Yin, Shen; Gao, Huijun; Qiu, Jianbin; Kaynak, Okyay
2017-11-01
Data-driven fault detection plays an important role in industrial systems due to its applicability in case of unknown physical models. In fault detection, disturbances must be taken into account as an inherent characteristic of processes. Nevertheless, fault detection for nonlinear processes with deterministic disturbances still receive little attention, especially in data-driven field. To solve this problem, a just-in-time learning-based data-driven (JITL-DD) fault detection method for nonlinear processes with deterministic disturbances is proposed in this paper. JITL-DD employs JITL scheme for process description with local model structures to cope with processes dynamics and nonlinearity. The proposed method provides a data-driven fault detection solution for nonlinear processes with deterministic disturbances, and owns inherent online adaptation and high accuracy of fault detection. Two nonlinear systems, i.e., a numerical example and a sewage treatment process benchmark, are employed to show the effectiveness of the proposed method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Qing, E-mail: qing.gao.chance@gmail.com; Dong, Daoyi, E-mail: daoyidong@gmail.com; Petersen, Ian R., E-mail: i.r.petersen@gmai.com
The purpose of this paper is to solve the fault tolerant filtering and fault detection problem for a class of open quantum systems driven by a continuous-mode bosonic input field in single photon states when the systems are subject to stochastic faults. Optimal estimates of both the system observables and the fault process are simultaneously calculated and characterized by a set of coupled recursive quantum stochastic differential equations.
A Novel Online Data-Driven Algorithm for Detecting UAV Navigation Sensor Faults.
Sun, Rui; Cheng, Qi; Wang, Guanyu; Ochieng, Washington Yotto
2017-09-29
The use of Unmanned Aerial Vehicles (UAVs) has increased significantly in recent years. On-board integrated navigation sensors are a key component of UAVs' flight control systems and are essential for flight safety. In order to ensure flight safety, timely and effective navigation sensor fault detection capability is required. In this paper, a novel data-driven Adaptive Neuron Fuzzy Inference System (ANFIS)-based approach is presented for the detection of on-board navigation sensor faults in UAVs. Contrary to the classic UAV sensor fault detection algorithms, based on predefined or modelled faults, the proposed algorithm combines an online data training mechanism with the ANFIS-based decision system. The main advantages of this algorithm are that it allows real-time model-free residual analysis from Kalman Filter (KF) estimates and the ANFIS to build a reliable fault detection system. In addition, it allows fast and accurate detection of faults, which makes it suitable for real-time applications. Experimental results have demonstrated the effectiveness of the proposed fault detection method in terms of accuracy and misdetection rate.
NASA Astrophysics Data System (ADS)
El Houda Thabet, Rihab; Combastel, Christophe; Raïssi, Tarek; Zolghadri, Ali
2015-09-01
The paper develops a set membership detection methodology which is applied to the detection of abnormal positions of aircraft control surfaces. Robust and early detection of such abnormal positions is an important issue for early system reconfiguration and overall optimisation of aircraft design. In order to improve fault sensitivity while ensuring a high level of robustness, the method combines a data-driven characterisation of noise and a model-driven approach based on interval prediction. The efficiency of the proposed methodology is illustrated through simulation results obtained based on data recorded in several flight scenarios of a highly representative aircraft benchmark.
A review on data-driven fault severity assessment in rolling bearings
NASA Astrophysics Data System (ADS)
Cerrada, Mariela; Sánchez, René-Vinicio; Li, Chuan; Pacheco, Fannia; Cabrera, Diego; Valente de Oliveira, José; Vásquez, Rafael E.
2018-01-01
Health condition monitoring of rotating machinery is a crucial task to guarantee reliability in industrial processes. In particular, bearings are mechanical components used in most rotating devices and they represent the main source of faults in such equipments; reason for which research activities on detecting and diagnosing their faults have increased. Fault detection aims at identifying whether the device is or not in a fault condition, and diagnosis is commonly oriented towards identifying the fault mode of the device, after detection. An important step after fault detection and diagnosis is the analysis of the magnitude or the degradation level of the fault, because this represents a support to the decision-making process in condition based-maintenance. However, no extensive works are devoted to analyse this problem, or some works tackle it from the fault diagnosis point of view. In a rough manner, fault severity is associated with the magnitude of the fault. In bearings, fault severity can be related to the physical size of fault or a general degradation of the component. Due to literature regarding the severity assessment of bearing damages is limited, this paper aims at discussing the recent methods and techniques used to achieve the fault severity evaluation in the main components of the rolling bearings, such as inner race, outer race, and ball. The review is mainly focused on data-driven approaches such as signal processing for extracting the proper fault signatures associated with the damage degradation, and learning approaches that are used to identify degradation patterns with regards to health conditions. Finally, new challenges are highlighted in order to develop new contributions in this field.
Fuzzy model-based fault detection and diagnosis for a pilot heat exchanger
NASA Astrophysics Data System (ADS)
Habbi, Hacene; Kidouche, Madjid; Kinnaert, Michel; Zelmat, Mimoun
2011-04-01
This article addresses the design and real-time implementation of a fuzzy model-based fault detection and diagnosis (FDD) system for a pilot co-current heat exchanger. The design method is based on a three-step procedure which involves the identification of data-driven fuzzy rule-based models, the design of a fuzzy residual generator and the evaluation of the residuals for fault diagnosis using statistical tests. The fuzzy FDD mechanism has been implemented and validated on the real co-current heat exchanger, and has been proven to be efficient in detecting and isolating process, sensor and actuator faults.
Hybrid Model-Based and Data-Driven Fault Detection and Diagnostics for Commercial Buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frank, Stephen; Heaney, Michael; Jin, Xin
Commercial buildings often experience faults that produce undesirable behavior in building systems. Building faults waste energy, decrease occupants' comfort, and increase operating costs. Automated fault detection and diagnosis (FDD) tools for buildings help building owners discover and identify the root causes of faults in building systems, equipment, and controls. Proper implementation of FDD has the potential to simultaneously improve comfort, reduce energy use, and narrow the gap between actual and optimal building performance. However, conventional rule-based FDD requires expensive instrumentation and valuable engineering labor, which limit deployment opportunities. This paper presents a hybrid, automated FDD approach that combines building energymore » models and statistical learning tools to detect and diagnose faults noninvasively, using minimal sensors, with little customization. We compare and contrast the performance of several hybrid FDD algorithms for a small security building. Our results indicate that the algorithms can detect and diagnose several common faults, but more work is required to reduce false positive rates and improve diagnosis accuracy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frank, Stephen; Heaney, Michael; Jin, Xin
Commercial buildings often experience faults that produce undesirable behavior in building systems. Building faults waste energy, decrease occupants' comfort, and increase operating costs. Automated fault detection and diagnosis (FDD) tools for buildings help building owners discover and identify the root causes of faults in building systems, equipment, and controls. Proper implementation of FDD has the potential to simultaneously improve comfort, reduce energy use, and narrow the gap between actual and optimal building performance. However, conventional rule-based FDD requires expensive instrumentation and valuable engineering labor, which limit deployment opportunities. This paper presents a hybrid, automated FDD approach that combines building energymore » models and statistical learning tools to detect and diagnose faults noninvasively, using minimal sensors, with little customization. We compare and contrast the performance of several hybrid FDD algorithms for a small security building. Our results indicate that the algorithms can detect and diagnose several common faults, but more work is required to reduce false positive rates and improve diagnosis accuracy.« less
NASA Astrophysics Data System (ADS)
Naderi, E.; Khorasani, K.
2018-02-01
In this work, a data-driven fault detection, isolation, and estimation (FDI&E) methodology is proposed and developed specifically for monitoring the aircraft gas turbine engine actuator and sensors. The proposed FDI&E filters are directly constructed by using only the available system I/O data at each operating point of the engine. The healthy gas turbine engine is stimulated by a sinusoidal input containing a limited number of frequencies. First, the associated system Markov parameters are estimated by using the FFT of the input and output signals to obtain the frequency response of the gas turbine engine. These data are then used for direct design and realization of the fault detection, isolation and estimation filters. Our proposed scheme therefore does not require any a priori knowledge of the system linear model or its number of poles and zeros at each operating point. We have investigated the effects of the size of the frequency response data on the performance of our proposed schemes. We have shown through comprehensive case studies simulations that desirable fault detection, isolation and estimation performance metrics defined in terms of the confusion matrix criterion can be achieved by having access to only the frequency response of the system at only a limited number of frequencies.
Aftershocks driven by afterslip and fluid pressure sweeping through a fault-fracture mesh
Ross, Zachary E.; Rollins, Christopher; Cochran, Elizabeth S.; Hauksson, Egill; Avouac, Jean-Philippe; Ben-Zion, Yehuda
2017-01-01
A variety of physical mechanisms are thought to be responsible for the triggering and spatiotemporal evolution of aftershocks. Here we analyze a vigorous aftershock sequence and postseismic geodetic strain that occurred in the Yuha Desert following the 2010 Mw 7.2 El Mayor-Cucapah earthquake. About 155,000 detected aftershocks occurred in a network of orthogonal faults and exhibit features of two distinct mechanisms for aftershock triggering. The earliest aftershocks were likely driven by afterslip that spread away from the main shock with the logarithm of time. A later pulse of aftershocks swept again across the Yuha Desert with square root time dependence and swarm-like behavior; together with local geological evidence for hydrothermalism, these features suggest that the events were driven by fluid diffusion. The observations illustrate how multiple driving mechanisms and the underlying fault structure jointly control the evolution of an aftershock sequence.
Pseudo-fault signal assisted EMD for fault detection and isolation in rotating machines
NASA Astrophysics Data System (ADS)
Singh, Dheeraj Sharan; Zhao, Qing
2016-12-01
This paper presents a novel data driven technique for the detection and isolation of faults, which generate impacts in a rotating equipment. The technique is built upon the principles of empirical mode decomposition (EMD), envelope analysis and pseudo-fault signal for fault separation. Firstly, the most dominant intrinsic mode function (IMF) is identified using EMD of a raw signal, which contains all the necessary information about the faults. The envelope of this IMF is often modulated with multiple vibration sources and noise. A second level decomposition is performed by applying pseudo-fault signal (PFS) assisted EMD on the envelope. A pseudo-fault signal is constructed based on the known fault characteristic frequency of the particular machine. The objective of using external (pseudo-fault) signal is to isolate different fault frequencies, present in the envelope . The pseudo-fault signal serves dual purposes: (i) it solves the mode mixing problem inherent in EMD, (ii) it isolates and quantifies a particular fault frequency component. The proposed technique is suitable for real-time implementation, which has also been validated on simulated fault and experimental data corresponding to a bearing and a gear-box set-up, respectively.
NASA Astrophysics Data System (ADS)
Ritzberger, D.; Jakubek, S.
2017-09-01
In this work, a data-driven identification method, based on polynomial nonlinear autoregressive models with exogenous inputs (NARX) and the Volterra series, is proposed to describe the dynamic and nonlinear voltage and current characteristics of polymer electrolyte membrane fuel cells (PEMFCs). The structure selection and parameter estimation of the NARX model is performed on broad-band voltage/current data. By transforming the time-domain NARX model into a Volterra series representation using the harmonic probing algorithm, a frequency-domain description of the linear and nonlinear dynamics is obtained. With the Volterra kernels corresponding to different operating conditions, information from existing diagnostic tools in the frequency domain such as electrochemical impedance spectroscopy (EIS) and total harmonic distortion analysis (THDA) are effectively combined. Additionally, the time-domain NARX model can be utilized for fault detection by evaluating the difference between measured and simulated output. To increase the fault detectability, an optimization problem is introduced which maximizes this output residual to obtain proper excitation frequencies. As a possible extension it is shown, that by optimizing the periodic signal shape itself that the fault detectability is further increased.
Linking Europa’s Plume Activity to Tides, Tectonics, and Liquid Water
NASA Astrophysics Data System (ADS)
Rhoden, Alyssa R.; Hurford, Terry; Roth, Lorenz; Retherford, Kurt
2014-11-01
Much of the geologic activity preserved on Europa’s icy surface has been attributed to tidal deformation, mainly due to Europa’s eccentric orbit. Although the surface is geologically young, evidence of ongoing tidally-driven processes has been lacking. However, a recent observation of water vapor near Europa’s south pole suggests that it may be geologically active. Non-detections in previous and follow-up observations indicate a temporal variation in plume visibility and suggests a relationship to Europa’s tidal cycle. Similarly, the Cassini spacecraft has observed plumes emanating from the south pole of Saturn’s moon, Enceladus, and variability in the intensity of eruptions has been linked to its tidal cycle. The inference that a similar mechanism controls plumes at both Europa and Enceladus motivates further analysis of Europa’s plume behavior and the relationship between plumes, tides, and liquid water on these two satellites.We determine the locations and orientations of hypothetical tidally-driven fractures that best match the temporal variability of the plumes observed at Europa. Specifically, we identify model faults that are in tension at the time in Europa’s orbit when a plume was detected and in compression at times when the plume was not detected. We find that tidal stress driven solely by eccentricity is incompatible with the observations unless additional mechanisms are controlling the eruption timing or restricting the longevity of the plumes. In contrast, the addition of obliquity tides, and corresponding precession of the spin pole, can generate a number of model faults that are consistent with the pattern of plume detections. The locations and orientations of the model faults are robust across a broad range of precession rates and spin pole directions. Analysis of the stress variations across model faults suggests that the plumes would be best observed earlier in Europa’s orbit. Our results indicate that Europa’s plumes, if confirmed, differ in many respects from the Enceladean plumes and that either active fractures or volatile sources are rare.
Simulation-driven machine learning: Bearing fault classification
NASA Astrophysics Data System (ADS)
Sobie, Cameron; Freitas, Carina; Nicolai, Mike
2018-01-01
Increasing the accuracy of mechanical fault detection has the potential to improve system safety and economic performance by minimizing scheduled maintenance and the probability of unexpected system failure. Advances in computational performance have enabled the application of machine learning algorithms across numerous applications including condition monitoring and failure detection. Past applications of machine learning to physical failure have relied explicitly on historical data, which limits the feasibility of this approach to in-service components with extended service histories. Furthermore, recorded failure data is often only valid for the specific circumstances and components for which it was collected. This work directly addresses these challenges for roller bearings with race faults by generating training data using information gained from high resolution simulations of roller bearing dynamics, which is used to train machine learning algorithms that are then validated against four experimental datasets. Several different machine learning methodologies are compared starting from well-established statistical feature-based methods to convolutional neural networks, and a novel application of dynamic time warping (DTW) to bearing fault classification is proposed as a robust, parameter free method for race fault detection.
Liu, Fang; Shen, Changqing; He, Qingbo; Zhang, Ao; Liu, Yongbin; Kong, Fanrang
2014-01-01
A fault diagnosis strategy based on the wayside acoustic monitoring technique is investigated for locomotive bearing fault diagnosis. Inspired by the transient modeling analysis method based on correlation filtering analysis, a so-called Parametric-Mother-Doppler-Wavelet (PMDW) is constructed with six parameters, including a center characteristic frequency and five kinematic model parameters. A Doppler effect eliminator containing a PMDW generator, a correlation filtering analysis module, and a signal resampler is invented to eliminate the Doppler effect embedded in the acoustic signal of the recorded bearing. Through the Doppler effect eliminator, the five kinematic model parameters can be identified based on the signal itself. Then, the signal resampler is applied to eliminate the Doppler effect using the identified parameters. With the ability to detect early bearing faults, the transient model analysis method is employed to detect localized bearing faults after the embedded Doppler effect is eliminated. The effectiveness of the proposed fault diagnosis strategy is verified via simulation studies and applications to diagnose locomotive roller bearing defects. PMID:24803197
Improving the performance of univariate control charts for abnormal detection and classification
NASA Astrophysics Data System (ADS)
Yiakopoulos, Christos; Koutsoudaki, Maria; Gryllias, Konstantinos; Antoniadis, Ioannis
2017-03-01
Bearing failures in rotating machinery can cause machine breakdown and economical loss, if no effective actions are taken on time. Therefore, it is of prime importance to detect accurately the presence of faults, especially at their early stage, to prevent sequent damage and reduce costly downtime. The machinery fault diagnosis follows a roadmap of data acquisition, feature extraction and diagnostic decision making, in which mechanical vibration fault feature extraction is the foundation and the key to obtain an accurate diagnostic result. A challenge in this area is the selection of the most sensitive features for various types of fault, especially when the characteristics of failures are difficult to be extracted. Thus, a plethora of complex data-driven fault diagnosis methods are fed by prominent features, which are extracted and reduced through traditional or modern algorithms. Since most of the available datasets are captured during normal operating conditions, the last decade a number of novelty detection methods, able to work when only normal data are available, have been developed. In this study, a hybrid method combining univariate control charts and a feature extraction scheme is introduced focusing towards an abnormal change detection and classification, under the assumption that measurements under normal operating conditions of the machinery are available. The feature extraction method integrates the morphological operators and the Morlet wavelets. The effectiveness of the proposed methodology is validated on two different experimental cases with bearing faults, demonstrating that the proposed approach can improve the fault detection and classification performance of conventional control charts.
Fault Diagnosis in HVAC Chillers
NASA Technical Reports Server (NTRS)
Choi, Kihoon; Namuru, Setu M.; Azam, Mohammad S.; Luo, Jianhui; Pattipati, Krishna R.; Patterson-Hine, Ann
2005-01-01
Modern buildings are being equipped with increasingly sophisticated power and control systems with substantial capabilities for monitoring and controlling the amenities. Operational problems associated with heating, ventilation, and air-conditioning (HVAC) systems plague many commercial buildings, often the result of degraded equipment, failed sensors, improper installation, poor maintenance, and improperly implemented controls. Most existing HVAC fault-diagnostic schemes are based on analytical models and knowledge bases. These schemes are adequate for generic systems. However, real-world systems significantly differ from the generic ones and necessitate modifications of the models and/or customization of the standard knowledge bases, which can be labor intensive. Data-driven techniques for fault detection and isolation (FDI) have a close relationship with pattern recognition, wherein one seeks to categorize the input-output data into normal or faulty classes. Owing to the simplicity and adaptability, customization of a data-driven FDI approach does not require in-depth knowledge of the HVAC system. It enables the building system operators to improve energy efficiency and maintain the desired comfort level at a reduced cost. In this article, we consider a data-driven approach for FDI of chillers in HVAC systems. To diagnose the faults of interest in the chiller, we employ multiway dynamic principal component analysis (MPCA), multiway partial least squares (MPLS), and support vector machines (SVMs). The simulation of a chiller under various fault conditions is conducted using a standard chiller simulator from the American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE). We validated our FDI scheme using experimental data obtained from different types of chiller faults.
Current Sensor Fault Diagnosis Based on a Sliding Mode Observer for PMSM Driven Systems
Huang, Gang; Luo, Yi-Ping; Zhang, Chang-Fan; Huang, Yi-Shan; Zhao, Kai-Hui
2015-01-01
This paper proposes a current sensor fault detection method based on a sliding mode observer for the torque closed-loop control system of interior permanent magnet synchronous motors. First, a sliding mode observer based on the extended flux linkage is built to simplify the motor model, which effectively eliminates the phenomenon of salient poles and the dependence on the direct axis inductance parameter, and can also be used for real-time calculation of feedback torque. Then a sliding mode current observer is constructed in αβ coordinates to generate the fault residuals of the phase current sensors. The method can accurately identify abrupt gain faults and slow-variation offset faults in real time in faulty sensors, and the generated residuals of the designed fault detection system are not affected by the unknown input, the structure of the observer, and the theoretical derivation and the stability proof process are concise and simple. The RT-LAB real-time simulation is used to build a simulation model of the hardware in the loop. The simulation and experimental results demonstrate the feasibility and effectiveness of the proposed method. PMID:25970258
A fuzzy Petri-net-based mode identification algorithm for fault diagnosis of complex systems
NASA Astrophysics Data System (ADS)
Propes, Nicholas C.; Vachtsevanos, George
2003-08-01
Complex dynamical systems such as aircraft, manufacturing systems, chillers, motor vehicles, submarines, etc. exhibit continuous and event-driven dynamics. These systems undergo several discrete operating modes from startup to shutdown. For example, a certain shipboard system may be operating at half load or full load or may be at start-up or shutdown. Of particular interest are extreme or "shock" operating conditions, which tend to severely impact fault diagnosis or the progression of a fault leading to a failure. Fault conditions are strongly dependent on the operating mode. Therefore, it is essential that in any diagnostic/prognostic architecture, the operating mode be identified as accurately as possible so that such functions as feature extraction, diagnostics, prognostics, etc. can be correlated with the predominant operating conditions. This paper introduces a mode identification methodology that incorporates both time- and event-driven information about the process. A fuzzy Petri net is used to represent the possible successive mode transitions and to detect events from processed sensor signals signifying a mode change. The operating mode is initialized and verified by analysis of the time-driven dynamics through a fuzzy logic classifier. An evidence combiner module is used to combine the results from both the fuzzy Petri net and the fuzzy logic classifier to determine the mode. Unlike most event-driven mode identifiers, this architecture will provide automatic mode initialization through the fuzzy logic classifier and robustness through the combining of evidence of the two algorithms. The mode identification methodology is applied to an AC Plant typically found as a component of a shipboard system.
NASA Astrophysics Data System (ADS)
Wang, F.; Bevis, M. G.; Blewitt, G.; Gomez, D.
2017-12-01
We study the postseismic transient displacements following the 2011 Mw 9.0 Tohoku earthquake using the Nevada Geodetic Laboratory's daily and 5-minute interval PPP solutions for 1,272 continuous GPS stations in Japan, with particular emphasis on the early transient displacements of these stations. One significant complication is the Mw 7.9 aftershock that occurred just 29.3 minutes after the main shock, since the coseismic (and postseismic) displacements driven by the aftershock are superimposed on the postseismic transients driven by the main shock. We address the question of whether or not the stresses induced by the Mw 9.0 main shock were relaxed by any major faults within Japan. The notion is that significant stress relaxation which is localized on a fault system should be manifested in the spatial pattern of the postseismic transient displacement field in the vicinity of that system. This would provide a basis for distinguishing between faults that engage in stick-slip behavior and those that creep instead. The distinction is important in that it has implications for the seismic risk associated with upper plate faulting. We will make the case that we do detect localized fault creeping in response to the coseismic stress field produced by the Mw 9 event.
A data-driven modeling approach to stochastic computation for low-energy biomedical devices.
Lee, Kyong Ho; Jang, Kuk Jin; Shoeb, Ali; Verma, Naveen
2011-01-01
Low-power devices that can detect clinically relevant correlations in physiologically-complex patient signals can enable systems capable of closed-loop response (e.g., controlled actuation of therapeutic stimulators, continuous recording of disease states, etc.). In ultra-low-power platforms, however, hardware error sources are becoming increasingly limiting. In this paper, we present how data-driven methods, which allow us to accurately model physiological signals, also allow us to effectively model and overcome prominent hardware error sources with nearly no additional overhead. Two applications, EEG-based seizure detection and ECG-based arrhythmia-beat classification, are synthesized to a logic-gate implementation, and two prominent error sources are introduced: (1) SRAM bit-cell errors and (2) logic-gate switching errors ('stuck-at' faults). Using patient data from the CHB-MIT and MIT-BIH databases, performance similar to error-free hardware is achieved even for very high fault rates (up to 0.5 for SRAMs and 7 × 10(-2) for logic) that cause computational bit error rates as high as 50%.
A Negative Selection Immune System Inspired Methodology for Fault Diagnosis of Wind Turbines.
Alizadeh, Esmaeil; Meskin, Nader; Khorasani, Khashayar
2017-11-01
High operational and maintenance costs represent as major economic constraints in the wind turbine (WT) industry. These concerns have made investigation into fault diagnosis of WT systems an extremely important and active area of research. In this paper, an immune system (IS) inspired methodology for performing fault detection and isolation (FDI) of a WT system is proposed and developed. The proposed scheme is based on a self nonself discrimination paradigm of a biological IS. Specifically, the negative selection mechanism [negative selection algorithm (NSA)] of the human body is utilized. In this paper, a hierarchical bank of NSAs are designed to detect and isolate both individual as well as simultaneously occurring faults common to the WTs. A smoothing moving window filter is then utilized to further improve the reliability and performance of the FDI scheme. Moreover, the performance of our proposed scheme is compared with another state-of-the-art data-driven technique, namely the support vector machines (SVMs) to demonstrate and illustrate the superiority and advantages of our proposed NSA-based FDI scheme. Finally, a nonparametric statistical comparison test is implemented to evaluate our proposed methodology with that of the SVM under various fault severities.
Zhao, Kaihui; Li, Peng; Zhang, Changfan; Li, Xiangfei; He, Jing; Lin, Yuliang
2017-12-06
This paper proposes a new scheme of reconstructing current sensor faults and estimating unknown load disturbance for a permanent magnet synchronous motor (PMSM)-driven system. First, the original PMSM system is transformed into two subsystems; the first subsystem has unknown system load disturbances, which are unrelated to sensor faults, and the second subsystem has sensor faults, but is free from unknown load disturbances. Introducing a new state variable, the augmented subsystem that has sensor faults can be transformed into having actuator faults. Second, two sliding mode observers (SMOs) are designed: the unknown load disturbance is estimated by the first SMO in the subsystem, which has unknown load disturbance, and the sensor faults can be reconstructed using the second SMO in the augmented subsystem, which has sensor faults. The gains of the proposed SMOs and their stability analysis are developed via the solution of linear matrix inequality (LMI). Finally, the effectiveness of the proposed scheme was verified by simulations and experiments. The results demonstrate that the proposed scheme can reconstruct current sensor faults and estimate unknown load disturbance for the PMSM-driven system.
General Purpose Data-Driven Monitoring for Space Operations
NASA Technical Reports Server (NTRS)
Iverson, David L.; Martin, Rodney A.; Schwabacher, Mark A.; Spirkovska, Liljana; Taylor, William McCaa; Castle, Joseph P.; Mackey, Ryan M.
2009-01-01
As modern space propulsion and exploration systems improve in capability and efficiency, their designs are becoming increasingly sophisticated and complex. Determining the health state of these systems, using traditional parameter limit checking, model-based, or rule-based methods, is becoming more difficult as the number of sensors and component interactions grow. Data-driven monitoring techniques have been developed to address these issues by analyzing system operations data to automatically characterize normal system behavior. System health can be monitored by comparing real-time operating data with these nominal characterizations, providing detection of anomalous data signatures indicative of system faults or failures. The Inductive Monitoring System (IMS) is a data-driven system health monitoring software tool that has been successfully applied to several aerospace applications. IMS uses a data mining technique called clustering to analyze archived system data and characterize normal interactions between parameters. The scope of IMS based data-driven monitoring applications continues to expand with current development activities. Successful IMS deployment in the International Space Station (ISS) flight control room to monitor ISS attitude control systems has led to applications in other ISS flight control disciplines, such as thermal control. It has also generated interest in data-driven monitoring capability for Constellation, NASA's program to replace the Space Shuttle with new launch vehicles and spacecraft capable of returning astronauts to the moon, and then on to Mars. Several projects are currently underway to evaluate and mature the IMS technology and complementary tools for use in the Constellation program. These include an experiment on board the Air Force TacSat-3 satellite, and ground systems monitoring for NASA's Ares I-X and Ares I launch vehicles. The TacSat-3 Vehicle System Management (TVSM) project is a software experiment to integrate fault and anomaly detection algorithms and diagnosis tools with executive and adaptive planning functions contained in the flight software on-board the Air Force Research Laboratory TacSat-3 satellite. The TVSM software package will be uploaded after launch to monitor spacecraft subsystems such as power and guidance, navigation, and control (GN&C). It will analyze data in real-time to demonstrate detection of faults and unusual conditions, diagnose problems, and react to threats to spacecraft health and mission goals. The experiment will demonstrate the feasibility and effectiveness of integrated system health management (ISHM) technologies with both ground and on-board experiments.
Fault tolerant operation of switched reluctance machine
NASA Astrophysics Data System (ADS)
Wang, Wei
The energy crisis and environmental challenges have driven industry towards more energy efficient solutions. With nearly 60% of electricity consumed by various electric machines in industry sector, advancement in the efficiency of the electric drive system is of vital importance. Adjustable speed drive system (ASDS) provides excellent speed regulation and dynamic performance as well as dramatically improved system efficiency compared with conventional motors without electronics drives. Industry has witnessed tremendous grow in ASDS applications not only as a driving force but also as an electric auxiliary system for replacing bulky and low efficiency auxiliary hydraulic and mechanical systems. With the vast penetration of ASDS, its fault tolerant operation capability is more widely recognized as an important feature of drive performance especially for aerospace, automotive applications and other industrial drive applications demanding high reliability. The Switched Reluctance Machine (SRM), a low cost, highly reliable electric machine with fault tolerant operation capability, has drawn substantial attention in the past three decades. Nevertheless, SRM is not free of fault. Certain faults such as converter faults, sensor faults, winding shorts, eccentricity and position sensor faults are commonly shared among all ASDS. In this dissertation, a thorough understanding of various faults and their influence on transient and steady state performance of SRM is developed via simulation and experimental study, providing necessary knowledge for fault detection and post fault management. Lumped parameter models are established for fast real time simulation and drive control. Based on the behavior of the faults, a fault detection scheme is developed for the purpose of fast and reliable fault diagnosis. In order to improve the SRM power and torque capacity under faults, the maximum torque per ampere excitation are conceptualized and validated through theoretical analysis and experiments. With the proposed optimal waveform, torque production is greatly improved under the same Root Mean Square (RMS) current constraint. Additionally, position sensorless operation methods under phase faults are investigated to account for the combination of physical position sensor and phase winding faults. A comprehensive solution for position sensorless operation under single and multiple phases fault are proposed and validated through experiments. Continuous position sensorless operation with seamless transition between various numbers of phase fault is achieved.
Li, Xiangfei; Lin, Yuliang
2017-01-01
This paper proposes a new scheme of reconstructing current sensor faults and estimating unknown load disturbance for a permanent magnet synchronous motor (PMSM)-driven system. First, the original PMSM system is transformed into two subsystems; the first subsystem has unknown system load disturbances, which are unrelated to sensor faults, and the second subsystem has sensor faults, but is free from unknown load disturbances. Introducing a new state variable, the augmented subsystem that has sensor faults can be transformed into having actuator faults. Second, two sliding mode observers (SMOs) are designed: the unknown load disturbance is estimated by the first SMO in the subsystem, which has unknown load disturbance, and the sensor faults can be reconstructed using the second SMO in the augmented subsystem, which has sensor faults. The gains of the proposed SMOs and their stability analysis are developed via the solution of linear matrix inequality (LMI). Finally, the effectiveness of the proposed scheme was verified by simulations and experiments. The results demonstrate that the proposed scheme can reconstruct current sensor faults and estimate unknown load disturbance for the PMSM-driven system. PMID:29211017
Is Slow Slip a Cause or a Result of Tremor?
NASA Astrophysics Data System (ADS)
Luo, Y.; Ampuero, J. P.
2017-12-01
While various modeling efforts have been conducted to reproduce subsets of observations of tremor and slow-slip events (SSE), a fundamental but yet unanswered question is whether slow slip is a cause or a result of tremor. Tremor is commonly regarded as driven by SSE. This view is mainly based on observations of SSE without detected tremors and on (frequency-limited) estimates of total tremor seismic moment being lower than 1% of their concomitant SSE moment. In previous studies we showed that models of heterogeneous faults, composed of seismic asperities embedded in an aseismic fault zone matrix, reproduce quantitatively the hierarchical patterns of tremor migration observed in Cascadia and Shikoku. To address the title question, we design two end-member models of a heterogeneous fault. In the SSE-driven-tremor model, slow slip events are spontaneously generated by the matrix (even in the absence of seismic asperities) and drive tremor. In the Tremor-driven-SSE model the matrix is stable (it slips steadily in the absence of asperities) and slow slip events result from the collective behavior of tremor asperities interacting via transient creep (local afterslip fronts). We study these two end-member models through 2D quasi-dynamic multi-cycle simulations of faults governed by rate-and-state friction with heterogeneous frictional properties and effective normal stress, using the earthquake simulation software QDYN (https://zenodo.org/record/322459). We find that both models reproduce first-order observations of SSE and tremor and have very low seismic to aseismic moment ratio. However, the Tremor-driven-SSE model assumes a simpler rheology than the SSE-driven-tremor model and matches key observations better and without fine tuning, including the ratio of propagation speeds of forward SSE and rapid tremor reversals and the decay of inter-event times of Low Frequency Earthquakes. These modeling results indicate that, in contrast to a common view, SSE could be a result of tremor activity. We also find that, despite important interactions between asperities, tremor activity rates are proportional to the underlying aseismic slip rate, supporting an approach to estimate SSE properties with high spatial-temporal resolutions via tremor activity.
A data-driven method to enhance vibration signal decomposition for rolling bearing fault analysis
NASA Astrophysics Data System (ADS)
Grasso, M.; Chatterton, S.; Pennacchi, P.; Colosimo, B. M.
2016-12-01
Health condition analysis and diagnostics of rotating machinery requires the capability of properly characterizing the information content of sensor signals in order to detect and identify possible fault features. Time-frequency analysis plays a fundamental role, as it allows determining both the existence and the causes of a fault. The separation of components belonging to different time-frequency scales, either associated to healthy or faulty conditions, represents a challenge that motivates the development of effective methodologies for multi-scale signal decomposition. In this framework, the Empirical Mode Decomposition (EMD) is a flexible tool, thanks to its data-driven and adaptive nature. However, the EMD usually yields an over-decomposition of the original signals into a large number of intrinsic mode functions (IMFs). The selection of most relevant IMFs is a challenging task, and the reference literature lacks automated methods to achieve a synthetic decomposition into few physically meaningful modes by avoiding the generation of spurious or meaningless modes. The paper proposes a novel automated approach aimed at generating a decomposition into a minimal number of relevant modes, called Combined Mode Functions (CMFs), each consisting in a sum of adjacent IMFs that share similar properties. The final number of CMFs is selected in a fully data driven way, leading to an enhanced characterization of the signal content without any information loss. A novel criterion to assess the dissimilarity between adjacent CMFs is proposed, based on probability density functions of frequency spectra. The method is suitable to analyze vibration signals that may be periodically acquired within the operating life of rotating machineries. A rolling element bearing fault analysis based on experimental data is presented to demonstrate the performances of the method and the provided benefits.
NASA Astrophysics Data System (ADS)
Li, Shuanghong; Cao, Hongliang; Yang, Yupu
2018-02-01
Fault diagnosis is a key process for the reliability and safety of solid oxide fuel cell (SOFC) systems. However, it is difficult to rapidly and accurately identify faults for complicated SOFC systems, especially when simultaneous faults appear. In this research, a data-driven Multi-Label (ML) pattern identification approach is proposed to address the simultaneous fault diagnosis of SOFC systems. The framework of the simultaneous-fault diagnosis primarily includes two components: feature extraction and ML-SVM classifier. The simultaneous-fault diagnosis approach can be trained to diagnose simultaneous SOFC faults, such as fuel leakage, air leakage in different positions in the SOFC system, by just using simple training data sets consisting only single fault and not demanding simultaneous faults data. The experimental result shows the proposed framework can diagnose the simultaneous SOFC system faults with high accuracy requiring small number training data and low computational burden. In addition, Fault Inference Tree Analysis (FITA) is employed to identify the correlations among possible faults and their corresponding symptoms at the system component level.
Reliability Assessment for Low-cost Unmanned Aerial Vehicles
NASA Astrophysics Data System (ADS)
Freeman, Paul Michael
Existing low-cost unmanned aerospace systems are unreliable, and engineers must blend reliability analysis with fault-tolerant control in novel ways. This dissertation introduces the University of Minnesota unmanned aerial vehicle flight research platform, a comprehensive simulation and flight test facility for reliability and fault-tolerance research. An industry-standard reliability assessment technique, the failure modes and effects analysis, is performed for an unmanned aircraft. Particular attention is afforded to the control surface and servo-actuation subsystem. Maintaining effector health is essential for safe flight; failures may lead to loss of control incidents. Failure likelihood, severity, and risk are qualitatively assessed for several effector failure modes. Design changes are recommended to improve aircraft reliability based on this analysis. Most notably, the control surfaces are split, providing independent actuation and dual-redundancy. The simulation models for control surface aerodynamic effects are updated to reflect the split surfaces using a first-principles geometric analysis. The failure modes and effects analysis is extended by using a high-fidelity nonlinear aircraft simulation. A trim state discovery is performed to identify the achievable steady, wings-level flight envelope of the healthy and damaged vehicle. Tolerance of elevator actuator failures is studied using familiar tools from linear systems analysis. This analysis reveals significant inherent performance limitations for candidate adaptive/reconfigurable control algorithms used for the vehicle. Moreover, it demonstrates how these tools can be applied in a design feedback loop to make safety-critical unmanned systems more reliable. Control surface impairments that do occur must be quickly and accurately detected. This dissertation also considers fault detection and identification for an unmanned aerial vehicle using model-based and model-free approaches and applies those algorithms to experimental faulted and unfaulted flight test data. Flight tests are conducted with actuator faults that affect the plant input and sensor faults that affect the vehicle state measurements. A model-based detection strategy is designed and uses robust linear filtering methods to reject exogenous disturbances, e.g. wind, while providing robustness to model variation. A data-driven algorithm is developed to operate exclusively on raw flight test data without physical model knowledge. The fault detection and identification performance of these complementary but different methods is compared. Together, enhanced reliability assessment and multi-pronged fault detection and identification techniques can help to bring about the next generation of reliable low-cost unmanned aircraft.
NASA Astrophysics Data System (ADS)
Wang, Rongxi; Gao, Xu; Gao, Jianmin; Gao, Zhiyong; Kang, Jiani
2018-02-01
As one of the most important approaches for analyzing the mechanism of fault pervasion, fault root cause tracing is a powerful and useful tool for detecting the fundamental causes of faults so as to prevent any further propagation and amplification. Focused on the problems arising from the lack of systematic and comprehensive integration, an information transfer-based novel data-driven framework for fault root cause tracing of complex electromechanical systems in the processing industry was proposed, taking into consideration the experience and qualitative analysis of conventional fault root cause tracing methods. Firstly, an improved symbolic transfer entropy method was presented to construct a directed-weighted information model for a specific complex electromechanical system based on the information flow. Secondly, considering the feedback mechanisms in the complex electromechanical systems, a method for determining the threshold values of weights was developed to explore the disciplines of fault propagation. Lastly, an iterative method was introduced to identify the fault development process. The fault root cause was traced by analyzing the changes in information transfer between the nodes along with the fault propagation pathway. An actual fault root cause tracing application of a complex electromechanical system is used to verify the effectiveness of the proposed framework. A unique fault root cause is obtained regardless of the choice of the initial variable. Thus, the proposed framework can be flexibly and effectively used in fault root cause tracing for complex electromechanical systems in the processing industry, and formulate the foundation of system vulnerability analysis and condition prediction, as well as other engineering applications.
Battery Fault Detection with Saturating Transformers
NASA Technical Reports Server (NTRS)
Davies, Francis J. (Inventor); Graika, Jason R. (Inventor)
2013-01-01
A battery monitoring system utilizes a plurality of transformers interconnected with a battery having a plurality of battery cells. Windings of the transformers are driven with an excitation waveform whereupon signals are responsively detected, which indicate a health of the battery. In one embodiment, excitation windings and sense windings are separately provided for the plurality of transformers such that the excitation waveform is applied to the excitation windings and the signals are detected on the sense windings. In one embodiment, the number of sense windings and/or excitation windings is varied to permit location of underperforming battery cells utilizing a peak voltage detector.
A bottom-driven mechanism for distributed faulting in the Gulf of California rift
NASA Astrophysics Data System (ADS)
Persaud, Patricia; Tan, Eh; Contreras, Juan; Lavier, Luc
2017-11-01
Observations of active faulting in the continent-ocean transition of the Northern Gulf of California show multiple oblique-slip faults distributed in a 200 × 70 km2 area developed some time after a westward relocation of the plate boundary at 2 Ma. In contrast, north and south of this broad pull-apart structure, major transform faults accommodate Pacific-North America plate motion. Here we propose that the mechanism for distributed brittle deformation results from the boundary conditions present in the Northern Gulf, where basal shear is distributed between the Cerro Prieto strike-slip fault (southernmost fault of the San Andreas fault system) and the Ballenas Transform Fault. We hypothesize that in oblique-extensional settings whether deformation is partitioned in a few dip-slip and strike-slip faults, or in numerous oblique-slip faults may depend on (1) bottom-driven, distributed extension and shear deformation of the lower crust or upper mantle, and (2) the rift obliquity. To test this idea, we explore the effects of bottom-driven shear on the deformation of a brittle elastic-plastic layer with the help of pseudo-three dimensional numerical models that include side forces. Strain localization results when the basal shear abruptly increases in a step-function manner while oblique-slip on numerous faults dominates when basal shear is distributed. We further explore how the style of faulting varies with obliquity and demonstrate that the style of delocalized faulting observed in the Northern Gulf of California is reproduced in models with an obliquity of 0.7 and distributed basal shear boundary conditions, consistent with the interpreted obliquity and boundary conditions of the study area.
Topographically driven groundwater flow and the San Andreas heat flow paradox revisited
Saffer, D.M.; Bekins, B.A.; Hickman, S.
2003-01-01
Evidence for a weak San Andreas Fault includes (1) borehole heat flow measurements that show no evidence for a frictionally generated heat flow anomaly and (2) the inferred orientation of ??1 nearly perpendicular to the fault trace. Interpretations of the stress orientation data remain controversial, at least in close proximity to the fault, leading some researchers to hypothesize that the San Andreas Fault is, in fact, strong and that its thermal signature may be removed or redistributed by topographically driven groundwater flow in areas of rugged topography, such as typify the San Andreas Fault system. To evaluate this scenario, we use a steady state, two-dimensional model of coupled heat and fluid flow within cross sections oriented perpendicular to the fault and to the primary regional topography. Our results show that existing heat flow data near Parkfield, California, do not readily discriminate between the expected thermal signature of a strong fault and that of a weak fault. In contrast, for a wide range of groundwater flow scenarios in the Mojave Desert, models that include frictional heat generation along a strong fault are inconsistent with existing heat flow data, suggesting that the San Andreas Fault at this location is indeed weak. In both areas, comparison of modeling results and heat flow data suggest that advective redistribution of heat is minimal. The robust results for the Mojave region demonstrate that topographically driven groundwater flow, at least in two dimensions, is inadequate to obscure the frictionally generated heat flow anomaly from a strong fault. However, our results do not preclude the possibility of transient advective heat transport associated with earthquakes.
NASA Astrophysics Data System (ADS)
Wang, Y.; Wei, S.; Tapponnier, P.; WANG, X.; Lindsey, E.; Sieh, K.
2016-12-01
A gravity-driven "Mega-Landslide" model has been evoked to explain the shortening seen offshore Sabah and Brunei in oil-company seismic data. Although this model is considered to account simultaneously for recent folding at the edge of the submarine NW Sabah trough and normal faulting on the Sabah shelf, such a gravity-driven model is not consistent with geodetic data or critical examination of extant structural restorations. The rupture that produced the 2015 Mw6.0 Mt. Kinabalu earthquake is also inconsistent with the gravity-driven model. Our teleseismic analysis shows that the centroid depth of that earthquake's mainshock was 13 to 14 km, and its favored fault-plane solution is a 60° NW-dipping normal fault. Our finite-rupture model exhibits major fault slip between 5 and 15 km depth, in keeping with our InSAR analysis, which shows no appreciable surface deformation. Both the hypocentral depth and the depth of principal slip are far too deep to be explained by gravity-driven failure, as such a model would predict a listric normal fault connecting at a much shallower depth with a very gentle detachment. Our regional mapping of tectonic landforms also suggests the recent rupture is part of a 200-km long system of narrowly distributed active extension in northern Sabah. Taken together, the nature of the 2015 rupture, the belt of active normal faults, and structural consideration indicate that active tectonic shortening plays the leading role in controlling the overall deformation of northern Sabah and that deep-seated, onland normal faulting likely results from an abrupt change in the dip-angle of the collision interface beneath the Sabah accretionary prism.
Software-implemented fault insertion: An FTMP example
NASA Technical Reports Server (NTRS)
Czeck, Edward W.; Siewiorek, Daniel P.; Segall, Zary Z.
1987-01-01
This report presents a model for fault insertion through software; describes its implementation on a fault-tolerant computer, FTMP; presents a summary of fault detection, identification, and reconfiguration data collected with software-implemented fault insertion; and compares the results to hardware fault insertion data. Experimental results show detection time to be a function of time of insertion and system workload. For the fault detection time, there is no correlation between software-inserted faults and hardware-inserted faults; this is because hardware-inserted faults must manifest as errors before detection, whereas software-inserted faults immediately exercise the error detection mechanisms. In summary, the software-implemented fault insertion is able to be used as an evaluation technique for the fault-handling capabilities of a system in fault detection, identification and recovery. Although the software-inserted faults do not map directly to hardware-inserted faults, experiments show software-implemented fault insertion is capable of emulating hardware fault insertion, with greater ease and automation.
NASA Astrophysics Data System (ADS)
Haram, M.; Wang, T.; Gu, F.; Ball, A. D.
2012-05-01
Motor current signal analysis has been an effective way for many years of monitoring electrical machines themselves. However, little work has been carried out in using this technique for monitoring their downstream equipment because of difficulties in extracting small fault components in the measured current signals. This paper investigates the characteristics of electrical current signals for monitoring the faults from a downstream gearbox using a modulation signal bispectrum (MSB), including phase effects in extracting small modulating components in a noisy measurement. An analytical study is firstly performed to understand amplitude, frequency and phase characteristics of current signals due to faults. It then explores the performance of MSB analysis in detecting weak modulating components in current signals. Experimental study based on a 10kw two stage gearbox, driven by a three phase induction motor, shows that MSB peaks at different rotational frequencies can be based to quantify the severity of gear tooth breakage and the degrees of shaft misalignment. In addition, the type and location of a fault can be recognized based on the frequency at which the change of MSB peak is the highest among different frequencies.
NASA Astrophysics Data System (ADS)
Amato, Vincenzo; Aucelli, Pietro P. C.; Bellucci Sessa, Eliana; Cesarano, Massimo; Incontri, Pietro; Pappone, Gerardo; Valente, Ettore; Vilardo, Giuseppe
2017-04-01
A multidisciplinary methodology, integrating stratigraphic, geomorphological and structural data, combined with GIS-aided analysis and PS-InSAR interferometric data, was applied to characterize the relationships between ground deformations and the stratigraphic and the morphostructural setting of the Venafro intermontane basin. This basin is a morphostructural depression related to NW-SE and NE-SW oriented high angle normal faults bordering and crossing it. In particular, a well-known active fault crossing the plain is the Aquae Juliae Fault, whose recent activity is evidenced by archeoseismological data. The approach applied here reveals new evidence of possible faulting, acting during the Lower to Upper Pleistocene, which has driven the morphotectonic and the environmental evolution of the basin. In particular, the tectonic setting emerging from this study highlights the influence of the NW-SE oriented extensional phase during the late Lower Pleistocene - early Middle Pleistocene, in the generation of NE-SW trending, SE dipping, high-angle faults and NW-SE trending, high-angle transtensive faults. This phase has been followed by a NE-SW extensional one, responsible for the formation of NW-SE trending, both NW and SE dipping, high-angle normal faults, and the reactivation of the oldest NE-SW oriented structures. These NW-SE trending normal faults include the Aquae Juliae Fault and a new one, unknown until now, crossing the plain between the Venafro village and the Colle Cupone Mt. (hereinafter named the Venafro-Colle Cupone Fault, VCCF). This fault has controlled deposition of the youngest sedimentary units (late Middle Pleistocene to late Upper Pleistocene) suggesting its recent activity and it is well constrained by PS-InSAR data, as testified by the increase of the subsidence rate in the hanging wall block.
NASA Astrophysics Data System (ADS)
Tranos, Markos D.
2018-02-01
Synthetic heterogeneous fault-slip data as driven by Andersonian compressional stress tensors were used to examine the efficiency of best-fit stress inversion methods in separating them. Heterogeneous fault-slip data are separated only if (a) they have been driven by stress tensors defining 'hybrid' compression (R < 0.375), and their σ1 axes differ in trend more than 30° (R = 0) or 50° (R = 0.25). Separation is not feasible if they have been driven by (b) 'real' (R ≥ 0.375) and 'hybrid' compressional tensors having their σ1 axes in similar trend, or (c) 'real' compressional tensors. In case (a), the Stress Tensor Discriminator Faults (STDF) exist in more than 50% of the activated fault slip data while in cases (b) and (c), they exist in percentages of much less than 50% or not at all. They constitute a necessary discriminatory tool for the establishment and comparison of two compressional stress tensors determined by a best-fit stress inversion method. The best-fit stress inversion methods are not able to determine more than one 'real' compressional stress tensor, as far as the thrust stacking in an orogeny is concerned. They can only possibly discern stress differences in the late-orogenic faulting processes, but not between the main- and late-orogenic stages.
Optimal filtering and Bayesian detection for friction-based diagnostics in machines.
Ray, L R; Townsend, J R; Ramasubramanian, A
2001-01-01
Non-model-based diagnostic methods typically rely on measured signals that must be empirically related to process behavior or incipient faults. The difficulty in interpreting a signal that is indirectly related to the fundamental process behavior is significant. This paper presents an integrated non-model and model-based approach to detecting when process behavior varies from a proposed model. The method, which is based on nonlinear filtering combined with maximum likelihood hypothesis testing, is applicable to dynamic systems whose constitutive model is well known, and whose process inputs are poorly known. Here, the method is applied to friction estimation and diagnosis during motion control in a rotating machine. A nonlinear observer estimates friction torque in a machine from shaft angular position measurements and the known input voltage to the motor. The resulting friction torque estimate can be analyzed directly for statistical abnormalities, or it can be directly compared to friction torque outputs of an applicable friction process model in order to diagnose faults or model variations. Nonlinear estimation of friction torque provides a variable on which to apply diagnostic methods that is directly related to model variations or faults. The method is evaluated experimentally by its ability to detect normal load variations in a closed-loop controlled motor driven inertia with bearing friction and an artificially-induced external line contact. Results show an ability to detect statistically significant changes in friction characteristics induced by normal load variations over a wide range of underlying friction behaviors.
NASA Astrophysics Data System (ADS)
Pan, Jun; Chen, Jinglong; Zi, Yanyang; Yuan, Jing; Chen, Binqiang; He, Zhengjia
2016-12-01
It is significant to perform condition monitoring and fault diagnosis on rolling mills in steel-making plant to ensure economic benefit. However, timely fault identification of key parts in a complicated industrial system under operating condition is still a challenging task since acquired condition signals are usually multi-modulated and inevitably mixed with strong noise. Therefore, a new data-driven mono-component identification method is proposed in this paper for diagnostic purpose. First, the modified nonlocal means algorithm (NLmeans) is proposed to reduce noise in vibration signals without destroying its original Fourier spectrum structure. During the modified NLmeans, two modifications are investigated and performed to improve denoising effect. Then, the modified empirical wavelet transform (MEWT) is applied on the de-noised signal to adaptively extract empirical mono-component modes. Finally, the modes are analyzed for mechanical fault identification based on Hilbert transform. The results show that the proposed data-driven method owns superior performance during system operation compared with the MEWT method.
NASA Astrophysics Data System (ADS)
Zhao, Ming; Jia, Xiaodong; Lin, Jing; Lei, Yaguo; Lee, Jay
2018-01-01
In modern rotating machinery, rotary encoders have been widely used for the purpose of positioning and dynamic control. The study in this paper indicates that, the encoder signal, after proper processing, can be also effectively used for the health monitoring of rotating machines. In this work, a Kurtosis-guided local polynomial differentiator (KLPD) is proposed to estimate the instantaneous angular speed (IAS) of rotating machines based on the encoder signal. Compared with the central difference method, the KLPD is more robust to noise and it is able to precisely capture the weak speed jitters introduced by mechanical defects. The fault diagnosis of planetary gearbox has proven to be a challenging issue in both industry and academia. Based on the proposed KLPD, a systematic method for the fault diagnosis of planetary gearbox is proposed. In this method, residual time synchronous time averaging (RTSA) is first employed to remove the operation-related IAS components that come from normal gear meshing and non-stationary load variations, KLPD is then utilized to detect and enhance the speed jitter from the IAS residual in a data-driven manner. The effectiveness of proposed method has been validated by both simulated data and experimental data. The results demonstrate that the proposed KLPD-RTSA could not only detect fault signatures but also identify defective components, thus providing a promising tool for the health monitoring of planetary gearbox.
Linking Europa's plume activity to tides, tectonics, and liquid water
NASA Astrophysics Data System (ADS)
Rhoden, Alyssa Rose; Hurford, Terry A.; Roth, Lorenz; Retherford, Kurt
2015-06-01
Much of the geologic activity preserved on Europa's icy surface has been attributed to tidal deformation, mainly due to Europa's eccentric orbit. Although the surface is geologically young (30-80 Myr), there is little information as to whether tidally-driven surface processes are ongoing. However, a recent detection of water vapor near Europa's south pole suggests that it may be geologically active. Initial observations indicated that Europa's plume eruptions are time-variable and may be linked to its tidal cycle. Saturn's moon, Enceladus, which shares many similar traits with Europa, displays tidally-modulated plume eruptions, which bolstered this interpretation. However, additional observations of Europa at the same time in its orbit failed to yield a plume detection, casting doubt on the tidal control hypothesis. The purpose of this study is to analyze the timing of plume eruptions within the context of Europa's tidal cycle to determine whether such a link exists and examine the inferred similarities and differences between plume activity on Europa and Enceladus. To do this, we determine the locations and orientations of hypothetical tidally-driven fractures that best match the temporal variability of the plumes observed at Europa. Specifically, we identify model faults that are in tension at the time in Europa's orbit when a plume was detected and in compression at times when the plume was not detected. We find that tidal stress driven solely by eccentricity is incompatible with the observations unless additional mechanisms are controlling the eruption timing or restricting the longevity of the plumes. The addition of obliquity tides, and corresponding precession of the spin pole, can generate a number of model faults that are consistent with the pattern of plume detections. The locations and orientations of these hypothetical source fractures are robust across a broad range of precession rates and spin pole directions. Analysis of the stress variations across the fractures suggests that the plumes would be best observed earlier in the orbit (true anomaly ∼120°). Our results indicate that Europa's plumes, if confirmed, differ in many respects from the Enceladean plumes and that either active fractures or volatile sources are rare.
Sparsity-aware tight frame learning with adaptive subspace recognition for multiple fault diagnosis
NASA Astrophysics Data System (ADS)
Zhang, Han; Chen, Xuefeng; Du, Zhaohui; Yang, Boyuan
2017-09-01
It is a challenging problem to design excellent dictionaries to sparsely represent diverse fault information and simultaneously discriminate different fault sources. Therefore, this paper describes and analyzes a novel multiple feature recognition framework which incorporates the tight frame learning technique with an adaptive subspace recognition strategy. The proposed framework consists of four stages. Firstly, by introducing the tight frame constraint into the popular dictionary learning model, the proposed tight frame learning model could be formulated as a nonconvex optimization problem which can be solved by alternatively implementing hard thresholding operation and singular value decomposition. Secondly, the noises are effectively eliminated through transform sparse coding techniques. Thirdly, the denoised signal is decoupled into discriminative feature subspaces by each tight frame filter. Finally, in guidance of elaborately designed fault related sensitive indexes, latent fault feature subspaces can be adaptively recognized and multiple faults are diagnosed simultaneously. Extensive numerical experiments are sequently implemented to investigate the sparsifying capability of the learned tight frame as well as its comprehensive denoising performance. Most importantly, the feasibility and superiority of the proposed framework is verified through performing multiple fault diagnosis of motor bearings. Compared with the state-of-the-art fault detection techniques, some important advantages have been observed: firstly, the proposed framework incorporates the physical prior with the data-driven strategy and naturally multiple fault feature with similar oscillation morphology can be adaptively decoupled. Secondly, the tight frame dictionary directly learned from the noisy observation can significantly promote the sparsity of fault features compared to analytical tight frames. Thirdly, a satisfactory complete signal space description property is guaranteed and thus weak feature leakage problem is avoided compared to typical learning methods.
Final Technical Report: PV Fault Detection Tool.
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, Bruce Hardison; Jones, Christian Birk
The PV Fault Detection Tool project plans to demonstrate that the FDT can (a) detect catastrophic and degradation faults and (b) identify the type of fault. This will be accomplished by collecting fault signatures using different instruments and integrating this information to establish a logical controller for detecting, diagnosing and classifying each fault.
Latest Progress of Fault Detection and Localization in Complex Electrical Engineering
NASA Astrophysics Data System (ADS)
Zhao, Zheng; Wang, Can; Zhang, Yagang; Sun, Yi
2014-01-01
In the researches of complex electrical engineering, efficient fault detection and localization schemes are essential to quickly detect and locate faults so that appropriate and timely corrective mitigating and maintenance actions can be taken. In this paper, under the current measurement precision of PMU, we will put forward a new type of fault detection and localization technology based on fault factor feature extraction. Lots of simulating experiments indicate that, although there are disturbances of white Gaussian stochastic noise, based on fault factor feature extraction principal, the fault detection and localization results are still accurate and reliable, which also identifies that the fault detection and localization technology has strong anti-interference ability and great redundancy.
A data-driven multiplicative fault diagnosis approach for automation processes.
Hao, Haiyang; Zhang, Kai; Ding, Steven X; Chen, Zhiwen; Lei, Yaguo
2014-09-01
This paper presents a new data-driven method for diagnosing multiplicative key performance degradation in automation processes. Different from the well-established additive fault diagnosis approaches, the proposed method aims at identifying those low-level components which increase the variability of process variables and cause performance degradation. Based on process data, features of multiplicative fault are extracted. To identify the root cause, the impact of fault on each process variable is evaluated in the sense of contribution to performance degradation. Then, a numerical example is used to illustrate the functionalities of the method and Monte-Carlo simulation is performed to demonstrate the effectiveness from the statistical viewpoint. Finally, to show the practical applicability, a case study on the Tennessee Eastman process is presented. Copyright © 2013. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Brandsdottir, B.; Parsons, M.; White, R. S.; Gudmundsson, O.; Drew, J.
2010-12-01
The mid-Atlantic plate boundary breaks up into a series of segments across Iceland. The South Iceland Seismic Zone (SISZ) is a complex transform zone where left-lateral E-W shear between the Reykjanes Peninsula Rift Zone and the Eastern Volcanic Zone is accommodated by bookshelf faulting along N-S lateral strike-slip faults. The SISZ is also a transient feature, migrating sideways in response to the southward propagation of the Eastern Volcanic Zone. Sequences of large earthquakes (M > 6) lasting from days to years and affecting most of the seismic zone have occurred repeatedly in historical time (last 1100 years), separated by intervals of relative quiescence lasting decades to more than a century. On May 29 2008, a Mw 6.1 earthquake struck the western part of the South Iceland Seismic Zone, followed within seconds by a slightly smaller event on a second fault ~5 km further west. Aftershocks, detected by a temporal array of 11 seismometers and three permanent Icelandic Meteorological Office stations were located using an automated Coalescence Microseismic Mapping technique. The epicenters delineate two major and several smaller N-S faults as well as an E-W zone of activity stretching further west into the Reykjanes Peninsula Rift Zone. Fault plane solutions show both right lateral and oblique strike slip mechanisms along the two major N-S faults. The aftershocks deepen from 3-5 km in the north to 8-9 km in the south, suggesting that the main faults dip southwards. The faulting is interpreted to be driven by the local stress due to transform motion between two parallel segments of the divergent plate boundary crossing Iceland.
NASA Technical Reports Server (NTRS)
Park, Han G. (Inventor); Zak, Michail (Inventor); James, Mark L. (Inventor); Mackey, Ryan M. E. (Inventor)
2003-01-01
A general method of anomaly detection from time-correlated sensor data is disclosed. Multiple time-correlated signals are received. Their cross-signal behavior is compared against a fixed library of invariants. The library is constructed during a training process, which is itself data-driven using the same time-correlated signals. The method is applicable to a broad class of problems and is designed to respond to any departure from normal operation, including faults or events that lie outside the training envelope.
NASA Astrophysics Data System (ADS)
Schneeberger, Raphael; Berger, Alfons; Mäder, Urs K.; Niklaus Waber, H.; Kober, Florian; Herwegh, Marco
2017-04-01
Water flow across crystalline bedrock is of major interest for deep-seated geothermal energy projects as well as for underground disposal of radioactive waste. In crystalline rocks enhanced fluid flow is related to zones of increased permeability, i.e. to fractures that are associated to fault zones. The flow regime around the Grimsel Test Site (GTS, Central Aar massif) was assessed by establishing a 3D fault zone pattern on a local scale in the GTS underground facility (deca-meter scale) and on a regional scale at the surface (km-scale). The study reveals the existence of a dense fault zone network consisting of several km long and few tens of cm to meter wide, sub-vertically oriented major faults that are connected by tens to hundreds of meters long minor bridging faults. This geometrical information was used as input for the generation of a 3D fault zone network model. The faults originate from ductile shear zones that were reactivated as brittle faults under retrograde conditions during exhumation. Embrittlement and associated dilatancy along the faults provide the pathways for today's groundwater flow. Detection of the actual 3D flow paths is, however, challenging since flow seem to be not planar but rather tube-like. Two strategies are applied to constrain the 3D geometry of the flow tubes: (i) Characterization of the groundwater infiltrating into the GTS (location, yield, hydraulic head, and chemical composition) and (ii) stress modelling on the base of the 3D structural model to unravel potential domains of enhanced fluid flow such as fault plane intersections and domains of dilatancy. At the Grimsel Test Site, hydraulic and structural data demonstrate that the groundwater flow is head-driven from the surface towards the GTS located some 450 m below the surface. The residence time of the groundwater in this surface-near section is >60 years as evidenced by absence of detectable tritium. However, hydraulic heads obtained from interval pressure measurements within boreholes are variable and do not correspond to the overburden above the interval. Underground mapping revealed close spatial relation between water inflow points and faults, major water inflows occur in strongly deformed areas of the GTS. Furthermore, persistent differences in the groundwater chemical composition between infiltration points indicate that connectivity between different water flow paths is poor. Different findings indicate complex flow path geometries. However, domains of enhanced dilatancy and domains with increased number of fault intersections correlate with areas in the underground with 'high' water inflow.
Parameter Transient Behavior Analysis on Fault Tolerant Control System
NASA Technical Reports Server (NTRS)
Belcastro, Christine (Technical Monitor); Shin, Jong-Yeob
2003-01-01
In a fault tolerant control (FTC) system, a parameter varying FTC law is reconfigured based on fault parameters estimated by fault detection and isolation (FDI) modules. FDI modules require some time to detect fault occurrences in aero-vehicle dynamics. This paper illustrates analysis of a FTC system based on estimated fault parameter transient behavior which may include false fault detections during a short time interval. Using Lyapunov function analysis, the upper bound of an induced-L2 norm of the FTC system performance is calculated as a function of a fault detection time and the exponential decay rate of the Lyapunov function.
Robust Fault Detection and Isolation for Stochastic Systems
NASA Technical Reports Server (NTRS)
George, Jemin; Gregory, Irene M.
2010-01-01
This paper outlines the formulation of a robust fault detection and isolation scheme that can precisely detect and isolate simultaneous actuator and sensor faults for uncertain linear stochastic systems. The given robust fault detection scheme based on the discontinuous robust observer approach would be able to distinguish between model uncertainties and actuator failures and therefore eliminate the problem of false alarms. Since the proposed approach involves precise reconstruction of sensor faults, it can also be used for sensor fault identification and the reconstruction of true outputs from faulty sensor outputs. Simulation results presented here validate the effectiveness of the robust fault detection and isolation system.
A bottom-driven mechanism for distributed faulting: Insights from the Gulf of California Rift
NASA Astrophysics Data System (ADS)
Persaud, P.; Tan, E.; Choi, E.; Contreras, J.; Lavier, L. L.
2017-12-01
The Gulf of California is a young oblique rift that displays a variation in rifting style along strike. Despite the rapid localization of strain in the Gulf at 6 Ma, the northern rift segment has the characteristics of a wide rift, with broadly distributed extensional strain and small gradients in topography and crustal thinning. Observations of active faulting in the continent-ocean transition of the Northern Gulf show multiple oblique-slip faults distributed in a 200 x 70 km2area developed some time after a westward relocation of the plate boundary at 2 Ma. In contrast, north and south of this broad pull-apart structure, major transform faults accommodate Pacific-North America plate motion. Here we propose that the mechanism for distributed brittle deformation results from the boundary conditions present in the Northern Gulf, where basal shear is distributed between the Cerro Prieto strike-slip fault (southernmost fault of the San Andreas fault system) and the Ballenas Transform fault. We hypothesize that in oblique-extensional settings whether deformation is partitioned in a few dip-slip and strike-slip faults, or in numerous oblique-slip faults may depend on (1) bottom-driven, distributed extension and shear deformation of the lower crust or upper mantle, and (2) the rift obliquity. To test this idea, we explore the effects of bottom-driven shear on the deformation of a brittle elastic-plastic layer with pseudo-three dimensional numerical models that include side forces. Strain localization results when the basal shear is a step-function while oblique-slip on numerous faults dominates when basal shear is distributed. We further investigate how the style of faulting varies with obliquity and demonstrate that the style of faulting observed in the Northern Gulf of California is reproduced in models with an obliquity of 0.7 and distributed basal shear boundary conditions, consistent with the interpreted obliquity and boundary conditions of the study area. Our findings motivate a suite of 3D models of the early plate boundary evolution in the Gulf, and highlight the importance of local stress field perturbations as a mechanism for broadening the deformation zone in other regions such as the Basin and Range, Rio Grande Rift and Malawi Rift.
NASA Technical Reports Server (NTRS)
Joshi, Suresh M.
2012-01-01
This paper explores a class of multiple-model-based fault detection and identification (FDI) methods for bias-type faults in actuators and sensors. These methods employ banks of Kalman-Bucy filters to detect the faults, determine the fault pattern, and estimate the fault values, wherein each Kalman-Bucy filter is tuned to a different failure pattern. Necessary and sufficient conditions are presented for identifiability of actuator faults, sensor faults, and simultaneous actuator and sensor faults. It is shown that FDI of simultaneous actuator and sensor faults is not possible using these methods when all sensors have biases.
NASA Technical Reports Server (NTRS)
Wilson, Edward (Inventor)
2008-01-01
The present invention is a method for detecting and isolating fault modes in a system having a model describing its behavior and regularly sampled measurements. The models are used to calculate past and present deviations from measurements that would result with no faults present, as well as with one or more potential fault modes present. Algorithms that calculate and store these deviations, along with memory of when said faults, if present, would have an effect on the said actual measurements, are used to detect when a fault is present. Related algorithms are used to exonerate false fault modes and finally to isolate the true fault mode. This invention is presented with application to detection and isolation of thruster faults for a thruster-controlled spacecraft. As a supporting aspect of the invention, a novel, effective, and efficient filtering method for estimating the derivative of a noisy signal is presented.
Chen, Wen; Chowdhury, Fahmida N; Djuric, Ana; Yeh, Chih-Ping
2014-09-01
This paper provides a new design of robust fault detection for turbofan engines with adaptive controllers. The critical issue is that the adaptive controllers can depress the faulty effects such that the actual system outputs remain the pre-specified values, making it difficult to detect faults/failures. To solve this problem, a Total Measurable Fault Information Residual (ToMFIR) technique with the aid of system transformation is adopted to detect faults in turbofan engines with adaptive controllers. This design is a ToMFIR-redundancy-based robust fault detection. The ToMFIR is first introduced and existing results are also summarized. The Detailed design process of the ToMFIRs is presented and a turbofan engine model is simulated to verify the effectiveness of the proposed ToMFIR-based fault-detection strategy. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Main propulsion functional path analysis for performance monitoring fault detection and annunciation
NASA Technical Reports Server (NTRS)
Keesler, E. L.
1974-01-01
A total of 48 operational flight instrumentation measurements were identified for use in performance monitoring and fault detection. The Operational Flight Instrumentation List contains all measurements identified for fault detection and annunciation. Some 16 controller data words were identified for use in fault detection and annunciation.
General Purpose Data-Driven Online System Health Monitoring with Applications to Space Operations
NASA Technical Reports Server (NTRS)
Iverson, David L.; Spirkovska, Lilly; Schwabacher, Mark
2010-01-01
Modern space transportation and ground support system designs are becoming increasingly sophisticated and complex. Determining the health state of these systems using traditional parameter limit checking, or model-based or rule-based methods is becoming more difficult as the number of sensors and component interactions grows. Data-driven monitoring techniques have been developed to address these issues by analyzing system operations data to automatically characterize normal system behavior. System health can be monitored by comparing real-time operating data with these nominal characterizations, providing detection of anomalous data signatures indicative of system faults, failures, or precursors of significant failures. The Inductive Monitoring System (IMS) is a general purpose, data-driven system health monitoring software tool that has been successfully applied to several aerospace applications and is under evaluation for anomaly detection in vehicle and ground equipment for next generation launch systems. After an introduction to IMS application development, we discuss these NASA online monitoring applications, including the integration of IMS with complementary model-based and rule-based methods. Although the examples presented in this paper are from space operations applications, IMS is a general-purpose health-monitoring tool that is also applicable to power generation and transmission system monitoring.
Elbouchikhi, Elhoussin; Choqueuse, Vincent; Benbouzid, Mohamed
2016-07-01
Condition monitoring of electric drives is of paramount importance since it contributes to enhance the system reliability and availability. Moreover, the knowledge about the fault mode behavior is extremely important in order to improve system protection and fault-tolerant control. Fault detection and diagnosis in squirrel cage induction machines based on motor current signature analysis (MCSA) has been widely investigated. Several high resolution spectral estimation techniques have been developed and used to detect induction machine abnormal operating conditions. This paper focuses on the application of MCSA for the detection of abnormal mechanical conditions that may lead to induction machines failure. In fact, this paper is devoted to the detection of single-point defects in bearings based on parametric spectral estimation. A multi-dimensional MUSIC (MD MUSIC) algorithm has been developed for bearing faults detection based on bearing faults characteristic frequencies. This method has been used to estimate the fundamental frequency and the fault related frequency. Then, an amplitude estimator of the fault characteristic frequencies has been proposed and fault indicator has been derived for fault severity measurement. The proposed bearing faults detection approach is assessed using simulated stator currents data, issued from a coupled electromagnetic circuits approach for air-gap eccentricity emulating bearing faults. Then, experimental data are used for validation purposes. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Distributed Fault Detection Based on Credibility and Cooperation for WSNs in Smart Grids.
Shao, Sujie; Guo, Shaoyong; Qiu, Xuesong
2017-04-28
Due to the increasingly important role in monitoring and data collection that sensors play, accurate and timely fault detection is a key issue for wireless sensor networks (WSNs) in smart grids. This paper presents a novel distributed fault detection mechanism for WSNs based on credibility and cooperation. Firstly, a reasonable credibility model of a sensor is established to identify any suspicious status of the sensor according to its own temporal data correlation. Based on the credibility model, the suspicious sensor is then chosen to launch fault diagnosis requests. Secondly, the sending time of fault diagnosis request is discussed to avoid the transmission overhead brought about by unnecessary diagnosis requests and improve the efficiency of fault detection based on neighbor cooperation. The diagnosis reply of a neighbor sensor is analyzed according to its own status. Finally, to further improve the accuracy of fault detection, the diagnosis results of neighbors are divided into several classifications to judge the fault status of the sensors which launch the fault diagnosis requests. Simulation results show that this novel mechanism can achieve high fault detection ratio with a small number of fault diagnoses and low data congestion probability.
Distributed Fault Detection Based on Credibility and Cooperation for WSNs in Smart Grids
Shao, Sujie; Guo, Shaoyong; Qiu, Xuesong
2017-01-01
Due to the increasingly important role in monitoring and data collection that sensors play, accurate and timely fault detection is a key issue for wireless sensor networks (WSNs) in smart grids. This paper presents a novel distributed fault detection mechanism for WSNs based on credibility and cooperation. Firstly, a reasonable credibility model of a sensor is established to identify any suspicious status of the sensor according to its own temporal data correlation. Based on the credibility model, the suspicious sensor is then chosen to launch fault diagnosis requests. Secondly, the sending time of fault diagnosis request is discussed to avoid the transmission overhead brought about by unnecessary diagnosis requests and improve the efficiency of fault detection based on neighbor cooperation. The diagnosis reply of a neighbor sensor is analyzed according to its own status. Finally, to further improve the accuracy of fault detection, the diagnosis results of neighbors are divided into several classifications to judge the fault status of the sensors which launch the fault diagnosis requests. Simulation results show that this novel mechanism can achieve high fault detection ratio with a small number of fault diagnoses and low data congestion probability. PMID:28452925
Aircraft Fault Detection and Classification Using Multi-Level Immune Learning Detection
NASA Technical Reports Server (NTRS)
Wong, Derek; Poll, Scott; KrishnaKumar, Kalmanje
2005-01-01
This work is an extension of a recently developed software tool called MILD (Multi-level Immune Learning Detection), which implements a negative selection algorithm for anomaly and fault detection that is inspired by the human immune system. The immunity-based approach can detect a broad spectrum of known and unforeseen faults. We extend MILD by applying a neural network classifier to identify the pattern of fault detectors that are activated during fault detection. Consequently, MILD now performs fault detection and identification of the system under investigation. This paper describes the application of MILD to detect and classify faults of a generic transport aircraft augmented with an intelligent flight controller. The intelligent control architecture is designed to accommodate faults without the need to explicitly identify them. Adding knowledge about the existence and type of a fault will improve the handling qualities of a degraded aircraft and impact tactical and strategic maneuvering decisions. In addition, providing fault information to the pilot is important for maintaining situational awareness so that he can avoid performing an action that might lead to unexpected behavior - e.g., an action that exceeds the remaining control authority of the damaged aircraft. We discuss the detection and classification results of simulated failures of the aircraft's control system and show that MILD is effective at determining the problem with low false alarm and misclassification rates.
A Novel Arc Fault Detector for Early Detection of Electrical Fires
Yang, Kai; Zhang, Rencheng; Yang, Jianhong; Liu, Canhua; Chen, Shouhong; Zhang, Fujiang
2016-01-01
Arc faults can produce very high temperatures and can easily ignite combustible materials; thus, they represent one of the most important causes of electrical fires. The application of arc fault detection, as an emerging early fire detection technology, is required by the National Electrical Code to reduce the occurrence of electrical fires. However, the concealment, randomness and diversity of arc faults make them difficult to detect. To improve the accuracy of arc fault detection, a novel arc fault detector (AFD) is developed in this study. First, an experimental arc fault platform is built to study electrical fires. A high-frequency transducer and a current transducer are used to measure typical load signals of arc faults and normal states. After the common features of these signals are studied, high-frequency energy and current variations are extracted as an input eigenvector for use by an arc fault detection algorithm. Then, the detection algorithm based on a weighted least squares support vector machine is designed and successfully applied in a microprocessor. Finally, an AFD is developed. The test results show that the AFD can detect arc faults in a timely manner and interrupt the circuit power supply before electrical fires can occur. The AFD is not influenced by cross talk or transient processes, and the detection accuracy is very high. Hence, the AFD can be installed in low-voltage circuits to monitor circuit states in real-time to facilitate the early detection of electrical fires. PMID:27070618
A Unified Nonlinear Adaptive Approach for Detection and Isolation of Engine Faults
NASA Technical Reports Server (NTRS)
Tang, Liang; DeCastro, Jonathan A.; Zhang, Xiaodong; Farfan-Ramos, Luis; Simon, Donald L.
2010-01-01
A challenging problem in aircraft engine health management (EHM) system development is to detect and isolate faults in system components (i.e., compressor, turbine), actuators, and sensors. Existing nonlinear EHM methods often deal with component faults, actuator faults, and sensor faults separately, which may potentially lead to incorrect diagnostic decisions and unnecessary maintenance. Therefore, it would be ideal to address sensor faults, actuator faults, and component faults under one unified framework. This paper presents a systematic and unified nonlinear adaptive framework for detecting and isolating sensor faults, actuator faults, and component faults for aircraft engines. The fault detection and isolation (FDI) architecture consists of a parallel bank of nonlinear adaptive estimators. Adaptive thresholds are appropriately designed such that, in the presence of a particular fault, all components of the residual generated by the adaptive estimator corresponding to the actual fault type remain below their thresholds. If the faults are sufficiently different, then at least one component of the residual generated by each remaining adaptive estimator should exceed its threshold. Therefore, based on the specific response of the residuals, sensor faults, actuator faults, and component faults can be isolated. The effectiveness of the approach was evaluated using the NASA C-MAPSS turbofan engine model, and simulation results are presented.
A signal-based fault detection and classification method for heavy haul wagons
NASA Astrophysics Data System (ADS)
Li, Chunsheng; Luo, Shihui; Cole, Colin; Spiryagin, Maksym; Sun, Yanquan
2017-12-01
This paper proposes a signal-based fault detection and isolation (FDI) system for heavy haul wagons considering the special requirements of low cost and robustness. The sensor network of the proposed system consists of just two accelerometers mounted on the front left and rear right of the carbody. Seven fault indicators (FIs) are proposed based on the cross-correlation analyses of the sensor-collected acceleration signals. Bolster spring fault conditions are focused on in this paper, including two different levels (small faults and moderate faults) and two locations (faults in the left and right bolster springs of the first bogie). A fully detailed dynamic model of a typical 40t axle load heavy haul wagon is developed to evaluate the deterioration of dynamic behaviour under proposed fault conditions and demonstrate the detectability of the proposed FDI method. Even though the fault conditions considered in this paper did not deteriorate the wagon dynamic behaviour dramatically, the proposed FIs show great sensitivity to the bolster spring faults. The most effective and efficient FIs are chosen for fault detection and classification. Analysis results indicate that it is possible to detect changes in bolster stiffness of ±25% and identify the fault location.
Fault Diagnosis Strategies for SOFC-Based Power Generation Plants
Costamagna, Paola; De Giorgi, Andrea; Gotelli, Alberto; Magistri, Loredana; Moser, Gabriele; Sciaccaluga, Emanuele; Trucco, Andrea
2016-01-01
The success of distributed power generation by plants based on solid oxide fuel cells (SOFCs) is hindered by reliability problems that can be mitigated through an effective fault detection and isolation (FDI) system. However, the numerous operating conditions under which such plants can operate and the random size of the possible faults make identifying damaged plant components starting from the physical variables measured in the plant very difficult. In this context, we assess two classical FDI strategies (model-based with fault signature matrix and data-driven with statistical classification) and the combination of them. For this assessment, a quantitative model of the SOFC-based plant, which is able to simulate regular and faulty conditions, is used. Moreover, a hybrid approach based on the random forest (RF) classification method is introduced to address the discrimination of regular and faulty situations due to its practical advantages. Working with a common dataset, the FDI performances obtained using the aforementioned strategies, with different sets of monitored variables, are observed and compared. We conclude that the hybrid FDI strategy, realized by combining a model-based scheme with a statistical classifier, outperforms the other strategies. In addition, the inclusion of two physical variables that should be measured inside the SOFCs can significantly improve the FDI performance, despite the actual difficulty in performing such measurements. PMID:27556472
A distributed fault-detection and diagnosis system using on-line parameter estimation
NASA Technical Reports Server (NTRS)
Guo, T.-H.; Merrill, W.; Duyar, A.
1991-01-01
The development of a model-based fault-detection and diagnosis system (FDD) is reviewed. The system can be used as an integral part of an intelligent control system. It determines the faults of a system from comparison of the measurements of the system with a priori information represented by the model of the system. The method of modeling a complex system is described and a description of diagnosis models which include process faults is presented. There are three distinct classes of fault modes covered by the system performance model equation: actuator faults, sensor faults, and performance degradation. A system equation for a complete model that describes all three classes of faults is given. The strategy for detecting the fault and estimating the fault parameters using a distributed on-line parameter identification scheme is presented. A two-step approach is proposed. The first step is composed of a group of hypothesis testing modules, (HTM) in parallel processing to test each class of faults. The second step is the fault diagnosis module which checks all the information obtained from the HTM level, isolates the fault, and determines its magnitude. The proposed FDD system was demonstrated by applying it to detect actuator and sensor faults added to a simulation of the Space Shuttle Main Engine. The simulation results show that the proposed FDD system can adequately detect the faults and estimate their magnitudes.
Application of a Subspace-Based Fault Detection Method to Industrial Structures
NASA Astrophysics Data System (ADS)
Mevel, L.; Hermans, L.; van der Auweraer, H.
1999-11-01
Early detection and localization of damage allow increased expectations of reliability, safety and reduction of the maintenance cost. This paper deals with the industrial validation of a technique to monitor the health of a structure in operating conditions (e.g. rotating machinery, civil constructions subject to ambient excitations, etc.) and to detect slight deviations in a modal model derived from in-operation measured data. In this paper, a statistical local approach based on covariance-driven stochastic subspace identification is proposed. The capabilities and limitations of the method with respect to health monitoring and damage detection are discussed and it is explained how the method can be practically used in industrial environments. After the successful validation of the proposed method on a few laboratory structures, its application to a sports car is discussed. The example illustrates that the method allows the early detection of a vibration-induced fatigue problem of a sports car.
Planetary Gearbox Fault Detection Using Vibration Separation Techniques
NASA Technical Reports Server (NTRS)
Lewicki, David G.; LaBerge, Kelsen E.; Ehinger, Ryan T.; Fetty, Jason
2011-01-01
Studies were performed to demonstrate the capability to detect planetary gear and bearing faults in helicopter main-rotor transmissions. The work supported the Operations Support and Sustainment (OSST) program with the U.S. Army Aviation Applied Technology Directorate (AATD) and Bell Helicopter Textron. Vibration data from the OH-58C planetary system were collected on a healthy transmission as well as with various seeded-fault components. Planetary fault detection algorithms were used with the collected data to evaluate fault detection effectiveness. Planet gear tooth cracks and spalls were detectable using the vibration separation techniques. Sun gear tooth cracks were not discernibly detectable from the vibration separation process. Sun gear tooth spall defects were detectable. Ring gear tooth cracks were only clearly detectable by accelerometers located near the crack location or directly across from the crack. Enveloping provided an effective method for planet bearing inner- and outer-race spalling fault detection.
Applications of Fault Detection in Vibrating Structures
NASA Technical Reports Server (NTRS)
Eure, Kenneth W.; Hogge, Edward; Quach, Cuong C.; Vazquez, Sixto L.; Russell, Andrew; Hill, Boyd L.
2012-01-01
Structural fault detection and identification remains an area of active research. Solutions to fault detection and identification may be based on subtle changes in the time series history of vibration signals originating from various sensor locations throughout the structure. The purpose of this paper is to document the application of vibration based fault detection methods applied to several structures. Overall, this paper demonstrates the utility of vibration based methods for fault detection in a controlled laboratory setting and limitations of applying the same methods to a similar structure during flight on an experimental subscale aircraft.
PV Systems Reliability Final Technical Report: Ground Fault Detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lavrova, Olga; Flicker, Jack David; Johnson, Jay
We have examined ground faults in PhotoVoltaic (PV) arrays and the efficacy of fuse, current detection (RCD), current sense monitoring/relays (CSM), isolation/insulation (Riso) monitoring, and Ground Fault Detection and Isolation (GFID) using simulations based on a Simulation Program with Integrated Circuit Emphasis SPICE ground fault circuit model, experimental ground faults installed on real arrays, and theoretical equations.
Application of a Bank of Kalman Filters for Aircraft Engine Fault Diagnostics
NASA Technical Reports Server (NTRS)
Kobayashi, Takahisa; Simon, Donald L.
2003-01-01
In this paper, a bank of Kalman filters is applied to aircraft gas turbine engine sensor and actuator fault detection and isolation (FDI) in conjunction with the detection of component faults. This approach uses multiple Kalman filters, each of which is designed for detecting a specific sensor or actuator fault. In the event that a fault does occur, all filters except the one using the correct hypothesis will produce large estimation errors, thereby isolating the specific fault. In the meantime, a set of parameters that indicate engine component performance is estimated for the detection of abrupt degradation. The proposed FDI approach is applied to a nonlinear engine simulation at nominal and aged conditions, and the evaluation results for various engine faults at cruise operating conditions are given. The ability of the proposed approach to reliably detect and isolate sensor and actuator faults is demonstrated.
NASA Technical Reports Server (NTRS)
Aucoin, B. M.; Heller, R. P.
1990-01-01
An intelligent remote power controller (RPC) based on microcomputer technology can implement advanced functions for the accurate and secure detection of all types of faults on a spaceborne electrical distribution system. The intelligent RPC will implement conventional protection functions such as overcurrent, under-voltage, and ground fault protection. Advanced functions for the detection of soft faults, which cannot presently be detected, can also be implemented. Adaptive overcurrent protection changes overcurrent settings based on connected load. Incipient and high-impedance fault detection provides early detection of arcing conditions to prevent fires, and to clear and reconfigure circuits before soft faults progress to a hard-fault condition. Power electronics techniques can be used to implement fault current limiting to prevent voltage dips during hard faults. It is concluded that these techniques will enhance the overall safety and reliability of the distribution system.
Measurement of fault latency in a digital avionic miniprocessor
NASA Technical Reports Server (NTRS)
Mcgough, J. G.; Swern, F. L.
1981-01-01
The results of fault injection experiments utilizing a gate-level emulation of the central processor unit of the Bendix BDX-930 digital computer are presented. The failure detection coverage of comparison-monitoring and a typical avionics CPU self-test program was determined. The specific tasks and experiments included: (1) inject randomly selected gate-level and pin-level faults and emulate six software programs using comparison-monitoring to detect the faults; (2) based upon the derived empirical data develop and validate a model of fault latency that will forecast a software program's detecting ability; (3) given a typical avionics self-test program, inject randomly selected faults at both the gate-level and pin-level and determine the proportion of faults detected; (4) determine why faults were undetected; (5) recommend how the emulation can be extended to multiprocessor systems such as SIFT; and (6) determine the proportion of faults detected by a uniprocessor BIT (built-in-test) irrespective of self-test.
Modeling of a latent fault detector in a digital system
NASA Technical Reports Server (NTRS)
Nagel, P. M.
1978-01-01
Methods of modeling the detection time or latency period of a hardware fault in a digital system are proposed that explain how a computer detects faults in a computational mode. The objectives were to study how software reacts to a fault, to account for as many variables as possible affecting detection and to forecast a given program's detecting ability prior to computation. A series of experiments were conducted on a small emulated microprocessor with fault injection capability. Results indicate that the detecting capability of a program largely depends on the instruction subset used during computation and the frequency of its use and has little direct dependence on such variables as fault mode, number set, degree of branching and program length. A model is discussed which employs an analog with balls in an urn to explain the rate of which subsequent repetitions of an instruction or instruction set detect a given fault.
NASA Astrophysics Data System (ADS)
Shi, Xuhua; Wang, Yu; Sieh, Kerry; Weldon, Ray; Feng, Lujia; Chan, Chung-Han; Liu-Zeng, Jing
2018-03-01
Characterizing the 700 km wide system of active faults on the Shan Plateau, southeast of the eastern Himalayan syntaxis, is critical to understanding the geodynamics and seismic hazard of the large region that straddles neighboring China, Myanmar, Thailand, Laos, and Vietnam. Here we evaluate the fault styles and slip rates over multi-timescales, reanalyze previously published short-term Global Positioning System (GPS) velocities, and evaluate slip-rate gradients to interpret the regional kinematics and geodynamics that drive the crustal motion. Relative to the Sunda plate, GPS velocities across the Shan Plateau define a broad arcuate tongue-like crustal motion with a progressively northwestward increase in sinistral shear over a distance of 700 km followed by a decrease over the final 100 km to the syntaxis. The cumulative GPS slip rate across the entire sinistral-slip fault system on the Shan Plateau is 12 mm/year. Our observations of the fault geometry, slip rates, and arcuate southwesterly directed tongue-like patterns of GPS velocities across the region suggest that the fault kinematics is characterized by a regional southwestward distributed shear across the Shan Plateau, compared to more block-like rotation and indentation north of the Red River fault. The fault geometry, kinematics, and regional GPS velocities are difficult to reconcile with regional bookshelf faulting between the Red River and Sagaing faults or localized lower crustal channel flows beneath this region. The crustal motion and fault kinematics can be driven by a combination of basal traction of a clockwise, southwestward asthenospheric flow around the eastern Himalayan syntaxis and gravitation or shear-driven indentation from north of the Shan Plateau.
NASA Astrophysics Data System (ADS)
Harkins, Nathan W.
A mechanical description of the interplay between ongoing crustal deformation and topographic evolution within the Tibetan Plateau remains outstanding, and thus our ability to describe the mechanisms responsible for the creation of this and other continental plateaus is limited. In this work, we employ a multidisciplinary approach to investigate the Quaternary record of active tectonism and coeval topographic evolution in the northeastern Tibetan Plateau. Fluvial channel topographic data paired with geochronologically calibrated measures of erosion rate reveal a headward migrating wave of dramatically accelerated incision rates in the headwaters of the Yellow River, which drains a large portion of northeastern Tibet. This transient increase in incision is likely driven by downstream base-level changes along the plateau margin and is superimposed onto a broad region of higher erosion rates confined to the plateau itself, within the Anyemaqen Shan (mountains). The Kunlun fault, one of the major active strike-slip faults of Tibet, trends through the Anyemaqen Shan. Using a careful approach towards quantifying millennial slip-rates along this fault zone based on the age of offset landforms, we constrain the Pleistocene kinematics of the eastern portion of the Kunlun fault and link this deformation to tectonically-driven erosion in the Anyemaqen Shan. Consideration of the age and morphology of fluvial terraces offset by the fault both highlights uncertainties associated with slip-rate determinations and allow more confident quantification of the allowable range of slip-rates at sites that take advantage of these features. Several new slip-rate determinations from this study at select locations corroborate a small number of previous determinations to identify an eastward decreasing slip-rate gradient and termination of the Kunlun fault within the Anyemaqen Shan. Existing geodetic data reveals a similar pattern of eastward-decreasing distributed shear across the fault zone. The spatial coincidence of tectonically driven erosion in the Anyemaqen Shan with the slip-rate gradient and termination the Kunlun fault implies that the crust of the northeastern plateau has the ability to accumulate regionally distributed permanent strain. Therefore, traditional 'rigid-body' rotation type descriptions of Tibetan Plateau kinematics fail to describe deformation on the northeastern plateau.
Potential fault region detection in TFDS images based on convolutional neural network
NASA Astrophysics Data System (ADS)
Sun, Junhua; Xiao, Zhongwen
2016-10-01
In recent years, more than 300 sets of Trouble of Running Freight Train Detection System (TFDS) have been installed on railway to monitor the safety of running freight trains in China. However, TFDS is simply responsible for capturing, transmitting, and storing images, and fails to recognize faults automatically due to some difficulties such as such as the diversity and complexity of faults and some low quality images. To improve the performance of automatic fault recognition, it is of great importance to locate the potential fault areas. In this paper, we first introduce a convolutional neural network (CNN) model to TFDS and propose a potential fault region detection system (PFRDS) for simultaneously detecting four typical types of potential fault regions (PFRs). The experimental results show that this system has a higher performance of image detection to PFRs in TFDS. An average detection recall of 98.95% and precision of 100% are obtained, demonstrating the high detection ability and robustness against various poor imaging situations.
Classification of Aircraft Maneuvers for Fault Detection
NASA Technical Reports Server (NTRS)
Oza, Nikunj C.; Tumer, Irem Y.; Tumer, Kagan; Huff, Edward M.; Clancy, Daniel (Technical Monitor)
2002-01-01
Automated fault detection is an increasingly important problem in aircraft maintenance and operation. Standard methods of fault detection assume the availability of either data produced during all possible faulty operation modes or a clearly-defined means to determine whether the data is a reasonable match to known examples of proper operation. In our domain of fault detection in aircraft, the first assumption is unreasonable and the second is difficult to determine. We envision a system for online fault detection in aircraft, one part of which is a classifier that predicts the maneuver being performed by the aircraft as a function of vibration data and other available data. We explain where this subsystem fits into our envisioned fault detection system as well its experiments showing the promise of this classification subsystem.
Flight elements: Fault detection and fault management
NASA Technical Reports Server (NTRS)
Lum, H.; Patterson-Hine, A.; Edge, J. T.; Lawler, D.
1990-01-01
Fault management for an intelligent computational system must be developed using a top down integrated engineering approach. An approach proposed includes integrating the overall environment involving sensors and their associated data; design knowledge capture; operations; fault detection, identification, and reconfiguration; testability; causal models including digraph matrix analysis; and overall performance impacts on the hardware and software architecture. Implementation of the concept to achieve a real time intelligent fault detection and management system will be accomplished via the implementation of several objectives, which are: Development of fault tolerant/FDIR requirement and specification from a systems level which will carry through from conceptual design through implementation and mission operations; Implementation of monitoring, diagnosis, and reconfiguration at all system levels providing fault isolation and system integration; Optimize system operations to manage degraded system performance through system integration; and Lower development and operations costs through the implementation of an intelligent real time fault detection and fault management system and an information management system.
A distributed fault-tolerant signal processor /FTSP/
NASA Astrophysics Data System (ADS)
Bonneau, R. J.; Evett, R. C.; Young, M. J.
1980-01-01
A digital fault-tolerant signal processor (FTSP), an example of a self-repairing programmable system is analyzed. The design configuration is discussed in terms of fault tolerance, system-level fault detection, isolation and common memory. Special attention is given to the FDIR (fault detection isolation and reconfiguration) logic, noting that the reconfiguration decisions are based on configuration, summary status, end-around tests, and north marker/synchro data. Several mechanisms of fault detection are described which initiate reconfiguration at different levels. It is concluded that the reliability of a signal processor can be significantly enhanced by the use of fault-tolerant techniques.
Fiber Bragg grating sensor for fault detection in high voltage overhead transmission lines
NASA Astrophysics Data System (ADS)
Moghadas, Amin
2011-12-01
A fiber optic based sensor capable of fault detection in both radial and network overhead transmission power line systems is investigated. Bragg wavelength shift is used to measure the fault current and detect fault in power systems. Magnetic fields generated by currents in the overhead transmission lines cause a strain in magnetostrictive material which is then detected by fiber Bragg grating (FBG) sensors. The Fiber Bragg interrogator senses the reflected FBG signals, and the Bragg wavelength shift is calculated and the signals are processed. A broadband light source in the control room scans the shift in the reflected signals. Any surge in the magnetic field relates to an increased fault current at a certain location. Also, fault location can be precisely defined with an artificial neural network (ANN) algorithm. This algorithm can be easily coordinated with other protective devices. It is shown that the faults in the overhead transmission line cause a detectable wavelength shift on the reflected signal of FBG sensors and can be used to detect and classify different kind of faults. The proposed method has been extensively tested by simulation and results confirm that the proposed scheme is able to detect different kinds of fault in both radial and network system.
Fiber Bragg Grating Sensor for Fault Detection in Radial and Network Transmission Lines
Moghadas, Amin A.; Shadaram, Mehdi
2010-01-01
In this paper, a fiber optic based sensor capable of fault detection in both radial and network overhead transmission power line systems is investigated. Bragg wavelength shift is used to measure the fault current and detect fault in power systems. Magnetic fields generated by currents in the overhead transmission lines cause a strain in magnetostrictive material which is then detected by Fiber Bragg Grating (FBG). The Fiber Bragg interrogator senses the reflected FBG signals, and the Bragg wavelength shift is calculated and the signals are processed. A broadband light source in the control room scans the shift in the reflected signal. Any surge in the magnetic field relates to an increased fault current at a certain location. Also, fault location can be precisely defined with an artificial neural network (ANN) algorithm. This algorithm can be easily coordinated with other protective devices. It is shown that the faults in the overhead transmission line cause a detectable wavelength shift on the reflected signal of FBG and can be used to detect and classify different kind of faults. The proposed method has been extensively tested by simulation and results confirm that the proposed scheme is able to detect different kinds of fault in both radial and network system. PMID:22163416
Robust Fault Detection for Aircraft Using Mixed Structured Singular Value Theory and Fuzzy Logic
NASA Technical Reports Server (NTRS)
Collins, Emmanuel G.
2000-01-01
The purpose of fault detection is to identify when a fault or failure has occurred in a system such as an aircraft or expendable launch vehicle. The faults may occur in sensors, actuators, structural components, etc. One of the primary approaches to model-based fault detection relies on analytical redundancy. That is the output of a computer-based model (actually a state estimator) is compared with the sensor measurements of the actual system to determine when a fault has occurred. Unfortunately, the state estimator is based on an idealized mathematical description of the underlying plant that is never totally accurate. As a result of these modeling errors, false alarms can occur. This research uses mixed structured singular value theory, a relatively recent and powerful robustness analysis tool, to develop robust estimators and demonstrates the use of these estimators in fault detection. To allow qualitative human experience to be effectively incorporated into the detection process fuzzy logic is used to predict the seriousness of the fault that has occurred.
A Kalman Filter Based Technique for Stator Turn-Fault Detection of the Induction Motors
NASA Astrophysics Data System (ADS)
Ghanbari, Teymoor; Samet, Haidar
2017-11-01
Monitoring of the Induction Motors (IMs) through stator current for different faults diagnosis has considerable economic and technical advantages in comparison with the other techniques in this content. Among different faults of an IM, stator and bearing faults are more probable types, which can be detected by analyzing signatures of the stator currents. One of the most reliable indicators for fault detection of IMs is lower sidebands of power frequency in the stator currents. This paper deals with a novel simple technique for detecting stator turn-fault of the IMs. Frequencies of the lower sidebands are determined using the motor specifications and their amplitudes are estimated by a Kalman Filter (KF). Instantaneous Total Harmonic Distortion (ITHD) of these harmonics is calculated. Since variation of the ITHD for the three-phase currents is considerable in case of stator turn-fault, the fault can be detected using this criterion, confidently. Different simulation results verify high performance of the proposed method. The performance of the method is also confirmed using some experiments.
An uncertainty-based distributed fault detection mechanism for wireless sensor networks.
Yang, Yang; Gao, Zhipeng; Zhou, Hang; Qiu, Xuesong
2014-04-25
Exchanging too many messages for fault detection will cause not only a degradation of the network quality of service, but also represents a huge burden on the limited energy of sensors. Therefore, we propose an uncertainty-based distributed fault detection through aided judgment of neighbors for wireless sensor networks. The algorithm considers the serious influence of sensing measurement loss and therefore uses Markov decision processes for filling in missing data. Most important of all, fault misjudgments caused by uncertainty conditions are the main drawbacks of traditional distributed fault detection mechanisms. We draw on the experience of evidence fusion rules based on information entropy theory and the degree of disagreement function to increase the accuracy of fault detection. Simulation results demonstrate our algorithm can effectively reduce communication energy overhead due to message exchanges and provide a higher detection accuracy ratio.
A Game Theoretic Fault Detection Filter
NASA Technical Reports Server (NTRS)
Chung, Walter H.; Speyer, Jason L.
1995-01-01
The fault detection process is modelled as a disturbance attenuation problem. The solution to this problem is found via differential game theory, leading to an H(sub infinity) filter which bounds the transmission of all exogenous signals save the fault to be detected. For a general class of linear systems which includes some time-varying systems, it is shown that this transmission bound can be taken to zero by simultaneously bringing the sensor noise weighting to zero. Thus, in the limit, a complete transmission block can he achieved, making the game filter into a fault detection filter. When we specialize this result to time-invariant system, it is found that the detection filter attained in the limit is identical to the well known Beard-Jones Fault Detection Filter. That is, all fault inputs other than the one to be detected (the "nuisance faults") are restricted to an invariant subspace which is unobservable to a projection on the output. For time-invariant systems, it is also shown that in the limit, the order of the state-space and the game filter can be reduced by factoring out the invariant subspace. The result is a lower dimensional filter which can observe only the fault to be detected. A reduced-order filter can also he generated for time-varying systems, though the computational overhead may be intensive. An example given at the end of the paper demonstrates the effectiveness of the filter as a tool for fault detection and identification.
Enhanced data validation strategy of air quality monitoring network.
Harkat, Mohamed-Faouzi; Mansouri, Majdi; Nounou, Mohamed; Nounou, Hazem
2018-01-01
Quick validation and detection of faults in measured air quality data is a crucial step towards achieving the objectives of air quality networks. Therefore, the objectives of this paper are threefold: (i) to develop a modeling technique that can be used to predict the normal behavior of air quality variables and help provide accurate reference for monitoring purposes; (ii) to develop fault detection method that can effectively and quickly detect any anomalies in measured air quality data. For this purpose, a new fault detection method that is based on the combination of generalized likelihood ratio test (GLRT) and exponentially weighted moving average (EWMA) will be developed. GLRT is a well-known statistical fault detection method that relies on maximizing the detection probability for a given false alarm rate. In this paper, we propose to develop GLRT-based EWMA fault detection method that will be able to detect the changes in the values of certain air quality variables; (iii) to develop fault isolation and identification method that allows defining the fault source(s) in order to properly apply appropriate corrective actions. In this paper, reconstruction approach that is based on Midpoint-Radii Principal Component Analysis (MRPCA) model will be developed to handle the types of data and models associated with air quality monitoring networks. All air quality modeling, fault detection, fault isolation and reconstruction methods developed in this paper will be validated using real air quality data (such as particulate matter, ozone, nitrogen and carbon oxides measurement). Copyright © 2017 Elsevier Inc. All rights reserved.
Abbaspour, Alireza; Aboutalebi, Payam; Yen, Kang K; Sargolzaei, Arman
2017-03-01
A new online detection strategy is developed to detect faults in sensors and actuators of unmanned aerial vehicle (UAV) systems. In this design, the weighting parameters of the Neural Network (NN) are updated by using the Extended Kalman Filter (EKF). Online adaptation of these weighting parameters helps to detect abrupt, intermittent, and incipient faults accurately. We apply the proposed fault detection system to a nonlinear dynamic model of the WVU YF-22 unmanned aircraft for its evaluation. The simulation results show that the new method has better performance in comparison with conventional recurrent neural network-based fault detection strategies. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Fault tolerant architectures for integrated aircraft electronics systems, task 2
NASA Technical Reports Server (NTRS)
Levitt, K. N.; Melliar-Smith, P. M.; Schwartz, R. L.
1984-01-01
The architectural basis for an advanced fault tolerant on-board computer to succeed the current generation of fault tolerant computers is examined. The network error tolerant system architecture is studied with particular attention to intercluster configurations and communication protocols, and to refined reliability estimates. The diagnosis of faults, so that appropriate choices for reconfiguration can be made is discussed. The analysis relates particularly to the recognition of transient faults in a system with tasks at many levels of priority. The demand driven data-flow architecture, which appears to have possible application in fault tolerant systems is described and work investigating the feasibility of automatic generation of aircraft flight control programs from abstract specifications is reported.
Re-evaluation of heat flow data near Parkfield, CA: Evidence for a weak San Andreas Fault
Fulton, P.M.; Saffer, D.M.; Harris, Reid N.; Bekins, B.A.
2004-01-01
Improved interpretations of the strength of the San Andreas Fault near Parkfield, CA based on thermal data require quantification of processes causing significant scatter and uncertainty in existing heat flow data. These effects include topographic refraction, heat advection by topographically-driven groundwater flow, and uncertainty in thermal conductivity. Here, we re-evaluate the heat flow data in this area by correcting for full 3-D terrain effects. We then investigate the potential role of groundwater flow in redistributing fault-generated heat, using numerical models of coupled heat and fluid flow for a wide range of hydrologic scenarios. We find that a large degree of the scatter in the data can be accounted for by 3-D terrain effects, and that for plausible groundwater flow scenarios frictional heat generated along a strong fault is unlikely to be redistributed by topographically-driven groundwater flow in a manner consistent with the 3-D corrected data. Copyright 2004 by the American Geophysical Union.
Expert System Detects Power-Distribution Faults
NASA Technical Reports Server (NTRS)
Walters, Jerry L.; Quinn, Todd M.
1994-01-01
Autonomous Power Expert (APEX) computer program is prototype expert-system program detecting faults in electrical-power-distribution system. Assists human operators in diagnosing faults and deciding what adjustments or repairs needed for immediate recovery from faults or for maintenance to correct initially nonthreatening conditions that could develop into faults. Written in Lisp.
Detection of CMOS bridging faults using minimal stuck-at fault test sets
NASA Technical Reports Server (NTRS)
Ijaz, Nabeel; Frenzel, James F.
1993-01-01
The performance of minimal stuck-at fault test sets at detecting bridging faults are evaluated. New functional models of circuit primitives are presented which allow accurate representation of bridging faults under switch-level simulation. The effectiveness of the patterns is evaluated using both voltage and current testing.
Fault detection and isolation for complex system
NASA Astrophysics Data System (ADS)
Jing, Chan Shi; Bayuaji, Luhur; Samad, R.; Mustafa, M.; Abdullah, N. R. H.; Zain, Z. M.; Pebrianti, Dwi
2017-07-01
Fault Detection and Isolation (FDI) is a method to monitor, identify, and pinpoint the type and location of system fault in a complex multiple input multiple output (MIMO) non-linear system. A two wheel robot is used as a complex system in this study. The aim of the research is to construct and design a Fault Detection and Isolation algorithm. The proposed method for the fault identification is using hybrid technique that combines Kalman filter and Artificial Neural Network (ANN). The Kalman filter is able to recognize the data from the sensors of the system and indicate the fault of the system in the sensor reading. Error prediction is based on the fault magnitude and the time occurrence of fault. Additionally, Artificial Neural Network (ANN) is another algorithm used to determine the type of fault and isolate the fault in the system.
Li, Yunji; Wu, QingE; Peng, Li
2018-01-23
In this paper, a synthesized design of fault-detection filter and fault estimator is considered for a class of discrete-time stochastic systems in the framework of event-triggered transmission scheme subject to unknown disturbances and deception attacks. A random variable obeying the Bernoulli distribution is employed to characterize the phenomena of the randomly occurring deception attacks. To achieve a fault-detection residual is only sensitive to faults while robust to disturbances, a coordinate transformation approach is exploited. This approach can transform the considered system into two subsystems and the unknown disturbances are removed from one of the subsystems. The gain of fault-detection filter is derived by minimizing an upper bound of filter error covariance. Meanwhile, system faults can be reconstructed by the remote fault estimator. An recursive approach is developed to obtain fault estimator gains as well as guarantee the fault estimator performance. Furthermore, the corresponding event-triggered sensor data transmission scheme is also presented for improving working-life of the wireless sensor node when measurement information are aperiodically transmitted. Finally, a scaled version of an industrial system consisting of local PC, remote estimator and wireless sensor node is used to experimentally evaluate the proposed theoretical results. In particular, a novel fault-alarming strategy is proposed so that the real-time capacity of fault-detection is guaranteed when the event condition is triggered.
NASA Technical Reports Server (NTRS)
Duyar, A.; Guo, T.-H.; Merrill, W.; Musgrave, J.
1992-01-01
In a previous study, Guo, Merrill and Duyar, 1990, reported a conceptual development of a fault detection and diagnosis system for actuation faults of the space shuttle main engine. This study, which is a continuation of the previous work, implements the developed fault detection and diagnosis scheme for the real time actuation fault diagnosis of the space shuttle main engine. The scheme will be used as an integral part of an intelligent control system demonstration experiment at NASA Lewis. The diagnosis system utilizes a model based method with real time identification and hypothesis testing for actuation, sensor, and performance degradation faults.
Fault Analysis and Detection in Microgrids with High PV Penetration
DOE Office of Scientific and Technical Information (OSTI.GOV)
El Khatib, Mohamed; Hernandez Alvidrez, Javier; Ellis, Abraham
In this report we focus on analyzing current-controlled PV inverters behaviour under faults in order to develop fault detection schemes for microgrids with high PV penetration. Inverter model suitable for steady state fault studies is presented and the impact of PV inverters on two protection elements is analyzed. The studied protection elements are superimposed quantities based directional element and negative sequence directional element. Additionally, several non-overcurrent fault detection schemes are discussed in this report for microgrids with high PV penetration. A detailed time-domain simulation study is presented to assess the performance of the presented fault detection schemes under different microgridmore » modes of operation.« less
Method and system for controlling a permanent magnet machine during fault conditions
Krefta, Ronald John; Walters, James E.; Gunawan, Fani S.
2004-05-25
Method and system for controlling a permanent magnet machine driven by an inverter is provided. The method allows for monitoring a signal indicative of a fault condition. The method further allows for generating during the fault condition a respective signal configured to maintain a field weakening current even though electrical power from an energy source is absent during said fault condition. The level of the maintained field-weakening current enables the machine to operate in a safe mode so that the inverter is protected from excess voltage.
Dynamic modeling of gearbox faults: A review
NASA Astrophysics Data System (ADS)
Liang, Xihui; Zuo, Ming J.; Feng, Zhipeng
2018-01-01
Gearbox is widely used in industrial and military applications. Due to high service load, harsh operating conditions or inevitable fatigue, faults may develop in gears. If the gear faults cannot be detected early, the health will continue to degrade, perhaps causing heavy economic loss or even catastrophe. Early fault detection and diagnosis allows properly scheduled shutdowns to prevent catastrophic failure and consequently result in a safer operation and higher cost reduction. Recently, many studies have been done to develop gearbox dynamic models with faults aiming to understand gear fault generation mechanism and then develop effective fault detection and diagnosis methods. This paper focuses on dynamics based gearbox fault modeling, detection and diagnosis. State-of-art and challenges are reviewed and discussed. This detailed literature review limits research results to the following fundamental yet key aspects: gear mesh stiffness evaluation, gearbox damage modeling and fault diagnosis techniques, gearbox transmission path modeling and method validation. In the end, a summary and some research prospects are presented.
NASA Astrophysics Data System (ADS)
Kaduri, Maor; Gratier, Jean-Pierre; Renard, François; Çakir, Ziyadin; Lasserre, Cécile
2017-04-01
In the last decade aseismic creep has been noted as one of the key processes along tectonic plate boundaries. It contributes to the energy budget during the seismic cycle, delaying or triggering the occurrence of large earthquakes. Several major continental active faults show spatial alternation of creeping and locked segments. A great challenge is to understand which parameters control the transition from seismic to aseismic deformation in fault zones, such as the lithology, the degree of deformation from damage rocks to gouge, and the stress driven fault architecture transformations at all scales. The present study focuses on the North Anatolian Fault (Turkey) and characterizes the mechanisms responsible for the partition between seismic and aseismic deformation. Strain values were calculated using various methods, e.g. Fry, R-φs from microstructural measurements in gouge and damage samples collected on more than 30 outcrops along the fault. Maps of mineral composition were reconstructed from microprobe measurements of gouge and damage rock microstructure, in order to calculate the relative mass changes due to stress driven processes during deformation. Strain values were extracted, in addition to the geometrical properties of grain orientation and size distribution. Our data cover subsamples in the damage zones that were protected from deformation and are reminiscent of the host rock microstructure and composition, and subsamples that were highly deformed and recorded both seismic and aseismic deformations. Increase of strain value is linked to the evolution of the orientation of the grains from random to sheared sub-parallel and may be related to various parameters: (1) relative mass transfer increase with increasing strain indicating how stress driven mass transfer processes control aseismic creep evolution with time; (2) measured strain is strongly related with the initial lithology and with the evolution of mineral composition: monomineralic rocks are stronger (less deformed) than polymineralic ones; (3) strain measurements allow to evaluate the cumulated geological displacement accommodated by aseismic creep and the relative ratio between seismic and aseismic displacement for each section of an active fault. These relations allow to quantify more accurately the aseismic creep processes and their evolution with time along the North Anatolian Fault which are controlled by a superposition of two kinds of mechanisms: (1) stress driven mass transfer (pressure solution and metamorphism) that control local and regional mass transfer and associated rheology evolution and (2) grain boundary sliding along weak mineral interfaces (initially weak minerals or more often transformed by deformation-related reactions).
Maneuver Classification for Aircraft Fault Detection
NASA Technical Reports Server (NTRS)
Oza, Nikunj C.; Tumer, Irem Y.; Tumer, Kagan; Huff, Edward M.
2003-01-01
Automated fault detection is an increasingly important problem in aircraft maintenance and operation. Standard methods of fault detection assume the availability of either data produced during all possible faulty operation modes or a clearly-defined means to determine whether the data provide a reasonable match to known examples of proper operation. In the domain of fault detection in aircraft, identifying all possible faulty and proper operating modes is clearly impossible. We envision a system for online fault detection in aircraft, one part of which is a classifier that predicts the maneuver being performed by the aircraft as a function of vibration data and other available data. To develop such a system, we use flight data collected under a controlled test environment, subject to many sources of variability. We explain where our classifier fits into the envisioned fault detection system as well as experiments showing the promise of this classification subsystem.
Classification of Aircraft Maneuvers for Fault Detection
NASA Technical Reports Server (NTRS)
Oza, Nikunj; Tumer, Irem Y.; Tumer, Kagan; Huff, Edward M.; Koga, Dennis (Technical Monitor)
2002-01-01
Automated fault detection is an increasingly important problem in aircraft maintenance and operation. Standard methods of fault detection assume the availability of either data produced during all possible faulty operation modes or a clearly-defined means to determine whether the data provide a reasonable match to known examples of proper operation. In the domain of fault detection in aircraft, the first assumption is unreasonable and the second is difficult to determine. We envision a system for online fault detection in aircraft, one part of which is a classifier that predicts the maneuver being performed by the aircraft as a function of vibration data and other available data. To develop such a system, we use flight data collected under a controlled test environment, subject to many sources of variability. We explain where our classifier fits into the envisioned fault detection system as well as experiments showing the promise of this classification subsystem.
An Uncertainty-Based Distributed Fault Detection Mechanism for Wireless Sensor Networks
Yang, Yang; Gao, Zhipeng; Zhou, Hang; Qiu, Xuesong
2014-01-01
Exchanging too many messages for fault detection will cause not only a degradation of the network quality of service, but also represents a huge burden on the limited energy of sensors. Therefore, we propose an uncertainty-based distributed fault detection through aided judgment of neighbors for wireless sensor networks. The algorithm considers the serious influence of sensing measurement loss and therefore uses Markov decision processes for filling in missing data. Most important of all, fault misjudgments caused by uncertainty conditions are the main drawbacks of traditional distributed fault detection mechanisms. We draw on the experience of evidence fusion rules based on information entropy theory and the degree of disagreement function to increase the accuracy of fault detection. Simulation results demonstrate our algorithm can effectively reduce communication energy overhead due to message exchanges and provide a higher detection accuracy ratio. PMID:24776937
NASA Astrophysics Data System (ADS)
Barba, M.; Rains, C.; von Dassow, W.; Parker, J. W.; Glasscoe, M. T.
2013-12-01
Knowing the location and behavior of active faults is essential for earthquake hazard assessment and disaster response. In Interferometric Synthetic Aperture Radar (InSAR) images, faults are revealed as linear discontinuities. Currently, interferograms are manually inspected to locate faults. During the summer of 2013, the NASA-JPL DEVELOP California Disasters team contributed to the development of a method to expedite fault detection in California using remote-sensing technology. The team utilized InSAR images created from polarimetric L-band data from NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) project. A computer-vision technique known as 'edge-detection' was used to automate the fault-identification process. We tested and refined an edge-detection algorithm under development through NASA's Earthquake Data Enhanced Cyber-Infrastructure for Disaster Evaluation and Response (E-DECIDER) project. To optimize the algorithm we used both UAVSAR interferograms and synthetic interferograms generated through Disloc, a web-based modeling program available through NASA's QuakeSim project. The edge-detection algorithm detected seismic, aseismic, and co-seismic slip along faults that were identified and compared with databases of known fault systems. Our optimization process was the first step toward integration of the edge-detection code into E-DECIDER to provide decision support for earthquake preparation and disaster management. E-DECIDER partners that will use the edge-detection code include the California Earthquake Clearinghouse and the US Department of Homeland Security through delivery of products using the Unified Incident Command and Decision Support (UICDS) service. Through these partnerships, researchers, earthquake disaster response teams, and policy-makers will be able to use this new methodology to examine the details of ground and fault motions for moderate to large earthquakes. Following an earthquake, the newly discovered faults can be paired with infrastructure overlays, allowing emergency response teams to identify sites that may have been exposed to damage. The faults will also be incorporated into a database for future integration into fault models and earthquake simulations, improving future earthquake hazard assessment. As new faults are mapped, they will further understanding of the complex fault systems and earthquake hazards within the seismically dynamic state of California.
NASA Technical Reports Server (NTRS)
Litt, Jonathan; Kurtkaya, Mehmet; Duyar, Ahmet
1994-01-01
This paper presents an application of a fault detection and diagnosis scheme for the sensor faults of a helicopter engine. The scheme utilizes a model-based approach with real time identification and hypothesis testing which can provide early detection, isolation, and diagnosis of failures. It is an integral part of a proposed intelligent control system with health monitoring capabilities. The intelligent control system will allow for accommodation of faults, reduce maintenance cost, and increase system availability. The scheme compares the measured outputs of the engine with the expected outputs of an engine whose sensor suite is functioning normally. If the differences between the real and expected outputs exceed threshold values, a fault is detected. The isolation of sensor failures is accomplished through a fault parameter isolation technique where parameters which model the faulty process are calculated on-line with a real-time multivariable parameter estimation algorithm. The fault parameters and their patterns can then be analyzed for diagnostic and accommodation purposes. The scheme is applied to the detection and diagnosis of sensor faults of a T700 turboshaft engine. Sensor failures are induced in a T700 nonlinear performance simulation and data obtained are used with the scheme to detect, isolate, and estimate the magnitude of the faults.
Gyro-based Maximum-Likelihood Thruster Fault Detection and Identification
NASA Technical Reports Server (NTRS)
Wilson, Edward; Lages, Chris; Mah, Robert; Clancy, Daniel (Technical Monitor)
2002-01-01
When building smaller, less expensive spacecraft, there is a need for intelligent fault tolerance vs. increased hardware redundancy. If fault tolerance can be achieved using existing navigation sensors, cost and vehicle complexity can be reduced. A maximum likelihood-based approach to thruster fault detection and identification (FDI) for spacecraft is developed here and applied in simulation to the X-38 space vehicle. The system uses only gyro signals to detect and identify hard, abrupt, single and multiple jet on- and off-failures. Faults are detected within one second and identified within one to five accords,
Li, Qiuying; Pham, Hoang
2017-01-01
In this paper, we propose a software reliability model that considers not only error generation but also fault removal efficiency combined with testing coverage information based on a nonhomogeneous Poisson process (NHPP). During the past four decades, many software reliability growth models (SRGMs) based on NHPP have been proposed to estimate the software reliability measures, most of which have the same following agreements: 1) it is a common phenomenon that during the testing phase, the fault detection rate always changes; 2) as a result of imperfect debugging, fault removal has been related to a fault re-introduction rate. But there are few SRGMs in the literature that differentiate between fault detection and fault removal, i.e. they seldom consider the imperfect fault removal efficiency. But in practical software developing process, fault removal efficiency cannot always be perfect, i.e. the failures detected might not be removed completely and the original faults might still exist and new faults might be introduced meanwhile, which is referred to as imperfect debugging phenomenon. In this study, a model aiming to incorporate fault introduction rate, fault removal efficiency and testing coverage into software reliability evaluation is developed, using testing coverage to express the fault detection rate and using fault removal efficiency to consider the fault repair. We compare the performance of the proposed model with several existing NHPP SRGMs using three sets of real failure data based on five criteria. The results exhibit that the model can give a better fitting and predictive performance.
NASA Astrophysics Data System (ADS)
Shi, Peiming; Yuan, Danzhen; Han, Dongying; Zhang, Ying; Fu, Rongrong
2018-06-01
Stochastic resonance (SR) phenomena in a time-delayed feedback tristable system driven by Gaussian white noise are investigated by simulating the potential function, mean first-passage time (MFPT), and signal-to-noise ratio (SNR) of the system. Through the use of a short delay time, the generalized potential function and stationary probability density function (PDF) are obtained. The delay feedback term has a significant effect on both equations, and that the parameters b, c, and d have different effects on the three wells of the potential function. The MFPT is calculated, which plays an extremely important role in research on particles escape rates. We find that the delay feedback term can affect the noise enhanced stability (NES). In addition, the SR characteristics are studied by the index of SNR. The simulation demonstrates that SNR is a non-monotonic distributed and that the peak SNR value can be attained by adjusting the appropriate parameters. Finally, the proposed theory is combined with a variable step method and applied to the detection of high frequencies in experiments. The result indicates that the fault frequency can be identified, and that the energy of the fault signal can be enhanced under suitable delay feedback parameters.
Fault detection of helicopter gearboxes using the multi-valued influence matrix method
NASA Technical Reports Server (NTRS)
Chin, Hsinyung; Danai, Kourosh; Lewicki, David G.
1993-01-01
In this paper we investigate the effectiveness of a pattern classifying fault detection system that is designed to cope with the variability of fault signatures inherent in helicopter gearboxes. For detection, the measurements are monitored on-line and flagged upon the detection of abnormalities, so that they can be attributed to a faulty or normal case. As such, the detection system is composed of two components, a quantization matrix to flag the measurements, and a multi-valued influence matrix (MVIM) that represents the behavior of measurements during normal operation and at fault instances. Both the quantization matrix and influence matrix are tuned during a training session so as to minimize the error in detection. To demonstrate the effectiveness of this detection system, it was applied to vibration measurements collected from a helicopter gearbox during normal operation and at various fault instances. The results indicate that the MVIM method provides excellent results when the full range of faults effects on the measurements are included in the training set.
Fault recovery for real-time, multi-tasking computer system
NASA Technical Reports Server (NTRS)
Hess, Richard (Inventor); Kelly, Gerald B. (Inventor); Rogers, Randy (Inventor); Stange, Kent A. (Inventor)
2011-01-01
System and methods for providing a recoverable real time multi-tasking computer system are disclosed. In one embodiment, a system comprises a real time computing environment, wherein the real time computing environment is adapted to execute one or more applications and wherein each application is time and space partitioned. The system further comprises a fault detection system adapted to detect one or more faults affecting the real time computing environment and a fault recovery system, wherein upon the detection of a fault the fault recovery system is adapted to restore a backup set of state variables.
NASA Astrophysics Data System (ADS)
Li, De Z.; Wang, Wilson; Ismail, Fathy
2017-11-01
Induction motors (IMs) are commonly used in various industrial applications. To improve energy consumption efficiency, a reliable IM health condition monitoring system is very useful to detect IM fault at its earliest stage to prevent operation degradation, and malfunction of IMs. An intelligent harmonic synthesis technique is proposed in this work to conduct incipient air-gap eccentricity fault detection in IMs. The fault harmonic series are synthesized to enhance fault features. Fault related local spectra are processed to derive fault indicators for IM air-gap eccentricity diagnosis. The effectiveness of the proposed harmonic synthesis technique is examined experimentally by IMs with static air-gap eccentricity and dynamic air-gap eccentricity states under different load conditions. Test results show that the developed harmonic synthesis technique can extract fault features effectively for initial IM air-gap eccentricity fault detection.
Fault zone hydrogeologic properties and processes revealed by borehole temperature monitoring
NASA Astrophysics Data System (ADS)
Fulton, P. M.; Brodsky, E. E.
2015-12-01
High-resolution borehole temperature monitoring can provide valuable insight into the hydrogeologic structure of fault zones and transient processes that affect fault zone stability. Here we report on results from a subseafloor temperature observatory within the Japan Trench plate boundary fault. In our efforts to interpret this unusual dataset, we have developed several new methods for probing hydrogeologic properties and processes. We illustrate how spatial variations in the thermal recovery of the borehole after drilling and other spectral characteristics provide a measure of the subsurface permeability architecture. More permeable zones allow for greater infiltration of cool drilling fluids, are more greatly thermally disturbed, and take longer to recover. The results from the JFAST (Japan Trench Fast Drilling Project) observatory are consistent with geophysical logs, core data, and other hydrologic observations and suggest a permeable damage zone consisting of steeply dipping faults and fractures overlays a low-permeability clay-rich plate boundary fault. Using high-resolution time series data, we have also developed methods to map out when and where fluid advection occurs in the subsurface over time. In the JFAST data, these techniques reveal dozens of transient earthquake-driven fluid pulses that are spatially correlated and consistently located around inferred permeable areas of the fault damage zone. These observations are suspected to reflect transient fluid flow driven by pore pressure changes in response to dynamic and/or static stresses associated with nearby earthquakes. This newly recognized hydrologic phenomenon has implications for understanding subduction zone heat and chemical transport as well as the redistribution of pore fluid pressure which influences fault stability and can trigger other earthquakes.
NASA Astrophysics Data System (ADS)
Lauer, Rachel M.; Saffer, Demian M.
2015-04-01
Observations of seafloor seeps on the continental slope of many subduction zones illustrate that splay faults represent a primary hydraulic connection to the plate boundary at depth, carry deeply sourced fluids to the seafloor, and are in some cases associated with mud volcanoes. However, the role of these structures in forearc hydrogeology remains poorly quantified. We use a 2-D numerical model that simulates coupled fluid flow and solute transport driven by fluid sources from tectonically driven compaction and smectite transformation to investigate the effects of permeable splay faults on solute transport and pore pressure distribution. We focus on the Nicoya margin of Costa Rica as a case study, where previous modeling and field studies constrain flow rates, thermal structure, and margin geology. In our simulations, splay faults accommodate up to 33% of the total dewatering flux, primarily along faults that outcrop within 25 km of the trench. The distribution and fate of dehydration-derived fluids is strongly dependent on thermal structure, which determines the locus of smectite transformation. In simulations of a cold end-member margin, smectite transformation initiates 30 km from the trench, and 64% of the dehydration-derived fluids are intercepted by splay faults and carried to the middle and upper slope, rather than exiting at the trench. For a warm end-member, smectite transformation initiates 7 km from the trench, and the associated fluids are primarily transmitted to the trench via the décollement (50%), and faults intercept only 21% of these fluids. For a wide range of splay fault permeabilities, simulated fluid pressures are near lithostatic where the faults intersect overlying slope sediments, providing a viable mechanism for the formation of mud volcanoes.
Onboard Nonlinear Engine Sensor and Component Fault Diagnosis and Isolation Scheme
NASA Technical Reports Server (NTRS)
Tang, Liang; DeCastro, Jonathan A.; Zhang, Xiaodong
2011-01-01
A method detects and isolates in-flight sensor, actuator, and component faults for advanced propulsion systems. In sharp contrast to many conventional methods, which deal with either sensor fault or component fault, but not both, this method considers sensor fault, actuator fault, and component fault under one systemic and unified framework. The proposed solution consists of two main components: a bank of real-time, nonlinear adaptive fault diagnostic estimators for residual generation, and a residual evaluation module that includes adaptive thresholds and a Transferable Belief Model (TBM)-based residual evaluation scheme. By employing a nonlinear adaptive learning architecture, the developed approach is capable of directly dealing with nonlinear engine models and nonlinear faults without the need of linearization. Software modules have been developed and evaluated with the NASA C-MAPSS engine model. Several typical engine-fault modes, including a subset of sensor/actuator/components faults, were tested with a mild transient operation scenario. The simulation results demonstrated that the algorithm was able to successfully detect and isolate all simulated faults as long as the fault magnitudes were larger than the minimum detectable/isolable sizes, and no misdiagnosis occurred
Identifiability of Additive Actuator and Sensor Faults by State Augmentation
NASA Technical Reports Server (NTRS)
Joshi, Suresh; Gonzalez, Oscar R.; Upchurch, Jason M.
2014-01-01
A class of fault detection and identification (FDI) methods for bias-type actuator and sensor faults is explored in detail from the point of view of fault identifiability. The methods use state augmentation along with banks of Kalman-Bucy filters for fault detection, fault pattern determination, and fault value estimation. A complete characterization of conditions for identifiability of bias-type actuator faults, sensor faults, and simultaneous actuator and sensor faults is presented. It is shown that FDI of simultaneous actuator and sensor faults is not possible using these methods when all sensors have unknown biases. The fault identifiability conditions are demonstrated via numerical examples. The analytical and numerical results indicate that caution must be exercised to ensure fault identifiability for different fault patterns when using such methods.
Automatic Channel Fault Detection on a Small Animal APD-Based Digital PET Scanner
NASA Astrophysics Data System (ADS)
Charest, Jonathan; Beaudoin, Jean-François; Cadorette, Jules; Lecomte, Roger; Brunet, Charles-Antoine; Fontaine, Réjean
2014-10-01
Avalanche photodiode (APD) based positron emission tomography (PET) scanners show enhanced imaging capabilities in terms of spatial resolution and contrast due to the one to one coupling and size of individual crystal-APD detectors. However, to ensure the maximal performance, these PET scanners require proper calibration by qualified scanner operators, which can become a cumbersome task because of the huge number of channels they are made of. An intelligent system (IS) intends to alleviate this workload by enabling a diagnosis of the observational errors of the scanner. The IS can be broken down into four hierarchical blocks: parameter extraction, channel fault detection, prioritization and diagnosis. One of the main activities of the IS consists in analyzing available channel data such as: normalization coincidence counts and single count rates, crystal identification classification data, energy histograms, APD bias and noise thresholds to establish the channel health status that will be used to detect channel faults. This paper focuses on the first two blocks of the IS: parameter extraction and channel fault detection. The purpose of the parameter extraction block is to process available data on individual channels into parameters that are subsequently used by the fault detection block to generate the channel health status. To ensure extensibility, the channel fault detection block is divided into indicators representing different aspects of PET scanner performance: sensitivity, timing, crystal identification and energy. Some experiments on a 8 cm axial length LabPET scanner located at the Sherbrooke Molecular Imaging Center demonstrated an erroneous channel fault detection rate of 10% (with a 95% confidence interval (CI) of [9, 11]) which is considered tolerable. Globally, the IS achieves a channel fault detection efficiency of 96% (CI: [95, 97]), which proves that many faults can be detected automatically. Increased fault detection efficiency would be advantageous but, the achieved results would already benefit scanner operators in their maintenance task.
Fault recovery characteristics of the fault tolerant multi-processor
NASA Technical Reports Server (NTRS)
Padilla, Peter A.
1990-01-01
The fault handling performance of the fault tolerant multiprocessor (FTMP) was investigated. Fault handling errors detected during fault injection experiments were characterized. In these fault injection experiments, the FTMP disabled a working unit instead of the faulted unit once every 500 faults, on the average. System design weaknesses allow active faults to exercise a part of the fault management software that handles byzantine or lying faults. It is pointed out that these weak areas in the FTMP's design increase the probability that, for any hardware fault, a good LRU (line replaceable unit) is mistakenly disabled by the fault management software. It is concluded that fault injection can help detect and analyze the behavior of a system in the ultra-reliable regime. Although fault injection testing cannot be exhaustive, it has been demonstrated that it provides a unique capability to unmask problems and to characterize the behavior of a fault-tolerant system.
NASA Astrophysics Data System (ADS)
Viesca, R. C.
2015-12-01
Subsurface fluid injection is often followed by observations of an enlarging cloud of microseismicity. The cloud's diffusive growth is thought to be a direct response to the diffusion of elevated pore fluid pressure reaching pre-stressed faults, triggering small instabilities; the observed high rates of this growth are interpreted to reflect a relatively high permeability of a fractured subsurface [e.g., Shapiro, GJI 1997]. We investigate an alternative mechanism for growing a microseismic cloud: the elastic transfer of stress due to slow, aseismic slip on a subset of the pre-existing faults in this damaged subsurface. We show that the growth of the slipping region of the fault may be self-similar in a diffusive manner. While this slip is driven by fluid injection, we show that, for critically stressed faults, the apparent diffusion of this slow slip may quickly exceed the poroelastically driven diffusion of the elevated pore fluid pressure. Under these conditions, microseismicity can be first triggered by the off-fault stress perturbation due to the expanding region of slip on principal faults. This provides an alternative interpretation of diffusive growth rates in terms of the subsurface stress state rather than an enhanced hydraulic diffusivity. That such aseismic slip may occur, outpace fluid diffusion, and in turn trigger microseismic events, is also suggested by on- and near-fault observations in past and recently reported fluid injection experiments [e.g., Cornet et al., PAGEOPH 1997; Guglielmi et al., Science 2015]. The model of injection-induced slip assumes elastic off-fault behavior and a fault strength determined by the product of a constant friction coefficient and the local effective normal stress. The sliding region is enlarged by the pore pressure increase resolved on the fault plane. Remarkably, the rate of self-similar expansion may be determined by a single parameter reflecting both the initial stress state and the magnitude of the pore pressure increase.
NASA Technical Reports Server (NTRS)
Bernath, Greg
1994-01-01
In order for a current satellite-based navigation system (such as the Global Positioning System, GPS) to meet integrity requirements, there must be a way of detecting erroneous measurements, without help from outside the system. This process is called Fault Detection and Isolation (FDI). Fault detection requires at least one redundant measurement, and can be done with a parity space algorithm. The best way around the fault isolation problem is not necessarily isolating the bad measurement, but finding a new combination of measurements which excludes it.
NASA Astrophysics Data System (ADS)
Mandal, Shyamapada; Santhi, B.; Sridhar, S.; Vinolia, K.; Swaminathan, P.
2017-06-01
In this paper, an online fault detection and classification method is proposed for thermocouples used in nuclear power plants. In the proposed method, the fault data are detected by the classification method, which classifies the fault data from the normal data. Deep belief network (DBN), a technique for deep learning, is applied to classify the fault data. The DBN has a multilayer feature extraction scheme, which is highly sensitive to a small variation of data. Since the classification method is unable to detect the faulty sensor; therefore, a technique is proposed to identify the faulty sensor from the fault data. Finally, the composite statistical hypothesis test, namely generalized likelihood ratio test, is applied to compute the fault pattern of the faulty sensor signal based on the magnitude of the fault. The performance of the proposed method is validated by field data obtained from thermocouple sensors of the fast breeder test reactor.
Li, Qiuying; Pham, Hoang
2017-01-01
In this paper, we propose a software reliability model that considers not only error generation but also fault removal efficiency combined with testing coverage information based on a nonhomogeneous Poisson process (NHPP). During the past four decades, many software reliability growth models (SRGMs) based on NHPP have been proposed to estimate the software reliability measures, most of which have the same following agreements: 1) it is a common phenomenon that during the testing phase, the fault detection rate always changes; 2) as a result of imperfect debugging, fault removal has been related to a fault re-introduction rate. But there are few SRGMs in the literature that differentiate between fault detection and fault removal, i.e. they seldom consider the imperfect fault removal efficiency. But in practical software developing process, fault removal efficiency cannot always be perfect, i.e. the failures detected might not be removed completely and the original faults might still exist and new faults might be introduced meanwhile, which is referred to as imperfect debugging phenomenon. In this study, a model aiming to incorporate fault introduction rate, fault removal efficiency and testing coverage into software reliability evaluation is developed, using testing coverage to express the fault detection rate and using fault removal efficiency to consider the fault repair. We compare the performance of the proposed model with several existing NHPP SRGMs using three sets of real failure data based on five criteria. The results exhibit that the model can give a better fitting and predictive performance. PMID:28750091
NASA Astrophysics Data System (ADS)
Lu, Siliang; Wang, Xiaoxian; He, Qingbo; Liu, Fang; Liu, Yongbin
2016-12-01
Transient signal analysis (TSA) has been proven an effective tool for motor bearing fault diagnosis, but has yet to be applied in processing bearing fault signals with variable rotating speed. In this study, a new TSA-based angular resampling (TSAAR) method is proposed for fault diagnosis under speed fluctuation condition via sound signal analysis. By applying the TSAAR method, the frequency smearing phenomenon is eliminated and the fault characteristic frequency is exposed in the envelope spectrum for bearing fault recognition. The TSAAR method can accurately estimate the phase information of the fault-induced impulses using neither complicated time-frequency analysis techniques nor external speed sensors, and hence it provides a simple, flexible, and data-driven approach that realizes variable-speed motor bearing fault diagnosis. The effectiveness and efficiency of the proposed TSAAR method are verified through a series of simulated and experimental case studies.
Fault detection of Tennessee Eastman process based on topological features and SVM
NASA Astrophysics Data System (ADS)
Zhao, Huiyang; Hu, Yanzhu; Ai, Xinbo; Hu, Yu; Meng, Zhen
2018-03-01
Fault detection in industrial process is a popular research topic. Although the distributed control system(DCS) has been introduced to monitor the state of industrial process, it still cannot satisfy all the requirements for fault detection of all the industrial systems. In this paper, we proposed a novel method based on topological features and support vector machine(SVM), for fault detection of industrial process. The proposed method takes global information of measured variables into account by complex network model and predicts whether a system has generated some faults or not by SVM. The proposed method can be divided into four steps, i.e. network construction, network analysis, model training and model testing respectively. Finally, we apply the model to Tennessee Eastman process(TEP). The results show that this method works well and can be a useful supplement for fault detection of industrial process.
Event-Triggered Fault Detection of Nonlinear Networked Systems.
Li, Hongyi; Chen, Ziran; Wu, Ligang; Lam, Hak-Keung; Du, Haiping
2017-04-01
This paper investigates the problem of fault detection for nonlinear discrete-time networked systems under an event-triggered scheme. A polynomial fuzzy fault detection filter is designed to generate a residual signal and detect faults in the system. A novel polynomial event-triggered scheme is proposed to determine the transmission of the signal. A fault detection filter is designed to guarantee that the residual system is asymptotically stable and satisfies the desired performance. Polynomial approximated membership functions obtained by Taylor series are employed for filtering analysis. Furthermore, sufficient conditions are represented in terms of sum of squares (SOSs) and can be solved by SOS tools in MATLAB environment. A numerical example is provided to demonstrate the effectiveness of the proposed results.
Multiple incipient sensor faults diagnosis with application to high-speed railway traction devices.
Wu, Yunkai; Jiang, Bin; Lu, Ningyun; Yang, Hao; Zhou, Yang
2017-03-01
This paper deals with the problem of incipient fault diagnosis for a class of Lipschitz nonlinear systems with sensor biases and explores further results of total measurable fault information residual (ToMFIR). Firstly, state and output transformations are introduced to transform the original system into two subsystems. The first subsystem is subject to system disturbances and free from sensor faults, while the second subsystem contains sensor faults but without any system disturbances. Sensor faults in the second subsystem are then formed as actuator faults by using a pseudo-actuator based approach. Since the effects of system disturbances on the residual are completely decoupled, multiple incipient sensor faults can be detected by constructing ToMFIR, and the fault detectability condition is then derived for discriminating the detectable incipient sensor faults. Further, a sliding-mode observers (SMOs) based fault isolation scheme is designed to guarantee accurate isolation of multiple sensor faults. Finally, simulation results conducted on a CRH2 high-speed railway traction device are given to demonstrate the effectiveness of the proposed approach. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Incipient Fault Detection for Rolling Element Bearings under Varying Speed Conditions.
Xue, Lang; Li, Naipeng; Lei, Yaguo; Li, Ningbo
2017-06-20
Varying speed conditions bring a huge challenge to incipient fault detection of rolling element bearings because both the change of speed and faults could lead to the amplitude fluctuation of vibration signals. Effective detection methods need to be developed to eliminate the influence of speed variation. This paper proposes an incipient fault detection method for bearings under varying speed conditions. Firstly, relative residual (RR) features are extracted, which are insensitive to the varying speed conditions and are able to reflect the degradation trend of bearings. Then, a health indicator named selected negative log-likelihood probability (SNLLP) is constructed to fuse a feature set including RR features and non-dimensional features. Finally, based on the constructed SNLLP health indicator, a novel alarm trigger mechanism is designed to detect the incipient fault. The proposed method is demonstrated using vibration signals from bearing tests and industrial wind turbines. The results verify the effectiveness of the proposed method for incipient fault detection of rolling element bearings under varying speed conditions.
Incipient Fault Detection for Rolling Element Bearings under Varying Speed Conditions
Xue, Lang; Li, Naipeng; Lei, Yaguo; Li, Ningbo
2017-01-01
Varying speed conditions bring a huge challenge to incipient fault detection of rolling element bearings because both the change of speed and faults could lead to the amplitude fluctuation of vibration signals. Effective detection methods need to be developed to eliminate the influence of speed variation. This paper proposes an incipient fault detection method for bearings under varying speed conditions. Firstly, relative residual (RR) features are extracted, which are insensitive to the varying speed conditions and are able to reflect the degradation trend of bearings. Then, a health indicator named selected negative log-likelihood probability (SNLLP) is constructed to fuse a feature set including RR features and non-dimensional features. Finally, based on the constructed SNLLP health indicator, a novel alarm trigger mechanism is designed to detect the incipient fault. The proposed method is demonstrated using vibration signals from bearing tests and industrial wind turbines. The results verify the effectiveness of the proposed method for incipient fault detection of rolling element bearings under varying speed conditions. PMID:28773035
Robust Fault Diagnosis in Electric Drives Using Machine Learning
2004-09-08
detection of fault conditions of the inverter. A machine learning framework is developed to systematically select torque-speed domain operation points...were used to generate various fault condition data for machine learning . The technique is viable for accurate, reliable and fast fault detection in electric drives.
Farrington, R.B.; Pruett, J.C. Jr.
1984-05-14
A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.
Farrington, Robert B.; Pruett, Jr., James C.
1986-01-01
A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.
NASA Astrophysics Data System (ADS)
Yim, Keun Soo
This dissertation summarizes experimental validation and co-design studies conducted to optimize the fault detection capabilities and overheads in hybrid computer systems (e.g., using CPUs and Graphics Processing Units, or GPUs), and consequently to improve the scalability of parallel computer systems using computational accelerators. The experimental validation studies were conducted to help us understand the failure characteristics of CPU-GPU hybrid computer systems under various types of hardware faults. The main characterization targets were faults that are difficult to detect and/or recover from, e.g., faults that cause long latency failures (Ch. 3), faults in dynamically allocated resources (Ch. 4), faults in GPUs (Ch. 5), faults in MPI programs (Ch. 6), and microarchitecture-level faults with specific timing features (Ch. 7). The co-design studies were based on the characterization results. One of the co-designed systems has a set of source-to-source translators that customize and strategically place error detectors in the source code of target GPU programs (Ch. 5). Another co-designed system uses an extension card to learn the normal behavioral and semantic execution patterns of message-passing processes executing on CPUs, and to detect abnormal behaviors of those parallel processes (Ch. 6). The third co-designed system is a co-processor that has a set of new instructions in order to support software-implemented fault detection techniques (Ch. 7). The work described in this dissertation gains more importance because heterogeneous processors have become an essential component of state-of-the-art supercomputers. GPUs were used in three of the five fastest supercomputers that were operating in 2011. Our work included comprehensive fault characterization studies in CPU-GPU hybrid computers. In CPUs, we monitored the target systems for a long period of time after injecting faults (a temporally comprehensive experiment), and injected faults into various types of program states that included dynamically allocated memory (to be spatially comprehensive). In GPUs, we used fault injection studies to demonstrate the importance of detecting silent data corruption (SDC) errors that are mainly due to the lack of fine-grained protections and the massive use of fault-insensitive data. This dissertation also presents transparent fault tolerance frameworks and techniques that are directly applicable to hybrid computers built using only commercial off-the-shelf hardware components. This dissertation shows that by developing understanding of the failure characteristics and error propagation paths of target programs, we were able to create fault tolerance frameworks and techniques that can quickly detect and recover from hardware faults with low performance and hardware overheads.
2015-01-01
for IC fault detection . This section provides background information on inversion methods. Conventional inversion techniques and their shortcomings are...physical techniques, electron beam imaging/analysis, ion beam techniques, scanning probe techniques. Electrical tests are used to detect faults in 13 an...hand, there is also the second harmonic technique through which duty cycle degradation faults are detected by collecting the magnitude and the phase of
Creating an automated chiller fault detection and diagnostics tool using a data fault library.
Bailey, Margaret B; Kreider, Jan F
2003-07-01
Reliable, automated detection and diagnosis of abnormal behavior within vapor compression refrigeration cycle (VCRC) equipment is extremely desirable for equipment owners and operators. The specific type of VCRC equipment studied in this paper is a 70-ton helical rotary, air-cooled chiller. The fault detection and diagnostic (FDD) tool developed as part of this research analyzes chiller operating data and detects faults through recognizing trends or patterns existing within the data. The FDD method incorporates a neural network (NN) classifier to infer the current state given a vector of observables. Therefore the FDD method relies upon the availability of normal and fault empirical data for training purposes and therefore a fault library of empirical data is assembled. This paper presents procedures for conducting sophisticated fault experiments on chillers that simulate air-cooled condenser, refrigerant, and oil related faults. The experimental processes described here are not well documented in literature and therefore will provide the interested reader with a useful guide. In addition, the authors provide evidence, based on both thermodynamics and empirical data analysis, that chiller performance is significantly degraded during fault operation. The chiller's performance degradation is successfully detected and classified by the NN FDD classifier as discussed in the paper's final section.
Arc burst pattern analysis fault detection system
NASA Technical Reports Server (NTRS)
Russell, B. Don (Inventor); Aucoin, B. Michael (Inventor); Benner, Carl L. (Inventor)
1997-01-01
A method and apparatus are provided for detecting an arcing fault on a power line carrying a load current. Parameters indicative of power flow and possible fault events on the line, such as voltage and load current, are monitored and analyzed for an arc burst pattern exhibited by arcing faults in a power system. These arcing faults are detected by identifying bursts of each half-cycle of the fundamental current. Bursts occurring at or near a voltage peak indicate arcing on that phase. Once a faulted phase line is identified, a comparison of the current and voltage reveals whether the fault is located in a downstream direction of power flow toward customers, or upstream toward a generation station. If the fault is located downstream, the line is de-energized, and if located upstream, the line may remain energized to prevent unnecessary power outages.
NASA Astrophysics Data System (ADS)
Du, Zhaohui; Chen, Xuefeng; Zhang, Han; Zi, Yanyang; Yan, Ruqiang
2017-09-01
The gearbox of a wind turbine (WT) has dominant failure rates and highest downtime loss among all WT subsystems. Thus, gearbox health assessment for maintenance cost reduction is of paramount importance. The concurrence of multiple faults in gearbox components is a common phenomenon due to fault induction mechanism. This problem should be considered before planning to replace the components of the WT gearbox. Therefore, the key fault patterns should be reliably identified from noisy observation data for the development of an effective maintenance strategy. However, most of the existing studies focusing on multiple fault diagnosis always suffer from inappropriate division of fault information in order to satisfy various rigorous decomposition principles or statistical assumptions, such as the smooth envelope principle of ensemble empirical mode decomposition and the mutual independence assumption of independent component analysis. Thus, this paper presents a joint subspace learning-based multiple fault detection (JSL-MFD) technique to construct different subspaces adaptively for different fault patterns. Its main advantage is its capability to learn multiple fault subspaces directly from the observation signal itself. It can also sparsely concentrate the feature information into a few dominant subspace coefficients. Furthermore, it can eliminate noise by simply performing coefficient shrinkage operations. Consequently, multiple fault patterns are reliably identified by utilizing the maximum fault information criterion. The superiority of JSL-MFD in multiple fault separation and detection is comprehensively investigated and verified by the analysis of a data set of a 750 kW WT gearbox. Results show that JSL-MFD is superior to a state-of-the-art technique in detecting hidden fault patterns and enhancing detection accuracy.
NASA Technical Reports Server (NTRS)
Russell, B. Don
1989-01-01
This research concentrated on the application of advanced signal processing, expert system, and digital technologies for the detection and control of low grade, incipient faults on spaceborne power systems. The researchers have considerable experience in the application of advanced digital technologies and the protection of terrestrial power systems. This experience was used in the current contracts to develop new approaches for protecting the electrical distribution system in spaceborne applications. The project was divided into three distinct areas: (1) investigate the applicability of fault detection algorithms developed for terrestrial power systems to the detection of faults in spaceborne systems; (2) investigate the digital hardware and architectures required to monitor and control spaceborne power systems with full capability to implement new detection and diagnostic algorithms; and (3) develop a real-time expert operating system for implementing diagnostic and protection algorithms. Significant progress has been made in each of the above areas. Several terrestrial fault detection algorithms were modified to better adapt to spaceborne power system environments. Several digital architectures were developed and evaluated in light of the fault detection algorithms.
Using Decision Trees to Detect and Isolate Simulated Leaks in the J-2X Rocket Engine
NASA Technical Reports Server (NTRS)
Schwabacher, Mark A.; Aguilar, Robert; Figueroa, Fernando F.
2009-01-01
The goal of this work was to use data-driven methods to automatically detect and isolate faults in the J-2X rocket engine. It was decided to use decision trees, since they tend to be easier to interpret than other data-driven methods. The decision tree algorithm automatically "learns" a decision tree by performing a search through the space of possible decision trees to find one that fits the training data. The particular decision tree algorithm used is known as C4.5. Simulated J-2X data from a high-fidelity simulator developed at Pratt & Whitney Rocketdyne and known as the Detailed Real-Time Model (DRTM) was used to "train" and test the decision tree. Fifty-six DRTM simulations were performed for this purpose, with different leak sizes, different leak locations, and different times of leak onset. To make the simulations as realistic as possible, they included simulated sensor noise, and included a gradual degradation in both fuel and oxidizer turbine efficiency. A decision tree was trained using 11 of these simulations, and tested using the remaining 45 simulations. In the training phase, the C4.5 algorithm was provided with labeled examples of data from nominal operation and data including leaks in each leak location. From the data, it "learned" a decision tree that can classify unseen data as having no leak or having a leak in one of the five leak locations. In the test phase, the decision tree produced very low false alarm rates and low missed detection rates on the unseen data. It had very good fault isolation rates for three of the five simulated leak locations, but it tended to confuse the remaining two locations, perhaps because a large leak at one of these two locations can look very similar to a small leak at the other location.
Development of a morphological convolution operator for bearing fault detection
NASA Astrophysics Data System (ADS)
Li, Yifan; Liang, Xihui; Liu, Weiwei; Wang, Yan
2018-05-01
This paper presents a novel signal processing scheme, namely morphological convolution operator (MCO) lifted morphological undecimated wavelet (MUDW), for rolling element bearing fault detection. In this scheme, a MCO is first designed to fully utilize the advantage of the closing & opening gradient operator and the closing-opening & opening-closing gradient operator for feature extraction as well as the merit of excellent denoising characteristics of the convolution operator. The MCO is then introduced into MUDW for the purpose of improving the fault detection ability of the reported MUDWs. Experimental vibration signals collected from a train wheelset test rig and the bearing data center of Case Western Reserve University are employed to evaluate the effectiveness of the proposed MCO lifted MUDW on fault detection of rolling element bearings. The results show that the proposed approach has a superior performance in extracting fault features of defective rolling element bearings. In addition, comparisons are performed between two reported MUDWs and the proposed MCO lifted MUDW. The MCO lifted MUDW outperforms both of them in detection of outer race faults and inner race faults of rolling element bearings.
Analysing fault growth at the continental break up zone in Afar, Ethiopia
NASA Astrophysics Data System (ADS)
Hofmann, Barbara; Wright, Tim; Rowland, Julie; Hautot, Sophie; Paton, Douglas; Kidane, Tesfaye; Abebe, Bekele
2010-05-01
Continental break up, the formation of new oceans still holds many unanswered questions. The continental rift of Afar, Ethiopia is the only place on Earth today where the final stages of continental rupture and the beginning of seafloor spreading are occurring above sea level. In September 2005 a new rifting episode started at the Dabbahu segment with the intrusion of about 2-2.5 km^ 3 of magma into a 60-km-long dyke (Wright et. al., 2006; Grandin et. al., 2009), causing horizontal opening of up to 8m. Faults within the research area show fresh slip of up to 3m along fault segments of about 10km (Rowland et. al., 2007). Since then 13 further dyke intrusions showing surface deformation have been detected and analysed using InSAR data. However, how faults grow remains a key question. To establish fault growth models, distribution of displacement along surface tracks as well as scaling relationships of faults of different order of magnitudes within a similar lithological setting are essential (eg. Walsh and Watterson, 1988; Cowie and Scholz, 1992). Set in Pliocene flood basalts the highly faulted Dabbahu segment forms an ideal study case. We used 6 pairs of SPOT5 images with a pixel size of 2.5m to create a relative DEM of 6m resolution covering the whole of the 60km x 30km Dabbahu segment. By tying the relative DEM to the georeferenced 90m resolution DEM from SRTM data and applying linear and bi-quadratic polynomial transformations we were able to georeference the DEM. During October 2009 a LiDAR survey took place over the central rift segment with additional cross profiles. The additional data has enhanced the DEM spatial resolution to 1m in the centre. Using this large, precise dataset we have developed an automated method to systematically derive the distribution of displacement along the surface expression of the faults. This enables us to determine whether scaling relationships derived in other areas are valid for magmatically-driven faults. Here we present first results of these statistical analyses.
Solar Photovoltaic (PV) Distributed Generation Systems - Control and Protection
NASA Astrophysics Data System (ADS)
Yi, Zhehan
This dissertation proposes a comprehensive control, power management, and fault detection strategy for solar photovoltaic (PV) distribution generations. Battery storages are typically employed in PV systems to mitigate the power fluctuation caused by unstable solar irradiance. With AC and DC loads, a PV-battery system can be treated as a hybrid microgrid which contains both DC and AC power resources and buses. In this thesis, a control power and management system (CAPMS) for PV-battery hybrid microgrid is proposed, which provides 1) the DC and AC bus voltage and AC frequency regulating scheme and controllers designed to track set points; 2) a power flow management strategy in the hybrid microgrid to achieve system generation and demand balance in both grid-connected and islanded modes; 3) smooth transition control during grid reconnection by frequency and phase synchronization control between the main grid and microgrid. Due to the increasing demands for PV power, scales of PV systems are getting larger and fault detection in PV arrays becomes challenging. High-impedance faults, low-mismatch faults, and faults occurred in low irradiance conditions tend to be hidden due to low fault currents, particularly, when a PV maximum power point tracking (MPPT) algorithm is in-service. If remain undetected, these faults can considerably lower the output energy of solar systems, damage the panels, and potentially cause fire hazards. In this dissertation, fault detection challenges in PV arrays are analyzed in depth, considering the crossing relations among the characteristics of PV, interactions with MPPT algorithms, and the nature of solar irradiance. Two fault detection schemes are then designed as attempts to address these technical issues, which detect faults inside PV arrays accurately even under challenging circumstances, e.g., faults in low irradiance conditions or high-impedance faults. Taking advantage of multi-resolution signal decomposition (MSD), a powerful signal processing technique based on discrete wavelet transformation (DWT), the first attempt is devised, which extracts the features of both line-to-line (L-L) and line-to-ground (L-G) faults and employs a fuzzy inference system (FIS) for the decision-making stage of fault detection. This scheme is then improved as the second attempt by further studying the system's behaviors during L-L faults, extracting more efficient fault features, and devising a more advanced decision-making stage: the two-stage support vector machine (SVM). For the first time, the two-stage SVM method is proposed in this dissertation to detect L-L faults in PV system with satisfactory accuracies. Numerous simulation and experimental case studies are carried out to verify the proposed control and protection strategies. Simulation environment is set up using the PSCAD/EMTDC and Matlab/Simulink software packages. Experimental case studies are conducted in a PV-battery hybrid microgrid using the dSPACE real-time controller to demonstrate the ease of hardware implementation and the controller performance. Another small-scale grid-connected PV system is set up to verify both fault detection algorithms which demonstrate promising performances and fault detecting accuracies.
Fault Detection for Automotive Shock Absorber
NASA Astrophysics Data System (ADS)
Hernandez-Alcantara, Diana; Morales-Menendez, Ruben; Amezquita-Brooks, Luis
2015-11-01
Fault detection for automotive semi-active shock absorbers is a challenge due to the non-linear dynamics and the strong influence of the disturbances such as the road profile. First obstacle for this task, is the modeling of the fault, which has been shown to be of multiplicative nature. Many of the most widespread fault detection schemes consider additive faults. Two model-based fault algorithms for semiactive shock absorber are compared: an observer-based approach and a parameter identification approach. The performance of these schemes is validated and compared using a commercial vehicle model that was experimentally validated. Early results shows that a parameter identification approach is more accurate, whereas an observer-based approach is less sensible to parametric uncertainty.
NASA Astrophysics Data System (ADS)
Kettermann, Michael; von Hagke, Christoph; Urai, Janos L.
2017-04-01
Dilatant faults often form in rocks containing pre-existing joints, but the effects of joints on fault segment linkage and fracture connectivity is not well understood. Studying evolution of dilatancy and influence of fractures on fault development provides insights into geometry of fault zones in brittle rocks and will eventually allow for predicting their subsurface appearance. In an earlier study we recognized the effect of different angles between strike direction of vertical joints and a basement fault on the geometry of a developing fault zone. We now systematically extend the results by varying geometric joint parameters such as joint spacing and vertical extent of the joints and measuring fracture density and connectivity. A reproducibility study shows a small error-range for the measurements, allowing for a confident use of the experimental setup. Analogue models were carried out in a manually driven deformation box (30x28x20 cm) with a 60° dipping pre-defined basement fault and 4.5 cm of displacement. To produce open joints prior to faulting, sheets of paper were mounted in the box to a depth of 5 cm at a spacing of 2.5 cm. We varied the vertical extent of the joints from 5 to 50 mm. Powder was then sieved into the box, embedding the paper almost entirely (column height of 19 cm), and the paper was removed. During deformation we captured structural information by time-lapse photography that allows particle imaging velocimetry analyses (PIV) to detect localized deformation at every increment of displacement. Post-mortem photogrammetry preserves the final 3-dimensional structure of the fault zone. A counterintuitive result is that joint depth is of only minor importance for the evolution of the fault zone. Even very shallow joints form weak areas at which the fault starts to form and propagate. More important is joint spacing. Very large joint spacing leads to faults and secondary fractures that form subparallel to the basement fault. In contrast, small joint spacing results in fault strands that only localize at the pre-existing joints, and secondary fractures that are oriented at high angles to the pre-existing joints. With this new set of experiments we can now quantitatively constrain how (i) the angle between joints and basement fault, (ii) the joint depth and (iii) the joint spacing affect fault zone parameters such as (1) the damage zone width, (2) the density of secondary fractures, (3) map-view area of open gaps or (4) the fracture connectivity. We apply these results to predict subsurface geometries of joint-fault networks in cohesive rocks, e.g. basaltic sequences in Iceland and sandstones in the Canyonlands NP, USA.
NASA Astrophysics Data System (ADS)
Camafort, Miquel; Booth-Rea, Guillermo; Pérez-Peña, Jose Vicente; Melki, Fetheddine; Gracia, Eulalia; Azañón, Jose Miguel; Ranero, César R.
2017-04-01
Active tectonics in North Africa is fundamentally driven by NW-SE directed slow convergence between the Nubia and Eurasia plates, leading to a region of thrust and strike-slip faulting. In this paper we analyze the morphometric characteristics of the little-studied northern Tunisia sector. The study aimed at identifying previously unknown active tectonic structures, and to further understand the mechanisms that drive the drainage evolution in this region of slow convergence. The interpretation of morphometric data was supported with a field campaign of a selection of structures. The analysis indicates that recent fluvial captures have been the main factor rejuvenating drainage catchments. The Medjerda River, which is the main catchment in northern Tunisia, has increased its drainage area during the Quaternary by capturing adjacent axial valleys to the north and south of its drainage divide. These captures are probably driven by gradual uplift of adjacent axial valleys by reverse/oblique faults or associated folds like El Alia-Teboursouk and Dkhila faults. Our fieldwork found that these faults cut Holocene colluvial fans containing seismites like clastic dikes and sand volcanoes, indicating recent seismogenic faulting. The growth and stabilization of the axial Medjerda River against the natural tendency of transverse drainages might be caused by a combination of dynamic topography and transpressive tectonics. The orientation of the large axial Medjerda drainage that runs from eastern Algeria towards northeastern Tunisia into the Gulf of Tunis, might be the associated to negative buoyancy caused by the underlying Nubia slab at its mouth, together with uplift of the Medjerda headwaters along the South Atlassic dextral transfer zone.
NASA Technical Reports Server (NTRS)
Padilla, Peter A.
1991-01-01
An investigation was made in AIRLAB of the fault handling performance of the Fault Tolerant MultiProcessor (FTMP). Fault handling errors detected during fault injection experiments were characterized. In these fault injection experiments, the FTMP disabled a working unit instead of the faulted unit once in every 500 faults, on the average. System design weaknesses allow active faults to exercise a part of the fault management software that handles Byzantine or lying faults. Byzantine faults behave such that the faulted unit points to a working unit as the source of errors. The design's problems involve: (1) the design and interface between the simplex error detection hardware and the error processing software, (2) the functional capabilities of the FTMP system bus, and (3) the communication requirements of a multiprocessor architecture. These weak areas in the FTMP's design increase the probability that, for any hardware fault, a good line replacement unit (LRU) is mistakenly disabled by the fault management software.
Modeling and Simulation Reliable Spacecraft On-Board Computing
NASA Technical Reports Server (NTRS)
Park, Nohpill
1999-01-01
The proposed project will investigate modeling and simulation-driven testing and fault tolerance schemes for Spacecraft On-Board Computing, thereby achieving reliable spacecraft telecommunication. A spacecraft communication system has inherent capabilities of providing multipoint and broadcast transmission, connectivity between any two distant nodes within a wide-area coverage, quick network configuration /reconfiguration, rapid allocation of space segment capacity, and distance-insensitive cost. To realize the capabilities above mentioned, both the size and cost of the ground-station terminals have to be reduced by using reliable, high-throughput, fast and cost-effective on-board computing system which has been known to be a critical contributor to the overall performance of space mission deployment. Controlled vulnerability of mission data (measured in sensitivity), improved performance (measured in throughput and delay) and fault tolerance (measured in reliability) are some of the most important features of these systems. The system should be thoroughly tested and diagnosed before employing a fault tolerance into the system. Testing and fault tolerance strategies should be driven by accurate performance models (i.e. throughput, delay, reliability and sensitivity) to find an optimal solution in terms of reliability and cost. The modeling and simulation tools will be integrated with a system architecture module, a testing module and a module for fault tolerance all of which interacting through a centered graphical user interface.
Switch failure diagnosis based on inductor current observation for boost converters
NASA Astrophysics Data System (ADS)
Jamshidpour, E.; Poure, P.; Saadate, S.
2016-09-01
Face to the growing number of applications using DC-DC power converters, the improvement of their reliability is subject to an increasing number of studies. Especially in safety critical applications, designing fault-tolerant converters is becoming mandatory. In this paper, a switch fault-tolerant DC-DC converter is studied. First, some of the fastest Fault Detection Algorithms (FDAs) are recalled. Then, a fast switch FDA is proposed which can detect both types of failures; open circuit fault as well as short circuit fault can be detected in less than one switching period. Second, a fault-tolerant converter which can be reconfigured under those types of fault is introduced. Hardware-In-the-Loop (HIL) results and experimental validations are given to verify the validity of the proposed switch fault-tolerant approach in the case of a single switch DC-DC boost converter with one redundant switch.
System for detecting and limiting electrical ground faults within electrical devices
Gaubatz, Donald C.
1990-01-01
An electrical ground fault detection and limitation system for employment with a nuclear reactor utilizing a liquid metal coolant. Elongate electromagnetic pumps submerged within the liquid metal coolant and electrical support equipment experiencing an insulation breakdown occasion the development of electrical ground fault current. Without some form of detection and control, these currents may build to damaging power levels to expose the pump drive components to liquid metal coolant such as sodium with resultant undesirable secondary effects. Such electrical ground fault currents are detected and controlled through the employment of an isolated power input to the pumps and with the use of a ground fault control conductor providing a direct return path from the affected components to the power source. By incorporating a resistance arrangement with the ground fault control conductor, the amount of fault current permitted to flow may be regulated to the extent that the reactor may remain in operation until maintenance may be performed, notwithstanding the existence of the fault. Monitors such as synchronous demodulators may be employed to identify and evaluate fault currents for each phase of a polyphase power, and control input to the submerged pump and associated support equipment.
Detection and diagnosis of bearing and cutting tool faults using hidden Markov models
NASA Astrophysics Data System (ADS)
Boutros, Tony; Liang, Ming
2011-08-01
Over the last few decades, the research for new fault detection and diagnosis techniques in machining processes and rotating machinery has attracted increasing interest worldwide. This development was mainly stimulated by the rapid advance in industrial technologies and the increase in complexity of machining and machinery systems. In this study, the discrete hidden Markov model (HMM) is applied to detect and diagnose mechanical faults. The technique is tested and validated successfully using two scenarios: tool wear/fracture and bearing faults. In the first case the model correctly detected the state of the tool (i.e., sharp, worn, or broken) whereas in the second application, the model classified the severity of the fault seeded in two different engine bearings. The success rate obtained in our tests for fault severity classification was above 95%. In addition to the fault severity, a location index was developed to determine the fault location. This index has been applied to determine the location (inner race, ball, or outer race) of a bearing fault with an average success rate of 96%. The training time required to develop the HMMs was less than 5 s in both the monitoring cases.
NASA Astrophysics Data System (ADS)
Shao, Xinxin; Naghdy, Fazel; Du, Haiping
2017-03-01
A fault-tolerant fuzzy H∞ control design approach for active suspension of in-wheel motor driven electric vehicles in the presence of sprung mass variation, actuator faults and control input constraints is proposed. The controller is designed based on the quarter-car active suspension model with a dynamic-damping-in-wheel-motor-driven-system, in which the suspended motor is operated as a dynamic absorber. The Takagi-Sugeno (T-S) fuzzy model is used to model this suspension with possible sprung mass variation. The parallel-distributed compensation (PDC) scheme is deployed to derive a fault-tolerant fuzzy controller for the T-S fuzzy suspension model. In order to reduce the motor wear caused by the dynamic force transmitted to the in-wheel motor, the dynamic force is taken as an additional controlled output besides the traditional optimization objectives such as sprung mass acceleration, suspension deflection and actuator saturation. The H∞ performance of the proposed controller is derived as linear matrix inequalities (LMIs) comprising three equality constraints which are solved efficiently by means of MATLAB LMI Toolbox. The proposed controller is applied to an electric vehicle suspension and its effectiveness is demonstrated through computer simulation.
Optimization of Second Fault Detection Thresholds to Maximize Mission POS
NASA Technical Reports Server (NTRS)
Anzalone, Evan
2018-01-01
In order to support manned spaceflight safety requirements, the Space Launch System (SLS) has defined program-level requirements for key systems to ensure successful operation under single fault conditions. To accommodate this with regards to Navigation, the SLS utilizes an internally redundant Inertial Navigation System (INS) with built-in capability to detect, isolate, and recover from first failure conditions and still maintain adherence to performance requirements. The unit utilizes multiple hardware- and software-level techniques to enable detection, isolation, and recovery from these events in terms of its built-in Fault Detection, Isolation, and Recovery (FDIR) algorithms. Successful operation is defined in terms of sufficient navigation accuracy at insertion while operating under worst case single sensor outages (gyroscope and accelerometer faults at launch). In addition to first fault detection and recovery, the SLS program has also levied requirements relating to the capability of the INS to detect a second fault, tracking any unacceptable uncertainty in knowledge of the vehicle's state. This detection functionality is required in order to feed abort analysis and ensure crew safety. Increases in navigation state error and sensor faults can drive the vehicle outside of its operational as-designed environments and outside of its performance envelope causing loss of mission, or worse, loss of crew. The criteria for operation under second faults allows for a larger set of achievable missions in terms of potential fault conditions, due to the INS operating at the edge of its capability. As this performance is defined and controlled at the vehicle level, it allows for the use of system level margins to increase probability of mission success on the operational edges of the design space. Due to the implications of the vehicle response to abort conditions (such as a potentially failed INS), it is important to consider a wide range of failure scenarios in terms of both magnitude and time. As such, the Navigation team is taking advantage of the INS's capability to schedule and change fault detection thresholds in flight. These values are optimized along a nominal trajectory in order to maximize probability of mission success, and reducing the probability of false positives (defined as when the INS would report a second fault condition resulting in loss of mission, but the vehicle would still meet insertion requirements within system-level margins). This paper will describe an optimization approach using Genetic Algorithms to tune the threshold parameters to maximize vehicle resilience to second fault events as a function of potential fault magnitude and time of fault over an ascent mission profile. The analysis approach, and performance assessment of the results will be presented to demonstrate the applicability of this process to second fault detection to maximize mission probability of success.
Model-Based Fault Tolerant Control
NASA Technical Reports Server (NTRS)
Kumar, Aditya; Viassolo, Daniel
2008-01-01
The Model Based Fault Tolerant Control (MBFTC) task was conducted under the NASA Aviation Safety and Security Program. The goal of MBFTC is to develop and demonstrate real-time strategies to diagnose and accommodate anomalous aircraft engine events such as sensor faults, actuator faults, or turbine gas-path component damage that can lead to in-flight shutdowns, aborted take offs, asymmetric thrust/loss of thrust control, or engine surge/stall events. A suite of model-based fault detection algorithms were developed and evaluated. Based on the performance and maturity of the developed algorithms two approaches were selected for further analysis: (i) multiple-hypothesis testing, and (ii) neural networks; both used residuals from an Extended Kalman Filter to detect the occurrence of the selected faults. A simple fusion algorithm was implemented to combine the results from each algorithm to obtain an overall estimate of the identified fault type and magnitude. The identification of the fault type and magnitude enabled the use of an online fault accommodation strategy to correct for the adverse impact of these faults on engine operability thereby enabling continued engine operation in the presence of these faults. The performance of the fault detection and accommodation algorithm was extensively tested in a simulation environment.
Robust Fault Detection for Switched Fuzzy Systems With Unknown Input.
Han, Jian; Zhang, Huaguang; Wang, Yingchun; Sun, Xun
2017-10-03
This paper investigates the fault detection problem for a class of switched nonlinear systems in the T-S fuzzy framework. The unknown input is considered in the systems. A novel fault detection unknown input observer design method is proposed. Based on the proposed observer, the unknown input can be removed from the fault detection residual. The weighted H∞ performance level is considered to ensure the robustness. In addition, the weighted H₋ performance level is introduced, which can increase the sensibility of the proposed detection method. To verify the proposed scheme, a numerical simulation example and an electromechanical system simulation example are provided at the end of this paper.
NASA Astrophysics Data System (ADS)
Golafshan, Reza; Yuce Sanliturk, Kenan
2016-03-01
Ball bearings remain one of the most crucial components in industrial machines and due to their critical role, it is of great importance to monitor their conditions under operation. However, due to the background noise in acquired signals, it is not always possible to identify probable faults. This incapability in identifying the faults makes the de-noising process one of the most essential steps in the field of Condition Monitoring (CM) and fault detection. In the present study, Singular Value Decomposition (SVD) and Hankel matrix based de-noising process is successfully applied to the ball bearing time domain vibration signals as well as to their spectrums for the elimination of the background noise and the improvement the reliability of the fault detection process. The test cases conducted using experimental as well as the simulated vibration signals demonstrate the effectiveness of the proposed de-noising approach for the ball bearing fault detection.
2014-10-02
takes it either as auxiliary to magnetic flux, or is not able to detect the winding faults unless severity is already quite significant. This paper...different loads, speeds and severity levels. The experimental results show that the proposed method was able to detect inter-turn faults in the...maintenance strategy requires the technologies of: (a) on- line condition monitoring, (b) fault detection and diagnosis, and (c) prognostics. Figure 1
Multi-thresholds for fault isolation in the presence of uncertainties.
Touati, Youcef; Mellal, Mohamed Arezki; Benazzouz, Djamel
2016-05-01
Monitoring of the faults is an important task in mechatronics. It involves the detection and isolation of faults which are performed by using the residuals. These residuals represent numerical values that define certain intervals called thresholds. In fact, the fault is detected if the residuals exceed the thresholds. In addition, each considered fault must activate a unique set of residuals to be isolated. However, in the presence of uncertainties, false decisions can occur due to the low sensitivity of certain residuals towards faults. In this paper, an efficient approach to make decision on fault isolation in the presence of uncertainties is proposed. Based on the bond graph tool, the approach is developed in order to generate systematically the relations between residuals and faults. The generated relations allow the estimation of the minimum detectable and isolable fault values. The latter is used to calculate the thresholds of isolation for each residual. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Automatic Fault Characterization via Abnormality-Enhanced Classification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bronevetsky, G; Laguna, I; de Supinski, B R
Enterprise and high-performance computing systems are growing extremely large and complex, employing hundreds to hundreds of thousands of processors and software/hardware stacks built by many people across many organizations. As the growing scale of these machines increases the frequency of faults, system complexity makes these faults difficult to detect and to diagnose. Current system management techniques, which focus primarily on efficient data access and query mechanisms, require system administrators to examine the behavior of various system services manually. Growing system complexity is making this manual process unmanageable: administrators require more effective management tools that can detect faults and help tomore » identify their root causes. System administrators need timely notification when a fault is manifested that includes the type of fault, the time period in which it occurred and the processor on which it originated. Statistical modeling approaches can accurately characterize system behavior. However, the complex effects of system faults make these tools difficult to apply effectively. This paper investigates the application of classification and clustering algorithms to fault detection and characterization. We show experimentally that naively applying these methods achieves poor accuracy. Further, we design novel techniques that combine classification algorithms with information on the abnormality of application behavior to improve detection and characterization accuracy. Our experiments demonstrate that these techniques can detect and characterize faults with 65% accuracy, compared to just 5% accuracy for naive approaches.« less
Immunity-Based Aircraft Fault Detection System
NASA Technical Reports Server (NTRS)
Dasgupta, D.; KrishnaKumar, K.; Wong, D.; Berry, M.
2004-01-01
In the study reported in this paper, we have developed and applied an Artificial Immune System (AIS) algorithm for aircraft fault detection, as an extension to a previous work on intelligent flight control (IFC). Though the prior studies had established the benefits of IFC, one area of weakness that needed to be strengthened was the control dead band induced by commanding a failed surface. Since the IFC approach uses fault accommodation with no detection, the dead band, although it reduces over time due to learning, is present and causes degradation in handling qualities. If the failure can be identified, this dead band can be further A ed to ensure rapid fault accommodation and better handling qualities. The paper describes the application of an immunity-based approach that can detect a broad spectrum of known and unforeseen failures. The approach incorporates the knowledge of the normal operational behavior of the aircraft from sensory data, and probabilistically generates a set of pattern detectors that can detect any abnormalities (including faults) in the behavior pattern indicating unsafe in-flight operation. We developed a tool called MILD (Multi-level Immune Learning Detection) based on a real-valued negative selection algorithm that can generate a small number of specialized detectors (as signatures of known failure conditions) and a larger set of generalized detectors for unknown (or possible) fault conditions. Once the fault is detected and identified, an adaptive control system would use this detection information to stabilize the aircraft by utilizing available resources (control surfaces). We experimented with data sets collected under normal and various simulated failure conditions using a piloted motion-base simulation facility. The reported results are from a collection of test cases that reflect the performance of the proposed immunity-based fault detection algorithm.
A study of fault prediction and reliability assessment in the SEL environment
NASA Technical Reports Server (NTRS)
Basili, Victor R.; Patnaik, Debabrata
1986-01-01
An empirical study on estimation and prediction of faults, prediction of fault detection and correction effort, and reliability assessment in the Software Engineering Laboratory environment (SEL) is presented. Fault estimation using empirical relationships and fault prediction using curve fitting method are investigated. Relationships between debugging efforts (fault detection and correction effort) in different test phases are provided, in order to make an early estimate of future debugging effort. This study concludes with the fault analysis, application of a reliability model, and analysis of a normalized metric for reliability assessment and reliability monitoring during development of software.
NASA Astrophysics Data System (ADS)
Shao, Renping; Li, Jing; Hu, Wentao; Dong, Feifei
2013-02-01
Higher order cumulants (HOC) is a new kind of modern signal analysis of theory and technology. Spectrum entropy clustering (SEC) is a data mining method of statistics, extracting useful characteristics from a mass of nonlinear and non-stationary data. Following a discussion on the characteristics of HOC theory and SEC method in this paper, the study of signal processing techniques and the unique merits of nonlinear coupling characteristic analysis in processing random and non-stationary signals are introduced. Also, a new clustering analysis and diagnosis method is proposed for detecting multi-damage on gear by introducing the combination of HOC and SEC into the damage-detection and diagnosis of the gear system. The noise is restrained by HOC and by extracting coupling features and separating the characteristic signal at different speeds and frequency bands. Under such circumstances, the weak signal characteristics in the system are emphasized and the characteristic of multi-fault is extracted. Adopting a data-mining method of SEC conducts an analysis and diagnosis at various running states, such as the speed of 300 r/min, 900 r/min, 1200 r/min, and 1500 r/min of the following six signals: no-fault, short crack-fault in tooth root, long crack-fault in tooth root, short crack-fault in pitch circle, long crack-fault in pitch circle, and wear-fault on tooth. Research shows that this combined method of detection and diagnosis can also identify the degree of damage of some faults. On this basis, the virtual instrument of the gear system which detects damage and diagnoses faults is developed by combining with advantages of MATLAB and VC++, employing component object module technology, adopting mixed programming methods, and calling the program transformed from an *.m file under VC++. This software system possesses functions of collecting and introducing vibration signals of gear, analyzing and processing signals, extracting features, visualizing graphics, detecting and diagnosing faults, detecting and monitoring, etc. Finally, the results of testing and verifying show that the developed system can effectively be used to detect and diagnose faults in an actual operating gear transmission system.
Shao, Renping; Li, Jing; Hu, Wentao; Dong, Feifei
2013-02-01
Higher order cumulants (HOC) is a new kind of modern signal analysis of theory and technology. Spectrum entropy clustering (SEC) is a data mining method of statistics, extracting useful characteristics from a mass of nonlinear and non-stationary data. Following a discussion on the characteristics of HOC theory and SEC method in this paper, the study of signal processing techniques and the unique merits of nonlinear coupling characteristic analysis in processing random and non-stationary signals are introduced. Also, a new clustering analysis and diagnosis method is proposed for detecting multi-damage on gear by introducing the combination of HOC and SEC into the damage-detection and diagnosis of the gear system. The noise is restrained by HOC and by extracting coupling features and separating the characteristic signal at different speeds and frequency bands. Under such circumstances, the weak signal characteristics in the system are emphasized and the characteristic of multi-fault is extracted. Adopting a data-mining method of SEC conducts an analysis and diagnosis at various running states, such as the speed of 300 r/min, 900 r/min, 1200 r/min, and 1500 r/min of the following six signals: no-fault, short crack-fault in tooth root, long crack-fault in tooth root, short crack-fault in pitch circle, long crack-fault in pitch circle, and wear-fault on tooth. Research shows that this combined method of detection and diagnosis can also identify the degree of damage of some faults. On this basis, the virtual instrument of the gear system which detects damage and diagnoses faults is developed by combining with advantages of MATLAB and VC++, employing component object module technology, adopting mixed programming methods, and calling the program transformed from an *.m file under VC++. This software system possesses functions of collecting and introducing vibration signals of gear, analyzing and processing signals, extracting features, visualizing graphics, detecting and diagnosing faults, detecting and monitoring, etc. Finally, the results of testing and verifying show that the developed system can effectively be used to detect and diagnose faults in an actual operating gear transmission system.
Negative Selection Algorithm for Aircraft Fault Detection
NASA Technical Reports Server (NTRS)
Dasgupta, D.; KrishnaKumar, K.; Wong, D.; Berry, M.
2004-01-01
We investigated a real-valued Negative Selection Algorithm (NSA) for fault detection in man-in-the-loop aircraft operation. The detection algorithm uses body-axes angular rate sensory data exhibiting the normal flight behavior patterns, to generate probabilistically a set of fault detectors that can detect any abnormalities (including faults and damages) in the behavior pattern of the aircraft flight. We performed experiments with datasets (collected under normal and various simulated failure conditions) using the NASA Ames man-in-the-loop high-fidelity C-17 flight simulator. The paper provides results of experiments with different datasets representing various failure conditions.
Rule-based fault diagnosis of hall sensors and fault-tolerant control of PMSM
NASA Astrophysics Data System (ADS)
Song, Ziyou; Li, Jianqiu; Ouyang, Minggao; Gu, Jing; Feng, Xuning; Lu, Dongbin
2013-07-01
Hall sensor is widely used for estimating rotor phase of permanent magnet synchronous motor(PMSM). And rotor position is an essential parameter of PMSM control algorithm, hence it is very dangerous if Hall senor faults occur. But there is scarcely any research focusing on fault diagnosis and fault-tolerant control of Hall sensor used in PMSM. From this standpoint, the Hall sensor faults which may occur during the PMSM operating are theoretically analyzed. According to the analysis results, the fault diagnosis algorithm of Hall sensor, which is based on three rules, is proposed to classify the fault phenomena accurately. The rotor phase estimation algorithms, based on one or two Hall sensor(s), are initialized to engender the fault-tolerant control algorithm. The fault diagnosis algorithm can detect 60 Hall fault phenomena in total as well as all detections can be fulfilled in 1/138 rotor rotation period. The fault-tolerant control algorithm can achieve a smooth torque production which means the same control effect as normal control mode (with three Hall sensors). Finally, the PMSM bench test verifies the accuracy and rapidity of fault diagnosis and fault-tolerant control strategies. The fault diagnosis algorithm can detect all Hall sensor faults promptly and fault-tolerant control algorithm allows the PMSM to face failure conditions of one or two Hall sensor(s). In addition, the transitions between health-control and fault-tolerant control conditions are smooth without any additional noise and harshness. Proposed algorithms can deal with the Hall sensor faults of PMSM in real applications, and can be provided to realize the fault diagnosis and fault-tolerant control of PMSM.
Verification of an IGBT Fusing Switch for Over-current Protection of the SNS HVCM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benwell, Andrew; Kemp, Mark; Burkhart, Craig
2010-06-11
An IGBT based over-current protection system has been developed to detect faults and limit the damage caused by faults in high voltage converter modulators. During normal operation, an IGBT enables energy to be transferred from storage capacitors to a H-bridge. When a fault occurs, the over-current protection system detects the fault, limits the fault current and opens the IGBT to isolate the remaining stored energy from the fault. This paper presents an experimental verification of the over-current protection system under applicable conditions.
Robust fault detection of wind energy conversion systems based on dynamic neural networks.
Talebi, Nasser; Sadrnia, Mohammad Ali; Darabi, Ahmad
2014-01-01
Occurrence of faults in wind energy conversion systems (WECSs) is inevitable. In order to detect the occurred faults at the appropriate time, avoid heavy economic losses, ensure safe system operation, prevent damage to adjacent relevant systems, and facilitate timely repair of failed components; a fault detection system (FDS) is required. Recurrent neural networks (RNNs) have gained a noticeable position in FDSs and they have been widely used for modeling of complex dynamical systems. One method for designing an FDS is to prepare a dynamic neural model emulating the normal system behavior. By comparing the outputs of the real system and neural model, incidence of the faults can be identified. In this paper, by utilizing a comprehensive dynamic model which contains both mechanical and electrical components of the WECS, an FDS is suggested using dynamic RNNs. The presented FDS detects faults of the generator's angular velocity sensor, pitch angle sensors, and pitch actuators. Robustness of the FDS is achieved by employing an adaptive threshold. Simulation results show that the proposed scheme is capable to detect the faults shortly and it has very low false and missed alarms rate.
Robust Fault Detection of Wind Energy Conversion Systems Based on Dynamic Neural Networks
Talebi, Nasser; Sadrnia, Mohammad Ali; Darabi, Ahmad
2014-01-01
Occurrence of faults in wind energy conversion systems (WECSs) is inevitable. In order to detect the occurred faults at the appropriate time, avoid heavy economic losses, ensure safe system operation, prevent damage to adjacent relevant systems, and facilitate timely repair of failed components; a fault detection system (FDS) is required. Recurrent neural networks (RNNs) have gained a noticeable position in FDSs and they have been widely used for modeling of complex dynamical systems. One method for designing an FDS is to prepare a dynamic neural model emulating the normal system behavior. By comparing the outputs of the real system and neural model, incidence of the faults can be identified. In this paper, by utilizing a comprehensive dynamic model which contains both mechanical and electrical components of the WECS, an FDS is suggested using dynamic RNNs. The presented FDS detects faults of the generator's angular velocity sensor, pitch angle sensors, and pitch actuators. Robustness of the FDS is achieved by employing an adaptive threshold. Simulation results show that the proposed scheme is capable to detect the faults shortly and it has very low false and missed alarms rate. PMID:24744774
Integral Sensor Fault Detection and Isolation for Railway Traction Drive.
Garramiola, Fernando; Del Olmo, Jon; Poza, Javier; Madina, Patxi; Almandoz, Gaizka
2018-05-13
Due to the increasing importance of reliability and availability of electric traction drives in Railway applications, early detection of faults has become an important key for Railway traction drive manufacturers. Sensor faults are important sources of failures. Among the different fault diagnosis approaches, in this article an integral diagnosis strategy for sensors in traction drives is presented. Such strategy is composed of an observer-based approach for direct current (DC)-link voltage and catenary current sensors, a frequency analysis approach for motor current phase sensors and a hardware redundancy solution for speed sensors. None of them requires any hardware change requirement in the actual traction drive. All the fault detection and isolation approaches have been validated in a Hardware-in-the-loop platform comprising a Real Time Simulator and a commercial Traction Control Unit for a tram. In comparison to safety-critical systems in Aerospace applications, Railway applications do not need instantaneous detection, and the diagnosis is validated in a short time period for reliable decision. Combining the different approaches and existing hardware redundancy, an integral fault diagnosis solution is provided, to detect and isolate faults in all the sensors installed in the traction drive.
Integral Sensor Fault Detection and Isolation for Railway Traction Drive
del Olmo, Jon; Poza, Javier; Madina, Patxi; Almandoz, Gaizka
2018-01-01
Due to the increasing importance of reliability and availability of electric traction drives in Railway applications, early detection of faults has become an important key for Railway traction drive manufacturers. Sensor faults are important sources of failures. Among the different fault diagnosis approaches, in this article an integral diagnosis strategy for sensors in traction drives is presented. Such strategy is composed of an observer-based approach for direct current (DC)-link voltage and catenary current sensors, a frequency analysis approach for motor current phase sensors and a hardware redundancy solution for speed sensors. None of them requires any hardware change requirement in the actual traction drive. All the fault detection and isolation approaches have been validated in a Hardware-in-the-loop platform comprising a Real Time Simulator and a commercial Traction Control Unit for a tram. In comparison to safety-critical systems in Aerospace applications, Railway applications do not need instantaneous detection, and the diagnosis is validated in a short time period for reliable decision. Combining the different approaches and existing hardware redundancy, an integral fault diagnosis solution is provided, to detect and isolate faults in all the sensors installed in the traction drive. PMID:29757251
Verifying Digital Components of Physical Systems: Experimental Evaluation of Test Quality
NASA Astrophysics Data System (ADS)
Laputenko, A. V.; López, J. E.; Yevtushenko, N. V.
2018-03-01
This paper continues the study of high quality test derivation for verifying digital components which are used in various physical systems; those are sensors, data transfer components, etc. We have used logic circuits b01-b010 of the package of ITC'99 benchmarks (Second Release) for experimental evaluation which as stated before, describe digital components of physical systems designed for various applications. Test sequences are derived for detecting the most known faults of the reference logic circuit using three different approaches to test derivation. Three widely used fault types such as stuck-at-faults, bridges, and faults which slightly modify the behavior of one gate are considered as possible faults of the reference behavior. The most interesting test sequences are short test sequences that can provide appropriate guarantees after testing, and thus, we experimentally study various approaches to the derivation of the so-called complete test suites which detect all fault types. In the first series of experiments, we compare two approaches for deriving complete test suites. In the first approach, a shortest test sequence is derived for testing each fault. In the second approach, a test sequence is pseudo-randomly generated by the use of an appropriate software for logic synthesis and verification (ABC system in our study) and thus, can be longer. However, after deleting sequences detecting the same set of faults, a test suite returned by the second approach is shorter. The latter underlines the fact that in many cases it is useless to spend `time and efforts' for deriving a shortest distinguishing sequence; it is better to use the test minimization afterwards. The performed experiments also show that the use of only randomly generated test sequences is not very efficient since such sequences do not detect all the faults of any type. After reaching the fault coverage around 70%, saturation is observed, and the fault coverage cannot be increased anymore. For deriving high quality short test suites, the approach that is the combination of randomly generated sequences together with sequences which are aimed to detect faults not detected by random tests, allows to reach the good fault coverage using shortest test sequences.
Papadimitropoulos, Adam; Rovithakis, George A; Parisini, Thomas
2007-07-01
In this paper, the problem of fault detection in mechanical systems performing linear motion, under the action of friction phenomena is addressed. The friction effects are modeled through the dynamic LuGre model. The proposed architecture is built upon an online neural network (NN) approximator, which requires only system's position and velocity. The friction internal state is not assumed to be available for measurement. The neural fault detection methodology is analyzed with respect to its robustness and sensitivity properties. Rigorous fault detectability conditions and upper bounds for the detection time are also derived. Extensive simulation results showing the effectiveness of the proposed methodology are provided, including a real case study on an industrial actuator.
An improved PCA method with application to boiler leak detection.
Sun, Xi; Marquez, Horacio J; Chen, Tongwen; Riaz, Muhammad
2005-07-01
Principal component analysis (PCA) is a popular fault detection technique. It has been widely used in process industries, especially in the chemical industry. In industrial applications, achieving a sensitive system capable of detecting incipient faults, which maintains the false alarm rate to a minimum, is a crucial issue. Although a lot of research has been focused on these issues for PCA-based fault detection and diagnosis methods, sensitivity of the fault detection scheme versus false alarm rate continues to be an important issue. In this paper, an improved PCA method is proposed to address this problem. In this method, a new data preprocessing scheme and a new fault detection scheme designed for Hotelling's T2 as well as the squared prediction error are developed. A dynamic PCA model is also developed for boiler leak detection. This new method is applied to boiler water/steam leak detection with real data from Syncrude Canada's utility plant in Fort McMurray, Canada. Our results demonstrate that the proposed method can effectively reduce false alarm rate, provide effective and correct leak alarms, and give early warning to operators.
On-line early fault detection and diagnosis of municipal solid waste incinerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao Jinsong; Huang Jianchao; Sun Wei
A fault detection and diagnosis framework is proposed in this paper for early fault detection and diagnosis (FDD) of municipal solid waste incinerators (MSWIs) in order to improve the safety and continuity of production. In this framework, principal component analysis (PCA), one of the multivariate statistical technologies, is used for detecting abnormal events, while rule-based reasoning performs the fault diagnosis and consequence prediction, and also generates recommendations for fault mitigation once an abnormal event is detected. A software package, SWIFT, is developed based on the proposed framework, and has been applied in an actual industrial MSWI. The application shows thatmore » automated real-time abnormal situation management (ASM) of the MSWI can be achieved by using SWIFT, resulting in an industrially acceptable low rate of wrong diagnosis, which has resulted in improved process continuity and environmental performance of the MSWI.« less
NASA Technical Reports Server (NTRS)
Quinn, Todd M.; Walters, Jerry L.
1991-01-01
Future space explorations will require long term human presence in space. Space environments that provide working and living quarters for manned missions are becoming increasingly larger and more sophisticated. Monitor and control of the space environment subsystems by expert system software, which emulate human reasoning processes, could maintain the health of the subsystems and help reduce the human workload. The autonomous power expert (APEX) system was developed to emulate a human expert's reasoning processes used to diagnose fault conditions in the domain of space power distribution. APEX is a fault detection, isolation, and recovery (FDIR) system, capable of autonomous monitoring and control of the power distribution system. APEX consists of a knowledge base, a data base, an inference engine, and various support and interface software. APEX provides the user with an easy-to-use interactive interface. When a fault is detected, APEX will inform the user of the detection. The user can direct APEX to isolate the probable cause of the fault. Once a fault has been isolated, the user can ask APEX to justify its fault isolation and to recommend actions to correct the fault. APEX implementation and capabilities are discussed.
Fault detection, isolation, and diagnosis of self-validating multifunctional sensors.
Yang, Jing-Li; Chen, Yin-Sheng; Zhang, Li-Li; Sun, Zhen
2016-06-01
A novel fault detection, isolation, and diagnosis (FDID) strategy for self-validating multifunctional sensors is presented in this paper. The sparse non-negative matrix factorization-based method can effectively detect faults by using the squared prediction error (SPE) statistic, and the variables contribution plots based on SPE statistic can help to locate and isolate the faulty sensitive units. The complete ensemble empirical mode decomposition is employed to decompose the fault signals to a series of intrinsic mode functions (IMFs) and a residual. The sample entropy (SampEn)-weighted energy values of each IMFs and the residual are estimated to represent the characteristics of the fault signals. Multi-class support vector machine is introduced to identify the fault mode with the purpose of diagnosing status of the faulty sensitive units. The performance of the proposed strategy is compared with other fault detection strategies such as principal component analysis, independent component analysis, and fault diagnosis strategies such as empirical mode decomposition coupled with support vector machine. The proposed strategy is fully evaluated in a real self-validating multifunctional sensors experimental system, and the experimental results demonstrate that the proposed strategy provides an excellent solution to the FDID research topic of self-validating multifunctional sensors.
Fault detection and diagnosis of diesel engine valve trains
NASA Astrophysics Data System (ADS)
Flett, Justin; Bone, Gary M.
2016-05-01
This paper presents the development of a fault detection and diagnosis (FDD) system for use with a diesel internal combustion engine (ICE) valve train. A novel feature is generated for each of the valve closing and combustion impacts. Deformed valve spring faults and abnormal valve clearance faults were seeded on a diesel engine instrumented with one accelerometer. Five classification methods were implemented experimentally and compared. The FDD system using the Naïve-Bayes classification method produced the best overall performance, with a lowest detection accuracy (DA) of 99.95% and a lowest classification accuracy (CA) of 99.95% for the spring faults occurring on individual valves. The lowest DA and CA values for multiple faults occurring simultaneously were 99.95% and 92.45%, respectively. The DA and CA results demonstrate the accuracy of our FDD system for diesel ICE valve train fault scenarios not previously addressed in the literature.
System and method for bearing fault detection using stator current noise cancellation
Zhou, Wei; Lu, Bin; Habetler, Thomas G.; Harley, Ronald G.; Theisen, Peter J.
2010-08-17
A system and method for detecting incipient mechanical motor faults by way of current noise cancellation is disclosed. The system includes a controller configured to detect indicia of incipient mechanical motor faults. The controller further includes a processor programmed to receive a baseline set of current data from an operating motor and define a noise component in the baseline set of current data. The processor is also programmed to repeatedly receive real-time operating current data from the operating motor and remove the noise component from the operating current data in real-time to isolate any fault components present in the operating current data. The processor is then programmed to generate a fault index for the operating current data based on any isolated fault components.
Autonomous power expert system advanced development
NASA Technical Reports Server (NTRS)
Quinn, Todd M.; Walters, Jerry L.
1991-01-01
The autonomous power expert (APEX) system is being developed at Lewis Research Center to function as a fault diagnosis advisor for a space power distribution test bed. APEX is a rule-based system capable of detecting faults and isolating the probable causes. APEX also has a justification facility to provide natural language explanations about conclusions reached during fault isolation. To help maintain the health of the power distribution system, additional capabilities were added to APEX. These capabilities allow detection and isolation of incipient faults and enable the expert system to recommend actions/procedure to correct the suspected fault conditions. New capabilities for incipient fault detection consist of storage and analysis of historical data and new user interface displays. After the cause of a fault is determined, appropriate recommended actions are selected by rule-based inferencing which provides corrective/extended test procedures. Color graphics displays and improved mouse-selectable menus were also added to provide a friendlier user interface. A discussion of APEX in general and a more detailed description of the incipient detection, recommended actions, and user interface developments during the last year are presented.
Fault detection and fault tolerance in robotics
NASA Technical Reports Server (NTRS)
Visinsky, Monica; Walker, Ian D.; Cavallaro, Joseph R.
1992-01-01
Robots are used in inaccessible or hazardous environments in order to alleviate some of the time, cost and risk involved in preparing men to endure these conditions. In order to perform their expected tasks, the robots are often quite complex, thus increasing their potential for failures. If men must be sent into these environments to repair each component failure in the robot, the advantages of using the robot are quickly lost. Fault tolerant robots are needed which can effectively cope with failures and continue their tasks until repairs can be realistically scheduled. Before fault tolerant capabilities can be created, methods of detecting and pinpointing failures must be perfected. This paper develops a basic fault tree analysis of a robot in order to obtain a better understanding of where failures can occur and how they contribute to other failures in the robot. The resulting failure flow chart can also be used to analyze the resiliency of the robot in the presence of specific faults. By simulating robot failures and fault detection schemes, the problems involved in detecting failures for robots are explored in more depth.
Pierce, Kenneth L.; Morgan, Lisa A.
2009-01-01
Both the belts of faulting and the YCHT are asymmetrical across the volcanic hotspot track, flaring out 1.6 times more on the south than the north side. This and the southeast tilt of the Yellowstone plume may reflect southeast flow of the upper mantle.
Arc Fault Detection & Localization by Electromagnetic-Acoustic Remote Sensing
NASA Astrophysics Data System (ADS)
Vasile, C.; Ioana, C.
2017-05-01
Electrical arc faults that occur in photovoltaic systems represent a danger due to their economic impact on production and distribution. In this paper we propose a complete system, with focus on the methodology, that enables the detection and localization of the arc fault, by the use of an electromagnetic-acoustic sensing system. By exploiting the multiple emissions of the arc fault, in conjunction with a real-time detection signal processing method, we ensure accurate detection and localization. In its final form, this present work will present in greater detail the complete system, the methods employed, results and performance, alongside further works that will be carried on.
Fast and accurate spectral estimation for online detection of partial broken bar in induction motors
NASA Astrophysics Data System (ADS)
Samanta, Anik Kumar; Naha, Arunava; Routray, Aurobinda; Deb, Alok Kanti
2018-01-01
In this paper, an online and real-time system is presented for detecting partial broken rotor bar (BRB) of inverter-fed squirrel cage induction motors under light load condition. This system with minor modifications can detect any fault that affects the stator current. A fast and accurate spectral estimator based on the theory of Rayleigh quotient is proposed for detecting the spectral signature of BRB. The proposed spectral estimator can precisely determine the relative amplitude of fault sidebands and has low complexity compared to available high-resolution subspace-based spectral estimators. Detection of low-amplitude fault components has been improved by removing the high-amplitude fundamental frequency using an extended-Kalman based signal conditioner. Slip is estimated from the stator current spectrum for accurate localization of the fault component. Complexity and cost of sensors are minimal as only a single-phase stator current is required. The hardware implementation has been carried out on an Intel i7 based embedded target ported through the Simulink Real-Time. Evaluation of threshold and detectability of faults with different conditions of load and fault severity are carried out with empirical cumulative distribution function.
Tang, Gang; Hou, Wei; Wang, Huaqing; Luo, Ganggang; Ma, Jianwei
2015-01-01
The Shannon sampling principle requires substantial amounts of data to ensure the accuracy of on-line monitoring of roller bearing fault signals. Challenges are often encountered as a result of the cumbersome data monitoring, thus a novel method focused on compressed vibration signals for detecting roller bearing faults is developed in this study. Considering that harmonics often represent the fault characteristic frequencies in vibration signals, a compressive sensing frame of characteristic harmonics is proposed to detect bearing faults. A compressed vibration signal is first acquired from a sensing matrix with information preserved through a well-designed sampling strategy. A reconstruction process of the under-sampled vibration signal is then pursued as attempts are conducted to detect the characteristic harmonics from sparse measurements through a compressive matching pursuit strategy. In the proposed method bearing fault features depend on the existence of characteristic harmonics, as typically detected directly from compressed data far before reconstruction completion. The process of sampling and detection may then be performed simultaneously without complete recovery of the under-sampled signals. The effectiveness of the proposed method is validated by simulations and experiments. PMID:26473858
Superconducting matrix fault current limiter with current-driven trigger mechanism
Yuan; Xing
2008-04-15
A modular and scalable Matrix-type Fault Current Limiter (MFCL) that functions as a "variable impedance" device in an electric power network, using components made of superconducting and non-superconducting electrically conductive materials. An inductor is connected in series with the trigger superconductor in the trigger matrix and physically surrounds the superconductor. The current surge during a fault will generate a trigger magnetic field in the series inductor to cause fast and uniform quenching of the trigger superconductor to significantly reduce burnout risk due to superconductor material non-uniformity.
Fault detection and diagnosis in asymmetric multilevel inverter using artificial neural network
NASA Astrophysics Data System (ADS)
Raj, Nithin; Jagadanand, G.; George, Saly
2018-04-01
The increased component requirement to realise multilevel inverter (MLI) fallout in a higher fault prospect due to power semiconductors. In this scenario, efficient fault detection and diagnosis (FDD) strategies to detect and locate the power semiconductor faults have to be incorporated in addition to the conventional protection systems. Even though a number of FDD methods have been introduced in the symmetrical cascaded H-bridge (CHB) MLIs, very few methods address the FDD in asymmetric CHB-MLIs. In this paper, the gate-open circuit FDD strategy in asymmetric CHB-MLI is presented. Here, a single artificial neural network (ANN) is used to detect and diagnose the fault in both binary and trinary configurations of the asymmetric CHB-MLIs. In this method, features of the output voltage of the MLIs are used as to train the ANN for FDD method. The results prove the validity of the proposed method in detecting and locating the fault in both asymmetric MLI configurations. Finally, the ANN response to the input parameter variation is also analysed to access the performance of the proposed ANN-based FDD strategy.
A novel end-to-end fault detection and localization protocol for wavelength-routed WDM networks
NASA Astrophysics Data System (ADS)
Zeng, Hongqing; Vukovic, Alex; Huang, Changcheng
2005-09-01
Recently the wavelength division multiplexing (WDM) networks are becoming prevalent for telecommunication networks. However, even a very short disruption of service caused by network faults may lead to high data loss in such networks due to the high date rates, increased wavelength numbers and density. Therefore, the network survivability is critical and has been intensively studied, where fault detection and localization is the vital part but has received disproportional attentions. In this paper we describe and analyze an end-to-end lightpath fault detection scheme in data plane with the fault notification in control plane. The endeavor is focused on reducing the fault detection time. In this protocol, the source node of each lightpath keeps sending hello packets to the destination node exactly following the path for data traffic. The destination node generates an alarm once a certain number of consecutive hello packets are missed within a given time period. Then the network management unit collects all alarms and locates the faulty source based on the network topology, as well as sends fault notification messages via control plane to either the source node or all upstream nodes along the lightpath. The performance evaluation shows such a protocol can achieve fast fault detection, and at the same time, the overhead brought to the user data by hello packets is negligible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Almasi, Gheorghe; Blumrich, Matthias Augustin; Chen, Dong
Methods and apparatus perform fault isolation in multiple node computing systems using commutative error detection values for--example, checksums--to identify and to isolate faulty nodes. When information associated with a reproducible portion of a computer program is injected into a network by a node, a commutative error detection value is calculated. At intervals, node fault detection apparatus associated with the multiple node computer system retrieve commutative error detection values associated with the node and stores them in memory. When the computer program is executed again by the multiple node computer system, new commutative error detection values are created and stored inmore » memory. The node fault detection apparatus identifies faulty nodes by comparing commutative error detection values associated with reproducible portions of the application program generated by a particular node from different runs of the application program. Differences in values indicate a possible faulty node.« less
Tunable architecture for aircraft fault detection
NASA Technical Reports Server (NTRS)
Ganguli, Subhabrata (Inventor); Papageorgiou, George (Inventor); Glavaski-Radovanovic, Sonja (Inventor)
2012-01-01
A method for detecting faults in an aircraft is disclosed. The method involves predicting at least one state of the aircraft and tuning at least one threshold value to tightly upper bound the size of a mismatch between the at least one predicted state and a corresponding actual state of the non-faulted aircraft. If the mismatch between the at least one predicted state and the corresponding actual state is greater than or equal to the at least one threshold value, the method indicates that at least one fault has been detected.
A Review of Transmission Diagnostics Research at NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Zakajsek, James J.
1994-01-01
This paper presents a summary of the transmission diagnostics research work conducted at NASA Lewis Research Center over the last four years. In 1990, the Transmission Health and Usage Monitoring Research Team at NASA Lewis conducted a survey to determine the critical needs of the diagnostics community. Survey results indicated that experimental verification of gear and bearing fault detection methods, improved fault detection in planetary systems, and damage magnitude assessment and prognostics research were all critical to a highly reliable health and usage monitoring system. In response to this, a variety of transmission fault detection methods were applied to experimentally obtained fatigue data. Failure modes of the fatigue data include a variety of gear pitting failures, tooth wear, tooth fracture, and bearing spalling failures. Overall results indicate that, of the gear fault detection techniques, no one method can successfully detect all possible failure modes. The more successful methods need to be integrated into a single more reliable detection technique. A recently developed method, NA4, in addition to being one of the more successful gear fault detection methods, was also found to exhibit damage magnitude estimation capabilities.
Improved Sensor Fault Detection, Isolation, and Mitigation Using Multiple Observers Approach
Wang, Zheng; Anand, D. M.; Moyne, J.; Tilbury, D. M.
2017-01-01
Traditional Fault Detection and Isolation (FDI) methods analyze a residual signal to detect and isolate sensor faults. The residual signal is the difference between the sensor measurements and the estimated outputs of the system based on an observer. The traditional residual-based FDI methods, however, have some limitations. First, they require that the observer has reached its steady state. In addition, residual-based methods may not detect some sensor faults, such as faults on critical sensors that result in an unobservable system. Furthermore, the system may be in jeopardy if actions required for mitigating the impact of the faulty sensors are not taken before the faulty sensors are identified. The contribution of this paper is to propose three new methods to address these limitations. Faults that occur during the observers' transient state can be detected by analyzing the convergence rate of the estimation error. Open-loop observers, which do not rely on sensor information, are used to detect faults on critical sensors. By switching among different observers, we can potentially mitigate the impact of the faulty sensor during the FDI process. These three methods are systematically integrated with a previously developed residual-based method to provide an improved FDI and mitigation capability framework. The overall approach is validated mathematically, and the effectiveness of the overall approach is demonstrated through simulation on a 5-state suspension system. PMID:28924303
Algorithm-Based Fault Tolerance for Numerical Subroutines
NASA Technical Reports Server (NTRS)
Tumon, Michael; Granat, Robert; Lou, John
2007-01-01
A software library implements a new methodology of detecting faults in numerical subroutines, thus enabling application programs that contain the subroutines to recover transparently from single-event upsets. The software library in question is fault-detecting middleware that is wrapped around the numericalsubroutines. Conventional serial versions (based on LAPACK and FFTW) and a parallel version (based on ScaLAPACK) exist. The source code of the application program that contains the numerical subroutines is not modified, and the middleware is transparent to the user. The methodology used is a type of algorithm- based fault tolerance (ABFT). In ABFT, a checksum is computed before a computation and compared with the checksum of the computational result; an error is declared if the difference between the checksums exceeds some threshold. Novel normalization methods are used in the checksum comparison to ensure correct fault detections independent of algorithm inputs. In tests of this software reported in the peer-reviewed literature, this library was shown to enable detection of 99.9 percent of significant faults while generating no false alarms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Yumin; Lum, Kai-Yew; Wang Qingguo
In this paper, a H-infinity fault detection and diagnosis (FDD) scheme for a class of discrete nonlinear system fault using output probability density estimation is presented. Unlike classical FDD problems, the measured output of the system is viewed as a stochastic process and its square root probability density function (PDF) is modeled with B-spline functions, which leads to a deterministic space-time dynamic model including nonlinearities, uncertainties. A weighting mean value is given as an integral function of the square root PDF along space direction, which leads a function only about time and can be used to construct residual signal. Thus,more » the classical nonlinear filter approach can be used to detect and diagnose the fault in system. A feasible detection criterion is obtained at first, and a new H-infinity adaptive fault diagnosis algorithm is further investigated to estimate the fault. Simulation example is given to demonstrate the effectiveness of the proposed approaches.« less
NASA Astrophysics Data System (ADS)
Zhang, Yumin; Wang, Qing-Guo; Lum, Kai-Yew
2009-03-01
In this paper, a H-infinity fault detection and diagnosis (FDD) scheme for a class of discrete nonlinear system fault using output probability density estimation is presented. Unlike classical FDD problems, the measured output of the system is viewed as a stochastic process and its square root probability density function (PDF) is modeled with B-spline functions, which leads to a deterministic space-time dynamic model including nonlinearities, uncertainties. A weighting mean value is given as an integral function of the square root PDF along space direction, which leads a function only about time and can be used to construct residual signal. Thus, the classical nonlinear filter approach can be used to detect and diagnose the fault in system. A feasible detection criterion is obtained at first, and a new H-infinity adaptive fault diagnosis algorithm is further investigated to estimate the fault. Simulation example is given to demonstrate the effectiveness of the proposed approaches.
Adaptively Adjusted Event-Triggering Mechanism on Fault Detection for Networked Control Systems.
Wang, Yu-Long; Lim, Cheng-Chew; Shi, Peng
2016-12-08
This paper studies the problem of adaptively adjusted event-triggering mechanism-based fault detection for a class of discrete-time networked control system (NCS) with applications to aircraft dynamics. By taking into account the fault occurrence detection progress and the fault occurrence probability, and introducing an adaptively adjusted event-triggering parameter, a novel event-triggering mechanism is proposed to achieve the efficient utilization of the communication network bandwidth. Both the sensor-to-control station and the control station-to-actuator network-induced delays are taken into account. The event-triggered sensor and the event-triggered control station are utilized simultaneously to establish new network-based closed-loop models for the NCS subject to faults. Based on the established models, the event-triggered simultaneous design of fault detection filter (FDF) and controller is presented. A new algorithm for handling the adaptively adjusted event-triggering parameter is proposed. Performance analysis verifies the effectiveness of the adaptively adjusted event-triggering mechanism, and the simultaneous design of FDF and controller.
Swetapadma, Aleena; Yadav, Anamika
2015-01-01
Many schemes are reported for shunt fault location estimation, but fault location estimation of series or open conductor faults has not been dealt with so far. The existing numerical relays only detect the open conductor (series) fault and give the indication of the faulty phase(s), but they are unable to locate the series fault. The repair crew needs to patrol the complete line to find the location of series fault. In this paper fuzzy based fault detection/classification and location schemes in time domain are proposed for both series faults, shunt faults, and simultaneous series and shunt faults. The fault simulation studies and fault location algorithm have been developed using Matlab/Simulink. Synchronized phasors of voltage and current signals of both the ends of the line have been used as input to the proposed fuzzy based fault location scheme. Percentage of error in location of series fault is within 1% and shunt fault is 5% for all the tested fault cases. Validation of percentage of error in location estimation is done using Chi square test with both 1% and 5% level of significance. PMID:26413088
A Three-Dimensional Receiver Operator Characteristic Surface Diagnostic Metric
NASA Technical Reports Server (NTRS)
Simon, Donald L.
2011-01-01
Receiver Operator Characteristic (ROC) curves are commonly applied as metrics for quantifying the performance of binary fault detection systems. An ROC curve provides a visual representation of a detection system s True Positive Rate versus False Positive Rate sensitivity as the detection threshold is varied. The area under the curve provides a measure of fault detection performance independent of the applied detection threshold. While the standard ROC curve is well suited for quantifying binary fault detection performance, it is not suitable for quantifying the classification performance of multi-fault classification problems. Furthermore, it does not provide a measure of diagnostic latency. To address these shortcomings, a novel three-dimensional receiver operator characteristic (3D ROC) surface metric has been developed. This is done by generating and applying two separate curves: the standard ROC curve reflecting fault detection performance, and a second curve reflecting fault classification performance. A third dimension, diagnostic latency, is added giving rise to 3D ROC surfaces. Applying numerical integration techniques, the volumes under and between the surfaces are calculated to produce metrics of the diagnostic system s detection and classification performance. This paper will describe the 3D ROC surface metric in detail, and present an example of its application for quantifying the performance of aircraft engine gas path diagnostic methods. Metric limitations and potential enhancements are also discussed
Generic, scalable and decentralized fault detection for robot swarms.
Tarapore, Danesh; Christensen, Anders Lyhne; Timmis, Jon
2017-01-01
Robot swarms are large-scale multirobot systems with decentralized control which means that each robot acts based only on local perception and on local coordination with neighboring robots. The decentralized approach to control confers number of potential benefits. In particular, inherent scalability and robustness are often highlighted as key distinguishing features of robot swarms compared with systems that rely on traditional approaches to multirobot coordination. It has, however, been shown that swarm robotics systems are not always fault tolerant. To realize the robustness potential of robot swarms, it is thus essential to give systems the capacity to actively detect and accommodate faults. In this paper, we present a generic fault-detection system for robot swarms. We show how robots with limited and imperfect sensing capabilities are able to observe and classify the behavior of one another. In order to achieve this, the underlying classifier is an immune system-inspired algorithm that learns to distinguish between normal behavior and abnormal behavior online. Through a series of experiments, we systematically assess the performance of our approach in a detailed simulation environment. In particular, we analyze our system's capacity to correctly detect robots with faults, false positive rates, performance in a foraging task in which each robot exhibits a composite behavior, and performance under perturbations of the task environment. Results show that our generic fault-detection system is robust, that it is able to detect faults in a timely manner, and that it achieves a low false positive rate. The developed fault-detection system has the potential to enable long-term autonomy for robust multirobot systems, thus increasing the usefulness of robots for a diverse repertoire of upcoming applications in the area of distributed intelligent automation.
Generic, scalable and decentralized fault detection for robot swarms
Christensen, Anders Lyhne; Timmis, Jon
2017-01-01
Robot swarms are large-scale multirobot systems with decentralized control which means that each robot acts based only on local perception and on local coordination with neighboring robots. The decentralized approach to control confers number of potential benefits. In particular, inherent scalability and robustness are often highlighted as key distinguishing features of robot swarms compared with systems that rely on traditional approaches to multirobot coordination. It has, however, been shown that swarm robotics systems are not always fault tolerant. To realize the robustness potential of robot swarms, it is thus essential to give systems the capacity to actively detect and accommodate faults. In this paper, we present a generic fault-detection system for robot swarms. We show how robots with limited and imperfect sensing capabilities are able to observe and classify the behavior of one another. In order to achieve this, the underlying classifier is an immune system-inspired algorithm that learns to distinguish between normal behavior and abnormal behavior online. Through a series of experiments, we systematically assess the performance of our approach in a detailed simulation environment. In particular, we analyze our system’s capacity to correctly detect robots with faults, false positive rates, performance in a foraging task in which each robot exhibits a composite behavior, and performance under perturbations of the task environment. Results show that our generic fault-detection system is robust, that it is able to detect faults in a timely manner, and that it achieves a low false positive rate. The developed fault-detection system has the potential to enable long-term autonomy for robust multirobot systems, thus increasing the usefulness of robots for a diverse repertoire of upcoming applications in the area of distributed intelligent automation. PMID:28806756
Kinematics of shallow backthrusts in the Seattle fault zone, Washington State
Pratt, Thomas L.; Troost, K.G.; Odum, Jackson K.; Stephenson, William J.
2015-01-01
Near-surface thrust fault splays and antithetic backthrusts at the tips of major thrust fault systems can distribute slip across multiple shallow fault strands, complicating earthquake hazard analyses based on studies of surface faulting. The shallow expression of the fault strands forming the Seattle fault zone of Washington State shows the structural relationships and interactions between such fault strands. Paleoseismic studies document an ∼7000 yr history of earthquakes on multiple faults within the Seattle fault zone, with some backthrusts inferred to rupture in small (M ∼5.5–6.0) earthquakes at times other than during earthquakes on the main thrust faults. We interpret seismic-reflection profiles to show three main thrust faults, one of which is a blind thrust fault directly beneath downtown Seattle, and four small backthrusts within the Seattle fault zone. We then model fault slip, constrained by shallow deformation, to show that the Seattle fault forms a fault propagation fold rather than the alternatively proposed roof thrust system. Fault slip modeling shows that back-thrust ruptures driven by moderate (M ∼6.5–6.7) earthquakes on the main thrust faults are consistent with the paleoseismic data. The results indicate that paleoseismic data from the back-thrust ruptures reveal the times of moderate earthquakes on the main fault system, rather than indicating smaller (M ∼5.5–6.0) earthquakes involving only the backthrusts. Estimates of cumulative shortening during known Seattle fault zone earthquakes support the inference that the Seattle fault has been the major seismic hazard in the northern Cascadia forearc in the late Holocene.
NASA Astrophysics Data System (ADS)
Dhumale, R. B.; Lokhande, S. D.
2017-05-01
Three phase Pulse Width Modulation inverter plays vital role in industrial applications. The performance of inverter demeans as several types of faults take place in it. The widely used switching devices in power electronics are Insulated Gate Bipolar Transistors (IGBTs) and Metal Oxide Field Effect Transistors (MOSFET). The IGBTs faults are broadly classified as base or collector open circuit fault, misfiring fault and short circuit fault. To develop consistency and performance of inverter, knowledge of fault mode is extremely important. This paper presents the comparative study of IGBTs fault diagnosis. Experimental set up is implemented for data acquisition under various faulty and healthy conditions. Recent methods are executed using MATLAB-Simulink and compared using key parameters like average accuracy, fault detection time, implementation efforts, threshold dependency, and detection parameter, resistivity against noise and load dependency.
ASCS online fault detection and isolation based on an improved MPCA
NASA Astrophysics Data System (ADS)
Peng, Jianxin; Liu, Haiou; Hu, Yuhui; Xi, Junqiang; Chen, Huiyan
2014-09-01
Multi-way principal component analysis (MPCA) has received considerable attention and been widely used in process monitoring. A traditional MPCA algorithm unfolds multiple batches of historical data into a two-dimensional matrix and cut the matrix along the time axis to form subspaces. However, low efficiency of subspaces and difficult fault isolation are the common disadvantages for the principal component model. This paper presents a new subspace construction method based on kernel density estimation function that can effectively reduce the storage amount of the subspace information. The MPCA model and the knowledge base are built based on the new subspace. Then, fault detection and isolation with the squared prediction error (SPE) statistic and the Hotelling ( T 2) statistic are also realized in process monitoring. When a fault occurs, fault isolation based on the SPE statistic is achieved by residual contribution analysis of different variables. For fault isolation of subspace based on the T 2 statistic, the relationship between the statistic indicator and state variables is constructed, and the constraint conditions are presented to check the validity of fault isolation. Then, to improve the robustness of fault isolation to unexpected disturbances, the statistic method is adopted to set the relation between single subspace and multiple subspaces to increase the corrective rate of fault isolation. Finally fault detection and isolation based on the improved MPCA is used to monitor the automatic shift control system (ASCS) to prove the correctness and effectiveness of the algorithm. The research proposes a new subspace construction method to reduce the required storage capacity and to prove the robustness of the principal component model, and sets the relationship between the state variables and fault detection indicators for fault isolation.
Soft-Fault Detection Technologies Developed for Electrical Power Systems
NASA Technical Reports Server (NTRS)
Button, Robert M.
2004-01-01
The NASA Glenn Research Center, partner universities, and defense contractors are working to develop intelligent power management and distribution (PMAD) technologies for future spacecraft and launch vehicles. The goals are to provide higher performance (efficiency, transient response, and stability), higher fault tolerance, and higher reliability through the application of digital control and communication technologies. It is also expected that these technologies will eventually reduce the design, development, manufacturing, and integration costs for large, electrical power systems for space vehicles. The main focus of this research has been to incorporate digital control, communications, and intelligent algorithms into power electronic devices such as direct-current to direct-current (dc-dc) converters and protective switchgear. These technologies, in turn, will enable revolutionary changes in the way electrical power systems are designed, developed, configured, and integrated in aerospace vehicles and satellites. Initial successes in integrating modern, digital controllers have proven that transient response performance can be improved using advanced nonlinear control algorithms. One technology being developed includes the detection of "soft faults," those not typically covered by current systems in use today. Soft faults include arcing faults, corona discharge faults, and undetected leakage currents. Using digital control and advanced signal analysis algorithms, we have shown that it is possible to reliably detect arcing faults in high-voltage dc power distribution systems (see the preceding photograph). Another research effort has shown that low-level leakage faults and cable degradation can be detected by analyzing power system parameters over time. This additional fault detection capability will result in higher reliability for long-lived power systems such as reusable launch vehicles and space exploration missions.
ROBUS-2: A Fault-Tolerant Broadcast Communication System
NASA Technical Reports Server (NTRS)
Torres-Pomales, Wilfredo; Malekpour, Mahyar R.; Miner, Paul S.
2005-01-01
The Reliable Optical Bus (ROBUS) is the core communication system of the Scalable Processor-Independent Design for Enhanced Reliability (SPIDER), a general-purpose fault-tolerant integrated modular architecture currently under development at NASA Langley Research Center. The ROBUS is a time-division multiple access (TDMA) broadcast communication system with medium access control by means of time-indexed communication schedule. ROBUS-2 is a developmental version of the ROBUS providing guaranteed fault-tolerant services to the attached processing elements (PEs), in the presence of a bounded number of faults. These services include message broadcast (Byzantine Agreement), dynamic communication schedule update, clock synchronization, and distributed diagnosis (group membership). The ROBUS also features fault-tolerant startup and restart capabilities. ROBUS-2 is tolerant to internal as well as PE faults, and incorporates a dynamic self-reconfiguration capability driven by the internal diagnostic system. This version of the ROBUS is intended for laboratory experimentation and demonstrations of the capability to reintegrate failed nodes, dynamically update the communication schedule, and tolerate and recover from correlated transient faults.
CARE3MENU- A CARE III USER FRIENDLY INTERFACE
NASA Technical Reports Server (NTRS)
Pierce, J. L.
1994-01-01
CARE3MENU generates an input file for the CARE III program. CARE III is used for reliability prediction of complex, redundant, fault-tolerant systems including digital computers, aircraft, nuclear and chemical control systems. The CARE III input file often becomes complicated and is not easily formatted with a text editor. CARE3MENU provides an easy, interactive method of creating an input file by automatically formatting a set of user-supplied inputs for the CARE III system. CARE3MENU provides detailed on-line help for most of its screen formats. The reliability model input process is divided into sections using menu-driven screen displays. Each stage, or set of identical modules comprising the model, must be identified and described in terms of number of modules, minimum number of modules for stage operation, and critical fault threshold. The fault handling and fault occurence models are detailed in several screens by parameters such as transition rates, propagation and detection densities, Weibull or exponential characteristics, and model accuracy. The system fault tree and critical pairs fault tree screens are used to define the governing logic and to identify modules affected by component failures. Additional CARE3MENU screens prompt the user for output options and run time control values such as mission time and truncation values. There are fourteen major screens, many with default values and HELP options. The documentation includes: 1) a users guide with several examples of CARE III models, the dialog required to input them to CARE3MENU, and the output files created; and 2) a maintenance manual for assistance in changing the HELP files and modifying any of the menu formats or contents. CARE3MENU is written in FORTRAN 77 for interactive execution and has been implemented on a DEC VAX series computer operating under VMS. This program was developed in 1985.
Fault detection in rotor bearing systems using time frequency techniques
NASA Astrophysics Data System (ADS)
Chandra, N. Harish; Sekhar, A. S.
2016-05-01
Faults such as misalignment, rotor cracks and rotor to stator rub can exist collectively in rotor bearing systems. It is an important task for rotor dynamic personnel to monitor and detect faults in rotating machinery. In this paper, the rotor startup vibrations are utilized to solve the fault identification problem using time frequency techniques. Numerical simulations are performed through finite element analysis of the rotor bearing system with individual and collective combinations of faults as mentioned above. Three signal processing tools namely Short Time Fourier Transform (STFT), Continuous Wavelet Transform (CWT) and Hilbert Huang Transform (HHT) are compared to evaluate their detection performance. The effect of addition of Signal to Noise ratio (SNR) on three time frequency techniques is presented. The comparative study is focused towards detecting the least possible level of the fault induced and the computational time consumed. The computation time consumed by HHT is very less when compared to CWT based diagnosis. However, for noisy data CWT is more preferred over HHT. To identify fault characteristics using wavelets a procedure to adjust resolution of the mother wavelet is presented in detail. Experiments are conducted to obtain the run-up data of a rotor bearing setup for diagnosis of shaft misalignment and rotor stator rubbing faults.
PRESAGE: Protecting Structured Address Generation against Soft Errors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Vishal C.; Gopalakrishnan, Ganesh; Krishnamoorthy, Sriram
Modern computer scaling trends in pursuit of larger component counts and power efficiency have, unfortunately, lead to less reliable hardware and consequently soft errors escaping into application data ("silent data corruptions"). Techniques to enhance system resilience hinge on the availability of efficient error detectors that have high detection rates, low false positive rates, and lower computational overhead. Unfortunately, efficient detectors to detect faults during address generation (to index large arrays) have not been widely researched. We present a novel lightweight compiler-driven technique called PRESAGE for detecting bit-flips affecting structured address computations. A key insight underlying PRESAGE is that any addressmore » computation scheme that flows an already incurred error is better than a scheme that corrupts one particular array access but otherwise (falsely) appears to compute perfectly. Enabling the flow of errors allows one to situate detectors at loop exit points, and helps turn silent corruptions into easily detectable error situations. Our experiments using PolyBench benchmark suite indicate that PRESAGE-based error detectors have a high error-detection rate while incurring low overheads.« less
PRESAGE: Protecting Structured Address Generation against Soft Errors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Vishal C.; Gopalakrishnan, Ganesh; Krishnamoorthy, Sriram
Modern computer scaling trends in pursuit of larger component counts and power efficiency have, unfortunately, lead to less reliable hardware and consequently soft errors escaping into application data ("silent data corruptions"). Techniques to enhance system resilience hinge on the availability of efficient error detectors that have high detection rates, low false positive rates, and lower computational overhead. Unfortunately, efficient detectors to detect faults during address generation have not been widely researched (especially in the context of indexing large arrays). We present a novel lightweight compiler-driven technique called PRESAGE for detecting bit-flips affecting structured address computations. A key insight underlying PRESAGEmore » is that any address computation scheme that propagates an already incurred error is better than a scheme that corrupts one particular array access but otherwise (falsely) appears to compute perfectly. Ensuring the propagation of errors allows one to place detectors at loop exit points and helps turn silent corruptions into easily detectable error situations. Our experiments using the PolyBench benchmark suite indicate that PRESAGE-based error detectors have a high error-detection rate while incurring low overheads.« less
Usage of Fault Detection Isolation & Recovery (FDIR) in Constellation (CxP) Launch Operations
NASA Technical Reports Server (NTRS)
Ferrell, Rob; Lewis, Mark; Perotti, Jose; Oostdyk, Rebecca; Spirkovska, Lilly; Hall, David; Brown, Barbara
2010-01-01
This paper will explore the usage of Fault Detection Isolation & Recovery (FDIR) in the Constellation Exploration Program (CxP), in particular Launch Operations at Kennedy Space Center (KSC). NASA's Exploration Technology Development Program (ETDP) is currently funding a project that is developing a prototype FDIR to demonstrate the feasibility of incorporating FDIR into the CxP Ground Operations Launch Control System (LCS). An architecture that supports multiple FDIR tools has been formulated that will support integration into the CxP Ground Operation's Launch Control System (LCS). In addition, tools have been selected that provide fault detection, fault isolation, and anomaly detection along with integration between Flight and Ground elements.
NASA Technical Reports Server (NTRS)
Lala, J. H.; Smith, T. B., III
1983-01-01
The experimental test and evaluation of the Fault-Tolerant Multiprocessor (FTMP) is described. Major objectives of this exercise include expanding validation envelope, building confidence in the system, revealing any weaknesses in the architectural concepts and in their execution in hardware and software, and in general, stressing the hardware and software. To this end, pin-level faults were injected into one LRU of the FTMP and the FTMP response was measured in terms of fault detection, isolation, and recovery times. A total of 21,055 stuck-at-0, stuck-at-1 and invert-signal faults were injected in the CPU, memory, bus interface circuits, Bus Guardian Units, and voters and error latches. Of these, 17,418 were detected. At least 80 percent of undetected faults are estimated to be on unused pins. The multiprocessor identified all detected faults correctly and recovered successfully in each case. Total recovery time for all faults averaged a little over one second. This can be reduced to half a second by including appropriate self-tests.
All-to-all sequenced fault detection system
Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward
2010-11-02
An apparatus, program product and method enable nodal fault detection by sequencing communications between all system nodes. A master node may coordinate communications between two slave nodes before sequencing to and initiating communications between a new pair of slave nodes. The communications may be analyzed to determine the nodal fault.
Discrete Wavelet Transform for Fault Locations in Underground Distribution System
NASA Astrophysics Data System (ADS)
Apisit, C.; Ngaopitakkul, A.
2010-10-01
In this paper, a technique for detecting faults in underground distribution system is presented. Discrete Wavelet Transform (DWT) based on traveling wave is employed in order to detect the high frequency components and to identify fault locations in the underground distribution system. The first peak time obtained from the faulty bus is employed for calculating the distance of fault from sending end. The validity of the proposed technique is tested with various fault inception angles, fault locations and faulty phases. The result is found that the proposed technique provides satisfactory result and will be very useful in the development of power systems protection scheme.
Li, Ke; Chen, Peng
2011-01-01
Structural faults, such as unbalance, misalignment and looseness, etc., often occur in the shafts of rotating machinery. These faults may cause serious machine accidents and lead to great production losses. This paper proposes an intelligent method for diagnosing structural faults of rotating machinery using ant colony optimization (ACO) and relative ratio symptom parameters (RRSPs) in order to detect faults and distinguish fault types at an early stage. New symptom parameters called “relative ratio symptom parameters” are defined for reflecting the features of vibration signals measured in each state. Synthetic detection index (SDI) using statistical theory has also been defined to evaluate the applicability of the RRSPs. The SDI can be used to indicate the fitness of a RRSP for ACO. Lastly, this paper also compares the proposed method with the conventional neural networks (NN) method. Practical examples of fault diagnosis for a centrifugal fan are provided to verify the effectiveness of the proposed method. The verification results show that the structural faults often occurring in the centrifugal fan, such as unbalance, misalignment and looseness states are effectively identified by the proposed method, while these faults are difficult to detect using conventional neural networks. PMID:22163833
Li, Ke; Chen, Peng
2011-01-01
Structural faults, such as unbalance, misalignment and looseness, etc., often occur in the shafts of rotating machinery. These faults may cause serious machine accidents and lead to great production losses. This paper proposes an intelligent method for diagnosing structural faults of rotating machinery using ant colony optimization (ACO) and relative ratio symptom parameters (RRSPs) in order to detect faults and distinguish fault types at an early stage. New symptom parameters called "relative ratio symptom parameters" are defined for reflecting the features of vibration signals measured in each state. Synthetic detection index (SDI) using statistical theory has also been defined to evaluate the applicability of the RRSPs. The SDI can be used to indicate the fitness of a RRSP for ACO. Lastly, this paper also compares the proposed method with the conventional neural networks (NN) method. Practical examples of fault diagnosis for a centrifugal fan are provided to verify the effectiveness of the proposed method. The verification results show that the structural faults often occurring in the centrifugal fan, such as unbalance, misalignment and looseness states are effectively identified by the proposed method, while these faults are difficult to detect using conventional neural networks.
Zhou, Shenghan; Qian, Silin; Chang, Wenbing; Xiao, Yiyong; Cheng, Yang
2018-06-14
Timely and accurate state detection and fault diagnosis of rolling element bearings are very critical to ensuring the reliability of rotating machinery. This paper proposes a novel method of rolling bearing fault diagnosis based on a combination of ensemble empirical mode decomposition (EEMD), weighted permutation entropy (WPE) and an improved support vector machine (SVM) ensemble classifier. A hybrid voting (HV) strategy that combines SVM-based classifiers and cloud similarity measurement (CSM) was employed to improve the classification accuracy. First, the WPE value of the bearing vibration signal was calculated to detect the fault. Secondly, if a bearing fault occurred, the vibration signal was decomposed into a set of intrinsic mode functions (IMFs) by EEMD. The WPE values of the first several IMFs were calculated to form the fault feature vectors. Then, the SVM ensemble classifier was composed of binary SVM and the HV strategy to identify the bearing multi-fault types. Finally, the proposed model was fully evaluated by experiments and comparative studies. The results demonstrate that the proposed method can effectively detect bearing faults and maintain a high accuracy rate of fault recognition when a small number of training samples are available.
Various Indices for Diagnosis of Air-gap Eccentricity Fault in Induction Motor-A Review
NASA Astrophysics Data System (ADS)
Nikhil; Mathew, Lini, Dr.; Sharma, Amandeep
2018-03-01
From the past few years, research has gained an ardent pace in the field of fault detection and diagnosis in induction motors. In the current scenario, software is being introduced with diagnostic features to improve stability and reliability in fault diagnostic techniques. Human involvement in decision making for fault detection is slowly being replaced by Artificial Intelligence techniques. In this paper, a brief introduction of eccentricity fault is presented along with their causes and effects on the health of induction motors. Various indices used to detect eccentricity are being introduced along with their boundary conditions and their future scope of research. At last, merits and demerits of all indices are discussed and a comparison is made between them.
Observations of Displacement-driven Maturation along a Subduction-Transform Edge Propagator Fault
NASA Astrophysics Data System (ADS)
Neely, J. S.; Furlong, K. P.
2016-12-01
The Solomon Islands-Vanuatu composite subduction zone represents a tectonically complex region along the Pacific-Australia plate boundary in the southwest Pacific Ocean. Here the Australia plate subducts under the Pacific plate in two parts - the Solomon Trench and the Vanuatu Trench - with the two segments separated by a transform fault produced by a tear in the approaching Australia plate. As a result of the Australia plate tearing, the two subducting sections are offset by the 280 km long San Cristobal Trough (SCT) transform fault, which acts as a Subduction-Transform Edge Propagator (STEP) fault. The formation of this transform fault provides an opportunity to study the evolution of a newly created transform plate boundary. As distance from the tear increases, both the magnitude and frequency of earthquakes along the transform increase reflecting the coalescence of fault segments into a through-going structure. Over the past few decades, there have been several instances of larger magnitude earthquakes migrating westward along the STEP through a rapid succession of events. A recent May 2015 sequence of MW 6.8, MW 6.9, and MW 6.8 earthquakes followed this pattern, with an east to west migration over three days. However, neither this 2015 sequence, nor a previous 1993 progression, ruptured into or nucleated a large earthquake within the region near the tear. SCT sequence termination outside the region of the newly formed fault occurs even though Coulomb Failure Stress analyses reveal that the tear end of the SCT is positively loaded for failure by the earthquake sequence. Changing seismicity patterns along the SCT are also mapped by b-value variations that correspond to the rupture patterns of these propagating sequences. These seismicity pattern changes along the SCT reveal a fault maturation process with strain localization driven by cumulative slip corresponding to approximately 80-100 km of displacement.
Soft Computing Application in Fault Detection of Induction Motor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konar, P.; Puhan, P. S.; Chattopadhyay, P. Dr.
2010-10-26
The paper investigates the effectiveness of different patter classifier like Feed Forward Back Propagation (FFBPN), Radial Basis Function (RBF) and Support Vector Machine (SVM) for detection of bearing faults in Induction Motor. The steady state motor current with Park's Transformation has been used for discrimination of inner race and outer race bearing defects. The RBF neural network shows very encouraging results for multi-class classification problems and is hoped to set up a base for incipient fault detection of induction motor. SVM is also found to be a very good fault classifier which is highly competitive with RBF.
Weak fault detection and health degradation monitoring using customized standard multiwavelets
NASA Astrophysics Data System (ADS)
Yuan, Jing; Wang, Yu; Peng, Yizhen; Wei, Chenjun
2017-09-01
Due to the nonobvious symptoms contaminated by a large amount of background noise, it is challenging to beforehand detect and predictively monitor the weak faults for machinery security assurance. Multiwavelets can act as adaptive non-stationary signal processing tools, potentially viable for weak fault diagnosis. However, the signal-based multiwavelets suffer from such problems as the imperfect properties missing the crucial orthogonality, the decomposition distortion impossibly reflecting the relationships between the faults and signatures, the single objective optimization and independence for fault prognostic. Thus, customized standard multiwavelets are proposed for weak fault detection and health degradation monitoring, especially the weak fault signature quantitative identification. First, the flexible standard multiwavelets are designed using the construction method derived from scalar wavelets, seizing the desired properties for accurate detection of weak faults and avoiding the distortion issue for feature quantitative identification. Second, the multi-objective optimization combined three dimensionless indicators of the normalized energy entropy, normalized singular entropy and kurtosis index is introduced to the evaluation criterions, and benefits for selecting the potential best basis functions for weak faults without the influence of the variable working condition. Third, an ensemble health indicator fused by the kurtosis index, impulse index and clearance index of the original signal along with the normalized energy entropy and normalized singular entropy by the customized standard multiwavelets is achieved using Mahalanobis distance to continuously monitor the health condition and track the performance degradation. Finally, three experimental case studies are implemented to demonstrate the feasibility and effectiveness of the proposed method. The results show that the proposed method can quantitatively identify the fault signature of a slight rub on the inner race of a locomotive bearing, effectively detect and locate the potential failure from a complicated epicyclic gear train and successfully reveal the fault development and performance degradation of a test bearing in the lifetime.
Latent component-based gear tooth fault detection filter using advanced parametric modeling
NASA Astrophysics Data System (ADS)
Ettefagh, M. M.; Sadeghi, M. H.; Rezaee, M.; Chitsaz, S.
2009-10-01
In this paper, a new parametric model-based filter is proposed for gear tooth fault detection. The designing of the filter consists of identifying the most proper latent component (LC) of the undamaged gearbox signal by analyzing the instant modules (IMs) and instant frequencies (IFs) and then using the component with lowest IM as the proposed filter output for detecting fault of the gearbox. The filter parameters are estimated by using the LC theory in which an advanced parametric modeling method has been implemented. The proposed method is applied on the signals, extracted from simulated gearbox for detection of the simulated gear faults. In addition, the method is used for quality inspection of the produced Nissan-Junior vehicle gearbox by gear profile error detection in an industrial test bed. For evaluation purpose, the proposed method is compared with the previous parametric TAR/AR-based filters in which the parametric model residual is considered as the filter output and also Yule-Walker and Kalman filter are implemented for estimating the parameters. The results confirm the high performance of the new proposed fault detection method.
NASA Technical Reports Server (NTRS)
Kobayashi, Takahisa; Simon, Donald L.
2004-01-01
In this paper, an approach for in-flight fault detection and isolation (FDI) of aircraft engine sensors based on a bank of Kalman filters is developed. This approach utilizes multiple Kalman filters, each of which is designed based on a specific fault hypothesis. When the propulsion system experiences a fault, only one Kalman filter with the correct hypothesis is able to maintain the nominal estimation performance. Based on this knowledge, the isolation of faults is achieved. Since the propulsion system may experience component and actuator faults as well, a sensor FDI system must be robust in terms of avoiding misclassifications of any anomalies. The proposed approach utilizes a bank of (m+1) Kalman filters where m is the number of sensors being monitored. One Kalman filter is used for the detection of component and actuator faults while each of the other m filters detects a fault in a specific sensor. With this setup, the overall robustness of the sensor FDI system to anomalies is enhanced. Moreover, numerous component fault events can be accounted for by the FDI system. The sensor FDI system is applied to a commercial aircraft engine simulation, and its performance is evaluated at multiple power settings at a cruise operating point using various fault scenarios.
Fault detection of gearbox using time-frequency method
NASA Astrophysics Data System (ADS)
Widodo, A.; Satrijo, Dj.; Prahasto, T.; Haryanto, I.
2017-04-01
This research deals with fault detection and diagnosis of gearbox by using vibration signature. In this work, fault detection and diagnosis are approached by employing time-frequency method, and then the results are compared with cepstrum analysis. Experimental work has been conducted for data acquisition of vibration signal thru self-designed gearbox test rig. This test-rig is able to demonstrate normal and faulty gearbox i.e., wears and tooth breakage. Three accelerometers were used for vibration signal acquisition from gearbox, and optical tachometer was used for shaft rotation speed measurement. The results show that frequency domain analysis using fast-fourier transform was less sensitive to wears and tooth breakage condition. However, the method of short-time fourier transform was able to monitor the faults in gearbox. Wavelet Transform (WT) method also showed good performance in gearbox fault detection using vibration signal after employing time synchronous averaging (TSA).
Remote Structural Health Monitoring and Advanced Prognostics of Wind Turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Douglas Brown; Bernard Laskowski
The prospect of substantial investment in wind energy generation represents a significant capital investment strategy. In order to maximize the life-cycle of wind turbines, associated rotors, gears, and structural towers, a capability to detect and predict (prognostics) the onset of mechanical faults at a sufficiently early stage for maintenance actions to be planned would significantly reduce both maintenance and operational costs. Advancement towards this effort has been made through the development of anomaly detection, fault detection and fault diagnosis routines to identify selected fault modes of a wind turbine based on available sensor data preceding an unscheduled emergency shutdown. Themore » anomaly detection approach employs spectral techniques to find an approximation of the data using a combination of attributes that capture the bulk of variability in the data. Fault detection and diagnosis (FDD) is performed using a neural network-based classifier trained from baseline and fault data recorded during known failure conditions. The approach has been evaluated for known baseline conditions and three selected failure modes: pitch rate failure, low oil pressure failure and a gearbox gear-tooth failure. Experimental results demonstrate the approach can distinguish between these failure modes and normal baseline behavior within a specified statistical accuracy.« less
Power plant fault detection using artificial neural network
NASA Astrophysics Data System (ADS)
Thanakodi, Suresh; Nazar, Nazatul Shiema Moh; Joini, Nur Fazriana; Hidzir, Hidzrin Dayana Mohd; Awira, Mohammad Zulfikar Khairul
2018-02-01
The fault that commonly occurs in power plants is due to various factors that affect the system outage. There are many types of faults in power plants such as single line to ground fault, double line to ground fault, and line to line fault. The primary aim of this paper is to diagnose the fault in 14 buses power plants by using an Artificial Neural Network (ANN). The Multilayered Perceptron Network (MLP) that detection trained utilized the offline training methods such as Gradient Descent Backpropagation (GDBP), Levenberg-Marquardt (LM), and Bayesian Regularization (BR). The best method is used to build the Graphical User Interface (GUI). The modelling of 14 buses power plant, network training, and GUI used the MATLAB software.
Wang, Tianyang; Chu, Fulei; Han, Qinkai
2017-03-01
Identifying the differences between the spectra or envelope spectra of a faulty signal and a healthy baseline signal is an efficient planetary gearbox local fault detection strategy. However, causes other than local faults can also generate the characteristic frequency of a ring gear fault; this may further affect the detection of a local fault. To address this issue, a new filtering algorithm based on the meshing resonance phenomenon is proposed. In detail, the raw signal is first decomposed into different frequency bands and levels. Then, a new meshing index and an MRgram are constructed to determine which bands belong to the meshing resonance frequency band. Furthermore, an optimal filter band is selected from this MRgram. Finally, the ring gear fault can be detected according to the envelope spectrum of the band-pass filtering result. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
System and method for motor fault detection using stator current noise cancellation
Zhou, Wei; Lu, Bin; Nowak, Michael P.; Dimino, Steven A.
2010-12-07
A system and method for detecting incipient mechanical motor faults by way of current noise cancellation is disclosed. The system includes a controller configured to detect indicia of incipient mechanical motor faults. The controller further includes a processor programmed to receive a baseline set of current data from an operating motor and define a noise component in the baseline set of current data. The processor is also programmed to acquire at least on additional set of real-time operating current data from the motor during operation, redefine the noise component present in each additional set of real-time operating current data, and remove the noise component from the operating current data in real-time to isolate any fault components present in the operating current data. The processor is then programmed to generate a fault index for the operating current data based on any isolated fault components.
NASA Astrophysics Data System (ADS)
Chen, Jian; Randall, Robert Bond; Peeters, Bart
2016-06-01
Artificial Neural Networks (ANNs) have the potential to solve the problem of automated diagnostics of piston slap faults, but the critical issue for the successful application of ANN is the training of the network by a large amount of data in various engine conditions (different speed/load conditions in normal condition, and with different locations/levels of faults). On the other hand, the latest simulation technology provides a useful alternative in that the effect of clearance changes may readily be explored without recourse to cutting metal, in order to create enough training data for the ANNs. In this paper, based on some existing simplified models of piston slap, an advanced multi-body dynamic simulation software was used to simulate piston slap faults with different speeds/loads and clearance conditions. Meanwhile, the simulation models were validated and updated by a series of experiments. Three-stage network systems are proposed to diagnose piston faults: fault detection, fault localisation and fault severity identification. Multi Layer Perceptron (MLP) networks were used in the detection stage and severity/prognosis stage and a Probabilistic Neural Network (PNN) was used to identify which cylinder has faults. Finally, it was demonstrated that the networks trained purely on simulated data can efficiently detect piston slap faults in real tests and identify the location and severity of the faults as well.
The Real Time Display Builder (RTDB)
NASA Technical Reports Server (NTRS)
Kindred, Erick D.; Bailey, Samuel A., Jr.
1989-01-01
The Real Time Display Builder (RTDB) is a prototype interactive graphics tool that builds logic-driven displays. These displays reflect current system status, implement fault detection algorithms in real time, and incorporate the operational knowledge of experienced flight controllers. RTDB utilizes an object-oriented approach that integrates the display symbols with the underlying operational logic. This approach allows the user to specify the screen layout and the driving logic as the display is being built. RTDB is being developed under UNIX in C utilizing the MASSCOMP graphics environment with appropriate functional separation to ease portability to other graphics environments. RTDB grew from the need to develop customized real-time data-driven Space Shuttle systems displays. One display, using initial functionality of the tool, was operational during the orbit phase of STS-26 Discovery. RTDB is being used to produce subsequent displays for the Real Time Data System project currently under development within the Mission Operations Directorate at NASA/JSC. The features of the tool, its current state of development, and its applications are discussed.
Propulsion Health Monitoring of a Turbine Engine Disk Using Spin Test Data
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Woike, Mark R.; Oza, Nikunj; Matthews, Bryan; Baaklini, George Y.
2010-01-01
This paper considers data collected from an experimental study using high frequency capacitive sensor technology to capture blade tip clearance and tip timing measurements in a rotating turbine engine-like-disk-to predict the disk faults and assess its structural integrity. The experimental results collected at a range of rotational speeds from tests conducted at the NASA Glenn Research Center s Rotordynamics Laboratory are evaluated using multiple data-driven anomaly detection techniques to identify abnormalities in the disk. Further, this study presents a select evaluation of an online health monitoring scheme of a rotating disk using high caliber sensors and test the capability of the in-house spin system.
Robust Fault Detection Using Robust Z1 Estimation and Fuzzy Logic
NASA Technical Reports Server (NTRS)
Curry, Tramone; Collins, Emmanuel G., Jr.; Selekwa, Majura; Guo, Ten-Huei (Technical Monitor)
2001-01-01
This research considers the application of robust Z(sub 1), estimation in conjunction with fuzzy logic to robust fault detection for an aircraft fight control system. It begins with the development of robust Z(sub 1) estimators based on multiplier theory and then develops a fixed threshold approach to fault detection (FD). It then considers the use of fuzzy logic for robust residual evaluation and FD. Due to modeling errors and unmeasurable disturbances, it is difficult to distinguish between the effects of an actual fault and those caused by uncertainty and disturbance. Hence, it is the aim of a robust FD system to be sensitive to faults while remaining insensitive to uncertainty and disturbances. While fixed thresholds only allow a decision on whether a fault has or has not occurred, it is more valuable to have the residual evaluation lead to a conclusion related to the degree of, or probability of, a fault. Fuzzy logic is a viable means of determining the degree of a fault and allows the introduction of human observations that may not be incorporated in the rigorous threshold theory. Hence, fuzzy logic can provide a more reliable and informative fault detection process. Using an aircraft flight control system, the results of FD using robust Z(sub 1) estimation with a fixed threshold are demonstrated. FD that combines robust Z(sub 1) estimation and fuzzy logic is also demonstrated. It is seen that combining the robust estimator with fuzzy logic proves to be advantageous in increasing the sensitivity to smaller faults while remaining insensitive to uncertainty and disturbances.
NASA Astrophysics Data System (ADS)
Copley, Alex; Mitra, Supriyo; Sloan, R. Alastair; Gaonkar, Sharad; Reynolds, Kirsty
2014-08-01
We present observations of active faulting within peninsular India, far from the surrounding plate boundaries. Offset alluvial fan surfaces indicate one or more magnitude 7.6-8.4 thrust-faulting earthquakes on the Tapti Fault (Maharashtra, western India) during the Holocene. The high ratio of fault displacement to length on the alluvial fan offsets implies high stress-drop faulting, as has been observed elsewhere in the peninsula. The along-strike extent of the fan offsets is similar to the thickness of the seismogenic layer, suggesting a roughly equidimensional fault rupture. The subsiding footwall of the fault is likely to have been responsible for altering the continental-scale drainage pattern in central India and creating the large west flowing catchment of the Tapti river. A preexisting sedimentary basin in the uplifting hanging wall implies that the Tapti Fault was active as a normal fault during the Mesozoic and has been reactivated as a thrust, highlighting the role of preexisting structures in determining the rheology and deformation of the lithosphere. The slip sense of faults and earthquakes in India suggests that deformation south of the Ganges foreland basin is driven by the compressive force transmitted between India and the Tibetan Plateau. The along-strike continuation of faulting to the east of the Holocene ruptures we have studied represents a significant seismic hazard in central India.
NASA Astrophysics Data System (ADS)
Paya, B. A.; Esat, I. I.; Badi, M. N. M.
1997-09-01
The purpose of condition monitoring and fault diagnostics are to detect and distinguish faults occurring in machinery, in order to provide a significant improvement in plant economy, reduce operational and maintenance costs and improve the level of safety. The condition of a model drive-line, consisting of various interconnected rotating parts, including an actual vehicle gearbox, two bearing housings, and an electric motor, all connected via flexible couplings and loaded by a disc brake, was investigated. This model drive-line was run in its normal condition, and then single and multiple faults were introduced intentionally to the gearbox, and to the one of the bearing housings. These single and multiple faults studied on the drive-line were typical bearing and gear faults which may develop during normal and continuous operation of this kind of rotating machinery. This paper presents the investigation carried out in order to study both bearing and gear faults introduced first separately as a single fault and then together as multiple faults to the drive-line. The real time domain vibration signals obtained for the drive-line were preprocessed by wavelet transforms for the neural network to perform fault detection and identify the exact kinds of fault occurring in the model drive-line. It is shown that by using multilayer artificial neural networks on the sets of preprocessed data by wavelet transforms, single and multiple faults were successfully detected and classified into distinct groups.
Modeling, Detection, and Disambiguation of Sensor Faults for Aerospace Applications
NASA Technical Reports Server (NTRS)
Balaban, Edward; Saxena, Abhinav; Bansal, Prasun; Goebel, Kai F.; Curran, Simon
2009-01-01
Sensor faults continue to be a major hurdle for systems health management to reach its full potential. At the same time, few recorded instances of sensor faults exist. It is equally difficult to seed particular sensor faults. Therefore, research is underway to better understand the different fault modes seen in sensors and to model the faults. The fault models can then be used in simulated sensor fault scenarios to ensure that algorithms can distinguish between sensor faults and system faults. The paper illustrates the work with data collected from an electro-mechanical actuator in an aerospace setting, equipped with temperature, vibration, current, and position sensors. The most common sensor faults, such as bias, drift, scaling, and dropout were simulated and injected into the experimental data, with the goal of making these simulations as realistic as feasible. A neural network based classifier was then created and tested on both experimental data and the more challenging randomized data sequences. Additional studies were also conducted to determine sensitivity of detection and disambiguation efficacy to severity of fault conditions.
NASA Astrophysics Data System (ADS)
Wang, H.; Jing, X. J.
2017-07-01
This paper presents a virtual beam based approach suitable for conducting diagnosis of multiple faults in complex structures with limited prior knowledge of the faults involved. The "virtual beam", a recently-proposed concept for fault detection in complex structures, is applied, which consists of a chain of sensors representing a vibration energy transmission path embedded in the complex structure. Statistical tests and adaptive threshold are particularly adopted for fault detection due to limited prior knowledge of normal operational conditions and fault conditions. To isolate the multiple faults within a specific structure or substructure of a more complex one, a 'biased running' strategy is developed and embedded within the bacterial-based optimization method to construct effective virtual beams and thus to improve the accuracy of localization. The proposed method is easy and efficient to implement for multiple fault localization with limited prior knowledge of normal conditions and faults. With extensive experimental results, it is validated that the proposed method can localize both single fault and multiple faults more effectively than the classical trust index subtract on negative add on positive (TI-SNAP) method.
Yi, Qu; Zhan-ming, Li; Er-chao, Li
2012-11-01
A new fault detection and diagnosis (FDD) problem via the output probability density functions (PDFs) for non-gausian stochastic distribution systems (SDSs) is investigated. The PDFs can be approximated by radial basis functions (RBFs) neural networks. Different from conventional FDD problems, the measured information for FDD is the output stochastic distributions and the stochastic variables involved are not confined to Gaussian ones. A (RBFs) neural network technique is proposed so that the output PDFs can be formulated in terms of the dynamic weighings of the RBFs neural network. In this work, a nonlinear adaptive observer-based fault detection and diagnosis algorithm is presented by introducing the tuning parameter so that the residual is as sensitive as possible to the fault. Stability and Convergency analysis is performed in fault detection and fault diagnosis analysis for the error dynamic system. At last, an illustrated example is given to demonstrate the efficiency of the proposed algorithm, and satisfactory results have been obtained. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Kobayashi, Takahisa; Simon, Donald L.
2008-01-01
In this paper, a baseline system which utilizes dual-channel sensor measurements for aircraft engine on-line diagnostics is developed. This system is composed of a linear on-board engine model (LOBEM) and fault detection and isolation (FDI) logic. The LOBEM provides the analytical third channel against which the dual-channel measurements are compared. When the discrepancy among the triplex channels exceeds a tolerance level, the FDI logic determines the cause of the discrepancy. Through this approach, the baseline system achieves the following objectives: (1) anomaly detection, (2) component fault detection, and (3) sensor fault detection and isolation. The performance of the baseline system is evaluated in a simulation environment using faults in sensors and components.
Anomaly Detection for Next-Generation Space Launch Ground Operations
NASA Technical Reports Server (NTRS)
Spirkovska, Lilly; Iverson, David L.; Hall, David R.; Taylor, William M.; Patterson-Hine, Ann; Brown, Barbara; Ferrell, Bob A.; Waterman, Robert D.
2010-01-01
NASA is developing new capabilities that will enable future human exploration missions while reducing mission risk and cost. The Fault Detection, Isolation, and Recovery (FDIR) project aims to demonstrate the utility of integrated vehicle health management (IVHM) tools in the domain of ground support equipment (GSE) to be used for the next generation launch vehicles. In addition to demonstrating the utility of IVHM tools for GSE, FDIR aims to mature promising tools for use on future missions and document the level of effort - and hence cost - required to implement an application with each selected tool. One of the FDIR capabilities is anomaly detection, i.e., detecting off-nominal behavior. The tool we selected for this task uses a data-driven approach. Unlike rule-based and model-based systems that require manual extraction of system knowledge, data-driven systems take a radically different approach to reasoning. At the basic level, they start with data that represent nominal functioning of the system and automatically learn expected system behavior. The behavior is encoded in a knowledge base that represents "in-family" system operations. During real-time system monitoring or during post-flight analysis, incoming data is compared to that nominal system operating behavior knowledge base; a distance representing deviation from nominal is computed, providing a measure of how far "out of family" current behavior is. We describe the selected tool for FDIR anomaly detection - Inductive Monitoring System (IMS), how it fits into the FDIR architecture, the operations concept for the GSE anomaly monitoring, and some preliminary results of applying IMS to a Space Shuttle GSE anomaly.
Hideen Markov Models and Neural Networks for Fault Detection in Dynamic Systems
NASA Technical Reports Server (NTRS)
Smyth, Padhraic
1994-01-01
None given. (From conclusion): Neural networks plus Hidden Markov Models(HMM)can provide excellene detection and false alarm rate performance in fault detection applications. Modified models allow for novelty detection. Also covers some key contributions of neural network model, and application status.
Error Mitigation of Point-to-Point Communication for Fault-Tolerant Computing
NASA Technical Reports Server (NTRS)
Akamine, Robert L.; Hodson, Robert F.; LaMeres, Brock J.; Ray, Robert E.
2011-01-01
Fault tolerant systems require the ability to detect and recover from physical damage caused by the hardware s environment, faulty connectors, and system degradation over time. This ability applies to military, space, and industrial computing applications. The integrity of Point-to-Point (P2P) communication, between two microcontrollers for example, is an essential part of fault tolerant computing systems. In this paper, different methods of fault detection and recovery are presented and analyzed.
Automatic Detection of Electric Power Troubles (ADEPT)
NASA Technical Reports Server (NTRS)
Wang, Caroline; Zeanah, Hugh; Anderson, Audie; Patrick, Clint; Brady, Mike; Ford, Donnie
1988-01-01
Automatic Detection of Electric Power Troubles (A DEPT) is an expert system that integrates knowledge from three different suppliers to offer an advanced fault-detection system. It is designed for two modes of operation: real time fault isolation and simulated modeling. Real time fault isolation of components is accomplished on a power system breadboard through the Fault Isolation Expert System (FIES II) interface with a rule system developed in-house. Faults are quickly detected and displayed and the rules and chain of reasoning optionally provided on a laser printer. This system consists of a simulated space station power module using direct-current power supplies for solar arrays on three power buses. For tests of the system's ablilty to locate faults inserted via switches, loads are configured by an INTEL microcomputer and the Symbolics artificial intelligence development system. As these loads are resistive in nature, Ohm's Law is used as the basis for rules by which faults are located. The three-bus system can correct faults automatically where there is a surplus of power available on any of the three buses. Techniques developed and used can be applied readily to other control systems requiring rapid intelligent decisions. Simulated modeling, used for theoretical studies, is implemented using a modified version of Kennedy Space Center's KATE (Knowledge-Based Automatic Test Equipment), FIES II windowing, and an ADEPT knowledge base.
Automatic Detection of Electric Power Troubles (ADEPT)
NASA Astrophysics Data System (ADS)
Wang, Caroline; Zeanah, Hugh; Anderson, Audie; Patrick, Clint; Brady, Mike; Ford, Donnie
1988-11-01
Automatic Detection of Electric Power Troubles (A DEPT) is an expert system that integrates knowledge from three different suppliers to offer an advanced fault-detection system. It is designed for two modes of operation: real time fault isolation and simulated modeling. Real time fault isolation of components is accomplished on a power system breadboard through the Fault Isolation Expert System (FIES II) interface with a rule system developed in-house. Faults are quickly detected and displayed and the rules and chain of reasoning optionally provided on a laser printer. This system consists of a simulated space station power module using direct-current power supplies for solar arrays on three power buses. For tests of the system's ablilty to locate faults inserted via switches, loads are configured by an INTEL microcomputer and the Symbolics artificial intelligence development system. As these loads are resistive in nature, Ohm's Law is used as the basis for rules by which faults are located. The three-bus system can correct faults automatically where there is a surplus of power available on any of the three buses. Techniques developed and used can be applied readily to other control systems requiring rapid intelligent decisions. Simulated modeling, used for theoretical studies, is implemented using a modified version of Kennedy Space Center's KATE (Knowledge-Based Automatic Test Equipment), FIES II windowing, and an ADEPT knowledge base.
Distributed fault detection over sensor networks with Markovian switching topologies
NASA Astrophysics Data System (ADS)
Ge, Xiaohua; Han, Qing-Long
2014-05-01
This paper deals with the distributed fault detection for discrete-time Markov jump linear systems over sensor networks with Markovian switching topologies. The sensors are scatteredly deployed in the sensor field and the fault detectors are physically distributed via a communication network. The system dynamics changes and sensing topology variations are modeled by a discrete-time Markov chain with incomplete mode transition probabilities. Each of these sensor nodes firstly collects measurement outputs from its all underlying neighboring nodes, processes these data in accordance with the Markovian switching topologies, and then transmits the processed data to the remote fault detector node. Network-induced delays and accumulated data packet dropouts are incorporated in the data transmission between the sensor nodes and the distributed fault detector nodes through the communication network. To generate localized residual signals, mode-independent distributed fault detection filters are proposed. By means of the stochastic Lyapunov functional approach, the residual system performance analysis is carried out such that the overall residual system is stochastically stable and the error between each residual signal and the fault signal is made as small as possible. Furthermore, a sufficient condition on the existence of the mode-independent distributed fault detection filters is derived in the simultaneous presence of incomplete mode transition probabilities, Markovian switching topologies, network-induced delays, and accumulated data packed dropouts. Finally, a stirred-tank reactor system is given to show the effectiveness of the developed theoretical results.
2017-01-01
Singular Perturbations represent an advantageous theory to deal with systems characterized by a two-time scale separation, such as the longitudinal dynamics of aircraft which are called phugoid and short period. In this work, the combination of the NonLinear Geometric Approach and the Singular Perturbations leads to an innovative Fault Detection and Isolation system dedicated to the isolation of faults affecting the air data system of a general aviation aircraft. The isolation capabilities, obtained by means of the approach proposed in this work, allow for the solution of a fault isolation problem otherwise not solvable by means of standard geometric techniques. Extensive Monte-Carlo simulations, exploiting a high fidelity aircraft simulator, show the effectiveness of the proposed Fault Detection and Isolation system. PMID:28946673
Intermittent/transient fault phenomena in digital systems
NASA Technical Reports Server (NTRS)
Masson, G. M.
1977-01-01
An overview of the intermittent/transient (IT) fault study is presented. An interval survivability evaluation of digital systems for IT faults is discussed along with a method for detecting and diagnosing IT faults in digital systems.
The detection error of thermal test low-frequency cable based on M sequence correlation algorithm
NASA Astrophysics Data System (ADS)
Wu, Dongliang; Ge, Zheyang; Tong, Xin; Du, Chunlin
2018-04-01
The problem of low accuracy and low efficiency of off-line detecting on thermal test low-frequency cable faults could be solved by designing a cable fault detection system, based on FPGA export M sequence code(Linear feedback shift register sequence) as pulse signal source. The design principle of SSTDR (Spread spectrum time-domain reflectometry) reflection method and hardware on-line monitoring setup figure is discussed in this paper. Testing data show that, this detection error increases with fault location of thermal test low-frequency cable.
An intelligent control system for failure detection and controller reconfiguration
NASA Technical Reports Server (NTRS)
Biswas, Saroj K.
1994-01-01
We present an architecture of an intelligent restructurable control system to automatically detect failure of system components, assess its impact on system performance and safety, and reconfigure the controller for performance recovery. Fault detection is based on neural network associative memories and pattern classifiers, and is implemented using a multilayer feedforward network. Details of the fault detection network along with simulation results on health monitoring of a dc motor have been presented. Conceptual developments for fault assessment using an expert system and controller reconfiguration using a neural network are outlined.
Sensor fault detection and recovery in satellite attitude control
NASA Astrophysics Data System (ADS)
Nasrolahi, Seiied Saeed; Abdollahi, Farzaneh
2018-04-01
This paper proposes an integrated sensor fault detection and recovery for the satellite attitude control system. By introducing a nonlinear observer, the healthy sensor measurements are provided. Considering attitude dynamics and kinematic, a novel observer is developed to detect the fault in angular rate as well as attitude sensors individually or simultaneously. There is no limit on type and configuration of attitude sensors. By designing a state feedback based control signal and Lyapunov stability criterion, the uniformly ultimately boundedness of tracking errors in the presence of sensor faults is guaranteed. Finally, simulation results are presented to illustrate the performance of the integrated scheme.
Method and apparatus for in-situ detection and isolation of aircraft engine faults
NASA Technical Reports Server (NTRS)
Bonanni, Pierino Gianni (Inventor); Brunell, Brent Jerome (Inventor)
2007-01-01
A method for performing a fault estimation based on residuals of detected signals includes determining an operating regime based on a plurality of parameters, extracting predetermined noise standard deviations of the residuals corresponding to the operating regime and scaling the residuals, calculating a magnitude of a measurement vector of the scaled residuals and comparing the magnitude to a decision threshold value, extracting an average, or mean direction and a fault level mapping for each of a plurality of fault types, based on the operating regime, calculating a projection of the measurement vector onto the average direction of each of the plurality of fault types, determining a fault type based on which projection is maximum, and mapping the projection to a continuous-valued fault level using a lookup table.
In-flight Fault Detection and Isolation in Aircraft Flight Control Systems
NASA Technical Reports Server (NTRS)
Azam, Mohammad; Pattipati, Krishna; Allanach, Jeffrey; Poll, Scott; Patterson-Hine, Ann
2005-01-01
In this paper we consider the problem of test design for real-time fault detection and isolation (FDI) in the flight control system of fixed-wing aircraft. We focus on the faults that are manifested in the control surface elements (e.g., aileron, elevator, rudder and stabilizer) of an aircraft. For demonstration purposes, we restrict our focus on the faults belonging to nine basic fault classes. The diagnostic tests are performed on the features extracted from fifty monitored system parameters. The proposed tests are able to uniquely isolate each of the faults at almost all severity levels. A neural network-based flight control simulator, FLTZ(Registered TradeMark), is used for the simulation of various faults in fixed-wing aircraft flight control systems for the purpose of FDI.
Fluvial-Deltaic Strata as a High-Resolution Recorder of Fold Growth and Fault Slip
NASA Astrophysics Data System (ADS)
Anastasio, D. J.; Kodama, K. P.; Pazzaglia, F. P.
2008-12-01
Fluvial-deltaic systems characterize the depositional record of most wedge-top and foreland basins, where the synorogenic stratigraphy responds to interactions between sediment supply driven by tectonic uplift, climate modulated sea level change and erosion rate variability, and fold growth patterns driven by unsteady fault slip. We integrate kinematic models of fault-related folds with growth strata and fluvial terrace records to determine incremental rates of shortening, rock uplift, limb tilting, and fault slip with 104-105 year temporal resolution in the Pyrenees and Apennines. At Pico del Aguila anticline, a transverse dècollement fold along the south Pyrenean mountain front, formation-scale synorogenic deposition and clastic facies patterns in prodeltaic and slope facies reflect tectonic forcing of sediment supply, sea level variability controlling delta front position, and climate modulated changes in terrestrial runoff. Growth geometries record a pinned anticline and migrating syncline hinges during folding above the emerging Guarga thrust sheet. Lithologic and anhysteretic remanent magnetization (ARM) data series from the Eocene Arguis Fm. show cyclicity at Milankovitch frequencies allowing detailed reconstruction of unsteady fold growth. Multiple variations in limb tilting rates from <8° to 28°/my over 7my are attributed to unsteady fault slip along the roof ramp and basal dècollement. Along the northern Apennine mountain front, the age and geometry of strath terraces preserved across the Salsomaggiore anticline records the Pleistocene-Recent kinematics of the underlying fault-propagation fold as occurring with a fixed anticline hinge, a rolling syncline hinge, and along-strike variations in uplift and forelimb tilting. The uplifted intersection of terrace deposits documents syncline axial surface migration and underlying fault-tip propagation at a rate of ~1.4 cm/yr since the Middle Pleistocene. Because this record of fault slip coincides with the well-known large amplitude oscillations in global climate that contribute to the filling and deformation of the Po foreland, we hypothesize that climatically-modulated surface processes are reflected in the observed rates of fault slip and fold growth.
Evaluation of Anomaly Detection Capability for Ground-Based Pre-Launch Shuttle Operations. Chapter 8
NASA Technical Reports Server (NTRS)
Martin, Rodney Alexander
2010-01-01
This chapter will provide a thorough end-to-end description of the process for evaluation of three different data-driven algorithms for anomaly detection to select the best candidate for deployment as part of a suite of IVHM (Integrated Vehicle Health Management) technologies. These algorithms were deemed to be sufficiently mature enough to be considered viable candidates for deployment in support of the maiden launch of Ares I-X, the successor to the Space Shuttle for NASA's Constellation program. Data-driven algorithms are just one of three different types being deployed. The other two types of algorithms being deployed include a "nile-based" expert system, and a "model-based" system. Within these two categories, the deployable candidates have already been selected based upon qualitative factors such as flight heritage. For the rule-based system, SHINE (Spacecraft High-speed Inference Engine) has been selected for deployment, which is a component of BEAM (Beacon-based Exception Analysis for Multimissions), a patented technology developed at NASA's JPL (Jet Propulsion Laboratory) and serves to aid in the management and identification of operational modes. For the "model-based" system, a commercially available package developed by QSI (Qualtech Systems, Inc.), TEAMS (Testability Engineering and Maintenance System) has been selected for deployment to aid in diagnosis. In the context of this particular deployment, distinctions among the use of the terms "data-driven," "rule-based," and "model-based," can be found in. Although there are three different categories of algorithms that have been selected for deployment, our main focus in this chapter will be on the evaluation of three candidates for data-driven anomaly detection. These algorithms will be evaluated upon their capability for robustly detecting incipient faults or failures in the ground-based phase of pre-launch space shuttle operations, rather than based oil heritage as performed in previous studies. Robust detection will allow for the achievement of pre-specified minimum false alarm and/or missed detection rates in the selection of alert thresholds. All algorithms will also be optimized with respect to an aggregation of these same criteria. Our study relies upon the use of Shuttle data to act as was a proxy for and in preparation for application to Ares I-X data, which uses a very similar hardware platform for the subsystems that are being targeted (TVC - Thrust Vector Control subsystem for the SRB (Solid Rocket Booster)).
Simplified Interval Observer Scheme: A New Approach for Fault Diagnosis in Instruments
Martínez-Sibaja, Albino; Astorga-Zaragoza, Carlos M.; Alvarado-Lassman, Alejandro; Posada-Gómez, Rubén; Aguila-Rodríguez, Gerardo; Rodríguez-Jarquin, José P.; Adam-Medina, Manuel
2011-01-01
There are different schemes based on observers to detect and isolate faults in dynamic processes. In the case of fault diagnosis in instruments (FDI) there are different diagnosis schemes based on the number of observers: the Simplified Observer Scheme (SOS) only requires one observer, uses all the inputs and only one output, detecting faults in one detector; the Dedicated Observer Scheme (DOS), which again uses all the inputs and just one output, but this time there is a bank of observers capable of locating multiple faults in sensors, and the Generalized Observer Scheme (GOS) which involves a reduced bank of observers, where each observer uses all the inputs and m-1 outputs, and allows the localization of unique faults. This work proposes a new scheme named Simplified Interval Observer SIOS-FDI, which does not requires the measurement of any input and just with just one output allows the detection of unique faults in sensors and because it does not require any input, it simplifies in an important way the diagnosis of faults in processes in which it is difficult to measure all the inputs, as in the case of biologic reactors. PMID:22346593
Chen, Gang; Song, Yongduan; Lewis, Frank L
2016-05-03
This paper investigates the distributed fault-tolerant control problem of networked Euler-Lagrange systems with actuator and communication link faults. An adaptive fault-tolerant cooperative control scheme is proposed to achieve the coordinated tracking control of networked uncertain Lagrange systems on a general directed communication topology, which contains a spanning tree with the root node being the active target system. The proposed algorithm is capable of compensating for the actuator bias fault, the partial loss of effectiveness actuation fault, the communication link fault, the model uncertainty, and the external disturbance simultaneously. The control scheme does not use any fault detection and isolation mechanism to detect, separate, and identify the actuator faults online, which largely reduces the online computation and expedites the responsiveness of the controller. To validate the effectiveness of the proposed method, a test-bed of multiple robot-arm cooperative control system is developed for real-time verification. Experiments on the networked robot-arms are conduced and the results confirm the benefits and the effectiveness of the proposed distributed fault-tolerant control algorithms.
Wavelet Based Protection Scheme for Multi Terminal Transmission System with PV and Wind Generation
NASA Astrophysics Data System (ADS)
Manju Sree, Y.; Goli, Ravi kumar; Ramaiah, V.
2017-08-01
A hybrid generation is a part of large power system in which number of sources usually attached to a power electronic converter and loads are clustered can operate independent of the main power system. The protection scheme is crucial against faults based on traditional over current protection since there are adequate problems due to fault currents in the mode of operation. This paper adopts a new approach for detection, discrimination of the faults for multi terminal transmission line protection in presence of hybrid generation. Transient current based protection scheme is developed with discrete wavelet transform. Fault indices of all phase currents at all terminals are obtained by analyzing the detail coefficients of current signals using bior 1.5 mother wavelet. This scheme is tested for different types of faults and is found effective for detection and discrimination of fault with various fault inception angle and fault impedance.
A Design of Finite Memory Residual Generation Filter for Sensor Fault Detection
NASA Astrophysics Data System (ADS)
Kim, Pyung Soo
2017-04-01
In the current paper, a residual generation filter with finite memory structure is proposed for sensor fault detection. The proposed finite memory residual generation filter provides the residual by real-time filtering of fault vector using only the most recent finite measurements and inputs on the window. It is shown that the residual given by the proposed residual generation filter provides the exact fault for noisefree systems. The proposed residual generation filter is specified to the digital filter structure for the amenability to hardware implementation. Finally, to illustrate the capability of the proposed residual generation filter, extensive simulations are performed for the discretized DC motor system with two types of sensor faults, incipient soft bias-type fault and abrupt bias-type fault. In particular, according to diverse noise levels and windows lengths, meaningful simulation results are given for the abrupt bias-type fault.
Selection of test paths for solder joint intermittent connection faults under DC stimulus
NASA Astrophysics Data System (ADS)
Huakang, Li; Kehong, Lv; Jing, Qiu; Guanjun, Liu; Bailiang, Chen
2018-06-01
The test path of solder joint intermittent connection faults under direct-current stimulus is examined in this paper. According to the physical structure of the circuit, a network model is established first. A network node is utilised to represent the test node. The path edge refers to the number of intermittent connection faults in the path. Then, the selection criteria of the test path based on the node degree index are proposed and the solder joint intermittent connection faults are covered using fewer test paths. Finally, three circuits are selected to verify the method. To test if the intermittent fault is covered by the test paths, the intermittent fault is simulated by a switch. The results show that the proposed method can detect the solder joint intermittent connection fault using fewer test paths. Additionally, the number of detection steps is greatly reduced without compromising fault coverage.
Protection of Renewable-dominated Microgrids: Challenges and Potential Solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elkhatib, Mohamed; Ellis, Abraham; Milan Biswal
keywords : Microgrid Protection, Impedance Relay, Signal Processing-based Fault Detec- tion, Networked Microgrids, Communication-Assisted Protection In this report we address the challenge of designing efficient protection system for inverter- dominated microgrids. These microgrids are characterised with limited fault current capacity as a result of current-limiting protection functions of inverters. Typically, inverters limit their fault contribution in sub-cycle time frame to as low as 1.1 per unit. As a result, overcurrent protection could fail completely to detect faults in inverter-dominated microgrids. As part of this project a detailed literature survey of existing and proposed microgrid protection schemes were conducted. The surveymore » concluded that there is a gap in the available microgrid protection methods. The only credible protection solution available in literature for low- fault inverter-dominated microgrids is the differential protection scheme which represents a robust transmission-grade protection solution but at a very high cost. Two non-overcurrent protection schemes were investigated as part of this project; impedance-based protection and transient-based protection. Impedance-based protection depends on monitoring impedance trajectories at feeder relays to detect faults. Two communication-based impedance-based protection schemes were developed. the first scheme utilizes directional elements and pilot signals to locate the fault. The second scheme depends on a Central Protection Unit that communicates with all feeder relays to locate the fault based on directional flags received from feeder relays. The later approach could potentially be adapted to protect networked microgrids and dynamic topology microgrids. Transient-based protection relies on analyzing high frequency transients to detect and locate faults. This approach is very promising but its implementation in the filed faces several challenges. For example, high frequency transients due to faults can be confused with transients due to other events such as capacitor switching. Additionally, while detecting faults by analyzing transients could be doable, locating faults based on analyzing transients is still an open question.« less
Liu, Jinjun; Leng, Yonggang; Lai, Zhihui; Fan, Shengbo
2018-04-25
Mechanical fault diagnosis usually requires not only identification of the fault characteristic frequency, but also detection of its second and/or higher harmonics. However, it is difficult to detect a multi-frequency fault signal through the existing Stochastic Resonance (SR) methods, because the characteristic frequency of the fault signal as well as its second and higher harmonics frequencies tend to be large parameters. To solve the problem, this paper proposes a multi-frequency signal detection method based on Frequency Exchange and Re-scaling Stochastic Resonance (FERSR). In the method, frequency exchange is implemented using filtering technique and Single SideBand (SSB) modulation. This new method can overcome the limitation of "sampling ratio" which is the ratio of the sampling frequency to the frequency of target signal. It also ensures that the multi-frequency target signals can be processed to meet the small-parameter conditions. Simulation results demonstrate that the method shows good performance for detecting a multi-frequency signal with low sampling ratio. Two practical cases are employed to further validate the effectiveness and applicability of this method.
Simpson, R.W.; Lienkaemper, J.J.; Galehouse, J.S.
2001-01-01
Variations ill surface creep rate along the Hayward fault are modeled as changes in locking depth using 3D boundary elements. Model creep is driven by screw dislocations at 12 km depth under the Hayward and other regional faults. Inferred depth to locking varies along strike from 4-12 km. (12 km implies no locking.) Our models require locked patches under the central Hayward fault, consistent with a M6.8 earthquake in 1868, but the geometry and extent of locking under the north and south ends depend critically on assumptions regarding continuity and creep behavior of the fault at its ends. For the northern onshore part of the fault, our models contain 1.4-1.7 times more stored moment than the model of Bu??rgmann et al. [2000]; 45-57% of this stored moment resides in creeping areas. It is important for seismic hazard estimation to know how much of this moment is released coseismically or as aseismic afterslip.
Triggering of destructive earthquakes in El Salvador
NASA Astrophysics Data System (ADS)
Martínez-Díaz, José J.; Álvarez-Gómez, José A.; Benito, Belén; Hernández, Douglas
2004-01-01
We investigate the existence of a mechanism of static stress triggering driven by the interaction of normal faults in the Middle American subduction zone and strike-slip faults in the El Salvador volcanic arc. The local geology points to a large strike-slip fault zone, the El Salvador fault zone, as the source of several destructive earthquakes in El Salvador along the volcanic arc. We modeled the Coulomb failure stress (CFS) change produced by the June 1982 and January 2001 subduction events on planes parallel to the El Salvador fault zone. The results have broad implications for future risk management in the region, as they suggest a causative relationship between the position of the normal-slip events in the subduction zone and the strike-slip events in the volcanic arc. After the February 2001 event, an important area of the El Salvador fault zone was loaded with a positive change in Coulomb failure stress (>0.15 MPa). This scenario must be considered in the seismic hazard assessment studies that will be carried out in this area.
Deconvoluting complex structural histories archived in brittle fault zones
NASA Astrophysics Data System (ADS)
Viola, G.; Scheiber, T.; Fredin, O.; Zwingmann, H.; Margreth, A.; Knies, J.
2016-11-01
Brittle deformation can saturate the Earth's crust with faults and fractures in an apparently chaotic fashion. The details of brittle deformational histories and implications on, for example, seismotectonics and landscape, can thus be difficult to untangle. Fortunately, brittle faults archive subtle details of the stress and physical/chemical conditions at the time of initial strain localization and eventual subsequent slip(s). Hence, reading those archives offers the possibility to deconvolute protracted brittle deformation. Here we report K-Ar isotopic dating of synkinematic/authigenic illite coupled with structural analysis to illustrate an innovative approach to the high-resolution deconvolution of brittle faulting and fluid-driven alteration of a reactivated fault in western Norway. Permian extension preceded coaxial reactivation in the Jurassic and Early Cretaceous fluid-related alteration with pervasive clay authigenesis. This approach represents important progress towards time-constrained structural models, where illite characterization and K-Ar analysis are a fundamental tool to date faulting and alteration in crystalline rocks.
Mekki, Hemza; Benzineb, Omar; Boukhetala, Djamel; Tadjine, Mohamed; Benbouzid, Mohamed
2015-07-01
The fault-tolerant control problem belongs to the domain of complex control systems in which inter-control-disciplinary information and expertise are required. This paper proposes an improved faults detection, reconstruction and fault-tolerant control (FTC) scheme for motor systems (MS) with typical faults. For this purpose, a sliding mode controller (SMC) with an integral sliding surface is adopted. This controller can make the output of system to track the desired position reference signal in finite-time and obtain a better dynamic response and anti-disturbance performance. But this controller cannot deal directly with total system failures. However an appropriate combination of the adopted SMC and sliding mode observer (SMO), later it is designed to on-line detect and reconstruct the faults and also to give a sensorless control strategy which can achieve tolerance to a wide class of total additive failures. The closed-loop stability is proved, using the Lyapunov stability theory. Simulation results in healthy and faulty conditions confirm the reliability of the suggested framework. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Periodic Application of Concurrent Error Detection in Processor Array Architectures. PhD. Thesis -
NASA Technical Reports Server (NTRS)
Chen, Paul Peichuan
1993-01-01
Processor arrays can provide an attractive architecture for some applications. Featuring modularity, regular interconnection and high parallelism, such arrays are well-suited for VLSI/WSI implementations, and applications with high computational requirements, such as real-time signal processing. Preserving the integrity of results can be of paramount importance for certain applications. In these cases, fault tolerance should be used to ensure reliable delivery of a system's service. One aspect of fault tolerance is the detection of errors caused by faults. Concurrent error detection (CED) techniques offer the advantage that transient and intermittent faults may be detected with greater probability than with off-line diagnostic tests. Applying time-redundant CED techniques can reduce hardware redundancy costs. However, most time-redundant CED techniques degrade a system's performance.
Detection of Rooftop Cooling Unit Faults Based on Electrical Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armstrong, Peter R.; Laughman, C R.; Leeb, S B.
Non-intrusive load monitoring (NILM) is accomplished by sampling voltage and current at high rates and reducing the resulting start transients or harmonic contents to concise ''signatures''. Changes in these signatures can be used to detect, and in many cases directly diagnose, equipment and component faults associated with roof-top cooling units. Use of the NILM for fault detection and diagnosis (FDD) is important because (1) it complements other FDD schemes that are based on thermo-fluid sensors and analyses and (2) it is minimally intrusive (one measuring point in the relatively protected confines of the control panel) and therefore inherently reliable. Thismore » paper describes changes in the power signatures of fans and compressors that were found, experimentally and theoretically, to be useful for fault detection.« less
Won, Jongho; Ma, Chris Y. T.; Yau, David K. Y.; ...
2016-06-01
Smart meters are integral to demand response in emerging smart grids, by reporting the electricity consumption of users to serve application needs. But reporting real-time usage information for individual households raises privacy concerns. Existing techniques to guarantee differential privacy (DP) of smart meter users either are not fault tolerant or achieve (possibly partial) fault tolerance at high communication overheads. In this paper, we propose a fault-tolerant protocol for smart metering that can handle general communication failures while ensuring DP with significantly improved efficiency and lower errors compared with the state of the art. Our protocol handles fail-stop faults proactively bymore » using a novel design of future ciphertexts, and distributes trust among the smart meters by sharing secret keys among them. We prove the DP properties of our protocol and analyze its advantages in fault tolerance, accuracy, and communication efficiency relative to competing techniques. We illustrate our analysis by simulations driven by real-world traces of electricity consumption.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Won, Jongho; Ma, Chris Y. T.; Yau, David K. Y.
Smart meters are integral to demand response in emerging smart grids, by reporting the electricity consumption of users to serve application needs. But reporting real-time usage information for individual households raises privacy concerns. Existing techniques to guarantee differential privacy (DP) of smart meter users either are not fault tolerant or achieve (possibly partial) fault tolerance at high communication overheads. In this paper, we propose a fault-tolerant protocol for smart metering that can handle general communication failures while ensuring DP with significantly improved efficiency and lower errors compared with the state of the art. Our protocol handles fail-stop faults proactively bymore » using a novel design of future ciphertexts, and distributes trust among the smart meters by sharing secret keys among them. We prove the DP properties of our protocol and analyze its advantages in fault tolerance, accuracy, and communication efficiency relative to competing techniques. We illustrate our analysis by simulations driven by real-world traces of electricity consumption.« less
NASA Astrophysics Data System (ADS)
Wu, Jing; Yao, Dongdong; Meng, Xiaofeng; Peng, Zhigang; Su, Jinrong; Long, Feng
2017-04-01
We perform a comprehensive detection of early aftershocks following the 2013 Mw 6.6 Lushan earthquake, which occurred in the southern Longmenshan Fault Zone in Sichuan Province, China, about 5 years after the 2008 Mw 7.9 Wenchuan earthquake. We use events in both standard and relocated catalogs as templates to scan through continuous waveforms 2 days before and 3 days after the main shock. We successfully reduce the magnitude of completeness Mc by more than 1 order and obtain up to 6 times more events than listed in both catalogs. Aftershocks in the first hour mostly occur around the main shock slip region, and aftershocks at later times show systematic expansions in the along-strike, perpendicular-strike, and updip directions. Although postseismic deformation following the Lushan main shock has not been clearly identified, we suggest that early aftershock expansions are likely driven by afterslip of the Lushan main shock. This is consistent with the observations that most aftershocks were in the stress shadow of the Lushan main shock and that there was significant slip deficit in the top 10 km of the crust. We also find that seismicity on the back thrust fault was activated as soon as 20 min after the main shock, earlier than previously reported. We are unable to detect any clear foreshocks in the last 2 days before the Lushan main shock.
Jamil, Majid; Sharma, Sanjeev Kumar; Singh, Rajveer
2015-01-01
This paper focuses on the detection and classification of the faults on electrical power transmission line using artificial neural networks. The three phase currents and voltages of one end are taken as inputs in the proposed scheme. The feed forward neural network along with back propagation algorithm has been employed for detection and classification of the fault for analysis of each of the three phases involved in the process. A detailed analysis with varying number of hidden layers has been performed to validate the choice of the neural network. The simulation results concluded that the present method based on the neural network is efficient in detecting and classifying the faults on transmission lines with satisfactory performances. The different faults are simulated with different parameters to check the versatility of the method. The proposed method can be extended to the Distribution network of the Power System. The various simulations and analysis of signals is done in the MATLAB(®) environment.
Wind turbine fault detection and classification by means of image texture analysis
NASA Astrophysics Data System (ADS)
Ruiz, Magda; Mujica, Luis E.; Alférez, Santiago; Acho, Leonardo; Tutivén, Christian; Vidal, Yolanda; Rodellar, José; Pozo, Francesc
2018-07-01
The future of the wind energy industry passes through the use of larger and more flexible wind turbines in remote locations, which are increasingly offshore to benefit stronger and more uniform wind conditions. The cost of operation and maintenance of offshore wind turbines is approximately 15-35% of the total cost. Of this, 80% goes towards unplanned maintenance issues due to different faults in the wind turbine components. Thus, an auspicious way to contribute to the increasing demands and challenges is by applying low-cost advanced fault detection schemes. This work proposes a new method for detection and classification of wind turbine actuators and sensors faults in variable-speed wind turbines. For this purpose, time domain signals acquired from the operating wind turbine are represented as two-dimensional matrices to obtain grayscale digital images. Then, the image pattern recognition is processed getting texture features under a multichannel representation. In this work, four types of texture characteristics are used: statistical, wavelet, granulometric and Gabor features. Next, the most significant ones are selected using the conditional mutual criterion. Finally, the faults are detected and distinguished between them (classified) using an automatic classification tool. In particular, a 10-fold cross-validation is used to obtain a more generalized model and evaluates the classification performance. Coupled non-linear aero-hydro-servo-elastic simulations of a 5 MW offshore type wind turbine are carried out in several fault scenarios. The results show a promising methodology able to detect and classify the most common wind turbine faults.
Jeon, Namju; Lee, Hyeongcheol
2016-12-12
An integrated fault-diagnosis algorithm for a motor sensor of in-wheel independent drive electric vehicles is presented. This paper proposes a method that integrates the high- and low-level fault diagnoses to improve the robustness and performance of the system. For the high-level fault diagnosis of vehicle dynamics, a planar two-track non-linear model is first selected, and the longitudinal and lateral forces are calculated. To ensure redundancy of the system, correlation between the sensor and residual in the vehicle dynamics is analyzed to detect and separate the fault of the drive motor system of each wheel. To diagnose the motor system for low-level faults, the state equation of an interior permanent magnet synchronous motor is developed, and a parity equation is used to diagnose the fault of the electric current and position sensors. The validity of the high-level fault-diagnosis algorithm is verified using Carsim and Matlab/Simulink co-simulation. The low-level fault diagnosis is verified through Matlab/Simulink simulation and experiments. Finally, according to the residuals of the high- and low-level fault diagnoses, fault-detection flags are defined. On the basis of this information, an integrated fault-diagnosis strategy is proposed.
Series and parallel arc-fault circuit interrupter tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Jay Dean; Fresquez, Armando J.; Gudgel, Bob
2013-07-01
While the 2011 National Electrical Codeª (NEC) only requires series arc-fault protection, some arc-fault circuit interrupter (AFCI) manufacturers are designing products to detect and mitigate both series and parallel arc-faults. Sandia National Laboratories (SNL) has extensively investigated the electrical differences of series and parallel arc-faults and has offered possible classification and mitigation solutions. As part of this effort, Sandia National Laboratories has collaborated with MidNite Solar to create and test a 24-string combiner box with an AFCI which detects, differentiates, and de-energizes series and parallel arc-faults. In the case of the MidNite AFCI prototype, series arc-faults are mitigated by openingmore » the PV strings, whereas parallel arc-faults are mitigated by shorting the array. A range of different experimental series and parallel arc-fault tests with the MidNite combiner box were performed at the Distributed Energy Technologies Laboratory (DETL) at SNL in Albuquerque, NM. In all the tests, the prototype de-energized the arc-faults in the time period required by the arc-fault circuit interrupt testing standard, UL 1699B. The experimental tests confirm series and parallel arc-faults can be successfully mitigated with a combiner box-integrated solution.« less
Integrated analysis of error detection and recovery
NASA Technical Reports Server (NTRS)
Shin, K. G.; Lee, Y. H.
1985-01-01
An integrated modeling and analysis of error detection and recovery is presented. When fault latency and/or error latency exist, the system may suffer from multiple faults or error propagations which seriously deteriorate the fault-tolerant capability. Several detection models that enable analysis of the effect of detection mechanisms on the subsequent error handling operations and the overall system reliability were developed. Following detection of the faulty unit and reconfiguration of the system, the contaminated processes or tasks have to be recovered. The strategies of error recovery employed depend on the detection mechanisms and the available redundancy. Several recovery methods including the rollback recovery are considered. The recovery overhead is evaluated as an index of the capabilities of the detection and reconfiguration mechanisms.
NASA Technical Reports Server (NTRS)
Rinehart, Aidan W.; Simon, Donald L.
2015-01-01
This paper presents a model-based architecture for performance trend monitoring and gas path fault diagnostics designed for analyzing streaming transient aircraft engine measurement data. The technique analyzes residuals between sensed engine outputs and model predicted outputs for fault detection and isolation purposes. Diagnostic results from the application of the approach to test data acquired from an aircraft turbofan engine are presented. The approach is found to avoid false alarms when presented nominal fault-free data. Additionally, the approach is found to successfully detect and isolate gas path seeded-faults under steady-state operating scenarios although some fault misclassifications are noted during engine transients. Recommendations for follow-on maturation and evaluation of the technique are also presented.
NASA Technical Reports Server (NTRS)
Rinehart, Aidan W.; Simon, Donald L.
2014-01-01
This paper presents a model-based architecture for performance trend monitoring and gas path fault diagnostics designed for analyzing streaming transient aircraft engine measurement data. The technique analyzes residuals between sensed engine outputs and model predicted outputs for fault detection and isolation purposes. Diagnostic results from the application of the approach to test data acquired from an aircraft turbofan engine are presented. The approach is found to avoid false alarms when presented nominal fault-free data. Additionally, the approach is found to successfully detect and isolate gas path seeded-faults under steady-state operating scenarios although some fault misclassifications are noted during engine transients. Recommendations for follow-on maturation and evaluation of the technique are also presented.
NASA Astrophysics Data System (ADS)
Oldenburg, C. M.; Daley, T. M.; Borgia, A.; Zhang, R.; Doughty, C.; Jung, Y.; Altundas, B.; Chugunov, N.; Ramakrishnan, T. S.
2016-12-01
Faults and fractures in geothermal systems are difficult to image and characterize because they are nearly indistinguishable from host rock using traditional seismic and well-logging tools. We are investigating the use of CO2 injection and production (push-pull) in faults and fractures for contrast enhancement for better characterization by active seismic, well logging, and push-pull pressure transient analysis. Our approach consists of numerical simulation and feasibility assessment using conceptual models of potential enhanced geothermal system (EGS) sites such as Brady's Hot Spring and others. Faults in the deep subsurface typically have associated damage and gouge zones that provide a larger volume for uptake of CO2 than the slip plane alone. CO2 injected for push-pull well testing has a preference for flowing in the fault and fractures because CO2 is non-wetting relative to water and the permeability of open fractures and fault gouge is much higher than matrix. We are carrying out numerical simulations of injection and withdrawal of CO2 using TOUGH2/ECO2N. Simulations show that CO2 flows into the slip plane and gouge and damage zones and is driven upward by buoyancy during the push cycle over day-long time scales. Recovery of CO2 during the pull cycle is limited because of buoyancy effects. We then use the CO2 saturation field simulated by TOUGH2 in our anisotropic finite difference code from SPICE-with modifications for fracture compliance-that we use to model elastic wave propagation. Results show time-lapse differences in seismic response using a surface source. Results suggest that CO2 can be best imaged using time-lapse differencing of the P-wave and P-to-S-wave scattering in a vertical seismic profile (VSP) configuration. Wireline well-logging tools that measure electrical conductivity show promise as another means to detect and image the CO2-filled fracture near the injection well and potential monitoring well(s), especially if a saline-water pre-flush is carried out to enhance conductivity contrast. Pressure-transient analysis is also carried out to further constrain fault zone characteristics. These multiple complementary characterization approaches are being used to develop working models of fault and fracture zone characteristics relevant to EGS energy recovery.
Mansouri, Majdi; Nounou, Mohamed N; Nounou, Hazem N
2017-09-01
In our previous work, we have demonstrated the effectiveness of the linear multiscale principal component analysis (PCA)-based moving window (MW)-generalized likelihood ratio test (GLRT) technique over the classical PCA and multiscale principal component analysis (MSPCA)-based GLRT methods. The developed fault detection algorithm provided optimal properties by maximizing the detection probability for a particular false alarm rate (FAR) with different values of windows, and however, most real systems are nonlinear, which make the linear PCA method not able to tackle the issue of non-linearity to a great extent. Thus, in this paper, first, we apply a nonlinear PCA to obtain an accurate principal component of a set of data and handle a wide range of nonlinearities using the kernel principal component analysis (KPCA) model. The KPCA is among the most popular nonlinear statistical methods. Second, we extend the MW-GLRT technique to one that utilizes exponential weights to residuals in the moving window (instead of equal weightage) as it might be able to further improve fault detection performance by reducing the FAR using exponentially weighed moving average (EWMA). The developed detection method, which is called EWMA-GLRT, provides improved properties, such as smaller missed detection and FARs and smaller average run length. The idea behind the developed EWMA-GLRT is to compute a new GLRT statistic that integrates current and previous data information in a decreasing exponential fashion giving more weight to the more recent data. This provides a more accurate estimation of the GLRT statistic and provides a stronger memory that will enable better decision making with respect to fault detection. Therefore, in this paper, a KPCA-based EWMA-GLRT method is developed and utilized in practice to improve fault detection in biological phenomena modeled by S-systems and to enhance monitoring process mean. The idea behind a KPCA-based EWMA-GLRT fault detection algorithm is to combine the advantages brought forward by the proposed EWMA-GLRT fault detection chart with the KPCA model. Thus, it is used to enhance fault detection of the Cad System in E. coli model through monitoring some of the key variables involved in this model such as enzymes, transport proteins, regulatory proteins, lysine, and cadaverine. The results demonstrate the effectiveness of the proposed KPCA-based EWMA-GLRT method over Q , GLRT, EWMA, Shewhart, and moving window-GLRT methods. The detection performance is assessed and evaluated in terms of FAR, missed detection rates, and average run length (ARL 1 ) values.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, Howard; Braun, James E.
This report describes models of building faults created for OpenStudio to support the ongoing development of fault detection and diagnostic (FDD) algorithms at the National Renewable Energy Laboratory. Building faults are operating abnormalities that degrade building performance, such as using more energy than normal operation, failing to maintain building temperatures according to the thermostat set points, etc. Models of building faults in OpenStudio can be used to estimate fault impacts on building performance and to develop and evaluate FDD algorithms. The aim of the project is to develop fault models of typical heating, ventilating and air conditioning (HVAC) equipment inmore » the United States, and the fault models in this report are grouped as control faults, sensor faults, packaged and split air conditioner faults, water-cooled chiller faults, and other uncategorized faults. The control fault models simulate impacts of inappropriate thermostat control schemes such as an incorrect thermostat set point in unoccupied hours and manual changes of thermostat set point due to extreme outside temperature. Sensor fault models focus on the modeling of sensor biases including economizer relative humidity sensor bias, supply air temperature sensor bias, and water circuit temperature sensor bias. Packaged and split air conditioner fault models simulate refrigerant undercharging, condenser fouling, condenser fan motor efficiency degradation, non-condensable entrainment in refrigerant, and liquid line restriction. Other fault models that are uncategorized include duct fouling, excessive infiltration into the building, and blower and pump motor degradation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, Howard; Braun, James E.
2015-12-31
This report describes models of building faults created for OpenStudio to support the ongoing development of fault detection and diagnostic (FDD) algorithms at the National Renewable Energy Laboratory. Building faults are operating abnormalities that degrade building performance, such as using more energy than normal operation, failing to maintain building temperatures according to the thermostat set points, etc. Models of building faults in OpenStudio can be used to estimate fault impacts on building performance and to develop and evaluate FDD algorithms. The aim of the project is to develop fault models of typical heating, ventilating and air conditioning (HVAC) equipment inmore » the United States, and the fault models in this report are grouped as control faults, sensor faults, packaged and split air conditioner faults, water-cooled chiller faults, and other uncategorized faults. The control fault models simulate impacts of inappropriate thermostat control schemes such as an incorrect thermostat set point in unoccupied hours and manual changes of thermostat set point due to extreme outside temperature. Sensor fault models focus on the modeling of sensor biases including economizer relative humidity sensor bias, supply air temperature sensor bias, and water circuit temperature sensor bias. Packaged and split air conditioner fault models simulate refrigerant undercharging, condenser fouling, condenser fan motor efficiency degradation, non-condensable entrainment in refrigerant, and liquid line restriction. Other fault models that are uncategorized include duct fouling, excessive infiltration into the building, and blower and pump motor degradation.« less
Shell Tectonics: A Mechanical Model for Strike-slip Displacement on Europa
NASA Technical Reports Server (NTRS)
Rhoden, Alyssa Rose; Wurman, Gilead; Huff, Eric M.; Manga, Michael; Hurford, Terry A.
2012-01-01
We introduce a new mechanical model for producing tidally-driven strike-slip displacement along preexisting faults on Europa, which we call shell tectonics. This model differs from previous models of strike-slip on icy satellites by incorporating a Coulomb failure criterion, approximating a viscoelastic rheology, determining the slip direction based on the gradient of the tidal shear stress rather than its sign, and quantitatively determining the net offset over many orbits. This model allows us to predict the direction of net displacement along faults and determine relative accumulation rate of displacement. To test the shell tectonics model, we generate global predictions of slip direction and compare them with the observed global pattern of strike-slip displacement on Europa in which left-lateral faults dominate far north of the equator, right-lateral faults dominate in the far south, and near-equatorial regions display a mixture of both types of faults. The shell tectonics model reproduces this global pattern. Incorporating a small obliquity into calculations of tidal stresses, which are used as inputs to the shell tectonics model, can also explain regional differences in strike-slip fault populations. We also discuss implications for fault azimuths, fault depth, and Europa's tectonic history.
Implications of the earthquake cycle for inferring fault locking on the Cascadia megathrust
Pollitz, Fred; Evans, Eileen
2017-01-01
GPS velocity fields in the Western US have been interpreted with various physical models of the lithosphere-asthenosphere system: (1) time-independent block models; (2) time-dependent viscoelastic-cycle models, where deformation is driven by viscoelastic relaxation of the lower crust and upper mantle from past faulting events; (3) viscoelastic block models, a time-dependent variation of the block model. All three models are generally driven by a combination of loading on locked faults and (aseismic) fault creep. Here we construct viscoelastic block models and viscoelastic-cycle models for the Western US, focusing on the Pacific Northwest and the earthquake cycle on the Cascadia megathrust. In the viscoelastic block model, the western US is divided into blocks selected from an initial set of 137 microplates using the method of Total Variation Regularization, allowing potential trade-offs between faulting and megathrust coupling to be determined algorithmically from GPS observations. Fault geometry, slip rate, and locking rates (i.e. the locking fraction times the long term slip rate) are estimated simultaneously within the TVR block model. For a range of mantle asthenosphere viscosity (4.4 × 1018 to 3.6 × 1020 Pa s) we find that fault locking on the megathrust is concentrated in the uppermost 20 km in depth, and a locking rate contour line of 30 mm yr−1 extends deepest beneath the Olympic Peninsula, characteristics similar to previous time-independent block model results. These results are corroborated by viscoelastic-cycle modelling. The average locking rate required to fit the GPS velocity field depends on mantle viscosity, being higher the lower the viscosity. Moreover, for viscosity ≲ 1020 Pa s, the amount of inferred locking is higher than that obtained using a time-independent block model. This suggests that time-dependent models for a range of admissible viscosity structures could refine our knowledge of the locking distribution and its epistemic uncertainty.
Deformation driven by subduction and microplate collision: Geodynamics of Cook Inlet basin, Alaska
Bruhn, R.L.; Haeussler, Peter J.
2006-01-01
Late Neogene and younger deformation in Cook Inlet basin is caused by dextral transpression in the plate margin of south-central Alaska. Collision and subduction of the Yakutat microplate at the northeastern end of the Aleutian subduction zone is driving the accretionary complex of the Chugach and Kenai Mountains toward the Alaska Range on the opposite side of the basin. This deformation creates belts of fault-cored anticlines that are prolific traps of hydrocarbons and are also potential sources for damaging earthquakes. The faults dip steeply, extend into the Mesozoic basement beneath the Tertiary basin fill, and form conjugate flower structures at some localities. Comparing the geometry of the natural faults and folds with analog models created in a sandbox deformation apparatus suggests that some of the faults accommodate significant dextral as well as reverse-slip motion. We develop a tectonic model in which dextral shearing and horizontal shortening of the basin is driven by microplate collision with an additional component of thrust-type strain caused by plate subduction. This model predicts temporally fluctuating stress fields that are coupled to the recurrence intervals of large-magnitude subduction zone earthquakes. The maximum principal compressive stress is oriented east-southeast to east-northeast with nearly vertical least compressive stress when the basin's lithosphere is mostly decoupled from the underlying subduction megathrust. This stress tensor is compatible with principal stresses inferred from focal mechanisms of earthquakes that occur within the crust beneath Cook Inlet basin. Locking of the megathrust between great magnitude earthquakes may cause the maximum principal compressive stress to rotate toward the northwest. Moderate dipping faults that strike north to northeast may be optimally oriented for rupture in the ambient stress field, but steeply dipping faults within the cores of some anticlines are unfavorably oriented with respect to both modeled and observed stress fields, suggesting that elevated fluid pressure may be required to trigger fault rupture. ?? 2006 Geological Society of America.
Evidence of displacement-driven maturation along the San Cristobal Trough transform plate boundary
NASA Astrophysics Data System (ADS)
Neely, James S.; Furlong, Kevin P.
2018-03-01
The San Cristobal Trough (SCT), formed by the tearing of the Australia plate as it subducts under the Pacific plate near the Solomon Islands, provides an opportunity to study the transform boundary development process. Recent seismicity (2013-2016) along the 280 km long SCT, known as a Subduction-Transform Edge Propagator (STEP) fault, highlights the tearing process and ongoing development of the plate boundary. The region's earthquakes reveal two key characteristics. First, earthquakes at the western terminus of the SCT, which we interpret to indicate the Australia plate tearing, display disparate fault geometries. These events demonstrate that plate tearing is accommodated via multiple intersecting planes rather than a single through-going fault. Second, the SCT hosts sequences of Mw ∼7 strike-slip earthquakes that migrate westward through a rapid succession of events. Sequences in 1993 and 2015 both began along the eastern SCT and propagated west, but neither progression ruptured into or nucleated a large earthquake within the region near the tear. Utilizing b-value and Coulomb Failure Stress analyses, we examine these along-strike variations in the SCT's seismicity. b-Values are highest along the youngest, western end of the SCT and decrease with increasing distance from the tear. This trend may reflect increasing strain localization with increasing displacement. Coulomb Failure Stress analyses indicate that the stress conditions were conducive to continued western propagation of the 1993 and 2015 sequences suggesting that the unruptured western SCT may have fault geometries or properties that inhibit continued rupture. Our results indicate a displacement-driven fault maturation process. The multi-plane Australia plate tearing likely creates a western SCT with diffuse strain accommodated along a network of disorganized faults. After ∼90 km of cumulative displacement (∼900,000 yr of plate motion), strain localizes and faults align, allowing the SCT to host large earthquakes.
Zhang, Hanyuan; Tian, Xuemin; Deng, Xiaogang; Cao, Yuping
2018-05-16
As an attractive nonlinear dynamic data analysis tool, global preserving kernel slow feature analysis (GKSFA) has achieved great success in extracting the high nonlinearity and inherently time-varying dynamics of batch process. However, GKSFA is an unsupervised feature extraction method and lacks the ability to utilize batch process class label information, which may not offer the most effective means for dealing with batch process monitoring. To overcome this problem, we propose a novel batch process monitoring method based on the modified GKSFA, referred to as discriminant global preserving kernel slow feature analysis (DGKSFA), by closely integrating discriminant analysis and GKSFA. The proposed DGKSFA method can extract discriminant feature of batch process as well as preserve global and local geometrical structure information of observed data. For the purpose of fault detection, a monitoring statistic is constructed based on the distance between the optimal kernel feature vectors of test data and normal data. To tackle the challenging issue of nonlinear fault variable identification, a new nonlinear contribution plot method is also developed to help identifying the fault variable after a fault is detected, which is derived from the idea of variable pseudo-sample trajectory projection in DGKSFA nonlinear biplot. Simulation results conducted on a numerical nonlinear dynamic system and the benchmark fed-batch penicillin fermentation process demonstrate that the proposed process monitoring and fault diagnosis approach can effectively detect fault and distinguish fault variables from normal variables. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Health Monitoring of a Satellite System
NASA Technical Reports Server (NTRS)
Chen, Robert H.; Ng, Hok K.; Speyer, Jason L.; Guntur, Lokeshkumar S.; Carpenter, Russell
2004-01-01
A health monitoring system based on analytical redundancy is developed for satellites on elliptical orbits. First, the dynamics of the satellite including orbital mechanics and attitude dynamics is modelled as a periodic system. Then, periodic fault detection filters are designed to detect and identify the satellite's actuator and sensor faults. In addition, parity equations are constructed using the algebraic redundant relationship among the actuators and sensors. Furthermore, a residual processor is designed to generate the probability of each of the actuator and sensor faults by using a sequential probability test. Finally, the health monitoring system, consisting of periodic fault detection lters, parity equations and residual processor, is evaluated in the simulation in the presence of disturbances and uncertainty.
Sauer, Juergen; Chavaillaz, Alain; Wastell, David
2016-06-01
This work examined the effects of operators' exposure to various types of automation failures in training. Forty-five participants were trained for 3.5 h on a simulated process control environment. During training, participants either experienced a fully reliable, automatic fault repair facility (i.e. faults detected and correctly diagnosed), a misdiagnosis-prone one (i.e. faults detected but not correctly diagnosed) or a miss-prone one (i.e. faults not detected). One week after training, participants were tested for 3 h, experiencing two types of automation failures (misdiagnosis, miss). The results showed that automation bias was very high when operators trained on miss-prone automation encountered a failure of the diagnostic system. Operator errors resulting from automation bias were much higher when automation misdiagnosed a fault than when it missed one. Differences in trust levels that were instilled by the different training experiences disappeared during the testing session. Practitioner Summary: The experience of automation failures during training has some consequences. A greater potential for operator errors may be expected when an automatic system failed to diagnose a fault than when it failed to detect one.
NASA Astrophysics Data System (ADS)
Jeppesen, Christian; Araya, Samuel Simon; Sahlin, Simon Lennart; Thomas, Sobi; Andreasen, Søren Juhl; Kær, Søren Knudsen
2017-08-01
This study proposes a data-drive impedance-based methodology for fault detection and isolation of low and high cathode stoichiometry, high CO concentration in the anode gas, high methanol vapour concentrations in the anode gas and low anode stoichiometry, for high temperature PEM fuel cells. The fault detection and isolation algorithm is based on an artificial neural network classifier, which uses three extracted features as input. Two of the proposed features are based on angles in the impedance spectrum, and are therefore relative to specific points, and shown to be independent of degradation, contrary to other available feature extraction methods in the literature. The experimental data is based on a 35 day experiment, where 2010 unique electrochemical impedance spectroscopy measurements were recorded. The test of the algorithm resulted in a good detectability of the faults, except for high methanol vapour concentration in the anode gas fault, which was found to be difficult to distinguish from a normal operational data. The achieved accuracy for faults related to CO pollution, anode- and cathode stoichiometry is 100% success rate. Overall global accuracy on the test data is 94.6%.
An Extension to the Kalman Filter for an Improved Detection of Unknown Behavior
NASA Technical Reports Server (NTRS)
Benazera, Emmanuel; Narasimhan, Sriram
2005-01-01
The use of Kalman filter (KF) interferes with fault detection algorithms based on the residual between estimated and measured variables, since the measured values are used to update the estimates. This feedback results in the estimates being pulled closer to the measured values, influencing the residuals in the process. Here we present a fault detection scheme for systems that are being tracked by a KF. Our approach combines an open-loop prediction over an adaptive window and an information-based measure of the deviation of the Kalman estimate from the prediction to improve fault detection.
Sliding Mode Fault Tolerant Control with Adaptive Diagnosis for Aircraft Engines
NASA Astrophysics Data System (ADS)
Xiao, Lingfei; Du, Yanbin; Hu, Jixiang; Jiang, Bin
2018-03-01
In this paper, a novel sliding mode fault tolerant control method is presented for aircraft engine systems with uncertainties and disturbances on the basis of adaptive diagnostic observer. By taking both sensors faults and actuators faults into account, the general model of aircraft engine control systems which is subjected to uncertainties and disturbances, is considered. Then, the corresponding augmented dynamic model is established in order to facilitate the fault diagnosis and fault tolerant controller design. Next, a suitable detection observer is designed to detect the faults effectively. Through creating an adaptive diagnostic observer and based on sliding mode strategy, the sliding mode fault tolerant controller is constructed. Robust stabilization is discussed and the closed-loop system can be stabilized robustly. It is also proven that the adaptive diagnostic observer output errors and the estimations of faults converge to a set exponentially, and the converge rate greater than some value which can be adjusted by choosing designable parameters properly. The simulation on a twin-shaft aircraft engine verifies the applicability of the proposed fault tolerant control method.
Benchmarking Defmod, an open source FEM code for modeling episodic fault rupture
NASA Astrophysics Data System (ADS)
Meng, Chunfang
2017-03-01
We present Defmod, an open source (linear) finite element code that enables us to efficiently model the crustal deformation due to (quasi-)static and dynamic loadings, poroelastic flow, viscoelastic flow and frictional fault slip. Ali (2015) provides the original code introducing an implicit solver for (quasi-)static problem, and an explicit solver for dynamic problem. The fault constraint is implemented via Lagrange Multiplier. Meng (2015) combines these two solvers into a hybrid solver that uses failure criteria and friction laws to adaptively switch between the (quasi-)static state and dynamic state. The code is capable of modeling episodic fault rupture driven by quasi-static loadings, e.g. due to reservoir fluid withdraw or injection. Here, we focus on benchmarking the Defmod results against some establish results.
Protection of Renewable-dominated Microgrids: Challenges and Potential Solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elkhatib, Mohamed; Ellis, Abraham; Biswal, Milan
In this report we address the challenge of designing efficient protection system for inverter- dominated microgrids. These microgrids are characterised with limited fault current capacity as a result of current-limiting protection functions of inverters. Typically, inverters limit their fault contribution in sub-cycle time frame to as low as 1.1 per unit. As a result, overcurrent protection could fail completely to detect faults in inverter-dominated microgrids. As part of this project a detailed literature survey of existing and proposed microgrid protection schemes were conducted. The survey concluded that there is a gap in the available microgrid protection methods. The only crediblemore » protection solution available in literature for low- fault inverter-dominated microgrids is the differential protection scheme which represents a robust transmission-grade protection solution but at a very high cost. Two non-overcurrent protection schemes were investigated as part of this project; impedance-based protection and transient-based protection. Impedance-based protection depends on monitoring impedance trajectories at feeder relays to detect faults. Two communication-based impedance-based protection schemes were developed. the first scheme utilizes directional elements and pilot signals to locate the fault. The second scheme depends on a Central Protection Unit that communicates with all feeder relays to locate the fault based on directional flags received from feeder relays. The later approach could potentially be adapted to protect networked microgrids and dynamic topology microgrids. Transient-based protection relies on analyzing high frequency transients to detect and locate faults. This approach is very promising but its implementation in the filed faces several challenges. For example, high frequency transients due to faults can be confused with transients due to other events such as capacitor switching. Additionally, while detecting faults by analyzing transients could be doable, locating faults based on analyzing transients is still an open question.« less
A probabilistic method to diagnose faults of air handling units
NASA Astrophysics Data System (ADS)
Dey, Debashis
Air handling unit (AHU) is one of the most extensively used equipment in large commercial buildings. This device is typically customized and lacks quality system integration which can result in hardwire failures and controller errors. Air handling unit Performance Assessment Rules (APAR) is a fault detection tool that uses a set of expert rules derived from mass and energy balances to detect faults in air handling units. APAR is computationally simple enough that it can be embedded in commercial building automation and control systems and relies only upon sensor data and control signals that are commonly available in these systems. Although APAR has many advantages over other methods, for example no training data required and easy to implement commercially, most of the time it is unable to provide the diagnosis of the faults. For instance, a fault on temperature sensor could be fixed bias, drifting bias, inappropriate location, complete failure. Also a fault in mixing box can be return and outdoor damper leak or stuck. In addition, when multiple rules are satisfied the list of faults increases. There is no proper way to have the correct diagnosis for rule based fault detection system. To overcome this limitation we proposed Bayesian Belief Network (BBN) as a diagnostic tool. BBN can be used to simulate diagnostic thinking of FDD experts through a probabilistic way. In this study we developed a new way to detect and diagnose faults in AHU through combining APAR rules and Bayesian Belief network. Bayesian Belief Network is used as a decision support tool for rule based expert system. BBN is highly capable to prioritize faults when multiple rules are satisfied simultaneously. Also it can get information from previous AHU operating conditions and maintenance records to provide proper diagnosis. The proposed model is validated with real time measured data of a campus building at University of Texas at San Antonio (UTSA).The results show that BBN is correctly able to prioritize faults which can be verified by manual investigation.
Automatic Detection of Electric Power Troubles (ADEPT)
NASA Technical Reports Server (NTRS)
Wang, Caroline; Zeanah, Hugh; Anderson, Audie; Patrick, Clint; Brady, Mike; Ford, Donnie
1988-01-01
ADEPT is an expert system that integrates knowledge from three different suppliers to offer an advanced fault-detection system, and is designed for two modes of operation: real-time fault isolation and simulated modeling. Real time fault isolation of components is accomplished on a power system breadboard through the Fault Isolation Expert System (FIES II) interface with a rule system developed in-house. Faults are quickly detected and displayed and the rules and chain of reasoning optionally provided on a Laser printer. This system consists of a simulated Space Station power module using direct-current power supplies for Solar arrays on three power busses. For tests of the system's ability to locate faults inserted via switches, loads are configured by an INTEL microcomputer and the Symbolics artificial intelligence development system. As these loads are resistive in nature, Ohm's Law is used as the basis for rules by which faults are located. The three-bus system can correct faults automatically where there is a surplus of power available on any of the three busses. Techniques developed and used can be applied readily to other control systems requiring rapid intelligent decisions. Simulated modelling, used for theoretical studies, is implemented using a modified version of Kennedy Space Center's KATE (Knowledge-Based Automatic Test Equipment), FIES II windowing, and an ADEPT knowledge base. A load scheduler and a fault recovery system are currently under development to support both modes of operation.
Modeling and Fault Simulation of Propellant Filling System
NASA Astrophysics Data System (ADS)
Jiang, Yunchun; Liu, Weidong; Hou, Xiaobo
2012-05-01
Propellant filling system is one of the key ground plants in launching site of rocket that use liquid propellant. There is an urgent demand for ensuring and improving its reliability and safety, and there is no doubt that Failure Mode Effect Analysis (FMEA) is a good approach to meet it. Driven by the request to get more fault information for FMEA, and because of the high expense of propellant filling, in this paper, the working process of the propellant filling system in fault condition was studied by simulating based on AMESim. Firstly, based on analyzing its structure and function, the filling system was modular decomposed, and the mathematic models of every module were given, based on which the whole filling system was modeled in AMESim. Secondly, a general method of fault injecting into dynamic system was proposed, and as an example, two typical faults - leakage and blockage - were injected into the model of filling system, based on which one can get two fault models in AMESim. After that, fault simulation was processed and the dynamic characteristics of several key parameters were analyzed under fault conditions. The results show that the model can simulate effectively the two faults, and can be used to provide guidance for the filling system maintain and amelioration.
RCS propulsion functional path analysis for performance monitoring fault detection and annunciation
NASA Technical Reports Server (NTRS)
Keesler, E. L.
1974-01-01
The operational flight instrumentation required for performance monitoring and fault detection are presented. Measurements by the burn through monitors are presented along with manifold and helium source pressures.
Hajihosseini, Payman; Anzehaee, Mohammad Mousavi; Behnam, Behzad
2018-05-22
The early fault detection and isolation in industrial systems is a critical factor in preventing equipment damage. In the proposed method, instead of using the time signals of sensors, the 2D image obtained by placing these signals next to each other in a matrix has been used; and then a novel fault detection and isolation procedure has been carried out based on image processing techniques. Different features including texture, wavelet transform, mean and standard deviation of the image accompanied with MLP and RBF neural networks based classifiers have been used for this purpose. Obtained results indicate the notable efficacy and success of the proposed method in detecting and isolating faults of the Tennessee Eastman benchmark process and its superiority over previous techniques. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
On damage detection in wind turbine gearboxes using outlier analysis
NASA Astrophysics Data System (ADS)
Antoniadou, Ifigeneia; Manson, Graeme; Dervilis, Nikolaos; Staszewski, Wieslaw J.; Worden, Keith
2012-04-01
The proportion of worldwide installed wind power in power systems increases over the years as a result of the steadily growing interest in renewable energy sources. Still, the advantages offered by the use of wind power are overshadowed by the high operational and maintenance costs, resulting in the low competitiveness of wind power in the energy market. In order to reduce the costs of corrective maintenance, the application of condition monitoring to gearboxes becomes highly important, since gearboxes are among the wind turbine components with the most frequent failure observations. While condition monitoring of gearboxes in general is common practice, with various methods having been developed over the last few decades, wind turbine gearbox condition monitoring faces a major challenge: the detection of faults under the time-varying load conditions prevailing in wind turbine systems. Classical time and frequency domain methods fail to detect faults under variable load conditions, due to the temporary effect that these faults have on vibration signals. This paper uses the statistical discipline of outlier analysis for the damage detection of gearbox tooth faults. A simplified two-degree-of-freedom gearbox model considering nonlinear backlash, time-periodic mesh stiffness and static transmission error, simulates the vibration signals to be analysed. Local stiffness reduction is used for the simulation of tooth faults and statistical processes determine the existence of intermittencies. The lowest level of fault detection, the threshold value, is considered and the Mahalanobis squared-distance is calculated for the novelty detection problem.
Common faults and their impacts for rooftop air conditioners
DOE Office of Scientific and Technical Information (OSTI.GOV)
Breuker, M.S.; Braun, J.E.
This paper identifies important faults and their performance impacts for rooftop air conditioners. The frequencies of occurrence and the relative costs of service for different faults were estimated through analysis of service records. Several of the important and difficult to diagnose refrigeration cycle faults were simulated in the laboratory. Also, the impacts on several performance indices were quantified through transient testing for a range of conditions and fault levels. The transient test results indicated that fault detection and diagnostics could be performed using methods that incorporate steady-state assumptions and models. Furthermore, the fault testing led to a set of genericmore » rules for the impacts of faults on measurements that could be used for fault diagnoses. The average impacts of the faults on cooling capacity and coefficient of performance (COP) were also evaluated. Based upon the results, all of the faults are significant at the levels introduced, and should be detected and diagnosed by an FDD system. The data set obtained during this work was very comprehensive, and was used to design and evaluate the performance of an FDD method that will be reported in a future paper.« less
Learning and diagnosing faults using neural networks
NASA Technical Reports Server (NTRS)
Whitehead, Bruce A.; Kiech, Earl L.; Ali, Moonis
1990-01-01
Neural networks have been employed for learning fault behavior from rocket engine simulator parameters and for diagnosing faults on the basis of the learned behavior. Two problems in applying neural networks to learning and diagnosing faults are (1) the complexity of the sensor data to fault mapping to be modeled by the neural network, which implies difficult and lengthy training procedures; and (2) the lack of sufficient training data to adequately represent the very large number of different types of faults which might occur. Methods are derived and tested in an architecture which addresses these two problems. First, the sensor data to fault mapping is decomposed into three simpler mappings which perform sensor data compression, hypothesis generation, and sensor fusion. Efficient training is performed for each mapping separately. Secondly, the neural network which performs sensor fusion is structured to detect new unknown faults for which training examples were not presented during training. These methods were tested on a task of fault diagnosis by employing rocket engine simulator data. Results indicate that the decomposed neural network architecture can be trained efficiently, can identify faults for which it has been trained, and can detect the occurrence of faults for which it has not been trained.
Methodology for fault detection in induction motors via sound and vibration signals
NASA Astrophysics Data System (ADS)
Delgado-Arredondo, Paulo Antonio; Morinigo-Sotelo, Daniel; Osornio-Rios, Roque Alfredo; Avina-Cervantes, Juan Gabriel; Rostro-Gonzalez, Horacio; Romero-Troncoso, Rene de Jesus
2017-01-01
Nowadays, timely maintenance of electric motors is vital to keep up the complex processes of industrial production. There are currently a variety of methodologies for fault diagnosis. Usually, the diagnosis is performed by analyzing current signals at a steady-state motor operation or during a start-up transient. This method is known as motor current signature analysis, which identifies frequencies associated with faults in the frequency domain or by the time-frequency decomposition of the current signals. Fault identification may also be possible by analyzing acoustic sound and vibration signals, which is useful because sometimes this information is the only available. The contribution of this work is a methodology for detecting faults in induction motors in steady-state operation based on the analysis of acoustic sound and vibration signals. This proposed approach uses the Complete Ensemble Empirical Mode Decomposition for decomposing the signal into several intrinsic mode functions. Subsequently, the frequency marginal of the Gabor representation is calculated to obtain the spectral content of the IMF in the frequency domain. This proposal provides good fault detectability results compared to other published works in addition to the identification of more frequencies associated with the faults. The faults diagnosed in this work are two broken rotor bars, mechanical unbalance and bearing defects.
Characterization of emission microscopy and liquid crystal thermography in IC fault localization
NASA Astrophysics Data System (ADS)
Lau, C. K.; Sim, K. S.
2013-05-01
This paper characterizes two fault localization techniques - Emission Microscopy (EMMI) and Liquid Crystal Thermography (LCT) by using integrated circuit (IC) leakage failures. The majority of today's semiconductor failures do not reveal a clear visual defect on the die surface and therefore require fault localization tools to identify the fault location. Among the various fault localization tools, liquid crystal thermography and frontside emission microscopy are commonly used in most semiconductor failure analysis laboratories. Many people misunderstand that both techniques are the same and both are detecting hot spot in chip failing with short or leakage. As a result, analysts tend to use only LCT since this technique involves very simple test setup compared to EMMI. The omission of EMMI as the alternative technique in fault localization always leads to incomplete analysis when LCT fails to localize any hot spot on a failing chip. Therefore, this research was established to characterize and compare both the techniques in terms of their sensitivity in detecting the fault location in common semiconductor failures. A new method was also proposed as an alternative technique i.e. the backside LCT technique. The research observed that both techniques have successfully detected the defect locations resulted from the leakage failures. LCT wass observed more sensitive than EMMI in the frontside analysis approach. On the other hand, EMMI performed better in the backside analysis approach. LCT was more sensitive in localizing ESD defect location and EMMI was more sensitive in detecting non ESD defect location. Backside LCT was proven to work as effectively as the frontside LCT and was ready to serve as an alternative technique to the backside EMMI. The research confirmed that LCT detects heat generation and EMMI detects photon emission (recombination radiation). The analysis results also suggested that both techniques complementing each other in the IC fault localization. It is necessary for a failure analyst to use both techniques when one of the techniques produces no result.
McBride, J.H.; Nelson, W.J.
2001-01-01
High-resolution seismic reflection surveys document tectonic faults that displace Pleistocene and older strata just beyond the northeast termination of the New Madrid seismic zone, at the northernmost extent of the Mississippi embayment. These faults, which are part of the Fluorspar Area fault complex in southeastern Illinois, are directly in line with the northeast-trending seismic zone. The reflection data were acquired using an elastic weight-drop source recorded to 500 msec by a 48-geophone array (24-fold) with a 10-ft (??3.0m) station interval. Recognizable reflections were recorded to about 200 msec (100-150 m). The effects of multiple reflections, numerous diffractions, low apparent velocity (i.e., steeply dipping) noise, and the relatively low-frequency content of the recorded signal provided challenges for data processing and interpreting subtle fault offsets. Data processing steps that were critical to the detection of faults included residual statics, post-stack migration, deconvolution, and noise-reduction filtering. Seismic migration was crucial for detecting and mitigating complex fault-related diffraction patterns, which produced an apparent 'folding' of reflectors on unmigrated sections. Detected individual offsets of shallow reflectors range from 5 to 10 m for the top of Paleozoic bedrock and younger strata. The migrated sections generally indicate vertical to steeply dipping normal and reverse faults, which in places outline small horsts and/or grabens. Tilting or folding of stratal reflectors associated with faulting is also locally observed. At one site, the observed faulting is superimposed over a prominent antiformal structure, which may itself be a product of the Quaternary deformation that produced the steep normal and reverse faults. Our results suggest that faulting of the Paleozoic bedrock and younger sediments of the northern Mississippi embayment is more pervasive and less localized than previously thought.
CPSGrader: Auto-Grading and Feedback Generation for Cyber-Physical Systems Education
2014-12-21
to refer to ⋃ C∈C+ Ω(C,Γ(p)) (and⋃ C∈C− Ω(C,Γ(p))). The rationale behind this choice of ρ is two-fold: 1. To increase coverage of fault detection ... fault mentioned in Section 2.3. The purpose of the test is to detect that at some time instant t0, the robot bumps into the obstacle, then turns about...sampling. 5.6 Investigating Unknown Faults Using Clustering CPSGrader works with a fixed pre-defined library of faults and associated test benches
Reset Tree-Based Optical Fault Detection
Lee, Dong-Geon; Choi, Dooho; Seo, Jungtaek; Kim, Howon
2013-01-01
In this paper, we present a new reset tree-based scheme to protect cryptographic hardware against optical fault injection attacks. As one of the most powerful invasive attacks on cryptographic hardware, optical fault attacks cause semiconductors to misbehave by injecting high-energy light into a decapped integrated circuit. The contaminated result from the affected chip is then used to reveal secret information, such as a key, from the cryptographic hardware. Since the advent of such attacks, various countermeasures have been proposed. Although most of these countermeasures are strong, there is still the possibility of attack. In this paper, we present a novel optical fault detection scheme that utilizes the buffers on a circuit's reset signal tree as a fault detection sensor. To evaluate our proposal, we model radiation-induced currents into circuit components and perform a SPICE simulation. The proposed scheme is expected to be used as a supplemental security tool. PMID:23698267
Gao, Zheyu; Lin, Jing; Wang, Xiufeng; Xu, Xiaoqiang
2017-05-24
Rolling bearings are widely used in rotating equipment. Detection of bearing faults is of great importance to guarantee safe operation of mechanical systems. Acoustic emission (AE), as one of the bearing monitoring technologies, is sensitive to weak signals and performs well in detecting incipient faults. Therefore, AE is widely used in monitoring the operating status of rolling bearing. This paper utilizes Empirical Wavelet Transform (EWT) to decompose AE signals into mono-components adaptively followed by calculation of the correlated kurtosis (CK) at certain time intervals of these components. By comparing these CK values, the resonant frequency of the rolling bearing can be determined. Then the fault characteristic frequencies are found by spectrum envelope. Both simulation signal and rolling bearing AE signals are used to verify the effectiveness of the proposed method. The results show that the new method performs well in identifying bearing fault frequency under strong background noise.
Weak Fault Feature Extraction of Rolling Bearings Based on an Improved Kurtogram.
Chen, Xianglong; Feng, Fuzhou; Zhang, Bingzhi
2016-09-13
Kurtograms have been verified to be an efficient tool in bearing fault detection and diagnosis because of their superiority in extracting transient features. However, the short-time Fourier Transform is insufficient in time-frequency analysis and kurtosis is deficient in detecting cyclic transients. Those factors weaken the performance of the original kurtogram in extracting weak fault features. Correlated Kurtosis (CK) is then designed, as a more effective solution, in detecting cyclic transients. Redundant Second Generation Wavelet Packet Transform (RSGWPT) is deemed to be effective in capturing more detailed local time-frequency description of the signal, and restricting the frequency aliasing components of the analysis results. The authors in this manuscript, combining the CK with the RSGWPT, propose an improved kurtogram to extract weak fault features from bearing vibration signals. The analysis of simulation signals and real application cases demonstrate that the proposed method is relatively more accurate and effective in extracting weak fault features.
NASA Technical Reports Server (NTRS)
Bruhn, Ronald L.; Sauber, Jeanne; Cotton, Michele M.; Pavlis, Terry L.; Burgess, Evan; Ruppert, Natalia; Forster, Richard R.
2012-01-01
The northwest directed motion of the Pacific plate is accompanied by migration and collision of the Yakutat terrane into the cusp of southern Alaska. The nature and magnitude of accretion and translation on upper crustal faults and folds is poorly constrained, however, due to pervasive glaciation. In this study we used high-resolution topography, geodetic imaging, seismic, and geologic data to advance understanding of the transition from strike-slip motion on the Fairweather fault to plate margin deformation on the Bagley fault, which cuts through the upper plate of the collisional suture above the subduction megathrust. The Fairweather fault terminates by oblique-extensional splay faulting within a structural syntaxis, allowing rapid tectonic upwelling of rocks driven by thrust faulting and crustal contraction. Plate motion is partly transferred from the Fairweather to the Bagley fault, which extends 125 km farther west as a dextral shear zone that is partly reactivated by reverse faulting. The Bagley fault dips steeply through the upper plate to intersect the subduction megathrust at depth, forming a narrow fault-bounded crustal sliver in the obliquely convergent plate margin. Since . 20 Ma the Bagley fault has accommodated more than 50 km of dextral shearing and several kilometers of reverse motion along its southern flank during terrane accretion. The fault is considered capable of generating earthquakes because it is linked to faults that generated large historic earthquakes, suitably oriented for reactivation in the contemporary stress field, and locally marked by seismicity. The fault may generate earthquakes of Mw <= 7.5.
Shelly, David R.; Hardebeck, Jeanne L.
2010-01-01
We precisely locate 88 tremor families along the central San Andreas Fault using a 3D velocity model and numerous P and S wave arrival times estimated from seismogram stacks of up to 400 events per tremor family. Maximum tremor amplitudes vary along the fault by at least a factor of 7, with by far the strongest sources along a 25 km section of the fault southeast of Parkfield. We also identify many weaker tremor families, which have largely escaped prior detection. Together, these sources extend 150 km along the fault, beneath creeping, transitional, and locked sections of the upper crustal fault. Depths are mostly between 18 and 28 km, in the lower crust. Epicenters are concentrated within 3 km of the surface trace, implying a nearly vertical fault. A prominent gap in detectible activity is located directly beneath the region of maximum slip in the 2004 magnitude 6.0 Parkfield earthquake.
Probabilistic evaluation of on-line checks in fault-tolerant multiprocessor systems
NASA Technical Reports Server (NTRS)
Nair, V. S. S.; Hoskote, Yatin V.; Abraham, Jacob A.
1992-01-01
The analysis of fault-tolerant multiprocessor systems that use concurrent error detection (CED) schemes is much more difficult than the analysis of conventional fault-tolerant architectures. Various analytical techniques have been proposed to evaluate CED schemes deterministically. However, these approaches are based on worst-case assumptions related to the failure of system components. Often, the evaluation results do not reflect the actual fault tolerance capabilities of the system. A probabilistic approach to evaluate the fault detecting and locating capabilities of on-line checks in a system is developed. The various probabilities associated with the checking schemes are identified and used in the framework of the matrix-based model. Based on these probabilistic matrices, estimates for the fault tolerance capabilities of various systems are derived analytically.
2018-01-01
Many fault detection methods have been proposed for monitoring the health of various industrial systems. Characterizing the monitored signals is a prerequisite for selecting an appropriate detection method. However, fault detection methods tend to be decided with user’s subjective knowledge or their familiarity with the method, rather than following a predefined selection rule. This study investigates the performance sensitivity of two detection methods, with respect to status signal characteristics of given systems: abrupt variance, characteristic indicator, discernable frequency, and discernable index. Relation between key characteristics indicators from four different real-world systems and the performance of two fault detection methods using pattern recognition are evaluated. PMID:29316731
DOE Office of Scientific and Technical Information (OSTI.GOV)
Breuker, M.S.; Braun, J.E.
This paper presents a detailed evaluation of the performance of a statistical, rule-based fault detection and diagnostic (FDD) technique presented by Rossi and Braun (1997). Steady-state and transient tests were performed on a simple rooftop air conditioner over a range of conditions and fault levels. The steady-state data without faults were used to train models that predict outputs for normal operation. The transient data with faults were used to evaluate FDD performance. The effect of a number of design variables on FDD sensitivity for different faults was evaluated and two prototype systems were specified for more complete evaluation. Good performancemore » was achieved in detecting and diagnosing five faults using only six temperatures (2 input and 4 output) and linear models. The performance improved by about a factor of two when ten measurements (three input and seven output) and higher order models were used. This approach for evaluating and optimizing the performance of the statistical, rule-based FDD technique could be used as a design and evaluation tool when applying this FDD method to other packaged air-conditioning systems. Furthermore, the approach could also be modified to evaluate the performance of other FDD methods.« less
A Mode-Shape-Based Fault Detection Methodology for Cantilever Beams
NASA Technical Reports Server (NTRS)
Tejada, Arturo
2009-01-01
An important goal of NASA's Internal Vehicle Health Management program (IVHM) is to develop and verify methods and technologies for fault detection in critical airframe structures. A particularly promising new technology under development at NASA Langley Research Center is distributed Bragg fiber optic strain sensors. These sensors can be embedded in, for instance, aircraft wings to continuously monitor surface strain during flight. Strain information can then be used in conjunction with well-known vibrational techniques to detect faults due to changes in the wing's physical parameters or to the presence of incipient cracks. To verify the benefits of this technology, the Formal Methods Group at NASA LaRC has proposed the use of formal verification tools such as PVS. The verification process, however, requires knowledge of the physics and mathematics of the vibrational techniques and a clear understanding of the particular fault detection methodology. This report presents a succinct review of the physical principles behind the modeling of vibrating structures such as cantilever beams (the natural model of a wing). It also reviews two different classes of fault detection techniques and proposes a particular detection method for cracks in wings, which is amenable to formal verification. A prototype implementation of these methods using Matlab scripts is also described and is related to the fundamental theoretical concepts.
NASA Astrophysics Data System (ADS)
Wang, Pan-Pan; Yu, Qiang; Hu, Yong-Jun; Miao, Chang-Xin
2017-11-01
Current research in broken rotor bar (BRB) fault detection in induction motors is primarily focused on a high-frequency resolution analysis of the stator current. Compared with a discrete Fourier transformation, the parametric spectrum estimation technique has a higher frequency accuracy and resolution. However, the existing detection methods based on parametric spectrum estimation cannot realize online detection, owing to the large computational cost. To improve the efficiency of BRB fault detection, a new detection method based on the min-norm algorithm and least square estimation is proposed in this paper. First, the stator current is filtered using a band-pass filter and divided into short overlapped data windows. The min-norm algorithm is then applied to determine the frequencies of the fundamental and fault characteristic components with each overlapped data window. Next, based on the frequency values obtained, a model of the fault current signal is constructed. Subsequently, a linear least squares problem solved through singular value decomposition is designed to estimate the amplitudes and phases of the related components. Finally, the proposed method is applied to a simulated current and an actual motor, the results of which indicate that, not only parametric spectrum estimation technique.
Multiple sensor fault diagnosis for dynamic processes.
Li, Cheng-Chih; Jeng, Jyh-Cheng
2010-10-01
Modern industrial plants are usually large scaled and contain a great amount of sensors. Sensor fault diagnosis is crucial and necessary to process safety and optimal operation. This paper proposes a systematic approach to detect, isolate and identify multiple sensor faults for multivariate dynamic systems. The current work first defines deviation vectors for sensor observations, and further defines and derives the basic sensor fault matrix (BSFM), consisting of the normalized basic fault vectors, by several different methods. By projecting a process deviation vector to the space spanned by BSFM, this research uses a vector with the resulted weights on each direction for multiple sensor fault diagnosis. This study also proposes a novel monitoring index and derives corresponding sensor fault detectability. The study also utilizes that vector to isolate and identify multiple sensor faults, and discusses the isolatability and identifiability. Simulation examples and comparison with two conventional PCA-based contribution plots are presented to demonstrate the effectiveness of the proposed methodology. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.
A comparative study of sensor fault diagnosis methods based on observer for ECAS system
NASA Astrophysics Data System (ADS)
Xu, Xing; Wang, Wei; Zou, Nannan; Chen, Long; Cui, Xiaoli
2017-03-01
The performance and practicality of electronically controlled air suspension (ECAS) system are highly dependent on the state information supplied by kinds of sensors, but faults of sensors occur frequently. Based on a non-linearized 3-DOF 1/4 vehicle model, different methods of fault detection and isolation (FDI) are used to diagnose the sensor faults for ECAS system. The considered approaches include an extended Kalman filter (EKF) with concise algorithm, a strong tracking filter (STF) with robust tracking ability, and the cubature Kalman filter (CKF) with numerical precision. We propose three filters of EKF, STF, and CKF to design a state observer of ECAS system under typical sensor faults and noise. Results show that three approaches can successfully detect and isolate faults respectively despite of the existence of environmental noise, FDI time delay and fault sensitivity of different algorithms are different, meanwhile, compared with EKF and STF, CKF method has best performing FDI of sensor faults for ECAS system.
Leng, Yonggang; Fan, Shengbo
2018-01-01
Mechanical fault diagnosis usually requires not only identification of the fault characteristic frequency, but also detection of its second and/or higher harmonics. However, it is difficult to detect a multi-frequency fault signal through the existing Stochastic Resonance (SR) methods, because the characteristic frequency of the fault signal as well as its second and higher harmonics frequencies tend to be large parameters. To solve the problem, this paper proposes a multi-frequency signal detection method based on Frequency Exchange and Re-scaling Stochastic Resonance (FERSR). In the method, frequency exchange is implemented using filtering technique and Single SideBand (SSB) modulation. This new method can overcome the limitation of "sampling ratio" which is the ratio of the sampling frequency to the frequency of target signal. It also ensures that the multi-frequency target signals can be processed to meet the small-parameter conditions. Simulation results demonstrate that the method shows good performance for detecting a multi-frequency signal with low sampling ratio. Two practical cases are employed to further validate the effectiveness and applicability of this method. PMID:29693577
Nucleation and triggering of earthquake slip: effect of periodic stresses
Dieterich, J.H.
1987-01-01
Results of stability analyses for spring and slider systems, with state variable constitutive properties, are applied to slip on embedded fault patches. Unstable slip may nucleate only if the slipping patch exceeds some minimum size. Subsequent to the onset of instability the earthquake slip may propagate well beyond the patch. It is proposed that the seismicity of a volume of the earth's crust is determined by the distribution of initial conditions on the population of fault patches that nucleate earthquake slip, and the loading history acting upon the volume. Patches with constitutive properties inferred from laboratory experiments are characterized by an interval of self-driven accelerating slip prior to instability, if initial stress exceeds a minimum threshold. This delayed instability of the patches provides an explanation for the occurrence of aftershocks and foreshocks including decay of earthquake rates by time-1. A population of patches subjected to loading with a periodic component results in periodic variation of the rate of occurrence of instabilities. The change of the rate of seismicity for a sinusoidal load is proportional to the amplitude of the periodic stress component and inversely proportional to both the normal stress acting on the fault patches and the constitutive parameter, A1, that controls the direct velocity dependence of fault slip. Values of A1 representative of laboratory experiments indicate that in a homogeneous crust, correlation of earthquake rates with earth tides should not be detectable at normal stresses in excess of about 8 MPa. Correlation of earthquakes with tides at higher normal stresses can be explained if there exist inhomogeneities that locally amplify the magnitude of the tidal stresses. Such amplification might occur near magma chambers or other soft inclusions in the crust and possibly near the ends of creeping fault segments if the creep or afterslip rates vary in response to tides. Observations of seismicity rate variations associated with seasonal fluctuations of reservoir levels appear to be consistent with the model. ?? 1987.
Aircraft Engine Sensor/Actuator/Component Fault Diagnosis Using a Bank of Kalman Filters
NASA Technical Reports Server (NTRS)
Kobayashi, Takahisa; Simon, Donald L. (Technical Monitor)
2003-01-01
In this report, a fault detection and isolation (FDI) system which utilizes a bank of Kalman filters is developed for aircraft engine sensor and actuator FDI in conjunction with the detection of component faults. This FDI approach uses multiple Kalman filters, each of which is designed based on a specific hypothesis for detecting a specific sensor or actuator fault. In the event that a fault does occur, all filters except the one using the correct hypothesis will produce large estimation errors, from which a specific fault is isolated. In the meantime, a set of parameters that indicate engine component performance is estimated for the detection of abrupt degradation. The performance of the FDI system is evaluated against a nonlinear engine simulation for various engine faults at cruise operating conditions. In order to mimic the real engine environment, the nonlinear simulation is executed not only at the nominal, or healthy, condition but also at aged conditions. When the FDI system designed at the healthy condition is applied to an aged engine, the effectiveness of the FDI system is impacted by the mismatch in the engine health condition. Depending on its severity, this mismatch can cause the FDI system to generate incorrect diagnostic results, such as false alarms and missed detections. To partially recover the nominal performance, two approaches, which incorporate information regarding the engine s aging condition in the FDI system, will be discussed and evaluated. The results indicate that the proposed FDI system is promising for reliable diagnostics of aircraft engines.
The design and implementation of on-line monitoring system for UHV compact shunt capacitors
NASA Astrophysics Data System (ADS)
Tao, Weiliang; Ni, Xuefeng; Lin, Hao; Jiang, Shengbao
2017-08-01
Because of the large capacity and compact structure of the UHV compact shunt capacitor, it is difficult to take effective measures to detect and prevent the faults. If the fault capacitor fails to take timely maintenance, it will pose a threat to the safe operation of the system and the life safety of the maintenance personnel. The development of UHV compact shunt capacitor on-line monitoring system can detect and record the on-line operation information of UHV compact shunt capacitors, analyze and evaluate the early fault warning signs, find out the fault capacitor or the capacitor with fault symptom, to ensure safe and reliable operation of the system.
Jeon, Namju; Lee, Hyeongcheol
2016-01-01
An integrated fault-diagnosis algorithm for a motor sensor of in-wheel independent drive electric vehicles is presented. This paper proposes a method that integrates the high- and low-level fault diagnoses to improve the robustness and performance of the system. For the high-level fault diagnosis of vehicle dynamics, a planar two-track non-linear model is first selected, and the longitudinal and lateral forces are calculated. To ensure redundancy of the system, correlation between the sensor and residual in the vehicle dynamics is analyzed to detect and separate the fault of the drive motor system of each wheel. To diagnose the motor system for low-level faults, the state equation of an interior permanent magnet synchronous motor is developed, and a parity equation is used to diagnose the fault of the electric current and position sensors. The validity of the high-level fault-diagnosis algorithm is verified using Carsim and Matlab/Simulink co-simulation. The low-level fault diagnosis is verified through Matlab/Simulink simulation and experiments. Finally, according to the residuals of the high- and low-level fault diagnoses, fault-detection flags are defined. On the basis of this information, an integrated fault-diagnosis strategy is proposed. PMID:27973431
Fault Diagnostics for Turbo-Shaft Engine Sensors Based on a Simplified On-Board Model
Lu, Feng; Huang, Jinquan; Xing, Yaodong
2012-01-01
Combining a simplified on-board turbo-shaft model with sensor fault diagnostic logic, a model-based sensor fault diagnosis method is proposed. The existing fault diagnosis method for turbo-shaft engine key sensors is mainly based on a double redundancies technique, and this can't be satisfied in some occasions as lack of judgment. The simplified on-board model provides the analytical third channel against which the dual channel measurements are compared, while the hardware redundancy will increase the structure complexity and weight. The simplified turbo-shaft model contains the gas generator model and the power turbine model with loads, this is built up via dynamic parameters method. Sensor fault detection, diagnosis (FDD) logic is designed, and two types of sensor failures, such as the step faults and the drift faults, are simulated. When the discrepancy among the triplex channels exceeds a tolerance level, the fault diagnosis logic determines the cause of the difference. Through this approach, the sensor fault diagnosis system achieves the objectives of anomaly detection, sensor fault diagnosis and redundancy recovery. Finally, experiments on this method are carried out on a turbo-shaft engine, and two types of faults under different channel combinations are presented. The experimental results show that the proposed method for sensor fault diagnostics is efficient. PMID:23112645
Fault diagnostics for turbo-shaft engine sensors based on a simplified on-board model.
Lu, Feng; Huang, Jinquan; Xing, Yaodong
2012-01-01
Combining a simplified on-board turbo-shaft model with sensor fault diagnostic logic, a model-based sensor fault diagnosis method is proposed. The existing fault diagnosis method for turbo-shaft engine key sensors is mainly based on a double redundancies technique, and this can't be satisfied in some occasions as lack of judgment. The simplified on-board model provides the analytical third channel against which the dual channel measurements are compared, while the hardware redundancy will increase the structure complexity and weight. The simplified turbo-shaft model contains the gas generator model and the power turbine model with loads, this is built up via dynamic parameters method. Sensor fault detection, diagnosis (FDD) logic is designed, and two types of sensor failures, such as the step faults and the drift faults, are simulated. When the discrepancy among the triplex channels exceeds a tolerance level, the fault diagnosis logic determines the cause of the difference. Through this approach, the sensor fault diagnosis system achieves the objectives of anomaly detection, sensor fault diagnosis and redundancy recovery. Finally, experiments on this method are carried out on a turbo-shaft engine, and two types of faults under different channel combinations are presented. The experimental results show that the proposed method for sensor fault diagnostics is efficient.
Kinematics of polygonal fault systems: observations from the northern North Sea
NASA Astrophysics Data System (ADS)
Wrona, Thilo; Magee, Craig; Jackson, Christopher A.-L.; Huuse, Mads; Taylor, Kevin G.
2017-12-01
Layer-bound, low-displacement normal faults, arranged into a broadly polygonal pattern, are common in many sedimentary basins. Despite having constrained their gross geometry, we have a relatively poor understanding of the processes controlling the nucleation and growth (i.e. the kinematics) of polygonal fault systems. In this study we use high-resolution 3-D seismic reflection and borehole data from the northern North Sea to undertake a detailed kinematic analysis of faults forming part of a seismically well-imaged polygonal fault system hosted within the up to 1000 m thick, Early Palaeocene-to-Middle Miocene mudstones of the Hordaland Group. Growth strata and displacement-depth profiles indicate faulting commenced during the Eocene to early Oligocene, with reactivation possibly occurring in the late Oligocene to middle Miocene. Mapping the position of displacement maxima on 137 polygonal faults suggests that the majority (64%) nucleated in the lower 500 m of the Hordaland Group. The uniform distribution of polygonal fault strikes in the area indicates that nucleation and growth were not driven by gravity or far-field tectonic extension as has previously been suggested. Instead, fault growth was likely facilitated by low coefficients of residual friction on existing slip surfaces, and probably involved significant layer-parallel contraction (strains of 0.01-0.19) of the host strata. To summarize, our kinematic analysis provides new insights into the spatial and temporal evolution of polygonal fault systems.
Runtime Verification in Context : Can Optimizing Error Detection Improve Fault Diagnosis
NASA Technical Reports Server (NTRS)
Dwyer, Matthew B.; Purandare, Rahul; Person, Suzette
2010-01-01
Runtime verification has primarily been developed and evaluated as a means of enriching the software testing process. While many researchers have pointed to its potential applicability in online approaches to software fault tolerance, there has been a dearth of work exploring the details of how that might be accomplished. In this paper, we describe how a component-oriented approach to software health management exposes the connections between program execution, error detection, fault diagnosis, and recovery. We identify both research challenges and opportunities in exploiting those connections. Specifically, we describe how recent approaches to reducing the overhead of runtime monitoring aimed at error detection might be adapted to reduce the overhead and improve the effectiveness of fault diagnosis.
Health Monitoring Survey of Bell 412EP Transmissions
NASA Technical Reports Server (NTRS)
Tucker, Brian E.; Dempsey, Paula J.
2016-01-01
Health and usage monitoring systems (HUMS) use vibration-based Condition Indicators (CI) to assess the health of helicopter powertrain components. A fault is detected when a CI exceeds its threshold value. The effectiveness of fault detection can be judged on the basis of assessing the condition of actual components from fleet aircraft. The Bell 412 HUMS-equipped helicopter is chosen for such an evaluation. A sample of 20 aircraft included 12 aircraft with confirmed transmission and gearbox faults (detected by CIs) and eight aircraft with no known faults. The associated CI data is classified into "healthy" and "faulted" populations based on actual condition and these populations are compared against their CI thresholds to quantify the probability of false alarm and the probability of missed detection. Receiver Operator Characteristic analysis is used to optimize thresholds. Based on the results of the analysis, shortcomings in the classification method are identified for slow-moving CI trends. Recommendations for improving classification using time-dependent receiver-operator characteristic methods are put forth. Finally, lessons learned regarding OEM-operator communication are presented.
An adaptive confidence limit for periodic non-steady conditions fault detection
NASA Astrophysics Data System (ADS)
Wang, Tianzhen; Wu, Hao; Ni, Mengqi; Zhang, Milu; Dong, Jingjing; Benbouzid, Mohamed El Hachemi; Hu, Xiong
2016-05-01
System monitoring has become a major concern in batch process due to the fact that failure rate in non-steady conditions is much higher than in steady ones. A series of approaches based on PCA have already solved problems such as data dimensionality reduction, multivariable decorrelation, and processing non-changing signal. However, if the data follows non-Gaussian distribution or the variables contain some signal changes, the above approaches are not applicable. To deal with these concerns and to enhance performance in multiperiod data processing, this paper proposes a fault detection method using adaptive confidence limit (ACL) in periodic non-steady conditions. The proposed ACL method achieves four main enhancements: Longitudinal-Standardization could convert non-Gaussian sampling data to Gaussian ones; the multiperiod PCA algorithm could reduce dimensionality, remove correlation, and improve the monitoring accuracy; the adaptive confidence limit could detect faults under non-steady conditions; the fault sections determination procedure could select the appropriate parameter of the adaptive confidence limit. The achieved result analysis clearly shows that the proposed ACL method is superior to other fault detection approaches under periodic non-steady conditions.
NASA Astrophysics Data System (ADS)
Ruiz-Cárcel, C.; Jaramillo, V. H.; Mba, D.; Ottewill, J. R.; Cao, Y.
2016-01-01
The detection and diagnosis of faults in industrial processes is a very active field of research due to the reduction in maintenance costs achieved by the implementation of process monitoring algorithms such as Principal Component Analysis, Partial Least Squares or more recently Canonical Variate Analysis (CVA). Typically the condition of rotating machinery is monitored separately using vibration analysis or other specific techniques. Conventional vibration-based condition monitoring techniques are based on the tracking of key features observed in the measured signal. Typically steady-state loading conditions are required to ensure consistency between measurements. In this paper, a technique based on merging process and vibration data is proposed with the objective of improving the detection of mechanical faults in industrial systems working under variable operating conditions. The capabilities of CVA for detection and diagnosis of faults were tested using experimental data acquired from a compressor test rig where different process faults were introduced. Results suggest that the combination of process and vibration data can effectively improve the detectability of mechanical faults in systems working under variable operating conditions.
A method based on multi-sensor data fusion for fault detection of planetary gearboxes.
Lei, Yaguo; Lin, Jing; He, Zhengjia; Kong, Detong
2012-01-01
Studies on fault detection and diagnosis of planetary gearboxes are quite limited compared with those of fixed-axis gearboxes. Different from fixed-axis gearboxes, planetary gearboxes exhibit unique behaviors, which invalidate fault diagnosis methods that work well for fixed-axis gearboxes. It is a fact that for systems as complex as planetary gearboxes, multiple sensors mounted on different locations provide complementary information on the health condition of the systems. On this basis, a fault detection method based on multi-sensor data fusion is introduced in this paper. In this method, two features developed for planetary gearboxes are used to characterize the gear health conditions, and an adaptive neuro-fuzzy inference system (ANFIS) is utilized to fuse all features from different sensors. In order to demonstrate the effectiveness of the proposed method, experiments are carried out on a planetary gearbox test rig, on which multiple accelerometers are mounted for data collection. The comparisons between the proposed method and the methods based on individual sensors show that the former achieves much higher accuracies in detecting planetary gearbox faults.
NASA Technical Reports Server (NTRS)
Smith, T. B., Jr.; Lala, J. H.
1983-01-01
The basic organization of the fault tolerant multiprocessor, (FTMP) is that of a general purpose homogeneous multiprocessor. Three processors operate on a shared system (memory and I/O) bus. Replication and tight synchronization of all elements and hardware voting is employed to detect and correct any single fault. Reconfiguration is then employed to repair a fault. Multiple faults may be tolerated as a sequence of single faults with repair between fault occurrences.
Failure detection and fault management techniques for flush airdata sensing systems
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.; Moes, Timothy R.; Leondes, Cornelius T.
1992-01-01
Methods based on chi-squared analysis are presented for detecting system and individual-port failures in the high-angle-of-attack flush airdata sensing system on the NASA F-18 High Alpha Research Vehicle. The HI-FADS hardware is introduced, and the aerodynamic model describes measured pressure in terms of dynamic pressure, angle of attack, angle of sideslip, and static pressure. Chi-squared analysis is described in the presentation of the concept for failure detection and fault management which includes nominal, iteration, and fault-management modes. A matrix of pressure orifices arranged in concentric circles on the nose of the aircraft indicate the parameters which are applied to the regression algorithms. The sensing techniques are applied to the F-18 flight data, and two examples are given of the computed angle-of-attack time histories. The failure-detection and fault-management techniques permit the matrix to be multiply redundant, and the chi-squared analysis is shown to be useful in the detection of failures.
Induction motor inter turn fault detection using infrared thermographic analysis
NASA Astrophysics Data System (ADS)
Singh, Gurmeet; Anil Kumar, T. Ch.; Naikan, V. N. A.
2016-07-01
Induction motors are the most commonly used prime movers in industries. These are subjected to various environmental, thermal and load stresses that ultimately reduces the motor efficiency and later leads to failure. Inter turn fault is the second most commonly observed faults in the motors and is considered the most severe. It can lead to the failure of complete phase and can even cause accidents, if left undetected or untreated. This paper proposes an online and non invasive technique that uses infrared thermography, in order to detect the presence of inter turn fault in induction motor drive. Two methods have been proposed that detect the fault and estimate its severity. One method uses transient thermal monitoring during the start of motor and other applies pseudo coloring technique on infrared image of the motor, after it reaches a thermal steady state. The designed template for pseudo-coloring is in acquiescence with the InterNational Electrical Testing Association (NETA) thermographic standard. An index is proposed to assess the severity of the fault present in the motor.
Gas Path On-line Fault Diagnostics Using a Nonlinear Integrated Model for Gas Turbine Engines
NASA Astrophysics Data System (ADS)
Lu, Feng; Huang, Jin-quan; Ji, Chun-sheng; Zhang, Dong-dong; Jiao, Hua-bin
2014-08-01
Gas turbine engine gas path fault diagnosis is closely related technology that assists operators in managing the engine units. However, the performance gradual degradation is inevitable due to the usage, and it result in the model mismatch and then misdiagnosis by the popular model-based approach. In this paper, an on-line integrated architecture based on nonlinear model is developed for gas turbine engine anomaly detection and fault diagnosis over the course of the engine's life. These two engine models have different performance parameter update rate. One is the nonlinear real-time adaptive performance model with the spherical square-root unscented Kalman filter (SSR-UKF) producing performance estimates, and the other is a nonlinear baseline model for the measurement estimates. The fault detection and diagnosis logic is designed to discriminate sensor fault and component fault. This integration architecture is not only aware of long-term engine health degradation but also effective to detect gas path performance anomaly shifts while the engine continues to degrade. Compared to the existing architecture, the proposed approach has its benefit investigated in the experiment and analysis.
Smart Sensor for Online Detection of Multiple-Combined Faults in VSD-Fed Induction Motors
Garcia-Ramirez, Armando G.; Osornio-Rios, Roque A.; Granados-Lieberman, David; Garcia-Perez, Arturo; Romero-Troncoso, Rene J.
2012-01-01
Induction motors fed through variable speed drives (VSD) are widely used in different industrial processes. Nowadays, the industry demands the integration of smart sensors to improve the fault detection in order to reduce cost, maintenance and power consumption. Induction motors can develop one or more faults at the same time that can be produce severe damages. The combined fault identification in induction motors is a demanding task, but it has been rarely considered in spite of being a common situation, because it is difficult to identify two or more faults simultaneously. This work presents a smart sensor for online detection of simple and multiple-combined faults in induction motors fed through a VSD in a wide frequency range covering low frequencies from 3 Hz and high frequencies up to 60 Hz based on a primary sensor being a commercially available current clamp or a hall-effect sensor. The proposed smart sensor implements a methodology based on the fast Fourier transform (FFT), RMS calculation and artificial neural networks (ANN), which are processed online using digital hardware signal processing based on field programmable gate array (FPGA).
Appropriate IMFs associated with cepstrum and envelope analysis for ball-bearing fault diagnosis
NASA Astrophysics Data System (ADS)
Tsao, Wen-Chang; Pan, Min-Chun
2014-03-01
The traditional envelope analysis is an effective method for the fault detection of rolling bearings. However, all the resonant frequency bands must be examined during the bearing-fault detection process. To handle the above deficiency, this paper proposes using the empirical mode decomposition (EMD) to select a proper intrinsic mode function (IMF) for the subsequent detection tools; here both envelope analysis and cepstrum analysis are employed and compared. By virtue of the band-pass filtering nature of EMD, the resonant frequency bands of structure to be measured are captured in the IMFs. As impulses arising from rolling elements striking bearing faults modulate with structure resonance, proper IMFs potentially enable to characterize fault signatures. In the study, faulty ball bearings are used to justify the proposed method, and comparisons with the traditional envelope analysis are made. Post the use of IMFs highlighting faultybearing features, the performance of using envelope analysis and cepstrum analysis to single out bearing faults is objectively compared and addressed; it is noted that generally envelope analysis offers better performance.
Ameid, Tarek; Menacer, Arezki; Talhaoui, Hicham; Azzoug, Youness
2018-05-03
This paper presents a methodology for the broken rotor bars fault detection is considered when the rotor speed varies continuously and the induction machine is controlled by Field-Oriented Control (FOC). The rotor fault detection is obtained by analyzing a several mechanical and electrical quantities (i.e., rotor speed, stator phase current and output signal of the speed regulator) by the Discrete Wavelet Transform (DWT) in variable speed drives. The severity of the fault is obtained by stored energy calculation for active power signal. Hence, it can be a useful solution as fault indicator. The FOC is implemented in order to preserve a good performance speed control; to compensate the broken rotor bars effect in the mechanical speed and to ensure the operation continuity and to investigate the fault effect in the variable speed. The effectiveness of the technique is evaluated in simulation and in a real-time implementation by using Matlab/Simulink with the real-time interface (RTI) based on dSpace 1104 board. Copyright © 2018. Published by Elsevier Ltd.
Seera, Manjeevan; Lim, Chee Peng; Ishak, Dahaman; Singh, Harapajan
2012-01-01
In this paper, a novel approach to detect and classify comprehensive fault conditions of induction motors using a hybrid fuzzy min-max (FMM) neural network and classification and regression tree (CART) is proposed. The hybrid model, known as FMM-CART, exploits the advantages of both FMM and CART for undertaking data classification and rule extraction problems. A series of real experiments is conducted, whereby the motor current signature analysis method is applied to form a database comprising stator current signatures under different motor conditions. The signal harmonics from the power spectral density are extracted as discriminative input features for fault detection and classification with FMM-CART. A comprehensive list of induction motor fault conditions, viz., broken rotor bars, unbalanced voltages, stator winding faults, and eccentricity problems, has been successfully classified using FMM-CART with good accuracy rates. The results are comparable, if not better, than those reported in the literature. Useful explanatory rules in the form of a decision tree are also elicited from FMM-CART to analyze and understand different fault conditions of induction motors.
NASA Astrophysics Data System (ADS)
Schmidt, S.; Heyns, P. S.; de Villiers, J. P.
2018-02-01
In this paper, a fault diagnostic methodology is developed which is able to detect, locate and trend gear faults under fluctuating operating conditions when only vibration data from a single transducer, measured on a healthy gearbox are available. A two-phase feature extraction and modelling process is proposed to infer the operating condition and based on the operating condition, to detect changes in the machine condition. Information from optimised machine and operating condition hidden Markov models are statistically combined to generate a discrepancy signal which is post-processed to infer the condition of the gearbox. The discrepancy signal is processed and combined with statistical methods for automatic fault detection and localisation and to perform fault trending over time. The proposed methodology is validated on experimental data and a tacholess order tracking methodology is used to enhance the cost-effectiveness of the diagnostic methodology.
A leakage-free resonance sparse decomposition technique for bearing fault detection in gearboxes
NASA Astrophysics Data System (ADS)
Osman, Shazali; Wang, Wilson
2018-03-01
Most of rotating machinery deficiencies are related to defects in rolling element bearings. Reliable bearing fault detection still remains a challenging task, especially for bearings in gearboxes as bearing-defect-related features are nonstationary and modulated by gear mesh vibration. A new leakage-free resonance sparse decomposition (LRSD) technique is proposed in this paper for early bearing fault detection of gearboxes. In the proposed LRSD technique, a leakage-free filter is suggested to remove strong gear mesh and shaft running signatures. A kurtosis and cosine distance measure is suggested to select appropriate redundancy r and quality factor Q. The signal residual is processed by signal sparse decomposition for highpass and lowpass resonance analysis to extract representative features for bearing fault detection. The effectiveness of the proposed technique is verified by a succession of experimental tests corresponding to different gearbox and bearing conditions.
BEAT: A Web-Based Boolean Expression Fault-Based Test Case Generation Tool
ERIC Educational Resources Information Center
Chen, T. Y.; Grant, D. D.; Lau, M. F.; Ng, S. P.; Vasa, V. R.
2006-01-01
BEAT is a Web-based system that generates fault-based test cases from Boolean expressions. It is based on the integration of our several fault-based test case selection strategies. The generated test cases are considered to be fault-based, because they are aiming at the detection of particular faults. For example, when the Boolean expression is in…
Advanced Information Processing System - Fault detection and error handling
NASA Technical Reports Server (NTRS)
Lala, J. H.
1985-01-01
The Advanced Information Processing System (AIPS) is designed to provide a fault tolerant and damage tolerant data processing architecture for a broad range of aerospace vehicles, including tactical and transport aircraft, and manned and autonomous spacecraft. A proof-of-concept (POC) system is now in the detailed design and fabrication phase. This paper gives an overview of a preliminary fault detection and error handling philosophy in AIPS.
Release of mineral-bound water prior to subduction tied to shallow seismogenic slip off Sumatra
NASA Astrophysics Data System (ADS)
Hüpers, Andre; Torres, Marta E.; Owari, Satoko; McNeill, Lisa C.; Dugan, Brandon; Henstock, Timothy J.; Milliken, Kitty L.; Petronotis, Katerina E.; Backman, Jan; Bourlange, Sylvain; Chemale, Farid; Chen, Wenhuang; Colson, Tobias A.; Frederik, Marina C. G.; Guèrin, Gilles; Hamahashi, Mari; House, Brian M.; Jeppson, Tamara N.; Kachovich, Sarah; Kenigsberg, Abby R.; Kuranaga, Mebae; Kutterolf, Steffen; Mitchison, Freya L.; Mukoyoshi, Hideki; Nair, Nisha; Pickering, Kevin T.; Pouderoux, Hugo F. A.; Shan, Yehua; Song, Insun; Vannucchi, Paola; Vrolijk, Peter J.; Yang, Tao; Zhao, Xixi
2017-05-01
Plate-boundary fault rupture during the 2004 Sumatra-Andaman subduction earthquake extended closer to the trench than expected, increasing earthquake and tsunami size. International Ocean Discovery Program Expedition 362 sampled incoming sediments offshore northern Sumatra, revealing recent release of fresh water within the deep sediments. Thermal modeling links this freshening to amorphous silica dehydration driven by rapid burial-induced temperature increases in the past 9 million years. Complete dehydration of silicates is expected before plate subduction, contrasting with prevailing models for subduction seismogenesis calling for fluid production during subduction. Shallow slip offshore Sumatra appears driven by diagenetic strengthening of deeply buried fault-forming sediments, contrasting with weakening proposed for the shallow Tohoku-Oki 2011 rupture, but our results are applicable to other thickly sedimented subduction zones including those with limited earthquake records.
NASA Astrophysics Data System (ADS)
Yin, A.; Pappalardo, R. T.
2013-12-01
Detailed photogeologic mapping of the tiger-stripe fractures in the South Polar Terrain (SPT) of Enceladus indicates that these structures are left-slip faults and terminate at hook-shaped fold-thrust zones and/or Y-shaped horsetail splay-fault zones. The semi-square-shaped tectonic domain that hosts the tiger-stripe faults is bounded by right-slip and left-slip faults on the north and south edges and fold-thrust and extensional zones on the western and eastern edges. We explain the above observations by a passive bookshelf-faulting model in which individual tiger-stripe faults are bounded by deformable wall rocks accommodating distributed deformation. Based on topographic data, we suggest that gravitational spreading had caused the SPT to spread unevenly from west to east. This process was accommodated by right-slip and left-slip faulting on the north and south sides and thrusting and extension along the eastern and southern margins of the tiger-stripe tectonic domain. The uneven spreading, expressed by a gradual northward increase in the number of extensional faults and thrusts/folds along the western and eastern margins, was accommodated by distributed right-slip simple shear across the whole tiger-stripe tectonic domain. This mode of deformation in turn resulted in the development of a passive bookshelf-fault system characterized by left-slip faulting on individual tiger-stripe fractures.
Fault-controlled CO2 leakage from natural reservoirs in the Colorado Plateau, East-Central Utah
NASA Astrophysics Data System (ADS)
Jung, Na-Hyun; Han, Weon Shik; Watson, Z. T.; Graham, Jack P.; Kim, Kue-Young
2014-10-01
The study investigated a natural analogue for soil CO2 fluxes where CO2 has naturally leaked on the Colorado Plateau, East-Central Utah in order to identify various factors that control CO2 leakage and to understand regional-scale CO2 leakage processes in fault systems. The total 332 and 140 measurements of soil CO2 flux were made at 287 and 129 sites in the Little Grand Wash (LGW) and Salt Wash (SW) fault zones, respectively. Measurement sites for CO2 flux involved not only conspicuous CO2 degassing features (e.g., CO2-driven springs/geysers) but also linear features (e.g., joints/fractures and areas of diffusive leakage around a fault damage zone). CO2 flux anomalies were mostly observed along the fault traces. Specifically, CO2 flux anomalies were focused in the northern footwall of the both LGW and SW faults, supporting the existence of north-plunging anticlinal CO2 trap against south-dipping faults as well as higher probability of the north major fault traces as conduits. Anomalous CO2 fluxes also appeared in active travertines adjacent to CO2-driven cold springs and geysers (e.g., 36,259 g m-2 d-1 at Crystal Geyser), ancient travertines (e.g., 5,917 g m-2 d-1), joint zones in sandstone (e.g., 120 g m-2 d-1), and brine discharge zones (e.g., 5,515 g m-2 d-1). These observations indicate that CO2 has escaped through those pathways and that CO2 leakage from these fault zones does not correspond to point source leakage. The magnitude of CO2 flux is progressively reduced from north (i.e. the LGW fault zone, ∼36,259 g m-2 d-1) to south (i.e. the SW fault zone, ∼1,428 g m-2 d-1) despite new inputs of CO2 and CO2-saturated brine to the northerly SW fault from depth. This discrepancy in CO2 flux is most likely resulting from the differences in fault zone architecture and associated permeability structure. CO2-rich fluids from the LGW fault zone may become depleted with respect to CO2 during lateral transport, resulting in an additional decrease in CO2 fluxes within the SW fault zone. In other words, CO2 and CO2-charged brine originating from the LGW fault zone could migrate southward over 10-20 km through a series of high-permeable aquifers (e.g., Entrada, Navajo, Kayenta, Wingate, and White Rim Sandstones). These CO2-rich fluids could finally reach the southernmost Tumbleweed and Chaffin Ranch Geysers across the SW fault zone. The potential lateral transport of both CO2 and CO2-laden brine can be further supported by similar CO2/3He and 3He/4He ratios of gas and a systematic chemical evolution of water emitted from the regional springs and geysers, which suggest the same crustal origins of CO2 and CO2-rich brine for the region.
On-line bolt-loosening detection method of key components of running trains using binocular vision
NASA Astrophysics Data System (ADS)
Xie, Yanxia; Sun, Junhua
2017-11-01
Bolt loosening, as one of hidden faults, affects the running quality of trains and even causes serious safety accidents. However, the developed fault detection approaches based on two-dimensional images cannot detect bolt-loosening due to lack of depth information. Therefore, we propose a novel online bolt-loosening detection method using binocular vision. Firstly, the target detection model based on convolutional neural network (CNN) is used to locate the target regions. And then, stereo matching and three-dimensional reconstruction are performed to detect bolt-loosening faults. The experimental results show that the looseness of multiple bolts can be characterized by the method simultaneously. The measurement repeatability and precision are less than 0.03mm, 0.09mm respectively, and its relative error is controlled within 1.09%.
Analysis of the impact of error detection on computer performance
NASA Technical Reports Server (NTRS)
Shin, K. C.; Lee, Y. H.
1983-01-01
Conventionally, reliability analyses either assume that a fault/error is detected immediately following its occurrence, or neglect damages caused by latent errors. Though unrealistic, this assumption was imposed in order to avoid the difficulty of determining the respective probabilities that a fault induces an error and the error is then detected in a random amount of time after its occurrence. As a remedy for this problem a model is proposed to analyze the impact of error detection on computer performance under moderate assumptions. Error latency, the time interval between occurrence and the moment of detection, is used to measure the effectiveness of a detection mechanism. This model is used to: (1) predict the probability of producing an unreliable result, and (2) estimate the loss of computation due to fault and/or error.
Detection of faults and software reliability analysis
NASA Technical Reports Server (NTRS)
Knight, J. C.
1987-01-01
Specific topics briefly addressed include: the consistent comparison problem in N-version system; analytic models of comparison testing; fault tolerance through data diversity; and the relationship between failures caused by automatically seeded faults.
NASA Astrophysics Data System (ADS)
Singh, Gurmeet; Naikan, V. N. A.
2017-12-01
Thermography has been widely used as a technique for anomaly detection in induction motors. International Electrical Testing Association (NETA) proposed guidelines for thermographic inspection of electrical systems and rotating equipment. These guidelines help in anomaly detection and estimating its severity. However, it focus only on location of hotspot rather than diagnosing the fault. This paper addresses two such faults i.e. inter-turn fault and failure of cooling system, where both results in increase of stator temperature. Present paper proposes two thermal profile indicators using thermal analysis of IRT images. These indicators are in compliance with NETA standard. These indicators help in correctly diagnosing inter-turn fault and failure of cooling system. The work has been experimentally validated for healthy and with seeded faults scenarios of induction motors.
Space shuttle main engine fault detection using neural networks
NASA Technical Reports Server (NTRS)
Bishop, Thomas; Greenwood, Dan; Shew, Kenneth; Stevenson, Fareed
1991-01-01
A method for on-line Space Shuttle Main Engine (SSME) anomaly detection and fault typing using a feedback neural network is described. The method involves the computation of features representing time-variance of SSME sensor parameters, using historical test case data. The network is trained, using backpropagation, to recognize a set of fault cases. The network is then able to diagnose new fault cases correctly. An essential element of the training technique is the inclusion of randomly generated data along with the real data, in order to span the entire input space of potential non-nominal data.
Real-Time Diagnosis of Faults Using a Bank of Kalman Filters
NASA Technical Reports Server (NTRS)
Kobayashi, Takahisa; Simon, Donald L.
2006-01-01
A new robust method of automated real-time diagnosis of faults in an aircraft engine or a similar complex system involves the use of a bank of Kalman filters. In order to be highly reliable, a diagnostic system must be designed to account for the numerous failure conditions that an aircraft engine may encounter in operation. The method achieves this objective though the utilization of multiple Kalman filters, each of which is uniquely designed based on a specific failure hypothesis. A fault-detection-and-isolation (FDI) system, developed based on this method, is able to isolate faults in sensors and actuators while detecting component faults (abrupt degradation in engine component performance). By affording a capability for real-time identification of minor faults before they grow into major ones, the method promises to enhance safety and reduce operating costs. The robustness of this method is further enhanced by incorporating information regarding the aging condition of an engine. In general, real-time fault diagnostic methods use the nominal performance of a "healthy" new engine as a reference condition in the diagnostic process. Such an approach does not account for gradual changes in performance associated with aging of an otherwise healthy engine. By incorporating information on gradual, aging-related changes, the new method makes it possible to retain at least some of the sensitivity and accuracy needed to detect incipient faults while preventing false alarms that could result from erroneous interpretation of symptoms of aging as symptoms of failures. The figure schematically depicts an FDI system according to the new method. The FDI system is integrated with an engine, from which it accepts two sets of input signals: sensor readings and actuator commands. Two main parts of the FDI system are a bank of Kalman filters and a subsystem that implements FDI decision rules. Each Kalman filter is designed to detect a specific sensor or actuator fault. When a sensor or actuator fault occurs, large estimation errors are generated by all filters except the one using the correct hypothesis. By monitoring the residual output of each filter, the specific fault that has occurred can be detected and isolated on the basis of the decision rules. A set of parameters that indicate the performance of the engine components is estimated by the "correct" Kalman filter for use in detecting component faults. To reduce the loss of diagnostic accuracy and sensitivity in the face of aging, the FDI system accepts information from a steady-state-condition-monitoring system. This information is used to update the Kalman filters and a data bank of trim values representative of the current aging condition.
NASA Astrophysics Data System (ADS)
Dawers, N. H.; McLindon, C.
2017-12-01
A synthesis of late Quaternary faults within the Mississippi River deltaic plain aims to provide a more accurate assessment of regional and local fault architecture, and interactions between faulting, sediment loading, salt withdrawal and compaction. This effort was initiated by the New Orleans Geological Society and has resulted in access to industry 3d seismic reflection data, as well as fault trace maps, and various types of well data and biostratigraphy. An unexpected outgrowth of this project is a hypothesis that gravity-driven normal faults in deltaic settings may be good candidates for shallow aseismic and slow-slip phenomena. The late Quaternary fault population is characterized by several large, highly segmented normal fault arrays: the Baton Rouge-Tepetate fault zone, the Lake Pontchartrain-Lake Borgne fault zone, the Golden Meadow fault zone (GMFZ), and a major counter-regional salt withdrawal structure (the Bay Marchand-Timbalier Bay-Caillou Island salt complex and West Delta fault zone) that lies just offshore of southeastern Louisiana. In comparison to the other, more northerly fault zones, the GMFZ is still significantly salt-involved. Salt structures segment the GMFZ with fault tips ending near or within salt, resulting in highly localized fault and compaction related subsidence separated by shallow salt structures, which are inherently buoyant and virtually incompressible. At least several segments within the GMFZ are characterized by marsh breaks that formed aseismically over timescales of days to months, such as near Adams Bay and Lake Enfermer. One well-documented surface rupture adjacent to a salt dome propagated over a 3 day period in 1943. We suggest that Louisiana's coastal faults make excellent analogues for deltaic faults in general, and propose that a series of positive feedbacks keep them active in the near surface. These include differential sediment loading and compaction, weak fault zone materials, high fluid pressure, low elastic stiffness in surrounding materials, and low confining pressure.
NASA Astrophysics Data System (ADS)
Zhu, A.; Wang, P.; Liu, F.
2017-12-01
The southeastern China in the mainland corresponds to the south China block, which is characterized by moderate historical seismicity and low stain rate. Most faults are buried under thick Quaternary deposits, so it is difficult to detect and locate them using the routine geological methods. Only a few have been identified to be active in late Quaternary, which leads to relatively high potentially seismic risk to this region due to the unexpected locations of the earthquakes. We performed both hypoDD and tomoDD for the background seismicity from 2000 to 2016 to investigate the buried faults. Some buried active faults are revealed by the relocated seismicity and the velocity structure, no geologically known faults corresponding to them and no surface active evidence ever observed. The geometries of the faults are obtained by analyzing the hypocentral distribution pattern and focal mechanism. The focal mechanism solutions indicate that all the revealed faults are dominated in strike-slip mechanisms, or with some thrust components. While the previous fault investigation and detection results show that most of the Quaternary faults in southeastern China are dominated by normal movement. It suggests that there may exist two fault systems in deep and shallow tectonic regimes. The revealed faults may construct the deep one that act as the seismogenic faults, and the normal faults at shallow cannot generate the destructive earthquakes. The variation in the Curie-point depths agrees well with the structure plane of the revealed active faults, suggesting that the faults may have changed the deep structure.
NASA Astrophysics Data System (ADS)
Khawaja, Taimoor Saleem
A high-belief low-overhead Prognostics and Health Management (PHM) system is desired for online real-time monitoring of complex non-linear systems operating in a complex (possibly non-Gaussian) noise environment. This thesis presents a Bayesian Least Squares Support Vector Machine (LS-SVM) based framework for fault diagnosis and failure prognosis in nonlinear non-Gaussian systems. The methodology assumes the availability of real-time process measurements, definition of a set of fault indicators and the existence of empirical knowledge (or historical data) to characterize both nominal and abnormal operating conditions. An efficient yet powerful Least Squares Support Vector Machine (LS-SVM) algorithm, set within a Bayesian Inference framework, not only allows for the development of real-time algorithms for diagnosis and prognosis but also provides a solid theoretical framework to address key concepts related to classification for diagnosis and regression modeling for prognosis. SVM machines are founded on the principle of Structural Risk Minimization (SRM) which tends to find a good trade-off between low empirical risk and small capacity. The key features in SVM are the use of non-linear kernels, the absence of local minima, the sparseness of the solution and the capacity control obtained by optimizing the margin. The Bayesian Inference framework linked with LS-SVMs allows a probabilistic interpretation of the results for diagnosis and prognosis. Additional levels of inference provide the much coveted features of adaptability and tunability of the modeling parameters. The two main modules considered in this research are fault diagnosis and failure prognosis. With the goal of designing an efficient and reliable fault diagnosis scheme, a novel Anomaly Detector is suggested based on the LS-SVM machines. The proposed scheme uses only baseline data to construct a 1-class LS-SVM machine which, when presented with online data is able to distinguish between normal behavior and any abnormal or novel data during real-time operation. The results of the scheme are interpreted as a posterior probability of health (1 - probability of fault). As shown through two case studies in Chapter 3, the scheme is well suited for diagnosing imminent faults in dynamical non-linear systems. Finally, the failure prognosis scheme is based on an incremental weighted Bayesian LS-SVR machine. It is particularly suited for online deployment given the incremental nature of the algorithm and the quick optimization problem solved in the LS-SVR algorithm. By way of kernelization and a Gaussian Mixture Modeling (GMM) scheme, the algorithm can estimate "possibly" non-Gaussian posterior distributions for complex non-linear systems. An efficient regression scheme associated with the more rigorous core algorithm allows for long-term predictions, fault growth estimation with confidence bounds and remaining useful life (RUL) estimation after a fault is detected. The leading contributions of this thesis are (a) the development of a novel Bayesian Anomaly Detector for efficient and reliable Fault Detection and Identification (FDI) based on Least Squares Support Vector Machines, (b) the development of a data-driven real-time architecture for long-term Failure Prognosis using Least Squares Support Vector Machines, (c) Uncertainty representation and management using Bayesian Inference for posterior distribution estimation and hyper-parameter tuning, and finally (d) the statistical characterization of the performance of diagnosis and prognosis algorithms in order to relate the efficiency and reliability of the proposed schemes.
Simultaneous fault detection and control design for switched systems with two quantized signals.
Li, Jian; Park, Ju H; Ye, Dan
2017-01-01
The problem of simultaneous fault detection and control design for switched systems with two quantized signals is presented in this paper. Dynamic quantizers are employed, respectively, before the output is passed to fault detector, and before the control input is transmitted to the switched system. Taking the quantized errors into account, the robust performance for this kind of system is given. Furthermore, sufficient conditions for the existence of fault detector/controller are presented in the framework of linear matrix inequalities, and fault detector/controller gains and the supremum of quantizer range are derived by a convex optimized method. Finally, two illustrative examples demonstrate the effectiveness of the proposed method. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Fuzzy logic based on-line fault detection and classification in transmission line.
Adhikari, Shuma; Sinha, Nidul; Dorendrajit, Thingam
2016-01-01
This study presents fuzzy logic based online fault detection and classification of transmission line using Programmable Automation and Control technology based National Instrument Compact Reconfigurable i/o (CRIO) devices. The LabVIEW software combined with CRIO can perform real time data acquisition of transmission line. When fault occurs in the system current waveforms are distorted due to transients and their pattern changes according to the type of fault in the system. The three phase alternating current, zero sequence and positive sequence current data generated by LabVIEW through CRIO-9067 are processed directly for relaying. The result shows that proposed technique is capable of right tripping action and classification of type of fault at high speed therefore can be employed in practical application.
Interface For Fault-Tolerant Control System
NASA Technical Reports Server (NTRS)
Shaver, Charles; Williamson, Michael
1989-01-01
Interface unit and controller emulator developed for research on electronic helicopter-flight-control systems equipped with artificial intelligence. Interface unit interrupt-driven system designed to link microprocessor-based, quadruply-redundant, asynchronous, ultra-reliable, fault-tolerant control system (controller) with electronic servocontrol unit that controls set of hydraulic actuators. Receives digital feedforward messages from, and transmits digital feedback messages to, controller through differential signal lines or fiber-optic cables (thus far only differential signal lines have been used). Analog signals transmitted to and from servocontrol unit via coaxial cables.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, L.; Britt, J.; Birkmire, R.
ITN Energy Systems, Inc., and Global Solar Energy, Inc., assisted by NREL's PV Manufacturing R&D program, have continued to advance CIGS production technology by developing trajectory-oriented predictive/control models, fault-tolerance control, control platform development, in-situ sensors, and process improvements. Modeling activities included developing physics-based and empirical models for CIGS and sputter-deposition processing, implementing model-based control, and applying predictive models to the construction of new evaporation sources and for control. Model-based control is enabled by implementing reduced or empirical models into a control platform. Reliability improvement activities include implementing preventive maintenance schedules; detecting failed sensors/equipment and reconfiguring to tinue processing; and systematicmore » development of fault prevention and reconfiguration strategies for the full range of CIGS PV production deposition processes. In-situ sensor development activities have resulted in improved control and indicated the potential for enhanced process status monitoring and control of the deposition processes. Substantial process improvements have been made, including significant improvement in CIGS uniformity, thickness control, efficiency, yield, and throughput. In large measure, these gains have been driven by process optimization, which in turn have been enabled by control and reliability improvements due to this PV Manufacturing R&D program.« less
Chiaramonte, Thalita; Tizei, Luiz H G; Ugarte, Daniel; Cotta, Mônica A
2011-05-11
InP nanowire polytypic growth was thoroughly studied using electron microscopy techniques as a function of the In precursor flow. The dominant InP crystal structure is wurtzite, and growth parameters determine the density of stacking faults (SF) and zinc blende segments along the nanowires (NWs). Our results show that SF formation in InP NWs cannot be univocally attributed to the droplet supersaturation, if we assume this variable to be proportional to the ex situ In atomic concentration at the catalyst particle. An imbalance between this concentration and the axial growth rate was detected for growth conditions associated with larger SF densities along the NWs, suggesting a different route of precursor incorporation at the triple phase line in that case. The formation of SFs can be further enhanced by varying the In supply during growth and is suppressed for small diameter NWs grown under the same conditions. We attribute the observed behaviors to kinetically driven roughening of the semiconductor/metal interface. The consequent deformation of the triple phase line increases the probability of a phase change at the growth interface in an effort to reach local minima of system interface and surface energy.
Transient Faults in Computer Systems
NASA Technical Reports Server (NTRS)
Masson, Gerald M.
1993-01-01
A powerful technique particularly appropriate for the detection of errors caused by transient faults in computer systems was developed. The technique can be implemented in either software or hardware; the research conducted thus far primarily considered software implementations. The error detection technique developed has the distinct advantage of having provably complete coverage of all errors caused by transient faults that affect the output produced by the execution of a program. In other words, the technique does not have to be tuned to a particular error model to enhance error coverage. Also, the correctness of the technique can be formally verified. The technique uses time and software redundancy. The foundation for an effective, low-overhead, software-based certification trail approach to real-time error detection resulting from transient fault phenomena was developed.
Fault Detection and Severity Analysis of Servo Valves Using Recurrence Quantification Analysis
2014-10-02
Fault Detection and Severity Analysis of Servo Valves Using Recurrence Quantification Analysis M. Samadani1, C. A. Kitio Kwuimy2, and C. Nataraj3...diagnostics of nonlinear systems. A detailed nonlinear math- ematical model of a servo electro-hydraulic system has been used to demonstrate the procedure...Two faults have been considered associated with the servo valve including the in- creased friction between spool and sleeve and the degradation of the
Rutter, Ernest; Hackston, Abigail
2017-09-28
Fluid injection into rocks is increasingly used for energy extraction and for fluid wastes disposal, and can trigger/induce small- to medium-scale seismicity. Fluctuations in pore fluid pressure may also be associated with natural seismicity. The energy release in anthropogenically induced seismicity is sensitive to amount and pressure of fluid injected, through the way that seismic moment release is related to slipped area, and is strongly affected by the hydraulic conductance of the faulted rock mass. Bearing in mind the scaling issues that apply, fluid injection-driven fault motion can be studied on laboratory-sized samples. Here, we investigate both stable and unstable induced fault slip on pre-cut planar surfaces in Darley Dale and Pennant sandstones, with or without granular gouge. They display contrasting permeabilities, differing by a factor of 10 5 , but mineralogies are broadly comparable. In permeable Darley Dale sandstone, fluid can access the fault plane through the rock matrix and the effective stress law is followed closely. Pore pressure change shifts the whole Mohr circle laterally. In tight Pennant sandstone, fluid only injects into the fault plane itself; stress state in the rock matrix is unaffected. Sudden access by overpressured fluid to the fault plane via hydrofracture causes seismogenic fault slips.This article is part of the themed issue 'Faulting, friction and weakening: from slow to fast motion'. © 2017 The Authors.
NASA Astrophysics Data System (ADS)
Rutter, Ernest; Hackston, Abigail
2017-08-01
Fluid injection into rocks is increasingly used for energy extraction and for fluid wastes disposal, and can trigger/induce small- to medium-scale seismicity. Fluctuations in pore fluid pressure may also be associated with natural seismicity. The energy release in anthropogenically induced seismicity is sensitive to amount and pressure of fluid injected, through the way that seismic moment release is related to slipped area, and is strongly affected by the hydraulic conductance of the faulted rock mass. Bearing in mind the scaling issues that apply, fluid injection-driven fault motion can be studied on laboratory-sized samples. Here, we investigate both stable and unstable induced fault slip on pre-cut planar surfaces in Darley Dale and Pennant sandstones, with or without granular gouge. They display contrasting permeabilities, differing by a factor of 105, but mineralogies are broadly comparable. In permeable Darley Dale sandstone, fluid can access the fault plane through the rock matrix and the effective stress law is followed closely. Pore pressure change shifts the whole Mohr circle laterally. In tight Pennant sandstone, fluid only injects into the fault plane itself; stress state in the rock matrix is unaffected. Sudden access by overpressured fluid to the fault plane via hydrofracture causes seismogenic fault slips. This article is part of the themed issue 'Faulting, friction and weakening: from slow to fast motion'.
Hackston, Abigail
2017-01-01
Fluid injection into rocks is increasingly used for energy extraction and for fluid wastes disposal, and can trigger/induce small- to medium-scale seismicity. Fluctuations in pore fluid pressure may also be associated with natural seismicity. The energy release in anthropogenically induced seismicity is sensitive to amount and pressure of fluid injected, through the way that seismic moment release is related to slipped area, and is strongly affected by the hydraulic conductance of the faulted rock mass. Bearing in mind the scaling issues that apply, fluid injection-driven fault motion can be studied on laboratory-sized samples. Here, we investigate both stable and unstable induced fault slip on pre-cut planar surfaces in Darley Dale and Pennant sandstones, with or without granular gouge. They display contrasting permeabilities, differing by a factor of 105, but mineralogies are broadly comparable. In permeable Darley Dale sandstone, fluid can access the fault plane through the rock matrix and the effective stress law is followed closely. Pore pressure change shifts the whole Mohr circle laterally. In tight Pennant sandstone, fluid only injects into the fault plane itself; stress state in the rock matrix is unaffected. Sudden access by overpressured fluid to the fault plane via hydrofracture causes seismogenic fault slips. This article is part of the themed issue ‘Faulting, friction and weakening: from slow to fast motion’. PMID:28827423
The Trans-Rocky Mountain Fault System - A Fundamental Precambrian Strike-Slip System
Sims, P.K.
2009-01-01
Recognition of a major Precambrian continental-scale, two-stage conjugate strike-slip fault system - here designated as the Trans-Rocky Mountain fault system - provides new insights into the architecture of the North American continent. The fault system consists chiefly of steep linear to curvilinear, en echelon, braided and branching ductile-brittle shears and faults, and local coeval en echelon folds of northwest strike, that cut indiscriminately across both Proterozoic and Archean cratonic elements. The fault system formed during late stages of two distinct tectonic episodes: Neoarchean and Paleoproterozoic orogenies at about 2.70 and 1.70 billion years (Ga). In the Archean Superior province, the fault system formed (about 2.70-2.65 Ga) during a late stage of the main deformation that involved oblique shortening (dextral transpression) across the region and progressed from crystal-plastic to ductile-brittle deformation. In Paleoproterozoic terranes, the fault system formed about 1.70 Ga, shortly following amalgamation of Paleoproterozoic and Archean terranes and the main Paleoproterozoic plastic-fabric-producing events in the protocontinent, chiefly during sinistral transpression. The postulated driving force for the fault system is subcontinental mantle deformation, the bottom-driven deformation of previous investigators. This model, based on seismic anisotropy, invokes mechanical coupling and subsequent shear between the lithosphere and the asthenosphere such that a major driving force for plate motion is deep-mantle flow.
Experiments in fault tolerant software reliability
NASA Technical Reports Server (NTRS)
Mcallister, David F.; Vouk, Mladen A.
1989-01-01
Twenty functionally equivalent programs were built and tested in a multiversion software experiment. Following unit testing, all programs were subjected to an extensive system test. In the process sixty-one distinct faults were identified among the versions. Less than 12 percent of the faults exhibited varying degrees of positive correlation. The common-cause (or similar) faults spanned as many as 14 components. However, a majority of these faults were trivial, and easily detected by proper unit and/or system testing. Only two of the seven similar faults were difficult faults, and both were caused by specification ambiguities. One of these faults exhibited variable identical-and-wrong response span, i.e. response span which varied with the testing conditions and input data. Techniques that could have been used to avoid the faults are discussed. For example, it was determined that back-to-back testing of 2-tuples could have been used to eliminate about 90 percent of the faults. In addition, four of the seven similar faults could have been detected by using back-to-back testing of 5-tuples. It is believed that most, if not all, similar faults could have been avoided had the specifications been written using more formal notation, the unit testing phase was subject to more stringent standards and controls, and better tools for measuring the quality and adequacy of the test data (e.g. coverage) were used.
NASA Astrophysics Data System (ADS)
Tian, Xiange; Xi Gu, James; Rehab, Ibrahim; Abdalla, Gaballa M.; Gu, Fengshou; Ball, A. D.
2018-02-01
Envelope analysis is a widely used method for rolling element bearing fault detection. To obtain high detection accuracy, it is critical to determine an optimal frequency narrowband for the envelope demodulation. However, many of the schemes which are used for the narrowband selection, such as the Kurtogram, can produce poor detection results because they are sensitive to random noise and aperiodic impulses which normally occur in practical applications. To achieve the purposes of denoising and frequency band optimisation, this paper proposes a novel modulation signal bispectrum (MSB) based robust detector for bearing fault detection. Because of its inherent noise suppression capability, the MSB allows effective suppression of both stationary random noise and discrete aperiodic noise. The high magnitude features that result from the use of the MSB also enhance the modulation effects of a bearing fault and can be used to provide optimal frequency bands for fault detection. The Kurtogram is generally accepted as a powerful means of selecting the most appropriate frequency band for envelope analysis, and as such it has been used as the benchmark comparator for performance evaluation in this paper. Both simulated and experimental data analysis results show that the proposed method produces more accurate and robust detection results than Kurtogram based approaches for common bearing faults under a range of representative scenarios.
Simultaneous-Fault Diagnosis of Gearboxes Using Probabilistic Committee Machine
Zhong, Jian-Hua; Wong, Pak Kin; Yang, Zhi-Xin
2016-01-01
This study combines signal de-noising, feature extraction, two pairwise-coupled relevance vector machines (PCRVMs) and particle swarm optimization (PSO) for parameter optimization to form an intelligent diagnostic framework for gearbox fault detection. Firstly, the noises of sensor signals are de-noised by using the wavelet threshold method to lower the noise level. Then, the Hilbert-Huang transform (HHT) and energy pattern calculation are applied to extract the fault features from de-noised signals. After that, an eleven-dimension vector, which consists of the energies of nine intrinsic mode functions (IMFs), maximum value of HHT marginal spectrum and its corresponding frequency component, is obtained to represent the features of each gearbox fault. The two PCRVMs serve as two different fault detection committee members, and they are trained by using vibration and sound signals, respectively. The individual diagnostic result from each committee member is then combined by applying a new probabilistic ensemble method, which can improve the overall diagnostic accuracy and increase the number of detectable faults as compared to individual classifiers acting alone. The effectiveness of the proposed framework is experimentally verified by using test cases. The experimental results show the proposed framework is superior to existing single classifiers in terms of diagnostic accuracies for both single- and simultaneous-faults in the gearbox. PMID:26848665
Simultaneous-Fault Diagnosis of Gearboxes Using Probabilistic Committee Machine.
Zhong, Jian-Hua; Wong, Pak Kin; Yang, Zhi-Xin
2016-02-02
This study combines signal de-noising, feature extraction, two pairwise-coupled relevance vector machines (PCRVMs) and particle swarm optimization (PSO) for parameter optimization to form an intelligent diagnostic framework for gearbox fault detection. Firstly, the noises of sensor signals are de-noised by using the wavelet threshold method to lower the noise level. Then, the Hilbert-Huang transform (HHT) and energy pattern calculation are applied to extract the fault features from de-noised signals. After that, an eleven-dimension vector, which consists of the energies of nine intrinsic mode functions (IMFs), maximum value of HHT marginal spectrum and its corresponding frequency component, is obtained to represent the features of each gearbox fault. The two PCRVMs serve as two different fault detection committee members, and they are trained by using vibration and sound signals, respectively. The individual diagnostic result from each committee member is then combined by applying a new probabilistic ensemble method, which can improve the overall diagnostic accuracy and increase the number of detectable faults as compared to individual classifiers acting alone. The effectiveness of the proposed framework is experimentally verified by using test cases. The experimental results show the proposed framework is superior to existing single classifiers in terms of diagnostic accuracies for both single- and simultaneous-faults in the gearbox.
NASA Astrophysics Data System (ADS)
Davoodi, M.; Meskin, N.; Khorasani, K.
2018-03-01
The problem of simultaneous fault detection, isolation and tracking (SFDIT) control design for linear systems subject to both bounded energy and bounded peak disturbances is considered in this work. A dynamic observer is proposed and implemented by using the H∞/H-/L1 formulation of the SFDIT problem. A single dynamic observer module is designed that generates the residuals as well as the control signals. The objective of the SFDIT module is to ensure that simultaneously the effects of disturbances and control signals on the residual signals are minimised (in order to accomplish the fault detection goal) subject to the constraint that the transfer matrix from the faults to the residuals is equal to a pre-assigned diagonal transfer matrix (in order to accomplish the fault isolation goal), while the effects of disturbances, reference inputs and faults on the specified control outputs are minimised (in order to accomplish the fault-tolerant and tracking control goals). A set of linear matrix inequality (LMI) feasibility conditions are derived to ensure solvability of the problem. In order to illustrate and demonstrate the effectiveness of our proposed design methodology, the developed and proposed schemes are applied to an autonomous unmanned underwater vehicle (AUV).
NASA Astrophysics Data System (ADS)
Yu, Jing-xing; Zheng, Wen-jun; Zhang, Pei-zhen; Lei, Qi-yun; Wang, Xu-long; Wang, Wei-tao; Li, Xin-nan; Zhang, Ning
2017-11-01
The Hexi Corridor and the southern Gobi Alashan are composed of discontinuous a set of active faults with various strikes and slip motions that are located to the north of the northern Tibetan Plateau. Despite growing understanding of the geometry and kinematics of these active faults, the late Quaternary deformation pattern in the Hexi Corridor and the southern Gobi Alashan remains controversial. The active E-W trending Taohuala Shan-Ayouqi fault zone is located in the southern Gobi Alashan. Study of the geometry and nature of slip along this fault zone holds crucial value for better understanding the regional deformation pattern. Field investigations combined with high-resolution imagery show that the Taohuala Shan fault and the E-W trending faults within the Ayouqi fault zone (F2 and F5) are left-lateral strike-slip faults, whereas the NW or WNW-trending faults within the Ayouqi fault zone (F1 and F3) are reverse faults. We collected Optically Stimulated Luminescence (OSL) and cosmogenic exposure age dating samples from offset alluvial fan surfaces, and estimated a vertical slip rate of 0.1-0.3 mm/yr, and a strike-slip rate of 0.14-0.93 mm/yr for the Taohuala Shan fault. Strata revealed in a trench excavated across the major fault (F5) in the Ayouqi fault zone and OSL dating results indicate that the most recent earthquake occurred between ca. 11.05 ± 0.52 ka and ca. 4.06 ± 0.29 ka. The geometry and kinematics of the Taohuala Shan-Ayouqi fault zone enable us to build a deformation pattern for the entire Hexi Corridor and the southern Gobi Alashan, which suggest that this region experiences northeastward oblique extrusion of the northern Tibetan Plateau. These left-lateral strike-slip faults in the region are driven by oblique compression but not associated with the northeastward extension of the Altyn Tagh fault.
Fault detection for piecewise affine systems with application to ship propulsion systems.
Yang, Ying; Linlin, Li; Ding, Steven X; Qiu, Jianbin; Peng, Kaixiang
2017-09-09
In this paper, the design approach of non-synchronized diagnostic observer-based fault detection (FD) systems is investigated for piecewise affine processes via continuous piecewise Lyapunov functions. Considering that the dynamics of piecewise affine systems in different regions can be considerably different, the weighting matrices are used to weight the residual of each region, so as to optimize the fault detectability. A numerical example and a case study on a ship propulsion system are presented in the end to demonstrate the effectiveness of the proposed results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Critical fault patterns determination in fault-tolerant computer systems
NASA Technical Reports Server (NTRS)
Mccluskey, E. J.; Losq, J.
1978-01-01
The method proposed tries to enumerate all the critical fault-patterns (successive occurrences of failures) without analyzing every single possible fault. The conditions for the system to be operating in a given mode can be expressed in terms of the static states. Thus, one can find all the system states that correspond to a given critical mode of operation. The next step consists in analyzing the fault-detection mechanisms, the diagnosis algorithm and the process of switch control. From them, one can find all the possible system configurations that can result from a failure occurrence. Thus, one can list all the characteristics, with respect to detection, diagnosis, and switch control, that failures must have to constitute critical fault-patterns. Such an enumeration of the critical fault-patterns can be directly used to evaluate the overall system tolerance to failures. Present research is focused on how to efficiently make use of these system-level characteristics to enumerate all the failures that verify these characteristics.
Fault Diagnosis for Centre Wear Fault of Roll Grinder Based on a Resonance Demodulation Scheme
NASA Astrophysics Data System (ADS)
Wang, Liming; Shao, Yimin; Yin, Lei; Yuan, Yilin; Liu, Jing
2017-05-01
Roll grinder is one of the important parts in the rolling machinery, and the grinding precision of roll surface has direct influence on the surface quality of steel strip. However, during the grinding process, the centre bears the gravity of the roll and alternating stress. Therefore, wear or spalling faults are easily observed on the centre, which will lead to an anomalous vibration of the roll grinder. In this study, a resonance demodulation scheme is proposed to detect the centre wear fault of roll grinder. Firstly, fast kurtogram method is employed to help select the sub-band filter parameters for optimal resonance demodulation. Further, the envelope spectrum are derived based on the filtered signal. Finally, two health indicators are designed to conduct the fault diagnosis for centre wear fault. The proposed scheme is assessed by analysing experimental data from a roll grinder of twenty-high rolling mill. The results show that the proposed scheme can effectively detect the centre wear fault of the roll grinder.
An Indirect Adaptive Control Scheme in the Presence of Actuator and Sensor Failures
NASA Technical Reports Server (NTRS)
Sun, Joy Z.; Josh, Suresh M.
2009-01-01
The problem of controlling a system in the presence of unknown actuator and sensor faults is addressed. The system is assumed to have groups of actuators, and groups of sensors, with each group consisting of multiple redundant similar actuators or sensors. The types of actuator faults considered consist of unknown actuators stuck in unknown positions, as well as reduced actuator effectiveness. The sensor faults considered include unknown biases and outages. The approach employed for fault detection and estimation consists of a bank of Kalman filters based on multiple models, and subsequent control reconfiguration to mitigate the effect of biases caused by failed components as well as to obtain stability and satisfactory performance using the remaining actuators and sensors. Conditions for fault identifiability are presented, and the adaptive scheme is applied to an aircraft flight control example in the presence of actuator failures. Simulation results demonstrate that the method can rapidly and accurately detect faults and estimate the fault values, thus enabling safe operation and acceptable performance in spite of failures.
Built-in-test by signature inspection (bitsi)
Bergeson, Gary C.; Morneau, Richard A.
1991-01-01
A system and method for fault detection for electronic circuits. A stimulus generator sends a signal to the input of the circuit under test. Signature inspection logic compares the resultant signal from test nodes on the circuit to an expected signal. If the signals do not match, the signature inspection logic sends a signal to the control logic for indication of fault detection in the circuit. A data input multiplexer between the test nodes of the circuit under test and the signature inspection logic can provide for identification of the specific node at fault by the signature inspection logic. Control logic responsive to the signature inspection logic conveys information about fault detection for use in determining the condition of the circuit. When used in conjunction with a system test controller, the built-in test by signature inspection system and method can be used to poll a plurality of circuits automatically and continuous for faults and record the results of such polling in the system test controller.
Fault detection and accommodation testing on an F100 engine in an F-15 airplane
NASA Technical Reports Server (NTRS)
Myers, L. P.; Baer-Riedhart, J. L.; Maxwell, M. D.
1985-01-01
The fault detection and accommodation (FDA) methodology for digital engine-control systems may range from simple comparisons of redundant parameters to the more complex and sophisticated observer models of the entire engine system. Evaluations of the various FDA schemes are done using analytical methods, simulation, and limited-altitude-facility testing. Flight testing of the FDA logic has been minimal because of the difficulty of inducing realistic faults in flight. A flight program was conducted to evaluate the fault detection and accommodation capability of a digital electronic engine control in an F-15 aircraft. The objective of the flight program was to induce selected faults and evaluate the resulting actions of the digital engine controller. Comparisons were made between the flight results and predictions. Several anomalies were found in flight and during the ground test. Simulation results showed that the inducement of dual pressure failures was not feasible since the FDA logic was not designed to accommodate these types of failures.
Weak Fault Feature Extraction of Rolling Bearings Based on an Improved Kurtogram
Chen, Xianglong; Feng, Fuzhou; Zhang, Bingzhi
2016-01-01
Kurtograms have been verified to be an efficient tool in bearing fault detection and diagnosis because of their superiority in extracting transient features. However, the short-time Fourier Transform is insufficient in time-frequency analysis and kurtosis is deficient in detecting cyclic transients. Those factors weaken the performance of the original kurtogram in extracting weak fault features. Correlated Kurtosis (CK) is then designed, as a more effective solution, in detecting cyclic transients. Redundant Second Generation Wavelet Packet Transform (RSGWPT) is deemed to be effective in capturing more detailed local time-frequency description of the signal, and restricting the frequency aliasing components of the analysis results. The authors in this manuscript, combining the CK with the RSGWPT, propose an improved kurtogram to extract weak fault features from bearing vibration signals. The analysis of simulation signals and real application cases demonstrate that the proposed method is relatively more accurate and effective in extracting weak fault features. PMID:27649171
NASA Astrophysics Data System (ADS)
Li, Yifan; Liang, Xihui; Lin, Jianhui; Chen, Yuejian; Liu, Jianxin
2018-02-01
This paper presents a novel signal processing scheme, feature selection based multi-scale morphological filter (MMF), for train axle bearing fault detection. In this scheme, more than 30 feature indicators of vibration signals are calculated for axle bearings with different conditions and the features which can reflect fault characteristics more effectively and representatively are selected using the max-relevance and min-redundancy principle. Then, a filtering scale selection approach for MMF based on feature selection and grey relational analysis is proposed. The feature selection based MMF method is tested on diagnosis of artificially created damages of rolling bearings of railway trains. Experimental results show that the proposed method has a superior performance in extracting fault features of defective train axle bearings. In addition, comparisons are performed with the kurtosis criterion based MMF and the spectral kurtosis criterion based MMF. The proposed feature selection based MMF method outperforms these two methods in detection of train axle bearing faults.
Detection of Frictional Heating on Faults Using Raman Spectra of Carbonaceous Material
NASA Astrophysics Data System (ADS)
Ito, K.; Ujiie, K.; Kagi, H.
2017-12-01
Raman spectra of carbonaceous material (RSCM) have been used as geothermometer in sedimentary and metamorphic rocks. However, it remains poorly understood whether RSCM are useful for detecting past frictional heating on faults. To detect increased heating during seismic slip, we examine the thrust fault in the Jurassic accretionary complex, central Japan. The thrust fault zone includes 10 cm-thick cataclasite and a few mm-thick dark layer. The cataclasite is characterized by fragments of black and gray chert in the black carbonaceous mudstone matrix. The dark layer is marked by intensely cracked gray chert fragments in the dark matrix of carbonaceous mudstone composition, which bounds the fractured gray chert above from the cataclasite below. The RSCM are analyzed for carbonaceous material in the cataclasite, dark layer, and host rock <10 mm from cataclasite and dark layer boundaries. The result indicates that there is no increased carbonization in the cataclasite. In contrast, the dark layer and part of host rocks <2 mm from the dark layer boundaries show prominent increase in carbonization. The absent of increased carbonization in the cataclasite could be attributed to insufficient frictional heating associated with distributed shear and/or faulting at low slip rates. The dark layer exhibits the appearance of fault and injection veins, and the dark layer boundaries are irregularly embayed or intensely cracked; these features have been characteristically observed in pseudotachylytes. Therefore, the increased carbonization in the dark layer is likely resulted from increased heating during earthquake faulting. The intensely cracked fragments in the dark layer and cracked wall rocks may reflect thermal fracturing in chert, which is caused by heat conduction from the molten zone. We suggest that RSCM are useful for the detection of increased heating on faults, particularly when the temperature is high enough for frictional melting and thermal fracturing.
Sensor fault-tolerant control for gear-shifting engaging process of automated manual transmission
NASA Astrophysics Data System (ADS)
Li, Liang; He, Kai; Wang, Xiangyu; Liu, Yahui
2018-01-01
Angular displacement sensor on the actuator of automated manual transmission (AMT) is sensitive to fault, and the sensor fault will disturb its normal control, which affects the entire gear-shifting process of AMT and results in awful riding comfort. In order to solve this problem, this paper proposes a method of fault-tolerant control for AMT gear-shifting engaging process. By using the measured current of actuator motor and angular displacement of actuator, the gear-shifting engaging load torque table is built and updated before the occurrence of the sensor fault. Meanwhile, residual between estimated and measured angular displacements is used to detect the sensor fault. Once the residual exceeds a determined fault threshold, the sensor fault is detected. Then, switch control is triggered, and the current observer and load torque table estimates an actual gear-shifting position to replace the measured one to continue controlling the gear-shifting process. Numerical and experiment tests are carried out to evaluate the reliability and feasibility of proposed methods, and the results show that the performance of estimation and control is satisfactory.
NASA Technical Reports Server (NTRS)
Johnson, Stephen B.; Ghoshal, Sudipto; Haste, Deepak; Moore, Craig
2017-01-01
This paper describes the theory and considerations in the application of metrics to measure the effectiveness of fault management. Fault management refers here to the operational aspect of system health management, and as such is considered as a meta-control loop that operates to preserve or maximize the system's ability to achieve its goals in the face of current or prospective failure. As a suite of control loops, the metrics to estimate and measure the effectiveness of fault management are similar to those of classical control loops in being divided into two major classes: state estimation, and state control. State estimation metrics can be classified into lower-level subdivisions for detection coverage, detection effectiveness, fault isolation and fault identification (diagnostics), and failure prognosis. State control metrics can be classified into response determination effectiveness and response effectiveness. These metrics are applied to each and every fault management control loop in the system, for each failure to which they apply, and probabilistically summed to determine the effectiveness of these fault management control loops to preserve the relevant system goals that they are intended to protect.
Talhaoui, Hicham; Menacer, Arezki; Kessal, Abdelhalim; Kechida, Ridha
2014-09-01
This paper presents new techniques to evaluate faults in case of broken rotor bars of induction motors. Procedures are applied with closed-loop control. Electrical and mechanical variables are treated using fast Fourier transform (FFT), and discrete wavelet transform (DWT) at start-up and steady state. The wavelet transform has proven to be an excellent mathematical tool for the detection of the faults particularly broken rotor bars type. As a performance, DWT can provide a local representation of the non-stationary current signals for the healthy machine and with fault. For sensorless control, a Luenberger observer is applied; the estimation rotor speed is analyzed; the effect of the faults in the speed pulsation is compensated; a quadratic current appears and used for fault detection. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Optimal Sensor Allocation for Fault Detection and Isolation
NASA Technical Reports Server (NTRS)
Azam, Mohammad; Pattipati, Krishna; Patterson-Hine, Ann
2004-01-01
Automatic fault diagnostic schemes rely on various types of sensors (e.g., temperature, pressure, vibration, etc) to measure the system parameters. Efficacy of a diagnostic scheme is largely dependent on the amount and quality of information available from these sensors. The reliability of sensors, as well as the weight, volume, power, and cost constraints, often makes it impractical to monitor a large number of system parameters. An optimized sensor allocation that maximizes the fault diagnosibility, subject to specified weight, volume, power, and cost constraints is required. Use of optimal sensor allocation strategies during the design phase can ensure better diagnostics at a reduced cost for a system incorporating a high degree of built-in testing. In this paper, we propose an approach that employs multiple fault diagnosis (MFD) and optimization techniques for optimal sensor placement for fault detection and isolation (FDI) in complex systems. Keywords: sensor allocation, multiple fault diagnosis, Lagrangian relaxation, approximate belief revision, multidimensional knapsack problem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Huijuan; Diao, Xiaoxu; Li, Boyuan
This paper studies the propagation and effects of faults of critical components that pertain to the secondary loop of a nuclear power plant found in Nuclear Hybrid Energy Systems (NHES). This information is used to design an on-line monitoring (OLM) system which is capable of detecting and forecasting faults that are likely to occur during NHES operation. In this research, the causes, features, and effects of possible faults are investigated by simulating the propagation of faults in the secondary loop. The simulation is accomplished by using the Integrated System Failure Analysis (ISFA). ISFA is used for analyzing hardware and softwaremore » faults during the conceptual design phase. In this paper, the models of system components required by ISFA are initially constructed. Then, the fault propagation analysis is implemented, which is conducted under the bounds set by acceptance criteria derived from the design of an OLM system. The result of the fault simulation is utilized to build a database for fault detection and diagnosis, provide preventive measures, and propose an optimization plan for the OLM system.« less
Modelling crash propensity of carshare members.
Dixit, Vinayak; Rashidi, Taha Hossein
2014-09-01
Carshare systems are considered a promising solution for sustainable development of cities. To promote carsharing it is imperative to make them cost effective, which includes reduction in costs associated to crashes and insurance. To achieve this goal, it is important to characterize carshare users involved in crashes and understand factors that can explain at-fault and not-at fault drivers. This study utilizes data from GoGet carshare users in Sydney, Australia. Based on this study it was found that carshare users who utilize cars less frequently, own one or more cars, have less number of accidents in the past ten years, have chosen a higher insurance excess and have had a license for a longer period of time are less likely to be involved in a crash. However, if a crash occurs, carshare users not needing a car on the weekend, driving less than 1000km in the last year, rarely using a car and having an Australian license increases the likelihood to be at-fault. Since the dataset contained information about all members as well as not-at-fault drivers, it provided a unique opportunity to explore some aspects of quasi-induced exposure. The results indicate systematic differences in the distribution between the not-at-fault drivers and the carshare members based on the kilometres driven last year, main mode of travel, car ownership status and how often the car is needed. Finally, based on this study it is recommended that creating an incentive structure based on training and experience (based on kilometres driven), possibly tagged to the insurance excess could improve safety, and reduce costs associated to crashes for carshare systems. Copyright © 2014 Elsevier Ltd. All rights reserved.
Real-time diagnostics for a reusable rocket engine
NASA Technical Reports Server (NTRS)
Guo, T. H.; Merrill, W.; Duyar, A.
1992-01-01
A hierarchical, decentralized diagnostic system is proposed for the Real-Time Diagnostic System component of the Intelligent Control System (ICS) for reusable rocket engines. The proposed diagnostic system has three layers of information processing: condition monitoring, fault mode detection, and expert system diagnostics. The condition monitoring layer is the first level of signal processing. Here, important features of the sensor data are extracted. These processed data are then used by the higher level fault mode detection layer to do preliminary diagnosis on potential faults at the component level. Because of the closely coupled nature of the rocket engine propulsion system components, it is expected that a given engine condition may trigger more than one fault mode detector. Expert knowledge is needed to resolve the conflicting reports from the various failure mode detectors. This is the function of the diagnostic expert layer. Here, the heuristic nature of this decision process makes it desirable to use an expert system approach. Implementation of the real-time diagnostic system described above requires a wide spectrum of information processing capability. Generally, in the condition monitoring layer, fast data processing is often needed for feature extraction and signal conditioning. This is usually followed by some detection logic to determine the selected faults on the component level. Three different techniques are used to attack different fault detection problems in the NASA LeRC ICS testbed simulation. The first technique employed is the neural network application for real-time sensor validation which includes failure detection, isolation, and accommodation. The second approach demonstrated is the model-based fault diagnosis system using on-line parameter identification. Besides these model based diagnostic schemes, there are still many failure modes which need to be diagnosed by the heuristic expert knowledge. The heuristic expert knowledge is implemented using a real-time expert system tool called G2 by Gensym Corp. Finally, the distributed diagnostic system requires another level of intelligence to oversee the fault mode reports generated by component fault detectors. The decision making at this level can best be done using a rule-based expert system. This level of expert knowledge is also implemented using G2.
NASA Astrophysics Data System (ADS)
Yamashita, F.; Fukuyama, E.; Xu, S.; Kawakata, H.; Mizoguchi, K.; Takizawa, S.
2017-12-01
We report two types of foreshock activities observed on meter-scale laboratory experiments: slow-slip-driven type and cascade-up type. We used two rectangular metagabbro blocks as experimental specimens, whose nominal contacting area was 1.5 m long and 0.1 m wide. To monitor stress changes and seismic activities on the fault, we installed dense arrays of 32 triaxial rosette strain gauges and 64 PZT seismic sensors along the fault. We repeatedly conducted experiments with the same pair of rock specimens, causing the evolution of damage on the fault. We focus on two experiments successively conducted under the same loading condition (normal stress of 6.7 MPa and loading rate of 0.01 mm/s) but different initial fault surface conditions; the first experiment preserved the gouge generated from the previous experiment while the second experiment started with all gouge removed. Note that the distribution of gouge was heterogeneous, because we did not make the gouge layer uniform. We observed many foreshocks in both experiments, but found that the b-value of foreshocks was smaller in the first experiment with pre-existing gouge (PEG). In the second experiment without PEG, we observed premonitory slow slip associated with nucleation process preceding most main events by the strain measurements. We also found that foreshocks were triggered by the slow slip at the end of the nucleation process. In the experiment with PEG, on the contrary, no clear premonitory slow slips were found. Instead, foreshock activity accelerated towards the main event, as confirmed by a decreasing b-value. Spatiotemporal distribution of foreshock hypocenters suggests that foreshocks migrated and cascaded up to the main event. We infer that heterogeneous gouge distribution caused stress-concentrated and unstable patches, which impeded stable slow slip but promoted foreshocks on the fault. Further, our results suggest that b-value is a useful parameter for characterizing these observations.
NASA Technical Reports Server (NTRS)
Ferell, Bob; Lewis, Mark; Perotti, Jose; Oostdyk, Rebecca; Goerz, Jesse; Brown, Barbara
2010-01-01
This paper's main purpose is to detail issues and lessons learned regarding designing, integrating, and implementing Fault Detection Isolation and Recovery (FDIR) for Constellation Exploration Program (CxP) Ground Operations at Kennedy Space Center (KSC).
Orion GN&C Fault Management System Verification: Scope And Methodology
NASA Technical Reports Server (NTRS)
Brown, Denise; Weiler, David; Flanary, Ronald
2016-01-01
In order to ensure long-term ability to meet mission goals and to provide for the safety of the public, ground personnel, and any crew members, nearly all spacecraft include a fault management (FM) system. For a manned vehicle such as Orion, the safety of the crew is of paramount importance. The goal of the Orion Guidance, Navigation and Control (GN&C) fault management system is to detect, isolate, and respond to faults before they can result in harm to the human crew or loss of the spacecraft. Verification of fault management/fault protection capability is challenging due to the large number of possible faults in a complex spacecraft, the inherent unpredictability of faults, the complexity of interactions among the various spacecraft components, and the inability to easily quantify human reactions to failure scenarios. The Orion GN&C Fault Detection, Isolation, and Recovery (FDIR) team has developed a methodology for bounding the scope of FM system verification while ensuring sufficient coverage of the failure space and providing high confidence that the fault management system meets all safety requirements. The methodology utilizes a swarm search algorithm to identify failure cases that can result in catastrophic loss of the crew or the vehicle and rare event sequential Monte Carlo to verify safety and FDIR performance requirements.
Bunch, Richard H.
1986-01-01
A fault finder for locating faults along a high voltage electrical transmission line. Real time monitoring of background noise and improved filtering of input signals is used to identify the occurrence of a fault. A fault is detected at both a master and remote unit spaced along the line. A master clock synchronizes operation of a similar clock at the remote unit. Both units include modulator and demodulator circuits for transmission of clock signals and data. All data is received at the master unit for processing to determine an accurate fault distance calculation.
On-board fault management for autonomous spacecraft
NASA Technical Reports Server (NTRS)
Fesq, Lorraine M.; Stephan, Amy; Doyle, Susan C.; Martin, Eric; Sellers, Suzanne
1991-01-01
The dynamic nature of the Cargo Transfer Vehicle's (CTV) mission and the high level of autonomy required mandate a complete fault management system capable of operating under uncertain conditions. Such a fault management system must take into account the current mission phase and the environment (including the target vehicle), as well as the CTV's state of health. This level of capability is beyond the scope of current on-board fault management systems. This presentation will discuss work in progress at TRW to apply artificial intelligence to the problem of on-board fault management. The goal of this work is to develop fault management systems. This presentation will discuss work in progress at TRW to apply artificial intelligence to the problem of on-board fault management. The goal of this work is to develop fault management systems that can meet the needs of spacecraft that have long-range autonomy requirements. We have implemented a model-based approach to fault detection and isolation that does not require explicit characterization of failures prior to launch. It is thus able to detect failures that were not considered in the failure and effects analysis. We have applied this technique to several different subsystems and tested our approach against both simulations and an electrical power system hardware testbed. We present findings from simulation and hardware tests which demonstrate the ability of our model-based system to detect and isolate failures, and describe our work in porting the Ada version of this system to a flight-qualified processor. We also discuss current research aimed at expanding our system to monitor the entire spacecraft.
Simple Random Sampling-Based Probe Station Selection for Fault Detection in Wireless Sensor Networks
Huang, Rimao; Qiu, Xuesong; Rui, Lanlan
2011-01-01
Fault detection for wireless sensor networks (WSNs) has been studied intensively in recent years. Most existing works statically choose the manager nodes as probe stations and probe the network at a fixed frequency. This straightforward solution leads however to several deficiencies. Firstly, by only assigning the fault detection task to the manager node the whole network is out of balance, and this quickly overloads the already heavily burdened manager node, which in turn ultimately shortens the lifetime of the whole network. Secondly, probing with a fixed frequency often generates too much useless network traffic, which results in a waste of the limited network energy. Thirdly, the traditional algorithm for choosing a probing node is too complicated to be used in energy-critical wireless sensor networks. In this paper, we study the distribution characters of the fault nodes in wireless sensor networks, validate the Pareto principle that a small number of clusters contain most of the faults. We then present a Simple Random Sampling-based algorithm to dynamic choose sensor nodes as probe stations. A dynamic adjusting rule for probing frequency is also proposed to reduce the number of useless probing packets. The simulation experiments demonstrate that the algorithm and adjusting rule we present can effectively prolong the lifetime of a wireless sensor network without decreasing the fault detected rate. PMID:22163789
Huang, Rimao; Qiu, Xuesong; Rui, Lanlan
2011-01-01
Fault detection for wireless sensor networks (WSNs) has been studied intensively in recent years. Most existing works statically choose the manager nodes as probe stations and probe the network at a fixed frequency. This straightforward solution leads however to several deficiencies. Firstly, by only assigning the fault detection task to the manager node the whole network is out of balance, and this quickly overloads the already heavily burdened manager node, which in turn ultimately shortens the lifetime of the whole network. Secondly, probing with a fixed frequency often generates too much useless network traffic, which results in a waste of the limited network energy. Thirdly, the traditional algorithm for choosing a probing node is too complicated to be used in energy-critical wireless sensor networks. In this paper, we study the distribution characters of the fault nodes in wireless sensor networks, validate the Pareto principle that a small number of clusters contain most of the faults. We then present a Simple Random Sampling-based algorithm to dynamic choose sensor nodes as probe stations. A dynamic adjusting rule for probing frequency is also proposed to reduce the number of useless probing packets. The simulation experiments demonstrate that the algorithm and adjusting rule we present can effectively prolong the lifetime of a wireless sensor network without decreasing the fault detected rate.
CONTROL AND FAULT DETECTOR CIRCUIT
Winningstad, C.N.
1958-04-01
A power control and fault detectcr circuit for a radiofrequency system is described. The operation of the circuit controls the power output of a radio- frequency power supply to automatically start the flow of energizing power to the radio-frequency power supply and to gradually increase the power to a predetermined level which is below the point where destruction occurs upon the happening of a fault. If the radio-frequency power supply output fails to increase during such period, the control does not further increase the power. On the other hand, if the output of the radio-frequency power supply properly increases, then the control continues to increase the power to a maximum value. After the maximumn value of radio-frequency output has been achieved. the control is responsive to a ''fault,'' such as a short circuit in the radio-frequency system being driven, so that the flow of power is interrupted for an interval before the cycle is repeated.
An online outlier identification and removal scheme for improving fault detection performance.
Ferdowsi, Hasan; Jagannathan, Sarangapani; Zawodniok, Maciej
2014-05-01
Measured data or states for a nonlinear dynamic system is usually contaminated by outliers. Identifying and removing outliers will make the data (or system states) more trustworthy and reliable since outliers in the measured data (or states) can cause missed or false alarms during fault diagnosis. In addition, faults can make the system states nonstationary needing a novel analytical model-based fault detection (FD) framework. In this paper, an online outlier identification and removal (OIR) scheme is proposed for a nonlinear dynamic system. Since the dynamics of the system can experience unknown changes due to faults, traditional observer-based techniques cannot be used to remove the outliers. The OIR scheme uses a neural network (NN) to estimate the actual system states from measured system states involving outliers. With this method, the outlier detection is performed online at each time instant by finding the difference between the estimated and the measured states and comparing its median with its standard deviation over a moving time window. The NN weight update law in OIR is designed such that the detected outliers will have no effect on the state estimation, which is subsequently used for model-based fault diagnosis. In addition, since the OIR estimator cannot distinguish between the faulty or healthy operating conditions, a separate model-based observer is designed for fault diagnosis, which uses the OIR scheme as a preprocessing unit to improve the FD performance. The stability analysis of both OIR and fault diagnosis schemes are introduced. Finally, a three-tank benchmarking system and a simple linear system are used to verify the proposed scheme in simulations, and then the scheme is applied on an axial piston pump testbed. The scheme can be applied to nonlinear systems whose dynamics and underlying distribution of states are subjected to change due to both unknown faults and operating conditions.
Flight experience with a fail-operational digital fly-by-wire control system
NASA Technical Reports Server (NTRS)
Brown, S. R.; Szalai, K. J.
1977-01-01
The NASA Dryden Flight Research Center is flight testing a triply redundant digital fly-by-wire (DFBW) control system installed in an F-8 aircraft. The full-time, full-authority system performs three-axis flight control computations, including stability and command augmentation, autopilot functions, failure detection and isolation, and self-test functions. Advanced control law experiments include an active flap mode for ride smoothing and maneuver drag reduction. This paper discusses research being conducted on computer synchronization, fault detection, fault isolation, and recovery from transient faults. The F-8 DFBW system has demonstrated immunity from nuisance fault declarations while quickly identifying truly faulty components.
Regional investigations of tectonic and igneous geology, Iran, Pakistan, and Turkey
NASA Technical Reports Server (NTRS)
1978-01-01
The author has identified the following significant results. An extension of the trace of the Chaman-Nushki fault was detected and delineated for 42 km, as was the Ornach-Nal fault for 170 km. Two structural intersections responsible for restricted movements in particular segments of the Chaman-Nushki fault were detected and interpreted. The newest and youngest fault named the Quetta-Mustung-Surab system was delineated for 580 km. The igneous complex of the Lasbela area was interpreted and differentiation was made between ultramafic complex, mafic complex, and basaltic lava flows. One oblong feature was also found which was interpreted as a porphyritic basalt plug.
NASA Technical Reports Server (NTRS)
Jammu, Vinay B.; Danai, Kourosh; Lewicki, David G.
1996-01-01
A new unsupervised pattern classifier is introduced for on-line detection of abnormality in features of vibration that are used for fault diagnosis of helicopter gearboxes. This classifier compares vibration features with their respective normal values and assigns them a value in (0, 1) to reflect their degree of abnormality. Therefore, the salient feature of this classifier is that it does not require feature values associated with faulty cases to identify abnormality. In order to cope with noise and changes in the operating conditions, an adaptation algorithm is incorporated that continually updates the normal values of the features. The proposed classifier is tested using experimental vibration features obtained from an OH-58A main rotor gearbox. The overall performance of this classifier is then evaluated by integrating the abnormality-scaled features for detection of faults. The fault detection results indicate that the performance of this classifier is comparable to the leading unsupervised neural networks: Kohonen's Feature Mapping and Adaptive Resonance Theory (AR72). This is significant considering that the independence of this classifier from fault-related features makes it uniquely suited to abnormality-scaling of vibration features for fault diagnosis.
NASA Astrophysics Data System (ADS)
Le, Huy Xuan; Matunaga, Saburo
2014-12-01
This paper presents an adaptive unscented Kalman filter (AUKF) to recover the satellite attitude in a fault detection and diagnosis (FDD) subsystem of microsatellites. The FDD subsystem includes a filter and an estimator with residual generators, hypothesis tests for fault detections and a reference logic table for fault isolations and fault recovery. The recovery process is based on the monitoring of mean and variance values of each attitude sensor behaviors from residual vectors. In the case of normal work, the residual vectors should be in the form of Gaussian white noise with zero mean and fixed variance. When the hypothesis tests for the residual vectors detect something unusual by comparing the mean and variance values with dynamic thresholds, the AUKF with real-time updated measurement noise covariance matrix will be used to recover the sensor faults. The scheme developed in this paper resolves the problem of the heavy and complex calculations during residual generations and therefore the delay in the isolation process is reduced. The numerical simulations for TSUBAME, a demonstration microsatellite of Tokyo Institute of Technology, are conducted and analyzed to demonstrate the working of the AUKF and FDD subsystem.
Fluid-driven normal faulting earthquake sequences in the Taiwan orogen
NASA Astrophysics Data System (ADS)
Wang, Ling-hua; Rau, Ruey-Juin; Lee, En-Jui
2017-04-01
Seismicity in the Central Range of Taiwan shows normal faulting mechanisms with T-axes directing NE, subparallel to the strike of the mountain belt. We analyze earthquake sequences occurred within 2012-2015 in the Nanshan area of northern Taiwan which indicating swarm behavior and migration characteristics. We select events larger than 2.0 from Central Weather Bureau catalog and use the double-difference relocation program hypoDD with waveform cross-correlation in the Nanshan area. We obtained a final count of 1406 (95%) relocated earthquakes. Moreover, we compute focal mechanisms using USGS program HASH by P-wave first motion and S/P ratio picking and 114 fault plane solutions with M 3.0-5.87 were determined. To test for fluid diffusion, we model seismicity using the equation of Shapiro et al. (1997) by fitting earthquake diffusing rate D during the migration period. According to the relocation result, seismicity in the Taiwan orogenic belt present mostly N25E orientation parallel to the mountain belt with the same direction of the tension axis. In addition, another seismic fracture depicted by seismicity rotated 35 degree counterclockwise to the NW direction. Nearly all focal mechanisms are normal fault type. In the Nanshan area, events show N10W distribution with a focal depth range from 5-12 km and illustrate fault plane dipping about 45-60 degree to SW. Three months before the M 5.87 mainshock which occurred in March, 2013, there were some foreshock events occurred in the shallow part of the fault plane of the mainshock. Half a year following the mainshock, earthquakes migrated to the north and south, respectively with processes matched the diffusion model at a rate of 0.2-0.6 m2/s. This migration pattern and diffusion rate offer an evidence of 'fluid-driven' process in the fault zone. We also find the upward migration of earthquakes in the mainshock source region. These phenomena are likely caused by the opening of the permeable conduit due to the M 5.87 earthquake and the rise of the high pressure fluid.
Ring-fault activity at subsiding calderas studied from analogue experiments and numerical modeling
NASA Astrophysics Data System (ADS)
Liu, Y. K.; Ruch, J.; Vasyura-Bathke, H.; Jonsson, S.
2017-12-01
Several subsiding calderas, such as the ones in the Galápagos archipelago and the Axial seamount in the Pacific Ocean have shown a complex but similar ground deformation pattern, composed of a broad deflation signal affecting the entire volcanic edifice and of a localized subsidence signal focused within the caldera. However, it is still debated how deep processes at subsiding calderas, including magmatic pressure changes, source locations and ring-faulting, relate to this observed surface deformation pattern. We combine analogue sandbox experiments with numerical modeling to study processes involved from initial subsidence to later collapse of calderas. The sandbox apparatus is composed of a motor driven subsiding half-piston connected to the bottom of a glass box. During the experiments the observation is done by five digital cameras photographing from various perspectives. We use Photoscan, a photogrammetry software and PIVLab, a time-resolved digital image correlation tool, to retrieve time-series of digital elevation models and velocity fields from acquired photographs. This setup allows tracking the processes acting both at depth and at the surface, and to assess their relative importance as the subsidence evolves to a collapse. We also use the Boundary Element Method to build a numerical model of the experiment setup, which comprises contracting sill-like source in interaction with a ring-fault in elastic half-space. We then compare our results from these two approaches with the examples observed in nature. Our preliminary experimental and numerical results show that at the initial stage of magmatic withdrawal, when the ring-fault is not yet well formed, broad and smooth deflation dominates at the surface. As the withdrawal increases, narrower subsidence bowl develops accompanied by the upward propagation of the ring-faulting. This indicates that the broad deflation, affecting the entire volcano edifice, is primarily driven by the contraction of the magmatic source, whereas the ring-faulting tends to concentrate deformation within the caldera. This interaction between ring-faulting and pressure decrease in a magma reservoir therefore provides a possible explanation for the deformation pattern observed at several subsiding calderas.
Zhao, Kai-Hui; Chen, Te-Fang; Zhang, Chang-Fan; He, Jing; Huang, Gang
2014-01-01
To prevent irreversible demagnetization of a permanent magnet (PM) for interior permanent magnet synchronous motors (IPMSMs) by flux-weakening control, a robust PM flux-linkage nonsingular fast terminal-sliding-mode observer (NFTSMO) is proposed to detect demagnetization faults. First, the IPMSM mathematical model of demagnetization is presented. Second, the construction of the NFTSMO to estimate PM demagnetization faults in IPMSM is described, and a proof of observer stability is given. The fault decision criteria and fault-processing method are also presented. Finally, the proposed scheme was simulated using MATLAB/Simulink and implemented on the RT-LAB platform. A number of robustness tests have been carried out. The scheme shows good performance in spite of speed fluctuations, torque ripples and the uncertainties of stator resistance. PMID:25490582
Zhao, Kai-Hui; Chen, Te-Fang; Zhang, Chang-Fan; He, Jing; Huang, Gang
2014-12-05
To prevent irreversible demagnetization of a permanent magnet (PM) for interior permanent magnet synchronous motors (IPMSMs) by flux-weakening control, a robust PM flux-linkage nonsingular fast terminal-sliding-mode observer (NFTSMO) is proposed to detect demagnetization faults. First, the IPMSM mathematical model of demagnetization is presented. Second, the construction of the NFTSMO to estimate PM demagnetization faults in IPMSM is described, and a proof of observer stability is given. The fault decision criteria and fault-processing method are also presented. Finally, the proposed scheme was simulated using MATLAB/Simulink and implemented on the RT-LAB platform. A number of robustness tests have been carried out. The scheme shows good performance in spite of speed fluctuations, torque ripples and the uncertainties of stator resistance.
System and method of detecting cavitation in pumps
Lu, Bin; Sharma, Santosh Kumar; Yan, Ting; Dimino, Steven A.
2017-10-03
A system and method for detecting cavitation in pumps for fixed and variable supply frequency applications is disclosed. The system includes a controller having a processor programmed to repeatedly receive real-time operating current data from a motor driving a pump, generate a current frequency spectrum from the current data, and analyze current data within a pair of signature frequency bands of the current frequency spectrum. The processor is further programmed to repeatedly determine fault signatures as a function of the current data within the pair of signature frequency bands, repeatedly determine fault indices based on the fault signatures and a dynamic reference signature, compare the fault indices to a reference index, and identify a cavitation condition in a pump based on a comparison between the reference index and a current fault index.
Functional Fault Modeling of a Cryogenic System for Real-Time Fault Detection and Isolation
NASA Technical Reports Server (NTRS)
Ferrell, Bob; Lewis, Mark; Perotti, Jose; Oostdyk, Rebecca; Brown, Barbara
2010-01-01
The purpose of this paper is to present the model development process used to create a Functional Fault Model (FFM) of a liquid hydrogen (L H2) system that will be used for realtime fault isolation in a Fault Detection, Isolation and Recover (FDIR) system. The paper explains th e steps in the model development process and the data products required at each step, including examples of how the steps were performed fo r the LH2 system. It also shows the relationship between the FDIR req uirements and steps in the model development process. The paper concl udes with a description of a demonstration of the LH2 model developed using the process and future steps for integrating the model in a live operational environment.
Fuzzy model-based observers for fault detection in CSTR.
Ballesteros-Moncada, Hazael; Herrera-López, Enrique J; Anzurez-Marín, Juan
2015-11-01
Under the vast variety of fuzzy model-based observers reported in the literature, what would be the properone to be used for fault detection in a class of chemical reactor? In this study four fuzzy model-based observers for sensor fault detection of a Continuous Stirred Tank Reactor were designed and compared. The designs include (i) a Luenberger fuzzy observer, (ii) a Luenberger fuzzy observer with sliding modes, (iii) a Walcott-Zak fuzzy observer, and (iv) an Utkin fuzzy observer. A negative, an oscillating fault signal, and a bounded random noise signal with a maximum value of ±0.4 were used to evaluate and compare the performance of the fuzzy observers. The Utkin fuzzy observer showed the best performance under the tested conditions. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Unsupervised Learning —A Novel Clustering Method for Rolling Bearing Faults Identification
NASA Astrophysics Data System (ADS)
Kai, Li; Bo, Luo; Tao, Ma; Xuefeng, Yang; Guangming, Wang
2017-12-01
To promptly process the massive fault data and automatically provide accurate diagnosis results, numerous studies have been conducted on intelligent fault diagnosis of rolling bearing. Among these studies, such as artificial neural networks, support vector machines, decision trees and other supervised learning methods are used commonly. These methods can detect the failure of rolling bearing effectively, but to achieve better detection results, it often requires a lot of training samples. Based on above, a novel clustering method is proposed in this paper. This novel method is able to find the correct number of clusters automatically the effectiveness of the proposed method is validated using datasets from rolling element bearings. The diagnosis results show that the proposed method can accurately detect the fault types of small samples. Meanwhile, the diagnosis results are also relative high accuracy even for massive samples.
Astypalaea Linea: A Large-Scale Strike-Slip Fault on Europa
NASA Astrophysics Data System (ADS)
Tufts, B. Randall; Greenberg, Richard; Hoppa, Gregory; Geissler, Paul
1999-09-01
Astypalaea Linea is an 810-km strike-slip fault, located near the south pole of Europa. In length, it rivals the San Andreas Fault in California, and it is the largest strike-slip fault yet known on Europa. The fault was discovered using Voyager 2 images, based upon the presence of familiar strike-slip features including linearity, pull-aparts, and possible braids, and upon the offset of multiple piercing points. Fault displacement is 42 km, right-lateral, in the southern and central parts and probably throughout. Pull-aparts present along the fault trace probably are gaps in the lithosphere bounded by vertical cracks, and which opened due to fault motion and filled with material from below. Crosscutting relationships suggest the fault to be of intermediate relative age. The fault may have initiated as a crack due to tension from combined diurnal tides and nonsynchronous rotation, according to the tectonic model of R. Greenberg et al. (1998a, Icarus135, 64-78). Under the influence of varying diurnal tides, strike-slip offset may have occurred through a process called “walking,” which depends upon an inelastic lithospheric response to displacement. Alternatively, fault displacement may have been driven by currents in the theorized Europan ocean, which may have created simple shear structures such as braids. The discovery of Astypalaea Linea extends the geographical range of lateral motion on Europa. Such motion requires the presence of a decoupling zone of ductile ice or liquid water, a sufficiently rigid lithosphere, and a mechanism to consume surface area.
Saturating time-delay transformer for overcurrent protection. [Patent application
Praeg, W.F.
1975-12-18
Electrical loads connected to dc supplies are protected from damage by overcurrent in the case of a load fault by connecting in series with the load a saturating transformer that detects a load fault and limits the fault current to a safe level for a period long enough to correct the fault or else disconnect the power supply.
Saturating time-delay transformer for overcurrent protection
Praeg, Walter F.
1977-01-01
Electrical loads connected to d-c supplies are protected from damage by overcurrent in the case of a load fault by connecting in series with the load a saturating transformer that detects a load fault and limits the fault current to a safe level for a period long enough to correct the fault or else disconnect the power supply.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, M.
2000-04-01
This project is the first evaluation of model-based diagnostics to hydraulic robot systems. A greater understanding of fault detection for hydraulic robots has been gained, and a new theoretical fault detection model developed and evaluated.
NASA Technical Reports Server (NTRS)
Kobayashi, Takahisa; Simon, Donald L.
2008-01-01
In this paper, an enhanced on-line diagnostic system which utilizes dual-channel sensor measurements is developed for the aircraft engine application. The enhanced system is composed of a nonlinear on-board engine model (NOBEM), the hybrid Kalman filter (HKF) algorithm, and fault detection and isolation (FDI) logic. The NOBEM provides the analytical third channel against which the dual-channel measurements are compared. The NOBEM is further utilized as part of the HKF algorithm which estimates measured engine parameters. Engine parameters obtained from the dual-channel measurements, the NOBEM, and the HKF are compared against each other. When the discrepancy among the signals exceeds a tolerance level, the FDI logic determines the cause of discrepancy. Through this approach, the enhanced system achieves the following objectives: 1) anomaly detection, 2) component fault detection, and 3) sensor fault detection and isolation. The performance of the enhanced system is evaluated in a simulation environment using faults in sensors and components, and it is compared to an existing baseline system.
Detecting and isolating abrupt changes in linear switching systems
NASA Astrophysics Data System (ADS)
Nazari, Sohail; Zhao, Qing; Huang, Biao
2015-04-01
In this paper, a novel fault detection and isolation (FDI) method for switching linear systems is developed. All input and output signals are assumed to be corrupted with measurement noises. In the proposed method, a 'lifted' linear model named as stochastic hybrid decoupling polynomial (SHDP) is introduced. The SHDP model governs the dynamics of the switching linear system with all different modes, and is independent of the switching sequence. The error-in-variable (EIV) representation of SHDP is derived, and is used for the fault residual generation and isolation following the well-adopted local approach. The proposed FDI method can detect and isolate the fault-induced abrupt changes in switching models' parameters without estimating the switching modes. Furthermore, in this paper, the analytical expressions of the gradient vector and Hessian matrix are obtained based on the EIV SHDP formulation, so that they can be used to implement the online fault detection scheme. The performance of the proposed method is then illustrated by simulation examples.
Distributed bearing fault diagnosis based on vibration analysis
NASA Astrophysics Data System (ADS)
Dolenc, Boštjan; Boškoski, Pavle; Juričić, Đani
2016-01-01
Distributed bearing faults appear under various circumstances, for example due to electroerosion or the progression of localized faults. Bearings with distributed faults tend to generate more complex vibration patterns than those with localized faults. Despite the frequent occurrence of such faults, their diagnosis has attracted limited attention. This paper examines a method for the diagnosis of distributed bearing faults employing vibration analysis. The vibrational patterns generated are modeled by incorporating the geometrical imperfections of the bearing components. Comparing envelope spectra of vibration signals shows that one can distinguish between localized and distributed faults. Furthermore, a diagnostic procedure for the detection of distributed faults is proposed. This is evaluated on several bearings with naturally born distributed faults, which are compared with fault-free bearings and bearings with localized faults. It is shown experimentally that features extracted from vibrations in fault-free, localized and distributed fault conditions form clearly separable clusters, thus enabling diagnosis.
Real time automatic detection of bearing fault in induction machine using kurtogram analysis.
Tafinine, Farid; Mokrani, Karim
2012-11-01
A proposed signal processing technique for incipient real time bearing fault detection based on kurtogram analysis is presented in this paper. The kurtogram is a fourth-order spectral analysis tool introduced for detecting and characterizing non-stationarities in a signal. This technique starts from investigating the resonance signatures over selected frequency bands to extract the representative features. The traditional spectral analysis is not appropriate for non-stationary vibration signal and for real time diagnosis. The performance of the proposed technique is examined by a series of experimental tests corresponding to different bearing conditions. Test results show that this signal processing technique is an effective bearing fault automatic detection method and gives a good basis for an integrated induction machine condition monitor.
Real-time fault diagnosis for propulsion systems
NASA Technical Reports Server (NTRS)
Merrill, Walter C.; Guo, Ten-Huei; Delaat, John C.; Duyar, Ahmet
1991-01-01
Current research toward real time fault diagnosis for propulsion systems at NASA-Lewis is described. The research is being applied to both air breathing and rocket propulsion systems. Topics include fault detection methods including neural networks, system modeling, and real time implementations.
Secular Variation in Slip (Invited)
NASA Astrophysics Data System (ADS)
Cowgill, E.; Gold, R. D.
2010-12-01
Faults show temporal variations in slip rate at time scales ranging from the hours following a major rupture to the millions of years over which plate boundaries reorganize. One such behavior is secular variation in slip (SVS), which we define as a pulse of accelerated strain release along a single fault that occurs at a frequency that is > 1 order of magnitude longer than the recurrence interval of earthquakes within the pulse. Although numerous mechanical models have been proposed to explain SVS, it has proven much harder to measure long (5-500 kyr) records of fault displacement as a function of time. Such fault-slip histories may be obtained from morphochronologic data, which are measurements of offset and age obtained from faulted landforms. Here we describe slip-history modeling of morphochronologic data and show how this method holds promise for obtaining long records of fault slip. In detail we place SVS in the context of other types of time-varying fault-slip phenomena, explain the importance of measuring fault-slip histories, summarize models proposed to explain SVS, review current approaches for measuring SVS in the geologic record, and illustrate the slip-history modeling approach we advocate here using data from the active, left-slip Altyn Tagh fault in NW Tibet. In addition to SVS, other types of temporal variation in fault slip include post-seismic transients, discrepancies between geologic slip rates and those derived from geodetic and/or paleoseismic data, and single changes in slip rate resulting from plate reorganization. Investigating secular variation in slip is important for advancing understanding of long-term continental deformation, fault mechanics, and seismic risk. Mechanical models producing such behavior include self-driven mode switching, changes in pore-fluid pressure, viscoelasticity, postseismic reloading, and changes in local surface loads (e.g., ice sheets, large lakes, etc.) among others. However, a key problem in testing these models is the paucity of long records of fault slip. Paleoseismic data are unlikely to yield such histories because measurements of the slip associated with each event are generally unavailable and long records require large accumulated offsets, which can result in structural duplication or omission of the stratigraphic records of events. In contrast, morphochronologic data capture both the age and offset of individual piercing points, although this approach generally does not resolve individual earthquake events. Because the uncertainties in both age and offset are generally large (5-15%) for individual markers, SVS is best resolved by obtaining suites of such measurements, in which case the errors can be used to reduce the range of slip histories common to all such data points. A suite of such data from the central Altyn Tagh fault reveals a pulse of accelerated strain release in the mid Holocene, with ~20 m of slip being released from ~6.7 to ~5.9 ka at a short-term rate (~28 mm/yr) that is 3 times greater than the average rate (~9 mm/yr). We interpret this pulse to represent a cluster of two to six, Mw > 7.2 earthquakes. To our knowledge, this is the first possible earthquake cluster detected using morphochronologic techniques.
Optimal Sensor Location Design for Reliable Fault Detection in Presence of False Alarms
Yang, Fan; Xiao, Deyun; Shah, Sirish L.
2009-01-01
To improve fault detection reliability, sensor location should be designed according to an optimization criterion with constraints imposed by issues of detectability and identifiability. Reliability requires the minimization of undetectability and false alarm probability due to random factors on sensor readings, which is not only related with sensor readings but also affected by fault propagation. This paper introduces the reliability criteria expression based on the missed/false alarm probability of each sensor and system topology or connectivity derived from the directed graph. The algorithm for the optimization problem is presented as a heuristic procedure. Finally, a boiler system is illustrated using the proposed method. PMID:22291524
Fault detection and diagnosis in an industrial fed-batch cell culture process.
Gunther, Jon C; Conner, Jeremy S; Seborg, Dale E
2007-01-01
A flexible process monitoring method was applied to industrial pilot plant cell culture data for the purpose of fault detection and diagnosis. Data from 23 batches, 20 normal operating conditions (NOC) and three abnormal, were available. A principal component analysis (PCA) model was constructed from 19 NOC batches, and the remaining NOC batch was used for model validation. Subsequently, the model was used to successfully detect (both offline and online) abnormal process conditions and to diagnose the root causes. This research demonstrates that data from a relatively small number of batches (approximately 20) can still be used to monitor for a wide range of process faults.
Fault detection in reciprocating compressor valves under varying load conditions
NASA Astrophysics Data System (ADS)
Pichler, Kurt; Lughofer, Edwin; Pichler, Markus; Buchegger, Thomas; Klement, Erich Peter; Huschenbett, Matthias
2016-03-01
This paper presents a novel approach for detecting cracked or broken reciprocating compressor valves under varying load conditions. The main idea is that the time frequency representation of vibration measurement data will show typical patterns depending on the fault state. The problem is to detect these patterns reliably. For the detection task, we make a detour via the two dimensional autocorrelation. The autocorrelation emphasizes the patterns and reduces noise effects. This makes it easier to define appropriate features. After feature extraction, classification is done using logistic regression and support vector machines. The method's performance is validated by analyzing real world measurement data. The results will show a very high detection accuracy while keeping the false alarm rates at a very low level for different compressor loads, thus achieving a load-independent method. The proposed approach is, to our best knowledge, the first automated method for reciprocating compressor valve fault detection that can handle varying load conditions.
Gear Fault Detection Effectiveness as Applied to Tooth Surface Pitting Fatigue Damage
NASA Technical Reports Server (NTRS)
Lewicki, David G.; Dempsey, Paula J.; Heath, Gregory F.; Shanthakumaran, Perumal
2009-01-01
A study was performed to evaluate fault detection effectiveness as applied to gear tooth pitting fatigue damage. Vibration and oil-debris monitoring (ODM) data were gathered from 24 sets of spur pinion and face gears run during a previous endurance evaluation study. Three common condition indicators (RMS, FM4, and NA4) were deduced from the time-averaged vibration data and used with the ODM to evaluate their performance for gear fault detection. The NA4 parameter showed to be a very good condition indicator for the detection of gear tooth surface pitting failures. The FM4 and RMS parameters performed average to below average in detection of gear tooth surface pitting failures. The ODM sensor was successful in detecting a significant amount of debris from all the gear tooth pitting fatigue failures. Excluding outliers, the average cumulative mass at the end of a test was 40 mg.
DIFFERENTIAL FAULT SENSING CIRCUIT
Roberts, J.H.
1961-09-01
A differential fault sensing circuit is designed for detecting arcing in high-voltage vacuum tubes arranged in parallel. A circuit is provided which senses differences in voltages appearing between corresponding elements likely to fault. Sensitivity of the circuit is adjusted to some level above which arcing will cause detectable differences in voltage. For particular corresponding elements, a group of pulse transformers are connected in parallel with diodes connected across the secondaries thereof so that only voltage excursions are transmitted to a thyratron which is biased to the sensitivity level mentioned.
Simultaneous Sensor and Process Fault Diagnostics for Propellant Feed System
NASA Technical Reports Server (NTRS)
Cao, J.; Kwan, C.; Figueroa, F.; Xu, R.
2006-01-01
The main objective of this research is to extract fault features from sensor faults and process faults by using advanced fault detection and isolation (FDI) algorithms. A tank system that has some common characteristics to a NASA testbed at Stennis Space Center was used to verify our proposed algorithms. First, a generic tank system was modeled. Second, a mathematical model suitable for FDI has been derived for the tank system. Third, a new and general FDI procedure has been designed to distinguish process faults and sensor faults. Extensive simulations clearly demonstrated the advantages of the new design.
Huang, Nantian; Qi, Jiajin; Li, Fuqing; Yang, Dongfeng; Cai, Guowei; Huang, Guilin; Zheng, Jian; Li, Zhenxin
2017-09-16
In order to improve the classification accuracy of recognizing short-circuit faults in electric transmission lines, a novel detection and diagnosis method based on empirical wavelet transform (EWT) and local energy (LE) is proposed. First, EWT is used to deal with the original short-circuit fault signals from photoelectric voltage transformers, before the amplitude modulated-frequency modulated (AM-FM) mode with a compactly supported Fourier spectrum is extracted. Subsequently, the fault occurrence time is detected according to the modulus maxima of intrinsic mode function (IMF₂) from three-phase voltage signals processed by EWT. After this process, the feature vectors are constructed by calculating the LE of the fundamental frequency based on the three-phase voltage signals of one period after the fault occurred. Finally, the classifier based on support vector machine (SVM) which was constructed with the LE feature vectors is used to classify 10 types of short-circuit fault signals. Compared with complementary ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and improved CEEMDAN methods, the new method using EWT has a better ability to present the frequency in time. The difference in the characteristics of the energy distribution in the time domain between different types of short-circuit faults can be presented by the feature vectors of LE. Together, simulation and real signals experiment demonstrate the validity and effectiveness of the new approach.
Huang, Nantian; Qi, Jiajin; Li, Fuqing; Yang, Dongfeng; Cai, Guowei; Huang, Guilin; Zheng, Jian; Li, Zhenxin
2017-01-01
In order to improve the classification accuracy of recognizing short-circuit faults in electric transmission lines, a novel detection and diagnosis method based on empirical wavelet transform (EWT) and local energy (LE) is proposed. First, EWT is used to deal with the original short-circuit fault signals from photoelectric voltage transformers, before the amplitude modulated-frequency modulated (AM-FM) mode with a compactly supported Fourier spectrum is extracted. Subsequently, the fault occurrence time is detected according to the modulus maxima of intrinsic mode function (IMF2) from three-phase voltage signals processed by EWT. After this process, the feature vectors are constructed by calculating the LE of the fundamental frequency based on the three-phase voltage signals of one period after the fault occurred. Finally, the classifier based on support vector machine (SVM) which was constructed with the LE feature vectors is used to classify 10 types of short-circuit fault signals. Compared with complementary ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and improved CEEMDAN methods, the new method using EWT has a better ability to present the frequency in time. The difference in the characteristics of the energy distribution in the time domain between different types of short-circuit faults can be presented by the feature vectors of LE. Together, simulation and real signals experiment demonstrate the validity and effectiveness of the new approach. PMID:28926953
NASA Technical Reports Server (NTRS)
Kobayashi, Takahisa; Simon, Donald L.
2005-01-01
In-flight sensor fault detection and isolation (FDI) is critical to maintaining reliable engine operation during flight. The aircraft engine control system, which computes control commands on the basis of sensor measurements, operates the propulsion systems at the demanded conditions. Any undetected sensor faults, therefore, may cause the control system to drive the engine into an undesirable operating condition. It is critical to detect and isolate failed sensors as soon as possible so that such scenarios can be avoided. A challenging issue in developing reliable sensor FDI systems is to make them robust to changes in engine operating characteristics due to degradation with usage and other faults that can occur during flight. A sensor FDI system that cannot appropriately account for such scenarios may result in false alarms, missed detections, or misclassifications when such faults do occur. To address this issue, an enhanced bank of Kalman filters was developed, and its performance and robustness were demonstrated in a simulation environment. The bank of filters is composed of m + 1 Kalman filters, where m is the number of sensors being used by the control system and, thus, in need of monitoring. Each Kalman filter is designed on the basis of a unique fault hypothesis so that it will be able to maintain its performance if a particular fault scenario, hypothesized by that particular filter, takes place.
NASA Astrophysics Data System (ADS)
Martínez-Martínez, José Miguel; Booth-Rea, Guillermo; Azañón, José Miguel; Torcal, Federico
2006-08-01
Pliocene and Quaternary tectonic structures mainly consisting of segmented northwest-southeast normal faults, and associated seismicity in the central Betics do not agree with the transpressive tectonic nature of the Africa-Eurasia plate boundary in the Ibero-Maghrebian region. Active extensional deformation here is heterogeneous, individual segmented normal faults being linked by relay ramps and transfer faults, including oblique-slip and both dextral and sinistral strike-slip faults. Normal faults extend the hanging wall of an extensional detachment that is the active segment of a complex system of successive WSW-directed extensional detachments which have thinned the Betic upper crust since middle Miocene. Two areas, which are connected by an active 40-km long dextral strike-slip transfer fault zone, concentrate present-day extension. Both the seismicity distribution and focal mechanisms agree with the position and regime of the observed faults. The activity of the transfer zone during middle Miocene to present implies a mode of extension which must have remained substantially the same over the entire period. Thus, the mechanisms driving extension should still be operating. Both the westward migration of the extensional loci and the high asymmetry of the extensional systems can be related to edge delamination below the south Iberian margin coupled with roll-back under the Alborán Sea; involving the asymmetric westward inflow of asthenospheric material under the margins.
Late Quaternary faulting in the Sevier Desert driven by magmatism.
Stahl, T; Niemi, N A
2017-03-14
Seismic hazard in continental rifts varies as a function of strain accommodation by tectonic or magmatic processes. The nature of faulting in the Sevier Desert, located in eastern Basin and Range of central Utah, and how this faulting relates to the Sevier Desert Detachment low-angle normal fault, have been debated for nearly four decades. Here, we show that the geodetic signal of extension across the eastern Sevier Desert is best explained by magma-assisted rifting associated with Plio-Pleistocene volcanism. GPS velocities from 14 continuous sites across the region are best-fit by interseismic strain accumulation on the southern Wasatch Fault at c. 3.4 mm yr -1 with a c. 0.5 mm yr -1 tensile dislocation opening in the eastern Sevier Desert. The characteristics of surface deformation from field surveys are consistent with dike-induced faulting and not with faults soling into an active detachment. Geologic extension rates of c. 0.6 mm yr -1 over the last c. 50 kyr in the eastern Sevier Desert are consistent with the rates estimated from the geodetic model. Together, these findings suggest that Plio-Pleistocene extension is not likely to have been accommodated by low-angle normal faulting on the Sevier Desert Detachment and is instead accomplished by strain localization in a zone of narrow, magma-assisted rifting.
Late Quaternary faulting in the Sevier Desert driven by magmatism
Stahl, T.; Niemi, N. A.
2017-01-01
Seismic hazard in continental rifts varies as a function of strain accommodation by tectonic or magmatic processes. The nature of faulting in the Sevier Desert, located in eastern Basin and Range of central Utah, and how this faulting relates to the Sevier Desert Detachment low-angle normal fault, have been debated for nearly four decades. Here, we show that the geodetic signal of extension across the eastern Sevier Desert is best explained by magma-assisted rifting associated with Plio-Pleistocene volcanism. GPS velocities from 14 continuous sites across the region are best-fit by interseismic strain accumulation on the southern Wasatch Fault at c. 3.4 mm yr−1 with a c. 0.5 mm yr−1 tensile dislocation opening in the eastern Sevier Desert. The characteristics of surface deformation from field surveys are consistent with dike-induced faulting and not with faults soling into an active detachment. Geologic extension rates of c. 0.6 mm yr−1 over the last c. 50 kyr in the eastern Sevier Desert are consistent with the rates estimated from the geodetic model. Together, these findings suggest that Plio-Pleistocene extension is not likely to have been accommodated by low-angle normal faulting on the Sevier Desert Detachment and is instead accomplished by strain localization in a zone of narrow, magma-assisted rifting. PMID:28290529
Complex rupture during the 12 January 2010 Haiti earthquake
Hayes, G.P.; Briggs, R.W.; Sladen, A.; Fielding, E.J.; Prentice, C.; Hudnut, K.; Mann, P.; Taylor, F.W.; Crone, A.J.; Gold, R.; Ito, T.; Simons, M.
2010-01-01
Initially, the devastating Mw 7.0, 12 January 2010 Haiti earthquake seemed to involve straightforward accommodation of oblique relative motion between the Caribbean and North American plates along the Enriquillog-Plantain Garden fault zone. Here, we combine seismological observations, geologic field data and space geodetic measurements to show that, instead, the rupture process may have involved slip on multiple faults. Primary surface deformation was driven by rupture on blind thrust faults with only minor, deep, lateral slip along or near the main Enriquillog-Plantain Garden fault zone; thus the event only partially relieved centuries of accumulated left-lateral strain on a small part of the plate-boundary system. Together with the predominance of shallow off-fault thrusting, the lack of surface deformation implies that remaining shallow shear strain will be released in future surface-rupturing earthquakes on the Enriquillog-Plantain Garden fault zone, as occurred in inferred Holocene and probable historic events. We suggest that the geological signature of this earthquakeg-broad warping and coastal deformation rather than surface rupture along the main fault zoneg-will not be easily recognized by standard palaeoseismic studies. We conclude that similarly complex earthquakes in tectonic environments that accommodate both translation and convergenceg-such as the San Andreas fault through the Transverse Ranges of Californiag-may be missing from the prehistoric earthquake record. ?? 2010 Macmillan Publishers Limited. All rights reserved.
Automatic detection of electric power troubles (AI application)
NASA Technical Reports Server (NTRS)
Wang, Caroline; Zeanah, Hugh; Anderson, Audie; Patrick, Clint
1987-01-01
The design goals for the Automatic Detection of Electric Power Troubles (ADEPT) were to enhance Fault Diagnosis Techniques in a very efficient way. ADEPT system was designed in two modes of operation: (1) Real time fault isolation, and (2) a local simulator which simulates the models theoretically.
Statistical fault diagnosis of wind turbine drivetrain applied to a 5MW floating wind turbine
NASA Astrophysics Data System (ADS)
Ghane, Mahdi; Nejad, Amir R.; Blanke, Mogens; Gao, Zhen; Moan, Torgeir
2016-09-01
Deployment of large scale wind turbine parks, in particular offshore, requires well organized operation and maintenance strategies to make it as competitive as the classical electric power stations. It is important to ensure systems are safe, profitable, and cost-effective. In this regards, the ability to detect, isolate, estimate, and prognose faults plays an important role. One of the critical wind turbine components is the gearbox. Failures in the gearbox are costly both due to the cost of the gearbox itself and also due to high repair downtime. In order to detect faults as fast as possible to prevent them to develop into failure, statistical change detection is used in this paper. The Cumulative Sum Method (CUSUM) is employed to detect possible defects in the downwind main bearing. A high fidelity gearbox model on a 5-MW spar-type wind turbine is used to generate data for fault-free and faulty conditions of the bearing at the rated wind speed and the associated wave condition. Acceleration measurements are utilized to find residuals used to indirectly detect damages in the bearing. Residuals are found to be nonGaussian, following a t-distribution with multivariable characteristic parameters. The results in this paper show how the diagnostic scheme can detect change with desired false alarm and detection probabilities.
Fault detection and identification in missile system guidance and control: a filtering approach
NASA Astrophysics Data System (ADS)
Padgett, Mary Lou; Evers, Johnny; Karplus, Walter J.
1996-03-01
Real-world applications of computational intelligence can enhance the fault detection and identification capabilities of a missile guidance and control system. A simulation of a bank-to- turn missile demonstrates that actuator failure may cause the missile to roll and miss the target. Failure of one fin actuator can be detected using a filter and depicting the filter output as fuzzy numbers. The properties and limitations of artificial neural networks fed by these fuzzy numbers are explored. A suite of networks is constructed to (1) detect a fault and (2) determine which fin (if any) failed. Both the zero order moment term and the fin rate term show changes during actuator failure. Simulations address the following questions: (1) How bad does the actuator failure have to be for detection to occur, (2) How bad does the actuator failure have to be for fault detection and isolation to occur, (3) are both zero order moment and fine rate terms needed. A suite of target trajectories are simulated, and properties and limitations of the approach reported. In some cases, detection of the failed actuator occurs within 0.1 second, and isolation of the failure occurs 0.1 after that. Suggestions for further research are offered.
Response of faults to climate-driven changes in ice and water volumes on Earth's surface.
Hampel, Andrea; Hetzel, Ralf; Maniatis, Georgios
2010-05-28
Numerical models including one or more faults in a rheologically stratified lithosphere show that climate-induced variations in ice and water volumes on Earth's surface considerably affect the slip evolution of both thrust and normal faults. In general, the slip rate and hence the seismicity of a fault decreases during loading and increases during unloading. Here, we present several case studies to show that a postglacial slip rate increase occurred on faults worldwide in regions where ice caps and lakes decayed at the end of the last glaciation. Of note is that the postglacial amplification of seismicity was not restricted to the areas beneath the large Laurentide and Fennoscandian ice sheets but also occurred in regions affected by smaller ice caps or lakes, e.g. the Basin-and-Range Province. Our results do not only have important consequences for the interpretation of palaeoseismological records from faults in these regions but also for the evaluation of the future seismicity in regions currently affected by deglaciation like Greenland and Antarctica: shrinkage of the modern ice sheets owing to global warming may ultimately lead to an increase in earthquake frequency in these regions.
NASA Astrophysics Data System (ADS)
Mercuri, Marco; Scuderi, Marco Maria; Tesei, Telemaco; Carminati, Eugenio; Collettini, Cristiano
2018-04-01
A great number of earthquakes occur within thick carbonate sequences in the shallow crust. At the same time, carbonate fault rocks exhumed from a depth < 6 km (i.e., from seismogenic depths) exhibit the coexistence of structures related to brittle (i.e., cataclasis) and ductile deformation processes (i.e., pressure-solution and granular plasticity). We performed friction experiments on water-saturated simulated carbonate-bearing faults for a wide range of normal stresses (from 5 to 120 MPa) and slip velocities (from 0.3 to 100 μm/s). At high normal stresses (σn > 20 MPa) fault gouges undergo strain-weakening, that is more pronounced at slow slip velocities, and causes a significant reduction of frictional strength, from μ = 0.7 to μ = 0.47. Microstructural analysis show that fault gouge weakening is driven by deformation accommodated by cataclasis and pressure-insensitive deformation processes (pressure solution and granular plasticity) that become more efficient at slow slip velocity. The reduction in frictional strength caused by strain weakening behaviour promoted by the activation of pressure-insensitive deformation might play a significant role in carbonate-bearing faults mechanics.
Automated visual inspection of brake shoe wear
NASA Astrophysics Data System (ADS)
Lu, Shengfang; Liu, Zhen; Nan, Guo; Zhang, Guangjun
2015-10-01
With the rapid development of high-speed railway, the automated fault inspection is necessary to ensure train's operation safety. Visual technology is paid more attention in trouble detection and maintenance. For a linear CCD camera, Image alignment is the first step in fault detection. To increase the speed of image processing, an improved scale invariant feature transform (SIFT) method is presented. The image is divided into multiple levels of different resolution. Then, we do not stop to extract the feature from the lowest resolution to the highest level until we get sufficient SIFT key points. At that level, the image is registered and aligned quickly. In the stage of inspection, we devote our efforts to finding the trouble of brake shoe, which is one of the key components in brake system on electrical multiple units train (EMU). Its pre-warning on wear limitation is very important in fault detection. In this paper, we propose an automatic inspection approach to detect the fault of brake shoe. Firstly, we use multi-resolution pyramid template matching technology to fast locate the brake shoe. Then, we employ Hough transform to detect the circles of bolts in brake region. Due to the rigid characteristic of structure, we can identify whether the brake shoe has a fault. The experiments demonstrate that the way we propose has a good performance, and can meet the need of practical applications.
Fault Detection and Diagnosis of Railway Point Machines by Sound Analysis
Lee, Jonguk; Choi, Heesu; Park, Daihee; Chung, Yongwha; Kim, Hee-Young; Yoon, Sukhan
2016-01-01
Railway point devices act as actuators that provide different routes to trains by driving switchblades from the current position to the opposite one. Point failure can significantly affect railway operations, with potentially disastrous consequences. Therefore, early detection of anomalies is critical for monitoring and managing the condition of rail infrastructure. We present a data mining solution that utilizes audio data to efficiently detect and diagnose faults in railway condition monitoring systems. The system enables extracting mel-frequency cepstrum coefficients (MFCCs) from audio data with reduced feature dimensions using attribute subset selection, and employs support vector machines (SVMs) for early detection and classification of anomalies. Experimental results show that the system enables cost-effective detection and diagnosis of faults using a cheap microphone, with accuracy exceeding 94.1% whether used alone or in combination with other known methods. PMID:27092509
Earthquakes: Risk, Detection, Warning, and Research
2010-01-14
which affect taller , multi-story buildings. Ground motion that affects shorter buildings of a few stories, called short-period seismic waves, is...places in a single fault, or jump between connected faults. Earthquakes that occur along the Sierra Madre fault in southern California, for example
Li, Chuan; Sánchez, René-Vinicio; Zurita, Grover; Cerrada, Mariela; Cabrera, Diego
2016-06-17
Fault diagnosis is important for the maintenance of rotating machinery. The detection of faults and fault patterns is a challenging part of machinery fault diagnosis. To tackle this problem, a model for deep statistical feature learning from vibration measurements of rotating machinery is presented in this paper. Vibration sensor signals collected from rotating mechanical systems are represented in the time, frequency, and time-frequency domains, each of which is then used to produce a statistical feature set. For learning statistical features, real-value Gaussian-Bernoulli restricted Boltzmann machines (GRBMs) are stacked to develop a Gaussian-Bernoulli deep Boltzmann machine (GDBM). The suggested approach is applied as a deep statistical feature learning tool for both gearbox and bearing systems. The fault classification performances in experiments using this approach are 95.17% for the gearbox, and 91.75% for the bearing system. The proposed approach is compared to such standard methods as a support vector machine, GRBM and a combination model. In experiments, the best fault classification rate was detected using the proposed model. The results show that deep learning with statistical feature extraction has an essential improvement potential for diagnosing rotating machinery faults.
Fault Diagnosis for Rotating Machinery Using Vibration Measurement Deep Statistical Feature Learning
Li, Chuan; Sánchez, René-Vinicio; Zurita, Grover; Cerrada, Mariela; Cabrera, Diego
2016-01-01
Fault diagnosis is important for the maintenance of rotating machinery. The detection of faults and fault patterns is a challenging part of machinery fault diagnosis. To tackle this problem, a model for deep statistical feature learning from vibration measurements of rotating machinery is presented in this paper. Vibration sensor signals collected from rotating mechanical systems are represented in the time, frequency, and time-frequency domains, each of which is then used to produce a statistical feature set. For learning statistical features, real-value Gaussian-Bernoulli restricted Boltzmann machines (GRBMs) are stacked to develop a Gaussian-Bernoulli deep Boltzmann machine (GDBM). The suggested approach is applied as a deep statistical feature learning tool for both gearbox and bearing systems. The fault classification performances in experiments using this approach are 95.17% for the gearbox, and 91.75% for the bearing system. The proposed approach is compared to such standard methods as a support vector machine, GRBM and a combination model. In experiments, the best fault classification rate was detected using the proposed model. The results show that deep learning with statistical feature extraction has an essential improvement potential for diagnosing rotating machinery faults. PMID:27322273
Dynamic rupture simulations of the 2016 Mw7.8 Kaikōura earthquake: a cascading multi-fault event
NASA Astrophysics Data System (ADS)
Ulrich, T.; Gabriel, A. A.; Ampuero, J. P.; Xu, W.; Feng, G.
2017-12-01
The Mw7.8 Kaikōura earthquake struck the Northern part of New Zealand's South Island roughly one year ago. It ruptured multiple segments of the contractional North Canterbury fault zone and of the Marlborough fault system. Field observations combined with satellite data suggest a rupture path involving partly unmapped faults separated by large stepover distances larger than 5 km, the maximum distance usually considered by the latest seismic hazard assessment methods. This might imply distant rupture transfer mechanisms generally not considered in seismic hazard assessment. We present high-resolution 3D dynamic rupture simulations of the Kaikōura earthquake under physically self-consistent initial stress and strength conditions. Our simulations are based on recent finite-fault slip inversions that constrain fault system geometry and final slip distribution from remote sensing, surface rupture and geodetic data (Xu et al., 2017). We assume a uniform background stress field, without lateral fault stress or strength heterogeneity. We use the open-source software SeisSol (www.seissol.org) which is based on an arbitrary high-order accurate DERivative Discontinuous Galerkin method (ADER-DG). Our method can account for complex fault geometries, high resolution topography and bathymetry, 3D subsurface structure, off-fault plasticity and modern friction laws. It enables the simulation of seismic wave propagation with high-order accuracy in space and time in complex media. We show that a cascading rupture driven by dynamic triggering can break all fault segments that were involved in this earthquake without mechanically requiring an underlying thrust fault. Our prefered fault geometry connects most fault segments: it does not features stepover larger than 2 km. The best scenario matches the main macroscopic characteristics of the earthquake, including its apparently slow rupture propagation caused by zigzag cascading, the moment magnitude and the overall inferred slip distribution. We observe a high sensitivity of cascading dynamics on fault-step over distance and off-fault energy dissipation.
Model-Based Diagnostics for Propellant Loading Systems
NASA Technical Reports Server (NTRS)
Daigle, Matthew John; Foygel, Michael; Smelyanskiy, Vadim N.
2011-01-01
The loading of spacecraft propellants is a complex, risky operation. Therefore, diagnostic solutions are necessary to quickly identify when a fault occurs, so that recovery actions can be taken or an abort procedure can be initiated. Model-based diagnosis solutions, established using an in-depth analysis and understanding of the underlying physical processes, offer the advanced capability to quickly detect and isolate faults, identify their severity, and predict their effects on system performance. We develop a physics-based model of a cryogenic propellant loading system, which describes the complex dynamics of liquid hydrogen filling from a storage tank to an external vehicle tank, as well as the influence of different faults on this process. The model takes into account the main physical processes such as highly nonequilibrium condensation and evaporation of the hydrogen vapor, pressurization, and also the dynamics of liquid hydrogen and vapor flows inside the system in the presence of helium gas. Since the model incorporates multiple faults in the system, it provides a suitable framework for model-based diagnostics and prognostics algorithms. Using this model, we analyze the effects of faults on the system, derive symbolic fault signatures for the purposes of fault isolation, and perform fault identification using a particle filter approach. We demonstrate the detection, isolation, and identification of a number of faults using simulation-based experiments.
Xu, Jun; Wang, Jing; Li, Shiying; Cao, Binggang
2016-01-01
Recently, State of energy (SOE) has become one of the most fundamental parameters for battery management systems in electric vehicles. However, current information is critical in SOE estimation and current sensor is usually utilized to obtain the latest current information. However, if the current sensor fails, the SOE estimation may be confronted with large error. Therefore, this paper attempts to make the following contributions: Current sensor fault detection and SOE estimation method is realized simultaneously. Through using the proportional integral observer (PIO) based method, the current sensor fault could be accurately estimated. By taking advantage of the accurate estimated current sensor fault, the influence caused by the current sensor fault can be eliminated and compensated. As a result, the results of the SOE estimation will be influenced little by the fault. In addition, the simulation and experimental workbench is established to verify the proposed method. The results indicate that the current sensor fault can be estimated accurately. Simultaneously, the SOE can also be estimated accurately and the estimation error is influenced little by the fault. The maximum SOE estimation error is less than 2%, even though the large current error caused by the current sensor fault still exists. PMID:27548183
Xu, Jun; Wang, Jing; Li, Shiying; Cao, Binggang
2016-08-19
Recently, State of energy (SOE) has become one of the most fundamental parameters for battery management systems in electric vehicles. However, current information is critical in SOE estimation and current sensor is usually utilized to obtain the latest current information. However, if the current sensor fails, the SOE estimation may be confronted with large error. Therefore, this paper attempts to make the following contributions: Current sensor fault detection and SOE estimation method is realized simultaneously. Through using the proportional integral observer (PIO) based method, the current sensor fault could be accurately estimated. By taking advantage of the accurate estimated current sensor fault, the influence caused by the current sensor fault can be eliminated and compensated. As a result, the results of the SOE estimation will be influenced little by the fault. In addition, the simulation and experimental workbench is established to verify the proposed method. The results indicate that the current sensor fault can be estimated accurately. Simultaneously, the SOE can also be estimated accurately and the estimation error is influenced little by the fault. The maximum SOE estimation error is less than 2%, even though the large current error caused by the current sensor fault still exists.
Real-Time Fault Classification for Plasma Processes
Yang, Ryan; Chen, Rongshun
2011-01-01
Plasma process tools, which usually cost several millions of US dollars, are often used in the semiconductor fabrication etching process. If the plasma process is halted due to some process fault, the productivity will be reduced and the cost will increase. In order to maximize the product/wafer yield and tool productivity, a timely and effective fault process detection is required in a plasma reactor. The classification of fault events can help the users to quickly identify fault processes, and thus can save downtime of the plasma tool. In this work, optical emission spectroscopy (OES) is employed as the metrology sensor for in-situ process monitoring. Splitting into twelve different match rates by spectrum bands, the matching rate indicator in our previous work (Yang, R.; Chen, R.S. Sensors 2010, 10, 5703–5723) is used to detect the fault process. Based on the match data, a real-time classification of plasma faults is achieved by a novel method, developed in this study. Experiments were conducted to validate the novel fault classification. From the experimental results, we may conclude that the proposed method is feasible inasmuch that the overall accuracy rate of the classification for fault event shifts is 27 out of 28 or about 96.4% in success. PMID:22164001
Detection of faults and software reliability analysis
NASA Technical Reports Server (NTRS)
Knight, J. C.
1986-01-01
Multiversion or N-version programming was proposed as a method of providing fault tolerance in software. The approach requires the separate, independent preparation of multiple versions of a piece of software for some application. Specific topics addressed are: failure probabilities in N-version systems, consistent comparison in N-version systems, descriptions of the faults found in the Knight and Leveson experiment, analytic models of comparison testing, characteristics of the input regions that trigger faults, fault tolerance through data diversity, and the relationship between failures caused by automatically seeded faults.
Torsional vibration signal analysis as a diagnostic tool for planetary gear fault detection
NASA Astrophysics Data System (ADS)
Xue, Song; Howard, Ian
2018-02-01
This paper aims to investigate the effectiveness of using the torsional vibration signal as a diagnostic tool for planetary gearbox faults detection. The traditional approach for condition monitoring of the planetary gear uses a stationary transducer mounted on the ring gear casing to measure all the vibration data when the planet gears pass by with the rotation of the carrier arm. However, the time variant vibration transfer paths between the stationary transducer and the rotating planet gear modulate the resultant vibration spectra and make it complex. Torsional vibration signals are theoretically free from this modulation effect and therefore, it is expected to be much easier and more effective to diagnose planetary gear faults using the fault diagnostic information extracted from the torsional vibration. In this paper, a 20 degree of freedom planetary gear lumped-parameter model was developed to obtain the gear dynamic response. In the model, the gear mesh stiffness variations are the main internal vibration generation mechanism and the finite element models were developed for calculation of the sun-planet and ring-planet gear mesh stiffnesses. Gear faults on different components were created in the finite element models to calculate the resultant gear mesh stiffnesses, which were incorporated into the planetary gear model later on to obtain the faulted vibration signal. Some advanced signal processing techniques were utilized to analyses the fault diagnostic results from the torsional vibration. It was found that the planetary gear torsional vibration not only successfully detected the gear fault, but also had the potential to indicate the location of the gear fault. As a result, the planetary gear torsional vibration can be considered an effective alternative approach for planetary gear condition monitoring.
Voltage Based Detection Method for High Impedance Fault in a Distribution System
NASA Astrophysics Data System (ADS)
Thomas, Mini Shaji; Bhaskar, Namrata; Prakash, Anupama
2016-09-01
High-impedance faults (HIFs) on distribution feeders cannot be detected by conventional protection schemes, as HIFs are characterized by their low fault current level and waveform distortion due to the nonlinearity of the ground return path. This paper proposes a method to identify the HIFs in distribution system and isolate the faulty section, to reduce downtime. This method is based on voltage measurements along the distribution feeder and utilizes the sequence components of the voltages. Three models of high impedance faults have been considered and source side and load side breaking of the conductor have been studied in this work to capture a wide range of scenarios. The effect of neutral grounding of the source side transformer is also accounted in this study. The results show that the algorithm detects the HIFs accurately and rapidly. Thus, the faulty section can be isolated and service can be restored to the rest of the consumers.
An evaluation of a real-time fault diagnosis expert system for aircraft applications
NASA Technical Reports Server (NTRS)
Schutte, Paul C.; Abbott, Kathy H.; Palmer, Michael T.; Ricks, Wendell R.
1987-01-01
A fault monitoring and diagnosis expert system called Faultfinder was conceived and developed to detect and diagnose in-flight failures in an aircraft. Faultfinder is an automated intelligent aid whose purpose is to assist the flight crew in fault monitoring, fault diagnosis, and recovery planning. The present implementation of this concept performs monitoring and diagnosis for a generic aircraft's propulsion and hydraulic subsystems. This implementation is capable of detecting and diagnosing failures of known and unknown (i.e., unforseeable) type in a real-time environment. Faultfinder uses both rule-based and model-based reasoning strategies which operate on causal, temporal, and qualitative information. A preliminary evaluation is made of the diagnostic concepts implemented in Faultfinder. The evaluation used actual aircraft accident and incident cases which were simulated to assess the effectiveness of Faultfinder in detecting and diagnosing failures. Results of this evaluation, together with the description of the current Faultfinder implementation, are presented.
Detecting Taiwan's Shanchiao Active Fault Using AMT and Gravity Methods
NASA Astrophysics Data System (ADS)
Liu, H.-C.; Yang, C.-H.
2009-04-01
Taiwan's Shanchiao normal fault runs in a northeast-southwest direction and is located on the western edge of the Taipei Basin in northern Taiwan. The overburden of the fault is late Quaternary sediment with a thickness of approximately a few tenth of a meter to several hundred meters. No detailed studies of the western side of the Shanchiao fault are available. As Taiwan is located on the Neotectonic Belt in the western Pacific, detecting active faults near the Taipei metropolitan area will provide necessary information for further disaster prevention. It is the responsibility of geologists and geophysicists in Taiwan to perform this task. Examination of the resistivity and density contrasts of subsurface layers permits a mapping of the Shanchiao fault and the deformed Tertiary strata of the Taipei Basin. The audio-frequency magnetotelluric (AMT) method and gravity method were chosen for this study. Significant resistivity and gravity anomalies were observed in the suspected fault zone. The interpretation reveals a good correlation between the features of the Shanchiao fault and resistivity and density distribution at depth. In this observation, AMT and gravity methods provides a viable means for mapping the Shanchiao fault position and studying its features associated with the subsidence of the western side of the Taipei Basin. This study indicates the AMT and gravity methods' considerable potential for accurately mapping an active fault.
NASA Astrophysics Data System (ADS)
Deng, Feiyue; Yang, Shaopu; Tang, Guiji; Hao, Rujiang; Zhang, Mingliang
2017-04-01
Wheel bearings are essential mechanical components of trains, and fault detection of the wheel bearing is of great significant to avoid economic loss and casualty effectively. However, considering the operating conditions, detection and extraction of the fault features hidden in the heavy noise of the vibration signal have become a challenging task. Therefore, a novel method called adaptive multi-scale AVG-Hat morphology filter (MF) is proposed to solve it. The morphology AVG-Hat operator not only can suppress the interference of the strong background noise greatly, but also enhance the ability of extracting fault features. The improved envelope spectrum sparsity (IESS), as a new evaluation index, is proposed to select the optimal filtering signal processed by the multi-scale AVG-Hat MF. It can present a comprehensive evaluation about the intensity of fault impulse to the background noise. The weighted coefficients of the different scale structural elements (SEs) in the multi-scale MF are adaptively determined by the particle swarm optimization (PSO) algorithm. The effectiveness of the method is validated by analyzing the real wheel bearing fault vibration signal (e.g. outer race fault, inner race fault and rolling element fault). The results show that the proposed method could improve the performance in the extraction of fault features effectively compared with the multi-scale combined morphological filter (CMF) and multi-scale morphology gradient filter (MGF) methods.
Dynamic Fault Detection Chassis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mize, Jeffery J
2007-01-01
Abstract The high frequency switching megawatt-class High Voltage Converter Modulator (HVCM) developed by Los Alamos National Laboratory for the Oak Ridge National Laboratory's Spallation Neutron Source (SNS) is now in operation. One of the major problems with the modulator systems is shoot-thru conditions that can occur in a IGBTs H-bridge topology resulting in large fault currents and device failure in a few microseconds. The Dynamic Fault Detection Chassis (DFDC) is a fault monitoring system; it monitors transformer flux saturation using a window comparator and dV/dt events on the cathode voltage caused by any abnormality such as capacitor breakdown, transformer primarymore » turns shorts, or dielectric breakdown between the transformer primary and secondary. If faults are detected, the DFDC will inhibit the IGBT gate drives and shut the system down, significantly reducing the possibility of a shoot-thru condition or other equipment damaging events. In this paper, we will present system integration considerations, performance characteristics of the DFDC, and discuss its ability to significantly reduce costly down time for the entire facility.« less
NASA Astrophysics Data System (ADS)
Alegre, D. M.; Koroishi, E. H.; Melo, G. P.
2015-07-01
This paper presents a methodology for detection and localization of faults by using state observers. State Observers can rebuild the states not measured or values from points of difficult access in the system. So faults can be detected in these points without the knowledge of its measures, and can be track by the reconstructions of their states. In this paper this methodology will be applied in a system which represents a simplified model of a vehicle. In this model the chassis of the car was represented by a flat plate, which was divided in finite elements of plate (plate of Kirchoff), in addition, was considered the car suspension (springs and dampers). A test rig was built and the developed methodology was used to detect and locate faults on this system. In analyses done, the idea is to use a system with a specific fault, and then use the state observers to locate it, checking on a quantitative variation of the parameter of the system which caused this crash. For the computational simulations the software MATLAB was used.
NASA Astrophysics Data System (ADS)
Campbell, Jocelyn K.; Nicol, Andrew; Howard, Matthew E.
2003-09-01
Two sites are described from range front faults along the foothills of the Southern Alps of New Zealand, where apparently a period of 200-300 years of accelerated river incision preceded late Holocene coseismic ruptures, each probably in excess of M w 7.5. They relate to separate fault segments and seismic events on a transpressive system associated with fault-driven folding, but both show similar evidence of off-plane aseismic deformation during the downcutting phase. The incision history is documented by the ages, relative elevations and profiles of degradation terraces. The surface dating is largely based on the weathering rind technique of McSaveney (McSaveney, M.J., 1992. A Manual for Weathering-rind Dating of Grey Sandstones of the Torlesse Supergroup, New Zealand. 92/4, Institute of Geological and Nuclear Sciences), supported by some consistent radiocarbon ages. On the Porters Pass Fault, drainage from Red Lakes has incised up to 12 m into late Pleistocene recessional outwash, but the oldest degradation terrace surface T I is dated at only 690±50 years BP. The upper terraces T I and T II converge uniformly downstream right across the fault trace, but by T III the terrace has a reversed gradient upstream. T II and T III break into multiple small terraces on the hanging wall only, close to the fault trace. Continued backtilting during incision caused T IV to diverge downstream relative to the older surfaces. Coseismic faulting displaced T V and all the older terraces by a metre high reverse scarp and an uncertain right lateral component. This event cannot be younger than a nearby ca. 500 year old rock avalanche covering the trace. The second site in the middle reaches of the Waipara River valley involves the interaction of four faults associated with the Doctors Anticline. The main river and tributaries have incised steeply into a 2000 year old mid-Holocene, broad, degradation surface downcutting as much as 55 m. Beginning approximately 600 years ago accelerating incision eventually attained rates in excess of 100 mm/year in those reaches closely associated with the Doctors Anticline and related thrust and transfer faults. All four faults ruptured, either synchronously or sequentially, between 250 and 400 years ago when the river was close to 8 m above its present bed. Better cross-method checks on dating would eliminate some uncertainties, but the apparent similarities suggest a pattern of precursor events initiated by a period of base level drop extending for several kilometres across the structure, presumably in response to general uplift. Over time, deformation is concentrated close to the fault zone causing tilting of degradation terraces, and demonstrably in the Waipara case at least, coseismic rupture is preceded by marked acceleration of the downcutting rate. Overall base level drop is an order of magnitude greater than the throw on the eventual fault scarp. The Ostler Fault (Van Dissen et al., 1993) demonstrates that current deformation is taking place on similar thrust-fault driven folding in the Southern Alps. Regular re-levelling since 1966 has shown uplift rates of 1.0-1.5 mm/year at the crest of a 1-2 km half wave length anticline, but this case also illustrates the general problem of interpreting the significance of rates derived from geophysical monitoring relative to the long term seismic cycle. If the geomorphic signals described can be shown to hold for other examples, then criteria for targeting faults approaching the end of the seismic cycle in some tectonic settings may be possible.
76 FR 58424 - Transmission Relay Loadability Reliability Standard
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-21
... Protection Systems 2. Protective relays are devices that detect and initiate the removal of faults [[Page... protective relay detects a fault on an element of the system under its protection, it sends a signal to an... distribution providers to set load-responsive phase protection relays according to specific criteria to ensure...
Fault detection monitor circuit provides ''self-heal capability'' in electronic modules - A concept
NASA Technical Reports Server (NTRS)
Kennedy, J. J.
1970-01-01
Self-checking technique detects defective solid state modules used in electronic test and checkout instrumentation. A ten bit register provides failure monitor and indication for 1023 comparator circuits, and the automatic fault-isolation capability permits the electronic subsystems to be repaired by replacing the defective module.
NASA Astrophysics Data System (ADS)
Benesh, N. P.; Plesch, A.; Shaw, J. H.; Frost, E. K.
2007-03-01
Using the discrete element modeling method, we examine the two-dimensional nature of fold development above an anticlinal bend in a blind thrust fault. Our models were composed of numerical disks bonded together to form pregrowth strata overlying a fixed fault surface. This pregrowth package was then driven along the fault surface at a fixed velocity using a vertical backstop. Additionally, new particles were generated and deposited onto the pregrowth strata at a fixed rate to produce sequential growth layers. Models with and without mechanical layering were used, and the process of folding was analyzed in comparison with fold geometries predicted by kinematic fault bend folding as well as those observed in natural settings. Our results show that parallel fault bend folding behavior holds to first order in these models; however, a significant decrease in limb dip is noted for younger growth layers in all models. On the basis of comparisons to natural examples, we believe this deviation from kinematic fault bend folding to be a realistic feature of fold development resulting from an axial zone of finite width produced by materials with inherent mechanical strength. These results have important implications for how growth fold structures are used to constrain slip and paleoearthquake ages above blind thrust faults. Most notably, deformation localized about axial surfaces and structural relief across the fold limb seem to be the most robust observations that can readily constrain fault activity and slip. In contrast, fold limb width and shallow growth layer dips appear more variable and dependent on mechanical properties of the strata.
Fault Mechanics and Post-seismic Deformation at Bam, SE Iran
NASA Astrophysics Data System (ADS)
Wimpenny, S. E.; Copley, A.
2017-12-01
The extent to which aseismic deformation relaxes co-seismic stress changes on a fault zone is fundamental to assessing the future seismic hazard following any earthquake, and in understanding the mechanical behaviour of faults. We used models of stress-driven afterslip and visco-elastic relaxation, in conjunction with a dense time series of post-seismic InSAR measurements, to show that there has been minimal release of co-seismic stress changes through post-seismic deformation following the 2003 Mw 6.6 Bam earthquake. Our modelling indicates that the faults at Bam may remain predominantly locked, and that the co- plus inter-seismically accumulated elastic strain stored down-dip of the 2003 rupture patch may be released in a future Mw 6 earthquake. Modelling also suggests parts of the fault that experienced post-seismic creep between 2003-2009 overlapped with areas that also slipped co-seismically. Our observations and models also provide an opportunity to probe how aseismic fault slip leads to the growth of topography at Bam. We find that, for our modelled afterslip distribution to be consistent with forming the sharp step in the local topography at Bam over repeated earthquake cycles, and also to be consistent with the geodetic observations, requires either (1) far-field tectonic loading equivalent to a 2-10 MPa deviatoric stress acting across the fault system, which suggests it supports stresses 60-100 times less than classical views of static fault strength, or (2) that the fault surface has some form of mechanical anisotropy, potentially related to corrugations on the fault plane, that controls the sense of slip.
Detection of High-impedance Arcing Faults in Radial Distribution DC Systems
NASA Technical Reports Server (NTRS)
Gonzalez, Marcelo C.; Button, Robert M.
2003-01-01
High voltage, low current arcing faults in DC power systems have been researched at the NASA Glenn Research Center in order to develop a method for detecting these 'hidden faults', in-situ, before damage to cables and components from localized heating can occur. A simple arc generator was built and high-speed and low-speed monitoring of the voltage and current waveforms, respectively, has shown that these high impedance faults produce a significant increase in high frequency content in the DC bus voltage and low frequency content in the DC system current. Based on these observations, an algorithm was developed using a high-speed data acquisition system that was able to accurately detect high impedance arcing events induced in a single-line system based on the frequency content of the DC bus voltage or the system current. Next, a multi-line, radial distribution system was researched to see if the arc location could be determined through the voltage information when multiple 'detectors' are present in the system. It was shown that a small, passive LC filter was sufficient to reliably isolate the fault to a single line in a multi-line distribution system. Of course, no modification is necessary if only the current information is used to locate the arc. However, data shows that it might be necessary to monitor both the system current and bus voltage to improve the chances of detecting and locating high impedance arcing faults
NASA Astrophysics Data System (ADS)
Kim, D.; Youn, J.; Kim, C.
2017-08-01
As a malfunctioning PV (Photovoltaic) cell has a higher temperature than adjacent normal cells, we can detect it easily with a thermal infrared sensor. However, it will be a time-consuming way to inspect large-scale PV power plants by a hand-held thermal infrared sensor. This paper presents an algorithm for automatically detecting defective PV panels using images captured with a thermal imaging camera from an UAV (unmanned aerial vehicle). The proposed algorithm uses statistical analysis of thermal intensity (surface temperature) characteristics of each PV module to verify the mean intensity and standard deviation of each panel as parameters for fault diagnosis. One of the characteristics of thermal infrared imaging is that the larger the distance between sensor and target, the lower the measured temperature of the object. Consequently, a global detection rule using the mean intensity of all panels in the fault detection algorithm is not applicable. Therefore, a local detection rule based on the mean intensity and standard deviation range was developed to detect defective PV modules from individual array automatically. The performance of the proposed algorithm was tested on three sample images; this verified a detection accuracy of defective panels of 97 % or higher. In addition, as the proposed algorithm can adjust the range of threshold values for judging malfunction at the array level, the local detection rule is considered better suited for highly sensitive fault detection compared to a global detection rule.
Insulation detection of electric vehicle batteries
NASA Astrophysics Data System (ADS)
Dai, Qiqi; Zhu, Zhongwen; Huang, Denggao; Du, Mingxing; Wei, Kexin
2018-06-01
In this paper, an electric vehicle insulation detection method with single side switching fixed resistance is designed, and the hardware and software design of the system are given. The experiment proves that the insulation detection system can detect the insulation resistance in a wide range of resistance values, and accurately report the fault level. This system can effectively monitor the insulation fault between the car body and the high voltage line and avoid the passengers from being injured.
Application of fault factor method to fault detection and diagnosis for space shuttle main engine
NASA Astrophysics Data System (ADS)
Cha, Jihyoung; Ha, Chulsu; Ko, Sangho; Koo, Jaye
2016-09-01
This paper deals with an application of the multiple linear regression algorithm to fault detection and diagnosis for the space shuttle main engine (SSME) during a steady state. In order to develop the algorithm, the energy balance equations, which balances the relation among pressure, mass flow rate and power at various locations within the SSME, are obtained. Then using the measurement data of some important parameters of the engine, fault factors which reflects the deviation of each equation from the normal state are estimated. The probable location of each fault and the levels of severity can be obtained from the estimated fault factors. This process is numerically demonstrated for the SSME at 104% Rated Propulsion Level (RPL) by using the simulated measurement data from the mathematical models of the engine. The result of the current study is particularly important considering that the recently developed reusable Liquid Rocket Engines (LREs) have staged-combustion cycles similarly to the SSME.
Neural networks and fault probability evaluation for diagnosis issues.
Kourd, Yahia; Lefebvre, Dimitri; Guersi, Noureddine
2014-01-01
This paper presents a new FDI technique for fault detection and isolation in unknown nonlinear systems. The objective of the research is to construct and analyze residuals by means of artificial intelligence and probabilistic methods. Artificial neural networks are first used for modeling issues. Neural networks models are designed for learning the fault-free and the faulty behaviors of the considered systems. Once the residuals generated, an evaluation using probabilistic criteria is applied to them to determine what is the most likely fault among a set of candidate faults. The study also includes a comparison between the contributions of these tools and their limitations, particularly through the establishment of quantitative indicators to assess their performance. According to the computation of a confidence factor, the proposed method is suitable to evaluate the reliability of the FDI decision. The approach is applied to detect and isolate 19 fault candidates in the DAMADICS benchmark. The results obtained with the proposed scheme are compared with the results obtained according to a usual thresholding method.
SPANNER: A Self-Repairing Spiking Neural Network Hardware Architecture.
Liu, Junxiu; Harkin, Jim; Maguire, Liam P; McDaid, Liam J; Wade, John J
2018-04-01
Recent research has shown that a glial cell of astrocyte underpins a self-repair mechanism in the human brain, where spiking neurons provide direct and indirect feedbacks to presynaptic terminals. These feedbacks modulate the synaptic transmission probability of release (PR). When synaptic faults occur, the neuron becomes silent or near silent due to the low PR of synapses; whereby the PRs of remaining healthy synapses are then increased by the indirect feedback from the astrocyte cell. In this paper, a novel hardware architecture of Self-rePAiring spiking Neural NEtwoRk (SPANNER) is proposed, which mimics this self-repairing capability in the human brain. This paper demonstrates that the hardware can self-detect and self-repair synaptic faults without the conventional components for the fault detection and fault repairing. Experimental results show that SPANNER can maintain the system performance with fault densities of up to 40%, and more importantly SPANNER has only a 20% performance degradation when the self-repairing architecture is significantly damaged at a fault density of 80%.
Multi-sensor information fusion method for vibration fault diagnosis of rolling bearing
NASA Astrophysics Data System (ADS)
Jiao, Jing; Yue, Jianhai; Pei, Di
2017-10-01
Bearing is a key element in high-speed electric multiple unit (EMU) and any defect of it can cause huge malfunctioning of EMU under high operation speed. This paper presents a new method for bearing fault diagnosis based on least square support vector machine (LS-SVM) in feature-level fusion and Dempster-Shafer (D-S) evidence theory in decision-level fusion which were used to solve the problems about low detection accuracy, difficulty in extracting sensitive characteristics and unstable diagnosis system of single-sensor in rolling bearing fault diagnosis. Wavelet de-nosing technique was used for removing the signal noises. LS-SVM was used to make pattern recognition of the bearing vibration signal, and then fusion process was made according to the D-S evidence theory, so as to realize recognition of bearing fault. The results indicated that the data fusion method improved the performance of the intelligent approach in rolling bearing fault detection significantly. Moreover, the results showed that this method can efficiently improve the accuracy of fault diagnosis.
Models of recurrent strike-slip earthquake cycles and the state of crustal stress
NASA Technical Reports Server (NTRS)
Lyzenga, Gregory A.; Raefsky, Arthur; Mulligan, Stephanie G.
1991-01-01
Numerical models of the strike-slip earthquake cycle, assuming a viscoelastic asthenosphere coupling model, are examined. The time-dependent simulations incorporate a stress-driven fault, which leads to tectonic stress fields and earthquake recurrence histories that are mutually consistent. Single-fault simulations with constant far-field plate motion lead to a nearly periodic earthquake cycle and a distinctive spatial distribution of crustal shear stress. The predicted stress distribution includes a local minimum in stress at depths less than typical seismogenic depths. The width of this stress 'trough' depends on the magnitude of crustal stress relative to asthenospheric drag stresses. The models further predict a local near-fault stress maximum at greater depths, sustained by the cyclic transfer of strain from the elastic crust to the ductile asthenosphere. Models incorporating both low-stress and high-stress fault strength assumptions are examined, under Newtonian and non-Newtonian rheology assumptions. Model results suggest a preference for low-stress (a shear stress level of about 10 MPa) fault models, in agreement with previous estimates based on heat flow measurements and other stress indicators.
The effects of transistor source-to-gate bridging faults in complex CMOS gates
NASA Astrophysics Data System (ADS)
Visweswaran, G. S.; Ali, Akhtar-Uz-Zaman M.; Lala, Parag K.; Hartmann, Carlos R. P.
1991-06-01
A study of the effect of gate-to-source bridging faults in the pull-up section of a complex CMOS gate is presented. The manifestation of these faults depends on the resistance value of the connection causing the bridging. It is shown that such faults manifest themselves either as stuck-at or stuck-open faults and can be detected by tests for stuck-at and stuck-open faults generated for the equivalent logic current. It is observed that for transistor channel lengths larger than 1 microns there exists a range of values of the bridging resistance for which the fault behaves as a pseudo-stuck-open fault.
Transmission line relay mis-operation detection based on time-synchronized field data
Esmaeilian, Ahad; Popovic, Tomo; Kezunovic, Mladen
2015-05-04
In this paper, a real-time tool to detect transmission line relay mis-operation is implemented. The tool uses time-synchronized measurements obtained from both ends of the line during disturbances. The proposed fault analysis tool comes into the picture only after the protective device has operated and tripped the line. The proposed methodology is able not only to detect, classify, and locate transmission line faults, but also to accurately confirm whether the line was tripped due to a mis-operation of protective relays. The analysis report includes either detailed description of the fault type and location or detection of relay mis-operation. As such,more » it can be a source of very useful information to support the system restoration. The focus of the paper is on the implementation requirements that allow practical application of the methodology, which is illustrated using the field data obtained the real power system. Testing and validation is done using the field data recorded by digital fault recorders and protective relays. The test data included several hundreds of event records corresponding to both relay mis-operations and actual faults. The discussion of results addresses various challenges encountered during the implementation and validation of the presented methodology.« less
Health management and controls for Earth-to-orbit propulsion systems
NASA Astrophysics Data System (ADS)
Bickford, R. L.
1995-03-01
Avionics and health management technologies increase the safety and reliability while decreasing the overall cost for Earth-to-orbit (ETO) propulsion systems. New ETO propulsion systems will depend on highly reliable fault tolerant flight avionics, advanced sensing systems and artificial intelligence aided software to ensure critical control, safety and maintenance requirements are met in a cost effective manner. Propulsion avionics consist of the engine controller, actuators, sensors, software and ground support elements. In addition to control and safety functions, these elements perform system monitoring for health management. Health management is enhanced by advanced sensing systems and algorithms which provide automated fault detection and enable adaptive control and/or maintenance approaches. Aerojet is developing advanced fault tolerant rocket engine controllers which provide very high levels of reliability. Smart sensors and software systems which significantly enhance fault coverage and enable automated operations are also under development. Smart sensing systems, such as flight capable plume spectrometers, have reached maturity in ground-based applications and are suitable for bridging to flight. Software to detect failed sensors has reached similar maturity. This paper will discuss fault detection and isolation for advanced rocket engine controllers as well as examples of advanced sensing systems and software which significantly improve component failure detection for engine system safety and health management.
Sinusoidal synthesis based adaptive tracking for rotating machinery fault detection
NASA Astrophysics Data System (ADS)
Li, Gang; McDonald, Geoff L.; Zhao, Qing
2017-01-01
This paper presents a novel Sinusoidal Synthesis Based Adaptive Tracking (SSBAT) technique for vibration-based rotating machinery fault detection. The proposed SSBAT algorithm is an adaptive time series technique that makes use of both frequency and time domain information of vibration signals. Such information is incorporated in a time varying dynamic model. Signal tracking is then realized by applying adaptive sinusoidal synthesis to the vibration signal. A modified Least-Squares (LS) method is adopted to estimate the model parameters. In addition to tracking, the proposed vibration synthesis model is mainly used as a linear time-varying predictor. The health condition of the rotating machine is monitored by checking the residual between the predicted and measured signal. The SSBAT method takes advantage of the sinusoidal nature of vibration signals and transfers the nonlinear problem into a linear adaptive problem in the time domain based on a state-space realization. It has low computation burden and does not need a priori knowledge of the machine under the no-fault condition which makes the algorithm ideal for on-line fault detection. The method is validated using both numerical simulation and practical application data. Meanwhile, the fault detection results are compared with the commonly adopted autoregressive (AR) and autoregressive Minimum Entropy Deconvolution (ARMED) method to verify the feasibility and performance of the SSBAT method.
NASA Astrophysics Data System (ADS)
Arriola, David; Thielecke, Frank
2017-09-01
Electromechanical actuators have become a key technology for the onset of power-by-wire flight control systems in the next generation of commercial aircraft. The design of robust control and monitoring functions for these devices capable to mitigate the effects of safety-critical faults is essential in order to achieve the required level of fault tolerance. A primary flight control system comprising two electromechanical actuators nominally operating in active-active mode is considered. A set of five signal-based monitoring functions are designed using a detailed model of the system under consideration which includes non-linear parasitic effects, measurement and data acquisition effects, and actuator faults. Robust detection thresholds are determined based on the analysis of parametric and input uncertainties. The designed monitoring functions are verified experimentally and by simulation through the injection of faults in the validated model and in a test-rig suited to the actuation system under consideration, respectively. They guarantee a robust and efficient fault detection and isolation with a low risk of false alarms, additionally enabling the correct reconfiguration of the system for an enhanced operational availability. In 98% of the performed experiments and simulations, the correct faults were detected and confirmed within the time objectives set.
Can We Practically Bring Physics-based Modeling Into Operational Analytics Tools?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Granderson, Jessica; Bonvini, Marco; Piette, Mary Ann
We present that analytics software is increasingly used to improve and maintain operational efficiency in commercial buildings. Energy managers, owners, and operators are using a diversity of commercial offerings often referred to as Energy Information Systems, Fault Detection and Diagnostic (FDD) systems, or more broadly Energy Management and Information Systems, to cost-effectively enable savings on the order of ten to twenty percent. Most of these systems use data from meters and sensors, with rule-based and/or data-driven models to characterize system and building behavior. In contrast, physics-based modeling uses first-principles and engineering models (e.g., efficiency curves) to characterize system and buildingmore » behavior. Historically, these physics-based approaches have been used in the design phase of the building life cycle or in retrofit analyses. Researchers have begun exploring the benefits of integrating physics-based models with operational data analytics tools, bridging the gap between design and operations. In this paper, we detail the development and operator use of a software tool that uses hybrid data-driven and physics-based approaches to cooling plant FDD and optimization. Specifically, we describe the system architecture, models, and FDD and optimization algorithms; advantages and disadvantages with respect to purely data-driven approaches; and practical implications for scaling and replicating these techniques. Finally, we conclude with an evaluation of the future potential for such tools and future research opportunities.« less
Modeling the Fault Tolerant Capability of a Flight Control System: An Exercise in SCR Specification
NASA Technical Reports Server (NTRS)
Alexander, Chris; Cortellessa, Vittorio; DelGobbo, Diego; Mili, Ali; Napolitano, Marcello
2000-01-01
In life-critical and mission-critical applications, it is important to make provisions for a wide range of contingencies, by providing means for fault tolerance. In this paper, we discuss the specification of a flight control system that is fault tolerant with respect to sensor faults. Redundancy is provided by analytical relations that hold between sensor readings; depending on the conditions, this redundancy can be used to detect, identify and accommodate sensor faults.
Sideband Algorithm for Automatic Wind Turbine Gearbox Fault Detection and Diagnosis: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zappala, D.; Tavner, P.; Crabtree, C.
2013-01-01
Improving the availability of wind turbines (WT) is critical to minimize the cost of wind energy, especially for offshore installations. As gearbox downtime has a significant impact on WT availabilities, the development of reliable and cost-effective gearbox condition monitoring systems (CMS) is of great concern to the wind industry. Timely detection and diagnosis of developing gear defects within a gearbox is an essential part of minimizing unplanned downtime of wind turbines. Monitoring signals from WT gearboxes are highly non-stationary as turbine load and speed vary continuously with time. Time-consuming and costly manual handling of large amounts of monitoring data representmore » one of the main limitations of most current CMSs, so automated algorithms are required. This paper presents a fault detection algorithm for incorporation into a commercial CMS for automatic gear fault detection and diagnosis. The algorithm allowed the assessment of gear fault severity by tracking progressive tooth gear damage during variable speed and load operating conditions of the test rig. Results show that the proposed technique proves efficient and reliable for detecting gear damage. Once implemented into WT CMSs, this algorithm can automate data interpretation reducing the quantity of information that WT operators must handle.« less
Process fault detection and nonlinear time series analysis for anomaly detection in safeguards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burr, T.L.; Mullen, M.F.; Wangen, L.E.
In this paper we discuss two advanced techniques, process fault detection and nonlinear time series analysis, and apply them to the analysis of vector-valued and single-valued time-series data. We investigate model-based process fault detection methods for analyzing simulated, multivariate, time-series data from a three-tank system. The model-predictions are compared with simulated measurements of the same variables to form residual vectors that are tested for the presence of faults (possible diversions in safeguards terminology). We evaluate two methods, testing all individual residuals with a univariate z-score and testing all variables simultaneously with the Mahalanobis distance, for their ability to detect lossmore » of material from two different leak scenarios from the three-tank system: a leak without and with replacement of the lost volume. Nonlinear time-series analysis tools were compared with the linear methods popularized by Box and Jenkins. We compare prediction results using three nonlinear and two linear modeling methods on each of six simulated time series: two nonlinear and four linear. The nonlinear methods performed better at predicting the nonlinear time series and did as well as the linear methods at predicting the linear values.« less
Córcoles, A.D.; Magesan, Easwar; Srinivasan, Srikanth J.; Cross, Andrew W.; Steffen, M.; Gambetta, Jay M.; Chow, Jerry M.
2015-01-01
The ability to detect and deal with errors when manipulating quantum systems is a fundamental requirement for fault-tolerant quantum computing. Unlike classical bits that are subject to only digital bit-flip errors, quantum bits are susceptible to a much larger spectrum of errors, for which any complete quantum error-correcting code must account. Whilst classical bit-flip detection can be realized via a linear array of qubits, a general fault-tolerant quantum error-correcting code requires extending into a higher-dimensional lattice. Here we present a quantum error detection protocol on a two-by-two planar lattice of superconducting qubits. The protocol detects an arbitrary quantum error on an encoded two-qubit entangled state via quantum non-demolition parity measurements on another pair of error syndrome qubits. This result represents a building block towards larger lattices amenable to fault-tolerant quantum error correction architectures such as the surface code. PMID:25923200
Córcoles, A D; Magesan, Easwar; Srinivasan, Srikanth J; Cross, Andrew W; Steffen, M; Gambetta, Jay M; Chow, Jerry M
2015-04-29
The ability to detect and deal with errors when manipulating quantum systems is a fundamental requirement for fault-tolerant quantum computing. Unlike classical bits that are subject to only digital bit-flip errors, quantum bits are susceptible to a much larger spectrum of errors, for which any complete quantum error-correcting code must account. Whilst classical bit-flip detection can be realized via a linear array of qubits, a general fault-tolerant quantum error-correcting code requires extending into a higher-dimensional lattice. Here we present a quantum error detection protocol on a two-by-two planar lattice of superconducting qubits. The protocol detects an arbitrary quantum error on an encoded two-qubit entangled state via quantum non-demolition parity measurements on another pair of error syndrome qubits. This result represents a building block towards larger lattices amenable to fault-tolerant quantum error correction architectures such as the surface code.
Gear-box fault detection using time-frequency based methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odgaard, Peter Fogh; Stoustrup, Jakob
2015-01-01
Gear-box fault monitoring and detection is important for optimization of power generation and availability of wind turbines. The current industrial approach is to use condition monitoring systems, which runs in parallel with the wind turbine control system, using expensive additional sensors. An alternative would be to use the existing measurements which are normally available for the wind turbine control system. The usage of these sensors instead would cut down the cost of the wind turbine by not using additional sensors. One of these available measurements is the generator speed, in which changes in the gear-box resonance frequency can be detected.more » Two different time-frequency based approaches are presented in this paper. One is a filter based approach and the other is based on a Karhunen-Loeve basis. Both of them detects the gear-box fault with an acceptable detection delay.« less
Fault detection for hydraulic pump based on chaotic parallel RBF network
NASA Astrophysics Data System (ADS)
Lu, Chen; Ma, Ning; Wang, Zhipeng
2011-12-01
In this article, a parallel radial basis function network in conjunction with chaos theory (CPRBF network) is presented, and applied to practical fault detection for hydraulic pump, which is a critical component in aircraft. The CPRBF network consists of a number of radial basis function (RBF) subnets connected in parallel. The number of input nodes for each RBF subnet is determined by different embedding dimension based on chaotic phase-space reconstruction. The output of CPRBF is a weighted sum of all RBF subnets. It was first trained using the dataset from normal state without fault, and then a residual error generator was designed to detect failures based on the trained CPRBF network. Then, failure detection can be achieved by the analysis of the residual error. Finally, two case studies are introduced to compare the proposed CPRBF network with traditional RBF networks, in terms of prediction and detection accuracy.
A fault-tolerant control architecture for unmanned aerial vehicles
NASA Astrophysics Data System (ADS)
Drozeski, Graham R.
Research has presented several approaches to achieve varying degrees of fault-tolerance in unmanned aircraft. Approaches in reconfigurable flight control are generally divided into two categories: those which incorporate multiple non-adaptive controllers and switch between them based on the output of a fault detection and identification element, and those that employ a single adaptive controller capable of compensating for a variety of fault modes. Regardless of the approach for reconfigurable flight control, certain fault modes dictate system restructuring in order to prevent a catastrophic failure. System restructuring enables active control of actuation not employed by the nominal system to recover controllability of the aircraft. After system restructuring, continued operation requires the generation of flight paths that adhere to an altered flight envelope. The control architecture developed in this research employs a multi-tiered hierarchy to allow unmanned aircraft to generate and track safe flight paths despite the occurrence of potentially catastrophic faults. The hierarchical architecture increases the level of autonomy of the system by integrating five functionalities with the baseline system: fault detection and identification, active system restructuring, reconfigurable flight control; reconfigurable path planning, and mission adaptation. Fault detection and identification algorithms continually monitor aircraft performance and issue fault declarations. When the severity of a fault exceeds the capability of the baseline flight controller, active system restructuring expands the controllability of the aircraft using unconventional control strategies not exploited by the baseline controller. Each of the reconfigurable flight controllers and the baseline controller employ a proven adaptive neural network control strategy. A reconfigurable path planner employs an adaptive model of the vehicle to re-shape the desired flight path. Generation of the revised flight path is posed as a linear program constrained by the response of the degraded system. Finally, a mission adaptation component estimates limitations on the closed-loop performance of the aircraft and adjusts the aircraft mission accordingly. A combination of simulation and flight test results using two unmanned helicopters validates the utility of the hierarchical architecture.
NASA Astrophysics Data System (ADS)
Zhang, Yan; Tang, Baoping; Liu, Ziran; Chen, Rengxiang
2016-02-01
Fault diagnosis of rolling element bearings is important for improving mechanical system reliability and performance. Vibration signals contain a wealth of complex information useful for state monitoring and fault diagnosis. However, any fault-related impulses in the original signal are often severely tainted by various noises and the interfering vibrations caused by other machine elements. Narrow-band amplitude demodulation has been an effective technique to detect bearing faults by identifying bearing fault characteristic frequencies. To achieve this, the key step is to remove the corrupting noise and interference, and to enhance the weak signatures of the bearing fault. In this paper, a new method based on adaptive wavelet filtering and spectral subtraction is proposed for fault diagnosis in bearings. First, to eliminate the frequency associated with interfering vibrations, the vibration signal is bandpass filtered with a Morlet wavelet filter whose parameters (i.e. center frequency and bandwidth) are selected in separate steps. An alternative and efficient method of determining the center frequency is proposed that utilizes the statistical information contained in the production functions (PFs). The bandwidth parameter is optimized using a local ‘greedy’ scheme along with Shannon wavelet entropy criterion. Then, to further reduce the residual in-band noise in the filtered signal, a spectral subtraction procedure is elaborated after wavelet filtering. Instead of resorting to a reference signal as in the majority of papers in the literature, the new method estimates the power spectral density of the in-band noise from the associated PF. The effectiveness of the proposed method is validated using simulated data, test rig data, and vibration data recorded from the transmission system of a helicopter. The experimental results and comparisons with other methods indicate that the proposed method is an effective approach to detecting the fault-related impulses hidden in vibration signals and performs well for bearing fault diagnosis.
[Early warning for various internal faults of GIS based on ultraviolet spectroscopy].
Zhao, Yu; Wang, Xian-pei; Hu, Hong-hong; Dai, Dang-dang; Long, Jia-chuan; Tian, Meng; Zhu, Guo-wei; Huang, Yun-guang
2015-02-01
As the basis of accurate diagnosis, fault early-warning of gas insulation switchgear (GIS) focuses on the time-effectiveness and the applicability. It would be significant to research the method of unified early-warning for partial discharge (PD) and overheated faults in GIS. In the present paper, SO2 is proposed as the common and typical by-product. The unified monitoring could be achieved through ultraviolet spectroscopy (UV) detection of SO2. The derivative method and Savitzky-Golay filtering are employed for baseline correction and smoothing. The wavelength range of 290-310 nm is selected for quantitative detection of SO2. Through UV method, the spectral interference of SF6 and other complex by-products, e.g., SOF2 and SOF2, can be avoided and the features of trace SO2 in GIS can be extracted. The detection system is featured by compacted structure, low maintenance and satisfactory suitability in filed surveillance. By conducting SF6 decomposition experiments, including two types of PD faults and the overheated faults between 200-400 degrees C, the feasibility of proposed UV method has been verified. Fourier transform infrared spectroscopy and gas chromatography methods can be used for subsequent fault diagnosis. The different decomposition features in two kinds of faults are confirmed and the diagnosis strategy has been briefly analyzed. The main by-products under PD are SOF2 and SO2F2. The generated SO2 is significantly less than SOF2. More carbonous by-products will be generated when PD involves epoxy. By contrast, when the material of heater is stainless steel, SF6 decomposes at about 300 "C and the main by-products in overheated faults are SO2 and SO2F2. When heated over 350 degrees C, SO2 is generated much faster. SOz content stably increases when the GIS fault lasts. The faults types could be preliminarily identified based on the generation features of SO2.
Method and system for early detection of incipient faults in electric motors
Parlos, Alexander G; Kim, Kyusung
2003-07-08
A method and system for early detection of incipient faults in an electric motor are disclosed. First, current and voltage values for one or more phases of the electric motor are measured during motor operations. A set of current predictions is then determined via a neural network-based current predictor based on the measured voltage values and an estimate of motor speed values of the electric motor. Next, a set of residuals is generated by combining the set of current predictions with the measured current values. A set of fault indicators is subsequently computed from the set of residuals and the measured current values. Finally, a determination is made as to whether or not there is an incipient electrical, mechanical, and/or electromechanical fault occurring based on the comparison result of the set of fault indicators and a set of predetermined baseline values.
Ghosh, Arup; Qin, Shiming; Lee, Jooyeoun; Wang, Gi-Nam
2016-01-01
Operational faults and behavioural anomalies associated with PLC control processes take place often in a manufacturing system. Real time identification of these operational faults and behavioural anomalies is necessary in the manufacturing industry. In this paper, we present an automated tool, called PLC Log-Data Analysis Tool (PLAT) that can detect them by using log-data records of the PLC signals. PLAT automatically creates a nominal model of the PLC control process and employs a novel hash table based indexing and searching scheme to satisfy those purposes. Our experiments show that PLAT is significantly fast, provides real time identification of operational faults and behavioural anomalies, and can execute within a small memory footprint. In addition, PLAT can easily handle a large manufacturing system with a reasonable computing configuration and can be installed in parallel to the data logging system to identify operational faults and behavioural anomalies effectively.
Ghosh, Arup; Qin, Shiming; Lee, Jooyeoun
2016-01-01
Operational faults and behavioural anomalies associated with PLC control processes take place often in a manufacturing system. Real time identification of these operational faults and behavioural anomalies is necessary in the manufacturing industry. In this paper, we present an automated tool, called PLC Log-Data Analysis Tool (PLAT) that can detect them by using log-data records of the PLC signals. PLAT automatically creates a nominal model of the PLC control process and employs a novel hash table based indexing and searching scheme to satisfy those purposes. Our experiments show that PLAT is significantly fast, provides real time identification of operational faults and behavioural anomalies, and can execute within a small memory footprint. In addition, PLAT can easily handle a large manufacturing system with a reasonable computing configuration and can be installed in parallel to the data logging system to identify operational faults and behavioural anomalies effectively. PMID:27974882
NASA Technical Reports Server (NTRS)
Simon, Dan; Simon, Donald L.
2009-01-01
Given a system which can fail in 1 or n different ways, a fault detection and isolation (FDI) algorithm uses sensor data in order to determine which fault is the most likely to have occurred. The effectiveness of an FDI algorithm can be quantified by a confusion matrix, which i ndicates the probability that each fault is isolated given that each fault has occurred. Confusion matrices are often generated with simulation data, particularly for complex systems. In this paper we perform FDI using sums of squares of sensor residuals (SSRs). We assume that the sensor residuals are Gaussian, which gives the SSRs a chi-squared distribution. We then generate analytic lower and upper bounds on the confusion matrix elements. This allows for the generation of optimal sensor sets without numerical simulations. The confusion matrix bound s are verified with simulated aircraft engine data.
NASA Astrophysics Data System (ADS)
Zhai, Ding; Lu, Anyang; Li, Jinghao; Zhang, Qingling
2016-10-01
This paper deals with the problem of the fault detection (FD) for continuous-time singular switched linear systems with multiple time-varying delay. In this paper, the actuator fault is considered. Besides, the systems faults and unknown disturbances are assumed in known frequency domains. Some finite frequency performance indices are initially introduced to design the switched FD filters which ensure that the filtering augmented systems under switching signal with average dwell time are exponentially admissible and guarantee the fault input sensitivity and disturbance robustness. By developing generalised Kalman-Yakubovic-Popov lemma and using Parseval's theorem and Fourier transform, finite frequency delay-dependent sufficient conditions for the existence of such a filter which can guarantee the finite-frequency H- and H∞ performance are derived and formulated in terms of linear matrix inequalities. Four examples are provided to illustrate the effectiveness of the proposed finite frequency method.
Magma-Tectonic Interactions in the Main Ethiopian Rift; Insights into Rifting Processes
NASA Astrophysics Data System (ADS)
Greenfield, T.; Keir, D.; Tessema, T.; Lloyd, R.; Biggs, J.; Ayele, A.; Kendall, J. M.
2017-12-01
We report observations made around the Bora-Tulu Moye volcanic field, in the Main Ethiopian Rift (MER). A network of seismometers deployed around the volcano for one and a half years reveals the recent state of the volcano. Accurate earthquake locations and focal mechanisms are combined with surface deformation and mapping of faults, fissures and geothermally active areas to reveal the interaction between magmatism and intra-rift faulting. More than 1000 earthquakes are detected and located, making the Bora-Tulu Moye volcanic field one of the most seismically active regions of the MER. Earthquakes are located at depths of less than 5 km below the surface and range between magnitudes of 1.5 - 3.5. Surface deformation of Bora-Tulu Moye is observed using satellite based radar interferometry (InSAR) recorded before and during the seismic deployment. Since 2004, deformation has oscillated between uplift and subsidence centered at the same spatial location but different depths. We constrain the source of the uplift to be at 7 km depth while the source of the subsidence is shallower. Micro-earthquake locations reveal that earthquakes are located around the edge of the observed deformation and record the activation of normal faults orientated at 025°. The spatial link between surface deformation and brittle failure suggest that significant hydrothermal circulation driven by an inflating shallow heat source is inducing brittle failure. Elsewhere, seismicity is focused in areas of significant surface alteration from hydrothermal processes. We use shear wave splitting using local earthquakes to image the stress state of the volcano. A combination of rift parallel and rift-oblique fast directions are observed, indicating the volcano has a significant influence on the crustal stresses. Volcanic activity around Bora-Tulu Moye has migrated eastwards over time, closer to the intra-rift fault system, the Wonji Fault Belt. How and why this occurs relates to changes in the melt supply to the upper crust from depth and has implications for the early stages of rift evolution and for volcanic and tectonic hazard in Ethiopia and rifts generally.
Power System Transient Diagnostics Based on Novel Traveling Wave Detection
NASA Astrophysics Data System (ADS)
Hamidi, Reza Jalilzadeh
Modern electrical power systems demand novel diagnostic approaches to enhancing the system resiliency by improving the state-of-the-art algorithms. The proliferation of high-voltage optical transducers and high time-resolution measurements provide opportunities to develop novel diagnostic methods of very fast transients in power systems. At the same time, emerging complex configuration, such as multi-terminal hybrid transmission systems, limits the applications of the traditional diagnostic methods, especially in fault location and health monitoring. The impedance-based fault-location methods are inefficient for cross-bounded cables, which are widely used for connection of offshore wind farms to the main grid. Thus, this dissertation first presents a novel traveling wave-based fault-location method for hybrid multi-terminal transmission systems. The proposed method utilizes time-synchronized high-sampling voltage measurements. The traveling wave arrival times (ATs) are detected by observation of the squares of wavelet transformation coefficients. Using the ATs, an over-determined set of linear equations are developed for noise reduction, and consequently, the faulty segment is determined based on the characteristics of the provided equation set. Then, the fault location is estimated. The accuracy and capabilities of the proposed fault location method are evaluated and also compared to the existing traveling-wave-based method for a wide range of fault parameters. In order to improve power systems stability, auto-reclosing (AR), single-phase auto-reclosing (SPAR), and adaptive single-phase auto-reclosing (ASPAR) methods have been developed with the final objectives of distinguishing between the transient and permanent faults to clear the transient faults without de-energization of the solid phases. However, the features of the electrical arcs (transient faults) are severely influenced by a number of random parameters, including the convection of the air and plasma, wind speed, air pressure, and humidity. Therefore, the dead-time (the de-energization duration of the faulty phase) is unpredictable. Accordingly, conservatively long dead-times are usually considered by protection engineers. However, if the exact arc distinction time is determined, the power system stability and quality will enhance. Therefore, a new method for detection of arc extinction times leading to a new ASPAR method utilizing power line carrier (PLC) signals is presented. The efficiency of the proposed ASPAR method is verified through simulations and compared with the existing ASPAR methods. High-sampling measurements are prone to be skewed by the environmental noises and analog-to-digital (A/D) converters quantization errors. Therefore noise-contaminated measurements are the major source of uncertainties and errors in the outcomes of traveling wave-based diagnostic applications. The existing AT-detection methods do not provide enough sensitivity and selectivity at the same time. Therefore, a new AT-detection method based on short-time matrix pencil (STMPM) is developed to accurately detect ATs of the traveling waves with low signal-to-noise (SNR) ratios. As STMPM is based on matrix algebra, it is a challenging to implement this new technique in microprocessor-based fault locators. Hence, a fully recursive and computationally efficient method based on adaptive discrete Kalman filter (ADKF) is introduced for AT-detection, which is proper for microprocessors and able to accomplish accurate AT-detection for online applications such as ultra-high-speed protection. Both proposed AT-detection methods are evaluated based on extensive simulation studies, and the superior outcomes are compared to the existing methods.
Experimental Measurements of Permeability Evolution along Faults during Progressive Slip
NASA Astrophysics Data System (ADS)
Strutz, M.; Mitchell, T. M.; Renner, J.
2010-12-01
Little is currently known about the dynamic changes in fault-parallel permeability along rough faults during progressive slip. With increasing slip, asperities are worn to produce gouge which can dramatically reduce along fault permeability within the slip zone. However, faults can have a range of roughness which can affect both the porosity and both the amount and distribution of fault wear material produced in the slipping zone during the early stages of fault evolution. In this novel study we investigate experimentally the evolution of permeability along a fault plane in granite sawcut sliding blocks with a variety of intial roughnesses in a triaxial apparatus. Drillholes in the samples allow the permeability to be measured along the fault plane during loading and subsequent fault displacement. Use of the pore pressure oscillation technique (PPO) allows the continuous measurement of permeability without having to stop loading. To achieve a range of intial starting roughnesses, faults sawcut surfaces were prepared using a variety of corundum powders ranging from 10 µm to 220 µm, and for coarser roughness were air-blasted with glass beads up to 800µm in size. Fault roughness has been quantified with a laser profileometer. During sliding, we measure the acoustic emissions in order to detect grain cracking and asperity shearing which may relate to both the mechanical and permeability data. Permeability shows relative reductions of up to over 4 orders of magnitude during stable sliding as asperities are sheared to produce a fine fault gouge. This variation in permeability is greatest for the roughest faults, reducing as fault roughness decreases. The onset of permeability reduction is contemporaneous with a dramatic reduction in the amount of detected acoustic emissions, where a continuous layer of fault gouge has developed. The amount of fault gouge produced is related to the initial roughness, with the rough faults showing larger fault gouge layers at the end of slip. Following large stress drops and stick slip events, permeability can both increase and decrease due to dynamic changes in pore pressure during fast sliding events. We present a summary of preliminary data to date, and discuss some of the problems and unknowns when using the PPO method to measure permeability.
1999-05-05
processing and artificial neural network (ANN) technology. The detector will classify incipient faults based on real-tine vibration data taken from the...provided the vibration data necessary to develop and test the feasibility of en artificial neural network for fault classification. This research
Surveillance system and method having an operating mode partitioned fault classification model
NASA Technical Reports Server (NTRS)
Bickford, Randall L. (Inventor)
2005-01-01
A system and method which partitions a parameter estimation model, a fault detection model, and a fault classification model for a process surveillance scheme into two or more coordinated submodels together providing improved diagnostic decision making for at least one determined operating mode of an asset.
Three-dimensional models of deformation near strike-slip faults
ten Brink, Uri S.; Katzman, Rafael; Lin, J.
1996-01-01
We use three-dimensional elastic models to help guide the kinematic interpretation of crustal deformation associated with strike-slip faults. Deformation of the brittle upper crust in the vicinity of strike-slip fault systems is modeled with the assumption that upper crustal deformation is driven by the relative plate motion in the upper mantle. The driving motion is represented by displacement that is specified on the bottom of a 15-km-thick elastic upper crust everywhere except in a zone of finite width in the vicinity of the faults, which we term the "shear zone." Stress-free basal boundary conditions are specified within the shear zone. The basal driving displacement is either pure strike slip or strike slip with a small oblique component, and the geometry of the fault system includes a single fault, several parallel faults, and overlapping en echelon faults. We examine the variations in deformation due to changes in the width of the shear zone and due to changes in the shear strength of the faults. In models with weak faults the width of the shear zone has a considerable effect on the surficial extent and amplitude of the vertical and horizontal deformation and on the amount of rotation around horizontal and vertical axes. Strong fault models have more localized deformation at the tip of the faults, and the deformation is partly distributed outside the fault zone. The dimensions of large basins along strike-slip faults, such as the Rukwa and Dead Sea basins, and the absence of uplift around pull-apart basins fit models with weak faults better than models with strong faults. Our models also suggest that the length-to-width ratio of pull-apart basins depends on the width of the shear zone and the shear strength of the faults and is not constant as previously suggested. We show that pure strike-slip motion can produce tectonic features, such as elongate half grabens along a single fault, rotated blocks at the ends of parallel faults, or extension perpendicular to overlapping en echelon faults, which can be misinterpreted to indicate a regional component of extension. Zones of subsidence or uplift can become wider than expected for transform plate boundaries when a minor component of oblique motion is added to a system of parallel strike-slip faults.
Three-dimensional models of deformation near strike-slip faults
ten Brink, Uri S.; Katzman, Rafael; Lin, Jian
1996-01-01
We use three-dimensional elastic models to help guide the kinematic interpretation of crustal deformation associated with strike-slip faults. Deformation of the brittle upper crust in the vicinity of strike-slip fault systems is modeled with the assumption that upper crustal deformation is driven by the relative plate motion in the upper mantle. The driving motion is represented by displacement that is specified on the bottom of a 15-km-thick elastic upper crust everywhere except in a zone of finite width in the vicinity of the faults, which we term the “shear zone.” Stress-free basal boundary conditions are specified within the shear zone. The basal driving displacement is either pure strike slip or strike slip with a small oblique component, and the geometry of the fault system includes a single fault, several parallel faults, and overlapping en echelon faults. We examine the variations in deformation due to changes in the width of the shear zone and due to changes in the shear strength of the faults. In models with weak faults the width of the shear zone has a considerable effect on the surficial extent and amplitude of the vertical and horizontal deformation and on the amount of rotation around horizontal and vertical axes. Strong fault models have more localized deformation at the tip of the faults, and the deformation is partly distributed outside the fault zone. The dimensions of large basins along strike-slip faults, such as the Rukwa and Dead Sea basins, and the absence of uplift around pull-apart basins fit models with weak faults better than models with strong faults. Our models also suggest that the length-to-width ratio of pull-apart basins depends on the width of the shear zone and the shear strength of the faults and is not constant as previously suggested. We show that pure strike-slip motion can produce tectonic features, such as elongate half grabens along a single fault, rotated blocks at the ends of parallel faults, or extension perpendicular to overlapping en echelon faults, which can be misinterpreted to indicate a regional component of extension. Zones of subsidence or uplift can become wider than expected for transform plate boundaries when a minor component of oblique motion is added to a system of parallel strike-slip faults.
A Model-Based Probabilistic Inversion Framework for Wire Fault Detection Using TDR
NASA Technical Reports Server (NTRS)
Schuet, Stefan R.; Timucin, Dogan A.; Wheeler, Kevin R.
2010-01-01
Time-domain reflectometry (TDR) is one of the standard methods for diagnosing faults in electrical wiring and interconnect systems, with a long-standing history focused mainly on hardware development of both high-fidelity systems for laboratory use and portable hand-held devices for field deployment. While these devices can easily assess distance to hard faults such as sustained opens or shorts, their ability to assess subtle but important degradation such as chafing remains an open question. This paper presents a unified framework for TDR-based chafing fault detection in lossy coaxial cables by combining an S-parameter based forward modeling approach with a probabilistic (Bayesian) inference algorithm. Results are presented for the estimation of nominal and faulty cable parameters from laboratory data.
Pressure Monitoring to Detect Fault Rupture Due to CO 2 Injection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keating, Elizabeth; Dempsey, David; Pawar, Rajesh
The capacity for fault systems to be reactivated by fluid injection is well-known. In the context of CO 2 sequestration, however, the consequence of reactivated faults with respect to leakage and monitoring is poorly understood. Using multi-phase fluid flow simulations, this study addresses key questions concerning the likelihood of ruptures, the timing of consequent upward leakage of CO 2, and the effectiveness of pressure monitoring in the reservoir and overlying zones for rupture detection. A range of injection scenarios was simulated using random sampling of uncertain parameters. These include the assumed distance between the injector and the vulnerable fault zone,more » the critical overpressure required for the fault to rupture, reservoir permeability, and the CO 2 injection rate. We assumed a conservative scenario, in which if at any time during the five-year simulations the critical fault overpressure is exceeded, the fault permeability is assumed to instantaneously increase. For the purposes of conservatism we assume that CO 2 injection continues ‘blindly’ after fault rupture. We show that, despite this assumption, in most cases the CO 2 plume does not reach the base of the ruptured fault after 5 years. As a result, one possible implication of this result is that leak mitigation strategies such as pressure management have a reasonable chance of preventing a CO 2 leak.« less
Pressure Monitoring to Detect Fault Rupture Due to CO 2 Injection
Keating, Elizabeth; Dempsey, David; Pawar, Rajesh
2017-08-18
The capacity for fault systems to be reactivated by fluid injection is well-known. In the context of CO 2 sequestration, however, the consequence of reactivated faults with respect to leakage and monitoring is poorly understood. Using multi-phase fluid flow simulations, this study addresses key questions concerning the likelihood of ruptures, the timing of consequent upward leakage of CO 2, and the effectiveness of pressure monitoring in the reservoir and overlying zones for rupture detection. A range of injection scenarios was simulated using random sampling of uncertain parameters. These include the assumed distance between the injector and the vulnerable fault zone,more » the critical overpressure required for the fault to rupture, reservoir permeability, and the CO 2 injection rate. We assumed a conservative scenario, in which if at any time during the five-year simulations the critical fault overpressure is exceeded, the fault permeability is assumed to instantaneously increase. For the purposes of conservatism we assume that CO 2 injection continues ‘blindly’ after fault rupture. We show that, despite this assumption, in most cases the CO 2 plume does not reach the base of the ruptured fault after 5 years. As a result, one possible implication of this result is that leak mitigation strategies such as pressure management have a reasonable chance of preventing a CO 2 leak.« less
Khadke, Piyush; Patne, Nita; Singh, Arvind; Shinde, Gulab
2016-01-01
In this article, a novel and accurate scheme for fault detection, classification and fault distance estimation for a fixed series compensated transmission line is proposed. The proposed scheme is based on artificial neural network (ANN) and metal oxide varistor (MOV) energy, employing Levenberg-Marquardt training algorithm. The novelty of this scheme is the use of MOV energy signals of fixed series capacitors (FSC) as input to train the ANN. Such approach has never been used in any earlier fault analysis algorithms in the last few decades. Proposed scheme uses only single end measurement energy signals of MOV in all the 3 phases over one cycle duration from the occurrence of a fault. Thereafter, these MOV energy signals are fed as input to ANN for fault distance estimation. Feasibility and reliability of the proposed scheme have been evaluated for all ten types of fault in test power system model at different fault inception angles over numerous fault locations. Real transmission system parameters of 3-phase 400 kV Wardha-Aurangabad transmission line (400 km) with 40 % FSC at Power Grid Wardha Substation, India is considered for this research. Extensive simulation experiments show that the proposed scheme provides quite accurate results which demonstrate complete protection scheme with high accuracy, simplicity and robustness.
Multi-Sensor Fusion with Interaction Multiple Model and Chi-Square Test Tolerant Filter.
Yang, Chun; Mohammadi, Arash; Chen, Qing-Wei
2016-11-02
Motivated by the key importance of multi-sensor information fusion algorithms in the state-of-the-art integrated navigation systems due to recent advancements in sensor technologies, telecommunication, and navigation systems, the paper proposes an improved and innovative fault-tolerant fusion framework. An integrated navigation system is considered consisting of four sensory sub-systems, i.e., Strap-down Inertial Navigation System (SINS), Global Navigation System (GPS), the Bei-Dou2 (BD2) and Celestial Navigation System (CNS) navigation sensors. In such multi-sensor applications, on the one hand, the design of an efficient fusion methodology is extremely constrained specially when no information regarding the system's error characteristics is available. On the other hand, the development of an accurate fault detection and integrity monitoring solution is both challenging and critical. The paper addresses the sensitivity issues of conventional fault detection solutions and the unavailability of a precisely known system model by jointly designing fault detection and information fusion algorithms. In particular, by using ideas from Interacting Multiple Model (IMM) filters, the uncertainty of the system will be adjusted adaptively by model probabilities and using the proposed fuzzy-based fusion framework. The paper also addresses the problem of using corrupted measurements for fault detection purposes by designing a two state propagator chi-square test jointly with the fusion algorithm. Two IMM predictors, running in parallel, are used and alternatively reactivated based on the received information form the fusion filter to increase the reliability and accuracy of the proposed detection solution. With the combination of the IMM and the proposed fusion method, we increase the failure sensitivity of the detection system and, thereby, significantly increase the overall reliability and accuracy of the integrated navigation system. Simulation results indicate that the proposed fault tolerant fusion framework provides superior performance over its traditional counterparts.
Multi-Sensor Fusion with Interaction Multiple Model and Chi-Square Test Tolerant Filter
Yang, Chun; Mohammadi, Arash; Chen, Qing-Wei
2016-01-01
Motivated by the key importance of multi-sensor information fusion algorithms in the state-of-the-art integrated navigation systems due to recent advancements in sensor technologies, telecommunication, and navigation systems, the paper proposes an improved and innovative fault-tolerant fusion framework. An integrated navigation system is considered consisting of four sensory sub-systems, i.e., Strap-down Inertial Navigation System (SINS), Global Navigation System (GPS), the Bei-Dou2 (BD2) and Celestial Navigation System (CNS) navigation sensors. In such multi-sensor applications, on the one hand, the design of an efficient fusion methodology is extremely constrained specially when no information regarding the system’s error characteristics is available. On the other hand, the development of an accurate fault detection and integrity monitoring solution is both challenging and critical. The paper addresses the sensitivity issues of conventional fault detection solutions and the unavailability of a precisely known system model by jointly designing fault detection and information fusion algorithms. In particular, by using ideas from Interacting Multiple Model (IMM) filters, the uncertainty of the system will be adjusted adaptively by model probabilities and using the proposed fuzzy-based fusion framework. The paper also addresses the problem of using corrupted measurements for fault detection purposes by designing a two state propagator chi-square test jointly with the fusion algorithm. Two IMM predictors, running in parallel, are used and alternatively reactivated based on the received information form the fusion filter to increase the reliability and accuracy of the proposed detection solution. With the combination of the IMM and the proposed fusion method, we increase the failure sensitivity of the detection system and, thereby, significantly increase the overall reliability and accuracy of the integrated navigation system. Simulation results indicate that the proposed fault tolerant fusion framework provides superior performance over its traditional counterparts. PMID:27827832
Mechatronics technology in predictive maintenance method
NASA Astrophysics Data System (ADS)
Majid, Nurul Afiqah A.; Muthalif, Asan G. A.
2017-11-01
This paper presents recent mechatronics technology that can help to implement predictive maintenance by combining intelligent and predictive maintenance instrument. Vibration Fault Simulation System (VFSS) is an example of mechatronics system. The focus of this study is the prediction on the use of critical machines to detect vibration. Vibration measurement is often used as the key indicator of the state of the machine. This paper shows the choice of the appropriate strategy in the vibration of diagnostic process of the mechanical system, especially rotating machines, in recognition of the failure during the working process. In this paper, the vibration signature analysis is implemented to detect faults in rotary machining that includes imbalance, mechanical looseness, bent shaft, misalignment, missing blade bearing fault, balancing mass and critical speed. In order to perform vibration signature analysis for rotating machinery faults, studies have been made on how mechatronics technology is used as predictive maintenance methods. Vibration Faults Simulation Rig (VFSR) is designed to simulate and understand faults signatures. These techniques are based on the processing of vibrational data in frequency-domain. The LabVIEW-based spectrum analyzer software is developed to acquire and extract frequency contents of faults signals. This system is successfully tested based on the unique vibration fault signatures that always occur in a rotating machinery.
NASA Astrophysics Data System (ADS)
Polverino, Pierpaolo; Frisk, Erik; Jung, Daniel; Krysander, Mattias; Pianese, Cesare
2017-07-01
The present paper proposes an advanced approach for Polymer Electrolyte Membrane Fuel Cell (PEMFC) systems fault detection and isolation through a model-based diagnostic algorithm. The considered algorithm is developed upon a lumped parameter model simulating a whole PEMFC system oriented towards automotive applications. This model is inspired by other models available in the literature, with further attention to stack thermal dynamics and water management. The developed model is analysed by means of Structural Analysis, to identify the correlations among involved physical variables, defined equations and a set of faults which may occur in the system (related to both auxiliary components malfunctions and stack degradation phenomena). Residual generators are designed by means of Causal Computation analysis and the maximum theoretical fault isolability, achievable with a minimal number of installed sensors, is investigated. The achieved results proved the capability of the algorithm to theoretically detect and isolate almost all faults with the only use of stack voltage and temperature sensors, with significant advantages from an industrial point of view. The effective fault isolability is proved through fault simulations at a specific fault magnitude with an advanced residual evaluation technique, to consider quantitative residual deviations from normal conditions and achieve univocal fault isolation.
NASA Astrophysics Data System (ADS)
Kluesner, J. W.; Silver, E. A.; Nale, S. M.; Bangs, N. L.; McIntosh, K. D.
2013-12-01
We employ a seismic meta-attribute workflow to detect and analyze probable faults and fluid-pathways in 3D within the sedimentary section offshore Southern Costa Rica. During the CRISP seismic survey in 2011 we collected an 11 x 55 km grid of 3D seismic reflection data and high-resolvability EM122 multibeam data, with coverage extending from the incoming plate to the outer-shelf. We mapped numerous seafloor seep indicators, with distributions ranging from the lower-slope to ~15 km landward of the shelf break [Kluesner et al., 2013, G3, doi:10.1002/ggge.20058; Silver et al., this meeting]. We used the OpendTect software package to calculate meta-attribute volumes from the 3D seismic data in order to detect and visualize seismic discontinuities in 3D. This methodology consists of dip-steered filtering to pre-condition the data, followed by combining a set of advanced dip-steered seismic attributes into a single object probability attribute using a user-trained neural-network pattern-recognition algorithm. The parameters of the advanced seismic attributes are set for optimal detection of the desired geologic discontinuity (e.g. faults or fluid-pathways). The product is a measure of probability for the desired target that ranges between 0 and 1, with 1 representing the highest probability. Within the sedimentary section of the CRISP survey the results indicate focused fluid-migration pathways along dense networks of intersecting normal faults with approximately N-S and E-W trends. This pattern extends from the middle slope to the outer-shelf region. Dense clusters of fluid-migration pathways are located above basement highs and deeply rooted reverse faults [see Bangs et al., this meeting], including a dense zone of fluid-pathways imaged below IODP Site U1413. In addition, fault intersections frequently show an increased signal of fluid-migration and these zones may act as major conduits for fluid-flow through the sedimentary cover. Imaged fluid pathways root into high-backscatter pockmarks and mounds on the seafloor, which are located atop folds and clustered along intersecting fault planes. Combining the fault and fluid-pathway attribute volumes reveals qualitative first order information on fault seal integrity within the CRISP survey region, highlighting which faults and/or fault sections appear to be sealing or leaking within the sedimentary section. These results provide 3D insight into the fluid-flow behavior offshore southern Costa Rica and suggest that fluids escaping through the deeper crustal rocks are predominantly channeled along faults in the sedimentary cover, especially at fault intersections.
NASA Astrophysics Data System (ADS)
van Gent, Heijn W.; Holland, Marc; Urai, Janos L.; Loosveld, Ramon
2010-09-01
We present analogue models of the formation of dilatant normal faults and fractures in carbonate fault zones, using cohesive hemihydrate powder (CaSO 4·½H 2O). The evolution of these dilatant fault zones involves a range of processes such as fragmentation, gravity-driven breccia transport and the formation of dilatant jogs. To allow scaling to natural prototypes, extensive material characterisation was done. This showed that tensile strength and cohesion depend on the state of compaction, whereas the friction angle remains approximately constant. In our models, tensile strength of the hemihydrate increases with depth from 9 to 50 Pa, while cohesion increases from 40 to 250 Pa. We studied homogeneous and layered material sequences, using sand as a relatively weak layer and hemihydrate/graphite mixtures as a slightly stronger layer. Deformation was analyzed by time-lapse photography and Particle Image Velocimetry (PIV) to calculate the evolution of the displacement field. With PIV the initial, predominantly elastic deformation and progressive localization of deformation are observed in detail. We observed near-vertical opening-mode fractures near the surface. With increasing depth, dilational shear faults were dominant, with releasing jogs forming at fault-dip variations. A transition to non-dilatant shear faults was observed near the bottom of the model. In models with mechanical stratigraphy, fault zones are more complex. The inferred stress states and strengths in different parts of the model agree with the observed transitions in the mode of deformation.
Gear Fault Detection Effectiveness as Applied to Tooth Surface Pitting Fatigue Damage
NASA Technical Reports Server (NTRS)
Lewicki, David G.; Dempsey, Paula J.; Heath, Gregory F.; Shanthakumaran, Perumal
2010-01-01
A study was performed to evaluate fault detection effectiveness as applied to gear-tooth-pitting-fatigue damage. Vibration and oil-debris monitoring (ODM) data were gathered from 24 sets of spur pinion and face gears run during a previous endurance evaluation study. Three common condition indicators (RMS, FM4, and NA4 [Ed. 's note: See Appendix A-Definitions D were deduced from the time-averaged vibration data and used with the ODM to evaluate their performance for gear fault detection. The NA4 parameter showed to be a very good condition indicator for the detection of gear tooth surface pitting failures. The FM4 and RMS parameters perfomu:d average to below average in detection of gear tooth surface pitting failures. The ODM sensor was successful in detecting a significant 8lDOunt of debris from all the gear tooth pitting fatigue failures. Excluding outliers, the average cumulative mass at the end of a test was 40 mg.