Sample records for driven harmonic oscillator

  1. Driven damped harmonic oscillator resonance with an Arduino

    NASA Astrophysics Data System (ADS)

    Goncalves, A. M. B.; Cena, C. R.; Bozano, D. F.

    2017-07-01

    In this paper we propose a simple experimental apparatus that can be used to show quantitative and qualitative results of resonance in a driven damped harmonic oscillator. The driven oscillation is made by a servo motor, and the oscillation amplitude is measured by an ultrasonic position sensor. Both are controlled by an Arduino board. The frequency of free oscillation measured was campatible with the resonance frequency that was measured.

  2. Fractional Ornstein-Uhlenbeck noise

    NASA Astrophysics Data System (ADS)

    Fa, Kwok Sau

    2018-06-01

    Fractional Ornstein-Uhlenbeck noise is considered and investigated. The fractional Ornstein-Uhlenbeck noise may be linked with a supercapacitor driven by the white noise, and its correlation function for the stationary state shows monotonic and oscillatory decays. In the case of the oscillatory behavior the correlation function presents behaviors similar to those of the harmonic noise (harmonic oscillator driven by the white noise). For application, the Langevin equation with the harmonic potential driven by the fractional Ornstein-Uhlenbeck noise is considered; the first two moments and mean energy are investigated.

  3. Generation of a tunable environment for electrical oscillator systems.

    PubMed

    León-Montiel, R de J; Svozilík, J; Torres, Juan P

    2014-07-01

    Many physical, chemical, and biological systems can be modeled by means of random-frequency harmonic oscillator systems. Even though the noise-free evolution of harmonic oscillator systems can be easily implemented, the way to experimentally introduce, and control, noise effects due to a surrounding environment remains a subject of lively interest. Here, we experimentally demonstrate a setup that provides a unique tool to generate a fully tunable environment for classical electrical oscillator systems. We illustrate the operation of the setup by implementing the case of a damped random-frequency harmonic oscillator. The high degree of tunability and control of our scheme is demonstrated by gradually modifying the statistics of the oscillator's frequency fluctuations. This tunable system can readily be used to experimentally study interesting noise effects, such as noise-induced transitions in systems driven by multiplicative noise, and noise-induced transport, a phenomenon that takes place in quantum and classical coupled oscillator networks.

  4. Mechanism of equivalent electric dipole oscillation for high-order harmonic generation from grating-structured solid-surface by femtosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Song, Hai-Ying; Liu, H. Y.; Liu, Shi-Bing

    2017-07-01

    We theoretically study high-order harmonic generation (HHG) from relativistically driven overdense plasma targets with rectangularly grating-structured surfaces by femtosecond laser pulses. Our particle-in-cell (PIC) simulations show that, under the conditions of low laser intensity and plasma density, the harmonics emit principally along small angles deviating from the target surface. Further investigation of the surface electron dynamics reveals that the electron bunches are formed by the interaction between the laser field and the target surface, giving rise to the oscillation of equivalent electric-dipole (OEED), which enhances specific harmonic orders. Our work helps understand the mechanism of harmonic emissions from grating targets and the distinction from the planar harmonic scheme.

  5. Tunable Soft X-Ray Oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wurtele, Jonathan; Gandhi, Punut; Gu, X-W

    A concept for a tunable soft x-ray free electron laser (FEL) photon source is presented and studied numerically. The concept is based on echo-enabled harmonic generation (EEHG), wherein two modulator-chicane sections impose high harmonic structure with much greater efficacy as compared to conventional high harmonic FELs that use only one modulator-chicane section. The idea proposed here is to replace the external laser power sources in the EEHG modulators with FEL oscillators, and to combine the bunching of the beam with the production of radiation. Tunability is accomplished by adjusting the magnetic chicanes while the two oscillators remain at a fixedmore » frequency. This scheme eliminates the need to develop coherent sources with the requisite power, pulse length, and stability requirements by exploiting the MHz bunch repetition rates of FEL continuous wave (CW) sources driven by superconducting (SC) linacs. We present time-dependent GINGER simulation results for an EEHG scheme with an oscillator modulator at 43 nm employing 50percent reflective dielectric mirrors and a second modulator employing an external, 215-nm drive laser. Peak output of order 300 MW is obtained at 2.7 nm, corresponding to the 80th harmonic of 215 nm. An alternative single-cavity echo-oscillator scheme based on a 13.4 nm oscillator is investigated with time-independent simulations that a 180-MW peak power at final wavelength of 1.12 nm. Three alternate configurations that use separate bunches to produce the radiation for EEHG microbunching are also presented. Our results show that oscillator-based soft x-ray FELs driven by CWSC linacs are extremely attractive because of their potential to produce tunable radiation at high average power together with excellent longitudinal coherence and narrow spectral bandwidth.« less

  6. Parametrically disciplined operation of a vibratory gyroscope

    NASA Technical Reports Server (NTRS)

    Shcheglov, Kirill V. (Inventor); Challoner, A. Dorian (Inventor); Hayworth, Ken J. (Inventor); Peay, Chris S. (Inventor)

    2008-01-01

    Parametrically disciplined operation of a symmetric nearly degenerate mode vibratory gyroscope is disclosed. A parametrically-disciplined inertial wave gyroscope having a natural oscillation frequency in the neighborhood of a sub-harmonic of an external stable clock reference is produced by driving an electrostatic bias electrode at approximately twice this sub-harmonic frequency to achieve disciplined frequency and phase operation of the resonator. A nearly symmetric parametrically-disciplined inertial wave gyroscope that can oscillate in any transverse direction and has more than one bias electrostatic electrode that can be independently driven at twice its oscillation frequency at an amplitude and phase that disciplines its damping to zero in any vibration direction. In addition, operation of a parametrically-disciplined inertial wave gyroscope is taught in which the precession rate of the driven vibration pattern is digitally disciplined to a prescribed non-zero reference value.

  7. Quasi-regenerative mode locking in a compact all-polarisation-maintaining-fibre laser

    NASA Astrophysics Data System (ADS)

    Nyushkov, B. N.; Ivanenko, A. V.; Kobtsev, S. M.; Pivtsov, V. S.; Farnosov, S. A.; Pokasov, P. V.; Korel, I. I.

    2017-12-01

    A novel technique of mode locking in erbium-doped all-polarisation-maintaining-fibre laser has been developed and preliminary investigated. The proposed quasi-regenerative technique combines the advantages of conventional active mode locking (when an intracavity modulator is driven by an independent RF oscillator) and regenerative mode locking (when a modulator is driven by an intermode beat signal from the laser itself). This scheme is based on intracavity intensity modulation driven by an RF oscillator being phase-locked to the actual intermode frequency of the laser. It features also possibilities of operation at multiple frequencies and harmonic mode-locking operation.

  8. Excitation of vertical coronal loop oscillations by impulsively driven flows

    NASA Astrophysics Data System (ADS)

    Kohutova, P.; Verwichte, E.

    2018-05-01

    Context. Flows of plasma along a coronal loop caused by the pressure difference between loop footpoints are common in the solar corona. Aims: We aim to investigate the possibility of excitation of loop oscillations by an impulsively driven flow triggered by an enhanced pressure in one of the loop footpoints. Methods: We carry out 2.5D magnetohydrodynamic (MHD) simulations of a coronal loop with an impulsively driven flow and investigate the properties and evolution of the resulting oscillatory motion of the loop. Results: The action of the centrifugal force associated with plasma moving at high speeds along the curved axis of the loop is found to excite the fundamental harmonic of a vertically polarised kink mode. We analyse the dependence of the resulting oscillations on the speed and kinetic energy of the flow. Conclusions: We find that flows with realistic speeds of less than 100 km s-1 are sufficient to excite oscillations with observable amplitudes. We therefore propose plasma flows as a possible excitation mechanism for observed transverse loop oscillations.

  9. Engineering high-order nonlinear dissipation for quantum superconducting circuits

    NASA Astrophysics Data System (ADS)

    Mundhada, S. O.; Grimm, A.; Touzard, S.; Shankar, S.; Minev, Z. K.; Vool, U.; Mirrahimi, M.; Devoret, M. H.

    Engineering nonlinear driven-dissipative processes is essential for quantum control. In the case of a harmonic oscillator, nonlinear dissipation can stabilize a decoherence-free manifold, leading to protected quantum information encoding. One possible approach to implement such nonlinear interactions is to combine the nonlinearities provided by Josephson circuits with parametric pump drives. However, it is usually hard to achieve strong nonlinearities while avoiding undesired couplings. Here we propose a scheme to engineer a four-photon drive and dissipation in a harmonic oscillator by cascading experimentally demonstrated two-photon processes. We also report experimental progress towards realization of such a scheme. Work supported by: ARO, ONR, AFOSR and YINQE.

  10. Nonlinear response and bistability of driven ion acoustic waves

    NASA Astrophysics Data System (ADS)

    Akbari-Moghanjoughi, M.

    2017-08-01

    The hydrodynamic model is used to obtain a generalized pseudoforce equation through which the nonlinear response of periodically driven ion acoustic waves is studied in an electron-ion plasma with isothermal and adiabatic ion fluids. The pseudotime series, corresponding to different driving frequencies, indicates that nonlinearity effects appear more strongly for smaller frequency values. The existence of extra harmonic resonances in the nonlinear amplitude spectrum is a clear indication of the interaction of an external force with harmonic components of the nonlinear ion acoustic waves. It is shown that many plasma parameters significantly and differently affect the nonlinear resonance spectrum of ion acoustic excitations. A heuristic but accurate model for the foldover effect is used which quite satisfactorily predicts the bistability of driven plasma oscillations. It is remarked that the characteristic resonance peak of isothermal ion plasma oscillations appears at lower frequencies but is stronger compared to that of adiabatic ions. Comparison of the exact numerical results for fully nonlinear and approximate (weakly nonlinear) models indicates that a weakly nonlinear model exaggerates the hysteresis and jump phenomenon for higher values of the external force amplitude.

  11. Extremum seeking x-ray position feedback using power line harmonic leakage as the perturbation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zohar, S.; Kissick, D. J.; Venugopalan, N.

    Small x-ray beam sizes necessary for probing nanoscale phenomena require exquisite stability to prevent data corruption by noise. One source of instability at synchrotron radiation x-ray beamlines is the slow detuning of x-ray optics to marginal alignment where the onset of clipping increases the beam's susceptibility to higher frequency position oscillations. In this article, we show that a 1 mu m amplitude horizontal x-ray beam oscillation driven by power line harmonic leakage into the electron storage ring can be used as perturbation for horizontal position extremum seeking feedback. Feedback performance is characterized by convergence to 1.5% away from maximum intensitymore » at optimal alignment.« less

  12. Extremum seeking x-ray position feedback using power line harmonic leakage as the perturbation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zohar, S.; Kissick, D. J.; Venugopalan, N.

    Small X-ray beam sizes necessary for probing nanoscale phenomena require exquisite stability to prevent data corruption by noise. One source of instability at synchrotron radiation X-ray beamlines is the slow detuning of X-ray optics to marginal alignment where the onset of clipping increases the beam’s susceptibility to higher frequency position oscillations. In this article, we show that a 1 µm amplitude horizontal X-ray beam oscillation driven by power line harmonic leakage into the electron storage ring can be used as perturbation for horizontal position extremum seeking feedback. Feedback performance is characterized by convergence to 1.5% away from maximum intensity atmore » optimal alignment.« less

  13. Relation of squeezed states between damped harmonic and simple harmonic oscillators

    NASA Technical Reports Server (NTRS)

    Um, Chung-In; Yeon, Kyu-Hwang; George, Thomas F.; Pandey, Lakshmi N.

    1993-01-01

    The minimum uncertainty and other relations are evaluated in the framework of the coherent states of the damped harmonic oscillator. It is shown that the coherent states of the damped harmonic oscillator are the squeezed coherent states of the simple harmonic oscillator. The unitary operator is also constructed, and this connects coherent states with damped harmonic and simple harmonic oscillators.

  14. A Daily Oscillation in the Fundamental Frequency and Amplitude of Harmonic Syllables of Zebra Finch Song

    PubMed Central

    Wood, William E.; Osseward, Peter J.; Roseberry, Thomas K.; Perkel, David J.

    2013-01-01

    Complex motor skills are more difficult to perform at certain points in the day (for example, shortly after waking), but the daily trajectory of motor-skill error is more difficult to predict. By undertaking a quantitative analysis of the fundamental frequency (FF) and amplitude of hundreds of zebra finch syllables per animal per day, we find that zebra finch song follows a previously undescribed daily oscillation. The FF and amplitude of harmonic syllables rises across the morning, reaching a peak near mid-day, and then falls again in the late afternoon until sleep. This oscillation, although somewhat variable, is consistent across days and across animals and does not require serotonin, as animals with serotonergic lesions maintained daily oscillations. We hypothesize that this oscillation is driven by underlying physiological factors which could be shared with other taxa. Song production in zebra finches is a model system for studying complex learned behavior because of the ease of gathering comprehensive behavioral data and the tractability of the underlying neural circuitry. The daily oscillation that we describe promises to reveal new insights into how time of day affects the ability to accomplish a variety of complex learned motor skills. PMID:24312654

  15. The q-harmonic oscillators, q-coherent states and the q-symplecton

    NASA Technical Reports Server (NTRS)

    Biedenharn, L. C.; Lohe, M. A.; Nomura, Masao

    1993-01-01

    The recently introduced notion of a quantum group is discussed conceptually and then related to deformed harmonic oscillators ('q-harmonic oscillators'). Two developments in applying q-harmonic oscillators are reviewed: q-coherent states and the q-symplecton.

  16. Demonstration of Double EIT Using Coupled Harmonic Oscillators and RLC Circuits

    ERIC Educational Resources Information Center

    Harden, Joshua; Joshi, Amitabh; Serna, Juan D.

    2011-01-01

    Single and double electromagnetically induced transparencies (EIT) in a medium, consisting of four-level atoms in the inverted-Y configuration, are discussed using mechanical and electrical analogies. A three-coupled spring-mass system subject to damping and driven by an external force is used to represent the four-level atom mechanically. The…

  17. West Coast Swing Dancing as a Driven Harmonic Oscillator Model

    NASA Astrophysics Data System (ADS)

    Ferrara, Davon; Holzer, Marie; Kyere, Shirley

    The study of physics in sports not only provides valuable insight for improved athletic performance and injury prevention, but offers undergraduate students an opportunity to engage in both short- and long-term research efforts. In this project, conducted by two non-physics majors, we hypothesized that a driven harmonic oscillator model can be used to better understand the interaction between two west coast swing dancers since the stiffness of the physical connection between dance partners is a known factor in the dynamics of the dance. The hypothesis was tested by video analysis of two dancers performing a west coast swing basic, the sugar push, while changing the stiffness of the physical connection. The difference in stiffness of the connection from the ideal was estimated by the leader; the position with time data from the video was used to measure changes in the amplitude and phase difference between the leader and follower. While several aspects of our results agree with the proposed model, some key characteristics do not, possibly due to the follower relying on visual leads. Corresponding author and principal investigator.

  18. Simulation Study on the Self-Sustained Oscillations in DC Driven Glow Discharges at Atmospheric Pressure Under Different Gas Gaps

    NASA Astrophysics Data System (ADS)

    Wang, Xiaofei; He, Yafeng; Liu, Fucheng

    2015-06-01

    In this paper, a one-dimensional plasma fluid model is employed to study the self-sustained oscillations in DC-driven helium glow discharges at atmospheric pressure under different gas gaps. Our simulation results indicate that a harmonic current oscillation with tiny amplitude always occur at the onset of instability and transits into a relaxation one as the conductivity of the semiconductor is decreased. It is found that the dynamics of the oscillations are dependent on the gas gaps. The discharge can only exhibit a simple oscillation with unique amplitude and frequency at smaller gas gaps (<2 mm) while it can exhibit a more complex oscillation with several different amplitudes and frequencies at larger gas gaps (>2 mm). The discharge modes in these current oscillations have also been analyzed. supported by National Natural Science Foundation of China (Nos. 11205044 and 11405042), Hebei Natural Science Fund of China (Nos. A2012201015 and A2011201006), the Research Foundation of Education Bureau of Hebei Province of China (No. Y2012009), the Postdoctoral Science Foundation of Hebei Province of China (No. B2014003004) and the Postdoctoral Foundation of Hebei University

  19. A Parametric Oscillator Experiment for Undergraduates

    NASA Astrophysics Data System (ADS)

    Huff, Alison; Thompson, Johnathon; Pate, Jacob; Kim, Hannah; Chiao, Raymond; Sharping, Jay

    We describe an upper-division undergraduate-level analytic mechanics experiment or classroom demonstration of a weakly-damped pendulum driven into parametric resonance. Students can derive the equations of motion from first principles and extract key oscillator features, such as quality factor and parametric gain, from experimental data. The apparatus is compact, portable and easily constructed from inexpensive components. Motion control and data acquisition are accomplished using an Arduino micro-controller incorporating a servo motor, laser sensor, and data logger. We record the passage time of the pendulum through its equilibrium position and obtain the maximum speed per oscillation as a function of time. As examples of the interesting physics which the experiment reveals, we present contour plots depicting the energy of the system as functions of driven frequency and modulation depth. We observe the transition to steady state oscillation and compare the experimental oscillation threshold with theoretical expectations. A thorough understanding of this hands-on laboratory exercise provides a foundation for current research in quantum information and opto-mechanics, where damped harmonic motion, quality factor, and parametric amplification are central.

  20. Phasing operator for two oscillators in classical field

    NASA Technical Reports Server (NTRS)

    Kim, Jong-Jean; Koo, Je-Hwan; Bae, Dong-Jae

    1993-01-01

    The origin of Dicke cooperative states was studied by considering two harmonic oscillators driven by a common field of radiation. The origin is assumed for superradiance in a system of molecules where no mutual interactions exist, but all of the molecules encounter the same field of radiation. A phasing operator as Phi(sub Nu) equals D(alpha) + P(sub Nu)D(alpha), where D(alpha) is the displacing operator and P(sub Nu) the projection operator for constant energy Nu for two oscillators, was derived. The eigenstates of the phasing operator Phi are found to show a finite correlation as in the Dicke cooperative states.

  1. Wind tunnel wall effects in a linear oscillating cascade

    NASA Technical Reports Server (NTRS)

    Buffum, Daniel H.; Fleeter, Sanford

    1991-01-01

    Experiments in a linear oscillating cascade reveal that the wind tunnel walls enclosing the airfoils have, in some cases, a detrimental effect on the oscillating cascade aerodynamics. In a subsonic flow field, biconvex airfoils are driven simultaneously in harmonic, torsion-mode oscillations for a range of interblade phase angle values. It is found that the cascade dynamic periodicity - the airfoil to airfoil variation in unsteady surface pressure - is good for some values of interblade phase angle but poor for others. Correlation of the unsteady pressure data with oscillating flat plate cascade predictions is generally good for conditions where the periodicity is good and poor where the periodicity is poor. Calculations based upon linearized unsteady aerodynamic theory indicate that pressure waves reflected from the wind tunnel walls are responsible for the cases where there is poor periodicity and poor correlation with the predictions.

  2. Statistics of work performed on a forced quantum oscillator.

    PubMed

    Talkner, Peter; Burada, P Sekhar; Hänggi, Peter

    2008-07-01

    Various aspects of the statistics of work performed by an external classical force on a quantum mechanical system are elucidated for a driven harmonic oscillator. In this special case two parameters are introduced that are sufficient to completely characterize the force protocol. Explicit results for the characteristic function of work and the corresponding probability distribution are provided and discussed for three different types of initial states of the oscillator: microcanonical, canonical, and coherent states. Depending on the choice of the initial state the probability distributions of the performed work may greatly differ. This result in particular also holds true for identical force protocols. General fluctuation and work theorems holding for microcanonical and canonical initial states are confirmed.

  3. Quantum refrigerators and the third law of thermodynamics.

    PubMed

    Levy, Amikam; Alicki, Robert; Kosloff, Ronnie

    2012-06-01

    The rate of temperature decrease of a cooled quantum bath is studied as its temperature is reduced to absolute zero. The third law of thermodynamics is then quantified dynamically by evaluating the characteristic exponent ζ of the cooling process dT(t)/dt∼-T^{ζ} when approaching absolute zero, T→0. A continuous model of a quantum refrigerator is employed consisting of a working medium composed either by two coupled harmonic oscillators or two coupled two-level systems. The refrigerator is a nonlinear device merging three currents from three heat baths: a cold bath to be cooled, a hot bath as an entropy sink, and a driving bath which is the source of cooling power. A heat-driven refrigerator (absorption refrigerator) is compared to a power-driven refrigerator. When optimized, both cases lead to the same exponent ζ, showing a lack of dependence on the form of the working medium and the characteristics of the drivers. The characteristic exponent is therefore determined by the properties of the cold reservoir and its interaction with the system. Two generic heat bath models are considered: a bath composed of harmonic oscillators and a bath composed of ideal Bose/Fermi gas. The restrictions on the interaction Hamiltonian imposed by the third law are discussed. In the Appendices, the theory of periodically driven open systems and its implication for thermodynamics are outlined.

  4. Workshop on Harmonic Oscillators

    NASA Technical Reports Server (NTRS)

    Han, D. (Editor); Kim, Y. S. (Editor); Zachary, W. W. (Editor)

    1993-01-01

    Proceedings of a workshop on Harmonic Oscillators held at the College Park Campus of the University of Maryland on March 25 - 28, 1992 are presented. The harmonic oscillator formalism is playing an important role in many branches of physics. This is the simplest mathematical device which can connect the basic principle of physics with what is observed in the real world. The harmonic oscillator is the bridge between pure and applied physics.

  5. Nonlinear Entanglement and its Application to Generating Cat States

    NASA Astrophysics Data System (ADS)

    Shen, Y.; Assad, S. M.; Grosse, N. B.; Li, X. Y.; Reid, M. D.; Lam, P. K.

    2015-03-01

    The Einstein-Podolsky-Rosen (EPR) paradox, which was formulated to argue for the incompleteness of quantum mechanics, has since metamorphosed into a resource for quantum information. The EPR entanglement describes the strength of linear correlations between two objects in terms of a pair of conjugate observables in relation to the Heisenberg uncertainty limit. We propose that entanglement can be extended to include nonlinear correlations. We examine two driven harmonic oscillators that are coupled via third-order nonlinearity can exhibit quadraticlike nonlinear entanglement which, after a projective measurement on one of the oscillators, collapses the other into a cat state of tunable size.

  6. Nonlinear entanglement and its application to generating cat States.

    PubMed

    Shen, Y; Assad, S M; Grosse, N B; Li, X Y; Reid, M D; Lam, P K

    2015-03-13

    The Einstein-Podolsky-Rosen (EPR) paradox, which was formulated to argue for the incompleteness of quantum mechanics, has since metamorphosed into a resource for quantum information. The EPR entanglement describes the strength of linear correlations between two objects in terms of a pair of conjugate observables in relation to the Heisenberg uncertainty limit. We propose that entanglement can be extended to include nonlinear correlations. We examine two driven harmonic oscillators that are coupled via third-order nonlinearity can exhibit quadraticlike nonlinear entanglement which, after a projective measurement on one of the oscillators, collapses the other into a cat state of tunable size.

  7. Drive electrostatic plasma oscillations in a closed electron drift accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morozov, A.I.; Nevrovskii, V.A.; Smirnov, V.A.

    1973-09-01

    The present work describes and experimental investigation of the perturbations created in the plasma of a closed electron drift accelerator (CEDA) by a time-varying potential applied to an electrode in the plasma. In particular, the driven electrostatic oscillations are in phase over the entire volume of the channel and the attenuation of the signal amplitude is sensitive to the direction of the electron flux in the accelerator. Certain aspects of the propagation of the harmonic signals and pulses in the plasma are established. A substantial drop in signal amplitude occurs between the electrode and the plasma. (auth)

  8. Long-term operation of surface high-harmonic generation from relativistic oscillating mirrors using a spooling tape

    DOE PAGES

    Bierbach, Jana; Yeung, Mark; Eckner, Erich; ...

    2015-05-01

    Surface high-harmonic generation in the relativistic regime is demonstrated as a source of extreme ultra-violet (XUV) pulses with extended operation time. Relativistic high-harmonic generation is driven by a frequency-doubled high-power Ti:Sapphire laser focused to a peak intensity of 3·1019 W/cm2 onto spooling tapes. We demonstrate continuous operation over up to one hour runtime at a repetition rate of 1 Hz. Harmonic spectra ranging from 20 eV to 70 eV (62 nm to 18 nm) were consecutively recorded by an XUV spectrometer. An average XUV pulse energy in the µJ range is measured. With the presented setup, relativistic surface high-harmonic generationmore » becomes a powerful source of coherent XUV pulses that might enable applications in, e.g. attosecond laser physics and the seeding of free-electron lasers, when the laser issues causing 80-% pulse energy fluctuations are overcome.« less

  9. Multi-Frequency Recirculating Planar Magnetrons

    NASA Astrophysics Data System (ADS)

    Greening, Geoffrey Bruce

    The cavity magnetron is generally accepted as the standard for compactness and high microwave power with applications in industry, science, and defense, with the latter including counter-electronics. In this application, magnetrons are limited because they are narrowband devices. To expand the range of frequencies that can be produced using a single magnetron, a novel multi-frequency variant of the Recirculating Planar Magnetron (RPM) was designed, fabricated, and experimentally demonstrated. This multi-frequency RPM (MFRPM) was the first high-power magnetron capable of generating multiple microwave frequencies simultaneously and demonstrated the first known instance of harmonic frequency-locking in a magnetron. The MFRPM design consisted of two planar cavity arrays coupled by cylindrical electron recirculation bends. The two arrays formed a 1 GHz L-Band Oscillator (LBO) and a 2 GHz S-Band Oscillator (SBO). Experiments were conducted using a 0.1-0.3 T axial magnetic field produced using a pulsed pair of Helmholtz coils and a -300 kV, 200-400 ns, 1-5 kA pulse applied to a Mode-Control Cathode (MCC) using the MELBA-C Marx generator. Six experimental configurations were tested using three anodes (the isolated LBO, the isolated SBO, and the MFRPM), two microwave loads (a standard, matched load, and a waveguide taper load used to characterize the LBO frequency harmonics), and two axial magnetic fields (uniform and nonuniform). Using these configurations, an in-depth characterization of MFRPM operation determined 1) the identity of the observed electromagnetic modes, and the degree of mode competition, 2) the frequencies, powers, and other electrical characteristics associated with those modes and the LBO frequency harmonics, 3) the magnetic fields corresponding to optimal operation, 4) the operational impact of a nonuniform axial magnetic field, and 5) the origin and performance characteristics of a novel harmonic frequency-locked state observed in the MFRPM. The uniform magnetic field consistently yielded better performance relative to the nonuniform magnetic field. In the harmonic frequency-locked state at 0.17 T with the uniform magnetic field, the MFRPM LBO produced 32 +/- 3 MW at 0.984 +/- 0.001 GHz, and the SBO produced 13 +/- 2 MW at 1.970 +/- 0.002 GHz. Relative to the other operating states, the locked state was remarkably consistent. In B = 0.16-0.17 T, the phase drift during a typical locked shot was 8 +/- 4°, and the lock duration was 14 +/- 3 ns. The average phase difference between the oscillators was 93+/-17°. The locking appeared to be Adler-like, where the LBO was the driving oscillator and the SBO was the driven oscillator. Changes in the relative phase difference between the oscillators correlated with changes in the magnetic field, suggesting the coupling occurred through the second harmonic content of the LBO-modulated electron beam as it propagated from the LBO to the SBO. A comparison of the experimental results for this locked state with a new theory for harmonic locking was inconclusive. Using the uniform magnetic field at 0.17 T, the LBO second harmonic power was 178 +/- 60 kW at 1.962 +/- 0.013 GHz. The LBO fourth harmonic power was 5 +/- 1 kW at 3.916 +/- 0.018 GHz. In general, LBO harmonic powers increased when the fundamental circuit modes were operating at reduced power with considerable mode competition. Harmonic powers were also as much as 150% higher using the nonuniform magnetic field relative to the uniform magnetic field.

  10. A possible generalization of the harmonic oscillator potential

    NASA Technical Reports Server (NTRS)

    Levai, Geza

    1995-01-01

    A four-parameter potential is analyzed, which contains the three-dimensional harmonic oscillator as a special case. This potential is exactly solvable and retains several characteristics of the harmonic oscillator, and also of the Coulomb problem. The possibility of similar generalizations of other potentials is also pointed out.

  11. Harmonic oscillator states in aberration optics

    NASA Technical Reports Server (NTRS)

    Wolf, Kurt Bernardo

    1993-01-01

    The states of the three-dimensional quantum harmonic oscillator classify optical aberrations of axis-symmetric systems due to the isomorphism between the two mathematical structures. Cartesian quanta and angular momentum classifications have their corresponding aberration classifications. The operation of concatenation of optical elements introduces a new operation between harmonic oscillator states.

  12. Quantum synchronization of a driven self-sustained oscillator.

    PubMed

    Walter, Stefan; Nunnenkamp, Andreas; Bruder, Christoph

    2014-03-07

    Synchronization is a universal phenomenon that is important both in fundamental studies and in technical applications. Here we investigate synchronization in the simplest quantum-mechanical scenario possible, i.e., a quantum-mechanical self-sustained oscillator coupled to an external harmonic drive. Using the power spectrum we analyze synchronization in terms of frequency entrainment and frequency locking in close analogy to the classical case. We show that there is a steplike crossover to a synchronized state as a function of the driving strength. In contrast to the classical case, there is a finite threshold value in driving. Quantum noise reduces the synchronized region and leads to a deviation from strict frequency locking.

  13. Brownian Emitters

    NASA Astrophysics Data System (ADS)

    Tsekov, Roumen

    2016-06-01

    A Brownian harmonic oscillator, which dissipates energy either by friction or via emission of electromagnetic radiation, is considered. This Brownian emitter is driven by the surrounding thermo-quantum fluctuations, which are theoretically described by the fluctuation-dissipation theorem. It is shown how the Abraham-Lorentz force leads to dependence of the half-width on the peak frequency of the oscillator amplitude spectral density. It is found that for the case of a charged particle moving in vacuum at zero temperature, its root-mean-square velocity fluctuation is a universal constant, equal to roughly 1/18 of the speed of light. The relevant Fokker-Planck and Smoluchowski equations are also derived.

  14. Calculation of four-particle harmonic-oscillator transformation brackets

    NASA Astrophysics Data System (ADS)

    Germanas, D.; Kalinauskas, R. K.; Mickevičius, S.

    2010-02-01

    A procedure for precise calculation of the three- and four-particle harmonic-oscillator (HO) transformation brackets is presented. The analytical expressions of the four-particle HO transformation brackets are given. The computer code for the calculations of HO transformation brackets proves to be quick, efficient and produces results with small numerical uncertainties. Program summaryProgram title: HOTB Catalogue identifier: AEFQ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFQ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1247 No. of bytes in distributed program, including test data, etc.: 6659 Distribution format: tar.gz Programming language: FORTRAN 90 Computer: Any computer with FORTRAN 90 compiler Operating system: Windows, Linux, FreeBSD, True64 Unix RAM: 8 MB Classification: 17.17 Nature of problem: Calculation of the three-particle and four-particle harmonic-oscillator transformation brackets. Solution method: The method is based on compact expressions of the three-particle harmonics oscillator brackets, presented in [1] and expressions of the four-particle harmonics oscillator brackets, presented in this paper. Restrictions: The three- and four-particle harmonic-oscillator transformation brackets up to the e=28. Unusual features: Possibility of calculating the four-particle harmonic-oscillator transformation brackets. Running time: Less than one second for the single harmonic-oscillator transformation bracket. References:G.P. Kamuntavičius, R.K. Kalinauskas, B.R. Barret, S. Mickevičius, D. Germanas, Nuclear Physics A 695 (2001) 191.

  15. Exact solution of a quantum forced time-dependent harmonic oscillator

    NASA Technical Reports Server (NTRS)

    Yeon, Kyu Hwang; George, Thomas F.; Um, Chung IN

    1992-01-01

    The Schrodinger equation is used to exactly evaluate the propagator, wave function, energy expectation values, uncertainty values, and coherent state for a harmonic oscillator with a time dependent frequency and an external driving time dependent force. These quantities represent the solution of the classical equation of motion for the time dependent harmonic oscillator.

  16. COMMUNICATION: Resonant activation in polymer translocation: new insights into the escape dynamics of molecules driven by an oscillating field

    NASA Astrophysics Data System (ADS)

    Pizzolato, N.; Fiasconaro, A.; Persano Adorno, D.; Spagnolo, B.

    2010-09-01

    The translocation of molecules across cellular membranes or through synthetic nanopores is strongly affected by thermal fluctuations. In this work we study how the dynamics of a polymer in a noisy environment changes when the translocation process is driven by an oscillating electric field. An improved version of the Rouse model for a flexible polymer has been adopted to mimic the molecular dynamics, by taking into account the harmonic interactions between adjacent monomers and the excluded-volume effect by introducing a Lennard-Jones potential between all beads. A bending recoil torque has also been included in our model. The polymer dynamics is simulated in a two-dimensional domain by numerically solving the Langevin equations of motion. Thermal fluctuations are taken into account by introducing a Gaussian uncorrelated noise. The mean first translocation time of the polymer centre of inertia shows a minimum as a function of the frequency of the oscillating forcing field. This finding represents the first evidence of the resonant activation behaviour in the dynamics of polymer translocation.

  17. The Harmonic Oscillator with a Gaussian Perturbation: Evaluation of the Integrals and Example Applications

    ERIC Educational Resources Information Center

    Earl, Boyd L.

    2008-01-01

    A general result for the integrals of the Gaussian function over the harmonic oscillator wavefunctions is derived using generating functions. Using this result, an example problem of a harmonic oscillator with various Gaussian perturbations is explored in order to compare the results of precise numerical solution, the variational method, and…

  18. The Two-Capacitor Problem Revisited: A Mechanical Harmonic Oscillator Model Approach

    ERIC Educational Resources Information Center

    Lee, Keeyung

    2009-01-01

    The well-known two-capacitor problem, in which exactly half the stored energy disappears when a charged capacitor is connected to an identical capacitor, is discussed based on the mechanical harmonic oscillator model approach. In the mechanical harmonic oscillator model, it is shown first that "exactly half" the work done by a constant applied…

  19. Modeling Stretching Modes of Common Organic Molecules with the Quantum Mechanical Harmonic Oscillator: An Undergraduate Vibrational Spectroscopy Laboratory Exercise

    ERIC Educational Resources Information Center

    Parnis, J. Mark; Thompson, Matthew G. K.

    2004-01-01

    An introductory undergraduate physical organic chemistry exercise that introduces the harmonic oscillator's use in vibrational spectroscopy is developed. The analysis and modeling exercise begins with the students calculating the stretching modes of common organic molecules with the help of the quantum mechanical harmonic oscillator (QMHO) model.

  20. Wideband tunable 140 GHz second-harmonic InP-TED oscillator

    NASA Astrophysics Data System (ADS)

    Rydberg, A.; Kollberg, E.

    1986-07-01

    A second-harmonic InP-TED oscillator, with an output power of more than 3 dBm at 144 GHz and tunable over a 10 percent frequency range, has been developed. The design incorporates two waveguide resonators. One resonator determines the fundamental frequency of oscillation and the other optimizes the second-harmonic output power.

  1. A Look at Damped Harmonic Oscillators through the Phase Plane

    ERIC Educational Resources Information Center

    Daneshbod, Yousef; Latulippe, Joe

    2011-01-01

    Damped harmonic oscillations appear naturally in many applications involving mechanical and electrical systems as well as in biological systems. Most students are introduced to harmonic motion in an elementary ordinary differential equation (ODE) course. Solutions to ODEs that describe simple harmonic motion are usually found by investigating the…

  2. Radial forcing and Edgar Allan Poe's lengthening pendulum

    NASA Astrophysics Data System (ADS)

    McMillan, Matthew; Blasing, David; Whitney, Heather M.

    2013-09-01

    Inspired by Edgar Allan Poe's The Pit and the Pendulum, we investigate a radially driven, lengthening pendulum. We first show that increasing the length of an undriven pendulum at a uniform rate does not amplify the oscillations in a manner consistent with the behavior of the scythe in Poe's story. We discuss parametric amplification and the transfer of energy (through the parameter of the pendulum's length) to the oscillating part of the system. In this manner, radial driving can easily and intuitively be understood, and the fundamental concept applied in many other areas. We propose and show by a numerical model that appropriately timed radial forcing can increase the oscillation amplitude in a manner consistent with Poe's story. Our analysis contributes a computational exploration of the complex harmonic motion that can result from radially driving a pendulum and sheds light on a mechanism by which oscillations can be amplified parametrically. These insights should prove especially valuable in the undergraduate physics classroom, where investigations into pendulums and oscillations are commonplace.

  3. The electrical asymmetry effect in a multi frequency geometrically asymmetric capacitively coupled plasma: A study by a nonlinear global model

    NASA Astrophysics Data System (ADS)

    Saikia, P.; Bhuyan, H.; Escalona, M.; Favre, M.; Bora, B.; Kakati, M.; Wyndham, E.; Rawat, R. S.; Schulze, J.

    2018-05-01

    We investigate the electrical asymmetry effect (EAE) and the current dynamics in a geometrically asymmetric capacitively coupled radio frequency plasma driven by multiple consecutive harmonics based on a nonlinear global model. The discharge symmetry is controlled via the EAE, i.e., by varying the total number of harmonics and tuning the phase shifts ( θ k ) between them. Here, we systematically study the EAE in a low pressure (4 Pa) argon discharge with different geometrical asymmetries driven by a multifrequency rf source consisting of 13.56 MHz and its harmonics. We find that the geometrical asymmetry strongly affects the absolute value of the DC self-bias voltage, but its functional dependence on θ k is similar at different values of the geometrical asymmetry. Also, the values of the DC self-bias are enhanced by adding more consecutive harmonics. The voltage drop across the sheath at the powered and grounded electrode is found to increase/decrease, respectively, with the increase in the number of harmonics of the fundamental frequency. For the purpose of validating the model, its outputs are compared with the results obtained in a geometrically and electrically asymmetric 2f capacitively coupled plasmas experiment conducted by Schuengel et al. [J. Appl. Phys. 112, 053302 (2012)]. Finally, we study the self-excitation of nonlinear plasma series resonance oscillations and its dependence on the geometrical asymmetry as well as the phase angles between the driving frequencies.

  4. The Coupled Harmonic Oscillator: Not Just for Seniors Anymore.

    ERIC Educational Resources Information Center

    Preyer, Norris W.

    1996-01-01

    Presents experiments that use Microcomputer Based Laboratory (MBL) techniques to enable freshmen physics students to investigate complex systems, such as nonlinear oscillators or coupled harmonic oscillators, at a level appropriate for an independent project. (JRH)

  5. Solution of the Quantum Harmonic Oscillator Plus a Delta-Function Potential at the Origin: The "Oddness" of Its Even-Parity Solutions

    ERIC Educational Resources Information Center

    Viana-Gomes, J.; Peres, N. M. R.

    2011-01-01

    We derive the energy levels associated with the even-parity wavefunctions of the harmonic oscillator with an additional delta-function potential at the origin. Our results bring to the attention of students a non-trivial and analytical example of a modification of the usual harmonic oscillator potential, with emphasis on the modification of the…

  6. Theoretical and experimental investigation of millimeter-wave TED's in cross-waveguide oscillators

    NASA Astrophysics Data System (ADS)

    Rydberg, A.

    1985-07-01

    Theoretical and experimental investigations of millimeterwave GaAs second harmonic transferred electron device (TED) oscillators using separate circuits for frequency and power optimization, are described. The theory predicts the oscillation frequency with less than 2 percent error for the second harmonic. Apart from the 2d and 3d, a 4th harmonic from the TED was observed up to 130 GHz.

  7. Sampled-data synchronisation of coupled harmonic oscillators with communication and input delays subject to controller failure

    NASA Astrophysics Data System (ADS)

    Zhao, Liyun; Zhou, Jin; Wu, Quanjun

    2016-01-01

    This paper considers the sampled-data synchronisation problems of coupled harmonic oscillators with communication and input delays subject to controller failure. A synchronisation protocol is proposed for such oscillator systems over directed network topology, and then some general algebraic criteria on exponential convergence for the proposed protocol are established. The main features of the present investigation include: (1) both the communication and input delays are simultaneously addressed, and the directed network topology is firstly considered and (2) the effects of time delays on synchronisation performance are theoretically and numerically investigated. It is shown that in the absence of communication delays, coupled harmonic oscillators can achieve synchronisation oscillatory motion. Whereas if communication delays are nonzero at infinite multiple sampled-data instants, its synchronisation (or consensus) state is zero. This conclusion can be used as an effective control strategy to stabilise coupled harmonic oscillators in practical applications. Furthermore, it is interesting to find that increasing either communication or input delays will enhance the synchronisation performance of coupled harmonic oscillators. Subsequently, numerical examples illustrate and visualise theoretical results.

  8. Numerical simulation of the nonlinear dynamics of harmonically driven Riesz-fractional extensions of the Fermi-Pasta-Ulam chains

    NASA Astrophysics Data System (ADS)

    Macías-Díaz, J. E.

    2018-02-01

    In this work, we introduce a spatially discrete model that is a modification of the well-known α-Fermi-Pasta-Ulam chain with damping. The system is perturbed at one end by a harmonic disturbance irradiating at a frequency in the forbidden band-gap of the classical regime, and a nonlocal coupling between the oscillators is considered using discrete Riesz fractional derivatives. We propose fully discrete expressions to approximate an energy functional of the system, and we use them to calculate the total energy of fractional chains over a relatively long period of time [Fract. Diff. Appl. 4 (2004) 153-162]. The approach is thoroughly tested in the case of local couplings against known qualitative results, including simulations of the process of nonlinear recurrence in the traditional chains of anharmonic oscillators. As an application, we provide evidence that the process of supratransmission is present in spatially discrete Fermi-Pasta-Ulam lattices with Riesz fractional derivatives in space. Moreover, we perform numerical experiments for small and large amplitudes of the harmonic disturbance. In either case, we establish the dependency of the critical amplitude at which supratransmission begins as a function of the driving frequency. Our results are in good agreement with the analytic predictions for the classical Fermi-Pasta-Ulam chain.

  9. The Quantum Arnold Transformation for the damped harmonic oscillator: from the Caldirola-Kanai model toward the Bateman model

    NASA Astrophysics Data System (ADS)

    López-Ruiz, F. F.; Guerrero, J.; Aldaya, V.; Cossío, F.

    2012-08-01

    Using a quantum version of the Arnold transformation of classical mechanics, all quantum dynamical systems whose classical equations of motion are non-homogeneous linear second-order ordinary differential equations (LSODE), including systems with friction linear in velocity such as the damped harmonic oscillator, can be related to the quantum free-particle dynamical system. This implies that symmetries and simple computations in the free particle can be exported to the LSODE-system. The quantum Arnold transformation is given explicitly for the damped harmonic oscillator, and an algebraic connection between the Caldirola-Kanai model for the damped harmonic oscillator and the Bateman system will be sketched out.

  10. Harmonic and Anharmonic Behaviour of a Simple Oscillator

    ERIC Educational Resources Information Center

    O'Shea, Michael J.

    2009-01-01

    We consider a simple oscillator that exhibits harmonic and anharmonic regimes and analyse its behaviour over the complete range of possible amplitudes. The oscillator consists of a mass "m" fixed at the midpoint of a horizontal rope. For zero initial rope tension and small amplitude the period of oscillation, tau, varies as tau is approximately…

  11. Harmonic uniflow engine

    DOEpatents

    Bennett, Charles L.

    2016-03-22

    A reciprocating-piston uniflow engine includes a harmonic oscillator inlet valve capable of oscillating at a resonant frequency for controlling the flow of working fluid into the engine. In particular, the inlet valve includes an inlet valve head and a spring arranged together as a harmonic oscillator so that the inlet valve head is moveable from an unbiased equilibrium position to a biased closed position occluding an inlet. When released, the inlet valve head undergoes a single oscillation past the equilibrium position to a maximum open position and returns to a biased return position close to the closed position to choke the flow and produce a pressure drop across the inlet valve causing the inlet valve to close. In other embodiments, the harmonic oscillator arrangement of the inlet valve enables the uniflow engine to be reversibly operated as a uniflow compressor.

  12. Second International Workshop on Harmonic Oscillators

    NASA Technical Reports Server (NTRS)

    Han, Daesoo (Editor); Wolf, Kurt Bernardo (Editor)

    1995-01-01

    The Second International Workshop on Harmonic Oscillators was held at the Hotel Hacienda Cocoyoc from March 23 to 25, 1994. The Workshop gathered 67 participants; there were 10 invited lecturers, 30 plenary oral presentations, 15 posters, and plenty of discussion divided into the five sessions of this volume. The Organizing Committee was asked by the chairman of several Mexican funding agencies what exactly was meant by harmonic oscillators, and for what purpose the new research could be useful. Harmonic oscillators - as we explained - is a code name for a family of mathematical models based on the theory of Lie algebras and groups, with applications in a growing range of physical theories and technologies: molecular, atomic, nuclear and particle physics; quantum optics and communication theory.

  13. Use of an untuned cavity for absolute power measurements of the harmonics above 100 GHz from an IMPATT oscillator

    NASA Astrophysics Data System (ADS)

    Llewellyn-Jones, D. T.; Knight, R. J.; Gebbie, H. A.

    1980-07-01

    A new technique of measuring absolute power exploiting an untuned cavity and Fourier spectroscopy has been used to examine the power spectrum of the harmonics and other overtones produced by a 95 GHz IMPATT oscillator. The conditions which favor the production of a rich harmonic spectrum are not those which maximize the fundamental power. Under some conditions of mismatch at the fundamental frequency it is possible to produce over 200 microW of harmonic power in the 100-200 GHz region comparable with the fundamental power from the oscillator.

  14. Rotational Shear Effects on Edge Harmonic Oscillations in DIII-D Quiescent H-mode Discharges

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Burrell, K. H.; Ferraro, N. M.; Osborne, T. H.; Austin, M. E.; Garofalo, A. M.; Groebner, R. J.; Kramer, G. J.; Luhmann, N. C., Jr.; McKee, G. R.; Muscatello, C. M.; Nazikian, R.; Ren, X.; Snyder, P. B.; Solomon, Wm.; Tobias, B. J.; Yan, Z.

    2015-11-01

    In quiescent H-mode (QH) regime, the edge harmonic oscillations (EHO) play an important role in avoiding the transient ELM power fluxes by providing benign and continuous edge particle transport. A detailed theoretical, experimental and modeling comparison has been made of low-n (n <= 5) EHO in DIII-D QH-mode plasmas. The calculated linear eigenmode structure from the extended MHD code M3D-C1 matches closely the coherent EHO properties from external magnetics data and internal measurements using the ECE, BES, ECE-I and MIR diagnostics, as well as the kink/peeling mode properties of the ideal MHD code ELITE. The numerical investigations indicate that the low-n EHO-like solutions from M3D-C1 are destabilized by the toroidal rotational shear while high-n modes are stabilized. This effect is independent of the rotation direction, suggesting that the low-n EHO can be destabilized in principle with rotation in both directions. These modeling results are consistent with experimental observations of the EHO and support the proposed theory of the EHO as a rotational shear driven kink/peeling mode.

  15. Evidence for Harmonic Content and Frequency Evolution of Oscillations During the Rising Phase of X-ray Bursts From 4U 1636-536

    NASA Technical Reports Server (NTRS)

    Bgattacharyya, Sudip; Strohmayer, E.

    2005-01-01

    We report on a study of the evolution of burst oscillation properties during the rising phase of X-ray bursts from 4U 1636-536 observed with the proportional counter array (PCA) on board the Rossi X-Ray Timing Explorer (RXTE) . We present evidence for significant harmonic structure of burst oscillation pulses during the early rising phases of bursts. This is the first such detection in burst rise oscillations, and is very important for constraining neutron star structure parameters and the equation of state models of matter at the core of a neutron star. The detection of harmonic content only during the initial portions of the burst rise is consistent with the theoretical expectation that with time the thermonuclear burning region becomes larger, and hence the fundamental and harmonic amplitudes both diminish. We also find, for the first time from this source, strong evidence of oscillation frequency increase during the burst rise. The timing behavior of harmonic content, amplitude, and frequency of burst rise oscillations may be important in understanding the spreading of thermonuclear flames under the extreme physical conditions on neutron star surfaces.

  16. All-Phononic Digital Transistor on the Basis of Gap-Soliton Dynamics in an Anharmonic Oscillator Ladder.

    PubMed

    Malishava, Merab; Khomeriki, Ramaz

    2015-09-04

    A conceptual mechanism of amplification of phonons by phonons on the basis of a nonlinear band-gap transmission (supratransmission) phenomenon is presented. As an example, a system of weakly coupled chains of anharmonic oscillators is considered. One (source) chain is driven harmonically by a boundary with a frequency located in the upper band close to the band edge of the ladder system. Amplification happens when a second (gate) chain is driven by a small signal in the counterphase and with the same frequency as the first chain. If the total driving of both chains overcomes the band-gap transmission threshold, the large amplitude band-gap soliton emerges and the amplification scenario is realized. The mechanism is interpreted as the nonlinear superposition of evanescent and propagating nonlinear modes manifesting in a single or double soliton generation working in band-gap or bandpass regimes, respectively. The results could be straightforwardly generalized for all-optical or all-magnonic contexts and have all the promise of logic gate operations.

  17. All-Phononic Digital Transistor on the Basis of Gap-Soliton Dynamics in an Anharmonic Oscillator Ladder

    NASA Astrophysics Data System (ADS)

    Malishava, Merab; Khomeriki, Ramaz

    2015-09-01

    A conceptual mechanism of amplification of phonons by phonons on the basis of a nonlinear band-gap transmission (supratransmission) phenomenon is presented. As an example, a system of weakly coupled chains of anharmonic oscillators is considered. One (source) chain is driven harmonically by a boundary with a frequency located in the upper band close to the band edge of the ladder system. Amplification happens when a second (gate) chain is driven by a small signal in the counterphase and with the same frequency as the first chain. If the total driving of both chains overcomes the band-gap transmission threshold, the large amplitude band-gap soliton emerges and the amplification scenario is realized. The mechanism is interpreted as the nonlinear superposition of evanescent and propagating nonlinear modes manifesting in a single or double soliton generation working in band-gap or bandpass regimes, respectively. The results could be straightforwardly generalized for all-optical or all-magnonic contexts and have all the promise of logic gate operations.

  18. High-order-harmonic generation from Rydberg atoms driven by plasmon-enhanced laser fields

    NASA Astrophysics Data System (ADS)

    Tikman, Y.; Yavuz, I.; Ciappina, M. F.; Chacón, A.; Altun, Z.; Lewenstein, M.

    2016-02-01

    We theoretically investigate high-order-harmonic generation (HHG) in Rydberg atoms driven by spatially inhomogeneous laser fields, induced, for instance, by plasmonic enhancement. It is well known that the laser intensity should exceed a certain threshold in order to stimulate HHG when noble gas atoms in their ground state are used as an active medium. One way to enhance the coherent light coming from a conventional laser oscillator is to take advantage of the amplification obtained by the so-called surface plasmon polaritons, created when a low-intensity laser field is focused onto a metallic nanostructure. The main limitation of this scheme is the low damage threshold of the materials employed in the nanostructure engineering. In this work we propose the use of Rydberg atoms, driven by spatially inhomogeneous, plasmon-enhanced laser fields, for HHG. We exhaustively discuss the behavior and efficiency of these systems in the generation of coherent harmonic emission. Toward this aim we numerically solve the time-dependent Schrödinger equation for an atom, with an electron initially in a highly excited n th Rydberg state, located in the vicinity of a metallic nanostructure. In this zone the electric field changes spatially on scales relevant for the dynamics of the laser-ionized electron. We first use a one-dimensional model to investigate systematically the phenomena. We then employ a more realistic situation, in which the interaction of a plasmon-enhanced laser field with a three-dimensional hydrogen atom is modeled. We discuss the scaling of the relevant input parameters with the principal quantum number n of the Rydberg state in question and demonstrate that harmonic emission can be achieved from Rydberg atoms well below the damage threshold, thus without deterioration of the geometry and properties of the metallic nanostructure.

  19. Tests of Mach's Principle With a Mechanical Oscillator

    NASA Technical Reports Server (NTRS)

    Millis, Marc G. (Technical Monitor); Cramer, John G.; Fey, Curran W.; Casissi, Damon V.

    2004-01-01

    James F. Woodward has made a prediction, based on Sciama's formulation of Mach's Principle in the framework of general relativity, that in the presence of an energy flow the inertial mass of an object may undergo sizable variations, changing as the second time derivative of the energy. We describe an attempt to test for the predicted effect with a charging capacitor, using a technique that does not require an unbalanced force or any local violation of Newton s 3rd law of motion. We attempt to observe: (1) the gravitational effect of the varying mass and (2) the effect of the mass variation on a driven harmonic oscillator with the charging capacitor as the oscillating mass. We report on the predicted effect, the design and implementation of the measurement apparatus, and initial experience with the apparatus. At this time, however, we will not report on observations of the presence or absence of the Woodward effect.

  20. Observation of Spin Superfluidity in a Bose Gas Mixture

    NASA Astrophysics Data System (ADS)

    Fava, Eleonora; Bienaimé, Tom; Mordini, Carmelo; Colzi, Giacomo; Qu, Chunlei; Stringari, Sandro; Lamporesi, Giacomo; Ferrari, Gabriele

    2018-04-01

    The spin dynamics of a harmonically trapped Bose-Einstein condensed binary mixture of sodium atoms is experimentally investigated at finite temperature. In the collisional regime the motion of the thermal component is shown to be damped because of spin drag, while the two condensates exhibit a counterflow oscillation without friction, thereby providing direct evidence for spin superfluidity. Results are also reported in the collisionless regime where the spin components of both the condensate and thermal part oscillate without damping, their relative motion being driven by a mean-field effect. We also measure the static polarizability of the condensed and thermal parts and we find a large increase of the condensate polarizability with respect to the T =0 value, in agreement with the predictions of theory.

  1. Oscillatory dependence of current driven domain wall motion on current pulse length

    NASA Astrophysics Data System (ADS)

    Thomas, Luc

    2007-03-01

    The motion of domain walls (DW) in magnetic nanowires driven by spin torque from spin-polarized current is of considerable interest. Most previous work has considered the effect of dc or ˜microsecond long current pulses. Here, we show that the dynamics of DWs driven by nanosecond-long current pulses is unexpectedly complex. In particular, we show that the current driven motion of a DW, confined to a pinning site in a permalloy nanowire, exhibits an oscillatory dependence on the current pulse length with a period of just a few nanoseconds [1]. This behavior can be understood within a surprisingly straightforward one dimensional analytical model of the DW's motion. When a current pulse is applied, the DW's position oscillates within the pinning potential out of phase with the DW's out-of-plane magnetization, where the latter acts like the DW's momentum. Thus, the current driven motion of the DW is akin to a harmonic oscillator, whose frequency is determined by the ``mass'' of the DW and where the restoring force is related to the slope of the pinning potential. Remarkably, when the current pulse is turned off during phases of the DW motion when it has enough momentum, the amplitude of the oscillations can be amplified such that the DW exits the pinning potential well after the pulse is turned off. This oscillatory depinning occurs for currents smaller than the dc threshold current, and, moreover, the DW moves against the electron flow, opposite to the propagation direction above the dc threshold. These effects can be further amplified by using trains of current pulses whose lengths and separations are matched to the DW's oscillation period. In this way, we have demonstrated a five fold reduction in the threshold current required to move a DW out of a pinning site, making this effect potentially important for technological applications. [1] L. Thomas, M. Hayashi, X. Jiang, R. Moriya, C. Rettner and S.S.P. Parkin, Nature 443, 197 (2006).

  2. High-harmonic generation by field enhanced femtosecond pulses in metal-sapphire nanostructure

    PubMed Central

    Han, Seunghwoi; Kim, Hyunwoong; Kim, Yong Woo; Kim, Young-Jin; Kim, Seungchul; Park, In-Yong; Kim, Seung-Woo

    2016-01-01

    Plasmonic high-harmonic generation (HHG) drew attention as a means of producing coherent extreme ultraviolet (EUV) radiation by taking advantage of field enhancement occurring in metallic nanostructures. Here a metal-sapphire nanostructure is devised to provide a solid tip as the HHG emitter, replacing commonly used gaseous atoms. The fabricated solid tip is made of monocrystalline sapphire surrounded by a gold thin-film layer, and intended to produce EUV harmonics by the inter- and intra-band oscillations of electrons driven by the incident laser. The metal-sapphire nanostructure enhances the incident laser field by means of surface plasmon polaritons, triggering HHG directly from moderate femtosecond pulses of ∼0.1 TW cm−2 intensities. The measured EUV spectra exhibit odd-order harmonics up to ∼60 nm wavelengths without the plasma atomic lines typically seen when using gaseous atoms as the HHG emitter. This experimental outcome confirms that the plasmonic HHG approach is a promising way to realize coherent EUV sources for nano-scale near-field applications in spectroscopy, microscopy, lithography and atto-second physics. PMID:27721374

  3. Self-regulation of turbulence in low rotation DIII-D QH-mode with an oscillating transport barrier

    NASA Astrophysics Data System (ADS)

    Barada, Kshitish; Rhodes, T. L.; Burrell, K. H.; Zeng, L.; Chen, Xi

    2016-10-01

    We present observations of turbulence and flow shear limit cycle oscillations (LCOs) in wide pedestal QH-mode DIII-D tokamak plasmas that are consistent with turbulence self-regulation. In this low input torque regime, both edge harmonic oscillations (EHOs) and ELMs are absent. LCOs of ExB velocity shear and ñ present predator-prey like behavior in these fully developed QH-mode plasmas. During these limit cycle oscillations, the ExB poloidal flows possess a long-range toroidal correlation consistent with turbulence generated zonal flow activity. Further, these limit cycle oscillations are observed in a broad range of edge parameters including ne, Te, floor Langmuir probe ion saturation current, and radial electric field Er. TRANSP calculations of transport indicate little change between the EHO and LCO wide pedestal phases. These observations are consistent with LCO driven transport that may play a role in maintaining the profiles below ELM threshold in the EHO-free steady state wide pedestal QH-mode regime. Work supported by the US DOE under DE-FG02-08ER54984 and DE-FC02-04ER54698.

  4. Two-parameter double-oscillator model of Mathews-Lakshmanan type: Series solutions and supersymmetric partners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulze-Halberg, Axel, E-mail: axgeschu@iun.edu, E-mail: xbataxel@gmail.com; Wang, Jie, E-mail: wangjie@iun.edu

    2015-07-15

    We obtain series solutions, the discrete spectrum, and supersymmetric partners for a quantum double-oscillator system. Its potential features a superposition of the one-parameter Mathews-Lakshmanan interaction and a one-parameter harmonic or inverse harmonic oscillator contribution. Furthermore, our results are transferred to a generalized Pöschl-Teller model that is isospectral to the double-oscillator system.

  5. A harmonic oscillator having “volleyball damping”

    NASA Astrophysics Data System (ADS)

    Mickens, R. E.; Oyedeji, K.; Rucker, S. A.

    2006-05-01

    Volleyball damping corresponds to linear damping up to a certain critical velocity, with zero damping above this value. The dynamics of a linear harmonic oscillator is investigated with this damping mechanism.

  6. Investigation of Student Reasoning about Harmonic Motions

    NASA Astrophysics Data System (ADS)

    Tongnopparat, N.; Poonyawatpornkul, J.; Wattanakasiwich, P.

    This study aimed to investigate student reasoning about harmonic oscillations. We conducted a semi-structured interview based on three situations of harmonic motions—(1) a mass attaching to spring and horizontally oscillating without damping, (2) the same situation but vertically oscillating and (3) a mass attaching to spring and oscillating in viscous liquid. Forty-five second-year students taking a vibrations and wave course at Chiang Mai University, Thailand participated in a fifteen-minute interview, which was video-recorded. The videos were transcribed and analyzed by three physics instructors. As results, we found that most students had misconceptions about angular frequency and energy mostly in the second and third situations.

  7. The Study of Damped Harmonic Oscillations Using an Electronic Counter

    ERIC Educational Resources Information Center

    Wadhwa, Ajay

    2009-01-01

    We study damped harmonic oscillations in mechanical systems like the loaded spring and simple pendulum with the help of an oscillation measuring electronic counter. The experimental data are used in a software program that solves the differential equation for damped vibrations of any system and determines its position, velocity and acceleration as…

  8. Location identification of closed crack based on Duffing oscillator transient transition

    NASA Astrophysics Data System (ADS)

    Liu, Xiaofeng; Bo, Lin; Liu, Yaolu; Zhao, Youxuan; Zhang, Jun; Deng, Mingxi; Hu, Ning

    2018-02-01

    The existence of a closed micro-crack in plates can be detected by using the nonlinear harmonic characteristics of the Lamb wave. However, its location identification is difficult. By considering the transient nonlinear Lamb under the noise interference, we proposed a location identification method for the closed crack based on the quantitative measurement of Duffing oscillator transient transfer in the phase space. The sliding short-time window was used to create a window truncation of to-be-detected signal. And then, the periodic extension processing for transient nonlinear Lamb wave was performed to ensure that the Duffing oscillator has adequate response time to reach a steady state. The transient autocorrelation method was used to reduce the occurrence of missed harmonic detection due to the random variable phase of nonlinear Lamb wave. Moreover, to overcome the deficiency in the quantitative analysis of Duffing system state by phase trajectory diagram and eliminate the misjudgment caused by harmonic frequency component contained in broadband noise, logic operation method of oscillator state transition function based on circular zone partition was adopted to establish the mapping relation between the oscillator transition state and the nonlinear harmonic time domain information. Final state transition discriminant function of Duffing oscillator was used as basis for identifying the reflected and transmitted harmonics from the crack. Chirplet time-frequency analysis was conducted to identify the mode of generated harmonics and determine the propagation speed. Through these steps, accurate position identification of the closed crack was achieved.

  9. Novel Approach for Solving the Equation of Motion of a Simple Harmonic Oscillator. Classroom Notes

    ERIC Educational Resources Information Center

    Gauthier, N.

    2004-01-01

    An elementary method, based on the use of complex variables, is proposed for solving the equation of motion of a simple harmonic oscillator. The method is first applied to the equation of motion for an undamped oscillator and it is then extended to the more important case of a damped oscillator. It is finally shown that the method can readily be…

  10. On a q-extension of the linear harmonic oscillator with the continuous orthogonality property on ℝ

    NASA Astrophysics Data System (ADS)

    Alvarez-Nodarse, R.; Atakishiyeva, M. K.; Atakishiyev, N. M.

    2005-11-01

    We discuss a q-analogue of the linear harmonic oscillator in quantum mechanics based on a q-extension of the classical Hermite polynomials H n ( x) recently introduced by us in R. Alvarez-Nodarse et al.: Boletin de la Sociedad Matematica Mexicana (3) 8 (2002) 127. The wave functions in this q-model of the quantum harmonic oscillator possess the continuous orthogonality property on the whole real line ℝ with respect to a positive weight function. A detailed description of the corresponding q-system is carried out.

  11. Muonic molecular ions p p μ and p d μ driven by superintense VUV laser pulses: Postexcitation muonic and nuclear oscillations and high-order harmonic generation

    NASA Astrophysics Data System (ADS)

    Paramonov, Guennaddi K.; Saalfrank, Peter

    2018-05-01

    The non-Born-Oppenheimer quantum dynamics of p p μ and p d μ molecular ions excited by ultrashort, superintense VUV laser pulses polarized along the molecular axis (z ) is studied by the numerical solution of the time-dependent Schrödinger equation within a three-dimensional (3D) model, including the internuclear distance R and muon coordinates z and ρ , a transversal degree of freedom. It is shown that in both p p μ and p d μ , muons approximately follow the applied laser field out of phase. After the end of the laser pulse, expectation values , <ρ > , and demonstrate "post-laser-pulse" oscillations in both p p μ and p d μ . In the case of p d μ , the post-laser-pulse oscillations of and appear as shaped "echo pulses." Power spectra, which are related to high-order harmonic generation (HHG), generated due to muonic and nuclear motion are calculated in the acceleration form. For p d μ it is found that there exists a unique characteristic frequency ωoscp d μ representing both frequencies of post-laser-pulse muonic oscillations and the frequency of nuclear vibrations, which manifest themselves by very sharp maxima in the corresponding power spectra of p d μ . The homonuclear p p μ ion does not possess such a unique characteristic frequency. The "exact" dynamics and power, and HHG spectra of the 3D model are compared with a Born-Oppenheimer, fixed-nuclei model featuring interesting differences: postpulse oscillations are absent and HHG spectra are affected indirectly or directly by nuclear motion.

  12. The Adiabatic Invariant of the n-Degree-of-Freedom Harmonic Oscillator

    ERIC Educational Resources Information Center

    Devaud, M.; Leroy, V.; Bacri, J.-C.; Hocquet, T.

    2008-01-01

    In this graduate-level theoretical paper, we propose a general derivation of the adiabatic invariant of the n-degree-of-freedom harmonic oscillator, available whichever the physical nature of the oscillator and of the parametrical excitation it undergoes. This derivation is founded on the use of the classical Glauber variables and ends up with…

  13. The Study of Two-Dimensional Oscillations Using a Smartphone Acceleration Sensor: Example of Lissajous Curves

    ERIC Educational Resources Information Center

    Tuset-Sanchis, Luis; Castro-Palacio, Juan C.; Gómez-Tejedor, José A.; Manjón, Francisco J.; Monsoriu, Juan A.

    2015-01-01

    A smartphone acceleration sensor is used to study two-dimensional harmonic oscillations. The data recorded by the free android application, Accelerometer Toy, is used to determine the periods of oscillation by graphical analysis. Different patterns of the Lissajous curves resulting from the superposition of harmonic motions are illustrated for…

  14. High efficiency and output power from second- and third-harmonic millimeter-wave InP-TED oscillators at frequencies above 170 GHz

    NASA Astrophysics Data System (ADS)

    Rydberg, Anders

    1990-10-01

    InP TED (transferred electron device) oscillators have been experimentally investigated for frequencies between 170 and 279 GHz. It has been found that output powers of more than 7 and 0.2 mW are possible at 180 and 272 GHz using second- and third-harmonic mode operation, respectively. Conversion efficiencies of more than 13 percent and 0.3 percent between fundamental and second harmonic and fundamental and third harmonic, respectively, have been found. The conversion efficiencies are comparable to GaAs TEDs. The output powers, conversion efficiencies, and tuning ranges (more than 22 percent) are the largest reported for InP TEDs at these frequencies. The output power at third harmonic was sufficient for supplying a superconducting mixer with local oscillator power.

  15. Harmonic oscillator in quantum rotational spectra: Molecules and nuclei

    NASA Technical Reports Server (NTRS)

    Pavlichenkov, Igor M.

    1995-01-01

    The mapping of a rotational dynamics on a harmonic oscillator is considered. The method used for studying the stabilization of the rigid top rotation around the intermediate moment of inertial axix by orbiting particle is described.

  16. The harmonic oscillator and nuclear physics

    NASA Technical Reports Server (NTRS)

    Rowe, D. J.

    1993-01-01

    The three-dimensional harmonic oscillator plays a central role in nuclear physics. It provides the underlying structure of the independent-particle shell model and gives rise to the dynamical group structures on which models of nuclear collective motion are based. It is shown that the three-dimensional harmonic oscillator features a rich variety of coherent states, including vibrations of the monopole, dipole, and quadrupole types, and rotations of the rigid flow, vortex flow, and irrotational flow types. Nuclear collective states exhibit all of these flows. It is also shown that the coherent state representations, which have their origins in applications to the dynamical groups of the simple harmonic oscillator, can be extended to vector coherent state representations with a much wider range of applicability. As a result, coherent state theory and vector coherent state theory become powerful tools in the application of algebraic methods in physics.

  17. Quantum thermodynamics for driven dissipative bosonic systems

    NASA Astrophysics Data System (ADS)

    Ochoa, Maicol A.; Zimbovskaya, Natalya; Nitzan, Abraham

    2018-02-01

    We investigate two prototypical dissipative bosonic systems under slow driving and arbitrary system-bath coupling strength, recovering their dynamic evolution as well as the heat and work rates, and we verify that thermodynamic laws are respected. Specifically, we look at the damped harmonic oscillator and the damped two-level system. For the former, we study independently the slow time-dependent perturbation in the oscillator frequency and in the coupling strength. For the latter, we concentrate on the slow modulation of the energy gap between the two levels. Importantly, we are able to find the entropy production rates for each case without explicitly defining nonequilibrium extensions for the entropy functional. This analysis also permits the definition of phenomenological friction coefficients in terms of structural properties of the system-bath composite.

  18. Modeling Wave Driven Non-linear Flow Oscillations: The Terrestrial QBO and a Solar Analog

    NASA Technical Reports Server (NTRS)

    Mayr, Hans G.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    The Quasi Biennial Oscillation (QBO) of the zonal circulation observed in the terrestrial atmosphere at low latitudes is driven by wave mean flow interaction as was demonstrated first by Lindzen and Holton (1968), shown in a laboratory experiment by Plumb and McEwan (1978), and modeled by others (e.g., Plumb, Dunkerton). Although influenced by the seasonal cycle of solar forcing, the QBO, in principle, represents a nonlinear flow oscillation that can be maintained by a steady source of upward propagating waves. The wave driven non-linearity is of third or odd order in the flow velocity, which regenerates the fundamental harmonic itself to keep the oscillation going - the fluid dynamical analog of the displacement mechanism in the mechanical clock. Applying Hines' Doppler Spread Parameterization (DSP) for gravity waves (GW), we discuss with a global-scale spectral model numerical experiments that elucidate some properties of the QBO and its possible effects on the climatology of the atmosphere. Depending on the period of the QBO, wave filtering can cause interaction with the seasonal variations to produce pronounced oscillations with beat periods around 10 years. Since the seasonal cycle and its variability influence the period of the QBO, it may also be a potent conduit of solar activity variations to lower altitudes. Analogous to the terrestrial QBO, we propose that a flow oscillation may account for the 22-year periodicity of the solar magnetic cycle, potentially answering Dicke (1978) who asked, "Is there a chronometer hidden deep inside the Sun?" The oscillation would occur below the convection region, where gravity waves can propagate. Employing a simplified, analytic model, Hines' DSP is applied to estimate the flow oscillation. Depending on the adopted horizontal wavelengths of GW's, wave amplitudes less than 10 m/s can be made to produce oscillating zonal flows of about 20 m/s that should be large enough to generate a significant oscillation in the magnetic field. For the large length scales of the Sun, the flow cycle period tends to be very long. The period, however, can be made to be 22 years, provided the buoyancy frequency (stability) is sufficiently small, thus placing the proposed flow near the base of the convection zone where a dynamo is now believed to operate.

  19. Nonequilibrium-thermodynamics approach to open quantum systems

    NASA Astrophysics Data System (ADS)

    Semin, Vitalii; Petruccione, Francesco

    2014-11-01

    Open quantum systems are studied from the thermodynamical point of view unifying the principle of maximum informational entropy and the hypothesis of relaxation times hierarchy. The result of the unification is a non-Markovian and local-in-time master equation that provides a direct connection for dynamical and thermodynamical properties of open quantum systems. The power of the approach is illustrated by the application to the damped harmonic oscillator and the damped driven two-level system, resulting in analytical expressions for the non-Markovian and nonequilibrium entropy and inverse temperature.

  20. Dynamics of three-tori in a periodically forced navier-stokes flow

    PubMed

    Lopez; Marques

    2000-07-31

    Three-tori solutions of the Navier-Stokes equations and their dynamics are elucidated by use of a global Poincare map. The flow is contained in a finite annular gap between two concentric cylinders, driven by the steady rotation and axial harmonic oscillations of the inner cylinder. The three-tori solutions undergo global bifurcations, including a new gluing bifurcation, associated with homoclinic and heteroclinic connections to unstable solutions (two-tori). These unstable two-tori act as organizing centers for the three-tori dynamics. A discrete space-time symmetry influences the dynamics.

  1. The Duffin-Kemmer-Petiau oscillator

    NASA Technical Reports Server (NTRS)

    Nedjadi, Youcef; Barrett, Roger

    1995-01-01

    In view of current interest in relativistic spin-one systems and the recent work on the Dirac Oscillator, we introduce the Duffin-Kemmer-Petiau (DKP) equation obtained by using an external potential linear in r. Since, in the non-relativistic limit, the spin 1 representation leads to a harmonic oscillator with a spin-orbit coupling of the Thomas form, we call the equation the DKP oscillator. This oscillator is a relativistic generalization of the quantum harmonic oscillator for scalar and vector bosons. We show that it conserves total angular momentum and that it is exactly solvable. We calculate and discuss the eigenspectrum of the DKP oscillator in the spin 1 representation.

  2. A resonance approach to cochlear mechanics.

    PubMed

    Bell, Andrew

    2012-01-01

    How does the cochlea analyse sound into its component frequencies? In the 1850s Helmholtz thought it occurred by resonance, whereas a century later Békésy's work indicated a travelling wave. The latter answer seemed to settle the question, but with the discovery in 1978 that the cochlea emits sound, the mechanics of the cochlea was back on the drawing board. Recent studies have raised questions about whether the travelling wave, as currently understood, is adequate to explain observations. Applying basic resonance principles, this paper revisits the question. A graded bank of harmonic oscillators with cochlear-like frequencies and quality factors is simultaneously excited, and it is found that resonance gives rise to similar frequency responses, group delays, and travelling wave velocities as observed by experiment. The overall effect of the group delay gradient is to produce a decelerating wave of peak displacement moving from base to apex at characteristic travelling wave speeds. The extensive literature on chains of coupled oscillators is considered, and the occurrence of travelling waves, pseudowaves, phase plateaus, and forced resonance in such systems is noted. This alternative approach to cochlear mechanics shows that a travelling wave can simply arise as an apparently moving amplitude peak which passes along a bank of resonators without carrying energy. This highlights the possible role of the fast pressure wave and indicates how phase delays and group delays of a set of driven harmonic oscillators can generate an apparent travelling wave. It is possible to view the cochlea as a chain of globally forced coupled oscillators, and this model incorporates fundamental aspects of both the resonance and travelling wave theories.

  3. The study of two-dimensional oscillations using a smartphone acceleration sensor: example of Lissajous curves

    NASA Astrophysics Data System (ADS)

    Tuset-Sanchis, Luis; Castro-Palacio, Juan C.; Gómez-Tejedor, José A.; Manjón, Francisco J.; Monsoriu, Juan A.

    2015-08-01

    A smartphone acceleration sensor is used to study two-dimensional harmonic oscillations. The data recorded by the free android application, Accelerometer Toy, is used to determine the periods of oscillation by graphical analysis. Different patterns of the Lissajous curves resulting from the superposition of harmonic motions are illustrated for three experiments. This work introduces an example of how two-dimensional oscillations can be easily studied with a smartphone acceleration sensor.

  4. Entanglement dynamics in short- and long-range harmonic oscillators

    NASA Astrophysics Data System (ADS)

    Nezhadhaghighi, M. Ghasemi; Rajabpour, M. A.

    2014-11-01

    We study the time evolution of the entanglement entropy in the short- and long-range-coupled harmonic oscillators that have well-defined continuum limit field theories. We first introduce a method to calculate the entanglement evolution in generic coupled harmonic oscillators after quantum quench. Then we study the entanglement evolution after quantum quench in harmonic systems in which the couplings decay effectively as 1 /rd +α with the distance r . After quenching the mass from a nonzero value to zero we calculate numerically the time evolution of von Neumann and Rényi entropies. We show that for 1 <α <2 we have a linear growth of entanglement and then saturation independent of the initial state. For 0 <α <1 depending on the initial state we can have logarithmic growth or just fluctuation of entanglement. We also calculate the mutual information dynamics of two separated individual harmonic oscillators. Our findings suggest that in our system there is no particular connection between having a linear growth of entanglement after quantum quench and having a maximum group velocity or generalized Lieb-Robinson bound.

  5. A Back-to-Front Derivation: The Equal Spacing of Quantum Levels Is a Proof of Simple Harmonic Oscillator Physics

    ERIC Educational Resources Information Center

    Andrews, David L.; Romero, Luciana C. Davila

    2009-01-01

    The dynamical behaviour of simple harmonic motion can be found in numerous natural phenomena. Within the quantum realm of atomic, molecular and optical systems, two main features are associated with harmonic oscillations: a finite ground-state energy and equally spaced quantum energy levels. Here it is shown that there is in fact a one-to-one…

  6. An algebraic cluster model based on the harmonic oscillator basis

    NASA Technical Reports Server (NTRS)

    Levai, Geza; Cseh, J.

    1995-01-01

    We discuss the semimicroscopic algebraic cluster model introduced recently, in which the internal structure of the nuclear clusters is described by the harmonic oscillator shell model, while their relative motion is accounted for by the Vibron model. The algebraic formulation of the model makes extensive use of techniques associated with harmonic oscillators and their symmetry group, SU(3). The model is applied to some cluster systems and is found to reproduce important characteristics of nuclei in the sd-shell region. An approximate SU(3) dynamical symmetry is also found to hold for the C-12 + C-12 system.

  7. Information measures of a deformed harmonic oscillator in a static electric field

    NASA Astrophysics Data System (ADS)

    Nascimento, J. P. G.; Ferreira, F. A. P.; Aguiar, V.; Guedes, I.; Costa Filho, Raimundo N.

    2018-06-01

    The Shannon entropy and the Fischer information are calculated for an harmonic oscillator in the presence of an applied electric field (ε) in a space with metrics given by gxx-1/2 = 1 + γx. For that metric the harmonic oscillator can be mapped into a Morse potential in an Euclidean space. For ε = 0, the ground state energy decreases when γ increases. However, for certain values of ε the energy decrease can be canceled out. The dependence of the uncertainties, the entropy, and the information on the parameters γ and ε are shown.

  8. Predicting charmonium and bottomonium spectra with a quark harmonic oscillator

    NASA Technical Reports Server (NTRS)

    Norbury, J. W.; Badavi, F. F.; Townsend, L. W.

    1986-01-01

    The nonrelativistic quark model is applied to heavy (nonrelativistic) meson (two-body) systems to obtain sufficiently accurate predictions of the spin-averaged mass levels of the charmonium and bottomonium spectra as an example of the three-dimensional harmonic oscillator. The present calculations do not include any spin dependence, but rather, mass values are averaged for different spins. Results for a charmed quark mass value of 1500 MeV/c-squared show that the simple harmonic oscillator model provides good agreement with experimental values for 3P states, and adequate agreement for the 3S1 states.

  9. Double simple-harmonic-oscillator formulation of the thermal equilibrium of a fluid interacting with a coherent source of phonons

    NASA Technical Reports Server (NTRS)

    Defacio, B.; Vannevel, Alan; Brander, O.

    1993-01-01

    A formulation is given for a collection of phonons (sound) in a fluid at a non-zero temperature which uses the simple harmonic oscillator twice; one to give a stochastic thermal 'noise' process and the other which generates a coherent Glauber state of phonons. Simple thermodynamic observables are calculated and the acoustic two point function, 'contrast' is presented. The role of 'coherence' in an equilibrium system is clarified by these results and the simple harmonic oscillator is a key structure in both the formulation and the calculations.

  10. Harmonic Brain Modes: A Unifying Framework for Linking Space and Time in Brain Dynamics.

    PubMed

    Atasoy, Selen; Deco, Gustavo; Kringelbach, Morten L; Pearson, Joel

    2018-06-01

    A fundamental characteristic of spontaneous brain activity is coherent oscillations covering a wide range of frequencies. Interestingly, these temporal oscillations are highly correlated among spatially distributed cortical areas forming structured correlation patterns known as the resting state networks, although the brain is never truly at "rest." Here, we introduce the concept of harmonic brain modes-fundamental building blocks of complex spatiotemporal patterns of neural activity. We define these elementary harmonic brain modes as harmonic modes of structural connectivity; that is, connectome harmonics, yielding fully synchronous neural activity patterns with different frequency oscillations emerging on and constrained by the particular structure of the brain. Hence, this particular definition implicitly links the hitherto poorly understood dimensions of space and time in brain dynamics and its underlying anatomy. Further we show how harmonic brain modes can explain the relationship between neurophysiological, temporal, and network-level changes in the brain across different mental states ( wakefulness, sleep, anesthesia, psychedelic). Notably, when decoded as activation of connectome harmonics, spatial and temporal characteristics of neural activity naturally emerge from the interplay between excitation and inhibition and this critical relation fits the spatial, temporal, and neurophysiological changes associated with different mental states. Thus, the introduced framework of harmonic brain modes not only establishes a relation between the spatial structure of correlation patterns and temporal oscillations (linking space and time in brain dynamics), but also enables a new dimension of tools for understanding fundamental principles underlying brain dynamics in different states of consciousness.

  11. Controllability in tunable chains of coupled harmonic oscillators

    NASA Astrophysics Data System (ADS)

    Buchmann, L. F.; Mølmer, K.; Petrosyan, D.

    2018-04-01

    We prove that temporal control of the strengths of springs connecting N harmonic oscillators in a chain provides complete access to all Gaussian states of N -1 collective modes. The proof relies on the construction of a suitable basis of cradle modes for the system. An iterative algorithm to reach any desired Gaussian state requires at most 3 N (N -1 )/2 operations. We illustrate this capability by engineering squeezed pseudo-phonon states—highly nonlocal, strongly correlated states that may result from various nonlinear processes. Tunable chains of coupled harmonic oscillators can be implemented by a number of current state-of-the-art experimental platforms, including cold atoms in lattice potentials, arrays of mechanical micro-oscillators, and coupled optical waveguides.

  12. An integrated low phase noise radiation-pressure-driven optomechanical oscillator chipset

    PubMed Central

    Luan, Xingsheng; Huang, Yongjun; Li, Ying; McMillan, James F.; Zheng, Jiangjun; Huang, Shu-Wei; Hsieh, Pin-Chun; Gu, Tingyi; Wang, Di; Hati, Archita; Howe, David A.; Wen, Guangjun; Yu, Mingbin; Lo, Guoqiang; Kwong, Dim-Lee; Wong, Chee Wei

    2014-01-01

    High-quality frequency references are the cornerstones in position, navigation and timing applications of both scientific and commercial domains. Optomechanical oscillators, with direct coupling to continuous-wave light and non-material-limited f × Q product, are long regarded as a potential platform for frequency reference in radio-frequency-photonic architectures. However, one major challenge is the compatibility with standard CMOS fabrication processes while maintaining optomechanical high quality performance. Here we demonstrate the monolithic integration of photonic crystal optomechanical oscillators and on-chip high speed Ge detectors based on the silicon CMOS platform. With the generation of both high harmonics (up to 59th order) and subharmonics (down to 1/4), our chipset provides multiple frequency tones for applications in both frequency multipliers and dividers. The phase noise is measured down to −125 dBc/Hz at 10 kHz offset at ~400 μW dropped-in powers, one of the lowest noise optomechanical oscillators to date and in room-temperature and atmospheric non-vacuum operating conditions. These characteristics enable optomechanical oscillators as a frequency reference platform for radio-frequency-photonic information processing. PMID:25354711

  13. Complex metabolic oscillations in plants forced by harmonic irradiance.

    PubMed Central

    Nedbal, Ladislav; Brezina, Vítezslav

    2002-01-01

    Plants exposed to harmonically modulated irradiance, approximately 1 + cos(omegat), exhibit a complex periodic pattern of chlorophyll fluorescence emission that can be deconvoluted into a steady-state component, a component that is modulated with the frequency of the irradiance (omega), and into at least two upper harmonic components (2omega and 3omega). A model is proposed that accounts for the upper harmonics in fluorescence emission by nonlinear negative feedback regulation of photosynthesis. In contrast to simpler linear models, the model predicts that the steady-state fluorescence component will depend on the frequency of light modulation, and that amplitudes of all fluorescence components will exhibit resonance peak(s) when the irradiance frequency is tuned to an internal frequency of a regulatory component. The experiments confirmed that the upper harmonic components appear and exhibit distinct resonant peaks. The frequency of autonomous oscillations observed earlier upon an abrupt increase in CO(2) concentration corresponds to the sharpest of the resonant peaks of the forced oscillations. We propose that the underlying principles are general for a wide spectrum of negative-feedback regulatory mechanisms. The analysis by forced harmonic oscillations will enable us to examine internal dynamics of regulatory processes that have not been accessible to noninvasive fluorescence monitoring to date. PMID:12324435

  14. Dark-dark-soliton dynamics in two density-coupled Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Morera, I.; Mateo, A. Muñoz; Polls, A.; Juliá-Díaz, B.

    2018-04-01

    We study the one-dimensional dynamics of dark-dark solitons in the miscible regime of two density-coupled Bose-Einstein condensates having repulsive interparticle interactions within each condensate (g >0 ). By using an adiabatic perturbation theory in the parameter g12/g , we show that, contrary to the case of two solitons in scalar condensates, the interactions between solitons are attractive when the interparticle interactions between condensates are repulsive g12>0 . As a result, the relative motion of dark solitons with equal chemical potential μ is well approximated by harmonic oscillations of angular frequency wr=(μ /ℏ ) √{(8 /15 ) g12/g } . We also show that, in finite systems, the resonance of this anomalous excitation mode with the spin-density mode of lowest energy gives rise to alternating dynamical instability and stability fringes as a function of the perturbative parameter. In the presence of harmonic trapping (with angular frequency Ω ) the solitons are driven by the superposition of two harmonic motions at a frequency given by w2=(Ω/√{2 }) 2+wr2 . When g12<0 , these two oscillators compete to give rise to an overall effective potential that can be either single well or double well through a pitchfork bifurcation. All our theoretical results are compared with numerical solutions of the Gross-Pitaevskii equation for the dynamics and the Bogoliubov equations for the linear stability. A good agreement is found between them.

  15. Exploiting bistable oscillator subharmonics for magnified broadband vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Huguet, Thomas; Badel, Adrien; Lallart, Mickaël

    2017-10-01

    Recent research on primary battery alternatives for supplying autonomous wireless devices has recently highlighted the advantages of nonlinear oscillators' dynamics and more particularly bistable oscillators' behavior for ambient vibration harvesting. The key property of bistable oscillators compared to linear ones is their enhanced operational frequency bandwidth under harmonic excitation, potentially leading to a better adaptation to the environment. However, the classical frequency response characterization of such devices does not reveal all the possible dynamic behaviors offered by bistable oscillators. Thus, subharmonic motions are experimentally investigated in this letter, and their energy harvesting potential as well as their ability to enhance the bistable generator bandwidth is evaluated. The results obtained with a generator integrating buckled beams for the bistability feature show that, in addition to the commonly considered harmonic behavior, subharmonics allow widening of the useful operating frequency band of the bistable microgenerator by 180% compared to the sole exploitation of the first harmonic motion.

  16. Ergodicity of a singly-thermostated harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Hoover, William Graham; Sprott, Julien Clinton; Hoover, Carol Griswold

    2016-03-01

    Although Nosé's thermostated mechanics is formally consistent with Gibbs' canonical ensemble, the thermostated Nosé-Hoover (harmonic) oscillator, with its mean kinetic temperature controlled, is far from ergodic. Much of its phase space is occupied by regular conservative tori. Oscillator ergodicity has previously been achieved by controlling two oscillator moments with two thermostat variables. Here we use computerized searches in conjunction with visualization to find singly-thermostated motion equations for the oscillator which are consistent with Gibbs' canonical distribution. Such models are the simplest able to bridge the gap between Gibbs' statistical ensembles and Newtonian single-particle dynamics.

  17. Two Different Squeeze Transformations

    NASA Technical Reports Server (NTRS)

    Han, D. (Editor); Kim, Y. S.

    1996-01-01

    Lorentz boosts are squeeze transformations. While these transformations are similar to those in squeezed states of light, they are fundamentally different from both physical and mathematical points of view. The difference is illustrated in terms of two coupled harmonic oscillators, and in terms of the covariant harmonic oscillator formalism.

  18. Quantum harmonic oscillator in a thermal bath

    NASA Technical Reports Server (NTRS)

    Zhang, Yuhong

    1993-01-01

    The influence functional path-integral treatment of quantum Brownian motion is briefly reviewed. A newly derived exact master equation of a quantum harmonic oscillator coupled to a general environment at arbitrary temperature is discussed. It is applied to the problem of loss of quantum coherence.

  19. Using harmonic oscillators to determine the spot size of Hermite-Gaussian laser beams

    NASA Technical Reports Server (NTRS)

    Steely, Sidney L.

    1993-01-01

    The similarity of the functional forms of quantum mechanical harmonic oscillators and the modes of Hermite-Gaussian laser beams is illustrated. This functional similarity provides a direct correlation to investigate the spot size of large-order mode Hermite-Gaussian laser beams. The classical limits of a corresponding two-dimensional harmonic oscillator provide a definition of the spot size of Hermite-Gaussian laser beams. The classical limits of the harmonic oscillator provide integration limits for the photon probability densities of the laser beam modes to determine the fraction of photons detected therein. Mathematica is used to integrate the probability densities for large-order beam modes and to illustrate the functional similarities. The probabilities of detecting photons within the classical limits of Hermite-Gaussian laser beams asymptotically approach unity in the limit of large-order modes, in agreement with the Correspondence Principle. The classical limits for large-order modes include all of the nodes for Hermite Gaussian laser beams; Sturm's theorem provides a direct proof.

  20. Negative-Mass Instability of the Spin and Motion of an Atomic Gas Driven by Optical Cavity Backaction

    NASA Astrophysics Data System (ADS)

    Kohler, Jonathan; Gerber, Justin A.; Dowd, Emma; Stamper-Kurn, Dan M.

    2018-01-01

    We realize a spin-orbit interaction between the collective spin precession and center-of-mass motion of a trapped ultracold atomic gas, mediated by spin- and position-dependent dispersive coupling to a driven optical cavity. The collective spin, precessing near its highest-energy state in an applied magnetic field, can be approximated as a negative-mass harmonic oscillator. When the Larmor precession and mechanical motion are nearly resonant, cavity mediated coupling leads to a negative-mass instability, driving exponential growth of a correlated mode of the hybrid system. We observe this growth imprinted on modulations of the cavity field and estimate the full covariance of the resulting two-mode state by observing its transient decay during subsequent free evolution.

  1. A study of the orthogonal polynomials associated with the quantum harmonic oscillator on constant curvature spaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vignat, C.; Lamberti, P. W.

    2009-10-15

    Recently, Carinena, et al. [Ann. Phys. 322, 434 (2007)] introduced a new family of orthogonal polynomials that appear in the wave functions of the quantum harmonic oscillator in two-dimensional constant curvature spaces. They are a generalization of the Hermite polynomials and will be called curved Hermite polynomials in the following. We show that these polynomials are naturally related to the relativistic Hermite polynomials introduced by Aldaya et al. [Phys. Lett. A 156, 381 (1991)], and thus are Jacobi polynomials. Moreover, we exhibit a natural bijection between the solutions of the quantum harmonic oscillator on negative curvature spaces and on positivemore » curvature spaces. At last, we show a maximum entropy property for the ground states of these oscillators.« less

  2. KvN mechanics approach to the time-dependent frequency harmonic oscillator.

    PubMed

    Ramos-Prieto, Irán; Urzúa-Pineda, Alejandro R; Soto-Eguibar, Francisco; Moya-Cessa, Héctor M

    2018-05-30

    Using the Ermakov-Lewis invariants appearing in KvN mechanics, the time-dependent frequency harmonic oscillator is studied. The analysis builds upon the operational dynamical model, from which it is possible to infer quantum or classical dynamics; thus, the mathematical structure governing the evolution will be the same in both cases. The Liouville operator associated with the time-dependent frequency harmonic oscillator can be transformed using an Ermakov-Lewis invariant, which is also time dependent and commutes with itself at any time. Finally, because the solution of the Ermakov equation is involved in the evolution of the classical state vector, we explore some analytical and numerical solutions.

  3. Model for the dynamics of two interacting axisymmetric spherical bubbles undergoing small shape oscillations

    PubMed Central

    Kurihara, Eru; Hay, Todd A.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.

    2011-01-01

    Interaction between acoustically driven or laser-generated bubbles causes the bubble surfaces to deform. Dynamical equations describing the motion of two translating, nominally spherical bubbles undergoing small shape oscillations in a viscous liquid are derived using Lagrangian mechanics. Deformation of the bubble surfaces is taken into account by including quadrupole and octupole perturbations in the spherical-harmonic expansion of the boundary conditions on the bubbles. Quadratic terms in the quadrupole and octupole amplitudes are retained, and surface tension and shear viscosity are included in a consistent manner. A set of eight coupled second-order ordinary differential equations is obtained. Simulation results, obtained by numerical integration of the model equations, exhibit qualitative agreement with experimental observations by predicting the formation of liquid jets. Simulations also suggest that bubble-bubble interactions act to enhance surface mode instability. PMID:22088009

  4. Non-exponential decoherence of radio-frequency resonance rotation of spin in storage rings

    NASA Astrophysics Data System (ADS)

    Saleev, A.; Nikolaev, N. N.; Rathmann, F.; Hinder, F.; Pretz, J.; Rosenthal, M.

    2017-08-01

    Precision experiments, such as the search for electric dipole moments of charged particles using radio-frequency spin rotators in storage rings, demand for maintaining the exact spin resonance condition for several thousand seconds. Synchrotron oscillations in the stored beam modulate the spin tune of off-central particles, moving it off the perfect resonance condition set for central particles on the reference orbit. Here, we report an analytic description of how synchrotron oscillations lead to non-exponential decoherence of the radio-frequency resonance driven up-down spin rotations. This non-exponential decoherence is shown to be accompanied by a nontrivial walk of the spin phase. We also comment on sensitivity of the decoherence rate to the harmonics of the radio-frequency spin rotator and a possibility to check predictions of decoherence-free magic energies.

  5. The One-Dimensional Damped Forced Harmonic Oscillator Revisited

    ERIC Educational Resources Information Center

    Flores-Hidalgo, G.; Barone, F. A.

    2011-01-01

    In this paper we give a general solution to the problem of the damped harmonic oscillator under the influence of an arbitrary time-dependent external force. We employ simple methods accessible for beginners and useful for undergraduate students and professors in an introductory course of mechanics.

  6. The harmonic oscillator and the position dependent mass Schroedinger equation: isospectral partners and factorization operators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morales, J.; Ovando, G.; Pena, J. J.

    2010-12-23

    One of the most important scientific contributions of Professor Marcos Moshinsky has been his study on the harmonic oscillator in quantum theory vis a vis the standard Schroedinger equation with constant mass [1]. However, a simple description of the motion of a particle interacting with an external environment such as happen in compositionally graded alloys consist of replacing the mass by the so-called effective mass that is in general variable and dependent on position. Therefore, honoring in memoriam Marcos Moshinsky, in this work we consider the position-dependent mass Schrodinger equations (PDMSE) for the harmonic oscillator potential model as former potentialmore » as well as with equi-spaced spectrum solutions, i.e. harmonic oscillator isospectral partners. To that purpose, the point canonical transformation method to convert a general second order differential equation (DE), of Sturm-Liouville type, into a Schroedinger-like standard equation is applied to the PDMSE. In that case, the former potential associated to the PDMSE and the potential involved in the Schroedinger-like standard equation are related through a Riccati-type relationship that includes the equivalent of the Witten superpotential to determine the exactly solvable positions-dependent mass distribution (PDMD)m(x). Even though the proposed approach is exemplified with the harmonic oscillator potential, the procedure is general and can be straightforwardly applied to other DEs.« less

  7. Electric-field control of a hydrogenic donor's spin in a semiconductor

    NASA Astrophysics Data System (ADS)

    de, Amrit; Pryor, Craig E.; Flatté, Michael E.

    2009-03-01

    The orbital wave function of an electron bound to a single donor in a semiconductor can be modulated by an applied AC electric field, which affects the electron spin dynamics via the spin-orbit interaction. Numerical calculations of the spin dynamics of a single hydrogenic donor (Si) using a real-space multi-band k.p formalism show that in addition to breaking the high symmetry of the hydrogenic donor state, the g-tensor has a strong nonlinear dependence on the applied fields. By explicitly integrating the time dependent Schr"odinger equation it is seen that Rabi oscillations can be obtained for electric fields modulated at sub-harmonics of the Larmor frequency. The Rabi frequencies obtained from sub-harmonic modulation depend on the magnitudes of the AC and DC components of the electric field. For a purely AC field, the highest Rabi frequency is obtained when E is driven at the 2nd sub-harmonic of the Larmor frequency. Apart from suggesting ways to measure g-tensor anisotropies and nonlinearities, these results also suggest the possibility of direct frequency domain measurements of Rabi frequencies.

  8. The effect of tides on self-driven stellar pulsations

    NASA Astrophysics Data System (ADS)

    Balona, L. A.

    2018-06-01

    In addition to rotation, a tidal force in a binary introduces another axis of symmetry joining the two centres of mass. If the stars are in circular orbit and synchronous rotation, a pulsation with spherical harmonic degree l is split into l + 1 frequencies. In the observer's frame of reference, these in turn are further split into equidistant frequencies spaced by multiples of the orbital frequency. In the periodogram of a pulsating star, tidal action can be seen as low-amplitude equidistant splitting of each oscillation mode which are not harmonics of the orbital frequency. This effect is illustrated using Kepler observations of the heartbeat variable, KIC 4142768, which is also a δ Scuti star. Even though the theory is only applicable to circular orbits, the expected equidistant splitting is clearly seen in all four of the highest amplitude modes. This results in amplitude variability of each pulsation mode with a period equal to the orbital period.

  9. Equity prices as a simple harmonic oscillator with noise

    NASA Astrophysics Data System (ADS)

    Ataullah, Ali; Tippett, Mark

    2007-08-01

    The centred return on the London Stock Exchange's FTSE All Share Index is modelled as a simple harmonic oscillator with noise over the period from 1 January, 1994 until 30 June 2006. Our empirical results are compatible with the hypothesis that there is a period in the FTSE All Share Index of between two and two and one half years. This means the centred return will on average continue to increase for about a year after reaching the minimum in its oscillatory cycle; alternatively, it will continue on average to decline for about a year after reaching a maximum. Our analysis also shows that there is potential to exploit the harmonic nature of the returns process to earn abnormal profits. Extending our analysis to the low energy states of a quantum harmonic oscillator is also suggested.

  10. Quantization of the damped harmonic oscillator revisited

    NASA Astrophysics Data System (ADS)

    Baldiotti, M. C.; Fresneda, R.; Gitman, D. M.

    2011-04-01

    We return to the description of the damped harmonic oscillator with an assessment of previous works, in particular the Bateman-Caldirola-Kanai model and a new model proposed by one of the authors. We argue the latter has better high energy behavior and is connected to existing open-systems approaches.

  11. A Simple Mechanical Model for the Isotropic Harmonic Oscillator

    ERIC Educational Resources Information Center

    Nita, Gelu M.

    2010-01-01

    A constrained elastic pendulum is proposed as a simple mechanical model for the isotropic harmonic oscillator. The conceptual and mathematical simplicity of this model recommends it as an effective pedagogical tool in teaching basic physics concepts at advanced high school and introductory undergraduate course levels. (Contains 2 figures.)

  12. Covariant harmonic oscillators: 1973 revisited

    NASA Technical Reports Server (NTRS)

    Noz, M. E.

    1993-01-01

    Using the relativistic harmonic oscillator, a physical basis is given to the phenomenological wave function of Yukawa which is covariant and normalizable. It is shown that this wave function can be interpreted in terms of the unitary irreducible representations of the Poincare group. The transformation properties of these covariant wave functions are also demonstrated.

  13. Two-Color Coherent Control of Femtosecond Above-Threshold Photoemission from a Tungsten Nanotip.

    PubMed

    Förster, Michael; Paschen, Timo; Krüger, Michael; Lemell, Christoph; Wachter, Georg; Libisch, Florian; Madlener, Thomas; Burgdörfer, Joachim; Hommelhoff, Peter

    2016-11-18

    We demonstrate coherent control of multiphoton and above-threshold photoemission from a single solid-state nanoemitter driven by a fundamental and a weak second harmonic laser pulse. Depending on the relative phase of the two pulses, electron emission is modulated with a contrast of the oscillating current signal of up to 94%. Electron spectra reveal that all observed photon orders are affected simultaneously and similarly. We confirm that photoemission takes place within 10 fs. Accompanying simulations indicate that the current modulation with its large contrast results from two interfering quantum pathways leading to electron emission.

  14. Generating higher-order quantum dissipation from lower-order parametric processes

    NASA Astrophysics Data System (ADS)

    Mundhada, S. O.; Grimm, A.; Touzard, S.; Vool, U.; Shankar, S.; Devoret, M. H.; Mirrahimi, M.

    2017-06-01

    The stabilisation of quantum manifolds is at the heart of error-protected quantum information storage and manipulation. Nonlinear driven-dissipative processes achieve such stabilisation in a hardware efficient manner. Josephson circuits with parametric pump drives implement these nonlinear interactions. In this article, we propose a scheme to engineer a four-photon drive and dissipation on a harmonic oscillator by cascading experimentally demonstrated two-photon processes. This would stabilise a four-dimensional degenerate manifold in a superconducting resonator. We analyse the performance of the scheme using numerical simulations of a realisable system with experimentally achievable parameters.

  15. The dominant mode of standing Alfven waves at synchronous orbit

    NASA Technical Reports Server (NTRS)

    Cummings, W. D.; Countee, C.; Lyons, D.; Wiley, W., III

    1975-01-01

    Low-frequency oscillations of the earth's magnetic field recorded by the UCLA magnetometer on board ATS-1, have been examined for the six-month interval, January-June, 1968. The initial interpretation, that these oscillations represent the second harmonic of a standing Alfven wave, has been re-examined, and it is concluded that this hypothesis must be withdrawn. Using evidence from OGO-5 and ATS-5, as well as the data from ATS-1, it is argued that the dominant mode at the synchronous orbit must be the fundamental rather than the second harmonic. From 14 instances when the oscillations of distinctly different periods occurred during the same time interval at ATS-1 it is concluded that higher harmonics can exist. The period ratio in 7 of the 14 cases corresponds to the simultaneous occurrence of the second harmonic with the fundamental, and 4 other cases could be identified as the simultaneous occurrence of the fourth harmonic with the fundamental.

  16. A Resonance Approach to Cochlear Mechanics

    PubMed Central

    Bell, Andrew

    2012-01-01

    Background How does the cochlea analyse sound into its component frequencies? In the 1850s Helmholtz thought it occurred by resonance, whereas a century later Békésy's work indicated a travelling wave. The latter answer seemed to settle the question, but with the discovery in 1978 that the cochlea emits sound, the mechanics of the cochlea was back on the drawing board. Recent studies have raised questions about whether the travelling wave, as currently understood, is adequate to explain observations. Approach Applying basic resonance principles, this paper revisits the question. A graded bank of harmonic oscillators with cochlear-like frequencies and quality factors is simultaneously excited, and it is found that resonance gives rise to similar frequency responses, group delays, and travelling wave velocities as observed by experiment. The overall effect of the group delay gradient is to produce a decelerating wave of peak displacement moving from base to apex at characteristic travelling wave speeds. The extensive literature on chains of coupled oscillators is considered, and the occurrence of travelling waves, pseudowaves, phase plateaus, and forced resonance in such systems is noted. Conclusion and significance This alternative approach to cochlear mechanics shows that a travelling wave can simply arise as an apparently moving amplitude peak which passes along a bank of resonators without carrying energy. This highlights the possible role of the fast pressure wave and indicates how phase delays and group delays of a set of driven harmonic oscillators can generate an apparent travelling wave. It is possible to view the cochlea as a chain of globally forced coupled oscillators, and this model incorporates fundamental aspects of both the resonance and travelling wave theories. PMID:23144835

  17. Direct measurement of density oscillation induced by a radio-frequency wave.

    PubMed

    Yamada, T; Ejiri, A; Shimada, Y; Oosako, T; Tsujimura, J; Takase, Y; Kasahara, H

    2007-08-01

    An O-mode reflectometer at a frequency of 25.85 GHz was applied to plasmas heated by the high harmonic fast wave (21 MHz) in the TST-2 spherical tokamak. An oscillation in the phase of the reflected microwave in the rf range was observed directly for the first time. In TST-2, the rf (250 kW) induced density oscillation depends mainly on the poloidal rf electric field, which is estimated to be about 0.2 kV/m rms by the reflectometer measurement. Sideband peaks separated in frequency by ion cyclotron harmonics from 21 MHz, and peaks at ion cyclotron harmonics which are suggested to be quasimodes generated by parametric decay, were detected.

  18. Quantum damped oscillator I: Dissipation and resonances

    NASA Astrophysics Data System (ADS)

    Chruściński, Dariusz; Jurkowski, Jacek

    2006-04-01

    Quantization of a damped harmonic oscillator leads to so called Bateman’s dual system. The corresponding Bateman’s Hamiltonian, being a self-adjoint operator, displays the discrete family of complex eigenvalues. We show that they correspond to the poles of energy eigenvectors and the corresponding resolvent operator when continued to the complex energy plane. Therefore, the corresponding generalized eigenvectors may be interpreted as resonant states which are responsible for the irreversible quantum dynamics of a damped harmonic oscillator.

  19. Predicting charmonium and bottomonium spectra with a quark harmonic oscillator.

    PubMed

    Norbury, J W; Badavi, F F; Townsend, L W

    1986-11-01

    We present a simple application of the three-dimensional harmonic oscillator which should provide a very nice particle physics example to be presented in introductory undergraduate quantum mechanics course. The idea is to use the nonrelativistic quark model to calculate the spin-averaged mass levels of the charmonium and bottomonium spectra.

  20. Free Fall and Harmonic Oscillations: Analyzing Trampoline Jumps

    ERIC Educational Resources Information Center

    Pendrill, Ann-Marie; Eager, David

    2015-01-01

    Trampolines can be found in many gardens and also in some playgrounds. They offer an easily accessible vertical motion that includes free fall. In this work, the motion on a trampoline is modelled by assuming a linear relation between force and deflection, giving harmonic oscillations for small amplitudes. An expression for the cycle-time is…

  1. Noncanonical harmonic and anharmonic oscillator in high-energy physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jannussis, A.; Vavougios, D.

    1986-09-01

    We study the eigenvalues of the noncanonical harmonic and anharmonic oscillator, by using different values of the elementary length l corresponding to typical cross sections for the strong interactions. There is evidence for a correlation between the energies of elementary particles (mesons, baryons, resonances) and the energy eigenvalues of the noncanonical theory.

  2. The dominant mode of standing Alfven waves at the synchronous orbit

    NASA Technical Reports Server (NTRS)

    Cummins, W. D.; Countee, C.; Lyons, D.; Wiley, W., III

    1975-01-01

    Low-frequency oscillations of the earth's magnetic field recorded by a magnetometer on board ATS 1 have been examined for the 6-month interval between January and June 1968. Using evidence from OGO 5 and ATS 5 as well as the data from ATS 1, it is argued that the dominant mode at ATS 1 must be the fundamental rather than the second harmonic of a standing Alfven wave. It is concluded that these transverse oscillations are more accurately associated with magnetically disturbed days than with quiet days. From 14 instances when oscillations of distinctly different periods occurred during the same time interval at ATS 1, it is also concluded that higher harmonics can exist. The period ratio in seven of the 14 cases corresponds to the simultaneous occurrence of the second harmonic with the fundamental, and four other cases could be identified as the simultaneous occurrence of the fourth harmonic with the fundamental.

  3. Rotational shear effects on edge harmonic oscillations in DIII-D quiescent H-mode discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xi; Burrell, Keith H.; Ferraro, Nathaniel M.

    In the quiescent H-mode (QH-mode) regime, edge harmonic oscillations (EHO) play an important role in avoiding transient edge localized mode (ELM) power fluxes by providing benign and continuous edge particle transport. A detailed theoretical, experimental and modeling comparison has been made of low-n (n ≤ 5) EHO in DIII-D QH-mode plasmas. The calculated linear eigenmode structure from the extended MHD code M3D-C1 matches closely the coherent EHO properties from external magnetics data and internal measurements using the ECE, BES, ECE-Imaging and microwave imaging reflectometer (MIR) diagnostics, as well as the kink/peeling mode properties found by the ideal MHD code ELITE.more » Numerical investigations indicate that the low-n EHO-like solutions from M3D-C1 are destabilized by the rotational shear while high-n modes are stabilized. This effect is independent of the rotation direction, suggesting that EHO can be destabilized in principle with rotation in either direction. Furthermore, the modeling results are consistent with observations of the EHO, support the proposed theory of the EHO as a rotational shear driven kink/peeling mode, and improve our understanding and confidence in creating and sustaining QH-mode in present and future devices.« less

  4. Rotational shear effects on edge harmonic oscillations in DIII-D quiescent H-mode discharges

    DOE PAGES

    Chen, Xi; Burrell, Keith H.; Ferraro, Nathaniel M.; ...

    2016-06-21

    In the quiescent H-mode (QH-mode) regime, edge harmonic oscillations (EHO) play an important role in avoiding transient edge localized mode (ELM) power fluxes by providing benign and continuous edge particle transport. A detailed theoretical, experimental and modeling comparison has been made of low-n (n ≤ 5) EHO in DIII-D QH-mode plasmas. The calculated linear eigenmode structure from the extended MHD code M3D-C1 matches closely the coherent EHO properties from external magnetics data and internal measurements using the ECE, BES, ECE-Imaging and microwave imaging reflectometer (MIR) diagnostics, as well as the kink/peeling mode properties found by the ideal MHD code ELITE.more » Numerical investigations indicate that the low-n EHO-like solutions from M3D-C1 are destabilized by the rotational shear while high-n modes are stabilized. This effect is independent of the rotation direction, suggesting that EHO can be destabilized in principle with rotation in either direction. Furthermore, the modeling results are consistent with observations of the EHO, support the proposed theory of the EHO as a rotational shear driven kink/peeling mode, and improve our understanding and confidence in creating and sustaining QH-mode in present and future devices.« less

  5. Analysis of graphic representation ability in oscillation phenomena

    NASA Astrophysics Data System (ADS)

    Dewi, A. R. C.; Putra, N. M. D.; Susilo

    2018-03-01

    This study aims to investigates how the ability of students to representation graphs of linear function and harmonic function in understanding of oscillation phenomena. Method of this research used mix methods with concurrent embedded design. The subjects were 35 students of class X MIA 3 SMA 1 Bae Kudus. Data collection through giving essays and interviews that lead to the ability to read and draw graphs in material of Hooke's law and oscillation characteristics. The results of study showed that most of the students had difficulty in drawing graph of linear function and harmonic function of deviation with time. Students’ difficulties in drawing the graph of linear function is the difficulty of analyzing the variable data needed in graph making, confusing the placement of variable data on the coordinate axis, the difficulty of determining the scale interval on each coordinate, and the variation of how to connect the dots forming the graph. Students’ difficulties in representing the graph of harmonic function is to determine the time interval of sine harmonic function, the difficulty to determine the initial deviation point of the drawing, the difficulty of finding the deviation equation of the case of oscillation characteristics and the confusion to different among the maximum deviation (amplitude) with the length of the spring caused the load.Complexity of the characteristic attributes of the oscillation phenomena graphs, students tend to show less well the ability of graphical representation of harmonic functions than the performance of the graphical representation of linear functions.

  6. Nonlinear dynamics of nanoscale systems

    NASA Astrophysics Data System (ADS)

    Hodas, Nathan Oken

    This work builds theoretical tools to better understand nanoscale systems, and it ex- plores experimental techniques to probe nanoscale dynamics using nonlinear optical microscopy. In both the theory and experiment, this work harnesses nonlinearity to explore new boundaries in the ongoing attempts to understand the amazing world that is much smaller than we can see. In particular, the first part of this work proves the upper-bounds on the number and quality of oscillations when the sys- tem in question is homogeneously driven and has discrete states, a common way of describing nanoscale motors and chemical systems, although it has application to networked systems in general. The consequences of this limit are explored in the context of chemical clocks and limit cycles. This leads to the analysis of sponta- neous oscillations in GFPmut2, where we postulate that the oscillations must be due to coordinated rearrangement of the beta-barrel. Next, we utilize nonlinear optics to probe the constituent structures of zebrafish muscle. By comparing experimental observations with computational models, we show how second harmonic generation differs from fluorescence for confocal imaging. We use the wavelength dependence of the second harmonic generation conversion efficiency to extract information about the microscopic organization of muscle fibers, using the coherent nature of second ix harmonic generation as an analytical probe. Finally, existing experiments have used a related technique, sum-frequency generation, to directly probe the dynamics of free OH bonds at the water-vapor boundary. Using molecular dynamic simulations of the water surface and by designating surface-sensitive free OH bonds on the water surface, many aspects of the sum-frequency generation measurements were calcu- lated and compared with those inferred from experiment. The method utilizes results available from independent IR and Raman experiments to obtain some of the needed quantities, rather than calculating them ab initio. The results provide insight into the microscopic dynamics at the air-water interface and have useful application in the field of on-water catalysis.

  7. Thermal dephasing in second-harmonic generation of an amplified copper-vapor laser beam in beta barium borate.

    PubMed

    Prakash, Om; Dixit, Sudhir Kumar; Bhatnagar, Rajiva

    2005-03-20

    The conversion efficiency in second-harmonic generation of an amplified beam in a master-oscillator power amplifier copper-vapor laser (CVL) is lower than that of the oscillator beam alone. This lower efficiency is often vaguely attributed to wave-front degradation in the amplifier. We investigate the role of wave-front degradation and thermal dephasing in the second-harmonic generation of a CVL from a beta-barium borate crystal. Choosing two beams with constant intrapulse divergence, one from a generalized diffraction filtered resonator master oscillator alone and other obtained by amplifying oscillator by use of a power amplifier, we show that at low flux levels the decrease in efficiency is due to wave-front degradation. At a fundamental power above the critical power for thermal dephasing, the decrease is due to increased UV absorption and consequent thermal dephasing. Thermal dephasing is higher for the beam with the lower coherence width.

  8. A finite difference method for the solution of the transonic flow around harmonically oscillating wings

    NASA Technical Reports Server (NTRS)

    Ehlers, E. F.

    1974-01-01

    A finite difference method for the solution of the transonic flow about a harmonically oscillating wing is presented. The partial differential equation for the unsteady transonic flow was linearized by dividing the flow into separate steady and unsteady perturbation velocity potentials and by assuming small amplitudes of harmonic oscillation. The resulting linear differential equation is of mixed type, being elliptic or hyperbolic whereever the steady flow equation is elliptic or hyperbolic. Central differences were used for all derivatives except at supersonic points where backward differencing was used for the streamwise direction. Detailed formulas and procedures are described in sufficient detail for programming on high speed computers. To test the method, the problem of the oscillating flap on a NACA 64A006 airfoil was programmed. The numerical procedure was found to be stable and convergent even in regions of local supersonic flow with shocks.

  9. Harmonic Quantum Coherence of Multiple Excitons in PbS/CdS Core-Shell Nanocrystals

    NASA Astrophysics Data System (ADS)

    Tahara, Hirokazu; Sakamoto, Masanori; Teranishi, Toshiharu; Kanemitsu, Yoshihiko

    2017-12-01

    The generation and recombination dynamics of multiple excitons in nanocrystals (NCs) have attracted much attention from the viewpoints of fundamental physics and device applications. However, the quantum coherence of multiple exciton states in NCs still remains unclear due to a lack of experimental support. Here, we report the first observation of harmonic dipole oscillations in PbS/CdS core-shell NCs using a phase-locked interference detection method for transient absorption. From the ultrafast coherent dynamics and excitation-photon-fluence dependence of the oscillations, we found that multiple excitons cause the harmonic dipole oscillations with ω , 2 ω , and 3 ω oscillations, even though the excitation pulse energy is set to the exciton resonance frequency, ω . This observation is closely related to the quantum coherence of multiple exciton states in NCs, providing important insights into multiple exciton generation mechanisms.

  10. Simulating energy cascade of shock wave formation process in a resonator by gas kinetic scheme

    NASA Astrophysics Data System (ADS)

    Qu, Chengwu; Zhang, Xiaoqing; Feng, Heying

    2017-12-01

    The temporal-spatial evolution of gas oscillation was simulated by gas kinetic scheme (GKS) in a cylindrical resonator, driven by a piston at one end and rigidly closed at the other end. Periodic shock waves propagating back and forth were observed in the resonator under finite amplitude of gas oscillation. The studied results demonstrated that the acoustic pressure is a saw-tooth waveform and the oscillatory velocity is a square waveform at the central position of the resonant tube. Moreover, it was found by harmonic analysis that there was no presence of obvious feature for pressure node in such a typical standing wave resonator, and the distribution of acoustic fields displayed a one-dimensional feature for the acoustic pressure while a quasi-one-dimensional form for oscillatory velocity, which demonstrated the nonlinear effects. The simulation results for axial distribution of acoustic intensity showed a good consistency with the published experimental data in the open literature domain, which provides a verification for the effectiveness of the GKS model proposed. The influence of displacement amplitude of the driving piston on the formation of shock wave was numerically investigated, and the simulated results revealed the cascade process of harmonic wave energy from the fundamental wave to higher harmonics. In addition, this study found that the acoustic intensity at the driving end of the resonant tube would increase linearly with the displacement amplitude of the piston due to nonlinear effects, rather than the exponential variation by linear theory. This research demonstrates that the GKS model is strongly capable of simulating nonlinear acoustic problems.

  11. Predicting chaos in memristive oscillator via harmonic balance method.

    PubMed

    Wang, Xin; Li, Chuandong; Huang, Tingwen; Duan, Shukai

    2012-12-01

    This paper studies the possible chaotic behaviors in a memristive oscillator with cubic nonlinearities via harmonic balance method which is also called the method of describing function. This method was proposed to detect chaos in classical Chua's circuit. We first transform the considered memristive oscillator system into Lur'e model and present the prediction of the existence of chaotic behaviors. To ensure the prediction result is correct, the distortion index is also measured. Numerical simulations are presented to show the effectiveness of theoretical results.

  12. Harmonic and anharmonic oscillations investigated by using a microcomputer-based Atwood's machine

    NASA Astrophysics Data System (ADS)

    Pecori, Barbara; Torzo, Giacomo; Sconza, Andrea

    1999-03-01

    We describe how the Atwood's machine, interfaced to a personal computer through a rotary encoder, is suited for investigating harmonic and anharmonic oscillations, exploiting the buoyancy force acting on a body immersed in water. We report experimental studies of oscillators produced by driving forces of the type F=-kxn with n=1,2,3, and F=-k sgn(x). Finally we suggest how this apparatus can be used for showing to the students a macroscopic model of interatomic forces.

  13. Fundamental and subharmonic excitation for an oscillator with several tunneling diodes in series

    NASA Technical Reports Server (NTRS)

    Boric-Lubecke, Olga; Pan, Dee-Son; Itoh, Tatsuo

    1995-01-01

    Connecting several tunneling diodes in series shows promise as a method for increasing the output power of these devices as millimeter-wave oscillators. However, due to the negative differential resistance (NDR) region in the dc I-V curve of a single tunneling diode, a circuit using several devices connected in series, and biased simultaneously in the NDR region, is dc unstable. Because of this instability, an oscillator with several tunneling diodes in series has a demanding excitation condition. Excitation using an externally applied RF signal is one approach to solving this problem. This is experimentally demonstrated using an RF source, both with frequency close to as well as with frequency considerably lower than the oscillation frequency. Excitation by an RF (radio frequency) source with a frequency as low as one sixth of the oscillation frequency was demonstrated in a proof-of-principle experiment at 2 GHz, for an oscillator with two tunnel diodes connected in series. Strong harmonics of the oscillation signal were generated as a result of the highly nonlinear dc I-V curve of the tunnel diode and a large signal oscillator design. Third harmonic output power comparable to that of the fundamental was observed in one oscillator circuit. If submillimeter wave resonant-tunneling diodes (RTD's) are used instead of tunnel diodes, this harmonic output may be useful for generating signals at frequencies well into the terahertz range.

  14. Symmetry algebra of a generalized anisotropic harmonic oscillator

    NASA Technical Reports Server (NTRS)

    Castanos, O.; Lopez-Pena, R.

    1993-01-01

    It is shown that the symmetry Lie algebra of a quantum system with accidental degeneracy can be obtained by means of the Noether's theorem. The procedure is illustrated by considering a generalized anisotropic two dimensional harmonic oscillator, which can have an infinite set of states with the same energy characterized by an u(1,1) Lie algebra.

  15. High-Speed Video Analysis of Damped Harmonic Motion

    ERIC Educational Resources Information Center

    Poonyawatpornkul, J.; Wattanakasiwich, P.

    2013-01-01

    In this paper, we acquire and analyse high-speed videos of a spring-mass system oscillating in glycerin at different temperatures. Three cases of damped harmonic oscillation are investigated and analysed by using high-speed video at a rate of 120 frames s[superscript -1] and Tracker Video Analysis (Tracker) software. We present empirical data for…

  16. On a focal point instability in (B3Πg - C3Πu)N2 optogalvanic circuit with hollow cathode

    NASA Astrophysics Data System (ADS)

    Gencheva, V.

    2016-03-01

    The (B3Πg, v = 0 - C3 Πu, v = 0) N2 dynamic optogalvanic signals have been registered illuminating an Al hollow cathode lamp with a pulsed N2 laser generating at the wavelength of 337.1nm. The dynamic optogalvanic signal (DOGS) at certain discharge current of 8 mA is a harmonic oscillator due to a focal point instability produced by our optogalvanic circuit. This damped harmonic oscillator can be described as a solution of linear second order homogeneous differential equation. The oscillation frequency is estimated from the registered DOGS using Fourier synthesis. The analytical description of the damped harmonic DOGS is obtained.

  17. One central oscillatory drive is compatible with experimental motor unit behaviour in essential and Parkinsonian tremor

    NASA Astrophysics Data System (ADS)

    Dideriksen, Jakob L.; Gallego, Juan A.; Holobar, Ales; Rocon, Eduardo; Pons, Jose L.; Farina, Dario

    2015-08-01

    Objective. Pathological tremors are symptomatic to several neurological disorders that are difficult to differentiate and the way by which central oscillatory networks entrain tremorogenic contractions is unknown. We considered the alternative hypotheses that tremor arises from one oscillator (at the tremor frequency) or, as suggested by recent findings from the superimposition of two separate inputs (at the tremor frequency and twice that frequency). Approach. Assuming one central oscillatory network we estimated analytically the relative amplitude of the harmonics of the tremor frequency in the motor neuron output for different temporal behaviors of the oscillator. Next, we analyzed the bias in the relative harmonics amplitude introduced by superimposing oscillations at twice the tremor frequency. These findings were validated using experimental measurements of wrist angular velocity and surface electromyography (EMG) from 22 patients (11 essential tremor, 11 Parkinson’s disease). The ensemble motor unit action potential trains identified from the EMG represented the neural drive to the muscles. Main results. The analytical results showed that the relative power of the tremor harmonics in the analytical models of the neural drive was determined by the variability and duration of the tremor bursts and the presence of the second oscillator biased this power towards higher values. The experimental findings accurately matched the analytical model assuming one oscillator, indicating a negligible functional role of secondary oscillatory inputs. Furthermore, a significant difference in the relative power of harmonics in the neural drive was found across the patient groups, suggesting a diagnostic value of this measure (classification accuracy: 86%). This diagnostic power decreased substantially when estimated from limb acceleration or the EMG. Signficance. The results indicate that the neural drive in pathological tremor is compatible with one central network providing neural oscillations at the tremor frequency. Moreover, the regularity of this neural oscillation varies across tremor pathologies, making the relative amplitude of tremor harmonics a potential biomarker for diagnostic use.

  18. One central oscillatory drive is compatible with experimental motor unit behaviour in essential and Parkinsonian tremor.

    PubMed

    Dideriksen, Jakob L; Gallego, Juan A; Holobar, Ales; Rocon, Eduardo; Pons, Jose L; Farina, Dario

    2015-08-01

    Pathological tremors are symptomatic to several neurological disorders that are difficult to differentiate and the way by which central oscillatory networks entrain tremorogenic contractions is unknown. We considered the alternative hypotheses that tremor arises from one oscillator (at the tremor frequency) or, as suggested by recent findings from the superimposition of two separate inputs (at the tremor frequency and twice that frequency). Assuming one central oscillatory network we estimated analytically the relative amplitude of the harmonics of the tremor frequency in the motor neuron output for different temporal behaviors of the oscillator. Next, we analyzed the bias in the relative harmonics amplitude introduced by superimposing oscillations at twice the tremor frequency. These findings were validated using experimental measurements of wrist angular velocity and surface electromyography (EMG) from 22 patients (11 essential tremor, 11 Parkinson's disease). The ensemble motor unit action potential trains identified from the EMG represented the neural drive to the muscles. The analytical results showed that the relative power of the tremor harmonics in the analytical models of the neural drive was determined by the variability and duration of the tremor bursts and the presence of the second oscillator biased this power towards higher values. The experimental findings accurately matched the analytical model assuming one oscillator, indicating a negligible functional role of secondary oscillatory inputs. Furthermore, a significant difference in the relative power of harmonics in the neural drive was found across the patient groups, suggesting a diagnostic value of this measure (classification accuracy: 86%). This diagnostic power decreased substantially when estimated from limb acceleration or the EMG. SIGNFICANCE: The results indicate that the neural drive in pathological tremor is compatible with one central network providing neural oscillations at the tremor frequency. Moreover, the regularity of this neural oscillation varies across tremor pathologies, making the relative amplitude of tremor harmonics a potential biomarker for diagnostic use.

  19. Energy Levels and the de Broglie Relationship for High School Students

    ERIC Educational Resources Information Center

    Gianino, Concetto

    2008-01-01

    In this article, four examples of possible lessons on energy levels for high school are described: a particle in a box, a finite square well, the hydrogen atom and a harmonic oscillator. The energy levels are deduced through the use of the steady-state condition and the de Broglie relationship. In particular, the harmonic oscillator energy levels…

  20. Addendum to "An update on the classical and quantum harmonic oscillators on the sphere and the hyperbolic plane in polar coordinates" [Phys. Lett. A 379 (26-27) (2015) 1589-1593

    NASA Astrophysics Data System (ADS)

    Quesne, C.

    2016-02-01

    The classical and quantum solutions of a nonlinear model describing harmonic oscillators on the sphere and the hyperbolic plane, derived in polar coordinates in a recent paper (Quesne, 2015) [1], are extended by the inclusion of an isotonic term.

  1. A multi-harmonic generalized energy balance method for studying autonomous oscillations of nonlinear conservative systems

    NASA Astrophysics Data System (ADS)

    Balaji, Nidish Narayanaa; Krishna, I. R. Praveen; Padmanabhan, C.

    2018-05-01

    The Harmonic Balance Method (HBM) is a frequency-domain based approximation approach used for obtaining the steady state periodic behavior of forced dynamical systems. Intrinsically these systems are non-autonomous and the method offers many computational advantages over time-domain methods when the fundamental period of oscillation is known (generally fixed as the forcing period itself or a corresponding sub-harmonic if such behavior is expected). In the current study, a modified approach, based on He's Energy Balance Method (EBM), is applied to obtain the periodic solutions of conservative systems. It is shown that by this approach, periodic solutions of conservative systems on iso-energy manifolds in the phase space can be obtained very efficiently. The energy level provides the additional constraint on the HBM formulation, which enables the determination of the period of the solutions. The method is applied to the linear harmonic oscillator, a couple of nonlinear oscillators, the elastic pendulum and the Henon-Heiles system. The approach is used to trace the bifurcations of the periodic solutions of the last two, being 2 degree-of-freedom systems demonstrating very rich dynamical behavior. In the process, the advantages offered by the current formulation of the energy balance is brought out. A harmonic perturbation approach is used to evaluate the stability of the solutions for the bifurcation diagram.

  2. Spatially resolved observation of the fundamental and second harmonic standing kink modes using SDO/AIA

    NASA Astrophysics Data System (ADS)

    Pascoe, D. J.; Goddard, C. R.; Nakariakov, V. M.

    2016-09-01

    Aims: We consider a coronal loop kink oscillation observed by the Atmospheric Imaging Assembly (AIA) of the Solar Dynamics Observatory (SDO) which demonstrates two strong spectral components. The period of the lower frequency component being approximately twice that of the shorter frequency component suggests the presence of harmonics. Methods: We examine the presence of two longitudinal harmonics by investigating the spatial dependence of the loop oscillation. The time-dependent displacement of the loop is measured at 15 locations along the loop axis. For each position the displacement is fitted as the sum of two damped sinusoids, having periods P1 and P2, and a damping time τ. The shorter period component exhibits anti-phase oscillations in the loop legs. Results: We interpret the observation in terms of the first (global or fundamental) and second longitudinal harmonics of the standing kink mode. The strong excitation of the second harmonic appears connected to the preceding coronal mass ejection (CME) which displaced one of the loop legs. The oscillation parameters found are P1 = 5.00±0.62 min, P2 = 2.20±0.23 min, P1/ 2P2 = 1.15±0.22, and τ/P = 3.35 ± 1.45. A movie associated to Fig. 5 is available in electronic form at http://www.aanda.org

  3. Derivation of exact master equation with stochastic description: dissipative harmonic oscillator.

    PubMed

    Li, Haifeng; Shao, Jiushu; Wang, Shikuan

    2011-11-01

    A systematic procedure for deriving the master equation of a dissipative system is reported in the framework of stochastic description. For the Caldeira-Leggett model of the harmonic-oscillator bath, a detailed and elementary derivation of the bath-induced stochastic field is presented. The dynamics of the system is thereby fully described by a stochastic differential equation, and the desired master equation would be acquired with statistical averaging. It is shown that the existence of a closed-form master equation depends on the specificity of the system as well as the feature of the dissipation characterized by the spectral density function. For a dissipative harmonic oscillator it is observed that the correlation between the stochastic field due to the bath and the system can be decoupled, and the master equation naturally results. Such an equation possesses the Lindblad form in which time-dependent coefficients are determined by a set of integral equations. It is proved that the obtained master equation is equivalent to the well-known Hu-Paz-Zhang equation based on the path-integral technique. The procedure is also used to obtain the master equation of a dissipative harmonic oscillator in time-dependent fields.

  4. Teaching from a Microgravity Environment: Harmonic Oscillator and Pendulum

    NASA Astrophysics Data System (ADS)

    Benge, Raymond; Young, Charlotte; Davis, Shirley; Worley, Alan; Smith, Linda; Gell, Amber

    2009-04-01

    This presentation reports on an educational experiment flown in January 2009 as part of NASA's Microgravity University program. The experiment flown was an investigation into the properties of harmonic oscillators in reduced gravity. Harmonic oscillators are studied in every introductory physics class. The equation for the period of a harmonic oscillator does not include the acceleration due to gravity, so the period should be independent of gravity. However, the equation for the period of a pendulum does include the acceleration due to gravity, so the period of a pendulum should appear longer under reduced gravity (such as lunar or Martian gravity) and shorter under hyper-gravity. These environments can be simulated aboard an aircraft. Video of the experiments being performed aboard the aircraft is to be used in introductory physics classes. Students will be able to record information from watching the experiment performed aboard the aircraft in a similar manner to how they collect data in the laboratory. They can then determine if the experiment matches theory. Video and an experimental procedure are being prepared based upon this flight, and these materials will be available for download by faculty anywhere with access to the internet who wish to use the experiment in their own classrooms.

  5. Physical realization of the Glauber quantum oscillator.

    PubMed

    Gentilini, Silvia; Braidotti, Maria Chiara; Marcucci, Giulia; DelRe, Eugenio; Conti, Claudio

    2015-11-02

    More than thirty years ago Glauber suggested that the link between the reversible microscopic and the irreversible macroscopic world can be formulated in physical terms through an inverted harmonic oscillator describing quantum amplifiers. Further theoretical studies have shown that the paradigm for irreversibility is indeed the reversed harmonic oscillator. As outlined by Glauber, providing experimental evidence of these idealized physical systems could open the way to a variety of fundamental studies, for example to simulate irreversible quantum dynamics and explain the arrow of time. However, supporting experimental evidence of reversed quantized oscillators is lacking. We report the direct observation of exploding n = 0 and n = 2 discrete states and Γ0 and Γ2 quantized decay rates of a reversed harmonic oscillator generated by an optical photothermal nonlinearity. Our results give experimental validation to the main prediction of irreversible quantum mechanics, that is, the existence of states with quantized decay rates. Our results also provide a novel perspective to optical shock-waves, potentially useful for applications as lasers, optical amplifiers, white-light and X-ray generation.

  6. Harmonic engine

    DOEpatents

    Bennett, Charles L.; Sewall, Noel; Boroa, Carl

    2014-08-19

    An engine based on a reciprocating piston engine that extracts work from pressurized working fluid. The engine includes a harmonic oscillator inlet valve capable of oscillating at a resonant frequency for controlling the flow of working fluid into of the engine. In particular, the inlet valve includes an inlet valve head and a spring arranged together as a harmonic oscillator so that the inlet valve head is moveable from an unbiased equilibrium position to a biased closed position occluding an inlet. Upon releasing the inlet valve the inlet valve head undergoes a single oscillation past the equilibrium positio to a maximum open position and returns to a biased return position close to the closed position to choke the flow and produce a pressure drop across the inlet valve causing the inlet valve to close. Protrusions carried either by the inlet valve head or piston head are used to bump open the inlet valve from the closed position and initiate the single oscillation of the inlet valve head, and protrusions carried either by the outlet valve head or piston head are used to close the outlet valve ahead of the bump opening of the inlet valve.

  7. Detecting scaling in the period dynamics of multimodal signals: Application to Parkinsonian tremor

    NASA Astrophysics Data System (ADS)

    Sapir, Nir; Karasik, Roman; Havlin, Shlomo; Simon, Ely; Hausdorff, Jeffrey M.

    2003-03-01

    Patients with Parkinson’s disease exhibit tremor, involuntary movement of the limbs. The frequency spectrum of tremor typically has broad peaks at “harmonic” frequencies, much like that seen in other physical processes. In general, this type of harmonic structure in the frequency domain may be due to two possible mechanisms: a nonlinear oscillation or a superposition of (multiple) independent modes of oscillation. A broad peak spectrum generally indicates that a signal is semiperiodic with a fluctuating period. These fluctuations may posses intrinsic order that can be quantified using scaling analysis. We propose a method to extract the correlation (scaling) properties in the period dynamics of multimodal oscillations, in order to distinguish between a nonlinear oscillation and a superposition of individual modes of oscillation. The method is based on our finding that the information content of the temporal correlations in a fluctuating period of a single oscillator is contained in a finite frequency band in the power spectrum, allowing for decomposition of modes by bandpass filtering. Our simulations for a nonlinear oscillation show that harmonic modes possess the same scaling properties. In contrast, when the method is applied to tremor records from patients with Parkinson’s disease, the first two modes of oscillations yield different scaling patterns, suggesting that these modes may not be simple harmonics, as might be initially assumed.

  8. Periodic Heat Transfer at Small Pressure Fluctuations

    NASA Technical Reports Server (NTRS)

    Pfriem, H.

    1943-01-01

    The effect of cyclic gas pressure variations on the periodic heat transfer at a flat wall is theoretically analyzed and the differential equation describing the process and its solution for relatively. Small pressure fluctuations developed, thus explaining the periodic heat cycle between gas and wall surface. The processes for pure harmonic pressure and temperature oscillations, respectively, in the gas space are described by means of a constant heat transfer coefficient and the equally constant phase angle between the appearance of the maximum values of the pressure and heat flow most conveniently expressed mathematically in the form of a complex heat transfer coefficient. Any cyclic pressure oscillations, can be reduced by Fourier analysis to harmonic oscillations, which result in specific, mutual relationships of heat-transfer coefficients and phase angles for the different harmonics.

  9. On square-integrability of solutions of the stationary Schrödinger equation for the quantum harmonic oscillator in two dimensional constant curvature spaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noguera, Norman, E-mail: norman.noguera@ucr.ac.cr; Rózga, Krzysztof, E-mail: krzysztof.rozga@upr.edu

    In this work, one provides a justification of the condition that is usually imposed on the parameters of the hypergeometric equation, related to the solutions of the stationary Schrödinger equation for the harmonic oscillator in two-dimensional constant curvature spaces, in order to determine the solutions which are square-integrable. One proves that in case of negative curvature, it is a necessary condition of square integrability and in case of positive curvature, a necessary condition of regularity. The proof is based on the analytic continuation formulas for the hypergeometric function. It is observed also that the same is true in case ofmore » a slightly more general potential than the one for harmonic oscillator.« less

  10. Dynamics and manipulation of entanglement in coupled harmonic systems with many degrees of freedom

    NASA Astrophysics Data System (ADS)

    Plenio, M. B.; Hartley, J.; Eisert, J.

    2004-03-01

    We study the entanglement dynamics of a system consisting of a large number of coupled harmonic oscillators in various configurations and for different types of nearest-neighbour interactions. For a one-dimensional chain, we provide compact analytical solutions and approximations to the dynamical evolution of the entanglement between spatially separated oscillators. Key properties such as the speed of entanglement propagation, the maximum amount of transferred entanglement and the efficiency for the entanglement transfer are computed. For harmonic oscillators coupled by springs, corresponding to a phonon model, we observe a non-monotonic transfer efficiency in the initially prepared amount of entanglement, i.e. an intermediate amount of initial entanglement is transferred with the highest efficiency. In contrast, within the framework of the rotating-wave approximation (as appropriate, e.g. in quantum optical settings) one finds a monotonic behaviour. We also study geometrical configurations that are analogous to quantum optical devices (such as beamsplitters and interferometers) and observe characteristic differences when initially thermal or squeezed states are entering these devices. We show that these devices may be switched on and off by changing the properties of an individual oscillator. They may therefore be used as building blocks of large fixed and pre-fabricated but programmable structures in which quantum information is manipulated through propagation. We discuss briefly possible experimental realizations of systems of interacting harmonic oscillators in which these effects may be confirmed experimentally.

  11. Nonlinear oscillatory rarefied gas flow inside a rectangular cavity

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Zhu, Lianhua; Su, Wei; Wu, Lei; Zhang, Yonghao

    2018-04-01

    The nonlinear oscillation of rarefied gas flow inside a two-dimensional rectangular cavity is investigated on the basis of the Shakhov kinetic equation. The gas dynamics, heat transfer, and damping force are studied numerically via the discrete unified gas-kinetic scheme for a wide range of parameters, including gas rarefaction, cavity aspect ratio, and oscillation frequency. Contrary to the linear oscillation where the velocity, temperature, and heat flux are symmetrical and oscillate with the same frequency as the oscillating lid, flow properties in nonlinear oscillatory cases turn out to be asymmetrical, and second-harmonic oscillation of the temperature field is observed. As a consequence, the amplitude of the shear stress near the top-right corner of the cavity could be several times larger than that at the top-left corner, while the temperature at the top-right corner could be significantly higher than the wall temperature in nearly the whole oscillation period. For the linear oscillation with the frequency over a critical value, and for the nonlinear oscillation, the heat transfer from the hot to cold region dominates inside the cavity, which is contrary to the anti-Fourier heat transfer in a low-speed rarefied lid-driven cavity flow. The damping force exerted on the oscillating lid is studied in detail, and the scaling laws are developed to describe the dependency of the resonance and antiresonance frequencies (corresponding to the damping force at a local maximum and minimum, respectively) on the reciprocal aspect ratio from the near hydrodynamic to highly rarefied regimes. These findings could be useful in the design of the micro-electro-mechanical devices operating in the nonlinear-flow regime.

  12. Probing the strongly driven spin-boson model in a superconducting quantum circuit.

    PubMed

    Magazzù, L; Forn-Díaz, P; Belyansky, R; Orgiazzi, J-L; Yurtalan, M A; Otto, M R; Lupascu, A; Wilson, C M; Grifoni, M

    2018-04-11

    Quantum two-level systems interacting with the surroundings are ubiquitous in nature. The interaction suppresses quantum coherence and forces the system towards a steady state. Such dissipative processes are captured by the paradigmatic spin-boson model, describing a two-state particle, the "spin", interacting with an environment formed by harmonic oscillators. A fundamental question to date is to what extent intense coherent driving impacts a strongly dissipative system. Here we investigate experimentally and theoretically a superconducting qubit strongly coupled to an electromagnetic environment and subjected to a coherent drive. This setup realizes the driven Ohmic spin-boson model. We show that the drive reinforces environmental suppression of quantum coherence, and that a coherent-to-incoherent transition can be achieved by tuning the drive amplitude. An out-of-equilibrium detailed balance relation is demonstrated. These results advance fundamental understanding of open quantum systems and bear potential for the design of entangled light-matter states.

  13. Step Density Profiles in Localized Chains

    NASA Astrophysics Data System (ADS)

    De Roeck, Wojciech; Dhar, Abhishek; Huveneers, François; Schütz, Marius

    2017-06-01

    We consider two types of strongly disordered one-dimensional Hamiltonian systems coupled to baths (energy or particle reservoirs) at the boundaries: strongly disordered quantum spin chains and disordered classical harmonic oscillators. These systems are believed to exhibit localization, implying in particular that the conductivity decays exponentially in the chain length L. We ask however for the profile of the (very slowly) transported quantity in the steady state. We find that this profile is a step-function, jumping in the middle of the chain from the value set by the left bath to the value set by the right bath. This is confirmed by numerics on a disordered quantum spin chain of 9 spins and on much longer chains of harmonic oscillators. From theoretical arguments, we find that the width of the step grows not faster than √{L}, and we confirm this numerically for harmonic oscillators. In this case, we also observe a drastic breakdown of local equilibrium at the step, resulting in a heavily oscillating temperature profile.

  14. Data-adaptive harmonic spectra and multilayer Stuart-Landau models

    NASA Astrophysics Data System (ADS)

    Chekroun, Mickaël D.; Kondrashov, Dmitri

    2017-09-01

    Harmonic decompositions of multivariate time series are considered for which we adopt an integral operator approach with periodic semigroup kernels. Spectral decomposition theorems are derived that cover the important cases of two-time statistics drawn from a mixing invariant measure. The corresponding eigenvalues can be grouped per Fourier frequency and are actually given, at each frequency, as the singular values of a cross-spectral matrix depending on the data. These eigenvalues obey, furthermore, a variational principle that allows us to define naturally a multidimensional power spectrum. The eigenmodes, as far as they are concerned, exhibit a data-adaptive character manifested in their phase which allows us in turn to define a multidimensional phase spectrum. The resulting data-adaptive harmonic (DAH) modes allow for reducing the data-driven modeling effort to elemental models stacked per frequency, only coupled at different frequencies by the same noise realization. In particular, the DAH decomposition extracts time-dependent coefficients stacked by Fourier frequency which can be efficiently modeled—provided the decay of temporal correlations is sufficiently well-resolved—within a class of multilayer stochastic models (MSMs) tailored here on stochastic Stuart-Landau oscillators. Applications to the Lorenz 96 model and to a stochastic heat equation driven by a space-time white noise are considered. In both cases, the DAH decomposition allows for an extraction of spatio-temporal modes revealing key features of the dynamics in the embedded phase space. The multilayer Stuart-Landau models (MSLMs) are shown to successfully model the typical patterns of the corresponding time-evolving fields, as well as their statistics of occurrence.

  15. S-band SBAW microwave source, phase 2

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Results of aging experiments on 1.072 GHz SBAW oscillators are discussed as well as the design, fabrication and test of 2.143 GHz SBAW delay lines. Two design approaches were implemented. The third harmonic transducer on 36 deg rotated Y cut quartz proved to be the most useful design, whereas the fifth harmonic transducer on - 50 5 deg rotated Y cut quartz suffered from high insertion loss and poor sidelobe rejection. The construction and characterization of the 2 GHz SBAW oscillator are described. Phase noise, frequency dependence on temperature, and 6-month aging were measured. Some SAW and SBAW oscillators were compared as were both the 1 and 2 GHz oscillators. The 2 GHz SBAW oscillator showed significant improvement in phase noise and temperature stability over the 2 GHz SAW oscillator developed in previous NASA programs. A technique to produce SBAW delay lines of different frequencies from a single mask is examined. The delay lines were incorporated into oscillator circuits to demonstrate the ability to select the frequency output of the SBAW oscillator.

  16. Response of the microwave-induced cyclotron harmonic resistance spike to an in-plane magnetic field

    NASA Astrophysics Data System (ADS)

    Dai, Yanhua; Stone, Kristjan; Knez, Ivan; Zhang, Chi; Du, R. R.; Yang, Changli; Pfeiffer, L. N.; West, K. W.

    2011-12-01

    Microwave-induced resistance oscillations (MIROs) have been commonly observed in high-mobility GaAs/AlGaAs two-dimensional electron systems (2DESs) under microwave irradiation. In ultraclean GaAs/AlGaAs quantum wells, we have recently observed a very large resistance spike at the second harmonic of cyclotron resonance. In order to elucidate its origin, we have studied the response of microwave photoresistances in a two-axis magnetic field configuration, where the perpendicular (Bz) and the in-plane (Bx) components can be independently applied to the sample. The experiments reveal a distinctive response of the spike to the Bx compared with that of the MIROs. While the major MIRO peaks show an increasing phase shift toward a quarter period in increasing Bx, the spike position shows an essentially zero shift. This finding lends additional support for the notion that the spike is a unique effect in the microwave-driven 2DES.

  17. Spectral Analysis of Vibrational Harmonic Motion by use of a Continuous-Wave CO2 Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Jarzembski, Maurice A.; Srivastava, Vandana

    1999-01-01

    Vibrational motion of a harmonic oscillator was investigated using a focused continuous wave CO2 Doppler lidar at 9.1 microns wavelength. A continuum of frequencies along with many discrete, equally spaced, resonant frequency modes was observed. The frequency modes are similar in structure to the oscillatory longitudinal modes of a laser cavity and arise because of interference of the natural resonant frequency of the oscillator with specific frequencies within the continuum. The spectra revealed departures from linear motion for vigorous vibrations of the oscillator. Each consecutive resonant frequency mode occurred for a movement of the oscillator much less than the wavelength of incident lidar radiation.

  18. Damping of coupled harmonic oscillators

    NASA Astrophysics Data System (ADS)

    Dolfo, Gilles; Vigué, Jacques

    2018-03-01

    When two harmonic oscillators are coupled in the presence of damping, their dynamics exhibit two very different regimes depending on the relative magnitude of the coupling and damping terms At resonance, when the coupling has its largest effect, if the coupling dominates the damping, there is a periodic exchange of energy between the two oscillators while, in the opposite case, the energy transfer from one oscillator to the other one is irreversible. We prove that the border between these two regimes goes through an exceptional point and we briefly explain what is an exceptional point. The present paper is written for undergraduate students, with some knowledge in classical mechanics, but it may also be of interest for graduate students.

  19. Extended-MHD Studies of Flow-Profile Effects on Edge Harmonic Oscillations in QH-mode Discharges

    NASA Astrophysics Data System (ADS)

    King, J. R.; Burrell, K. H.; Garofalo, A. M.; Jenkins, T. G.; Kruger, S. E.; Snyder, P. B.

    2012-10-01

    It is desirable to have an ITER H-mode regime that is quiescent to edge-localized modes (ELMs). ELMs deposit large, localized, impulsive, surface heat loads that can damage the divertor. One such quiescent regime with edge harmonic oscillations (EHO) is observed on DIII-D, JET, JT-60U, and ASDEX-U [1]. The physical mechanisms of EHO are not fully understood, but linear MHD calculations suggest EHO may be a saturated kink-peeling mode partially driven by flow-profile shear [2]. We present preliminary EHO computations using the extended-MHD NIMROD code. The model incorporates first-order FLR effects and parallel heat flows. Using reconstructed DIII-D profiles from discharges with EHO, we scan the ExB and polodial flow profiles and compute linear stability. The aim is to ascertain the role of the ExB flow shear, as motivated by experimental results [3], and to compare with theoretical predictions where the growth rate is enhanced at intermediate wavenumbers and cut-off at large wavenumbers by diamagnetic effects [4]. Initial nonlinear computations exploring the EHO saturation mechanism are presented.[4pt] [1] Phys. Plasmas, v19, p056117, 2012 (and refs. within).[0pt] [2] Nucl. Fusion, v47, p961, 2007.[0pt] [3] Nucl. Fusion, v51, p083018, 2011.[0pt] [4] Phys. Plasmas v10, p4405, 2003.

  20. Action-angle variables for the harmonic oscillator: Ambiguity spin × duplication spin

    NASA Astrophysics Data System (ADS)

    de Oliveira, César R.; Malta, Coraci P.

    1984-07-01

    The difficulties of obtaining for the harmonic oscillator a well-defined unitary transformation to action-angle variables were overcome by M. Moshinsky and T. H. Seligman ( Ann. Phys. (N.Y.)114 (1978), 243) through the introduction of a spinlike variable (ambiguity spin) from a classical point of view. The difficulty of defining a unitary phase operator for the harmonic oscillator was overcome by Roger G. Newton ( Ann. Phys. (N.Y.)124 (1980), 324) also through the introduction of a spinlike variable (named duplication spin by us) but within a quantum framework. Here the relation between the ambiguity spin and the duplication spin is investigated by introducing these two types of spins in the canonical transformation to action-angle variables. In this way both well-defined unitary transformation and phase operators were obtained.

  1. Oscillator Seeding of a High Gain Harmonic Generation FEL in a Radiator-First Configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gandhi, P.; Wurtele, J.; Penn, G.

    2012-05-20

    A longitudinally coherent X-ray pulse from a high repetition rate free electron laser (FEL) is desired for a wide variety of experimental applications. However, generating such a pulse with a repetition rate greater than 1 MHz is a significant challenge. The desired high repetition rate sources, primarily high harmonic generation with intense lasers in gases or plasmas, do not exist now, and, for the multi-MHz bunch trains that superconducting accelerators can potentially produce, are likely not feasible with current technology. In this paper, we propose to place an oscillator downstream of a radiator. The oscillator generates radiation that is usedmore » as a seed for a high gain harmonic generation (HGHG) FEL which is upstream of the oscillator. For the first few pulses the oscillator builds up power and, until power is built up, the radiator has no HGHG seed. As power in the oscillator saturates, the HGHG is seeded and power is produced. The dynamics and stability of this radiator-first scheme is explored analytically and numerically. A single-pass map is derived using a semi-analytic model for FEL gain and saturation. Iteration of the map is shown to be in good agreement with simulations. A numerical example is presented for a soft X-ray FEL.« less

  2. Microwave Imaging Reflectometry for the study of Edge Harmonic Oscillations on DIII-D [Microwave Imaging Reflectometry (MIR) for the study of Edge Harmonic Oscillations (EHOs) on DIII-D

    DOE PAGES

    Ren, X.; Chen, M.; Chen, X.; ...

    2015-10-23

    Quiescent H-mode (QH) is an ELM free mode of operation in which edge-localized harmonic oscillations (EHOs) are believed to enhance particle transport, thereby stabilizing ELMs and preventing damage to the divertor and plasma facing components. Microwave Imaging Reflectometer (MIR) enabling direct comparison between the measured and simulated 2D images of density fluctuations near the edge can determine the 2D structure of density oscillation which can help to explain the physics behind EHO modes. MIR data sometimes indicates a counter-propagation between higher (n>1) and dominant (n=1) harmonics of coherent EHOs in the steep gradient regions of the pedestal. To preclude diagnosticmore » artifacts, we have performed forward modeling that includes possible optical misalignments to show that offsets between transmitting and receiving antennas do not account for this feature. We have also simulated the non-uniform rotation of the EHO structure, which induces multiple harmonics that are properly characterized in the synthetic diagnostic. Excluding these possible explanations for the data, the counter-propagation observed in MIR data, which is not corroborated by external Mirnov coil array measurements, may be due to subtleties of the eigenmode structure, such as an inversion radius consistent with a magnetic island. Similar effects are observed in analysis of internal ECE-Imaging and BES data. Furthermore, the identification of a non-ideal structure motivates further exploration of nonlinear models of this instability.« less

  3. Bound state solution of Dirac equation for 3D harmonics oscillator plus trigonometric scarf noncentral potential using SUSY QM approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cari, C., E-mail: carinln@yahoo.com; Suparmi, A., E-mail: carinln@yahoo.com

    2014-09-30

    Dirac equation of 3D harmonics oscillator plus trigonometric Scarf non-central potential for spin symmetric case is solved using supersymmetric quantum mechanics approach. The Dirac equation for exact spin symmetry reduces to Schrodinger like equation. The relativistic energy and wave function for spin symmetric case are simply obtained using SUSY quantum mechanics method and idea of shape invariance.

  4. Cycle-Averaged Phase-Space States for the Harmonic and the Morse Oscillators, and the Corresponding Uncertainty Relations

    ERIC Educational Resources Information Center

    Nicolaides, Cleanthes A.; Constantoudis, Vasilios

    2009-01-01

    In Planck's model of the harmonic oscillator (HO) a century ago, both the energy and the phase space were quantized according to epsilon[subscript n] = nhv, n = 0, 1, 2..., and [double integral]dp[subscript x] dx = h. By referring to just these two relations, we show how the adoption of "cycle-averaged phase-space states" (CAPSSs) leads to the…

  5. Generalization of the Förster resonance energy transfer theory for quantum mechanical modulation of the donor-acceptor coupling

    NASA Astrophysics Data System (ADS)

    Jang, Seogjoo

    2007-11-01

    The Förster resonance energy transfer theory is generalized for inelastic situations with quantum mechanical modulation of the donor-acceptor coupling. Under the assumption that the modulations are independent of the electronic excitation of the donor and the acceptor, a general rate expression is derived, which involves two dimensional frequency-domain convolution of the donor emission line shape, the acceptor absorption line shape, and the spectral density of the modulation of the donor-acceptor coupling. For two models of modulation, detailed rate expressions are derived. The first model is the fluctuation of the donor-acceptor distance, approximated as a quantum harmonic oscillator coupled to a bath of other quantum harmonic oscillators. The distance fluctuation results in additional terms in the rate, which in the small fluctuation limit depend on the inverse eighth power of the donor-acceptor distance. The second model is the fluctuation of the torsional angle between the two transition dipoles, which is modeled as a quantum harmonic oscillator coupled to a bath of quantum harmonic oscillators and causes sinusoidal modulation of the donor-acceptor coupling. The rate expression has new elastic and inelastic terms, depending sensitively on the value of the minimum energy torsional angle. Experimental implications of the present theory and some of the open theoretical issues are discussed.

  6. Nonlinear Effects in Three-minute Oscillations of the Solar Chromosphere. I. An Analytical Nonlinear Solution and Detection of the Second Harmonic

    NASA Astrophysics Data System (ADS)

    Chae, Jongchul; Litvinenko, Yuri E.

    2017-08-01

    The vertical propagation of nonlinear acoustic waves in an isothermal atmosphere is considered. A new analytical solution that describes a finite-amplitude wave of an arbitrary wavelength is obtained. Although the short- and long-wavelength limits were previously considered separately, the new solution describes both limiting cases within a common framework and provides a straightforward way of interpolating between the two limits. Physical features of the nonlinear waves in the chromosphere are described, including the dispersive nature of low-frequency waves, the steepening of the wave profile, and the influence of the gravitational field on wavefront breaking and shock formation. The analytical results suggest that observations of three-minute oscillations in the solar chromosphere may reveal the basic nonlinear effect of oscillations with combination frequencies, superposed on the normal oscillations of the system. Explicit expressions for a second-harmonic signal and the ratio of its amplitude to the fundamental harmonic amplitude are derived. Observational evidence of the second harmonic, obtained with the Fast Imaging Solar Spectrograph, installed at the 1.6 m New Solar Telescope of the Big Bear Observatory, is presented. The presented data are based on the time variations of velocity determined from the Na I D2 and Hα lines.

  7. Chaos, ergodic convergence, and fractal instability for a thermostated canonical harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Hoover, Wm. G.; Hoover, Carol G.; Isbister, Dennis J.

    2001-02-01

    The authors thermostat a qp harmonic oscillator using the two additional control variables ζ and ξ to simulate Gibbs' canonical distribution. In contrast to the motion of purely Hamiltonian systems, the thermostated oscillator motion is completely ergodic, covering the full four-dimensional \\{q,p,ζ,ξ\\} phase space. The local Lyapunov spectrum (instantaneous growth rates of a comoving corotating phase-space hypersphere) exhibits singularities like those found earlier for Hamiltonian chaos, reinforcing the notion that chaos requires kinetic-as opposed to statistical-study, both at and away from equilibrium. The exponent singularities appear to have a fractal character.

  8. A contribution to the design of wideband tunable second harmonic mode millimeter-wave InP-TED oscillators above 110 GHz

    NASA Astrophysics Data System (ADS)

    Rydberg, Anders

    1990-03-01

    Second harmonic InP-TED oscillators are investigated for frequencies above 110 GHz using different mounts and TED's. It is found that state of the art output powers, comparable to Schottky-varactor multipliers, of more than 2 mW can be generated above 190 GHz by reducing the capsule parasitics. Output power up to 216 GHz are observed. The tuning range above 110 GHz is found to be more than 40 percent. Using theoretical waveguide models the tuning behavior of the oscillators is also investigated.

  9. On Noether's Theorem for the Invariant of the Time-Dependent Harmonic Oscillator

    ERIC Educational Resources Information Center

    Abe, Sumiyoshi; Itto, Yuichi; Matsunaga, Mamoru

    2009-01-01

    The time-dependent oscillator describing parametric oscillation, the concept of invariant and Noether's theorem are important issues in physics education. Here, it is shown how they can be interconnected in a simple and unified manner.

  10. Harmonic Bloch and dipole oscillations and their transition in elliptical optical waveguide arrays

    NASA Astrophysics Data System (ADS)

    Chan, Yun San; Zheng, Ming Jie; Yu, Kin Wah

    2011-03-01

    We have studied harmonic oscillations in an elliptical optical waveguide array in which the couplings between neighboring waveguides are varied in accord with a Kac matrix so that the propagation constant eigenvalues can take equally spaced values. As a result, the long-living optical Bloch oscillation (BO) and dipole oscillation (DO) are obtained. Moreover, when a linear gradient in the propagation constant is applied, we achieve a switching from DO to BO and vice versa by ramping up or down the gradient profile]. The various optical oscillations as well as their switching are investigated by field evolution analysis and confirmed by Hamiltonian optics. The equally spaced eigenvalues in the propagation constant allow viable applications in transmitting images, switching and routing of optical signals. Work supported by the General Research Fund of the Hong Kong SAR Government.

  11. Spectral Structure of Temperature Variations in the Midlatitude Mesopause Region

    NASA Astrophysics Data System (ADS)

    Perminov, V. I.; Semenov, A. I.; Medvedeva, I. V.; Pertsev, N. N.; Sukhodoev, V. A.

    2018-01-01

    Long-term series of midnight temperature in the mesopause region have been obtained from spectral observations of hydroxyl airglow emission (OH(6-2) λ840 nm band) at the Tory station (52° N, 103° E) in 2008-2016 and Zvenigorod (56° N, 37° E) station in 2000-2016. On their basis, the Lomb-Scargle spectra of the variations in the period range from 12 days to 11 years have been determined. Estimates of the amplitudes of statistically significant temperature fluctuations are made. The dominant oscillations are the first and second harmonics of the annual variation, the amplitudes of which are 23-24 K and 4-7 K, respectively. The remaining variations, the number of which was 16 for the Tory and 22 for Zvenigorod stations, have small amplitudes (0.5-3 K). Oscillations with combinational frequencies, which arise from modulation of the annual variation harmonics, are observed in a structure of the variation spectra in addition to interannual oscillations (periods from 2 to 11 years) and harmonics of the annual variation (up to its tenth harmonic).

  12. Free fall and harmonic oscillations: analyzing trampoline jumps

    NASA Astrophysics Data System (ADS)

    Pendrill, Ann-Marie; Eager, David

    2015-01-01

    Trampolines can be found in many gardens and also in some playgrounds. They offer an easily accessible vertical motion that includes free fall. In this work, the motion on a trampoline is modelled by assuming a linear relation between force and deflection, giving harmonic oscillations for small amplitudes. An expression for the cycle-time is obtained in terms of maximum normalized force from the trampoline and the harmonic frequency. A simple expression is obtained for the ratio between air-time and harmonic period, and the maximum g-factor. The results are compared to experimental results, including accelerometer data showing 7g during bounces on a small trampoline in an amusement park play area. Similar results are obtained on a larger garden trampoline, and even larger accelerations have been measured for gymnastic trampolines.

  13. Harmonic engine

    DOEpatents

    Bennett, Charles L [Livermore, CA

    2009-10-20

    A high efficiency harmonic engine based on a resonantly reciprocating piston expander that extracts work from heat and pressurizes working fluid in a reciprocating piston compressor. The engine preferably includes harmonic oscillator valves capable of oscillating at a resonant frequency for controlling the flow of working fluid into and out of the expander, and also preferably includes a shunt line connecting an expansion chamber of the expander to a buffer chamber of the expander for minimizing pressure variations in the fluidic circuit of the engine. The engine is especially designed to operate with very high temperature input to the expander and very low temperature input to the compressor, to produce very high thermal conversion efficiency.

  14. High-power continuous-wave tunable 544- and 272-nm beams based on a diode-oscillator fiber-amplifier for calcium spectroscopy

    NASA Astrophysics Data System (ADS)

    Ko, Kwang-Hoon; Kim, Yonghee; Park, Hyunmin; Cha, Yong-Ho; Kim, Taek-Soo; Lee, Lim; Lim, Gwon; Han, Jaemin; Ko, Kwang-Hee; Jeong, Do-Young

    2015-08-01

    Continuous-wave single-frequency tunable 544- and 272-nm beams have been demonstrated by the second- and fourth-harmonic conversions of a 1088-nm fundamental beam from a diode-oscillator fiber-amplifier. The single-pass second-harmonic generation with a MgO-doped periodically poled stoichiometric LiTaO3 crystal and the external-cavity frequency-doubling technique with a bulk BBO crystal were employed to achieve an approximately 6-W 544-nm beam and a 1.5-W 272-nm beam, respectively. We characterized the second- and fourth-harmonic generations and discussed their applications to calcium spectroscopy.

  15. Investigating the influence of sea level oscillations in the Danish Straits on the Baltic Sea dynamics

    NASA Astrophysics Data System (ADS)

    Tikhonova, Natalia; Gusev, Anatoly; Diansky, Nikolay; Zakharchuk, Evgeny

    2016-04-01

    In this research, we study the influence of dynamic processes in the Danish Straits on the sea surface height (SSH) oscillations in the Baltic Sea. For this purpose, we use the model of marine and oceanic circulation INMOM (Institute of Numerical Mathematics Ocean Model). The simulations were carried out for the period 2009-2010, and the coastal station data were used for verification of SSH modelling quality. Comparison of the simulated data with the ones measured in the coastal points showed us that the model does not describe SSH variability in different areas of the Baltic Sea well enough, so in the following simulation series the in situ SSH data of the coastal measurements were assimilated at the open boundary in the Danish Straits. The results of the new simulation showed us that this approach significantly increases the SSH simulation quality in all areas of the sea, where the comparison was made. In particular, the correlation coefficients between the simulated and measured SSH data increased from 0.21-0.73 to 0.81-0.90. On the basis of these results, it has been suggested that the Baltic Sea SSH variability is largely determined by the influence of the dynamic processes in the Danish Straits, which can be represented as a superposition of oscillations of different space-time scales. These oscillations can either be generated in the straits themselves, or propagate from the North Sea. For verification of this hypothesis and assessment of the oscillation propagation distance in the Baltic Sea, the following experiment was performed. At the open boundary in the Danish Straits, the six harmonics were set with the following parameters: the periods are 1.5, 3.0, 6.0, 13.5, 40.5, and 121.5 days, and the amplitude for all the harmonics is 50 cm. The results showed us that the prescribed harmonic oscillations at the open boundary propagate into all areas of the sea without changing the frequency, but with decreasing amplitude. The decrease in amplitude is not related to the distance between the measurement point and open boundary. For example, in the Gulfs of Finland and Riga, the 36hr harmonic has an amplitude substantially higher than in the open sea, and in the Stockholm area, this harmonic is at the noise level. The 40dy and 121dy harmonics have slightly lower amplitudes than the original prescribed signal, but they are almost unchanged while propagating further into the sea, and in all the investigated locations have almost identical peaks of spectral density. The 3dy and 6dy harmonics significantly lost their amplitude in all parts of the sea, and spectral density peaks are at the noise level. The simulation results showed us that the Danish straits do not filter 121dy and 40dy oscillations, and their amplitude does not decrease much. The 13dy, 6dy and 3dy oscillations significantly lose in amplitude and have no significant peaks of the spectral density. The 1.5dy harmonic propagates to the Gulfs of Finland and Riga, and increases in amplitude due to resonance at the natural frequency of the basin. It is suggested that, while Danish straits do not filter or transform frequency characteristics of oscillations propagated from the North Sea, but the Baltic Sea configuration may affect the magnitude and propagation extent of these oscillations. Thus, the fluctuations in the North Sea and the Danish Straits can significantly contribute to the Baltic Sea dynamics in the low-frequency range of the spectrum, and the periods of natural oscillations of the basin. The research was supported by the Russian Foundation for Basic Research (grant № 16-05-00534) and Saint-Petersburg State University (grant №18.37.140.2014)

  16. Non-unique monopole oscillations of harmonically confined Yukawa systems

    NASA Astrophysics Data System (ADS)

    Ducatman, Samuel; Henning, Christian; Kaehlert, Hanno; Bonitz, Michael

    2008-11-01

    Recently it was shown that the Breathing Mode (BM), the mode of uniform radial expansion and contraction, which is well known from harmonically confined Coulomb systems [1], does not exist in general for other systems [2]. As a consequence the monopole oscillation (MO), the radial collective excitation, is not unique, but there are several MO with different frequencies. Within this work we show simulation results of those monopole oscillations of 2-dimensional harmonically confined Yukawa systems, which are known from, e.g., dusty plasma crystals [3,4]. We present the corresponding spectrum of the particle motion, including analysis of the frequencies found, and compare with theoretical investigations.[1] D.H.E. Dubin and J.P. Schiffer, Phys. Rev. E 53, 5249 (1996)[2] C. Henning at al., accepted for publication in Phys. Rev. Lett. (2008)[3] A. Melzer et al., Phys. Rev. Lett. 87, 115002 (2001)[4] M. Bonitz et al., Phys. Rev. Lett. 96, 075001 (2006)

  17. Angular dependence of novel magnetic quantum oscillations in a quasi-two-dimensional multiband Fermi liquid with impurities

    NASA Astrophysics Data System (ADS)

    Bratkovsky, A. M.; Alexandrov, A. S.

    2002-03-01

    The semiclassical Lifshitz-Kosevich-type description is given for the angular dependence of quantum oscillations with combination frequencies in a multiband quasi-two-dimensional Fermi liquid with a constant number of electrons. The analytical expressions are found for the Dingle, thermal, spin, and amplitude (Yamaji) reduction factors of the novel combination harmonics, where the latter two strongly oscillate with the direction of the field [1]. At the magic angles those factors reduce to the purely two-dimensional expressions given earlier. The combination harmonics are suppressed in the presence of the nonquantized background states, and they decay exponentially faster with temperature and/or disorder compared to the standard harmonics, providing an additional tool for electronic structure determination. The theory is applied to Sr2RuO4. [1] A.M. Bratkovsky and A.S. Alexandrov, Phys. Rev. B 65, xxxx (2002); cond-mat/0104520.

  18. Parametric Symmetry Breaking in a Nonlinear Resonator

    NASA Astrophysics Data System (ADS)

    Leuch, Anina; Papariello, Luca; Zilberberg, Oded; Degen, Christian L.; Chitra, R.; Eichler, Alexander

    2016-11-01

    Much of the physical world around us can be described in terms of harmonic oscillators in thermodynamic equilibrium. At the same time, the far-from-equilibrium behavior of oscillators is important in many aspects of modern physics. Here, we investigate a resonating system subject to a fundamental interplay between intrinsic nonlinearities and a combination of several driving forces. We have constructed a controllable and robust realization of such a system using a macroscopic doubly clamped string. We experimentally observe a hitherto unseen double hysteresis in both the amplitude and the phase of the resonator's response function and present a theoretical model that is in excellent agreement with the experiment. Our work unveils that the double hysteresis is a manifestation of an out-of-equilibrium symmetry breaking between parametric phase states. Such a fundamental phenomenon, in the most ubiquitous building block of nature, paves the way for the investigation of new dynamical phases of matter in parametrically driven many-body systems and motivates applications ranging from ultrasensitive force detection to low-energy computing memory units.

  19. Numerical Investigation of 'Transonic Resonance' with a Convergent-Divergent Nozzle

    NASA Technical Reports Server (NTRS)

    Loh, Ching Y.; Zaman, K. B. M. Q.

    2002-01-01

    At pressure ratios lower than the design value, convergent-divergent (C-D) nozzles often undergo a flow resonance accompanied by the emission of acoustic tones. The phenomenon, driven by the unsteady shock within the divergent section of the nozzle, has been studied experimentally by Zaman et al. In this paper, the space-time conservation element solution element (CE/SE) method is employed to numerically investigate the phenomenon. The computations are performed for a given nozzle geometry for several different pressure ratios. Sustained 'limit cycle' oscillations are encountered in all cases. The oscillation frequencies, their variation with pressure ratio including a 'stage jump', agree well with the experimental results. The unsteady flow data confirm that stage 1 of the resonance (fundamental) involves a one-quarter standing wave while stage 2 (third harmonic) involves a three-quarter standing wave within the divergent section of the nozzle. Details of the shock motion, and the flow and near acoustic field, are documented for one case each of stages 1 and 2.

  20. Use of videos for students to see the effect of changing gravity on harmonic oscillators

    NASA Astrophysics Data System (ADS)

    Benge, Raymond; Young, Charlotte; Worley, Alan; Davis, Shirley; Smith, Linda; Gell, Amber

    2010-03-01

    In introductory physics classes, students are introduced to harmonic oscillators such as masses on springs and the simple pendulum. In derivation of the equations describing these systems, the term ``g'' for the acceleration due to gravity cancels in the equation for the period of a mass oscillating on a spring, but it remains in the equation for the period of a pendulum. Frequently there is a homework problem asking how the system described would behave on the Moon, Mars, etc. Students have to have faith in the equations. In January, 2009, a team of community college faculty flew an experiment aboard an aircraft in conjunction with NASA's Microgravity University program. The experiment flown was a study in harmonic oscillator and pendulum behavior under various gravity situations. The aircraft simulated zero gravity, Martian, Lunar, and hypergravity conditions. The experiments were video recorded for students to study the behavior of the systems in varying gravity conditions. These videos are now available on the internet for anyone to use in introductory physics classes.

  1. Decaying and decayless transverse oscillations of a coronal loop

    NASA Astrophysics Data System (ADS)

    Nisticò, G.; Nakariakov, V. M.; Verwichte, E.

    2013-04-01

    Aims: We investigate kink oscillations of loops observed in an active region with the Atmospheric Imaging Assembly (AIA) instrument on board the Solar Dynamics Observatory (SDO) spacecraft before and after a flare. Methods: The oscillations were depicted and analysed with time-distance maps, extracted from the cuts taken parallel or perpendicular to the loop axis. Moving loops were followed in time with steadily moving slits. The period of oscillations and its time variation were determined by best-fitting harmonic functions. Results: We show that before and well after the occurrence of the flare, the loops experience low-amplitude decayless oscillations. The flare and the coronal mass ejection associated to it trigger large-amplitude oscillations that decay exponentially in time. The periods of the kink oscillations in both regimes (about 240 s) are similar. An empirical model of the phenomenon in terms of a damped linear oscillator excited by a continuous low-amplitude harmonic driver and by an impulsive high-amplitude driver is found to be consistent with the observations. Two movies are available in electronic form at http://www.aanda.org

  2. Multiharmonic rf feedforward system for compensation of beam loading and periodic transient effects in magnetic-alloy cavities of a proton synchrotron

    NASA Astrophysics Data System (ADS)

    Tamura, Fumihiko; Ohmori, Chihiro; Yamamoto, Masanobu; Yoshii, Masahito; Schnase, Alexander; Nomura, Masahiro; Toda, Makoto; Shimada, Taihei; Hasegawa, Katsushi; Hara, Keigo

    2013-05-01

    Beam loading compensation is a key for acceleration of a high intensity proton beam in the main ring (MR) of the Japan Proton Accelerator Research Complex (J-PARC). Magnetic alloy loaded rf cavities with a Q value of 22 are used to achieve high accelerating voltages without a tuning bias loop. The cavity is driven by a single harmonic (h=9) rf signal while the cavity frequency response also covers the neighbor harmonics (h=8,10). Therefore the wake voltage induced by the high intensity beam consists of the three harmonics, h=8,9,10. The beam loading of neighbor harmonics is the source of periodic transient effects and a possible source of coupled bunch instabilities. In the article, we analyze the wake voltage induced by the high intensity beam. We employ the rf feedforward method to compensate the beam loading of these three harmonics (h=8,9,10). The full-digital multiharmonic feedforward system was developed for the MR. We describe the system architecture and the commissioning methodology of the feedforward patterns. The commissioning of the feedforward system has been performed by using high intensity beams with 1.0×1014 proteins per pulse. The impedance seen by the beam is successfully reduced and the longitudinal oscillations due to the beam loading are reduced. By the beam loading compensation, stable high power beam operation is achieved. We also report the reduction of the momentum loss during the debunching process for the slow extraction by the feedforward.

  3. Synthesizing Virtual Oscillators to Control Islanded Inverters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Brian B.; Sinha, Mohit; Ainsworth, Nathan G.

    Virtual oscillator control (VOC) is a decentralized control strategy for islanded microgrids where inverters are regulated to emulate the dynamics of weakly nonlinear oscillators. Compared to droop control, which is only well defined in sinusoidal steady state, VOC is a time-domain controller that enables interconnected inverters to stabilize arbitrary initial conditions to a synchronized sinusoidal limit cycle. However, the nonlinear oscillators that are elemental to VOC cannot be designed with conventional linear-control design methods. We address this challenge by applying averaging- and perturbation-based nonlinear analysis methods to extract the sinusoidal steady-state and harmonic behavior of such oscillators. The averaged modelsmore » reveal conclusive links between real- and reactive-power outputs and the terminal-voltage dynamics. Similarly, the perturbation methods aid in quantifying higher order harmonics. The resultant models are then leveraged to formulate a design procedure for VOC such that the inverter satisfies standard ac performance specifications related to voltage regulation, frequency regulation, dynamic response, and harmonic content. Experimental results for a single-phase 750 VA, 120 V laboratory prototype demonstrate the validity of the design approach. They also demonstrate that droop laws are, in fact, embedded within the equilibria of the nonlinear-oscillator dynamics. This establishes the backward compatibility of VOC in that, while acting on time-domain waveforms, it subsumes droop control in sinusoidal steady state.« less

  4. Coherent control of acoustic vibrations in metal nanoparticles and thin films with sequences of femtosecond pulses: Harmonic-oscillator model

    NASA Astrophysics Data System (ADS)

    Zheltikov, A. M.

    2002-08-01

    A harmonic oscillator model is used to demonstrate the possibility of coherent control of acoustic vibrations of metal nanoparticles and thin films with sequences of femtosecond laser pulses. When the interval between the pulses in such a sequence is chosen equal to the oscillation period of the expansion mode of a nanoscale system, the relevant acoustic vibrations can be excited in a resonant and selective way. Sequences of femtosecond pulses with picosecond time intervals between the pulses are shown to be ideally suited for a resonant excitation and coherent control of acoustic modes of silver nanoparticles.

  5. Deterministic nonlinear phase gates induced by a single qubit

    NASA Astrophysics Data System (ADS)

    Park, Kimin; Marek, Petr; Filip, Radim

    2018-05-01

    We propose deterministic realizations of nonlinear phase gates by repeating a finite sequence of non-commuting Rabi interactions between a harmonic oscillator and only a single two-level ancillary qubit. We show explicitly that the key nonclassical features of the ideal cubic phase gate and the quartic phase gate are generated in the harmonic oscillator faithfully by our method. We numerically analyzed the performance of our scheme under realistic imperfections of the oscillator and the two-level system. The methodology is extended further to higher-order nonlinear phase gates. This theoretical proposal completes the set of operations required for continuous-variable quantum computation.

  6. Quantum mechanics and hidden superconformal symmetry

    NASA Astrophysics Data System (ADS)

    Bonezzi, R.; Corradini, O.; Latini, E.; Waldron, A.

    2017-12-01

    Solvability of the ubiquitous quantum harmonic oscillator relies on a spectrum generating osp (1 |2 ) superconformal symmetry. We study the problem of constructing all quantum mechanical models with a hidden osp (1 |2 ) symmetry on a given space of states. This problem stems from interacting higher spin models coupled to gravity. In one dimension, we show that the solution to this problem is the Vasiliev-Plyushchay family of quantum mechanical models with hidden superconformal symmetry obtained by viewing the harmonic oscillator as a one dimensional Dirac system, so that Grassmann parity equals wave function parity. These models—both oscillator and particlelike—realize all possible unitary irreducible representations of osp (1 |2 ).

  7. Making chaotic behavior in a damped linear harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Konishi, Keiji

    2001-06-01

    The present Letter proposes a simple control method which makes chaotic behavior in a damped linear harmonic oscillator. This method is a modified scheme proposed in paper by Wang and Chen (IEEE CAS-I 47 (2000) 410) which presents an anti-control method for making chaotic behavior in discrete-time linear systems. We provide a systematic procedure to design parameters and sampling period of a feedback controller. Furthermore, we show that our method works well on numerical simulations.

  8. Transonic streamline of symmetric wing under the influence unilateral oscillations characterized by the spectrum of two frequencies

    NASA Astrophysics Data System (ADS)

    Zamuraev, V. P.; Kalinina, A. P.

    2017-10-01

    Forced high-frequency vibrations of the airfoil surface part with the amplitude almost equal to the sound velocity can change significantly the lift force of the symmetric profile streamlined at zero angle of attack. The oscillation consists of two harmonics. The ratio of harmonics frequencies values is equal to 2. The present work shows that the aerodynamic properties depend significantly on the specific energy contribution of each frequency.

  9. An analogue of the Berry phase for simple harmonic oscillators

    NASA Astrophysics Data System (ADS)

    Suslov, S. K.

    2013-03-01

    We evaluate a variant of Berry's phase for a ‘missing’ family of the square integrable wavefunctions for the linear harmonic oscillator, which cannot be derived by the separation of variables (in a natural way). Instead, it is obtained by the action of the maximal kinematical invariance group on the standard solutions. A simple closed formula for the phase (in terms of elementary functions) is found here by integration with the help of a computer algebra system.

  10. Bifurcation of quiescent H-mode to a wide pedestal regime in DIII-D and advances in the understanding of edge harmonic oscillations

    DOE PAGES

    Chen, Xi; Burrell, K. H.; Osborne, T. H.; ...

    2017-06-14

    New experimental studies and modelling of the coherent edge harmonic oscillation (EHO), which regulates the conventional Quiescent H-mode (QH-mode) edge, validate the proposed hypothesis of edge rotational shear in destabilizing the low-n kink-peeling mode as the additional drive mechanism for the EHO. The observed minimum edge E×B shear required for the EHO decreases linearly with pedestal collisionalitymore » $$\

  11. Observation of EHO in NSTX and Theoretical Study of its Active Control Using HHFW Antenna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.-K. Park, et. al.

    2013-01-14

    Two important topics in the tokamak ELM control, using the non-axisymmetric (3D) magnetic perturbations, are studied in NSTX and combined envisioning ELM control in the future NSTX-U operation: Experimental observations of the edge harmonic oscillation in NSTX (not necessarily the same as EHOs in DIII-D), and theoretical study of its external drive using the high harmonic fast wave (HHFW) antenna as a 3D field coil. Edge harmonic oscillations were observed particularly well in NSTX ELM-free operation with low n core modes, with various diagnostics confirming n = 4 ~ 6 edge-localized and coherent oscillations in 2 ~ 8kHz frequency range.more » These oscillations seem to have a favored operational window in rotational shear, similarly to EHOs in DIII-D QH modes . However, in NSTX, they are not observed to provide particle or impurity control, possibly due to their weak amplitudes, of a few mm displacements, as measured by reflectometry. The external drive of these modes has been proposed in NSTX, by utilizing audio-frequency currents in the HHFW antenna straps. Analysis shows that the HHFW straps can be optimized to maximize n = 4 ~ 6 while minimizing n = 1 ~ 3. Also, IPEC calculations show that the optimized configuration with only 1kAt current can produce comparable or larger displacements than the observed internal modes. If this optimized external drive can be constructively combined, or further resonated with the internal modes, the edge harmonic oscillations in NSTX may be able to produce sufficient particle control to modify ELMs.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vignat, C.; Bercher, J.-F.

    The family of Tsallis entropies was introduced by Tsallis in 1988. The Shannon entropy belongs to this family as the limit case q{yields}1. The canonical distributions in R{sup n} that maximize this entropy under a covariance constraint are easily derived as Student-t (q<1) and Student-r (q>1) multivariate distributions. A nice geometrical result about these Student-r distributions is that they are marginal of uniform distributions on a sphere of larger dimension d with the relationship p = n+2+(2/q-1). As q{yields}1, we recover the famous Poincare's observation according to which a Gaussian vector can be viewed as the projection of a vectormore » uniformly distributed on the infinite dimensional sphere. A related property in the case q<1 is also available. Often associated to Renyi-Tsallis entropies is the notion of escort distributions. We provide here a geometric interpretation of these distributions. Another result concerns a universal system in physics, the harmonic oscillator: in the usual quantum context, the waveform of the n-th state of the harmonic oscillator is a Gaussian waveform multiplied by the degree n Hermite polynomial. We show, starting from recent results by Carinena et al., that the quantum harmonic oscillator on spaces with constant curvature is described by maximal Tsallis entropy waveforms multiplied by the extended Hermite polynomials derived from this measure. This gives a neat interpretation of the non-extensive parameter q in terms of the curvature of the space the oscillator evolves on; as q{yields}1, the curvature of the space goes to 0 and we recover the classical harmonic oscillator in R{sup 3}.« less

  13. Compensation of the sheath effects in cylindrical floating probes

    NASA Astrophysics Data System (ADS)

    Park, Ji-Hwan; Chung, Chin-Wook

    2018-05-01

    In cylindrical floating probe measurements, the plasma density and electron temperature are overestimated due to sheath expansion and oscillation. To reduce these sheath effects, a compensation method based on well-developed floating sheath theories is proposed and applied to the floating harmonic method. The iterative calculation of the Allen-Boyd-Reynolds equation can derive the floating sheath thickness, which can be used to calculate the effective ion collection area; in this way, an accurate ion density is obtained. The Child-Langmuir law is used to calculate the ion harmonic currents caused by sheath oscillation of the alternating-voltage-biased probe tip. Accurate plasma parameters can be obtained by subtracting these ion harmonic currents from the total measured harmonic currents. Herein, the measurement principles and compensation method are discussed in detail and an experimental demonstration is presented.

  14. Effective field theory in the harmonic oscillator basis

    DOE PAGES

    Binder, S.; Ekström, Jan A.; Hagen, Gaute; ...

    2016-04-25

    In this paper, we develop interactions from chiral effective field theory (EFT) that are tailored to the harmonic oscillator basis. As a consequence, ultraviolet convergence with respect to the model space is implemented by construction and infrared convergence can be achieved by enlarging the model space for the kinetic energy. In oscillator EFT, matrix elements of EFTs formulated for continuous momenta are evaluated at the discrete momenta that stem from the diagonalization of the kinetic energy in the finite oscillator space. By fitting to realistic phase shifts and deuteron data we construct an effective interaction from chiral EFT at next-to-leadingmore » order. Finally, many-body coupled-cluster calculations of nuclei up to 132Sn converge fast for the ground-state energies and radii in feasible model spaces.« less

  15. Parametric Resonances of a Conductive Pipe Driven by an Alternating Magnetic Field in the Presence of a Static Magnetic Field

    ERIC Educational Resources Information Center

    Donoso, Guillermo; Ladera, Celso L.

    2012-01-01

    The parametric oscillations of an oscillator driven electromagnetically are presented. The oscillator is a conductive pipe hung from a spring, and driven by the oscillating magnetic field of a surrounding coil in the presence of a static magnetic field. It is an interesting case of parametric oscillations since the pipe is neither a magnet nor a…

  16. Scleronomic Holonomic Constraints and Conservative Nonlinear Oscillators

    ERIC Educational Resources Information Center

    Munoz, R.; Gonzalez-Garcia, G.; Izquierdo-De La Cruz, E.; Fernandez-Anaya, G.

    2011-01-01

    A bead sliding, under the sole influence of its own weight, on a rigid wire shaped in the fashion of a plane curve, will describe (generally anharmonic) oscillations around a local minimum. For given shapes, the bead will behave as a harmonic oscillator in the whole range, such as an unforced, undamped, Duffing oscillator, etc. We also present…

  17. A novel method for determining the phase-noise behavior of resonator-oscillators

    NASA Astrophysics Data System (ADS)

    Hoffmann, Michael H. W.

    2005-05-01

    A novel approach to the theory of phase-noise in resonator-oscillators will be given that is based on a combination of a large-signal-small-signal method, harmonic balance, and a modified Rice-model of signals plus noise. The method will be explained using a simple example. Since the type of oscillator under consideration not only de-attenuates eigen-oscillations but also noise in the spectral vicinity of the eigen-frequency, a signal is generated that is quasi-harmonic, and that might be described by means of a pseudo-Fourier-series expansion. Due to the specific description of the internal noise-sources, it is possible to use a time-domain description that at the same time reveals information about the spectral components of the signal. By comparison of these components, the spectrum of the oscillation might be determined. Relations between the spectrum of internal noise sources and the generated oscillator-signal will be recognized. The novel method will thus enable the designer to predict the phase-noise behavior of a specific oscillator-design.

  18. An Oscillating System with Sliding Friction

    ERIC Educational Resources Information Center

    Kamela, Martin

    2007-01-01

    Both harmonic oscillations and friction are the types of concepts in freshman physics that are readily applicable to the "real world" and as such, most students find these ideas interesting. Damped oscillations are usually presented with resistance proportional to velocity, which has the advantage of a relatively straightforward mathematical…

  19. Generation of single attosecond pulse within one atomic unit by using multi-cycle inhomogeneous polarization gating technology in bowtie-shaped nanostructure

    NASA Astrophysics Data System (ADS)

    Feng, Liqiang; Liu, Hang

    2018-04-01

    The generations of high-order harmonic spectra and single attosecond pulses (SAPs) driven by the multi-cycle inhomogeneous polarization gating (PG) technology in the bowtie-shaped nanostructure have been theoretically investigated. It is found that by setting the bowtie-shaped nanostructure along the driven laser polarization direction, not only the extension of the harmonic cutoff can be achieved, caused by the surface plasmon polaritons, but also the modulations of the harmonics can be decreased, caused by the PG technology and the inhomogeneous effect. As a result, the contribution of the harmonic plateau is only from one harmonic emission peak with the dominant short quantum path. Further, by properly adding a half-cycle pulse into the driven laser field, the harmonic emission process can be precisely controlled in the half-cycle duration and a supercontinuum with the bandwidth of 263 eV can be obtained. Finally, by directly superposing the harmonics from this supercontinuum, a SAP with the full width at half maximum of 23 as can be obtained, which is shorter than one atomic unit.

  20. Nonlinear Dynamics of Multi-Component Bose-Einstein Condensates ---Anti-Gravity Transport and Vortex Chaos---

    NASA Astrophysics Data System (ADS)

    Nakamura, K.

    Bose-Einstein condensate(BEC) provides a nice stage when the nonlinearSchrödinger equation plays a vital role. We study the dynamics of multi-component repulsive BEC in 2 dimensions with harmonic traps by using the nonlinear Schrödinger (or Gross-Pitaevskii) equation. Firstly we consider a driven two-component BEC with each component trapped in different vertical positions. The appropriate tuning of the oscillation frequency of the magnetic field leads to a striking anti-gravity transport of BEC. This phenomenon is a manifestation of macroscopic non-adiabatic tunneling in a system with two internal(electronic) degrees of freedom. The dynamics splits into a fast complex spatio-temporal oscillation of each condensate wavefunctions together with a slow levitation of the total center of mass. Secondly, we examine the three-component repulsive BEC in 2 dimensions in a harmonic trap in the absence of magnetic field, and construct a model of conservative chaos based on a picture of vortex molecules. We obtain an effective nonlinear dynamics for three vortex cores, which represents three charged particles under the uniform magnetic field with the repulsive inter-particle potential quadratic in the inter-vortex distance r_{ij} on short scale and logarithmic in r_{ij} on large scale. The vortices here acquire the inertia in marked contrast to the standard theory of point vortices since Onsager. We then explore ``the chaos in the three-body problem" in the context of vortices with inertia.

  1. Local Gram-Schmidt and covariant Lyapunov vectors and exponents for three harmonic oscillator problems

    NASA Astrophysics Data System (ADS)

    Hoover, Wm. G.; Hoover, Carol G.

    2012-02-01

    We compare the Gram-Schmidt and covariant phase-space-basis-vector descriptions for three time-reversible harmonic oscillator problems, in two, three, and four phase-space dimensions respectively. The two-dimensional problem can be solved analytically. The three-dimensional and four-dimensional problems studied here are simultaneously chaotic, time-reversible, and dissipative. Our treatment is intended to be pedagogical, for use in an updated version of our book on Time Reversibility, Computer Simulation, and Chaos. Comments are very welcome.

  2. A numerical investigation on the influence of engine shape and mixing processes on wave engine performance

    NASA Astrophysics Data System (ADS)

    Erickson, Robert R.

    Wave engines are a class of unsteady, air-breathing propulsion devices that use an intermittent combustion process to generate thrust. The inherently simple mechanical design of the wave engine allows for a relatively low cost per unit propulsion system, yet unsatisfactory overall performance has severely limited the development of commercially successful wave engines. The primary objective of this investigation was to develop a more detailed physical understanding of the influence of gas dynamic nonlinearities, unsteady combustion processes, and engine shape on overall wave engine performance. Within this study, several numerical models were developed and applied to wave engines and related applications. The first portion of this investigation examined the influence of duct shape on driven oscillations in acoustic compression devices, which represent a simplified physical system closely related in several ways to the wave engine. A numerical model based on an application of the Galerkin method was developed to simulate large amplitude, one-dimensional acoustic waves driven in closed ducts. Results from this portion of the investigation showed that gas-dynamic nonlinearities significantly influence the properties of driven oscillations by transferring acoustic energy from the fundamental driven mode into higher harmonic modes. The second portion of this investigation presented and analyzed results from a numerical model of wave engine dynamics based on the quasi one-dimensional conservation equations in addition to separate sub-models for mixing and heat release. This model was then used to perform parametric studies of the characteristics of mixing and engine shape. The objectives of these studies were to determine the influence of mixing characteristics and engine shape on overall wave engine performance and to develop insight into the physical processes controlling overall performance trends. Results from this model showed that wave engine performance was strongly dependent on the coupling between the unsteady heat release that drives oscillations in the engine and the characteristics that determine the acoustic properties of the engine such as engine shape and mean property gradients. Simulation results showed that average thrust generation decreased dramatically when the natural acoustic mode frequencies of the engine and the frequency content of the unsteady heat release were not aligned.

  3. A method of solving simple harmonic oscillator Schroedinger equation

    NASA Technical Reports Server (NTRS)

    Maury, Juan Carlos F.

    1995-01-01

    A usual step in solving totally Schrodinger equation is to try first the case when dimensionless position independent variable w is large. In this case the Harmonic Oscillator equation takes the form (d(exp 2)/dw(exp 2) - w(exp 2))F = 0, and following W.K.B. method, it gives the intermediate corresponding solution F = exp(-w(exp 2)/2), which actually satisfies exactly another equation, (d(exp 2)/dw(exp 2) + 1 - w(exp 2))F = 0. We apply a different method, useful in anharmonic oscillator equations, similar to that of Rampal and Datta, and although it is slightly more complicated however it is also more general and systematic.

  4. Small Oscillations via Conservation of Energy

    ERIC Educational Resources Information Center

    Troy, Tia; Reiner, Megan; Haugen, Andrew J.; Moore, Nathan T.

    2017-01-01

    The work describes an analogy-based small oscillations analysis of a standard static equilibrium lab problem. In addition to force analysis, a potential energy function for the system is developed, and by drawing out mathematical similarities to the simple harmonic oscillator, we are able to describe (and experimentally verify) the period of small…

  5. Observation of dynamic interactions between fundamental and second-harmonic modes in a high-power sub-terahertz gyrotron operating in regimes of soft and hard self-excitation.

    PubMed

    Saito, Teruo; Tatematsu, Yoshinori; Yamaguchi, Yuusuke; Ikeuchi, Shinji; Ogasawara, Shinya; Yamada, Naoki; Ikeda, Ryosuke; Ogawa, Isamu; Idehara, Toshitaka

    2012-10-12

    Dynamic mode interaction between fundamental and second-harmonic modes has been observed in high-power sub-terahertz gyrotrons [T. Notake et al., Phys. Rev. Lett. 103, 225002 (2009); T. Saito et al. Phys. Plasmas 19, 063106 (2012)]. Interaction takes place between a parasitic fundamental or first-harmonic (FH) mode and an operating second-harmonic (SH) mode, as well as among SH modes. In particular, nonlinear excitation of the parasitic FH mode in the hard self-excitation regime with assistance of a SH mode in the soft self-excitation regime was clearly observed. Moreover, both cases of stable two-mode oscillation and oscillation of the FH mode only were observed. These observations and theoretical analyses of the dynamic behavior of the mode interaction verify the nonlinear hard self-excitation of the FH mode.

  6. Detection of the Second Harmonic of Decay-less Kink Oscillations in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Duckenfield, T.; Anfinogentov, S. A.; Pascoe, D. J.; Nakariakov, V. M.

    2018-02-01

    EUV observations of a multi-thermal coronal loop, taken by the Atmospheric Imaging Assembly of the Solar Dynamics Observatory, which exhibits decay-less kink oscillations are presented. The data cube of the quiet-Sun coronal loop was passed through a motion magnification algorithm to accentuate transverse oscillations. Time–distance maps are made from multiple slits evenly spaced along the loop axis and oriented orthogonal to the loop axis. Displacements of the intensity peak are tracked to generate time series of the loop displacement. Fourier analysis on the time series shows the presence of two periods within the loop: {P}1={10.3}-1.7+1.5 minutes and {P}2={7.4}-1.3+1.1 minutes. The longer period component is greatest in amplitude at the apex and remains in phase throughout the loop length. The shorter period component is strongest further down from the apex on both legs and displays an anti-phase behavior between the two loop legs. We interpret these results as the coexistence of the fundamental and second harmonics of the standing kink mode within the loop in the decay-less oscillation regime. An illustration of seismological application using the ratio P 1/2P 2 ∼ 0.7 to estimate the density scale height is presented. The existence of multiple harmonics has implications for understanding the driving and damping mechanisms for decay-less oscillations and adds credence to their interpretation as standing kink mode oscillations.

  7. Gauge theory for finite-dimensional dynamical systems.

    PubMed

    Gurfil, Pini

    2007-06-01

    Gauge theory is a well-established concept in quantum physics, electrodynamics, and cosmology. This concept has recently proliferated into new areas, such as mechanics and astrodynamics. In this paper, we discuss a few applications of gauge theory in finite-dimensional dynamical systems. We focus on the concept of rescriptive gauge symmetry, which is, in essence, rescaling of an independent variable. We show that a simple gauge transformation of multiple harmonic oscillators driven by chaotic processes can render an apparently "disordered" flow into a regular dynamical process, and that there exists a strong connection between gauge transformations and reduction theory of ordinary differential equations. Throughout the discussion, we demonstrate the main ideas by considering examples from diverse fields, including quantum mechanics, chemistry, rigid-body dynamics, and information theory.

  8. A new single-particle basis for nuclear many-body calculations

    NASA Astrophysics Data System (ADS)

    Puddu, G.

    2017-10-01

    Predominantly, harmonic oscillator single-particle wave functions are the preferred choice for a basis in ab initio nuclear many-body calculations. These wave-functions, although very convenient in order to evaluate the matrix elements of the interaction in the laboratory frame, have too fast a fall-off at large distances. In the past, as an alternative to the harmonic oscillator, other single-particle wave functions have been proposed. In this work, we propose a new single-particle basis, directly linked to nucleon-nucleon interaction. This new basis is orthonormal and complete, has the proper asymptotic behavior at large distances and does not contain the continuum which would pose severe convergence problems in nuclear many body calculations. We consider the newly proposed NNLO-opt nucleon-nucleon interaction, without any renormalization. We show that, unlike other bases, this single-particle representation has a computational cost similar to the harmonic oscillator basis with the same space truncation and it gives lower energies for 6He and 6Li.

  9. Dissipative quantum trajectories in complex space: Damped harmonic oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw

    Dissipative quantum trajectories in complex space are investigated in the framework of the logarithmic nonlinear Schrödinger equation. The logarithmic nonlinear Schrödinger equation provides a phenomenological description for dissipative quantum systems. Substituting the wave function expressed in terms of the complex action into the complex-extended logarithmic nonlinear Schrödinger equation, we derive the complex quantum Hamilton–Jacobi equation including the dissipative potential. It is shown that dissipative quantum trajectories satisfy a quantum Newtonian equation of motion in complex space with a friction force. Exact dissipative complex quantum trajectories are analyzed for the wave and solitonlike solutions to the logarithmic nonlinear Schrödinger equation formore » the damped harmonic oscillator. These trajectories converge to the equilibrium position as time evolves. It is indicated that dissipative complex quantum trajectories for the wave and solitonlike solutions are identical to dissipative complex classical trajectories for the damped harmonic oscillator. This study develops a theoretical framework for dissipative quantum trajectories in complex space.« less

  10. Analysis of biochemical phase shift oscillators by a harmonic balancing technique.

    PubMed

    Rapp, P

    1976-11-25

    The use of harmonic balancing techniques for theoretically investigating a large class of biochemical phase shift oscillators is outlined and the accuracy of this approximate technique for large dimension nonlinear chemical systems is considered. It is concluded that for the equations under study these techniques can be successfully employed to both find periodic solutions and to indicate those cases which can not oscillate. The technique is a general one and it is possible to state a step by step procedure for its application. It has a substantial advantage in producing results which are immediately valid for arbitrary dimension. As the accuracy of the method increases with dimension, it complements classical small dimension methods. The results obtained by harmonic balancing analysis are compared with those obtained by studying the local stability properties of the singular points of the differential equation. A general theorem is derived which identifies those special cases where the results of first order harmonic balancing are identical to those of local stability analysis, and a necessary condition for this equivalence is derived. As a concrete example, the n-dimensional Goodwin oscillator is considered where p, the Hill coefficient of the feedback metabolite, is equal to three and four. It is shown that for p = 3 or 4 and n less than or equal to 4 the approximation indicates that it is impossible to construct a set of physically permissible reaction constants such that the system possesses a periodic solution. However for n greater than or equal to 5 it is always possible to find a large domain in the reaction constant space giving stable oscillations. A means of constructing such a parameter set is given. The results obtained here are compared with previously derived results for p = 1 and p = 2.

  11. Simulation of nonlinear propagation of biomedical ultrasound using PZFlex and the KZK Texas code

    NASA Astrophysics Data System (ADS)

    Qiao, Shan; Jackson, Edward; Coussios, Constantin-C.; Cleveland, Robin

    2015-10-01

    In biomedical ultrasound nonlinear acoustics can be important in both diagnostic and therapeutic applications and robust simulations tools are needed in the design process but also for day-to-day use such as treatment planning. For most biomedical application the ultrasound sources generate focused sound beams of finite amplitude. The KZK equation is a common model as it accounts for nonlinearity, absorption and paraxial diffraction and there are a number of solvers available, primarily developed by research groups. We compare the predictions of the KZK Texas code (a finite-difference time-domain algorithm) to an FEM-based commercial software, PZFlex. PZFlex solves the continuity equation and momentum conservation equation with a correction for nonlinearity in the equation of state incorporated using an incrementally linear, 2nd order accurate, explicit algorithm in time domain. Nonlinear ultrasound beams from two transducers driven at 1 MHz and 3.3 MHz respectively were simulated by both the KZK Texas code and PZFlex, and the pressure field was also measured by a fibre-optic hydrophone to validate the models. Further simulations were carried out a wide range of frequencies. The comparisons showed good agreement for the fundamental frequency for PZFlex, the KZK Texas code and the experiments. For the harmonic components, the KZK Texas code was in good agreement with measurements but PZFlex underestimated the amplitude: 32% for the 2nd harmonic and 66% for the 3rd harmonic. The underestimation of harmonics by PZFlex was more significant when the fundamental frequency increased. Furthermore non-physical oscillations in the axial profile of harmonics occurred in the PZFlex results when the amplitudes were relatively low. These results suggest that careful benchmarking of nonlinear simulations is important.

  12. Simulation of nonlinear propagation of biomedical ultrasound using PZFlex and the KZK Texas code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, Shan, E-mail: shan.qiao@eng.ox.ac.uk; Jackson, Edward; Coussios, Constantin-C

    In biomedical ultrasound nonlinear acoustics can be important in both diagnostic and therapeutic applications and robust simulations tools are needed in the design process but also for day-to-day use such as treatment planning. For most biomedical application the ultrasound sources generate focused sound beams of finite amplitude. The KZK equation is a common model as it accounts for nonlinearity, absorption and paraxial diffraction and there are a number of solvers available, primarily developed by research groups. We compare the predictions of the KZK Texas code (a finite-difference time-domain algorithm) to an FEM-based commercial software, PZFlex. PZFlex solves the continuity equationmore » and momentum conservation equation with a correction for nonlinearity in the equation of state incorporated using an incrementally linear, 2nd order accurate, explicit algorithm in time domain. Nonlinear ultrasound beams from two transducers driven at 1 MHz and 3.3 MHz respectively were simulated by both the KZK Texas code and PZFlex, and the pressure field was also measured by a fibre-optic hydrophone to validate the models. Further simulations were carried out a wide range of frequencies. The comparisons showed good agreement for the fundamental frequency for PZFlex, the KZK Texas code and the experiments. For the harmonic components, the KZK Texas code was in good agreement with measurements but PZFlex underestimated the amplitude: 32% for the 2nd harmonic and 66% for the 3rd harmonic. The underestimation of harmonics by PZFlex was more significant when the fundamental frequency increased. Furthermore non-physical oscillations in the axial profile of harmonics occurred in the PZFlex results when the amplitudes were relatively low. These results suggest that careful benchmarking of nonlinear simulations is important.« less

  13. Symmetry properties of second harmonics generated by antisymmetric Lamb waves

    NASA Astrophysics Data System (ADS)

    Zhu, Wujun; Xiang, Yanxun; Liu, Chang-Jun; Deng, Mingxi; Xuan, Fu-Zhen

    2018-03-01

    Symmetry properties of second harmonics generated by antisymmetric primary Lamb waves are systematically studied in this work. In theory, the acoustic field of second harmonic Lamb waves is obtained by using the perturbation approximation and normal modal method, and the energy flux transfer from the primary Lamb waves to second harmonics is mainly explored. Symmetry analyses indicate that either the symmetric or antisymmetric Lamb waves can merely generate the symmetric second harmonics. Finite element simulations are performed on the nonlinear Lamb wave propagation of the antisymmetric A0 mode in the low frequency region. The signals of the second harmonics and the symmetric second harmonic s0 mode are found to be exactly equivalent in the time domain. The relative acoustic nonlinearity parameter A2/A12 oscillates with the propagation distance, and the oscillation amplitude and spatial period are well consistent with the theoretical prediction of the A0-s0 mode pair, which means that only the second harmonic s0 mode is generated by the antisymmetric primary A0 mode. Experiments are further conducted to examine the cumulative generation of symmetric second harmonics for the antisymmetric-symmetric mode pair A3-s6. Results show that A2/A12 increases linearly with the propagation distance, which means that the symmetric second harmonic s6 mode is generated cumulatively by the antisymmetric primary A3 mode. The present investigation systematically corroborates the proposed theory that only symmetric second harmonics can be generated accompanying the propagation of antisymmetric primary Lamb waves in a plate.

  14. On harmonic oscillators and their Kemmer relativistic forms

    NASA Technical Reports Server (NTRS)

    Debergh, Nathalie; Beckers, Jules

    1993-01-01

    It is shown that Dirac (Kemmer) equations are intimately connected with (para)supercharges coming from (para)supersymmetric quantum mechanics, a nonrelativistic theory. The dimensions of the irreducible representations of Clifford (Kemmer) algebras play a fundamental role in such an analysis. These considerations are illustrated through oscillator like interactions, leading to (para)relativistic oscillators.

  15. Current-driven second-harmonic domain wall resonance in ferromagnetic metal/nonmagnetic metal bilayers: A field-free method for spin Hall angle measurements

    NASA Astrophysics Data System (ADS)

    Hajiali, M. R.; Hamdi, M.; Roozmeh, S. E.; Mohseni, S. M.

    2017-10-01

    We study the ac current-driven domain wall motion in bilayer ferromagnetic metal (FM)/nonmagnetic metal (NM) nanowires. The solution of the modified Landau-Lifshitz-Gilbert equation including all the spin transfer torques is used to describe motion of the domain wall in the presence of the spin Hall effect. We show that the domain wall center has a second-harmonic frequency response in addition to the known first-harmonic excitation. In contrast to the experimentally observed second-harmonic response in harmonic Hall measurements of spin-orbit torque in magnetic thin films, this second-harmonic response directly originates from spin-orbit torque driven domain wall dynamics. Based on the spin current generated by domain wall dynamics, the longitudinal spin motive force generated voltage across the length of the nanowire is determined. The second-harmonic response introduces additionally a practical field-free and all-electrical method to probe the effective spin Hall angle for FM/NM bilayer structures that could be applied in experiments. Our results also demonstrate the capability of utilizing FM/NM bilayer structures in domain wall based spin-torque signal generators and resonators.

  16. The `Miracle' of Applicability? The Curious Case of the Simple Harmonic Oscillator

    NASA Astrophysics Data System (ADS)

    Bangu, Sorin; Moir, Robert H. C.

    2018-05-01

    The paper discusses to what extent the conceptual issues involved in solving the simple harmonic oscillator model fit Wigner's famous point that the applicability of mathematics borders on the miraculous. We argue that although there is ultimately nothing mysterious here, as is to be expected, a careful demonstration that this is so involves unexpected difficulties. Consequently, through the lens of this simple case we derive some insight into what is responsible for the appearance of mystery in more sophisticated examples of the Wigner problem.

  17. Sonic horizon formation for oscillating Bose-Einstein condensates in isotropic harmonic potential

    PubMed Central

    Wang, Ying; Zhou, Yu; Zhou, Shuyu

    2016-01-01

    We study the sonic horizon phenomena of the oscillating Bose-Einstein condensates in isotropic harmonic potential. Based on the Gross-Pitaevskii equation model and variational method, we derive the original analytical formula for the criteria and lifetime of the formation of the sonic horizon, demonstrating pictorially the interaction parameter dependence for the occur- rence of the sonic horizon and damping effect of the system distribution width. Our analytical results corroborate quantitatively the particular features of the sonic horizon reported in previous numerical study. PMID:27922129

  18. Evidence for new resonances in the K-barN system: A prima facie case for the even-wave harmonic-oscillator model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamath, S.G.

    1978-10-01

    Arguments are presented to show that the new resonance parameters obtained by Alston-Garnjost et al. in a recent analysis of the K-barN system from 365 to 1320 MeV/c provide a prima facie case for the even-wave harmonic-oscillator theory of baryonic states in the framework of SU(6)/sub W/ x O(3). A new quantum classification of the ..lambda.. states belonging to the (70,1/sup -/) is also proposed.

  19. The `Miracle' of Applicability? The Curious Case of the Simple Harmonic Oscillator

    NASA Astrophysics Data System (ADS)

    Bangu, Sorin; Moir, Robert H. C.

    2018-03-01

    The paper discusses to what extent the conceptual issues involved in solving the simple harmonic oscillator model fit Wigner's famous point that the applicability of mathematics borders on the miraculous. We argue that although there is ultimately nothing mysterious here, as is to be expected, a careful demonstration that this is so involves unexpected difficulties. Consequently, through the lens of this simple case we derive some insight into what is responsible for the appearance of mystery in more sophisticated examples of the Wigner problem.

  20. Elementary derivation of the quantum propagator for the harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Shao, Jiushu

    2016-10-01

    Operator algebra techniques are employed to derive the quantum evolution operator for the harmonic oscillator. The derivation begins with the construction of the annihilation and creation operators and the determination of the wave function for the coherent state as well as its time-dependent evolution, and ends with the transformation of the propagator in a mixed position-coherent-state representation to the desired one in configuration space. Throughout the entire procedure, besides elementary operator manipulations, it is only necessary to solve linear differential equations and to calculate Gaussian integrals.

  1. User's Guide for ECAP2D: an Euler Unsteady Aerodynamic and Aeroelastic Analysis Program for Two Dimensional Oscillating Cascades, Version 1.0

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.

    1995-01-01

    This guide describes the input data required for using ECAP2D (Euler Cascade Aeroelastic Program-Two Dimensional). ECAP2D can be used for steady or unsteady aerodynamic and aeroelastic analysis of two dimensional cascades. Euler equations are used to obtain aerodynamic forces. The structural dynamic equations are written for a rigid typical section undergoing pitching (torsion) and plunging (bending) motion. The solution methods include harmonic oscillation method, influence coefficient method, pulse response method, and time integration method. For harmonic oscillation method, example inputs and outputs are provided for pitching motion and plunging motion. For the rest of the methods, input and output for pitching motion only are given.

  2. Light atom quantum oscillations in UC and US

    DOE PAGES

    Yiu, Yuen; Aczel, Adam A.; Granroth, Garrett E.; ...

    2016-01-19

    High energy vibrational scattering in the binary systems UC and US is measured using time-of-flight inelastic neutron scattering. A clear set of well-defined peaks equally separated in energy is observed in UC, corresponding to harmonic oscillations of the light C atoms in a cage of heavy U atoms. The scattering is much weaker in US and only a few oscillator peaks are visible. We show how the difference between the materials can be understood by considering the neutron scattering lengths and masses of the lighter atoms. Monte Carlo ray tracing is used to simulate the scattering, with near quantitative agreementmore » with the data in UC, and some differences with US. The possibility of observing anharmonicity and anisotropy in the potentials of the light atoms is investigated in UC. Lastly, the observed data is well accounted for by considering each light atom as a single atom isotropic quantum harmonic oscillator.« less

  3. An optical levitation system for a physics teaching laboratory

    NASA Astrophysics Data System (ADS)

    Isaksson, Oscar; Karlsteen, Magnus; Rostedt, Mats; Hanstorp, Dag

    2018-02-01

    We describe an experimental system based on optical levitation of an oil droplet. When combined with an applied electric field and a source of ionizing radiation, the setup permits the investigation of physical phenomena such as radiation pressure, light diffraction, the motion of a charged particle in an oscillating electric field, and the interaction of ionizing radiation with matter. The trapping occurs by creating an equilibrium between a radiation pressure force and the force of gravity. We have found that an oil droplet can be trapped for at least nine hours. The system can be used to measure the size and total electric charge on the trapped droplet. The intensity of the light from the trapping laser that is scattered by the droplet is sufficient to allow the droplet to be easily seen with the naked eye, covered by laser alignment goggles. When oscillating under the influence of an ac electric field, the motion of the droplet can be described as that of a driven, damped harmonic oscillator. The magnitude and polarity of the charge can be altered by exposing the droplet to ionizing radiation from a low-activity radioactive source. Our goal was to design a hands-on setup that allows undergraduate and graduate students to observe and better understand fundamental physical processes.

  4. A harmonic analysis method for unsteady transonic flow and its application to the flutter of airfoils

    NASA Technical Reports Server (NTRS)

    Ehlers, F. E.; Weatherill, W. H.

    1982-01-01

    A finite difference method for solving the unsteady transonic flow about harmonically oscillating wings is investigated. The procedure is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady differential equation for small disturbances. The differential equation for the unsteady velocity potential is linear with spatially varying coefficients and with the time variable eliminated by assuming harmonic motion. A study is presented of the shock motion associated with an oscillating airfoil and its representation by the harmonic procedure. The effects of the shock motion and the resulting pressure pulse are shown to be included in the harmonic pressure distributions and the corresponding generalized forces. Analytical and experimental pressure distributions for the NACA 64A010 airfoil are compared for Mach numbers of 0.75, 0.80 and 0.842. A typical section, two-degree-of-freedom flutter analysis of a NACA 64A010 airfoil is performed. The results show a sharp transonic bucket in one case and abrupt changes in instability modes.

  5. Kerr-like behaviour of second harmonic generation in the far-off resonant regime

    NASA Astrophysics Data System (ADS)

    Peřinová, Vlasta; Lukš, Antonín; Křepelka, Jaromír; Leoński, Wiesław; Peřina, Jan

    2018-05-01

    We separate the Kerr-like behaviour of the second-harmonic generation in the far-off resonant regime from the oscillations caused by the time-dependence of the interaction energy. To this purpose, we consider the approximation obtained from the exact dynamics by the method of small rotations. The Floquet-type decomposition of the approximate dynamics comprises the Kerr-like dynamics and oscillations of the same order of magnitude as those assumed for the exact dynamics of the second-harmonic generation. We have found that a superposition of two states of concentrated quantum phase arises in the fundamental mode in the second-harmonic generation in the far-off resonant limit at a later time than a superposition of two coherent states in the corresponding Kerr medium and the difference is larger for higher initial coherent amplitudes. The quantum phase fluctuation is higher for the same initial coherent amplitudes in the fundamental mode in the second-harmonic generation in the far-off resonant limit than in the corresponding Kerr medium and the difference is larger for higher initial coherent amplitudes.

  6. Single attosecond pulse generation by using plasmon-driven double optical gating technology in crossed metal nanostructures

    NASA Astrophysics Data System (ADS)

    Feng, Liqiang; Liu, Katheryn

    2018-05-01

    An effective method to obtain the single attosecond pulses (SAPs) by using the multi-cycle plasmon-driven double optical gating (DOG) technology in the specifically designed metal nanostructures has been proposed and investigated. It is found that with the introduction of the crossed metal nanostructures along the driven and the gating polarization directions, not only the harmonic cutoff can be extended, but also the efficient high-order harmonic generation (HHG) at the very highest orders occurs only at one side of the region inside the nanostructure. As a result, a 93 eV supercontinuum with the near stable phase can be found. Further, by properly introducing an ultraviolet (UV) pulse into the driven laser polarization direction (which is defined as the DOG), the harmonic yield can be enhanced by two orders of magnitude in comparison with the singe polarization gating (PG) technology. However, as the polarized angle or the ellipticity of the UV pulse increase, the enhancement of the harmonic yield is slightly reduced. Finally, by superposing the selected harmonics from the DOG scheme, a 30 as SAP with intensity enhancement of two orders of magnitude can be obtained.

  7. High Speed Video Measurements of a Magneto-optical Trap

    NASA Astrophysics Data System (ADS)

    Horstman, Luke; Graber, Curtis; Erickson, Seth; Slattery, Anna; Hoyt, Chad

    2016-05-01

    We present a video method to observe the mechanical properties of a lithium magneto-optical trap. A sinusoidally amplitude-modulated laser beam perturbed a collection of trapped ce7 Li atoms and the oscillatory response was recorded with a NAC Memrecam GX-8 high speed camera at 10,000 frames per second. We characterized the trap by modeling the oscillating cold atoms as a damped, driven, harmonic oscillator. Matlab scripts tracked the atomic cloud movement and relative phase directly from the captured high speed video frames. The trap spring constant, with magnetic field gradient bz = 36 G/cm, was measured to be 4 . 5 +/- . 5 ×10-19 N/m, which implies a trap resonant frequency of 988 +/- 55 Hz. Additionally, at bz = 27 G/cm the spring constant was measured to be 2 . 3 +/- . 2 ×10-19 N/m, which corresponds to a resonant frequency of 707 +/- 30 Hz. These properties at bz = 18 G/cm were found to be 8 . 8 +/- . 5 ×10-20 N/m, and 438 +/- 13 Hz. NSF #1245573.

  8. Measuring the magnetic field of a trans-equatorial loop system using coronal seismology

    NASA Astrophysics Data System (ADS)

    Long, D. M.; Valori, G.; Pérez-Suárez, D.; Morton, R. J.; Vásquez, A. M.

    2017-07-01

    Context. EIT waves are freely-propagating global pulses in the low corona which are strongly associated with the initial evolution of coronal mass ejections (CMEs). They are thought to be large-amplitude, fast-mode magnetohydrodynamic waves initially driven by the rapid expansion of a CME in the low corona. Aims: An EIT wave was observed on 6 July 2012 to impact an adjacent trans-equatorial loop system which then exhibited a decaying oscillation as it returned to rest. Observations of the loop oscillations were used to estimate the magnetic field strength of the loop system by studying the decaying oscillation of the loop, measuring the propagation of ubiquitous transverse waves in the loop and extrapolating the magnetic field from observed magnetograms. Methods: Observations from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory (SDO/AIA) and the Coronal Multi-channel Polarimeter (CoMP) were used to study the event. An Empirical Mode Decomposition analysis was used to characterise the oscillation of the loop system in CoMP Doppler velocity and line width and in AIA intensity. Results: The loop system was shown to oscillate in the 2nd harmonic mode rather than at the fundamental frequency, with the seismological analysis returning an estimated magnetic field strength of ≈ 5.5 ± 1.5 G. This compares to the magnetic field strength estimates of ≈1-9 G and ≈3-9 G found using the measurements of transverse wave propagation and magnetic field extrapolation respectively. A movie associated to Figs. 1 and 2 is available at http://www.aanda.org

  9. Generation of Crystal-Structure Transverse Patterns via a Self-Frequency-Doubling Laser

    PubMed Central

    Yu, Haohai; Zhang, Huaijin; Wang, Yicheng; Wang, Zhengping; Wang, Jiyang; Petrov, V.

    2013-01-01

    Two-dimensional (2D) visible crystal-structure patterns analogous to the quantum harmonic oscillator (QHO) have been experimentally observed in the near- and far-fields of a self-frequency-doubling (SFD) microchip laser. Different with the fundamental modes, the localization of the SFD light is changed with the propagation. Calculation based on Hermite-Gaussian (HG) functions and second harmonic generation theory reproduces well the patterns both in the near- and far-field which correspond to the intensity distribution in coordinate and momentum spaces, respectively. Considering the analogy of wave functions of the transverse HG mode and 2D harmonic oscillator, we propose that the simple monolithic SFD lasers can be used for developing of new materials and devices and testing 2D quantum mechanical theories. PMID:23336067

  10. Generation of crystal-structure transverse patterns via a self-frequency-doubling laser.

    PubMed

    Yu, Haohai; Zhang, Huaijin; Wang, Yicheng; Wang, Zhengping; Wang, Jiyang; Petrov, V

    2013-01-01

    Two-dimensional (2D) visible crystal-structure patterns analogous to the quantum harmonic oscillator (QHO) have been experimentally observed in the near- and far-fields of a self-frequency-doubling (SFD) microchip laser. Different with the fundamental modes, the localization of the SFD light is changed with the propagation. Calculation based on Hermite-Gaussian (HG) functions and second harmonic generation theory reproduces well the patterns both in the near- and far-field which correspond to the intensity distribution in coordinate and momentum spaces, respectively. Considering the analogy of wave functions of the transverse HG mode and 2D harmonic oscillator, we propose that the simple monolithic SFD lasers can be used for developing of new materials and devices and testing 2D quantum mechanical theories.

  11. The anisosphere as a new tool for interpreting Foucault pendulum experiments. Part I: harmonic oscillators

    NASA Astrophysics Data System (ADS)

    Verreault, René

    2017-08-01

    In an attempt to explain the tendency of Foucault pendula to develop elliptical orbits, Kamerlingh Onnes derived equations of motion that suggest the use of great circles on a spherical surface as a graphical illustration for an anisotropic bi-dimensional harmonic oscillator, although he did not himself exploit the idea any further. The concept of anisosphere is introduced in this work as a new means of interpreting pendulum motion. It can be generalized to the case of any two-dimensional (2-D) oscillating system, linear or nonlinear, including the case where coupling between the 2 degrees of freedom is present. Earlier pendulum experiments in the literature are revisited and reanalyzed as a test for the anisosphere approach. While that graphical method can be applied to strongly nonlinear cases with great simplicity, this part I is illustrated through a revisit of Kamerlingh Onnes' dissertation, where a high performance pendulum skillfully emulates a 2-D harmonic oscillator. Anisotropy due to damping is also described. A novel experiment strategy based on the anisosphere approach is proposed. Finally, recent original results with a long pendulum using an electronic recording alidade are presented. A gain in precision over traditional methods by 2-3 orders of magnitude is achieved.

  12. Anderson localized state as a predissipative state: irreversible emission of thermalized quanta from a dynamically delocalized state.

    PubMed

    Yamada, Hiroaki; Ikeda, Kensuke S

    2002-04-01

    It was shown that localization in one-dimensional disordered (quantum) electronic system is destroyed against coherent harmonic perturbations and the delocalized electron exhibits an unlimited diffusive motion [Yamada and Ikeda, Phys. Rev. E 59, 5214 (1999)]. The appearance of diffusion implies that the system has potential for irreversibility and dissipation. In the present paper, we investigate dissipative property of the dynamically delocalized state, and we show that an irreversible quasistationary energy flow indeed appears in the form of a "heat" flow when we couple the system with another dynamical degree of freedom. In the concrete we numerically investigate dissipative properties of a one-dimensional tight-binding electronic system perturbed by time-dependent harmonic forces, by coupling it with a quantum harmonic oscillator or a quantum anharmonic oscillator. It is demonstrated that if the on-site potential is spatially irregular an irreversible energy transfer from the scattered electron to the test oscillator occurs. Moreover, the test oscillator promptly approaches a thermalized state characterized by a well-defined time-dependent temperature. On the contrary, such a relaxation process cannot be observed at all for periodic potential systems. Our system is one of the minimal quantum systems in which a distinct nonequilibrium statistical behavior is self-induced.

  13. Coherent electron emission beyond Young-type interference from diatomic molecules

    NASA Astrophysics Data System (ADS)

    Agueny, H.; Makhoute, A.; Dubois, A.; Hansen, J. P.

    2016-01-01

    It has been known for more than 15 years that the differential cross section of electrons emitted from diatomic molecules during interaction with energetic charged particles oscillates as a function of electron momentum. The origin of the phenomenon is two-center interference, which naturally relates it back to the Young double-slit experiment. In addition to a characteristic frequency which can be described by lowest-order perturbation theories, the observation and origin of higher-order harmonics of the basic oscillation frequency has been much discussed. Here, we show that high harmonics of the fundamental Young-type oscillation frequency observed in electron spectra in fast ion-molecule collisions can be clearly exposed in numerical solutions of the time-dependent Schrödinger equation within a one-dimensional model. Momentum distribution of the ejected electron is analyzed and shows that the phenomenon emerges when the charged particle beam collides with diatomic molecules with substantial large internuclear distance. Frequency spectra from nonperturbative calculations for electron emission from Rb2+ and Cs2+ exhibit a pronounced high-order oscillation in contrast to similar close-coupling calculations performed on H2 targets. The electron emission from these heavy molecules contains second- and third-order harmonics which are fully reproduced in an analytic model based on the Born series. Extending to triatomic molecular targets displays an increased range of harmonics. This suggests that electron emission spectra from new experiments on heavy diatomic and linear polyatomic molecular targets may provide a unique insight into competing coherent emission mechanisms and their relative strength.

  14. Magnetically driven oscillator and resonance: a teaching tool

    NASA Astrophysics Data System (ADS)

    Erol, M.; Çolak, İ. Ö.

    2018-05-01

    This paper reports a simple magnetically driven oscillator, designed and resolved in order to achieve a better student understanding and to overcome certain instructional difficulties. The apparatus is mainly comprised of an ordinary spring pendulum with a neodymium magnet attached to the bottom, a coil placed in the same vertical direction, an ordinary function generator, an oscilloscope and a smartphone. Driven oscillation and resonance is basically managed by applying a sinusoidal voltage to the coil and tuning the driving frequency to the natural frequency of the pendulum. The resultant oscillation is recorded by a smartphone video application and analyzed via a video analysis programme. The designed apparatus can easily be employed in basic physics laboratories to achieve an enhanced and deeper understanding of driven oscillation and resonance.

  15. Relaxation oscillation suppression in continuous-wave intracavity optical parametric oscillators.

    PubMed

    Stothard, David J M; Dunn, Malcolm H

    2010-01-18

    We report a solution to the long standing problem of the occurrence of spontaneous and long-lived bursts of relaxation oscillations which occur when a continuous-wave optical parametric oscillator is operated within the cavity of the parent pump-laser. By placing a second nonlinear crystal within the pump-wave cavity for the purpose of second-harmonic-generation of the pump-wave the additional nonlinear loss thereby arising due to up-conversion effectively suppresses the relaxation oscillations with very little reduction in down-converted power.

  16. Generation of high-intensity sub-30 as pulses by inhomogeneous polarization gating technology in bowtie-shaped nanostructure

    NASA Astrophysics Data System (ADS)

    Feng, Liqiang; Feng, A. Yuanzi

    2018-04-01

    The generation of high-order harmonics and single attosecond pulses (SAPs) from He atom driven by the inhomogeneous polarization gating technology in a bowtie-shaped nanostructure is theoretically investigated. The results show that by the proper addition of bowtie-shaped nanostructure along the driven laser polarization direction, the harmonic emission becomes sensitive to the position of the laser field, and the harmonics emitted at the maximum orders that generate SAPs occur only at one side of the region inside the nanostructure. As a result, not only the harmonic cutoff can be extended, but also the modulations of the harmonics can be decreased, showing a carrier envelope phase independent harmonic cutoff with a bandwidth of 310 eV. Further, with the proper introduction of an ultraviolet pulse, the harmonic yield can be enhanced by 2 orders of magnitude. Finally, by the Fourier transformation of the selected harmonics, some SAPs with a full width at half maximum of sub-30 as can be obtained.

  17. A Harmonic Motion Experiment

    ERIC Educational Resources Information Center

    Gluck, P.; Krakower, Zeev

    2010-01-01

    We present a unit comprising theory, simulation and experiment for a body oscillating on a vertical spring, in which the simultaneous use of a force probe and an ultrasonic range finder enables one to explore quantitatively and understand many aspects of simple and damped harmonic motions. (Contains 14 figures.)

  18. Confined One Dimensional Harmonic Oscillator as a Two-Mode System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gueorguiev, V G; Rau, A P; Draayer, J P

    2005-07-11

    The one-dimensional harmonic oscillator in a box problem is possibly the simplest example of a two-mode system. This system has two exactly solvable limits, the harmonic oscillator and a particle in a (one-dimensional) box. Each of the two limits has a characteristic spectral structure describing the two different excitation modes of the system. Near each of these limits, one can use perturbation theory to achieve an accurate description of the eigenstates. Away from the exact limits, however, one has to carry out a matrix diagonalization because the basis-state mixing that occurs is typically too large to be reproduced in anymore » other way. An alternative to casting the problem in terms of one or the other basis set consists of using an ''oblique'' basis that uses both sets. Through a study of this alternative in this one-dimensional problem, we are able to illustrate practical solutions and infer the applicability of the concept for more complex systems, such as in the study of complex nuclei where oblique-basis calculations have been successful.« less

  19. ABC of ladder operators for rationally extended quantum harmonic oscillator systems

    NASA Astrophysics Data System (ADS)

    Cariñena, José F.; Plyushchay, Mikhail S.

    2017-07-01

    The problem of construction of ladder operators for rationally extended quantum harmonic oscillator (REQHO) systems of a general form is investigated in the light of existence of different schemes of the Darboux-Crum-Krein-Adler transformations by which such systems can be generated from the quantum harmonic oscillator. Any REQHO system is characterized by the number of separated states in its spectrum, the number of ‘valence bands’ in which the separated states are organized, and by the total number of the missing energy levels and their position. All these peculiarities of a REQHO system are shown to be detected and reflected by a trinity (A^+/- , B^+/- , C^+/-) of the basic (primary) lowering and raising ladder operators related between themselves by certain algebraic identities with coefficients polynomially-dependent on the Hamiltonian. We show that all the secondary, higher-order ladder operators are obtainable by a composition of the basic ladder operators of the trinity which form the set of the spectrum-generating operators. Each trinity, in turn, can be constructed from the intertwining operators of the two complementary minimal schemes of the Darboux-Crum-Krein-Adler transformations.

  20. A new FPGA-driven P-HIFU system with harmonic cancellation technique

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Shen, Guofeng; Su, Zhiqiang; Chen, Yazhu

    2017-03-01

    This paper introduces a high intensity focused ultrasound system for ablation using switch-mode power amplifiers with harmonic cancellation technique eliminating the 3rdharmonic and all even harmonics. The efficiency of the amplifier is optimized by choosing different parameters of the harmonic cancellation technique. This technique requires double driving signals, and specific signal waveform because of the full-bridge topology. The new FPGA-driven P-HIFU system has 200 channels of phase signals that can form 100 output channels. An FPGA chip is used to generate these signals, and each channel has a phase resolution of 2 ns, less than one degree. The output waveform of the amplifier, voltage waveform across the transducer, shows fewer harmonic components.

  1. Quantized discrete space oscillators

    NASA Technical Reports Server (NTRS)

    Uzes, C. A.; Kapuscik, Edward

    1993-01-01

    A quasi-canonical sequence of finite dimensional quantizations was found which has canonical quantization as its limit. In order to demonstrate its practical utility and its numerical convergence, this formalism is applied to the eigenvalue and 'eigenfunction' problem of several harmonic and anharmonic oscillators.

  2. Gauge theory for finite-dimensional dynamical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gurfil, Pini

    2007-06-15

    Gauge theory is a well-established concept in quantum physics, electrodynamics, and cosmology. This concept has recently proliferated into new areas, such as mechanics and astrodynamics. In this paper, we discuss a few applications of gauge theory in finite-dimensional dynamical systems. We focus on the concept of rescriptive gauge symmetry, which is, in essence, rescaling of an independent variable. We show that a simple gauge transformation of multiple harmonic oscillators driven by chaotic processes can render an apparently ''disordered'' flow into a regular dynamical process, and that there exists a strong connection between gauge transformations and reduction theory of ordinary differentialmore » equations. Throughout the discussion, we demonstrate the main ideas by considering examples from diverse fields, including quantum mechanics, chemistry, rigid-body dynamics, and information theory.« less

  3. 𝒩 = 2 supersymmetric Pais-Uhlenbeck oscillator

    NASA Astrophysics Data System (ADS)

    Masterov, Ivan

    2015-06-01

    We construct an 𝒩 = 2 supersymmetric extension of the Pais-Uhlenbeck oscillator for distinct frequencies of oscillation. A link to a set of decoupled 𝒩 = 2 supersymmetric harmonic oscillators with alternating sign in the Hamiltonian is introduced. Symmetries of the model are discussed in detail. The investigation of a quantum counterpart of the constructed model shows that the corresponding Fock space contains negative norm states and the energy spectrum of the system is unbounded from below.

  4. Molecular Solid EOS based on Quasi-Harmonic Oscillator approximation for phonons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menikoff, Ralph

    2014-09-02

    A complete equation of state (EOS) for a molecular solid is derived utilizing a Helmholtz free energy. Assuming that the solid is nonconducting, phonon excitations dominate the specific heat. Phonons are approximated as independent quasi-harmonic oscillators with vibrational frequencies depending on the specific volume. The model is suitable for calibrating an EOS based on isothermal compression data and infrared/Raman spectroscopy data from high pressure measurements utilizing a diamond anvil cell. In contrast to a Mie-Gruneisen EOS developed for an atomic solid, the specific heat and Gruneisen coefficient depend on both density and temperature.

  5. Optimal control of a harmonic oscillator: Economic interpretations

    NASA Astrophysics Data System (ADS)

    Janová, Jitka; Hampel, David

    2013-10-01

    Optimal control is a popular technique for modelling and solving the dynamic decision problems in economics. A standard interpretation of the criteria function and Lagrange multipliers in the profit maximization problem is well known. On a particular example, we aim to a deeper understanding of the possible economic interpretations of further mathematical and solution features of the optimal control problem: we focus on the solution of the optimal control problem for harmonic oscillator serving as a model for Phillips business cycle. We discuss the economic interpretations of arising mathematical objects with respect to well known reasoning for these in other problems.

  6. Entanglement of a class of non-Gaussian states in disordered harmonic oscillator systems

    NASA Astrophysics Data System (ADS)

    Abdul-Rahman, Houssam

    2018-03-01

    For disordered harmonic oscillator systems over the d-dimensional lattice, we consider the problem of finding the bipartite entanglement of the uniform ensemble of the energy eigenstates associated with a particular number of modes. Such an ensemble defines a class of mixed, non-Gaussian entangled states that are labeled, by the energy of the system, in an increasing order. We develop a novel approach to find the exact logarithmic negativity of this class of states. We also prove entanglement bounds and demonstrate that the low energy states follow an area law.

  7. Forecasting of Machined Surface Waviness on the Basis of Self-oscillations Analysis

    NASA Astrophysics Data System (ADS)

    Belov, E. B.; Leonov, S. L.; Markov, A. M.; Sitnikov, A. A.; Khomenko, V. A.

    2017-01-01

    The paper states a problem of providing quality of geometrical characteristics of machined surfaces, which makes it necessary to forecast the occurrence and amount of oscillations appearing in the course of mechanical treatment. Objectives and tasks of the research are formulated. Sources of oscillation onset are defined: these are coordinate connections and nonlinear dependence of cutting force on the cutting velocity. A mathematical model of forecasting steady-state self-oscillations is investigated. The equation of the cutter tip motion is a system of two second-order nonlinear differential equations. The paper shows an algorithm describing a harmonic linearization method which allows for a significant reduction of the calculation time. In order to do that it is necessary to determine the amplitude of oscillations, frequency and a steady component of the first harmonic. Software which allows obtaining data on surface waviness parameters is described. The paper studies an example of the use of the developed model in semi-finished lathe machining of the shaft made from steel 40H which is a part of the BelAZ wheel electric actuator unit. Recommendations on eliminating self-oscillations in the process of shaft cutting and defect correction of the surface waviness are given.

  8. Relativistic harmonic oscillator revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bars, Itzhak

    2009-02-15

    The familiar Fock space commonly used to describe the relativistic harmonic oscillator, for example, as part of string theory, is insufficient to describe all the states of the relativistic oscillator. We find that there are three different vacua leading to three disconnected Fock sectors, all constructed with the same creation-annihilation operators. These have different spacetime geometric properties as well as different algebraic symmetry properties or different quantum numbers. Two of these Fock spaces include negative norm ghosts (as in string theory), while the third one is completely free of ghosts. We discuss a gauge symmetry in a worldline theory approachmore » that supplies appropriate constraints to remove all the ghosts from all Fock sectors of the single oscillator. The resulting ghost-free quantum spectrum in d+1 dimensions is then classified in unitary representations of the Lorentz group SO(d,1). Moreover, all states of the single oscillator put together make up a single infinite dimensional unitary representation of a hidden global symmetry SU(d,1), whose Casimir eigenvalues are computed. Possible applications of these new results in string theory and other areas of physics and mathematics are briefly mentioned.« less

  9. Second- and third-harmonic generation in metal-based structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scalora, M.; Akozbek, N.; Bloemer, M. J.

    We present a theoretical approach to the study of second- and third-harmonic generation from metallic structures and nanocavities filled with a nonlinear material in the ultrashort pulse regime. We model the metal as a two-component medium, using the hydrodynamic model to describe free electrons and Lorentz oscillators to account for core electron contributions to both the linear dielectric constant and harmonic generation. The active nonlinear medium that may fill a metallic nanocavity, or be positioned between metallic layers in a stack, is also modeled using Lorentz oscillators and surface phenomena due to symmetry breaking are taken into account. We studymore » the effects of incident TE- and TM-polarized fields and show that a simple reexamination of the basic equations reveals additional, exploitable dynamical features of nonlinear frequency conversion in plasmonic nanostructures.« less

  10. Multichannel high-order harmonic generation from solids

    NASA Astrophysics Data System (ADS)

    Du, Tao-Yuan; Tang, Dong; Huang, Xiao-Huan; Bian, Xue-Bin

    2018-04-01

    We studied the ultrafast dynamics of high-order harmonic generation (HHG) from solids numerically. It is found that a superposition of Bloch oscillation in the same band and Zenner tunneling to its neighboring conduction band (i.e., Bloch-Zener oscillation effect) play significant roles in HHG when the Bloch electrons cross the boundary of the first Brillouin zone. It increases the number of the harmonic emission channels. These multichannel signals extend the cutoff energy of the plateau in the HHG spectra and enhance both the intra- and interband contributions. The interference of different channels makes the structure of the HHG spectra complex. The multichannel dynamics in the monochromatic and two-color laser fields are demonstrated in a periodic potential model and single-crystal MgO, respectively. It provides an alternative way to control the ultrafast electron dynamics and HHG emission processes in solids.

  11. Higher harmonics generation in relativistic electron beam with virtual cathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurkin, S. A., E-mail: KurkinSA@gmail.com; Badarin, A. A.; Koronovskii, A. A.

    2014-09-15

    The study of the microwave generation regimes with intense higher harmonics taking place in a high-power vircator consisting of a relativistic electron beam with a virtual cathode has been made. The characteristics of these regimes, in particular, the typical spectra and their variations with the change of the system parameters (beam current, the induction of external magnetic field) as well as physical processes occurring in the system have been analyzed by means of 3D electromagnetic simulation. It has been shown that the system under study demonstrates the tendency to the sufficient growth of the amplitudes of higher harmonics in themore » spectrum of current oscillations in the VC region with the increase of beam current. The obtained results allow us to consider virtual cathode oscillators as promising high power mmw-to-THz sources.« less

  12. REVIEWS OF TOPICAL PROBLEMS: Periodic weather and climate variations

    NASA Astrophysics Data System (ADS)

    Ivanov, Vladimir V.

    2002-07-01

    Variations in meteorological parameters are largely due to periodic processes and can be forecast for several years. Many such processes are related to astronomical factors such as the gravitational influences of the Moon and the Sun, and the modulation of solar irradiance by lunar and planetary motion. The Moon, Jupiter, and Venus have the strongest effect. These influences produce lines in the spectra of meteorological variations, which are combinations of the harmonics of the frequencies of revolution of the planets, the Earth, and the Moon around the Sun with the harmonics of the lunar revolution around the Earth. Due to frequency differences between the orbital and radial motions, fine spectral features of three types appear: line splitting, line-profile complications due to radial oscillations, and additional lines due to the combination of radial-oscillation frequencies with perturbation harmonics.

  13. The Influence of Second Harmonic Phase and Amplitude Variation in Cyclically Pitching Wings

    NASA Astrophysics Data System (ADS)

    Culler, Ethan; Farnsworth, John

    2017-11-01

    From wind tunnel testing of a cyber-physical wing model, it has been found that the pitch trajectory for stall flutter is described by an array of higher harmonic frequencies with decaying energy content. These frequencies distort the stall flutter motion from that of a pure sinusoidal oscillation in pitch and can have a significant effect on the resulting force production. In order to understand how these higher harmonic frequencies contribute to the overall pitching moment characteristics of a wing in stall flutter, a rigid finite span wing model, with aspect ratio four, was pitched in the wind tunnel. The prescribed motion of the pitch cycle was varied by changing the amplitude ratio and phase of the second harmonic of the oscillation frequency. The second harmonic represents the second highest energy mode in the pitching cycle spectra. Pitching moment and planar particle image velocimetry data was collected. From these pitching trajectories, a significant dependence of pitching moment on both the phase and amplitude of the prescribed waveforms was found. Specifically, for the same amplitude ratio, variations in the phase produced changes of approximately 30 percent in the phase averaged pitching moment.

  14. Thermally and electrically controllable multiple high harmonics generation by harmonically driven quasi-two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Maglevanny, I. I.; Smolar, V. A.; Karyakina, T. I.

    2018-06-01

    In this paper, we consider the activation processes in nonlinear meta-stable system based on a lateral (quasi-two-dimensional) superlattice and study the dynamics of such a system externally driven by a harmonic force. The internal control parameters are the longitudinal applied electric field and the sample temperature. The spontaneous transverse electric field is considered as an order parameter. The forced violations of order parameter are considered as a response of a system to periodic driving. We investigate the cooperative effects of self-organization and high harmonic forcing from the viewpoint of catastrophe theory and show the possibility of generation of third and higher odd harmonics in output signal that lead to distortion of its wave front. A higher harmonics detection strategy is further proposed and explained in detail by exploring the influences of system parameters on the response output of the system that are discussed through numerical simulations.

  15. Energy diffusion controlled reaction rate of reacting particle driven by broad-band noise

    NASA Astrophysics Data System (ADS)

    Deng, M. L.; Zhu, W. Q.

    2007-10-01

    The energy diffusion controlled reaction rate of a reacting particle with linear weak damping and broad-band noise excitation is studied by using the stochastic averaging method. First, the stochastic averaging method for strongly nonlinear oscillators under broad-band noise excitation using generalized harmonic functions is briefly introduced. Then, the reaction rate of the classical Kramers' reacting model with linear weak damping and broad-band noise excitation is investigated by using the stochastic averaging method. The averaged Itô stochastic differential equation describing the energy diffusion and the Pontryagin equation governing the mean first-passage time (MFPT) are established. The energy diffusion controlled reaction rate is obtained as the inverse of the MFPT by solving the Pontryagin equation. The results of two special cases of broad-band noises, i.e. the harmonic noise and the exponentially corrected noise, are discussed in details. It is demonstrated that the general expression of reaction rate derived by the authors can be reduced to the classical ones via linear approximation and high potential barrier approximation. The good agreement with the results of the Monte Carlo simulation verifies that the reaction rate can be well predicted using the stochastic averaging method.

  16. Helicity-Selective Enhancement and Polarization Control of Attosecond High Harmonic Waveforms Driven by Bichromatic Circularly Polarized Laser Fields.

    PubMed

    Dorney, Kevin M; Ellis, Jennifer L; Hernández-García, Carlos; Hickstein, Daniel D; Mancuso, Christopher A; Brooks, Nathan; Fan, Tingting; Fan, Guangyu; Zusin, Dmitriy; Gentry, Christian; Grychtol, Patrik; Kapteyn, Henry C; Murnane, Margaret M

    2017-08-11

    High harmonics driven by two-color counterrotating circularly polarized laser fields are a unique source of bright, circularly polarized, extreme ultraviolet, and soft x-ray beams, where the individual harmonics themselves are completely circularly polarized. Here, we demonstrate the ability to preferentially select either the right or left circularly polarized harmonics simply by adjusting the relative intensity ratio of the bichromatic circularly polarized driving laser field. In the frequency domain, this significantly enhances the harmonic orders that rotate in the same direction as the higher-intensity driving laser. In the time domain, this helicity-dependent enhancement corresponds to control over the polarization of the resulting attosecond waveforms. This helicity control enables the generation of circularly polarized high harmonics with a user-defined polarization of the underlying attosecond bursts. In the future, this technique should allow for the production of bright highly elliptical harmonic supercontinua as well as the generation of isolated elliptically polarized attosecond pulses.

  17. The shifted harmonic approximation and asymptotic SU(2) and SU(1,1) Clebsch-Gordan coefficients

    NASA Astrophysics Data System (ADS)

    Rowe, D. J.; de Guise, Hubert

    2010-12-01

    Clebsch-Gordan coefficients of SU(2) and SU(1,1) are defined as eigenfunctions of a linear operator acting on the tensor product of the Hilbert spaces for two irreps of these groups. The shifted harmonic approximation is then used to solve these equations in asymptotic limits in which these eigenfunctions approach harmonic oscillator wavefunctions and thereby derive asymptotic expressions for these Clebsch-Gordan coefficients.

  18. Analysis of variability in the burst oscillations of the accreting millisecond pulsar XTE J1814-338

    NASA Technical Reports Server (NTRS)

    Watts, Anna L.; Strohmayer, Tod E.; Markwardt, Craig B.

    2005-01-01

    The accreting millisecond pulsar XTE J1814-338 exhibits oscillations at the known spin frequency during Type I X-ray bursts. The properties of the burst oscillations reflect the nature of the thermal asymmetry on the stellar surface. We present an analysis of the variability of the burst oscillations of this source, focusing on three characteristics: fractional amplitude, harmonic content and frequency. Fractional amplitude and harmonic content constrain the size, shape and position of the emitting region, whilst variations in frequency indicate motion of the emitting region on the neutron star surface. We examine both long-term variability over the course of the outburst, and short-term variability during the bursts. For most of the bursts, fractional amplitude is consistent with that of the accretion pulsations, implying a low degree of fuel spread. There is however a population of bursts whose fractional amplitudes are substantially lower, implying a higher degree of fuel spread, possibly forced by the explosive burning front of a precursor burst. For the first harmonic, substantial differences between the burst and accretion pulsations suggest that hotspot geometry is not the only mechanism giving rise to harmonic content in the latter. Fractional amplitude variability during the bursts is low; we can only rule out the hypothesis that the fractional amplitude remains constant at the l(sigma) level for bursts that do not exhibit photospheric radius expansion (PRE). There are no significant variations in frequency in any of the bursts except for the one burst that exhibits PRE. This burst exhibits a highly significant but small (= 0.1Hz) drop in frequency in the burst rise. The timescale of the frequency shift is slower than simple burning layer expansion models predict, suggesting that other mechanisms may be at work.

  19. Analysing harmonic motions with an iPhone’s magnetometer

    NASA Astrophysics Data System (ADS)

    Yavuz, Ahmet; Kağan Temiz, Burak

    2016-05-01

    In this paper, we propose an experiment for analysing harmonic motion using an iPhone’s (or iPad’s) magnetometer. This experiment consists of the detection of magnetic field variations obtained from an iPhone’s magnetometer sensor. A graph of harmonic motion is directly displayed on the iPhone’s screen using the Sensor Kinetics application. Data from this application was analysed with Eureqa software to establish the equation of the harmonic motion. Analyses show that the use of an iPhone’s magnetometer to analyse harmonic motion is a practical and effective method for small oscillations and frequencies less than 15-20 Hz.

  20. Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components

    NASA Astrophysics Data System (ADS)

    Müller-Putz, Gernot R.; Scherer, Reinhold; Brauneis, Christian; Pfurtscheller, Gert

    2005-12-01

    Brain-computer interfaces (BCIs) can be realized on the basis of steady-state evoked potentials (SSEPs). These types of brain signals resulting from repetitive stimulation have the same fundamental frequency as the stimulation but also include higher harmonics. This study investigated how the classification accuracy of a 4-class BCI system can be improved by incorporating visually evoked harmonic oscillations. The current study revealed that the use of three SSVEP harmonics yielded a significantly higher classification accuracy than was the case for one or two harmonics. During feedback experiments, the five subjects investigated reached a classification accuracy between 42.5% and 94.4%.

  1. Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components.

    PubMed

    Müller-Putz, Gernot R; Scherer, Reinhold; Brauneis, Christian; Pfurtscheller, Gert

    2005-12-01

    Brain-computer interfaces (BCIs) can be realized on the basis of steady-state evoked potentials (SSEPs). These types of brain signals resulting from repetitive stimulation have the same fundamental frequency as the stimulation but also include higher harmonics. This study investigated how the classification accuracy of a 4-class BCI system can be improved by incorporating visually evoked harmonic oscillations. The current study revealed that the use of three SSVEP harmonics yielded a significantly higher classification accuracy than was the case for one or two harmonics. During feedback experiments, the five subjects investigated reached a classification accuracy between 42.5% and 94.4%.

  2. Bicoherence Analysis of Electrostatic Interchange Mode Coupling in a Turbulent Laboratory Magnetosphere

    NASA Astrophysics Data System (ADS)

    Abler, M. C.; Saperstein, A.; Yan, J. R.; Mauel, M. E.

    2017-10-01

    Plasmas confined by a strong dipole field exhibit interchange and entropy mode turbulence, which previous experiments have shown respond locally to active feedback. On the Collisionless Terrella Experiment (CTX), this turbulence is characterized by low frequency, low order, quasi-coherent modes with complex spectral dynamics. We apply bicoherence analysis to study nonlinear phase coupling in a variety of scenarios. First, we study the self-interaction of the naturally occurring interchange turbulence; this analysis is then expanded to include the effects of driven modes in the frequency range of the background turbulent oscillations. Initial measurements of coupling coefficients are presented in both cases. Driven low frequency interchange modes are observed to generate multiple harmonics which persist throughout the plasma, becoming weaker as they propagate away from the actuator in the direction of the electron magnetic drift. Future work is also discussed, including application of wavelet bicoherence analysis, excitation of interchange modes at multiple frequencies, and applications to planetary magnetospheres. Supported by NSF-DOE Partnership for Plasma Science Grants DOE-DE-FG02-00ER54585.

  3. Noise-driven switching and chaotic itinerancy among dynamic states in a three-mode intracavity second-harmonic generation laser operating on a Λ transition

    NASA Astrophysics Data System (ADS)

    Otsuka, Kenju; Ohtomo, Takayuki; Maniwa, Tsuyoshi; Kawasaki, Hazumi; Ko, Jing-Yuan

    2003-09-01

    We studied the antiphase self-pulsation in a globally coupled three-mode laser operating in different optical spectrum configurations. We observed locking of modal pulsation frequencies, quasiperiodicity, clustering behaviors, and chaos, resulting from the nonlinear interaction among modes. The robustness of [p:q:r] three-frequency locking states and quasiperiodic oscillations against residual noise has been examined by using joint time-frequency analysis of long-term experimental time series. Two sharply antithetical types of switching behaviors among different dynamic states were observed during temporal evolutions; noise-driven switching and self-induced switching, which manifests itself in chaotic itinerancy. The modal interplay behind observed behaviors was studied by using the statistical dynamic quantity of the information circulation. Well-organized information flows among modes, which correspond to the number of degeneracies of modal pulsation frequencies, were found to be established in accordance with the inherent antiphase dynamics. Observed locking behaviors, quasiperiodic motions, and chaotic itinerancy were reproduced by numerical simulation of the model equations.

  4. Intensity distributions and isolated attosecond pulse generation from molecular high-order harmonic generation in H2+ driven by nonhomogeneous field

    NASA Astrophysics Data System (ADS)

    Feng, Liqiang; Chu, Tianshu

    2017-10-01

    Intensity distributions and isolated attosecond pulse generation from the molecular high-order harmonic generation (MHHG) in H2+ and T2+ driven by the nonhomogeneous field have been theoretically investigated. (i) Generally speaking, the intensities of the harmonics driven by the homogeneous field can be enhanced as the initial vibrational state increases and much more intense harmonics can be obtained from the light nuclei. However, with the introduction of the nonhomogeneous effect, the enhanced ratios of the harmonic yields are decreased as the initial vibrational state increases. Moreover, the intensities of the harmonics from H2+ and T2+ are very sensitive to the nonhomogeneous effect of the laser field. (ii) The contributions of the MHHG from the two-H nuclei present the periodic variation as a function of the laser phase for the case of the symmetric nonhomogeneous field. However, for the case of the positive and the negative asymmetric nonhomogeneous fields, the left-H and the right-H play the dominating role in the MHHG, respectively. Moreover, as the angle between the laser polarization direction and the molecular axis increases, the intensity differences of the harmonics from the two-H nuclei are increased. (iii) By properly adding a half-cycle pulse into the positive asymmetric nonhomogeneous field, a supercontinuum with the bandwidth of 279 eV and an isolated 25 as pulse can be obtained.

  5. Continuous variable quantum optical simulation for time evolution of quantum harmonic oscillators

    PubMed Central

    Deng, Xiaowei; Hao, Shuhong; Guo, Hong; Xie, Changde; Su, Xiaolong

    2016-01-01

    Quantum simulation enables one to mimic the evolution of other quantum systems using a controllable quantum system. Quantum harmonic oscillator (QHO) is one of the most important model systems in quantum physics. To observe the transient dynamics of a QHO with high oscillation frequency directly is difficult. We experimentally simulate the transient behaviors of QHO in an open system during time evolution with an optical mode and a logical operation system of continuous variable quantum computation. The time evolution of an atomic ensemble in the collective spontaneous emission is analytically simulated by mapping the atomic ensemble onto a QHO. The measured fidelity, which is used for quantifying the quality of the simulation, is higher than its classical limit. The presented simulation scheme provides a new tool for studying the dynamic behaviors of QHO. PMID:26961962

  6. Current-driven ion-acoustic and potential-relaxation instabilities excited in plasma plume during electron beam welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trushnikov, D. N., E-mail: trdimitr@yandex.ru; Mladenov, G. M., E-mail: gmmladenov@abv.bg; Koleva, E. G., E-mail: eligeorg@abv.bg

    Many papers have sought correlations between the parameters of secondary particles generated above the beam/work piece interaction zone, dynamics of processes in the keyhole, and technological processes. Low- and high-frequency oscillations of the current, collected by plasma have been observed above the welding zone during electron beam welding. Low-frequency oscillations of secondary signals are related to capillary instabilities of the keyhole, however; the physical mechanisms responsible for the high-frequency oscillations (>10 kHz) of the collected current are not fully understood. This paper shows that peak frequencies in the spectra of the collected high-frequency signal are dependent on the reciprocal distancemore » between the welding zone and collector electrode. From the relationship between current harmonics frequency and distance of the collector/welding zone, it can be estimated that the draft velocity of electrons or phase velocity of excited waves is about 1600 m/s. The dispersion relation with the properties of ion-acoustic waves is related to electron temperature 10 000 K, ion temperature 2 400 K and plasma density 10{sup 16} m{sup −3}, which is analogues to the parameters of potential-relaxation instabilities, observed in similar conditions. The estimated critical density of the transported current for creating the anomalous resistance state of plasma is of the order of 3 A·m{sup −2}, i.e. 8 mA for a 3–10 cm{sup 2} collector electrode. Thus, it is assumed that the observed high-frequency oscillations of the current collected by the positive collector electrode are caused by relaxation processes in the plasma plume above the welding zone, and not a direct demonstration of oscillations in the keyhole.« less

  7. Current-driven ion-acoustic and potential-relaxation instabilities excited in plasma plume during electron beam welding

    NASA Astrophysics Data System (ADS)

    Trushnikov, D. N.; Mladenov, G. M.; Belenkiy, V. Ya.; Koleva, E. G.; Varushkin, S. V.

    2014-04-01

    Many papers have sought correlations between the parameters of secondary particles generated above the beam/work piece interaction zone, dynamics of processes in the keyhole, and technological processes. Low- and high-frequency oscillations of the current, collected by plasma have been observed above the welding zone during electron beam welding. Low-frequency oscillations of secondary signals are related to capillary instabilities of the keyhole, however; the physical mechanisms responsible for the high-frequency oscillations (>10 kHz) of the collected current are not fully understood. This paper shows that peak frequencies in the spectra of the collected high-frequency signal are dependent on the reciprocal distance between the welding zone and collector electrode. From the relationship between current harmonics frequency and distance of the collector/welding zone, it can be estimated that the draft velocity of electrons or phase velocity of excited waves is about 1600 m/s. The dispersion relation with the properties of ion-acoustic waves is related to electron temperature 10 000 K, ion temperature 2 400 K and plasma density 1016 m-3, which is analogues to the parameters of potential-relaxation instabilities, observed in similar conditions. The estimated critical density of the transported current for creating the anomalous resistance state of plasma is of the order of 3 A.m-2, i.e. 8 mA for a 3-10 cm2 collector electrode. Thus, it is assumed that the observed high-frequency oscillations of the current collected by the positive collector electrode are caused by relaxation processes in the plasma plume above the welding zone, and not a direct demonstration of oscillations in the keyhole.

  8. Resonance-modulated wavelength scaling of high-order-harmonic generation from H2+

    NASA Astrophysics Data System (ADS)

    Wang, Baoning; He, Lixin; Wang, Feng; Yuan, Hua; Zhu, Xiaosong; Lan, Pengfei; Lu, Peixiang

    2018-01-01

    Wavelength scaling of high-order harmonic generation (HHG) in a non-Born-Oppenheimer treatment of H2+ is investigated by numerical simulations of the time-dependent Schrödinger equation. The results show that the decrease in the wavelength-dependent HHG yield is reduced compared to that in the fixed-nucleus approximation. This slower wavelength scaling is related to the charge-resonance-enhanced ionization effect, which considerably increases the ionization rate at longer driving laser wavelengths due to the relatively larger nuclear separation. In addition, we find an oscillation structure in the wavelength scaling of HHG from H2+. Upon decreasing the laser intensity or increasing the nuclear mass, the oscillation structure will shift towards a longer wavelength of the laser pulse. These results permit the generation of an efficient harmonic spectrum in the midinfrared regime by manipulating the nuclear dynamics of molecules.

  9. Spontaneous decoherence of coupled harmonic oscillators confined in a ring

    NASA Astrophysics Data System (ADS)

    Gong, ZhiRui; Zhang, ZhenWei; Xu, DaZhi; Zhao, Nan; Sun, ChangPu

    2018-04-01

    We study the spontaneous decoherence of coupled harmonic oscillators confined in a ring container, where the nearest-neighbor harmonic potentials are taken into consideration. Without any external symmetry-breaking field or surrounding environment, the quantum superposition state prepared in the relative degrees of freedom gradually loses its quantum coherence spontaneously. This spontaneous decoherence is interpreted by the gauge couplings between the center-of-mass and the relative degrees of freedoms, which actually originate from the symmetries of the ring geometry and the corresponding nontrivial boundary conditions. In particular, such spontaneous decoherence does not occur at all at the thermodynamic limit because the nontrivial boundary conditions become the trivial Born-von Karman boundary conditions when the perimeter of the ring container tends to infinity. Our investigation shows that a thermal macroscopic object with certain symmetries has a chance for its quantum properties to degrade even without applying an external symmetry-breaking field or surrounding environment.

  10. Wigner distribution function and entropy of the damped harmonic oscillator within the theory of the open quantum systems

    NASA Technical Reports Server (NTRS)

    Isar, Aurelian

    1995-01-01

    The harmonic oscillator with dissipation is studied within the framework of the Lindblad theory for open quantum systems. By using the Wang-Uhlenbeck method, the Fokker-Planck equation, obtained from the master equation for the density operator, is solved for the Wigner distribution function, subject to either the Gaussian type or the delta-function type of initial conditions. The obtained Wigner functions are two-dimensional Gaussians with different widths. Then a closed expression for the density operator is extracted. The entropy of the system is subsequently calculated and its temporal behavior shows that this quantity relaxes to its equilibrium value.

  11. Harmonic oscillators and resonance series generated by a periodic unstable classical orbit

    NASA Technical Reports Server (NTRS)

    Kazansky, A. K.; Ostrovsky, Valentin N.

    1995-01-01

    The presence of an unstable periodic classical orbit allows one to introduce the decay time as a purely classical magnitude: inverse of the Lyapunov index which characterizes the orbit instability. The Uncertainty Relation gives the corresponding resonance width which is proportional to the Planck constant. The more elaborate analysis is based on the parabolic equation method where the problem is effectively reduced to the multidimensional harmonic oscillator with the time-dependent frequency. The resonances form series in the complex energy plane which is equidistant in the direction perpendicular to the real axis. The applications of the general approach to various problems in atomic physics are briefly exposed.

  12. Protective measurement of the wave function of a single squeezed harmonic-oscillator state

    NASA Astrophysics Data System (ADS)

    Alter, Orly; Yamamoto, Yoshihisa

    1996-05-01

    A scheme for the "protective measurement"

    [Phys. Rev. A 47, 4616 (1993)]
    of the wave function of a squeezed harmonic-oscillator state is described. This protective measurement is shown to be equivalent to a measurement of an ensemble of states. The protective measurement, therefore, allows for a definition of the quantum wave function on a single system. Yet, this equivalency also suggests that both measurement schemes account for the epistemological meaning of the wave function only. The protective measurement requires a full a priori knowledge of the measured state. The intermediate cases, in which only partial a priori information is given, are also discussed.

  13. Adiabatic dynamics of one-dimensional classical Hamiltonian dissipative systems

    NASA Astrophysics Data System (ADS)

    Pritula, G. M.; Petrenko, E. V.; Usatenko, O. V.

    2018-02-01

    A linearized plane pendulum with the slowly varying mass and length of string and the suspension point moving at a slowly varying speed is presented as an example of a simple 1D mechanical system described by the generalized harmonic oscillator equation, which is a basic model in discussion of the adiabatic dynamics and geometric phase. The expression for the pendulum geometric phase is obtained by three different methods. The pendulum is shown to be canonically equivalent to the damped harmonic oscillator. This supports the mathematical conclusion, not widely accepted in physical community, of no difference between the dissipative and Hamiltonian 1D systems.

  14. Coherent states for the relativistic harmonic oscillator

    NASA Technical Reports Server (NTRS)

    Aldaya, Victor; Guerrero, J.

    1995-01-01

    Recently we have obtained, on the basis of a group approach to quantization, a Bargmann-Fock-like realization of the Relativistic Harmonic Oscillator as well as a generalized Bargmann transform relating fock wave functions and a set of relativistic Hermite polynomials. Nevertheless, the relativistic creation and annihilation operators satisfy typical relativistic commutation relations of the Lie product (vector-z, vector-z(sup dagger)) approximately equals Energy (an SL(2,R) algebra). Here we find higher-order polarization operators on the SL(2,R) group, providing canonical creation and annihilation operators satisfying the Lie product (vector-a, vector-a(sup dagger)) = identity vector 1, the eigenstates of which are 'true' coherent states.

  15. Linear canonical transformations of coherent and squeezed states in the Wigner phase space

    NASA Technical Reports Server (NTRS)

    Han, D.; Kim, Y. S.; Noz, Marilyn E.

    1988-01-01

    It is shown that classical linear canonical transformations are possible in the Wigner phase space. Coherent and squeezed states are shown to be linear canonical transforms of the ground-state harmonic oscillator. It is therefore possible to evaluate the Wigner functions for coherent and squeezed states from that for the harmonic oscillator. Since the group of linear canonical transformations has a subgroup whose algebraic property is the same as that of the (2+1)-dimensional Lorentz group, it may be possible to test certain properties of the Lorentz group using optical devices. A possible experiment to measure the Wigner rotation angle is discussed.

  16. Point form relativistic quantum mechanics and relativistic SU(6)

    NASA Technical Reports Server (NTRS)

    Klink, W. H.

    1993-01-01

    The point form is used as a framework for formulating a relativistic quantum mechanics, with the mass operator carrying the interactions of underlying constituents. A symplectic Lie algebra of mass operators is introduced from which a relativistic harmonic oscillator mass operator is formed. Mass splittings within the degenerate harmonic oscillator levels arise from relativistically invariant spin-spin, spin-orbit, and tensor mass operators. Internal flavor (and color) symmetries are introduced which make it possible to formulate a relativistic SU(6) model of baryons (and mesons). Careful attention is paid to the permutation symmetry properties of the hadronic wave functions, which are written as polynomials in Bargmann spaces.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chae, Jongchul; Litvinenko, Yuri E.

    The vertical propagation of nonlinear acoustic waves in an isothermal atmosphere is considered. A new analytical solution that describes a finite-amplitude wave of an arbitrary wavelength is obtained. Although the short- and long-wavelength limits were previously considered separately, the new solution describes both limiting cases within a common framework and provides a straightforward way of interpolating between the two limits. Physical features of the nonlinear waves in the chromosphere are described, including the dispersive nature of low-frequency waves, the steepening of the wave profile, and the influence of the gravitational field on wavefront breaking and shock formation. The analytical resultsmore » suggest that observations of three-minute oscillations in the solar chromosphere may reveal the basic nonlinear effect of oscillations with combination frequencies, superposed on the normal oscillations of the system. Explicit expressions for a second-harmonic signal and the ratio of its amplitude to the fundamental harmonic amplitude are derived. Observational evidence of the second harmonic, obtained with the Fast Imaging Solar Spectrograph, installed at the 1.6 m New Solar Telescope of the Big Bear Observatory, is presented. The presented data are based on the time variations of velocity determined from the Na i D{sub 2} and H α lines.« less

  18. Impact of environmental inputs on reverse-engineering approach to network structures.

    PubMed

    Wu, Jianhua; Sinfield, James L; Buchanan-Wollaston, Vicky; Feng, Jianfeng

    2009-12-04

    Uncovering complex network structures from a biological system is one of the main topic in system biology. The network structures can be inferred by the dynamical Bayesian network or Granger causality, but neither techniques have seriously taken into account the impact of environmental inputs. With considerations of natural rhythmic dynamics of biological data, we propose a system biology approach to reveal the impact of environmental inputs on network structures. We first represent the environmental inputs by a harmonic oscillator and combine them with Granger causality to identify environmental inputs and then uncover the causal network structures. We also generalize it to multiple harmonic oscillators to represent various exogenous influences. This system approach is extensively tested with toy models and successfully applied to a real biological network of microarray data of the flowering genes of the model plant Arabidopsis Thaliana. The aim is to identify those genes that are directly affected by the presence of the sunlight and uncover the interactive network structures associating with flowering metabolism. We demonstrate that environmental inputs are crucial for correctly inferring network structures. Harmonic causal method is proved to be a powerful technique to detect environment inputs and uncover network structures, especially when the biological data exhibit periodic oscillations.

  19. Representation of the five- and six-dimensional harmonic oscillators in a u(5) ⊃ so(5) ⊃ so(3) basis

    NASA Astrophysics Data System (ADS)

    Rowe, D. J.

    1994-06-01

    The duality that exists between the two subgroups SU(1,1) and O(5) of Sp(5,R) to construct basis states for the five-dimensional harmonic oscillator which simultaneously reduce the Sp(5,R)⊇U(5)⊇O(5)⊇SO(3) and Sp(5,R)⊇ SU(1,1)⊇U(1) subgroup chains is used. It is shown that the vector-coherent-state wave functions of the fundamental five-dimensional SO(5) irrep [1,0] realize the traceless bosons introduced by Lohe and Hurst to classify the irreps of the orthogonal groups and employed in Chacon, Moshinsky, and Sharp's construction of a basis for the five-dimensional harmonic oscillator. Moreover, it is shown that VCS theory provides a simple mechanism for constructing matrix elements of the traceless boson operators. These matrix elements are used to extend the VCS representations of SO(5) in an SO(3) basis, given in a previous paper, to irreps of U(5) in an SO(5)⊇ SO(3) basis. The extension to U(6)⊇U(5)⊇SO(5)⊇SO(3) is also given.

  20. NONLINEAR OPTICS PHENOMENA: Second harmonic generation from DF laser radiation in ZnGeP2

    NASA Astrophysics Data System (ADS)

    Andreev, Yu M.; Velikanov, S. D.; Yerutin, A. S.; Zapol'skiĭ, A. F.; Konkin, D. V.; Mishkin, S. N.; Smirnov, S. V.; Frolov, Yu N.; Shchurov, V. V.

    1992-11-01

    We have succeeded in generating the second harmonic of the radiation from a DF laser for the first time, using single crystals of ZnGeP2. For crystals with lengths of 10.1 and 13.6 mm, the overall external efficiencies of the entire oscillator system were 4 and 6.2%. The internal efficiencies of second-harmonic generation in the crystals were 7.6 and 11.8%, respectively.

  1. Realization of a new concept for visible frequency division: phase locking of harmonic and sum frequencies.

    PubMed

    Telle, H R; Meschede, D; Hänsch, T W

    1990-05-15

    We explore and demonstrate the feasibility of an optical-frequency-to-radio-frequency division method that is based on visible or near-infrared laser oscillators only. Comparing harmonic and sum frequencies, we generate the arithmetic average of two visible frequencies. Cascading n stages provides difference-frequency division by 2(n). For a demonstration we have phase locked the second harmonic and the sum frequency of two independent diode lasers.

  2. Control of ultra-intense single attosecond pulse generation in laser-driven overdense plasmas.

    PubMed

    Liu, Qingcao; Xu, Yanxia; Qi, Xin; Zhao, Xiaoying; Ji, Liangliang; Yu, Tongpu; Wei, Luo; Yang, Lei; Hu, Bitao

    2013-12-30

    Ultra-intense single attosecond pulse (AP) can be obtained from circularly polarized (CP) laser interacting with overdense plasma. High harmonics are naturally generated in the reflected laser pulses due to the laser-induced one-time drastic oscillation of the plasma boundary. Using two-dimensional (2D) planar particle-in-cell (PIC) simulations and analytical model, we show that multi-dimensional effects have great influence on the generation of AP. Self-focusing and defocusing phenomena occur in front of the compressed plasma boundary, which lead to the dispersion of the generated AP in the far field. We propose to control the reflected high harmonics by employing a density-modulated foil target (DMFT). When the target density distribution fits the laser intensity profile, the intensity of the attosecond pulse generated from the center part of the plasma has a flatten profile within the center range in the transverse direction. It is shown that a single 300 attosecond (1 as = 10(-18)s) pulse with the intensity of 1.4 × 10(21) W cm(-2) can be naturally generated. Further simulations reveal that the reflected high harmonics properties are highly related to the modulated density distribution and the phase offset between laser field and the carrier envelope. The emission direction of the AP generated from the plasma boundary can be controlled in a very wide range in front of the plasma surface by combining the DMFT and a suitable driving laser.

  3. Nonlinear oscillations of gas in an open tube near the resonance frequency in the shock-free mode

    NASA Astrophysics Data System (ADS)

    Tkachenko, L. A.; Sergienko, M. V.

    2014-11-01

    The forced oscillations of gas in an open tube, excited by harmonical oscillations of piston in the shock-free mode were investigated near the first first eigenfrequencies. An expression for the pressure oscillations of gas was obtained for the tube with unrounded end without flange. The amplitude impact of piston displacement on the oscillations of pressure and velocity of the secondary flow of gas was investigated. The comparison of theoretical calculations with experimental data was executed. The effect of secondary flow on the particle drift along the tube axis with acoustic oscillations of gas was shown.

  4. Observations of Terrestrial Nightglow (Meinel Bands) at King

    NASA Astrophysics Data System (ADS)

    Won, Young-In; Cho, Young-Min; Lee, Bang Yong; Kim, Jhoon; Chung, Jong Kyun; Kim, Yong Ha

    1999-12-01

    A Fourier Transform Spectrometer was used to study upper mesospheric thermodynamic by observing the hydroxyl(OH) emission. Rocket-born and satellited-born photometers place the peak emission near 87 μm. The instrument was installed in February 1999 at King Sejong station (62.22 deg S,301.25 deg E), Antarctica and has been in routine operation since then. An intensive operational effort has resulted in a substantial data between April and June, 1999. A harmonic analysis was carried out to examine information on the tidal characteristics. The measured amplitudes of the 12-hour oscillation are in the range of 2.4-3.7 K, which are in resonable agreement with theoretical model outputs. The harmonic analysis also revealed 8-hour oscillation which is not expected from the traditional theoretical studies. In addition, the observed 8-hour oscillations are apparent and sometimes dominate the temperature variation in the upper mesosphere.

  5. Modeling Bloch oscillations in nanoscale Josephson junctions.

    PubMed

    Vora, Heli; Kautz, R L; Nam, S W; Aumentado, J

    2017-08-01

    Bloch oscillations in nanoscale Josephson junctions with a Coulomb charging energy comparable to the Josephson coupling energy are explored within the context of a model previously considered by Geigenmüller and Schön that includes Zener tunneling and treats quasiparticle tunneling as an explicit shot-noise process. The dynamics of the junction quasicharge are investigated numerically using both Monte Carlo and ensemble approaches to calculate voltage-current characteristics in the presence of microwaves. We examine in detail the origin of harmonic and subharmonic Bloch steps at dc biases I = ( n/m )2 ef induced by microwaves of frequency f and consider the optimum parameters for the observation of harmonic ( m = 1) steps. We also demonstrate that the GS model allows a detailed semiquantitative fit to experimental voltage-current characteristics previously obtained at the Chalmers University of Technology, confirming and strengthening the interpretation of the observed microwave-induced steps in terms of Bloch oscillations.

  6. Modeling Bloch oscillations in nanoscale Josephson junctions

    PubMed Central

    Vora, Heli; Kautz, R. L.; Nam, S. W.; Aumentado, J.

    2018-01-01

    Bloch oscillations in nanoscale Josephson junctions with a Coulomb charging energy comparable to the Josephson coupling energy are explored within the context of a model previously considered by Geigenmüller and Schön that includes Zener tunneling and treats quasiparticle tunneling as an explicit shot-noise process. The dynamics of the junction quasicharge are investigated numerically using both Monte Carlo and ensemble approaches to calculate voltage-current characteristics in the presence of microwaves. We examine in detail the origin of harmonic and subharmonic Bloch steps at dc biases I = (n/m)2ef induced by microwaves of frequency f and consider the optimum parameters for the observation of harmonic (m = 1) steps. We also demonstrate that the GS model allows a detailed semiquantitative fit to experimental voltage-current characteristics previously obtained at the Chalmers University of Technology, confirming and strengthening the interpretation of the observed microwave-induced steps in terms of Bloch oscillations. PMID:29577106

  7. A flight investigation of oscillating air forces: Equipment and technique

    NASA Technical Reports Server (NTRS)

    Reed, W. H., III

    1975-01-01

    The equipment and techniques are described which are to be used in a project aimed at measuring oscillating air forces and dynamic aeroelastic response of a swept wing airplane at high subsonic speeds. Electro-hydraulic inertia type shakers installed in the wing tips will excite various elastic airplane modes while the related oscillating chordwise pressures at two spanwise wing stations and the wing mode shapes are recorded on magnetic tape. The data reduction technique, following the principle of a wattmeter harmonic analyzer employed by Bratt, Wight, and Tilly, utilizes magnetic tape and high speed electronic multipliers to record directly the real and imaginary components of oscillatory data signals relative to a simple harmonic reference signal. Through an extension of this technique an automatic flight-flutter-test data analyzer is suggested in which vector plots of mechanical admittance or impedance would be plotted during the flight test.

  8. Characteristics of a KA-band third-harmonic peniotron driven by a high-quality linear axis-encircling electron beam

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaoyun; Tuo, Xianguo; Ge, Qing; Peng, Ying

    2017-12-01

    We employ a high-quality linear axis-encircling electron beam generated by a Cuccia coupler to drive a Ka-band third-harmonic peniotron and develop a self-consistent nonlinear calculation code to numerically analyze the characteristics of the designed peniotron. It is demonstrated that through a Cuccia coupler, a 6 kV, 0.5 A pencil beam and an input microwave power of 16 kW at 10 GHz can generate a 37 kV, 0.5 A linear axis-encircling beam, and it is characterized by a very low velocity spread. Moreover, the electron beam guiding center deviation can be adjusted easily. Driven by such a beam, a 30 GHz, Ka-band third-harmonic peniotron is predicted to achieve a conversion efficiency of 51.0% and a microwave output power of 9.44 kW; the results are in good agreement with the Magic3D simulation. Using this code, we studied the factors influencing the peniotron performance, and it can provide some guidelines for the design of a Ka-band third-harmonic peniotron driven by a linear electron beam and can promote the application of high-harmonic peniotrons in practice.

  9. Performance of a Combined System Using an X-Ray FEL Oscillator and a High-Gain FEL Amplifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, L.; Lindberg, R.; Kim, K. -J.

    The LCLS-II at SLAC will feature a 4 GeV CW superconducting (SC) RF linac [1] that can potentially drive a 5th harmonic X-Ray FEL Oscillator (XFELO) to produce fully coherent, 1 MW photon pulses with a 5 meV bandwidth at 14.4 keV [2]. The XFELO output can serve as the input seed signal for a high-gain FEL amplifier employing fs electron beams from the normal conducting SLAC linac, thereby generating coherent, fs x-ray pulses with TW peak powers using a tapered undulator after saturation [3]. Coherent, intense output at several tens of keV will also be feasible if one considersmore » a harmonic generation scheme. Thus, one can potentially reach the 42 keV photon energy required for the MaRIE project [4] by beginning with an XFELO operating at the 3rd harmonic to produce 14.0 keV photons using a 12 GeV SCRF linac, and then subsequently using the high-gain harmonic generation scheme to generate and amplify the 3th harmonic at 42 keV [5]. We report extensive GINGER simulations that determine an optimized parameter set for the combined system.« less

  10. Data-adaptive harmonic analysis and prediction of sea level change in North Atlantic region

    NASA Astrophysics Data System (ADS)

    Kondrashov, D. A.; Chekroun, M.

    2017-12-01

    This study aims to characterize North Atlantic sea level variability across the temporal and spatial scales. We apply recently developed data-adaptive Harmonic Decomposition (DAH) and Multilayer Stuart-Landau Models (MSLM) stochastic modeling techniques [Chekroun and Kondrashov, 2017] to monthly 1993-2017 dataset of Combined TOPEX/Poseidon, Jason-1 and Jason-2/OSTM altimetry fields over North Atlantic region. The key numerical feature of the DAH relies on the eigendecomposition of a matrix constructed from time-lagged spatial cross-correlations. In particular, eigenmodes form an orthogonal set of oscillating data-adaptive harmonic modes (DAHMs) that come in pairs and in exact phase quadrature for a given temporal frequency. Furthermore, the pairs of data-adaptive harmonic coefficients (DAHCs), obtained by projecting the dataset onto associated DAHMs, can be very efficiently modeled by a universal parametric family of simple nonlinear stochastic models - coupled Stuart-Landau oscillators stacked per frequency, and synchronized across different frequencies by the stochastic forcing. Despite the short record of altimetry dataset, developed DAH-MSLM model provides for skillful prediction of key dynamical and statistical features of sea level variability. References M. D. Chekroun and D. Kondrashov, Data-adaptive harmonic spectra and multilayer Stuart-Landau models. HAL preprint, 2017, https://hal.archives-ouvertes.fr/hal-01537797

  11. Role of initial coherence in the generation of harmonics and sidebands from a strongly driven two-level atom

    NASA Astrophysics Data System (ADS)

    Gauthey, F. I.; Keitel, C. H.; Knight, P. L.; Maquet, A.

    1995-07-01

    We investigate the coherent and incoherent contributions of the scattering spectrum of strongly driven two-level atoms as a function of the initial preparation of the atomic system. The initial ``phasing'' of the coherent superposition of the excited and ground states is shown to influence strongly the generation of both harmonics and hyper-Raman lines. In particular, we point out conditions under which harmonic generation can be inhibited at the expense of the hyper-Raman lines. Our numerical findings are supported by approximate analytical evaluation in the dressed state picture.

  12. The Generalized Uncertainty Principle and Harmonic Interaction in Three Spatial Dimensions

    NASA Astrophysics Data System (ADS)

    Hassanabadi, H.; Hooshmand, P.; Zarrinkamar, S.

    2015-01-01

    In three spatial dimensions, the generalized uncertainty principle is considered under an isotropic harmonic oscillator interaction in both non-relativistic and relativistic regions. By using novel transformations and separations of variables, the exact analytical solution of energy eigenvalues as well as the wave functions is obtained. Time evolution of the non-relativistic region is also reported.

  13. Teaching Physics from a Reduced Gravity Environment

    NASA Astrophysics Data System (ADS)

    Benge, Raymond D.; Young, C.; Davis, S.; Worley, A.; Smith, L.; Gell, A.

    2010-01-01

    This poster reports on an educational experiment flown in January 2009 as part of NASA's Microgravity University program. The experiment flown was an investigation into the properties of harmonic oscillators in reduced gravity. Harmonic oscillators are studied in every introductory physics class. The equation for the period of a harmonic oscillator does not include the acceleration due to gravity, so the period should be independent of gravity. However, the equation for the period of a pendulum does include the acceleration due to gravity, so the period of a pendulum should appear longer under reduced gravity (such as lunar or Martian gravity) and shorter under hyper-gravity. Typical homework problems for introductory physics classes ask questions such as "What would be the period of oscillation if this experiment were performed on the Moon or Mars?” This gives students a chance to actually see the effects predicted by the equations. These environments can be simulated aboard an aircraft. Video of the experiments being performed aboard the aircraft is to be used in introductory physics classes. Students will be able to record information from watching the experiment performed aboard the aircraft in a similar manner to how they collect data in the laboratory. They can then determine if the experiment matches theory. Video and an experimental procedure are being prepared based upon this flight, and these materials will be available for download by faculty anywhere with access to the internet who wish to use the experiment in their own classrooms in both college and high school physics classes.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khamzin, A. A., E-mail: airat.khamzin@rambler.ru; Sitdikov, A. S.; Nikitin, A. S.

    An original method for calculating the moment of inertia of the collective rotation of a nucleus on the basis of the cranking model with the harmonic-oscillator Hamiltonian at arbitrary frequencies of rotation and finite temperature is proposed. In the adiabatic limit, an oscillating chemical-potential dependence of the moment of inertia is obtained by means of analytic calculations. The oscillations of the moment of inertia become more pronounced as deformations approach the spherical limit and decrease exponentially with increasing temperature.

  15. Twin rotor damper for the damping of stochastically forced vibrations using a power-efficient control algorithm

    NASA Astrophysics Data System (ADS)

    Bäumer, Richard; Terrill, Richard; Wollnack, Simon; Werner, Herbert; Starossek, Uwe

    2018-01-01

    The twin rotor damper (TRD), an active mass damper, uses the centrifugal forces of two eccentrically rotating control masses. In the continuous rotation mode, the preferred mode of operation, the two eccentric control masses rotate with a constant angular velocity about two parallel axes, creating, under further operational constraints, a harmonic control force in a single direction. In previous theoretical work, it was shown that this mode of operation is effective for the damping of large, harmonic vibrations of a single degree of freedom (SDOF) oscillator. In this paper, the SDOF oscillator is assumed to be affected by a stochastic excitation force and consequently responds with several frequencies. Therefore, the TRD must deviate from the continuous rotation mode to ensure the anti-phasing between the harmonic control force of the TRD and the velocity of the SDOF oscillator. It is found that the required deviation from the continuous rotation mode increases with lower vibration amplitude. Therefore, an operation of the TRD in the continuous rotation mode is no longer efficient below a specific vibration-amplitude threshold. To additionally dampen vibrations below this threshold, the TRD can switch to another, more energy-consuming mode of operation, the swinging mode in which both control masses oscillate about certain angular positions. A power-efficient control algorithm is presented which uses the continuous rotation mode for large vibrations and the swinging mode for small vibrations. To validate the control algorithm, numerical and experimental investigations are performed for a single degree of freedom oscillator under stochastic excitation. Using both modes of operation, it is shown that the control algorithm is effective for the cases of free and stochastically forced vibrations of arbitrary amplitude.

  16. Computation of the transonic perturbation flow fields around two- and three-dimensional oscillating wings

    NASA Technical Reports Server (NTRS)

    Weatherill, W. H.; Ehlers, F. E.; Sebastian, J. D.

    1975-01-01

    Analytical and empirical studies of a finite difference method for the solution of the transonic flow about an harmonically oscillating wing are presented along with a discussion of the development of a pilot program for three-dimensional flow. In addition, some two- and three-dimensional examples are presented.

  17. High energy efficient solid state laser sources

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1988-01-01

    Recent progress in the development of highly efficient coherent optical sources is reviewed. This work focusses on nonlinear frequency conversion of the highly coherent output of the Non-Planar Ring Laser Oscillators developed earlier in the program, and includes high efficiency second harmonic generation and the operation of optical parametric oscillators for wavelength diversity and tunability.

  18. The role of the Southern Hemisphere semiannual oscillation in the development of a precursor to central and eastern Pacific Southern Oscillation warm events

    NASA Astrophysics Data System (ADS)

    Meehl, Gerald A.; van Loon, Harry; Arblaster, Julie M.

    2017-07-01

    The semiannual oscillation (SAO) is a twice-yearly northward movement (in May-June-July (MJJ) and November-December-January (NDJ)) of the circumpolar trough of sea level pressure (SLP) in the Southern Hemisphere with effects throughout the troposphere. During MJJ the second harmonic of SLP, describing the SAO, has low values of SLP north of 50°S in the subtropical South Pacific, while the first harmonic, which is dominant over the Australian sector, increases to its peak. This once-a-year peak in negative SLP gradients (decreasing to the east) between Australia and the ocean to its east extends to the equatorial Pacific. Southern Oscillation warm events since 1950, with an intensification of this seasonal cycle, have larger-amplitude SST anomalies in the eastern equatorial Pacific in MJJ and during the following mature phase in NDJ. Weak amplification of the seasonal cycle in MJJ tends to be followed by larger-amplitude SST anomalies in the central equatorial Pacific during NDJ.

  19. Arbitrary-quantum-state preparation of a harmonic oscillator via optimal control

    NASA Astrophysics Data System (ADS)

    Rojan, Katharina; Reich, Daniel M.; Dotsenko, Igor; Raimond, Jean-Michel; Koch, Christiane P.; Morigi, Giovanna

    2014-08-01

    The efficient initialization of a quantum system is a prerequisite for quantum technological applications. Here we show that several classes of quantum states of a harmonic oscillator can be efficiently prepared by means of a Jaynes-Cummings interaction with a single two-level system. This is achieved by suitably tailoring external fields which drive the dipole and/or the oscillator. The time-dependent dynamics that leads to the target state is identified by means of optimal control theory (OCT) based on Krotov's method. Infidelities below 10-4 can be reached for the parameters of the experiment of Raimond, Haroche, Brune and co-workers, where the oscillator is a mode of a high-Q microwave cavity and the dipole is a Rydberg transition of an atom. For this specific situation we analyze the limitations on the fidelity due to parameter fluctuations and identify robust dynamics based on pulses found using ensemble OCT. Our analysis can be extended to quantum-state preparation of continuous-variable systems in other platforms, such as trapped ions and circuit QED.

  20. Forced Longitudinal Oscillations of a Gas in an Open Pipe Near the Resonance Excitation Frequency

    NASA Astrophysics Data System (ADS)

    Zaripov, R. G.; Tkachenko, L. A.; Shaidullin, L. R.

    2017-11-01

    Results of theoretical and experimental investigations of forced longitudinal oscillations of a homogeneous gas in an open pipe near the first natural frequency are presented. It has been established that at the resonance frequency the shape of the gas pressure wave changes with time by a law different from the harmonic one. The amplitude-frequency characteristics of the indicated oscillations have been derived. Satisfactory agreement of the theoretical calculation of the gas pressure oscillation range with experimental data has been obtained.

  1. Quantization with maximally degenerate Poisson brackets: the harmonic oscillator!

    NASA Astrophysics Data System (ADS)

    Nutku, Yavuz

    2003-07-01

    Nambu's construction of multi-linear brackets for super-integrable systems can be thought of as degenerate Poisson brackets with a maximal set of Casimirs in their kernel. By introducing privileged coordinates in phase space these degenerate Poisson brackets are brought to the form of Heisenberg's equations. We propose a definition for constructing quantum operators for classical functions, which enables us to turn the maximally degenerate Poisson brackets into operators. They pose a set of eigenvalue problems for a new state vector. The requirement of the single-valuedness of this eigenfunction leads to quantization. The example of the harmonic oscillator is used to illustrate this general procedure for quantizing a class of maximally super-integrable systems.

  2. Instantaneous and dynamical decoherence

    NASA Astrophysics Data System (ADS)

    Polonyi, Janos

    2018-04-01

    Two manifestations of decoherence, called instantaneous and dynamical, are investigated. The former reflects the suppression of the interference between the components of the current state while the latter reflects that within the initial state. These types of decoherence are computed in the case of the Brownian motion and the harmonic and anharmonic oscillators within the semiclassical approximation. A remarkable phenomenon, namely the opposite orientation of the time arrow of the dynamical variables compared to that of the quantum fluctuations generates a double exponential time dependence of the dynamical decoherence in the presence of a harmonic force. For the weakly anharmonic oscillator the dynamical decoherence is found to depend in a singular way on the amount of the anharmonicity.

  3. An evaluation of HEMT potential for millimeter-wave signal sources using interpolation and harmonic balance techniques

    NASA Technical Reports Server (NTRS)

    Kwon, Youngwoo; Pavlidis, Dimitris; Tutt, Marcel N.

    1991-01-01

    A large-signal analysis method based on an harmonic balance technique and a 2-D cubic spline interpolation function has been developed and applied to the prediction of InP-based HEMT oscillator performance for frequencies extending up to the submillimeter-wave range. The large-signal analysis method uses a limited number of DC and small-signal S-parameter data and allows the accurate characterization of HEMT large-signal behavior. The method has been validated experimentally using load-pull measurement. Oscillation frequency, power performance, and load requirements are discussed, with an operation capability of 300 GHz predicted using state-of-the-art devices (fmax is approximately equal to 450 GHz).

  4. Radiating dipoles in photonic crystals

    PubMed

    Busch; Vats; John; Sanders

    2000-09-01

    The radiation dynamics of a dipole antenna embedded in a photonic crystal are modeled by an initially excited harmonic oscillator coupled to a non-Markovian bath of harmonic oscillators representing the colored electromagnetic vacuum within the crystal. Realistic coupling constants based on the natural modes of the photonic crystal, i.e., Bloch waves and their associated dispersion relation, are derived. For simple model systems, well-known results such as decay times and emission spectra are reproduced. This approach enables direct incorporation of realistic band structure computations into studies of radiative emission from atoms and molecules within photonic crystals. We therefore provide a predictive and interpretative tool for experiments in both the microwave and optical regimes.

  5. Instrumentation and control of harmonic oscillators via a single-board microprocessor-FPGA device.

    PubMed

    Picone, Rico A R; Davis, Solomon; Devine, Cameron; Garbini, Joseph L; Sidles, John A

    2017-04-01

    We report the development of an instrumentation and control system instantiated on a microprocessor-field programmable gate array (FPGA) device for a harmonic oscillator comprising a portion of a magnetic resonance force microscope. The specific advantages of the system are that it minimizes computation, increases maintainability, and reduces the technical barrier required to enter the experimental field of magnetic resonance force microscopy. Heterodyne digital control and measurement yields computational advantages. A single microprocessor-FPGA device improves system maintainability by using a single programming language. The system presented requires significantly less technical expertise to instantiate than the instrumentation of previous systems, yet integrity of performance is retained and demonstrated with experimental data.

  6. Instrumentation and control of harmonic oscillators via a single-board microprocessor-FPGA device

    NASA Astrophysics Data System (ADS)

    Picone, Rico A. R.; Davis, Solomon; Devine, Cameron; Garbini, Joseph L.; Sidles, John A.

    2017-04-01

    We report the development of an instrumentation and control system instantiated on a microprocessor-field programmable gate array (FPGA) device for a harmonic oscillator comprising a portion of a magnetic resonance force microscope. The specific advantages of the system are that it minimizes computation, increases maintainability, and reduces the technical barrier required to enter the experimental field of magnetic resonance force microscopy. Heterodyne digital control and measurement yields computational advantages. A single microprocessor-FPGA device improves system maintainability by using a single programming language. The system presented requires significantly less technical expertise to instantiate than the instrumentation of previous systems, yet integrity of performance is retained and demonstrated with experimental data.

  7. Refined Weyl Law for Homogeneous Perturbations of the Harmonic Oscillator

    NASA Astrophysics Data System (ADS)

    Doll, Moritz; Gannot, Oran; Wunsch, Jared

    2018-02-01

    Let H denote the harmonic oscillator Hamiltonian on R}^d,} perturbed by an isotropic pseudodifferential operator of order 1. We consider the Schrödinger propagator {U(t)=e^{-itH},} and find that while sing-supp Tr U(t) \\subset 2 π Z as in the unperturbed case, there exists a large class of perturbations in dimensions {d ≥ 2 for which the singularities of {Tr U(t)} at nonzero multiples of {2 π} are weaker than the singularity at t = 0. The remainder term in the Weyl law is of order {o(λ^{d-1})} , improving in these cases the {o(λ^{d-1})} remainder previously established by Helffer-Robert.

  8. Gaussian ancillary bombardment

    NASA Astrophysics Data System (ADS)

    Grimmer, Daniel; Brown, Eric; Kempf, Achim; Mann, Robert B.; Martín-Martínez, Eduardo

    2018-05-01

    We analyze in full detail the time evolution of an open Gaussian quantum system rapidly bombarded by Gaussian ancillae. As a particular case this analysis covers the thermalization (or not) of a harmonic oscillator coupled to a thermal reservoir made of harmonic oscillators. We derive general results for this scenario and apply them to the problem of thermalization. We show that only a particular family of system-environment couplings will cause the system to thermalize to the temperature of its environment. We discuss that if we want to understand thermalization as ensuing from the Markovian interaction of a system with the individual microconstituents of its (thermal) environment then the process of thermalization is not as robust as one might expect.

  9. A frequency doubled pressure-tunable oscillator-amplifier dye laser system

    NASA Technical Reports Server (NTRS)

    Moriarty, A.; Heaps, W.; Davis, D. D.

    1976-01-01

    A tunable high-repetition-rate oscillator-amplifier dye-laser system is reported. The dye laser described was longitudinally pumped with the second harmonic of a Nd-YAG laser operating at 10 Hz. Using three Faraday-Perot etalons and pressure tuning, a maximum fundamental output power of the order of 6 MW with a corresponding spectral width of less than 0.003 nm at 564 nm was obtained. The fundamental at 564 nm was frequency doubled to give a maximum power level of 0.6 MW of second-harmonic output power with a spectral width less than 0.0015 nm at 282 nm. Frequency stability could be maintained to within approximately 15% of the line-width.

  10. Inducing and destruction of chimeras and chimera-like states by an external harmonic force

    NASA Astrophysics Data System (ADS)

    Shepelev, I. A.; Vadivasova, T. E.

    2018-03-01

    We study the phenomena of chimera destruction and inducing of chimera-like states in an ensemble of nonlocally coupled chaotic Rössler oscillators under an external harmonic force. The localized harmonic influence can lead to both destruction and changing of the spatial topology of chimeras. At the same time this influence can cause the emergence of stable chimera-like states (induced chimeras) for the regime of partial coherent chaos. Induced chimeras are also observed for the global influence. We show the possibility of controlling the chimera-like state topology by varying the parameters of localized external harmonic influence.

  11. Harmonic oscillations of laminae in non-Newtonian fluids: A lattice Boltzmann-Immersed Boundary approach

    NASA Astrophysics Data System (ADS)

    De Rosis, Alessandro

    2014-11-01

    In this paper, the fluid dynamics induced by a rigid lamina undergoing harmonic oscillations in a non-Newtonian calm fluid is investigated. The fluid is modelled through the lattice Boltzmann method and the flow is assumed to be nearly incompressible. An iterative viscosity-correction based procedure is proposed to properly account for the non-Newtonian fluid feature and its accuracy is evaluated. In order to handle the mutual interaction between the lamina and the encompassing fluid, the Immersed Boundary method is adopted. A numerical campaign is performed. In particular, the effect of the non-Newtonian feature is highlighted by investigating the fluid forces acting on a harmonically oscillating lamina for different values of the Reynolds number. The findings prove that the non-Newtonian feature can drastically influence the behaviour of the fluid and, as a consequence, the forces acting upon the lamina. Several considerations are carried out on the time history of the drag coefficient and the results are used to compute the added mass through the hydrodynamic function. Moreover, the computational cost involved in the numerical simulations is discussed. Finally, two applications concerning water resources are investigated: the flow through an obstructed channel and the particle sedimentation. Present findings highlight a strong coupling between the body shape, the Reynolds number, and the flow behaviour index.

  12. Dynamically protected cat-qubits: a new paradigm for universal quantum computation

    NASA Astrophysics Data System (ADS)

    Mirrahimi, Mazyar; Leghtas, Zaki; Albert, Victor V.; Touzard, Steven; Schoelkopf, Robert J.; Jiang, Liang; Devoret, Michel H.

    2014-04-01

    We present a new hardware-efficient paradigm for universal quantum computation which is based on encoding, protecting and manipulating quantum information in a quantum harmonic oscillator. This proposal exploits multi-photon driven dissipative processes to encode quantum information in logical bases composed of Schrödinger cat states. More precisely, we consider two schemes. In a first scheme, a two-photon driven dissipative process is used to stabilize a logical qubit basis of two-component Schrödinger cat states. While such a scheme ensures a protection of the logical qubit against the photon dephasing errors, the prominent error channel of single-photon loss induces bit-flip type errors that cannot be corrected. Therefore, we consider a second scheme based on a four-photon driven dissipative process which leads to the choice of four-component Schrödinger cat states as the logical qubit. Such a logical qubit can be protected against single-photon loss by continuous photon number parity measurements. Next, applying some specific Hamiltonians, we provide a set of universal quantum gates on the encoded qubits of each of the two schemes. In particular, we illustrate how these operations can be rendered fault-tolerant with respect to various decoherence channels of participating quantum systems. Finally, we also propose experimental schemes based on quantum superconducting circuits and inspired by methods used in Josephson parametric amplification, which should allow one to achieve these driven dissipative processes along with the Hamiltonians ensuring the universal operations in an efficient manner.

  13. Probing Many-Body Interactions in an Optical Lattice Clock (Preprint)

    DTIC Science & Technology

    2013-10-23

    impressive potential gain over their microwave counterparts. Optical frequencies on the other hand are very difficult to measure, as the oscillations ...source can be compared. Here, the laboratory radiation source is an ultra-stable continuous-wave laser. It acts as the local oscillator (or pendulum...where φ Z 0 is the ground longitudinal mode in a lattice site and φn are transverse harmonic oscillator eigenmodes. ĉ†αn creates a fermion in mode n

  14. Melnikov method approach to control of homoclinic/heteroclinic chaos by weak harmonic excitations.

    PubMed

    Chacón, Ricardo

    2006-09-15

    A review on the application of Melnikov's method to control homoclinic and heteroclinic chaos in low-dimensional, non-autonomous and dissipative oscillator systems by weak harmonic excitations is presented, including diverse applications, such as chaotic escape from a potential well, chaotic solitons in Frenkel-Kontorova chains and chaotic-charged particles in the field of an electrostatic wave packet.

  15. The Influence of Spring Length on the Physical Parameters of Simple Harmonic Motion

    ERIC Educational Resources Information Center

    Triana, C. A.; Fajardo, F.

    2012-01-01

    The aim of this work is to analyse the influence of spring length on the simple harmonic motion of a spring-mass system. In particular, we study the effect of changing the spring length on the elastic constant "[kappa]", the angular frequency "[omega]" and the damping factor "[gamma]" of the oscillations. To characterize the behaviour of these…

  16. Three-Dimensional Visualization of Wave Functions for Rotating Molecule: Plot of Spherical Harmonics

    ERIC Educational Resources Information Center

    Nagaoka, Shin-ichi; Teramae, Hiroyuki; Nagashima, Umpei

    2013-01-01

    At an early stage of learning quantum chemistry, undergraduate students usually encounter the concepts of the particle in a box, the harmonic oscillator, and then the particle on a sphere. Rotational levels of a diatomic molecule can be well approximated by the energy levels of the particle on a sphere. Wave functions for the particle in a…

  17. Characteristics of electron-wave interaction in orotron-DRG type devices at the higher modes

    NASA Astrophysics Data System (ADS)

    Shmatko, A. A.

    The excitation of oscillations in an orotron/diffraction-radiation generator at the higher longitudinal modes of the open resonator is analyzed with allowance for the space-charge field of the electron beam, represented by Fourier series in time harmonics of the oscillation frequency. Analytical expressions for the amplitude-frequency characteristics of the starting regime are obtained, and the case of large oscillation amplitudes (where nonlinear phenomena are significant) is analyzed numerically. The collective interaction of beam electrons and the resonator field is examined. Oscillation zones are determined, and the main characteristics of oscillation excitation at the higher modes are established.

  18. Proliferation of metallic domains caused by inhomogeneous heating near the electrically driven transition in VO2 nanobeams

    NASA Astrophysics Data System (ADS)

    Singh, Sujay; Horrocks, Gregory; Marley, Peter M.; Shi, Zhenzhong; Banerjee, Sarbajit; Sambandamurthy, G.

    2015-10-01

    We discuss the mechanisms behind the electrically driven insulator-metal transition in single-crystalline VO2 nanobeams. Our dc and ac transport measurements and the versatile harmonic analysis method employed show that nonuniform Joule heating causes electronic inhomogeneities to develop within the nanobeam and is responsible for driving the transition in VO2. A Poole-Frenkel-like purely electric-field-induced transition is found to be absent, and the role of percolation near and away from the electrically driven transition in VO2 is also identified. The results and the harmonic analysis can be generalized to many strongly correlated materials that exhibit electrically driven transitions.

  19. Perturbation of a radially oscillating single-bubble by a micron-sized object.

    PubMed

    Montes-Quiroz, W; Baillon, F; Louisnard, O; Boyer, B; Espitalier, F

    2017-03-01

    A single bubble oscillating in a levitation cell is acoustically monitored by a piezo-ceramics microphone glued on the cell external wall. The correlation of the filtered signal recorded over distant cycles on one hand, and its harmonic content on the other hand, are shown to carry rich information on the bubble stability and existence. For example, the harmonic content of the signal is shown to increase drastically once air is fully dissociated in the bubble, and the resulting pure argon bubble enters into the upper branch of the sonoluminescence regime. As a consequence, the bubble disappearance can be unambiguously detected by a net drop in the harmonic content. On the other hand, we perturb a stable sonoluminescing bubble by approaching a micron-sized fiber. The bubble remains unperturbed until the fiber tip is approached within a critical distance, below which the bubble becomes unstable and disappears. This distance can be easily measured by image treatment, and is shown to scale roughly with 3-4 times the bubble maximal radius. The bubble disappearance is well detected by the drop of the microphone harmonic content, but several thousands of periods after the bubble actually disappeared. The delay is attributed to the slow extinction of higher modes of the levitation cell, excited by the bubble oscillation. The acoustic detection method should however allow the early detection and imaging of non-predictable perturbations of the bubble by foreign micron-sized objects, such as crystals or droplets. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Importance of Vibronic Effects in the UV-Vis Spectrum of the 7,7,8,8-Tetracyanoquinodimethane Anion.

    PubMed

    Tapavicza, Enrico; Furche, Filipp; Sundholm, Dage

    2016-10-11

    We present a computational method for simulating vibronic absorption spectra in the ultraviolet-visible (UV-vis) range and apply it to the 7,7,8,8-tetracyanoquinodimethane anion (TCNQ - ), which has been used as a ligand in black absorbers. Gaussian broadening of vertical electronic excitation energies of TCNQ - from linear-response time-dependent density functional theory produces only one band, which is qualitatively incorrect. Thus, the harmonic vibrational modes of the two lowest doublet states were computed, and the vibronic UV-vis spectrum was simulated using the displaced harmonic oscillator approximation, the frequency-shifted harmonic oscillator approximation, and the full Duschinsky formalism. An efficient real-time generating function method was implemented to avoid the exponential complexity of conventional Franck-Condon approaches to vibronic spectra. The obtained UV-vis spectra for TCNQ - agree well with experiment; the Duschinsky rotation is found to have only a minor effect on the spectrum. Born-Oppenheimer molecular dynamics simulations combined with calculations of the electronic excitation energies for a large number of molecular structures were also used for simulating the UV-vis spectrum. The Born-Oppenheimer molecular dynamics simulations yield a broadening of the energetically lowest peak in the absorption spectrum, but additional vibrational bands present in the experimental and simulated quantum harmonic oscillator spectra are not observed in the molecular dynamics simulations. Our results underline the importance of vibronic effects for the UV-vis spectrum of TCNQ - , and they establish an efficient method for obtaining vibronic spectra using a combination of linear-response time-dependent density functional theory and a real-time generating function approach.

  1. Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response.

    PubMed

    Shcherbakov, Maxim R; Neshev, Dragomir N; Hopkins, Ben; Shorokhov, Alexander S; Staude, Isabelle; Melik-Gaykazyan, Elizaveta V; Decker, Manuel; Ezhov, Alexander A; Miroshnichenko, Andrey E; Brener, Igal; Fedyanin, Andrey A; Kivshar, Yuri S

    2014-11-12

    We observe enhanced third-harmonic generation from silicon nanodisks exhibiting both electric and magnetic dipolar resonances. Experimental characterization of the nonlinear optical response through third-harmonic microscopy and spectroscopy reveals that the third-harmonic generation is significantly enhanced in the vicinity of the magnetic dipole resonances. The field localization at the magnetic resonance results in two orders of magnitude enhancement of the harmonic intensity with respect to unstructured bulk silicon with the conversion efficiency limited only by the two-photon absorption in the substrate.

  2. Development of Gravity Acceleration Measurement Using Simple Harmonic Motion Pendulum Method Based on Digital Technology and Photogate Sensor

    NASA Astrophysics Data System (ADS)

    Yulkifli; Afandi, Zurian; Yohandri

    2018-04-01

    Development of gravitation acceleration measurement using simple harmonic motion pendulum method, digital technology and photogate sensor has been done. Digital technology is more practical and optimizes the time of experimentation. The pendulum method is a method of calculating the acceleration of gravity using a solid ball that connected to a rope attached to a stative pole. The pendulum is swung at a small angle resulted a simple harmonic motion. The measurement system consists of a power supply, Photogate sensors, Arduino pro mini and seven segments. The Arduino pro mini receives digital data from the photogate sensor and processes the digital data into the timing data of the pendulum oscillation. The calculation result of the pendulum oscillation time is displayed on seven segments. Based on measured data, the accuracy and precision of the experiment system are 98.76% and 99.81%, respectively. Based on experiment data, the system can be operated in physics experiment especially in determination of the gravity acceleration.

  3. Current-Nonlinear Hall Effect and Spin-Orbit Torque Magnetization Switching in a Magnetic Topological Insulator

    NASA Astrophysics Data System (ADS)

    Yasuda, K.; Tsukazaki, A.; Yoshimi, R.; Kondou, K.; Takahashi, K. S.; Otani, Y.; Kawasaki, M.; Tokura, Y.

    2017-09-01

    The current-nonlinear Hall effect or second harmonic Hall voltage is widely used as one of the methods for estimating charge-spin conversion efficiency, which is attributed to the magnetization oscillation by spin-orbit torque (SOT). Here, we argue the second harmonic Hall voltage under a large in-plane magnetic field with an in-plane magnetization configuration in magnetic-nonmagnetic topological insulator (TI) heterostructures, Crx (Bi1 -ySby )2 -xTe3 /(Bi1 -ySby )2Te3 , where it is clearly shown that the large second harmonic voltage is governed not by SOT but mainly by asymmetric magnon scattering without macroscopic magnetization oscillation. Thus, this method does not allow an accurate estimation of charge-spin conversion efficiency in TI. Instead, the SOT contribution is exemplified by current pulse induced nonvolatile magnetization switching, which is realized with a current density of 2.5 ×1010 A m-2 , showing its potential as a spintronic material.

  4. Development and applications of algorithms for calculating the transonic flow about harmonically oscillating wings

    NASA Technical Reports Server (NTRS)

    Ehlers, F. E.; Weatherill, W. H.; Yip, E. L.

    1984-01-01

    A finite difference method to solve the unsteady transonic flow about harmonically oscillating wings was investigated. The procedure is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady differential equation for small disturbances. The differential equation for the unsteady velocity potential is linear with spatially varying coefficients and with the time variable eliminated by assuming harmonic motion. An alternating direction implicit procedure was investigated, and a pilot program was developed for both two and three dimensional wings. This program provides a relatively efficient relaxation solution without previously encountered solution instability problems. Pressure distributions for two rectangular wings are calculated. Conjugate gradient techniques were developed for the asymmetric, indefinite problem. The conjugate gradient procedure is evaluated for applications to the unsteady transonic problem. Different equations for the alternating direction procedure are derived using a coordinate transformation for swept and tapered wing planforms. Pressure distributions for swept, untaped wings of vanishing thickness are correlated with linear results for sweep angles up to 45 degrees.

  5. On the modulation of low-frequency quasi-periodic oscillations in black hole transients

    NASA Astrophysics Data System (ADS)

    Pawar, Devraj D.; Motta, Sara; Shanthi, K.; Bhattacharya, Dipankar; Belloni, Tomaso

    2015-04-01

    We studied the properties of the low-frequency quasi-periodic oscillations detected in a sample of six black hole candidates (XTE J1550-564, H 1743-322, XTE J1859+226, 4U 1630-47, GX 339-4, XTE J1650-500) observed by the Rossi XTE satellite. We analysed the relation between the full width at half-maximum and the frequency of all the narrow peaks detected in power density spectra where a type-C QPO is observed. Our goal was to understand the nature of the modulation of the signal by comparing the properties of different harmonic peaks in the power density spectrum. We find that for the sources in our sample the width of the fundamental and of the first harmonic are compatible with a frequency modulation, while that of the sub-harmonic is independent of frequency, possibly indicating the presence of an additional modulation in amplitude. We compare our results with those obtained earlier from GRS 1915+105 and XTE J1550-564.

  6. Development and application of a program to calculate transonic flow around an oscillating three-dimensional wing using finite difference procedures

    NASA Technical Reports Server (NTRS)

    Weatherill, Warren H.; Ehlers, F. Edward

    1989-01-01

    A finite difference method for solving the unsteady transonic flow about harmonically oscillating wings is investigated. The procedure is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady differential equation for small disturbances. The differential equation for the unsteady potential is linear with spatially varying coefficients and with the time variable eliminated by assuming harmonic motion. Difference equations are derived for harmonic transonic flow to include a coordinate transformation for swept and tapered planforms. A pilot program is developed for three-dimensional planar lifting surface configurations (including thickness) for the CRAY-XMP at Boeing Commercial Airplanes and for the CYBER VPS-32 at the NASA Langley Research Center. An investigation is made of the effect of the location of the outer boundaries on accuracy for very small reduced frequencies. Finally, the pilot program is applied to the flutter analysis of a rectangular wing.

  7. Current-Nonlinear Hall Effect and Spin-Orbit Torque Magnetization Switching in a Magnetic Topological Insulator.

    PubMed

    Yasuda, K; Tsukazaki, A; Yoshimi, R; Kondou, K; Takahashi, K S; Otani, Y; Kawasaki, M; Tokura, Y

    2017-09-29

    The current-nonlinear Hall effect or second harmonic Hall voltage is widely used as one of the methods for estimating charge-spin conversion efficiency, which is attributed to the magnetization oscillation by spin-orbit torque (SOT). Here, we argue the second harmonic Hall voltage under a large in-plane magnetic field with an in-plane magnetization configuration in magnetic-nonmagnetic topological insulator (TI) heterostructures, Cr_{x}(Bi_{1-y}Sb_{y})_{2-x}Te_{3}/(Bi_{1-y}Sb_{y})_{2}Te_{3}, where it is clearly shown that the large second harmonic voltage is governed not by SOT but mainly by asymmetric magnon scattering without macroscopic magnetization oscillation. Thus, this method does not allow an accurate estimation of charge-spin conversion efficiency in TI. Instead, the SOT contribution is exemplified by current pulse induced nonvolatile magnetization switching, which is realized with a current density of 2.5×10^{10}  A m^{-2}, showing its potential as a spintronic material.

  8. Dynamical Causal Modeling from a Quantum Dynamical Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demiralp, Emre; Demiralp, Metin

    Recent research suggests that any set of first order linear vector ODEs can be converted to a set of specific vector ODEs adhering to what we have called ''Quantum Harmonical Form (QHF)''. QHF has been developed using a virtual quantum multi harmonic oscillator system where mass and force constants are considered to be time variant and the Hamiltonian is defined as a conic structure over positions and momenta to conserve the Hermiticity. As described in previous works, the conversion to QHF requires the matrix coefficient of the first set of ODEs to be a normal matrix. In this paper, thismore » limitation is circumvented using a space extension approach expanding the potential applicability of this method. Overall, conversion to QHF allows the investigation of a set of ODEs using mathematical tools available to the investigation of the physical concepts underlying quantum harmonic oscillators. The utility of QHF in the context of dynamical systems and dynamical causal modeling in behavioral and cognitive neuroscience is briefly discussed.« less

  9. Entanglement prethermalization in an interaction quench between two harmonic oscillators.

    PubMed

    Ikeda, Tatsuhiko N; Mori, Takashi; Kaminishi, Eriko; Ueda, Masahito

    2017-02-01

    Entanglement prethermalization (EP) refers to a quasi-stationary nonequilibrium state of a composite system in which each individual subsystem looks thermal but the entire system remains nonthermal due to quantum entanglement between subsystems. We theoretically study the dynamics of EP following a coherent split of a one-dimensional harmonic potential in which two interacting bosons are confined. This problem is equivalent to that of an interaction quench between two harmonic oscillators. We show that this simple model captures the bare essentials of EP; that is, each subsystem relaxes to an approximate thermal equilibrium, whereas the total system remains entangled. We find that a generalized Gibbs ensemble exactly describes the total system if we take into account nonlocal conserved quantities that act nontrivially on both subsystems. In the presence of a symmetry-breaking perturbation, the relaxation dynamics of the system exhibits a quasi-stationary EP plateau and eventually reaches thermal equilibrium. We analytically show that the lifetime of EP is inversely proportional to the magnitude of the perturbation.

  10. Orientation dependence of temporal and spectral properties of high-order harmonics in solids [Orientation dependence of high-harmonic temporal and spectral properties in solids

    DOE PAGES

    Wu, Mengxi; You, Yongsing; Ghimire, Shambhu; ...

    2017-12-18

    We investigate the connection between crystal symmetry and temporal and spectral properties of high-order harmonics in solids. We calculate the orientation-dependent harmonic spectrum driven by an intense, linearly polarized infrared laser field, using a momentum-space description of the generation process in terms of strong-field-driven electron dynamics on the band structure. We show that the orientation dependence of both the spectral yield and the subcycle time profile of the harmonic radiation can be understood in terms of the coupling strengths and relative curvatures of the valence band and the low-lying conduction bands. In particular, we show that in some systems thismore » gives rise to a rapid shift of a quarter optical cycle in the timing of harmonics in the secondary plateau as the crystal is rotated relative to the laser polarization. Here, we address recent experimental results in MgO and show that the observed change in orientation dependence for the highest harmonics can be interpreted in the momentum space picture in terms of the contributions of several different conduction bands.« less

  11. Orientation dependence of temporal and spectral properties of high-order harmonics in solids [Orientation dependence of high-harmonic temporal and spectral properties in solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Mengxi; You, Yongsing; Ghimire, Shambhu

    We investigate the connection between crystal symmetry and temporal and spectral properties of high-order harmonics in solids. We calculate the orientation-dependent harmonic spectrum driven by an intense, linearly polarized infrared laser field, using a momentum-space description of the generation process in terms of strong-field-driven electron dynamics on the band structure. We show that the orientation dependence of both the spectral yield and the subcycle time profile of the harmonic radiation can be understood in terms of the coupling strengths and relative curvatures of the valence band and the low-lying conduction bands. In particular, we show that in some systems thismore » gives rise to a rapid shift of a quarter optical cycle in the timing of harmonics in the secondary plateau as the crystal is rotated relative to the laser polarization. Here, we address recent experimental results in MgO and show that the observed change in orientation dependence for the highest harmonics can be interpreted in the momentum space picture in terms of the contributions of several different conduction bands.« less

  12. Optimal Control of the Parametric Oscillator

    ERIC Educational Resources Information Center

    Andresen, B.; Hoffmann, K. H.; Nulton, J.; Tsirlin, A.; Salamon, P.

    2011-01-01

    We present a solution to the minimum time control problem for a classical harmonic oscillator to reach a target energy E[subscript T] from a given initial state (q[subscript i], p[subscript i]) by controlling its frequency [omega], [omega][subscript min] less than or equal to [omega] less than or equal to [omega][subscript max]. A brief synopsis…

  13. Singular Behaviour of the Electrodynamic Fields of an Oscillating Dipole

    ERIC Educational Resources Information Center

    Leung, P. T.

    2008-01-01

    The singularity of the exact electromagnetic fields is derived to include the "source terms" for harmonically oscillating electric (and magnetic) dipoles, so that the fields will be consistent with the full Maxwell equations with a source. It is shown explicitly, as somewhat expected, that the same [delta]-function terms for the case of static…

  14. Oscillations of a Meterstick on Two Rotating Shafts

    ERIC Educational Resources Information Center

    Balta, Nuri

    2016-01-01

    Most students find real-world examples of harmonic oscillations interesting. Besides, normal and friction forces are the types of concepts in physics that are readily applicable to their everyday life. For instance, we depend on these forces to write, to drive cars, to pick up objects, and even to walk! And yet introductory physics students have…

  15. High energy efficient solid state laser sources

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1989-01-01

    Recent progress in the development of highly efficient coherent optical sources was reviewed. This work has focused on nonlinear frequency conversion of the highly coherent output of the non-planar ring laser oscillators developed earlier in the program, and includes high efficiency second harmonic generation and the operation of optical parametric oscillators for wavelength diversity and tunability.

  16. Chaos in generically coupled phase oscillator networks with nonpairwise interactions.

    PubMed

    Bick, Christian; Ashwin, Peter; Rodrigues, Ana

    2016-09-01

    The Kuramoto-Sakaguchi system of coupled phase oscillators, where interaction between oscillators is determined by a single harmonic of phase differences of pairs of oscillators, has very simple emergent dynamics in the case of identical oscillators that are globally coupled: there is a variational structure that means the only attractors are full synchrony (in-phase) or splay phase (rotating wave/full asynchrony) oscillations and the bifurcation between these states is highly degenerate. Here we show that nonpairwise coupling-including three and four-way interactions of the oscillator phases-that appears generically at the next order in normal-form based calculations can give rise to complex emergent dynamics in symmetric phase oscillator networks. In particular, we show that chaos can appear in the smallest possible dimension of four coupled phase oscillators for a range of parameter values.

  17. Chaos in generically coupled phase oscillator networks with nonpairwise interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bick, Christian; Ashwin, Peter; Rodrigues, Ana

    The Kuramoto–Sakaguchi system of coupled phase oscillators, where interaction between oscillators is determined by a single harmonic of phase differences of pairs of oscillators, has very simple emergent dynamics in the case of identical oscillators that are globally coupled: there is a variational structure that means the only attractors are full synchrony (in-phase) or splay phase (rotating wave/full asynchrony) oscillations and the bifurcation between these states is highly degenerate. Here we show that nonpairwise coupling—including three and four-way interactions of the oscillator phases—that appears generically at the next order in normal-form based calculations can give rise to complex emergent dynamicsmore » in symmetric phase oscillator networks. In particular, we show that chaos can appear in the smallest possible dimension of four coupled phase oscillators for a range of parameter values.« less

  18. Regimes of enhanced electromagnetic emission in beam-plasma interactions

    NASA Astrophysics Data System (ADS)

    Timofeev, I. V.; Annenkov, V. V.; Arzhannikov, A. V.

    2015-11-01

    The ways to improve the efficiency of electromagnetic waves generation in laboratory experiments with high-current relativistic electron beams injected into a magnetized plasma are discussed. It is known that such a beam can lose, in a plasma, a significant part of its energy by exciting a high level of turbulence and heating plasma electrons. Beam-excited plasma oscillations may simultaneously participate in nonlinear processes resulting in a fundamental and second harmonic emissions. It is obvious, however, that in the developed plasma turbulence the role of these emissions in the total energy balance is always negligible. In this paper, we investigate whether electromagnetic radiation generated in the beam-plasma system can be sufficiently enhanced by the direct linear conversion of resonant beam-driven modes into electromagnetic ones on preformed regular inhomogeneities of plasma density. Due to the high power of relativistic electron beams, the mechanism discussed may become the basis for the generator of powerful sub-terahertz radiation.

  19. Rydberg Dipole Antennas

    NASA Astrophysics Data System (ADS)

    Stack, Daniel; Rodenburg, Bradon; Pappas, Stephen; Su, Wangshen; St. John, Marc; Kunz, Paul; Simon, Matt; Gordon, Joshua; Holloway, Christopher

    2017-04-01

    Measurements of microwave frequency electric fields by traditional methods (i.e. engineered antennas) have limited sensitivity and can be difficult to calibrate properly. A useful tool to address this problem are highly-excited (Rydberg) neutral atoms which have very large electric-dipole moments and many dipole-allowed transitions in the range of 1-500 GHz. Using Rydberg states, it is possible to sensitively probe the electric field in this frequency range using the combination of two quantum interference phenomena: electromagnetically induced transparency and the Autler-Townes effect. This atom-light interaction can be modeled by the classical description of a harmonically bound electron. The classical damped, driven, coupled-oscillators model yields significant insights into the deep connections between classical and quantum physics. We will present a detailed experimental analysis of the noise processes in making such measurements in the laboratory and discuss the prospects for building a practical atomic microwave receiver.

  20. Phase Transition in Protocols Minimizing Work Fluctuations

    NASA Astrophysics Data System (ADS)

    Solon, Alexandre P.; Horowitz, Jordan M.

    2018-05-01

    For two canonical examples of driven mesoscopic systems—a harmonically trapped Brownian particle and a quantum dot—we numerically determine the finite-time protocols that optimize the compromise between the standard deviation and the mean of the dissipated work. In the case of the oscillator, we observe a collection of protocols that smoothly trade off between average work and its fluctuations. However, for the quantum dot, we find that as we shift the weight of our optimization objective from average work to work standard deviation, there is an analog of a first-order phase transition in protocol space: two distinct protocols exchange global optimality with mixed protocols akin to phase coexistence. As a result, the two types of protocols possess qualitatively different properties and remain distinct even in the infinite duration limit: optimal-work-fluctuation protocols never coalesce with the minimal-work protocols, which therefore never become quasistatic.

  1. Using a laser-Doppler flowmetry to measure pulsatile microcirculation on the kidney in rats

    NASA Astrophysics Data System (ADS)

    Jan, Ming-Yie; Chao, Pin-Tsun; Hsu, Tse-Lin; Wang, Yuh-Yin L.; Wang, Wei-Kung

    2001-10-01

    Although Laser Doppler flowmetery (LDF) been extensively used in measurement of microvascular blood flow of different tissues. However, due to some physiological vibrations, fast oscillations of the renal cortical flux (RCF) are hard to be measured. In the study, a commercial 3mW 780nm Laser Doppler flowmetery, with a single fiber and a de-vibration holder, was used to measure the pulsatile RCF in rats. Considering the fast response due to the heart rate of rats, the time constant (TC) was set to 0.05 second and thus the frequency response is up to 20Hz. Furthermore, a calibration standard and a static blood sample were also measured as the references without the pulsatile driving force. In order not to perturb the RCF with tiny momentum, the applying force that the fiber exerted on the renal surface was controlled below 100 dyne. To enhance the signal to noise ratio (SNR), an averaged periodogram was used to estimate the frequency components of the pulsatile microcirculation. It is found that the dominating fast oscillation of RCF is pulsatile and its harmonic components are directly correlated with those of the heartbeat (correlation coefficient =0.999, P<0.001, n=17). The result shows that, in the kidney, the pulsatile RCF is the dominating component of microcirculation oscillation and driven by the fast propagating blood pressure. This technique could be further utilized to analyze the pharmacological effect and hemodynamic parameters on renal function.

  2. Semiconductor lasers driven by self-sustained chaotic electronic oscillators and applications to optical chaos cryptography.

    PubMed

    Kingni, Sifeu Takougang; Mbé, Jimmi Hervé Talla; Woafo, Paul

    2012-09-01

    In this work, we numerically study the dynamics of vertical cavity surface emitting laser (VCSEL) firstly when it is driven by Chua's oscillator, secondly in case where it is driven by a broad frequency spectral bandwidth chaotic oscillator developed by Nana et al. [Commun. Nonlinear Sci. Numer. Simul. 14, 2266 (2009)]. We demonstrated that the VCSEL generated robust chaotic dynamics compared to the ones found in VCSEL subject to a sinusoidally modulated current and therefore it is more suitable for chaos encryption techniques. The synchronization characteristics and the communication performances of unidirectional coupled VCSEL driven by the broad frequency spectral bandwidth chaotic oscillators are investigated numerically. The results show that high-quality synchronization and transmission of messages can be realized for suitable system parameters. Chaos shift keying method is successfully applied to encrypt a message at a high bitrate.

  3. Bicoherence Analysis of Electrostatic Interchange Mode Coupling in a Turbulent Laboratory Magnetosphere

    NASA Astrophysics Data System (ADS)

    Abler, M. C.; Mauel, M. E.; Saperstein, A.

    2017-12-01

    Plasmas confined by a strong dipole field exhibit interchange and entropy mode turbulence, which previous experiments have shown respond locally to active feedback [1]. On the Collisionless Terrella Experiment (CTX), this turbulence is characterized by low frequency, low order, quasi-coherent modes with complex spectral dynamics. We apply bicoherence analysis [2] to study nonlinear phase coupling in a variety of scenarios. First, we study the self-interaction of the naturally occurring interchange turbulence; this analysis is then expanded to include the effects of single or multiple driven modes in the frequency range of the background turbulent oscillations. Initial measurements of coupling coefficients are presented in both cases. Driven low frequency interchange modes are observed to generate multiple harmonics which persist throughout the plasma, becoming weaker as they propagate away from the actuator in the direction of the electron magnetic drift. Future work is also discussed, including application of wavelet bicoherence analysis and applications to planetary magnetospheres. [1] Roberts, Mauel, and Worstell, Phys Plasmas (2015). [2] Grierson, Worstell, and Mauel, Phys Plasmas (2009). Supported by NSF-DOE Partnership for Plasma Science Grants DOE-DE-FG02-00ER54585 and NSF-PHY-1201896.

  4. Spectral linewidth of spin-current nano-oscillators driven by nonlocal spin injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demidov, V. E., E-mail: demidov@uni-muenster.de; Divinskiy, B.; Urazhdin, S.

    2015-11-16

    We study experimentally the auto-oscillation characteristics of magnetic nano-oscillators driven by pure spin currents generated by nonlocal spin injection. By combining micro-focus Brillouin light scattering spectroscopy with electronic microwave spectroscopy, we are able to simultaneously perform both the spatial and the high-resolution spectral analyses of auto-oscillations induced by spin current. We find that the devices exhibit a highly coherent dynamics with the spectral linewidth of a few megahertz at room temperature. This narrow linewidth can be achieved over a wide range of operational frequencies, demonstrating a significant potential of nonlocal oscillators for applications.

  5. Random perturbations of a periodically driven nonlinear oscillator: escape from a resonance zone

    NASA Astrophysics Data System (ADS)

    Lingala, Nishanth; Sri Namachchivaya, N.; Pavlyukevich, Ilya

    2017-04-01

    For nonlinear oscillators, frequency of oscillations depends on the oscillation amplitude. When a nonlinear oscillator is periodically driven, the phase space consists of many resonance zones where the oscillator frequency and the driving frequency are commensurable. It is well known that, a small subset of initial conditions can lead to capture in one of the resonance zones. In this paper we study the effect of weak noise on the escape from a resonance zone. Using averaging techniques we obtain the mean exit time from a resonance zone and study the dependence of the exit rate on the parameters of the oscillator. Paper dedicated to Professor Peter W Sauer of University of Illinois on the occasion of his 70th birthday.

  6. Strong-field control and enhancement of chiral response in bi-elliptical high-order harmonic generation: an analytical model

    NASA Astrophysics Data System (ADS)

    Ayuso, David; Decleva, Piero; Patchkovskii, Serguei; Smirnova, Olga

    2018-06-01

    The generation of high-order harmonics in a medium of chiral molecules driven by intense bi-elliptical laser fields can lead to strong chiroptical response in a broad range of harmonic numbers and ellipticities (Ayuso et al 2018 J. Phys. B: At. Mol. Opt. Phys. 51 06LT01). Here we present a comprehensive analytical model that can describe the most relevant features arising in the high-order harmonic spectra of chiral molecules driven by strong bi-elliptical fields. Our model recovers the physical picture underlying chiral high-order harmonic generation (HHG) based on ultrafast chiral hole motion and identifies the rotationally invariant molecular pseudoscalars responsible for chiral dynamics. Using the chiral molecule propylene oxide as an example, we show that one can control and enhance the chiral response in bi-elliptical HHG by tailoring the driving field, in particular by tuning its frequency, intensity and ellipticity, exploiting a suppression mechanism of achiral background based on the linear Stark effect.

  7. Harmonic oscillator representation in the theory of scattering and nuclear reactions

    NASA Technical Reports Server (NTRS)

    Smirnov, Yuri F.; Shirokov, A. M.; Lurie, Yuri, A.; Zaitsev, S. A.

    1995-01-01

    The following questions, concerning the application of the harmonic oscillator representation (HOR) in the theory of scattering and reactions, are discussed: the formulation of the scattering theory in HOR; exact solutions of the free motion Schroedinger equation in HOR; separable expansion of the short range potentials and the calculation of the phase shifts; 'isolated states' as generalization of the Wigner-von Neumann bound states embedded in continuum; a nuclear coupled channel problem in HOR; and the description of true three body scattering in HOR. As an illustration the soft dipole mode in the (11)Li nucleus is considered in a frame of the (9)Li+n+n cluster model taking into account of three body continuum effects.

  8. Experimental Aerodynamic Derivatives of a Sinusoidally Oscillating Airfoil in Two-Dimensional Flow

    NASA Technical Reports Server (NTRS)

    Halfman, Robert L

    1952-01-01

    Experimental measurements of the aerodynamic reactions on a symmetrical airfoil oscillating harmonically in a two-dimensional flow are presented and analyzed. Harmonic motions include pure pitch and pure translation, for several amplitudes and superimposed on an initial angle of attack, as well as combined pitch and translation. The apparatus and testing program are described briefly and the necessary theoretical background is presented. In general, the experimental results agree remarkably well with the theory, especially in the case of the pure motions. The net work per cycle for a motion corresponding to flutter is experimentally determined to be zero. Considerable consistent data for pure pitch were obtained from a search of available reference material, and several definite Reynolds number effects are evident.

  9. Quantum Dynamics of Multi Harmonic Oscillators Described by Time Variant Conic Hamiltonian and their Use in Contemporary Sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demiralp, Metin

    This work focuses on the dynamics of a system of quantum multi harmonic oscillators whose Hamiltonian is conic in positions and momenta with time variant coefficients. While it is simple, this system is useful for modeling the dynamics of a number of systems in contemporary sciences where the equations governing spatial or temporal changes are described by sets of ODEs. The dynamical causal models used readily in neuroscience can be indirectly described by these systems. In this work, we want to show that it is possible to describe these systems using quantum wave function type entities and expectations if themore » dynamic of the system is related to a set of ODEs.« less

  10. Design of short-range terahertz wave passive detecting system

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Lou, Guowei; Zhu, Li; Qian, Songsong; Li, Ting

    2016-09-01

    Based on the study of radiation and transmission characteristics on THz waveband, a short-range passive detecting system is designed. The scheme originated from microwave passive detecting system. A prototype was developed following the design of key components including antennas and a harmonic mixer. The system operated at 0.36 THz. A dual-beam Cassegrain antenna was adopted for receiving signals which radiated by object and background. Local oscillator signal was generated by frequency multiplication. Harmonic mixing is adopted for reducing local oscillator signal frequency required by half. Superheterodyne technology is employed for signal acquisition. The system implemented easily. Tests and measurements were taken, which showed that the scheme was feasible and the performance of the prototype system met the design requirements.

  11. Dissipation and quantization for composite systems

    NASA Astrophysics Data System (ADS)

    Blasone, Massimo; Jizba, Petr; Scardigli, Fabio; Vitiello, Giuseppe

    2009-11-01

    In the framework of 't Hooft's quantization proposal, we show how to obtain from the composite system of two classical Bateman's oscillators a quantum isotonic oscillator. In a specific range of parameters, such a system can be interpreted as a particle in an effective magnetic field, interacting through a spin-orbit interaction term. In the limit of a large separation from the interaction region one can describe the system in terms of two irreducible elementary subsystems which correspond to two independent quantum harmonic oscillators.

  12. 't Hooft Quantization for Interacting Systems

    NASA Astrophysics Data System (ADS)

    Jizba, Petr; Scardigli, Fabio; Blasone, Massimo; Vitiello, Giuseppe

    2012-02-01

    In the framework of 't Hooft's "deterministic quantization" proposal, we show how to obtain from a composite system of two classical Bateman's oscillators a quantum isotonic oscillator. In a specific range of parameters, such a system can be also interpreted as a particle in an effective magnetic field, interacting through a spin-orbit interaction term. In the limit of a large separation from the interaction region, the system can be described in terms of two irreducible elementary subsystems, corresponding to two independent quantum harmonic oscillators.

  13. Supersonic flow past oscillating airfoils including nonlinear thickness effects

    NASA Technical Reports Server (NTRS)

    Van Dyke, Milton D

    1954-01-01

    A solution to second order in thickness is derived for harmonically oscillating two-dimensional airfoils in supersonic flow. For slow oscillations of an arbitrary profile, the result is found as a series including the third power of frequency. For arbitrary frequencies, the method of solution for any specific profile is indicated, and the explicit solution derived for a single wedge. Nonlinear thickness effects are found generally to reduce the torsional damping, and so enlarge the range of Mach numbers within which torsional instability is possible.

  14. Conduction cooled compact laser for the supercam Libsraman instrument

    NASA Astrophysics Data System (ADS)

    Durand, Eric; Derycke, C.; Boudjemaa, L.; Simon-Boisson, C.; Roucayrol, L.; Perez, R.; Faure, B.; Maurice, S.

    2017-09-01

    A new conduction cooled compact laser for SuperCam LIBS-RAMAN instrument aboard Mars 2020 Rover is presented. An oscillator generates 30mJ at 1µm with a good spatial quality. A Second Harmonic Generator (SHG) at the oscillator output generates 15 mJ at 532 nm. A RTP electro-optical switch, between the oscillator and SHG, allows the operation mode selection (LIBS or RAMAN). Qualification model of this laser has been built and characterised. Environmental testing of this model is also reported.

  15. Path integral analysis of Jarzynski's equality: Analytical results

    NASA Astrophysics Data System (ADS)

    Minh, David D. L.; Adib, Artur B.

    2009-02-01

    We apply path integrals to study nonequilibrium work theorems in the context of Brownian dynamics, deriving in particular the equations of motion governing the most typical and most dominant trajectories. For the analytically soluble cases of a moving harmonic potential and a harmonic oscillator with a time-dependent natural frequency, we find such trajectories, evaluate the work-weighted propagators, and validate Jarzynski’s equality.

  16. A self-contained quantum harmonic engine

    NASA Astrophysics Data System (ADS)

    Reid, B.; Pigeon, S.; Antezza, M.; De Chiara, G.

    2017-12-01

    We propose a system made of three quantum harmonic oscillators as a compact quantum engine for producing mechanical work. The three oscillators play respectively the role of the hot bath, the working medium and the cold bath. The working medium performs an Otto cycle during which its frequency is changed and it is sequentially coupled to each of the two other oscillators. As the two environments are finite, the lifetime of the machine is finite and after a number of cycles it stops working and needs to be reset. Remarkably, we show that this machine can extract more than 90% of the available energy during 70 cycles. Differently from usually investigated infinite-reservoir configurations, this machine allows the protection of induced quantum correlations and we analyse the entanglement and quantum discord generated during the strokes. Interestingly, we show that high work generation is always accompanied by large quantum correlations. Our predictions can be useful for energy management at the nanoscale, and can be relevant for experiments with trapped ions and experiments with light in integrated optical circuits.

  17. A simple nonlinear element model

    NASA Astrophysics Data System (ADS)

    Mikhailov, S. G.; Rudenko, O. V.

    2017-05-01

    We study experimentally the behavior of a nonlinear element, a light plate pressed to the opening in the cavity of an acoustic resonator. Measurements of field oscillations inside and outside the cavity have shown that for large amplitudes, they become essentially anharmonic. The time dependences of displacement of the plate with increasing amplitude of the exciting voltage demonstrates a gradual change in the shape of vibrations from harmonic to half-period oscillation. A constant component appears in the cavity: rarefaction or outflow of the medium through the orifice. We construct a theory for nonlinear oscillations of a plate taking into account its different elastic reactions to compression and rarefaction with allowance for monopole radiation by the small-wave-size plate or radiation of a plane wave by the plate. We calculate the amplitudes of the harmonics and solve the problem of low-frequency stationary noise acting on the plate. We obtain expressions for the correlation function and mean power at the output given a normal random process at the input.

  18. QUASI-BIENNIAL OSCILLATIONS IN THE SOLAR TACHOCLINE CAUSED BY MAGNETIC ROSSBY WAVE INSTABILITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaqarashvili, Teimuraz V.; Carbonell, Marc; Oliver, Ramon

    2010-11-20

    Quasi-biennial oscillations (QBOs) are frequently observed in solar activity indices. However, no clear physical mechanism for the observed variations has been suggested so far. Here, we study the stability of magnetic Rossby waves in the solar tachocline using the shallow water magnetohydrodynamic approximation. Our analysis shows that the combination of typical differential rotation and a toroidal magnetic field with a strength of {>=}10{sup 5} G triggers the instability of the m = 1 magnetic Rossby wave harmonic with a period of {approx}2 years. This harmonic is antisymmetric with respect to the equator and its period (and growth rate) depends onmore » the differential rotation parameters and magnetic field strength. The oscillations may cause a periodic magnetic flux emergence at the solar surface and consequently may lead to the observed QBO in solar activity features. The period of QBOs may change throughout a cycle, and from cycle to cycle, due to variations of the mean magnetic field and differential rotation in the tachocline.« less

  19. Forced oscillations of cracked beam under the stochastic cyclic loading

    NASA Astrophysics Data System (ADS)

    Matsko, I.; Javors'kyj, I.; Yuzefovych, R.; Zakrzewski, Z.

    2018-05-01

    An analysis of forced oscillations of cracked beam using statistical methods for periodically correlated random processes is presented. The oscillation realizations are obtained on the basis of numerical solutions of differential equations of the second order, for the case when applied force is described by a sum of harmonic and stationary random process. It is established that due to crack appearance forced oscillations acquire properties of second-order periodical non-stationarity. It is shown that in a super-resonance regime covariance and spectral characteristics, which describe non-stationary structure of forced oscillations, are more sensitive to crack growth than the characteristics of the oscillation's deterministic part. Using diagnostic indicators formed on their basis allows the detection of small cracks.

  20. Periodically poled potassium niobate for second-harmonic generation at 463 nm.

    PubMed

    Meyn, J P; Klein, M E; Woll, D; Wallenstein, R; Rytz, D

    1999-08-15

    We report on the fabrication and characterization of quasi-phase-matched potassium niobate crystals for second-harmonic generation. Periodic 30-mum -pitch antiparallel ferroelectric domains are fabricated by means of poling in an electrical field. Both birefrigence and periodic phase shift of the generated second harmonic contribute to phase matching when the d(31) nonlinear optical tensor element is used. 3.8 mW of second-harmonic radiation at 463 nm is generated by frequency doubling of the output of master-oscillator power-amplifier diode laser in a 5-mm-long crystal. The measured effective nonlinear coefficient is 3.7pm/V. The measured spectral acceptance bandwidth of 0.25 nm corresponds to the theoretical value.

  1. Nonlinearity induced synchronization enhancement in mechanical oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czaplewski, David A.; Lopez, Omar; Guest, Jeffrey R.

    An autonomous oscillator synchronizes to an external harmonic force only when the forcing frequency lies within a certain interval, known as the synchronization range, around the oscillator's natural frequency. Under ordinary conditions, the width of the synchronization range decreases when the oscillation amplitude grows, which constrains synchronized motion of micro- and nano-mechanical resonators to narrow frequency and amplitude bounds. The present invention shows that nonlinearity in the oscillator can be exploited to manifest a regime where the synchronization range increases with an increasing oscillation amplitude. The present invention shows that nonlinearities in specific configurations of oscillator systems, as described herein,more » are the key determinants of the effect. The present invention presents a new configuration and operation regime that enhances the synchronization of micro- and nano-mechanical oscillators by capitalizing on their intrinsic nonlinear dynamics.« less

  2. Phase-locking dynamics in optoelectronic oscillator

    NASA Astrophysics Data System (ADS)

    Banerjee, Abhijit; Sarkar, Jayjeet; Das, NikhilRanjan; Biswas, Baidyanath

    2018-05-01

    This paper analyzes the phase-locking phenomenon in single-loop optoelectronic microwave oscillators considering weak and strong radio frequency (RF) signal injection. The analyses are made in terms of the lock-range, beat frequency and the spectral components of the unlocked-driven oscillator. The influence of RF injection signal on the frequency pulling of the unlocked-driven optoelectronic oscillator (OEO) is also studied. An approximate expression for the amplitude perturbation of the oscillator is derived and the influence of amplitude perturbation on the phase-locking dynamics is studied. It is shown that the analysis clearly reveals the phase-locking phenomenon and the associated frequency pulling mechanism starting from the fast-beat state through the quasi-locked state to the locked state of the pulled OEO. It is found that the unlocked-driven OEO output signal has a very non-symmetrical sideband distribution about the carrier. The simulation results are also given in partial support to the conclusions of the analysis.

  3. Using Monte Carlo ray tracing simulations to model the quantum harmonic oscillator modes observed in uranium nitride

    NASA Astrophysics Data System (ADS)

    Lin, J. Y. Y.; Aczel, A. A.; Abernathy, D. L.; Nagler, S. E.; Buyers, W. J. L.; Granroth, G. E.

    2014-04-01

    Recently an extended series of equally spaced vibrational modes was observed in uranium nitride (UN) by performing neutron spectroscopy measurements using the ARCS and SEQUOIA time-of-flight chopper spectrometers [A. A. Aczel et al., Nat. Commun. 3, 1124 (2012), 10.1038/ncomms2117]. These modes are well described by three-dimensional isotropic quantum harmonic oscillator (QHO) behavior of the nitrogen atoms, but there are additional contributions to the scattering that complicate the measured response. In an effort to better characterize the observed neutron scattering spectrum of UN, we have performed Monte Carlo ray tracing simulations of the ARCS and SEQUOIA experiments with various sample kernels, accounting for nitrogen QHO scattering, contributions that arise from the acoustic portion of the partial phonon density of states, and multiple scattering. These simulations demonstrate that the U and N motions can be treated independently, and show that multiple scattering contributes an approximate Q-independent background to the spectrum at the oscillator mode positions. Temperature-dependent studies of the lowest few oscillator modes have also been made with SEQUOIA, and our simulations indicate that the T dependence of the scattering from these modes is strongly influenced by the uranium lattice.

  4. Robustness effect of gap junctions between Golgi cells on cerebellar cortex oscillations

    PubMed Central

    2011-01-01

    Background Previous one-dimensional network modeling of the cerebellar granular layer has been successfully linked with a range of cerebellar cortex oscillations observed in vivo. However, the recent discovery of gap junctions between Golgi cells (GoCs), which may cause oscillations by themselves, has raised the question of how gap-junction coupling affects GoC and granular-layer oscillations. To investigate this question, we developed a novel two-dimensional computational model of the GoC-granule cell (GC) circuit with and without gap junctions between GoCs. Results Isolated GoCs coupled by gap junctions had a strong tendency to generate spontaneous oscillations without affecting their mean firing frequencies in response to distributed mossy fiber input. Conversely, when GoCs were synaptically connected in the granular layer, gap junctions increased the power of the oscillations, but the oscillations were primarily driven by the synaptic feedback loop between GoCs and GCs, and the gap junctions did not change oscillation frequency or the mean firing rate of either GoCs or GCs. Conclusion Our modeling results suggest that gap junctions between GoCs increase the robustness of cerebellar cortex oscillations that are primarily driven by the feedback loop between GoCs and GCs. The robustness effect of gap junctions on synaptically driven oscillations observed in our model may be a general mechanism, also present in other regions of the brain. PMID:22330240

  5. Magnetic-Field-Response Measurement-Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodward, Stanley E.; Shams, Qamar A.; Fox, Robert L.; Taylor, Bryant D.

    2006-01-01

    A measurement-acquisition system uses magnetic fields to power sensors and to acquire measurements from sensors. The system alleviates many shortcomings of traditional measurement-acquisition systems, which include a finite number of measurement channels, weight penalty associated with wires, use limited to a single type of measurement, wire degradation due to wear or chemical decay, and the logistics needed to add new sensors. Eliminating wiring for acquiring measurements can alleviate potential hazards associated with wires, such as damaged wires becoming ignition sources due to arcing. The sensors are designed as electrically passive inductive-capacitive or passive inductive-capacitive-resistive circuits that produce magnetic-field-responses. One or more electrical parameters (inductance, capacitance, and resistance) of each sensor can be variable and corresponds to a measured physical state of interest. The magnetic-field- response attributes (frequency, amplitude, and bandwidth) of the inductor correspond to the states of physical properties for which each sensor measures. For each sensor, the measurement-acquisition system produces a series of increasing magnetic-field harmonics within a frequency range dedicated to that sensor. For each harmonic, an antenna electrically coupled to an oscillating current (the frequency of which is that of the harmonic) produces an oscillating magnetic field. Faraday induction via the harmonic magnetic fields produces an electromotive force and therefore a current in the sensor. Once electrically active, the sensor produces its own harmonic magnetic field as the inductor stores and releases magnetic energy. The antenna of the measurement- acquisition system is switched from a transmitting to a receiving mode to acquire the magnetic-field response of the sensor. The rectified amplitude of the received response is compared to previous responses to prior transmitted harmonics, to ascertain if the measurement system has detected a response inflection. The "transmit-receive-compare" of sequential harmonics is repeated until the inflection is identified. The harmonic producing the amplitude inflection is the sensor resonant frequency. Resonant frequency and response amplitude are stored and then correlated to calibration data.

  6. Subharmonics, chaos and beyond

    NASA Astrophysics Data System (ADS)

    Adler, Laszlo; Yost, William T.; Cantrell, John H.

    2012-05-01

    While studying finite amplitude ultrasonic wave resonance in a one dimensional liquid-filled cavity formed by a narrow band transducer and a plane reflector, subharmonics of the driver's frequency were observed (1,2) in addition to the expected harmonic structure. Subsequently, it was realized that the system was one of the many examples of parametric resonance in which the observed subharmonics are parametrically generated. The generation mechanism also requires a sufficiently high threshold value of the driving amplitude so that the system becomes increasingly nonlinear in response. The nonlinear features were recently investigated and are the focus of this paper. An ultrasonic interferometer with optical precision was built. The transducers were compressional, undamped quartz and Lithium Niobate crystals ranging from 1-10 MHz, driven by a high power amplifier. Both an optical diffraction system and a receiver transducer attached to an aligned reflector were used to observe the generated frequency components in the cavity. There are at least 5 regions of excitation that were identified. It is shown that from a region of oscillation stability into an unstable region leads to a cascade of bifurcations (subharmonics) culminating in chaotic oscillations. A further increase in the amplitude results in a reversion of the chaos into a second region of stability. A first-principle based explanation of the experimental findings is presented.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romera, M.; Monteblanco, E.; Garcia-Sanchez, F.

    The influence of dynamic coupling in between magnetic layers of a standard spin torque nano-oscillator composed of a synthetic antiferromagnet (SyF) as a polarizer and an in-plane magnetized free layer has been investigated. Experiments on spin valve nanopillars reveal non-continuous features such as kinks in the frequency field dependence that cannot be explained without such interactions. Comparison of experiments to numerical macrospin simulations shows that this is due to non-linear interaction between the spin torque (STT) driven mode and a damped mode that is mediated via the third harmonics of the STT mode. It only occurs at large applied currentsmore » and thus at large excitation amplitudes of the STT mode. Under these conditions, a hybridized mode characterized by a strong reduction of the linewidth appears. The reduced linewidth can be explained by a reduction of the non-linear contribution to the linewidth via an enhanced effective damping. Interestingly, the effect depends also on the exchange interaction within the SyF. An enhancement of the current range of reduced linewidth by a factor of two and a reduction of the minimum linewidth by a factor of two are predicted from simulation when the exchange interaction strength is reduced by 30%. These results open directions to optimize the design and microwave performances of spin torque nano-oscillators taking advantage of the coupling mechanisms.« less

  8. Energy levels of one-dimensional systems satisfying the minimal length uncertainty relation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernardo, Reginald Christian S., E-mail: rcbernardo@nip.upd.edu.ph; Esguerra, Jose Perico H., E-mail: jesguerra@nip.upd.edu.ph

    2016-10-15

    The standard approach to calculating the energy levels for quantum systems satisfying the minimal length uncertainty relation is to solve an eigenvalue problem involving a fourth- or higher-order differential equation in quasiposition space. It is shown that the problem can be reformulated so that the energy levels of these systems can be obtained by solving only a second-order quasiposition eigenvalue equation. Through this formulation the energy levels are calculated for the following potentials: particle in a box, harmonic oscillator, Pöschl–Teller well, Gaussian well, and double-Gaussian well. For the particle in a box, the second-order quasiposition eigenvalue equation is a second-ordermore » differential equation with constant coefficients. For the harmonic oscillator, Pöschl–Teller well, Gaussian well, and double-Gaussian well, a method that involves using Wronskians has been used to solve the second-order quasiposition eigenvalue equation. It is observed for all of these quantum systems that the introduction of a nonzero minimal length uncertainty induces a positive shift in the energy levels. It is shown that the calculation of energy levels in systems satisfying the minimal length uncertainty relation is not limited to a small number of problems like particle in a box and the harmonic oscillator but can be extended to a wider class of problems involving potentials such as the Pöschl–Teller and Gaussian wells.« less

  9. The effect of shot noise on the start up of the fundamental and harmonics in free-electron lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freund, H. P.; Miner, W. H. Jr.; Giannessi, L.

    2008-12-15

    The problem of radiation start up in free-electron lasers (FELs) is important in the simulation of virtually all FEL configurations including oscillators and amplifiers in both seeded master oscillator power amplifier (MOPA) and self-amplified spontaneous emission (SASE) modes. Both oscillators and SASE FELs start up from spontaneous emission due to shot noise on the electron beam, which arises from the random fluctuations in the phase distribution of the electrons. The injected power in a MOPA is usually large enough to overwhelm the shot noise. However, this noise must be treated correctly in order to model the initial start up ofmore » the harmonics. In this paper, we discuss and compare two different shot noise models that are implemented in both one-dimensional wiggler-averaged (PERSEO) and non-wiggler-averaged (MEDUSA1D) simulation codes, and a three-dimensional non-wiggler-averaged (MEDUSA) formulation. These models are compared for examples describing both SASE and MOPA configurations in one dimension, in steady-state, and time-dependent simulations. Remarkable agreement is found between PERSEO and MEDUSA1D for the evolution of the fundamental and harmonics. In addition, three-dimensional correction factors have been included in the MEDUSA1D and PERSEO, which show reasonable agreement with MEDUSA for a sample MOPA in steady-state and time-dependent simulations.« less

  10. Singularity-driven second- and third-harmonic generation at {epsilon}-near-zero crossing points

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vincenti, M. A.; Ceglia, D. de; Ciattoni, A.

    We show an alternative path to efficient second- and third-harmonic generation in proximity of the zero crossing points of the dielectric permittivity in conjunction with low absorption. Under these circumstances, any material, either natural or artificial, will show similar degrees of field enhancement followed by strong harmonic generation, without resorting to any resonant mechanism. The results presented in this paper provide a general demonstration of the potential that the zero-crossing-point condition holds for nonlinear optical phenomena. We investigate a generic Lorentz medium and demonstrate that a singularity-driven enhancement of the electric field may be achieved even in extremely thin layersmore » of material. We also discuss the role of nonlinear surface sources in a realistic scenario where a 20-nm layer of CaF{sub 2} is excited at 21 {mu}m, where {epsilon}{approx} 0. Finally, we show similar behavior in an artificial composite material that includes absorbing dyes in the visible range, provide a general tool for the improvement of harmonic generation using the {epsilon}{approx} 0 condition, and illustrate that this singularity-driven enhancement of the field lowers the thresholds for a plethora of nonlinear optical phenomena.« less

  11. Solid-state lasers for coherent communication and remote sensing

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1990-01-01

    Laser development, high efficiency, high power second harmonic generation, operation of optical parametric oscillators for wavelength diversity and tunability, and studies in coherent communications are reviewed.

  12. Large enhancement of interface second-harmonic generation near the zero-n(-) gap of a negative-index Bragg grating.

    PubMed

    D'Aguanno, Giuseppe; Mattiucci, Nadia; Bloemer, Mark J; Scalora, Michael

    2006-03-01

    We predict a large enhancement of interface second-harmonic generation near the zero-n(-) gap of a Bragg grating made of alternating layers of negative- and positive-index materials. Field localization and coherent oscillations of the nonlinear dipoles located at the structure's interfaces conspire to yield conversion efficiencies at least an order of magnitude greater than those achievable in the same length of nonlinear, phase-matched bulk material. These findings thus point to a new class of second-harmonic-generation devices made of standard centrosymmetric materials.

  13. Efficient forward second-harmonic generation from planar archimedean nanospirals

    DOE PAGES

    Davidson, II, Roderick B.; Ziegler, Jed I.; Vargas, Guillermo; ...

    2015-05-01

    Here, the enhanced electric field at plasmonic resonances in nanoscale antennas can lead to efficient harmonic generation, especially when the plasmonic geometry is asymmetric on either inter-particle or intra-particle levels. The planar Archimedean nanospiral offers a unique geometrical asymmetry for second-harmonic generation (SHG) because the SHG results neither from arranging centrosymmetric nanoparticles in asymmetric groupings, nor from non-centrosymmetric nanoparticles that retain a local axis of symmetry. Here, we report forward SHG from planar arrays of Archimedean nanospirals using 15 fs pulses from a Ti:sapphire oscillator tuned to 800 nm wavelength.

  14. Maintenance and suppression of chaos by weak harmonic perturbations: a unified view.

    PubMed

    Chacón, R

    2001-02-26

    General results concerning maintenance or enhancement of chaos are presented for dissipative systems subjected to two harmonic perturbations (one chaos inducing and the other chaos enhancing). The connection with previous results on chaos suppression is also discussed in a general setting. It is demonstrated that, in general, a second harmonic perturbation can reliably play an enhancer or inhibitor role by solely adjusting its initial phase. Numerical results indicate that general theoretical findings concerning periodic chaos-inducing perturbations also work for aperiodic chaos-inducing perturbations, and in arrays of identical chaotic coupled oscillators.

  15. Frequency-doubled microwave waveforms generation using a dual-polarization quadrature phase shift keying modulator driven by a single frequency radio frequency signal

    NASA Astrophysics Data System (ADS)

    Zhu, Zihang; Zhao, Shanghong; Li, Xuan; Qu, Kun; Lin, Tao

    2018-01-01

    A photonic approach to generate frequency-doubled microwave waveforms using an integrated dual-polarization quadrature phase shift keying (DP-QPSK) modulator driven by a sinusoidal radio frequency (RF) signal is proposed. By adjusting the dc bias points of the DP-QPSK modulator, the obtained second-order and six-order harmonics are in phase while the fourth-order harmonics are complementary when the orthogonal polarized outputs of the modulator are photodetected. After properly setting the modulation indices of the modulator, the amplitude of the second-order harmonic is 9 times of that of the six-order harmonic, indicating a frequency-doubled triangular waveform is generated. If a broadband 90° microwave phase shifter is attached after the photodetector (PD) to introduce a 90° phase shift, a frequency-doubled square waveform can be obtained after adjusting the amplitude of the second-order harmonic 3 times of that of the six-order harmonic. The proposal is first theoretically analyzed and then validated by simulation. Simulation results show that a 10 GHz triangular and square waveform sequences are successfully generated from a 5 GHz sinusoidal RF drive signal.

  16. Orientation dependence of temporal and spectral properties of high-order harmonics in solids

    NASA Astrophysics Data System (ADS)

    Wu, Mengxi; You, Yongsing; Ghimire, Shambhu; Reis, David A.; Browne, Dana A.; Schafer, Kenneth J.; Gaarde, Mette B.

    2017-12-01

    We investigate the connection between crystal symmetry and temporal and spectral properties of high-order harmonics in solids. We calculate the orientation-dependent harmonic spectrum driven by an intense, linearly polarized infrared laser field, using a momentum-space description of the generation process in terms of strong-field-driven electron dynamics on the band structure. We show that the orientation dependence of both the spectral yield and the subcycle time profile of the harmonic radiation can be understood in terms of the coupling strengths and relative curvatures of the valence band and the low-lying conduction bands. In particular, we show that in some systems this gives rise to a rapid shift of a quarter optical cycle in the timing of harmonics in the secondary plateau as the crystal is rotated relative to the laser polarization. We address recent experimental results in MgO [Y. S. You et al., Nat. Phys. 13, 345 (2017)., 10.1038/nphys3955] and show that the observed change in orientation dependence for the highest harmonics can be interpreted in the momentum space picture in terms of the contributions of several different conduction bands.

  17. Umbral oscillations and penumbral waves in H alpha. [in sunspots

    NASA Technical Reports Server (NTRS)

    Moore, R. L.; Tang, F.

    1975-01-01

    Examples are presented of umbral oscillations observed on Big Bear H-alpha filtergram movies, and the relation between umbral oscillations and running penumbral waves occurring in the same sunspot is investigated. Umbral oscillations near the center of the umbra are probably physically independent of the penumbral waves because the period of these umbral oscillations (150 sec) is shorter than the penumbral wave period (270 sec), but not a harmonic. Dark puffs emerge from the edge of the umbra and move outward across the penumbra, and have the same period as the running penumbral waves. These dark puffs are interpreted to be the extension of chromospheric umbral oscillations at the edge of the umbra. It is suggested that the dark puffs and the running penumbral waves have a common source: photospheric oscillations just inside the umbra.

  18. High-order harmonic generation in solid slabs beyond the single-active-electron approximation

    NASA Astrophysics Data System (ADS)

    Hansen, Kenneth K.; Deffge, Tobias; Bauer, Dieter

    2017-11-01

    High-harmonic generation by a laser-driven solid slab is simulated using time-dependent density functional theory. Multiple harmonic plateaus up to very high harmonic orders are observed already at surprisingly low field strengths. The full all-electron harmonic spectra are, in general, very different from those of any individual Kohn-Sham orbital. Freezing the Kohn-Sham potential instead is found to be a good approximation for the laser intensities and harmonic orders considered. The origins of the plateau cutoffs are explained in terms of band gaps that can be reached by Kohn-Sham electrons and holes moving through the band structure.

  19. The oscillatory entrainment of virtual pitch perception

    PubMed Central

    Aksentijevic, Aleksandar; Northeast, Anthony; Canty, Daniel; Elliott, Mark A.

    2013-01-01

    Evidence suggests that synchronized brain oscillations in the low gamma range (around 33 Hz) are involved in the perceptual integration of harmonic complex tones. This process involves the binding of harmonic components into “harmonic templates” – neural structures responsible for pitch coding in the brain. We investigated the hypothesis that oscillatory harmonic binding promotes a change in pitch perception style from spectral (frequency) to virtual (relational). Using oscillatory priming we asked 24 participants to judge as rapidly as possible, the direction of an ambiguous target with ascending spectral and descending virtual contour. They made significantly more virtual responses when primed at 29, 31, and 33 Hz and when the first target tone was harmonically related to the prime, suggesting that neural synchronization in the low gamma range could facilitate a shift toward virtual pitch processing. PMID:23630515

  20. Exploratory investigation of sound pressure level in the wake of an oscillating airfoil in the vicinity of stall

    NASA Technical Reports Server (NTRS)

    Gray, R. B.; Pierce, G. A.

    1972-01-01

    Wind tunnel tests were performed on two oscillating two-dimensional lifting surfaces. The first of these models had an NACA 0012 airfoil section while the second simulated the classical flat plate. Both of these models had a mean angle of attack of 12 degrees while being oscillated in pitch about their midchord with a double amplitude of 6 degrees. Wake surveys of sound pressure level were made over a frequency range from 16 to 32 Hz and at various free stream velocities up to 100 ft/sec. The sound pressure level spectrum indicated significant peaks in sound intensity at the oscillation frequency and its first harmonic near the wake of both models. From a comparison of these data with that of a sound level meter, it is concluded that most of the sound intensity is contained within these peaks and no appreciable peaks occur at higher harmonics. It is concluded that within the wake the sound intensity is largely pseudosound while at one chord length outside the wake, it is largely true vortex sound. For both the airfoil and flat plate the peaks appear to be more strongly dependent upon the airspeed than on the oscillation frequency. Therefore reduced frequency does not appear to be a significant parameter in the generation of wake sound intensity.

  1. Photonic harmonic up-converter based on a self-oscillating optical frequency comb using a DP-DPMZM

    NASA Astrophysics Data System (ADS)

    Xiao, Xuedi; Li, Shangyuan; Xie, Zhengyang; Peng, Shaowen; Wu, Dexin; Xue, Xiaoxiao; Zheng, Xiaoping; Zhou, Bingkun

    2018-04-01

    A photonic harmonic up-converter based on a self-oscillating optical frequency comb (OFC) utilizing an integrated dual-polarization dual-parallel Mach-Zehnder Modulator (DP-DPMZM) is proposed and experimentally demonstrated. One DPMZM is used to generate the optoelectronic oscillator (OEO)-based OFC, and the rest one is used to generate the optical-modulated intermediate frequency (IF) signal. Beating these two signals, the up-converted signals at different bands would be obtained. As the OFC is generated based on the OEO loop, phase noise can be very low, ensuring good phase noise properties of the up-converted signals. Moreover, frequency spacing between the combs is dependent on oscillating frequency of the OEO, which can be as large as tens of gigahertz. Thus IF signals with large bandwidth can be up-converted to RF bands without aliasing. Experimentally, the 2.5 GHz IF signal is simultaneously up-converted to 13.3, 24.1, and 34.9 GHz by a self-oscillating 7-line OFC spacing at 10.8 GHz. Owing to good phase noise property of the OEO, the up-converted signals at 13.3 and 24.1 GHz maintain the phase noise of the IF signal from 1 KHz to 100 KHz offset. The results show that the converter is promising for multi-band radar and satellite navigation applications.

  2. Axially deformed solution of the Skyrme–Hartree–Fock–Bogolyubov equations using the transformed harmonic oscillator basis (III) hfbtho (v3.00): A new version of the program

    DOE PAGES

    Perez, R. Navarro; Schunck, N.; Lasseri, R. -D.; ...

    2017-07-05

    Here, we describe the new version 3.00 of the code hfbtho that solves the nuclear Hartree–Fock (HF) or Hartree–Fock–Bogolyubov (HFB) problem by using the cylindrical transformed deformed harmonic oscillator basis. In the new version, we have implemented the following features: (i) the full Gogny force in both particle–hole and particle–particle channels, (ii) the calculation of the nuclear collective inertia at the perturbative cranking approximation, (iii) the calculation of fission fragment charge, mass and deformations based on the determination of the neck, (iv) the regularization of zero-range pairing forces, (v) the calculation of localization functions, (vi) a MPI interface for large-scalemore » mass table calculations.« less

  3. Advanced light source master oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lo, C.C.; Taylor, B.; Baptiste, K.

    1989-03-01

    The Master Oscillator of the Advanced Light Source operates at a frequency of 499.654 MHz which is the 328th harmonic of the storage ring. The oscillator is capable of providing up to a maximum of {plus minus} 500 KHz frequency deviation for various experimental purposes. Provisions for external signal injection as well as using an external signal source have been designed into the unit. A power distribution system has also been included to provide signals for various parts of the ALS machine and user requirements. The Master Oscillator is made up with modules housed in a Euro chassis. 4 refs.,more » 7 figs.« less

  4. Free Electron Laser Theoretical Study.

    DTIC Science & Technology

    1981-11-30

    8217 1 oscillator; 4) finite electron beam pulse effects and parasitic instability growth and saturation. The results of these investigations are...quite large in an oscillator. In order to study these effects as well as those due to the possible growth of parasitic (trapped particles...study harmonic growth and sideband instability in detail has been included in the codo recently. In addition, the nonlinear mechanisms which limit the

  5. Dynamic localization in optical and Zeeman lattices in the presence of spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Kartashov, Yaroslav V.; Konotop, Vladimir V.; Zezyulin, Dmitry A.; Torner, Lluis

    2016-12-01

    The dynamic localization of a two-level atom in a periodic potential under the action of spin-orbit coupling and a weak harmonically varying linear force is studied. We consider optical and Zeeman potentials that are either in phase or out of phase in two spinor components, respectively. The expectation value for the position of the atom after one oscillation period of the linear force is recovered in authentic resonances or in pseudoresonances. The frequencies of the linear force corresponding to authentic resonances are determined by the band structure of the periodic potential and are affected by the spin-orbit coupling. The width or dispersion of the wave packet in authentic resonances is usually minimal. The frequencies corresponding to pseudoresonances do not depend on the type of potential and on the strength of the spin-orbit coupling, while the evolution of excitations at the corresponding frequencies is usually accompanied by significant dispersion. Pseudoresonances are determined by the initial phase of the linear force and by the quasimomentum of the wave packet. Due to the spinor nature of the system, the motion of the atom is accompanied by periodic, but not harmonic, spin oscillations. Under the action of spin-orbit coupling the oscillations of the wave packet can be nearly completely suppressed in optical lattices. Dynamic localization in Zeeman lattices is characterized by doubling of the resonant oscillation periods due to band crossing at the boundary of the Brillouin zone. We also show that higher harmonics in the Fourier expansion of the energy band lead to effective dispersion, which can be strong enough to prevent dynamic localization of the Bloch wave packet.

  6. Nonlinear response of a harmonic diatomic molecule: Algebraic nonperturbative calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Recamier, Jose; Mochan, W. Luis; Maytorena, Jesus A.

    2005-08-15

    Even harmonic molecules display a nonlinear behavior when driven by an inhomogeneous field. We calculate the response of single harmonic molecules to a monochromatic time and space dependent electric field E(r,t) of frequency {omega} employing exact algebraic methods. We evaluate the responses at the fundamental frequency {omega} and at successive harmonics 2{omega}, 3{omega}, etc., as a function of the intensity and of the frequency of the field and compare the results with those of first and second order perturbation theory.

  7. Quantum damped oscillator II: Bateman’s Hamiltonian vs. 2D parabolic potential barrier

    NASA Astrophysics Data System (ADS)

    Chruściński, Dariusz

    2006-04-01

    We show that quantum Bateman’s system which arises in the quantization of a damped harmonic oscillator is equivalent to a quantum problem with 2D parabolic potential barrier known also as 2D inverted isotropic oscillator. It turns out that this system displays the family of complex eigenvalues corresponding to the poles of analytical continuation of the resolvent operator to the complex energy plane. It is shown that this representation is more suitable than the hyperbolic one used recently by Blasone and Jizba.

  8. Vertical vibration and shape oscillation of acoustically levitated water drops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, D. L.; Xie, W. J.; Yan, N.

    2014-09-08

    We present the vertical harmonic vibration of levitated water drops within ultrasound field. The restoring force to maintain such a vibration mode is provided by the resultant force of acoustic radiation force and drop gravity. Experiments reveal that the vibration frequency increases with the aspect ratio for drops with the same volume, which agrees with the theoretical prediction for those cases of nearly equiaxed drops. During the vertical vibration, the floating drops undergo the second order shape oscillation. The shape oscillation frequency is determined to be twice the vibration frequency.

  9. Physics-based analysis and control of human snoring

    NASA Astrophysics Data System (ADS)

    Sanchez, Yaselly; Wang, Junshi; Han, Pan; Xi, Jinxiang; Dong, Haibo

    2017-11-01

    In order to advance the understanding of biological fluid dynamics and its effects on the acoustics of human snoring, the study pursued a physics-based computational approach. From human magnetic resonance image (MRI) scans, the researchers were able to develop both anatomically and dynamically accurate airway-uvula models. With airways defined as rigid, and the uvula defined as flexible, computational models were created with various pharynx thickness and geometries. In order to determine vortex shedding with prescribed uvula movement, the uvula fluctuation was categorized by its specific parameters: magnitude, frequency, and phase lag. Uvula vibration modes were based on one oscillation, or one harmonic frequency, and pressure probes were located in seven different positions throughout the airway-uvula model. By taking fast Fourier transforms (FFT) from the pressure probe data, it was seen that four harmonics were created throughout the simulation within one oscillation of uvula movement. Of the four harmonics, there were two pressure probes which maintained high amplitudes and led the researcher to believe that different vortices formed with different snoring frequencies. This work is supported by the NSF Grant CBET-1605434.

  10. Continuous-Wave Operation of a 460-GHz Second Harmonic Gyrotron Oscillator

    PubMed Central

    Hornstein, Melissa K.; Bajaj, Vikram S.; Griffin, Robert G.; Temkin, Richard J.

    2007-01-01

    We report the regulated continuous-wave (CW) operation of a second harmonic gyrotron oscillator at output power levels of over 8 W (12.4 kV and 135 mA beam voltage and current) in the TE0,6,1 mode near 460 GHz. The gyrotron also operates in the second harmonic TE2,6,1 mode at 456 GHz and in the TE2,3,1 fundamental mode at 233 GHz. CW operation was demonstrated for a one-hour period in the TE0,6,1 mode with better than 1% power stability, where the power was regulated using feedback control. Nonlinear simulations of the gyrotron operation agree with the experimentally measured output power and radio-frequency (RF) efficiency when cavity ohmic losses are included in the analysis. The output radiation pattern was measured using a pyroelectric camera and is highly Gaussian, with an ellipticity of 4%. The 460-GHz gyrotron will serve as a millimeter-wave source for sensitivity-enhanced nuclear magnetic resonance (dynamic nuclear polarization) experiments at a magnetic field of 16.4 T. PMID:17710187

  11. Stochastic dynamics of uncoupled neural oscillators: Fokker-Planck studies with the finite element method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galan, Roberto F.; Urban, Nathaniel N.; Center for the Neural Basis of Cognition, Mellon Institute, Pittsburgh, Pennsylvania 15213

    We have investigated the effect of the phase response curve on the dynamics of oscillators driven by noise in two limit cases that are especially relevant for neuroscience. Using the finite element method to solve the Fokker-Planck equation we have studied (i) the impact of noise on the regularity of the oscillations quantified as the coefficient of variation, (ii) stochastic synchronization of two uncoupled phase oscillators driven by correlated noise, and (iii) their cross-correlation function. We show that, in general, the limit of type II oscillators is more robust to noise and more efficient at synchronizing by correlated noise thanmore » type I.« less

  12. Distribution of ULF energy (f is less than 80 mHz) in the inner magnetosphere - A statistical analysis of AMPTE CCE magnetic field data

    NASA Technical Reports Server (NTRS)

    Takahashi, Kazue; Anderson, Brian J.

    1992-01-01

    Magnetic field measurements made with the AMPTE CCE spacecraft are used to investigate the distribution of ULF energy in the inner magnetosphere. The data base is employed to examine the spatial distribution of ULF energy. The spatial distribution of wave power and spectral structures are used to identify several pulsation types, including multiharmonic toroidal oscillations; equatorial compressional Pc 3 oscillations; second harmonic poloidal oscillations; and nightside compressional oscillations. The frequencies of the toroidal oscillations are applied to determine the statistical radial profile of the plasma mass density and Alfven velocity. A clear signature of the plasma pause in the profiles of these average parameters is found.

  13. On Interactions of Oscillation Modes for a Weakly Non-Linear Undamped Elastic Beam with AN External Force

    NASA Astrophysics Data System (ADS)

    BOERTJENS, G. J.; VAN HORSSEN, W. T.

    2000-08-01

    In this paper an initial-boundary value problem for the vertical displacement of a weakly non-linear elastic beam with an harmonic excitation in the horizontal direction at the ends of the beam is studied. The initial-boundary value problem can be regarded as a simple model describing oscillations of flexible structures like suspension bridges or iced overhead transmission lines. Using a two-time-scales perturbation method an approximation of the solution of the initial-boundary value problem is constructed. Interactions between different oscillation modes of the beam are studied. It is shown that for certain external excitations, depending on the phase of an oscillation mode, the amplitude of specific oscillation modes changes.

  14. Elastomer degradation sensor using a piezoelectric material

    DOEpatents

    Olness, Dolores U.; Hirschfeld, deceased, Tomas B.

    1990-01-01

    A method and apparatus for monitoring the degradation of elastomeric materials is provided. Piezoelectric oscillators are placed in contact with the elastomeric material so that a forced harmonic oscillator with damping is formed. The piezoelectric material is connected to an oscillator circuit,. A parameter such as the resonant frequency, amplitude or Q value of the oscillating system is related to the elasticity of the elastomeric material. Degradation of the elastomeric material causes changes in its elasticity which, in turn, causes the resonant frequency, amplitude or Q of the oscillator to change. These changes are monitored with a peak height monitor, frequency counter, Q-meter, spectrum analyzer, or other measurement circuit. Elasticity of elastomers can be monitored in situ, using miniaturized sensors.

  15. Analysis of periodically excited non-linear systems by a parametric continuation technique

    NASA Astrophysics Data System (ADS)

    Padmanabhan, C.; Singh, R.

    1995-07-01

    The dynamic behavior and frequency response of harmonically excited piecewise linear and/or non-linear systems has been the subject of several recent investigations. Most of the prior studies employed harmonic balance or Galerkin schemes, piecewise linear techniques, analog simulation and/or direct numerical integration (digital simulation). Such techniques are somewhat limited in their ability to predict all of the dynamic characteristics, including bifurcations leading to the occurrence of unstable, subharmonic, quasi-periodic and/or chaotic solutions. To overcome this problem, a parametric continuation scheme, based on the shooting method, is applied specifically to a periodically excited piecewise linear/non-linear system, in order to improve understanding as well as to obtain the complete dynamic response. Parameter regions exhibiting bifurcations to harmonic, subharmonic or quasi-periodic solutions are obtained quite efficiently and systematically. Unlike other techniques, the proposed scheme can follow period-doubling bifurcations, and with some modifications obtain stable quasi-periodic solutions and their bifurcations. This knowledge is essential in establishing conditions for the occurrence of chaotic oscillations in any non-linear system. The method is first validated through the Duffing oscillator example, the solutions to which are also obtained by conventional one-term harmonic balance and perturbation methods. The second example deals with a clearance non-linearity problem for both harmonic and periodic excitations. Predictions from the proposed scheme match well with available analog simulation data as well as with multi-term harmonic balance results. Potential savings in computational time over direct numerical integration is demonstrated for some of the example cases. Also, this work has filled in some of the solution regimes for an impact pair, which were missed previously in the literature. Finally, one main limitation associated with the proposed procedure is discussed.

  16. Closed-loop suppression of chaos in nonlinear driven oscillators

    NASA Astrophysics Data System (ADS)

    Aguirre, L. A.; Billings, S. A.

    1995-05-01

    This paper discusses the suppression of chaos in nonlinear driven oscillators via the addition of a periodic perturbation. Given a system originally undergoing chaotic motions, it is desired that such a system be driven to some periodic orbit. This can be achieved by the addition of a weak periodic signal to the oscillator input. This is usually accomplished in open loop, but this procedure presents some difficulties which are discussed in the paper. To ensure that this is attained despite uncertainties and possible disturbances on the system, a procedure is suggested to perform control in closed loop. In addition, it is illustrated how a model, estimated from input/output data, can be used in the design. Numerical examples which use the Duffing-Ueda and modified van der Pol oscillators are included to illustrate some of the properties of the new approach.

  17. Robust ion current oscillations under a steady electric field: An ion channel analog.

    PubMed

    Yan, Yu; Wang, Yunshan; Senapati, Satyajyoti; Schiffbauer, Jarrod; Yossifon, Gilad; Chang, Hsueh-Chia

    2016-08-01

    We demonstrate a nonlinear, nonequilibrium field-driven ion flux phenomenon, which unlike Teorell's nonlinear multiple field theory, requires only the application of one field: robust autonomous current-mass flux oscillations across a porous monolith coupled to a capillary with a long air bubble, which mimics a hydrophobic protein in an ion channel. The oscillations are driven by the hysteretic wetting dynamics of the meniscus when electro-osmotic flow and pressure driven backflow, due to bubble expansion, compete to approach zero mass flux within the monolith. Delayed rupture of the film around the advancing bubble cuts off the electric field and switches the monolith mass flow from the former to the latter. The meniscus then recedes and repairs the rupture to sustain an oscillation for a range of applied fields. This generic mechanism shares many analogs with current oscillations in cell membrane ion channel. At sufficiently high voltage, the system undergoes a state transition characterized by appearance of the ubiquitous 1/f power spectrum.

  18. Course 4: Anyons

    NASA Astrophysics Data System (ADS)

    Myrheim, J.

    Contents 1 Introduction 1.1 The concept of particle statistics 1.2 Statistical mechanics and the many-body problem 1.3 Experimental physics in two dimensions 1.4 The algebraic approach: Heisenberg quantization 1.5 More general quantizations 2 The configuration space 2.1 The Euclidean relative space for two particles 2.2 Dimensions d=1,2,3 2.3 Homotopy 2.4 The braid group 3 Schroedinger quantization in one dimension 4 Heisenberg quantization in one dimension 4.1 The coordinate representation 5 Schroedinger quantization in dimension d ≥ 2 5.1 Scalar wave functions 5.2 Homotopy 5.3 Interchange phases 5.4 The statistics vector potential 5.5 The N-particle case 5.6 Chern-Simons theory 6 The Feynman path integral for anyons 6.1 Eigenstates for position and momentum 6.2 The path integral 6.3 Conjugation classes in SN 6.4 The non-interacting case 6.5 Duality of Feynman and Schroedinger quantization 7 The harmonic oscillator 7.1 The two-dimensional harmonic oscillator 7.2 Two anyons in a harmonic oscillator potential 7.3 More than two anyons 7.4 The three-anyon problem 8 The anyon gas 8.1 The cluster and virial expansions 8.2 First and second order perturbative results 8.3 Regularization by periodic boundary conditions 8.4 Regularization by a harmonic oscillator potential 8.5 Bosons and fermions 8.6 Two anyons 8.7 Three anyons 8.8 The Monte Carlo method 8.9 The path integral representation of the coefficients GP 8.10 Exact and approximate polynomials 8.11 The fourth virial coefficient of anyons 8.12 Two polynomial theorems 9 Charged particles in a constant magnetic field 9.1 One particle in a magnetic field 9.2 Two anyons in a magnetic field 9.3 The anyon gas in a magnetic field 10 Interchange phases and geometric phases 10.1 Introduction to geometric phases 10.2 One particle in a magnetic field 10.3 Two particles in a magnetic field 10.4 Interchange of two anyons in potential wells 10.5 Laughlin's theory of the fractional quantum Hall effect

  19. Perturbing laser field dependent high harmonic phase modulations

    NASA Astrophysics Data System (ADS)

    Li, Zhengyan; Kong, Fanqi; Brown, Graham; Hammond, TJ; Ko, Dong-Hyuk; Zhang, Chunmei; Corkum, P. B.

    2018-06-01

    A perturbing laser pulse modulates and controls the phase of the high harmonic radiation driven by an intense fundamental pulse. Thus, a structured wave front can impress a specific spatial phase onto the generated high harmonic wave front. This modulation procedure leads to all-optical spatial light modulators for VUV or XUV radiation created by high harmonic generation. Here, through theoretical analysis and experiment, we study the correlation between the high harmonic phase modulations and the perturbing laser field amplitude and phase, providing guidelines for practical high harmonic spatial light modulators. In addition, we show that the petahertz optical oscilloscope for measuring electric fields of a perturbing beam is most robust using low order harmonics, far from the cut-off.

  20. Subcycle dynamics of high-order-harmonic generation of He atoms excited by attosecond pulses and driven by near-infrared laser fields: A self-interaction-free time-dependent density-functional-theory approach

    NASA Astrophysics Data System (ADS)

    Heslar, John; Telnov, Dmitry A.; Chu, Shih-I.

    2014-05-01

    In the framework of the self-interaction-free time-dependent density-functional theory, we have performed three-dimensional (3D) ab initio calculations of He atoms in near-infrared (NIR) laser fields subject to excitation by a single extreme ultraviolet (XUV) attosecond pulse (SAP). We have explored the dynamical behavior of the subcycle high harmonic generation (HHG) for transitions from the excited states to the ground state and found oscillation structures with respect to the time delay between the SAP and NIR fields. The oscillatory pattern in the photon emission spectra has a period of ˜1.3 fs which is half of the NIR laser optical cycle, similar to that recently measured in the experiments on transient absorption of He [M. Chini et al., Sci. Rep. 3, 1105 (2013), 10.1038/srep01105]. We present the photon emission spectra from 1s2p, 1s3p, 1s4p, 1s5p, and 1s6p excited states as functions of the time delay. We explore the subcycle Stark shift phenomenon in NIR fields and its influence on the photon emission process. Our analysis reveals several interesting features of the subcycle HHG dynamics and we identify the mechanisms responsible for the observed peak splitting in the photon emission spectra.

  1. Time-Perception Network and Default Mode Network Are Associated with Temporal Prediction in a Periodic Motion Task

    PubMed Central

    Carvalho, Fabiana M.; Chaim, Khallil T.; Sanchez, Tiago A.; de Araujo, Draulio B.

    2016-01-01

    The updating of prospective internal models is necessary to accurately predict future observations. Uncertainty-driven internal model updating has been studied using a variety of perceptual paradigms, and have revealed engagement of frontal and parietal areas. In a distinct literature, studies on temporal expectations have also characterized a time-perception network, which relies on temporal orienting of attention. However, the updating of prospective internal models is highly dependent on temporal attention, since temporal attention must be reoriented according to the current environmental demands. In this study, we used functional magnetic resonance imaging (fMRI) to evaluate to what extend the continuous manipulation of temporal prediction would recruit update-related areas and the time-perception network areas. We developed an exogenous temporal task that combines rhythm cueing and time-to-contact principles to generate implicit temporal expectation. Two patterns of motion were created: periodic (simple harmonic oscillation) and non-periodic (harmonic oscillation with variable acceleration). We found that non-periodic motion engaged the exogenous temporal orienting network, which includes the ventral premotor and inferior parietal cortices, and the cerebellum, as well as the presupplementary motor area, which has previously been implicated in internal model updating, and the motion-sensitive area MT+. Interestingly, we found a right-hemisphere preponderance suggesting the engagement of explicit timing mechanisms. We also show that the periodic motion condition, when compared to the non-periodic motion, activated a particular subset of the default-mode network (DMN) midline areas, including the left dorsomedial prefrontal cortex (DMPFC), anterior cingulate cortex (ACC), and bilateral posterior cingulate cortex/precuneus (PCC/PC). It suggests that the DMN plays a role in processing contextually expected information and supports recent evidence that the DMN may reflect the validation of prospective internal models and predictive control. Taken together, our findings suggest that continuous manipulation of temporal predictions engages representations of temporal prediction as well as task-independent updating of internal models. PMID:27313526

  2. Using Monte Carlo ray tracing simulations to model the quantum harmonic oscillator modes observed in uranium nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, J. Y. Y.; Aczel, Adam A; Abernathy, Douglas L

    2014-01-01

    Recently an extended series of equally spaced vibrational modes was observed in uranium nitride (UN) by performing neutron spectroscopy measurements using the ARCS and SEQUOIA time-of- flight chopper spectrometers [A.A. Aczel et al, Nature Communications 3, 1124 (2012)]. These modes are well described by 3D isotropic quantum harmonic oscillator (QHO) behavior of the nitrogen atoms, but there are additional contributions to the scattering that complicate the measured response. In an effort to better characterize the observed neutron scattering spectrum of UN, we have performed Monte Carlo ray tracing simulations of the ARCS and SEQUOIA experiments with various sample kernels, accountingmore » for the nitrogen QHO scattering, contributions that arise from the acoustic portion of the partial phonon density of states (PDOS), and multiple scattering. These simulations demonstrate that the U and N motions can be treated independently, and show that multiple scattering contributes an approximate Q-independent background to the spectrum at the oscillator mode positions. Temperature dependent studies of the lowest few oscillator modes have also been made with SEQUOIA, and our simulations indicate that the T-dependence of the scattering from these modes is strongly influenced by the uranium lattice.« less

  3. Optically pumped coherent mechanical oscillators: the laser rate equation theory and experimental verification

    NASA Astrophysics Data System (ADS)

    Khurgin, J. B.; Pruessner, M. W.; Stievater, T. H.; Rabinovich, W. S.

    2012-10-01

    We develop a theory describing the operation of an opto-mechanical oscillator as a phonon laser using a set of coupled equations that is analogous to the standard set of laser rate equations. We show that laser-like parameters that characterize gain, stored energy, threshold, efficiency, oscillation frequency linewidth, and saturation power can be introduced for an opto-mechanical oscillator driven by photo-thermal or radiation pressure forces. We then apply the theoretical model to the experimental results for photo-thermally driven oscillations in a Si waveguide opto-mechanical resonator and show good agreement between the theory and experiments. We also consider the microscopic mechanism that transforms the energy of incoherent thermal phonons into coherent oscillations of a single phonon mode and show remarkable parallels with the three-wave parametric interactions in optics and also with opto-electronic oscillators used in microwave photonics.

  4. Mutual 3:1 subharmonic synchronization in a micromachined silicon disk resonator

    NASA Astrophysics Data System (ADS)

    Taheri-Tehrani, Parsa; Guerrieri, Andrea; Defoort, Martial; Frangi, Attilio; Horsley, David A.

    2017-10-01

    We demonstrate synchronization between two intrinsically coupled oscillators that are created from two distinct vibration modes of a single micromachined disk resonator. The modes have a 3:1 subharmonic frequency relationship and cubic, non-dissipative electromechanical coupling between the modes enables their two frequencies to synchronize. Our experimental implementation allows the frequency of the lower frequency oscillator to be independently controlled from that of the higher frequency oscillator, enabling study of the synchronization dynamics. We find close quantitative agreement between the experimental behavior and an analytical coupled-oscillator model as a function of the energy in the two oscillators. We demonstrate that the synchronization range increases when the lower frequency oscillator is strongly driven and when the higher frequency oscillator is weakly driven. This result suggests that synchronization can be applied to the frequency-selective detection of weak signals and other mechanical signal processing functions.

  5. Beating motion of a circular cylinder in vortex-induced vibrations

    NASA Astrophysics Data System (ADS)

    Shen, Linwei; Chan, Eng-Soon; Wei, Yan

    2018-04-01

    In this paper, beating phenomenon of a circular cylinder in vortex-induced vibration is studied by numerical simulations in a systematic manner. The cylinder mass coefficients of 2 and 10 are considered, and the Reynolds number is 150. Two distinctive frequencies, namely cylinder oscillation and vortex shedding frequencies, are obtained from the harmonic analysis of the cylinder displacement. The result is consistent with that observed in laboratory experiments. It is found that the cylinder oscillation frequency changes with the natural frequency of the cylinder while the reduced velocity is varied. The added-mass coefficient of the cylinder in beating motion is therefore estimated. Meanwhile, the vortex shedding frequency does not change dramatically in the beating situations. In fact, it is very close to 0.2. Accordingly, the lift force coefficient has two main components associated with these two frequencies. Besides, higher harmonics of the cylinder oscillation frequency appear in the spectrum of the lift coefficient. Moreover, the vortex shedding timing is studied in the beating motion by examining the instantaneous flow fields in the wake, and two scenarios of the vortex formation are observed.

  6. Measurements of Free-Space Oscillating Pressures Near Propellers at Flight Mach Numbers to 0.72

    NASA Technical Reports Server (NTRS)

    Kurbjun, Max C; Vogeley, Arthur W

    1958-01-01

    In the course of a short flight program initiated to check the theory of Garrick and Watkins (NACA rep. 1198), a series of measurements at three stations were made of the oscillating pressures near a tapered-blade plan-form propeller and rectangular-blade plan form propeller at flight Mach numbers up to 0.72. In contradiction to the results for the propeller studied in NACA rep. 1198, the oscillating pressures in the plane ahead of the propeller were found to be higher than those immediately behind the propeller. Factors such as variation in torque and thrust distribution, since the blades of the present investigation were operating above their design forward speed, may account for this contradiction. The effect of blade plan form shows that a tapered-blade plan-form propeller will produce lower sound-pressure levels than a rectangular-blade plan-form propeller for the low blade-passage harmonics (the frequencies where structural considerations are important) and produce higher sound-pressure levels for the higher blade-passage harmonics (frequencies where passenger comfort is important).

  7. Spin current and second harmonic generation in non-collinear magnetic systems: the hydrodynamic model

    NASA Astrophysics Data System (ADS)

    Karashtin, E. A.; Fraerman, A. A.

    2018-04-01

    We report a theoretical study of the second harmonic generation in a noncollinearly magnetized conductive medium with equilibrium spin current. The hydrodynamic model is used to unravel the mechanism of a novel effect of the double frequency signal generation that is attributed to the spin current. According to our calculations, this second harmonic response appears due to the ‘non-adiabatic’ spin polarization of the conduction electrons induced by the oscillations in the non-uniform magnetization forced by the electric field of the electromagnetic wave. Together with the linear velocity response this leads to the generation of the double frequency spin current. This spin current is converted to the electric current via the inverse spin Hall effect, and the double-frequency electric current emits the second harmonic radiation. Possible experiment for detection of the new second harmonic effect is proposed.

  8. Human brain networks function in connectome-specific harmonic waves.

    PubMed

    Atasoy, Selen; Donnelly, Isaac; Pearson, Joel

    2016-01-21

    A key characteristic of human brain activity is coherent, spatially distributed oscillations forming behaviour-dependent brain networks. However, a fundamental principle underlying these networks remains unknown. Here we report that functional networks of the human brain are predicted by harmonic patterns, ubiquitous throughout nature, steered by the anatomy of the human cerebral cortex, the human connectome. We introduce a new technique extending the Fourier basis to the human connectome. In this new frequency-specific representation of cortical activity, that we call 'connectome harmonics', oscillatory networks of the human brain at rest match harmonic wave patterns of certain frequencies. We demonstrate a neural mechanism behind the self-organization of connectome harmonics with a continuous neural field model of excitatory-inhibitory interactions on the connectome. Remarkably, the critical relation between the neural field patterns and the delicate excitation-inhibition balance fits the neurophysiological changes observed during the loss and recovery of consciousness.

  9. Simulation of 100-300 GHz solid-state harmonic sources

    NASA Technical Reports Server (NTRS)

    Zybura, Michael F.; Jones, J. Robert; Jones, Stephen H.; Tait, Gregory B.

    1995-01-01

    Accurate and efficient simulations of the large-signal time-dependent characteristics of second-harmonic Transferred Electron Oscillators (TEO's) and Heterostructure Barrier Varactor (HBV) frequency triplers have been obtained. This is accomplished by using a novel and efficient harmonic-balance circuit analysis technique which facilitates the integration of physics-based hydrodynamic device simulators. The integrated hydrodynamic device/harmonic-balance circuit simulators allow TEO and HBV circuits to be co-designed from both a device and a circuit point of view. Comparisons have been made with published experimental data for both TEO's and HBV's. For TEO's, excellent correlation has been obtained at 140 GHz and 188 GHz in second-harmonic operation. Excellent correlation has also been obtained for HBV frequency triplers operating near 200 GHz. For HBV's, both a lumped quasi-static equivalent circuit model and the hydrodynamic device simulator have been linked to the harmonic-balance circuit simulator. This comparison illustrates the importance of representing active devices with physics-based numerical device models rather than analytical device models.

  10. Secret loss of unitarity due to the classical background

    NASA Astrophysics Data System (ADS)

    Yang, I.-Sheng

    2017-07-01

    We show that a quantum subsystem can become significantly entangled with a classical background through a process with few or no semiclassical backreactions. We study two quantum harmonic oscillators coupled to each other in a time-independent Hamiltonian. We compare it to its semiclassical approximation in which one of the oscillators is treated as the classical background. In this approximation, the remaining quantum oscillator has an effective Hamiltonian which is time-dependent, and its evolution appears to be unitary. However, in the fully quantum model, the two oscillators can entangle each other. Thus, the unitarity of either individual oscillator is never guaranteed. We derive the critical time scale after which the unitarity of either individual oscillator is irrevocably lost. In particular, we give an example that in the adiabatic limit, unitarity is lost before other relevant questions can be addressed.

  11. Quantum entanglement of a harmonic oscillator with an electromagnetic field.

    PubMed

    Makarov, Dmitry N

    2018-05-29

    At present, there are many methods for obtaining quantum entanglement of particles with an electromagnetic field. Most methods have a low probability of quantum entanglement and not an exact theoretical apparatus based on an approximate solution of the Schrodinger equation. There is a need for new methods for obtaining quantum-entangled particles and mathematically accurate studies of such methods. In this paper, a quantum harmonic oscillator (for example, an electron in a magnetic field) interacting with a quantized electromagnetic field is considered. Based on the exact solution of the Schrodinger equation for this system, it is shown that for certain parameters there can be a large quantum entanglement between the electron and the electromagnetic field. Quantum entanglement is analyzed on the basis of a mathematically exact expression for the Schmidt modes and the Von Neumann entropy.

  12. Geometric model from microscopic theory for nuclear absorption

    NASA Technical Reports Server (NTRS)

    John, Sarah; Townsend, Lawrence W.; Wilson, John W.; Tripathi, Ram K.

    1993-01-01

    A parameter-free geometric model for nuclear absorption is derived herein from microscopic theory. The expression for the absorption cross section in the eikonal approximation, taken in integral form, is separated into a geometric contribution that is described by an energy-dependent effective radius and two surface terms that cancel in an asymptotic series expansion. For collisions of light nuclei, an expression for the effective radius is derived from harmonic oscillator nuclear density functions. A direct extension to heavy nuclei with Woods-Saxon densities is made by identifying the equivalent half-density radius for the harmonic oscillator functions. Coulomb corrections are incorporated, and a simplified geometric form of the Bradt-Peters type is obtained. Results spanning the energy range from 1 MeV/nucleon to 1 GeV/nucleon are presented. Good agreement with experimental results is obtained.

  13. Geometric model for nuclear absorption from microscopic theory

    NASA Technical Reports Server (NTRS)

    John, S.; Townsend, L. W.; Wilson, J. W.; Tripathi, R. K.

    1993-01-01

    A parameter-free geometric model for nuclear absorption is derived from microscopic theory. The expression for the absorption cross section in the eikonal approximation taken in integral form is separated into a geometric contribution, described by an energy-dependent effective radius, and two surface terms which are shown to cancel in an asymptotic series expansion. For collisions of light nuclei, an expression for the effective radius is derived using harmonic-oscillator nuclear density functions. A direct extension to heavy nuclei with Woods-Saxon densities is made by identifying the equivalent half density radius for the harmonic-oscillator functions. Coulomb corrections are incorporated and a simplified geometric form of the Bradt-Peters type obtained. Results spanning the energy range of 1 MeV/nucleon to 1 GeV/nucleon are presented. Good agreement with experimental results are obtained.

  14. Isgur-Karl model revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galeta, Leonardo; Pirjol, Dan; Schat, Carlos

    2009-12-01

    We show how to match the Isgur-Karl model to the spin-flavor quark operator expansion used in the 1/N{sub c} studies of the nonstrange negative parity L=1 excited baryons. Using the transformation properties of states and interactions under the permutation group S{sub 3} we are able to express the operator coefficients as overlap integrals, without making any assumption on the spatial dependence of the quark wave functions. The general mass operator leads to parameter free mass relations and constraints on the mixing angles that are valid beyond the usual harmonic oscillator approximation. The Isgur-Karl model with harmonic oscillator wave functions providesmore » a simple counterexample that demonstrates explicitly that the alternative operator basis for the 1/N{sub c} expansion for excited baryons recently proposed by Matagne and Stancu is incomplete.« less

  15. Modeling stock return distributions with a quantum harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Ahn, K.; Choi, M. Y.; Dai, B.; Sohn, S.; Yang, B.

    2017-11-01

    We propose a quantum harmonic oscillator as a model for the market force which draws a stock return from short-run fluctuations to the long-run equilibrium. The stochastic equation governing our model is transformed into a Schrödinger equation, the solution of which features “quantized” eigenfunctions. Consequently, stock returns follow a mixed χ distribution, which describes Gaussian and non-Gaussian features. Analyzing the Financial Times Stock Exchange (FTSE) All Share Index, we demonstrate that our model outperforms traditional stochastic process models, e.g., the geometric Brownian motion and the Heston model, with smaller fitting errors and better goodness-of-fit statistics. In addition, making use of analogy, we provide an economic rationale of the physics concepts such as the eigenstate, eigenenergy, and angular frequency, which sheds light on the relationship between finance and econophysics literature.

  16. Comparative study of the loss cone-driven instabilities in the low solar corona

    NASA Technical Reports Server (NTRS)

    Sharma, R. R.; Vlahos, L.

    1984-01-01

    A comparative study of the loss cone-driven instabilities in the low solar corona is undertaken. The instabilities considered are the electron cyclotron maser, the whistler, and the electrostatic upper hybrid. It is shown that the first-harmonic extraordinary mode of the electron cyclotron maser instability is the fastest growing mode for strong magnetized plasma (the ratio of plasma frequency to cyclotron frequency being less than 0.35). For values of the ratio between 0.35 and 1.0, the first-harmonic ordinary mode of the electron cyclotron maser instability dominates the emission. For ratio values greater than 1.0, no direct electromagnetic radiation is expected since other instabilities, which do not escape directly, saturate the electron cyclotron maser (the whistler or the electrostatic upper hybrid waves). It is also shown that the second-harmonic electron cyclotron maser emission never grows to an appreciable level. Thus, it is suggested that the electron cyclotron maser instability can be the explanation for the escape of the first harmonic from a flaring loop.

  17. Terahertz electron cyclotron maser interactions with an axis-encircling electron beam

    NASA Astrophysics Data System (ADS)

    Li, G. D.; Kao, S. H.; Chang, P. C.; Chu, K. R.

    2015-04-01

    To generate terahertz radiation via the electron cyclotron maser instability, harmonic interactions are essential in order to reduce the required magnetic field to a practical value. Also, high-order mode operation is required to avoid excessive Ohmic losses. The weaker harmonic interaction and mode competition associated with an over-moded structure present challenging problems to overcome. The axis-encircling electron beam is a well-known recipe for both problems. It strengthens the harmonic interaction, as well as minimizing the competing modes. Here, we examine these advantages through a broad data base obtained for a low-power, step-tunable, gyrotron oscillator. Linear results indicate far more higher-harmonic modes can be excited with an axis-encircling electron beam than with an off-axis electron beam. However, multi-mode, time-dependent simulations reveal an intrinsic tendency for a higher-harmonic mode to switch over to a lower-harmonic mode at a high beam current or upon a rapid current rise. Methods are presented to identify the narrow windows in the parameter space for stable harmonic interactions.

  18. Magnetically Driven Oscillator and Resonance: A Teaching Tool

    ERIC Educational Resources Information Center

    Erol, M.; Çolak, I. Ö.

    2018-01-01

    This paper reports a simple magnetically driven oscillator, designed and resolved in order to achieve a better student understanding and to overcome certain instructional difficulties. The apparatus is mainly comprised of an ordinary spring pendulum with a neodymium magnet attached to the bottom, a coil placed in the same vertical direction, an…

  19. Resonance Effects in Magnetically Driven Mass-Spring Oscillations

    ERIC Educational Resources Information Center

    Taylor, Ken

    2011-01-01

    Resonance effects are among the most intriguing phenomena in physics and engineering. The classical case of a mass-spring oscillator driven at its resonant frequency is one of the earliest examples that students encounter. Perhaps the most commonly depicted method of driving the vibrating system is mechanical. An alternative approach presented in…

  20. Hypothesis-driven methods to augment human cognition by optimizing cortical oscillations

    PubMed Central

    Horschig, Jörn M.; Zumer, Johanna M.; Bahramisharif, Ali

    2014-01-01

    Cortical oscillations have been shown to represent fundamental functions of a working brain, e.g., communication, stimulus binding, error monitoring, and inhibition, and are directly linked to behavior. Recent studies intervening with these oscillations have demonstrated effective modulation of both the oscillations and behavior. In this review, we collect evidence in favor of how hypothesis-driven methods can be used to augment cognition by optimizing cortical oscillations. We elaborate their potential usefulness for three target groups: healthy elderly, patients with attention deficit/hyperactivity disorder, and healthy young adults. We discuss the relevance of neuronal oscillations in each group and show how each of them can benefit from the manipulation of functionally-related oscillations. Further, we describe methods for manipulation of neuronal oscillations including direct brain stimulation as well as indirect task alterations. We also discuss practical considerations about the proposed techniques. In conclusion, we propose that insights from neuroscience should guide techniques to augment human cognition, which in turn can provide a better understanding of how the human brain works. PMID:25018706

  1. Interactive remote data processing using Pixelize Wavelet Filtration (PWF-method) and PeriodMap analysis

    NASA Astrophysics Data System (ADS)

    Sych, Robert; Nakariakov, Valery; Anfinogentov, Sergey

    Wavelet analysis is suitable for investigating waves and oscillating in solar atmosphere, which are limited in both time and frequency. We have developed an algorithms to detect this waves by use the Pixelize Wavelet Filtration (PWF-method). This method allows to obtain information about the presence of propagating and non-propagating waves in the data observation (cube images), and localize them precisely in time as well in space. We tested the algorithm and found that the results of coronal waves detection are consistent with those obtained by visual inspection. For fast exploration of the data cube, in addition, we applied early-developed Period- Map analysis. This method based on the Fast Fourier Transform and allows on initial stage quickly to look for "hot" regions with the peak harmonic oscillations and determine spatial distribution at the significant harmonics. We propose the detection procedure of coronal waves separate on two parts: at the first part, we apply the PeriodMap analysis (fast preparation) and than, at the second part, use information about spatial distribution of oscillation sources to apply the PWF-method (slow preparation). There are two possible algorithms working with the data: in automatic and hands-on operation mode. Firstly we use multiply PWF analysis as a preparation narrowband maps at frequency subbands multiply two and/or harmonic PWF analysis for separate harmonics in a spectrum. Secondly we manually select necessary spectral subband and temporal interval and than construct narrowband maps. For practical implementation of the proposed methods, we have developed the remote data processing system at Institute of Solar-Terrestrial Physics, Irkutsk. The system based on the data processing server - http://pwf.iszf.irk.ru. The main aim of this resource is calculation in remote access through the local and/or global network (Internet) narrowband maps of wave's sources both in whole spectral band and at significant harmonics. In addition, we can obtain temporal dynamics (mpeg- files) of the main oscillation characteristics: amplitude, power and phase as a spatial-temporal coordinates. For periodogram mapping of data cubes as a method for the pre-analysis, we developed preparation of the color maps where the pixel's colour corresponds to the frequency of the power spectrum maximum. The computer system based on applications ION-scripts, algorithmic languages IDL and PHP, and Apache WEB server. The IDL ION-scripts use for preparation and configuration of network requests at the central data server with subsequent connection to IDL run-unit software and graphic output on FTP-server and screen. Web page is constructed using PHP language.

  2. Hydroelastic Oscillations of a Circular Plate, Resting on Winkler Foundation

    NASA Astrophysics Data System (ADS)

    Kondratov, D. V.; Mogilevich, L. I.; Popov, V. S.; Popova, A. A.

    2018-01-01

    The forced hydroelastic oscillations of a circular plate resting on elastic foundation are investigated. The oscillations are caused by a stamp vibration under interaction with a plate through a thin layer of viscous incompressible liquid. The axis-symmetric problem for the regime of the steady-state harmonic oscillations is considered. On the basis of hydroelasticity problem solution the laws of plate deflection and pressure in the liquid are found. The functions of the amplitudes deflection distribution and liquid pressure along the plate are constructed. The presented mathematical model provides for investigating viscous liquid layer interaction dynamics with a circular plate resting on an elastic foundation. The above-mentioned model makes it possible to define the plate oscillations resonance frequencies and the corresponding amplitudes of deflection and liquid pressure, as well.

  3. Nonlinear analysis of a family of LC tuned inverters

    NASA Technical Reports Server (NTRS)

    Lee, F. C. Y.; Wilson, T. G.

    1975-01-01

    Four widely used self-oscillating dc-to-square-wave parallel inverters which employ an inductor-capacitor tuned network to determine the oscillation frequency are reduced to a common equivalent RLC network, The techniques of singular-point analysis and state-plane interpretations are employed to describe the steady-state and transient behavior of these circuits and to elucidate the three possible modes of operation: quasi-harmonic, relaxation, and discontinuous. Design guidelines are provided through a study of the influence of circuit parameter variations on the characteristics of oscillation and on frequency stability. Several examples are provided to illustrate the usefulness of this analysis when studying such problems as transistor emitter-to-base junction breakdown during oscillations and the design of starting circuits to insure self-excited oscillations in these inverters.

  4. Bit storage and bit flip operations in an electromechanical oscillator.

    PubMed

    Mahboob, I; Yamaguchi, H

    2008-05-01

    The Parametron was first proposed as a logic-processing system almost 50 years ago. In this approach the two stable phases of an excited harmonic oscillator provide the basis for logic operations. Computer architectures based on LC oscillators were developed for this approach, but high power consumption and difficulties with integration meant that the Parametron was rendered obsolete by the transistor. Here we propose an approach to mechanical logic based on nanoelectromechanical systems that is a variation on the Parametron architecture and, as a first step towards a possible nanomechanical computer, we demonstrate both bit storage and bit flip operations.

  5. Shubnikov-de Haas oscillations in a two-dimensional electron gas under subterahertz radiation

    NASA Astrophysics Data System (ADS)

    Shi, Q.; Martin, P. D.; Hatke, A. T.; Zudov, M. A.; Watson, J. D.; Gardner, G. C.; Manfra, M. J.; Pfeiffer, L. N.; West, K. W.

    2015-08-01

    We report on magnetotransport measurements in a two-dimensional (2D) electron gas subject to subterahertz radiation in the regime where Shubnikov-de Haas oscillations (SdHOs) and microwave-induced resistance oscillations (MIROs) coexist over a wide magnetic field range, spanning several harmonics of the cyclotron resonance. Surprisingly, we find that the SdHO amplitude is modified by the radiation in a nontrivial way, owing to the oscillatory correction which has the same period and phase as MIROs. This finding challenges our current understanding of microwave photoresistance in 2D electron gas, calling for future investigations.

  6. Irregular-regular-irregular mixed mode oscillations in a glow discharge plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Sabuj, E-mail: sabuj.ghosh@saha.ac.in; Shaw, Pankaj Kumar, E-mail: pankaj.shaw@saha.ac.in; Saha, Debajyoti, E-mail: debajyoti.saha@saha.ac.in

    2015-05-15

    Floating potential fluctuations of a glow discharge plasma are found to exhibit different kinds of mixed mode oscillations. Power spectrum analysis reveals that with change in the nature of the mixed mode oscillation (MMO), there occurs a transfer of power between the different harmonics and subharmonics. The variation in the chaoticity of different types of mmo was observed with the study of Lyapunov exponents. Estimates of correlation dimension and the Hurst exponent suggest that these MMOs are of low dimensional nature with an anti persistent character. Numerical modeling also reflects the experimentally found transitions between the different MMOs.

  7. Solar Dynamo Driven by Periodic Flow Oscillation

    NASA Technical Reports Server (NTRS)

    Mayr, Hans G.; Hartle, Richard E.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    We have proposed that the periodicity of the solar magnetic cycle is determined by wave mean flow interactions analogous to those driving the Quasi Biennial Oscillation in the Earth's atmosphere. Upward propagating gravity waves would produce oscillating flows near the top of the radiation zone that in turn would drive a kinematic dynamo to generate the 22-year solar magnetic cycle. The dynamo we propose is built on a given time independent magnetic field B, which allows us to estimate the time dependent, oscillating components of the magnetic field, (Delta)B. The toroidal magnetic field (Delta)B(sub phi) is directly driven by zonal flow and is relatively large in the source region, (Delta)(sub phi)/B(sub Theta) much greater than 1. Consistent with observations, this field peaks at low latitudes and has opposite polarities in both hemispheres. The oscillating poloidal magnetic field component, (Delta)B(sub Theta), is driven by the meridional circulation, which is difficult to assess without a numerical model that properly accounts for the solar atmosphere dynamics. Scale-analysis suggests that (Delta)B(sub Theta) is small compared to B(sub Theta) in the dynamo region. Relative to B(sub Theta), however, the oscillating magnetic field perturbations are expected to be transported more rapidly upwards in the convection zone to the solar surface. As a result, (Delta)B(sub Theta) (and (Delta)B(sub phi)) should grow relative to B(sub Theta), so that the magnetic fields reverse at the surface as observed. Since the meridional and zonai flow oscillations are out of phase, the poloidal magnetic field peaks during times when the toroidal field reverses direction, which is observed. With the proposed wave driven flow oscillation, the magnitude of the oscillating poloidal magnetic field increases with the mean rotation rate of the fluid. This is consistent with the Bode-Blackett empirical scaling law, which reveals that in massive astrophysical bodies the magnetic moment tends to increase with the angular momentum of the fluid.

  8. Line Tunable Ultraviolet Laser

    NASA Technical Reports Server (NTRS)

    Walsh, Brian M.; Barnes, Norman P.

    2004-01-01

    An ultraviolet laser is demonstrated using a dual wavelength Nd:YAG oscillator, sum frequency and second harmonic process. Synchronous pulses at 1.052 and 1.319 micrometers are amplified, mixed and subsequently doubled, producing pulses at 0.293 micrometers.

  9. Applicability of Time-Averaged Holography for Micro-Electro-Mechanical System Performing Non-Linear Oscillations

    PubMed Central

    Palevicius, Paulius; Ragulskis, Minvydas; Palevicius, Arvydas; Ostasevicius, Vytautas

    2014-01-01

    Optical investigation of movable microsystem components using time-averaged holography is investigated in this paper. It is shown that even a harmonic excitation of a non-linear microsystem may result in an unpredictable chaotic motion. Analytical results between parameters of the chaotic oscillations and the formation of time-averaged fringes provide a deeper insight into computational and experimental interpretation of time-averaged MEMS holograms. PMID:24451467

  10. A quantum Otto engine with finite heat baths: energy, correlations, and degradation

    NASA Astrophysics Data System (ADS)

    Pozas-Kerstjens, Alejandro; Brown, Eric G.; Hovhannisyan, Karen V.

    2018-04-01

    We study a driven harmonic oscillator operating an Otto cycle by strongly interacting with two thermal baths of finite size. Using the tools of Gaussian quantum mechanics, we directly simulate the dynamics of the engine as a whole, without the need to make any approximations. This allows us to understand the non-equilibrium thermodynamics of the engine not only from the perspective of the working medium, but also as it is seen from the thermal baths’ standpoint. For sufficiently large baths, our engine is capable of running a number of perfect cycles, delivering finite power while operating very close to maximal efficiency. Thereafter, having traversed the baths, the perturbations created by the interaction abruptly deteriorate the engine’s performance. We additionally study the correlations generated in the system, and, in particular, we find a direct connection between the build up of bath–bath correlations and the degradation of the engine’s performance over the course of many cycles.

  11. Subharmonic generation, chaos, and subharmonic resurrection in an acoustically driven fluid-filled cavity.

    PubMed

    Cantrell, John H; Adler, Laszlo; Yost, William T

    2015-02-01

    Traveling wave solutions of the nonlinear acoustic wave equation are obtained for the fundamental and second harmonic resonances of a fluid-filled cavity. The solutions lead to the development of a non-autonomous toy model for cavity oscillations. Application of the Melnikov method to the model equation predicts homoclinic bifurcation of the Smale horseshoe type leading to a cascade of period doublings with increasing drive displacement amplitude culminating in chaos. The threshold value of the drive displacement amplitude at tangency is obtained in terms of the acoustic drive frequency and fluid attenuation coefficient. The model prediction of subharmonic generation leading to chaos is validated from acousto-optic diffraction measurements in a water-filled cavity using a 5 MHz acoustic drive frequency and from the measured frequency spectrum in the bifurcation cascade regime. The calculated resonant threshold amplitude of 0.2 nm for tangency is consistent with values estimated for the experimental set-up. Experimental evidence for the appearance of a stable subharmonic beyond chaos is reported.

  12. Regimes of enhanced electromagnetic emission in beam-plasma interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timofeev, I. V.; Annenkov, V. V.; Arzhannikov, A. V.

    2015-11-15

    The ways to improve the efficiency of electromagnetic waves generation in laboratory experiments with high-current relativistic electron beams injected into a magnetized plasma are discussed. It is known that such a beam can lose, in a plasma, a significant part of its energy by exciting a high level of turbulence and heating plasma electrons. Beam-excited plasma oscillations may simultaneously participate in nonlinear processes resulting in a fundamental and second harmonic emissions. It is obvious, however, that in the developed plasma turbulence the role of these emissions in the total energy balance is always negligible. In this paper, we investigate whethermore » electromagnetic radiation generated in the beam-plasma system can be sufficiently enhanced by the direct linear conversion of resonant beam-driven modes into electromagnetic ones on preformed regular inhomogeneities of plasma density. Due to the high power of relativistic electron beams, the mechanism discussed may become the basis for the generator of powerful sub-terahertz radiation.« less

  13. On the spring and mass of the Dirac oscillator

    NASA Technical Reports Server (NTRS)

    Crawford, James P.

    1993-01-01

    The Dirac oscillator is a relativistic generalization of the quantum harmonic oscillator. In particular, the square of the Hamiltonian for the Dirac oscillator yields the Klein-Gordon equation with a potential of the form: (ar(sub 2) + b(L x S)), where a and b are constants. To obtain the Dirac oscillator, a 'minimal substitution' is made in the Dirac equation, where the ordinary derivative is replaced with a covariant derivative. However, an unusual feature of the covariant derivative in this case is that the potential is a non-trivial element of the Clifford algebra. A theory which naturally gives rise to gage potentials which are non-trivial elements of the Clifford algebra is that based on local automorphism invariance. An exact solution of the automorphism gage field equations which reproduces both the potential term and the mass term of the Dirac oscillator is presented.

  14. Chimera states in nonlocally coupled phase oscillators with biharmonic interaction

    NASA Astrophysics Data System (ADS)

    Cheng, Hongyan; Dai, Qionglin; Wu, Nianping; Feng, Yuee; Li, Haihong; Yang, Junzhong

    2018-03-01

    Chimera states, which consist of coexisting domains of coherent and incoherent parts, have been observed in a variety of systems. Most of previous works on chimera states have taken into account specific form of interaction between oscillators, for example, sinusoidal coupling or diffusive coupling. Here, we investigate chimera dynamics in nonlocally coupled phase oscillators with biharmonic interaction. We find novel chimera states with features such as that oscillators in the same coherent cluster may split into two groups with a phase difference around π/2 and that oscillators in adjacent coherent clusters may have a phase difference close to π/2. The different impacts of the coupling ranges in the first and the second harmonic interactions on chimera dynamics are investigated based on the synchronous dynamics in globally coupled phase oscillators. Our study suggests a new direction in the field of chimera dynamics.

  15. Frequency-chirp rates of harmonics driven by a few-cycle pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murakami, M.; Mauritsson, J.; Gaarde, M.B.

    2005-08-15

    We present numerical calculations of the time-frequency characteristics of cutoff harmonics generated by few-cycle laser pulses. We find that for driving pulses as short as three optical cycles, the adiabatic prediction for the harmonic chirp rate is very accurate. This negative chirp is so large that the resulting bandwidth causes substantial overlap between neighboring harmonics, and the harmonic phase therefore appears to not vary in time or frequency. By adding a compensating positive chirp to the driving pulse, which reduces the harmonic bandwidth and allows for the appearance of the negative chirp, we can measure the harmonic chirp rates. Wemore » also find that the positive chirp on the driving pulse causes the harmonics to shift down in frequency. We show that this counterintuitive result is caused by the change in the strong field continuum dynamics introduced by the variation of the driving frequency with time.« less

  16. Relaxation Oscillations in the Nearly Inviscid Faraday System

    NASA Astrophysics Data System (ADS)

    Knobloch, Edgar; Higuera, Maria

    2004-11-01

    The amplitude equations for nearly inviscid Faraday waves couple to a streaming flow driven by oscillatory viscous boundary layers at the rigid walls and the free surface produced by the waves. This flow is driven most efficiently by mixed mode oscillations created in secondary bifurcations from standing waves, and these occur at small amplitude in containers that are almost symmetric.(M. Higuera, J.M. Vega and E. Knobloch. J. Nonlin. Sci. 12, 505, 2002.) Among the new dynamical behavior that results are relaxation oscillations involving abrupt transitions between standing and mixed mode oscillations. Such oscillations are present both in almost circular and in almost square containers. The origin of these oscillations will be explained and the results related to experiments.(F. Simonelli and J. P. Gollub, J. Fluid Mech. 199, 471, 1989.)footnote[3]Z.C. Feng and P.R. Sethna, J. Fluid Mech. 199, 495, 1989.

  17. Light-Driven Nano-oscillators for Label-Free Single-Molecule Monitoring of MicroRNA.

    PubMed

    Chen, Zixuan; Peng, Yujiao; Cao, Yue; Wang, Hui; Zhang, Jian-Rong; Chen, Hong-Yuan; Zhu, Jun-Jie

    2018-06-13

    Here, we present a mapping tool based on individual light-driven nano-oscillators for label-free single-molecule monitoring of microRNA. This design uses microRNA as a single-molecule damper for nano-oscillators by forming a rigid dual-strand structure in the gap between nano-oscillators and the immobilized surface. The ultrasensitive detection is attributed to comparable dimensions of the gap and microRNA. A developed surface plasmon-coupled scattering imaging technology enables us to directly measure the real-time gap distance vibration of multiple nano-oscillators with high accuracy and fast dynamics. High-level and low-level states of the oscillation amplitude indicate melting and hybridization statuses of microRNA. Lifetimes of two states reveal that the hybridization rate of microRNA is determined by the three-dimensional diffusion. This imaging technique contributes application potentials in a single-molecule detection and nanomechanics study.

  18. Stochastic and superharmonic stochastic resonances of a confined overdamped harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Zhang, Lu; Lai, Li; Peng, Hao; Tu, Zhe; Zhong, Suchuan

    2018-01-01

    The dynamics of many soft condensed matter and biological systems is affected by space limitations, which produce some peculiar effects on the systems' stochastic resonance (SR) behavior. In this study, we propose a model where SR can be observed: a confined overdamped harmonic oscillator that is subjected to a sinusoidal driving force and is under the influence of a multiplicative white noise. The output response of the system is a periodic signal with harmonic frequencies that are odd multiples of the driving frequency. We verify the amplitude resonances at the driving frequencies and superharmonic frequencies that are equal to three, five, and seven times the driving frequency, using a numerical method based on the stochastic Taylor expansion. The synergistic effect of the multiplicative white noise, constant boundaries, and periodic driving force that can induce a SR in the output amplitude at the driving and superharmonic frequencies is found. The SR phenomenon found in this paper is sensitive to the driving amplitude and frequency, inherent potential parameter, and boundary width, thus leading to various resonance conditions. Therefore, the mechanism found could be beneficial for the characterization of these confined systems and could constitute an important tool for controlling their basic properties.

  19. Reduced quantum dynamics with arbitrary bath spectral densities: hierarchical equations of motion based on several different bath decomposition schemes.

    PubMed

    Liu, Hao; Zhu, Lili; Bai, Shuming; Shi, Qiang

    2014-04-07

    We investigated applications of the hierarchical equation of motion (HEOM) method to perform high order perturbation calculations of reduced quantum dynamics for a harmonic bath with arbitrary spectral densities. Three different schemes are used to decompose the bath spectral density into analytical forms that are suitable to the HEOM treatment: (1) The multiple Lorentzian mode model that can be obtained by numerically fitting the model spectral density. (2) The combined Debye and oscillatory Debye modes model that can be constructed by fitting the corresponding classical bath correlation function. (3) A new method that uses undamped harmonic oscillator modes explicitly in the HEOM formalism. Methods to extract system-bath correlations were investigated for the above bath decomposition schemes. We also show that HEOM in the undamped harmonic oscillator modes can give detailed information on the partial Wigner transform of the total density operator. Theoretical analysis and numerical simulations of the spin-Boson dynamics and the absorption line shape of molecular dimers show that the HEOM formalism for high order perturbations can serve as an important tool in studying the quantum dissipative dynamics in the intermediate coupling regime.

  20. Reduced quantum dynamics with arbitrary bath spectral densities: Hierarchical equations of motion based on several different bath decomposition schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Hao; Zhu, Lili; Bai, Shuming

    2014-04-07

    We investigated applications of the hierarchical equation of motion (HEOM) method to perform high order perturbation calculations of reduced quantum dynamics for a harmonic bath with arbitrary spectral densities. Three different schemes are used to decompose the bath spectral density into analytical forms that are suitable to the HEOM treatment: (1) The multiple Lorentzian mode model that can be obtained by numerically fitting the model spectral density. (2) The combined Debye and oscillatory Debye modes model that can be constructed by fitting the corresponding classical bath correlation function. (3) A new method that uses undamped harmonic oscillator modes explicitly inmore » the HEOM formalism. Methods to extract system-bath correlations were investigated for the above bath decomposition schemes. We also show that HEOM in the undamped harmonic oscillator modes can give detailed information on the partial Wigner transform of the total density operator. Theoretical analysis and numerical simulations of the spin-Boson dynamics and the absorption line shape of molecular dimers show that the HEOM formalism for high order perturbations can serve as an important tool in studying the quantum dissipative dynamics in the intermediate coupling regime.« less

  1. Observation and theory of Pc 5 waves with harmonically related transverse and compressional components

    NASA Astrophysics Data System (ADS)

    Takahashi, K.; Cheng, C. Z.; McEntire, R. W.; Kistler, L. M.

    1990-02-01

    The properties of 23 magnetic pulsation events observed by the AMPTE CCE spacecraft are studied. These events are selected on the basis of the field magnitude which oscillated at the second harmonic of a simultaneously present transverse oscillation. The events have a second harmonic period of 80-600 s (roughly the Pc 5 range), are observed in cluster in the dawn (0300-0800 magnetic local time, MLT) and dusk (1600-2100 MLT) sectors, and are localized near the magnetic equator. Although the azimuthal wave number estimated from an ion finite Larmor radius effect, is generally large (about 50), there is a marked difference between the events observed in the dawn and dusk sectors. In the dawn sector the waves have low frequencies (1-5 mHz), indicate left-hand polarization with respect to the ambient magnetic field, and propagate eastward with respect to the spacecraft. In the dusk sector the waves have high frequencies (5-15 mHz), indicate right-hand polarization, and propagate westward. It is suggested that the waves are all westward propagating in the plasma rest frame and that local-time-dependent Doppler shift is the reason for the local time dependence of the wave properties.

  2. Observation and theory of Pc 5 waves with harmonically related transverse and compressional components

    NASA Technical Reports Server (NTRS)

    Takahashi, K.; Mcentire, R. W.; Cheng, C. Z.; Kistler, L. M.

    1990-01-01

    The properties of 23 magnetic pulsation events observed by the AMPTE CCE spacecraft are studied. These events are selected on the basis of the field magnitude which oscillated at the second harmonic of a simultaneously present transverse oscillation. The events have a second harmonic period of 80-600 s (roughly the Pc 5 range), are observed in cluster in the dawn (0300-0800 magnetic local time, MLT) and dusk (1600-2100 MLT) sectors, and are localized near the magnetic equator. Although the azimuthal wave number estimated from an ion finite Larmor radius effect, is generally large (about 50), there is a marked difference between the events observed in the dawn and dusk sectors. In the dawn sector the waves have low frequencies (1-5 mHz), indicate left-hand polarization with respect to the ambient magnetic field, and propagate eastward with respect to the spacecraft. In the dusk sector the waves have high frequencies (5-15 mHz), indicate right-hand polarization, and propagate westward. It is suggested that the waves are all westward propagating in the plasma rest frame and that local-time-dependent Doppler shift is the reason for the local time dependence of the wave properties.

  3. Probing biomolecular interaction forces using an anharmonic acoustic technique for selective detection of bacterial spores.

    PubMed

    Ghosh, Sourav K; Ostanin, Victor P; Johnson, Christian L; Lowe, Christopher R; Seshia, Ashwin A

    2011-11-15

    Receptor-based detection of pathogens often suffers from non-specific interactions, and as most detection techniques cannot distinguish between affinities of interactions, false positive responses remain a plaguing reality. Here, we report an anharmonic acoustic based method of detection that addresses the inherent weakness of current ligand dependant assays. Spores of Bacillus subtilis (Bacillus anthracis simulant) were immobilized on a thickness-shear mode AT-cut quartz crystal functionalized with anti-spore antibody and the sensor was driven by a pure sinusoidal oscillation at increasing amplitude. Biomolecular interaction forces between the coupled spores and the accelerating surface caused a nonlinear modulation of the acoustic response of the crystal. In particular, the deviation in the third harmonic of the transduced electrical response versus oscillation amplitude of the sensor (signal) was found to be significant. Signals from the specifically-bound spores were clearly distinguishable in shape from those of the physisorbed streptavidin-coated polystyrene microbeads. The analytical model presented here enables estimation of the biomolecular interaction forces from the measured response. Thus, probing biomolecular interaction forces using the described technique can quantitatively detect pathogens and distinguish specific from non-specific interactions, with potential applicability to rapid point-of-care detection. This also serves as a potential tool for rapid force-spectroscopy, affinity-based biomolecular screening and mapping of molecular interaction networks. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Selective suppression of high-order harmonics within phase-matched spectral regions.

    PubMed

    Lerner, Gavriel; Diskin, Tzvi; Neufeld, Ofer; Kfir, Ofer; Cohen, Oren

    2017-04-01

    Phase matching in high-harmonic generation leads to enhancement of multiple harmonics. It is sometimes desired to control the spectral structure within the phase-matched spectral region. We propose a scheme for selective suppression of high-order harmonics within the phase-matched spectral region while weakly influencing the other harmonics. The method is based on addition of phase-mismatched segments within a phase-matched medium. We demonstrate the method numerically in two examples. First, we show that one phase-mismatched segment can significantly suppress harmonic orders 9, 15, and 21. Second, we show that two phase-mismatched segments can efficiently suppress circularly polarized harmonics with one helicity over the other when driven by a bi-circular field. The new method may be useful for various applications, including the generation of highly helical bright attosecond pulses.

  5. High-harmonic spectroscopy of aligned molecules

    NASA Astrophysics Data System (ADS)

    Yun, Hyeok; Yun, Sang Jae; Lee, Gae Hwang; Nam, Chang Hee

    2017-01-01

    High harmonics emitted from aligned molecules driven by intense femtosecond laser pulses provide the opportunity to explore the structural information of molecules. The field-free molecular alignment technique is an expedient tool for investigating the structural characteristics of linear molecules. The underlying physics of field-free alignment, showing the characteristic revival structure specific to molecular species, is clearly explained from the quantum-phase analysis of molecular rotational states. The anisotropic nature of molecules is shown from the harmonic polarization measurement performed with spatial interferometry. The multi-orbital characteristics of molecules are investigated using high-harmonic spectroscopy, applied to molecules of N2 and CO2. In the latter case the two-dimensional high-harmonic spectroscopy, implemented using a two-color laser field, is applied to distinguish harmonics from different orbitals. Molecular high-harmonic spectroscopy will open a new route to investigate ultrafast dynamics of molecules.

  6. LETTER TO THE EDITOR: Exact energy distribution function in a time-dependent harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Robnik, Marko; Romanovski, Valery G.; Stöckmann, Hans-Jürgen

    2006-09-01

    Following a recent work by Robnik and Romanovski (2006 J. Phys. A: Math. Gen. 39 L35, 2006 Open Syst. Inf. Dyn. 13 197-222), we derive an explicit formula for the universal distribution function of the final energies in a time-dependent 1D harmonic oscillator, whose functional form does not depend on the details of the frequency ω(t) and is closely related to the conservation of the adiabatic invariant. The normalized distribution function is P(x) = \\pi^{-1} (2\\mu^2 - x^2)^{-\\frac{1}{2}} , where x=E_1- \\skew3\\bar{E}_1 ; E1 is the final energy, \\skew3\\bar{E}_1 is its average value and µ2 is the variance of E1. \\skew3\\bar{E}_1 and µ2 can be calculated exactly using the WKB approach to all orders.

  7. Thermally activated phase slips of one-dimensional Bose gases in shallow optical lattices

    NASA Astrophysics Data System (ADS)

    Kunimi, Masaya; Danshita, Ippei

    2017-03-01

    We study the decay of superflow via thermally activated phase slips in one-dimensional Bose gases in a shallow optical lattice. By using the Kramers formula, we numerically calculate the nucleation rate of a thermally activated phase slip for various values of the filling factor and flow velocity in the absence of a harmonic trapping potential. Within the local density approximation, we derive a formula connecting the phase-slip nucleation rate with the damping rate of a dipole oscillation of the Bose gas in the presence of a harmonic trap. We use the derived formula to directly compare our theory with the recent experiment done by the LENS group [L. Tanzi et al., Sci. Rep. 6, 25965 (2016), 10.1038/srep25965]. From the comparison, the observed damping of dipole oscillations in a weakly correlated and small velocity regime is attributed dominantly to thermally activated phase slips rather than quantum phase slips.

  8. A Simple Bimodular Nonlinear Element

    NASA Astrophysics Data System (ADS)

    Mikhailov, S. G.; Rudenko, O. V.

    2018-05-01

    We have studied the dynamics of an artificial nonlinear element representing a flexible membrane with oscillation limiters and a static pressing force. Such an element has the property of "bimodularity" and demonstrates "modular" nonlinearity. We have constructed a mathematical model that describes these oscillations. Their shapes have been calculated. We follow the analogy with a classical object—Galileo's pendulum. We demonstrate that for a low-frequency excitation of the membrane, the level of the harmonics in the spectrum is higher than in the vicinity of the resonance frequency. We have established a strong dependence of the level of the harmonics on the magnitude of the pressing force for a weak perturbation. We propose a design scheme for a device in the quasi-static approximation possessing the property of bimodularity. We perform an experiment that confirms its operability. We show a qualitative coincidence of the experimental results and calculations when detecting an amplitude-modulated signal.

  9. ELM-free and inter-ELM divertor heat flux broadening induced by edge harmonics oscillation in NSTX

    DOE PAGES

    Gan, K. F.; Ahn, J. -W.; Gray, T. K.; ...

    2017-10-26

    A new n =1 dominated edge harmonic oscillation (EHO) has been found in NSTX. The new EHO, rotating toroidally in the counter-current direction and the opposite direction of the neutral beam, was observed during certain inter-ELM and ELM-free periods of H-mode operation. This EHO is associated with a significant broadening of the integral heat flux width (more » $${{\\lambda}_{\\operatorname{int}}}$$ ) by up to 150%, and a decrease in the divertor peak heat flux by >60%. An EHO induced filament was also observed by the gas puff imaging diagnostic. The toroidal rotating filaments could change the edge magnetic topology resulting in toroidal rotating strike point splitting and heat flux broadening. Finally, experimental result of the counter current rotation of strike points splitting is consistent with the counter-current EHO.« less

  10. Energy spectrum inverse problem of q-deformed harmonic oscillator and entanglement of composite bosons

    NASA Astrophysics Data System (ADS)

    Sang, Nguyen Anh; Thu Thuy, Do Thi; Loan, Nguyen Thi Ha; Lan, Nguyen Tri; Viet, Nguyen Ai

    2017-06-01

    Using the simple deformed three-level model (D3L model) proposed in our early work, we study the entanglement problem of composite bosons. Consider three first energy levels are known, we can get two energy separations, and can define the level deformation parameter δ. Using connection between q-deformed harmonic oscillator and Morse-like anharmonic potential, the deform parameter q also can be derived explicitly. Like the Einstein’s theory of special relativity, we introduce the observer e˙ects: out side observer (looking from outside the studying system) and inside observer (looking inside the studying system). Corresponding to those observers, the outside entanglement entropy and inside entanglement entropy will be defined.. Like the case of Foucault pendulum in the problem of Earth rotation, our deformation energy level investigation might be useful in prediction the environment e˙ect outside a confined box.

  11. Dynamics of entanglement and uncertainty relation in coupled harmonic oscillator system: exact results

    NASA Astrophysics Data System (ADS)

    Park, DaeKil

    2018-06-01

    The dynamics of entanglement and uncertainty relation is explored by solving the time-dependent Schrödinger equation for coupled harmonic oscillator system analytically when the angular frequencies and coupling constant are arbitrarily time dependent. We derive the spectral and Schmidt decompositions for vacuum solution. Using the decompositions, we derive the analytical expressions for von Neumann and Rényi entropies. Making use of Wigner distribution function defined in phase space, we derive the time dependence of position-momentum uncertainty relations. To show the dynamics of entanglement and uncertainty relation graphically, we introduce two toy models and one realistic quenched model. While the dynamics can be conjectured by simple consideration in the toy models, the dynamics in the realistic quenched model is somewhat different from that in the toy models. In particular, the dynamics of entanglement exhibits similar pattern to dynamics of uncertainty parameter in the realistic quenched model.

  12. Bound States and the Third Harmonic Generation in an Electric Field Biased Semi-parabolic Quantum Well

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Xie, Hong-Jing

    2003-11-01

    Within the framework of the compact density matrix approach, the third-harmonic generation (THG) in an electric-field-biased semi-parabolic quantum well (QW) has been deduced and investigated. Via variant of displacement harmonic oscillation, the exact electronic states in the semi-parabolic QW with an applied electric field have also been obtained and discussed. Numerical results on typical GaAs material reveal that, electric fields and confined potential frequency of semi-parabolic QW have obvious influences on the energy levels of electronic states and the THG in the semi-parabolic QW systems. The project supported in part by Guangdong Provincial Natural Science Foundation of China

  13. Ferromagnetic mass fixed on a spring and subjected to an electromagnet powered by self-sustained oscillators

    NASA Astrophysics Data System (ADS)

    Abobda, L. T.; Woafo, P.

    2014-12-01

    The study of a ferromagnetic mass, fixed on a spring and subjected to an electromagnet powered by a Van der Pol (VDP) oscillator and by a Hindmarsh-Rose (HR) oscillator is performed, to serve as an electromechanical devices, but also to mimic the action of a natural pacemaker and nerves on a cardiac assist device or artificial heart. The excitation with the VDP oscillator shows in the mechanical part the transition from harmonic, periodic, biperiodic up to bursting oscillations, high displacement without pull-in instability in the free dynamics regime. Under DC plus square wave excitation, there is a coexistence of the bursting oscillations of the free dynamics and the one of the modulated dynamics. Considering the action of a HR oscillator, it is found transition from spikes, bursting oscillations, relaxation spikes, multiperiodic and sinusoidal oscillations under DC or DC plus square wave excitation. These electrical behaviors are transferred to the mechanical part which can then adopt spiking or bursting dynamics as the HR oscillator. For this electromechanical model, the VDP oscillator is more efficient than the HR oscillator to induce pulsatile pumping function with higher amplitude and to react to external influences without pull-in.

  14. Quadratic resonance in the three-dimensional oscillations of inviscid drops with surface tension

    NASA Technical Reports Server (NTRS)

    Natarajan, R.; Brown, R. A.

    1986-01-01

    The moderate-amplitude, three-dimensional oscillations of an inviscid drop are described in terms of spherical harmonics. Specific oscillation modes are resonantly coupled by quadratic nonlinearities caused by inertia, capillarity, and drop deformation. The equations describing the interactions of these modes are derived from the variational principle for the appropriate Lagrangian by expressing the modal amplitudes to be functions of a slow time scale and by preaveraging the Lagrangian over the time scale of the primary oscillations. Stochastic motions are predicted for nonaxisymmetric deformations starting from most initial conditions, even those arbitrarily close to the axisymmetric shapes. The stochasticity is characterized by a redistribution of the energy contained in the initial deformation over all the degrees of freedom of the interacting modes.

  15. Precise measurement of coupling strength and high temperature quantum effect in a nonlinearly coupled qubit-oscillator system

    NASA Astrophysics Data System (ADS)

    Ge, Li; Zhao, Nan

    2018-04-01

    We study the coherence dynamics of a qubit coupled to a harmonic oscillator with both linear and quadratic interactions. As long as the linear coupling strength is much smaller than the oscillator frequency, the long time behavior of the coherence is dominated by the quadratic coupling strength g 2. The coherence decays and revives at a period , with the width of coherence peak decreasing as the temperature increases, hence providing a way to measure g 2 precisely without cooling. Unlike the case of linear coupling, here the coherence dynamics never reduces to the classical limit in which the oscillator is classical. Finally, the validity of linear coupling approximation is discussed and the coherence under Hahn-echo is evaluated.

  16. Spectral control of high harmonics from relativistic plasmas using bicircular fields

    NASA Astrophysics Data System (ADS)

    Chen, Zi-Yu

    2018-04-01

    We introduce two-color counterrotating circularly polarized laser fields as a way to spectrally control high harmonic generation (HHG) from relativistic plasma mirrors. Through particle-in-cell simulations, we show that only a selected group of harmonic orders can appear owing to the symmetry of the laser fields and the related conservation laws. By adjusting the intensity ratio of the two driving field components, we demonstrate the overall HHG efficiency, the relative intensity of allowed neighboring harmonic orders, and that the polarization state of the harmonic source can be tuned. The HHG efficiency of this scheme can be as high as that driven by a linearly polarized laser field.

  17. EDFA-based coupled opto-electronic oscillator and its phase noise

    NASA Technical Reports Server (NTRS)

    Salik, Ertan; Yu, Nan; Tu, Meirong; Maleki, Lute

    2004-01-01

    EDFA-based coupled opto-electronic oscillator (COEO), an integrated optical and microwave oscillator that can generate picosecond optical pulses, is presented. the phase noise measurements of COEO show better performance than synthesizer-driven mode-locked laser.

  18. Nonlinearly driven harmonics of Alfvén modes

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Breizman, B. N.; Zheng, L. J.; Berk, H. L.

    2014-01-01

    In order to study the leading order nonlinear magneto-hydrodynamic (MHD) harmonic response of a plasma in realistic geometry, the AEGIS code has been generalized to account for inhomogeneous source terms. These source terms are expressed in terms of the quadratic corrections that depend on the functional form of a linear MHD eigenmode, such as the Toroidal Alfvén Eigenmode. The solution of the resultant equation gives the second order harmonic response. Preliminary results are presented here.

  19. Bi-harmonic cantilever design for improved measurement sensitivity in tapping-mode atomic force microscopy.

    PubMed

    Loganathan, Muthukumaran; Bristow, Douglas A

    2014-04-01

    This paper presents a method and cantilever design for improving the mechanical measurement sensitivity in the atomic force microscopy (AFM) tapping mode. The method uses two harmonics in the drive signal to generate a bi-harmonic tapping trajectory. Mathematical analysis demonstrates that the wide-valley bi-harmonic tapping trajectory is as much as 70% more sensitive to changes in the sample topography than the standard single-harmonic trajectory typically used. Although standard AFM cantilevers can be driven in the bi-harmonic tapping trajectory, they require large forcing at the second harmonic. A design is presented for a bi-harmonic cantilever that has a second resonant mode at twice its first resonant mode, thereby capable of generating bi-harmonic trajectories with small forcing signals. Bi-harmonic cantilevers are fabricated by milling a small cantilever on the interior of a standard cantilever probe using a focused ion beam. Bi-harmonic drive signals are derived for standard cantilevers and bi-harmonic cantilevers. Experimental results demonstrate better than 30% improvement in measurement sensitivity using the bi-harmonic cantilever. Images obtained through bi-harmonic tapping exhibit improved sharpness and surface tracking, especially at high scan speeds and low force fields.

  20. Revisiting an old concept: the coupled oscillator model for VCD. Part 1: the generalised coupled oscillator mechanism and its intrinsic connection to the strength of VCD signals.

    PubMed

    Nicu, Valentin Paul

    2016-08-03

    Motivated by the renewed interest in the coupled oscillator (CO) model for VCD, in this work a generalised coupled oscillator (GCO) expression is derived by introducing the concept of a coupled oscillator origin. Unlike the standard CO expression, the GCO expression is exact within the harmonic approximation. Using two illustrative example molecules, the theoretical concepts introduced here are demonstrated by performing a GCO decomposition of the rotational strengths computed using DFT. This analysis shows that: (1) the contributions to the rotational strengths that are normally neglected in the standard CO model can be comparable to or larger than the CO contribution, and (2) the GCO mechanism introduced here can affect the VCD intensities of all types of modes in symmetric and asymmetric molecules.

  1. Energetics of oscillating lifting surfaces using integral conservation laws

    NASA Technical Reports Server (NTRS)

    Ahmadi, Ali R.; Widnall, Sheila E.

    1987-01-01

    The energetics of oscillating flexible lifting surfaces in two and three dimensions is calculated by the use of integral conservation laws in inviscid incompressible flow for general and harmonic transverse oscillations. Total thrust is calculated from the momentum theorem and energy loss rate due to vortex shedding in the wake from the principle of conservation of mechanical energy. Total power required to maintain the oscillations and hydrodynamic efficiency are also determined. In two dimensions, the results are obtained in closed form. In three dimensions, the distribution of vorticity on the lifting surface is also required as input to the calculations. Thus, unsteady lifting-surface theory must be used as well. The analysis is applicable to oscillating lifting surfaces of arbitrary planform, aspect ratio, and reduced frequency and does not require calculation of the leading-edge thrust.

  2. Superharmonic resonances in a two-dimensional non-linear photonic-crystal nano-electro-mechanical oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhury, A.; Yeo, I.; Tsvirkun, V.

    2016-04-18

    We investigate the non-linear mechanical dynamics of a nano-optomechanical mirror formed by a suspended membrane pierced by a photonic crystal. By applying to the mirror a periodic electrostatic force induced by interdigitated electrodes integrated below the membrane, we evidence superharmonic resonances of our nano-electro-mechanical system; the constant phase shift of the oscillator across the resonance tongues is observed on the onset of principal harmonic and subharmonic excitation regimes.

  3. High energy efficient solid state laser sources

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1987-01-01

    Diode-laser-pumped solid-state laser oscillators and nonlinear processes were investigated. A new generation on nonplanar oscillator was fabricated, and it is anticipated that passive linewidths will be pushed to the kilohertz regime. A number of diode-pumped laser transitions were demonstrated in the rod configuration. Second-harmonic conversion efficiencies as high as 15% are routinely obtained in a servo-locked external resonant doubling crystal at 15 mW cw input power levels at 1064 nm.

  4. International Conference on Millimeter Wave and Far-Infrared Technology (1st) Held in Beijing, China, August 17-21, 1992

    DTIC Science & Technology

    1993-03-01

    I1. NON COHERENT-REFLECTOMETRY The design of sources of steady-state intencive noise signals of mm wave band with sufficiently wide and homogenious...structures exhibit non -reciprocity effects, as well as magnetically controlled resonances, which are observable in reflection, absorption, and...performance of the oscillator. Accordingly, we designed a 3mm electronically tuned harmonic -420- oscillator in which it is easy to debug and control

  5. Absorption and Reflection Experiments on High-Mobility 2DEGs in the Regime of Microwave-Induced Resistance Oscillations

    NASA Astrophysics Data System (ADS)

    Studenikin, S. A.; Potemski, M.; Sachrajda, A. S.; Hilke, M.; Pfeiffer, L. N.; West, K. W.

    2005-04-01

    We have performed microwave absorption and near-field reflection experiments on a high mobility GaAs/AlGaAs heterostructure for the same conditions for which Microwave-Induced Resistance Oscillations (MIROs) are observed. It is shown that the electrodynamic aspect of the problem is important in these experiments. In the absorption experiments a broad CR line was observed due to a large reflection from the highly conductive electron gas. There were no additional features observed related to absorption at harmonics of the cyclotron resonance. In near-field reflection experiments a very different oscillation pattern was revealed when compared to MIROs. The oscillation pattern observed in the reflection experiments is probably due to plasma effects occurring in a finite-size sample. The whole microscopic picture of MIROs is more complicated than simply a resonant absorption at harmonics of the cyclotron resonance. Nevertheless, the experimental observations are in good agreement with the model by Durst et al. involving the photo-assisted scattering in the presence of a crossed magnetic field and dc bias. The observed damping factor of MIROs may be attributed to a change in the electron mobility as a function of temperature. MIROs may be considered as a light-induced drift effect, a broad class of phenomena associated with a light-induced asymmetry in the velocity distribution function.

  6. Absorption and Reflection Experiments on High-Mobility 2DEGs in the Regime of Microwave-Induced Resistance Oscillations

    NASA Astrophysics Data System (ADS)

    Studenikin, S. A.; Potemski, M.; Sachrajda, A. S.; Hilke, M.; Pfeiffer, L. N.; West, K. W.

    We have performed microwave absorption and near-field reflection experiments on a high mobility GaAs/AlGaAs heterostructure for the same conditions for which Microwave-Induced Resistance Oscillations (MIROs) are observed. It is shown that the electrodynamic aspect of the problem is important in these experiments. In the absorption experiments a broad CR line was observed due to a large reflection from the highly conductive electron gas. There were no additional features observed related to absorption at harmonics of the cyclotron resonance. In near-field reflection experiments a very different oscillation pattern was revealed when compared to MIROs. The oscillation pattern observed in the reflection experiments is probably due to plasma effects occurring in a finite-size sample. The whole microscopic picture of MIROs is more complicated than simply a resonant absorption at harmonics of the cyclotron resonance. Nevertheless, the experimental observations are in good agreement with the model by Durst et al. involving the photo-assisted scattering in the presence of a crossed magnetic field and dc bias. The observed damping factor of MIROs may be attributed to a change in the electron mobility as a function of temperature. MIROs may be considered as a light-induced drift effect, a broad class of phenomena associated with a light-induced asymmetry in the velocity distribution function.

  7. Altitude-temporal behaviour of atmospheric ozone, temperature and wind velocity observed at Svalbard

    NASA Astrophysics Data System (ADS)

    Petkov, Boyan H.; Vitale, Vito; Svendby, Tove M.; Hansen, Georg H.; Sobolewski, Piotr S.; Láska, Kamil; Elster, Josef; Pavlova, Kseniya; Viola, Angelo; Mazzola, Mauro; Lupi, Angelo; Solomatnikova, Anna

    2018-07-01

    The vertical features of the variations in the atmospheric ozone density, temperature and wind velocity observed at Ny-Ålesund, Svalbard were studied by applying the principal component analysis to the ozonesounding data collected during the 1992-2016 period. Two data sets corresponding to intra-seasonal (IS) variations, which are composed by harmonics with lower than 1 year periods and inter-annual (IA) variations, characterised by larger periods, were extracted and analysed separately. The IS variations in all the three parameters were found to be composed mainly by harmonics typical for the Madden-Julian Oscillation (from 30- to 60-day periods) and, while the first four principal components (PCs) associated with the temperature and wind contributed about 90% to the IS variations, the ozone IS oscillations appeared to be a higher dimensional object for which the first 15 PCs presented almost the same extent of contribution. The IA variations in the three parameters were consisted of harmonics that correspond to widely registered over the globe Quasi-Biennial, El Niño-Southern, North Atlantic and Arctic Oscillations respectively, and the IA variations turned out to be negligible below the tropopause that characterises the Svalbard troposphere as comparatively closed system with respect to the long-period global variations. The behaviour of the first and second PCs associated with IS ozone variations in the time of particular events, like the strong ozone depletion over Arctic in the spring 2011 and solar eclipses was discussed and the changes in the amplitude-frequency features of these PCs were assumed as signs of the atmosphere response to the considered phenomena.

  8. Study on the Before Cavity Interaction in a Second Harmonic Gyrotron Using 3D CFDTD PIC Simulations

    NASA Astrophysics Data System (ADS)

    Lin, M. C.; Illy, S.; Thumm, M.; Jelonnek, J.

    2016-10-01

    A computational study on before cavity interaction (BCI) in a 28 GHz second harmonic (SH) gryotron for industrial applications has been performed using a 3-D conformal finite-difference time-domain (CFDTD) particle-in-cell (PIC) method. On the contrary to the after cavity interaction (ACI), i.e. beam wave interaction in the non-linear uptaper after the cavity, which has been widely investigated, the BCI, i.e. beam wave interaction in the non-linear downtaper before the cavity connected to the beam tunnel with an entrance, is less noticed and discussed. Usually the BCI might be considered easy to be eliminated. However, this is not always the case. As the SH gyrotron had been designed for SH TE12 mode operation, the first harmonic (FH) plays the main competition. In the 3-D CFDTD PIC simulations, a port boundary has been employed for the gyro-beam entrance of the gyrotron cavity instead of a metallic short one which is not reflecting a realistic situation as an FH backward wave oscillation (BWO) is competing with the desired SH generation. A numerical instability has been found and identified as a failure of the entrance port boundary caused by an evanescent wave or mode conversion. This indicates the entrance and downtaper are not fully cut-off for some oscillations. A further study shows that the undesired oscillation is the FH TE11 BWO mode concentrated around the beam tunnel entrance and downtaper. A mitigation strategy has been found to suppress this undesired BCI and avoid possible damage to the gun region.

  9. Estimation of plasma ion saturation current and reduced tip arcing using Langmuir probe harmonics.

    PubMed

    Boedo, J A; Rudakov, D L

    2017-03-01

    We present a method to calculate the ion saturation current, I sat , for Langmuir probes at high frequency (>100 kHz) using the harmonics technique and we compare that to a direct measurement of I sat . It is noted that the I sat estimation can be made directly by the ratio of harmonic amplitudes, without explicitly calculating T e . We also demonstrate that since the probe tips using the harmonic method are oscillating near the floating potential, drawing little power, this method reduces tip heating and arcing and allows plasma density measurements at a plasma power flux that would cause continuously biased tips to arc. A multi-probe array is used, with two spatially separated tips employing the harmonics technique and measuring the amplitude of at least two harmonics per tip. A third tip, located between the other two, measures the ion saturation current directly. We compare the measured and calculated ion saturation currents for a variety of plasma conditions and demonstrate the validity of the technique and its use in reducing arcs.

  10. Estimation of plasma ion saturation current and reduced tip arcing using Langmuir probe harmonics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boedo, J. A.; Rudakov, D. L.

    Here we present a method to calculate the ion saturation current, I sat, for Langmuir probes at high frequency (>100 kHz) using the harmonics technique and we compare that to a direct measurement of I sat. It is noted that the Isat estimation can be made directly by the ratio of harmonic amplitudes, without explicitly calculating T e. We also demonstrate that since the probe tips using the harmonic method are oscillating near the floating potential, drawing little power, this method reduces tip heating and arcing and allows plasma density measurements at a plasma power flux that would cause continuouslymore » biased tips to arc. A multi-probe array is used, with two spatially separated tips employing the harmonics technique and measuring the amplitude of at least two harmonics per tip. A third tip, located between the other two, measures the ion saturation current directly. We compare the measured and calculated ion saturation currents for a variety of plasma conditions and demonstrate the validity of the technique and it’s use in reducing arcs.« less

  11. Estimation of plasma ion saturation current and reduced tip arcing using Langmuir probe harmonics

    DOE PAGES

    Boedo, J. A.; Rudakov, D. L.

    2017-03-20

    Here we present a method to calculate the ion saturation current, I sat, for Langmuir probes at high frequency (>100 kHz) using the harmonics technique and we compare that to a direct measurement of I sat. It is noted that the Isat estimation can be made directly by the ratio of harmonic amplitudes, without explicitly calculating T e. We also demonstrate that since the probe tips using the harmonic method are oscillating near the floating potential, drawing little power, this method reduces tip heating and arcing and allows plasma density measurements at a plasma power flux that would cause continuouslymore » biased tips to arc. A multi-probe array is used, with two spatially separated tips employing the harmonics technique and measuring the amplitude of at least two harmonics per tip. A third tip, located between the other two, measures the ion saturation current directly. We compare the measured and calculated ion saturation currents for a variety of plasma conditions and demonstrate the validity of the technique and it’s use in reducing arcs.« less

  12. New quantum oscillations in current driven small junctions

    NASA Technical Reports Server (NTRS)

    Ben-Jacob, E.; Gefen, Y.

    1985-01-01

    The response of current-biased Josephson and normal tunnel junctions (JJs and NTJs) such as those fabricated by Voss and Webb (1981) is predicted from a quantum-mechanical description based on the observation that the response of a current-driven open system is equivalent to that of a closed system subject to an external time-dependent voltage bias. Phenomena expected include voltage oscillations with no dc voltage applied, inverse Shapiro steps of dc voltage in the presence of microwave radiation, voltage oscillation in a JJ and an NTJ coupled by a capacitance to a current-biased junction, JJ voltage oscillation frequency = I/e rather than I/2e, and different NTJ resistance than in the voltage-driven case. The effects require approximate experimental parameter values Ic = 15 nA, C = 1 fF, and T much less than 0.4 K for JJs and Ic = a few nA, C = 1 fF, and R = 3 kiloohms for 100-microV inverse Shapiro steps at 10 GHz in NTJs.

  13. Statistical mechanics of few-particle systems: exact results for two useful models

    NASA Astrophysics Data System (ADS)

    Miranda, Enrique N.

    2017-11-01

    The statistical mechanics of small clusters (n ˜ 10-50 elements) of harmonic oscillators and two-level systems is studied exactly, following the microcanonical, canonical and grand canonical formalisms. For clusters with several hundred particles, the results from the three formalisms coincide with those found in the thermodynamic limit. However, for clusters formed by a few tens of elements, the three ensembles yield different results. For a cluster with a few tens of harmonic oscillators, when the heat capacity per oscillator is evaluated within the canonical formalism, it reaches a limit value equal to k B , as in the thermodynamic case, while within the microcanonical formalism the limit value is k B (1-1/n). This difference could be measured experimentally. For a cluster with a few tens of two-level systems, the heat capacity evaluated within the canonical and microcanonical ensembles also presents differences that could be detected experimentally. Both the microcanonical and grand canonical formalism show that the entropy is non-additive for systems this small, while the canonical ensemble reaches the opposite conclusion. These results suggest that the microcanonical ensemble is the most appropriate for dealing with systems with tens of particles.

  14. Algebraic solutions of shape-invariant position-dependent effective mass systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amir, Naila, E-mail: naila.amir@live.com, E-mail: naila.amir@seecs.edu.pk; Iqbal, Shahid, E-mail: sic80@hotmail.com, E-mail: siqbal@sns.nust.edu.pk

    2016-06-15

    Keeping in view the ordering ambiguity that arises due to the presence of position-dependent effective mass in the kinetic energy term of the Hamiltonian, a general scheme for obtaining algebraic solutions of quantum mechanical systems with position-dependent effective mass is discussed. We quantize the Hamiltonian of the pertaining system by using symmetric ordering of the operators concerning momentum and the spatially varying mass, initially proposed by von Roos and Lévy-Leblond. The algebraic method, used to obtain the solutions, is based on the concepts of supersymmetric quantum mechanics and shape invariance. In order to exemplify the general formalism a class ofmore » non-linear oscillators has been considered. This class includes the particular example of a one-dimensional oscillator with different position-dependent effective mass profiles. Explicit expressions for the eigenenergies and eigenfunctions in terms of generalized Hermite polynomials are presented. Moreover, properties of these modified Hermite polynomials, like existence of generating function and recurrence relations among the polynomials have also been studied. Furthermore, it has been shown that in the harmonic limit, all the results for the linear harmonic oscillator are recovered.« less

  15. A statistical model of the human core-temperature circadian rhythm

    NASA Technical Reports Server (NTRS)

    Brown, E. N.; Choe, Y.; Luithardt, H.; Czeisler, C. A.

    2000-01-01

    We formulate a statistical model of the human core-temperature circadian rhythm in which the circadian signal is modeled as a van der Pol oscillator, the thermoregulatory response is represented as a first-order autoregressive process, and the evoked effect of activity is modeled with a function specific for each circadian protocol. The new model directly links differential equation-based simulation models and harmonic regression analysis methods and permits statistical analysis of both static and dynamical properties of the circadian pacemaker from experimental data. We estimate the model parameters by using numerically efficient maximum likelihood algorithms and analyze human core-temperature data from forced desynchrony, free-run, and constant-routine protocols. By representing explicitly the dynamical effects of ambient light input to the human circadian pacemaker, the new model can estimate with high precision the correct intrinsic period of this oscillator ( approximately 24 h) from both free-run and forced desynchrony studies. Although the van der Pol model approximates well the dynamical features of the circadian pacemaker, the optimal dynamical model of the human biological clock may have a harmonic structure different from that of the van der Pol oscillator.

  16. The radio-frequency fluctuation effect on the floating harmonic method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jaewon; Kim, Kyung-Hyun; Kim, Dong-Hwan

    2016-08-15

    The radio-frequency (RF) plasma diagnostics with an electrical probe facing a challenge, because the RF fluctuation oscillates the plasma potential and distorts the current-voltage (I-V) curve. As Langmuir probe is widely used in plasma diagnostics, many researchers have been studying the effect of RF fluctuation on probe and compensation methods. On the other hand, there have not been enough studies on the fluctuation effect on the floating harmonic method. Therefore, we investigated the impact of RF fluctuation on the floating harmonic method theoretically and experimentally. When the electrons are in ideal Maxwellian distribution, the floating potential is negatively shifted bymore » the RF fluctuation, but the fluctuation does not distort I-V curve around the floating potential. However, in practical plasmas, the I-V curve and their harmonic components are distorted. This RF fluctuation effect becomes more significant in a low density plasma with a high impedance sheath. The second harmonic current decreases with the RF fluctuation while the first harmonic current is merely affected. Therefore, the electron temperatures measured with the floating harmonic method under low density plasma with uncompensated probe are overestimated than the results obtained with the compensated probe.« less

  17. Impact of deposition-rate fluctuations on thin-film thickness and uniformity

    DOE PAGES

    Oliver, Joli B.

    2016-11-04

    Variations in deposition rate are superimposed on a thin-film–deposition model with planetary rotation to determine the impact on film thickness. Variations in magnitude and frequency of the fluctuations relative to the speed of planetary revolution lead to thickness errors and uniformity variations up to 3%. Sufficiently rapid oscillations in the deposition rate have a negligible impact, while slow oscillations are found to be problematic, leading to changes in the nominal film thickness. Finally, superimposing noise as random fluctuations in the deposition rate has a negligible impact, confirming the importance of any underlying harmonic oscillations in deposition rate or source operation.

  18. Valve-spring Surge

    NASA Technical Reports Server (NTRS)

    Marti, Willy

    1937-01-01

    Test equipment is described that includes a system of three quartz indicators whereby three different pressures could be synchronized and simultaneously recorded on a single oscillogram. This equipment was used to test the reliction of waves at ends of valve spring, the dynamical stress of the valve spring for a single lift of the valve, and measurement of the curve of the cam tested. Other tests included simultaneous recording of the stress at both ends of the spring, spring oscillation during a single lift as a function of speed, computation of amplitude of oscillation for a single lift by harmonic analysis, effect of cam profile, the setting up of resonance, and forced spring oscillation with damping.

  19. The 1984 solar oscillation program of the Mt. Wilson 60-foot tower

    NASA Technical Reports Server (NTRS)

    Rhodes, Edward J., Jr.; Cacciani, Alessandro; Tomczyk, Steven; Ulrich, Roger K.

    1986-01-01

    The instrumentation, data, and preliminary results from the summer, 1984, solar oscillation observing program which was carried out using the 60-foot tower telescope of the Mt. Wilson Observatory are described. This program was carried out with a dedicated solar oscillation observing system and obtained full-disk Dopplergrams every 40 seconds for up to 11 hours per day. Between June and September, 1984, observations were obtained with a Na magneto-optical filter on 90 different days. The data analysis has progressed to the point that spherical harmonic filter functions were employed to generate a few one-dimensional power spectra from a single day's observations.

  20. The 1984 solar oscillation program of the Mount Wilson 60-foot tower

    NASA Technical Reports Server (NTRS)

    Rhodes, E. J., Jr.; Cacciani, A.; Tomczyk, S.; Ulrich, R. K.

    1985-01-01

    The instrumentation, data, and preliminary results from the summer, 1984, solar oscillation observing program which was carried out using the 60-foot tower telescope of the Mt. Wilson Observatory are described. This program was carried out with a dedicated solar oscillation observing system and obtained full-disk Dopplergrams every 40 seconds for up to 11 hours per day. Between June and September, 1984, observations were obtained with a Na magneto-optical filter on 90 different days. The data analysis has progressed to the point that spherical harmonic filter functions were employed to generate a few one-dimensional power spectra from a single day's observations.

  1. Stability and bifurcation analysis of oscillators with piecewise-linear characteristics - A general approach

    NASA Technical Reports Server (NTRS)

    Noah, S. T.; Kim, Y. B.

    1991-01-01

    A general approach is developed for determining the periodic solutions and their stability of nonlinear oscillators with piecewise-smooth characteristics. A modified harmonic balance/Fourier transform procedure is devised for the analysis. The procedure avoids certain numerical differentiation employed previously in determining the periodic solutions, therefore enhancing the reliability and efficiency of the method. Stability of the solutions is determined via perturbations of their state variables. The method is applied to a forced oscillator interacting with a stop of finite stiffness. Flip and fold bifurcations are found to occur. This led to the identification of parameter ranges in which chaotic response occurred.

  2. Quantum noise and squeezing in optical parametric oscillator with arbitrary output coupling

    NASA Technical Reports Server (NTRS)

    Prasad, Sudhakar

    1993-01-01

    The redistribution of intrinsic quantum noise in the quadratures of the field generated in a sub-threshold degenerate optical parametric oscillator exhibits interesting dependences on the individual output mirror transmittances, when they are included exactly. We present a physical picture of this problem, based on mirror boundary conditions, which is valid for arbitrary transmittances. Hence, our picture applies uniformly to all values of the cavity Q factor representing, in the opposite extremes, both perfect oscillator and amplifier configurations. Beginning with a classical second-harmonic pump, we shall generalize our analysis to the finite amplitude and phase fluctuations of the pump.

  3. Experimental study of the influence of low frequency flow modulation on the whistling behavior of a corrugated pipe.

    PubMed

    Kristiansen, Ulf R; Mattei, Pierre-Olivier; Pinhede, Cedric; Amielh, Muriel

    2011-10-01

    It is well known that airflow in a corrugated pipe can excite whistling at the frequencies of the pipe's longitudinal acoustic modes. This short contribution reports on the results of experiments where a low frequency, oscillating flow with velocity magnitudes of the same order as the airflow has been added. Depending on the oscillation strength, it has been found that this flow may silence the pipe or move the whistling to higher harmonics. It is also shown that the low frequency oscillation itself may excite higher frequency whistling sounds in the pipe. © 2011 Acoustical Society of America

  4. The extratropical 40-day oscillation in the UCLA general circulation model. Part 1: Atmospheric angular momentum

    NASA Technical Reports Server (NTRS)

    Marcus, S. L.; Ghil, M.; Dickey, J. O.

    1994-01-01

    Variations in atmospheric angular momentum (AAM) are examined in a three-year simulation of the large-scale atmosphere with perpetual January forcing. The simulation is performed with a version of the University of California at Los Angeles (UCLA) general circulation model that contains no tropical Madden-Julian Oscillation (MJO). In addition, the results of three shorter experiments with no topography are analyzed. The three-year standard topography run contains no significant intraseasonal AAM periodicity in the tropics, consistent with the lack of the MJO, but produces a robust, 42-day AAM oscillation in the Northern Hemisphere (NH) extratropics. The model tropics undergoes a barotropic, zonally symmetric oscillation, driven by an exchange of mass with the NH extratropics. No intraseasonal periodicity is found in the average tropical latent heating field, indicating that the model oscillation is dynamically rather than thermodynamically driven. The no-mountain runs fail to produce an intraseasonal AAM oscillation, consistent with a topographic origin for the NH extratropical oscillation in the standard model. The spatial patterns of the oscillation in the 500-mb height field, and the relationship of the extratropical oscillation to intraseasonal variations in the tropics, will be discussed in Part 2 of this study.

  5. Effect of transition dipole phase on high-order-harmonic generation in solid materials

    NASA Astrophysics Data System (ADS)

    Jiang, Shicheng; Wei, Hui; Chen, Jigen; Yu, Chao; Lu, Ruifeng; Lin, C. D.

    2017-11-01

    High-order harmonic spectra from solid materials driven by single-color multicycle laser fields sometimes contain even harmonics. In this work we attribute the appearance of even harmonics to the nonzero transition dipole phase (TDP) when the solid system has broken symmetry. By calculating the harmonic efficiency from graphene and gapped graphene by using the semiconductor Bloch equations under the tight-binding approximation, we demonstrate the role of the TDP, which has been ignored for a long time. When the crystal has inversion symmetry, or reflection symmetry with the symmetry plane perpendicular to the laser polarization direction, the TDP can be neglected. Without such symmetry, however, the TDP will lead to the appearance of even harmonics. We further show that the TDP is sensitive to the crystal geometry. To extract the structure information from the harmonic spectra of a solid the TDP cannot be ignored.

  6. Enhanced harmonic emission from a polar molecule medium driven by few-cycle laser pulses.

    PubMed

    Zhang, Chaojin; Yao, Jinping; Ni, Jielei; Umran, Fadhil A

    2012-11-19

    We investigate theoretically the enhancement of the low-order harmonic emission from a polar molecular medium. The results show that, by using a control laser field, the intensity of the spectral signals near fourth-order harmonics will increase over 25 times as a result of the four-wave mixing process. Moreover, the enhancement effects depend strongly on the carrier-envelope phase of the initial laser fields, which cannot be found in a symmetric system.

  7. Polarization control of isolated high-harmonic pulses

    NASA Astrophysics Data System (ADS)

    Huang, Pei-Chi; Hernández-García, Carlos; Huang, Jen-Ting; Huang, Po-Yao; Lu, Chih-Hsuan; Rego, Laura; Hickstein, Daniel D.; Ellis, Jennifer L.; Jaron-Becker, Agnieszka; Becker, Andreas; Yang, Shang-Da; Durfee, Charles G.; Plaja, Luis; Kapteyn, Henry C.; Murnane, Margaret M.; Kung, A. H.; Chen, Ming-Chang

    2018-06-01

    High-harmonic generation driven by femtosecond lasers makes it possible to capture the fastest dynamics in molecules and materials. However, thus far, the shortest isolated attosecond pulses have only been produced with linear polarization, which limits the range of physics that can be explored. Here, we demonstrate robust polarization control of isolated extreme-ultraviolet pulses by exploiting non-collinear high-harmonic generation driven by two counter-rotating few-cycle laser beams. The circularly polarized supercontinuum is produced at a central photon energy of 33 eV with a transform limit of 190 as and a predicted linear chirp of 330 as. By adjusting the ellipticity of the two counter-rotating driving pulses simultaneously, we control the polarization state of isolated extreme-ultraviolet pulses—from circular through elliptical to linear polarization—without sacrificing conversion efficiency. Access to the purely circularly polarized supercontinuum, combined with full helicity and ellipticity control, paves the way towards attosecond metrology of circular dichroism.

  8. Deterministic chaos in entangled eigenstates

    NASA Astrophysics Data System (ADS)

    Schlegel, K. G.; Förster, S.

    2008-05-01

    We investigate the problem of deterministic chaos in connection with entangled states using the Bohmian formulation of quantum mechanics. We show for a two particle system in a harmonic oscillator potential, that in a case of entanglement and three energy eigen-values the maximum Lyapunov-parameters of a representative ensemble of trajectories for large times develops to a narrow positive distribution, which indicates nearly complete chaotic dynamics. We also present in short results from two time-dependent systems, the anisotropic and the Rabi oscillator.

  9. Higher order supersymmetric truncated oscillators

    NASA Astrophysics Data System (ADS)

    Fernández C., David J.; Morales-Salgado, Vicente Said

    2018-01-01

    We study the supersymmetric partners of the harmonic oscillator with an infinite potential barrier at the origin and obtain the conditions under which it is possible to add levels to the energy spectrum of these systems. It is found that instead of the usual rule for non-singular potentials, where the order of the transformation corresponds to the maximum number of levels which can be added, now it is the integer part of half the order of the transformation which gives the maximum number of levels to be created.

  10. Determination of stellar ages from asteroseismology

    NASA Technical Reports Server (NTRS)

    Ulrich, R. K.

    1986-01-01

    This Letter shows that measurements of the stellar analog of the solar five minute oscillations can permit the determination of the radius and age of isolated stars. The key frequencies of oscillation correspond to pairs of modes differing by two in the degree of the spherical harmonic describing the angular dependence of the motion and by one in the overtone order of the modes. The frequency pairs are very nearly degenerate, and adequate frequency resolution will require a nearly unbroken time sequence extending over 15 days.

  11. Some simple solutions of Schrödinger's equation for a free particle or for an oscillator

    NASA Astrophysics Data System (ADS)

    Andrews, Mark

    2018-05-01

    For a non-relativistic free particle, we show that the evolution of some simple initial wave functions made up of linear segments can be expressed in terms of Fresnel integrals. Examples include the square wave function and the triangular wave function. The method is then extended to wave functions made from quadratic elements. The evolution of all these initial wave functions can also be found for the harmonic oscillator by a transformation of the free evolutions.

  12. QED effects induced harmonics generation in extreme intense laser foil interaction

    NASA Astrophysics Data System (ADS)

    Yu, J. Y.; Yuan, T.; Liu, W. Y.; Chen, M.; Luo, W.; Weng, S. M.; Sheng, Z. M.

    2018-04-01

    A new mechanism of harmonics generation (HG) induced by quantum electrodynamics (QED) effects in extreme intense laser foil interaction is found and investigated by particle-in-cell (PIC) simulations. When two laser pulses with identical intensities of 1.6× {10}24 {{W}} {{{cm}}}-2 are counter-incident on a thin foil target, harmonics emission is observed in their reflected electromagnetic waves. Such harmonics radiation is excited due to transversely oscillating electric currents coming from the vibration of QED effect generated {e}-{e}+ pairs. The effects of laser intensity and polarization were studied. By distinguishing the cascade depth of generated photons and pairs, the influence of QED cascades on HG was analyzed. Although the current HG is not an efficient way for radiation source applications, it may provide a unique way to detect the QED processes in the near future ultra-relativistic laser solid interactions.

  13. Near-threshold harmonics from a femtosecond enhancement cavity-based EUV source: effects of multiple quantum pathways on spatial profile and yield.

    PubMed

    Hammond, T J; Mills, Arthur K; Jones, David J

    2011-12-05

    We investigate the photon flux and far-field spatial profiles for near-threshold harmonics produced with a 66 MHz femtosecond enhancement cavity-based EUV source operating in the tight-focus regime. The effects of multiple quantum pathways in the far-field spatial profile and harmonic yield show a strong dependence on gas jet dynamics, particularly nozzle diameter and position. This simple system, consisting of only a 700 mW Ti:Sapphire oscillator and an enhancement cavity produces harmonics up to 20 eV with an estimated 30-100 μW of power (intracavity) and > 1μW (measured) of power spectrally-resolved and out-coupled from the cavity. While this power is already suitable for applications, a quantum mechanical model of the system indicates substantial improvements should be possible with technical upgrades.

  14. Applied nonlinear optics in the journal 'Quantum Electronics'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grechin, Sergei G; Dmitriev, Valentin G; Chirkin, Anatolii S

    2011-12-31

    A brief historical review of the experimental and theoretical works on nonlinear optical frequency conversion (generation of harmonics, up- and down-conversion, parametric oscillation), which have been published in the journal 'Quantum Electronics' for the last 40 years, is presented.

  15. Ladder Operators for Some Spherically Symmetric Potentials in Quantum Mechanics

    ERIC Educational Resources Information Center

    Newmarch, J. D.; Golding, R. M.

    1978-01-01

    The energy levels of the free field, Coulomb potential, and the three-dimensional harmonic oscillator are found using the Dirac operator formalism by the construction of suitable ladder operators. The degeneracy of each level is also discussed. (Author/GA)

  16. More physics in the laundromat

    NASA Astrophysics Data System (ADS)

    Denny, Mark

    2010-12-01

    The physics of a washing machine spin cycle is extended to include the spin-up and spin-down phases. We show that, for realistic parameters, an adiabatic approximation applies, and thus the familiar forced, damped harmonic oscillator analysis can be applied to these phases.

  17. Harmonic generation in metallic, GaAs-filled nanocavities in the enhanced transmission regime at visible and UV wavelengths.

    PubMed

    Vincenti, M A; de Ceglia, D; Roppo, V; Scalora, M

    2011-01-31

    We have conducted a theoretical study of harmonic generation from a silver grating having slits filled with GaAs. By working in the enhanced transmission regime, and by exploiting phase-locking between the pump and its harmonics, we guarantee strong field localization and enhanced harmonic generation under conditions of high absorption at visible and UV wavelengths. Silver is treated using the hydrodynamic model, which includes Coulomb and Lorentz forces, convection, electron gas pressure, plus bulk χ(3) contributions. For GaAs we use nonlinear Lorentz oscillators, with characteristic χ(2) and χ(3) and nonlinear sources that arise from symmetry breaking and Lorentz forces. We find that: (i) electron pressure in the metal contributes to linear and nonlinear processes by shifting/reshaping the band structure; (ii) TE- and TM-polarized harmonics can be generated efficiently; (iii) the χ(2) tensor of GaAs couples TE- and TM-polarized harmonics that create phase-locked pump photons having polarization orthogonal compared to incident pump photons; (iv) Fabry-Perot resonances yield more efficient harmonic generation compared to plasmonic transmission peaks, where most of the light propagates along external metal surfaces with little penetration inside its volume. We predict conversion efficiencies that range from 10(-6) for second harmonic generation to 10(-3) for the third harmonic signal, when pump power is 2 GW/cm2.

  18. Oscillations emerging from noise-driven steady state in networks with electrical synapses and subthreshold resonance

    PubMed Central

    Tchumatchenko, Tatjana; Clopath, Claudia

    2014-01-01

    Oscillations play a critical role in cognitive phenomena and have been observed in many brain regions. Experimental evidence indicates that classes of neurons exhibit properties that could promote oscillations, such as subthreshold resonance and electrical gap junctions. Typically, these two properties are studied separately but it is not clear which is the dominant determinant of global network rhythms. Our aim is to provide an analytical understanding of how these two effects destabilize the fluctuation-driven state, in which neurons fire irregularly, and lead to an emergence of global synchronous oscillations. Here we show how the oscillation frequency is shaped by single neuron resonance, electrical and chemical synapses.The presence of both gap junctions and subthreshold resonance are necessary for the emergence of oscillations. Our results are in agreement with several experimental observations such as network responses to oscillatory inputs and offer a much-needed conceptual link connecting a collection of disparate effects observed in networks. PMID:25405458

  19. Temperature profile and equipartition law in a Langevin harmonic chain

    NASA Astrophysics Data System (ADS)

    Kim, Sangrak

    2017-09-01

    Temperature profile in a Langevin harmonic chain is explicitly derived and the validity of the equipartition law is checked. First, we point out that the temperature profile in previous studies does not agree with the equipartition law: In thermal equilibrium, the temperature profile deviates from the same temperature distribution against the equipartition law, particularly at the ends of the chain. The matrix connecting temperatures of the heat reservoirs and the temperatures of the harmonic oscillators turns out to be a probability matrix. By explicitly calculating the power spectrum of the probability matrix, we will show that the discrepancy comes from the neglect of the power spectrum in higher frequency ω, which is in decay mode, and related with the imaginary number of wave number q.

  20. Quantum Path Control of Harmonic Emission and Isolated Attosecond Pulse Generation by Using the Asymmetric Inhomogeneous Mid-Infrared Field

    NASA Astrophysics Data System (ADS)

    Feng, L. Q.; Li, W. L.; Castle, R. S.

    2018-03-01

    High-order harmonic generation (HHG) from the He atom driven by the asymmetric inhomogeneous mid-infrared field, produced by a metallic nanostructure, has been investigated. It is found that due to the asymmetric enhancement of the laser intensity in space, not only the harmonic cutoff can be extended, but also the single harmonic emission event with the single short quantum path contribution can be obtained. Further, by properly adding a terahertz (THz) controlling pulse, the harmonic cutoff can be further extended, showing a 1208 eV super-bandwidth with the intensity enhancement of two orders of magnitude. Finally, by properly superposing the harmonics, a series of the isolated 33 as pulses with the photon energies from 123 eV (10 nm) to 1256 eV (1 nm) can be obtained.

Top