulators. With unique structure designs fabricated by scalable processes and high and stable efficiency achieved under normal solar illumination independent of water quantity without any supporting systems, our device represents a concrete step for solar desalination to emerge as a complementary portable and personalized clean water solution.
Communication Strategy: Proper Structure Necessary but not Sufficient
2010-12-01
Information, (1998), http://www.ncbi.nlm.nih.gov/ bookshelf /br.fcgi?book=nap6200&part=a20006484ddd00073 (accessed November 12, 2010). “The multidimensional...Biotechnology Information (1998). http://www.ncbi.nlm.nih.gov/ bookshelf /br.fcgi?book=nap6200&part=a20006484ddd000 73 (accessed November 12, 2010
Communication Strategy: Proper Structure Necessary But Not Sufficient
2010-01-01
Information, (1998), http://www.ncbi.nlm.nih.gov/ bookshelf /br.fcgi?book=nap6200&part=a20006484ddd00073 (accessed November 12, 2010). “The multidimensional...Biotechnology Information (1998). http://www.ncbi.nlm.nih.gov/ bookshelf /br.fcgi?book=nap6200&part=a20006484ddd000 73 (accessed November 12, 2010
ERIC Educational Resources Information Center
Division on Developmental Disabilities, Council for Exceptional Children (NJ1), 2013
2013-01-01
During the past year, the Diversity Committee of the Division of Developmental Disabilities (DDD) Board worked with the Board and the Issues Committee Chair to develop an issue brief addressing diversity, its impact on the membership and the wider community that is served by the work of DDD, resulting in recommendations that will influence policy…
Economic and Policy Drivers of Agricultural Water Desalination in California's Central Valley
NASA Astrophysics Data System (ADS)
Welle, P.; Medellin-Azuara, J.; Viers, J. H.; Mauter, M.
2016-12-01
Agriculture in arid regions is threatened by the twin stresses of soil salinity and uncertain water availability. Recently, water desalination has been a proposed solution for mitigating the effects of drought, soil salinization, and the ecological impacts of agricultural drainage. In this study, we combine data from earth observing systems with auxiliary information on prices, yields, and farmer behavior in order to create a decision framework which assesses the public and private costs and benefits of distributed desalination in the Central Valley (CV) of California. The use of remotely sensed crop classifiers allows us to resolve our analysis at the 30m pixel scale across the CV, a feature that allows us to characterize regional differences in technology effectiveness. We employ environmental and economic modeling to estimate the value of lower salinity irrigation water; the value of augmented water supply under present and future climate scenarios; and the human health, environmental, and climate change damages associated with generating power to desalinate water. We find that water desalination is only likely to be profitable in 4% of the CV during periods of severe drought, and that current costs would need to decrease by 70-90% for adoption to occur on the median acre. Fossil-fuel powered desalination technologies also generate air emissions that impose significant public costs in the form of human health and climate change damages, although these damages vary greatly depending on technology. The ecosystem service benefits of reduced agricultural drainage would need to be valued between 800 and 1200 per acre-foot, or nearly the full capital and operational costs of water desalination, for the net benefits of water desalination to be positive from a societal perspective.
Low-Energy Water Recovery from Subsurface Brines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Young Chul; Kim, Gyu Dong; Hendren, Zachary
A novel non-aqueous phase solvent (NAS) desalination process was proposed and developed in this research project. The NAS desalination process uses less energy than thermal processes, doesn’t require any additional chemicals for precipitation, and can be utilized to treat high TDS brine. In this project, our experimental work determined that water solubility changes and selective absorption are the key characteristics of NAS technology for successful desalination. Three NAS desalination mechanisms were investigated: (1) CO2 switchable, (2) high-temp absorption to low-temp desorption (thermally switchable), and (3) low-temp absorption to high-temp desorption (thermally switchable). Among these mechanisms, thermally switchable (low-temp absorption tomore » high-temp desorption) showed the highest water recovery and relatively high salt rejection. A test procedure for semi-continuous, bench scale NAS desalination process was also developed and used to assess performance under a range of conditions.« less
Tcaciuc, A Patricia; Borrelli, Raffaella; Zaninetta, Luciano M; Gschwend, Philip M
2018-01-24
Passive sampling is becoming a widely used tool for assessing freely dissolved concentrations of hydrophobic organic contaminants in environmental media. For certain media and target analytes, the time to reach equilibrium exceeds the deployment time, and in such cases, the loss of performance reference compounds (PRCs), loaded in the sampler before deployment, is one of the common ways used to assess the fractional equilibration of target analytes. The key assumption behind the use of PRCs is that their release is solely diffusion driven. But in this work, we show that PRC transformations in the sediment can have a measurable impact on the PRC releases and even allow estimation of that compound's transformation rate in the environment of interest. We found that in both field and lab incubations, the loss of the 13 C 2,4'-DDT PRC from a polyethylene (PE) passive sampler deployed at the sediment-water interface was accelerated compared to the loss of other PRCs ( 13 C-labeled PCBs, 13 C-labeled DDE and DDD). The DDT PRC loss was also accompanied by accumulation in the PE of its degradation product, 13 C 2,4'-DDD. Using a 1D reaction-diffusion model, we deduced the in situ degradation rates of DDT from the measured PRC loss. The in situ degradation rates increased with depth into the sediment bed (0.14 d -1 at 0-10 cm and 1.4 d -1 at 30-40 cm) and although they could not be independently validated, these rates compared favorably with literature values. This work shows that passive sampling users should be cautious when choosing PRCs, as degradation processes can affect some PRC's releases from the passive sampler. More importantly, this work opens up the opportunity for novel applications of passive samplers, particularly with regard to investigating in situ degradation rates, pathways, and products for both legacy and emerging contaminants. However, further work is needed to confirm that the rates deduced from model fitting of PRC loss are a true reflection of DDT transformation rates in sediments.
Tanaka, Hiroki; Inoue, Yoshihisa; Nakano, Takeshi; Mori, Tadashi
2017-04-12
Circular dichroisms (CDs) of the o,p'-isomers of 1,1,1-trichloro- and 1,1-dichloro-2,2-bis(chlorophenyl)ethanes (DDT and DDD) were investigated experimentally and theoretically. A series of strong Cotton effect peaks in a characteristic negative-negative-positive-negative, or its mirror-imaged, pattern were observed in the CD spectra of these persistent organic pollutants. The theoretical CD spectra at the SAC-CI/B95(d) and RI-CC2/def2-TZVPP levels well reproduced the experimental ones, enabling us to unambiguously assign the absolute configuration of (+)-DDT and (-)-DDD as S.
Saline Groundwater from Coastal Aquifers As a Source for Desalination.
Stein, Shaked; Russak, Amos; Sivan, Orit; Yechieli, Yoseph; Rahav, Eyal; Oren, Yoram; Kasher, Roni
2016-02-16
Reverse osmosis (RO) seawater desalination is currently a widespread means of closing the gap between supply and demand for potable water in arid regions. Currently, one of the main setbacks of RO operation is fouling, which hinders membrane performance and induces pressure loss, thereby reducing system efficiency. An alternative water source is saline groundwater with salinity close to seawater, pumped from beach wells in coastal aquifers which penetrate beneath the freshwater-seawater interface. In this research, we studied the potential use of saline groundwater of the coastal aquifer as feedwater for desalination in comparison to seawater using fieldwork and laboratory approaches. The chemistry, microbiology and physical properties of saline groundwater were characterized and compared with seawater. Additionally, reverse osmosis desalination experiments in a cross-flow system were performed, evaluating the permeate flux, salt rejection and fouling propensities of the different water types. Our results indicated that saline groundwater was significantly favored over seawater as a feed source in terms of chemical composition, microorganism content, silt density, and fouling potential, and exhibited better desalination performance with less flux decline. Saline groundwater may be a better water source for desalination by RO due to lower fouling potential, and reduced pretreatment costs.
Deng, Hui; Sun, Penzhan; Zhang, Yingjiu; Zhu, Hongwei
2016-07-08
With excellent mass transport properties, graphene oxide (GO)-based lamellar membranes are believed to have great potential in water desalination. In order to quantify whether GO-based membranes are indeed suitable for reverse osmosis (RO) desalination, three sub-micrometer thick GO-based lamellar membranes: GO-only, reduced GO (RGO)/titania (TO) nanosheets and RGO/TO/chitosan (CTS) are prepared, and their RO desalination performances are evaluated in a home-made RO test apparatus. The photoreduction of GO by TO improves the salt rejection, which increases slowly with the membrane thickness. The RGO/TO/CTS hybrid membranes exhibit higher rejection rates of only about 30% (greater than threefold improvement compared with a GO-only membrane) which is still inferior compared to other commercial RO membranes. The low rejection rates mainly arise from the pressure-induced weakening of the ion-GO interlayer interactions. Despite the advantages of simple, low-cost preparation, high permeability and selectivity of GO-based lamellar membranes, as the current desalination performances are not high enough to afford practical application, there still remains a great challenge to realize high performance separation membranes for water desalination applications.
Ebrahimi, Atieh; Yousefi Kebria, Daryoush; Najafpour Darzi, Ghasem
2017-09-01
The microbial desalination cell (MDC) is known as a newly developed technology for water and wastewater treatment. In this study, desalination rate, organic matter removal and energy production in the reactors with and without desalination function were compared. Herein, a new design of plain graphite called roughened surface graphite (RSG) was used as the anode electrode in both microbial fuel cell (MFC) and MDC reactors for the first time. Among the three type of anode electrodes investigated in this study, RSG electrode produced the highest power density and salt removal rate of 10.81 W/m 3 and 77.6%, respectively. Such a power density was 2.33 times higher than the MFC reactor due to the junction potential effect. In addition, adding the desalination function to the MFC reactor enhanced columbic efficiency from 21.8 to 31.4%. These results provided a proof-of-concept that the use of MDC instead of MFC would improve wastewater treatment efficiency and power generation, with an added benefit of water desalination. Furthermore, RSG can successfully be employed in an MDC or MFC, enhancing the bio-electricity generation and salt removal.
Cross Slip of Dislocation Loops in GaN Under Shear
2014-03-01
methodology 2.1 Discrete dislocation dynamic ( DDD ) simula- tions In this work, we employ a modified version of the ParaDiS code [15, 16]. First a...plane. 4 Conclusions The cross slip mechanisms of different dislocation loops have been studied via DDD simulations using the type <a> active
Arvidsson, Per I; Sandberg, Kristian; Sakariassen, Kjell S
2017-01-01
The Science for Life Laboratory Drug Discovery and Development Platform (SciLifeLab DDD) was established in Stockholm and Uppsala, Sweden, in 2014. It is one of ten platforms of the Swedish national SciLifeLab which support projects run by Swedish academic researchers with large-scale technologies for molecular biosciences with a focus on health and environment. SciLifeLab was created by the coordinated effort of four universities in Stockholm and Uppsala: Stockholm University, Karolinska Institutet, KTH Royal Institute of Technology and Uppsala University, and has recently expanded to other Swedish university locations. The primary goal of the SciLifeLab DDD is to support selected academic discovery and development research projects with tools and resources to discover novel lead therapeutics, either molecules or human antibodies. Intellectual property developed with the help of SciLifeLab DDD is wholly owned by the academic research group. The bulk of SciLifeLab DDD's research and service activities are funded from the Swedish state, with only consumables paid by the academic research group through individual grants. PMID:28670468
Sethi, Sanjeev; Gamez, Jeffrey D.; Vrana, Julie A.; Theis, Jason D.; Bergen, H. Robert; Zipfel, Peter F.; Dogan, Ahmet; Smith, Richard J. H.
2009-01-01
Dense Deposit Disease (DDD), or membranoproliferative glomerulonephritis type II, is a rare renal disease characterized by dense deposits in the mesangium and along the glomerular basement membranes that can be seen by electron microscopy. Although these deposits contain complement factor C3, as determined by immunofluorescence microscopy, their precise composition remains unknown. To address this question, we used mass spectrometry to identify the proteins in laser microdissected glomeruli isolated from paraffin-embedded tissue of eight confirmed cases of DDD. Compared to glomeruli from five control patients, we found that all of the glomeruli from patients with DDD contain components of the alternative pathway and terminal complement complex. Factor C9 was uniformly present as well as the two fluid-phase regulators of terminal complement complex clusterin and vitronectin. In contrast, in nine patients with immune complex–mediated membranoproliferative glomerulonephritis, glomerular samples contained mainly immunoglobulins and complement factors C3 and C4. Our study shows that in addition to fluid-phase dysregulation of the alternative pathway, soluble components of the terminal complement complex contribute to glomerular lesions found in DDD. PMID:19177158
Alsirafy, Samy A; Ibrahim, Noha Y; Abou-Elela, Enas N
2012-01-01
Opioid consumption before and after the establishment of a palliative medicine unit (PMU) in an Egyptian cancer centre was reviewed. A comparison of consumption during the year before the PMU was established to consumption during the third year after the PMU's establishment revealed that morphine consumption increased by 698 percent, fentanyl by 217 percent, and tramadol by 230 percent. Expressed in defined daily dose (DDD) and adjusted for 1,000 new cancer patients, consumption increased by 460 percent, from 4,678 DDD/1,000 new patients to 26,175 DDD/1,000 new patients. Expressed in grams of oral morphine equivalent (g OME), consumption increased by 644 percent, from 233 g OME/1,000 new patients to 1,731 g OME/1,000 new patients. The establishment of the PMU was associated with an increase in opioid consumption, especially morphine, which is an indicator of improvement in cancer pain control. The expression of opioid consumption in OME in addition to DDD may provide further information, especially when weak opioids are included in the analysis.
Arvidsson, Per I; Sandberg, Kristian; Sakariassen, Kjell S
2017-06-01
The Science for Life Laboratory Drug Discovery and Development Platform (SciLifeLab DDD) was established in Stockholm and Uppsala, Sweden, in 2014. It is one of ten platforms of the Swedish national SciLifeLab which support projects run by Swedish academic researchers with large-scale technologies for molecular biosciences with a focus on health and environment. SciLifeLab was created by the coordinated effort of four universities in Stockholm and Uppsala: Stockholm University, Karolinska Institutet, KTH Royal Institute of Technology and Uppsala University, and has recently expanded to other Swedish university locations. The primary goal of the SciLifeLab DDD is to support selected academic discovery and development research projects with tools and resources to discover novel lead therapeutics, either molecules or human antibodies. Intellectual property developed with the help of SciLifeLab DDD is wholly owned by the academic research group. The bulk of SciLifeLab DDD's research and service activities are funded from the Swedish state, with only consumables paid by the academic research group through individual grants.
A new nanocomposite forward osmosis membrane custom-designed for treating shale gas wastewater
Qin, Detao; Liu, Zhaoyang; Delai Sun, Darren; Song, Xiaoxiao; Bai, Hongwei
2015-01-01
Managing the wastewater discharged from oil and shale gas fields is a big challenge, because this kind of wastewater is normally polluted by high contents of both oils and salts. Conventional pressure-driven membranes experience little success for treating this wastewater because of either severe membrane fouling or incapability of desalination. In this study, we designed a new nanocomposite forward osmosis (FO) membrane for accomplishing simultaneous oil/water separation and desalination. This nanocomposite FO membrane is composed of an oil-repelling and salt-rejecting hydrogel selective layer on top of a graphene oxide (GO) nanosheets infused polymeric support layer. The hydrogel selective layer demonstrates strong underwater oleophobicity that leads to superior anti-fouling capability under various oil/water emulsions, and the infused GO in support layer can significantly mitigate internal concentration polarization (ICP) through reducing FO membrane structural parameter by as much as 20%. Compared with commercial FO membrane, this new FO membrane demonstrates more than three times higher water flux, higher removals for oil and salts (>99.9% for oil and >99.7% for multivalent ions) and significantly lower fouling tendency when investigated with simulated shale gas wastewater. These combined merits will endorse this new FO membrane with wide applications in treating highly saline and oily wastewaters. PMID:26416014
DESALINATION AND WATER TREATMENT RESEARCH AT SANDIA NATIONAL LABORATORIES.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rigali, Mark J.; Miller, James E.; Altman, Susan J.
Water is the backbone of our economy - safe and adequate supplies of water are vital for agriculture, industry, recreation, and human consumption. While our supply of water today is largely safe and adequate, we as a nation face increasing water supply challenges in the form of extended droughts, demand growth due to population increase, more stringent health-based regulation, and competing demands from a variety of users. To meet these challenges in the coming decades, water treatment technologies, including desalination, will contribute substantially to ensuring a safe, sustainable, affordable, and adequate water supply for the United States. This overview documentsmore » Sandia National Laboratories' (SNL, or Sandia) Water Treatment Program which focused on the development and demonstration of advanced water purification technologies as part of the larger Sandia Water Initiative. Projects under the Water Treatment Program include: (1) the development of desalination research roadmaps (2) our efforts to accelerate the commercialization of new desalination and water treatment technologies (known as the 'Jump-Start Program),' (3) long range (high risk, early stage) desalination research (known as the 'Long Range Research Program'), (4) treatment research projects under the Joint Water Reuse & Desalination Task Force, (5) the Arsenic Water Technology Partnership Program, (6) water treatment projects funded under the New Mexico Small Business Administration, (7) water treatment projects for the National Energy Technology Laboratory (NETL) and the National Renewable Energy Laboratory (NREL), (8) Sandia- developed contaminant-selective treatment technologies, and finally (9) current Laboratory Directed Research and Development (LDRD) funded desalination projects.« less
Reverse osmosis desalination: water sources, technology, and today's challenges.
Greenlee, Lauren F; Lawler, Desmond F; Freeman, Benny D; Marrot, Benoit; Moulin, Philippe
2009-05-01
Reverse osmosis membrane technology has developed over the past 40 years to a 44% share in world desalting production capacity, and an 80% share in the total number of desalination plants installed worldwide. The use of membrane desalination has increased as materials have improved and costs have decreased. Today, reverse osmosis membranes are the leading technology for new desalination installations, and they are applied to a variety of salt water resources using tailored pretreatment and membrane system design. Two distinct branches of reverse osmosis desalination have emerged: seawater reverse osmosis and brackish water reverse osmosis. Differences between the two water sources, including foulants, salinity, waste brine (concentrate) disposal options, and plant location, have created significant differences in process development, implementation, and key technical problems. Pretreatment options are similar for both types of reverse osmosis and depend on the specific components of the water source. Both brackish water and seawater reverse osmosis (RO) will continue to be used worldwide; new technology in energy recovery and renewable energy, as well as innovative plant design, will allow greater use of desalination for inland and rural communities, while providing more affordable water for large coastal cities. A wide variety of research and general information on RO desalination is available; however, a direct comparison of seawater and brackish water RO systems is necessary to highlight similarities and differences in process development. This article brings to light key parameters of an RO process and process modifications due to feed water characteristics.
Catić, Tarik; Stimac, Danijela; Zivković, Krešimir; Zelić, Ana
2012-08-01
To determine the real outpatient utilization of psychiatric drugs in Zagreb (Croatia) and Sarajevo (Bosnia and Herzegovina) and to compare the outpatient utilization of psychiatric drugs between this two cities. Data on the outpatient utilization of psycholpetics and psychoanaleptics (N05 and N06) in both cities were received from pharmacies and collected during 2006-2009. Based on the data obtained, a number of DDD and DDD per 1000 inhabitants perday (DDD/1000/day) has been calculated. The data in Zagreb were received from all pharmacies in Zagreb, whereas only 50% of pharmacies in Sarajevo participated, thus an extrapolation of data for Sarajevo was required and accomplished. All drugs were classified according to the ATC system. Based on the data obtained, a number of DDD and DDD/1000/day was calculated for all N05 and N06 drugs. Overall utilization trend was similar between the cities Sarajevo and Zagreb and followed trends in other neighbouring countries. Total consumption of psycholeptics and psychoanaleptics in Sarajevo was 22.6% (on average) lower than in Zagreb, during the 4-year period. During the 2006-2009 period the total consumption of psychopharmaceuticals showed increasing trend with peak in 2008 with similar trend between Zagreb and Sarajevo. It is necessary to implement systematic approach to drug utilization monitoring in Sarajevo and Bosnia and Herzegovina in general in order to improve prescribing quality as it is done in Croatia.
Application of ATC/DDD methodology to evaluate perioperative antimicrobial prophylaxis.
Akalin, Serife; Kutlu, Selda Sayin; Cirak, Bayram; Eskiçorapcı, Saadettin Yilmaz; Bagdatli, Dilek; Akkaya, Semih
2012-02-01
To evaluate quality of perioperative antibiotic prophylaxis (PAP) and to calculate the cost per procedure in a Turkish university hospital. A 352-bed teaching hospital in Denizli, Turkey. An prospective audit was performed between July and October 2010. All clean, clean-contaminated and contaminated elective surgical procedures in ten surgical wards were recorded. Antimicrobial use was calculated per procedure using the ATC-DDD system. The appropriateness of antibiotic use for each procedure was evaluated according to international guidelines on PAP. In addition, the cost per procedure was calculated. Overall, in 577 of the 625 (92.3%) of the studied procedures, PAP was used. PAP was indicated in 12.5% of the group where it was not used, and not indicated in 7.1% of the group where it was used. Unnecessarily prolonged antimicrobial prophylaxis was observed in 56.9% of the procedures, mean duration was 2.6 ± 2.7 days. The most frequently used antimicrobials were cefazolin (117.9 DDD/100-operation) and sulbactam/ampicillin (102.2 DDD/100-operation). The timing of the starting dose was appropriate in 545 procedures (94.5%). In the group that received PAP, only 80 (13.7%) of the procedures were found to be fully appropriate and correct. The density of antimicrobial use per operation was 2.8 DDD. The mean cost of the use of prophylactic antimicrobials
Pitfalls associated with the therapeutic reference pricing practice of asthma medication
2012-01-01
Background Therapeutic reference pricing (TRP) based on the WHO daily defined dose (DDD) is a method frequently employed for the cost-containment of pharmaceuticals. Our objective was to compare average drug use in the real world with DDD and to evaluate whether TRP based on DDD could result in cost savings on maintenance medication and the total direct health expenditures for asthma patients treated with Symbicort Turbuhaler (SYT) and Seretide Diskus (SED) in Hungary. Methods Real-world data were derived from the Hungarian National Health Insurance Fund database. Average doses and costs were compared between the high-dose and medium-dose SYT and SED groups. Multiple linear regressions were employed to adjust the data for differences in the gender and age distribution of patients. Results 27,779 patients with asthma were included in the analysis. Average drug use was lower than DDD in all groups, 1.38-1.95 inhalations in both SED groups, 1.28-1.97 and 1.74-2.49 inhalations in the medium and high-dose SYT groups, respectively. Although the cost of SED based on the DDD would be much lower than the cost of SYT in the medium-dose groups, no difference was found in the actual cost of the maintenance therapy. No significant differences were found between the groups in terms of total medical costs. Conclusions Cost-containment initiatives by payers may influence clinical decisions. TRP for inhalation asthma drugs raises special concern, because of differences in the therapeutic profile of pharmaceuticals and the lack of proven financial benefits after exclusion of the effect of generic price erosion. Our findings indicate that the presented TRP approach of asthma medications based on the daily therapeutic costs according to the WHO DDD does not result in reduced public healthcare spending in Hungary. Further analysis is required to show whether TRP generates additional expenditures by inducing switching costs and reducing patient compliance. Potential confounding factors may limit the generalisability of our conclusions. PMID:22818402
Pitfalls associated with the therapeutic reference pricing practice of asthma medication.
Kalo, Zoltan; Abonyi-Toth, Zsolt; Bartfai, Zoltan; Voko, Zoltan
2012-07-20
Therapeutic reference pricing (TRP) based on the WHO daily defined dose (DDD) is a method frequently employed for the cost-containment of pharmaceuticals. Our objective was to compare average drug use in the real world with DDD and to evaluate whether TRP based on DDD could result in cost savings on maintenance medication and the total direct health expenditures for asthma patients treated with Symbicort Turbuhaler (SYT) and Seretide Diskus (SED) in Hungary. Real-world data were derived from the Hungarian National Health Insurance Fund database. Average doses and costs were compared between the high-dose and medium-dose SYT and SED groups. Multiple linear regressions were employed to adjust the data for differences in the gender and age distribution of patients. 27,779 patients with asthma were included in the analysis. Average drug use was lower than DDD in all groups, 1.38-1.95 inhalations in both SED groups, 1.28-1.97 and 1.74-2.49 inhalations in the medium and high-dose SYT groups, respectively. Although the cost of SED based on the DDD would be much lower than the cost of SYT in the medium-dose groups, no difference was found in the actual cost of the maintenance therapy. No significant differences were found between the groups in terms of total medical costs. Cost-containment initiatives by payers may influence clinical decisions. TRP for inhalation asthma drugs raises special concern, because of differences in the therapeutic profile of pharmaceuticals and the lack of proven financial benefits after exclusion of the effect of generic price erosion. Our findings indicate that the presented TRP approach of asthma medications based on the daily therapeutic costs according to the WHO DDD does not result in reduced public healthcare spending in Hungary. Further analysis is required to show whether TRP generates additional expenditures by inducing switching costs and reducing patient compliance. Potential confounding factors may limit the generalisability of our conclusions.
Stockburger, Martin; Boveda, Serge; Moreno, Javier; Da Costa, Antoine; Hatala, Robert; Brachmann, Johannes; Butter, Christian; Garcia Seara, Javier; Rolando, Mara; Defaye, Pascal
2015-01-01
Aim Right ventricular pacing (VP) has been hypothesized to increase the risk in heart failure (HF) and atrial fibrillation (AF). The ANSWER study evaluated, whether an AAI-DDD changeover mode to minimize VP (SafeR) improves outcome compared with DDD in a general dual-chamber pacemaker population. Methods and results ANSWER was a randomized controlled multicentre trial assessing SafeR vs. standard DDD in sinus node disease (SND) or AV block (AVB) patients. After a 1-month run-in period, they were randomized (1 : 1) and followed for 3 years. Pre-specified co-primary end-points were VP and the composite of hospitalization for HF, AF, or cardioversion. Pre-specified secondary end-points were cardiac death or HF hospitalizations and cardiovascular hospitalizations. ANSWER enrolled 650 patients (52.0% SND, 48% AVB) at 43 European centres and randomized in SafeR (n = 314) or DDD (n = 318). The SafeR mode showed a significant decrease in VP compared with DDD (11.5 vs. 93.6%, P < 0.0001 at 3 years). Deaths and syncope did not differ between randomization arms. No significant difference between groups [HR = 0.78; 95% CI (0.48–1.25); P = 0.30] was found in the time to event of the co-primary composite of hospitalization for HF, AF, or cardioversion, nor in the individual components. SafeR showed a 51% risk reduction (RR) in experiencing cardiac death or HF hospitalization [HR = 0.49; 95% CI (0.27–0.90); P = 0.02] and 30% RR in experiencing cardiovascular hospitalizations [HR = 0.70; 95% CI (0.49–1.00); P = 0.05]. Conclusion SafeR safely and significantly reduced VP in a general pacemaker population though had no effect on hospitalization for HF, AF, or cardioversion, when compared with DDD. PMID:25179761
DDT Analysis of Wetland Sediments in Upper Escambia Bay, Florida
NASA Astrophysics Data System (ADS)
Hopko, M. N.; Wright, J.; Liebens, J.; Vaughan, P.
2017-12-01
Dichlorodiphenyltrichloroethane (DDT) was a commonly used pesticide from World War II through the 1960's. DDT is generally used to control mosquito populations and as an agricultural insecticide. The pesticide and its degradation products (DDD and DDE) can bioaccumulate within ecosystems having negative implications for animal and human health. Consequently, DDT usage was banned in the United States in 1973. In a contaminant study performed in Escambia Bay, Florida, in 2009, DDT was present in 25% of study sites, most of which were located in the upper bay wetlands. Concentrations were well above the Florida Department of Environmental Protection's (FDEP) Probable Effect Level (PEL) and ratios of DDT and its metabolites indicated a recent introduction to the system. A follow-up study performed in 2016 found no DDT, but did show DDE at several sites. The current study repeated sampling in May 2017 at sites from the 2009 and 2016 studies. Sediment samples were collected in triplicate using a ponar sampler and DDT, DDD and DDE were extracted using EPA methods 3540c and 3620c. Extracts were analyzed using a gas chromatograph with electron capture detection (GC-ECD) as per EPA method 8081c. Sediment was also analyzed for organic carbon and particle size using an elemental NC analyzer and a laser diffraction particle sizer. Results show the presence of breakdown products DDE and DDD at multiple sites, but no detectable levels of DDT at any site. Sampling sites with high levels of DDT contamination in 2009 show only breakdown products in both 2016 and 2017. Particle size has little influence on DDD or DDE concentrations but OC is a controlling factor as indicated for contaminated sites by Pearson correlations between OC and DDE and DDD of 0.82 and 0.92, respectively. The presence of only DDD and/or DDE in the 2016 and 2017 studies indicates that the parent, DDT, has not been re-introduced into the watershed since 2009 but is degrading in the environment.
The Risk of TB in Patients With Type 2 Diabetes Initiating Metformin vs Sulfonylurea Treatment.
Pan, Sheng-Wei; Yen, Yung-Feng; Kou, Yu Ru; Chuang, Pei-Hung; Su, Vincent Yi-Fong; Feng, Jia-Yih; Chan, Yu-Jiun; Su, Wei-Juin
2017-12-16
Metformin and the sulfonylureas are common initial antidiabetic agents; the former has demonstrated anti-TB action in in vitro and animal studies. The comparative effect of metformin vs the sulfonylureas on TB risk in patients with type 2 diabetes mellitus (T2DM) remains unclear. In this retrospective cohort study, patients without chronic kidney disease who received a T2DM diagnosis during 2003 to 2013 were identified from the Taiwan National Health Insurance Research Database. Participants with ≥ 2 years of follow-up were reviewed and observed for TB until December 2013. Patients receiving metformin ≥ 60 cumulative defined daily dose (cDDD) and sulfonylureas < 15 cDDD in the initial 2 years were defined as metformin majors; it was the inverse for sulfonylurea majors. The two groups were matched 1:1 by propensity score and compared for TB risk by multivariate Cox regression analysis. Among 40,179 patients with T2DM, 263 acquired TB (0.65%) over a mean follow-up of 6.1 years. In multivariate analysis, the initial 2-year dosage of metformin, but not that of the sulfonylureas, was an independent predictor of TB (60-cDDD increase (adjusted hazard ratio [HR], 0.931; 95% CI, 0.877-0.990) after adjustment by cofactors, including adapted diabetes complication severity index. Metformin majors had a significantly lower TB risk than that of sulfonylurea majors before and after matching (HR, 0.477; 95% CI, 0.268-0.850 and HR, 0.337; 95% CI, 0.169-0.673; matched pairs, n = 3,161). Compared with the reference group (initial 2-year metformin < 60 cDDD), metformin treatment showed a dose-dependent association with TB risk (60-219 cDDD; HR, 0.860; 95% CI, 0.637-1.161; 220-479 cDDD, HR, 0.706; 95% CI, 0.485-1.028; ≥ 480 cDDD, HR, 0.319; 95% CI, 0.118-0.863). Metformin use in the initial 2 years was associated with a decreased risk of TB, and metformin users had a reduced risk compared with their sulfonylurea comparators. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.
Weinrich, Lauren A.; Schneider, Orren D.; LeChevallier, Mark W.
2011-01-01
A bioluminescence-based assimilable organic carbon (AOC) test was developed for determining the biological growth potential of seawater within the reverse osmosis desalination pretreatment process. The test uses Vibrio harveyi, a marine organism that exhibits constitutive luminescence and is nutritionally robust. AOC was measured in both a pilot plant and a full-scale desalination plant pretreatment. PMID:21148685
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-25
... application for the Kineflex/C Cervical Artificial Disc sponsored by SpinalMotion. The Kineflex/C is a metal-on-metal (cobalt chrome molybdenum alloy) cervical total disc replacement device. The Kineflex/C is... degenerative disc disease (DDD) where DDD is defined as discogenic back pain with degeneration of the disc as...
Ignition of Nanocomposite Thermites by Electric Spark and Shock Wave
2014-04-30
Acknowledgments The research described here was based on work supported by the US Army Research Office under awards W911NG-13-0217 ( DDD ) and W911NF-12-1...0161 (ELD), and the US Defense Threat Reduc- tion Agency (DTRA) under award HDTRA1-12-1-0011 ( DDD ). William L. Shaw acknowledges support from the
Medication usage in Majuro, Marshall Islands.
Harding, Andrew
2005-03-01
To conduct a drug utilisation study to determine the top 50 drugs by prescription count, top 50 drugs by cost to government and the top 30 drugs by consumption for Majuro Atoll, Marshall Islands for the year 2003. Data was collected from the Majuro Hospital computer dispensing system. All outpatient prescriptions dispensed in the year 2003 were included. The defined daily dose (DDD) methodology was employed. Drug consumption was presented as DDD/1000 population/day. The top 5 drugs by consumption in Majuro for 2003 were glibenclamide (glyburide), enalapril, ferrous sulphate, amoxycillin and ascorbic acid. Values for the DDD/1000 population/day were on average lower than many other countries. This is the first local study of medication usage in the Marshall Islands. It provided some useful baseline data.
Synthesis of C13- and N15-Labeled DNAN
2014-07-24
Multiplicities are described as singlet (s), doublet (d), triplet (t), quartet (q), doublet of doublets (dd), doublet of doublet of doublets ( ddd ), multiplet...dd, 4.8Hz, 2.6Hz, 1H), 8.40 ( ddd , 8.8Hz, 2.6Hz, 1.8Hz, 1H), and 7.81 (d, 8.8Hz, 1H) ppm. 13C NMR (CDCl3): δ 147.8 (dd, 18Hz, 3Hz), 146.3 (dd, 17Hz...Dinitroanisole mp: 86-88 °C 1H NMR (CDCl3): δ 8.77 (m, 4.8Hz, 2.6Hz, 1H), 8.46 ( ddd , 9.2Hz, 2.6Hz, 1.8Hz, 1H), 7.23 (d, 9.2Hz, 1H), and 4.10 (s, 3H
The Effect of Reported Head Injury on Team Performance and Partner Evaluation
2015-02-17
4 Measures……………………………………………………………………………… 5 DDD Task…….…………………………………………………………………. 5 Evaluation survey……………………………………………………………….. 5...6 The effects of injury condition on DDD performance and evaluation......................... 7 Discussion...tables 1. Overall team DDD score and evaluation subscales as a function of injury condition….. 7 2. Correlations among the measured variables
Lu, Yaobin; Abu-Reesh, Ibrahim M; He, Zhen
2016-09-01
Microbial desalination cells (MDCs) have been studied for contaminant removal from wastewater and salinity reduction in saline water. However, in an MDC wastewater treatment and desalination occurs in different streams, and high salinity of the treated wastewater creates challenges for wastewater reuse. Herein, a single-stream MDC (SMDC) with four chambers was developed for simultaneous organic removal and desalination in the same synthetic wastewater. This SMDC could achieve a desalination rate of 12.2-31.5 mg L(-1) h(-1) and remove more than 90 % of the organics and 75 % of NH4 (+)-N; the pH imbalance between the anode and cathode chambers was also reduced. Several strategies such as controlling catholyte pH, increasing influent COD concentration, adopting the batch mode, applying external voltage, and increasing the alkalinity of wastewater were investigated for improving the SMDC performance. Under a condition of 0.4 V external voltage, anolyte pH adjustment, and a batch mode, the SMDC decreased the wastewater salinity from 1.45 to below 0.75 mS cm(-1), which met the salinity standard of wastewater for irrigation. Those results encourage further development of the SMDC technology for sustainable wastewater treatment and reuse.
Formation and fate of chlorination by-products in reverse osmosis desalination systems.
Agus, Eva; Sedlak, David L
2010-03-01
Chlorination by-products may be formed during pretreatment or posttreatment disinfection in reverse osmosis (RO) desalination systems, potentially posing health, aesthetic and ecological risks. To assess the formation and fate of by-products under different conditions likely to be encountered in desalination systems, trihalomethanes, dihaloacetonitriles, haloacetic acids, and bromophenols were analyzed in water samples from a pilot-scale seawater desalination plant with a chlorine pretreatment system and in benchscale experiments designed to simulate other feed water conditions. In the pilot plant, RO rejection performance as low as 55% was observed for neutral, low-molecular-weight by-products such as chloroform or bromochloroacetonitrile. Benchscale chlorination experiments, conducted on seawater from various locations indicated significant temporal and spatial variability for all by-products, which could not be explained by measured concentrations of organic carbon or bulk parameters such as SUVA(254). When desalinated water was blended with freshwater, elevated concentrations of bromide in the blended water resulted in dihaloacetonitrile concentrations that were higher than those expected from dilution. In most situations, the concentration of chlorination by-products formed from continuous chlorination of seawater or blending of desalinated water and freshwater will not compromise water quality or pose significant risks to aquatic ecosystems. Copyright 2009 Elsevier Ltd. All rights reserved.
Huff, G.F.
2004-01-01
The tendency of solutes in input water to precipitate efficiency lowering scale deposits on the membranes of reverse osmosis (RO) desalination systems is an important factor in determining the suitability of input water for desalination. Simulated input water evaporation can be used as a technique to quantitatively assess the potential for scale formation in RO desalination systems. The technique was demonstrated by simulating the increase in solute concentrations required to form calcite, gypsum, and amorphous silica scales at 25??C and 40??C from 23 desalination input waters taken from the literature. Simulation results could be used to quantitatively assess the potential of a given input water to form scale or to compare the potential of a number of input waters to form scale during RO desalination. Simulated evaporation of input waters cannot accurately predict the conditions under which scale will form owing to the effects of potentially stable supersaturated solutions, solution velocity, and residence time inside RO systems. However, the simulated scale-forming potential of proposed input waters could be compared with the simulated scale-forming potentials and actual scale-forming properties of input waters having documented operational histories in RO systems. This may provide a technique to estimate the actual performance and suitability of proposed input waters during RO.
Online PH measurement technique in seawater desalination
NASA Astrophysics Data System (ADS)
Wang, Haibo; Wu, Kaihua; Hu, Shaopeng
2009-11-01
The measurement technology of pH is essential in seawater desalination. Glass electrode is the main pH sensor in seawater desalination. Because the internal impedance of glass electrode is high and the signal of pH sensor is easy to be disturbed, a signal processing circuit with high input impedance was designed. Because of high salinity of seawater and the characteristic of glass electrode, ultrasonic cleaning technology was used to online clean pH sensor. Temperature compensation was also designed to reduce the measurement error caused by variety of environment temperature. Additionally, the potential drift of pH sensor was analyzed and an automatic calibration method was proposed. In order to online monitor the variety of pH in seawater desalination, three operating modes were designed. The three modes are online monitoring mode, ultrasonic cleaning mode and auto-calibration mode. The current pH in seawater desalination was measured and displayed in online monitoring mode. The cleaning process of pH sensor was done in ultrasonic cleaning mode. The calibration of pH sensor was finished in auto-calibration mode. The result of experiments showed that the measurement technology of pH could meet the technical requirements for desalination. The glass electrode could be promptly and online cleaned and its service life was lengthened greatly.
Pradhan, Harapriya; Jain, Sumat Chand; Ghangrekar, Makarand M
2015-12-01
Microbial desalination cell (MDC) has great potential toward direct electricity generation from wastewater and concurrent desalination through potential difference developed due to microbial activity. Degradation of phenol by isolate Pseudomonas aeruginosa in anodic chamber and simultaneous desalination of water in middle desalination chamber of multichamber MDC is demonstrated in this study. Performance of the MDCs with different anodic inoculum conditions, namely pure culture of P. aeruginosa (MDC-1), 50 % v/v mixture of P. aeruginosa and anaerobic mixed consortia (MDC-2) and anaerobic mixed consortia (MDC-3), was evaluated to compare the phenol degradation in anodic chamber, bioelectricity generation, and simultaneous total dissolved solids (TDS) removal from saline water in desalination chamber. Synergistic effect between P. aeruginosa and mixed anaerobic consortia as inoculum was evident in MDC-2 demonstrating phenol degradation of 90 %, TDS removal of 75 % in 72 h of reaction time along with higher power generation of 27.5 mW/m(2) as compared to MDC-1 (95 %, 64 %, 12.8 mW/m(2), respectively) and MDC-3 (58 %, 52 %, 4.8 mW/m(2), respectively). The results illustrate that the multichamber MDC-2 is effective for simultaneous removal of phenol and dissolved solids contained in industrial wastewaters.
A Plan to Develop a Red Tide Warning System for Seawater Desalination Process Management
NASA Astrophysics Data System (ADS)
Kim, Tae Woo; Yun, Hong Sik
2017-04-01
The holt of the seawater desalination process for fifty five days due to the eight-month long red tide in 2008 in the Persian Gulf, the Middle East, had lost about 10 billion KRW. The POSCO Seawater Desalination facility, located in Gwangyang Bay Area in the Southern Sea, has produced 30,000 tons of fresh water per day since 2014. Since there has been an incident of red time in the area for three months in August, 2012, it is necessary to establish a warning system for red tide that threatens the stable operation of the seawater desalination facility. A red tide warning system can offer the seawater desalination facility manager customized services on red tide information and potential red tide inflow to the water intake. This study aimed to develop a red tide warning system in Gwangyang Bay Area by combining RS, modeling and monitoring technologies, which provides red tide forecasting information with which to effectively control the seawater desalination process. Using the proposed system, the seawater desalination facility manager can take phased measures to cope with the inflow of red tide. ACKNOWLEDGMENTS This research was supported by a grant(16IFIP-C088924-03) from Industrial Facilities & Infrastructure Research Program funded by Ministry of Land, Infrastructure and Transport(MOLIT) of the Korea government and the Korea Agency for Infrastructure Technology Advancement (KAIA). This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(NRF-2014R1A1A2054975).
An Interactive Computer Tool for Teaching About Desalination and Managing Water Demand in the US
NASA Astrophysics Data System (ADS)
Ziolkowska, J. R.; Reyes, R.
2016-12-01
This paper presents an interactive tool to geospatially and temporally analyze desalination developments and trends in the US in the time span 1950-2013, its current contribution to satisfying water demands and its future potentials. The computer tool is open access and can be used by any user with Internet connection, thus facilitating interactive learning about water resources. The tool can also be used by stakeholders and policy makers for decision-making support and with designing sustainable water management strategies. Desalination technology has been acknowledged as a solution to a sustainable water demand management stemming from many sectors, including municipalities, industry, agriculture, power generation, and other users. Desalination has been applied successfully in the US and many countries around the world since 1950s. As of 2013, around 1,336 desalination plants were operating in the US alone, with a daily production capacity of 2 BGD (billion gallons per day) (GWI, 2013). Despite a steady increase in the number of new desalination plants and growing production capacity, in many regions, the costs of desalination are still prohibitive. At the same time, the technology offers a tremendous potential for `enormous supply expansion that exceeds all likely demands' (Chowdhury et al., 2013). The model and tool are based on data from Global Water Intelligence (GWI, 2013). The analysis shows that more than 90% of all the plants in the US are small-scale plants with the capacity below 4.31 MGD. Most of the plants (and especially larger plants) are located on the US East Coast, as well as in California, Texas, Oklahoma, and Florida. The models and the tool provide information about economic feasibility of potential new desalination plants based on the access to feed water, energy sources, water demand, and experiences of other plants in that region.
NASA Astrophysics Data System (ADS)
Davidson, C. L.; Wurstner, S. K.; Fortson, L. A.
2010-12-01
As humanity works to both minimize climate change and adapt to its early impacts, co-management of energy and water resources will become increasingly important. In some parts of the US, power plants have been denied permits, in part because of the significant burden placed on local water supplies by assigning new water rights for the facility’s entire design life. Water resources may be allocated 30 to 50 years into a future where water availability and quality are uncertain due to supply impacts associated with climate change and increased demand from growing populations, agriculture and industry. In many areas, particularly those with access to seawater, desalination is being employed with increasing frequency to augment conventional sources of fresh water. At the same time, many of the world’s developed nations are moving to reduce greenhouse gas emissions. One key technological option for addressing emissions from the power generation sector is CO2 capture and geologic storage (CCS). This process is both water and energy intensive for many power and industrial facilities, compounding the impact of declining water availability for plants faced with deploying CCS in a CO2-constrained future. However, a unique opportunity may exist to couple power generation and CCS by extracting and desalinating brine from the CO2 storage formation to produce fresh water. While this coupled approach is unlikely to be attractive for most CCS projects, it may represent a viable option in areas where there is demand for additional electricity but conventional water supplies are unable to meet the needs of the power generation and CO2 capture systems, or in areas where brine produced from CCS projects can be desalinated to supplement strained municipal supplies. This paper presents a preliminary analysis of the factors impacting the feasibility of coupled CCS-desalination projects. Several injection / extraction scenarios have been examined via the STOMP geochemical flow model resulting in key outputs including extraction wellhead conditions, in situ CO2 plume behavior and reservoir pressure. Economic modeling for the water extraction and desalination portion of these coupled CCS / desalination scenarios suggests that -- while some scenarios yield costs far in excess of most existing desalination projects -- depending on the specific storage formation characteristics and desalination technology employed, fresh water could be produced at costs competitive with seawater desalination facilities, bolstering local water supplies and enabling deployment of industrial projects that might otherwise have been infeasible.
Energy Implications of Seawater Desalination (Invited)
NASA Astrophysics Data System (ADS)
Cooley, H.; Heberger, M. G.
2013-12-01
Freshwater has traditionally come from rivers, lakes, streams, and groundwater aquifers. As demand increases and climate change alters the location and timing of water supply, these traditional sources are becoming unavailable, more difficult, or increasingly expensive to develop. As a result, many communities are switching to alternative sources of water. Interest in pursuing seawater desalination is high in many coastal communities. In California, for example, 17 plants are proposed for development along the California coast and two in Mexico. Water managers are pursing desalination because is a local supply that can help diversify the water supply portfolio. Additionally, it is a reliable supply, which can be especially valuable during a drought. But removing the salt from seawater is an energy-intensive process that consumes more energy per gallon than most other water supply and treatment options. These energy requirements are key factors that will impact the extent and success of desalination in California. Energy requirements for seawater desalination average about 4.0 kWh per cubic meter (m3) of water produced. By comparison, the least energy-intensive options of local sources of groundwater and surface water require 0 - 0.90 kWh per m3; wastewater reuse, depending on treatment levels, may require from 0.26 - 2.2 kWh per m3. Beyond the electricity required for the desalination facility itself, producing any new source of water, including through desalination, increases the amount of energy required to deliver and use the water produced as well as collect, treat, and dispose of the wastewater generated. Energy is the largest single variable cost for a desalination plant, varying from one-third to more than one-half the cost of produced water. Building a desalination plant may reduce a water utility's exposure to water reliability risks at the added expense of an increase in exposure to energy price risk. In dependent on hydropower, electricity prices tend to rise during droughts, when runoff, and thus power production, is constrained and electricity demands are high. Additionally, electricity prices are projected to rise in many regions to maintain and replace aging transmission and distribution infrastructure, install advanced metering infrastructure, comply with once-through cooling regulations, meet new demand growth , and increase renewable energy production. While rising electricity prices will affect the price of all water sources, they will have a greater impact on those that are the most energy intensive, like desalination. The high energy requirements of seawater desalination also raise concerns about greenhouse gas emissions. In 2006, California lawmakers passed the Global Warming Solutions Act, or Assembly Bill 32, which requires the state to reduce greenhouse gas emissions to 1990 levels by 2020. Thus, the state has committed itself to a program of steadily reducing its greenhouse gas emissions in both the short- and long-term, which includes cutting current emissions and preventing future emissions associated with growth. Desalination - through increased energy use - can cause an increase in greenhouse gas emissions, further contributing to the root cause of climate change and running counter to the state's greenhouse gas reduction goals.
Outpatient utilization of psychopharmaceuticals in the City of Zagreb 2001-2006.
Stimac, Danijela; Culig, Josip
2009-03-01
A comprehensive insight into drug utilization as an economic and primarily a public health issue can only be acquired in the context of overall health state of the respective population. The objectives of the study were: 1) to determine the real outpatient utilization of psychopharmaceuticals in Zagreb, 2) to determine the psychopharmaceutical prescribing quality during the study period; and 3) to propose appropriate interventions in Zagreb on the basis of the results obtained. Data on drug utilization were obtained from all Zagreb pharmacies. The number of defined daily doses (DDD) and number of DDD per 1000 inhabitants per day (DDD/1000/day) were calculated from the number of particular drug packages. The Drug Utilization 90% (DU90%) method was used as a criterion of prescribing quality. Outpatient utilization of psychopharmaceuticals showed a declining pattern from 115.40 DDD/1000/day in 2001 to 93.15 DDD/1000/day in 2006. Anxiolytics accounted for the majority of this drug group utilization in the City of Zagreb, although the anxiolytic/antidepressant ratio decreased from 7.19 in 2001 to 3.86 in 2006. The utilization of selective serotonin reuptake inhibitors showed a 2.5-fold increase and accounted for 90% of overall antidepressant utilization. A 2.5-fold decrease was recorded in the utilization of antipsychotics, while the atypical/typical antipsychotic ratio changed from 1:2 in 2001 to 1.1:1 in 2006. Despite some improvement observed in the prescribing quality, the predominance of benzodiazepines in the utilization of psychopharmaceuticals points to the need of additional rationalization in the field.
Safety of the Wearable Cardioverter Defibrillator (WCD) in Patients with Implanted Pacemakers.
Schmitt, Joern; Abaci, Guezine; Johnson, Victoria; Erkapic, Damir; Gemein, Christopher; Chasan, Ritvan; Weipert, Kay; Hamm, Christian W; Klein, Helmut U
2017-03-01
The wearable cardioverter defibrillator (WCD) is an important approach for better risk stratification, applied to patients considered to be at high risk of sudden arrhythmic death. Patients with implanted pacemakers may also become candidates for use of the WCD. However, there is a potential risk that pacemaker signals may mislead the WCD detection algorithm and cause inappropriate WCD shock delivery. The aim of the study was to test the impact of different types of pacing, various right ventricular (RV) lead positions, and pacing modes for potential misleading of the WCD detection algorithm. Sixty patients with implanted pacemakers received the WCD for a short time and each pacing mode (AAI, VVI, and DDD) was tested for at least 30 seconds in unipolar and bipolar pacing configuration. In case of triggering the WCD detection algorithm and starting the sequence of arrhythmia alarms, shock delivery was prevented by pushing of the response buttons. In six of 60 patients (10%), continuous unipolar pacing in DDD mode triggered the WCD detection algorithm. In no patient, triggering occurred with bipolar DDD pacing, unipolar and bipolar AAI, and VVI pacing. Triggering was independent of pacing amplitude, RV pacing lead position, and pulse generator implantation site. Unipolar DDD pacing bears a high risk of false triggering of the WCD detection algorithm. Other types of unipolar pacing and all bipolar pacing modes do not seem to mislead the WCD detection algorithm. Therefore, patients with no reprogrammable unipolar DDD pacing should not become candidates for the WCD. © 2016 Wiley Periodicals, Inc.
Moriguchi, Yu; Alimi, Marjan; Khair, Thamina; Manolarakis, George; Berlin, Connor; Bonassar, Lawrence J.; Härtl, Roger
2016-01-01
Study Design Literature review. Objective Degenerative disk disease (DDD) has a negative impact on quality of life and is a major cause of morbidity worldwide. There has been a growing interest in the biological repair of DDD by both researchers and clinicians alike. To generate an overview of the recent progress in reparative strategies for the treatment of DDD highlighting their promises and limitations, a comprehensive review of the current literature was performed elucidating data from in vivo animal and clinical studies. Methods Articles and abstracts available in electronic databases of PubMed, Web of Science, and Google Scholar as of December 2014 were reviewed. Additionally, data from unpublished, ongoing clinical trials was retrieved from clinicaltrials.gov and available abstracts from research forums. Data was extracted from the most recent in vivo animal or clinical studies involving any of the following: (1) treatment with biomolecules, cells, or tissue-engineered constructs and (2) annulus fibrosus repair. Results Seventy-five articles met the inclusion criteria for review. Among these, 17 studies involved humans; 37, small quadrupeds; and 21, large quadrupeds. Findings from all treatments employed demonstrated improvement either in regenerative capacity or in pain attenuation, with the exception of one clinical study. Conclusion Published clinical studies on cell therapy have reported encouraging results in the treatment of DDD and resultant back pain. We expect new data to emerge in the near future as treatments for DDD continue to evolve in parallel to our greater understanding of disk health and pathology. PMID:27433434
Determination of DDT and metabolites in surface water and sediment using LLE, SPE, ACE and SE.
Sibali, Linda L; Okonkwo, Jonathan O; Zvinowanda, Caliphs
2009-12-01
Surface water and sediment samples collected from Jukskei River in South Africa, were subjected to different extraction techniques, liquid-liquid (LLE), solid-phase extraction (SPE), activated carbon extraction (ACE) and soxhlet extraction (SE) for sediment. The samples were extracted with dichloromethane, cleaned in a silica gel column and the extracts quantified using a Varian 3800 GC-ECD. The percentage recovery test for 2,4'DDT, DDE and DDD and 4,4'DDT, DDE and DDD in water ranged from 80%-96% and 76%-95% (LLE); 56%-76% and 56%-70% (SPE) and 75%-84% (ACE), respectively; while that recoveries for sediment samples varied from 65%-95% for 2,4'DDT, DDE and DDD and 80%-91% for 4,4'DDT, DDE and DDD. The high recoveries exhibited by ACE compared very well with LLE and SE. This was not the case with SPE which exhibited the lowest value of recoveries for both 2,4 and 4,4'DDD, DDE and DDT standard samples. The mean concentrations of DDT and metabolites ranged from nd-1.10 μg/L, nd-0.80 μg/L, nd-1.21 μg/L and 1.92 μg/L for LLE, SPE, ACE and SE, respectively. The total DDT (2,4' and 4,4'-DDT) in water and sediment samples ranged from 1.20-3.25 μg/L and 1.82-5.24 μg/L, respectively. The low concentrations of the DDT metabolites obtained in the present study may suggest a recent contamination of the river by DDT.
Kanadaşı, Mehmet; Caylı, Murat; Sahin, Durmuş Yıldıray; Sen, Ömer; Koç, Mevlüt; Usal, Ayhan; Batur, Mustafa Kemal; Demirtaş, Mustafa
2011-07-01
Although it has been known that optimization of atrioventricular delay (AVD) has favorable effect on the left ventricular functions in patients with DDD pacemaker, the effect of different AVDs on left atrium (LA) and left atrial appendage (LAA) functions has not been exactly evaluated. The aim of the present study was to assess the effect of different AVDs on LA and LAA functions in DDD pacemaker implanted patients with atrioventricular block. Forty-eight patients with DDD pacemaker were enrolled into the study. Patients were divided into two groups according to the echocardiographic diastolic function: Group I (normal diastolic function) and Group II (diastolic dysfunction). LAA emptying velocity on pulsed wave Doppler and LAA late systolic wave velocity by using tissue Doppler were recorded. Patients were paced for five successive continuous pacing periods of 10 minutes duration using five selective AVDs (80-250 ms). Significant effect on LA and LAA functions has not been observed by the setting of AVD in Group I. However, when the AVD was gradually shortened form 150 ms to 80 ms, LA and LAA functions gradually decreased in Group II patients. When AVD increased to 200 ms, LA and LAA functions were improved. Further increase in AVD resulted in decreased LA and LAA functions. Setting of AVD has not significant effect on the LA and LAA functions in patients with normal diastolic function, but moderate prolongation of AVD in physiological limits improved LA and LAA functions in DDD pacemaker implanted patients with diastolic dysfunction. © 2011, Wiley Periodicals, Inc.
Wang, Cui; Li, Zhuoyu; Zhang, Quan; Zhao, Meirong; Liu, Weiping
2013-04-16
The increased release of chiral persistent organic pollutants (POPs) into the environment has resulted in more attention to the role of enantioselectivity in the fate and ecotoxicological effects of these compounds. Although the enantioselectivity of chiral POPs has been considered in previous studies, little effort has been expended to discern the enantiospecific effects of chiral POPs metabolites, which may impede comprehensive risk assessments of these chemicals. In the present study, o,p'-DDD, the chiral metabolite of o,p'-DDT, was used as a model chiral metabolite. First, a preferential chiral separation at 100% ethanol was employed to obtain a pure enantiomer. The enantioselective cytotoxicity of o,p'-DDD in rat cells (PC12) was evaluated by detecting activation of the cellular apoptosis and oxidative stress systems and microarray analysis. We have documented for the first time that R-(+)-o,p'-DDD increases apoptosis by selectively disturbing the oxidative system (enzymes and molecules) and regulating the transcription of Aven, Bid, Cideb and Tp53. By comparing the data from the present study to data derived from the parent compound, we concluded that the R-enantiomer is the more detrimental stereostructure for both o,p'-DDT and o,p'-DDD. This observed stereostructural effect is in line with the structure-activity relationship formulated at other structural levels. Biological activities of the chiral metabolites are likely to occur in the same absolute configuration between chiral POPs and their metabolites provided that they have the similar stereostructures.
NASA Astrophysics Data System (ADS)
Yang, Hui; Li, Zhenhuan; Huang, Minsheng
2014-12-01
Unlike common single crystals, the nickel-based single crystal superalloy shows surprisingly anomalous flow strength (i.e. with the increase of temperature, the yield strength first increases to a peak value and then decreases) and tension-compression (TC) asymmetry. A comprehensive three-dimensional discrete dislocation dynamics (3D-DDD) procedure was developed to model these abnormal mechanical properties. For this purpose, a series of complicated dynamic evolution details of Kear-Wilsdorf (KW) locks, which are closely related to the flow strength anomaly and TC asymmetry, were incorporated into this 3D-DDD framework. Moreover, the activation of the cubic slip system, which is the origin of the decrease in yield strength with increasing temperature at relatively high temperatures, was especially taken into account by introducing a competition criterion between the unlocking of the KW locks and the activation of the cubic slip system. To test our framework, a series of 3D-DDD simulations were performed on a representative volume cell model with a cuboidal Ni3Al precipitate phase embedded in a nickel matrix. Results show that the present 3D-DDD procedure can successfully capture the dynamic evolution of KW locks, the flow strength anomaly and TC asymmetry. Then, the underlying dislocation mechanisms leading to these abnormal mechanical responses were investigated and discussed in detail. Finally, a cyclic deformation of the nickel-based single crystal superalloy was modeled by using the present DDD model, with a special focus on the influence of KW locks on the Bauschinger effect and cyclic softening.
Trends in the use of antiasthmatic medications in Morocco (1999-2010).
Ghanname, Imane; Ahid, Samir; Berrada, Ghizlane; Belaiche, Abdelmjid; Hassar, Mohamed; Cherrah, Yahya
2013-12-01
Asthma is a big public health problem in Morocco. The drug therapy existing in Morocco is currently insufficient because of the low purchasing power and the low health insurance coverage available to the average citizen in Morocco. In this study we evaluated the consumption of antiasthmatics in Morocco during the period 1999-2010, the classes of used drugs and the generics' market share. We used sales data from the Moroccan subsidiaries of the IMS Health "Intercontinental Marketing Service". The consumption volume was converted to Defined Daily Doses (DDDs). During 1999-2010, antiasthmatics's consumption increased from 3.91 to 14.47 DDD per 1000 inhabitants per day. In 2010, the association Beta-2-mimetic-Glucocorticosteroids were the most consumed (8.53 DDD/1000 Inhabitants/day) followed by the short-acting inhaled Beta-2-mimetic (4 DDD/1000 Inhabitants/day) and inhaled Glucocorticosteroids alone accounted for 1.13 DDD/1000 Inhabitants/day. The largest consumption share in volume was held by the short-acting inhaled Beta-2-mimetic (42%) followed by the combination Beta-2-mimetic-Glucocorticosteroids (38%). Between 1999 and 2010, the market for generic antiasthmatics increased from 1.84 to 2.18 DDD/1000 Inhabitants/day. The ratio of the monthly average cost of treatment to the minimum wage in Morocco decreased from 10.8% in 1999 to 7.11% in 2010. Antiasthmatics' consumption in Morocco has undergone significant changes between 1999 and 2010. However, the availability of these drugs expressed as the Average Monthly Expenditure/Guaranteed Minimum Wage ratio improved. Despite this, the use of antiasmathics in Morocco remains low.
Surface Wave Dynamics in the Coastal Zone
2013-09-30
summarized in Figure 1. Scatter index # DDD 0.73 Mad Ting+ T&M S&Hol S&How Lipp+ vdW FA R&S/07 Slopes J&B...Battjes & Janssen [1978] TG = Thornton & Guza [1983] Bald = Baldock et al. [1998] DDD = Dally et al. [1985] J&B = Janssen & Battjes
Garrison, A W; Cyterski, M; Roberts, K D; Burdette, D; Williamson, J; Avants, J K
2014-11-01
In the 1950s and 60s, discharges from a DDT manufacturing plant contaminated a tributary system of the Tennessee River near Huntsville, Alabama, USA. Regulatory action resulted in declaring the area a Superfund site which required remediation and extensive monitoring. Monitoring data collected from 1988, after remediation, through 2011 showed annual decreases approximating first-order decay in concentrations of total DDT and its six principal congeners (p,p'-DDT, o,p'-DDT, p,p'-DDD, o,p'-DDD, p,p'-DDE and o,p'-DDE) in filets from three species of fish. As of 2013, these concentrations met the regulatory requirements of 5 mg/kg or less total DDT for each fish tested. The enantiomer fractions (EF) of chiral o,p'-DDD in smallmouth buffalo and channel catfish were always below 0.5, indicating preferential decay of the (+)-enantiomer of this congener; this EF did not change significantly over 15 years. The often-neglected DDT metabolite p,p'-DDA was found at a concentration of about 20 μg/l in the ecosystem water. Published by Elsevier Ltd.
Dominguez-Lopez, Pablo; Diaz-Cueto, Laura; Olivares, Aleida; Ulloa-Aguirre, Alfredo; Arechavaleta-Velasco, Fabian
2012-11-01
The purpose of this study was to investigate the effect of 1,1,1-trichloro-2,2-bis-(chlorophenyl)ethane (DDT), 1,1-bis-(chlorophenyl)-2,2-dichloroethene (DDE), and 1,1-dichloro-2,2-bis(chlorophenyl)ethane (DDD) isomers on COX-2 expression in a human trophoblast-derived cell line. Cultured HTR-8/SVneo trophoblast cells were exposed to DDT isomers and its metabolites for 24 h, and COX-2 mRNA and protein expression were assessed by RT-PCR, Western blotting, and ELISA. Prostaglandin E₂ production was also measured by ELISA. Both COX-2 mRNA and protein were detected under control (unexposed) conditions in the HTR-8/SVneo cell line. COX-2 protein expression and prostaglandin E₂ production but not COX-2 mRNA levels increased only after DDE and DDD isomers exposure. It is concluded that DDE and DDD exposure induce the expression of COX-2 protein, leading to increased prostaglandin E2 production. Interestingly, the regulation of COX-2 by these organochlorines pesticides appears to be at the translational level. © 2012 Wiley Periodicals, Inc.
The "tract" of history in the treatment of lumbar degenerative disc disease.
Chedid, Khalil J; Chedid, Mokbel K
2004-01-15
In this paper past, present, and future treatments of degenerative disc disease (DDD) of the lumbar spine are outlined in a straight forward manner. This is done to review previous knowledge of the disease, define current treatment procedures, and discuss future perspectives. An analysis of a subject of this magnitude dictates that one describes as accurate a history as possible: an anatomical/historical "tract" with emphasis on all possible deviations. Although spinal disorders have been recognized for a long time, the view of DDD as a particular disease entity is a more recent development. In this paper, the authors attempt to outline the history of DDD of the lumbar spine in an unbiased and scientific fashion. Physiological, diagnostic, and therapeutic implications will all be addressed in this study.
Simulating the impact of brine from desalination plants on the salinity of the Persian/Arabian Gulf
NASA Astrophysics Data System (ADS)
Eltahir, E. A. B.; Ibrahim, H. D.
2016-12-01
The Middle East has an arid climate and very little freshwater from river runoff, which has forced a rapid expansion of desalination plants in the region in order to meet current and future freshwater demand due to rising population. The Gulf is the source of feedwater and sink of concentrated discharge (brine) for plants producing more than half of the world's desalination capacity. Moreover, the Gulf is one of the most saline water bodies in the world due to large evaporation that far exceeds the input of freshwater from precipitation and river runoff. An increase in salinity at the regional scale due to brine discharge may reduce the quality of feedwater to plants and efficiency of desalination, and at the basin scale, a rise in salinity may change the dynamics of water circulation and adversely impact the marine biota. Here we present modeling results from simulating the impact of desalination on the natural Gulf environment using a coupled Gulf-atmosphere regional model (GARM). GARM is the first two-way coupled model developed for the Gulf system. The hydrodynamic component of GARM is the unstructured grid finite volume coastal ocean model (FVCOM) and the atmosphere component of GARM is the MIT regional climate model (MRCM), both of which have been widely used in simulating regional ocean and atmospheric dynamics. Desalination activity is incorporated into GARM as a boundary condition and the Gulf system is simulated for a ten-year time period in order to quantify the impact of brine discharge both at regional and basin scales. These results will be useful for desalination plant design and planning for current and future water security in the region.
Sabina, K; Fayidh, Mohammed A; Archana, G; Sivarajan, M; Babuskin, S; Babu, P Azhagu Saravana; Radha, K Krishnan; Sukumar, M
2014-01-01
Microbial desalination cell (MDC) is a bioelectrochemical system developed recently from microbial fuel cells (MFCs), for producing green energy from organic wastes along with desalination of saltwater. MDC is proved to be a better performer than MFC in terms of power output and chemical oxygen demand removal, with desalination as an additional feature. This study investigates the application potential of MDC for integrated biodegradation of waste engine oil. This study showed, for the first time, that waste engine oil could be used as an organic substrate in MDC, achieving biodegradation of engine oil along with considerable desalination and power production. Utilization of these wastes in MDC can protect the environment from waste engine oil contamination. Indigenous oil-degrading bacteria were isolated and identified from engine oil contaminated sludge. Degradation of waste engine oil by these novel isolates was studied in batch cultures and optimized the growth conditions. The same cultures when used in MDC, gave enhanced biodegradation (70.1 +/- 0.5%) along with desalination (68.3 +/- 0.6%) and power production (3.1 +/- 0.3 mW/m2). Fourier transform-infrared spectroscopy and gas chromatography-mass spectrometry analyses were performed to characterize the degradation metabolites in the anolyte of MDC which clearly indicated the biodegradation of long chain, branched and cyclic hydrocarbons present in waste engine oil.
Moruno, Francisco Lopez; Rubio, Juan E; Atanassov, Plamen; Cerrato, José M; Arges, Christopher G; Santoro, Carlo
2018-06-01
Microbial desalination cell (MDC) is a bioelectrochemical system capable of oxidizing organics, generating electricity, while reducing the salinity content of brine streams. As it is designed, anion and cation exchange membranes play an important role on the selective removal of ions from the desalination chamber. In this work, sulfonated sodium (Na + ) poly(ether ether ketone) (SPEEK) cation exchange membranes (CEM) were tested in combination with quaternary ammonium chloride poly(2,6-dimethyl 1,4-phenylene oxide) (QAPPO) anion exchange membrane (AEM). Non-patterned and patterned (varying topographical features) CEMs were investigated and assessed in this work. The results were contrasted against a commercially available CEM. This work used real seawater from the Pacific Ocean in the desalination chamber. The results displayed a high desalination rate and power generation for all the membranes, with a maximum of 78.6±2.0% in salinity reduction and 235±7mWm -2 in power generation for the MDCs with the SPEEK CEM. Desalination rate and power generation achieved are higher with synthesized SPEEK membranes when compared with an available commercial CEM. An optimized combination of these types of membranes substantially improves the performances of MDC, making the system more suitable for real applications. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Hermansson, Veronica; Asp, Vendela; Bergman, Ake; Bergström, Ulrika; Brandt, Ingvar
2007-11-01
The environmental pollutant 3-MeSO(2)-DDE [2-(3-methylsulfonyl-4-chlorophenyl)-2-(4-chlorophenyl)-1,1-dichloroethene] is an adrenocortical toxicant in mice, specifically in the glucocorticoid-producing zona fasciculata, due to a cytochrome P450 11B1 (CYP11B1)-catalysed bioactivation and formation of covalently bound protein adducts. o,p'-DDD [2-(2-chlorophenyl)-2-(4-chlorophenyl)-1,1-dichloroethane] is toxic and inhibits steroidogenesis in the human adrenal cortex after bioactivation by unidentified CYPs, but does not exert any toxic effects on the mouse adrenal. As a step towards determining in vitro/in vivo relationships for the CYP-catalysed binding and toxicity of 3-MeSO(2)-DDE and o,p'-DDD, we have investigated the irreversible protein binding of these two toxicants in the murine adrenocortical cell line Y-1. The irreversible binding of 3-MeSO(2)-DDE previously demonstrated in vivo was successfully reproduced and could be inhibited by the CYP-inhibitors etomidate, ketoconazole and metyrapone. Surprisingly, o,p'-DDD reached similar levels of binding as 3-MeSO(2)-DDE. The binding of o,p'-DDD was sensitive to etomidate and ketoconazole, but not to metyrapone. Moreover, GSH depletion increased the binding of 3-MeSO(2)-DDE, but not of o,p'-DDD, indicating an important role of GSH conjugation in the detoxification of the 3-MeSO(2)-DDE-derived reactive metabolite. In addition, the specificity of CYP11B1 in activating 3-MeSO(2)-DDE was investigated using structurally analogous compounds. None of the analogues produced histopathological lesions in the mouse adrenal in vivo following a single i.p. injection of 100 mg/kg body weight, but two of the compounds were able to decrease the irreversible binding of 3-MeSO(2)-DDE to Y-1 cells. These results indicate that the bioactivation of 3-MeSO(2)-DDE by CYP11B1 is highly structure-dependent. In conclusion, both 3-MeSO(2)-DDE and o,p'-DDD bind irreversibly to Y-1 cells despite differences in binding and adrenotoxicity in mice in vivo. This reveals a notable in vitro/in vivo discrepancy, the contributing factors of which remain unexplained. We consider the Y-1 cell line as appropriate for studies of the cellular mechanisms behind the adrenocortical toxicity of these substances.
Defining the Complement Biomarker Profile of C3 Glomerulopathy
Zhang, Yuzhou; Nester, Carla M.; Martin, Bertha; Skjoedt, Mikkel-Ole; Meyer, Nicole C.; Shao, Dingwu; Borsa, Nicolò; Palarasah, Yaseelan
2014-01-01
Background and objectives C3 glomerulopathy (C3G) applies to a group of renal diseases defined by a specific renal biopsy finding: a dominant pattern of C3 fragment deposition on immunofluorescence. The primary pathogenic mechanism involves abnormal control of the alternative complement pathway, although a full description of the disease spectrum remains to be determined. This study sought to validate and define the association of complement dysregulation with C3G and to determine whether specific complement pathway abnormalities could inform disease definition. Design, setting, participants, & measurements This study included 34 patients with C3G (17 with C3 glomerulonephritis [C3GN] and 17 with dense deposit disease [DDD]) diagnosed between 2008 and 2013 selected from the C3G Registry. Control samples (n=100) were recruited from regional blood drives. Nineteen complement biomarkers were assayed on all samples. Results were compared between C3G disease categories and with normal controls. Results Assessment of the alternative complement pathway showed that compared with controls, patients with C3G had lower levels of serum C3 (P<0.001 for both DDD and C3GN) and factor B (P<0.001 for both DDD and C3GN) as well as higher levels of complement breakdown products including C3d (P<0.001 for both DDD and C3GN) and Bb (P<0.001 for both DDD and C3GN). A comparison of terminal complement pathway proteins showed that although C5 levels were significantly suppressed (P<0.001 for both DDD and C3GN) its breakdown product C5a was significantly higher only in patients with C3GN (P<0.05). Of the other terminal pathway components (C6–C9), the only significant difference was in C7 levels between patients with C3GN and controls (P<0.01). Soluble C5b-9 was elevated in both diseases but only the difference between patients with C3GN and controls reached statistical significance (P<0.001). Levels of C3 nephritic factor activity were qualitatively higher in patients with DDD compared with patients with C3GN. Conclusions Complement biomarkers are significantly abnormal in patients with C3G compared with controls. These data substantiate the link between complement dysregulation and C3G and identify C3G interdisease differences. PMID:25341722
Coupling desalination and energy storage with redox flow electrodes.
Hou, Xianhua; Liang, Qian; Hu, Xiaoqiao; Zhou, Yu; Ru, Qiang; Chen, Fuming; Hu, Shejun
2018-06-26
Both freshwater shortage and energy crisis are global issues. Herein, we present a double-function system of faradaic desalination and a redox flow battery consisting of VCl3|NaI redox flow electrodes and a feed stream. The system has a nominal cell potential (E0 = +0.79 V). During the discharge process, the salt ions in the feed are extracted by the redox reaction of the flow electrodes, which is indicated by salt removal. Stable and reversible salt removal capacity and electricity can be achieved up to 30 cycles. The energy consumption is as low as 10.27 kJ mol-1 salt. The energy efficiency is as high as 50% in the current aqueous redox flow battery. With energy recovery, the desalination energy consumption decreases greatly to 5.38 kJ mol-1; this is the lowest reported value to date. This "redox flow battery desalination generator" can be operated in a voltage range of 0.3-1.1 V. Our research provides a novel method for obtaining energy-saving desalination and redox flow batteries.
Sim, Victor S T; She, Qianhong; Chong, Tzyy Haur; Tang, Chuyang Y; Fane, Anthony G; Krantz, William B
2013-07-04
This paper focuses on a Hybrid Process that uses feed salinity dilution and osmotic power recovery from Pressure Retarded Osmosis (PRO) to achieve higher overall water recovery. This reduces the energy consumption and capital costs of conventional seawater desalination and water reuse processes. The Hybrid Process increases the amount of water recovered from the current 66.7% for conventional seawater desalination and water reuse processes to a potential 80% through the use of reclaimed water brine as an impaired water source. A reduction of up to 23% in energy consumption is projected via the Hybrid Process. The attractiveness is amplified by potential capital cost savings ranging from 8.7%-20% compared to conventional designs of seawater desalination plants. A decision matrix in the form of a customizable scorecard is introduced for evaluating a Hybrid Process based on the importance of land space, capital costs, energy consumption and membrane fouling. This study provides a new perspective, looking at processes not as individual systems but as a whole utilizing strategic co-location to unlock the synergies available in the water-energy nexus for more sustainable desalination.
Zuo, Kuichang; Yuan, Lulu; Wei, Jincheng; Liang, Peng; Huang, Xia
2013-10-01
Mixed ion-exchange resins packed microbial desalination cell (R-MDC) could stabilize the internal resistance, however, the impacts of multiple ions on R-MDC performance was unclear. This study investigated the desalination performance, multiple ions migration behaviors and their impacts on R-MDCs fed with salt solution containing multiple anions and cations. Results showed that R-MDC removed multiple anions better than multiple cations with desalination efficiency of 99% (effluent conductivity <0.05 ms/cm) at hydraulic retention time of 50 h. Competitive migration order was SO4(2-)>NO3(-)>Cl(-) for anions and Ca(2+)≈Mg(2+)>NH4(+)>Na(+) for cations, jointly affected by both their molar conductivity and exchange selectivity on resins. After long-term operation, the existence of higher concentration Ca(2+) and Mg(2+) caused the electric conductivity of mixed resins decrease and scaling on the surface of cation-exchange membrane adjoined with cathode chamber, suggesting that R-MDC would be more suitable for desalination of water with lower hardness. Copyright © 2013 Elsevier Ltd. All rights reserved.
Cheruvallath, Zacharia S; Kumar, R Krishna; Rentel, Claus; Cole, Douglas L; Ravikumar, Vasulinga T
2003-04-01
Diethyldithiodicarbonate (DDD), a cheap and easily prepared compound, is found to be a rapid and efficient sulfurizing reagent in solid phase synthesis of phosphorothioate oligodeoxyribonucleotides via the phosphoramidite approach. Product yield and quality based on IP-LC-MS compares well with high quality oligonucleotides synthesized using phenylacetyl disulfide (PADS) which is being used for manufacture of our antisense drugs.
Ding, Fan; Jia, Zhiwei; Wu, Yaohong; Li, Chao; He, Qing; Ruan, Dike
2014-11-01
A retrospective analysis. This study aimed to compare the safety and efficacy between the fusion-nonfusion hybrid construct (HC: anterior cervical corpectomy and fusion plus artificial disc replacement, ACCF plus cADR) and anterior cervical hybrid decompression and fusion (ACHDF: anterior cervical corpectomy and fusion plus discectomy and fusion, ACCF plus ACDF) for 3-level cervical degenerative disc diseases (cDDD). The optimal anterior technique for 3-level cDDD remains uncertain. Long-segment fusion substantially induced biomechanical changes at adjacent levels, which may lead to symptomatic adjacent segment degeneration. Hybrid surgery consisting of ACDF and cADR has been reported with good results for 2-level cDDD. In this context, ACCF combining with cADR may be an alternative to ACHDF for 3-level cDDD. Between 2009 and 2012, 28 patients with 3-level cDDD who underwent HC (n=13) and ACHDF (15) were retrospectively reviewed. Clinical assessments were based on Neck Disability Index, Japanese Orthopedic Association disability scale, visual analogue scale, Japanese Orthopedic Association recovery rate, and Odom criteria. Radiological analysis included range of motion of C2-C7 and adjacent segments and cervical lordosis. Perioperative parameters, radiological adjacent-level changes, and the complications were also assessed. HC showed better Neck Disability Index improvement at 12 and 24 months, as well as Japanese Orthopedic Association and visual analogue scale improvement at 24 months postoperatively (P<0.05). HC had better outcome according to Odom criteria but not significantly (P>0.05). The range of motion of C2-C7 and adjacent segments was less compromised in HC (P<0.05). Both 2 groups showed significant lordosis recovery postoperatively (P<0.05), but no difference was found between groups (P>0.05). The incidence of adjacent-level degenerative changes and complications was higher in ACHDF but not significantly (P>0.05). HC may be an alternative to ACHDF for 3-level cDDD due to the equivalent or superior early clinical outcomes, less compromised C2-C7 range of motion, and less impact at adjacent levels. 3.
Assessment of perioperative antimicrobial prophylaxis using ATC/DDD methodology.
Bozkurt, Fatma; Kaya, Safak; Gulsun, Serda; Tekin, Recep; Deveci, Özcan; Dayan, Saim; Hoşoglu, Salih
2013-12-01
In the light of international experience and guidelines and in order to improve the quality of perioperative antimicrobial prophylaxis (PAP), various hospitals have set up their own multidisciplinary healthcare teams and have evaluated the density of PAP through close supervision and interventions. The aim of the present study was to compare the density, quality, and cost of PAP before and after an intervention implemented at our hospital in order to increase the quality of PAP. PAP was monitored using a form prepared in line with the international guidelines, which was completed by the infection control nurse under the supervision of the infectious diseases specialist. In order to reduce the frequent errors in our PAP procedures, an intervention was implemented, and the period before this intervention (January-April 2011) was compared with the post-intervention period 1 year later (January-April 2012). The density of PAP was calculated according to the Anatomical Therapeutic Chemical classification/defined daily dose (ATC/DDD) methodology. A total of 2398 patients received PAP during this period. The most frequently used antibiotic before and after the intervention was cefazolin. Its use further increased after the intervention (p<0.001). After the intervention, the ratio of the correct timing of the first antibiotic dose increased from 91.7% to 99.0% (p<0.001), while the excessively long administration of PAP was reduced from 77.0% to 44.7% (p<0.001). The ratio of full compliance with the guidelines increased from 15.5% to 40.2% (p<0.001) and the rate of surgical site infections dropped from 18.5% to 12.0%. The density of antibiotic use dropped from 305.7 DDD/100 procedures=3.1 DDD/procedure to 162.1 DDD/100 procedures=1.6 DDD/procedure. The quality of PAP may be improved through better compliance with healthcare guidelines, close supervision, and training activities. Also, surgical site infections and the cost of PAP may be reduced through more appropriate antibiotic use, thus contributing to the national healthcare budget. Copyright © 2013 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Predicting in ungauged basins using a parsimonious rainfall-runoff model
NASA Astrophysics Data System (ADS)
Skaugen, Thomas; Olav Peerebom, Ivar; Nilsson, Anna
2015-04-01
Prediction in ungauged basins is a demanding, but necessary test for hydrological model structures. Ideally, the relationship between model parameters and catchment characteristics (CC) should be hydrologically justifiable. Many studies, however, report on failure to obtain significant correlations between model parameters and CCs. Under the hypothesis that the lack of correlations stems from non-identifiability of model parameters caused by overparameterization, the relatively new parameter parsimonious DDD (Distance Distribution Dynamics) model was tested for predictions in ungauged basins in Norway. In DDD, the capacity of the subsurface water reservoir M is the only parameter to be calibrated whereas the runoff dynamics is completely parameterised from observed characteristics derived from GIS and runoff recession analysis. Water is conveyed through the soils to the river network by waves with celerities determined by the level of saturation in the catchment. The distributions of distances between points in the catchment to the nearest river reach and of the river network give, together with the celerities, distributions of travel times, and, consequently unit hydrographs. DDD has 6 parameters less to calibrate in the runoff module than, for example, the well-known Swedish HBV model. In this study, multiple regression equations relating CCs and model parameters were trained from 84 calibrated catchments located all over Norway and all model parameters showed significant correlations with catchment characteristics. The significant correlation coefficients (with p- value < 0.05) ranged from 0.22-0.55. The suitability of DDD for predictions in ungauged basins was tested for 17 catchments not used to estimate the multiple regression equations. For 10 of the 17 catchments, deviations in Nash-Suthcliffe Efficiency (NSE) criteria between the calibrated and regionalised model were less than 0.1. The median NSE for the regionalised DDD for the 17 catchments, for two different time series was 0.66 and 0.72. Deviations in NSE between calibrated and regionalised models are well explained by the deviations between calibrated and regressed parameters describing spatial snow distribution and snowmelt, respectively. This latter result indicates the topic for further improvements in the model structure of DDD.
Lelakowski, Jacek; Majewski, Jacek; Małecka, Barbara; Bednarek, Jacek; Stypuła, Paweł; Szeglowski, Marcin
2007-01-01
During implantation of a DDD pacemaker the following difficulties may be encountered: venous anomalies (the absence of vessels of adequate calibre or difficulty in subclavian vein puncture), arrhythmias during implantation (episodes of atrial flutter/fibrillation while the atrial leads are being positioned), lack of mechanical stability of the electrode in the heart chamber and inability to achieve an acceptable pacing and sensing threshold during implantation. The purpose of the study was to analyse retrospectively the reasons for DDD pacemaker failure in patients operated on between 1993 and 2005. We reviewed retrospectively all implantation data from 1988 to 2005 to identify patients with primary failure of DDD pacemaker implantation. Further analysis included patients who had received a DDD pacemaker between 1993 and 2005, when this type of pacemaker made up between 9 and 40% of all pacemaker implantations. We implanted 7469 pacemakers, including 1958 (26.2%) dual-chamber pacemakers, in 783 patients with atrioventricular block (AVB), 392 with sick sinus syndrome (SSS), 450 with AVB +/- SSS and 333 with tachy-brady syndrome (TBS). The mean age of the patients was 65.5 +/- 17.3 years. DDD pacing was unsuccessful in 108 (1.4%) patients, including 32 with AVB, 22 with SSS, 16 with SSS +/- AVB and 38 with TBS. The mean age of these patients was 78.5 +/- 19.4 years. The reasons for failed implantation were venous anomalies in 12%, an arrhythmia episode in 27.8%, a high pacing threshold in the atrium in 17.6%, low atrial potential amplitude in 25.9% and lack of mechanical stability of the electrode in 16.7% of patients. The difficulties were encountered in elderly patients (p < 0.01), most frequently in patients with SSS and TBS (71). Between 2004 and 2005 venous anomalies and a high pacing threshold were the main causes of failure. Currently the main difficulties encountered during pacemaker implantation are venous anomalies and a high pacing threshold. Arrhythmia episodes, low atrial potential amplitude and lack of mechanical stability are of minor importance. Elderly patients with sick sinus syndrome and tachy-brady syndrome have the highest failure rate. (Cardiol J 2007; 14: 155-159).
Effect of the scale inhibitor on ion content in reverse osmosis system for seawater desalination
NASA Astrophysics Data System (ADS)
Gao, Yuhua; Liu, Zhenfa; Zhang, Lihui; Li, Haihua
2017-09-01
A scale inhibitor was synthesized from polysuccinimide with 2-aminoethanesulfonic acid and aspartic acid. The effect of scale inhibitor on ion content in reverse osmosis system for seawater desalination was studied. The results showed that the ion content of permeate water is lower with the scale inhibitor added in RO system for seawater desalination than without scale inhibitor. On the contrary, the ion content of concentrate water is higher when with scale inhibitor in RO system.
Tómasson, Kristinn; Tómasson, Helgi; Zoëga, Tómas; Sigfússon, Eggert; Helgason, Tómas
2007-01-01
Public health issues, medical and socio-demographics, related to use of psychotropic medications and to increasing sale of antidepressants and hypnotics need to be explored. The aim of this study was to investigate the use of antidepressants, tranquillizers and sedatives nationally and its connection with health and demographic factors, by comparing: 1) sales data and 2) prescription data for outpatients with 3) self-reported use of a random sample of the population aged 18-75 years. In 2001, the sales of psychopharmaca was 168.8 daily defined doses (DDD)/1000/day, thereof 46.6% were antidepressants mainly for outpatients; one-third of hypnotics and tranquillizers were used for inpatients; 134.2 DDD/1000/day were filled by outpatients. Almost 20% of the respondents in the survey had used one or more of these drugs for some time during the preceding 12 months. Treatment adherence for antidepressants was 56%, lower for women than men. The probability of psychotropic drug use for mental complaints is 52% when controlled for other covariates. Any observed gender difference in the community survey is related to differences in the covariates, e.g. women are more likely to seek a doctor than men. The age effect on self-reported use in the community survey is related to hypnotics. The use of psychotropic medicaments is primarily driven by mental health complaints, but not by gender or age, except the use of hypnotics, which increases with age. The difference between self-reported use and prescriptions filled may reflect compliance problems in psychiatric treatment.
Real-time display of flow-pressure-volume loops.
Morozoff, P E; Evans, R W
1992-01-01
Graphic display of respiratory waveforms can be valuable for monitoring the progress of ventilated patients. A system has been developed that can display flow-pressure-volume loops as derived from a patient's respiratory circuit in real time. It can also display, store, print, and retrieve ventilatory waveforms. Five loops can be displayed at once: current, previous, reference, "ideal," and previously saved. Two components, the data-display device (DDD) and the data-collection device (DCD), comprise the system. An IBM 286/386 computer with a graphics card (VGA) and bidirectional parallel port is used for the DDD; an eight-bit microprocessor card and an A/D convertor card make up the DCD. A real-time multitasking operating system was written to control the DDD, while the DCD operates from in-line assembly code. The DCD samples the pressure and flow sensors at 100 Hz and looks for a complete flow waveform pattern based on flow slope. These waveforms are then passed to the DDD via the mutual parallel port. Within the DDD a process integrates the flow to create a volume signal and performs a multilinear regression on the pressure, flow, and volume data to calculate the elastance, resistance, pressure offset, and coefficient of determination. Elastance, resistance, and offset are used to calculate Pr and Pc where: Pr[k] = P[k]-offset-(elastance.V[k]) and Pc[k] = P[k]-offset-(resistance.F[k]). Volume vs. Pc and flow vs. Pr can be displayed in real time. Patient data from previous clinical tests were loaded into the device to verify the software calculations. An analog waveform generator was used to simulate flow and pressure waveforms that validated the system.(ABSTRACT TRUNCATED AT 250 WORDS)
Comparison of Psychotropic Drug Prescribing Quality between Zagreb, Croatia and Sarajevo, B&H.
Polić-Vižintin, Marina; Štimac, Danijela; Čatić, Tarik; Šostar, Zvonimir; Zelić, Ana; Živković, Krešimir; Draganić, Pero
2014-12-01
The purpose of this paper was to compare outpatient consumption and quality of psychotropic drug prescribing between Croatia and Bosnia & Herzegovina 2006-2010. Data on drug utilization from Zagreb Municipal Pharmacy and Sarajevo Public Pharmacy were used to calculate the number of defined daily doses (DDD) and DDD per 1000 inhabitants per day (DDD/TID) using the WHO Anatomical-Therapeutic-Chemical methodology. Total utilization of psychopharmaceuticals increased in both cities; however, it was higher in Zagreb than in Sarajevo throughout the study period. The utilization of psycholeptics increased in Zagreb by 2.4% (from 74.5 to 76.3 DDD/TID) and in Sarajevo by 3.8% (from 62.4 to 64.8 DDD/TID). The utilization of anxiolytics decreased in Zagreb by 2.1% and in Sarajevo by even 18.7%. The utilization of antidepressants increased in both cities with predominance of SSRI over TCA utilization, greater in Sarajevo (96.6%) than in Zagreb (10.2%). The anxiolytic/antidepressant ratio decreased by 11.1% in Zagreb (from 2.87 to 2.55) and by 58.7% in Sarajevo (from 5.66 to 2.34). Outpatient utilization of antipsychotics increased significantly in Sarajevo, predominated by typical ones, whereas in Zagreb the utilization of antipsychotics was stable, predominated by atypical ones. In Croatia and Bosnia & Herzegovina, there was an obvious tendency to follow western trends in drug prescribing, as demonstrated by the increased use of antidepressants and reduced use of anxiolytics. Despite some improvement observed in the prescribing quality, high use of antipsychotics with dominance of typical antipsychotics in Sarajevo points to the need of prescribing guidelines for antipsychotics.
An Overview of Starfish: A Table-Centric Tool for Interactive Synthesis
NASA Technical Reports Server (NTRS)
Tsow, Alex
2008-01-01
Engineering is an interactive process that requires intelligent interaction at many levels. My thesis [1] advances an engineering discipline for high-level synthesis and architectural decomposition that integrates perspicuous representation, designer interaction, and mathematical rigor. Starfish, the software prototype for the design method, implements a table-centric transformation system for reorganizing control-dominated system expressions into high-level architectures. Based on the digital design derivation (DDD) system a designer-guided synthesis technique that applies correctness preserving transformations to synchronous data flow specifications expressed as co- recursive stream equations Starfish enhances user interaction and extends the reachable design space by incorporating four innovations: behavior tables, serialization tables, data refinement, and operator retiming. Behavior tables express systems of co-recursive stream equations as a table of guarded signal updates. Developers and users of the DDD system used manually constructed behavior tables to help them decide which transformations to apply and how to specify them. These design exercises produced several formally constructed hardware implementations: the FM9001 microprocessor, an SECD machine for evaluating LISP, and the SchemEngine, garbage collected machine for interpreting a byte-code representation of compiled Scheme programs. Bose and Tuna, two of DDD s developers, have subsequently commercialized the design derivation methodology at Derivation Systems, Inc. (DSI). DSI has formally derived and validated PCI bus interfaces and a Java byte-code processor; they further executed a contract to prototype SPIDER-NASA's ultra-reliable communications bus. To date, most derivations from DDD and DRS have targeted hardware due to its synchronous design paradigm. However, Starfish expressions are independent of the synchronization mechanism; there is no commitment to hardware or globally broadcast clocks. Though software back-ends for design derivation are limited to the DDD stream-interpreter, targeting synchronous or real-time software is not substantively different from targeting hardware.
Wang, Fei; Pei, Yuan-yuan; You, Jing
2015-02-01
Biotransformation plays an important role in the bioaccumulation and toxicity of a chemical in biota. Dichlorodiphenyltrichloroethane (DDT) commonly co-occurs with its metabolites (dichlorodiphenyldichloroethane [DDD] and dichlorodiphenyldichloroethylene [DDE]), in the environment; thus it is a challenge to accurately quantify the biotransformation rates of DDT and distinguish the sources of the accumulated metabolites in an organism. The present study describes a method developed to quantitatively analyze the biotransformation of p,p'-DDT in the benthic polychaete, Nereis succinea. The lugworms were exposed to sediments spiked with DDT at various concentrations for 28 d. Degradation of DDT to DDD and DDE occurred in sediments during the aging period, and approximately two-thirds of the DDT remained in the sediment. To calculate the biotransformation rates, residues of individual compounds measured in the bioaccumulation testing (after biotransformation) were compared with residues predicted by analyzing the partitioning of the parent and metabolite compounds between gut fluid and tissue lipid (before biotransformation). The results suggest that sediment ingestion rates decreased when DDT concentrations in sediment increased. Extensive biotransformation of DDT occurred in N. succinea, with 86% of DDT being metabolized to DDD and <2% being transformed to DDE. Of the DDD that accumulated in the lugworms, approximately 70% was the result of DDT biotransformation, and the remaining 30% was from direct uptake of sediment-associated DDD. In addition, the biotransformation was not dependent on bulk sediment concentrations, but rather on bioaccessible concentrations of the chemicals in sediment, which were quantified by gut fluid extraction. The newly established method improved the accuracy of prediction of the bioaccumulation and toxicity of DDTs. © 2014 SETAC.
Suto, Jun-ichi
2012-04-01
The objectives of this study were to characterize plasma lipid phenotypes and dissect the genetic basis of plasma lipid levels in an obese DDD.Cg-A(y) mouse strain. Plasma triglyceride (TG) levels were significantly higher in the DDD.Cg-A(y) strain than in the B6.Cg-A(y) strain. In contrast, plasma total-cholesterol (CHO) levels did not substantially differ between the two strains. As a rule, the A(y) allele significantly increased TG levels, but did not increase CHO levels. Quantitative trait locus (QTL) analyses for plasma TG and CHO levels were performed in two types of F(2) female mice [F(2)A(y) (F(2) mice carrying the A(y) allele) and F(2) non- A(y) mice (F(2) mice without the A(y) allele)] produced by crossing C57BL/6J females and DDD.Cg-A(y) males. Single QTL scan identified one significant QTL for TG levels on chromosome 1, and two significant QTLs for CHO levels on chromosomes 1 and 8. When the marker nearest to the QTL on chromosome 1 was used as covariates, four additional significant QTLs for CHO levels were identified on chromosomes 5, 6, and 17 (two loci). In contrast, consideration of the agouti locus genotype as covariates did not detect additional QTLs. DDD.Cg-A(y) showed a low CHO level, although it had Apoa2(b), which was a CHO-increasing allele at the Apoa2 locus. This may have been partly due to the presence of multiple QTLs, which were associated with decreased CHO levels, on chromosome 8.
Pinkney, Alfred E; McGowan, Peter C
2006-09-01
For approximately 50 years, beginning in the 1920s, hazardous wastes were disposed in an 11-hectare area of the Marine Corps Base (MCB) Quantico, Virginia, USA known as the Old Landfill. Polychlorinated biphenyls (PCBs) and DDT compounds were the primary contaminants of concern. These contaminants migrated into the sediments of a 78-hectare area of the Potomac River, the Quantico Embayment. Fish tissue contamination resulted in the MCB posting signs along the embayment shoreline warning fishermen to avoid consumption. In this paper, we interpret total PCB (t-PCBs) and total DDT (t-DDT, sum of six DDT, DDD, and DDE isomers) data from monitoring studies. We use the ratio of p,p'-DDD to p,p'-DDE concentrations as a tracer to distinguish site-related from regional contamination. The median DDD/DDE ratio in Quantico Embayment sediments (3.5) was significantly higher than the median ratio (0.71) in sediments from nearby Powells Creek, used as a reference area. In general, t-PCBs and t-DDT concentrations were significantly higher in killifish (Fundulus diaphanus) and carp (Cyprinus carpio) from the Quantico Embayment compared with Powells Creek. For both species, Quantico Embayment fish had mean or median DDD/DDE ratios greater than one. Median ratios were significantly higher in Quantico Embayment (4.6) than Powells Creek (0.28) whole body carp. In contrast, t-PCBs and t-DDT in channel catfish (Ictalurus punctatus) fillets were similar in Quantico Embayment and Powells Creek collections, with median ratios of 0.34 and 0.26, respectively. Differences between species may be attributable to movement (carp and killifish being more localized) and feeding patterns (carp ingesting sediment while feeding). We recommend that environmental scientists use this ratio when investigating sites with DDT contamination.
Gilliom, R.J.; Clifton, D.G.
1987-01-01
The distribution and concentrations of organochlorine pesticide residues in bed sediments were assessed from samples collected at 24 sites in the San Joaquin River and its tributaries in the San Joaquin Valley, California. Sampling was designed to collect the finest grained bed sediments present in the vicinity of each site. One or more of the 14 pesticides analyzed were detected at every site. Pesticides detected at one or more sites were chlordane, DDD, DDE, DDT, dieldrin, endosulfan, mirex, and toxaphene. Pesticides not detected were endrin, heptachlor, heptachlor epoxide, lindane, methoxychlor, and perthane. The most frequently detected pesticides were DDD (83% of sites), DDE (all sites), DDT (33% of sites), and dieldrin (58% of sites). Maximum concentrations of these pesticides, which were correlated with each other and with the amount of organic carbon in the sample, were DDD, 260 micrograms/kg; DDE, 430 micrograms/kg; DDT, 420 micrograms/kg; and dieldrin, 8.9 micrograms/kg. Six small tributary streams that drain agricultural areas west of the San Joaquin River had the highest concentrations. Water concentrations and loads were estimated for each pesticide from its concentration in bed sediments, the concentration of suspended sediment, and streamflow. Estimated loadings of DDD, DDE, DDT, and dieldrin from tributaries to the San Joaquin River indicate that most of the loading to the river at the time of the study was probably from the westside tributaries. Estimated water concentrations exceeded the aquatic life criterion for the sum of DDD, DDE, and DDt of 0.001 microgram/L at nine of the 24 sites sampled. Five of the nine sites are westside tributaries and one is the San Joaquin River near Vernalis. (Author 's abstract)
Matusik, Paweł; Woznica, Natalia; Lelakowsk, Jacek
2010-05-01
Atrial fibrillation (AF) is a frequent problem of patients with pacemakers, and depends not only on disease but also on stimulation method. The aim of the study was to estimate the prevalence of AF before and after pacemaker implantation as well as to assess the influence of VVI and DDD cardiac pacing on onset of AF in patients with complete atrioventricularblock (AVB). We included 155 patients controlled between 2000 and 2008 in Pacemaker Clinic because of AVB III degree, treated with VVI or DDD pacemaker implantation. Information about the health status of the patients was gathered from medical documentation and analysis of clinical ambulatory electrocardiograms. The study group comprised of 68 women and 87 men, mean age 68.7 +/- 13.9 years during implantation. 69% of patients had VVI pacemaker. There were 72.3% of patients with sinus rhythm before pacemaker implantation. During follow-up 4 +/- 2.8 years in 19.6% cases onset of atrial fibrillation de novo was diagnosed (in 31.3% in VVI mode vs. 2.2% in DDD mode; p = 0.00014). Mean time to AF since implantation was approximately 2.5 years. In VVI group (21 persons) amounted 32.1 months, while in 1 patient with DDD pacemaker 18 months. Between group with AF after implantation and with sinus rhythm preserved there was no statistically significant difference in age or gender (p = 0.89512 and p = 0.1253, respectively). Prevalence of atrial fibrillation after pacemaker implantation increased to 40%. Atrial fibrillation is frequent in patients before and after pacemaker implantation, especially in patients stimulated in VVI mode. Major possibility of atrial fibrillation onset after pacemaker implantation should result in more attention during routine ECG examination.
Zhong, Shuo-liang; Dong, Li-ming
2011-09-01
By using GC-ECD, the concentrations of organochlorine pesticides hexachlorocyclohexane (HCH) and dichlorodiphenyltrichloroethane (DDT) in the shellfish culture environment (sea water, sediments, and culture-shellfishes) in Xiamen sea area were analyzed, and the accumulation and degradation patterns of the HCH and DDT were preliminarily approached. In the sea area, there existed remarkable differences in the accumulation and degradation of HCH and DDT among different shellfish culture environments, being mostly associated with the habitation environment and physiological life habits of shellfish. The accumulated HCH isomers (Rx > 1) were mainly beta-HCH, delta-HCH, and gamma-HCH, whereas the degraded HCH isomers (Rx < 1) were mainly alpha-HCH. The ratio of alpha-HCH to gamma-HCH was less than or equal to 1.0, suggesting that the HCH was come from industrial HCH and lindane, most of the HCH had remained in the culture environment for a longer time, and a small amount of lindane was imported. The DDT in the sea water was aerobically degraded, its main degradation product was DDE, and the ratios of (DDD+DDE) to DDTs (p,p-DDE+p,p-DDD+o,p-DDT+p,p-DDT) was less than 0.5, whereas the DDT in sediments and shellfishes was anaerobically degraded, its main degradation product was DDD, and the ratios of (DDD+DDE) to DDTs was greater than 0.5, suggesting that there was a small amount of DDT newly imported in the sea water, and most DDT in sediments and shellfishes were already degraded and transformed into DDD and DDE. There were definite differences in the degradation rates of HCH isomers in the culture environment, suggesting the conformational change of HCH in its transformation processes in the shellfish culture ecosystem.
Cardiac pacing for severe childhood neurally mediated syncope with reflex anoxic seizures
McLeod, K; Wilson, N; Hewitt, J; Norrie, J; Stephenson, J
1999-01-01
OBJECTIVE—To determine whether permanent cardiac pacing could prevent syncope and seizures in children with frequent severe neurally mediated syncope, and if so whether dual chamber pacing was superior to single chamber ventricular pacing. METHODS—Dual chamber pacemakers were implanted into 12 children (eight male, four female) aged 2-14 years (median 2.8 years) with frequent episodes of reflex anoxic seizures and a recorded prolonged asystole during an attack. The pacemaker was programmed to sensing only (ODO), single chamber ventricular pacing with hysteresis (VVI), and dual chamber pacing with rate drop response (DDD) for four month periods, with each patient allocated to one of the six possible sequences of these modes, according to chronological order of pacemaker implantation. The parent and patient were blinded to the pacemaker mode and asked to record all episodes of syncope or presyncope ("near miss" events). The doctor analysing the results was blinded to the patient and pacemaker mode. RESULTS—One patient was withdrawn from the study after the pacemaker was removed because of infection. In the remaining children, both dual chamber and single chamber pacing significantly reduced the number of syncopal episodes compared with sensing only (p = 0.0078 for both). VVI was as effective as DDD for preventing syncope, but DDD was superior to VVI in reducing near miss events (p = 0.016). CONCLUSIONS—Permanent pacing is an effective treatment for children with severe neurally mediated syncope and reflex anoxic seizures. VVI is as effective as DDD in preventing syncope and seizures, but DDD is superior in preventing overall symptoms. Keywords: syncope; reflex anoxic seizures; pacing; paediatric cardiology PMID:10573501
NASA Astrophysics Data System (ADS)
Petersen, K. L.; Heck, N.; Potts, D. C.; Paytan, A.
2017-12-01
Fresh water demand is increasing world-wide due to on-going droughts, climate change and increasing human population and associated demand for food and water. Desalination of seawater is a reliable source of potable water; however the effects of byproduct brine discharge from desalination plants on coastal areas have not been thoroughly assessed. Here we report results from in-situmeasurements of the effects of brine discharge on water chemistry and coastal biology from a desalination plant in Carlsbad, Southern California. We compared select parameters in the coastal zone around the discharge site before and after operation began and conducted additional controlled laboratory incubations with key coastal species and brine effluent. Our in-situ data shows differences in salinity and temperature between the discharge area and a control site both before and after the desalination plant started operation. The discharge water is warmer by 3-5 Co than the ambient seawater and a temperature gradient is seen around the discharge channel. This is likely a result of mixing of the desalination brine with power plant cooling water for dilution prior to discharge and the higher temperatures are not directly attributed to the desalination. Our post-discharge results show a decipherable salinity plume at the bottom of the water column ( 6 m depth) reaching up to 600 m offshore from the discharge site. This indicates inefficient mixing of the brine in the coastal discharge zone. No significant differences are found in nutrient levels, organic carbon or chlorophyll a concentrations around the discharge. The benthic biology assemblage post-discharge is significantly different from the pre-discharge organisms' assemblage. However, the role of seasonal changes in temperature may also have impacted the data as the sampling was conducted during different seasons. Controlled incubation experiments of brittle stars (Ophiothrix spiculata) shows no significant difference in growth or survival rates when held in water collected at the discharge site ( 6% salinity increase of ambient) for 5 weeks. Our results signifies the importance of proper dilution of discharge brine at desalination plants and underlies the need for continuous monitoring around discharge areas to constrain the impacts on the coastal ecology.
Innovative Treatment Technologies for Natural Waters and Wastewaters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Childress, Amy E.
2011-07-01
The research described in this report focused on the development of novel membrane contactor processes (in particular, forward osmosis (FO), pressure retarded osmosis (PRO), and membrane distillation (MD)) in low energy desalination and wastewater treatment applications and in renewable energy generation. FO and MD are recently gaining national and international attention as viable, economic alternatives for removal of both established and emerging contaminants from natural and process waters; PRO is gaining worldwide attention as a viable source of renewable energy. The interrelationship of energy and water are at the core of this study. Energy and water are inextricably bound; energymore » usage and production must be considered when evaluating any water treatment process for practical application. Both FO and MD offer the potential for substantial energy and resource savings over conventional treatment processes and PRO offers the potential for renewable energy or energy offsets in desalination. Combination of these novel technologies with each other, with existing technologies (e.g., reverse osmosis (RO)), and with existing renewable energy sources (e.g., salinity gradient solar ponds) may enable much less expensive water production and also potable water production in remote or distributed locations. Two inter-related projects were carried out in this investigation. One focused on membrane bioreactors for wastewater treatment and PRO for renewable energy generation; the other focused on MD driven by a salinity gradient solar pond.« less
Substituent effects in double-helical hydrogen-bonded AAA-DDD complexes.
Wang, Hong-Bo; Mudraboyina, Bhanu P; Wisner, James A
2012-01-27
Two series of DDD and AAA hydrogen-bond arrays were synthesized that form triply-hydrogen-bonded double-helical complexes when combined in CDCl(3) solution. Derivatization of the DDD arrays with electron-withdrawing groups increases the complex association constants by up to a factor of 30 in those arrays examined. Derivatization of the AAA arrays with electron donating substituents reveals a similar magnitude effect on the complex stabilities. The effect of substitution on both types of arrays are modeled quite satisfactorily (R(2) > 0.96 in all cases) as free energy relationships with respect to the sums of their Hammett substituent constants. In all, the complex stabilities can be manipulated over more than three orders of magnitude (>20 kJ mol(-1)) using this type of modification. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
An ethical assessment model for digital disease detection technologies.
Denecke, Kerstin
2017-09-20
Digital epidemiology, also referred to as digital disease detection (DDD), successfully provided methods and strategies for using information technology to support infectious disease monitoring and surveillance or understand attitudes and concerns about infectious diseases. However, Internet-based research and social media usage in epidemiology and healthcare pose new technical, functional and formal challenges. The focus of this paper is on the ethical issues to be considered when integrating digital epidemiology with existing practices. Taking existing ethical guidelines and the results from the EU project M-Eco and SORMAS as starting point, we develop an ethical assessment model aiming at providing support in identifying relevant ethical concerns in future DDD projects. The assessment model has four dimensions: user, application area, data source and methodology. The model supports in becoming aware, identifying and describing the ethical dimensions of DDD technology or use case and in identifying the ethical issues on the technology use from different perspectives. It can be applied in an interdisciplinary meeting to collect different viewpoints on a DDD system even before the implementation starts and aims at triggering discussions and finding solutions for risks that might not be acceptable even in the development phase. From the answers, ethical issues concerning confidence, privacy, data and patient security or justice may be judged and weighted.
Construction Strategy and Progress of Whole Intervertebral Disc Tissue Engineering.
Yang, Qiang; Xu, Hai-wei; Hurday, Sookesh; Xu, Bao-shan
2016-02-01
Degenerative disc disease (DDD) is the major cause of low back pain, which usually leads to work absenteeism, medical visits and hospitalization. Because the current conservative procedures and surgical approaches to treatment of DDD only aim to relieve the symptoms of disease but not to regenerate the diseased disc, their long-term efficiency is limited. With the rapid developments in medical science, tissue engineering techniques have progressed markedly in recent years, providing a novel regenerative strategy for managing intervertebral disc disease. However, there are as yet no ideal methods for constructing tissue-engineered intervertebral discs. This paper reviews published reports pertaining to intervertebral disc tissue engineering and summarizes data concerning the seed cells and scaffold materials for tissue-engineered intervertebral discs, construction of tissue-engineered whole intervertebral discs, relevant animal experiments and effects of mechanics on the construction of tissue-engineered intervertebral disc and outlines the existing problems and future directions. Although the perfect regenerative strategy for treating DDD has not yet been developed, great progress has been achieved in the construction of tissue-engineered intervertebral discs. It is believed that ongoing research on intervertebral disc tissue engineering will result in revolutionary progress in the treatment of DDD. © 2016 Chinese Orthopaedic Association and John Wiley & Sons Australia, Ltd.
D'souza, Yvonne B; Jones, Carolyn J P; Short, Colin D; Roberts, Ian S D; Bonshek, Richard E
2009-04-01
Drusen are a feature of age-related macular degeneration (AMD). Lesions similar in appearance to drusen are also found in the fundi of patients with membranoproliferative glomerulonephritis type II (dense deposit disease, DDD). The lamina densa of the glomerular basement membrane, in DDD, is transformed into an electron-dense structure by deposition of microscopically homogeneous material. Our study sought to compare the saccharide composition of drusen and dense deposits in the formalin-fixed, paraffin-embedded tissue from the eye and kidney. Six eye specimens were obtained from patients diagnosed with AMD but another eye was obtained from a patient with partial lipodystrophy, who died after renal failure presumably because of DDD. The kidney specimens were from three biopsy-proven cases of DDD. Glycosylation patterns were measured by the binding of 19 biotinylated lectins before and after neuraminidase pre-treatment. High mannose, bi/tri-antennary non-bisected and bisected complex N-glycan, N-acetyl glucosamine, galactose, and sialic acid residues were found in both drusen and dense deposits. Treatment with neuraminidase exposed subterminal galactose in both sites and sparse N-acetyl galactosamine residues in drusen alone. Our study found similar pathologic oligosaccharide structures in the eye and kidney, suggesting that drusen may be a common end result of retinal and glomerular disease.
Alfonsi, R; Attivi, D; Astier, A; Socha, M; Morice, S; Gibaud, S
2013-05-01
Mitotane (o,p'-dichlorodimethyl dichloroethane [o,p'-DDD]) is used for the treatment of adrenocortical cancer and occasionally Cushing's syndrome. This drug is very poorly soluble in water, and following oral administration, approximately 60% of the dose is recovered in the feces unaltered. The preparation of a soluble formulation (i.e. by complexation with cyclodextrins) with improved bioavailability is the aim of this work. The inclusion of mitotane in methyl-ß-cyclodextrins was studied using both phase-solubility methods and NMR experiments. To elucidate the inclusion mechanism, o,p'-DDD was compared to its regioisomer (i.e. p,p'-DDD). It was demonstrated that two dimethyl-ß-cyclodextrins (DMßCD) can complex with the aromatic rings. From the phase-solubility diagrams, we observe that both cases are very different: K(1:1) is between 37 000 and 85 000 mol.l(-1), whereas K(1:2) is between 5.3 and 32 mol.l(-1). The NMR experiments confirmed the inclusion but it also gave an insight into the kinetics of the dissociation: the ortho-chloro moiety is in slow exchange on the NMR time scale, whereas the para-chloro moiety is in fast exchange rate. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Avni, Noa; Eben-Chaime, Moshe; Oron, Gideon
2013-05-01
Sea water desalination provides fresh water that typically lacks minerals essential to human health and to agricultural productivity. Thus the rising proportion of desalinated sea water consumed by both the domestic and agricultural sectors constitutes a public health risk. Research on low-magnesium water irrigation showed that crops developed magnesium deficiency symptoms that could lead to plant death, and tomato yields were reduced by 10-15%. The World Health Organization (WHO) reported on a relationship between sudden cardiac death rates and magnesium intake deficits. An optimization model, developed and tested to provide recommendations for Water Distribution System (WDS) quality control in terms of meeting optimal water quality requirements, was run in computational experiments based on an actual regional WDS. The expected magnesium deficit due to the operation of a large Sea Water Desalination Plant (SWDP) was simulated, and an optimal operation policy, in which remineralization at the SWDP was combined with blending desalinated and natural water to achieve the required quality, was generated. The effects of remineralization costs and WDS physical layout on the optimal policy were examined by sensitivity analysis. As part of the sensitivity blending natural and desalinated water near the treatment plants will be feasible up to 16.2 US cents/m(3), considering all expenses. Additional chemical injection was used to meet quality criteria when blending was not feasible. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Integration of solar process heat into an existing thermal desalination plant in Qatar
NASA Astrophysics Data System (ADS)
Dieckmann, S.; Krishnamoorthy, G.; Aboumadi, M.; Pandian, Y.; Dersch, J.; Krüger, D.; Al-Rasheed, A. S.; Krüger, J.; Ottenburger, U.
2016-05-01
The water supply of many countries in the Middle East relies mainly on water desalination. In Qatar, the water network is completely fed with water from desalination plants. One of these power and desalination plants is located in Ras Abu Fontas, 20 km south of the capital Doha. The heat required for thermal desalination is provided by steam which is generated in waste heat recovery boilers (HRB) connected to gas turbines. Additionally, gas fired boilers or auxiliary firing in the HRBs are used in order to decouple the water generation from the electricity generation. In Ras Abu Fontas some auxiliary boilers run 24/7 because the HRB capacity does not match the demand of the desalination units. This paper contains the techno-economic analysis of two large-scale commercial solar field options, which could reduce the fuel consumption significantly. Both options employ parabolic trough technology with a nominal saturated steam output of 350 t/h at 15 bar (198°C, 240 MW). The first option uses direct steam generation without storage while the second relies on common thermal oil in combination with a molten salt thermal storage with 6 hours full-load capacity. The economic benefit of the integration of solar power depends mainly on the cost of the fossil alternative, and thus the price (respectively opportunity costs) of natural gas. At a natural gas price of 8 US-/MMBtu the internal rate of return on equity (IRR) is expected at about 5%.
Energy minimization strategies and renewable energy utilization for desalination: a review.
Subramani, Arun; Badruzzaman, Mohammad; Oppenheimer, Joan; Jacangelo, Joseph G
2011-02-01
Energy is a significant cost in the economics of desalinating waters, but water scarcity is driving the rapid expansion in global installed capacity of desalination facilities. Conventional fossil fuels have been utilized as their main energy source, but recent concerns over greenhouse gas (GHG) emissions have promoted global development and implementation of energy minimization strategies and cleaner energy supplies. In this paper, a comprehensive review of energy minimization strategies for membrane-based desalination processes and utilization of lower GHG emission renewable energy resources is presented. The review covers the utilization of energy efficient design, high efficiency pumping, energy recovery devices, advanced membrane materials (nanocomposite, nanotube, and biomimetic), innovative technologies (forward osmosis, ion concentration polarization, and capacitive deionization), and renewable energy resources (solar, wind, and geothermal). Utilization of energy efficient design combined with high efficiency pumping and energy recovery devices have proven effective in full-scale applications. Integration of advanced membrane materials and innovative technologies for desalination show promise but lack long-term operational data. Implementation of renewable energy resources depends upon geography-specific abundance, a feasible means of handling renewable energy power intermittency, and solving technological and economic scale-up and permitting issues. Copyright © 2011 Elsevier Ltd. All rights reserved.
Seawater desalination and serum magnesium concentrations in Israel.
Koren, Gideon; Shlezinger, Meital; Katz, Rachel; Shalev, Varda; Amitai, Yona
2017-04-01
With increasing shortage of fresh water globally, more countries are consuming desalinated seawater (DSW). In Israel >50% of drinking water is now derived from DSW. Desalination removes magnesium, and hypomagnesaemia has been associated with increased cardiac morbidity and mortality. Presently the impact of consuming DSW on body magnesium status has not been established. We quantified changes in serum magnesium in a large population based study (n = 66,764), before and after desalination in regions consuming DSW and in regions where DSW has not been used. In the communities that switched to DSW in 2013, the mean serum magnesium was 2.065 ± 0.19 mg/dl before desalination and fell to 2.057 ± 0.19 mg/dl thereafter (p < 0.0001). In these communities 1.62% of subjects exhibited serum magnesium concentrations ≤1.6 mg/dl between 2010 and 2013. This proportion increased by 24% between 2010-2013 and 2015-2016 to 2.01% (p = 0.0019). In contrast, no such changes were recorded in the communities that did not consume DSW. Due to the emerging evidence of increased cardiac morbidity and mortality associated with hypomagnesaemia, it is vital to consider re-introduction of magnesium to DSW.
Strategic Co-Location in a Hybrid Process Involving Desalination and Pressure Retarded Osmosis (PRO)
Sim, Victor S.T.; She, Qianhong; Chong, Tzyy Haur; Tang, Chuyang Y.; Fane, Anthony G.; Krantz, William B.
2013-01-01
This paper focuses on a Hybrid Process that uses feed salinity dilution and osmotic power recovery from Pressure Retarded Osmosis (PRO) to achieve higher overall water recovery. This reduces the energy consumption and capital costs of conventional seawater desalination and water reuse processes. The Hybrid Process increases the amount of water recovered from the current 66.7% for conventional seawater desalination and water reuse processes to a potential 80% through the use of reclaimed water brine as an impaired water source. A reduction of up to 23% in energy consumption is projected via the Hybrid Process. The attractiveness is amplified by potential capital cost savings ranging from 8.7%–20% compared to conventional designs of seawater desalination plants. A decision matrix in the form of a customizable scorecard is introduced for evaluating a Hybrid Process based on the importance of land space, capital costs, energy consumption and membrane fouling. This study provides a new perspective, looking at processes not as individual systems but as a whole utilizing strategic co-location to unlock the synergies available in the water-energy nexus for more sustainable desalination. PMID:24956940
Numerical Study on Radiation Effects to Evaporator in Natural Vacuum Solar Desalination System
NASA Astrophysics Data System (ADS)
Siregar, R. E. T.; Ronowikarto, A. D.; Setyawan, E. Y.; Ambarita, H.
2018-01-01
The need for clean water is increasing day by day due to the increasing factor of living standard of mankind, hence designed natural vacuum solar desalination. The natural vacuum Solar desalination is studied experimentally. A small-scale natural vacuum desalination study consists of evaporator and condenser as the main components designed and manufactured. To transfer heat from the solar collector into the evaporator, the fluid transfer system uses a pump powered by a solar cell. Thus, solar collectors are called hybrid solar collectors. The main purpose of this exposure is to know the characteristics of the radiation effects on incoming energy on the evaporator during the process. This system is tested by exposing the unit to the solar radiation in the 4th floor building in Medan. The experiment was conducted from 8.00 to 16.00 local time. The results show that natural vacuum solar desalination with hybrid solar collectors can be operated perfectly. If the received radiation is high, then the incoming energy received by the evaporator will also be high. From measurements with HOBO microstation, obtained the highest radiation 695.6 W/m2, and the calculation result of incoming energy received evaporator obtained highest result 1807.293 W.
Solar powered desalination system using Fresnel lens
NASA Astrophysics Data System (ADS)
Sales, M. T. B. F.
2016-11-01
The Philippines is surrounded by coastal areas and these areas can be a potential source for potable water. This study aims to design and construct a solar powered desalination system using Fresnel lens. The experimental study was conducted using polluted salt water for the sample and desalination was carried out using the designed system. The desalination system was composed of the solar concentrator, solar still and the condenser system. The Fresnel lens was made of acrylic plastic and was an effective solar concentrator. Solar stills made of dark colored glass bottles were effective in absorbing the solar energy. The condenser system made of polybutylene and polystyrene were effective in condensing the vapor at ambient temperature. The shortest time of vaporization of the salt water was at 293 sec and the optimum angle of position of the lens was 36.42°. The amount of condensate collected was directly proportional to the amount of salt water in the solar still. The highest mean efficiency of the designed set-up was 34.82%. The water produced by the solar powered desalination system using Fresnel lens passed the standards set by WHO (World Health Organization) for drinking water.
Complex admixtures of clathrate hydrates in a water desalination method
Simmons, Blake A [San Francisco, CA; Bradshaw, Robert W [Livermore, CA; Dedrick, Daniel E [Berkeley, CA; Anderson, David W [Riverbank, CA
2009-07-14
Disclosed is a method that achieves water desalination by utilizing and optimizing clathrate hydrate phenomena. Clathrate hydrates are crystalline compounds of gas and water that desalinate water by excluding salt molecules during crystallization. Contacting a hydrate forming gaseous species with water will spontaneously form hydrates at specific temperatures and pressures through the extraction of water molecules from the bulk phase followed by crystallite nucleation. Subsequent dissociation of pure hydrates yields fresh water and, if operated correctly, allows the hydrate-forming gas to be efficiently recycled into the process stream.
A new case for promoting wastewater reuse in Saudi Arabia: bringing energy into the water equation.
Kajenthira, Arani; Siddiqi, Afreen; Anadon, Laura Diaz
2012-07-15
Saudi Arabia is the third-largest per capita water user worldwide and has addressed the disparity between its renewable water resources and domestic demand primarily through desalination and the abstraction of non-renewable groundwater. This study evaluates the potential costs of this approach in the industrial and municipal sectors, exploring economic, energy, and environmental costs (including CO2 emissions and possible coastal impacts). Although the energy intensity of desalination is a global concern, it is particularly urgent to rethink water supply options in Saudi Arabia because the entirety of its natural gas production is consumed domestically, primarily in petrochemical and desalination plants. This burgeoning demand is necessitating the development of more expensive high-sulfur gas resources that could make desalination even pricier. The evolving necessity to conserve non-renewable water and energy resources and mitigate GHG emissions in the region also requires policy makers to weigh in much more considerably the energy and environmental costs of desalination. This paper suggests that in Saudi Arabia, the implementation of increased water conservation and reuse across the oil and natural gas sectors could conserve up to 29% of total industrial water withdrawals at costs recovered over 0-30 years, depending on the specific improvement. This work also indicates that increasing wastewater treatment and reuse in six high-altitude inland cities could save a further $225 million (2009 dollars) and conserve 2% of Saudi Arabia's annual electricity consumption. By these estimates, some anticipated investments in desalination projects could be deferred by improving water efficiency in industry and prioritizing investment in sewage and water distribution networks that would ensure more effective water reclamation and reuse. Simultaneously, such initiatives would conserve non-renewable natural gas resources and could help prevent the lock-in of potentially unnecessary desalination infrastructure that is likely to become more energy and cost efficient in future. Copyright © 2012 Elsevier Ltd. All rights reserved.
Renewable Water: Direct Contact Membrane Distillation Coupled With Solar Ponds
NASA Astrophysics Data System (ADS)
Suarez, F. I.; Tyler, S. W.; Childress, A. E.
2010-12-01
The exponential population growth and the accelerated increase in the standard of living have increased significantly the global consumption of two precious resources: water and energy. These resources are intrinsically linked and are required to allow a high quality of human life. With sufficient energy, water may be harvested from aquifers, treated for potable reuse, or desalinated from brackish and seawater supplies. Even though the costs of desalination have declined significantly, traditional desalination systems still require large quantities of energy, typically from fossil fuels that will not allow these systems to produce water in a sustainable way. Recent advances in direct contact membrane distillation can take advantage of low-quality or renewable heat to desalinate brackish water, seawater or wastewater. Direct contact membrane distillation operates at low pressures and can use small temperature differences between the feed and permeate water to achieve a significant freshwater production. Therefore, a much broader selection of energy sources can be considered to drive thermal desalination. A promising method for providing renewable source of heat for direct contact membrane distillation is a solar pond, which is an artificially stratified water body that captures solar radiation and stores it as thermal energy at the bottom of the pond. In this work, a direct contact membrane distillation/solar pond coupled system is modeled and tested using a laboratory-scale system. Freshwater production rates on the order of 2 L day-1 per m2 of solar pond (1 L hr-1 per m2 of membrane area) can easily be achieved with minimal operating costs and under low pressures. While these rates are modest, they are six times larger than those produced by other solar pond-powered desalination systems - and they are likely to be increased if heat losses in the laboratory-scale system are reduced. Even more, this system operates at much lower costs than traditional desalination systems, thus, it can be used to meet the future needs of energy and water use in a sustainable way.
A Short Review of Membrane Fouling in Forward Osmosis Processes
Chun, Youngpil; Mulcahy, Dennis; Zou, Linda; Kim, In S.
2017-01-01
Interest in forward osmosis (FO) research has rapidly increased in the last decade due to problems of water and energy scarcity. FO processes have been used in many applications, including wastewater reclamation, desalination, energy production, fertigation, and food and pharmaceutical processing. However, the inherent disadvantages of FO, such as lower permeate water flux compared to pressure driven membrane processes, concentration polarisation (CP), reverse salt diffusion, the energy consumption of draw solution recovery and issues of membrane fouling have restricted its industrial applications. This paper focuses on the fouling phenomena of FO processes in different areas, including organic, inorganic and biological categories, for better understanding of this long-standing issue in membrane processes. Furthermore, membrane fouling monitoring and mitigation strategies are reviewed. PMID:28604649
A novel multiple-stage antimalarial agent that inhibits protein synthesis.
Baragaña, Beatriz; Hallyburton, Irene; Lee, Marcus C S; Norcross, Neil R; Grimaldi, Raffaella; Otto, Thomas D; Proto, William R; Blagborough, Andrew M; Meister, Stephan; Wirjanata, Grennady; Ruecker, Andrea; Upton, Leanna M; Abraham, Tara S; Almeida, Mariana J; Pradhan, Anupam; Porzelle, Achim; Luksch, Torsten; Martínez, María Santos; Luksch, Torsten; Bolscher, Judith M; Woodland, Andrew; Norval, Suzanne; Zuccotto, Fabio; Thomas, John; Simeons, Frederick; Stojanovski, Laste; Osuna-Cabello, Maria; Brock, Paddy M; Churcher, Tom S; Sala, Katarzyna A; Zakutansky, Sara E; Jiménez-Díaz, María Belén; Sanz, Laura Maria; Riley, Jennifer; Basak, Rajshekhar; Campbell, Michael; Avery, Vicky M; Sauerwein, Robert W; Dechering, Koen J; Noviyanti, Rintis; Campo, Brice; Frearson, Julie A; Angulo-Barturen, Iñigo; Ferrer-Bazaga, Santiago; Gamo, Francisco Javier; Wyatt, Paul G; Leroy, Didier; Siegl, Peter; Delves, Michael J; Kyle, Dennis E; Wittlin, Sergio; Marfurt, Jutta; Price, Ric N; Sinden, Robert E; Winzeler, Elizabeth A; Charman, Susan A; Bebrevska, Lidiya; Gray, David W; Campbell, Simon; Fairlamb, Alan H; Willis, Paul A; Rayner, Julian C; Fidock, David A; Read, Kevin D; Gilbert, Ian H
2015-06-18
There is an urgent need for new drugs to treat malaria, with broad therapeutic potential and novel modes of action, to widen the scope of treatment and to overcome emerging drug resistance. Here we describe the discovery of DDD107498, a compound with a potent and novel spectrum of antimalarial activity against multiple life-cycle stages of the Plasmodium parasite, with good pharmacokinetic properties and an acceptable safety profile. DDD107498 demonstrates potential to address a variety of clinical needs, including single-dose treatment, transmission blocking and chemoprotection. DDD107498 was developed from a screening programme against blood-stage malaria parasites; its molecular target has been identified as translation elongation factor 2 (eEF2), which is responsible for the GTP-dependent translocation of the ribosome along messenger RNA, and is essential for protein synthesis. This discovery of eEF2 as a viable antimalarial drug target opens up new possibilities for drug discovery.
A novel multiple-stage antimalarial agent that inhibits protein synthesis
NASA Astrophysics Data System (ADS)
Baragaña, Beatriz; Hallyburton, Irene; Lee, Marcus C. S.; Norcross, Neil R.; Grimaldi, Raffaella; Otto, Thomas D.; Proto, William R.; Blagborough, Andrew M.; Meister, Stephan; Wirjanata, Grennady; Ruecker, Andrea; Upton, Leanna M.; Abraham, Tara S.; Almeida, Mariana J.; Pradhan, Anupam; Porzelle, Achim; Martínez, María Santos; Bolscher, Judith M.; Woodland, Andrew; Norval, Suzanne; Zuccotto, Fabio; Thomas, John; Simeons, Frederick; Stojanovski, Laste; Osuna-Cabello, Maria; Brock, Paddy M.; Churcher, Tom S.; Sala, Katarzyna A.; Zakutansky, Sara E.; Jiménez-Díaz, María Belén; Sanz, Laura Maria; Riley, Jennifer; Basak, Rajshekhar; Campbell, Michael; Avery, Vicky M.; Sauerwein, Robert W.; Dechering, Koen J.; Noviyanti, Rintis; Campo, Brice; Frearson, Julie A.; Angulo-Barturen, Iñigo; Ferrer-Bazaga, Santiago; Gamo, Francisco Javier; Wyatt, Paul G.; Leroy, Didier; Siegl, Peter; Delves, Michael J.; Kyle, Dennis E.; Wittlin, Sergio; Marfurt, Jutta; Price, Ric N.; Sinden, Robert E.; Winzeler, Elizabeth A.; Charman, Susan A.; Bebrevska, Lidiya; Gray, David W.; Campbell, Simon; Fairlamb, Alan H.; Willis, Paul A.; Rayner, Julian C.; Fidock, David A.; Read, Kevin D.; Gilbert, Ian H.
2015-06-01
There is an urgent need for new drugs to treat malaria, with broad therapeutic potential and novel modes of action, to widen the scope of treatment and to overcome emerging drug resistance. Here we describe the discovery of DDD107498, a compound with a potent and novel spectrum of antimalarial activity against multiple life-cycle stages of the Plasmodium parasite, with good pharmacokinetic properties and an acceptable safety profile. DDD107498 demonstrates potential to address a variety of clinical needs, including single-dose treatment, transmission blocking and chemoprotection. DDD107498 was developed from a screening programme against blood-stage malaria parasites; its molecular target has been identified as translation elongation factor 2 (eEF2), which is responsible for the GTP-dependent translocation of the ribosome along messenger RNA, and is essential for protein synthesis. This discovery of eEF2 as a viable antimalarial drug target opens up new possibilities for drug discovery.
Dissipative Particle Dynamics at Isoenthalpic Conditions Using Shardlow-Like Splitting Algorithms
2013-09-01
dd 11 d d ,...,1d 11 2 d 2 1 d dd dlnd ,...,1d1 dddd ddd ij 2 2 2...t W p t m ij i f C iji i i i i dd dlnd d1dd ddd pFp r p r Ni ,...,1 , (10) while the fluctuation...pp rr v r p dd ddd (11a) 6 j ji i i- j i- ji- j i- j mech,i j i i j mech,i j mech,i j j i 1 u 2 2m 2m u u d d d
Dai, Feng; Belfer, Inna; Schwartz, Carolyn E; Banco, Robert; Martha, Julia F; Tighioughart, Hocine; Tromanhauser, Scott G; Jenis, Louis G; Kim, David H
2010-11-01
Surgical treatment for lumbar degenerative disc disease (DDD) has been associated with highly variable results in terms of postoperative pain relief and functional improvement. Many experts believe that DDD should be considered a chronic pain disorder as opposed to a degenerative disease. Genetic variation of the catechol-O-methyltransferase (COMT) gene has been associated with variation in human pain sensitivity and response to analgesics in previous studies. To determine whether genetic variation of COMT is associated with clinical outcome after surgical treatment for DDD. Prospective genetic association study. Sixty-nine patients undergoing surgical treatment for lumbar DDD. Diagnosis was based on documentation of chronic disabling low back pain (LBP) present for a minimum of 6 months and unresponsive to supervised nonoperative treatment, including activity modification, medication, physical therapy, and/or injection therapy. Plain radiographs and magnetic resonance imaging revealed intervertebral disc desiccation, tears, and/or collapse without focal herniation, nerve root compression, stenosis, spondylolisthesis, spondylolysis, or alternative diagnoses. Oswestry Disability Index (ODI) and visual analog score (VAS) for LBP. Surgical treatment included 65 instrumented fusions and four disc arthroplasty procedures. All patients completed preoperative and 1-year postoperative ODI questionnaires. DNA was extracted from a sample of venous blood, and genotype analysis was performed for five common COMT single nucleotide polymorphisms (SNPs). Potential genetic association between these COMT SNPs and the primary outcome variable, 1-year change in ODI, was investigated using both single-marker and haplotype association analyses. Association with VAS scores for LBP was analyzed as a secondary outcome variable. Single-marker analysis revealed that the COMT SNP rs4633 was significantly associated with greater improvement in ODI score 1 year after surgery (p=.03), with individuals homozygous for the less common "T" allele demonstrating the largest improvement in ODI. Haplotype analysis of four COMT SNPs, rs6269, rs4633, rs4818, and rs4680, also identified a common haplotype "ATCA" (haplotype frequency of 39.3% in the study population) associated with greater improvement in ODI (p=.046). The greatest mean improvement in ODI was observed in patients homozygous for the "ATCA"COMT haplotype. A nonsignificant trend was observed between SNP rs4633 and greater improvement in VAS score for LBP. This is the first study to report an association between surgical treatment success in DDD patients and genetic variation in the putative pain sensitivity gene COMT. These findings require replication in other DDD populations but suggest that genetic testing for pain-relevant genetic markers such as COMT may provide useful clinical information in terms of predicting outcome after surgery for patients diagnosed with DDD. Copyright © 2010 Elsevier Inc. All rights reserved.
Yang, Hui Ying; Han, Zhao Jun; Yu, Siu Fung; Pey, Kin Leong; Ostrikov, Kostya; Karnik, Rohit
2013-01-01
Development of technologies for water desalination and purification is critical to meet the global challenges of insufficient water supply and inadequate sanitation, especially for point-of-use applications. Conventional desalination methods are energy and operationally intensive, whereas adsorption-based techniques are simple and easy to use for point-of-use water purification, yet their capacity to remove salts is limited. Here we report that plasma-modified ultralong carbon nanotubes exhibit ultrahigh specific adsorption capacity for salt (exceeding 400% by weight) that is two orders of magnitude higher than that found in the current state-of-the-art activated carbon-based water treatment systems. We exploit this adsorption capacity in ultralong carbon nanotube-based membranes that can remove salt, as well as organic and metal contaminants. These ultralong carbon nanotube-based membranes may lead to next-generation rechargeable, point-of-use potable water purification appliances with superior desalination, disinfection and filtration properties.
Capacitive deionization on-chip as a method for microfluidic sample preparation.
Roelofs, Susan H; Kim, Bumjoo; Eijkel, Jan C T; Han, Jongyoon; van den Berg, Albert; Odijk, Mathieu
2015-03-21
Desalination as a sample preparation step is essential for noise reduction and reproducibility of mass spectrometry measurements. A specific example is the analysis of proteins for medical research and clinical applications. Salts and buffers that are present in samples need to be removed before analysis to improve the signal-to-noise ratio. Capacitive deionization is an electrostatic desalination (CDI) technique which uses two porous electrodes facing each other to remove ions from a solution. Upon the application of a potential of 0.5 V ions migrate to the electrodes and are stored in the electrical double layer. In this article we demonstrate CDI on a chip, and desalinate a solution by the removal of 23% of Na(+) and Cl(-) ions, while the concentration of a larger molecule (FITC-dextran) remains unchanged. For the first time impedance spectroscopy is introduced to monitor the salt concentration in situ in real-time in between the two desalination electrodes.
Environmental impact of seawater desalination plants.
Al-Mutaz, I S
1991-01-01
Enormous amounts of seawater are desalted everyday worldwide. The total world production of fresh water from the sea is about 2621 mgd (9.92 million m(3) day(-1) 1985 figures). Desalting processes are normally associated with the rejection of high concentration waste brine from the plant itself or from the pretreatment units as well as during the cleaning period. In thermal processes, mainly multistage flash (MSF) thermal pollution occurs. These pollutants increase the seawater temperature, salinity, water current and turbidity. They also harm the marine environment, causing fish to migrate while enhancing the presence of algae, nematods and tiny molluscus. Sometimes micro-elements and toxic materials appear in the discharged brine.This paper will discuss the impact of the effluents from the desalination plants on the seawater environment with particular reference to the Saudi desalination plants, since they account for about 50% of the world desalination capacity.
NASA Astrophysics Data System (ADS)
Ambarita, H.; Ronowikarto, A. D.; Siregar, R. E. T.; Setyawan, E. Y.
2018-01-01
Desalination technologies is one of solutions for water scarcity. With using renewable energy, like solar energy, wind energy, and geothermal energy, expected will reduce the energy demand. This required study on the modeling and transport parameters determination of natural vacuum solar desalination by using computational fluid dynamics (CFD) method to simulate the model. A three-dimensional case, two-phase model was developed for evaporation-condensation phenomenon in natural vacuum solar desalination. The CFD simulation results were compared with the avalaible experimental data. The simulation results shows inthat there is a phenomenon of evaporation-condensation in an evaporation chamber. From the simulation, the fresh water productivity is 2.21 litre, and from the experimental is 2.1 litre. This study shows there’s an error of magnitude 0.4%. The CFD results also show that, vacuum pressure will degrade the saturation temperature of sea water.
CSP cogeneration of electricity and desalinated water at the Pentakomo field facility
NASA Astrophysics Data System (ADS)
Papanicolas, C. N.; Bonanos, A. M.; Georgiou, M. C.; Guillen, E.; Jarraud, N.; Marakkos, C.; Montenon, A.; Stiliaris, E.; Tsioli, E.; Tzamtzis, G.; Votyakov, E. V.
2016-05-01
The Cyprus Institute's Pentakomo Field Facility (PFF) is a major infrastructure for research, development and testing of technologies relating to concentrated solar power (CSP) and solar seawater desalination. It is located at the south coast of Cyprus near the sea and its environmental conditions are fully monitored. It provides a test facility specializing in the development of CSP systems suitable for island and coastal environments with particular emphasis on small units (<25 MWth) endowed with substantial storage, suitable for use in isolation or distributed in small power grids. The first major experiment to take place at the PFF concerns the development of a pilot/experimental facility for the co-generation of electricity and desalinated seawater from CSP. Specifically, the experimental plant consists of a heliostat-central receiver system for solar harvesting, thermal energy storage in molten salts followed by a Rankine cycle for electricity production and a multiple-effect distillation (MED) unit for desalination.
Model-based Extracted Water Desalination System for Carbon Sequestration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gettings, Rachel; Dees, Elizabeth
The focus of this research effort centered around water recovery from high Total Dissolved Solids (TDS) extracted waters (180,000 mg/L) using a combination of water recovery (partial desalination) technologies. The research goals of this project were as follows: 1. Define the scope and test location for pilot-scale implementation of the desalination system, 2.Define a scalable, multi-stage extracted water desalination system that yields clean water, concentrated brine, and, salt from saline brines, and 3. Validate overall system performance with field-sourced water using GE pre-pilot lab facilities. Conventional falling film-mechanical vapor recompression (FF-MVR) technology was established as a baseline desalination process. Amore » quality function deployment (QFD) method was used to compare alternate high TDS desalination technologies to the base case FF-MVR technology, including but not limited to: membrane distillation (MD), forward osmosis (FO), and high pressure reverse osmosis (HPRO). Technoeconomic analysis of high pressure reverse osmosis (HPRO) was performed comparing the following two cases: 1. a hybrid seawater RO (SWRO) plus HPRO system and 2. 2x standard seawater RO system, to achieve the same total pure water recovery rate. Pre-pilot-scale tests were conducted using field production water to validate key process steps for extracted water pretreatment. Approximately 5,000 gallons of field produced water was processed through, microfiltration, ultrafiltration, and steam regenerable sorbent operations. Improvements in membrane materials of construction were considered as necessary next steps to achieving further improvement in element performance at high pressure. Several modifications showed promising results in their ability to withstand close to 5,000 PSI without gross failure.« less
Harmful algae and their potential impacts on desalination operations off southern California.
Caron, David A; Garneau, Marie-Eve; Seubert, Erica; Howard, Meredith D A; Darjany, Lindsay; Schnetzer, Astrid; Cetinić, Ivona; Filteau, Gerry; Lauri, Phil; Jones, Burton; Trussell, Shane
2010-01-01
Seawater desalination by reverse osmosis (RO) is a reliable method for augmenting drinking water supplies. In recent years, the number and size of these water projects have increased dramatically. As freshwater resources become limited due to global climate change, rising demand, and exhausted local water supplies, seawater desalination will play an important role in the world's future water supply, reaching far beyond its deep roots in the Middle East. Emerging contaminants have been widely discussed with respect to wastewater and freshwater sources, but also must be considered for seawater desalination facilities to ensure the long-term safety and suitability of this emerging water supply. Harmful algal blooms, frequently referred to as 'red tides' due to their vibrant colors, are a concern for desalination plants due to the high biomass of microalgae present in ocean waters during these events, and a variety of substances that some of these algae produce. These compounds range from noxious substances to powerful neurotoxins that constitute significant public health risks if they are not effectively and completely removed by the RO membranes. Algal blooms can cause significant operational issues that result in increased chemical consumption, increased membrane fouling rates, and in extreme cases, a plant to be taken off-line. Early algal bloom detection by desalination facilities is essential so that operational adjustments can be made to ensure that production capacity remains unaffected. This review identifies the toxic substances, their known producers, and our present state of knowledge regarding the causes of toxic episodes, with a special focus on the Southern California Bight. (c) 2009 Elsevier Ltd. All rights reserved.
The techno-economic optimization of a 100MWe CSP-desalination plant in Arandis, Namibia
NASA Astrophysics Data System (ADS)
Dall, Ernest P.; Hoffmann, Jaap E.
2017-06-01
Energy is a key factor responsible for a country's economic growth and prosperity. It is closely related to the main global challenges namely: poverty mitigation, global environmental change and food and water security [1.]. Concentrating solar power (CSP) is steadily gaining more market acceptance as the cost of electricity from CSP power plants progressively declines. The cogeneration of electricity and water is an attractive prospect for future CSP developments as the simultaneous production of power and potable water can have positive economic implications towards increasing the feasibility of CSP plant developments [2.]. The highest concentrations of direct normal irradiation are located relatively close to Western coastal and Middle-Eastern North-African regions. It is for this reason worthwhile investigating the possibility of CSP-desalination (CSP+D) plants as a future sustainable method for providing both electricity and water with significantly reduced carbon emissions and potential cost reductions. This study investigates the techno-economic feasibility of integrating a low-temperature thermal desalination plant to serve as the condenser as opposed to a conventional dry-cooled CSP plant in Arandis, Namibia. It outlines the possible benefits of the integration CSP+D in terms of overall cost of water and electricity. The high capital costs of thermal desalination heat exchangers as well as the pumping of seawater far inland is the most significant barrier in making this approach competitive against more conventional desalination methods such as reverse osmosis. The compromise between the lowest levelized cost of electricity and water depends on the sizing and the top brine temperature of the desalination plant.
Forward osmosis niches in seawater desalination and wastewater reuse.
Valladares Linares, R; Li, Z; Sarp, S; Bucs, Sz S; Amy, G; Vrouwenvelder, J S
2014-12-01
This review focuses on the present status of forward osmosis (FO) niches in two main areas: seawater desalination and wastewater reuse. Specific applications for desalination and impaired-quality water treatment and reuse are described, as well as the benefits, advantages, challenges, costs and knowledge gaps on FO hybrid systems are discussed. FO can play a role as a bridge to integrate upstream and downstream water treatment processes, to reduce the energy consumption of the entire desalination or water recovery and reuse processes, thus achieving a sustainable solution for the water-energy nexus. FO hybrid membrane systems showed to have advantages over traditional membrane process like high pressure reverse osmosis and nanofiltration for desalination and wastewater treatment: (i) chemical storage and feed water systems may be reduced for capital, operational and maintenance cost, (ii) water quality is improved, (iii) reduced process piping costs, (iv) more flexible treatment units, and (v) higher overall sustainability of the desalination and wastewater treatment process. Nevertheless, major challenges make FO systems not yet a commercially viable technology, the most critical being the development of a high flux membrane, capable of maintaining an elevated salt rejection and a reduced internal concentration polarization effect, and the availability of appropriate draw solutions (cost effective and non-toxic), which can be recirculated via an efficient recovery process. This review article highlights the features of hybrid FO systems and specifically provides the state-of-the-art applications in the water industry in a novel classification and based on the latest developments toward scaling up these systems. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kim, Kiwoong; Kim, Hyejeong; Lim, Jae Hong; Lee, Sang Joon
2016-12-27
The shortage of available fresh water is one of the global issues presently faced by humanity. To determine a solution to this problem, the survival strategies of plants have been examined. In this study, a nature-inspired membrane with a highly charged surface is proposed as an effective membrane for the filtration of saline water. To mimic the desalination characteristics of mangrove roots, a macroporous membrane based on polyethylene terephthalate is treated with polyelectrolytes using a layer-by-layer deposition method. The fabricated membrane surface has a highly negative charged ζ-potential value of -97.5 ± 4.3 mV, similar to that of the first layer of mangrove roots. Desalination of saline water using this membrane shows a high salt retention rate of 96.5%. The highly charged surface of the membrane may induce a relatively thick and stable ion depletion zone in front of the membrane. As a result, most co-ions are repelled from the membrane surface, and counterions are also rejected by virtue of their electroneutrality. The water permeability is found to be 7.60-7.69 L/m 2 ·h, which is 10 times higher than that of the reverse osmosis desalination method. This nature-inspired filtration membrane exhibits steady desalination performance over 72 h of operation, successfully demonstrating the stable filtration of saline water. This nature-inspired membrane is applicable to the design of a small-scale, portable, and energy-free desalination device for use in third-world countries or small villages.
AlOtaibi, Eed L Sh
2009-03-21
Urban water sources of Khamis Mushait Governorate, southwestern Saudi Arabia, were studied to assess their bacteriological characteristics and suitability for potable purposes. A cross-sectional epidemiological method was adopted to investigate the four main urban water sources (i.e. bottled, desalinated, surface, and well water). These were sampled and examined between February and June 2007. A total of 95 water samples from bottled, desalinated, surface, and well water were collected randomly from the study area using different gathering and analysing techniques. The bacteriological examination of water samples included the most probable number of presumptive coliforms, faecal coliforms, and faecal streptococci (MPN/100 ml). The results showed that the total coliform count (MPN/100 ml) was not detected in any samples taken from bottled water, while it was detected in those taken from desalinated, surface, and well water: percentages were 12.9, 80.0, and 100.0, respectively. Faecal coliforms were detected in desalinated, surface, and well water, with percentages of 3.23, 60.0 and 87.88, respectively. About 6.45% of desalinated water, 53.33% of surface water, and 57.58% of well water was found positive for faecal streptococci. Colonies of coliforms were identified in different micro-organisms with various percentages. Water derived from traditional sources (wells) showed increases in most of the investigated bacteriological parameters, followed by surface water as compared to bottled or desalinated water. This may be attributed to the fact that well and surface water are at risk of contamination as indicated by the higher levels of most bacteriological parameters. Moreover, well water is exposed to point sources of pollution such as septic wells and domestic and farming effluents, as well as to soil with a high humus content. The lower bacteriological characteristics in samples from bottled water indicate that it is satisfactory for human drinking purposes. Contamination of desalinated water that is the main urban water source may occur during transportation from the desalination plant or in the house reservoir of the consumer. Improving and expanding the existing water treatment and sanitation systems is more likely to provide safe and sustainable sources of water over the long term. Strict hygienic measures should be applied to improve water quality and to avoid deleterious effects on public health, by using periodical monitoring programmes to detect sewage pollution running over local hydrological networks and valleys.
Sh AlOtaibi, Eed L
2009-01-01
Background Urban water sources of Khamis Mushait Governorate, southwestern Saudi Arabia, were studied to assess their bacteriological characteristics and suitability for potable purposes. A cross-sectional epidemiological method was adopted to investigate the four main urban water sources (i.e. bottled, desalinated, surface, and well water). These were sampled and examined between February and June 2007. Results A total of 95 water samples from bottled, desalinated, surface, and well water were collected randomly from the study area using different gathering and analysing techniques. The bacteriological examination of water samples included the most probable number of presumptive coliforms, faecal coliforms, and faecal streptococci (MPN/100 ml). The results showed that the total coliform count (MPN/100 ml) was not detected in any samples taken from bottled water, while it was detected in those taken from desalinated, surface, and well water: percentages were 12.9, 80.0, and 100.0, respectively. Faecal coliforms were detected in desalinated, surface, and well water, with percentages of 3.23, 60.0 and 87.88, respectively. About 6.45% of desalinated water, 53.33% of surface water, and 57.58% of well water was found positive for faecal streptococci. Colonies of coliforms were identified in different micro-organisms with various percentages. Conclusion Water derived from traditional sources (wells) showed increases in most of the investigated bacteriological parameters, followed by surface water as compared to bottled or desalinated water. This may be attributed to the fact that well and surface water are at risk of contamination as indicated by the higher levels of most bacteriological parameters. Moreover, well water is exposed to point sources of pollution such as septic wells and domestic and farming effluents, as well as to soil with a high humus content. The lower bacteriological characteristics in samples from bottled water indicate that it is satisfactory for human drinking purposes. Contamination of desalinated water that is the main urban water source may occur during transportation from the desalination plant or in the house reservoir of the consumer. Improving and expanding the existing water treatment and sanitation systems is more likely to provide safe and sustainable sources of water over the long term. Strict hygienic measures should be applied to improve water quality and to avoid deleterious effects on public health, by using periodical monitoring programmes to detect sewage pollution running over local hydrological networks and valleys. PMID:19302710
Vitezic, Dinko; Madjarevic, Tomislav; Gantumur, Monja; Buble, Tonci; Vitezic, Miomira; Kovacevic, Miljenko; Mrsic-Pelcic, Jasenka; Sestan, Branko
2012-07-01
The aim of our study was to investigate the changes in drug usage and financial expenditure according to legal changes in Croatia during the period 2001 - 2008, especially considering pricing policy. The data on outpatient drug usage during the studied period was obtained from the Croatian National Health Insurance (CNHI). CNHI maintains a database on drugs prescribed by primary health care physicians and dispensed by pharmacies. The data was calculated and presented in defined daily doses (DDD) per inhabitant per year for antibiotics and in DDD/1,000 inhabitants/day for other drugs. The data is also presented in Euro/DDD and the financial expenditures are presented in Euros. During the investigated period drug usage increased 81.33%, while financial expenditure increased 77.23%. While total DDD/1,000 increased ~ 10% every year, financial expenditure increased 10 - 20% annually until 2006, but since then there have been no significant changes. Pricing policy changes could influence drug financial expenditure considerably in the short-term, but it is also important to apply a combination of measures for drug expenditure control. Numerous interventions from authorities from different countries all over the world, prove that there is still no so called "gold standard" which could restrain growing usage and expenditure of drugs. Clinical pharmacologists and clinical pharmacists should be included in these processes.
Ahsan, M K; Hossain, M A; Sakeb, N; Khan, S I; Zaman, N
2013-10-01
This prospective interventional study carried out at Bangabandhu Sheikh Mujib Medical University and a private hospital in Dhaka, Bangladesh during the period from October 2003 to September 2011. Surgical treatment of degenerative disc disease (DDD) should aim to re-expand the interbody space and stabilize until fusion is complete. The present study conducted to find out the efficacy of using interbody fusion device (Cage) to achieve interbody space re-expansion and fusion in surgical management of DDD. We have performed the interventional study on 53 patients, 42 female and 11 male, with age between 40 to 67 years. All the patients were followed up for 36 to 60 months (average 48 months). Forty seven patients were with spondylolisthesis and 06 with desiccated disc. All subjects were evaluated with regard to immediate and long term complications, radiological fusion and interbody space re-expansion and maintenance. The clinical outcome (pain and disability) was scored by standard pre and postoperative questionnaires. Intrusion, extrusion and migration of the interbody fusion cage were also assessed. Forty seven patients were considered to have satisfactory outcome in at least 36 months follow up. Pseudoarthrosis developed in 04 cases and 06 patients developed complications. In this series posterior lumbar interbody fusion (PLIF) with interbody cage and instrumentation in DDD showed significant fusion rate and maintenance of interbody space. Satisfactory outcome observed in 88.68% cases.
Clinical features and outcomes of 98 children and adults with dense deposit disease
Moon, Mikyung; Lanning, Lynne D.; McCarthy, Ann Marie; Smith, Richard J. H.
2015-01-01
Background Dense deposit disease (DDD) is an ultra-rare renal disease. Methods In the study reported here, 98 patients and their families participated in a descriptive patient-centered survey using an online research format. Reports were completed by patients (38%) or their parents (62%). Age at diagnosis ranged from 1.9 to 38.9 years (mean 14 years). Results The majority of patients presented with proteinuria and hematuria; 50% had hypertension and edema. Steroids were commonly prescribed, although their use was not evidence-based. One-half of the patients with DDD for 10 years progressed to end-stage renal disease (ESRD), with young females having the greatest risk for renal failure. Of first allografts, 45% failed within 5 years, most frequently due to recurrent disease (70%). Type 1 diabetes (T1D) was present in over 16% of families, which represents a 116-fold increase in incidence compared with the general population (p<0.001). Conclusions Based on these findings, we suggest that initiatives are needed to explore the high incidence of T1D in family members of DDD patients and the greater risk for progression to ESRD in young females with DDD. These efforts must be supported by sufficient numbers of patients to establish evidence-based practice guidelines for disease management. An international collaborative research survey should be implemented to encourage broad access and participation. PMID:22105967
Szilágyiová, Petra; Slušná, Jana; Babela, Robert
2017-11-01
To the Editor, Drug utilization is an important field of drug policy and an integral part of public health internationally. This area of research attracts increasing interest but the pioneering work was done 50 years ago when the first drug consumption report from six European countries for the period of 1966-1967 showed great differences in drug utilization between population groups (WHO, 1968). These results gave important stimulus for creation of Anatomical Therapeutic Chemical (ATC) classification and technical unit of measurement called the Defined Daily Dose (DDD) which is specified as "the assumed average maintenance dose per day for a drug used for its main indication in adults" that dealt with the objections against traditional units of measurement in drug utilization studies (WHO, 2016). The ATC/DDD methodology has in the meantime proved its suitability in drug utilization monitoring and research. As mentioned previously, consumption of pharmaceuticals is often used as a basis for comparison between countries. Based on our professional expertise, we decided to analyze the consumption of cardiovascular medicines by DDD in the Czech Republic and Slovak Republic within all ATC groups reported to OECD (OECD, 2016a). According to OECD indicator results, the Slovak Republic showed in 2014 a higher pharmaceutical consumption by DDD in ATC group C (cardiovascular system) compared to the Czech Republic (OECD, 2016a).
Exploiting interfacial water properties for desalination and purification applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Hongwu; Varma, Sameer; Nyman, May Devan
2008-09-01
A molecular-scale interpretation of interfacial processes is often downplayed in the analysis of traditional water treatment methods. However, such an approach is critical for the development of enhanced performance in traditional desalination and water treatments. Water confined between surfaces, within channels, or in pores is ubiquitous in technology and nature. Its physical and chemical properties in such environments are unpredictably different from bulk water. As a result, advances in water desalination and purification methods may be accomplished through an improved analysis of water behavior in these challenging environments using state-of-the-art microscopy, spectroscopy, experimental, and computational methods.
Oh, Byung Soo; Oh, Sang Guen; Hwang, Youn Young; Yu, Hye-Weon; Kang, Joon-Wun; Kim, In S
2010-11-01
From our previous study, an electrochemical process was determined to be a promising tool for disinfection in a seawater desalination system, but an investigation on the production of several hazardous by-products is still required. In this study, a more intensive exploration of the formation patterns of perchlorate and bromate during the electrolysis of seawater was conducted. In addition, the rejection efficiencies of the targeted by-products by membrane processes (microfiltration and seawater reverse osmosis) were investigated to uncover the concentrations remaining in the final product from a membrane-based seawater desalination system for the production of drinking water. On the electrolysis of seawater, perchlorate did not provoke any problem due to the low concentrations formed, but bromate was produced at a much higher level, resulting in critical limitation in the application of the electrochemical process to the desalination of seawater. Even though the formed bromate was rejected via microfiltration and reverse osmosis during the 1st and 2nd passes, the residual concentration was a few orders of magnitude higher than the USEPA regulation. Consequently, it was concluded that the application of the electrochemical process to seawater desalination cannot be recommended without the control of bromate. Copyright © 2010 Elsevier B.V. All rights reserved.
Kim, Kwanghyun; Yu, Sunyoung; An, Cheolwon; Kim, Sung-Wook; Jang, Ji-Hyun
2018-05-09
Solar desalination via thermal evaporation of seawater is one of the most promising technologies for addressing the serious problem of global water scarcity because it does not require additional supporting energy other than infinite solar energy for generating clean water. However, low efficiency and a large amount of heat loss are considered critical limitations of solar desalination technology. The combination of mesoporous three-dimensional graphene networks (3DGNs) with a high solar absorption property and water-transporting wood pieces with a thermal insulation property has exhibited greatly enhanced solar-to-vapor conversion efficiency. 3DGN deposited on a wood piece provides an outstanding value of solar-to-vapor conversion efficiency, about 91.8%, under 1 sun illumination and excellent desalination efficiency of 5 orders salinity decrement. The mass-producible 3DGN enriched with many mesopores efficiently releases the vapors from an enormous area of the surface by heat localization on the top surface of the wood piece. Because the efficient solar desalination device made by 3DGN on the wood piece is highly scalable and inexpensive, it could serve as one of the main sources for the worldwide supply of purified water achieved via earth-abundant materials without an extra supporting energy source.
Cameron, Sharon; Glyde, Helen; Dillon, Harvey; Whitfield, Jessica; Seymour, John
2016-06-01
The dichotic digits test is one of the most widely used assessment tools for central auditory processing disorder. However, questions remain concerning the impact of cognitive factors on test results. To develop the Dichotic Digits difference Test (DDdT), an assessment tool that could differentiate children with cognitive deficits from children with genuine dichotic deficits based on differential test results. The DDdT consists of four subtests: dichotic free recall (FR), dichotic directed left ear (DLE), dichotic directed right ear (DRE), and diotic. Scores for six conditions are calculated (FR left ear [LE], FR right ear [RE], and FR total, as well as DLE, DRE, and diotic). Scores for four difference measures are also calculated: dichotic advantage, right-ear advantage (REA) FR, REA directed, and attention advantage. Experiment 1 involved development of the DDdT, including error rate analysis. Experiment 2 involved collection of normative and test-retest reliability data. Twenty adults (aged 25 yr 10 mo to 50 yr 7 mo, mean 36 yr 4 mo) took part in the development study; 62 normal-hearing, typically developing, primary-school children (aged 7 yr 1 mo to 11 yr 11 mo, mean 9 yr 4 mo) and 10 adults (aged 25 yr 0 mo to 51 yr 6 mo, mean 34 yr 10 mo) took part in the normative and test-retest reliability study. In Experiment 1, error rate analysis was conducted on the 36 digit-pair combinations of the DDdT. Normative data collected in Experiment 2 were arcsine transformed to achieve a distribution that was closer to a normal distribution and z-scores calculated. Pearson product-moment correlations were used to determine the strength of relationships between DDdT conditions. The development study revealed no significant differences in the adult population between test and retest on any DDdT condition. Error rates on 36 digit pairs ranged from 1.5% to 16.7%. The most and the least error-prone digits were removed before commencement of the normative data study, leaving 25 unique digit pairs. Average z-scores calculated from the arcsine-transformed data collected from the 62 children who took part in the normative data study revealed that FR dichotic processing (LE, RE, and total) was highly correlated with diotic processing (r ranging from 0.5 to 0.6; p < 0.0001). Significant improvements in performance on retest occurred for the FR LE, RE, total, and diotic conditions (p ranging from 0.05 to 0.0004), the conditions that would be expected to improve with practice if the participant's response strategies are better the second time around. The addition of a diotic control task-that shares many response demands with the usual dichotic tasks-opens up the possibility of differentiating children who perform below expectations because of poor dichotic processing skills from those who perform poorly because of impaired attention, memory, or other cognitive abilities. The high correlation between dichotic and diotic performance suggests that factors other than dichotic performance play a substantial role in a child's ability to perform a dichotic listening task. This hypothesis is investigated further in the cognitive correlation study that follows in the companion paper (DDdT Study Part 2; Cameron et al, 2016). American Academy of Audiology.
Licht, S
2011-12-15
STEP (solar thermal electrochemical production) theory is derived and experimentally verified for the electrosynthesis of energetic molecules at solar energy efficiency greater than any photovoltaic conversion efficiency. In STEP the efficient formation of metals, fuels, chlorine, and carbon capture is driven by solar thermal heated endothermic electrolyses of concentrated reactants occuring at a voltage below that of the room temperature energy stored in the products. One example is CO(2) , which is reduced to either fuels or storable carbon at a solar efficiency of over 50% due to a synergy of efficient solar thermal absorption and electrochemical conversion at high temperature and reactant concentration. CO(2) -free production of iron by STEP, from iron ore, occurs via Fe(III) in molten carbonate. Water is efficiently split to hydrogen by molten hydroxide electrolysis, and chlorine, sodium, and magnesium from molten chlorides. A pathway is provided for the STEP decrease of atmospheric carbon dioxide levels to pre-industial age levels in 10 years. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Culig, Josip; Mlinarić-Dzepina, Ana; Leppée, Marcel; Vranes, Jasmina
2010-02-01
To compare resistance of uropathogenic strains of Escherichia coli (UPEC) to antibiotics in women in generative ages and pregnant women during two year period (2004 and 2008) in Zagreb, and comparison of resistance and the consumption of antibiotics. The standard disk-diffusion method was used for sensitivity testing to 16 different antibiotics. Data on antibiotic utilization were used to calculate the number of defined daily doses (DDD) and DDD per 1000 inhabitants using Anatomical-Therapeutic-Chemical/DDD methodology. Data on antibiotic consumption during pregnancy were collected using a questionnaire filled in by 893 women after delivery. During 2004 resistance of UPEC to antimicrobial drugs was not different in pregnant and in non-pregnant women, with the exception of amoxicillin and nitrofurantoin, with statistically higher resistance in pregnant women (p < 0.01). Four years later the statistically higher resistance to norfloxacin was observed in non-pregnant women (p < 0.01). Comparing the resistance in 2004 and 2008, in the both groups of women a statistically significant decrease of resistance to cefalexin and nitrofurantoin was detected (p < 0.01). Outpatient utilization of antimicrobial drugs in Zagreb increased significantly, from 32 to 39 DDD/1000 inhabitants per day. The most used antibiotic was co-amoxiclav, and its utilization increased from 9.6 to 12.2 DDD/1000/day. Amoxicillin and co-amoxiclav were used during pregnancy by 9.6% interviewed women. The observed significant decrease of resistance to cefalexin makes that antibiotic the drug of choice for treatment of urinary tract infections in women in generative ages, and together with coamoxiclav can be administered in pregnancy. Constant monitoring of urinary tract pathogens resistance to antimicrobial agents ensures the effectiveness of empirical therapy, whose versatile use is limited due the potentially harmful effects of antimicrobial drugs on fetus.
Reducing calibration parameters to increase insight in catchment organization and similarity
NASA Astrophysics Data System (ADS)
Skaugen, Thomas; Onof, Christian
2013-04-01
Ideally, hydrological models should be built from equations parameterised from observed catchment characteristics and data. This state of affairs may never be reached, but a governing principle in hydrological modelling should be to keep the number of calibration parameters to a minimum. A reduced number of parameters to be calibrated, while maintaining the accuracy and detail required by modern hydrological models, will reduce parameter and model structure uncertainty and improve model diagnostics. The dynamics of runoff for small catchments are derived from the distribution of distances from points in the catchments to the nearest stream in a catchment. This distribution is unique for each catchment and can be determined from a geographical information system (GIS). The distribution of distances, will, when a celerity of (subsurface) flow is introduced, provide a distribution of travel times, or a unit hydrograph (UH). For spatially varying levels of saturation deficit we have different celerities and, hence, different UHs. Runoff is derived from the super-positioning of the different UHs. This study shows how celerities can be estimated if we assume that recession events represent the superpositioned UH for different levels of saturation deficit. The performance of the DDD (Distance Distribution Dynamics) model is compared to that of the Swedish HBV model and is found to perform equally well for eight Norwegian catchments although the number of parameters to be calibrated in the module concerning soil moisture and runoff dynamics is reduced from 7 in the HBV model to 1 in the DDD model. It is also shown that the DDD model has a more realistic representation of the subsurface hydrology. The transparency of the DDD model makes model diagnostics more easy and experience with DDD shows that differences in model performance may be related to differences in catchment characteristics. More specifically, it appears that the hydrological dynamics of bogs have to be taken especially into account when modelling Norwegian catchments.
Chirife, Raul; Ruiz, G Aurora; Gayet, Enrique; Muratore, Claudio; Mazzetti, Héctor; Pellegrini, Alejandro; Tentori, M Cristina
2013-10-01
Our objective was to evaluate the systolic index (SI), the ratio between rate-corrected left ventricular ejection time (LVETc), and a preejection period surrogate (PEPsu), to assess cardiac function in patients with DDD and cardiac resynchronization therapy (CRT) pacemakers. LVETc and PEPsu were automatically measured from electrocardiogram and finger photoplethismography. Atrioventricular (AV) and mode switch (CRT to DDD) were used as hemodynamic challenges. Performance of SI, beat-by-beat systolic blood pressure (SBP), and Doppler aortic velocity/time integral (AoVTI) were compared in 36 patients, and SI's detection of CRT to DDD mode switch in nine patients, responders to CRT. AVs were changed from 30 ms to 250 ms (20 ms steps) at constant paced heart rate, alternating with a reference AV (RefAV), to reduce hemodynamic drift. The coefficient of variation (standard deviation/mean) of SI, SBP, and AoVTI during all RefAVs were used as error marker. The percentage detection of hemodynamic changes during AV transitions was a marker of sensitivity. Fifty-five patients (males 62%, age 69.6 ± 17) were studied. SI detected 441 of 544 transitions (81%) versus 361 (66%) of SBP (P = 0.005). Error during RefAVs was smaller for SI (3.4%) as compared to AoVTI (7.8%, P = 0.015) and to SBP (5.7%, P = 0.005). SIs correlated with AoVTI (R from 0.71 to 0.98, all P < 0.001). SI detected all CRT to DDD changes (P < 0.001). The noninvasive SI obtained with a simple, observer-independent hemodynamic assessment procedure has higher accuracy than SBP and AoVTI and better sensitivity than SBP. It detects mechanical resynchronization in CRT and allows programming a suitable AV delay. ©2013, The Authors. Journal compilation ©2013 Wiley Periodicals, Inc.
Gharbi, M; Moore, L S P; Gilchrist, M; Thomas, C P; Bamford, K; Brannigan, E T; Holmes, A H
2015-08-01
This study aimed to forecast the incidence rate of carbapenem resistance and to assess the impact of an antimicrobial stewardship intervention using routine antimicrobial consumption surveillance data. Following an outbreak of OXA-48-producing Klebsiella pneumoniae (January 2008-April 2010) in a renal cohort in London, a forecasting ARIMA model was derived using meropenem consumption data [defined daily dose per 100 occupied bed-days (DDD/100OBD)] from 2005-2014 as a predictor of the incidence rate of OXA-48-producing organisms (number of new cases/year/100,000OBD). Interrupted times series assessed the impact of meropenem consumption restriction as part of the outbreak control. Meropenem consumption at lag -1 year (the preceding year), highly correlated with the incidence of OXA-48-producing organisms (r=0.71; P=0.005), was included as a predictor within the forecasting model. The number of cases/100,000OBD for 2014-2015 was estimated to be 4.96 (95% CI 2.53-7.39). Analysis of meropenem consumption pre- and post-intervention demonstrated an increase of 7.12 DDD/100OBD/year (95% CI 2.97-11.27; P<0.001) in the 4 years preceding the intervention, but a decrease thereafter. The change in slope was -9.11 DDD/100OBD/year (95% CI -13.82 to -4.39). Analysis of alternative antimicrobials showed a significant increase in amikacin consumption post-intervention from 0.54 to 3.41 DDD/100OBD/year (slope +0.72, 95% CI 0.29-1.15; P=0.01). Total antimicrobials significantly decreased from 176.21 to 126.24 DDD/100OBD/year (P=0.05). Surveillance of routinely collected antimicrobial consumption data may provide a key warning indicator to anticipate increased incidence of carbapenem-resistant organisms. Further validation using real-time data is needed. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Olshansky, Brian; Richards, Mark; Sharma, Arjun; Wold, Nicholas; Jones, Paul; Perschbacher, David; Wilkoff, Bruce L
2016-08-01
Rate-responsive pacing (DDDR) versus nonrate-responsive pacing (DDD) has shown no survival benefit for patients undergoing cardiac resynchronization therapy defibrillator (CRT-D) implants. The heart rate score (HRSc), an indicator of heart rate variation, may predict survival. We hypothesized that high-risk HRSc CRT-D patients will have improved survival with DDDR versus DDD alone. All CRT-D patients in LATITUDE remote monitoring (2006-2011), programmed DDD, had HRSc calculated at first data upload after implant (median 1.4 months). Patients subsequently reprogrammed to DDDR 7.6 median months later were compared with a propensity-matched DDD group and followed for 21.4 median months by remote monitoring. Data were adjusted for age, sex, lower rate limit, percent atrial pacing, percent biventricular pacing, and implant year. The social security death index was used to identify deaths. Remote monitoring provided programming and histogram data. DDDR programming in CRT-D patients was associated with improved survival (adjusted hazard ratio =0.77; P<0.001). However, only those with baseline HRSc ≥70% (2308/6164) had improved HRSc with DDDR (from 88±9% to 78±15%; P<0.001) and improved survival (hazard ratio =0.74; P<0.001). Patients with a high baseline HRSc and significant improvement over time were more likely to survive (hazard ratio =0.63; P=0.006). For patients with HRSc <70%, DDDR reprogramming increased the HRSc from 46±11% to 50±15% (P<0.001); survival did not change. The HRSc did not change with DDD pacing over time. In CRT-D patients with HRSc ≥70%, DDDR reprogramming improved the HRSc and was associated with survival. Patients with lower HRSc had no change in survival with DDDR programming. © 2016 American Heart Association, Inc.
Return to Work After Diskogenic Fusion in Workers' Compensation Subjects.
Anderson, Joshua T; Haas, Arnold R; Percy, Rick; Woods, Stephen T; Ahn, Uri M; Ahn, Nicholas U
2015-12-01
Lumbar fusion for degenerative disk disease (DDD) is associated with variable clinical outcomes. Patients with workers' compensation claims often have worse fusion outcomes than the general population. Few studies have evaluated the risk factors for poor outcomes within this clinically distinct population. The goal of this study was to identify preoperative predictors of return to work status after fusion for DDD in a workers' compensation setting. The authors used International Classification of Diseases, Ninth Revision (ICD-9), diagnosis and Current Procedural Terminology (CPT) procedural codes to identify 1037 subjects from the Ohio Bureau of Workers' Compensation database who underwent fusion for DDD between 1993 and 2013. Of these subjects, 23.2% (n=241) made a sustained return to work within 2 years after fusion. To identify preoperative predictors of postoperative return to work status, the authors used multivariate logistic regression analysis, adjusting for many important covariates. These included prolonged time out of work (P<.001; odds ratio [OR], 0.24), psychiatric history (P<.001; OR, 0.14), prolonged use of opioid analgesics (P<.001; OR, 0.46), male sex (P=.014; OR, 0.65), and legal representation (P=.042; OR, 0.67). The return to work rates associated with these risk factors were 10.4%, 2.0%, 11.9%, 21.1%, and 20.7%, respectively. Of the study subjects, 76.8% (n=796) did not return to work and had considerably worse postoperative outcomes, highlighted by chronic opioid dependence and high rates of failed back syndrome, additional surgery, and new psychiatric comorbidity. The low return to work rates and other generally poor outcomes reported in this study may indicate a more limited role for lumbar fusion among patients with DDD who have workers' compensation claims. More studies are needed to determine whether fusion for DDD can improve function and quality of life in these patients. Copyright 2015, SLACK Incorporated.
Karanges, Emily A.; Blanch, Bianca; Buckley, Nicholas A.
2016-01-01
Aim The aim of this paper is to investigate 25‐year trends in community use of prescribed opioid analgesics in Australia, and to map these trends against major changes to opioid registration and subsidy. Methods We obtained dispensing data from 1990 to 2014 from two sources: dispensing claims processed under Australia's national drug subsidy programme, the Pharmaceutical Benefits Scheme, including under co‐payment records from 2012; and estimates of non‐subsidized medicine use from a survey of Australian pharmacies (until 2011). Utilization was expressed in defined daily doses (DDD)/1000 population/day. Results Opioid dispensing increased almost four‐fold between 1990 and 2014, from 4.6 to 17.4 DDD/1000 pop/day. In 1990, weak, short‐acting or orally administered opioids accounted for over 90% of utilization. Use of long‐acting opioids increased over 17‐fold between 1990 and 2000, due primarily to the subsidy of long‐acting morphine and increased use of methadone for pain management. Between 2000 and 2011, oxycodone, fentanyl, buprenorphine, tramadol and hydromorphone use increased markedly. Use of strong opioids, long‐acting and transdermal preparations also increased, largely following the subsidy of various opioids for noncancer pain. In 2011, the most dispensed opioids were codeine (41.1% of total opioid use), oxycodone (19.7%) and tramadol (16.1%); long‐acting formulations comprised approximately half, and strong opioids 40%, of opioid dispensing. Conclusions Opioid utilization in Australia is increasing, although these figures remain below levels reported in the US and Canada. The increased use of opioids was largely driven by the subsidy of long‐acting formulations and opioids for the treatment of noncancer pain. PMID:26991673
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akar, Sertac; Turchi, Craig
Substantial drought and declines in potable groundwater in the United States over the last decade has increased the demand for fresh water. Desalination of saline water such as brackish surface or groundwater, seawater, brines co-produced from oil and gas operations, industrial wastewater, blow-down water from power plant cooling towers, and agriculture drainage water can reduce the volume of water that requires disposal while providing a source of high-quality fresh water for industrial or commercial use. Membrane distillation (MD) is a developing technology that uses low-temperature thermal energy for desalination. Geothermal heat can be an ideal thermal-energy source for MD desalinationmore » technology, with a target range of $1/m3 to $2/m3 for desalinated water depending on the cost of heat. Three different cases were analyzed to estimate levelized cost of heat (LCOH) for integration of MD desalination technology with low-grade geothermal heat: (1) residual heat from injection brine at a geothermal power plant, (2) heat from existing underutilized low-temperature wells, and (3) drilling new wells for low-temperature resources. The Central and Western United States have important low-temperature (<90 degrees C) geothermal resource potential with wide geographic distribution, but these resources are highly underutilized because they are inefficient for power production. According to the USGS, there are 1,075 identified low temperature hydrothermal systems, 55 low temperature sedimentary systems and 248 identified medium to high temperature geothermal systems in the United States. The estimated total beneficial heat potential from identified low temperature hydrothermal geothermal systems and residual beneficial heat from medium to high temperature systems is estimated as 36,300 MWth, which could theoretically produce 1.4 to 7 million m3/day of potable water, depending on desalination efficiency.« less
Orientation influence on grain size-effects in ultrafine-grained magnesium
Fan, Haidong; Aubry, Sylvie; Arsenlis, A.; ...
2014-11-08
The mechanical behavior of ultrafine-grained magnesium was studied by discrete dislocation dynamics (DDD) simulations. Our results show basal slip yields a strong size effect, while prismatic and pyramidal slips produce a weak one. We developed a new size-strength model that considers dislocation transmission across grain boundaries. Good agreement between this model, current DDD simulations and previous experiments is observed. These results reveal that the grain size effect depends on 3 factors: Peierls stress, dislocation source strength and grain boundary strength.
Maritime Mobile Force Protection (MMFP) Program
2010-05-28
to draw or write on the screen. Thin design has a starting weight of 4.65lbs. Capture handwriting : scrawl onscreen with the included dockable...Will say “Past CPA” if CPA has already occurred. Range at CPA DDD Yards Range at Closest Point of Approach to HVU Closing Speed DDD knots Speed of...closing to HVU, if greater than or equal to zero. Will say “Opening” if the closing speed is less than zero. Data Source Radar, AIS, Correlated Source
Readily functionalized AAA-DDD triply hydrogen-bonded motifs.
Tong, Feng; Linares-Mendez, Iamnica J; Han, Yi-Fei; Wisner, James A; Wang, Hong-Bo
2018-04-25
Herein we present a new, readily functionalized AAA-DDD hydrogen bond array. A novel AAA monomeric unit (3a-b) was obtained from a two-step synthetic procedure starting with 2-aminonicotinaldehyde via microwave radiation (overall yield of 52-66%). 1H NMR and fluorescence spectroscopy confirmed the complexation event with a calculated association constant of 1.57 × 107 M-1. Likewise, the usefulness of this triple hydrogen bond motif in supramolecular polymerization was demonstrated through viscosity measurements in a crosslinked supramolecular alternating copolymer.
Luo, Haiping; Xu, Pei; Ren, Zhiyong
2012-09-01
Microbial desalination cell represents a new technology for simultaneous wastewater treatment, water desalination, and energy production. This study characterized the long-term performance of MDC during wastewater treatment and identified the key factors that caused performance decline. The 8-month operation shows that MDC performance decreased over time, as indicated by a 47% decline in current density, a 46% drop in Columbic efficiency, and a 27% decrease in desalination efficiency. Advanced electrochemical, microscopy, and spectroscopy analyses all confirmed biofouling on the anion exchange membrane, which increased system resistance and reduced ionic transfer and energy conversion efficiency. Minor chemical scaling was found on the cation exchange membrane surface. Microbial communities became less diverse at the end of operation, and Proteobacteria spp. was dominant on both anode and AEM fouling layer surface. These results provide insights into the viability of long-term MDC operation on reactor performance and direct system development through membrane optimization. Copyright © 2012 Elsevier Ltd. All rights reserved.
Indirect contact freeze water desalination for an ice maker machine - CFD simulation
NASA Astrophysics Data System (ADS)
Jayakody, Harith; Al-Dadah, Raya; Mahmoud, Saad
2017-11-01
To offer for potable water shortages, sea water desalination is a potential solution for the global rising demand for fresh water. The latent heat of fusion is about one-seventh the latent heat of vaporisation, thus indicating the benefit of lower energy consumption for the freeze desalination process. Limited literature is reported on computational fluid dynamics (CFD) on freeze desalination. Therefore, analysing and investigating thermodynamic processes are easily conducted by the powerful tool of CFD. A single unit of ice formation in an ice maker machine was modelled using ANSYS Fluent software three-dimensionally. Energy, species transport and solidification/melting modules were used in building the CFD model. Parametric analysis was conducted using the established CFD model to predict the effects of freezing temperature and the geometry of the ice maker machine; on ice production and the freezing time. Lower freezing temperatures allowed more ice production and faster freezing. Increasing the diameter and the length of the freezing tube enabled more ice to be produced.
Advanced Multi-Effect Distillation System for Desalination Using Waste Heat fromGas Brayton Cycles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haihua Zhao; Per F. Peterson
2012-10-01
Generation IV high temperature reactor systems use closed gas Brayton Cycles to realize high thermal efficiency in the range of 40% to 60%. The waste heat is removed through coolers by water at substantially greater average temperature than in conventional Rankine steam cycles. This paper introduces an innovative Advanced Multi-Effect Distillation (AMED) design that can enable the production of substantial quantities of low-cost desalinated water using waste heat from closed gas Brayton cycles. A reference AMED design configuration, optimization models, and simplified economics analysis are presented. By using an AMED distillation system the waste heat from closed gas Brayton cyclesmore » can be fully utilized to desalinate brackish water and seawater without affecting the cycle thermal efficiency. Analysis shows that cogeneration of electricity and desalinated water can increase net revenues for several Brayton cycles while generating large quantities of potable water. The AMED combining with closed gas Brayton cycles could significantly improve the sustainability and economics of Generation IV high temperature reactors.« less
Cambridge, M L; Zavala-Perez, A; Cawthray, G R; Mondon, J; Kendrick, G A
2017-02-15
Highly saline brines from desalination plants expose seagrass communities to salt stress. We examined effects of raised salinity (46 and 54psu) compared with seawater controls (37psu) over 6weeks on the seagrass, Posidonia australis, growing in tanks with the aim of separating effects of salinity from other potentially deleterious components of brine and determining appropriate bioindicators. Plants survived exposures of 2-4weeks at 54psu, the maximum salinity of brine released from a nearby desalination plant. Salinity significantly reduced maximum quantum yield of PSII (chlorophyll a fluorescence emissions). Leaf water potential (Ψ w ) and osmotic potential (Ψ π ) were more negative at increased salinity, while turgor pressure (Ψ p ) was unaffected. Leaf concentrations of K + and Ca 2+ decreased, whereas concentrations of sugars (mainly sucrose) and amino acids increased. We recommend leaf osmolarity, ion, sugar and amino acid concentrations as bioindicators for salinity effects, associated with brine released in desalination plant outfalls. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fay, Li-Yu; Huang, Wen-Cheng; Wu, Jau-Ching; Chang, Hsuan-Kan; Tsai, Tzu-Yun; Ko, Chin-Chu; Tu, Tsung-Hsi; Wu, Ching-Lan; Cheng, Henrich
2014-09-01
Cervical arthroplasty has been accepted as a viable option for surgical management of cervical spondylosis or degenerative disc disease (DDD). The best candidates for cervical arthroplasty are young patients who have radiculopathy caused by herniated disc with competent facet joints. However, it remains uncertain whether arthroplasty is equally effective for patients who have cervical myelopathy caused by DDD. The aim of this study was to compare the outcomes of arthroplasty for patients with cervical spondylotic myelopathy (CSM) and patients with radiculopathy without CSM. A total of 151 consecutive cases involving patients with CSM or radiculopathy caused by DDD and who underwent one- or two-level cervical arthroplasty were included in this study. Clinical outcome evaluations and radiographic studies were reviewed. Clinical outcome measurements included the Visual Analog Scale (VAS) of neck and arm pain, Japanese Orthopaedic Association (JOA) scores, and the Neck Disability Index (NDI) in every patient. For patients with CSM, Nurick scores were recorded for evaluation of cervical myelopathy. Radiographic studies included lateral dynamic radiographs and CT for detection of the formation of heterotopic ossification . Of the 151 consecutive patients with cervical DDD, 125 (82.8%; 72 patients in the myelopathy group and 53 in the radiculopathy group) had at least 24 months of clinical and radiographic follow-up. The mean duration of follow-up in these patients was 36.4 months (range 24-56 months). There was no difference in sex distribution between the 2 groups. However, the mean age of the patients in the myelopathy group was approximately 6 years greater than that of the radiculopathy group (53.1 vs 47.2 years, p < 0.001). The mean operation time, mean estimated blood loss, and the percentage of patients prescribed perioperative analgesic agents were similar in both groups (p = 0.754, 0.652, and 0.113, respectively). There were significant improvements in VAS neck and arm pain, JOA scores, and NDI in both groups. Nurick scores in the myelopathy group also improved significantly after surgery. In radiographic evaluations, 92.5% of patients in the radiculopathy group and 95.8% of those in the radiculopathy group retained spinal motion (no significant difference). Evaluation of CT scans showed heterotopic ossification in 34 patients (47.2%) in the myelopathy group and 25 patients (47.1%) in the radiculopathy group (p = 0.995). At a mean of over 3 years postoperatively, no secondary surgery was reported in either group. The severity of myelopathy improves after cervical arthroplasty in patients with CSM caused by DDD. At 3-year follow-up, the clinical and radiographic outcomes of cervical arthroplasty in DDD patients with CSM are similar to those patients who have only cervical radiculopathy. Therefore, cervical arthroplasty is a viable option for patients with CSM caused by DDD who require anterior surgery. However, comparison with the standard surgical treatment of anterior cervical discectomy and fusion is necessary to corroborate the outcomes of arthroplasty for CSM.
Desalination of Walls and Façades
NASA Astrophysics Data System (ADS)
Wedekind, W.; Jáuregui Arreola, K.; Siegesmund, S.
2012-04-01
For large monumental objects like walls and façades, the common technique of applying poultices for desalination often are not effective. This practice is neither cost effective nor does it lead to the desired result of desalination. To manage the conservation and desalination of these kinds of objects, several sprinkling techniques are known and have been applied on historical objects. For example, in the wooden warship Vasa, which was excavated from the sea bottom in Stockholm/Sweden, a sprinkling method was applied in 1961 for conservation and desalination. A sprinkling method to desalinate porous mineral materials will be presented using three different case studies: the rock cut monument no. 825 in Petra/Jordan, the medieval monastary church of the former Franziscan convent in Zeitz/Germany and the baroque monastary church Santa Monica in Guadalajara/Mexico. Before to start with practical conservation, the material- and petropysical properties, focoussed on water transport properties, like porosity, pore size distribution, water uptake and drying rate were investigadet. Diagnostic investigations on the objects included the mapping of deterioration, moister content measurements and salt accumulation determined by borehole cuts samples at depth. In the sprinkling method water is sprayed onto the wall surface through nozzels arranged in a modular grid. Depending on the sprinkling duration, a small or a large amount of water seeps into the porous materials, whereby the depth penetration can be adjusted accordingly. The water not absorbed by the stone runs off the facade and can be collected in liter amounts and tested by electrical conductivity with respect to the dissolved substances. After the drying of the wall's surface and the accumulation of salt at the material's surface, the procedure is repeated. For each subsequent washing a lower content of salt should be brought to the surface. Step by step the salt concentration will eventually decrease to almost zero. By application of the sprinkling method several thousand grams of soluble salts can be extracted. A significant reduction of the salt content within the stone can be detected by drilling dust analyses. The specific situation of salt-accumulation and weathering will be illustrated in each case, along with a presentation of the results and the difficulties and experiences of practical desalination.
Valladares Linares, R; Li, Z; Yangali-Quintanilla, V; Ghaffour, N; Amy, G; Leiknes, T; Vrouwenvelder, J S
2016-01-01
In recent years, forward osmosis (FO) hybrid membrane systems have been investigated as an alternative to conventional high-pressure membrane processes (i.e. reverse osmosis (RO)) for seawater desalination and wastewater treatment and recovery. Nevertheless, their economic advantage in comparison to conventional processes for seawater desalination and municipal wastewater treatment has not been clearly addressed. This work presents a detailed economic analysis on capital and operational expenses (CAPEX and OPEX) for: i) a hybrid forward osmosis - low-pressure reverse osmosis (FO-LPRO) process, ii) a conventional seawater reverse osmosis (SWRO) desalination process, and iii) a membrane bioreactor - reverse osmosis - advanced oxidation process (MBR-RO-AOP) for wastewater treatment and reuse. The most important variables affecting economic feasibility are obtained through a sensitivity analysis of a hybrid FO-LPRO system. The main parameters taken into account for the life cycle costs are the water quality characteristics (similar feed water and similar water produced), production capacity of 100,000 m(3) d(-1) of potable water, energy consumption, materials, maintenance, operation, RO and FO module costs, and chemicals. Compared to SWRO, the FO-LPRO systems have a 21% higher CAPEX and a 56% lower OPEX due to savings in energy consumption and fouling control. In terms of the total water cost per cubic meter of water produced, the hybrid FO-LPRO desalination system has a 16% cost reduction compared to the benchmark for desalination, mainly SWRO. Compared to the MBR-RO-AOP, the FO-LPRO systems have a 7% lower CAPEX and 9% higher OPEX, resulting in no significant cost reduction per m(3) produced by FO-LPRO. Hybrid FO-LPRO membrane systems are shown to have an economic advantage compared to current available technology for desalination, and comparable costs with a wastewater treatment and recovery system. Based on development on FO membrane modules, packing density, and water permeability, the total water cost could be further reduced. Copyright © 2015 Elsevier Ltd. All rights reserved.
Verma, Shyam; Pasternack, Sandra M.; Rütten, Arno; Ruzicka, Thomas; Betz, Regina C.; Hanneken, Sandra
2014-01-01
Galli Galli disease (GGD) is the name given to a rare form of acantholytic Dowling-Degos disease. (DDD), the latter itself being a rare condition. We believe we are describing for the first time in Indian dermatologic literature a case of GGD in a family where 25 persons have DDD and have been able to document a KRT5 mutation in four members of the family. Whereas reticulate pigmentation is a hallmark of DDD there are rare reports of mottled pigmentation with multiple asymptomatic hypopigmented macules scattered diffusely along with the pigmentation. All the cases described here show a mottled pigmentation comprising hypo and hyperpigmented asymptomatic macules. After the clinical diagnosis was made by one of the authors (SV) in India, the German authors repeated histological examination and successfully demonstrated a heterozygous nonsense mutation, c.C10T (p.Gln4X), in exon 1 of the KRT5 gene, from various centers in Munich, Bonn, Dusseldorf and Friedrichschafen in Germany. PMID:25284854
[Generic drugs and the consumption trends of antihypertensives in Morocco].
Berrada El Azizi, Ghizlane; Ahid, Samir; Ghanname, Imane; Ghannam, Imane; Belaiche, Abdelmajid; Hassar, Mohammed; Cherrah, Yahia
2013-01-01
To evaluate the evolution of consumption of antihypertensive drugs generic among 1991-2010, to assess the impacts after the institution of Mandatory Health Insurance and the marketing of generic drugs. We used sales data from the Moroccan subsidiary of IMS Health Intercontinental Marketing Service. Consumption of generic antihypertensive drugs increased from 0.08 to 10.65 DDD/1 000 inhabitants/day between 1991 and 2010. In 2010, generic of the calcium channel blockers (CCBs) represented 4.08 DDD/1 000 inhabitants/day (82.09%), followed by angiotensin converting enzyme inhibitors (ACEI) by 2.40 DDD/1 000 inhabitants/day (48.29%). The generics market of CCBs is the most dominant and represented in 2010, 79.21% in volume and 62.58% in value. In developing countries like Morocco, the generic drug is a key element for access to treatment especially for the poor population. © 2013 Société Française de Pharmacologie et de Thérapeutique.
NASA Astrophysics Data System (ADS)
Gao, Yuan; Zhuang, Zhuo; You, XiaoChuan
2011-04-01
We develop a new hierarchical dislocation-grain boundary (GB) interaction model to predict the mechanical behavior of polycrystalline metals at micro and submicro scales by coupling 3D Discrete Dislocation Dynamics (DDD) simulation with the Molecular Dynamics (MD) simulation. At the microscales, the DDD simulations are responsible for capturing the evolution of dislocation structures; at the nanoscales, the MD simulations are responsible for obtaining the GB energy and ISF energy which are then transferred hierarchically to the DDD level. In the present model, four kinds of dislocation-GB interactions, i.e. transmission, absorption, re-emission and reflection, are all considered. By this methodology, the compression of a Cu micro-sized bi-crystal pillar is studied. We investigate the characteristic mechanical behavior of the bi-crystal compared with that of the single-crystal. Moreover, the comparison between the present penetrable model of GB and the conventional impenetrable model also shows the accuracy and efficiency of the present model.
Analyzing U.S. prescription lists with RxNorm and the ATC/DDD Index.
Bodenreider, Olivier; Rodriguez, Laritza M
2014-01-01
To evaluate the suitability of the ATC/DDD Index (Anatomical Therapeutic Chemical (ATC) Classification System/Defined Daily Dose) for analyzing prescription lists in the U.S. We mapped RxNorm clinical drugs to ATC. We used this mapping to classify a large set of prescription drugs with ATC and compared the prescribed daily dose to the defined daily dose (DDD) in ATC. 64% of the 11,422 clinical drugs could be precisely mapped to ATC. 97% of the 87,001 RxNorm codes from the prescription dataset could be classified with ATC, and 97% of the prescribed daily doses could be assessed. Although the mapping of RxNorm ingredients to ATC appears to be largely incomplete, the most frequently prescribed drugs in the prescription dataset we analyzed were covered. This study demonstrates the feasibility of using ATC in conjunction with RxNorm for analyzing U.S. prescription datasets for drug classification and assessment of the prescribed daily doses.
This review provides an overview of desalination technologies and discusses the thermodynamic efficiencies and operational issues associated with the various technologies particularly with regard to high salinity streams. When water is recovered from a saline source, a brine conc...
Demineralization of drinking water: Is it prudent?
Verma, K C; Kushwaha, A S
2014-10-01
Water is the elixir of life. The requirement of water for very existence of life and preservation of health has driven man to devise methods for maintaining its purity and wholesomeness. The water can get contaminated, polluted and become a potential hazard to human health. Water in its purest form devoid of natural minerals can also be the other end of spectrum where health could be adversely affected. Limited availability of fresh water and increased requirements has led to an increased usage of personal, domestic and commercial methods of purification of water. Desalination of saline water where fresh water is in limited supply has led to development of the latest technology of reverse osmosis but is it going to be safe to use such demineralized water over a long duration needs to be debated and discussed.
Sodium Hydroxide Production from Seawater Desalination Brine: Process Design and Energy Efficiency.
Du, Fengmin; Warsinger, David M; Urmi, Tamanna I; Thiel, Gregory P; Kumar, Amit; Lienhard V, John H
2018-05-15
The ability to increase pH is a crucial need for desalination pretreatment (especially in reverse osmosis) and for other industries, but processes used to raise pH often incur significant emissions and nonrenewable resource use. Alternatively, waste brine from desalination can be used to create sodium hydroxide, via appropriate concentration and purification pretreatment steps, for input into the chlor-alkali process. In this work, an efficient process train (with variations) is developed and modeled for sodium hydroxide production from seawater desalination brine using membrane chlor-alkali electrolysis. The integrated system includes nanofiltration, concentration via evaporation or mechanical vapor compression, chemical softening, further ion-exchange softening, dechlorination, and membrane electrolysis. System productivity, component performance, and energy consumption of the NaOH production process are highlighted, and their dependencies on electrolyzer outlet conditions and brine recirculation are investigated. The analysis of the process also includes assessment of the energy efficiency of major components, estimation of system operating expense and comparison with similar processes. The brine-to-caustic process is shown to be technically feasible while offering several advantages, that is, the reduced environmental impact of desalination through lessened brine discharge, and the increase in the overall water recovery ratio of the reverse osmosis facility. Additionally, best-use conditions are given for producing caustic not only for use within the plant, but also in excess amounts for potential revenue.
Graphene-based Recyclable Photo-Absorbers for High-Efficiency Seawater Desalination.
Wang, Xiangqing; Ou, Gang; Wang, Ning; Wu, Hui
2016-04-13
Today's scientific advances in water desalination dramatically increase our ability to transform seawater into fresh water. As an important source of renewable energy, solar power holds great potential to drive the desalination of seawater. Previously, solar assisted evaporation systems usually relied on highly concentrated sunlight or were not suitable to treat seawater or wastewater, severely limiting the large scale application of solar evaporation technology. Thus, a new strategy is urgently required in order to overcome these problems. In this study, we developed a solar thermal evaporation system based on reduced graphene oxide (rGO) decorated with magnetic nanoparticles (MNPs). Because this material can absorb over 95% of sunlight, we achieved high evaporation efficiency up to 70% under only 1 kW m(-2) irradiation. Moreover, it could be separated from seawater under the action of magnetic force by decorated with MNPs. Thus, this system provides an advantage of recyclability, which can significantly reduce the material consumptions. Additionally, by using photoabsorbing bulk or layer materials, the deposition of solutes offen occurs in pores of materials during seawater desalination, leading to the decrease of efficiency. However, this problem can be easily solved by using MNPs, which suggests this system can be used in not only pure water system but also high-salinity wastewater system. This study shows good prospects of graphene-based materials for seawater desalination and high-salinity wastewater treatment.
Improving bioelectricity generation and COD removal of sewage sludge in microbial desalination cell.
Ebrahimi, Atieh; Yousefi Kebria, Daryoush; Darzi, Ghasem Najafpour
2018-05-01
Improving wastewater treatment process and water desalination are two important solutions for increasing the available supply of fresh water. Microbial desalination cells (MDCs) with common electrolytes display relatively low organic matter removal and high cost. In this study, sewage sludge was used as the substrate in the Microbial desalination cell (MDC) under three different initial salt concentrations (5, 20 and 35 g.L -1 ) and the maximum salt removal rates of 50.6%, 64% and 69.6% were obtained under batch condition, respectively. The MDC also produced the maximum power density of 47.1 W m -3 and the averaged chemical oxygen demand (COD) removal of 58.2 ± 0.89% when the initial COD was 6610 ± 83 mg L -1 . Employing treated sludge as catholyte enhanced COD removal and power density to 87.3% and 54.4 W m -3 , respectively, with counterbalancing pH variation in treated effluent. These promising results showed, for the first time, that the excess sewage sludge obtained from biological wastewater treatment plants could be successfully used as anolyte and catholyte in MDC, achieving organic matter biodegradation along with salt removal and energy production. In addition, using treated sludge as catholyte will improve the performance of MDC and introduce a more effective method for both sludge treatment and desalination.
An extended 3D discrete-continuous model and its application on single- and bi-crystal micropillars
NASA Astrophysics Data System (ADS)
Huang, Minsheng; Liang, Shuang; Li, Zhenhuan
2017-04-01
A 3D discrete-continuous model (3D DCM), which couples the 3D discrete dislocation dynamics (3D DDD) and finite element method (FEM), is extended in this study. New schemes for two key information transfers between DDD and FEM, i.e. plastic-strain distribution from DDD to FEM and stress transfer from FEM to DDD, are suggested. The plastic strain induced by moving dislocation segments is distributed to an elementary spheroid (ellipsoid or sphere) via a specific new distribution function. The influence of various interfaces (such as free surfaces and grain boundaries (GBs)) on the plastic-strain distribution is specially considered. By these treatments, the deformation fields can be solved accurately even for dislocations on slip planes severely inclined to the FE mesh, with no spurious stress concentration points produced. In addition, a stress correction by singular and non-singular theoretical solutions within a cut-off sphere is introduced to calculate the stress on the dislocations accurately. By these schemes, the present DCM becomes less sensitive to the FE mesh and more numerically efficient, which can also consider the interaction between neighboring dislocations appropriately even though they reside in the same FE mesh. Furthermore, the present DCM has been employed to model the compression of single-crystal and bi-crystal micropillars with rigid and dislocation-absorbed GBs. The influence of internal GB on the jerky stress-strain response and deformation mode is studied in detail to shed more light on these important micro-plastic problems.
Organochlorine pesticide residues in bed sediments of the San Joaquin River, California
Gilliom, Robert J.; Clifton, Daphne G.
1990-01-01
Bed sediments of the San Joaquin River and its tributaries were sampled during October 7–11, 1985, and analyzed for organochiorine pesticide residues in order to determine their areal distribution and to evaluate and prioritize needs for further study. Residues of DDD, DDE, DDT, and dieldrin are widespread in the fine-grained bed sediments of the San Joaquin River and its tributaries despite little or no use of these pesticides for more than 15 years. The San Joaquin River has among the highest bed-sediment concentrations of DDD, DDE, DDT, and dieldrin residues of major rivers in the United States. Concentrations of all four pesticides were correlated with each other and with the amount of organic carbon and fine-grained particles in the bed sediments. The highest concentrations occurred in bed sediments of westside tributary streams. Potential tributary loads of DDD, DDE, DDT, and dieldrin to the San Joaquin River were computed from bed-sediment concentrations and data on streamfiow and suspended-sediment concentration in order to identify the general magnitude of differences between streams and to determine study priorities. The estimated loads indicate that the most important sources of residues during the study period were Salt Slough because of a high load of fine sediment, and Newman Wasteway, Orestimba Creek, and Hospital Creek because of high bed-sediment concentrations. Generally, the highest estimated loads of DDD, DDE, DDT, and dieldrin were in Orestimba and Hospital Creeks.
The two faces of hydrogen-bond strength on triple AAA-DDD arrays.
Lopez, Alfredo Henrique Duarte; Caramori, Giovanni Finoto; Coimbra, Daniel Fernando; Parreira, Renato Luis Tame; da Silva, Éder Henrique
2013-12-02
Systems that are connected through multiple hydrogen bonds are the cornerstone of molecular recognition processes in biology, and they are increasingly being employed in supramolecular chemistry, specifically in molecular self-assembly processes. For this reason, the effects of different substituents (NO2, CN, F, Cl, Br, OCH3 and NH2) on the electronic structure, and consequently on the magnitude of hydrogen bonds in triple AAA-DDD arrays (A=acceptor, D=donor) were evaluated in the light of topological [electron localization function (ELF) and quantum theory of atoms in molecules (QTAIM)], energetic [Su-Li energy-decomposition analysis (EDA) and natural bond orbital analysis (NBO)], and geometrical analysis. The results based on local H-bond descriptors (geometries, QTAIM, ELF, and NBO) indicate that substitutions with electron-withdrawing groups on the AAA module tend to strengthen, whereas electron-donating substituents tend to weaken the covalent character of the AAA-DDD intermolecular H-bonds, and also indicate that the magnitude of the effect is dependent on the position of substitution. In contrast, Su-Li EDA results show an opposite behavior when compared to local H-bond descriptors, indicating that electron-donating substituents tend to increase the magnitude of H-bonds in AAA-DDD arrays, and thus suggesting that the use of local H-bond descriptors describes the nature of H bonds only partially, not providing enough insight about the strength of such H bonds. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Black Carbon Facilitated Dechlorination of DDT and its Metabolites by Sulfide.
Ding, Kai; Xu, Wenqing
2016-12-06
1,1-trichloro-2,2-di(4-chlorophenyl)ethane (DDT) and its metabolites 1,1-dichloro-2,2-bis(4-chlorophenyl)ethane (DDD) and 1,1-dichloro-2,2-bis(4-chlorophenyl)ethylene (DDE), are often detected in soils and sediments containing high concentrations of black carbon. Sulfide (∼5 mM) from biological sulfate reduction often coexists with black carbon and serves as both a strong reductant and a nucleophile for the abiotic transformation of contaminants. In this study, we found that the abiotic transformation of DDT, DDD, and DDE (collectively referred to as DDX) require both sulfide and black carbon. 89.3 ± 1.8% of DDT, 63.2 ± 1.9% of DDD, and 50.9 ± 1.6% of DDE were degraded by sulfide (5 mM) in the presence of graphite powder (21 g/L) after 28 days at pH 7. Chloride was a product of DDX degradation. To better understand the reaction pathways, electrochemical cells and batch reactor experiments with sulfide-pretreated graphite powder were used to differentiate the involvement of black carbon materials in DDX transformation by sulfide. Our results suggest that DDT and DDD are transformed by surface intermediates formed from the reaction between sulfide and black carbon, while DDE degradation involves reductive dechlorination. This research lays the groundwork for developing an alternative in situ remediation technique for rapidly decontaminating soils and sediments to lower toxic products under environmentally relevant conditions.
Surface modification with the selected polymers is expected to reduce the fouling and scaling propensity of desalination membranes by strongly binding water at the membrane surface. Foulants will interact with this bound water layer and not with the membrane surface itself....
Desalination. LC Science Tracer Bullet.
ERIC Educational Resources Information Center
Buydos, John F., Comp.
This guide provides a review of the relevant literature on desalination within the collections of the Library of Congress. While not intended as a comprehensive bibliography, this guide is designed as a quick and ready reference source for the reader, and includes the following sections: (1) articles that provide introductions to the topic of…
Lethal mobilization of DDT by cowbirds
Van Velzen, A.C.; Stiles, W.B.; Stickel, L.F.
1972-01-01
This study is an experimental demonstration of lethal mobilization of DDT by brown-headed cowbirds (Molothrus ater) and the effects of food deprivation on the distribution and loss of DDT, DDD, and DDE. The principal experimental group consisted of 20 birds fed a dietary dosage of 100 ppm of DDT for 13 days. After 2 days of full rations of untreated food, they were subjected to food restriction. Food was reduced to 43 percent of normal. Seven of the 20 birds died within 4 days. No birds died in the three control groups, treated as follows: ( 1 ) 20 birds fed 100 ppm DDT for 13 days and full rations of untreated food thereafter, (2) 20 birds fed only untreated food but subjected to food restriction, and (3) 20 birds fed full rations of untreated food throughout. In a pilot study, birds were fed 100, 200, or 300 ppm of DDT and subjected to two periods of food restriction, the first of these immediately after dosage ceased and the second 4 months later. DDT-dosed birds from all dosage levels died in each period of food restriction. Before the weight loss that accompanied food restriction, the brains of DDT-dosed birds had concentrations of DDT and DDD that were far below the lethal range. Concentrations increased rapidly to lethal levels. In these birds, DDT in carcasses decreased while DDD increased. DDT-dosed birds that died during food restriction lost 16 percent of their total body burden of DDT + DDD + DDE, 21 percent of their weight, and 81 percent of their fat. The DDT-dosed birds that were subjected to food restriction but survived lost a significantly greater proportion of their body burden of residues than similarly dosed birds not subjected to weight loss. Brain levels of DDT and DDD in birds that died during food restriction soon after dosage did not differ significantly from brain levels of birds that died in a period of food restriction 4 months after dosage. Concentrations of DDE were significantly higher in the latter group, although they were lower than concentrations considered to be lethal. In contrast, carcass levels of DDT and DDD were significantly lower, and DDE was only slightly higher, in the birds that died in the second period of food restriction. It is concluded that stored DDT residues present a hazard to birds, which utilize stored fat during periods of stress due to reproduction, cold weather, disease, injury, limited food supply, or migration.
Kassotis, John; Voigt, Louis; Mongwa, Mbu; Reddy, C V R
2005-01-01
The objective of this study was to assess the feasibility of DDD pacing from a standard single-pass VDD pacemaker system. Over the past 2 decades significant advances have been made in the development of single-pass VDD pacing systems. These have been shown in long-term prospective studies to effectively preserve atrioventricular (AV)synchrony in patients with AV block and normal sinus node function. What remains problematic is the development of a single-pass pacing system capable of DDD pacing. Such a lead configuration would be useful in those patients with peripheral venous anomalies and in younger patients with congenital anomalies, which may require lead revisions in the future. In addition, with the increased use of resynchronization (biventricular pacing) therapy, the availability of a reliable single-pass lead will minimize operative time, enhance patient safety, and minimize the amount of hardware within the heart. The feasibility of DDD pacing via a Medtronic Capsure VDD-2 (Model #5038) pacing lead was evaluated. Twenty patients who presented with AV block and normal sinus node function were recruited for this study. Atrial pacing thresholds and sensitivities were assessed intraoperatively in the supine position with various respiratory maneuvers. Five patients who agreed to participate in long-term follow-up received a dual-chamber generator and were evaluated periodically over a 12-month period. Mean atrial sensitivity was 2.35 +/- 0.83 mV at the time of implantation. Effective atrial stimulation was possible in all patients at the time of implantation (mean stimulation threshold 3.08 +/- 1.04 V at 0.5 ms [bipolar], 3.34 +/- 0.95 V at 0.5 ms [unipolar]). Five of the 20 patients received a Kappa KDR701 generator, and atrial electrical properties were followed up over a 1-year period. There was no significant change in atrial pacing threshold or incidence of phrenic nerve stimulation over the 1-year follow-up. A standard single-pass VDD pacing lead system was capable of DDD pacing intraoperatively and during long-term follow-up. Despite higher than usual thresholds via the atrial dipole, pacemaker telemetry revealed < 10% use of atrial pacing dipole over a 12-month period, which would minimally deplete the pacemaker's battery. In addition, the telemetry confirmed appropriate sensing and pacing of the atrial dipole throughout the study period. At this time such systems can serve as back-up DDD pacing systems with further refinements required to optimize atrial thresholds in all patients.
Follicular Dowling Degos disease: a rare variant of an evolving dermatosis.
Singh, Saurabh; Khandpur, Sujay; Verma, Parul; Singh, Manoj
2013-01-01
Dowling Degos disease is a rare, reticulate pigmentary disorder with variable phenotypic expression that manifests as hyperpigmented macules and reticulate pigmentary anomaly of the flexures. Many variants of this condition and its overlap with other reticulate pigmentary disorders have been reported in the literature. We present here two cases of DDD with follicular localization, both clinically and histologically. It was associated with ichthyosis vulgaris in one case. Follicular DDD is an uncommon variant of this evolving dermatosis. Our report supports the possible role for disordered follicular keratinisation in its pathogenesis.
NASA Astrophysics Data System (ADS)
Xu, Junfeng; Li, Weile; He, Bo; Wang, Haowei; Song, Yong; Yang, Shengyi; Ni, Guoqiang
2018-01-01
Infrared detecting and display device (IR-DDD) is a newly developed optical up-conversion device that integrates the light-emitting diode (LED) onto the infrared (IR) photo-detector, in order to convert IR light into the carriers photo-generated in detection materials and inject them into LED to emit visible light. This IR-DDD can achieve the direct up-conversion from IR ray to visible light, showing the considerable potential in night-vision application. This paper attempts a review of its working principle and current research progresses.
Dissipative Particle Dynamics at Isoenergetic Conditions Using Shardlow-Like Splitting Algorithms
2013-09-01
i.e., as cond i mech ii uuu ddd . The dynamics of the system is then governed by the following equations- of-motion (EOMs): q ij Rq ij Dq jiij...ij ij ijD ij i-j ij i W r t rr pp rr v r p dd ddd , (8a) jimech i jimech j j i-ji-j i i-ji-j jimech i uu mm u jjii
NASA Astrophysics Data System (ADS)
Huang, Min-Sheng; Zhu, Ya-Xin; Li, Zhen-Huan
2014-04-01
The influence of dislocation dissociation on the evolution of Frank—Read (F-R) sources is studied using a three-dimensional discrete dislocation dynamics simulation (3D-DDD). The classical Orowan nucleation stress and recently proposed Benzerga nucleation time models for F-R sources are improved. This work shows that it is necessary to introduce the dislocation dissociation scheme into 3D-DDD simulation, especially for simulations on micro-plasticity of small sized materials with low stacking fault energy.
Effects of Bloom-Forming Algae on Fouling of Integrated Membrane Systems in Seawater Desalination
ERIC Educational Resources Information Center
Ladner, David Allen
2009-01-01
Combining low- and high-pressure membranes into an integrated membrane system is an effective treatment strategy for seawater desalination. Low-pressure microfiltration (MF) and ultrafiltration (UF) membranes remove particulate material, colloids, and high-molecular-weight organics leaving a relatively foulant-free salt solution for treatment by…
Chen, Xi; Liang, Peng; Wei, Zhimou; Zhang, Xiaoyuan; Huang, Xia
2012-09-01
A separator coupled circulation stacked microbial desalination cell (c-SMDC-S) was constructed to stabilize the pH imbalances in MDCs without buffer solution and achieved the stable desalination. The long-term operation of c-SMDC-S, regular stacked MDC (SMDC) and no separator coupled circulation SMDC (c-SMDC) were tested. The SMDC and c-SMDC could only stably operate for 1 week and 1 month owing to dramatic anolyte pH decrease and serious biofilm growth on the air cathode, respectively. The c-SMDC-S gained in anolyte alkalinity and operated stably for about 60 days without the thick biofilm growth on cathode. Besides, the chemical oxygen demand removal and coulombic efficiency were 64 ± 6% and 30 ± 2%, higher than that of SMDC and c-SMDC, respectively. It was concluded that the circulation of alkalinity could remove pH imbalance while the separator could expand the operation period and promote the conversion of organic matter to electricity. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brady, Patrick Vane; Mayer, Tom; Cygan, Randall Timothy
2011-01-01
Nanomaterials and nanotechnology methods have been an integral part of international research over the past decade. Because many traditional water treatment technologies (e.g. membrane filtration, biofouling, scale inhibition, etc.) depend on nanoscale processes, it is reasonable to expect one outcome of nanotechnology research to be better, nano-engineered water treatment approaches. The most immediate, and possibly greatest, impact of nanotechnology on desalination methods will likely be the development of membranes engineered at the near-molecular level. Aquaporin proteins that channel water across cell membranes with very low energy inputs point to the potential for dramatically improved performance. Aquaporin-laced polymer membranes and aquaporin-mimickingmore » carbon nanotubes and metal oxide membranes developed in the lab support this. A critical limitation to widespread use of nanoengineered desalination membranes will be their scalability to industrial fabrication processes. Subsequent, long-term improvements in nanoengineered membranes may result in self-healing membranes that ideally are (1) more resistant to biofouling, (2) have biocidal properties, and/or (3) selectively target trace contaminants.« less
Huff, G.F.
2004-01-01
Increasing demand on the limited supplies of freshwater in the desert Southwest, as well as other parts of the United States, has increased the level of interest in saline-water resources. Saline ground water has long been recognized as a potentially important contributor to water supply in the Southwest, as demonstrated by the number of hydrologic, geologic, and engineering studies on the distribution of saline water and the feasibility of desalination. Potential future study needs include investigating and documenting the three-dimensional distribution of salinity and chemical composition of saline-water resources and the hydraulic properties of aquifers containing these saline-water resources, assessing the chemical suitability of saline water for use with existing and anticipated desalination technologies, simulating the effect of withdrawal of saline ground water on water levels and water composition in saline and adjoining or overlying freshwater aquifers, and determining the suitability of target geologic formations for injection of desalination-generated waste.
NASA Astrophysics Data System (ADS)
Ghaebi, Hadi; Abbaspour, Ghader
2018-05-01
In this research, thermoeconomic analysis of a multi-effect desalination thermal vapor compression (MED-TVC) system integrated with a trigeneration system with a gas turbine prime mover is carried out. The integrated system comprises of a compressor, a combustion chamber, a gas turbine, a triple-pressure (low, medium and high pressures) heat recovery steam generator (HRSG) system, an absorption chiller cycle (ACC), and a multi-effect desalination (MED) system. Low pressure steam produced in the HRSG is used to drive absorption chiller cycle, medium pressure is used in desalination system and high pressure superheated steam is used for heating purposes. For thermodynamic and thermoeconomic analysis of the proposed integrated system, Engineering Equation Solver (EES) is used by employing mass, energy, exergy, and cost balance equations for each component of system. The results of the modeling showed that with the new design, the exergy efficiency in the base design will increase to 57.5%. In addition, thermoeconomic analysis revealed that the net power, heating, fresh water and cooling have the highest production cost, respectively.
Modeling Remineralization of Desalinated Water by Micronized Calcite Dissolution.
Hasson, David; Fine, Larissa; Sagiv, Abraham; Semiat, Raphael; Shemer, Hilla
2017-11-07
A widely used process for remineralization of desalinated water consists of dissolution of calcite particles by flow of acidified desalinated water through a bed packed with millimeter-size calcite particles. An alternative process consists of calcite dissolution by slurry flow of micron-size calcite particles with acidified desalinated water. The objective of this investigation is to provide theoretical models enabling design of remineralization by calcite slurry dissolution with carbonic and sulfuric acids. Extensive experimental results are presented displaying the effects of acid concentration, slurry feed concentration, and dissolution contact time. The experimental data are shown to be in agreement within less than 10% with theoretical predictions based on the simplifying assumption that the slurry consists of uniform particles represented by the surface mean diameter of the powder. Agreement between theory and experiment is improved by 1-8% by taking into account the powder size distribution. Apart from the practical value of this work in providing a hitherto lacking design tool for a novel technology. The paper has the merit of being among the very few publications providing experimental confirmation to the theory describing reaction kinetics in a segregated flow system.
Downward, Stuart R; Taylor, Ros
2007-01-01
Spain's Programa AGUA was proposed in 2004 as a replacement for the Spanish National Hydrological Plan and represented a fundamental policy shift in national water management from large inter-basin water transfers to a commitment to desalination. Twenty-one desalination facilities are planned for six provinces on the Spanish Mediterranean coast to supplement their water needs. These include the province of Almería that for the last 30 years has endured a net water abstraction overdraft leading to serious reservoir depletion and groundwater imbalances. Rising water use is a result of increasing demand to support irrigated agriculture (e.g. greenhouse horticulture) and for domestic needs (e.g. rapid urban growth and tourism development), which has led observers to question Almería's long-term water sustainability. Desalinated water alone is unlikely to be sufficient to make up these water deficits and water-users will have to accept a move to full-price water recovery by 2010 under the European Union (EU) Water Framework Directive of which Spain is a signatory. Anticipated water efficiencies resulting from higher water tariffs, increasing water reuse and water infrastructure improvements (including inter-basin transfers), in conjunction with increasing use of desalinated water, are expected to address the province's current water overdraft. However, Almería will need to balance its planned initiatives against long-term estimates of projected agricultural and domestic development and the environmental consequences of adopting a desalination-supported water future.
Phuntsho, Sherub; Lotfi, Fezeh; Hong, Seungkwan; Shaffer, Devin L; Elimelech, Menachem; Shon, Ho Kyong
2014-06-15
Fertiliser-drawn forward osmosis (FDFO) desalination has been recently studied as one feasible application of forward osmosis (FO) for irrigation. In this study, the potential of membrane scaling in the FDFO process has been investigated during the desalination of brackish groundwater (BGW). While most fertilisers containing monovalent ions did not result in any scaling when used as an FO draw solution (DS), diammonium phosphate (DAP or (NH4)2HPO4) resulted in significant scaling, which contributed to severe flux decline. Membrane autopsy using scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDS), and x-ray diffraction (XRD) analysis indicated that the reverse diffusion of DAP from the DS to the feed solution was primarily responsible for scale formation during the FDFO process. Physical cleaning of the membrane with deionised water at varying crossflow velocities was employed to evaluate the reversibility of membrane scaling and the extent of flux recovery. For the membrane scaled using DAP as DS, 80-90% of the original flux was recovered when the crossflow velocity for physical cleaning was the same as the crossflow velocity during FDFO desalination. However, when a higher crossflow velocity or Reynolds number was used, the flux was recovered almost completely, irrespective of the DS concentration used. This study underscores the importance of selecting a suitable fertiliser for FDFO desalination of brackish groundwater to avoid membrane scaling and severe flux decline. Copyright © 2014 Elsevier Ltd. All rights reserved.
Triaspartate: a model system for conformationally flexible DDD motifs in proteins.
Duitch, Laura; Toal, Siobhan; Measey, Thomas J; Schweitzer-Stenner, Reinhard
2012-05-03
Understanding the interactions that govern turn formation in the unfolded state of proteins is necessary for a complete picture of the role that these turns play in both normal protein folding and functionally relevant yet disordered linear motifs. It is still unclear, however, whether short peptides can adopt stable turn structures in aqueous environments in the absence of any nonlocal interactions. To explore the effect that nearest-neighbor interactions and the local peptide environment have on the turn-forming capability of individual amino acid residues in short peptides, we combined vibrational (IR, Raman, and VCD), UV-CD, and (1)H NMR spectroscopies in order to probe the conformational ensemble of the central aspartic acid residue of the triaspartate peptide (DDD). The study was motivated by the recently discovered turn propensities of aspartic acid in GDG (Hagarman; et al. Chem.-Eur. J. 2011, 17, 6789). We investigated the DDD peptide under both acidic and neutral conditions in order to elucidate the effect that side-chain protonation has on the conformational propensity of the central aspartic acid residue. Amide I' profiles were analyzed in terms of two-dimensional Gaussian distributions representing conformational subdistributions in Ramachandran space. Interestingly, our results show that while the protonated form of the DDD peptide samples various turn-like conformations similar to GDG, deprotonation of the peptide eliminates this propensity for turns, causing the fully ionized peptide to exclusively sample pPII and β-strand-like structures. To further explore the factors stabilizing these more extended conformations in fully ionized DDD, we analyzed the temperature dependence of both the UV-CD spectrum and the (3)J(H(N),H(α)) coupling constants of the two amide protons (N- and C-terminal) in terms of a simple two-state (pPII-β) thermodynamic model. Thus, we were able to obtain the enthalpic and entropic differences between the pPII and β-strand conformations of the central and C-terminal residue. For the central residue, we obtained ΔH(3) = -12.0 kJ/mol and ΔS(3) = -73.8 J/mol·K, resulting in a much larger room-temperature Gibbs free energy of 10.0 kJ/mol, which effectively locks the C-terminal in a β-like conformation. A comparison of the temperature dependence of the chemical shifts reveals that there is indeed some type of protection of the amide protons from solvent in ionized DDD. This finding and several other lines of evidence suggest that both conformations of ionized DDD are stabilized by hydrogen bonding between the carboxylate groups of the central and C-terminal residue and the respective amide protons. These hydrogen bonds can be expected to be eliminated by side-chain protonation and substituted by hydrogen bonds between the N-terminal amide proton and the C-terminal carbonyl group as well as between the central aspartate side chain and the N-terminal amide proton. Hence, our results are indicative of a pH-induced switch in hydrogen-bonding patterns of aspartic acid motifs.
NASA Astrophysics Data System (ADS)
Aburizaiza, O. S.; Zaigham, N. A.; Nayyar, Z. A.; Mahar, G. A.; Siddique, A.; Eusufi, S. N.
2011-12-01
The Red Sea and its surrounding countries have harsh arid climatic conditions where fast growth of the socio-economic activities and rapid change of lifestyle have caused tremendous stress on water to the level of acute crisis. To meet the water demands, the Red Sea countries have adopted seawater desalination giving priority against their land-based resources. Saudi Arabia is the largest desalinated-water producers in the Red Sea and has practically no adequate backup plan in case of sudden unforeseen emergency. Out of about 3.64 million m3/day, Saudi Arabia is alone being desalinated about 3.29 m3/day seawater from Red Sea and more projects are in progress. Present integrated research study has identified some of natural and anthropogenic hazards, which may be major threats to the quality of the seawater as well as to the desalination plants themselves. Results of present study reveal that the submarine complex morphologic features may cause the isolation of Red Sea from any of the open sea, the increase in the seismicity trends, the active volcanism causing unique longitudinal as well as transverse deformations of the axial trough particularly in the southern part of the Red Sea, the consistently generating enormous hot-brine tectonic-factory all along the deeper parts of the Red Sea rifting trough and other related issues. Considering the identified odd conditions, the total dependence on seawater desalination may not be worthwhile for sustainable water management strategy and consequent socio-economic developments in future. It is recommended that the priority should also be given mainly in three main disciplines to meet the future water challenges - one, developing reliable backup water management; second, alternate options for the supplementary resources of water; and third, the development and immediate implementation of the water-use conservation strategy plan.
A seawater desalination scheme for global hydrological models
NASA Astrophysics Data System (ADS)
Hanasaki, Naota; Yoshikawa, Sayaka; Kakinuma, Kaoru; Kanae, Shinjiro
2016-10-01
Seawater desalination is a practical technology for providing fresh water to coastal arid regions. Indeed, the use of desalination is rapidly increasing due to growing water demand in these areas and decreases in production costs due to technological advances. In this study, we developed a model to estimate the areas where seawater desalination is likely to be used as a major water source and the likely volume of production. The model was designed to be incorporated into global hydrological models (GHMs) that explicitly include human water usage. The model requires spatially detailed information on climate, income levels, and industrial and municipal water use, which represent standard input/output data in GHMs. The model was applied to a specific historical year (2005) and showed fairly good reproduction of the present geographical distribution and national production of desalinated water in the world. The model was applied globally to two periods in the future (2011-2040 and 2041-2070) under three distinct socioeconomic conditions, i.e., SSP (shared socioeconomic pathway) 1, SSP2, and SSP3. The results indicate that the usage of seawater desalination will have expanded considerably in geographical extent, and that production will have increased by 1.4-2.1-fold in 2011-2040 compared to the present (from 2.8 × 109 m3 yr-1 in 2005 to 4.0-6.0 × 109 m3 yr-1), and 6.7-17.3-fold in 2041-2070 (from 18.7 to 48.6 × 109 m3 yr-1). The estimated global costs for production for each period are USD 1.1-10.6 × 109 (0.002-0.019 % of the total global GDP), USD 1.6-22.8 × 109 (0.001-0.020 %), and USD 7.5-183.9 × 109 (0.002-0.100 %), respectively. The large spreads in these projections are primarily attributable to variations within the socioeconomic scenarios.
Stimac, Danijela; Stambuk, Ivanka
2010-12-01
In comparison with original drugs, generic drugs have the same efficacy but considerably lower price and should therefore be preferred to original drugs on prescribing. The aim of the present study was to assess outpatient utilization and rationality of cardiovascular drug prescribing in the City of Zagreb and Republic of Croatia based on the generic to original drug prescribing ratio. Data on the financial indicators and number of cardiovascular drug packages issued in 2008 were obtained from the Croatian Institute of Health Insurance. These data were used to calculate the number of defined daily doses (DDD) and number of DDD per 1000 inhabitants per day (DDD/1000/day). The index of generic/original drug utilization was determined for Zagreb and Croatia as a measure for assessment of prescribing rationality; the significance of difference was determined by X2-test. The rate of prescribing original cardiovascular drugs was significantly higher in Zagreb as compared with Croatia as a whole. The index of prescribing generic versus original drugs was 1.20 (249/208 DDD/1000/day) in Zagreb and 1.65 (249/151 DDD/1000/day) in Croatia. Difference in the utilization of generic drugs between Zagreb and Croatia as determined by X2-test (the level of statistical significance was set at P<0.05) was statistically significant (P=0.021). The highest differences were recorded in the most widely prescribed drug groups, i.e. ACE inhibitors with the generic/original drug index of 1.38 in Zagreb and 2.02 in Croatia; and hypolipemics with the generic/original drug index of 0.96 in Zagreb and 1.34 in Croatia. According to financial indicators, the generic/original drug index was 1.44 in Croatia and only 0.96 in Zagreb. The significantly greater influence of pharmaceutical industry marketing in Zagreb entailed the significantly higher rate of original drug prescribing, which is associated with considerably greater drug expenses. Measures to stimulate prescribing generic drugs should be launched at the national level.
Kenna, George A.; Zywiak, William H.; Swift, Robert M.; McGeary, John E.; Clifford, James S.; Shoaff, Jessica R.; Vuittonet, Cynthia; Fricchione, Samuel; Brickley, Michael; Beaucage, Kayla; Haass-Koffler, Carolina L.; Leggio, Lorenzo
2014-01-01
Background One hypothesis suggests that the differential response to ondansetron and serotonin specific re-uptake inhibitors (SSRIs) may be due to a functional polymorphism of the 5′-HTTLPR promoter region in SLC6A4, the gene that codes for the serotonin transporter (5-HTT). The LL 5′-HTTLPR genotype is postulated to be specifically sensitive to the effects of ondansetron with SS/SL 5′-HTTLPR genotypes sensitive to SSRIs. This study tests this hypothesis by matching non-treatment seeking alcohol dependent (AD) individuals with LL genotype to ondansetron and SS/SL genotypes to the SSRI sertraline, and mis-matching them assessing naturalistic and bar-laboratory alcohol drinking. Methods Seventy-seven AD individuals were randomized to one of two counterbalanced arms to receive sertraline 200mg/day or ondansetron 0.5 mg/day for three weeks followed by an alcohol self-administration experiment (ASAE), then received placebo for three weeks followed by a second ASAE. Individuals then received the alternate drug for three weeks followed by a third ASAE. Drinks per drinking day (DDD with drinks in SDUs) for 7 days prior to each ASAE and milliliters consumed during each ASAE were the primary outcomes. Results Fifty-five participants completed the study. The genotype x order interaction was significant [F(1,47) = 8.42, p = .006] for DDD. Three ANCOVAs were conducted for DDD during the week before each ASAE. Ondansetron compared to sertraline resulted in a significant reduction in DDD during the week before the first [F(1,47) = 7.64, p = .008] but not the third ASAE. There was no difference in milliliters consumed during each ASAE. Conclusion This study modestly supports the hypothesis that ondansetron may reduce DDD in AD individuals with the LL genotype as measured naturalistically. By contrast there was no support that ondansetron reduces drinking during the ASAEs or that sertraline reduces alcohol use in individuals who have SS/SL genotypes. We provide limited support that ondansetron may reduce drinking in non-treatment seeking individuals with the LL genotype. PMID:24773166
Santa-Ana-Tellez, Yared; Mantel-Teeuwisse, Aukje K; Leufkens, Hubert G M; Wirtz, Veronika J
2016-11-01
We evaluated changes in the use of non-steroidal anti-inflammatory drugs (NSAIDs), non-opioid analgesics and cough and cold medicines and its relation with the use of antibiotics after the over-the-counter (OTC) antibiotic sales restrictions in Mexico and Brazil. IMS Health provided retail quarterly data from the private sectors in Mexico and Brazil from the first quarter of 2007 to the first quarter of 2013. Data of each active substance of antibiotics, easily accessible medicines perceived as antibiotics substitutes (cough and cold medicines, analgesics and NSAIDs-the latter two being combined in the analyses), and medicines to control for external factors that can affect the medicines usage trend (antihypertensives) were converted from kilograms to defined daily doses per 1000 inhabitants days (DDD/TID). Interrupted time series were used to estimate changes in level of medicines use at the intervention point and slope after the regulation. The Gregory-Hansen cointegration test was used to explore the relation between the use of antibiotics and perceived substitutes. After the regulation in Mexico NSAIDs-analgesics usage level increased by 1.1 DDD/TID with a slope increase of 0.2 DDD/TID per quarter and the cough and cold medicines usage level increased by 0.4 DDD/TID. In Brazil NSAIDs-analgesics usage level increased by 1.9 DDD/TID, and cough and cold medicines did not change. In the two countries, NSAIDs-analgesics usage changes were related with antibiotic usage changes; in Mexico cough and cold medicines usage changes had a relation with the antibiotics usage changes. These results showed a substitution effect on the use of other medicines, especially NSAIDs and analgesics, after reinforcement of OTC antibiotics sales restrictions. These regulations aimed to improve the antibiotics use and as a consequence reduce antimicrobial resistance; however, this type of policies should be comprehensive and take into account the potential substitution effects on the use of other medicines. © The Author 2016. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Rwagitinywa, Joseph; Lapeyre-Mestre, Maryse; Bourrel, Robert; Montastruc, Jean-Louis; Sommet, Agnès
2018-03-05
Adherence to antiretroviral (ARV) is crucial to achieve viral load suppression in HIV-infected patients. This study aimed to compare adherence to generic multi-tablet regimens (MTR) vs. brand MTR likely to incorporate ARV drugs without breaking fixed-dose combinations (FDC) and brand single-tablet regimens (STR) likely to incorporate generics by breaking the FDC. Patients aged of 18 years or over exposed to one of the generic or the brand of lamivudine (3TC), zidovudine/lamivudine (AZT/TC), nevirapine (NVP), or efavirenz (EFV), or the brand STR of efavirenz/emtricitabine/tenofovir (EFV/FTC/TDF). Adherence was measured by medication possession ratio (MPR) using both defined daily dose (DDD) and daily number of tablet recommended for adults (DNT). Adherence to generic MTR vs. brand MTR and brand STR was compared using Kruskal-Wallis. The overall median adherence was 0.97 (IQR 0.13) by DNT method and 0.97 (0.14) by DDD method. Adherence in patients exposed to generic MTR (n = 165) vs. brand MTR (n = 481) and brand STR (n = 470) was comparable by DNT and DDD methods. In conclusion, adherence to generic MTR was high and comparable with adherence to brand MTR and to STR. Utilization of DDD instead DNT to measure the MPR led to small but nonsignificant difference that has no clinical impact. © 2018 Société Française de Pharmacologie et de Thérapeutique.
Yang, Yun; Liu, Sheng; Chowdhury, Syed A.; DeAngelis, Gregory C.; Angelaki, Dora E.
2012-01-01
Many neurons in the dorsal medial superior temporal (MSTd) and ventral intraparietal (VIP) areas of the macaque brain are multisensory, responding to both optic flow and vestibular cues to self-motion. The heading tuning of visual and vestibular responses can be either congruent or opposite, but only congruent cells have been implicated in cue integration for heading perception. Because of the geometric properties of motion parallax, however, both congruent and opposite cells could be involved in coding self-motion when observers fixate a world-fixed target during translation, if congruent cells prefer near disparities and opposite cells prefer far disparities. We characterized the binocular disparity selectivity and heading tuning of MSTd and VIP cells using random-dot stimuli. Most (70%) MSTd neurons were disparity-selective with monotonic tuning, and there was no consistent relationship between depth preference and congruency of visual and vestibular heading tuning. One-third of disparity-selective MSTd cells reversed their depth preference for opposite directions of motion (direction-dependent disparity tuning, DDD), but most of these cells were unisensory with no tuning for vestibular stimuli. Inconsistent with previous reports, the direction preferences of most DDD neurons do not reverse with disparity. By comparison to MSTd, VIP contains fewer disparity-selective neurons (41%) and very few DDD cells. On average, VIP neurons also preferred higher speeds and nearer disparities than MSTd cells. Our findings are inconsistent with the hypothesis that visual/vestibular congruency is linked to depth preference, and also suggest that DDD cells are not involved in multisensory integration for heading perception. PMID:22159105
Fuertes, Elaine Isabelle; Henry, Bonnie; Marra, Fawziah; Wong, Hubert; Patrick, David M
2010-01-01
"Do Bugs Need Drugs" (DBND) is a community education program that was implemented in British Columbia (BC) in September 2005 to decrease inappropriate antibiotic use. This study conducted descriptive analyses of the association between DBND and changes in overall, pediatric, drug-specific, and indication-specific antibiotic utilization rates in Vancouver, BC. Utilization data on all oral solid and liquid antibiotics classified as "antibacterials for systemic use" were obtained from BC PharmaNet for the years 1996 to 2008. Utilization data were linked to physician billing data to allow indication-specific analyses. Following conversion to the defined daily dose (DDD), the Holt-Winters exponential smoothing method was used to project expected antibiotic use in the period after implementation based on use prior to implementation. Differences between expected and observed utilization rates were calculated. Overall antibiotic use has stabilized in recent years (16.2 DDD/1000 population/day in 2008). Fluoroquinolone use remains high (1.5 DDD/1000 population/day), as does the steadily increasing use of newer macrolides (1.1 to 2.7 DDD/1000 population/day between 1996 and 2008). Encouraging declines in overall and indication-specific prescription rates among children were observed. Following 3 years of DBND activities, antibiotic use was 5.8% lower than expected and the number of prescriptions dispensed to children was 10.6% lower than expected. This ecological study reports improvements in antibiotic use that occurred simultaneously to the delivery of the DBND program in Vancouver. However, we did not find a lowering of all targeted classes. Policy directives limiting the use of certain antibiotics may be required.
Santa-Ana-Tellez, Yared; Mantel-Teeuwisse, Aukje K.; Leufkens, Hubert G. M.
2014-01-01
During 2010, Mexico and Brazil implemented policies to enforce existing laws of restricting over-the-counter sales of antibiotics. We determined if the enforcement led to more appropriate antibiotic use by measuring changes in seasonal variation of penicillin use. We used retail quarterly sales data in defined daily doses per 1,000 inhabitant-days (DDD/TID) from IMS Health from the private sector in Mexico and Brazil from the first quarter of 2007 to the first quarter of 2013. This database contains information on volume of antibiotics sold in retail pharmacies using information from wholesalers. We used interrupted time-series models controlling for external factors with the use of antihypertensives with interaction terms to assess changes in trend, level, and variation in use between quarters for total penicillin use and by active substance. The most used penicillin was amoxicillin, followed by amoxicillin-clavulanic acid and ampicillin (minimal use in Brazil). Before the restrictions, the seasonal variation in penicillin use was 1.1 DDD/TID in Mexico and 0.8 DDD/TID in Brazil. In Mexico, we estimated a significant decrease in the seasonal variation of 0.4 DDD/TID after the restriction, mainly due to changes in seasonal variation of amoxicillin and ampicillin. In Brazil, the seasonal variation did not change significantly, overall and in the breakdown by individual active substances. For Mexico, inappropriate penicillin use may have diminished after the restrictions were enforced. For Brazil, increasing use and no change in seasonal variation suggest that further efforts are needed to reduce inappropriate penicillin use. PMID:25313222
Gama, Helena; Torre, Carla; Guerreiro, José Pedro; Azevedo, Ana; Costa, Suzete; Lunet, Nuno
2017-06-29
The successful control of cardiovascular diseases at the lowest possible cost requires the use of the most effective and affordable medicines. We aimed to describe the trends in the ambulatory use of medicines for prevention and treatment of cardiovascular diseases [Anatomic Therapeutic Chemical classification system (ATC): C and B01A] in Portugal, between 2004 and 2012, and to estimate the potential for expenditure reduction through changes in patterns of use. We analysed sell-out data, expressed as defined daily doses (DDD) and pharmacy retail price (€), from a nationwide database. We estimated potential reduction in expenditures through the increase, up to 90% of the volume of DDD, in the use of generic and essential medicines; the latter were defined according to guidelines from Portugal and another European country. Overall consumption increased by approximately 50% from 2004 to 2012, reaching nearly 2400 million DDD, whereas expenditure decreased to 753 million € (-31.3% since 2006). Use of generics and essential medicines increased, representing 43.6 and 39.9% of DDD consumption in 2012, respectively. The 40 most used groups of medicines in 2012 accounted for just over 80% of overall consumption; among these, increase in use of generics and essential medicines would have contributed to a saving of 275 million €. Changes in patterns of consumption of medicines towards a more frequent use of generics, a preferential use of essential medicines and a more rational use of fixed-dose combinations may contribute to a more efficient use of health resources.
Preconceptional motivational interviewing interventions to reduce alcohol-exposed pregnancy risk.
Ingersoll, Karen S; Ceperich, Sherry D; Hettema, Jennifer E; Farrell-Carnahan, Leah; Penberthy, J Kim
2013-04-01
Alcohol exposed pregnancy (AEP) is a leading cause of preventable birth defects. While randomized controlled trials (RCTs) have shown that multi-session motivational interviewing-based interventions reduce AEP risk, a one-session intervention could facilitate broader implementation. The purposes of this study were to: (1) test a one-session motivational AEP prevention intervention for community women and (2) compare outcomes to previous RCTs. Participants at risk for AEP (N=217) were randomized to motivational interviewing+assessment feedback (EARLY), informational video, or informational brochure conditions. Outcomes were drinks per drinking day (DDD), ineffective contraception rate, and AEP risk at 3 and 6 months. All interventions were associated with decreased DDD, ineffective contraception rate, and AEP risk. Participants who received EARLY had larger absolute risk reductions in ineffective contraception and AEP risk, but not DDD. Effect sizes were compared to previous RCTs. The one-session EARLY intervention had less powerful effects than multi-session AEP prevention interventions among community women, but may provide a new option in a continuum of preventive care. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lin, Bing; Huang, Minsheng; Zhao, Liguo; Roy, Anish; Silberschmidt, Vadim; Barnard, Nick; Whittaker, Mark; McColvin, Gordon
2018-06-01
Strain-controlled cyclic deformation of a nickel-based single crystal superalloy has been modelled using three-dimensional (3D) discrete dislocation dynamics (DDD) for both [0 0 1] and [1 1 1] orientations. The work focused on the interaction between dislocations and precipitates during cyclic plastic deformation at elevated temperature, which has not been well studied yet. A representative volume element with cubic γ‧-precipitates was chosen to represent the material, with enforced periodical boundary conditions. In particular, cutting of superdislocations into precipitates was simulated by a back-force method. The global cyclic stress-strain responses were captured well by the DDD model when compared to experimental data, particularly the effects of crystallographic orientation. Dislocation evolution showed that considerably high density of dislocations was produced for [1 1 1] orientation when compared to [0 0 1] orientation. Cutting of dislocations into the precipitates had a significant effect on the plastic deformation, leading to material softening. Contour plots of in-plane shear strain proved the development of heterogeneous strain field, resulting in the formation of shear-band embryos.
Capillarity ion concentration polarization as spontaneous desalting mechanism.
Park, Sungmin; Jung, Yeonsu; Son, Seok Young; Cho, Inhee; Cho, Youngrok; Lee, Hyomin; Kim, Ho-Young; Kim, Sung Jae
2016-04-01
To overcome a world-wide water shortage problem, numerous desalination methods have been developed with state-of-the-art power efficiency. Here we propose a spontaneous desalting mechanism referred to as the capillarity ion concentration polarization. An ion-depletion zone is spontaneously formed near a nanoporous material by the permselective ion transportation driven by the capillarity of the material, in contrast to electrokinetic ion concentration polarization which achieves the same ion-depletion zone by an external d.c. bias. This capillarity ion concentration polarization device is shown to be capable of desalting an ambient electrolyte more than 90% without any external electrical power sources. Theoretical analysis for both static and transient conditions are conducted to characterize this phenomenon. These results indicate that the capillarity ion concentration polarization system can offer unique and economical approaches for a power-free water purification system.
DDD pacemaker for severe heart failure-alternate to CRT.
Krishnamani, N C
Patients with severe systolic Heart Failure continue to have poor quality of life and increased mortality in spite of optimal medical management. Cardiac Resynchronization Therapy [CRT] is promising modality in patients with systolic heart failure and electrocardiographic [ECG] evidence of left bundle branch block [LBBB]. Cost issues continue to elude many deserving cases of this therapy in our society. Relatively cost effective Dual chamber pacing [DDD] with right atrial and isolated left ventricular pacing [RA-LV] can be a good alternative. Copyright © 2016 Cardiological Society of India. Published by Elsevier B.V. All rights reserved.
Microstructural comparison of the kinematics of discrete and continuum dislocations models
NASA Astrophysics Data System (ADS)
Sandfeld, Stefan; Po, Giacomo
2015-12-01
The Continuum Dislocation Dynamics (CDD) theory and the Discrete Dislocation Dynamics (DDD) method are compared based on concise mathematical formulations of the coarse graining of discrete data. A numerical tool for converting from a discrete to a continuum representation of a given dislocation configuration is developed, which allows to directly compare both simulation approaches based on continuum quantities (e.g. scalar density, geometrically necessary densities, mean curvature). Investigating the evolution of selected dislocation configurations within analytically given velocity fields for both DDD and CDD reveals that CDD contains a surprising number of important microstructural details.
High ventricular lead impedance of a DDD pacemaker after cranial magnetic resonance imaging.
Baser, Kazim; Guray, Umit; Durukan, Mine; Demirkan, Burcu
2012-09-01
Management of electromagnetic interference in the form of magnetic resonance imaging (MRI) in patients with pacemakers (PMs) may be challenging. Serious consequences, especially in PM-dependent patients, may be encountered. Changes in device programming, asynchronous pacing, heating of the lead tip(s), and increased thresholds or even device dislocation may be experienced. We report of a patient with a DDD PM who underwent an emergent MRI, after which there was an increase in ventricular impedance as well as increased cardiac biomarkers. ©2011, The Authors. Journal compilation ©2012 Wiley Periodicals, Inc.
Energy portfolio of Iran: A case study of solar desalination
NASA Astrophysics Data System (ADS)
Besharati, Adib
Energy plays a very important role in the economic development of a country such as Iran where industrial progress and higher living standards increase demand for energy. Iran is one of the countries in the world that simultaneously produces and consumes large amounts of energy. Because of its geographic latitude and weather conditions, Iran has the potential to develop and use of both fossil and renewable energy sources. In South Iran, there are huge oil and gas resources, and at the same time high potential of solar radiation. However, at the present large-scale utilization, solar energy is prohibitively expensive for Iran. Therefore, this study investigates an economical way to utilize solar energy in a meaningful way for Iran. One of the possible uses of solar energy that is both economical and technically feasible is desalination of water using solar energy. People in South Iran live in different areas with relatively low population density. One of the critical problems in those areas is a lack of clean drinking water. As a result, there is an urgent need to investigate ways to produce clean water from the saltwater. Therefore, the present study conducts a case study of solar desalination in south Iran using solar. Different desalination methods, such as humidification dehumidification by using a solar collector, and reverse osmosis, are discussed. In the case study, a prototype desalination plant was considered and both technical and economic aspects of the plant were investigated in details. The results showed higher productivity of drinking water in reverse osmosis method for south Iran.
Shkolnikov, Viktor; Bahga, Supreet S; Santiago, Juan G
2012-08-28
We demonstrate and analyze a novel desalination method which works by electrophoretically replacing sodium and chloride in feed salt water with a pair of ions, calcium and carbonate, that react and precipitate out. The resulting calcium carbonate precipitate is benign to health, and can be filtered or settled out, yielding low ionic strength product water. The ion exchange and precipitation employs self-sharpening interfaces induced by movement of multiple ions in an electric field to prevent contamination of the product water. Simultaneously, the electrolysis associated with the electromigration produces hydrogen gas, chlorine gas, and sodium hydroxide. We conducted an experimental study of this method's basic efficacy to desalinate salt water from 100 to 600 mol m(-3) sodium chloride. We also present physicochemical models of the process, and analyze replacement reagents consumption, permeate recovery ratio, and energy consumption. We hypothesize that the precipitate can be recycled back to replacement reagents using the well-known, commercially implemented Solvay process. We show that the method's permeate recovery ratio is 58% to 46%, which is on par with that of reverse osmosis. We show that the method's energy consumption requirement over and above that necessary to generate electrolysis is 3 to 10 W h l(-1), which is on par with the energy consumed by state-of-the-art desalination methods. Furthermore, the method operates at ambient temperature and pressure, and uses no specialized membranes. The process may be feasible as a part of a desalination-co-generation facility: generating fresh water, hydrogen and chlorine gas, and sodium hydroxide.
Temperature and Pressure Effects of Desalination Using a MFI-Type Zeolite Membrane
Zhu, Bo; Kim, Jun Hyun; Na, Yong-Han; Moon, Il-Shik; Connor, Greg; Maeda, Shuichi; Morris, Gayle; Gray, Stephen; Duke, Mikel
2013-01-01
Zeolites are potentially a robust desalination alternative, as they are chemically stable and possess the essential properties needed to reject ions. Zeolite membranes could desalinate “challenging” waters, such as saline secondary effluent, without any substantial pre-treatment, due to the robust mechanical properties of ceramic membranes. A novel MFI-type zeolite membrane was developed on a tubular α-Al2O3 substrate by a combined rubbing and secondary hydrothermal growth method. The prepared membrane was characterised by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and single gas (He or N2) permeation and underwent desalination tests with NaCl solutions under different pressures (0.7 MPa and 7 MPa). The results showed that higher pressure resulted in higher Na+ rejection and permeate flux. The zeolite membrane achieved a good rejection of Na+ (~82%) for a NaCl feed solution with a TDS (total dissolved solids) of 3000 mg·L−1 at an applied pressure of 7 MPa and 21 °C. To explore the opportunity for high salinity and high temperature desalination, this membrane was also tested with high concentration NaCl solutions (up to TDS 90,000 mg·L−1) and at 90 °C. This is the first known work at such high salinities of NaCl. It was found that increasing the salinity of the feed solution decreased both Na+ rejection and flux. An increase in testing temperature resulted in an increase in permeate flux, but a decrease in ion rejection. PMID:24956943
Graphene membranes with nanoslits for seawater desalination via forward osmosis.
Dahanayaka, Madhavi; Liu, Bo; Hu, Zhongqiao; Pei, Qing-Xiang; Chen, Zhong; Law, Adrian Wing-Keung; Zhou, Kun
2017-11-22
Stacked graphene (GE) membranes with cascading nanoslits can be synthesized economically compared to monolayer nanoporous GE membranes, and have potential for molecular separation. This study focuses on investigating the seawater desalination performance of these stacked GE layers as forward osmosis (FO) membranes by using molecular dynamics simulations. The FO performance is evaluated in terms of water flux and salt rejection and is explained by analysing the water density distribution and radial distribution function. The water flow displays an Arrhenius type relation with temperature and the activation energy for the stacked GE membrane is estimated to be 8.02 kJ mol -1 , a value much lower than that of commercially available FO membranes. The study reveals that the membrane characteristics including the pore width, offset, interlayer separation distance and number of layers have significant effects on the desalination performance. Unlike monolayer nanoporous GE membranes, at an optimum layer separation distance, the stacked GE membranes with large pore widths and completely misaligned pore configuration can retain complete ion rejection and maintain a high water flux. Findings from the present study are helpful in developing GE-based membranes for seawater desalination via FO.
Carbon electrode for desalination purpose in capacitive deionization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Endarko,, E-mail: endarko@physics.its.ac.id; Fadilah, Nurul; Anggoro, Diky
Carbon electrodes for desalination purpose have been successfully synthesized using activated carbon powder (BET surface area=700 – 1400 m{sup 2}/g), carbon black and polyvinyl alcohol (PVA) binder by cross-linking method with glutaric acid (GA) at 120 °C. The electrochemical properties of the carbon electrodes were analyzed using electrical impedance spectroscopy (EIS) and cyclic voltammetry (CV) whilst the physical properties were observed with scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX). In order to assess the desalting performance, salt removal experiments were performed by constructing a capacitive deionization unit cell with five pairs of carbon electrodes. For each pair consistedmore » of two parallel carbon electrodes separated by a spacer. Desalination and regeneration processes were also observed in the salt-removal experiments. The salt-removal experiments were carried out in single-pass mode using a solution with 0.1 M NaCl at a flow rate of 10 mL/min. A voltage of 3 V was applied to the cell for 60 minutes for both processes in desalination and regeneration. The result showed that the percentage value of the salt-removal was achieved at 20%.« less
Biodesalination-On harnessing the potential of nature's desalination processes.
Taheri, Reza; Razmjou, Amir; Szekely, Gyorgy; Hou, Jingwei; Ghezelbash, Gholam Reza
2016-07-08
Water scarcity is now one of the major global crises, which has affected many aspects of human health, industrial development and ecosystem stability. To overcome this issue, water desalination has been employed. It is a process to remove salt and other minerals from saline water, and it covers a variety of approaches from traditional distillation to the well-established reverse osmosis. Although current water desalination methods can effectively provide fresh water, they are becoming increasingly controversial due to their adverse environmental impacts including high energy intensity and highly concentrated brine waste. For millions of years, microorganisms, the masters of adaptation, have survived on Earth without the excessive use of energy and resources or compromising their ambient environment. This has encouraged scientists to study the possibility of using biological processes for seawater desalination and the field has been exponentially growing ever since. Here, the term biodesalination is offered to cover all of the techniques which have their roots in biology for producing fresh water from saline solution. In addition to reviewing and categorizing biodesalination processes for the first time, this review also reveals unexplored research areas in biodesalination having potential to be used in water treatment.
Final Scientific/Technical Report for Program Title: Solar Powered Dewvaporation Desalination System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ranganathan, Shashidhar
Desalination technologies have been used increasingly throughout the world to produce the drinking water from the brackish ground and sea water for the past few decades. Among the commercially available desalination technologies, reverse osmosis (RO) and multi-stage flash distillation are the most widely used technologies globally. However, these technologies are difficult to be directly integrated with green energies without converting them to electricity. Dewvaporation, a desalination process, uses saturated steam as a carrier-gas to evaporate water from saline feeds and form pure condensate. It has the major technical benefit of reusing energy, released from vapor condensation, multiple times. The currentmore » proposal has been planned to address this issue. In Phase I, we have successfully demonstrated the feasibility of a new plasmonic nanoparticle based approach through fabrication and evaluation of a solar powered water vapor generation module. The water vapor generation module allows generation of high temperature plasmon on a fiber bundle end, where strong water and plasmon interaction occurs generating water vapor. Plasmon enhanced water evaporation has been realized on plasmonic nanoparticle immobilized substrate with an energy conversion efficiency of over 50%.« less
Particulate-free porous silicon networks for efficient capacitive deionization water desalination
Metke, Thomas; Westover, Andrew S.; Carter, Rachel; Oakes, Landon; Douglas, Anna; Pint, Cary L.
2016-01-01
Energy efficient water desalination processes employing low-cost and earth-abundant materials is a critical step to sustainably manage future human needs for clean water resources. Here we demonstrate that porous silicon – a material harnessing earth abundance, cost, and environmental/biological compatibility is a candidate material for water desalination. With appropriate surface passivation of the porous silicon material to prevent surface corrosion in aqueous environments, we show that porous silicon templates can enable salt removal in capacitive deionization (CDI) ranging from 0.36% by mass at the onset from fresh to brackish water (10 mM, or 0.06% salinity) to 0.52% in ocean water salt concentrations (500 mM, or ~0.3% salinity). This is on par with reports of most carbon nanomaterial based CDI systems based on particulate electrodes and covers the full salinity range required of a CDI system with a total ocean-to-fresh water required energy input of ~1.45 Wh/L. The use of porous silicon for CDI enables new routes to directly couple water desalination technology with microfluidic systems and photovoltaics that natively use silicon materials, while mitigating adverse effects of water contamination occurring from nanoparticulate-based CDI electrodes. PMID:27101809
Design and Manufacturing of Desalination System Powered by Solar Energy Using CDI Technique
NASA Astrophysics Data System (ADS)
Rostami, Mohammad Sajjad; Khashehchi, Morteza; Pipelzadeh, Ehsan
2017-11-01
Capacitive deionization (CDI) is an emerging energy efficient, low pressure and low capital intensive desalination process where ions are separated by a pure electrostatic force imposed by a small bias potential as low as 1 V That funded by an external Renewable (Solar) power supply to materials with high specific surface area. The main objective of this configuration is to separate the cation and anions on oppositely charged electrodes. One of the key parameters for commercial realization of CDI is the salt adsorption capacity of the electrodes. State-of-the-art electrode materials are based on porous activated carbon particles or carbon aerogels. Various electrode materials have been developed in the past, which have suffered from instability and lack of performance. Preliminary experimental results using carbon black, graphite powder, graphene ∖ graphite ∖ PTFE (Active ∖ Conductive ∖ binder) show that the graphene reduced via urea method is a suitable method to develop CDI electrode materials. Although some progress has been made, production of efficient and stable carbon based electrode materials for large scale desalination has not been fully realized. A new desalination technique using capacitive deionization.
Particulate-free porous silicon networks for efficient capacitive deionization water desalination.
Metke, Thomas; Westover, Andrew S; Carter, Rachel; Oakes, Landon; Douglas, Anna; Pint, Cary L
2016-04-22
Energy efficient water desalination processes employing low-cost and earth-abundant materials is a critical step to sustainably manage future human needs for clean water resources. Here we demonstrate that porous silicon - a material harnessing earth abundance, cost, and environmental/biological compatibility is a candidate material for water desalination. With appropriate surface passivation of the porous silicon material to prevent surface corrosion in aqueous environments, we show that porous silicon templates can enable salt removal in capacitive deionization (CDI) ranging from 0.36% by mass at the onset from fresh to brackish water (10 mM, or 0.06% salinity) to 0.52% in ocean water salt concentrations (500 mM, or ~0.3% salinity). This is on par with reports of most carbon nanomaterial based CDI systems based on particulate electrodes and covers the full salinity range required of a CDI system with a total ocean-to-fresh water required energy input of ~1.45 Wh/L. The use of porous silicon for CDI enables new routes to directly couple water desalination technology with microfluidic systems and photovoltaics that natively use silicon materials, while mitigating adverse effects of water contamination occurring from nanoparticulate-based CDI electrodes.
Inukai, Shigeki; Cruz-Silva, Rodolfo; Ortiz-Medina, Josue; Morelos-Gomez, Aaron; Takeuchi, Kenji; Hayashi, Takuya; Tanioka, Akihiko; Araki, Takumi; Tejima, Syogo; Noguchi, Toru; Terrones, Mauricio; Endo, Morinobu
2015-01-01
Clean water obtained by desalinating sea water or by purifying wastewater, constitutes a major technological objective in the so-called water century. In this work, a high-performance reverse osmosis (RO) composite thin membrane using multi-walled carbon nanotubes (MWCNT) and aromatic polyamide (PA), was successfully prepared by interfacial polymerization. The effect of MWCNT on the chlorine resistance, antifouling and desalination performances of the nanocomposite membranes were studied. We found that a suitable amount of MWCNT in PA, 15.5 wt.%, not only improves the membrane performance in terms of flow and antifouling, but also inhibits the chlorine degradation on these membranes. Therefore, the present results clearly establish a solid foundation towards more efficient large-scale water desalination and other water treatment processes. PMID:26333385
Water Desalination Using Nanoporous Single-Layer Graphene with Tunable Pore Size
Surwade, Sumedh P.; Smirnov, Sergei N.; Vlassiouk, Ivan V.; ...
2015-03-23
Graphene has great potential to serve as a separation membrane due to its unique properties such as chemical and mechanical stability, flexibility and most importantly its one-atom thickness. In this study, we demonstrate first experimental evidence of the use of single-layer porous graphene as a desalination membrane. Nanometer-sized pores are introduced into single layer graphene using a convenient oxygen plasma etching process that permits tuning of the pore size. The resulting porous graphene membrane exhibited high rejection of salt ions and rapid water transport, thus functioning as an efficient water desalination membrane. Salt rejection selectivity of nearly 100% and exceptionallymore » high water fluxes exceeding 105 g m-2 s-1 at 40 C were measured using saturated water vapor as a driving force.« less
Model-Based Extracted Water Desalination System for Carbon Sequestration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dees, Elizabeth M.; Moore, David Roger; Li, Li
Over the last 1.5 years, GE Global Research and Pennsylvania State University defined a model-based, scalable, and multi-stage extracted water desalination system that yields clean water, concentrated brine, and, optionally, salt. The team explored saline brines that ranged across the expected range for extracted water for carbon sequestration reservoirs (40,000 up to 220,000 ppm total dissolved solids, TDS). In addition, the validated the system performance at pilot scale with field-sourced water using GE’s pre-pilot and lab facilities. This project encompassed four principal tasks, in addition to Project Management and Planning: 1) identify a deep saline formation carbon sequestration site andmore » a partner that are suitable for supplying extracted water; 2) conduct a techno-economic assessment and down-selection of pre-treatment and desalination technologies to identify a cost-effective system for extracted water recovery; 3) validate the downselected processes at the lab/pre-pilot scale; and 4) define the scope of the pilot desalination project. Highlights from each task are described below: Deep saline formation characterization The deep saline formations associated with the five DOE NETL 1260 Phase 1 projects were characterized with respect to their mineralogy and formation water composition. Sources of high TDS feed water other than extracted water were explored for high TDS desalination applications, including unconventional oil and gas and seawater reverse osmosis concentrate. Technoeconomic analysis of desalination technologies Techno-economic evaluations of alternate brine concentration technologies, including humidification-dehumidification (HDH), membrane distillation (MD), forward osmosis (FO), turboexpander-freeze, solvent extraction and high pressure reverse osmosis (HPRO), were conducted. These technologies were evaluated against conventional falling film-mechanical vapor recompression (FF-MVR) as a baseline desalination process. Furthermore, a quality function deployment (QFD) method was used to compare alternate high TDS desalination technologies to FF-MVR. High pressure reverse osmosis was found to a be a promising alternative desalination technology. A deep-dive technoeconomic analysis of HPRO was performed, including Capex and Opex estimates, for seawater RO (SWRO). Additionally, two additional cases were explored: 1) a comparison of a SWRO plus HPRO system to the option of doubling the size of a standard seawater RO system to achieve the same total pure water recovery rate; and 2) a flue gas desulfurization wastewater treatment zero-liquid discharge (ZLD) application, where preconcentration with RO (SWRO or SWRO + HPRO) before evaporation and crystallization was compared to FF-MVR and crystallization technologies without RO preconcentration. Pre-pilot process validation Pre-pilot-scale tests were conducted using field production water to validate key process steps for extracted water pretreatment. Approximately 5,000 gallons of field produced water was processed through, microfiltration, ultrafiltration, and steam regenerable sorbent operations. Smaller quantities were processed through microclarification. In addition, analytical methods (purge-and-trap gas chromatography and Hach TOC analytical methods) were validated. Lab-scale HPRO elements were constructed and tested at high pressures, to identify and mitigate technical risks of the technology. Lastly, improvements in RO membrane materials were identified as the necessary next step to achieve further improvement in element performance at high pressure. Scope of Field Pilot A field pilot for extracted water pretreatment was designed.« less
Antimicrobial usage in ambulatory patients with respiratory infections in Taiwan, 2001.
Ho, Monto; Hsiung, Chao Agnes; Yu, Hui-Tzu; Chi, Cheng-Liang; Yin, Hsiao-Chuan; Chang, Hong-Jen
2004-02-01
Excess use of antimicrobials by ambulatory patients is a determinant of antimicrobial resistance. This study investigated the types of illnesses for which antimicrobials were prescribed and the amounts prescribed with special emphasis on respiratory infections for the year in which the Bureau of National Health Insurance (BNHI) enforced a policy to restrict antimicrobials for upper respiratory infections. The number of ambulatory patients seen and the types of ambulatory facilities in Taiwan were also described. Raw data were obtained from the BNHI database on every 500 th visit in 2001. Medical diagnoses were categorized according to the ICD-9-CM system. Antimicrobial consumption was expressed in defined daily doses per 1000 population per day (DDD/1000/day). Among the population of 22.3 million in Taiwan, there were 285.8 million ambulatory patient visits (12.8 per person), including 108.9 million visits (4.9 per person) for respiratory infections, of which 62.7 million (2.8 per person) were for upper respiratory infections (URI). Antimicrobial consumption was 19.83 DDD/1000/day [standard error (SE), 0.00055], of which 9.97 DDD/1000/day (SE, 0.00047) were for respiratory infections and 4.03 DDD/1000/day (0.00055) were for URI. 23.6% of visits for URI entailed a prescription for antimicrobials. About two-thirds (66.5%) of ambulatory patients were seen in clinics, mostly private ones, and 67.6% of all antimicrobials were received there. Aminopenicillins and cephalosporins constituted 35.2% and 19.5%, respectively, of antimicrobials prescribed. Despite the new BNHI rule restricting antimicrobial usage for URI, Taiwan still has an excessive number of ambulatory patient visits, especially for respiratory infections and URI. The majority of antimicrobials used were for URI. They were mostly prescribed in private clinics rather than hospital outpatient departments.
Prescription patterns of diuretics in Dutch community-dwelling elderly patients
Van Kraaij, Dave J W; Jansen, René W M M; De Gier, Johan J; Gribnau, Frank W J; Hoefnagels, Willibrord H L
1998-01-01
Aims To describe age-and gender-related prescription patterns of diuretics in community-dwelling elderly, and to compare diuretics to other cardiovascular (CV) medications. Methods Cross-sectional study of patient-specific prescription data derived from a panel of 10 Dutch community pharmacies. Determination of proportional prescription rates and prescribed daily dose (PDD) of diuretics, cardiac glycosides, nitrates, angiotensin converting enzyme (ACE) inhibitors, β-adrenoceptor blockers, and calcium channel blockers in all 5326 patients aged 65 years or older dispensed CV medications between August 1st, 1995 and February 1st, 1996. Results Diuretics were prescribed to 2677 of 5326 patients (50.3%), 1325 patients (24.9%) using thiazides and 1198 patients (22.5%) using loop diuretics. Prescription rates of loop diuretics increased from 15.1% in patients aged 65–74 years to 37.2% in patients aged 85 years or older. Rates also increased for digoxin and nitrates. Rates for thiazide diuretics remained unchanged with age; rates for β-adrenoceptor blockers, ACE inhibitors and calcium channel blockers declined with age. Thiazides were prescribed to 30.1% of women compared with 16% of men (P<0.001). Average PDD was 135±117% of defined daily dose (DDD) for loop diuretics, and highest for bumetanide (245±2.01% of DDD, equivalent to 2.5±2.0 mg). Average PDD was 74±40% of DDD for thiazides, and highest for chlorthalidone (100±49% of DDD, equivalent to 25±12 mg). Conclusions Important characteristics of diuretic usage patterns in this elderly population were a steep increase in loop diuretic use in the oldest old, a large gender difference for thiazide use, and high prescribed doses for thiazides. PMID:9803990
Eriksen, Sophie Isabel; Bjerrum, Lars
2015-06-01
Prolonged consumption of benzodiazepine drugs (BZD) and benzodiazepine receptor agonists (zolpidem, zaleplon, zopiclone; altogether Z drugs) is related to potential physiological and psychological dependence along with other adverse effects. This study aimed to analyse the prescribing of long-acting BZD (half-life >10 hr), compared to short-acting BZD in Denmark during a 10-year period. Descriptive analysis of total sales data from the Danish Register of Medicinal Product Statistics, to individuals in the primary healthcare sector, of all BZD and Z drugs in the period of 2003-2013. Prescription data derive from all community and hospital pharmacies in Denmark. The prescribing of long-acting BZD was reduced from 25.8 defined daily doses (DDD)/1000 inhabitants/day in 2003 to 8.8 DDD/1000 inhabitants/day in 2013, a relative reduction of 66%. The prescribing of short-acting BZD was reduced from 26.1 DDD/1000 inhabitants/day in 2003 to 16.4 DDD/1000 inhabitants/day in 2013, a relative reduction of 37%. Prescription data in this study did not include information about indications for initiating treatments. In addition, due to compliance problems, some of the prescribed drugs may not have been consumed according to the prescription. The observed reduction in BZD use was correlated to the introduction of new national guidelines on prescription of addictive drugs, but this study was not designed to detect a causal relationship. The prescribing of long-acting BZD decreased considerably more than the prescribing of short-acting BZD in the 10-year period. © 2014 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).
Santa-Ana-Tellez, Yared; Mantel-Teeuwisse, Aukje K; Leufkens, Hubert G M; Wirtz, Veronika J
2015-01-01
During 2010, Mexico and Brazil implemented policies to enforce existing laws of restricting over-the-counter sales of antibiotics. We determined if the enforcement led to more appropriate antibiotic use by measuring changes in seasonal variation of penicillin use. We used retail quarterly sales data in defined daily doses per 1,000 inhabitant-days (DDD/TID) from IMS Health from the private sector in Mexico and Brazil from the first quarter of 2007 to the first quarter of 2013. This database contains information on volume of antibiotics sold in retail pharmacies using information from wholesalers. We used interrupted time-series models controlling for external factors with the use of antihypertensives with interaction terms to assess changes in trend, level, and variation in use between quarters for total penicillin use and by active substance. The most used penicillin was amoxicillin, followed by amoxicillin-clavulanic acid and ampicillin (minimal use in Brazil). Before the restrictions, the seasonal variation in penicillin use was 1.1 DDD/TID in Mexico and 0.8 DDD/TID in Brazil. In Mexico, we estimated a significant decrease in the seasonal variation of 0.4 DDD/TID after the restriction, mainly due to changes in seasonal variation of amoxicillin and ampicillin. In Brazil, the seasonal variation did not change significantly, overall and in the breakdown by individual active substances. For Mexico, inappropriate penicillin use may have diminished after the restrictions were enforced. For Brazil, increasing use and no change in seasonal variation suggest that further efforts are needed to reduce inappropriate penicillin use. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
The Association Between the Use of Zolpidem and the Risk of Alzheimer's Disease Among Older People.
Cheng, Hui-Ting; Lin, Fang-Ju; Erickson, Steven R; Hong, Jin-Liern; Wu, Chung-Hsuen
2017-11-01
To evaluate the association between zolpidem use and the risk of Alzheimer's disease among older people. A retrospective cohort study using data from 2001 to 2011 from the National Health Insurance Research Database. Taiwan. A total of 6,922 patients aged 65 years or older enrolled from January 2002 to December 2004 (the enrollment period). Zolpidem users were identified as patients who used zolpidem during the enrollment period. The index date was the date of the first zolpidem prescription. Dosage of zolpidem use was defined using cumulative defined daily dose (cDDD) based on the cumulative dosage that patients took within one year after the index date (grouped as: less than 28, 28-90, 91-180, and more than 180 cDDD). The occurrence of Alzheimer's disease was defined as the time period from the end of one year after the index date to the date of the Alzheimer's disease diagnosis. The propensity score was used to adjust the measured confounders of Alzheimer's disease. Cox proportional hazards models were used to evaluate the association between zolpidem use and the incidence of Alzheimer's disease. Zolpidem users with a high cumulative dose (>180 cDDD) in the first year after initiation had a significantly greater risk of Alzheimer's disease than non-zolpidem users (HR = 2.97, 95% CI = 1.61-5.49) and low cumulative dose (<28 cDDD) users (HR = 4.18, 95% CI = 1.77-9.86). We found the use of a high cumulative dose of zolpidem was associated with an increased risk of Alzheimer's disease among older people living in Taiwan. It is advised to use caution when considering long-term use of zolpidem in older patients. © 2017, Copyright the Authors Journal compilation © 2017, The American Geriatrics Society.
Chang, Huang-Chou; Tu, Tsung-Hsi; Chang, Hsuan-Kan; Wu, Jau-Ching; Fay, Li-Yu; Chang, Peng-Yuan; Wu, Ching-Lan; Huang, Wen-Cheng; Cheng, Henrich
2016-11-01
The combination of anterior cervical discectomy and fusion (ACDF) and anterior cervical corpectomy and fusion (ACCF) has been demonstrated to be effective for multilevel cervical spondylotic myelopathy (CSM); however, the combination of ACCF and cervical disc arthroplasty (CDA) for 3-level CSM has never been addressed. Consecutive patients (>18 years of age) with CSM caused by segmental ossification of posterior longitudinal ligament (OPLL) and degenerative disc disease (DDD) were reviewed. Inclusion criteria were patients who underwent hybrid ACCF and CDA surgery for symptomatic 3-level CSM with OPLL and DDD. Medical and radiologic records were reviewed retrospectively. A total of 15 patients were analyzed with a mean follow-up of 18.1 ± 7.42 months. Every patient had hybrid surgery composed of 1-level ACCF (for segmental-type OPLL causing spinal stenosis) and 1-level CDA at the adjacent level (for DDD causing stenosis). All clinical outcomes, including visual analogue scale of neck and arm pain, Neck Disability Index, Japanese Orthopedic Association scores, and Nurick scores of myelopathy, demonstrated significant improvement at 12 months after surgery. All patients (100%) achieved arthrodesis for the ACCF (instrumented) and preserved mobility for CDA (preoperation 6.2 ± 3.81° vs. postoperation 7.0 ± 4.18°; P = 0.579). For patients with multilevel CSM caused by segmental OPLL and DDD, the hybrid surgery of ACCF and CDA demonstrated satisfactory clinical and radiologic outcomes. Moreover, although located next to each other, the instrumented ACCF construct and CDA still achieved solid arthrodesis and preserved mobility, respectively. Therefore, hybrid surgery may be a reasonable option for the management of CSM with OPLL. Copyright © 2016 Elsevier Inc. All rights reserved.
Suto, Jun-ichi
2013-07-31
DDD.Cg-A(y) female mice developed massive obesity as compared with B6.Cg-A(y) female mice. We previously identified quantitative trait loci (QTLs) for obesity on chromosomes 1, 6, 9 and 17 in F2 female mice, including F2A(y) (F2 mice with the A(y) allele) and F2 non- A(y) mice (F2 mice without the A(y) allele), produced by crossing C57BL/6J and DDD.Cg-A(y) strains. We here addressed the question whether the obesity QTLs share genetic bases with putative QTLs for plasma glucose, insulin and leptin concentrations. We performed QTL analyses for the first principal component (PC1) extracted from these metabolic measurements to identify the genes that contributed to the comprehensive evaluation of metabolic traits. By single QTL scans, we identified two significant QTLs for insulin concentration on chromosomes 6 and 12, three for leptin concentration on chromosomes 1, 6 and 17, and five for PC1 on chromosomes 1, 6, 12 (two loci) and 17. Although insulin and leptin concentrations and PC1 were not normally distributed in combined F2 mice, results of single QTL scans by parametric and non-parametric methods were very similar. Therefore, QTL scan by the parametric method was performed with the agouti locus genotype as a covariate. A significant QTL × covariate interaction was found for PC1 on chromosome 9. All obesity QTLs had significant metabolic effects. Thus, obesity- and diabetes-related traits in DDD.Cg-A(y) mice were largely controlled by QTLs on chromosomes 1, 6, 9, 12 and 17.
Brock, Robert D.; Murtagh, Lucinda K.
1994-01-01
Twenty-two bottom-sediment samples were collected from Town Lake in Austin, Texas, in 1991 and 1992 and analyzed for chlorinated insecticides by a reconnaissance-quality, electron-capture gas chromatography screening method developed by the U.S. Geological Survey (USGS). Four different chlorinated insecticides (aldrin, chlordane, dieldrin, and p,p'-DDT) and two degradation products of p,p'-DDT (p,p'-DDD and p,p'-DDE) were detected in these samples. The most significant insecticides detected were chlordane, which was detected in 20 of the 22 samples at concentrations that ranged from 26 to 140 micrograms per kilogram, and p,p'-DDT, which was detected in all 22 samples at concen- trations that ranged from 5 to 40 micrograms per kilogram. Degradation products of p,p'-DDT were detected in all 22 samples. Concentrations of p,p'-DDD ranged from not detected to 117 micrograms per kilogram and for p,p'-DDE from 9 to 97 micrograms per kilogram. Of the 22 samples collected, 15 also were analyzed by the standard USGS laboratory analytical method for chlorinated insecticides to determine the comparability of the two methods. Correlation coefficients were calculated for chlordane (0.8662), p,p'-DDT (0.6393), p,p'-DDD (0.9401), p,p'-DDE (0.8595), and dieldrin (0.3819). A paired sign test at the 95 percent confidence level showed no significant difference between the screening method and laboratory analytical method for all detected insecticides except aldrin. P-values were calculated from the data for chlordane (l.0000), p,p'-DDT (0.1796), p,p'-DDD (l,0000), p,p'-DDE (0.1796), and dieldrin (0.2891).
Residual levels and identify possible sources of organochlorine pesticides in Korea atmosphere
NASA Astrophysics Data System (ADS)
Park, Jin Soo; Shin, Sun Kyoung; Kim, Woo Il; Kim, Byung Hoon
2011-12-01
The nationwide monitoring program was established in 2008 to monitor of persistent organic pollutants (POPs) in Korea. Under this program, it was observed air concentrations of organochlorine pesticides (OCPs) at 37 sites from January to October of 2008, to determine the residue levels and identify possible sources in Korea atmosphere. Samples of OCPs including HCB, aldrin, dieldrin, endrin, p, p'-DDT, o, p'-DDT, p, p'-DDE, o, p'-DDE, p, p'-DDD, o, p'-DDD, trans-chlordane, cis-chlordane, trans-nonachlor, cis-nonachlor, oxychlordane, heptachlor, heptachlor epoxide were collected with high volume air sampler and analyzed by HRGC/HRMS. The concentrations were in the range of 41.2-344.3 pg m -3 for HCB, ND-47.55 pg m -3 for DDTs (sum of p, p'-DDT, o, p'-DDT, p, p'-DDE, o, p'-DDE, p, p'-DDD, o, p'-DDD), ND-38.97 pg m -3 for chlordanes (sum of trans-chlordane, cis-chlordane, trans-nonachlor, cis-nonachlor, oxychlordane), ND-9.19 pg m -3 for heptachlors (sum of heptachlor and heptachlor epoxide) and ND-4.32 pg m -3 for dieldrin. The predominant compound in air was HCB. However, HCB itself has not ever been registered and used as a pesticide in Korea. The elevated concentration of HCB in Korea might be contributed to geographical location and long range transport. For DDTs, it was found that no more fresh input occurred recently and technical type DDTs was prevailing in Korea. Higher concentration of chlordane was observed in winter, which was contributed to the fresh input technical chlordane and long range transport. Relatively lower levels of heptachlor and dieldrin despite much more consumption than other pesticides were resulted from shorter half-lives in environment.
Suzuki, Shotaro; Omori, Yuko; Wong, Shu-Kuan; Ijichi, Minoru; Kaneko, Ryo; Kameyama, Sohiko; Tanimoto, Hiroshi; Hamasaki, Koji
2015-01-01
Dimethylsulfoniopropionate (DMSP) is mainly produced by marine phytoplankton but is released into the microbial food web and degraded by marine bacteria to dimethyl sulfide (DMS) and other products. To reveal the abundance and distribution of bacterial DMSP degradation genes and the corresponding bacterial communities in relation to DMS and DMSP concentrations in seawater, we collected surface seawater samples from DMS hot spot sites during a cruise across the Pacific Ocean. We analyzed the genes encoding DMSP lyase (dddP) and DMSP demethylase (dmdA), which are responsible for the transformation of DMSP to DMS and DMSP assimilation, respectively. The averaged abundance (±standard deviation) of these DMSP degradation genes relative to that of the 16S rRNA genes was 33% ± 12%. The abundances of these genes showed large spatial variations. dddP genes showed more variation in abundances than dmdA genes. Multidimensional analysis based on the abundances of DMSP degradation genes and environmental factors revealed that the distribution pattern of these genes was influenced by chlorophyll a concentrations and temperatures. dddP genes, dmdA subclade C/2 genes, and dmdA subclade D genes exhibited significant correlations with the marine Roseobacter clade, SAR11 subgroup Ib, and SAR11 subgroup Ia, respectively. SAR11 subgroups Ia and Ib, which possessed dmdA genes, were suggested to be the main potential DMSP consumers. The Roseobacter clade members possessing dddP genes in oligotrophic subtropical regions were possible DMS producers. These results suggest that DMSP degradation genes are abundant and widely distributed in the surface seawater and that the marine bacteria possessing these genes influence the degradation of DMSP and regulate the emissions of DMS in subtropical gyres of the Pacific Ocean. PMID:25862229
Zhang, Jiao; Cui, Shi You; Feng, Zhi Xiang
2018-05-01
To elucidate the seasonal variations in soil salinity and its driving factors, and to explore the effects of planting Suaeda glauca and straw mulching on soil desalination and salinity controlling, a field experiment was conducted in extremely heavy saline soil of coastal areas in Rudong, Jiangsu Province. There were four treatments: control (bare land, CK), planting S. glauca (PS), straw mulching A (at 15 t·hm -2 , SM-A), straw mulching 2A (at 30 t·hm -2 , SM-2A). Climate factors (including rainfall, atmospheric temperature, sunshine duration, and atmospheric evaporation) and soil salinity dynamic changes were determined from May 2014 to May 2015. Results showed that: (1) The seasonal variation of soil salinity was obvious in the bare ground (CK), with the lowest (8.69 g·kg -1 ) during June-August and the highest (26.66 g·kg -1 ) during September-December. The changes of soil salinity in topsoil (0-20 cm) were more intense than that in sub-topsoil (20-40 cm), with the changes in sub-topsoil having somewhat time lag compared the topsoil. (2) Soil salinity in CK treatment had a significantly linear correlation with the cumulative rainfall and evaporation-precipitation ratio of the fifteen-day before sampling. The results from multifactor and interphase analysis indicated that the increases of rainfall would promote soil desalinization. The rise of atmospheric temperature could exacerbate soil salt accumulation in surface soil. The interaction between rainfall and atmospheric temperature would have a positive effect on soil salt accumulation. (3) PS treatment did not alter the seasonal variation in soil salinity, but it reduced soil salinity in topsoil. (4) In SM-A and SM-2A treatments, the relationship of soil desalinization rate (%, Y) and treatment time (days, X) was expressed as Logistic curve equation. Moreover, the soil desalination rate was over 95.0% in the topsoil after 90-100 days of straw mul-ching treatment and was over 92.0% in sub-topsoil after 120 days of straw mulching treatment. The soil salinity in SM-A and SM-2A treatments fluctuated below 0.60 g·kg -1 and 1.00 g·kg -1 , respectively in topsoil and sub-topsoil. Considering the desalination and economic costs, a suitable amount of straw mulching (such as 15 t·hm -2 ) before rainy season was recommended, which would promote the soil desalinization and reclamation in extremely heavy saline soil of coastal areas.
Blandin, Gaetan; Verliefde, Arne R D; Comas, Joaquim; Rodriguez-Roda, Ignasi; Le-Clech, Pierre
2016-07-01
Forward osmosis (FO) is a promising membrane technology to combine seawater desalination and water reuse. More specifically, in a FO-reverse osmosis (RO) hybrid process, high quality water recovered from the wastewater stream is used to dilute seawater before RO treatment. As such, lower desalination energy needs and/or water augmentation can be obtained while delivering safe water for direct potable reuse thanks to the double dense membrane barrier protection. Typically, FO-RO hybrid can be a credible alternative to new desalination facilities or to implementation of stand-alone water reuse schemes. However, apart from the societal (public perception of water reuse for potable application) and water management challenges (proximity of wastewater and desalination plants), FO-RO hybrid has to overcome technical limitation such as low FO permeation flux to become economically attractive. Recent developments (i.e., improved FO membranes, use of pressure assisted osmosis, PAO) demonstrated significant improvement in water flux. However, flux improvement is associated with drawbacks, such as increased fouling behaviour, lower rejection of trace organic compounds (TrOCs) in PAO operation, and limitation in FO membrane mechanical resistance, which need to be better considered. To support successful implementation of FO-RO hybrid in the industry, further work is required regarding up-scaling to apprehend full-scale challenges in term of mass transfer limitation, pressure drop, fouling and cleaning strategies on a module scale. In addition, refined economics assessment is expected to integrate fouling and other maintenance costs/savings of the FO/PAO-RO hybrid systems, as well as cost savings from any treatment step avoided in the water recycling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akar, Sertac; Turchi, Craig
Substantial drought and declines in potable groundwater in the United States over the last decade has increased the demand for fresh water. Desalination of saline water such as brackish surface or groundwater, seawater, brines co-produced from oil and gas operations, industrial wastewater, blow-down water from power plant cooling towers, and agriculture drainage water can reduce the volume of water that requires disposal while providing a source of high-quality fresh water for industrial or commercial use. Membrane distillation (MD) is a developing technology that uses low-temperature thermal energy for desalination. Geothermal heat can be an ideal thermal-energy source for MD desalinationmore » technology, with a target range of $1/m3 to $2/m3 for desalinated water depending on the cost of heat. Three different cases were analyzed to estimate levelized cost of heat (LCOH) for integration of MD desalination technology with low-grade geothermal heat: (1) residual heat from injection brine at a geothermal power plant, (2) heat from existing underutilized low-temperature wells, and (3) drilling new wells for low-temperature resources. The Central and Western United States have important low-temperature (<90 degrees C) geothermal resource potential with wide geographic distribution, but these resources are highly underutilized because they are inefficient for power production. According to the USGS, there are 1,075 identified low temperature hydrothermal systems, 55 low temperature sedimentary systems and 248 identified medium to high temperature geothermal systems in the United States. The estimated total beneficial heat potential from identified low temperature hydrothermal geothermal systems and residual beneficial heat from medium to high temperature systems is estimated as 36,300 MWth, which could theoretically produce 1.4 to 7 million m3/day of potable water, depending on desalination efficiency.« less
Blandin, Gaetan; Verliefde, Arne R.D.; Comas, Joaquim; Rodriguez-Roda, Ignasi; Le-Clech, Pierre
2016-01-01
Forward osmosis (FO) is a promising membrane technology to combine seawater desalination and water reuse. More specifically, in a FO-reverse osmosis (RO) hybrid process, high quality water recovered from the wastewater stream is used to dilute seawater before RO treatment. As such, lower desalination energy needs and/or water augmentation can be obtained while delivering safe water for direct potable reuse thanks to the double dense membrane barrier protection. Typically, FO-RO hybrid can be a credible alternative to new desalination facilities or to implementation of stand-alone water reuse schemes. However, apart from the societal (public perception of water reuse for potable application) and water management challenges (proximity of wastewater and desalination plants), FO-RO hybrid has to overcome technical limitation such as low FO permeation flux to become economically attractive. Recent developments (i.e., improved FO membranes, use of pressure assisted osmosis, PAO) demonstrated significant improvement in water flux. However, flux improvement is associated with drawbacks, such as increased fouling behaviour, lower rejection of trace organic compounds (TrOCs) in PAO operation, and limitation in FO membrane mechanical resistance, which need to be better considered. To support successful implementation of FO-RO hybrid in the industry, further work is required regarding up-scaling to apprehend full-scale challenges in term of mass transfer limitation, pressure drop, fouling and cleaning strategies on a module scale. In addition, refined economics assessment is expected to integrate fouling and other maintenance costs/savings of the FO/PAO-RO hybrid systems, as well as cost savings from any treatment step avoided in the water recycling. PMID:27376337
Recent Progress in Discrete Dislocation Dynamics and Its Applications to Micro Plasticity
NASA Astrophysics Data System (ADS)
Po, Giacomo; Mohamed, Mamdouh S.; Crosby, Tamer; Erel, Can; El-Azab, Anter; Ghoniem, Nasr
2014-10-01
We present a self-contained review of the discrete dislocation dynamics (DDD) method for the numerical investigation of plasticity in crystals, focusing on recent development and implementation progress. The review covers the theoretical foundations of DDD within the framework of incompatible elasticity, its numerical implementation via the nodal method, the extension of the method to finite domains and several implementation details. Applications of the method to current topics in micro-plasticity are presented, including the size effects in nano-indentation, the evolution of the dislocation microstructure in persistent slip bands, and the phenomenon of dislocation avalanches in micro-pillar compression.
Modelling Coastal Cliff Recession Based on the GIM-DDD Method
NASA Astrophysics Data System (ADS)
Gong, Bin; Wang, Shanyong; Sloan, Scott William; Sheng, Daichao; Tang, Chun'an
2018-04-01
The unpredictable and instantaneous collapse behaviour of coastal rocky cliffs may cause damage that extends significantly beyond the area of failure. Gravitational movements that occur during coastal cliff recession involve two major stages: the small deformation stage and the large displacement stage. In this paper, a method of simulating the entire progressive failure process of coastal rocky cliffs is developed based on the gravity increase method (GIM), the rock failure process analysis method and the discontinuous deformation analysis method, and it is referred to as the GIM-DDD method. The small deformation stage, which includes crack initiation, propagation and coalescence processes, and the large displacement stage, which includes block translation and rotation processes during the rocky cliff collapse, are modelled using the GIM-DDD method. In addition, acoustic emissions, stress field variations, crack propagation and failure mode characteristics are further analysed to provide insights that can be used to predict, prevent and minimize potential economic losses and casualties. The calculation and analytical results are consistent with previous studies, which indicate that the developed method provides an effective and reliable approach for performing rocky cliff stability evaluations and coastal cliff recession analyses and has considerable potential for improving the safety and protection of seaside cliff areas.
Widespread increase of empirical carbapenem use in acute care hospitals in Catalonia, Spain.
Grau, Santiago; Fondevilla, Esther; Echeverría-Esnal, Daniel; Alcorta, Amaia; Limon, Enric; Gudiol, Francesc
2018-04-24
The overall increase in the use of carbapenems could lead to the selection of carbapenem-resistant bacteria. The objectives of this study were to analyze carbapenem use from 2008 to 2015 and their prescription profile in 58 hospitals affiliated to the VINCat Programme (nosocomial infection vigilance system). Retrospective, longitudinal and descriptive study of carbapenem use. Consecutive case-series study, looking for carbapenem prescription characteristics, conducted in January 2016. Use was calculated in defined daily doses (DDD)/100 patient-days (PD); prescription profiles were assessed using a standardized survey. Carbapenem use increased 88.43%, from 3.37 DDD/100-PD to 6.35 DDD/100-PD (p<0.001). A total of 631 patients were included in the prescription analysis. Carbapenems were prescribed empirically in 76.2% of patients, mainly for urinary tract and intra-abdominal infections due to suspicion of polymicrobial mixed infection (27.4%) and severity (25.4%). A worrying increase in carbapenem use was found in Catalonia. Stewardship interventions are required to prevent carbapenem overuse. Copyright © 2018 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.
What can nanosafety learn from drug development? The feasibility of "safety by design".
Hjorth, Rune; van Hove, Lilian; Wickson, Fern
2017-04-01
"Safety by design" (SbD) is an intuitively appealing concept that is on the rise within nanotoxicology and nanosafety research, as well as within nanotechnology research policy. It leans on principles established within drug discovery and development (DDD) and seeks to address safety early, as well as throughout product development. However, it remains unclear what the concept of SbD exactly entails for engineered nanomaterials (ENMs) or how it is envisioned to be implemented. Here, we review the concept as it is emerging in European research and compare its resemblance with the safety testing and assessment practices in DDD. From this comparison, it is clear that "safety" is not obtained through DDD, and that SbD should be considered a starting point rather than an end, meaning that products will still need to progress through thorough safety evaluations and regulation. We conclude that although risk reduction is clearly desirable, the way SbD is currently communicated tends to treat safety as an inherent material property and that this is fundamentally problematic as it represents a recasting and reduction of societal issues into technical problems. SbD therefore faces a multitude of challenges, from practical implementation to unrealistic stakeholder expectations.
Groundwater modelling in conceptual hydrological models - introducing space
NASA Astrophysics Data System (ADS)
Boje, Søren; Skaugen, Thomas; Møen, Knut; Myrabø, Steinar
2017-04-01
The tiny Sæternbekken Minifelt (Muren) catchment (7500 m2) in Bærumsmarka, Norway, was during the 1990s, densely instrumented with more than a 100 observation points for measuring groundwater levels. The aim was to investigate the link between shallow groundwater dynamics and runoff. The DDD (Distance Distribution Dynamics) model is a newly developed rainfall-runoff model used operationally by the Norwegian Flood-Forecasting service at NVE. The model estimates the capacity of the subsurface reservoir at different levels of saturation and predicts overland flow. The subsurface in the DDD model has a 2-D representation that calculates the saturated and unsaturated soil moisture along a hillslope representing the entire catchment in question. The groundwater observations from more than two decades ago are used to verify assumptions of the subsurface reservoir in the DDD model and to validate its spatial representation of the subsurface reservoir. The Muren catchment will, during 2017, be re-instrumented in order to continue the work to bridge the gap between conceptual hydrological models, with typically single value or 0-dimension representation of the subsurface, and models with more realistic 2- or 3-dimension representation of the subsurface.
McNellis, R.P.; Fallon, J.D.; Lee, K.E.
2001-01-01
Streambed sediments and fish tissues were collected in part of the Upper Mississippi River Basin to assess the presence and distribution of organochlorine compounds (OCs) including PCBs. A total of 13 OCs were detected among 14 of 27 streambed sediment sampling locations. In fish tissues analyzed, 9 OCs were detected among 17 of 24 sites sampled. Eight OCs were detected in both fish and streambed sediment samples, they were: cis-chlordane, o,p'-DDD; p,p'-DDD; p,p'-DDE; p,p'-DDT; hexachlorobenzene; transnonachlor; and PCBs. The most frequently detected OCs were: p,p'-DDE; and p,p'-DDD in streambed sediment and p,p'-DDE and PCBs in fish tissues. No OCs were detected in streambed sediment at agricultural sites; however, the agricultural sites had 17 detections of OCs in fish tissue. Urban streams had concentrations of total DDT and metabolites in streambed sediment that exceed guidelines for classification of sites with high probabilities of adverse effects to aquatic organisms. Total DDT was the only OC within an urban land use that exceeded guidelines for piscivorous wildlife.
Organochlorines and mercury in osprey eggs from the eastern United States
Audet, D.J.; Scott, D.S.; Wiemeyer, Stanley N.
1992-01-01
Organochlorine and mercury concentrations were determined in Osprey eggs collected from Maryland, Virginia, and Massachusetts during 1986-87. DDE concentrations were significantly different among locations. Median DDE concentrations did not decline significantly in eggs from Glenn L. Martin National Wildlife Refuge, Maryland, between 1973 and 1986. The median DDE residue for eggs from Martin Refuge in 1986 surpassed the value associated with 10% eggshell thinning, but was below the value associated with production of 1.0 young per active nest, a level assumed to represent a stable population. DDD, DDT, dieldrin, PCB, and mercury residues in all eggs appeared insignificant with regard to potential effects on shell thickness or reproduction. DDE and PCB residues were lower in eggs collected in 1986-87 than in those collected in the 1970s for each area. DDD, DDT, and dieldrin were not detected in Martin Refuge eggs in 1986, representing a significant reduction since 1973. DDD, DDT, and dieldrin levels in Massachusetts and Virginia eggs in 1986-87 were similar to those in eggs from the 1970s for each state. Mercury residues in eggs from Martin Refuge may be increasing and although not significant in this study, may warrant future monitoring.
Gray bats and pollution in Missouri and northern Alabama
Clark, D.R.; Bunck, C.M.; Cromartie, E.; LaVal, R.K.; Tuttle, M.D.
1981-01-01
Gray bats died with lethal brain concentrations of dieldrin and rising levels of heptachlor epoxide in 1976, 1977, and 1978 at Bat Caves No. 2-3, Franklin County, Missouri. The colony disappeared in 1979. Dieldrin was banned in 1974 and 1981 was the last year for heptachlor use in Missouri. The State is recommendiing three organophosphates (chlorpyrifos or Dursban, dyfonate or Fonophos, and ethoprop or Mocap) as substitutes for heptachlor. All three compounds have excellent records in the environment. Analyses of insects collected where bats of this colony fed showed beetles, particularly rove beetles (Staphylinidae), to be the most heavily contaminated part of the bat's diet. Lactation concentrated these residues so that levels in milk were approximately 30 times those in the insect diet. Gray bats found dead in caves in northern Alabama showed DDD (a DDT derivative) contamination. Bats from the colony at Cave Springs Cave on the Wheeler National Wildlife Refuge contained up to 29 ppm DDD in their brains, but this is probably less than one-half the lethal level. Bats from other colonies contained less. The DDD contamination enters the Terinessee River just above the Wheeler Refuge and is seen in gray bat colonies as far as 60 miles downriver.
Müller, Jana; Schmidt, Daniel; Kollan, Christian; Lehmann, Marc; Bremer, Viviane; Zimmermann, Ruth
2017-10-25
In Germany, medical care of prisoners is completely separated from extramural health care. The extent and quality of medical care among prisoners in Germany are therefore largely unknown. We performed a secondary data analysis of pharmacy sales data for tuberculosis (TB), HIV, hepatitis C (HCV) and opioid substitution treatment (OST) delivered to prisons in 11 federal states (FS) in Germany between 01/2012 and 03/2013. The aims of this study were to assess (i) the treatment availability for the selected diseases and OST in German prisons, (ii) the proportion of prisoners treated per FS and overall for TB, HIV, HCV and OST during the study period. Substances unique to or typically used for the treatment of each disease were defined as marker substances with defined daily doses (DDD). For each marker substance we assessed the cumulative number of DDD, the average daily number of DDD (DDD d ) and average treatment prevalence per day in percent (adTP). Accordingly, the DDD d represents one person treated per day and the adTP means the proportion of prisoners treated per day. We compared the adTP of the diseases with previously measured prevalences. We obtained data from pharmacies supplying prisons in 11 of 16 German FS. Of the included prisons, 41% were supplied with medicines for TB, 71% for HIV and 58% for HCV and OST. Twice as many delivered marker substances for TB were indicated for the continuation phase and chemoprevention than the intensive phase. The HIV adTP ranged from 0.06% to 0.94%, HCV adTP ranged from 0.03% to 0.59% and OST adTP ranged from 0% to 7.90%. The overall adTP for the respective treatment was 0.39% for HIV, 0.12% for HCV and 2.18% for OST. According to our findings treatment rates for TB were consistent with the expected TB prevalence, at least in Berlin. HIV treatment seems to be offered to an adequate proportion of estimated infected prisoners. In contrast, the HCV treatment prevalence was low. High variation among FS in provision of all treatments, particularly of OST, point to inconsistent treatment practices, although nationwide extramural treatment guidelines for Germany exist.
2012-01-01
Background Adrenal gland of mice contains a transient zone between the adrenal cortex and the adrenal medulla: the X-zone. There are clear strain differences in terms of X-zone morphology. Nulliparous females of the inbred mouse DDD strain develop adrenal X-zones containing exclusively vacuolated cells, whereas females of the inbred mouse B6 strain develop X-zones containing only non-vacuolated cells. The X-zone vacuolation is a physiologic process associated with the X-zone degeneration and is tightly regulated by genetic factors. Identification of the genetic factors controlling such strain differences should help analyze the X-zone function. In this study, a quantitative trait locus (QTL) analysis for the extent of X-zone vacuolation was performed for two types of F2 female mice: F2Ay mice (F2 mice with the Ay allele) and F2 non-Ay mice (F2 mice without the Ay allele). These were produced by crossing B6 females and DDD.Cg-Ay males. DDD.Cg-Ay is a congenic mouse strain for the Ay allele at the agouti locus and is used for this study because a close association between the X-zone morphology and the agouti locus genotype has been suggested. The Ay allele is dominant and homozygous lethal; therefore, living Ay mice are invariably heterozygotes. Results Single QTL scans identified significant QTLs on chromosomes 1, 2, 6, and X for F2 non-Ay mice, and on chromosomes 2, 6, and 12 for F2Ay mice. The QTL on chromosome 2 was considered to be because of the agouti locus, which has been suggested to be associated with X-zone vacuolation. A significant QTL that interacted with the agouti locus was identified on chromosome 8. Conclusions The extent of X-zone vacuolation in DDD females was controlled by multiple genes with complex interactions. The murine X-zone is considered analogous structure to the human fetal zone. Therefore, the results of this study will aid in understanding function of not only of the X-zone but also of the human fetal zone. Identifying the genes responsible for the QTLs will be essential for understanding the molecular basis of X-zone function, which is currently unclear. PMID:23131041
Suto, Jun-Ichi
2012-11-06
Adrenal gland of mice contains a transient zone between the adrenal cortex and the adrenal medulla: the X-zone. There are clear strain differences in terms of X-zone morphology. Nulliparous females of the inbred mouse DDD strain develop adrenal X-zones containing exclusively vacuolated cells, whereas females of the inbred mouse B6 strain develop X-zones containing only non-vacuolated cells. The X-zone vacuolation is a physiologic process associated with the X-zone degeneration and is tightly regulated by genetic factors. Identification of the genetic factors controlling such strain differences should help analyze the X-zone function. In this study, a quantitative trait locus (QTL) analysis for the extent of X-zone vacuolation was performed for two types of F2 female mice: F2Ay mice (F2 mice with the Ay allele) and F2 non-Ay mice (F2 mice without the Ay allele). These were produced by crossing B6 females and DDD.Cg-Ay males. DDD.Cg-Ay is a congenic mouse strain for the Ay allele at the agouti locus and is used for this study because a close association between the X-zone morphology and the agouti locus genotype has been suggested. The Ay allele is dominant and homozygous lethal; therefore, living Ay mice are invariably heterozygotes. Single QTL scans identified significant QTLs on chromosomes 1, 2, 6, and X for F2 non-Ay mice, and on chromosomes 2, 6, and 12 for F2Ay mice. The QTL on chromosome 2 was considered to be because of the agouti locus, which has been suggested to be associated with X-zone vacuolation. A significant QTL that interacted with the agouti locus was identified on chromosome 8. The extent of X-zone vacuolation in DDD females was controlled by multiple genes with complex interactions. The murine X-zone is considered analogous structure to the human fetal zone. Therefore, the results of this study will aid in understanding function of not only of the X-zone but also of the human fetal zone. Identifying the genes responsible for the QTLs will be essential for understanding the molecular basis of X-zone function, which is currently unclear.
Wei, Yan-Li; Bao, Lian-Jun; Wu, Chen-Chou; He, Zai-Cheng; Zeng, Eddy Y
2015-05-01
To evaluate the impacts of anthropogenic events on the rapid urbanized environment, the levels of legacy organochlorine pesticides (OCPs) and current-use insecticides (CUPs), i.e., dichlorodiphenyltrichloroethane and its metabolites (DDTs), hexachlorocyclohexanes (HCHs), pyrethroids and organophosphates in soil of the Pearl River Delta (PRD) and surrounding areas were examined. Spatial concentration distributions of legacy OCPs and CUPs shared similar patterns, with higher concentrations occurred in the central PRD with more urbanization level than that in the PRD's surrounding areas. Furthermore, relatively higher concentrations of OCPs and CUPs were found in the residency land than in other land-use types, which may be attributed to land-use change under rapid urbanization. Moderate correlations between gross domestic production or population density and insecticide levels in fifteen administrative districts indicated that insecticide spatial distributions may be driven by economic prosperity. The soil-air diffusive exchanges of DDTs and HCHs demonstrated that soil was a sink of atmospheric o,p'-DDE, o,p'-DDD, p,p'-DDD and o,p'-DDT, and was a secondary source of HCHs and p,p'-DDT to atmosphere. The soil inventories of DDTs and HCHs (100 ± 134 and 83 ± 70 tons) were expected to decrease to half of their current values after 18 and 13 years, respectively, whereas the amounts of pyrethroids and organophosphates (39 and 6.2 tons) in soil were estimated to decrease after 4 and 2 years and then increase to 87 and 1.0 tons after 100 years. In this scenario, local residents in the PRD and surrounding areas will expose to the high health risk for pyrethroids by 2109. Strict ban on the use of technical DDTs and HCHs and proper training of famers to use insecticides may be the most effective ways to alleviate the health effect of soil contamination. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhang, Fujin; He, Jiang; Yao, Yiping; Hou, Dekun; Jiang, Cai; Zhang, Xinxin; Di, Caixia; Otgonbayar, Khureldavaa
2013-08-01
The spatial variability and temporal trend in concentrations of the organochlorine pesticides (OCPs), hexachlorocyclohexane (HCH) and dichlorodiphenyltrichloroethane (DDT), in soils and agricultural corps were investigated on an intensive horticulture area in Hohhot, North-West China, from 2008 to 2011. The most frequently found and abundant pesticides were the metabolites of DDT (p,p'-DDE, p,p'-DDT, o,p'-DDT and p,p'-DDD). Total DDT concentrations ranged from ND (not detectable) to 507.41 ng/g and were higher than the concentration of total HCHs measured for the range of 4.84-281.44 ng/g. There were significantly positive correlations between the ∑DDT and ∑HCH concentrations (r (2)>0.74) in soils, but no significant correlation was found between the concentrations of OCPs in soils and clay content while a relatively strong correlation was found between total OCP concentrations and total organic carbon (TOC). β-HCH was the main isomer of HCHs, and was detected in all samples; the maximum proportion of β-HCH compared to ∑HCHs (mean value 54%) was found, suggesting its persistence. The α/γ-HCH ratio was between 0.89 and 5.39, which signified the combined influence of technical HCHs and lindane. Low p,p'-DDE/p,p'-DDT in N1, N3 and N9 were found, reflecting the fresh input of DDTs, while the relatively high o,p'-DDT/p,p'-DDT ratios indicated the agricultural application of dicofol. Ratios of DDT/(DDE+DDD) in soils do not indicate recent inputs of DDT into Hohhot farmland soil environment. Seasonal variations of OCPs featured higher concentrations in autumn and lower concentrations in spring. This was likely associated with their temperature-driven re-volatilization and application of dicofol in late spring.
What affects public acceptance of recycled and desalinated water?
Dolnicar, Sara; Hurlimann, Anna; Grün, Bettina
2011-01-01
This paper identifies factors that are associated with higher levels of public acceptance for recycled and desalinated water. For the first time, a wide range of hypothesized factors, both of socio-demographic and psychographic nature, are included simultaneously. The key results, based on a survey study of about 3000 respondents are that: (1) drivers of the stated likelihood of using desalinated water differ somewhat from drivers of the stated likelihood of using recycled water; (2) positive perceptions of, and knowledge about, the respective water source are key drivers for the stated likelihood of usage; and (3) awareness of water scarcity, as well as prior experience with using water from alternative sources, increases the stated likelihood of use. Practical recommendations for public policy makers, such as key messages to be communicated to the public, are derived. PMID:20950834
Response of amphipod assemblages to desalination brine discharge: Impact and recovery
NASA Astrophysics Data System (ADS)
de-la-Ossa-Carretero, J. A.; Del-Pilar-Ruso, Y.; Loya-Fernández, A.; Ferrero-Vicente, L. M.; Marco-Méndez, C.; Martinez-Garcia, E.; Sánchez-Lizaso, J. L.
2016-04-01
Desalination has become an important industry whose dense, high-salinity effluent has an impact on marine communities. Without adequate dilution, brine remains on the bottom increasing bottom salinity and affecting benthic communities. Amphipods showed high sensitivity to increased salinity produced by desalination brine discharge. A decrease in abundance and diversity of amphipods was detected at the station closest to the outfall, where salinity values reached 53. This salinity was later reduced by including a diffuser at the end of the pipeline. Six months after diffuser installation, amphipod abundance increased. During the first stage of this recovery, species such as Photis longipes recovered their abundance, others such as Microdeutopus versiculatus displayed opportunistic patterns, while others needed more time for recovery, e.g. Harpinia pectinata. These differences may be dependent on the organism living habits.
Impacts of blending on dilution of negatively buoyant brine discharge in a shallow tidal sea.
Kämpf, Jochen
2009-07-01
A fine-resolution three-dimensional hydrodynamic model is applied to study the dilution of desalination brine discharged into a tidal sea. Based on given inflow rate and salinity excess of discharge brine, this study explores variations in mid-field dilutions when other low-salinity wastewater is added to the discharge. Findings reveal that this blending leads to a decrease in dilution in the mixing zone and therefore to higher levels of pollutants in this zone, while, on the other hand, the mixing zone occupies a smaller area. The reason is that the discharge of brine creates a density-driven flow that operates to partially remove effluent from the discharge location. This removal is less efficient for the decrease in density excess of the discharge. Hence, in an ambient sea of moderate mixing, blending can be expected to increase the risk of marine pollution in the mixing zone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wendt, Daniel S.; Orme, Christopher J.; Mines, Gregory L.
A model was developed to estimate the process energy requirements of a switchable polarity solvent forward osmosis (SPS FO) system for water purification from aqueous NaCl feed solution concentrations ranging from 0.5 to 4.0 molal at an operational scale of 480 m3/day (feed stream). The model indicates recovering approximately 90% of the water from a feed solution with NaCl concentration similar to seawater using SPS FO would have total equivalent energy requirements between 2.4 and 4.3 kWh per m 3 of purified water product. The process is predicted to be competitive with current costs for disposal/treatment of produced water frommore » oil and gas drilling operations. As a result, once scaled up the SPS FO process may be a thermally driven desalination process that can compete with the cost of seawater reverse osmosis.« less
Wendt, Daniel S.; Orme, Christopher J.; Mines, Gregory L.; ...
2015-08-01
A model was developed to estimate the process energy requirements of a switchable polarity solvent forward osmosis (SPS FO) system for water purification from aqueous NaCl feed solution concentrations ranging from 0.5 to 4.0 molal at an operational scale of 480 m3/day (feed stream). The model indicates recovering approximately 90% of the water from a feed solution with NaCl concentration similar to seawater using SPS FO would have total equivalent energy requirements between 2.4 and 4.3 kWh per m 3 of purified water product. The process is predicted to be competitive with current costs for disposal/treatment of produced water frommore » oil and gas drilling operations. As a result, once scaled up the SPS FO process may be a thermally driven desalination process that can compete with the cost of seawater reverse osmosis.« less
Planning and Design of Seawater Reverse Osmosis Desalination Plants Marine Outfalls
NASA Astrophysics Data System (ADS)
Maalouf, S.; Yeh, W. W.
2011-12-01
Increasing demands for water in urban areas and agricultural zones in arid and semi-arid regions have urged planners and regulators to look for alternative renewable water sources. Worldwide, seawater reverse osmosis (SWRO) desalination plants have become an essential supply source for the production of fresh water in such regions. Disposal of their wastes, however, has not been fully and properly addressed. This study presents a strategy for the analysis and design of optimal disposal systems of hypersaline wastes that are generated by SWRO desalination plants. The study evaluates current disposal methods and recommends ways to effectively employ multiport marine outfalls for this purpose. Such outfalls emerged as reliable means for conveying wastes from process plants, to include wastewater treatment and power plants, into the coastal waters. Their proper use, however, in conjunction with SWRO desalination plants is still in its beginning stage, and much work needs to be done to employ them effectively. Therefore, the main objective of this research is to provide design engineers with effective procedures that meet environmental permitting requirements and restrictions, while ascertaining adequate hydrodynamic performance. The study is tested by employing a simulation model and examining its reliability under many parameter perturbation scenarios. This is further extended by providing a solution to the same problem using a heuristic approach.
Kloppmann, W; Negev, Ido; Guttman, Joseph; Goren, Orly; Gavrieli, Ittai; Guerrot, Catherine; Flehoc, Christine; Pettenati, Marie; Burg, Avihu
2018-04-01
"Man-made" or unconventional freshwater, like desalinated seawater or reclaimed effluents, is increasingly introduced into regional water cycles in arid or semi-arid countries. We show that the breakthrough of reverse osmosis-derived freshwater in the largely engineered water cycle of the greater Tel Aviv region (Dan Region) has profoundly changed previous isotope fingerprints. This new component can be traced throughout the system, from the drinking water supply, through sewage, treated effluents, and artificially recharged groundwater at the largest Soil-Aquifer Treatment system in the Middle East (Shafdan) collecting all the Dan region sewage. The arrival of the new water type (desalinated seawater) in 2007 and its predominance since 2010 constitutes an unplanned, large-scale, long-term tracer test and the monitoring of the breakthrough of desalination-specific fingerprints in the aquifer system of Shafdan allowed to get new insights on the water and solute flow and behavior in engineered groundwater systems. Our approach provides an investigation tool for the urban water cycle, allowing estimating the contribution of diverse freshwater sources, and an environmental tracing method for better constraining the long-term behavior and confinement of aquifer systems with managed recharge. Copyright © 2017. Published by Elsevier B.V.
Water desalination by electrical resonance inside carbon nanotubes.
Feng, Jia-Wei; Ding, Hong-Ming; Ma, Yu-Qiang
2016-10-12
Although previous studies have indicated that the carbon nanotube (CNT) can be used for directed transportation of water and ions, it is still a challenging problem to design a CNT-based device for high performance water desalination. In this study, by using molecular dynamics simulations, we successfully design one type of CNT as a highly efficient desalination membrane through electrical resonance. By decorating the two ends of the CNT with vibrational charges, an alternating electric field is created inside the CNT. When the amplitude of the vibrational charge is 0.05 e, and the vibrational frequency is between 10 THz and 20 THz, the CNT can completely block the transportation of ions. The decrease of the amplitude or the deviation of the frequency in an appropriate range will gradually increase the ion flow. Besides, we also reveal the underlying molecular mechanism of ion blockage, i.e., the electric resonance can disrupt the water structure inside the CNT and then alter the hydration energy of ions inside the CNT. More importantly, we further demonstrate that this mechanism is universal, which is independent of the type of ions and the size of CNT. The present work could be useful for designing water desalination membranes with lower energy consumption and higher fresh water production.
Experimental Analysis of Desalination Unit Coupled with Solar Water Lens Concentrator
NASA Astrophysics Data System (ADS)
Chaithanya, K. K.; Rajesh, V. R.; Suresh, Rahul
2016-09-01
The main problem that the world faces in this scenario is shortage of potable water. Hence this research work rivets to increase the yield of desalination system in an economical way. The integration of solar concentrator and desalination unit can project the desired yield, but the commercially available concentrated solar power technologies (CSP) are not economically viable. So this study proposes a novel method to concentrate ample amount of solar radiation in a cost effective way. Water acting as lens is a highlighted technology initiated in this work, which can be a substitute for CSP systems. And water lens can accelerate the desalination process so as to increase the yield economically. The solar irradiance passing through the water will be concentrated at a focal point, and the concentration depends on curvature of water lens. The experimental analysis of water lens makes use of transparent thin sheet, supported on a metallic structure. The Plano convex shape of water lens is developed by varying the volume of water that is being poured on the transparent thin sheet. From the experimental analysis it is inferred that, as the curvature of water lens increases, solar irradiance can be focused more accurately on to the focus and a higher water temperature is obtained inside the solar still.
Naim, Mona; Elewa, Mahmoud; El-Shafei, Ahmed; Moneer, Abeer
2015-01-01
An innovative polymeric membrane has been invented, which presents a breakthrough in the field of desalination membranes. It can desalinate simulated seawater of exceptionally high concentration to produce a high flux of potable water with over 99.7% salt rejection (%SR) in a once-through purge-air pervaporation (PV) process. A set-up was constructed for conducting the desalination experiments and the effect of initial salt solution concentration (Ci) and pervaporation temperature (Tpv) on the water flux (J), %SR, separation factor, and pervaporation separation index were determined. The membrane was prepared by the phase-inversion technique, of a specially formulated casting solution consisting of five ingredients, after which the membrane was subjected to a post-treatment by which certain properties were conferred. The results confirmed that the salinity of the pervaporate was independent of Ci (all %SR above 99.7). The best result was at Tpv=70 °C, where J varied from 5.97 to 3.45 l/m2 h for Ci=40-140 g NaCl/l, respectively. The membrane morphology was confirmed to be asymmetric. The contact angle was immeasurable, indicating the membrane to be super-hydrophilic. Activation energies computed using Arrhenius law were, under all conditions investigated, less than 20 kJ/mol K.
Zhang, Lulu; Xing, Jun; Wen, Xinglin; Chai, Jianwei; Wang, Shijie; Xiong, Qihua
2017-09-14
Passive solar evaporation represents a promising and environmentally benign method of water purification/desalination. Plasmonic nanoparticles have been demonstrated as an effective approach for enhancing solar steam generation through a plasmonic heating effect, nonetheless the efficiency is constrained by unnecessary bulk heating of the entire liquid volume, while the noble metals commonly used are not cost-effective in terms of availability and their sophisticated preparation. Herein, a paper-like plasmonic device consisting of a microporous membrane and indium nanoparticles (In NPs/MPM) is fabricated through a simple thermal evaporation method. Due to the light-weight and porous nature of the device, the broadband light absorption properties, and theoretically the excellent plasmonic heating effect from In NP which could be even higher than gold, silver and aluminium nanoparticles, our device can effectively enhance solar water evaporation by floating on the water surface and its utility has been demonstrated in the solar desalination of a real seawater sample. The durability of the device in solar seawater desalination has also been investigated over multiple cycles with stable performances. This portable device could provide a solution for individuals to do water/seawater purification in under-developed areas with limited/no access to electricity or a centralized drinking water supply.
Water transport and desalination through double-layer graphyne membranes.
Akhavan, Mojdeh; Schofield, Jeremy; Jalili, Seifollah
2018-05-16
Non-equilibrium molecular dynamics simulations of water-salt solutions driven through single and double-layer graphyne membranes by a pressure difference created by rigid pistons are carried out to determine the relative performance of the membranes as filters in a reverse osmosis desalination process. It is found that the flow rate of water through a graphyne-4 membrane is twice that of a graphyne-3 membrane for both single and double-layer membranes. Although the addition of a second layer to a single-layer membrane reduces the membrane permeability, the double-layer graphyne membranes are still two or three orders of magnitude more permeable than commercial reverse osmosis membranes. The minimum reduction in flow rate for double-layer membranes occurs at a layer spacing of 0.35 nm with an AA stacking configuration, while at a spacing of 0.6 nm the flow rate is close to zero due to a high free energy barrier for permeation. This is caused by the difference in the environments on either side of the membrane sheets and the formation of a compact two-dimensional layer of water molecules in the interlayer space which slows down water permeation. The distribution of residence times of water molecules in the interlayer region suggests that at the critical layer spacing of 0.6 nm, a cross-over occurs in the mechanism of water flow from the collective movement of hydrogen-bonded water sheets to the permeation of individual water molecules. All membranes are demonstrated to have a high salt rejection fraction and the double-layered graphyne-4 membranes can further increase the salt rejection by trapping ions that have passed through the first membrane from the feed solution in the interlayer space.
Force Projection Technology Overview
2011-08-12
Technologies • Fuel Efficient Powertrain Lubricant • Nanotechnology for Fuels and Lubes • Water from Air • Water Reuse • In-line Water Monitoring...purification systems with new pretreatment, desalination and post treatment technologies. Payoff: • Reduces the logistical footprint associated with water...FY11 FY12 FY13 FY14 FY15 FY16 FY17 •Water From Air •Water Quality Monitoring •Water Reuse •Pre and Post Treatment • Desalination 6 5 5
Desalination with Carbon Aerogel Electrodes
1996-12-04
Desalination with Carbon Aerogel Electrodes Joseph C. Farmer, Jeffrey H Richardson and David V Fix Chemistry and Materials Science Department Lawrence...Department of Interior, 190 pages, May (1966). 9. A. M. Johnson, A. W. Venolia, J. Newman, R. G. Wilbourne , C. M. Wong,, W. S. Gillam, S. Johnson, R. H...200 056, 31 pages, March (1970). 10. A. M. Johnson, A. W. Venolia, R. G. Wilbourne , J. Newman, "The Electrosorb Process for Desalting Water," Marquardt
Two-step optimization of pressure and recovery of reverse osmosis desalination process.
Liang, Shuang; Liu, Cui; Song, Lianfa
2009-05-01
Driving pressure and recovery are two primary design variables of a reverse osmosis process that largely determine the total cost of seawater and brackish water desalination. A two-step optimization procedure was developed in this paper to determine the values of driving pressure and recovery that minimize the total cost of RO desalination. It was demonstrated that the optimal net driving pressure is solely determined by the electricity price and the membrane price index, which is a lumped parameter to collectively reflect membrane price, resistance, and service time. On the other hand, the optimal recovery is determined by the electricity price, initial osmotic pressure, and costs for pretreatment of raw water and handling of retentate. Concise equations were derived for the optimal net driving pressure and recovery. The dependences of the optimal net driving pressure and recovery on the electricity price, membrane price, and costs for raw water pretreatment and retentate handling were discussed.
Yuan, Lulu; Yang, Xufei; Liang, Peng; Wang, Lei; Huang, Zheng-Hong; Wei, Jincheng; Huang, Xia
2012-04-01
A new technology (CDI-MFC) that combined capacitive deionization (CDI) and microbial fuel cell (MFC) was developed to treat low-concentration salt water with NaCl concentration of 60mg/L. The water desalination rate was 35.6mg/(Lh), meanwhile the charge efficiency was 21.8%. Two desorption modes were investigated: discharging (DC) mode and short circuit (SC) mode. The desalination rate in the DC mode was 200.6±3.1mg/(Lh), 47.8% higher than that in the SC mode [135.7±15.3mg/(Lh)]. The average current in the DC mode was also much higher than that of the SC mode. The energy stored in the CDI cell has been reused to enhance the electron production of MFC by the discharging desorption mode (DC mode), which offers an approach to recover the electrostatic energy in the CDI cell. Copyright © 2012 Elsevier Ltd. All rights reserved.
Water permeability of nanoporous graphene at realistic pressures for reverse osmosis desalination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen-Tanugi, David; Grossman, Jeffrey C.
Nanoporous graphene (NPG) shows tremendous promise as an ultra-permeable membrane for water desalination thanks to its atomic thickness and precise sieving properties. However, a significant gap exists in the literature between the ideal conditions assumed for NPG desalination and the physical environment inherent to reverse osmosis (RO) systems. In particular, the water permeability of NPG has been calculated previously based on very high pressures (1000–2000 bars). Does NPG maintain its ultrahigh water permeability under real-world RO pressures (<100 bars)? Here, we answer this question by drawing results from molecular dynamics simulations. Our results indicate that NPG maintains its ultrahigh permeabilitymore » even at low pressures, allowing a permeate water flux of 6.0 l/h-bar per pore, or equivalently 1041 ± 20 l/m{sup 2}-h-bar assuming a nanopore density of 1.7 × 10{sup 13} cm{sup −2}.« less
NASA Astrophysics Data System (ADS)
Watanabe, Ryoichi; Yamasaki, Koreyoshi; Minagawa, Tomoko; Iyooka, Hiroki; Kitano, Yoshinori
For every time in summer season, hypoxic water mass has formed at the inner part of Hakata Bay. Field observation study has carried out at the inner part of Hakata Bay since 2004 with the particular aim of tracking the movement of hypoxic water mass. Hypoxic water masses form the end of June to September on this area because the consumption of oxygen in bottom water layers exceeds the re-supply of oxygen from the atmosphere. Under such hypoxic conditions, the seawater desalination plant has begun to use in 2005. After seawater desalination plant operation starting, hypoxic water mass tends to improve. In this research, the authors show the following result. After seawater desalination plant has begun to operate, the hypoxia around the mixed discharge water outlet tends to be improved.
A FFT-based formulation for discrete dislocation dynamics in heterogeneous media
NASA Astrophysics Data System (ADS)
Bertin, N.; Capolungo, L.
2018-02-01
In this paper, an extension of the DDD-FFT approach presented in [1] is developed for heterogeneous elasticity. For such a purpose, an iterative spectral formulation in which convolutions are calculated in the Fourier space is developed to solve for the mechanical state associated with the discrete eigenstrain-based microstructural representation. With this, the heterogeneous DDD-FFT approach is capable of treating anisotropic and heterogeneous elasticity in a computationally efficient manner. In addition, a GPU implementation is presented to allow for further acceleration. As a first example, the approach is used to investigate the interaction between dislocations and second-phase particles, thereby demonstrating its ability to inherently incorporate image forces arising from elastic inhomogeneities.
Liang, Peng; Yuan, Lulu; Yang, Xufei; Zhou, Shaoji; Huang, Xia
2013-05-01
A capacitive deionization (CDI) cell was built with electrodes made of an inexpensive commercial activated carbon fiber (ACF), and then modified by incorporating ion-exchangers into the cell compartment. Three modified CDI designs were tested: MCDI - a CDI with electrodes covered by ion-exchange membranes (IEMs) of the same polarity, FCDI - a CDI with electrodes covered by ion-exchange felts (IEFs), and R-MCDI - an MCDI with cell chamber packed with ion-exchange resin (IER) granules. The cell was operated in the batch reactor mode with an initial salt concentration of 1000 mg/L NaCl, a typical level of domestic wastewater. The desalination tests involved investigations of two consecutive operation stages of CDIs: electrical adsorption (at an applied voltage of 1.2 V) and desorption [including short circuit (SC) desorption and discharge (DC) desorption]. The R-MCDI showed the highest electric adsorption as measured in the present study by desalination rate [670 ± 20 mg/(L h)] and salt removal efficiency (90 ± 1%) at 60 min, followed by the MCDI [440 ± 15 mg/(L h) and 60 ± 2%, respectively]. The superior desalination performance of the R-MCDI over other designs was also affirmed by its highest charge efficiency (110 ± 7%) and fastest desorption rates at both the SC [1960 ± 15 mg/(L·h)] and DC [3000 ± 20 mg/(L·h)] modes. The desalination rate and salt removal efficiency of the R-MCDI increased from ∼270 mg/(L h) and 83% to ∼650 mg/(L h) and 98% respectively when the applied voltage increased from 0.6 V to 1.4 V, while decreased slightly when lowering the salt water flow rate that fed into the cell. The packing of IER granules in the R-MCDI provided additional surface area for ions transfer; meanwhile, according to the results of electrochemical impedance spectroscopy (EIS) analysis, it substantially lower down the R-MCDI's ohmic resistance, resulting in improved desalination performance. Copyright © 2013 Elsevier Ltd. All rights reserved.
Tavares, Margarida; Carvalho, Ana Cláudia; Almeida, José Pedro; Andrade, Paulo; São-Simão, Ricardo; Soares, Pedro; Alves, Carlos; Pinto, Rui; Fontanet, Arnaud; Watier, Laurence
2018-06-01
A prospective audit and feedback antimicrobial stewardship intervention conducted in the Orthopaedics Department of a university hospital in Portugal was evaluated by comparing an interrupted time series in the intervention group with a non-intervention (control) group. Monthly antibiotic use (except cefazolin) was measured as the World Health Organization's Anatomical Therapeutic Chemical defined daily doses (ATC-DDD) from January 2012 to September 2016, excluding the 6-month phase of intervention implementation starting on 1 January 2015. Compared with the control group, the intervention group had a monthly decrease in the use of fluoroquinolones by 2.3 DDD/1000 patient-days [95% confidence interval (CI) -3.97 to -0.63]. An increase in the use of penicillins by 103.3 DDD/1000 patient-days (95% CI 47.42 to 159.10) was associated with intervention implementation, followed by a decrease during the intervention period (slope = -5.2, 95% CI -8.56 to -1.82). In the challenging scenario of treatment of osteoarticular and prosthetic joint infections, an audit and feedback intervention reduced antibiotic exposure and spectrum. Copyright © 2018 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.
Recent increase in detection of alprazolam in Victorian heroin-related deaths.
Rintoul, Angela C; Dobbin, Malcolm D H; Nielsen, Suzanne; Degenhardt, Louisa; Drummer, Olaf H
2013-03-04
To examine the rate of detection of alprazolam among cases of heroin-related death (HRD) in Victoria, including the relationship between alprazolam supply and HRDs. Population-based study of community alprazolam supply in Victoria and HRDs reported to the Victorian coroner from January 1990 to December 2010. Number of prescriptions for alprazolam supplied; defined daily dose (DDD) per 1000 population per 04 of alprazolam; number of cases of HRD in which alprazolam was detected through postmortem toxicological testing. Alprazolam supply increased by 1426%, from 0.42 DDD/1000/04 in 1990, to 6.41 in 2010. For every 1 unit increase in DDD/1000/04, the proportion of cases of HRD in which alprazolam was detected increased at an incidence rate ratio of 2.4 (95% CI, 2.1-2.8; P < 0.001). Alprazolam was detected among increasing proportions of HRDs, from 5.3% in 2005 to a peak of 35.3% in 2009. The increase in detection of alprazolam among cases of HRD, particularly since 2005, and the disproportionate increase in prescribing of the high-dose 2 mg formulation compared with other formulations suggest a need to examine alprazolam prescribing and to identify inappropriate prescribing and the circumstances of diversion from licit to illicit use.
Ramachandra, Ranjan; Bouwer, James C; Mackey, Mason R; Bushong, Eric; Peltier, Steven T; Xuong, Nguyen-Huu; Ellisman, Mark H
2014-06-01
Energy filtered transmission electron microscopy techniques are regularly used to build elemental maps of spatially distributed nanoparticles in materials and biological specimens. When working with thick biological sections, electron energy loss spectroscopy techniques involving core-loss electrons often require exposures exceeding several minutes to provide sufficient signal to noise. Image quality with these long exposures is often compromised by specimen drift, which results in blurring and reduced resolution. To mitigate drift artifacts, a series of short exposure images can be acquired, aligned, and merged to form a single image. For samples where the target elements have extremely low signal yields, the use of charge coupled device (CCD)-based detectors for this purpose can be problematic. At short acquisition times, the images produced by CCDs can be noisy and may contain fixed pattern artifacts that impact subsequent correlative alignment. Here we report on the use of direct electron detection devices (DDD's) to increase the signal to noise as compared with CCD's. A 3× improvement in signal is reported with a DDD versus a comparably formatted CCD, with equivalent dose on each detector. With the fast rolling-readout design of the DDD, the duty cycle provides a major benefit, as there is no dead time between successive frames.
Sequence-Selective Formation of Synthetic H-Bonded Duplexes
2017-01-01
Oligomers equipped with a sequence of phenol and pyridine N-oxide groups form duplexes via H-bonding interactions between these recognition units. Reductive amination chemistry was used to synthesize all possible 3-mer sequences: AAA, AAD, ADA, DAA, ADD, DAD, DDA, and DDD. Pairwise interactions between the oligomers were investigated using NMR titration and dilution experiments in toluene. The measured association constants vary by 3 orders of magnitude (102 to 105 M–1). Antiparallel sequence-complementary oligomers generally form more stable complexes than mismatched duplexes. Mismatched duplexes that have an excess of H-bond donors are stabilized by the interaction of two phenol donors with one pyridine N-oxide acceptor. Oligomers that have a H-bond donor and acceptor on the ends of the chain can fold to form intramolecular H-bonds in the free state. The 1,3-folding equilibrium competes with duplex formation and lowers the stability of duplexes involving these sequences. As a result, some of the mismatch duplexes are more stable than some of the sequence-complementary duplexes. However, the most stable mismatch duplexes contain DDD and compete with the most stable sequence-complementary duplex, AAA·DDD, so in mixtures that contain all eight sequences, sequence-complementary duplexes dominate. Even higher fidelity sequence selectivity can be achieved if alternating donor–acceptor sequences are avoided. PMID:28857551
Rituximab for Treatment of Membranoproliferative Glomerulonephritis and C3 Glomerulopathies
2017-01-01
Membranoproliferative glomerulonephritis (MPGN) is a histological pattern of injury resulting from predominantly subendothelial and mesangial deposition of immunoglobulins or complement factors with subsequent inflammation and proliferation particularly of the glomerular basement membrane. Recent classification of MPGN is based on pathogenesis dividing MPGN into immunoglobulin-associated MPGN and complement-mediated C3 glomerulonephritis (C3GN) and dense deposit disease (DDD). Current guidelines suggest treatment with steroids, cytotoxic agents with or without plasmapheresis only for subjects with progressive disease, that is, nephrotic range proteinuria and decline of renal function. Rituximab, a chimeric B-cell depleting anti-CD20 antibody, has emerged in the last decade as a treatment option for patients with primary glomerular diseases such as minimal change disease, focal-segmental glomerulosclerosis, or idiopathic membranous nephropathy. However, data on the use of rituximab in MPGN, C3GN, and DDD are limited to case reports and retrospective case series. Patients with immunoglobulin-associated and idiopathic MPGN who were treated with rituximab showed partial and complete responses in the majorities of cases. However, rituximab was not effective in few cases of C3GN and DDD. Despite promising results in immunoglobulin-associated and idiopathic MPGN, current evidence on this treatment remains weak, and controlled and prospective data are urgently needed. PMID:28573137
Chen, Tai-Yuan; Wu, Te-Chang; Tsui, Yu-Kun; Chen, Hou-Hsun; Lin, Chien-Jen; Lee, Huey-Jen; Wu, Tai-Ching
2015-01-01
Though diffusion-weighted (DW) magnetic resonance imaging (MRI) is useful for diagnosing many pathologies, its use in infectious spondylodiscitis is unclear. We aimed to evaluate the use of DW MRI and apparent diffusion coefficient (ADC) mapping for the diagnosis of infectious spondylodiscitis. In this retrospective study, 17 patients with confirmed infectious spondylodiscitis were matched by age and level of infected disc with 17 patients with degenerative disc disease (DDD) and 17 healthy controls. All patients received conventional MRI and diffusion-weighted imaging (DWI) in the same imaging session. ADC values of the 3 groups of patients were compared. The mean age of each group was 67.4 ± 11.6 years. The mean ADCs of the normal control, DDD, and infectious spondylodiscitis groups were 1.76 ± 0.19 × 10(-3) , 1.12 ± 0.22 × 10(-3) , and 1.27 ± 0.38 × 10(-3) mm2 /second, respectively. The ADCs of the DDD and infectious spondylodiscitis groups were both significantly lower than that of the normal control group (both, P < 0.001). These data suggest that DWI/ADC MRI may be useful in the early diagnosis of infectious spondylodiscitis. © 2014 The Authors. Journal of Neuroimaging published by Wiley Periodicals, Inc. on behalf of American Society of Neuroimaging.
Watier, Laurence; Cavalié, Philippe; Coignard, Bruno; Brun-Buisson, Christian
2017-11-01
Defined daily doses (DDD) are the gold standard indicator for quantifying prescriptions. Since 2014, the European Centre for Disease Prevention and Control (ECDC) has also been using the number of packages per 1,000 inhabitants per day (ipd), as a surrogate for prescriptions, to report antibiotic consumption in the community and to perform comparisons between European Union (EU) countries participating in the European Surveillance of Antimicrobial Consumption Network (ESAC-Net). In 2015, consumption was reported to range across Europe from 1.0 to 4.7 packages per 1,000 ipd. Our analysis showed that consumption of antibiotics for systemic use per 1,000 ipd was on average 1.3 times greater in France than in Belgium when considering prescriptions in the numerator, 2.5 times greater when considering packages and 1.2 times greater when considering DDD. As long as the same metrics are used over time, antibiotic consumption data aggregated and disseminated by ECDC are useful for assessing temporal trends at the European level and within individual countries; these data may also be used for benchmarking across EU countries. While DDD - although imperfect - are the most widely accepted metric for this purpose, antibiotic packages do not appear suitable for comparisons between countries and may be misleading.
Watier, Laurence; Cavalié, Philippe; Coignard, Bruno; Brun-Buisson, Christian
2017-01-01
Defined daily doses (DDD) are the gold standard indicator for quantifying prescriptions. Since 2014, the European Centre for Disease Prevention and Control (ECDC) has also been using the number of packages per 1,000 inhabitants per day (ipd), as a surrogate for prescriptions, to report antibiotic consumption in the community and to perform comparisons between European Union (EU) countries participating in the European Surveillance of Antimicrobial Consumption Network (ESAC-Net). In 2015, consumption was reported to range across Europe from 1.0 to 4.7 packages per 1,000 ipd. Our analysis showed that consumption of antibiotics for systemic use per 1,000 ipd was on average 1.3 times greater in France than in Belgium when considering prescriptions in the numerator, 2.5 times greater when considering packages and 1.2 times greater when considering DDD. As long as the same metrics are used over time, antibiotic consumption data aggregated and disseminated by ECDC are useful for assessing temporal trends at the European level and within individual countries; these data may also be used for benchmarking across EU countries. While DDD - although imperfect - are the most widely accepted metric for this purpose, antibiotic packages do not appear suitable for comparisons between countries and may be misleading. PMID:29162212
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jong Suk; Chen, Jun; Garcia, Humberto E.
An RO (reverse osmosis) desalination plant is proposed as an effective, FLR (flexible load resource) to be integrated into HES (hybrid energy systems) to support various types of ancillary services to the electric grid, under variable operating conditions. To study the dynamic (transient) analysis of such system, among the various unit operations within HES, special attention is given here to the detailed dynamic modeling and control design of RO desalination process with a spiral-wound membrane module. The model incorporates key physical phenomena that have been investigated individually into a dynamic integrated model framework. In particular, the solution-diffusion model modified withmore » the concentration polarization theory is applied to predict RO performance over a large range of operating conditions. Simulation results involving several case studies suggest that an RO desalination plant, acting as a FLR, can provide operational flexibility to participate in energy management at the utility scale by dynamically optimizing the use of excess electrical energy. Here, the incorporation of additional commodity (fresh water) produced from a FLR allows a broader range of HES operations for maximizing overall system performance and profitability. For the purpose of assessing the incorporation of health assessment into process operations, an online condition monitoring approach for RO membrane fouling supervision is addressed in the case study presented.« less
Huff, G.F.
2006-01-01
Desalination is expected to make a substantial contribution to water supply in the United States by 2020. Currently, reverse osmosis is one of the most cost effective and widely used desalination technologies. The tendency to form scale deposits during reverse osmosis is an important factor in determining the suitability of input waters for use in desalination. The tendency toward scale formation of samples of saline ground water from selected geologic units in New Mexico was assessed using simulated evaporation. All saline water samples showed a strong tendency to form CaCO3 scale deposits. Saline ground water samples from the Yeso Formation and the San Andres Limestone showed relatively stronger tendencies to form CaSO4 2H2O scale deposits and relatively weaker tendencies to form SiO2(a) scale deposits than saline ground water samples from the Rio Grande alluvium. Tendencies toward scale formation in saline ground water samples from the Dockum Group were highly variable. The tendencies toward scale formation of saline waters from the Yeso Formation, San Andres Limestone, and Rio Grande alluvium appear to correlate with the mineralogical composition of the geologic units, suggesting that scale-forming tendencies are governed by aquifer composition and water-rock interaction. ?? 2006 Elsevier B.V. All rights reserved.
Kim, Jong Suk; Chen, Jun; Garcia, Humberto E.
2016-06-17
An RO (reverse osmosis) desalination plant is proposed as an effective, FLR (flexible load resource) to be integrated into HES (hybrid energy systems) to support various types of ancillary services to the electric grid, under variable operating conditions. To study the dynamic (transient) analysis of such system, among the various unit operations within HES, special attention is given here to the detailed dynamic modeling and control design of RO desalination process with a spiral-wound membrane module. The model incorporates key physical phenomena that have been investigated individually into a dynamic integrated model framework. In particular, the solution-diffusion model modified withmore » the concentration polarization theory is applied to predict RO performance over a large range of operating conditions. Simulation results involving several case studies suggest that an RO desalination plant, acting as a FLR, can provide operational flexibility to participate in energy management at the utility scale by dynamically optimizing the use of excess electrical energy. Here, the incorporation of additional commodity (fresh water) produced from a FLR allows a broader range of HES operations for maximizing overall system performance and profitability. For the purpose of assessing the incorporation of health assessment into process operations, an online condition monitoring approach for RO membrane fouling supervision is addressed in the case study presented.« less
Nonlinear dynamics of capacitive charging and desalination by porous electrodes.
Biesheuvel, P M; Bazant, M Z
2010-03-01
The rapid and efficient exchange of ions between porous electrodes and aqueous solutions is important in many applications, such as electrical energy storage by supercapacitors, water desalination and purification by capacitive deionization, and capacitive extraction of renewable energy from a salinity difference. Here, we present a unified mean-field theory for capacitive charging and desalination by ideally polarizable porous electrodes (without Faradaic reactions or specific adsorption of ions) valid in the limit of thin double layers (compared to typical pore dimensions). We illustrate the theory for the case of a dilute, symmetric, binary electrolyte using the Gouy-Chapman-Stern (GCS) model of the double layer, for which simple formulae are available for salt adsorption and capacitive charging of the diffuse part of the double layer. We solve the full GCS mean-field theory numerically for realistic parameters in capacitive deionization, and we derive reduced models for two limiting regimes with different time scales: (i) in the "supercapacitor regime" of small voltages and/or early times, the porous electrode acts like a transmission line, governed by a linear diffusion equation for the electrostatic potential, scaled to the RC time of a single pore, and (ii) in the "desalination regime" of large voltages and long times, the porous electrode slowly absorbs counterions, governed by coupled, nonlinear diffusion equations for the pore-averaged potential and salt concentration.
Nonlinear dynamics of capacitive charging and desalination by porous electrodes
NASA Astrophysics Data System (ADS)
Biesheuvel, P. M.; Bazant, M. Z.
2010-03-01
The rapid and efficient exchange of ions between porous electrodes and aqueous solutions is important in many applications, such as electrical energy storage by supercapacitors, water desalination and purification by capacitive deionization, and capacitive extraction of renewable energy from a salinity difference. Here, we present a unified mean-field theory for capacitive charging and desalination by ideally polarizable porous electrodes (without Faradaic reactions or specific adsorption of ions) valid in the limit of thin double layers (compared to typical pore dimensions). We illustrate the theory for the case of a dilute, symmetric, binary electrolyte using the Gouy-Chapman-Stern (GCS) model of the double layer, for which simple formulae are available for salt adsorption and capacitive charging of the diffuse part of the double layer. We solve the full GCS mean-field theory numerically for realistic parameters in capacitive deionization, and we derive reduced models for two limiting regimes with different time scales: (i) in the “supercapacitor regime” of small voltages and/or early times, the porous electrode acts like a transmission line, governed by a linear diffusion equation for the electrostatic potential, scaled to the RC time of a single pore, and (ii) in the “desalination regime” of large voltages and long times, the porous electrode slowly absorbs counterions, governed by coupled, nonlinear diffusion equations for the pore-averaged potential and salt concentration.
Impact of a new palliative care consultation team on opioid prescription in a University Hospital.
Centeno, Carlos; Portela, María Angustias; Noguera, Antonio; Idoate, Antonio; Rubiales, Alvaro Sanz
2009-01-16
There are no validated measuring tools to gauge the effectiveness of a Hospital Palliative Care Consultation Team (PCCT). One way would be to consider its effect on the consumption of opioids expressed in total amounts and different formulations administered. We perform this study to evaluate the impact of a hospital PCCT on the trends of opioid prescription in a University Hospital. A seven year retrospective study on opioid prescription was carried out in the Clínica Universidad de Navarra. The period includes three years before and three years after the PCCT was implemented. Prescription was analysed calculating yearly the Defined Daily Dose (DDD) adjusted to 1000 hospital stays (DDD/1000HS). Indicators considered were the proportion of patients treated using opioids compared to the total estimated in need of treatment (rate of effectiveness) and the proportion of patients potentially requiring opioids but not treated who were incorporated into the treatment group (rate of improvement). From 2001 to 2007, total opioid prescription was low in non-oncology Departments (range: 69-110 DDD/1000HS) while parenteral morphine and fentanyl did not register any changes. In the same period of time, total opioid prescription increased in the Oncology Department from 240 to 558 DDD/1000HS. The rate of effectiveness in the three years prior to the implantation of the consultation team was 64% and in the three following years rose to 87%. The rate of improvement prior to the palliative care consultation team was 43% and in the three following years was 64%. A change in opioid prescription was registered after the implementation of the PCCT resulting in an increase in the prescription of parenteral morphine and methadone and a decrease in transdermal fentanyl. Implementation of a PCCT in a University Hospital is associated with a higher and more adequate use of opioids.
Impact of a new palliative care consultation team on opioid prescription in a University Hospital
Centeno, Carlos; Portela, María Angustias; Noguera, Antonio; Idoate, Antonio; Rubiales, Álvaro Sanz
2009-01-01
Background There are no validated measuring tools to gauge the effectiveness of a Hospital Palliative Care Consultation Team (PCCT). One way would be to consider its effect on the consumption of opioids expressed in total amounts and different formulations administered. We perform this study to evaluate the impact of a hospital PCCT on the trends of opioid prescription in a University Hospital. Methods A seven year retrospective study on opioid prescription was carried out in the Clínica Universidad de Navarra. The period includes three years before and three years after the PCCT was implemented. Prescription was analysed calculating yearly the Defined Daily Dose (DDD) adjusted to 1000 hospital stays (DDD/1000HS). Indicators considered were the proportion of patients treated using opioids compared to the total estimated in need of treatment (rate of effectiveness) and the proportion of patients potentially requiring opioids but not treated who were incorporated into the treatment group (rate of improvement). Results From 2001 to 2007, total opioid prescription was low in non-oncology Departments (range: 69–110 DDD/1000HS) while parenteral morphine and fentanyl did not register any changes. In the same period of time, total opioid prescription increased in the Oncology Department from 240 to 558 DDD/1000HS. The rate of effectiveness in the three years prior to the implantation of the consultation team was 64% and in the three following years rose to 87%. The rate of improvement prior to the palliative care consultation team was 43% and in the three following years was 64%. A change in opioid prescription was registered after the implementation of the PCCT resulting in an increase in the prescription of parenteral morphine and methadone and a decrease in transdermal fentanyl. Conclusion Implementation of a PCCT in a University Hospital is associated with a higher and more adequate use of opioids. PMID:19149875
Cervical degenerative disease: systematic review of economic analyses.
Alvin, Matthew D; Qureshi, Sheeraz; Klineberg, Eric; Riew, K Daniel; Fischer, Dena J; Norvell, Daniel C; Mroz, Thomas E
2014-10-15
Systematic review. To perform an evidence-based synthesis of the literature assessing the cost-effectiveness of surgery for patients with symptomatic cervical degenerative disc disease (DDD). Cervical DDD is a common cause of clinical syndromes such as neck pain, cervical radiculopathy, and myelopathy. The appropriate surgical intervention(s) for a given problem is controversial, especially with regard to quality-of-life outcomes, complications, and costs. Although there have been many studies comparing outcomes and complications, relatively few have compared costs and, more importantly, cost-effectiveness of the interventions. We conducted a systematic search in PubMed/MEDLINE, EMBASE, the Cochrane Collaboration Library, the Cost-Effectiveness Analysis registry database, and the National Health Service Economic Evaluation Database for full economic evaluations published through January 16, 2014. Identification of full economic evaluations that were explicitly designed to evaluate and synthesize the costs and consequences of surgical procedures or surgical intervention with nonsurgical management in patients with cervical DDD were considered for inclusion, based on 4 key questions. Five studies were included, each specific to 1 or more of our focus questions. Two studies suggested that cervical disc replacement may be more cost-effective compared with anterior cervical discectomy and fusion. Two studies comparing anterior with posterior surgical procedures for cervical spondylotic myelopathy suggested that anterior surgery was more cost-effective than posterior surgery. One study suggested that posterior cervical foraminotomy had a greater net economic benefit than anterior cervical discectomy and fusion in a military population with unilateral cervical radiculopathy. No studies assessed the cost-effectiveness of surgical intervention compared with nonoperative treatment of cervical myelopathy or radiculopathy, although it is acknowledged that existing studies demonstrate the cost-effectiveness of surgical intervention for these 2 clinical entities. A paucity of high-quality economic literature exists regarding cost-effectiveness of surgical intervention for cervical DDD. Future research is necessary to validate the findings of the few studies that do exist to guide decisions for surgery by the physician and patient with respect to cost-effectiveness. 2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kowal, Ewa A.; Ganguly, Manjori; Pallan, Pradeep S.
As part of an ongoing effort to explore the effect of major groove electrostatics on the thermodynamic stability and structure of DNA, a 7-deaza-2'-deoxyadenosine:dT (7-deaza-dA:dT) base pair in the Dickerson-Drew dodecamer (DDD) was studied. The removal of the electronegative N7 atom on dA and the replacement with an electropositive C-H in the major groove was expected to have a significant effect on major groove electrostatics. The structure of the 7-deaza-dA:dT base pair was determined at 1.1 {angstrom} resolution in the presence of Mg{sup 2+}. The 7-deaza-dA, which is isosteric for dA, had minimal effect on the base pairing geometry andmore » the conformation of the DDD in the crystalline state. There was no major groove cation association with the 7-deaza-dA heterocycle. In solution, circular dichroism showed a positive Cotton effect centered at 280 nm and a negative Cotton effect centered at 250 nm that were characteristic of a right-handed helix in the B-conformation. However, temperature-dependent NMR studies showed increased exchange between the thymine N3 imino proton of the 7-deaza-dA:dT base pair and water, suggesting reduced stacking interactions and an increased rate of base pair opening. This correlated with the observed thermodynamic destabilization of the 7-deaza-dA modified duplex relative to the DDD. A combination of UV melting and differential scanning calorimetry experiments were conducted to evaluate the relative contributions of enthalpy and entropy in the thermodynamic destabilization of the DDD. The most significant contribution arose from an unfavorable enthalpy term, which probably results from less favorable stacking interactions in the modified duplex, which was accompanied by a significant reduction in the release of water and cations from the 7-deaza-dA modified DNA.« less
2011-01-01
As part of an ongoing effort to explore the effect of major groove electrostatics on the thermodynamic stability and structure of DNA, a 7-deaza-2′-deoxyadenosine:dT (7-deaza-dA:dT) base pair in the Dickerson–Drew dodecamer (DDD) was studied. The removal of the electronegative N7 atom on dA and the replacement with an electropositive C–H in the major groove was expected to have a significant effect on major groove electrostatics. The structure of the 7-deaza-dA:dT base pair was determined at 1.1 Å resolution in the presence of Mg2+. The 7-deaza-dA, which is isosteric for dA, had minimal effect on the base pairing geometry and the conformation of the DDD in the crystalline state. There was no major groove cation association with the 7-deaza-dA heterocycle. In solution, circular dichroism showed a positive Cotton effect centered at 280 nm and a negative Cotton effect centered at 250 nm that were characteristic of a right-handed helix in the B-conformation. However, temperature-dependent NMR studies showed increased exchange between the thymine N3 imino proton of the 7-deaza-dA:dT base pair and water, suggesting reduced stacking interactions and an increased rate of base pair opening. This correlated with the observed thermodynamic destabilization of the 7-deaza-dA modified duplex relative to the DDD. A combination of UV melting and differential scanning calorimetry experiments were conducted to evaluate the relative contributions of enthalpy and entropy in the thermodynamic destabilization of the DDD. The most significant contribution arose from an unfavorable enthalpy term, which probably results from less favorable stacking interactions in the modified duplex, which was accompanied by a significant reduction in the release of water and cations from the 7-deaza-dA modified DNA. PMID:22059929
Gerić, Marko; Ceraj-Cerić, Nikolina; Gajski, Goran; Vasilić, Želimira; Capuder, Željka; Garaj-Vrhovac, Vera
2012-06-01
Despite that the use of DDT has been restricted for more than 40 years to malaria affected areas, low doses of this pesticide and its metabolites DDE and DDD can be found in the environment around the world. Although it has been shown that these pollutants induce cell and DNA damage, the mechanisms of their cytogenotoxic activity remains largely unknown. This study looks into their possible genotoxic effects, at doses that can be found in body fluids, on human lymphocytes using the cytokinesis-block micronucleus assay and the comet assay. After exposure for 1, 6, and 24 h compounds p,p'-DDT (0.1 μg mL(-1)), p,p'-DDE (4.1 μg mL(-1)), and p,p'-DDD (3.9 μg mL(-1)) showed increase in DNA damage. The most significant results were observed at exposure period of 24 h where number of micronucleated cells increased from control 2.5±0.71 to 23.5±3.54, 13.5±0.71, and 16.5±6.36 for DDT, DDE, and DDD, respectively. Similar effect was observed using comet test where the percentage of DNA in comets tail increased from control 1.81±0.16 to 17.24±0.55, 11.21±0.56 and 9.28±0.50 for each compound, respectively. At the same time Fpg-comet assay failed to report induction of oxidative DNA damage of these pollutants. Additionally, the type of cell death was determined using diffusion assay and necrosis dominated. Our findings suggest that even at low concentrations, these pesticides could induce cytogenetic damage to human peripheral blood lymphocytes and in that manner have the impact on human health as well. Copyright © 2012 Elsevier Ltd. All rights reserved.
Cui, Yingshun; Suzuki, Shotaro; Omori, Yuko; Wong, Shu-Kuan; Ijichi, Minoru; Kaneko, Ryo; Kameyama, Sohiko; Tanimoto, Hiroshi; Hamasaki, Koji
2015-06-15
Dimethylsulfoniopropionate (DMSP) is mainly produced by marine phytoplankton but is released into the microbial food web and degraded by marine bacteria to dimethyl sulfide (DMS) and other products. To reveal the abundance and distribution of bacterial DMSP degradation genes and the corresponding bacterial communities in relation to DMS and DMSP concentrations in seawater, we collected surface seawater samples from DMS hot spot sites during a cruise across the Pacific Ocean. We analyzed the genes encoding DMSP lyase (dddP) and DMSP demethylase (dmdA), which are responsible for the transformation of DMSP to DMS and DMSP assimilation, respectively. The averaged abundance (±standard deviation) of these DMSP degradation genes relative to that of the 16S rRNA genes was 33% ± 12%. The abundances of these genes showed large spatial variations. dddP genes showed more variation in abundances than dmdA genes. Multidimensional analysis based on the abundances of DMSP degradation genes and environmental factors revealed that the distribution pattern of these genes was influenced by chlorophyll a concentrations and temperatures. dddP genes, dmdA subclade C/2 genes, and dmdA subclade D genes exhibited significant correlations with the marine Roseobacter clade, SAR11 subgroup Ib, and SAR11 subgroup Ia, respectively. SAR11 subgroups Ia and Ib, which possessed dmdA genes, were suggested to be the main potential DMSP consumers. The Roseobacter clade members possessing dddP genes in oligotrophic subtropical regions were possible DMS producers. These results suggest that DMSP degradation genes are abundant and widely distributed in the surface seawater and that the marine bacteria possessing these genes influence the degradation of DMSP and regulate the emissions of DMS in subtropical gyres of the Pacific Ocean. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Rajasekaran, S; Kanna, Rishi Mugesh; Senthil, Natesan; Raveendran, Muthuraja; Cheung, Kenneth M C; Chan, Danny; Subramaniam, Sakthikanal; Shetty, Ajoy Prasad
2013-10-01
Although the influence of genetics on the process of disc degeneration is well recognized, in recently published studies, there is a wide variation in the race and selection criteria for such study populations. More importantly, the radiographic features of disc degeneration that are selected to represent the disc degeneration phenotype are variable in these studies. The study presented here evaluates the association between single nucleotide polymorphisms (SNPs) of candidate genes and three distinct radiographic features that can be defined as the degenerative disc disease (DDD) phenotype. The study objectives were to examine the allelic diversity of 58 SNPs related to 35 candidate genes related to lumbar DDD, to evaluate the association in a hitherto unevaluated ethnic Indian population that represents more than one-sixth of the world population, and to analyze how genetic associations can vary in the same study subjects with the choice of phenotype. A cross-sectional, case-control study of an ethnic Indian population was carried out. Fifty-eight SNPs in 35 potential candidate genes were evaluated in 342 subjects and the associations were analyzed against three highly specific markers for DDD, namely disc degeneration by Pfirrmann grading, end-plate damage evaluated by total end-plate damage score, and annular tears evaluated by disc herniations and hyperintense zones. Genotyping of cases and controls was performed on a genome-wide SNP array to identify potential associated disease loci. The results from the genome-wide SNP array were then used to facilitate SNP selection and genotype validation was conducted using Sequenom-based genotyping. Eleven of the 58 SNPs provided evidence of association with one of the phenotypes. For annular tears, rs1042631 SNP of AGC1 and rs467691 SNP of ADAMTS5 were highly significantly associated (p<.01) and SNPs in NGFB, IL1B, IL18RAP, and MMP10 were also significantly associated (p<.05). The rs4076018 SNP of NGFB was highly significant (p<.01) and rs2292657 SNP of GLI1 was significantly (p<.05) correlated to disc degeneration. For end-plate damage, the rs2252070 SNP of MMP 13 showed a significant association (p<.05). Previously associated genes such as COL 9, SKT, CHST 3, CILP, IGFR, SOXp, BMP, MMP 2-12, ADH2, IL1RN, and COX2 were not significantly associated and new associations (NGFB and GLI1) were identified. The validity of all the associations was found to be phenotype dependent. For the first time, genetic associations with DDD have been performed in an Indian population. Apart from identifying new associations, the highlight of the study was that in the same study population with DDD, SNP associations completely changed when different radiographic features were used to define the DDD phenotype. Our study results therefore indicate that standardization of the phenotypes chosen to study the genetics of disc degeneration is essential and should be strongly considered before planning genetic association studies. Copyright © 2013 Elsevier Inc. All rights reserved.
A Study on Cost Allocation in Nuclear Power Coupled with Desalination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, ManKi; Kim, SeungSu; Moon, KeeHwan
As for a single-purpose desalination plant, there is no particular difficulty in computing the unit cost of the water, which is obtained by dividing the annual total costs by the output of fresh water. When it comes to a dual-purpose plant, cost allocation is needed between the two products. No cost allocation is needed in some cases where two alternatives producing the same water and electricity output are to be compared. In these cases, the consideration of the total cost is then sufficient. This study assumes MED (Multi-Effect Distillation) technology is adopted when nuclear power is coupled with desalination. Themore » total production cost of the two commodities in dual-purpose plant can easily be obtained by using costing methods, if the necessary raw data are available. However, it is not easy to calculate a separate cost for each product, because high-pressure steam plant costs cannot be allocated to one or the other without adopting arbitrary methods. Investigation on power credit method is carried out focusing on the cost allocation of combined benefits due to dual production, electricity and water. The illustrative calculation is taken from Preliminary Economic Feasibility Study of Nuclear Desalination in Madura Island, Indonesia. The study is being performed by BATAN (National Nuclear Energy Agency), KAERI (Korean Atomic Energy Research Institute) and under support of the IAEA (International Atomic Energy Agency) started in the year 2002 in order to perform a preliminary economic feasibility in providing the Madurese with sufficient power and potable water for the public and to support industrialization and tourism in Madura Region. The SMART reactor coupled with MED is considered to be an option to produce electricity and potable water. This study indicates that the correct recognition of combined benefits attributable to dual production is important in carrying out economics of desalination coupled with nuclear power. (authors)« less
Review of Water Resources and Desalination Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
MILLER, JAMES E.
Water shortages affect 88 developing countries that are home to half of the world's population. In these places, 80-90% of all diseases and 30% of all deaths result from poor water quality. Furthermore, over the next 25 years, the number of people affected by severe water shortages is expected to increase fourfold. Low cost methods to desalinate brackish water and sea water can help reverse this destabilizing trend. Desalination has now been practiced on a large scale for more than 50 years. During this time continual improvements have been made, and the major technologies are now remarkably efficient, reliable, andmore » inexpensive. For many years, thermal technologies were the only viable option, and multi-stage flash (MSF) was established as the baseline technology. Multi-effect evaporation (MEE) is now the state-of-the-art thermal technology, but has not been widely implemented. With the growth of membrane science, reverse osmosis (RO) overtook MSF as the leading desalination technology, and should be considered the baseline technology. Presently, RO of seawater can be accomplished with an energy expenditure in the range of 11-60 kJ/kg at a cost of $2 to $4 per 1000 gallons. The theoretical minimum energy expenditure is 3-7 kJ/kg. Since RO is a fairly mature technology, further improvements are likely to be incremental in nature, unless design improvements allow major savings in capital costs. Therefore, the best hope to dramatically decrease desalination costs is to develop ''out of the box'' technologies. These ''out of the box'' approaches must offer a significant advantage over RO (or MEE, if waste heat is available) if they are to be viable. When making these comparisons, it is crucial that the specifics of the calculation are understood so that the comparison is made on a fair and equivalent basis.« less