Saunders, A. M.; Jenei, A.; Doppner, T.; ...
2016-08-30
X-ray Thomson scattering (XRTS) is a powerful diagnostic for probing warm and hot dense matter. We present the design and results of the first XRTS experiments with hohlraum-driven CH 2 targets on the OMEGA laser. X-rays seen directly from the XRTS x-ray source overshadow the elastic scattering signal from the target capsule, but can be controlled in future experiments. From the inelastic scattering signal, an average plasma temperature is inferred that is in reasonable agreement with the temperatures predicted by simulations. Here, knowledge gained in this experiment show a promising future for further XRTS measurements on indirectly driven OMEGA targets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saunders, A. M.; Jenei, A.; Doppner, T.
X-ray Thomson scattering (XRTS) is a powerful diagnostic for probing warm and hot dense matter. We present the design and results of the first XRTS experiments with hohlraum-driven CH 2 targets on the OMEGA laser. X-rays seen directly from the XRTS x-ray source overshadow the elastic scattering signal from the target capsule, but can be controlled in future experiments. From the inelastic scattering signal, an average plasma temperature is inferred that is in reasonable agreement with the temperatures predicted by simulations. Here, knowledge gained in this experiment show a promising future for further XRTS measurements on indirectly driven OMEGA targets.
Prolate-Spheroid (``Rugby-Shaped'') Hohlraum for Inertial Confinement Fusion
NASA Astrophysics Data System (ADS)
Vandenboomgaerde, M.; Bastian, J.; Casner, A.; Galmiche, D.; Jadaud, J.-P.; Laffite, S.; Liberatore, S.; Malinie, G.; Philippe, F.
2007-08-01
A novel rugby-ball shaped hohlraum is designed in the context of the indirect-drive scheme of inertial-confinement fusion (ICF). Experiments were performed on the OMEGA laser and are the first use of rugby hohlraums for ICF studies. Analysis of experimental data shows that the hohlraum energetics is well understood. We show that the rugby-ball shape exhibits advantages over cylinder, in terms of temperature and of symmetry control of the capsule implosion. Simulations indicate that rugby hohlraum driven targets may be candidates for ignition in a context of early Laser MegaJoule experiments with reduced laser energy.
MacLaren, S. A.; Schneider, M. B.; Widmann, K.; ...
2014-03-13
Here, indirect drive experiments at the National Ignition Facility are designed to achieve fusion by imploding a fuel capsule with x rays from a laser-driven hohlraum. Previous experiments have been unable to determine whether a deficit in measured ablator implosion velocity relative to simulations is due to inadequate models of the hohlraum or ablator physics. ViewFactor experiments allow for the first time a direct measure of the x-ray drive from the capsule point of view. The experiments show a 15%–25% deficit relative to simulations and thus explain nearly all of the disagreement with the velocity data. In addition, the datamore » from this open geometry provide much greater constraints on a predictive model of laser-driven hohlraum performance than the nominal ignition target.« less
Novel characterization of capsule x-ray drive at the National Ignition Facility.
MacLaren, S A; Schneider, M B; Widmann, K; Hammer, J H; Yoxall, B E; Moody, J D; Bell, P M; Benedetti, L R; Bradley, D K; Edwards, M J; Guymer, T M; Hinkel, D E; Hsing, W W; Kervin, M L; Meezan, N B; Moore, A S; Ralph, J E
2014-03-14
Indirect drive experiments at the National Ignition Facility are designed to achieve fusion by imploding a fuel capsule with x rays from a laser-driven hohlraum. Previous experiments have been unable to determine whether a deficit in measured ablator implosion velocity relative to simulations is due to inadequate models of the hohlraum or ablator physics. ViewFactor experiments allow for the first time a direct measure of the x-ray drive from the capsule point of view. The experiments show a 15%-25% deficit relative to simulations and thus explain nearly all of the disagreement with the velocity data. In addition, the data from this open geometry provide much greater constraints on a predictive model of laser-driven hohlraum performance than the nominal ignition target.
Hohlraum modeling for opacity experiments on the National Ignition Facility
NASA Astrophysics Data System (ADS)
Dodd, E. S.; DeVolder, B. G.; Martin, M. E.; Krasheninnikova, N. S.; Tregillis, I. L.; Perry, T. S.; Heeter, R. F.; Opachich, Y. P.; Moore, A. S.; Kline, J. L.; Johns, H. M.; Liedahl, D. A.; Cardenas, T.; Olson, R. E.; Wilde, B. H.; Urbatsch, T. J.
2018-06-01
This paper discusses the modeling of experiments that measure iron opacity in local thermodynamic equilibrium (LTE) using laser-driven hohlraums at the National Ignition Facility (NIF). A previous set of experiments fielded at Sandia's Z facility [Bailey et al., Nature 517, 56 (2015)] have shown up to factors of two discrepancies between the theory and experiment, casting doubt on the validity of the opacity models. The purpose of the new experiments is to make corroborating measurements at the same densities and temperatures, with the initial measurements made at a temperature of 160 eV and an electron density of 0.7 × 1022 cm-3. The X-ray hot spots of a laser-driven hohlraum are not in LTE, and the iron must be shielded from a direct line-of-sight to obtain the data [Perry et al., Phys. Rev. B 54, 5617 (1996)]. This shielding is provided either with the internal structure (e.g., baffles) or external wall shapes that divide the hohlraum into a laser-heated portion and an LTE portion. In contrast, most inertial confinement fusion hohlraums are simple cylinders lacking complex gold walls, and the design codes are not typically applied to targets like those for the opacity experiments. We will discuss the initial basis for the modeling using LASNEX, and the subsequent modeling of five different hohlraum geometries that have been fielded on the NIF to date. This includes a comparison of calculated and measured radiation temperatures.
NASA Astrophysics Data System (ADS)
Vesey, Roger; Cuneo, M. E.; Hanson Porter, D. L., Jr.; Mehlhorn, T. A.; Ruggles, L. E.; Simpson, W. W.; Hammer, J. H.; Landen, O.
2000-10-01
Capsule radiation symmetry is a crucial issue in the design of the z-pinch driven hohlraum approach to high-yield inertial confinement fusion [1]. Capsule symmetry may be influenced by power imbalance of the two z-pinch x-ray sources, and by hohlraum effects (geometry, time-dependent albedo, wall motion). We have conducted two-dimensional radiation-hydrodynamics calculations to estimate the symmetry sensitivity of the 220 eV beryllium ablator capsule that nominally yields 400 MJ in this concept. These estimates then determine the symmetry requirements to be met by the hohlraum design (for even Legendre modes) and by the top-bottom pinch imbalance and mistiming (for odd Legendre modes). We have used a combination of 2- and 3-D radiosity ("viewfactor"), and 2-D radiation-hydrodynamics calculations to identify hohlraum geometries that meet these symmetry requirements for high-yield, and are testing these models against ongoing Z foam ball symmetry experiments. 1. J. H. Hammer et al., Phys. Plas. 6, 2129 (1999).
NASA Astrophysics Data System (ADS)
Robey, H. F.; Berzak Hopkins, L. F.
2017-10-01
Recent indirectly-driven ICF experiments performed on the National Ignition Facility have shown that the propagation of the inner beam cones is impeded late in the laser pulse by the growth of a gold bubble, which is initiated at the location where the outer beams hit the hohlraum wall and which expands radially inward into the hohlraum as the implosion progresses. Late in time, this gold bubble intercepts a significant portion of the inner beams reducing the available energy reaching the waist of the hohlraum and affecting the implosion symmetry. Integrated hohlraum simulations of alternate hohlraum shapes using HYDRA are performed to explore options for reducing the impact of the gold bubble on inner beam propagation. The simulations are based on recent NIF implosions using High-Density Carbon (HDC) ablators, which have shown good performance, but which could benefit from improved inner beam propagation. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.
Progress of LMJ-relevant implosions experiments on OMEGA
NASA Astrophysics Data System (ADS)
Casner, A.; Philippe, F.; Tassin, V.; Seytor, P.; Monteil, M.-C.; Gauthier, P.; Park, H. S.; Robey, H.; Ross, J.; Amendt, P.; Girard, F.; Villette, B.; Reverdin, C.; Loiseau, P.; Caillaud, T.; Landoas, O.; Li, C. K.; Petrasso, R.; Seguin, F.; Rosenberg, M.; Renaudin, P.
2013-11-01
In preparation of the first ignition attempts on the Laser Mégajoule (LMJ), an experimental program is being pursued on OMEGA to investigate LMJ-relevant hohlraums. First, radiation temperature levels close to 300 eV were recently achieved in reduced-scale hohlraums with modest backscatter losses. Regarding the baseline target design for fusion experiments on LMJ, an extensive experimental database has also been collected for scaled implosions experiments in both empty and gas-filled rugby-shaped hohlraums. We acquired a full picture of hohlraum energetics and implosion dynamics. Not only did the rugby hohlraums show significantly higher x-ray drive energy over the cylindrical hohlraums, but symmetry control by power balance was demonstrated, as well as high-performance D2 implosions enabling the use of a complete suite of neutrons diagnostics. Charged particle diagnostics provide complementary insights into the physics of these x-ray driven implosions. An overview of these results demonstrates our ability to control the key parameters driving the implosion, lending more confidence in extrapolations to ignition-scale targets.
NASA Astrophysics Data System (ADS)
Lan, Ke; Li, Zhichao; Xie, Xufei; Chen, Yao-Hua; Zheng, Chunyang; Zhai, Chuanlei; Hao, Liang; Yang, Dong; Huo, Wen Yi; Ren, Guoli; Peng, Xiaoshi; Xu, Tao; Li, Yulong; Li, Sanwei; Yang, Zhiwen; Guo, Liang; Hou, Lifei; Liu, Yonggang; Wei, Huiyue; Liu, Xiangming; Cha, Weiyi; Jiang, Xiaohua; Mei, Yu; Li, Yukun; Deng, Keli; Yuan, Zheng; Zhan, Xiayu; Zhang, Haijun; Jiang, Baibin; Zhang, Wei; Deng, Xuewei; Liu, Jie; Du, Kai; Ding, Yongkun; Wei, Xiaofeng; Zheng, Wanguo; Chen, Xiaodong; Campbell, E. M.; He, Xian-Tu
2017-03-01
Octahedral spherical hohlraums with a single laser ring at an injection angle of 55∘ are attractive concepts for laser indirect drive due to the potential for achieving the x-ray drive symmetry required for high convergence implosions. Laser-plasma instabilities, however, are a concern given the long laser propagation path in such hohlraums. Significant stimulated Raman scattering has been observed in cylindrical hohlraums with similar laser propagation paths during the ignition campaign on the National Ignition Facility (NIF). In this Rapid Communication, experiments demonstrating low levels of laser-driven plasma instability (LPI) in spherical hohlraums with a laser injection angle of 55∘ are reported and compared to that observed with cylindrical hohlraums with injection angles of 28 .5∘ and 55∘, similar to that of the NIF. Significant LPI is observed with the laser injection of 28 .5∘ in the cylindrical hohlraum where the propagation path is similar to the 55∘ injection angle for the spherical hohlraum. The experiments are performed on the SGIII laser facility with a total 0.35 -μ m incident energy of 93 kJ in a 3 nsec pulse. These experiments demonstrate the role of hohlraum geometry in LPI and demonstrate the need for systematic experiments for choosing the optimal configuration for ignition studies with indirect drive inertial confinement fusion.
Lan, Ke; Li, Zhichao; Xie, Xufei; Chen, Yao-Hua; Zheng, Chunyang; Zhai, Chuanlei; Hao, Liang; Yang, Dong; Huo, Wen Yi; Ren, Guoli; Peng, Xiaoshi; Xu, Tao; Li, Yulong; Li, Sanwei; Yang, Zhiwen; Guo, Liang; Hou, Lifei; Liu, Yonggang; Wei, Huiyue; Liu, Xiangming; Cha, Weiyi; Jiang, Xiaohua; Mei, Yu; Li, Yukun; Deng, Keli; Yuan, Zheng; Zhan, Xiayu; Zhang, Haijun; Jiang, Baibin; Zhang, Wei; Deng, Xuewei; Liu, Jie; Du, Kai; Ding, Yongkun; Wei, Xiaofeng; Zheng, Wanguo; Chen, Xiaodong; Campbell, E M; He, Xian-Tu
2017-03-01
Octahedral spherical hohlraums with a single laser ring at an injection angle of 55^{∘} are attractive concepts for laser indirect drive due to the potential for achieving the x-ray drive symmetry required for high convergence implosions. Laser-plasma instabilities, however, are a concern given the long laser propagation path in such hohlraums. Significant stimulated Raman scattering has been observed in cylindrical hohlraums with similar laser propagation paths during the ignition campaign on the National Ignition Facility (NIF). In this Rapid Communication, experiments demonstrating low levels of laser-driven plasma instability (LPI) in spherical hohlraums with a laser injection angle of 55^{∘} are reported and compared to that observed with cylindrical hohlraums with injection angles of 28.5^{∘} and 55^{∘}, similar to that of the NIF. Significant LPI is observed with the laser injection of 28.5^{∘} in the cylindrical hohlraum where the propagation path is similar to the 55^{∘} injection angle for the spherical hohlraum. The experiments are performed on the SGIII laser facility with a total 0.35-μm incident energy of 93 kJ in a 3 nsec pulse. These experiments demonstrate the role of hohlraum geometry in LPI and demonstrate the need for systematic experiments for choosing the optimal configuration for ignition studies with indirect drive inertial confinement fusion.
NASA Astrophysics Data System (ADS)
Li, C. K.; Seguin, F. H.; Frenje, J. A.; Rosenberg, M.; Zylstra, A. B.; Rinderknecht, H. G.; Petrasso, R. D.; Amendt, P. A.; Landen, O. L.; Town, R. P. J.; Betti, R.; Knauer, J. P.; Meyerhofer, D. D.; Back, C. A.; Kilkenny, J. D.; Nikroo, A.
2010-11-01
Backlighting of x-ray-driven implosions in empty hohlraums with mono-energetic protons on the OMEGA laser facility has allowed a number of important phenomena to be observed. Several critical parameters were determined, including plasma flow, three types of spontaneous electric fields and megaGauss magnetic fields. These results provide insight into important issues in indirect-drive ICF. Even though the cavity is effectively a Faraday cage, the strong, local fields inside the hohlraum can affect laser-plasma instabilities, electron distributions and implosion symmetry. They are of fundamental scientific importance for a range of new experiments at the frontiers of high-energy-density physics. Future experiments designed to characterize the field formation and evolution in low-Z gas fill hohlraums will be discussed.
Asymetrically driven implosion experiment on the Laser MégaJoule
NASA Astrophysics Data System (ADS)
Philippe, Franck; Seytor, Patricia; Tassin, Veronique; Rosch, Rudolf; Villette, Bruno
2017-10-01
We report on the results of the first implosion experiments performed on the Laser MégaJoule (LMJ) facility. Their main purpose was to study implosion with large polar asymmetries of incident radiative flux on a capsule, while preserving azimuthal symmetry, in the context of ICF. In these experiments, one quad of LMJ is focused axially on a gold shield inside a hohlraum. The shield effectively divides the hohlraum in two compartments, and a capsule placed in the second compartment is indirectly driven by the x-ray flux generated in the first one. The subsequent asymmetric implosion is backlit by an x-ray source generated by another quad of LMJ and imaged with an x-ray microscope coupled to a framing camera. Time-gated x-ray radiographs of the imploding capsule and diode array measurements of the hohlraum x-ray emission are found to be in good agreement with FCI2 radiative hydrodynamics simulations.
Radiation-driven hydrodynamics of long pulse hohlraums on the National Ignition Facility*,**
NASA Astrophysics Data System (ADS)
Dewald, Eduard
2005-10-01
The first hohlraum experiments have been performed at the National Ignition Facility (NIF) in support of indirect drive Inertial Confinement Fusion (ICF) and High Energy Density Physics. Vacuum hohlraums have been irradiated with laser powers up to 8 TW, 1-9 ns pulse lengths and energies up to 17 kJ to activate several hohlraum drive diagnostics, to study the radiation temperature scaling with the laser power and hohlraum size, and to make contact with hohlraum experiments performed at the NOVA and Omega laser facilities. The vacuum hohlraums yield low laser backscattering and hot electron fractions, and the hohlraum radiation temperature measured with a newly activated 18 channel Dante soft x-ray power diagnostic agrees well with two-dimensional LASNEX calculations. Using the unique feature of NIF to deliver long steady laser drives, these hohlraum experiments have also validated analytical models and LASNEX calculations of hohlraum plasma filling as evidenced by time-resolved hard x-ray imaging and coronal hohlraum radiation production measured by Dante. Analytical modeling used to estimate hohlraum radiation limits due to plasma filling is in agreement with measurements and predicts for full NIF system with peak powers up to 500 TW peak radiation temperatures that are considerably higher than required in ICF designs. * Work performed in collaboration with L.J. Suter, O.L. Landen, J. Schein, K. Campbell, M.S. Schneider, J. Holder, S.H. Glenzer, J.W. McDonald, C. Niemann, A.J. Mackinnon, D.H. Kalantar, C. Haynam, S. Dixit **This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48.
Optimization of Capsule Symmetry in Z-Pinch Driven Hohlraums
NASA Astrophysics Data System (ADS)
Vesey, R. A.; Cuneo, M.; Hanson, D.; Porter, J.; Mehlhorn, T.; Ruggles, L.; Simpson, W.; Vargas, M.; Hammer, J.; Landen, O.
1999-11-01
The uniformity of the radiation flux incident on the capsule is a critical issue for indirect drive fusion using the z-pinch driven hohlraum high-yield concept(J.H. Hammer et al., Phys. Plas. 6), 2129 (1999).. Experiments on the Z accelerator at Sandia have demonstrated the ability to diagnose the uniformity of the flux striking a foam ball (surrogate capsule)(P.A. Amendt et al., Phys. Plas. 4), 1862 (1997); S.G. Glendinning et al. Rev. Sci. Instrum. 70, 536 (1999).. These single-sided drive experiments have been modeled using radiosity and radiation-hydrodynamics codes, yielding agreement with the measured ablation rate vs. angle on the foam ball. Flux uniformity at the 1-2% level needed for high-convergence capsule implosions requires a 2-sided drive (top and bottom z-pinch) configuration. Constrained optimization methods have identified hohlraum geometries with improved symmetry.
Analysis of BigFoot HDC SymCap experiment N161205 on NIF
NASA Astrophysics Data System (ADS)
Dittrich, T. R.; Baker, K. L.; Thomas, C. A.; Berzak Hopkins, L. F.; Harte, J. A.; Zimmerman, G. B.; Woods, D. T.; Kritcher, A. L.; Ho, D. D.; Weber, C. R.; Kyrala, G.
2017-10-01
Analysis of NIF implosion experiment N161205 provides insight into both hohlraum and capsule performance. This experiment used an undoped High Density Carbon (HDC) ablator driven by a BigFoot x-ray profile in a Au hohlraum. Observations from this experiment include DT fusion yield, bang time, DSR, Tion and time-resolved x-ray emission images around bang time. These observations are all consistent with an x-ray spectrum having significantly reduced Au m-band emission that is present in a standard hohlraum simulation. Attempts to justify the observations using several other simulation modifications will be presented. This work was performed under the auspices of the Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
Simulations of Radiation-Driven Shock Wave Experiments
NASA Astrophysics Data System (ADS)
Dukart, R. J.; Asay, J. R.; Porter, J. L.; Matzen, M. K.
1997-07-01
For inertial confinement fusion (I.C.F.) target design, we need to understand material properties between 1- and 150-Mbar pressure. In this presentation we will show that we can use radiatively-driven ablation to generate high pressures in a wide variety of materials. PBFA-Z is being developed to generate centimeter scale hohlraums with temperatures from 80 to 150 eV. 1-D radiation/hydrodynamic simulations using these hohlraums predict the generation 1- to 15-Mbar pressures in a wide variety of materials through direct ablation. Through the use of thick ablators, we can obtain 4.5- to 25-Mbar pressures in Aluminum. This pressure regime can be extended to 40 Mbar for 200-eV hohlraums predicted for the X1, next generation, Z-pinch driver.
NASA Astrophysics Data System (ADS)
Hanson, D. L.; Vesey, R. A.; Cuneo Porter, M. E., Jr.; Chandler, G. A.; Ruggles, L. E.; Simpson, W. W.; Seamen, H.; Primm, P.; Torres, J.; McGurn, J.; Gilliland, T. L.; Reynolds, P.; Hebron, D. E.; Dropinski, S. C.; Schroen-Carey, D. G.; Hammer, J. H.; Landen, O.; Koch, J.
2000-10-01
We are currently exploring symmetry requirements of the z-pinch-driven hohlraum concept [1] for high-yield inertial confinement fusion. In experiments on the Z accelerator, the burnthrough of a low-density self-backlit foam ball has been used to diagnose the large time-dependent flux asymmetry of several single-sided-drive hohlraum geometries [2]. We are currently applying this technique to study polar radiation flux symmetry in a symmetric double z-pinch geometry. Wire arrays on opposite ends of the hohlraum, connected in series to a single current drive of 18 MA, implode and stagnate on axis, efficiently radiating about 100 TW of x rays which heat the secondary to 75 eV. Comparisons with 3-D radiosity and 2-D rad-hydro models of hohlraum symmetry performance will be presented. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000. 1 J. H. Hammer et al., Phys. Plasmas 6, 2129 (1999). 2 D. L. Hanson et al., Bull. Am. Phys. Soc. 44, 40 (1999).
Subscale HDC implosions driven at high radiation temperature using advanced hohlraums
NASA Astrophysics Data System (ADS)
Ho, D.; Amendt, P.; Jones, O.; Berzak Hopkins, L.; Le Pape, S.
2017-10-01
Implosions using HDC ablators have received increased attention because of shorter pulse length and can access higher implosion velocity than CH ablators. Recent HDC midscale (979 m radius) implosion experiments have achieved DT neutron yields of 1.5e16. Our 2D simulations show that subscale (890 m radius) HDC capsules can achieve robust high-yield performance if driven at high enough radiation temperature 330 eV, because the penalty for less fuel mass can be offset by higher implosion velocity. To achieve 330 eV will likely require the use of innovative hohlraum concepts, e.g., subscale rugby-shaped hohlraum using 1.3 MJ of laser energy without incurring a risk of high laser backscatter. Radiation symmetry is currently under study. Confidence in our modeling of HDC implosions is high in part because our 2D modeling of recent HDC implosions experiments show good agreement with data. Work performed under auspices of U.S. DOE by LLNL under 15-ERD-058.
NASA Astrophysics Data System (ADS)
Hinkel, D. E.; Berzak Hopkins, L. F.; Ma, T.; Ralph, J. E.; Albert, F.; Benedetti, L. R.; Celliers, P. M.; Döppner, T.; Goyon, C. S.; Izumi, N.; Jarrott, L. C.; Khan, S. F.; Kline, J. L.; Kritcher, A. L.; Kyrala, G. A.; Nagel, S. R.; Pak, A. E.; Patel, P.; Rosen, M. D.; Rygg, J. R.; Schneider, M. B.; Turnbull, D. P.; Yeamans, C. B.; Callahan, D. A.; Hurricane, O. A.
2016-11-01
Analyses of high foot implosions show that performance is limited by the radiation drive environment, i.e., the hohlraum. Reported here are significant improvements in the radiation environment, which result in an enhancement in implosion performance. Using a longer, larger case-to-capsule ratio hohlraum at lower gas fill density improves the symmetry control of a high foot implosion. Moreover, for the first time, these hohlraums produce reduced levels of hot electrons, generated by laser-plasma interactions, which are at levels comparable to near-vacuum hohlraums, and well within specifications. Further, there is a noteworthy increase in laser energy coupling to the hohlraum, and discrepancies with simulated radiation production are markedly reduced. At fixed laser energy, high foot implosions driven with this improved hohlraum have achieved a 1.4 ×increase in stagnation pressure, with an accompanying relative increase in fusion yield of 50% as compared to a reference experiment with the same laser energy.
Hinkel, D E; Berzak Hopkins, L F; Ma, T; Ralph, J E; Albert, F; Benedetti, L R; Celliers, P M; Döppner, T; Goyon, C S; Izumi, N; Jarrott, L C; Khan, S F; Kline, J L; Kritcher, A L; Kyrala, G A; Nagel, S R; Pak, A E; Patel, P; Rosen, M D; Rygg, J R; Schneider, M B; Turnbull, D P; Yeamans, C B; Callahan, D A; Hurricane, O A
2016-11-25
Analyses of high foot implosions show that performance is limited by the radiation drive environment, i.e., the hohlraum. Reported here are significant improvements in the radiation environment, which result in an enhancement in implosion performance. Using a longer, larger case-to-capsule ratio hohlraum at lower gas fill density improves the symmetry control of a high foot implosion. Moreover, for the first time, these hohlraums produce reduced levels of hot electrons, generated by laser-plasma interactions, which are at levels comparable to near-vacuum hohlraums, and well within specifications. Further, there is a noteworthy increase in laser energy coupling to the hohlraum, and discrepancies with simulated radiation production are markedly reduced. At fixed laser energy, high foot implosions driven with this improved hohlraum have achieved a 1.4×increase in stagnation pressure, with an accompanying relative increase in fusion yield of 50% as compared to a reference experiment with the same laser energy.
Impeding hohlraum plasma stagnation in inertial-confinement fusion.
Li, C K; Séguin, F H; Frenje, J A; Rosenberg, M J; Rinderknecht, H G; Zylstra, A B; Petrasso, R D; Amendt, P A; Landen, O L; Mackinnon, A J; Town, R P J; Wilks, S C; Betti, R; Meyerhofer, D D; Soures, J M; Hund, J; Kilkenny, J D; Nikroo, A
2012-01-13
This Letter reports the first time-gated proton radiography of the spatial structure and temporal evolution of how the fill gas compresses the wall blowoff, inhibits plasma jet formation, and impedes plasma stagnation in the hohlraum interior. The potential roles of spontaneously generated electric and magnetic fields in the hohlraum dynamics and capsule implosion are discussed. It is shown that interpenetration of the two materials could result from the classical Rayleigh-Taylor instability occurring as the lighter, decelerating ionized fill gas pushes against the heavier, expanding gold wall blowoff. This experiment showed new observations of the effects of the fill gas on x-ray driven implosions, and an improved understanding of these results could impact the ongoing ignition experiments at the National Ignition Facility.
Clark, D. S.; Weber, C. R.; Smalyuk, V. A.; ...
2016-07-22
Here, current indirect drive implosion experiments on the National Ignition Facility (NIF) are believed to be strongly impacted by long wavelength perturbations driven by asymmetries in the hohlraum x-ray flux. To address this perturbation source, active efforts are underway to develop modified hohlraum designs with reduced asymmetry imprint. An alternative strategy, however, is to modify the capsule design to be more resilient to a given amount of hohlraum asymmetry. In particular, the capsule may be deliberately misshaped, or “shimmed,” so as to counteract the expected asymmetries from the hohlraum. Here, the efficacy of capsule shimming to correct the asymmetries inmore » two recent NIF implosion experiments is assessed using two-dimensional radiation hydrodynamics simulations. Despite the highly time-dependent character of the asymmetries and the high convergence ratios of these implosions, simulations suggest that shims could be highly effective at counteracting current asymmetries and result in factors of a few enhancements in neutron yields. For higher compression designs, the yield improvement could be even greater.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, D. S.; Weber, C. R.; Smalyuk, V. A.
2016-07-15
Current indirect drive implosion experiments on the National Ignition Facility (NIF) [Moses et al., Phys. Plasmas 16, 041006 (2009)] are believed to be strongly impacted by long wavelength perturbations driven by asymmetries in the hohlraum x-ray flux. To address this perturbation source, active efforts are underway to develop modified hohlraum designs with reduced asymmetry imprint. An alternative strategy, however, is to modify the capsule design to be more resilient to a given amount of hohlraum asymmetry. In particular, the capsule may be deliberately misshaped, or “shimmed,” so as to counteract the expected asymmetries from the hohlraum. Here, the efficacy ofmore » capsule shimming to correct the asymmetries in two recent NIF implosion experiments is assessed using two-dimensional radiation hydrodynamics simulations. Despite the highly time-dependent character of the asymmetries and the high convergence ratios of these implosions, simulations suggest that shims could be highly effective at counteracting current asymmetries and result in factors of a few enhancements in neutron yields. For higher compression designs, the yield improvement could be even greater.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amendt, P; Robey, H F; Park, H-S
2003-08-22
An experimental campaign to study hohlraum-driven ignition-like double-shell target performance using the Omega laser facility has begun. These targets are intended to incorporate as many ignition-like properties of the proposed National Ignition Facility (NIF) double-shell ignition design [1,2] as possible, given the energy constraints of the Omega laser. In particular, this latest generation of Omega double-shells is nominally predicted to produce over 99% of the (clean) DD neutron yield from the compressional or stagnation phase of the implosion as required in the NIF ignition design. By contrast, previous double-shell experience on Omega [3] was restricted to cases where a significantmore » fraction of the observed neutron yield was produced during the earlier shock convergence phase where the effects of mix are deemed negligibly small. These new targets are specifically designed to have optimized fall-line behavior for mitigating the effects of pusher-fuel mix after deceleration onset and, thereby, providing maximum neutron yield from the stagnation phase. Experimental results from this recent Omega ignition-like double-shell implosion campaign show favorable agreement with two-dimensional integrated hohlraum simulation studies when enhanced (gold) hohlraum M-band (2-5 keV) radiation is included at a level consistent with observations.« less
Measurement of Radiation Symmetry in Z-Pinch Driven Hohlraums
NASA Astrophysics Data System (ADS)
Hanson, David L.
2001-10-01
The z-pinch driven hohlraum (ZPDH) is a promising approach to high yield inertial confinement fusion currently being characterized in experiments on the Sandia Z accelerator [1]. In this concept [2], x rays are produced by an axial z-pinch in a primary hohlraum at each end of a secondary hohlraum. A fusion capsule in the secondary is imploded by a symmetric x-ray flux distribution, effectively smoothed by wall reemission during transport to the capsule position. Capsule radiation symmetry, a critical issue in the design of such a system, is influenced by hohlraum geometry, wall motion and time-dependent albedo, as well as power balance and pinch timing between the two z-pinch x-ray sources. In initial symmetry studies on Z, we used solid low density burnthrough spheres to diagnose highly asymmetric, single-sided-drive hohlraum geometries. We then applied this technique to the more symmetric double z-pinch geometry [3]. As a result of design improvements, radiation flux symmetry in Z double-pinch wire array experiments now exceeds the measurement sensitivity of this self-backlit foam ball symmetry diagnostic (15% max-min flux asymmetry). To diagnose radiation symmetry at the 2 - 5% level attainable with our present ZPDH designs, we are using high-energy x rays produced by the recently-completed Z-Beamlet laser backlighter for point-projection imaging of thin-wall implosion and symmetry capsules. We will present the results of polar flux symmetry measuremets on Z for several ZPDH capsule geometries together with radiosity and radiation-hydrodynamics simulations for comparison. [1] M. E. Cuneo et al., Phys. Plasmas 8,2257(2001); [2] J. H. Hammer et al., Phys. Plasmas 6,2129(1999); [3] D. L. Hanson et al., Bull. Am. Phys. Soc. 45,360(2000).
Ren, Kuan; Liu, Shenye; Du, Huabing; Hou, Lifei; Jing, Longfei; Zhao, Yang; Yang, Zhiwen; Wei, Minxi; Deng, Keli; Yao, Li; Yang, Guohong; Li, Sanwei; Lan, Ke; Liu, Jie; Zhu, Xiaoli; Ding, Yongkun; Yi, Lin
2015-10-01
The space-resolving measurement of X-ray flux from a specific area (laser spot, re-emitting wall, or capsule) inside the hohlraum is an ongoing and critical problem in indirectly driven inertial-confinement fusion experiments. In this work, we developed a new two-dimensional space-resolving flux detection technique to measure the X-ray flux from specific areas inside the hohlraum by using the time- and space-resolving flux detector (SRFD). In two typical hohlraum experiments conducted at the Shenguang-III prototype laser facility, the X-ray flux and radiation temperature from an area 0.2 mm in diameter inside the hohlraum were measured through the laser entrance hole (LEH). The different flux intensities and radiation temperatures detected using the SRFD from the inner area of the LEH were compared with the result measured using the flat-response X-ray detector from the entire LEH. This comparison was also analyzed theoretically. The inner area detected using the SRFD was found to be the re-emitting wall area alone. This important improvement in space-resolving X-ray flux measurement will enhance the current X-ray flux space characterization techniques, thereby furthering the quantitative understanding of X-ray flux space behavior in the hohlraum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Kuan; Research Center of Laser Fusion, China Academy of Engineering Physics, P.O. Box 919-986, Mianyang 621900; Liu, Shenye, E-mail: lsye1029@163.com
2015-10-15
The space-resolving measurement of X-ray flux from a specific area (laser spot, re-emitting wall, or capsule) inside the hohlraum is an ongoing and critical problem in indirectly driven inertial-confinement fusion experiments. In this work, we developed a new two-dimensional space-resolving flux detection technique to measure the X-ray flux from specific areas inside the hohlraum by using the time- and space-resolving flux detector (SRFD). In two typical hohlraum experiments conducted at the Shenguang-III prototype laser facility, the X-ray flux and radiation temperature from an area 0.2 mm in diameter inside the hohlraum were measured through the laser entrance hole (LEH). Themore » different flux intensities and radiation temperatures detected using the SRFD from the inner area of the LEH were compared with the result measured using the flat-response X-ray detector from the entire LEH. This comparison was also analyzed theoretically. The inner area detected using the SRFD was found to be the re-emitting wall area alone. This important improvement in space-resolving X-ray flux measurement will enhance the current X-ray flux space characterization techniques, thereby furthering the quantitative understanding of X-ray flux space behavior in the hohlraum.« less
NASA Astrophysics Data System (ADS)
Clark, Daniel; Weber, Christopher; Smalyuk, Vladimir; Robey, Harry; Kritcher, Andrea; Milovich, Jose; Salmonson, Jay
2016-10-01
Current indirect drive implosion experiments on the National Ignition Facility (NIF) are believed to be strongly impacted by long wavelength perturbations driven by asymmetries in the hohlraum x-ray flux. To address this perturbation source, active efforts are underway to develop modified hohlraum designs with reduced asymmetry imprint. An alternative strategy, however, is to modify the capsule design to be more resilient to a given amount of hohlraum asymmetry. In particular, the capsule may be deliberately misshaped, or ``shimmed,'' so as to counteract the expected asymmetries from the hohlraum. Here, the efficacy of capsule shimming to correct the asymmetries in two recent NIF implosion experiments is assessed using two-dimensional radiation hydrodynamics simulations. Despite the highly time-dependent character of the asymmetries and the high convergence ratios of these implosions, simulations suggest that shims could be highly effective at counteracting current asymmetries and result in factors of a few enhancements in neutron yields. For higher compression designs, the yield improvement could be even greater. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
A new symmetry model for hohlraum-driven capsule implosion experiments on the NIF
NASA Astrophysics Data System (ADS)
Jones, O.; Rygg, R.; Tomasini, R.; Eder, D.; Kritcher, A.; Milovich, J.; Peterson, L.; Thomas, C.; Barrios, M.; Benedetti, R.; Doeppner, T.; Ma, T.; Nagel, S.; Pak, A.; Field, J.; Izumi, N.; Glenn, S.; Town, R.; Bradley, D.
2016-03-01
We have developed a new model for predicting the time-dependent radiation drive asymmetry in laser-heated hohlraums. The model consists of integrated Hydra capsule-hohlraum calculations coupled to a separate model for calculating the crossbeam energy transfer between the inner and outer cones of the National Ignition Facility (NIF) indirect drive configuration. The time- dependent crossbeam transfer model parameters were adjusted in order to best match the P2 component of the shape of the inflight shell inferred from backlit radiographs of the capsule taken when the shell was at a radius of 150-250 μm. The adjusted model correctly predicts the observed inflight P2 and P4 components of the shape of the inflight shell, and also the P2 component of the shape of the hotspot inferred from x-ray self-emission images at the time of peak emission. It also correctly captures the scaling of the inflight P4 as the hohlraum length is varied. We then applied the newly benchmarked model to quantify the improved symmetry of the N130331 layered deuterium- tritium (DT) experiment in a re-optimized longer hohlraum.
High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum
NASA Astrophysics Data System (ADS)
Amendt, Peter; Ho, Darwin D.; Jones, Ogden S.
2015-04-01
A recent low gas-fill density (0.6 mg/cc 4He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc 4He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth.
Döppner, T; Callahan, D A; Hurricane, O A; Hinkel, D E; Ma, T; Park, H-S; Berzak Hopkins, L F; Casey, D T; Celliers, P; Dewald, E L; Dittrich, T R; Haan, S W; Kritcher, A L; MacPhee, A; Le Pape, S; Pak, A; Patel, P K; Springer, P T; Salmonson, J D; Tommasini, R; Benedetti, L R; Bond, E; Bradley, D K; Caggiano, J; Church, J; Dixit, S; Edgell, D; Edwards, M J; Fittinghoff, D N; Frenje, J; Gatu Johnson, M; Grim, G; Hatarik, R; Havre, M; Herrmann, H; Izumi, N; Khan, S F; Kline, J L; Knauer, J; Kyrala, G A; Landen, O L; Merrill, F E; Moody, J; Moore, A S; Nikroo, A; Ralph, J E; Remington, B A; Robey, H F; Sayre, D; Schneider, M; Streckert, H; Town, R; Turnbull, D; Volegov, P L; Wan, A; Widmann, K; Wilde, C H; Yeamans, C
2015-07-31
We report on the first layered deuterium-tritium (DT) capsule implosions indirectly driven by a "high-foot" laser pulse that were fielded in depleted uranium hohlraums at the National Ignition Facility. Recently, high-foot implosions have demonstrated improved resistance to ablation-front Rayleigh-Taylor instability induced mixing of ablator material into the DT hot spot [Hurricane et al., Nature (London) 506, 343 (2014)]. Uranium hohlraums provide a higher albedo and thus an increased drive equivalent to an additional 25 TW laser power at the peak of the drive compared to standard gold hohlraums leading to higher implosion velocity. Additionally, we observe an improved hot-spot shape closer to round which indicates enhanced drive from the waist. In contrast to findings in the National Ignition Campaign, now all of our highest performing experiments have been done in uranium hohlraums and achieved total yields approaching 10^{16} neutrons where more than 50% of the yield was due to additional heating of alpha particles stopping in the DT fuel.
Hohlraum design for the LMJ ignition target
NASA Astrophysics Data System (ADS)
Malinie, G.; Cherfils, C.; Gauthier, P.; Lambert, F.; Monteil, M. C.
2011-10-01
First experiments with the Laser MegaJoule (LMJ) are scheduled to be performed in 2014. The current nominal point design for ignition with 160 beams on the LMJ has been described in. It consists of an indirectly driven A943 capsule, with a plastic ablator doped with Germanium. This capsule is mounted in the center of a Rugby-shaped hohlraum, which is filled with a low density H/He gas, and has a gold-uranium cocktail wall lined with pure gold. We investigate the influence of two key parameters of the hohlraum design: the radius of the laser entrance holes (LEHs), and the thickness of the cocktail layer. Since the Rugby shape of the nominal point design is that of a half-ellipse going from the hohlraum waist to the LEH, any change in the LEH radius has a global effect on the hohlraum shape. Taking into account the current laser spot profiles of the LMJ and using 2D integrated calculations with our FCI2 radiation hydrodynamics code, we assess the flexiblility we have to reduce the LEH radius and/or the cocktail layer thickness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Döppner, T.; Callahan, D. A.; Hurricane, O. A.
We report on the first layered deuterium-tritium (DT) capsule implosions indirectly driven by a “highfoot” laser pulse that were fielded in depleted uranium hohlraums at the National Ignition Facility. Recently, high-foot implosions have demonstrated improved resistance to ablation-front Rayleigh-Taylor instability induced mixing of ablator material into the DT hot spot [Hurricane et al., Nature (London) 506, 343 (2014)]. Uranium hohlraums provide a higher albedo and thus an increased drive equivalent to an additional 25 TW laser power at the peak of the drive compared to standard gold hohlraums leading to higher implosion velocity. Additionally, we observe an improved hot-spot shapemore » closer to round which indicates enhanced drive from the waist. In contrast to findings in the National Ignition Campaign, now all of our highest performing experiments have been done in uranium hohlraums and achieved total yields approaching 10 16 neutrons where more than 50% of the yield was due to additional heating of alpha particles stopping in the DT fuel.« less
Döppner, T.; Callahan, D. A.; Hurricane, O. A.; ...
2015-07-28
We report on the first layered deuterium-tritium (DT) capsule implosions indirectly driven by a “highfoot” laser pulse that were fielded in depleted uranium hohlraums at the National Ignition Facility. Recently, high-foot implosions have demonstrated improved resistance to ablation-front Rayleigh-Taylor instability induced mixing of ablator material into the DT hot spot [Hurricane et al., Nature (London) 506, 343 (2014)]. Uranium hohlraums provide a higher albedo and thus an increased drive equivalent to an additional 25 TW laser power at the peak of the drive compared to standard gold hohlraums leading to higher implosion velocity. Additionally, we observe an improved hot-spot shapemore » closer to round which indicates enhanced drive from the waist. In contrast to findings in the National Ignition Campaign, now all of our highest performing experiments have been done in uranium hohlraums and achieved total yields approaching 10 16 neutrons where more than 50% of the yield was due to additional heating of alpha particles stopping in the DT fuel.« less
High Performance Capsule Implosions on the Omega Laser Facility with Rugby Hohlraums
NASA Astrophysics Data System (ADS)
Robey, Harry F.
2009-11-01
Rugby-shaped hohlraums have been proposed as a method for x-ray drive enhancement for indirectly-driven capsule implosions [1]. This concept has recently been tested in a series of shots on the OMEGA laser facility at the Laboratory for Laser Energetics at the University of Rochester. In this talk, experimental results are presented comparing the performance of D2-filled capsules between standard cylindrical Au hohlraums and rugby-shaped hohlraums. Not only did the rugby hohlraums demonstrate 18% more x-ray drive energy as compared with the cylinders, but the high-performance design of these implosions (both cylinder and rugby) also provided 20X more DD neutrons than any previous indirectly-driven campaign on Omega (and 3X more than ever achieved on Nova implosions driven with nearly twice the laser energy). This increase in performance enables, for the first time, a measurement of the neutron burn history of an indirectly-driven implosion. Previous DD neutron yields had been too low to register this key measurement of capsule performance and the effects of dynamic mix. A wealth of additional data on the fuel areal density from the suite of charged particle diagnostics was obtained on a subset of the shots that used D^3He rather than D2 fuel. Comparisons of the experimental results with numerical simulations are shown to be in excellent agreement. The design techniques employed in this campaign, e.g., smaller NIF-like laser entrance holes and hohlraum case-to-capsule ratios, provide added confidence in the pursuit of ignition on the National Ignition Facility. [4pt] [1] P. Amendt, C. Cerjan, D. E. Hinkel, J. L. Milovich, H.-S. Park, and H. F. Robey, ``Rugby-like hohlraum experimental designs for demonstrating x-ray drive enhancement'', Phys. Plasmas 15, 012702 (2008).
Instability Coupling Experiments*
NASA Astrophysics Data System (ADS)
Chrien, R. E.; Hoffman, N. M.; Magelssen, G. R.; Schappert, G. T.; Smitherman, D. P.
1996-11-01
The coupling of Richtmyer-Meshkov (RM) and ablative Rayleigh-Taylor (ART) instabilities is being studied with indirectly-driven planar foil experiments on the Nova laser at Livermore. The foil is attached to a 1.6-mm-diameter, 2.75-mm-long Au hohlraum driven by a 2.2-ns long, 1:5-contrast-ratio shaped laser pulse. A shock is generated in 35-μm or 86-μm thick Al foils with a 50-μm-wavelength, 4-μm-amplitude sinusoidal perturbation on its rear surface. In some experiments, the perturbation is applied to a 10-μm Be layer on the Al. A RM instability develops when the shock encounters the perturbed surface. The flow field of the RM instability can ``feed out'' to the ablation surface of the foil and provide the seed for ART perturbation growth. Face-on and side-on x-radiography are used to observe areal density perturbations in the foil. For the 86-μm foil, the perturbation arrives at the ablation surface while the hohlraum drive is dropping and the data are consistent with RM instability alone. For the 35-μm foil, the perturbation feeds out while the hohlraum drive is close to its peak and the data appear to show strong ART perturbation growth. Comparisons with LASNEX simulations will be presented. *This work supported under USDOE contract W-7405-ENG-36.
Laser pulse shape design for laser-indirect-driven quasi-isentropic compression experiments
NASA Astrophysics Data System (ADS)
Xue, Quanxi; Jiang, Shaoen; Wang, Zhebin; Wang, Feng; Zhao, Xueqing; Ding, Yongkun
2018-02-01
Laser pulse shape design is a key work in the design of indirect-laser-driven experiments, especially for long pulse laser driven quasi-isentropic compression experiments. A method for designing such a laser pulse shape is given here. What's more, application experiments were performed, and the results of a typical shot are presented. At last of this article, the details of the application of the method are discussed, such as the equation parameter choice, radiation ablation pressure expression, and approximations in the method. The application shows that the method can provide reliable descriptions of the energy distribution in a hohlraum target; thus, it can be used in the design of long-pulse laser driven quasi-isentropic compression experiments and even other indirect-laser-driven experiments.
Simulation of the hohlraum for a laser facility of Megajoule scale
NASA Astrophysics Data System (ADS)
Chizhkov, M. N.; Kozmanov, M. Y. U.; Lebedev, S. N.; Lykov, V. A.; Rykovanova, V. V.; Seleznev, V. N.; Selezneva, K. I.; Stryakhnina, O. V.; Shestakov, A. A.; Vronskiy, A. V.
2010-08-01
2D calculations of the promising laser hohlraums were performed with using of the Sinara computer code. These hohlraums are intended for achievement of indirectly-driven thermonuclear ignition at laser energy above 1 MJ. Two calculation variants of the laser assembly with the form close to a rugby ball were carried out: with laser entrance hole shields and without shields. Time dependent hohlraum radiation temperature and x-ray flux asymmetry on a target were obtained.
Semi-empirical "leaky-bucket" model of laser-driven x-ray cavities
NASA Astrophysics Data System (ADS)
Moody, J. D.; Landen, O. L.; Divol, L.; LePape, S.; Michel, P.; Town, R. P. J.; Hall, G.; Widmann, K.; Moore, A.
2017-04-01
A semi-empirical analytical model is shown to approximately describe the energy balance in a laser-driven x-ray cavity, such as a hohlraum, for general laser pulse-shapes. Agreement between the model and measurements relies on two scalar parameters, one characterizes the efficiency of x-ray generation for a given laser power and the other represents a characteristic power-loss rate. These parameters, once obtained through estimation or optimization for a particular hohlraum design, can be used to predict either the x-ray flux or the coupled laser power time-history in terms of other quantities for similar hohlraum designs. The value of the model is that it can be used as an approximate "first-look" at hohlraum energy balance prior to a more detailed radiation hydrodynamic modeling.
Robey, H F; Amendt, P A; Milovich, J L; Park, H-S; Hamza, A V; Bono, M J
2009-10-02
High-convergence, hohlraum-driven implosions of double-shell capsules using mid-Z (SiO2) inner shells have been performed on the OMEGA laser facility [T. R. Boehly, Opt. Commun. 133, 495 (1997)]. These experiments provide an essential extension of the results of previous low-Z (CH) double-shell implosions [P. A. Amendt, Phys. Rev. Lett. 94, 065004 (2005)] to materials of higher density and atomic number. Analytic modeling, supported by highly resolved 2D numerical simulations, is used to account for the yield degradation due to interfacial atomic mixing. This extended experimental database from OMEGA enables a validation of the mix model, and provides a means for quantitatively assessing the prospects for high-Z double-shell implosions on the National Ignition Facility [Paisner, Laser Focus World 30, 75 (1994)].
Progress in hohlraum physics for the National Ignition Facilitya)
NASA Astrophysics Data System (ADS)
Moody, J. D.; Callahan, D. A.; Hinkel, D. E.; Amendt, P. A.; Baker, K. L.; Bradley, D.; Celliers, P. M.; Dewald, E. L.; Divol, L.; Döppner, T.; Eder, D. C.; Edwards, M. J.; Jones, O.; Haan, S. W.; Ho, D.; Hopkins, L. B.; Izumi, N.; Kalantar, D.; Kauffman, R. L.; Kilkenny, J. D.; Landen, O.; Lasinski, B.; LePape, S.; Ma, T.; MacGowan, B. J.; MacLaren, S. A.; Mackinnon, A. J.; Meeker, D.; Meezan, N.; Michel, P.; Milovich, J. L.; Munro, D.; Pak, A. E.; Rosen, M.; Ralph, J.; Robey, H. F.; Ross, J. S.; Schneider, M. B.; Strozzi, D.; Storm, E.; Thomas, C.; Town, R. P. J.; Widmann, K. L.; Kline, J.; Kyrala, G.; Nikroo, A.; Boehly, T.; Moore, A. S.; Glenzer, S. H.
2014-05-01
Advances in hohlraums for inertial confinement fusion at the National Ignition Facility (NIF) were made this past year in hohlraum efficiency, dynamic shape control, and hot electron and x-ray preheat control. Recent experiments are exploring hohlraum behavior over a large landscape of parameters by changing the hohlraum shape, gas-fill, and laser pulse. Radiation hydrodynamic modeling, which uses measured backscatter, shows that gas-filled hohlraums utilize between 60% and 75% of the laser power to match the measured bang-time, whereas near-vacuum hohlraums utilize 98%. Experiments seem to be pointing to deficiencies in the hohlraum (instead of capsule) modeling to explain most of the inefficiency in gas-filled targets. Experiments have begun quantifying the Cross Beam Energy Transfer (CBET) rate at several points in time for hohlraum experiments that utilize CBET for implosion symmetry. These measurements will allow better control of the dynamic implosion symmetry for these targets. New techniques are being developed to measure the hot electron energy and energy spectra generated at both early and late time. Rugby hohlraums offer a target which requires little to no CBET and may be less vulnerable to undesirable dynamic symmetry "swings." A method for detecting the effect of the energetic electrons on the fuel offers a direct measure of the hot electron effects as well as a means to test energetic electron mitigation methods. At higher hohlraum radiation temperatures (including near vacuum hohlraums), the increased hard x-rays (1.8-4 keV) may pose an x-ray preheat problem. Future experiments will explore controlling these x-rays with advanced wall materials.
NASA Astrophysics Data System (ADS)
Zhang, Huasen; Jiang, Wei; Ge, Fengjun; Song, Peng; Zou, Shiyang; Huang, Tianxuan; Li, Sanwei; Yang, Dong; Li, Zhichao; Hou, Lifei; Guo, Liang; Che, Xingsen; Du, Huabing; Xie, Xufei; He, Xiaoan; Li, Chaoguang; Zha, Weiyi; Xu, Tao; Liu, Yonggang; Wei, Huiyue; Liu, Xiangming; Chen, Zhongjing; Zhang, Xing; Yan, Ji; Pu, Yudong; Peng, Xiaoshi; Li, Yulong; Gu, Peijun; Zheng, Wudi; Liu, Jie; Ding, Yongkun; Zhu, Shaoping
2018-02-01
The cylindrical vacuum hohlraum energy at the SGIII laser facility [X. T. He and W. Y. Zhang, Eur. Phys. J. D 44, 227 (2007) and W. Zheng et al., High Power Laser Sci. Eng. 4, e21 (2016)] is investigated for the first time. The hohlraum size and the laser energy are intermediate between the Nova and NIF typical hohlraum experiments. It is found that the SGIII hohlraum exhibits an x-ray conversion efficiency of about 85%, which is more close to that of the NIF hohlraum. The LARED simulations of the SGIII hohlraum underestimate about 15% of the radiation flux measured from the laser entrance hole, while the capsule radiation drive inferred from the x-ray bangtime is roughly consistent with the experiments. The underestimation of the SGIII hohlraum radiation flux is mainly caused by the more enclosed laser entrance hole in the LARED simulation. The comparison between the SGIII and NIF hohlraum simulations by LARED indicates that the LARED generally underestimates the measured radiation flux by 15% for the high x-ray conversion efficiency hohlraums, while it can roughly predict the capsule radiation drive inside the hohlraum.
NASA Astrophysics Data System (ADS)
Huang, Xian Bin; Ren, Xiao Dong; Dan, Jia Kun; Wang, Kun Lun; Xu, Qiang; Zhou, Shao Tong; Zhang, Si Qun; Cai, Hong Chun; Li, Jing; Wei, Bing; Ji, Ce; Feng, Shu Ping; Wang, Meng; Xie, Wei Ping; Deng, Jian Jun
2017-09-01
The preliminary experimental results of Z-pinch dynamic hohlraums conducted on the Primary Test Stand (PTS) facility are presented herein. Six different types of dynamic hohlraums were used in order to study the influence of load parameters on radiation characteristics and implosion dynamics, including dynamic hohlraums driven by single and nested arrays with different array parameters and different foams. The PTS facility can deliver a current of 6-8 MA in the peak current and 60-70 ns in the 10%-90% rising time to dynamic hohlraum loads. A set of diagnostics monitor the implosion dynamics of plasmas, the evolution of shock waves in the foam and the axial/radial X-ray radiation, giving the key parameters characterizing the features of dynamic hohlraums, such as the trajectory and related velocity of shock waves, radiation temperature, and so on. The experimental results presented here put our future study on Z-pinch dynamic hohlraums on the PTS facility on a firm basis.
High performance capsule implosions on the OMEGA Laser facility with rugby hohlraumsa)
NASA Astrophysics Data System (ADS)
Robey, H. F.; Amendt, P.; Park, H.-S.; Town, R. P. J.; Milovich, J. L.; Döppner, T.; Hinkel, D. E.; Wallace, R.; Sorce, C.; Strozzi, D. J.; Philippe, F.; Casner, A.; Caillaud, T.; Landoas, O.; Liberatore, S.; Monteil, M.-C.; Séguin, F.; Rosenberg, M.; Li, C. K.; Petrasso, R.; Glebov, V.; Stoeckl, C.; Nikroo, A.; Giraldez, E.
2010-05-01
Rugby-shaped hohlraums have been proposed as a method for x-ray drive enhancement for indirectly driven capsule implosions. This concept has recently been tested in a series of shots on the OMEGA laser facility [T. R. Boehly, D. L. Brown, R. S. Craxton et al., Opt. Commun. 133, 495 (1997)]. In this paper, experimental results are presented comparing the performance of D2-filled capsules between standard cylindrical Au hohlraums and rugby-shaped hohlraums. The rugby hohlraums demonstrated 18% more x-ray drive energy as compared with the cylinders, and the high-performance design of these implosions (both cylinder and rugby) also provided ≈20× more deuterium (DD) neutrons than any previous indirectly driven campaign on OMEGA and ≈3× more than ever achieved on NOVA [E. M. Campbell, Laser Part. Beams 9, 209 (1991)] implosions driven with nearly twice the laser energy. This increase in performance enables, for the first time, a measurement of the neutron burn history and imaging of the neutron core shapes in an indirectly driven implosion. Previous DD neutron yields had been too low to register this key measurement of capsule performance and the effects of dynamic mix. A wealth of additional data on the fuel areal density from the suite of charged particle diagnostics was obtained on a subset of the shots that used D H3e rather than D2 fuel. Comparisons of the experimental results with numerical simulations are shown to be in very good agreement. The design techniques employed in this campaign, e.g., smaller laser entrance holes and hohlraum case-to-capsule ratios, provide added confidence in the pursuit of ignition on the National Ignition Facility [J. D. Lindl, P. Amendt, R. L. Berger et al., Phys. Plasmas 11, 339 (2004)].
NASA Astrophysics Data System (ADS)
MacLaren, Steve; Zylstra, A. B.; Yi, A.; Kline, J. L.; Kyrala, G. A.; Kot, L. B.; Loomis, E. N.; Perry, T. S.; Shah, R. C.; Masse, L. P.; Ralph, J. E.; Khan, S. F.
2017-10-01
Typically in indirect-drive inertial confinement fusion (ICF) hohlraums cryogenic helium gas fill is used to impede the motion of the hohlraum wall plasma as it is driven by the laser pulse. A fill of 1 mg/cc He has been used to significantly suppress wall motion in ICF hohlraums at the National Ignition Facility (NIF); however, this level of fill also causes laser-plasma instabilities (LPI) which result in hot electrons, time-dependent symmetry swings and reduction in drive due to increased backscatter. There are currently no adequate models for these phenomena in codes used to simulate integrated ICF experiments. A better compromise is a fill in the range of 0.3 0.6 mg/cc, which has been shown to provide some reduction in wall motion without incurring significant LPI effects. The wall motion in these low-fill hohlraums and the resulting effect on symmetry due to absorption of the inner cone beams by the outer cone plasma can be simulated with some degree of accuracy with the hydrodynamics and inverse Bremsstrahlung models in ICF codes. We describe a series of beryllium capsule implosions in 0.3 mg/cc He fill hohlraums that illustrate the effect of pulse shape on implosion symmetry in the ``low-fill'' regime. In particular, we find the shape of the beginning or ``foot'' of the pulse has significant leverage over the final symmetry of the stagnated implosion. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.
Kantsyrev, V L; Chuvatin, A S; Rudakov, L I; Velikovich, A L; Shrestha, I K; Esaulov, A A; Safronova, A S; Shlyaptseva, V V; Osborne, G C; Astanovitsky, A L; Weller, M E; Stafford, A; Schultz, K A; Cooper, M C; Cuneo, M E; Jones, B; Vesey, R A
2014-12-01
A compact Z-pinch x-ray hohlraum design with parallel-driven x-ray sources is experimentally demonstrated in a configuration with a central target and tailored shine shields at a 1.7-MA Zebra generator. Driving in parallel two magnetically decoupled compact double-planar-wire Z pinches has demonstrated the generation of synchronized x-ray bursts that correlated well in time with x-ray emission from a central reemission target. Good agreement between simulated and measured hohlraum radiation temperature of the central target is shown. The advantages of compact hohlraum design applications for multi-MA facilities are discussed.
NASA Astrophysics Data System (ADS)
Robey, H. F.; Berzak Hopkins, L.; Milovich, J. L.; Meezan, N. B.
2018-01-01
Recent work in indirectly-driven inertial confinement fusion implosions on the National Ignition Facility has indicated that late-time propagation of the inner cones of laser beams (23° and 30°) is impeded by the growth of a "bubble" of hohlraum wall material (Au or depleted uranium), which is initiated by and is located at the location where the higher-intensity outer beams (44° and 50°) hit the hohlraum wall. The absorption of the inner cone beams by this "bubble" reduces the laser energy reaching the hohlraum equator at late time driving an oblate or pancaked implosion, which limits implosion performance. In this article, we present the design of a new shaped hohlraum designed specifically to reduce the impact of this bubble by adding a recessed pocket at the location where the outer cones hit the hohlraum wall. This recessed pocket displaces the bubble radially outward, reducing the inward penetration of the bubble at all times throughout the implosion and increasing the time for inner beam propagation by approximately 1 ns. This increased laser propagation time allows one to drive a larger capsule, which absorbs more energy and is predicted to improve implosion performance. The new design is based on a recent National Ignition Facility shot, N170601, which produced a record neutron yield. The expansion rate and absorption of laser energy by the bubble is quantified for both cylindrical and shaped hohlraums, and the predicted performance is compared.
NASA Astrophysics Data System (ADS)
Jiang, Shaoen; Huang, Yunbao; Jing, Longfei; Li, Haiyan; Huang, Tianxuan; Ding, Yongkun
2016-01-01
The hohlraum is very crucial for indirect laser driven Inertial Confinement Fusion. Usually, its shape is designed as sphere, cylinder, or rugby with some kind of fixed functions, such as ellipse or parabola. Recently, a spherical hohlraum with octahedral 6 laser entrance holes (LEHs) has been presented with high flux symmetry [Lan et al., Phys. Plasmas 21, 010704 (2014); 21, 052704 (2014)]. However, there is only one shape parameter, i.e., the hohlraum to capsule radius ratio, being optimized. In this paper, we build the hohlraum with octahedral 6LEHs with a unified free-form representation, in which, by varying additional shape parameters: (1) available hohlraum shapes can be uniformly and accurately represented, (2) it can be used to understand why the spherical hohlraum has higher flux symmetry, (3) it allows us to obtain a feasible shape design field satisfying flux symmetry constraints, and (4) a synthetically optimized hohlraum can be obtained with a tradeoff of flux symmetry and other hohlraum performance. Finally, the hohlraum with octahedral 6LEHs is modeled, analyzed, and then optimized based on the unified free-form representation. The results show that a feasible shape design field with flux asymmetry no more than 1% can be obtained, and over the feasible design field, the spherical hohlraum is validated to have the highest flux symmetry, and a synthetically optimal hohlraum can be found with closing flux symmetry but larger volume between laser spots and centrally located capsule.
A review of laser-plasma interaction physics of indirect-drive fusion
NASA Astrophysics Data System (ADS)
Kirkwood, R. K.; Moody, J. D.; Kline, J.; Dewald, E.; Glenzer, S.; Divol, L.; Michel, P.; Hinkel, D.; Berger, R.; Williams, E.; Milovich, J.; Yin, L.; Rose, H.; MacGowan, B.; Landen, O.; Rosen, M.; Lindl, J.
2013-10-01
The National Ignition Facility (NIF) has been designed, constructed and has recently begun operation to investigate the ignition of nuclear fusion with a laser with up to 1.8 MJ of energy per pulse. The concept for fusion ignition on the NIF, as first proposed in 1990, was based on an indirectly driven spherical capsule of fuel in a high-Z hohlraum cavity filled with low-Z gas (Lindl et al 2004 Phys. Plasmas 11 339). The incident laser energy is converted to x-rays with keV energy on the hohlraums interior wall. The x-rays then impinge on the surface of the capsule, imploding it and producing the fuel conditions needed for ignition. It was recognized at the inception that this approach would potentially be susceptible to scattering of the incident light by the plasma created in the gas and the ablated material in the hohlraum interior. Prior to initial NIF operations, expectations for laser-plasma interaction (LPI) in ignition-scale experiments were based on experimentally benchmarked simulations and models of the plasma effects that had been carried out as part of the original proposal for NIF and expanded during the 13-year design and construction period. The studies developed the understanding of the stimulated Brillouin scatter, stimulated Raman scatter and filamentation that can be driven by the intense beams. These processes produce scatter primarily in both the forward and backward direction, and by both individual beams and collective interaction of multiple beams. Processes such as hot electron production and plasma formation and transport were also studied. The understanding of the processes so developed was the basis for the design and planning of the recent experiments in the ignition campaign at NIF, and not only indicated that the plasma instabilities could be controlled to maximize coupling, but predicted that, for the first time, they would be beneficial in controlling drive symmetry. The understanding is also now a critical component in the worldwide effort to produce a fusion energy source with a laser (Lindl et al 2011 Nucl. Fusion 51 094024, Collins et al 2012 Phys. Plasmas 19 056308) and has recently received its most critical test yet with the inception of the NIF experiments with ignition-scale indirect-drive targets (Landen et al 2010 Phys. Plasmas 17 056301, Edwards et al 2011 Phys. Plasmas 18 051003, Glenzer et al 2011 Phys. Rev. Lett. 106 085004, Haan et al 2011 Phys. Plasmas 18 051001, Landen et al 2011 Phys. Plasmas 18 051001, Lindl et al 2011 Nucl. Fusion 51 094024). In this paper, the data obtained in the first complete series of coupling experiments in ignition-scale hohlraums is reviewed and compared with the preceding work on the physics of LPIs with the goal of recognizing aspects of our understanding that are confirmed by these experiments and recognizing and motivating areas that need further modeling. Understanding these hohlraum coupling experiments is critical as they are only the first step in a campaign to study indirectly driven implosions under the conditions of ignition by inertial confinement at NIF, and in the near future they are likely to further influence ignition plans and experimental designs.
Rugby and elliptical-shaped hohlraums experiments on the OMEGA laser facility
NASA Astrophysics Data System (ADS)
Tassin, Veronique; Monteil, Marie-Christine; Depierreux, Sylvie; Masson-Laborde, Paul-Edouard; Philippe, Franck; Seytor, Patricia; Fremerye, Pascale; Villette, Bruno
2017-10-01
We are pursuing on the OMEGA laser facility indirect drive implosions experiments in gas-filled rugby-shaped hohlraums in preparation for implosion plateforms on LMJ. The question of the precise wall shape of rugby hohlraum has been addressed as part of future megajoule-scale ignition designs. Calculations show that elliptical-shaped holhraum is more efficient than spherical-shaped hohlraum. There is less wall hydrodynamics and less absorption for the inner cone, provided a better control of time-dependent symmetry swings. In this context, we have conducted a series of experiments on the OMEGA laser facility. The goal of these experiments was therefore to characterize energetics with a complete set of laser-plasma interaction measurements and capsule implosion in gas-filled elliptical-shaped hohlraum with comparison with spherical-shaped hohlraum. Experiments results are discussed and compared to FCI2 radiation hydrodynamics simulations.
The first target experiments on the National Ignition Facility
NASA Astrophysics Data System (ADS)
Landen, O. L.; Glenzer, S. H.; Froula, D. H.; Dewald, E. L.; Suter, L. J.; Schneider, M. B.; Hinkel, D. E.; Fernandez, J. C.; Kline, J. L.; Goldman, S. R.; Braun, D. G.; Celliers, P. M.; Moon, S. J.; Robey, H. S.; Lanier, N. E.; Glendinning, S. G.; Blue, B. E.; Wilde, B. H.; Jones, O. S.; Schein, J.; Divol, L.; Kalantar, D. H.; Campbell, K. M.; Holder, J. P.; McDonald, J. W.; Niemann, C.; MacKinnon, A. J.; Collins, G. W.; Bradley, D. K.; Eggert, J. H.; Hicks, D. G.; Gregori, G.; Kirkwood, R. K.; Young, B. K.; Foster, J. M.; Hansen, J. F.; Perry, T. S.; Munro, D. H.; Baldis, H. A.; Grim, G. P.; Heeter, R. F.; Hegelich, M. B.; Montgomery, D. S.; Rochau, G. A.; Olson, R. E.; Turner, R. E.; Workman, J. B.; Berger, R. L.; Cohen, B. I.; Kruer, W. L.; Langdon, A. B.; Langer, S. H.; Meezan, N. B.; Rose, H. A.; Still, C. H.; Williams, E. A.; Dodd, E. S.; Edwards, M. J.; Monteil, M.-C.; Stevenson, R. M.; Thomas, B. R.; Coker, R. F.; Magelssen, G. R.; Rosen, P. A.; Stry, P. E.; Woods, D.; Weber, S. V.; Young, P. E.; Alvarez, S.; Armstrong, G.; Bahr, R.; Bourgade, J.-L.; Bower, D.; Celeste, J.; Chrisp, M.; Compton, S.; Cox, J.; Constantin, C.; Costa, R.; Duncan, J.; Ellis, A.; Emig, J.; Gautier, C.; Greenwood, A.; Griffith, R.; Holdner, F.; Holtmeier, G.; Hargrove, D.; James, T.; Kamperschroer, J.; Kimbrough, J.; Landon, M.; Lee, F. D.; Malone, R.; May, M.; Montelongo, S.; Moody, J.; Ng, E.; Nikitin, A.; Pellinen, D.; Piston, K.; Poole, M.; Rekow, V.; Rhodes, M.; Shepherd, R.; Shiromizu, S.; Voloshin, D.; Warrick, A.; Watts, P.; Weber, F.; Young, P.; Arnold, P.; Atherton, L.; Bardsley, G.; Bonanno, R.; Borger, T.; Bowers, M.; Bryant, R.; Buckman, S.; Burkhart, S.; Cooper, F.; Dixit, S. N.; Erbert, G.; Eder, D. C.; Ehrlich, R. E.; Felker, B.; Fornes, J.; Frieders, G.; Gardner, S.; Gates, C.; Gonzalez, M.; Grace, S.; Hall, T.; Haynam, C. A.; Heestand, G.; Henesian, M. A.; Hermann, M.; Hermes, G.; Huber, S.; Jancaitis, K.; Johnson, S.; Kauffman, B.; Kelleher, T.; Kohut, T.; Koniges, A. E.; Labiak, T.; Latray, D.; Lee, A.; Lund, D.; Mahavandi, S.; Manes, K. R.; Marshall, C.; McBride, J.; McCarville, T.; McGrew, L.; Menapace, J.; Mertens, E.; Murray, J.; Neumann, J.; Newton, M.; Opsahl, P.; Padilla, E.; Parham, T.; Parrish, G.; Petty, C.; Polk, M.; Powell, C.; Reinbachs, I.; Rinnert, R.; Riordan, B.; Ross, G.; Robert, V.; Tobin, M.; Sailors, S.; Saunders, R.; Schmitt, M.; Shaw, M.; Singh, M.; Spaeth, M.; Stephens, A.; Tietbohl, G.; Tuck, J.; van Wonterghem, B. M.; Vidal, R.; Wegner, P. J.; Whitman, P.; Williams, K.; Winward, K.; Work, K.; Wallace, R.; Nobile, A.; Bono, M.; Day, B.; Elliott, J.; Hatch, D.; Louis, H.; Manzenares, R.; O'Brien, D.; Papin, P.; Pierce, T.; Rivera, G.; Ruppe, J.; Sandoval, D.; Schmidt, D.; Valdez, L.; Zapata, K.; MacGowan, B. J.; Eckart, M. J.; Hsing, W. W.; Springer, P. T.; Hammel, B. A.; Moses, E. I.; Miller, G. H.
2007-08-01
A first set of shock timing, laser-plasma interaction, hohlraum energetics and hydrodynamic experiments have been performed using the first 4 beams of the National Ignition Facility (NIF), in support of indirect drive Inertial Confinement Fusion (ICF) and High Energy Density Physics (HEDP). In parallel, a robust set of optical and X-ray spectrometers, interferometer, calorimeters and imagers have been activated. The experiments have been undertaken with laser powers and energies of up to 8 TW and 17 kJ in flattop and shaped 1 9 ns pulses focused with various beam smoothing options. The experiments have demonstrated excellent agreement between measured and predicted laser-target coupling in foils and hohlraums, even when extended to a longer pulse regime unattainable at previous laser facilities, validated the predicted effects of beam smoothing on intense laser beam propagation in long scale-length plasmas and begun to test 3D codes by extending the study of laser driven hydrodynamic jets to 3D geometries.
Neutron Generation by Laser-Driven Spherically Convergent Plasma Fusion.
Ren, G; Yan, J; Liu, J; Lan, K; Chen, Y H; Huo, W Y; Fan, Z; Zhang, X; Zheng, J; Chen, Z; Jiang, W; Chen, L; Tang, Q; Yuan, Z; Wang, F; Jiang, S; Ding, Y; Zhang, W; He, X T
2017-04-21
We investigate a new laser-driven spherically convergent plasma fusion scheme (SCPF) that can produce thermonuclear neutrons stably and efficiently. In the SCPF scheme, laser beams of nanosecond pulse duration and 10^{14}-10^{15} W/cm^{2} intensity uniformly irradiate the fuel layer lined inside a spherical hohlraum. The fuel layer is ablated and heated to expand inwards. Eventually, the hot fuel plasmas converge, collide, merge, and stagnate at the central region, converting most of their kinetic energy to internal energy, forming a thermonuclear fusion fireball. With the assumptions of steady ablation and adiabatic expansion, we theoretically predict the neutron yield Y_{n} to be related to the laser energy E_{L}, the hohlraum radius R_{h}, and the pulse duration τ through a scaling law of Y_{n}∝(E_{L}/R_{h}^{1.2}τ^{0.2})^{2.5}. We have done experiments at the ShengGuangIII-prototype facility to demonstrate the principle of the SCPF scheme. Some important implications are discussed.
Neutron Generation by Laser-Driven Spherically Convergent Plasma Fusion
NASA Astrophysics Data System (ADS)
Ren, G.; Yan, J.; Liu, J.; Lan, K.; Chen, Y. H.; Huo, W. Y.; Fan, Z.; Zhang, X.; Zheng, J.; Chen, Z.; Jiang, W.; Chen, L.; Tang, Q.; Yuan, Z.; Wang, F.; Jiang, S.; Ding, Y.; Zhang, W.; He, X. T.
2017-04-01
We investigate a new laser-driven spherically convergent plasma fusion scheme (SCPF) that can produce thermonuclear neutrons stably and efficiently. In the SCPF scheme, laser beams of nanosecond pulse duration and 1 014- 1 015 W /cm2 intensity uniformly irradiate the fuel layer lined inside a spherical hohlraum. The fuel layer is ablated and heated to expand inwards. Eventually, the hot fuel plasmas converge, collide, merge, and stagnate at the central region, converting most of their kinetic energy to internal energy, forming a thermonuclear fusion fireball. With the assumptions of steady ablation and adiabatic expansion, we theoretically predict the neutron yield Yn to be related to the laser energy EL, the hohlraum radius Rh, and the pulse duration τ through a scaling law of Yn∝(EL/Rh1.2τ0.2 )2.5. We have done experiments at the ShengGuangIII-prototype facility to demonstrate the principle of the SCPF scheme. Some important implications are discussed.
Experimental Evidence of Kinetic Effects in Indirect-Drive Inertial Confinement Fusion Hohlraums
NASA Astrophysics Data System (ADS)
Shan, L. Q.; Cai, H. B.; Zhang, W. S.; Tang, Q.; Zhang, F.; Song, Z. F.; Bi, B.; Ge, F. J.; Chen, J. B.; Liu, D. X.; Wang, W. W.; Yang, Z. H.; Qi, W.; Tian, C.; Yuan, Z. Q.; Zhang, B.; Yang, L.; Jiao, J. L.; Cui, B.; Zhou, W. M.; Cao, L. F.; Zhou, C. T.; Gu, Y. Q.; Zhang, B. H.; Zhu, S. P.; He, X. T.
2018-05-01
We present the first experimental evidence supported by simulations of kinetic effects launched in the interpenetration layer between the laser-driven hohlraum plasma bubbles and the corona plasma of the compressed pellet at the Shenguang-III prototype laser facility. Solid plastic capsules were coated with carbon-deuterium layers; as the implosion neutron yield is quenched, DD fusion yield from the corona plasma provides a direct measure of the kinetic effects inside the hohlraum. An anomalous large energy spread of the DD neutron signal (˜282 keV ) and anomalous scaling of the neutron yield with the thickness of the carbon-deuterium layers cannot be explained by the hydrodynamic mechanisms. Instead, these results can be attributed to kinetic shocks that arise in the hohlraum-wall-ablator interpenetration region, which result in efficient acceleration of the deuterons (˜28.8 J , 0.45% of the total input laser energy). These studies provide novel insight into the interactions and dynamics of a vacuum hohlraum and near-vacuum hohlraum.
Enthalpy generation from mixing in hohlraum-driven targets
NASA Astrophysics Data System (ADS)
Amendt, Peter; Milovich, Jose
2016-10-01
The increase in enthalpy from the physical mixing of two initially separated materials is analytically estimated and applied to ICF implosions and gas-filled hohlraums. Pressure and temperature gradients across a classical interface are shown to be the origin of enthalpy generation from mixing. The amount of enthalpy generation is estimated to be on the order of 100 Joules for a 10 micron-scale annular mixing layer between the solid deuterium-tritium fuel and the undoped high-density carbon ablator of a NIF-scale implosion. A potential resonance is found between the mixing layer thickness and gravitational (Cs2/ g) and temperature-gradient scale lengths, leading to elevated enthalpy generation. These results suggest that if mixing occurs in current capsule designs for the National Ignition Facility, the ignition margin may be appreciably eroded by the associated enthalpy of mixing. The degree of enthalpy generation from mixing of high- Z hohlraum wall material and low- Z gas fills is estimated to be on the order of 100 kJ or more for recent NIF-scale hohlraum experiments, which is consistent with the inferred missing energy based on observed delays in capsule implosion times. Work performed under the auspices of Lawrence Livermore National Security, LLC (LLNS) under Contract No. DE-AC52-07NA27344.
Design calculations for NIF convergent ablator experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Callahan, Debra; Leeper, Ramon Joe; Spears, B. K.
2010-11-01
Design calculations for NIF convergent ablator experiments will be described. The convergent ablator experiments measure the implosion trajectory, velocity, and ablation rate of an x-ray driven capsule and are a important component of the U. S. National Ignition Campaign at NIF. The design calculations are post-processed to provide simulations of the key diagnostics: (1) Dante measurements of hohlraum x-ray flux and spectrum, (2) streaked radiographs of the imploding ablator shell, (3) wedge range filter measurements of D-He3 proton output spectra, and (4) GXD measurements of the imploded core. The simulated diagnostics will be compared to the experimental measurements to providemore » an assessment of the accuracy of the design code predictions of hohlraum radiation temperature, capsule ablation rate, implosion velocity, shock flash areal density, and x-ray bang time. Post-shot versions of the design calculations are used to enhance the understanding of the experimental measurements and will assist in choosing parameters for subsequent shots and the path towards optimal ignition capsule tuning.« less
What measurements of proton self emission tell us about hohlraum fields and yield anomalies
NASA Astrophysics Data System (ADS)
Petrasso, R.; Li, C.; Seguin, F.; Frenje, J.; Rosenberg, M.; Rinderknecht, H.; Philippe, F.; Casner, A.; Caillaud, T.; Landoas, O.; Bourgade, J.-L.; Amendt, P.; Izumi, N.; Koch, J.; Landen, O.; Milovich, J.; Park, H.; Robey, H.; Robey, R.; Town, R.; Nikroo, A.; Kilkenny, J.
2009-11-01
Measurements have been made of 14.7-MeV self-emission protons, from reactions of D-3He fuel, for a variety of hohlraums - scale 1 and scale .5ex3 -.1em/ -.15em.25ex3 , gold and cocktail hohlraums, vacuum and gas-filled hohlraums, cylindrical and rugby geometries, drive with and without phase plates, drive with different numbers of beams, and implosions with different capsule parameters. The picture that emerges is quite consistent: large anisotropies in the proton fluence pattern are generally observed out the LEH but little if any variations through the hohlraum equator. In addition, we examine whether the scaling of yields from pure D2 to D-3He mixtures is found to deviate from the expected density scaling (i.e. the Rygg Effect), as reported recently for directly driven capsules (1). (1) H. Herrmann et al., PoP 16, 056312(2009)
Laser-plasma interactions and implosion symmetry in rugby hohlraums
NASA Astrophysics Data System (ADS)
Michel, Pierre; Berger, R. L.; Lasinski, B. F.; Ross, J. S.; Divol, L.; Williams, E. A.; Meeker, D.; Langdon, B. A.; Park, H.; Amendt, P.
2011-10-01
Cross-beam energy transfer is studied in the context of ``rugby''-hohlraum experiments at the Omega laser facility in FY11, in preparation for future NIF experiments. The transfer acts in opposite direction between rugby and cylinder hohlraums due to the different beam pointing geometries and flow patterns. Its interaction with backscatter is also different as both happen in similar regions inside rugby hohlraums. We will analyze the effects of non-linearities and temporal beam smoothing on energy transfer using the code pF3d. Calculations will be compared to experiments at Omega; analysis of future rugby hohlraum experiments on NIF will also be presented. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Inertial confinement fusion ablator physics experiments on Saturn and Nova
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, R.E.; Porter, J.L.; Chandler, G.A.
1997-05-01
The Saturn pulsed power accelerator [R. B. Spielman {ital et al.}, in {ital Proceedings of the 2nd International Conference on Dense} Z-{ital pinches}, Laguna Beach, CA, 1989, edited by N. R. Pereira, J. Davis, and N. Rostoker (American Institute of Physics, New York, 1989), p. 3] at Sandia National Laboratories (SNL) and the Nova laser [J. T. Hunt and D. R. Speck, Opt. Eng. {bold 28}, 461 (1989)] at Lawrence Livermore National Laboratory (LLNL) have been used to explore techniques for studying the behavior of ablator material in x-ray radiation environments comparable in magnitude, spectrum, and duration to those thatmore » would be experienced in National Ignition Facility (NIF) hohlraums [J. D. Lindl, Phys. Plasmas {bold 2}, 3933 (1995)]. The large x-ray outputs available from the Saturn pulsed-power-driven z pinch have enabled us to drive hohlraums of full NIF ignition scale size at radiation temperatures and time scales comparable to those required for the low-power foot pulse of an ignition capsule. The high-intensity drives available in the Nova laser have allowed us to study capsule ablator physics in smaller-scale hohlraums at radiation temperatures and time scales relevant to the peak power pulse for an ignition capsule. Taken together, these experiments have pointed the way to possible techniques for testing radiation-hydrodynamics code predictions of radiation flow, opacity, equation of state, and ablator shock velocity over the range of radiation environments that will be encountered in a NIF hohlraum. {copyright} {ital 1997 American Institute of Physics.}« less
Gas-filled Rugby hohlraum energetics and implosions experiments on OMEGA
NASA Astrophysics Data System (ADS)
Casner, Alexis; Philippe, F.; Tassin, V.; Seytor, P.; Monteil, M. C.; Villette, B.; Reverdin, C.
2010-11-01
Recent experiments [1,2] have validated the x-ray drive enhancement provided by rugby-shaped hohlraums over cylinders in the indirect drive (ID) approach to inertial confinement fusion (ICF). This class of hohlraum is the baseline design for the Laser Mégajoule program, is also applicable to the National Ignition Facility and could therefore benefit ID Inertial Fusion Energy studies. We have carried out a serie of energetics and implosions experiments with OMEGA ``scale 1'' rugby hohlraums [1,2]. For empty hohlraums these experiments provide complementary measurements of backscattered light along 42 cone, as well as detailed drive history. In the case of gas-filled rugby hohlraums we have also study implosion performance (symmetry, yield, bangtime, hotspot spectra...) using a high contrast shaped pulse leading to a different implosion regime and for a range of capsule convergence ratios. These results will be compared with FCI2 hydrocodes calculations and future experimental campaigns will be suggested. [4pt] [1] F. Philippe et al., Phys. Rev. Lett. 104, 035004 (2010). [0pt] [2] H. Robey et al., Phys. Plasnas 17, 056313 (2010).
Comparative properties of the interior and blowoff plasmas in a dynamic hohlraum
Apruzese, J. P.; Clark, R. W.; Davis, J.; ...
2007-04-20
A Dynamic Hohlraum (DH) is formed when arrays of tungsten wires driven by a high-current pulse implode and compress a cylindrical foam target. The resulting radiation is confined by the wire plasma and forms an intense, ~200–250 eV Planckian x-ray source. The internal radiation can be used for indirect drive inertial confinement fusion. The radiation emitted from the ends can be employed for radiation flow and material interaction studies. This external radiation is accompanied by an expanding blowoff plasma. In this paper, we have diagnosed this blowoff plasma using K-shell spectra of Mg tracer layers placed at the ends ofmore » some of the Dynamic Hohlraum targets. A similar diagnosis of the interior hohlraum has been carried out using Al and Mg tracers placed at 2mm depth from the ends. It is found that the blowoff plasma is about 20–25% as dense as that of the interior hohlraum, and that its presence does not significantly affect the outward flow of the nearly Planckian radiation field generated in the hohlraum interior. Finally, however, the electron temperature of the blowoff region, at ~120 eV, is only about half that of the interior hohlraum plasma.« less
NASA Astrophysics Data System (ADS)
Callahan, D. A.; Hurricane, O. A.; Ralph, J. E.; Thomas, C. A.; Baker, K. L.; Benedetti, L. R.; Berzak Hopkins, L. F.; Casey, D. T.; Chapman, T.; Czajka, C. E.; Dewald, E. L.; Divol, L.; Döppner, T.; Hinkel, D. E.; Hohenberger, M.; Jarrott, L. C.; Khan, S. F.; Kritcher, A. L.; Landen, O. L.; LePape, S.; MacLaren, S. A.; Masse, L. P.; Meezan, N. B.; Pak, A. E.; Salmonson, J. D.; Woods, D. T.; Izumi, N.; Ma, T.; Mariscal, D. A.; Nagel, S. R.; Kline, J. L.; Kyrala, G. A.; Loomis, E. N.; Yi, S. A.; Zylstra, A. B.; Batha, S. H.
2018-05-01
We present a data-based model for low mode asymmetry in low gas-fill hohlraum experiments on the National Ignition Facility {NIF [Moses et al., Fusion Sci. Technol. 69, 1 (2016)]} laser. This model is based on the hypothesis that the asymmetry in these low fill hohlraums is dominated by the hydrodynamics of the expanding, low density, high-Z (gold or uranium) "bubble," which occurs where the intense outer cone laser beams hit the high-Z hohlraum wall. We developed a simple model which states that the implosion symmetry becomes more oblate as the high-Z bubble size becomes large compared to the hohlraum radius or the capsule size becomes large compared to the hohlraum radius. This simple model captures the trends that we see in data that span much of the parameter space of interest for NIF ignition experiments. We are now using this model as a constraint on new designs for experiments on the NIF.
Near-vacuum hohlraums for driving fusion implosions with high density carbon ablatorsa)
NASA Astrophysics Data System (ADS)
Berzak Hopkins, L. F.; Le Pape, S.; Divol, L.; Meezan, N. B.; Mackinnon, A. J.; Ho, D. D.; Jones, O. S.; Khan, S.; Milovich, J. L.; Ross, J. S.; Amendt, P.; Casey, D.; Celliers, P. M.; Pak, A.; Peterson, J. L.; Ralph, J.; Rygg, J. R.
2015-05-01
Recent experiments at the National Ignition Facility [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] have explored driving high-density carbon ablators with near-vacuum hohlraums, which use a minimal amount of helium gas fill. These hohlraums show improved efficiency relative to conventional gas-filled hohlraums in terms of minimal backscatter, minimal generation of suprathermal electrons, and increased hohlraum-capsule coupling. Given these advantages, near-vacuum hohlraums are a promising choice for pursuing high neutron yield implosions. Long pulse symmetry control, though, remains a challenge, as the hohlraum volume fills with material. Two mitigation methodologies have been explored, dynamic beam phasing and increased case-to-capsule ratio (larger hohlraum size relative to capsule). Unexpectedly, experiments have demonstrated that the inner laser beam propagation is better than predicted by nominal simulations, and an enhanced beam propagation model is required to match measured hot spot symmetry. Ongoing work is focused on developing a physical model which captures this enhanced propagation and on utilizing the enhanced propagation to drive longer laser pulses than originally predicted in order to reach alpha-heating dominated neutron yields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradley, D K; Prisbrey, S T; Page, R H
2008-05-28
We have developed a scaled hohlraum platform to experimentally measure preheat in ablator materials during the first few nanoseconds of the radiation drive proposed for ignition experiments at the National Ignition Facility [J. A. Paisner, J. D. Boyes, S. A. Kumpan, et al., Laser Focus World 30, 75 (1994)]. The platform design approximates the radiation environment of the pole of the capsule by matching both the laser spot intensity and illuminated hohlraum wall fraction in scaled halfraums driven by the OMEGA laser system [T. R. Boehly, D. L. Brown, R. S. Craxton, et al., Optics Communications 133, 495 (1997)]. Amore » VISAR reflecting from the rear surface of the sample was used to measure sample motion prior to shock breakout. The experiments show that the first {approx}20 {micro}m of a Be ablator will be melted by radiation preheat, with subsequent material melted by the initial shock, in agreement with simulations. The experiments also show no evidence of anomalous heating of buried high-z doped layers in the ablator.« less
The near vacuum hohlraum campaign at the NIF: A new approach
NASA Astrophysics Data System (ADS)
Le Pape, S.; Berzak Hopkins, L. F.; Divol, L.; Meezan, N.; Turnbull, D.; Mackinnon, A. J.; Ho, D.; Ross, J. S.; Khan, S.; Pak, A.; Dewald, E.; Benedetti, L. R.; Nagel, S.; Biener, J.; Callahan, D. A.; Yeamans, C.; Michel, P.; Schneider, M.; Kozioziemski, B.; Ma, T.; Macphee, A. G.; Haan, S.; Izumi, N.; Hatarik, R.; Sterne, P.; Celliers, P.; Ralph, J.; Rygg, R.; Strozzi, D.; Kilkenny, J.; Rosenberg, M.; Rinderknecht, H.; Sio, H.; Gatu-Johnson, M.; Frenje, J.; Petrasso, R.; Zylstra, A.; Town, R.; Hurricane, O.; Nikroo, A.; Edwards, M. J.
2016-05-01
The near vacuum campaign on the National Ignition Facility has concentrated its efforts over the last year on finding the optimum target geometry to drive a symmetric implosion at high convergence ratio (30×). As the hohlraum walls are not tamped with gas, the hohlraum is filling with gold plasma and the challenge resides in depositing enough energy in the hohlraum before it fills up. Hohlraum filling is believed to cause symmetry swings late in the pulse that are detrimental to the symmetry of the hot spot at high convergence. This paper describes a series of experiments carried out to examine the effect of increasing the distance between the hohlraum wall and the capsule (case to capsule ratio) on the symmetry of the hot spot. These experiments have shown that smaller Case to Capsule Ratio (CCR of 2.87 and 3.1) resulted in oblate implosions that could not be tuned round. Larger CCR (3.4) led to a prolate implosion at convergence 30× implying that inner beam propagation at large CCR is not impeded by the expanding hohlraum plasma. A Case to Capsule ratio of 3.4 is a promising geometry to design a round implosion but in a smaller hohlraum where the hohlraum losses are lower, enabling a wider cone fraction range to adjust symmetry.
Wall-shaped hohlraum influence on symmetry and energetics in gas-filled hohlraums
NASA Astrophysics Data System (ADS)
Tassin, Veronique; Philippe, Franck; Laffite, Stephane; Videau, Laurent; Monteil, Marie-Christine; Villette, Bruno; Stemmler, Philippe; Bednarczyk, Sophie; Peche, Emilie; Reneaume, Benoit; Thessieux, Christian
2008-11-01
On the way to the LMJ completion, achieving ignition with 40 quads in a 2-cone configuration will be attempted as a first step. Theoretical investigation of a rugby-shaped hohlraum shows energetics optimization and a better symmetry control compared to a cylindrical hohlraum [1]. We recently conducted experiments on the Omega laser facility with 3 different wall-shaped methane-filled hohlraum configurations. We present here the experimental results. Energetics benefits are shown for reduced wall area hohlraums. The wall-shaped hohlraum influence on time-dependent radiation symmetry is also discussed. For the 3 gas-filled hohlraums configurations, we compare the foamball early-time radiographs, the D2Ar-filled capsule time-integrated images and the core self-emission images. [1] M. Vandenboomgaerde, Phys. Rev. Lett., 99, 065004 (2007).
The advanced hohlraum research project
NASA Astrophysics Data System (ADS)
Jones, Ogden; Tabak, M.; Amendt, P. A.; Hammer, J. H.; Baker, K. L.; Baumann, T. F.; Berger, R. L.; Biener, M. M.; Ho, D. D.; Kim, S. H.; Logan, B. G.; Mariscal, D. A.; Patankar, S.; Wallace, R. L.
2017-10-01
We present results of a three-year study on alternate hohlraum designs. Several alternatives to cylindrical gas-filled hohlraums have been investigated. Proposed new hohlraum concepts utilize different hohlraum shapes, multiple laser entrance holes, and alternate materials such as metal foam walls. For each design we assess the radiation drive efficiency, the time-dependent drive symmetry, and laser-plasma interaction issues such as backscatter and crossed beam energy transfer. Results from supporting experiments on laser-heated foams are also summarized. Prepared by LLNL under LDRD 15-ERD-058.
Optimizing implosion yields using rugby-shaped hohlraums
NASA Astrophysics Data System (ADS)
Park, Hye-Sook; Robey, H.; Amendt, P.; Philippe, F.; Casner, A.; Caillaud, T.; Bourgade, J.-L.; Landoas, O.; Li, C. K.; Petrasso, R.; Seguin, F.; Rosenberg, M.; Glebov, V. Yu.
2009-11-01
We present the first experimental results on optimizing capsule implosion experiments by using rugby-shaped hohlraums [1] on the Omega laser, University of Rochester. This campaign compared D2-filled capsule performance between standard cylindrical Au hohlraums and rugby-shaped hohlraums for demonstrating the energetics advantages of the rugby geometry. Not only did the rugby-shaped hohlraums show nearly 20% more x-ray drive energy over the cylindrical hohlraums, but also the high-performance design of the capsules provided nearly 20 times more DD neutrons than in any previous Omega hohlraum campaigns, thereby enabling use of neutron temporal diagnostics. Comparison with simulations on neutron burn histories, x-ray core imaging, backscattered laser light and radiation temperature are presented. [1] P. Amendt et al., Phys. Plasmas 15, 012702 (2008)
Laser plasma interaction in rugby-shaped hohlraums
NASA Astrophysics Data System (ADS)
Masson-Laborde, P.-E.; Philippe, F.; Tassin, V.; Monteil, M.-C.; Gauthier, P.; Casner, A.; Depierreux, S.; Seytor, P.; Teychenne, D.; Loiseau, P.; Freymerie, P.
2014-10-01
Rugby shaped-hohlraum has proven to give high performance compared to a classical similar-diameter cylinder hohlraum. Due to this performance, this hohlraum has been chosen as baseline ignition target for the Laser MegaJoule (LMJ). Many experiments have therefore been performed during the last years on the Omega laser facility in order to study in details the rugby hohlraum. In this talk, we will discuss the interpretation of these experiments from the point of view of the laser plasma instability problem. Experimental comparisons have been done between rugby, cylinder and elliptical shape rugby hohlraums and we will discuss how the geometry differences will affect the evolution of laser plasma instabilities (LPI). The efficiency of laser smoothing techniques on these instabilities will also be discussed as well as gas filling effect. The experimental results will be compared with FCI2 hydroradiative calculations and linear postprocessing with Piranah. Experimental Raman and Brillouin spectrum, from which we can infer the location of the parametric instabilities, will be compared to simulated ones, and will give the possibility to compare LPI between the different hohlraum geometries.
Review of high convergence implosion experiments with single and double shell targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delamater, N. D.; Watt, R. G.; Varnum, W. S.
2002-01-01
Experiments have been been performed in recent years at the Omega laser studying double shell capsules as an a1 teinative, 11011 cryogenic, path towards ignition at NTF. Double shell capsules designed to mitigate the Au M-band radiation asymmetries, were experimentally found to perform well in both spherical and cylindrical hohlraums, achieving near 1-D (-90 %) clean calculated yield at convergence comparable to that required for NIF ignition. Near-term plans include directly driven double shell experiments at Omega, which eliminates Au M-band radiation as a yield degradation m ec h an i s in.
The near vacuum hohlraum campaign at the NIF: A new approach
Le Pape, S.; Berzak Hopkins, L. F.; Divol, L.; ...
2016-05-25
The near vacuum campaign on the National Ignition Facility has concentrated its efforts over the last year on finding the optimum target geometry to drive a symmetric implosion at high convergence ratio (30x). As the hohlraum walls are not tamped with gas, the hohlraum is filling with gold plasma and the challenge resides in depositing enough energy in the hohlraum before it fills up. Hohlraum filling is believed to cause symmetry swings late in the pulse that are detrimental to the symmetry of the hot spot at high convergence. This paper describes a series of experiments carried out to examinemore » the effect of increasing the distance between the hohlraum wall and the capsule (case to capsule ratio) on the symmetry of the hot spot. These experiments have shown that smaller Case to Capsule Ratio (CCR of 2.87 and 3.1) resulted in oblate implosions that could not be tuned round. Larger CCR (3.4) led to a prolate implosion at convergence 30x implying that inner beam propagation at large CCR is not impeded by the expanding hohlraum plasma. A Case to Capsule ratio of 3.4 is a promising geometry to design a round implosion but in a smaller hohlraum where the hohlraum losses are lower, enabling a wider cone fraction range to adjust symmetry.« less
Use of external magnetic fields in hohlraum plasmas to improve laser-coupling
Montgomery, D. S.; Albright, B. J.; Barnak, D. H.; ...
2015-01-13
Efficient coupling of laser energy into hohlraum targets is important for indirect drive ignition. Laser-plasma instabilities can reduce coupling, reduce symmetry, and cause preheat. We consider the effects of an external magnetic field on laser-energy coupling in hohlraum targets. Experiments were performed at the Omega Laser Facility using low-Z gas-filled hohlraum targets which were placed in a magnetic coil with B z ≤ 7.5-T. We found that an external field B z = 7.5-T aligned along the hohlraum axis results in up to a 50% increase in plasma temperature as measured by Thomson scattering. As a result, the experiments weremore » modeled using the 2-D magnetohydrodynamics package in HYDRA and were found to be in good agreement.« less
NASA Astrophysics Data System (ADS)
Pak, A.; Dewald, E. L.; Landen, O. L.; Milovich, J.; Strozzi, D. J.; Berzak Hopkins, L. F.; Bradley, D. K.; Divol, L.; Ho, D. D.; MacKinnon, A. J.; Meezan, N. B.; Michel, P.; Moody, J. D.; Moore, A. S.; Schneider, M. B.; Town, R. P. J.; Hsing, W. W.; Edwards, M. J.
2015-12-01
Temporally resolved measurements of the hohlraum radiation flux asymmetry incident onto a bismuth coated surrogate capsule have been made over the first two nanoseconds of ignition relevant laser pulses. Specifically, we study the P2 asymmetry of the incoming flux as a function of cone fraction, defined as the inner-to-total laser beam power ratio, for a variety of hohlraums with different scales and gas fills. This work was performed to understand the relevance of recent experiments, conducted in new reduced-scale neopentane gas filled hohlraums, to full scale helium filled ignition targets. Experimental measurements, matched by 3D view factor calculations, are used to infer differences in symmetry, relative beam absorption, and cross beam energy transfer (CBET), employing an analytic model. Despite differences in hohlraum dimensions and gas fill, as well as in laser beam pointing and power, we find that laser absorption, CBET, and the cone fraction, at which a symmetric flux is achieved, are similar to within 25% between experiments conducted in the reduced and full scale hohlraums. This work demonstrates a close surrogacy in the dynamics during the first shock between reduced-scale and full scale implosion experiments and is an important step in enabling the increased rate of study for physics associated with inertial confinement fusion.
First Octahedral Spherical Hohlraum Energetics Experiment at the SGIII Laser Facility
NASA Astrophysics Data System (ADS)
Huo, Wen Yi; Li, Zhichao; Chen, Yao-Hua; Xie, Xufei; Ren, Guoli; Cao, Hui; Li, Shu; Lan, Ke; Liu, Jie; Li, Yongsheng; Li, Sanwei; Guo, Liang; Liu, Yonggang; Yang, Dong; Jiang, Xiaohua; Hou, Lifei; Du, Huabing; Peng, Xiaoshi; Xu, Tao; Li, Chaoguang; Zhan, Xiayu; Wang, Zhebin; Deng, Keli; Wang, Qiangqiang; Deng, Bo; Wang, Feng; Yang, Jiamin; Liu, Shenye; Jiang, Shaoen; Yuan, Guanghui; Zhang, Haijun; Jiang, Baibin; Zhang, Wei; Gu, Qianqian; He, Zhibing; Du, Kai; Deng, Xuewei; Zhou, Wei; Wang, Liquan; Huang, Xiaoxia; Wang, Yuancheng; Hu, Dongxia; Zheng, Kuixing; Zhu, Qihua; Ding, Yongkun
2018-04-01
The first octahedral spherical hohlraum energetics experiment is accomplished at the SGIII laser facility. For the first time, the 32 laser beams are injected into the octahedral spherical hohlraum through six laser entrance holes. Two techniques are used to diagnose the radiation field of the octahedral spherical hohlraum in order to obtain comprehensive experimental data. The radiation flux streaming out of laser entrance holes is measured by six flat-response x-ray detectors (FXRDs) and four M -band x-ray detectors, which are placed at different locations of the SGIII target chamber. The radiation temperature is derived from the measured flux of FXRD by using the blackbody assumption. The peak radiation temperature inside hohlraum is determined by the shock wave technique. The experimental results show that the octahedral spherical hohlraum radiation temperature is in the range of 170-182 eV with drive laser energies of 71 kJ to 84 kJ. The radiation temperature inside the hohlraum determined by the shock wave technique is about 175 eV at 71 kJ. For the flat-top laser pulse of 3 ns, the conversion efficiency of gas-filled octahedral spherical hohlraum from laser into soft x rays is about 80% according to the two-dimensional numerical simulation.
First High-Convergence Cryogenic Implosion in a Near-Vacuum Hohlraum
NASA Astrophysics Data System (ADS)
Berzak Hopkins, L. F.; Meezan, N. B.; Le Pape, S.; Divol, L.; Mackinnon, A. J.; Ho, D. D.; Hohenberger, M.; Jones, O. S.; Kyrala, G.; Milovich, J. L.; Pak, A.; Ralph, J. E.; Ross, J. S.; Benedetti, L. R.; Biener, J.; Bionta, R.; Bond, E.; Bradley, D.; Caggiano, J.; Callahan, D.; Cerjan, C.; Church, J.; Clark, D.; Döppner, T.; Dylla-Spears, R.; Eckart, M.; Edgell, D.; Field, J.; Fittinghoff, D. N.; Gatu Johnson, M.; Grim, G.; Guler, N.; Haan, S.; Hamza, A.; Hartouni, E. P.; Hatarik, R.; Herrmann, H. W.; Hinkel, D.; Hoover, D.; Huang, H.; Izumi, N.; Khan, S.; Kozioziemski, B.; Kroll, J.; Ma, T.; MacPhee, A.; McNaney, J.; Merrill, F.; Moody, J.; Nikroo, A.; Patel, P.; Robey, H. F.; Rygg, J. R.; Sater, J.; Sayre, D.; Schneider, M.; Sepke, S.; Stadermann, M.; Stoeffl, W.; Thomas, C.; Town, R. P. J.; Volegov, P. L.; Wild, C.; Wilde, C.; Woerner, E.; Yeamans, C.; Yoxall, B.; Kilkenny, J.; Landen, O. L.; Hsing, W.; Edwards, M. J.
2015-05-01
Recent experiments on the National Ignition Facility [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] demonstrate that utilizing a near-vacuum hohlraum (low pressure gas-filled) is a viable option for high convergence cryogenic deuterium-tritium (DT) layered capsule implosions. This is made possible by using a dense ablator (high-density carbon), which shortens the drive duration needed to achieve high convergence: a measured 40% higher hohlraum efficiency than typical gas-filled hohlraums, which requires less laser energy going into the hohlraum, and an observed better symmetry control than anticipated by standard hydrodynamics simulations. The first series of near-vacuum hohlraum experiments culminated in a 6.8 ns, 1.2 MJ laser pulse driving a 2-shock, high adiabat (α ˜3.5 ) cryogenic DT layered high density carbon capsule. This resulted in one of the best performances so far on the NIF relative to laser energy, with a measured primary neutron yield of 1.8 ×1015 neutrons, with 20% calculated alpha heating at convergence ˜27 × .
Constraining heat-transport models by comparison to experimental data in a NIF hohlraum
NASA Astrophysics Data System (ADS)
Farmer, W. A.; Jones, O. S.; Barrios Garcia, M. A.; Koning, J. M.; Kerbel, G. D.; Strozzi, D. J.; Hinkel, D. E.; Moody, J. D.; Suter, L. J.; Liedahl, D. A.; Moore, A. S.; Landen, O. L.
2017-10-01
The accurate simulation of hohlraum plasma conditions is important for predicting the partition of energy and the symmetry of the x-ray field within a hohlraum. Electron heat transport within the hohlraum plasma is difficult to model due to the complex interaction of kinetic plasma effects, magnetic fields, laser-plasma interactions, and microturbulence. Here, we report simulation results using the radiation-hydrodynamic code, HYDRA, utilizing various physics packages (e.g., nonlocal Schurtz model, MHD, flux limiters) and compare to data from hohlraum plasma experiments which contain a Mn-Co tracer dot. In these experiments, the dot is placed in various positions in the hohlraum in order to assess the spatial variation of plasma conditions. Simulated data is compared to a variety of experimental diagnostics. Conclusions are given concerning how the experimental data does and does not constrain the physics models examined. This work was supported by the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Using VISAR to assess the M-band isotropy in hohlraums
Lanier, Nicholas Edward; Kline, John L.; Morton, John
2016-09-27
In laser based radiation flow experiments, drive variability can often overwhelm the physics sensitivity that one seeks to quantify. Hohlraums can help by providing a more symmetrized, Planckian-like source. However, at higher temperatures, the hohlraum’s actual emission can deviate significantly from a truly blackbody, Lambertian source. At the National Ignition Facility (NIF), Dante provides the best quantification of hohlraum output. Unfortunately, limited diagnostic access coupled with NIF’s natural symmetry does not allow for Dante measurements at more than two angles. As part of the CEPHEUS campaign on NIF, proof-of-principle experiments to better quantify the gold M-band isotropy were conducted. Thesemore » experiments positioned beryllium/aluminum mirrors at differing angles, offset from the hohlraum. Filtering removes the thermal emission of the hohlraum and the remaining M-band radiation is preferentially absorbed in the aluminum layer. The subsequent hydrodynamic motion is measured via VISAR. Although indirect, this M-band measurement can be made at any angle.« less
NASA Astrophysics Data System (ADS)
Kyrala, George; Zylstra, A.; Yi, S. A.; Klline, J. L.; Shah, R. C.; Lopez, F. E.; Batha, S. A.; Doppner, T.; Thorn, D. B.; MacLaren, S.; Masters, N.; Callahan, D.; Hurricane, O.; Rice, N.; Huang, H.; Krauland, C. M.; MacDonald, M.
2017-10-01
Using beryllium, as an ablator material for indirectly driven inertial fusion, requires the use of a Copper dopant to block preheat from the hohlraum M-band radiation. However, due to the microstructure and imperfections of the capsule, some of the copper may be injected into the core of the implosion, affecting the yield and performance. Alternatively, the copper dopant may blow into the ablated plasma affecting the hohlraum performance as well. We will present some of data on time integrated imaging of the copper dopant into the core of the capsule using either the 2-dimensional multiple monochromatic imaging of the implosion, as well as the 1D spectrally resolved imaging of the copper dopant emission. In either case we found that the copper did migrate to the hot core, while fewer copper ions ablated into the hohlraum. This work performed under the auspices of the U.S. DOE by LANL under contract DE-AC52-06NA25396, and by LLNL under Contract DE-AC52-07NA27344.
Advances in NIF Shock Timing Experiments
NASA Astrophysics Data System (ADS)
Robey, Harry
2012-10-01
Experiments are underway to tune the shock timing of capsule implosions on the National Ignition Facility (NIF). These experiments use a modified cryogenic hohlraum geometry designed to precisely match the performance of ignition hohlraums. The targets employ a re-entrant Au cone to provide optical access to multiple shocks as they propagate in the liquid deuterium-filled capsule interior. The strength and timing of all four shocks is diagnosed with VISAR (Velocity Interferometer System for Any Reflector). Experiments are now routinely conducted in a mirrored keyhole geometry, which allows for simultaneous diagnosis of the shock timing at both the hohlraum pole and equator. Further modifications are being made to improve the surrogacy to ignition hohlraums by replacing the standard liquid deuterium (D2) capsule fill with a deuterium-tritium (DT) ice layer. These experiments will remove any possible surrogacy difference between D2 and DT as well as incorporate the physics of shock release from the ice layer, which is absent in current experiments. Experimental results and comparisons with numerical simulation are presented.
NASA Astrophysics Data System (ADS)
Robey, H. F.; Munro, D. H.; Spears, B. K.; Marinak, M. M.; Jones, O. S.; Patel, M. V.; Haan, S. W.; Salmonson, J. D.; Landen, O. L.; Boehly, T. R.; Nikroo, A.
2008-05-01
Ignition capsule implosions planned for the National Ignition Facility (NIF) require a pulse shape with a carefully designed series of four steps, which launch a corresponding series of shocks through the ablator and DT ice shell. The relative timing of these shocks is critical for maintaining the DT fuel on a low adiabat. The current NIF specification requires that the timing of all four shocks be tuned to an accuracy of <= +/- 100ps. To meet these stringent requirements, dedicated tuning experiments are being planned to measure and adjust the shock timing on NIF. These tuning experiments will be performed in a modified hohlraum geometry, where a re-entrant Au cone is added to the standard NIF hohlraum to provide optical diagnostic (VISAR and SOP) access to the shocks as they break out of the ablator. This modified geometry is referred to as the 'keyhole' hohlraum and introduces a geometric difference between these tuning-experiments and the full ignition geometry. In order to assess the surrogacy of this modified geometry, 3D simulations using HYDRA [1] have been performed. The results from simulations of a quarter of the target geometry are presented. Comparisons of the hohlraum drive conditions and the resulting effect on the shock timing in the keyhole hohlraum are compared with the corresponding results for the standard ignition hohlraum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pak, A.; Dewald, E. L.; Landen, O. L.
2015-12-15
Temporally resolved measurements of the hohlraum radiation flux asymmetry incident onto a bismuth coated surrogate capsule have been made over the first two nanoseconds of ignition relevant laser pulses. Specifically, we study the P2 asymmetry of the incoming flux as a function of cone fraction, defined as the inner-to-total laser beam power ratio, for a variety of hohlraums with different scales and gas fills. This work was performed to understand the relevance of recent experiments, conducted in new reduced-scale neopentane gas filled hohlraums, to full scale helium filled ignition targets. Experimental measurements, matched by 3D view factor calculations, are usedmore » to infer differences in symmetry, relative beam absorption, and cross beam energy transfer (CBET), employing an analytic model. Despite differences in hohlraum dimensions and gas fill, as well as in laser beam pointing and power, we find that laser absorption, CBET, and the cone fraction, at which a symmetric flux is achieved, are similar to within 25% between experiments conducted in the reduced and full scale hohlraums. This work demonstrates a close surrogacy in the dynamics during the first shock between reduced-scale and full scale implosion experiments and is an important step in enabling the increased rate of study for physics associated with inertial confinement fusion.« less
First high-convergence cryogenic implosion in a near-vacuum hohlraum
Berzak Hopkins, L. F.; Meezan, N. B.; Le Pape, S.; ...
2015-04-29
Recent experiments on the National Ignition Facility [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] demonstrate that utilizing a near-vacuum hohlraum (low pressure gas-filled) is a viable option for high convergence cryogenic deuterium-tritium (DT) layered capsule implosions. This is made possible by using a dense ablator (high-density carbon), which shortens the drive duration needed to achieve high convergence: a measured 40% higher hohlraum efficiency than typical gas-filled hohlraums, which requires less laser energy going into the hohlraum, and an observed better symmetry control than anticipated by standard hydrodynamics simulations. The first series of near-vacuum hohlraum experiments culminated inmore » a 6.8 ns, 1.2 MJ laser pulse driving a 2-shock, high adiabat (α ~ 3.5) cryogenic DT layered high density carbon capsule. This resulted in one of the best performances so far on the NIF relative to laser energy, with a measured primary neutron yield of 1.8 X 10¹⁵ neutrons, with 20% calculated alpha heating at convergence ~27X.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kline, J. L.; Widmann, K.; Warrick, A.
2010-10-15
The first 96 and 192 beam vacuum Hohlraum target experiments have been fielded at the National Ignition Facility demonstrating radiation temperatures up to 340 eV and fluxes of 20 TW/sr as viewed by DANTE representing an {approx}20 times flux increase over NOVA/Omega scale Hohlraums. The vacuum Hohlraums were irradiated with 2 ns square laser pulses with energies between 150 and 635 kJ. They produced nearly Planckian spectra with about 30{+-}10% more flux than predicted by the preshot radiation hydrodynamic simulations. To validate these results, careful verification of all component calibrations, cable deconvolution, and software analysis routines has been conducted. Inmore » addition, a half Hohlraum experiment was conducted using a single 2 ns long axial quad with an irradiance of {approx}2x10{sup 15} W/cm{sup 2} for comparison with NIF Early Light experiments completed in 2004. We have also completed a conversion efficiency test using a 128-beam nearly uniformly illuminated gold sphere with intensities kept low (at 1x10{sup 14} W/cm{sup 2} over 5 ns) to avoid sensitivity to modeling uncertainties for nonlocal heat conduction and nonlinear absorption mechanisms, to compare with similar intensity, 3 ns OMEGA sphere results. The 2004 and 2009 NIF half-Hohlraums agreed to 10% in flux, but more importantly, the 2006 OMEGA Au Sphere, the 2009 NIF Au sphere, and the calculated Au conversion efficiency agree to {+-}5% in flux, which is estimated to be the absolute calibration accuracy of the DANTEs. Hence we conclude that the 30{+-}10% higher than expected radiation fluxes from the 96 and 192 beam vacuum Hohlraums are attributable to differences in physics of the larger Hohlraums.« less
Moody, J D; Clancy, T J; Frieders, G; Celliers, P M; Ralph, J; Turnbull, D P
2014-11-01
Laser pre-pulse and early-time laser reflection from the hohlraum wall onto the capsule (termed "glint") can cause capsule imprint and unwanted early-time shocks on indirect drive implosion experiments. In a minor modification to the existing velocity interferometer system for any reflector diagnostic on NIF a fast-response vacuum photodiode was added to detect this light. The measurements show evidence of laser pre-pulse and possible light reflection off the hohlraum wall and onto the capsule.
The Hohlraum Drive Campaign on the National Ignition Facility
NASA Astrophysics Data System (ADS)
Moody, John D.
2013-10-01
The Hohlraum drive effort on the National Ignition Facility (NIF) laser has three primary goals: 1) improve hohlraum performance by improving laser beam propagation, reducing backscatter from laser plasma interactions (LPI), controlling x-ray and electron preheat, and modifying the x-ray drive spectrum; 2) improve understanding of crossbeam energy transfer physics to better evaluate this as a symmetry tuning method; and 3) improve modeling in order to find optimum designs. Our experimental strategy for improving performance explores the impact of significant changes to the hohlraum shape, wall material, gasfill composition, and gasfill density on integrated implosion experiments. We are investigating the performance of a rugby-shaped design that has a significantly larger diameter (7 mm) at the waist than our standard 5.75 mm diameter cylindrical-shaped hohlraum but maintains approximately the same wall area. We are also exploring changes to the gasfill composition in cylindrical hohlraums by using neopentane at room temperature to compare with our standard helium gasfill. In addition, we are also investigating higher He gasfill density (1.6 mg/cc vs nominal 0.96 mg/cc) and increased x-ray drive very early in the pulse. Besides these integrated experiments, our strategy includes experiments testing separate aspects of the hohlraum physics. These include time-resolved and time-integrated measurements of cross-beam transfer rates and laser-beam spatial power distribution at early and late times using modified targets. Non-local thermal equilibrium modeling and heat transport relevant to ignition experiments are being studied using sphere targets on the Omega laser system. These simpler targets provide benchmarks for improving our modeling tools. This talk will summarize the results of the Hohlraum Drive campaign and discuss future directions. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA2-344.
LDRD Final Report: Advanced Hohlraum Concepts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Ogden S.
Indirect drive inertial confinement fusion (ICF) experiments to date have mostly used cylindrical, laser-heated, gas-filled hohlraums to produce the radiation drive needed to symmetrically implode DT-filled fusion capsules. These hohlraums have generally been unable to produce a symmetric radiation drive through the end of the desired drive pulse, and are plagued with complications due to laser-plasma interactions (LPI) that have made it difficult to predict their performance. In this project we developed several alternate hohlraum concepts. These new hohlraums utilize different hohlraum geometries, radiation shields, and foam materials in an attempt to improve performance relative to cylindrical hohlraums. Each alternatemore » design was optimized using radiation hydrodynamic (RH) design codes to implode a reference DT capsule with a high-density carbon (HDC) ablator. The laser power and energy required to produce the desired time-dependent radiation drive, and the resulting time-dependent radiation symmetry for each new concept were compared to the results for a reference cylindrical hohlraum. Since several of the new designs needed extra laser entrance holes (LEHs), techniques to keep small LEHs open longer, including high-Z foam liners and low-Z wires at the LEH axis, were investigated numerically. Supporting experiments and target fabrication efforts were also done as part of this project. On the Janus laser facility plastic tubes open at one end (halfraums) and filled with SiO 2 or Ta 2O 5 foam were heated with a single 2w laser. Laser propagation and backscatter were measured. Generally the measured propagation was slower than calculated, and the measured laser backscatter was less than calculated. A comparable, scaled up experiment was designed for the NIF facility and four targets were built. Since low density gold foam was identified as a desirable material for lining the LEH and the hohlraum wall, a technique was developed to produce 550 mg/cc gold foam, and a sample of this material was successfully manufactured.« less
NASA Astrophysics Data System (ADS)
Amendt, Peter; Ross, J. Steven; Milovich, Jose L.; Schneider, Marilyn; Storm, Erik; Callahan, Debra A.; Hinkel, Denise; Lasinski, Barbara; Meeker, Don; Michel, Pierre; Moody, John; Strozzi, David
2014-11-01
Rugby-shaped gold hohlraums driven by a nominal low-adiabat laser pulse shape have been tested on the National Ignition Facility. The rugby affords a higher coupling efficiency than a comparably sized cylinder hohlraum or, alternatively, improved drive symmetry and laser beam clearances for a larger hohlraum with similar cylinder wall area and laser energy. A first (large rugby hohlraum) shot at low energy (0.75 MJ) to test laser backscatter resulted in a moderately oblate CH capsule implosion, followed by a high energy shot (1.3 MJ) that gave a highly oblate compressed core according to both time-integrated and -resolved x-ray images. These implosions used low wavelength separation (1.0 Å) between the outer and inner cones to provide an alternative platform free of significant cross-beam energy transfer for simplified hohlraum dynamics. Post-shot 2- and 3-D radiation-hydrodynamic simulations using the high-flux model [M. D. Rosen et al., High Energy Density Phys. 7, 180 (2011)], however, give nearly round implosions for both shots, in striking contrast with observations. An analytic assessment of Rayleigh-Taylor hydrodynamic instability growth on the gold-helium gas-fill interface shows the potential for significant linear growth, saturation and transition to a highly nonlinear state. Candidate seeds for instability growth include laser speckle during the early-time laser picket episode in the presence of only partial temporal beam smoothing (1-D smoothing by spectral dispersion and polarization smoothing) and intensity modulations from quad-to-quad and beam overlap. Radiation-hydrodynamic 2-D simulations adapted to include a dynamic fall-line mix model across the unstable Au-He interface show good agreement with the observed implosion symmetry for both shots using an interface-to-fall-line penetration fraction of 100%. Physically, the potential development of an instability layer in a rugby hohlraum is tantamount to an enhanced wall motion leading to hindered inner-beam propagation, due largely to the confluence of rugby shape and low ray angles relative to the hohlraum symmetry axis. A significant inward pointing shift of 500 μm in the outer cones for the third (full energy) shot of the series was used to improve the inner-beam propagation, resulting in a nearly symmetric x-ray self-emission image of the compressed core and reduced sensitivity to mix. Comparatively low time-dependent symmetry swings were also measured, and a significantly lower hot electron fraction was measured for potentially favorable fuel adiabat control. The outer cone stimulated Brillouin scatter levels jumped significantly, but remedial measures such as the use of a boron dopant in the Au wall are planned. A continuing trend of delayed implosion times is found in rugby hohlraums, suggesting levels of unaccounted hohlraum energy (˜150-200 kJ) similar to what is inferred in cylinder hohlraums. A mix-based physical scenario is described, based on suppressed channel heat flux to the dense gold wall from a temperature-gradient reversal induced by a multispecies plasma lapse rate [P. Amendt, C. Bellei, and S. C. Wilks, Phys. Rev. Lett. 109, 075002 (2012)].
NASA Astrophysics Data System (ADS)
Izumi, N.; Meezan, N. B.; Divol, L.; Hall, G. N.; Barrios, M. A.; Jones, O.; Landen, O. L.; Kroll, J. J.; Vonhof, S. A.; Nikroo, A.; Jaquez, J.; Bailey, C. G.; Hardy, C. M.; Ehrlich, R. B.; Town, R. P. J.; Bradley, D. K.; Hinkel, D. E.; Moody, J. D.
2016-11-01
The high fuel capsule compression required for indirect drive inertial confinement fusion requires careful control of the X-ray drive symmetry throughout the laser pulse. When the outer cone beams strike the hohlraum wall, the plasma ablated off the hohlraum wall expands into the hohlraum and can alter both the outer and inner cone beam propagations and hence the X-ray drive symmetry especially at the final stage of the drive pulse. To quantitatively understand the wall motion, we developed a new experimental technique which visualizes the expansion and stagnation of the hohlraum wall plasma. Details of the experiment and the technique of spectrally selective x-ray imaging are discussed.
Izumi, N; Meezan, N B; Divol, L; Hall, G N; Barrios, M A; Jones, O; Landen, O L; Kroll, J J; Vonhof, S A; Nikroo, A; Jaquez, J; Bailey, C G; Hardy, C M; Ehrlich, R B; Town, R P J; Bradley, D K; Hinkel, D E; Moody, J D
2016-11-01
The high fuel capsule compression required for indirect drive inertial confinement fusion requires careful control of the X-ray drive symmetry throughout the laser pulse. When the outer cone beams strike the hohlraum wall, the plasma ablated off the hohlraum wall expands into the hohlraum and can alter both the outer and inner cone beam propagations and hence the X-ray drive symmetry especially at the final stage of the drive pulse. To quantitatively understand the wall motion, we developed a new experimental technique which visualizes the expansion and stagnation of the hohlraum wall plasma. Details of the experiment and the technique of spectrally selective x-ray imaging are discussed.
First beryllium capsule implosions on the National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kline, J. L.; Yi, S. A.; Simakov, A. N.
2016-05-15
The first indirect drive implosion experiments using Beryllium (Be) capsules at the National Ignition Facility confirm the superior ablation properties and elucidate possible Be-ablator issues such as hohlraum filling by ablator material. Since the 1990s, Be has been the preferred Inertial Confinement Fusion (ICF) ablator because of its higher mass ablation rate compared to that of carbon-based ablators. This enables ICF target designs with higher implosion velocities at lower radiation temperatures and improved hydrodynamic stability through greater ablative stabilization. Recent experiments to demonstrate the viability of Be ablator target designs measured the backscattered laser energy, capsule implosion velocity, core implosionmore » shape from self-emission, and in-flight capsule shape from backlit imaging. The laser backscatter is similar to that from comparable plastic (CH) targets under the same hohlraum conditions. Implosion velocity measurements from backlit streaked radiography show that laser energy coupling to the hohlraum wall is comparable to plastic ablators. The measured implosion shape indicates no significant reduction of laser energy from the inner laser cone beams reaching the hohlraum wall as compared with plastic and high-density carbon ablators. These results indicate that the high mass ablation rate for beryllium capsules does not significantly alter hohlraum energetics. In addition, these data, together with data for low fill-density hohlraum performance, indicate that laser power multipliers, required to reconcile simulations with experimental observations, are likely due to our limited understanding of the hohlraum rather than the capsule physics since similar multipliers are needed for both Be and CH capsules as seen in experiments.« less
First beryllium capsule implosions on the National Ignition Facility
Kline, J. L.; Yi, S. A.; Simakov, A. N.; ...
2016-05-01
The first indirect drive implosion experiments using Beryllium (Be) capsules at the National Ignition Facility confirm the superior ablation properties and elucidate possible Be-ablator issues such as hohlraum filling by ablator material. Since the 1990s, Be has been the preferred Inertial Confinement Fusion (ICF) ablator because of its higher mass ablation rate compared to that of carbon-based ablators. This enables ICF target designs with higher implosion velocities at lower radiation temperatures and improved hydrodynamic stability through greater ablative stabilization. Recent experiments to demonstrate the viability of Be ablator target designs measured the backscattered laser energy, capsule implosion velocity, core implosionmore » shape from self-emission, and in-flight capsule shape from backlit imaging. The laser backscatter is similar to that from comparable plastic (CH) targets under the same hohlraum conditions. Implosion velocity measurements from backlit streaked radiography show that laser energy coupling to the hohlraum wall is comparable to plastic ablators. The measured implosion shape indicates no significant reduction of laser energy from the inner laser cone beams reaching the hohlraum wall as compared with plastic and high-density carbon ablators. These results indicate that the high mass ablation rate for beryllium capsules does not significantly alter hohlraum energetics. In addition, these data, together with data for low fill-density hohlraum performance, indicate that laser power multipliers, required to reconcile simulations with experimental observations, are likely due to our limited understanding of the hohlraum rather than the capsule physics since similar multipliers are needed for both Be and CH capsules as seen in experiments.« less
Ralph, J. E.; Strozzi, D.; Ma, T.; ...
2016-12-29
Room temperature or “warm” (273 K) indirect drive hohlraum experiments have been conducted on the National Ignition Facility with laser energies up to 1.26 MJ and compared to similar cryogenic or “cryo” (~20 K) experiments. Warm experiments use neopentane (C 5H 12) as the low pressure hohlraum fill gas instead of helium, and propane (C 3H 8) to replace the cryogenic DT or DHe3 capsule fill. The increased average Z of the hohlraum fill leads to increased inverse bremsstrahlung absorption and an overall hotter hohlraum plasma in simulations. The cross beam energy transfer (CBET) from outer laser beams (pointed towardmore » the laser entrance hole) to inner beams (pointed at the equator) was inferred indirectly from measurements of Stimulated Raman Scattering (SRS). These experiments show that a similar hot spot self-emission shape can be produced with less CBET in warm hohlraums. The measured inner cone SRS reflectivity (as a fraction of incident power neglecting CBET) is ~2.5× less in warm than cryo shots with similar hot spot shapes, due to a less need for CBET. The measured outer-beam stimulated the Brillouin scattering power that was higher in the warm shots, leading to a ceiling on power to avoid the optics damage. These measurements also show that the CBET induced by the flow where the beams cross can be effectively mitigated by a 1.5 Å wavelength shift between the inner and outer beams. A smaller scale direct comparison indicates that warm shots give a more prolate implosion than cryo shots with the same wavelength shift and pulse shape. Lastly, the peak radiation temperature was found to be between 5 and 7 eV higher in the warm than the corresponding cryo experiments after accounting for differences in backscatter.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ralph, J. E.; Strozzi, D.; Ma, T.
Room temperature or “warm” (273 K) indirect drive hohlraum experiments have been conducted on the National Ignition Facility with laser energies up to 1.26 MJ and compared to similar cryogenic or “cryo” (~20 K) experiments. Warm experiments use neopentane (C 5H 12) as the low pressure hohlraum fill gas instead of helium, and propane (C 3H 8) to replace the cryogenic DT or DHe3 capsule fill. The increased average Z of the hohlraum fill leads to increased inverse bremsstrahlung absorption and an overall hotter hohlraum plasma in simulations. The cross beam energy transfer (CBET) from outer laser beams (pointed towardmore » the laser entrance hole) to inner beams (pointed at the equator) was inferred indirectly from measurements of Stimulated Raman Scattering (SRS). These experiments show that a similar hot spot self-emission shape can be produced with less CBET in warm hohlraums. The measured inner cone SRS reflectivity (as a fraction of incident power neglecting CBET) is ~2.5× less in warm than cryo shots with similar hot spot shapes, due to a less need for CBET. The measured outer-beam stimulated the Brillouin scattering power that was higher in the warm shots, leading to a ceiling on power to avoid the optics damage. These measurements also show that the CBET induced by the flow where the beams cross can be effectively mitigated by a 1.5 Å wavelength shift between the inner and outer beams. A smaller scale direct comparison indicates that warm shots give a more prolate implosion than cryo shots with the same wavelength shift and pulse shape. Lastly, the peak radiation temperature was found to be between 5 and 7 eV higher in the warm than the corresponding cryo experiments after accounting for differences in backscatter.« less
Green frequency-doubled laser-beam propagation in high-temperature hohlraum plasmas.
Niemann, C; Berger, R L; Divol, L; Froula, D H; Jones, O; Kirkwood, R K; Meezan, N; Moody, J D; Ross, J; Sorce, C; Suter, L J; Glenzer, S H
2008-02-01
We demonstrate propagation and small backscatter losses of a frequency-doubled (2omega) laser beam interacting with inertial confinement fusion hohlraum plasmas. The electron temperature of 3.3 keV, approximately a factor of 2 higher than achieved in previous experiments with open geometry targets, approaches plasma conditions of high-fusion yield hohlraums. In this new temperature regime, we measure 2omega laser-beam transmission approaching 80% with simultaneous backscattering losses of less than 10%. These findings suggest that good laser coupling into fusion hohlraums using 2omega light is possible.
Progress of Rugby Hohlraum Experiments on Omega
NASA Astrophysics Data System (ADS)
Philippe, Franck; Tassin, Veronique; Casner, Alexis; Gauthier, Pascal; Seytor, Patricia; Monteil, Marie-Christine; Park, Hye-Sook; Robey, Harry; Ross, Steven; Amendt, Peter; Girard, Frederic; Villette, Bruno; Reverdin, Charles; Loiseau, Pascal; Caillaud, Tony; Landoas, Olivier; Li, Chi Kang; Petrasso, Richard; Seguin, Fredrick; Rosenberg, Markus
2011-10-01
The rugby hohlraum concept is predicted to enable better coupling and higher gains in the indirect drive approach to ignition. A collaborative experimental program is currently pursued on OMEGA to test this concept in preparation for future megajoule-scale ignition designs. A direct comparison of gas-filled rugby hohlraums with classical cylinders was recently performed, showing a significant (up to ~40%) observed x-ray drive enhancement and neutron yields that are consistently higher in the rugby case. This work extends and confirms our previous findings in empty rugby hohlraums.
Saturation of multi-laser beams laser-plasma instabilities from stochastic ion heating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michel, P.; Williams, E. A.; Divol, L.
2013-05-15
Cross-beam energy transfer (CBET) has been used as a tool on the National Ignition Facility (NIF) since the first energetics experiments in 2009 to control the energy deposition in ignition hohlraums and tune the implosion symmetry. As large amounts of power are transferred between laser beams at the entrance holes of NIF hohlraums, the presence of many overlapping beat waves can lead to stochastic ion heating in the regions where laser beams overlap [P. Michel et al., Phys. Rev. Lett. 109, 195004 (2012)]. This increases the ion acoustic velocity and modifies the ion acoustic waves’ dispersion relation, thus reducing themore » plasma response to the beat waves and the efficiency of CBET. This pushes the plasma oscillations driven by CBET in a regime where the phase velocities are much smaller than both the electron and ion thermal velocities. CBET gains are derived for this new regime and generalized to the case of multi ion species plasmas.« less
Implosion spectroscopy in Rugby hohlraums on OMEGA
NASA Astrophysics Data System (ADS)
Philippe, Franck; Tassin, Veronique; Bitaud, Laurent; Seytor, Patricia; Reverdin, Charles
2014-10-01
The rugby hohlraum concept has been validated in previous experiments on the OMEGA laser facility. This new hohlraum type can now be used as a well-characterized experimental platform to study indirect drive implosion, at higher radiation temperatures than would be feasible at this scale with classical cylindrical hohlraums. Recent experiments have focused on the late stages of implosion and hotspot behavior. The capsules included both a thin buried Titanium tracer layer, 0-3 microns from the inner surface, Argon dopant in the deuterium gas fuel and Germanium doped CH shells, providing a variety of spectral signatures of the plasma conditions in different parts of the target. X-ray spectroscopy and imaging were used to study compression, Rayleigh-Taylor instabilities growth at the inner surface and mix between the shell and gas.
Progress towards a more predictive model for hohlraum radiation drive and symmetry
NASA Astrophysics Data System (ADS)
Jones, O. S.; Suter, L. J.; Scott, H. A.; Barrios, M. A.; Farmer, W. A.; Hansen, S. B.; Liedahl, D. A.; Mauche, C. W.; Moore, A. S.; Rosen, M. D.; Salmonson, J. D.; Strozzi, D. J.; Thomas, C. A.; Turnbull, D. P.
2017-05-01
For several years, we have been calculating the radiation drive in laser-heated gold hohlraums using flux-limited heat transport with a limiter of 0.15, tabulated values of local thermodynamic equilibrium gold opacity, and an approximate model for not in a local thermodynamic equilibrium (NLTE) gold emissivity (DCA_2010). This model has been successful in predicting the radiation drive in vacuum hohlraums, but for gas-filled hohlraums used to drive capsule implosions, the model consistently predicts too much drive and capsule bang times earlier than measured. In this work, we introduce a new model that brings the calculated bang time into better agreement with the measured bang time. The new model employs (1) a numerical grid that is fully converged in space, energy, and time, (2) a modified approximate NLTE model that includes more physics and is in better agreement with more detailed offline emissivity models, and (3) a reduced flux limiter value of 0.03. We applied this model to gas-filled hohlraum experiments using high density carbon and plastic ablator capsules that had hohlraum He fill gas densities ranging from 0.06 to 1.6 mg/cc and hohlraum diameters of 5.75 or 6.72 mm. The new model predicts bang times to within ±100 ps for most experiments with low to intermediate fill densities (up to 0.85 mg/cc). This model predicts higher temperatures in the plasma than the old model and also predicts that at higher gas fill densities, a significant amount of inner beam laser energy escapes the hohlraum through the opposite laser entrance hole.
Experimental room temperature hohlraum performance study on the National Ignition Facility
NASA Astrophysics Data System (ADS)
Ralph, J. E.; Strozzi, D.; Ma, T.; Moody, J. D.; Hinkel, D. E.; Callahan, D. A.; MacGowan, B. J.; Michel, P.; Kline, J. L.; Glenzer, S. H.; Albert, F.; Benedetti, L. R.; Divol, L.; MacKinnon, A. J.; Pak, A.; Rygg, J. R.; Schneider, M. B.; Town, R. P. J.; Widmann, K.; Hsing, W.; Edwards, M. J.
2016-12-01
Room temperature or "warm" (273 K) indirect drive hohlraum experiments have been conducted on the National Ignition Facility with laser energies up to 1.26 MJ and compared to similar cryogenic or "cryo" (˜20 K) experiments. Warm experiments use neopentane (C5H12) as the low pressure hohlraum fill gas instead of helium, and propane (C3H8) to replace the cryogenic DT or DHe3 capsule fill. The increased average Z of the hohlraum fill leads to increased inverse bremsstrahlung absorption and an overall hotter hohlraum plasma in simulations. The cross beam energy transfer (CBET) from outer laser beams (pointed toward the laser entrance hole) to inner beams (pointed at the equator) was inferred indirectly from measurements of Stimulated Raman Scattering (SRS). These experiments show that a similar hot spot self-emission shape can be produced with less CBET in warm hohlraums. The measured inner cone SRS reflectivity (as a fraction of incident power neglecting CBET) is ˜2.5 × less in warm than cryo shots with similar hot spot shapes, due to a less need for CBET. The measured outer-beam stimulated the Brillouin scattering power that was higher in the warm shots, leading to a ceiling on power to avoid the optics damage. These measurements also show that the CBET induced by the flow where the beams cross can be effectively mitigated by a 1.5 Å wavelength shift between the inner and outer beams. A smaller scale direct comparison indicates that warm shots give a more prolate implosion than cryo shots with the same wavelength shift and pulse shape. Finally, the peak radiation temperature was found to be between 5 and 7 eV higher in the warm than the corresponding cryo experiments after accounting for differences in backscatter.
Izumi, N.; Meezan, N. B.; Divol, L.; ...
2016-08-12
The high fuel capsule compression required for indirect drive inertial confinement fusion (ICF) requires careful control of the X-raydrive symmetry throughout the laser pulse. When the outer cone beams strike the hohlraum wall, the plasma ablated off the hohlraum wall expands into the hohlraum and can alter both the outer and inner cone beam propagation and hencethe X-raydrive symmetry especially at thefinal stage of the drive pulse. In order to quantitatively understand the wall motion, we developed a new experimental technique which visualizes the expansion and stagnation of the hohlraum wall plasma. Finally, we discuss details of the experiment andmore » the technique of spectrally selectivex-ray imaging.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izumi, N., E-mail: izumi2@llnl.gov; Meezan, N. B.; Divol, L.
The high fuel capsule compression required for indirect drive inertial confinement fusion requires careful control of the X-ray drive symmetry throughout the laser pulse. When the outer cone beams strike the hohlraum wall, the plasma ablated off the hohlraum wall expands into the hohlraum and can alter both the outer and inner cone beam propagations and hence the X-ray drive symmetry especially at the final stage of the drive pulse. To quantitatively understand the wall motion, we developed a new experimental technique which visualizes the expansion and stagnation of the hohlraum wall plasma. Details of the experiment and the techniquemore » of spectrally selective x-ray imaging are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izumi, N.; Meezan, N. B.; Divol, L.
The high fuel capsule compression required for indirect drive inertial confinement fusion (ICF) requires careful control of the X-raydrive symmetry throughout the laser pulse. When the outer cone beams strike the hohlraum wall, the plasma ablated off the hohlraum wall expands into the hohlraum and can alter both the outer and inner cone beam propagation and hencethe X-raydrive symmetry especially at thefinal stage of the drive pulse. In order to quantitatively understand the wall motion, we developed a new experimental technique which visualizes the expansion and stagnation of the hohlraum wall plasma. Finally, we discuss details of the experiment andmore » the technique of spectrally selectivex-ray imaging.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vandenboomgaerde, M.; Bonnefille, M.; Gauthier, P.
Highly resolved radiation-hydrodynamics FCI2 simulations have been performed to model laser experiments on the National Ignition Facility. In these experiments, cylindrical gas-filled hohlraums with gold walls are driven by a 20 ns laser pulse. For the first time, simulations show the appearance of Kelvin-Helmholtz (KH) vortices at the interface between the expanding wall material and the gas fill. In this paper, we determine the mechanisms which generate this instability: the increase of the gas pressure around the expanding gold plasma leads to the aggregation of an over-dense gold layer simultaneously with shear flows. At the surface of this layer, all themore » conditions are met for a KH instability to grow. Later on, as the interface decelerates, the Rayleigh-Taylor instability also comes into play. A potential scenario for the generation of a mixing zone at the gold-gas interface due to the KH instability is presented. Our estimates of the Reynolds number and the plasma diffusion width at the interface support the possibility of such a mix. The key role of the first nanosecond of the laser pulse in the instability occurrence is also underlined.« less
Cryogenic THD and DT layer implosions with high density carbon ablators in near-vacuum hohlraums
Meezan, N. B.; Berzak Hopkins, L. F.; Le Pape, S.; ...
2015-06-02
High Density Carbon (HDC or diamond) is a promising ablator material for use in near-vacuum hohlraums, as its high density allows for ignition designs with laser pulse durations of <10 ns. A series of Inertial Confinement Fusion (ICF) experiments in 2013 on the National Ignition Facility [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] culminated in a DT layered implosion driven by a 6.8 ns, 2-shock laser pulse. This paper describes these experiments and comparisons with ICF design code simulations. Backlit radiography of a THD layered capsule demonstrated an ablator implosion velocity of 385 km/s with a slightlymore » oblate hot spot shape. Other diagnostics suggested an asymmetric compressed fuel layer. A streak camera-based hot spot self-emission diagnostic (SPIDER) showed a double-peaked history of the capsule self-emission. Simulations suggest that this is a signature of low quality hot spot formation. Changes to the laser pulse and pointing for a subsequent DT implosion resulted in a higher temperature, prolate hot spot and a thermonuclear yield of 1.8 x 10¹⁵ neutrons, 40% of the 1D simulated yield.« less
NASA Astrophysics Data System (ADS)
Moore, Alastair; Meezan, N.; Thomas, C.; Baker, K.; Baumann, T.; Biener, M.; Bhandarkar, S.; Goyon, C.; Hsing, W.; Izumi, N.; Landen, O.; Nikroo, A.; Rosen, M.; Moody, J.
2017-10-01
The expansion of a laser-heated hohlraum wall can quickly fill the cavity and reduce or prevent propagation of other laser beams into the hohlraum. To delay such plasma filling, ignition hohlraums have typically used a high-density gas-fill or have been irradiated with a short (< 10 ns) laser pulse; the former can cause laser plasma instabilities (LPI), while a short laser pulse limits the design space required to reach symmetric implosions. Foam-liners are predicted to mitigate wall motion in a low gas-fill hohlraum, and so would enable the hohlraum to usefully drive a capsule over a longer duration. On the National Ignition Facility we have been engaged in two types of experiments to study foam-lined hohlraums. The first aims to radiograph the expansion of a foam-lined Au wall in a cylindrical geometry and, using simulation, infer the location of the 1/4 ncrit surface. We observe that a 20 mg/cc Ta2O5 foam, 200 μm thick delays the expansion of Au hohlraum wall by 0.5 - 0.7 ns. The second type introduces a Ta2O5 foam-liner into a hohlraum and are designed to measure the effect of the foam-liner on capsule drive. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Xie, Xufei; Du, Huabing; Chen, Jinwen; Liu, Shenye; Li, Zhichao; Yang, Dong; Huang, Yunbao; Ren, Kuan; Hou, Lifei; Li, Sanwei; Guo, Liang; Jiang, Xiaohua; Huo, Wenyi; Chen, Yaohua; Ren, Guoli; Lan, Ke; Wang, Feng; Jiang, Shaoen; Ding, Yongkun
2018-06-01
Space-resolving flux detection is an important technique for the diagnostic of the radiation field within the hohlraum in inertial confinement fusion, especially for the radiation field diagnostic in the novel spherical hohlraum with octahedral six laser entrance holes (LEHs), where localized measurements are necessary for the discrimination of the radiation flux from different LEHs. A novel space-resolving flux detector (SRFD) is developed at the SG-III laser facility for the radiation flux measurement in the first campaign of the octahedral spherical hohlraum energetics experiment. The principle and configuration of the SRFD system is introduced. The radiation flux from the wall of a gas-filled octahedral spherical hohlraum is measured for the first time by placing the SRFD system at the equatorial position of the SG-III laser facility, aiming at the hohlraum wall through one of the six LEHs. The absolute radiation flux from the re-emission area on the hohlraum wall is measured, and good consistency is found between the experimental data and the calculated data from a three-dimensional view factor analysis.
Comparison of high-density carbon implosions in unlined uranium versus gold hohlraums
NASA Astrophysics Data System (ADS)
Dewald, Eduard; Meezan, Nathan; Tommasini, Riccardo; Khan, Shahab; MacKinnon, Andrew; Berzak Hopkins, Laura; Divol, Laurent; Lepape, Sebastien; Moore, Alastair; Schneider, Marilyn; Pak, Arthur; Nikroo, Abbas; Landen, Otto
2016-10-01
In Inertial Confinement Fusion (ICF) implosions, laser energy is converted to x-ray radiation in hohlraums with High-Z walls. At radiation temperatures near 300 eV relevant for ICF experiments, the radiative losses in heating the wall are lower for U than for Au hohlraums. Furthermore, the intensity of the ``M-band'' x-rays with photon energies h ν >1.8 keV is lower for uranium, allowing for reduced capsule dopant concentrations employed to minimize inner ablator preheat and hence keep favorable fuel/ablator interface Atwood numbers. This in turn improves the ablator rocket efficiency and reduces the risk of polluting the hot-spot with emissive dopant material. The first uranium vacuum hohlraum experiments on the National Ignition Facility (NIF) with undoped high-density carbon (HDC, or diamond) capsules have demonstrated 30% lower ``M-band'' intensity relative to Au, resulting in lower inflight ablator thickness due to reduced preheat. In addition, fusion neutron yields are 2x higher in U than in Au hohlraums for D2-gas filled capsule implosions at ICF relevant velocities of 380 +/-20 km/s. These results have led the NIF ICF implosions to routinely employ U hohlraums. Prepared by LLNL under Contract DE-AC52-07NA27344.
Delamater, N D; Wilson, D C; Kyrala, G A; Seifter, A; Hoffman, N M; Dodd, E; Singleton, R; Glebov, V; Stoeckl, C; Li, C K; Petrasso, R; Frenje, J
2008-10-01
We present the calculations and preliminary results from experiments on the Omega laser facility using d-(3)He filled plastic capsule implosions in gold Hohlraums. These experiments aim to develop a technique to measure shell rho r and capsule unablated mass with proton spectroscopy and will be applied to future National Ignition Facility (NIF) experiments with ignition scale capsules. The Omega Hohlraums are 1900 microm length x 1200 microm diameter and have a 70% laser entrance hole. This is approximately a 0.2 NIF scale ignition Hohlraum and reaches temperatures of 265-275 eV similar to those during the peak of the NIF drive. These capsules can be used as a diagnostic of shell rho r, since the d-(3)He gas fill produces 14.7 MeV protons in the implosion, which escape through the shell and produce a proton spectrum that depends on the integrated rho r of the remaining shell mass. The neutron yield, proton yield, and spectra change with capsule shell thickness as the unablated mass or remaining capsule rho r changes. Proton stopping models are used to infer shell unablated mass and shell rho r from the proton spectra measured with different filter thicknesses. The experiment is well modeled with respect to Hohlraum energetics, neutron yields, and x-ray imploded core image size, but there are discrepancies between the observed and simulated proton spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao, Liang; Zhao, Yiqing; Hu, Xiaoyan
2014-07-15
Experiments about the observations of stimulated Raman backscatter (SRS) and stimulated Brillouin backscatter (SBS) in Hohlraum were performed on Shenguang-III (SG-III) prototype facility for the first time in 2011. In this paper, relevant experimental results are analyzed for the first time with a one-dimension spectral analysis code, which is developed to study the coexistent process of SRS and SBS in Hohlraum plasma condition. Spectral features of the backscattered light are discussed with different plasma parameters. In the case of empty Hohlraum experiments, simulation results indicate that SBS, which grows fast at the energy deposition region near the Hohlraum wall, ismore » the dominant instability process. The time resolved spectra of SRS and SBS are numerically obtained, which agree with the experimental observations. For the gas-filled Hohlraum experiments, simulation results show that SBS grows fastest in Au plasma and amplifies convectively in C{sub 5}H{sub 12} gas, whereas SRS mainly grows in the high density region of the C{sub 5}H{sub 12} gas. Gain spectra and the spectra of backscattered light are simulated along the ray path, which clearly show the location where the intensity of scattered light with a certain wavelength increases. This work is helpful to comprehend the observed spectral features of SRS and SBS. The experiments and relevant analysis provide references for the ignition target design in future.« less
Backscatter spectra measurements of the two beams on the same cone on Shenguang-III laser facility
NASA Astrophysics Data System (ADS)
Zha, Weiyi; Yang, Dong; Xu, Tao; Liu, Yonggang; Wang, Feng; Peng, Xiaoshi; Li, Yulong; Wei, Huiyue; Liu, Xiangming; Mei, Yu; Yan, Yadong; He, Junhua; Li, Zhichao; Li, Sanwei; Jiang, Xiaohua; Guo, Liang; Xie, Xufei; Pan, Kaiqiang; Liu, Shenye; Jiang, Shaoen; Zhang, Baohan; Ding, Yongkun
2018-01-01
In laser driven hohlraums, laser beams on the same incident cone may have different beam and plasma conditions, causing beam-to-beam backscatter difference and subsequent azimuthal variations in the x-ray drive on the capsule. To elucidate the large variation of backscatter proportion from beam to beam in some gas-filled hohlraum shots on Shenguang-III, two 28.5° beams have been measured with the Stimulated Raman Scattering (SRS) time-resolved spectra. A bifurcated fiber is used to sample two beams and then coupled to a spectrometer and streak camera combination to reduce the cost. The SRS spectra, characterized by a broad wavelength, were further corrected considering the temporal distortion and intensity modulation caused by components along the light path. This measurement will improve the understanding of the beam propagation inside the hohlraum and related laser plasma instabilities.
Capsule performance optimization in the National Ignition Campaigna)
NASA Astrophysics Data System (ADS)
Landen, O. L.; Boehly, T. R.; Bradley, D. K.; Braun, D. G.; Callahan, D. A.; Celliers, P. M.; Collins, G. W.; Dewald, E. L.; Divol, L.; Glenzer, S. H.; Hamza, A.; Hicks, D. G.; Hoffman, N.; Izumi, N.; Jones, O. S.; Kirkwood, R. K.; Kyrala, G. A.; Michel, P.; Milovich, J.; Munro, D. H.; Nikroo, A.; Olson, R. E.; Robey, H. F.; Spears, B. K.; Thomas, C. A.; Weber, S. V.; Wilson, D. C.; Marinak, M. M.; Suter, L. J.; Hammel, B. A.; Meyerhofer, D. D.; Atherton, J.; Edwards, J.; Haan, S. W.; Lindl, J. D.; MacGowan, B. J.; Moses, E. I.
2010-05-01
A capsule performance optimization campaign will be conducted at the National Ignition Facility [G. H. Miller et al., Nucl. Fusion 44, 228 (2004)] to substantially increase the probability of ignition by laser-driven hohlraums [J. D. Lindl et al., Phys. Plasmas 11, 339 (2004)]. The campaign will experimentally correct for residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models before proceeding to cryogenic-layered implosions and ignition attempts. The required tuning techniques using a variety of ignition capsule surrogates have been demonstrated at the OMEGA facility under scaled hohlraum and capsule conditions relevant to the ignition design and shown to meet the required sensitivity and accuracy. In addition, a roll-up of all expected random and systematic uncertainties in setting the key ignition laser and target parameters due to residual measurement, calibration, cross-coupling, surrogacy, and scale-up errors has been derived that meets the required budget.
Capsule performance optimization in the National Ignition Campaign
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landen, O. L.; Bradley, D. K.; Braun, D. G.
2010-05-15
A capsule performance optimization campaign will be conducted at the National Ignition Facility [G. H. Miller et al., Nucl. Fusion 44, 228 (2004)] to substantially increase the probability of ignition by laser-driven hohlraums [J. D. Lindl et al., Phys. Plasmas 11, 339 (2004)]. The campaign will experimentally correct for residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models before proceeding to cryogenic-layered implosions and ignition attempts. The required tuning techniques using a variety of ignition capsule surrogates have been demonstrated at the OMEGA facility under scaled hohlraum and capsule conditions relevant to the ignition designmore » and shown to meet the required sensitivity and accuracy. In addition, a roll-up of all expected random and systematic uncertainties in setting the key ignition laser and target parameters due to residual measurement, calibration, cross-coupling, surrogacy, and scale-up errors has been derived that meets the required budget.« less
High Foot Implosion Experiments in Rugby Hohlraums
NASA Astrophysics Data System (ADS)
Ralph, Joseph; Leidinger, J.-P.; Callahan, D.; Kaiser, P.; Morice, O.; Marion, D.; Moody, J. D.; Ross, J. S.; Amendt, P.; Kritcher, A. L.; Milovich, J. L.; Strozzi, D.; Hinkel, D.; Michel, P.; Berzak Hopkins, L.; Pak, A.; Dewald, E. L.; Divol, L.; Khan, S.; Rygg, R.; Hurricane, O.; Lawrence Livermore National Lab Team; CEA/DAM Team
2015-11-01
The rugby hohlraum design is aimed at providing uniform x-ray drive on the capsule while minimizing the need for crossed beam energy transfer (CBET). As part of a series of experiments at the NIF using rugby hohlraums, design improvements in dual axis shock tuning experiments produced some of the most symmetric shocks measured on implosion experiments at the NIF. Additionally, tuning of the in-flight shell and hot spot shape have demonstrated that capsules can be tuned between oblate and prolate with measured velocities of nearly 340 km/s. However, these experimental measurements were accompanied by high levels of Stimulated Raman Scattering (SRS) that may result from the long inner beam path length, reamplification of the inner SRS by the outers, significant (CBET) or a combination of these. All rugby shots results were achieved with lower levels of hot electrons that can preheat the DT fuel layer for increased adiabat and reduced areal density. Detailed results from these experiments and those planned throughout the summer will be presented and compared with results obtained from cylindrical hohlraums. This work performed under the auspices of U.S. Department of Energy by Lawrence Livermore National Lab under Contract DE-AC52-07NA27344.
New compact hohlraum configuration research at the 1.7 MA Z-pinch generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kantsyrev, V. L., E-mail: victor@unr.edu; Shrestha, I. K.; Esaulov, A. A.
A new compact Z-pinch x-ray hohlraum design with parallel-driven x-ray sources was experimentally demonstrated in a full configuration with a central target and tailored shine shields (to provide a symmetric temperature distribution on the target) at the 1.7 MA Zebra generator. This presentation reports on the joint success of two independent lines of research. One of these was the development of new sources – planar wire arrays (PWAs). PWAs turned out to be a prolific radiator. Another success was the drastic improvement in energy efficiency of pulsed-power systems, such as the Load Current Multiplier (LCM). The Zebra/LCM generator almost doubledmore » the plasma load current to 1.7 MA. The two above-mentioned innovative approaches were used in combination to produce a new compact hohlraum design for ICF, as jointly proposed by SNL and UNR. Good agreement between simulated and measured radiation temperature of the central target is shown. Experimental comparison of PWAs with planar foil liners (PFL) - another viable alternative to wire array loads at multi-MA generators show promising data. Results of research at the University of Nevada Reno allowed for the study of hohlraum coupling physics at University-scale generators. The advantages of new hohlraum design applications for multi-MA facilities with W or Au double PWAs or PFL x-ray sources are discussed.« less
X-ray diagnostics of hohlraum plasma flow
NASA Astrophysics Data System (ADS)
Back, C. A.; Glenzer, S. H.; Landen, O. L.; MacGowan, B. J.; Shepard, T. D.
1997-01-01
In this study we use spectroscopy and x-ray imaging to investigate the macroscopic plasma flow in mm-sized laser-produced hohlraum plasmas. By using multiple diagnostics to triangulate the emission on a single experiment, we can pinpoint the position of dopants placed inside the hohlraum. X-ray emission from the foil has been used in the past to measure electron temperature. Here we analyze the spatial movement of dopant plasmas for comparison to hydrodynamic calculations.
NASA Astrophysics Data System (ADS)
Hall, G. N.; Jones, O. S.; Strozzi, D. J.; Moody, J. D.; Turnbull, D.; Ralph, J.; Michel, P. A.; Hohenberger, M.; Moore, A. S.; Landen, O. L.; Divol, L.; Bradley, D. K.; Hinkel, D. E.; Mackinnon, A. J.; Town, R. P. J.; Meezan, N. B.; Berzak Hopkins, L.; Izumi, N.
2017-05-01
Indirect drive inertial confinement fusion experiments were conducted at the National Ignition Facility to investigate the performance of the hohlraum drive as a function of hohlraum gas fill density by imploding high-density-carbon capsules using a 2-shock laser pulse. Measurements characterized the backscatter behavior, the production of hot electrons, the motion and brightness of the laser spots on the hohlraum wall, and the efficiency of the hohlraum x-ray drive as a function of gas fill density ρgf between 0.03 mg/cc ("near vacuum") and 1.6 mg/cc. For hohlraums with ρgf up to 0.85 mg/cc, very little stimulated Raman backscatter (SRS) was observed. For higher ρgf, significant SRS was produced and was observed to occur during the rise to peak laser power and throughout the main pulse. The efficiency with which laser energy absorbed by the hohlraum is converted into drive energy was measured to be the same for ρgf ≥ 0.6 mg/cc once the laser reached peak power. However, for the near vacuum case, the absorbed energy was converted to drive energy more efficiently throughout the pulse and maintained an efficiency ˜10% higher than the gas filled hohlraums throughout the main pulse.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, G. N.; Jones, O. S.; Strozzi, D. J.
Indirect drive inertial confinement fusion experiments were conducted at the National Ignition Facility to investigate the performance of the hohlraum drive as a function of hohlraum gas fill density by imploding high-density-carbon capsules using a 2-shock laser pulse. Our ,easurements characterize the backscatter behavior, the production of hot electrons, the motion and brightness of the laser spots on the hohlraum wall, and the efficiency of the hohlraum x-ray drive as a function of gas fill density ρ gf between 0.03 mg/cc (“near vacuum”) and 1.6 mg/cc. For hohlraums with ρ gf up to 0.85 mg/cc, very little stimulated Raman backscattermore » (SRS) was observed. Furthermore, for higher ρ gf, significant SRS was produced and was observed to occur during the rise to peak laser power and throughout the main pulse. The efficiency with which laser energy absorbed by the hohlraum is converted into drive energy was measured to be the same for ρ gf ≥ 0.6 mg/cc once the laser reached peak power. But, for the near vacuum case, the absorbed energy was converted to drive energy more efficiently throughout the pulse and maintained an efficiency ~10% higher than the gas filled hohlraums throughout the main pulse.« less
Hall, G. N.; Jones, O. S.; Strozzi, D. J.; ...
2017-05-11
Indirect drive inertial confinement fusion experiments were conducted at the National Ignition Facility to investigate the performance of the hohlraum drive as a function of hohlraum gas fill density by imploding high-density-carbon capsules using a 2-shock laser pulse. Our ,easurements characterize the backscatter behavior, the production of hot electrons, the motion and brightness of the laser spots on the hohlraum wall, and the efficiency of the hohlraum x-ray drive as a function of gas fill density ρ gf between 0.03 mg/cc (“near vacuum”) and 1.6 mg/cc. For hohlraums with ρ gf up to 0.85 mg/cc, very little stimulated Raman backscattermore » (SRS) was observed. Furthermore, for higher ρ gf, significant SRS was produced and was observed to occur during the rise to peak laser power and throughout the main pulse. The efficiency with which laser energy absorbed by the hohlraum is converted into drive energy was measured to be the same for ρ gf ≥ 0.6 mg/cc once the laser reached peak power. But, for the near vacuum case, the absorbed energy was converted to drive energy more efficiently throughout the pulse and maintained an efficiency ~10% higher than the gas filled hohlraums throughout the main pulse.« less
3D Simulations of the ``Keyhole'' Hohlraum for Shock Timing on NIF
NASA Astrophysics Data System (ADS)
Robey, H. F.; Marinak, M. M.; Munro, D. H.; Jones, O. S.
2007-11-01
Ignition implosions planned for the National Ignition Facility (NIF) require a pulse shape with a carefully designed series of steps, which launch a series of shocks through the ablator and DT fuel. The relative timing of these shocks must be tuned to better than +/- 100ps to maintain the DT fuel on a sufficiently low adiabat. To meet these requirements, pre-ignition tuning experiments using a modified hohlraum geometry are being planned. This modified geometry, known as the ``keyhole'' hohlraum, adds a re-entrant gold cone, which passes through the hohlraum and capsule walls, to provide an optical line-of-sight to directly measure the shocks as they break out of the ablator. In order to assess the surrogacy of this modified geometry, 3D simulations using HYDRA [1] have been performed. The drive conditions and the resulting effect on shock timing in the keyhole hohlraum will be compared with the corresponding results for the standard ignition hohlraum. [1] M.M. Marinak, et al., Phys. Plasmas 8, 2275 (2001).
Optimization of the NIF ignition point design hohlraum
NASA Astrophysics Data System (ADS)
Callahan, D. A.; Hinkel, D. E.; Berger, R. L.; Divol, L.; Dixit, S. N.; Edwards, M. J.; Haan, S. W.; Jones, O. S.; Lindl, J. D.; Meezan, N. B.; Michel, P. A.; Pollaine, S. M.; Suter, L. J.; Town, R. P. J.; Bradley, P. A.
2008-05-01
In preparation for the start of NIF ignition experiments, we have designed a porfolio of targets that span the temperature range that is consistent with initial NIF operations: 300 eV, 285 eV, and 270 eV. Because these targets are quite complicated, we have developed a plan for choosing the optimum hohlraum for the first ignition attempt that is based on this portfolio of designs coupled with early NIF experiements using 96 beams. These early experiments will measure the laser plasma instabilities of the candidate designs and will demonstrate our ability to tune symmetry in these designs. These experimental results, coupled with the theory and simulations that went into the designs, will allow us to choose the optimal hohlraum for the first NIF ignition attempt.
Interpretation of symmetry experiments on Omega
NASA Astrophysics Data System (ADS)
Lours, Laurence; Bastian, Josiane; Monteil, Marie-Christine; Philippe, Franck; Jadaud, Jean-Paul
2006-10-01
The interpretation of the symmetry experiments performed on Omega in 2005 with 3 cone LMJ-like irradiation is presented here. The goal of this campaign was the characterization of the irradiation symmetry by X-ray imaging of the D2Ar capsule. Images of backlit implosion (as done in earlier campaigns with foam balls) and core emission were obtained on the same shot, and can be compared to FCI2 simulations. This set of shots comfirms former results with foam balls of a good symmetry control with 3 cones in empty hohlraums. The influence of the hohlraum shape on symmetry is also studied by comparison of cylindrical hohlraums vs rugby ones.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kline, John L; Glenzer, S H; Olson, Rick
2010-01-01
The first 96 and 192 beam vacuum hohlraum have been fielded at the National Ignition Facility demonstrating radiation temperatures up to 340 eV and fluxes of 20 TW/sr representing a 20 times flux increase over NOVA/Omega scale hohlraums. The vacuum hohlraums were irradiated with 2 ns square pulses with energies between 150 - 635 kJ. They produced nearly Planckian spectra with about 30 {+-} 10% more flux than predicted by the current radiation hydrodynamic simulations after careful verification of all component calibrations (which included an {approx} 10% downward correction to Center X-Ray Optics opacities just below the Cu L edgemore » at 50-750 eV), cable deconvolution, and analysis software routines. To corroborate these results, first a half hohlraum experiment was conducted using a single 2 ns-long axial quad with an irradiance of {approx} 1-2 x 10{sup 15} W/cm{sup 2} for comparison with NIF Early Light experiments completed in 2004. Second, we completed a conversion efficiency test using a 128-beam nearly uniformly illuminated gold sphere with intensities kept low (at 1 x 10{sup 14} W/cm{sup 2} over 5 ns) to avoid sensitivity to modeling uncertainties for non-local heat conduction and non-linear absorption mechanisms, to compare with similar intensity, 3 ns OMEGA sphere results. The 2004 and 2009 NIF half-hohlraums agreed to 10% in flux, but more importantly, the 2006 OMEGA Au Sphere, the 2009 NIF Au sphere and the calculated Au conversion efficiency agree to {+-}5% in flux, which is estimated to be the absolute calibration accuracy of the DANTEs. Hence we concluded the 30 {+-} 10% higher than expected radiation fluxes from the 96 and 192 beam vacuum hohlraums are attributable to differences in physics when we transitioned to large hot hohlraums. Specifically, using variants in the atomic physics models and electron heat conduction, newer simulations show that nonlocalization of energy deposition leads to less energy being stored in the coronal plasma leading to higher x-ray conversion efficiency. Since the larger volume-to-area ratio hohlraums have large coronal plasmas which scale volumetrically, the reduction in energy losses to the corona become more pronounced than for smaller NOVA/Omega scale hohlraums. The higher conversion efficiencies are also consistent with observations from other 1 ns gold sphere experiments conducted at Omega with 1 x 10{sup 15} W/cm{sup 2} laser irradiances.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fehl, D.L.; Chandler, G.A.; Biggs, F.
X-ray-producing hohlraums are being studied as indirect drives for Inertial Confinement Fusion targets. In a 1994 target series on the PBFAII accelerator, cylindrical hohlraum targets were heated by an intense Li{sup +} ion beam and viewed by an array of 13 time-resolved, filtered x-ray detectors (XRDs). The UFO unfold code and its suite of auxiliary functions were used extensively in obtaining time- resolved x-ray spectra and radiation temperatures from this diagnostic. UFO was also used to obtain fitted response functions from calibration data, to simulate data from blackbody x-ray spectra of interest, to determine the suitability of various unfolding parametersmore » (e.g., energy domain, energy partition, smoothing conditions, and basis functions), to interpolate the XRD signal traces, and to unfold experimental data. The simulation capabilities of the code were useful in understanding an anomalous feature in the unfolded spectra at low photon energies ({le} 100 eV). Uncertainties in the differential and energy-integrated unfolded spectra were estimated from uncertainties in the data. The time-history of the radiation temperature agreed well with independent calculations of the wall temperature in the hohlraum.« less
Iron Opacity Platform Performance Characterization at the National Ignition Facility
NASA Astrophysics Data System (ADS)
Opachich, Y. P.; Ross, P. W.; Heeter, R. F.; Barrios, M. A.; Liedahl, D. A.; May, M. J.; Schneider, M. B.; Craxton, R. S.; Garcia, E. M.; McKenty, P. W.; Zhang, R.; Weaver, J. L.; Flippo, K. A.; Kline, J. L.; Perry, T. S.; Los Alamos National Laboratory Collaboration; Naval Research Laboratory Collaboration; University of Rochester LaboratoryLaser Energetics Collaboration; Lawrence Livermore National Lab Collaboration; National Security Technologies, LLC Collaboration
2016-10-01
A high temperature opacity platform has been fielded at the National Ignition Facility (NIF). The platform will be used to study opacity in iron at a temperature of 160 eV. The platform uses a 6 mm diameter hohlraum driven by 128 laser beams with 530 kJ of energy in a 3 ns pulse to heat an iron sample. Absorption spectra of the heated sample are generated with a broadband pulsed X-ray backlighter produced by imploding a vacuum-filled CH shell. The shell is 2 mm in diameter and 20 microns thick, driven by 64 beams with 250 kJ in a 2.5 ns pulse. The hohlraum and backlighter performance have both been investigated recently and will be discussed in this presentation. This work was performed by National Security Technologies, LLC, under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy. DOE/NV/25946-2892.
Conceptual design of initial opacity experiments on the national ignition facility
NASA Astrophysics Data System (ADS)
Heeter, R. F.; Bailey, J. E.; Craxton, R. S.; Devolder, B. G.; Dodd, E. S.; Garcia, E. M.; Huffman, E. J.; Iglesias, C. A.; King, J. A.; Kline, J. L.; Liedahl, D. A.; McKenty, P. W.; Opachich, Y. P.; Rochau, G. A.; Ross, P. W.; Schneider, M. B.; Sherrill, M. E.; Wilson, B. G.; Zhang, R.; Perry, T. S.
2017-02-01
Accurate models of X-ray absorption and re-emission in partly stripped ions are necessary to calculate the structure of stars, the performance of hohlraums for inertial confinement fusion and many other systems in high-energy-density plasma physics. Despite theoretical progress, a persistent discrepancy exists with recent experiments at the Sandia Z facility studying iron in conditions characteristic of the solar radiative-convective transition region. The increased iron opacity measured at Z could help resolve a longstanding issue with the standard solar model, but requires a radical departure for opacity theory. To replicate the Z measurements, an opacity experiment has been designed for the National Facility (NIF). The design uses established techniques scaled to NIF. A laser-heated hohlraum will produce X-ray-heated uniform iron plasmas in local thermodynamic equilibrium (LTE) at temperatures eV and electron densities 21~\\text{cm}-3$ . The iron will be probed using continuum X-rays emitted in a ps, diameter source from a 2 mm diameter polystyrene (CH) capsule implosion. In this design, of the NIF beams deliver 500 kJ to the mm diameter hohlraum, and the remaining directly drive the CH capsule with 200 kJ. Calculations indicate this capsule backlighter should outshine the iron sample, delivering a point-projection transmission opacity measurement to a time-integrated X-ray spectrometer viewing down the hohlraum axis. Preliminary experiments to develop the backlighter and hohlraum are underway, informing simulated measurements to guide the final design.
Modeling Hohlraum-Based Laser Plasma Instability Experiments
NASA Astrophysics Data System (ADS)
Meezan, N. B.
2005-10-01
Laser fusion targets must control laser-plasma instabilities (LPI) in order to perform as designed. We present analyses of recent hohlraum LPI experiments from the Omega laser facility. The targets, gold hohlraums filled with gas or SiO2 foam, are preheated by several 3φ beams before an interaction beam (2φ or 3φ) is fired along the hohlraum axis. The experiments are simulated in 2-D and 3-D using the code hydra. The choice of electron thermal conduction model in hydra strongly affects the simulated plasma conditions. This work is part of a larger effort to systematically explore the usefulness of linear gain as a design tool for fusion targets. We find that the measured Raman and Brillouin backscatter scale monotonically with the peak linear gain calculated for the target; however, linear gain is not sufficient to explain all trends in the data. This work was performed under the auspices of the U.S. Department of Energy by the University of California Lawrence Livermore National Laboratory under contract No. W-7405-ENG-48.
NASA Astrophysics Data System (ADS)
Rousseaux, C.; Huser, G.; Loiseau, P.; Casanova, M.; Alozy, E.; Villette, B.; Wrobel, R.; Henry, O.; Raffestin, D.
2015-02-01
Experimental investigation of stimulated Raman (SRS) and Brillouin (SBS) scattering have been obtained at the Ligne-d'Intégration-Laser facility (LIL, CEA-Cesta, France). The parametric instabilities (LPI) are driven by firing four laser beamlets (one quad) into millimeter size, gas-filled hohlraum targets. A quad delivers energy on target of 15 kJ at 3ω in a 6-ns shaped laser pulse. The quad is focused by means of 3ω gratings and is optically smoothed with a kinoform phase plate and with smoothing by spectral dispersion-like 2 GHz and/or 14 GHz laser bandwidth. Open- and closed-geometry hohlraums have been used, all being filled with 1-atm, neo-pentane (C5H12) gas. For SRS and SBS studies, the light backscattered into the focusing optics is analyzed with spectral and time resolutions. Near-backscattered light at 3ω and transmitted light at 3ω are also monitored in the open geometry case. Depending on the target geometry (plasma length and hydrodynamic evolution of the plasma), it is shown that, at maximum laser intensity about 9 × 1014 W/cm2, Raman reflectivity noticeably increases up to 30% in 4-mm long plasmas while SBS stays below 10%. Consequently, laser transmission through long plasmas drops to about 10% of incident energy. Adding 14 GHz bandwidth to the laser always reduces LPI reflectivities, although this reduction is not dramatic.
High coupling efficiency of foam spherical hohlraum driven by 2ω laser light
NASA Astrophysics Data System (ADS)
Chen, Yao-Hua; Lan, Ke; Zheng, Wanguo; Campbell, E. M.
2018-02-01
The majority of solid state laser facilities built for laser fusion research irradiate targets with third harmonic light (0.35 μm) up-converted from the fundamental Nd wavelength at 1.05 μm. The motivation for this choice of wavelength is improved laser-plasma coupling. Significant disadvantages to this choice of wavelength are the reduced damage threshold of optical components and the efficiency of energy conversion to third harmonic light. Both these issues are significantly improved if second harmonic (0.53 μm) radiation is used, but theory and experiments have shown lower optical to x-ray energy conversion efficiency and increased levels of laser-plasma instabilities, resulting in reduced laser-target coupling. In this letter, we propose to use a 0.53 μm laser for the laser ignition facilities and use a low density foam wall to increase the coupling efficiency from the laser to the capsule and present two-dimensional radiation-hydrodynamic simulations of 0.53 μm laser light irradiating an octahedral-spherical hohlraum with a low density foam wall. The simulations show that the reduced optical depth of the foam wall leads to an increased laser-light conversion into thermal x-rays and about 10% higher radiation flux on the capsule than that achieved with 0.35 μm light irradiating a solid density wall commonly used in laser indirect drive fusion research. The details of the simulations and their implications and suggestions for wavelength scaling coupled with innovative hohlraum designs will be discussed.
Kinetic modeling of Nernst effect in magnetized hohlraums.
Joglekar, A S; Ridgers, C P; Kingham, R J; Thomas, A G R
2016-04-01
We present nanosecond time-scale Vlasov-Fokker-Planck-Maxwell modeling of magnetized plasma transport and dynamics in a hohlraum with an applied external magnetic field, under conditions similar to recent experiments. Self-consistent modeling of the kinetic electron momentum equation allows for a complete treatment of the heat flow equation and Ohm's law, including Nernst advection of magnetic fields. In addition to showing the prevalence of nonlocal behavior, we demonstrate that effects such as anomalous heat flow are induced by inverse bremsstrahlung heating. We show magnetic field amplification up to a factor of 3 from Nernst compression into the hohlraum wall. The magnetic field is also expelled towards the hohlraum axis due to Nernst advection faster than frozen-in flux would suggest. Nonlocality contributes to the heat flow towards the hohlraum axis and results in an augmented Nernst advection mechanism that is included self-consistently through kinetic modeling.
Evidence for high-efficiency laser-heated hohlraum performance at 527 nm.
Stevenson, R M; Oades, K; Thomas, B R; Schneider, M; Slark, G E; Suter, L J; Kauffman, R; Hinkel, D; Miller, M C
2005-02-11
A series of experiments conducted on the HELEN laser system [M. J. Norman, Appl. Opt.4120023497], into thermal x-ray generation from hohlraum targets using 527 nm (2omega) wavelength laser light, has shown that it is possible to exceed radiation temperatures previously thought limited by high levels of superthermal or hot electron production or stimulated backscatter. This Letter questions whether the assumptions traditionally applied to hohlraum design with respect to hot plasma filling and the use of 2omega light are too conservative.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meezan, N. B., E-mail: meezan1@llnl.gov; Hopkins, L. F. Berzak; Pape, S. Le
2015-06-15
High Density Carbon (or diamond) is a promising ablator material for use in near-vacuum hohlraums, as its high density allows for ignition designs with laser pulse durations of <10 ns. A series of Inertial Confinement Fusion (ICF) experiments in 2013 on the National Ignition Facility [Moses et al., Phys. Plasmas 16, 041006 (2009)] culminated in a deuterium-tritium (DT) layered implosion driven by a 6.8 ns, 2-shock laser pulse. This paper describes these experiments and comparisons with ICF design code simulations. Backlit radiography of a tritium-hydrogen-deuterium (THD) layered capsule demonstrated an ablator implosion velocity of 385 km/s with a slightly oblate hot spot shape.more » Other diagnostics suggested an asymmetric compressed fuel layer. A streak camera-based hot spot self-emission diagnostic (SPIDER) showed a double-peaked history of the capsule self-emission. Simulations suggest that this is a signature of low quality hot spot formation. Changes to the laser pulse and pointing for a subsequent DT implosion resulted in a higher temperature, prolate hot spot and a thermonuclear yield of 1.8 × 10{sup 15} neutrons, 40% of the 1D simulated yield.« less
Le Pape, S; Divol, L; Berzak Hopkins, L; Mackinnon, A; Meezan, N B; Casey, D; Frenje, J; Herrmann, H; McNaney, J; Ma, T; Widmann, K; Pak, A; Grimm, G; Knauer, J; Petrasso, R; Zylstra, A; Rinderknecht, H; Rosenberg, M; Gatu-Johnson, M; Kilkenny, J D
2014-06-06
A 200 μm radius hot spot at more than 2 keV temperature, 1 g/cm^{3} density has been achieved on the National Ignition Facility using a near vacuum hohlraum. The implosion exhibits ideal one-dimensional behavior and 99% laser-to-hohlraum coupling. The low opacity of the remaining shell at bang time allows for a measurement of the x-ray emission of the reflected central shock in a deuterium plasma. Comparison with 1D hydrodynamic simulations puts constraints on electron-ion collisions and heat conduction. Results are consistent with classical (Spitzer-Harm) heat flux.
Convergent ablation measurements with gas-filled rugby hohlraum on OMEGA
NASA Astrophysics Data System (ADS)
Casner, A.; Jalinaud, T.; Galmiche, D.
2016-03-01
Convergent ablation experiments with gas-filled rugby hohlraum were performed for the first time on the OMEGA laser facility. A time resolved 1D streaked radiography of capsule implosion is acquired in the direction perpendicular to hohlraum axis, whereas a 2D gated radiography is acquired at the same time along the hohlraum axis on a x-ray framing camera. The implosion trajectory has been measured for various kinds of uniformly doped ablators, including germanium-doped and silicon-doped polymers (CH), at two different doping fraction (2% and 4% at.). Our experiments aimed also at measuring the implosion performance of laminated capsules. A laminated ablator is constituted by thin alternate layers of un-doped and doped CH. It has been previously shown in planar geometry that laminated ablators could mitigate Rayleigh Taylor growth at ablation front. Our results confirm that the implosion of a capsule constituted with a uniform or laminated ablator behaves similarly, in accordance with post-shot simulations performed with the CEA hydrocode FCI2.
Drive Scaling of hohlraums heated with 2ω light
NASA Astrophysics Data System (ADS)
Oades, Kevin; Foster, John; Slark, Gary; Stevenson, Mark; Kauffman, Robert; Suter, Larry; Hinkel, Denise; Miller, Mike; Schneider, Marilyn; Springer, Paul
2002-11-01
We report on experiments using a single beam from the AWE?s HELEN laser to study scaling of hohlraum drive with hohlraum scale size. The hohlruams were heated with 400 J in a 1 ns square pulse with and without a phaseplate. The drive was measured using a PCD and an FRD. Scattered light was measured using a full aperture backscatter system. Drive is consistent with hohlraum scaling and LASNEX modeling using the absorbed laser energy. Bremsstrahlung from fast electrons and M-shell x-ray production were also measured. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
NASA Astrophysics Data System (ADS)
Barrios, Maria Alejandra
2015-11-01
Improved hohlraums will have a significant impact on increasing the likelihood of indirect drive ignition at the NIF. In indirect-drive Inertial Confinement Fusion (ICF), a high-Z hohlraum converts laser power into a tailored x-ray flux that drives the implosion of a spherical capsule filled with D-T fuel. The x-radiation drive to capsule coupling sets the velocity, adiabat, and symmetry of the implosion. Previous experiments in gas-filled hohlraums determined that the laser-hohlraum energy coupling is 20-25% less than modeled, therefore identifying energy loss mechanisms that reduce the efficacy of the hohlraum drive is central to improving implosion performance. Characterizing the plasma conditions, particularly the plasma electron temperature (Te) , is critical to understanding mechanism that affect the energy coupling such as the laser plasma interactions (LPI), hohlraum x-ray conversion efficiency, and dynamic drive symmetry. The first Te measurements inside a NIF hohlraum, presented here, were achieved using K-shell X-ray spectroscopy of an Mn-Co tracer dot. The dot is deposited on a thin-walled CH capsule, centered on the hohlraum symmetry axis below the laser entrance hole (LEH) of a bottom-truncated hohlraum. The hohlraum x-ray drive ablates the dot and causes it to flow upward, towards the LEH, entering the hot laser deposition region. An absolutely calibrated streaked spectrometer with a line of sight into the LEH records the temporal history of the Mn and Co X-ray emission. The measured (interstage) Lyα/ Heα line ratios for Co and Mn and the Mn-Heα/Co-Heα isoelectronic line ratio are used to infer the local plasma Te from the atomic physics code SCRAM. Time resovled x-ray images perpendicular to the hohlraum axis record the dot expansion and trajectory into the LEH region. The temporal evolution of the measured Te and dot trajectory are compared with simulations from radiation-hydrodynamic codes. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fehl, D.L.; Chandler, G.A.; Biggs, F.
X-ray-producing hohlraums are being studied as indirect drives for inertial confinement fusion targets. In a 1994 target series on the PBFAII accelerator, cylindrical hohlraum targets were heated by an intense Li{sup +} ion beam and viewed by an array of 13 time-resolved, filtered x-ray detectors (XRDs). The unfold operator (UFO) code and its suite of auxiliary functions were used extensively in obtaining time-resolved x-ray spectra and radiation temperatures from this diagnostic. The UFO was also used to obtain fitted response functions from calibration data, to simulate data from blackbody x-ray spectra of interest, to determine the suitability of various unfoldingmore » parameters (e.g., energy domain, energy partition, smoothing conditions, and basis functions), to interpolate the XRD signal traces, and to unfold experimental data. The simulation capabilities of the code were useful in understanding an anomalous feature in the unfolded spectra at low photon energies ({le}100 eV). Uncertainties in the differential and energy-integrated unfolded spectra were estimated from uncertainties in the data. The time{endash}history of the radiation temperature agreed well with independent calculations of the wall temperature in the hohlraum. {copyright} {ital 1997 American Institute of Physics.}« less
Developing depleted uranium and gold cocktail hohlraums for the National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilkens, H. L.; Nikroo, A.; Wall, D. R.
2007-05-15
Fusion ignition experiments are planned to begin at the National Ignition Facility (NIF) [J. A. Paisner, E. M. Campbell, and W. J. Hogan, Fusion Technol. 26, 755 (1994)] using the indirect drive configuration [J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer, S. W. Haan, R. L, Kauffman, O. L. Landen, and L. J. Suter, Phys. Plasmas 11, 339 (2004)]. Although the x-ray drive in this configuration is highly symmetric, energy is lost in the conversion process due to x-ray penetration into the hohlraum wall. To mitigate this loss, depleted uranium is incorporated into themore » traditional gold hohlraum to increase the efficiency of the laser to x-ray energy conversion by making the wall more opaque to the x rays [H. Nishumura, T. Endo, H. Shiraga, U. Kato, and S. Nakai, Appl. Phys. Lett. 62, 1344 (1993)]. Multilayered depleted uranium (DU) and gold hohlraums are deposited by sputtering by alternately rotating a hohlraum mold in front of separate DU and Au sources to build up multilayers to the desired wall thickness. This mold is removed to leave a freestanding hohlraum half; two halves are used to assemble the complete NIF hohlraum to the design specifications. In practice, exposed DU oxidizes in air and other chemicals necessary to hohlraum production, so research has focused on developing a fabrication process that protects the U from damaging environments. This paper reports on the most current depleted uranium and gold cocktail hohlraum fabrication techniques, including characterization by Auger electron spectroscopy, which is used to verify sample composition and the amount of oxygen uptake over time.« less
Higher Velocity High-Foot Implosions on the National Ignition Facility Laser
NASA Astrophysics Data System (ADS)
Callahan, Debra
2014-10-01
After the end of the National Ignition Campaign on the National Ignition Facility (NIF) laser, we began a campaign to test capsule performance using a modified laser pulse-shape that delivers higher power early in the pulse (``high foot''). This pulse-shape trades one-dimensional performance (peak compression) for increased hydrodynamic stability. The focus of the experiments this year have been to improve performance by increasing the implosion velocity using higher laser power/energy, depleted uranium hohlraums, and thinner capsules. While the mix of ablator material into the hotspot has been low for all of these implosions, the challenge has been to keep the implosion shape under control. As the peak laser power is increased, the plasma density in the hohlraum is increased - making it more and more challenging for the inner cone beams to reach the midplane of the hohlraum and resulting in an oblate implosion. Depleted uranium hohlraums have higher albedo than Au hohlraums, which leads to additional drive and improved implosion shape. Thinner ablators increase the velocity by reducing the amount of payload; thinner ablators also put less mass into the hohlraum which results in improved inner beam propagation. These techniques have allowed us to push the capsule to higher and higher velocity. In parallel with this effort, we are exploring other hohlraums such as the rugby shaped hohlraum to allow us to push these implosions further. This talk will summarize the progress of the high foot campaign in terms of both capsule and hohlraum performance. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Analysis of the National Ignition Facility Ignition Hohlraum Energetics Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Town, R J; Rosen, M D; Michel, P A
2010-11-22
A series of forty experiments on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] to study energy balance and implosion symmetry in reduced- and full-scale ignition hohlraums was shot at energies up to 1.3 MJ. This paper reports the findings of the analysis of the ensemble of experimental data obtained that has produced an improved model for simulating ignition hohlraums. Last year the first observation in a NIF hohlraum of energy transfer between cones of beams as a function of wavelength shift between those cones was reported [P. Michel, et al, Phys ofmore » Plasmas, 17, 056305, (2010)]. Detailed analysis of hohlraum wall emission as measured through the laser entrance hole (LEH) has allowed the amount of energy transferred versus wavelength shift to be quantified. The change in outer beam brightness is found to be quantitatively consistent with LASNEX [G. B. Zimmerman and W. L. Kruer, Comments Plasma Phys. Control. Fusion 2, 51 (1975)] simulations using the predicted energy transfer when possible saturation of the plasma wave mediating the transfer is included. The effect of the predicted energy transfer on implosion symmetry is also found to be in good agreement with gated x-ray framing camera images. Hohlraum energy balance, as measured by x-ray power escaping the LEH, is quantitatively consistent with revised estimates of backscatter and incident laser energy combined with a more rigorous non-local-thermodynamic-equilibrium atomic physics model with greater emissivity than the simpler average-atom model used in the original design of NIF targets.« less
Conceptual design of initial opacity experiments on the national ignition facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heeter, R. F.; Bailey, J. E.; Craxton, R. S.
Accurate models of X-ray absorption and re-emission in partly stripped ions are necessary to calculate the structure of stars, the performance of hohlraums for inertial confinement fusion and many other systems in high-energy-density plasma physics. Despite theoretical progress, a persistent discrepancy exists with recent experiments at the Sandia Z facility studying iron in conditions characteristic of the solar radiative–convective transition region. The increased iron opacity measured at Z could help resolve a longstanding issue with the standard solar model, but requires a radical departure for opacity theory. To replicate the Z measurements, an opacity experiment has been designed for the National Facility (NIF). The design uses established techniques scaled to NIF. A laser-heated hohlraum will produce X-ray-heated uniform iron plasmas in local thermodynamic equilibrium (LTE) at temperaturesmore » $${\\geqslant}150$$ eV and electron densities$${\\geqslant}7\\times 10^{21}~\\text{cm}^{-3}$$. The iron will be probed using continuum X-rays emitted in a$${\\sim}200$$ ps,$${\\sim}200~\\unicode[STIX]{x03BC}\\text{m}$$diameter source from a 2 mm diameter polystyrene (CH) capsule implosion. In this design,$2/3$$of the NIF beams deliver 500 kJ to the$${\\sim}6$$ mm diameter hohlraum, and the remaining$$1/3$directly drive the CH capsule with 200 kJ. Calculations indicate this capsule backlighter should outshine the iron sample, delivering a point-projection transmission opacity measurement to a time-integrated X-ray spectrometer viewing down the hohlraum axis. Preliminary experiments to develop the backlighter and hohlraum are underway, informing simulated measurements to guide the final design.« less
Demonstration of high coupling efficiency to Al capsule in rugby hohlraum on NIF
NASA Astrophysics Data System (ADS)
Ping, Y.; Smalyuk, V.; Amendt, P.; Bennett, D.; Chen, H.; Dewald, E.; Goyon, C.; Graziani, F.; Johnson, S.; Khan, S.; Landen, O.; Nikroo, A.; Pino, J.; Ralph, J.; Seugling, R.; Strozzi, D.; Tipton, R.; Tommasini, R.; Wang, M.; Loomis, E.; Merritt, E.; Montgomery, D.
2017-10-01
A new design of the double-shell approach predicts a high coupling efficiency from the hohlraum to the capsule, with 700 kJ in the capsule instead of 200kJ in the conventional low-Z single-shell scheme, improving prospects of double-shell performance. A recent experiment on NIF has evaluated a first step toward this goal of energy coupling using 0.7x subscale Al capsule, Au rugby hohlraum and 1MJ drive. A shell velocity of 150 μm/ns was measured, DANTE peak temperature of 255 eV was measured, and shell kinetic energy of 36 kJ was inferred using a rocket model, all close to predictions and consistent with 330kJ of total energy coupled to the capsule. Data analysis and more results from subsequent experiments will be presented. In the next step, an additional 2x increase of total coupled energy up to 700 kJ is projected for full-scale 2-MJ drive in U Rugby hohlraum. This work was performed under DOE contract DE-AC52-07NA27344.
Exploring symmetry in near-vacuum hohlraums
NASA Astrophysics Data System (ADS)
Berzak Hopkins, L.; Le Pape, S.; Divol, L.; Meezan, N.; MacKinnon, A.; Ho, D. D.; Jones, O.; Khan, S.; Ma, T.; Milovich, J.; Pak, A.; Ross, J. S.; Thomas, C.; Turnbull, D.; Amendt, P.; Wilks, S.; Zylstra, A.; Rinderknecht, H.; Sio, H.; Petrasso, R.
2015-11-01
Recent experiments with near-vacuum hohlraums, which utilize a minimal but non-zero helium fill, have demonstrated performance improvements relative to conventional gas-filled (0.96 - 1.6 mg/cc helium) hohlraums: minimal backscatter, reduced capsule drive degradation, and minimal suprathermal electron generation. Because this is a low laser-plasma interaction platform, implosion symmetry is controlled via pulse-shaping adjustments to laser power balance. Extending this platform to high-yield designs with high-density carbon capsules requires achieving adequate symmetry control throughout the pulse. In simulations, laser propagation is degraded suddenly by hohlraum wall expansion interacting with ablated capsule material. Nominal radiation-hydrodynamics simulations have not yet proven predictive on symmetry of the final hotspot, and experiments show more prolate symmetry than preshot calculations. Recent efforts have focused on understanding the discrepancy between simulated and measured symmetry and on alternate designs for symmetry control through varying cone fraction, trade-offs between laser power and energy, and modifications to case-to-capsule ratio. Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
pF3D Simulations of SBS and SRS in NIF Hohlraum Experiments
NASA Astrophysics Data System (ADS)
Langer, Steven; Strozzi, David; Amendt, Peter; Chapman, Thomas; Hopkins, Laura; Kritcher, Andrea; Sepke, Scott
2016-10-01
We present simulations of stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS) for NIF experiments using high foot pulses in cylindrical hohlraums and for low foot pulses in rugby-shaped hohlraums. We use pF3D, a massively-parallel, paraxial-envelope laser plasma interaction code, with plasma profiles obtained from the radiation-hydrodynamics codes Lasnex and HYDRA. We compare the simulations to experimental data for SBS and SRS power and spectrum. We also show simulated SRS and SBS intensities at the target chamber wall and report the fraction of the backscattered light that passes through and misses the lenses. Work performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344. Release number LLNL-ABS-697482.
Proton deflectometry characterization of Biermann-Battery field advection
NASA Astrophysics Data System (ADS)
Pollock, Bradley; Moore, Alastair; Meezan, Nathan; Eder, Dave; Kane, Jave; Strozzi, David; Wilks, Scott; Rinderknecht, Hans; Zylstra, Alex; Fujioka, Shinsuke; Kemp, Gregory; Moody, John
2017-10-01
Laser-foil interactions are well known to produce azimuthal magnetic fields around the laser spot due to the orthogonal density and temperature gradients that develop near the foil surface (the Biermann-Battery effect). Simulations show that these fields produced inside hohlraums used for indirect drive experiments at the National Ignition Facility (NIF); however, modeling these fields and their advection is very computationally expensive on the temporal and spatial scales relevant for typical NIF hohlraum experiments ( 10 ns, few mm). The hohlraum geometry also makes directly probing the fields somewhat challenging, limiting the available experimental data on these fields under NIF conditions. In particular, the relative contributions of frozen-in and Nernst advection of the field away from the hohlraum wall is not currently well understood. We have developed a new target platform for direct measurements of the field topology in a NIF-relevant configuration. Using a single cone of NIF, a 2.5 mm long, 5.4 mm diameter Au ring is illuminated with a similar beam geometry to that of one ring of beams in a full-scale hohlraum experiment. The ring target has no end caps, providing a clear line of sight for probing through the ring. A D3He filled exploding pusher placed 5 cm below the ring is illuminated by an additional 60 beams of NIF to produce protons, some of which propagate through the ring. Work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344 and under LDRD support from LLNL.
Hollow wall to stabilize and enhance ignition hohlraums
NASA Astrophysics Data System (ADS)
Vandenboomgaerde, M.; Grisollet, A.; Bonnefille, M.; Clérouin, J.; Arnault, P.; Desbiens, N.; Videau, L.
2018-01-01
In the context of the indirect-drive scheme of the inertial-confinement fusion, performance of the gas-filled hohlraums at the National Ignition Facility appears to be reduced. Experiments ascertain a limited efficacy of the laser beam propagation and x-ray conversion. One identified issue is the growth of the gold plasma plume (or bubble) which is generated near the ends of the hohlraum by the impact of the laser beams. This bubble impedes the laser propagation towards the equator of the hohlraum. Furthermore, for high foot or low foot laser pulses, the gold-gas interface of the bubble can be unstable. If this instability should grow to mixing, the x-ray conversion could be degraded. A novel hollow-walled hohlraum is designed, which drastically reduces the growth of the gold bubble and stabilizes the gold-gas interface. The hollow walls are built from the combination of a thin gold foil and a gold domed-wall. We theoretically explain how the bubble expansion can be delayed and the gold-gas interface stabilized. This advanced design lets the laser beams reach the waist of the hohlraum. As a result, the x-ray drive on the capsule is enhanced, and more spherical implosions are obtained. Furthermore, this design only requires intermediate gas fill density to be efficient.
Tetrahedral Hohlraum Visualization and Pointings
NASA Astrophysics Data System (ADS)
Klare, K. A.; Wallace, J. M.; Drake, D.
1997-11-01
In designing experiments for Omega, the tetrahedral hohlraum (a sphere with four holes) can make full use of all 60 beams. There are some complications: the beams must clear the laser entrance hole (LEH), must miss a central capsule, absolutely must not go out the other LEHs, and should distribute in the interior of the hohlraum to maximize the uniformity of irradiation on the capsule while keeping reasonable laser spot sizes. We created a 15-offset coordinate system with which an IDL program computes clearances, writes a file for QuickDraw 3D (QD3D) visualization, and writes input for the viewfactor code RAYNA IV. Visualizing and adjusting the parameters by eye gave more reliable results than computer optimization. QD3D images permitted quick live rotations to determine offsets. The clearances obtained insured safe operation and good physics. The viewfactor code computes the initial irradiation of the hohlraum and capsule or of a uniform hohlraum source with the loss through the four LEHs and shows a high degree of uniformity with both, better for lasers because this deposits more energy near the LEHs to compensate for the holes.
NASA Astrophysics Data System (ADS)
Vandenboomgaerde, M.; Liberatore, S.; Galmiche, D.; Casner, A.; Huser, G.; Jadaud, J. P.; Villette, B.
2008-05-01
Implosion of inertial confinement fusion (ICF) capsule is very sensitive to the growth of sphericity perturbations. The control of the feeding of such perturbations and their transport ('feedthrough') through the ablator is a key point to reach ignition. Since 2002 [1, 2], experiments have been designed and performed on the Omega laser facility in order to study these phenomena in planar geometry. A new 'rugby shaped' hohlraum was used [3, 4]. We present experimental results and comparisons with numerical simulations.
Progress Toward Ignition on the National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kauffman, R L
2011-10-17
The principal approach to ignition on the National Ignition Facility (NIF) is indirect drive. A schematic of an ignition target is shown in Figure 1. The laser beams are focused through laser entrance holes at each end of a high-Z cylindrical case, or hohlraum. The lasers irradiate the hohlraum walls producing x-rays that ablate and compress the fuel capsule in the center of the hohlraum. The hohlraum is made of Au, U, or other high-Z material. For ignition targets, the hohlraum is {approx}0.5 cm diameter by {approx}1 cm in length. The hohlraum absorbs the incident laser energy producing x-rays formore » symmetrically imploding the capsule. The fuel capsule is a {approx}2-mm-diameter spherical shell of CH, Be, or C filled with DT fuel. The DT fuel is in the form of a cryogenic layer on the inside of the capsule. X-rays ablate the outside of the capsule, producing a spherical implosion. The imploding shell stagnates in the center, igniting the DT fuel. NIC has overseen installation of all of the hardware for performing ignition experiments, including commissioning of approximately 50 diagnostic systems in NIF. The diagnostics measure scattered optical light, x-rays from the hohlraum over the energy range from 100 eV to 500 keV, and x-rays, neutrons, and charged particles from the implosion. An example of a diagnostic is the Magnetic Recoil Spectrometer (MRS) built by a collaboration of scientists from MIT, UR-LLE, and LLNL shown in Figure 2. MRS measures the neutron spectrum from the implosion, providing information on the neutron yield and areal density that are metrics of the quality of the implosion. Experiments on NIF extend ICF research to unexplored regimes in target physics. NIF can produce more than 50 times the laser energy and more than 20 times the power of any previous ICF facility. Ignition scale hohlraum targets are three to four times larger than targets used at smaller facilities, and the ignition drive pulses are two to five times longer. The larger targets and longer pulse lengths produce unique plasma conditions for laser-plasma instabilities that could reduce hohlraum coupling efficiency. Initial experiments have demonstrated efficient coupling of laser energy to x-rays. X-ray drive greater than 300 eV has been measured in gas-filled ignition hohlraum and shows the expected scaling with laser energy and hohlraum scale size. Experiments are now optimizing capsule implosions for ignition. Ignition conditions require assembling the fuel with sufficient density and temperature for thermonuclear burn. X-rays ablate the outside of the capsule, accelerating and spherically compressing the capsule for assembling the fuel. The implosion stagnates, heating the central core and producing a hot spot that ignites and burns the surrounding fuel. The four main characteristics of the implosion are shell velocity, central hot spot shape, fuel adiabat, and mix. Experiments studying these four characteristics of implosions are used to optimize the implosion. Integrated experiments using cryogenic fuel layer experiments demonstrate the quality of the implosion as the optimization experiments progress. The final compressed fuel conditions are diagnosed by measuring the x-ray emission from the hot core and the neutrons and charged particles produced in the fusion reactions. Metrics of the quality of the implosion are the neutron yield and the shell areal density, as well as the size and shape of the core. The yield depends on the amount of fuel in the hot core and its temperature and is a gauge of the energy coupling to the fuel. The areal density, the density of the fuel times its thickness, diagnoses the fuel assembly, which is measured using the fraction of neutrons that are down scattered passing through the dense shell. The yield and fraction of down scattered neutrons, or shell rho-r, from the cryogenic layered implosions are shown in Figure 3. The different sets of data represent results after a series of implosion optimization experiments. Both yield and areal density show significant increases as a result of the optimization. The experimental Ignition Threshold Factor (ITFX) is a measure of the progress toward ignition. ITFX is analogous to the Lawson Criterion in Magnetic Fusion. Implosions have improved by over a factor of 50 since the first cryogenic layered experiments were done in September 2010. This increase is a measure of the progress made toward the ignition goal in the past year. Optimization experiments are planned in the coming year for continued improvement in implosion performance to achieve the ignition goal. In summary, NIF has made significant progress toward ignition in the 30 months since project completion. Diagnostics and all of the supporting equipment are in place for ignition experiments. The Ignition Campaign is under way as a national collaborative effort of all the National Nuclear Security Administration (NNSA) science laboratories as well as international partners.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smitherman, D.P.
Eight beams carrying a shaped pulse from the NOVA laser were focused into a hohlraum with a total energy of about 25 kJ. A planar foil was placed on the side of the hohlraum with perturbations facing away from the hohlraum. All perturbations were 4 {micro}m in amplitude and 50 {micro}m in wavelength. Three foils of pure aluminum were shot with thicknesses and pulse lengths respectively of 86 {micro}m and 2. 2 ns, 50 {micro}m and 4.5 ns, and 35 {micro}m with both 2.2 ns and 4. 5 ns pulses. Two composite foils constructed respectively of 32 and 84 {micro}mmore » aluminum on the ablative side and 10 {micro}m beryllium on the cold surface were also shot using the 2.2 ns pulse. X-ray framing cameras recorded perturbation growth using both face- and side-on radiography. The LASNEX code was used to model the experiments. A shock wave interacted with the perturbation on the cold surface generating growth from a Richtmyer-Meshkov instability and a strong acoustic mode. The cold surface perturbation fed-out to the Rayleigh-Taylor unstable ablation surface, both by differential acceleration and interface coupling, where it grew. A density jump did not appear to have a large effect on feed-out from interface coupling. The Rayleigh-Taylor instability`s vortex pairs overtook and reversed the direction of flow of the Richtmyer-Meshkov vortices, resulting in the foil moving from a sinuous to a bubble and spike configuration. The Rayleigh-Taylor instability may have acted as an ablative instability on the hot surface, and as a classical instability on the cold surface, on which grew second and third order harmonics.« less
Wire-number effects on high-power annular z-pinches and some characteristics at high wire number
DOE Office of Scientific and Technical Information (OSTI.GOV)
SANFORD,THOMAS W. L.
2000-05-23
Characteristics of annular wire-array z-pinches as a function of wire number and at high wire number are reviewed. The data, taken primarily using aluminum wires on Saturn are comprehensive. The experiments have provided important insights into the features of wire-array dynamics critical for high x-ray power generation, and have initiated a renaissance in z-pinches when high numbers of wires are used. In this regime, for example, radiation environments characteristic of those encountered during the early pulses required for indirect-drive ICF ignition on the NIF have been produced in hohlraums driven by x-rays from a z-pinch, and are commented on here.
Direct-drive Energetics of laser-Heated Foam Liners for Hohlraums
NASA Astrophysics Data System (ADS)
Moore, Alastair; Thomas, Cliff; Baker, Kevin; Morton, John; Baumann, Ted; Biener, Monika; Bhandarkar, Suhas; Hinkel, Denise; Jones, Oggie; Meezan, Nathan; Moody, John; Nikroo, Abbas; Rosen, Mordy; Hsing, Warren
2016-10-01
Lining the walls of a high-Z hohlraum cavity with a low-density foam is predicted to mitigate the challenge presented by hohlraum wall expansion. Once heated, wall material quickly fills the cavity and can impede laser beam propagation. To avoid this, ignition hohlraums are typically filled with a gas or irradiated with a short (< 10 ns) laser pulse. A gas-fill has the disadvantage that it can cause laser plasma instabilities (LPI), while a short laser pulse limits the design space to reach low-adiabat implosions. Foam-liners offer a potential route to reduce wall motion in a low gas-fill hohlraum with little LPI. Results from quasi 1-D experiments performed at the NIF are presented These characterize the x-ray conversion efficiency, backscattered laser energy and heat propagation in a 250 μm thick Ta2O5 or ZnO foam-liners spanning a range of densities from underdense to overdense, when irradiated at up to 4.9 x 1014 W/cm2 is incident on a planar foam sample, backed by a Au foil and generates a radiation temperature of up to 240eV - conditions equivalent to a single outer cone beam-spot in an ignition hohlraum. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Usefulness of a Rugby-shaped hohlraum in a Laser M'egaJoule (LMJ) 40-quad configuration
NASA Astrophysics Data System (ADS)
Malinie, G.; Vandenboomgaerde, M.; Bastian, J.; Galmiche, D.; Laffite, S.; Liberatore, S.
2007-11-01
The LMJ setup will consist of 60 quads in a 3-cone configuration, at angles 33.2^o, 49^o and 59.5^o. First ignition attempts in indirect drive are planned to be made on the way to the completion of the full facility, with only 40 quads in a 2-cone configuration, at angles 33.2^o and 49^o. By analytic considerations, we show that in a 40-quad configuration, the angular location of the hohlraum outer irradiating ring, as seen from the capsule, must be closer to the laser entrance hole than with the full LMJ. The use of a Rugby-shaped hohlraum instead of a cylinder therefore allows to keep a correct symmetry while reducing the wall surface, which improves the global energetic efficiency of the target. Simplified 2D numerical simulations of Rugby hohlraums are presented, achieving a yield of about 30 MJ with our 1.215 mm-radius, CH-uniform-ablator capsule. These results suggests this kind of hohlraum might be an interesting candidate for 40-quad ignition experiments. Work on optimizing the present design and refining the numerical simulations is currently pursued.
NASA Astrophysics Data System (ADS)
Amendt, Peter; Ross, J. Steven; Schneider, Marilyn; Jones, Oggie; Milovich, Jose; Moody, John
2014-10-01
Rugby-shaped hohlraums on the NIF have shown strong symmetry anomalies when simulated with the high-flux model. The wall-gas interface is Rayleigh-Taylor unstable and may lead to the formation of a late-time mix layer that impedes inner- cone propagation, resulting in a drive asymmetry on the capsule. Due to the rugby curvature near the laser entrance hole, the effect of mix may be more pronounced than in cylinders. At the same time a persistent pattern of 15--25% missing energy has been inferred in gas-filled hohlraums (ρ >= 0 . 96 mg/cc). A possible physical connection between formation of a mix layer and the plasma adiabatic lapse rate, where a temperature-gradient reversal is predicted to occur, is explored. Such a profile reversal, in turn, hinders electron conduction to the dense (ρ > 0 . 2 g/cc) Au region responsible for ~900 eV drive x-ray emission, leading to a hotter coronal plasma and reduced hohlraum efficiency. Remedial measures for recovering the loss in hohlraum efficiency through the use of higher-Z gas fills are explored. Prepared by LLNL under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Li, Qi; Hu, Zhimin; Yao, Li; Huang, Chengwu; Yuan, Zheng; Zhao, Yang; Xiong, Gang; Qing, Bo; Lv, Min; Zhu, Tuo; Deng, Bo; Li, Jin; Wei, Minxi; Zhan, Xiayu; Li, Jun; Yang, Yimeng; Su, Chunxiao; Yang, Guohong; Zhang, Jiyan; Li, Sanwei; Yang, Jiamin; Ding, Yongkun
2017-01-01
Fluorescence imaging of surrogate Si-doped CH targets has been used to provide a measurement for drive condition of high-energy x-ray (i.e. M-band x-ray) drive symmetry upon the capsule in hohlraum on Shenguang-II laser facility. A series of experiments dedicated to the study of photo-pumping and fluorescence effect in Si-plasma are presented. To investigate the feasibility of fluorescence imaging in Si-plasma, an silicon plasma in Si-foil target is pre-formed at ground state by the soft x-ray from a half-hohlraum, which is then photo-pumped by the K-shell lines from a spatially distinct laser-produced Si-plasma. The resonant Si photon pump is used to improve the fluorescence signal and cause visible image in the Si-foil. Preliminary fluorescence imaging of Si-ball target is performed in both Si-doped and pure Au hohlraum. The usual capsule at the center of the hohlraum is replaced with a solid Si-doped CH-ball (Si-ball). Since the fluorescence is proportional to the photon pump upon the Si-plasma, high-energy x-ray drive symmetry is equal to the fluorescence distribution of the Si-ball.
Hybrid-PIC modeling of laser-plasma interactions and hot electron generation in gold hohlraum walls
NASA Astrophysics Data System (ADS)
Thoma, C.; Welch, D. R.; Clark, R. E.; Rose, D. V.; Golovkin, I. E.
2017-06-01
The walls of the hohlraum used in experiments at the national ignition facility are heated by laser beams with intensities ˜ 10 15 W/cm2, a wavelength of ˜ 1 / 3 μm, and pulse lengths on the order of a ns, with collisional absorption believed to be the primary heating mechanism. X-rays generated by the hot ablated plasma at the gold walls are then used to implode a target in the hohlraum interior. In addition to the collisional absorption of laser energy at the walls, non-linear laser-plasma interactions (LPI), such as stimulated Raman scattering and two plasmon decay, are believed to generate a population of supra-thermal electrons which, if present in the hohlraum, can have a deleterious effect on target implosion. We describe results of hohlraum modeling using a hybrid particle-in-cell code. To enable this work, new particle-based algorithms for a multiple-ion magneto-hydrodynamic (MHD) treatment, and a particle-based ray-tracing model were developed. The use of such hybrid methods relaxes the requirement to resolve the laser wavelength, and allows for relatively large-scale hohlraum simulations with a reasonable number of cells. But the non-linear effects which are believed to be the cause of hot electron generation can only be captured by fully kinetic simulations with good resolution of the laser wavelength. For this reason, we employ a two-tiered approach to hohlraum modeling. Large-scale simulations of the collisional absorption process can be conducted using the fast quasi-neutral MHD algorithm with fluid particle species. From these simulations, we can observe the time evolution of the hohlraum walls and characterize the density and temperature profiles. From these results, we can transition to smaller-scale highly resolved simulations using traditional kinetic particle-in-cell methods, from which we can fully model all of the non-linear laser-plasma interactions, as well as assess the details of the electron distribution function. We find that vacuum hohlraums should be stable to both two plasmon decay and stimulated Raman scattering instabilities for intensities ≤ 10 15 W/cm2. In gas-filled hohlraums, shocks may be induced in the blowoff gold plasma, which leads to more complex density and temperatures profiles. The resulting effect on LPI stability depends strongly on the details of the profile, and it is possible for the gas-filled hohlraum to become unstable to two plasmon decay at 1015 W/cm2 if the quarter-critical surface reaches temperatures exceeding 1 keV.
Dynamic Loading Experiments In The Massive Exoplanet Regime
NASA Astrophysics Data System (ADS)
Swift, Damian; Hicks, D.; Eggert, J.; Milathianaki, D.; Rothman, S.; Rosen, P.; Collins, G.
2010-10-01
Exoplanets have been detected with masses and radii suggesting rocky and hydrogen-rich compositions up to 10 times the mass of the Earth and Jupiter, in similar volumes. The formation and evolution of such bodies, and the distribution and properties of brown dwarfs which are an important component of galactic structures, depend on the equation of state (EOS) and chemistry of constituent matter at pressures 2-200 TPa for Fe-rich and hydrogenic matter respectively. Electronic structure calculations can predict these properties, but experimental measurements are crucial to investigate their accuracy in this regime. Hohlraum-driven configurations at the National Ignition Facility can induce planar ramp or shock loading to 30 TPa, over volumes sufficient to enable percent accuracy in EOS measurements. We are designing configurations using convergent ramp and shock loading for EOS experiments to pressures in excess of 100 TPa.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huo, Wen Yi; Zhao, Yiqing; Zheng, Wudi
2014-11-15
The random radiation asymmetry in the octahedral spherical hohlraum [K. Lan et al., Phys. Plasmas 21, 0 10704 (2014)] arising from the power imbalance, pointing accuracy of laser quads, and the assemblage accuracy of capsule is investigated by using the 3-dimensional view factor model. From our study, for the spherical hohlraum, the random radiation asymmetry arising from the power imbalance of the laser quads is about half of that in the cylindrical hohlraum; the random asymmetry arising from the pointing error is about one order lower than that in the cylindrical hohlraum; and the random asymmetry arising from the assemblage errormore » of capsule is about one third of that in the cylindrical hohlraum. Moreover, the random radiation asymmetry in the spherical hohlraum is also less than the amount in the elliptical hohlraum. The results indicate that the spherical hohlraum is more insensitive to the random variations than the cylindrical hohlraum and the elliptical hohlraum. Hence, the spherical hohlraum can relax the requirements to the power imbalance and pointing accuracy of laser facility and the assemblage accuracy of capsule.« less
Capsule Shimming Developments for National Ignition Facility (NIF) Hohlraum Asymmetry Experiments
Rice, Neal G.; Vu, M.; Kong, C.; ...
2017-12-20
Capsule drive in National Ignition Facility (NIF) indirect drive implosions is generated by x-ray illumination from cylindrical hohlraums. The cylindrical hohlraum geometry is axially symmetric but not spherically symmetric causing capsule-fuel drive asymmetries. We hypothesize that fabricating capsules asymmetric in wall thickness (shimmed) may compensate for drive asymmetries and improve implosion symmetry. Simulations suggest that for high compression implosions Legendre mode P 4 hohlraum flux asymmetries are the most detrimental to implosion performance. General Atomics has developed a diamond turning method to form a GDP capsule outer surface to a Legendre mode P 4 profile. The P 4 shape requiresmore » full capsule surface coverage. Thus, in order to avoid tool-lathe interference flipping the capsule part way through the machining process is required. This flipping process risks misalignment of the capsule causing a vertical step feature on the capsule surface. Recent trials have proven this step feature height can be minimized to ~0.25 µm.« less
A novel three-axis cylindrical hohlraum designed for inertial confinement fusion ignition
NASA Astrophysics Data System (ADS)
Kuang, Longyu; Li, Hang; Jing, Longfei; Lin, Zhiwei; Zhang, Lu; Li, Liling; Ding, Yongkun; Jiang, Shaoen; Liu, Jie; Zheng, Jian
2016-10-01
A novel ignition hohlraum for indirect-drive inertial confinement fusion is proposed, which is named three-axis cylindrical hohlraum (TACH). TACH is a kind of 6 laser entrance holes (LEHs) hohlraum, which is orthogonally jointed of three cylindrical hohlraums. Laser beams are injected through every entrance hole with the same incident angle of 55°. A view-factor simulation result shows that the time-varying drive asymmetry of TACH is less than 1.0% in the whole drive pulse period without any supplementary technology. Coupling efficiency of TACH is close to that of 6 LEHs spherical hohlraum with corresponding size. Its plasma-filling time is close to that of typical cylindrical ignition hohlraum. Its laser plasma interaction has as low backscattering as the outer cone of the cylindrical ignition hohlraum. Therefore, TACH combines most advantages of various hohlraums and has little predictable risk, providing an important competitive candidate for ignition hohlraum.
A novel three-axis cylindrical hohlraum designed for inertial confinement fusion ignition
Kuang, Longyu; Li, Hang; Jing, Longfei; Lin, Zhiwei; Zhang, Lu; Li, Liling; Ding, Yongkun; Jiang, Shaoen; Liu, Jie; Zheng, Jian
2016-01-01
A novel ignition hohlraum for indirect-drive inertial confinement fusion is proposed, which is named three-axis cylindrical hohlraum (TACH). TACH is a kind of 6 laser entrance holes (LEHs) hohlraum, which is orthogonally jointed of three cylindrical hohlraums. Laser beams are injected through every entrance hole with the same incident angle of 55°. A view-factor simulation result shows that the time-varying drive asymmetry of TACH is less than 1.0% in the whole drive pulse period without any supplementary technology. Coupling efficiency of TACH is close to that of 6 LEHs spherical hohlraum with corresponding size. Its plasma-filling time is close to that of typical cylindrical ignition hohlraum. Its laser plasma interaction has as low backscattering as the outer cone of the cylindrical ignition hohlraum. Therefore, TACH combines most advantages of various hohlraums and has little predictable risk, providing an important competitive candidate for ignition hohlraum. PMID:27703250
A novel three-axis cylindrical hohlraum designed for inertial confinement fusion ignition.
Kuang, Longyu; Li, Hang; Jing, Longfei; Lin, Zhiwei; Zhang, Lu; Li, Liling; Ding, Yongkun; Jiang, Shaoen; Liu, Jie; Zheng, Jian
2016-10-05
A novel ignition hohlraum for indirect-drive inertial confinement fusion is proposed, which is named three-axis cylindrical hohlraum (TACH). TACH is a kind of 6 laser entrance holes (LEHs) hohlraum, which is orthogonally jointed of three cylindrical hohlraums. Laser beams are injected through every entrance hole with the same incident angle of 55°. A view-factor simulation result shows that the time-varying drive asymmetry of TACH is less than 1.0% in the whole drive pulse period without any supplementary technology. Coupling efficiency of TACH is close to that of 6 LEHs spherical hohlraum with corresponding size. Its plasma-filling time is close to that of typical cylindrical ignition hohlraum. Its laser plasma interaction has as low backscattering as the outer cone of the cylindrical ignition hohlraum. Therefore, TACH combines most advantages of various hohlraums and has little predictable risk, providing an important competitive candidate for ignition hohlraum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurricane, O. A.; Thomas, C.; Olson, R.
Recent data on implosions using identical hohlraums and very similar laser drives underscores the conundrum of making a clear choice of one ablator over another. Table I shows a comparison of Be and CH in a nominal length, gold, 575 μm-diameter, 1.6 mg/cc He gas-fill hohlraum while Table II shows a comparison of undoped HDC and CH in a +700 length, gold, 575 μm diameter, 1.6 mg/cc He gas fill hohlraum. As can be seen in the tables, the net integrated fusion performance of these ablators is the same to within error bars. In the case of the undoped HDCmore » and CH ablators, the hot spot shapes of the implosions were nearly indistinguishable for the experiments listed in Table II.« less
NASA Astrophysics Data System (ADS)
Li, Yongsheng; Gu, Jianfa; Wu, Changshu; Song, Peng; Dai, Zhensheng; Li, Shuanggui; Li, Xin; Kang, Dongguo; Gu, Peijun; Zheng, Wudi; Zou, Shiyang; Ding, Yongkun; Lan, Ke; Ye, Wenhua; Zhang, Weiyan
2016-07-01
Low-mode asymmetries in the laser-indirect-drive inertial confinement fusion implosion experiments conducted on the National Ignition Facility [G. H. Miller et al., Nucl. Fusion 44, S228 (2004)] are deemed the main obstacles hindering further improvement of the nuclear performance of deuterium-tritium-layered capsules. The dominant seeds of these asymmetries include the P2 and P4 asymmetries of x-ray drives and P2 asymmetry introduced by the supporting "tent." Here, we explore the effects of another possible seed that can lead to low-mode asymmetric implosions, i.e., the M-band flux asymmetry (MFA) in laser-driven cylindrical gold Hohlraums. It is shown that the M-band flux facilitates the ablation and acceleration of the shell, and that positive P2 MFAs can result in negative P2 asymmetries of hot spots and positive P2 asymmetries of shell's ρR. An oblate or toroidal hot spot, depending on the P2 amplitude of MFA, forms at stagnation. The energy loss of such a hot spot via electron thermal conduction is seriously aggravated not only due to the enlarged hot spot surface but also due to the vortices that develop and help transferring thermal energy from the hotter center to the colder margin of such a hot spot. The cliffs of nuclear performance for the two methodologies of applying MFA (i.e., symmetric flux in the presence of MFA and MFA added for symmetric soft x-ray flux) are obtained locating at 9.5% and 5.0% of P2/P0 amplitudes, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yongsheng; Graduate School, China Academy of Engineering Physics, Beijing 100088; Gu, Jianfa
Low-mode asymmetries in the laser-indirect-drive inertial confinement fusion implosion experiments conducted on the National Ignition Facility [G. H. Miller et al., Nucl. Fusion 44, S228 (2004)] are deemed the main obstacles hindering further improvement of the nuclear performance of deuterium-tritium-layered capsules. The dominant seeds of these asymmetries include the P2 and P4 asymmetries of x-ray drives and P2 asymmetry introduced by the supporting “tent.” Here, we explore the effects of another possible seed that can lead to low-mode asymmetric implosions, i.e., the M-band flux asymmetry (MFA) in laser-driven cylindrical gold Hohlraums. It is shown that the M-band flux facilitates themore » ablation and acceleration of the shell, and that positive P2 MFAs can result in negative P2 asymmetries of hot spots and positive P2 asymmetries of shell's ρR. An oblate or toroidal hot spot, depending on the P2 amplitude of MFA, forms at stagnation. The energy loss of such a hot spot via electron thermal conduction is seriously aggravated not only due to the enlarged hot spot surface but also due to the vortices that develop and help transferring thermal energy from the hotter center to the colder margin of such a hot spot. The cliffs of nuclear performance for the two methodologies of applying MFA (i.e., symmetric flux in the presence of MFA and MFA added for symmetric soft x-ray flux) are obtained locating at 9.5% and 5.0% of P2/P0 amplitudes, respectively.« less
NASA Astrophysics Data System (ADS)
Wang, Ping; Raman, Kumar; MacLaren, Stephan; Huntington, Channing; Nagel, Sabrina
2016-10-01
We present simulations of recent high-energy-density (HED) re-shock experiments on the National Ignition Facility (NIF). The experiments study the Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instability growth that occurs after successive shocks transit a sinusoidally-perturbed interface between materials of different densities. The shock tube is driven at one or both ends using indirect-drive laser cavities or hohlraums. X-ray area-backlit imaging is used to visualize the growth at different times. Our simulations are done with the three-dimensional, radiation hydrodynamics code ARES, developed at LLNL. We show the instabilitygrowth rate, inferred from the experimental radiographs, agrees well with our 2D and 3D simulations. We also discuss some 3D geometrical effects, suggested by our simulations, which could deteriorate the images at late times, unless properly accounted for in the experiment design. Work supported by U.S. Department of Energy under Contract DE- AC52-06NA27279. LLNL-ABS-680789.
Double shell planar experiments on OMEGA
NASA Astrophysics Data System (ADS)
Dodd, E. S.; Merritt, E. C.; Palaniyappan, S.; Montgomery, D. S.; Daughton, W. S.; Schmidt, D. W.; Cardenas, T.; Wilson, D. C.; Loomis, E. N.; Batha, S. H.; Ping, Y.; Smalyuk, V. A.; Amendt, P. A.
2017-10-01
The double shell project is aimed at fielding neutron-producing capsules at the National Ignition Facility (NIF), in which an outer low-Z ablator collides with an inner high-Z shell to compress the fuel. However, understanding these targets experimentally can be challenging when compared with conventional single shell targets. Halfraum-driven planar targets at OMEGA are being used to study physics issues important to double shell implosions outside of a convergent geometry. Both VISAR and radiography through a tube have advantages over imaging through the hohlraum and double-shell capsule at NIF. A number physics issues are being studied with this platform that include 1-d and higher dimensional effects such as defect-driven hydrodynamic instabilities from engineering features. Additionally, the use of novel materials with controlled density gradients require study in easily diagnosed 1-d systems. This work ultimately feeds back into the NIF capsule platform through manufacturing tolerances set using data from OMEGA. Supported under the US DOE by the LANS, LLC under contract DE-AC52-06NA25396. LA-UR-17-25386.
Temperature in subsonic and supersonic radiation fronts measured at OMEGA
NASA Astrophysics Data System (ADS)
Johns, Heather; Kline, John; Lanier, Nick; Perry, Ted; Fontes, Chris; Fryer, Chris; Brown, Colin; Morton, John
2017-10-01
Propagation of heat fronts relevant to astrophysical plasmas is challenging in the supersonic regime. Plasma Te changes affect opacity and equation of state without hydrodynamic change. In the subsonic phase density perturbations form at material interfaces as the plasma responds to radiation pressure of the front. Recent experiments at OMEGA studied this transition in aerogel foams driven by a hohlraum. In COAX, two orthogonal backlighters drive x-ray radiography and K-shell absorption spectroscopy to diagnose the subsonic shape of the front and supersonic Te profiles. Past experiments used absorption spectroscopy in chlorinated foams to measure the heat front; however, Cl dopant is not suitable for higher material temperatures at NIF. COAX has developed use of Sc and Ti dopants to diagnose Te between 60-100eV and 100-180eV. Analysis with PrismSPECT using OPLIB tabular opacity data will evaluate the platform's ability to advance radiation transport in this regime.
New and improved CH implosions at the National Ignition Facility
NASA Astrophysics Data System (ADS)
Hinkel, D. E.; Doeppner, T.; Kritcher, A. L.; Ralph, J. E.; Jarrott, L. C.; Albert, F.; Benedetti, L. R.; Field, J. E.; Goyon, C. S.; Hohenberger, M.; Izumi, N.; Milovich, J. L.; Bachmann, B.; Casey, D. T.; Yeamans, C. B.; Callahan, D. A.; Hurricane, O. A.
2017-10-01
Improvements to the hohlraum for CH implosions have resulted in near-record hot spot pressures, 225 Gbar. Implosion symmetry and laser energy coupling are improved by using a hohlraum that, compared to the previous high gas-fill hohlraum, is longer, larger, at lower gas fill density, and is fielded at zero wavelength separation to minimize cross-beam energy transfer. With a capsule at 90% of its original size in this hohlraum, implosion symmetry changes from oblate to prolate, at 33% cone fraction. Simulations highlight improved inner beam propagation as the cause of this symmetry change. These implosions have produced the highest yield for CH ablators at modest power and energy, i.e., 360 TW and 1.4 MJ. Upcoming experiments focus on continued improvement in shape as well as an increase in implosion velocity. Further, results and future plans on an increase in capsule size to improve margin will also be presented. Work performed under the auspices of the U.S. D.O.E. by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Ralph, Joseph; Salmonson, Jay; Dewald, Eduard; Bachmann, Benjamin; Edwards, John; Graziani, Frank; Hurricane, Omar; Landen, Otto; Ma, Tammy; Masse, Laurent; MacLaren, Stephen; Meezan, Nathan; Moody, John; Parrilla, Nicholas; Pino, Jesse; Sacks, Ryan; Tipton, Robert
2017-10-01
Understanding what affects implosion symmetry has been a challenge for scientists designing indirect drive inertial confinement fusion experiments on the National Ignition Facility (NIF). New experimental techniques and data analysis have been employed aimed at improving our understanding of the relationship between hohlraum dynamics and implosion symmetry. Thin wall imaging data allows for time-resolved imaging of 10 keV Au l-band x-rays providing for the first time on the NIF, a spatially resolved measurement of laser deposition with time. In the work described here, we combine measurements from the thin wall imaging with time resolved views of the interior of the hohlraum. The measurements presented are compared to hydrodynamic simulations as well as simplified physics models. The goal of this work is to form a physical picture that better explains the relationship of the hohlraum dynamics and capsule ablator on laser beam propagation and implosion symmetry. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
Hard X-ray Imaging for Measuring Laser Absorption Spatial Profiles on the National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dewald, E L; Jones, O S; Landen, O L
2006-04-25
Hard x-ray (''Thin wall'') imaging will be employed on the National Ignition Facility (NIF) to spatially locate laser beam energy deposition regions on the hohlraum walls in indirect drive Inertial Confinement Fusion (ICF) experiments, relevant for ICF symmetry tuning. Based on time resolved imaging of the hard x-ray emission of the laser spots, this method will be used to infer hohlraum wall motion due to x-ray and laser ablation and any beam refraction caused by plasma density gradients. In optimizing this measurement, issues that have to be addressed are hard x-ray visibility during the entire ignition laser pulse with intensitiesmore » ranging from 10{sup 13} to 10{sup 15} W/cm{sup 2}, as well as simultaneous visibility of the inner and the outer laser drive cones. In this work we will compare the hard x-ray emission calculated by LASNEX and analytical modeling with thin wall imaging data recorded previously on Omega and during the first hohlraum experiments on NIF. Based on these calculations and comparisons the thin wall imaging will be optimized for ICF/NIF experiments.« less
Study on Octahedral Spherical Hohlraum
NASA Astrophysics Data System (ADS)
Lan, Ke; Liu, Jie; Huo, Wenyi; Li, Zhichao; Yang, Dong; Li, Sanwei; Ren, Guoli; Chen, Yaohua; Jiang, Shaoen; He, Xian-Tu; Zhang, Weiyan
2015-11-01
In this talk, we report our recent study on octahedral spherical hohlraum which has six laser entrance holes (LEHs). First, our study shows that the octahedral hohlraums have robust high symmetry during the capsule implosion at hohlraum-to- capsule radius ratio larger than 3.7 and have potential superiority on low backscatter without supplementary technology. Second, we study the laser arrangement and constraints of the octahedral hohlraums and give their laser arrangement design for ignition facility. Third, we propose a novel octahedral hohlraum with LEH shields and cylindrical LEHs, in order to increase the laser coupling efficiency and improve the capsule symmetry and to mitigate the influence of the wall blowoff on laser transport. Fourth, we study the sensitivity of capsule symmetry inside the octahedral hohlraums to laser power balance, pointing accuracy, deviations from the optimal position and target fabrication accuracy, and compare the results with that of tradiational cylinders and rugby hohlraums. Finally, we present our recent experimental studies on the octahedral hohlraums on SGIII prototype laser facility.
NASA Astrophysics Data System (ADS)
Masson-Laborde, P. E.; Monteil, M. C.; Tassin, V.; Philippe, F.; Gauthier, P.; Casner, A.; Depierreux, S.; Neuville, C.; Villette, B.; Laffite, S.; Seytor, P.; Fremerye, P.; Seka, W.; Teychenné, D.; Debayle, A.; Marion, D.; Loiseau, P.; Casanova, M.
2016-02-01
Gas-filled rugby-shaped hohlraums have demonstrated high performances compared to a classical similar diameter cylinder hohlraum with a nearly 40% increase of x-ray drive, 10% higher measured peak drive temperature, and an increase in neutron production. Experimental comparisons have been done between rugby, cylinder, and elliptical hohlraums. The impact of these geometry differences on the laser plasma instabilities is examined. Using comparisons with hydrodynamic simulations carried out with the code FCI2 and postprocessed by Piranah, we have been able to reproduce the stimulated Raman and Brillouin scattering spectrum of the different beams. Using a methodology based on a statistical analysis for the gain calculations, we show that the behavior of the laser plasma instabilities in rugby hohlraums can be reproduced. The efficiency of laser smoothing techniques to mitigate these instabilities are discussed, and we show that while rugby hohlraums exhibit more laser plasma instabilities than cylinder hohlraum, the latter can be mitigated in the case of an elliptical hohlraum.
NASA Astrophysics Data System (ADS)
Callahan, Debra
2017-10-01
Over the past two years, we have been exploring low gasfill hohlraums (He fill at 0.3-0.6 mg/cc) as an alternate to the high gasfill hohlraums used in NIC and the High Foot campaigns (He fill at 1-1.6 mg/cc). These low fill hohlraums have significantly reduced laser-plasma instabilities and increased coupling to the target as compared to the high fill hohlraums and take us to a new region of parameter space where the hohlraum is limited by hydrodynamic motion of the hohlraum wall rather than by laser plasma interactions. The outer cone laser beams interacting with the hohlraum wall produce a ``bubble'' of low density, high Z material that moves toward the center of the hohlraum. This gold or depleted uranium bubble eventually intercepts the inner cone beams and prevents the inner cone beams from reaching the waist of the hohlraum-where they are needed to get a symmetric implosion. Thus, the speed of the bubble expansion sets the allowable pulse duration in a given size hohlraum. Data and simulations suggest that the bubble is launched by the early part of the laser pulse (``picket'') and the gold/gas interfaces moves nearly linearly in time toward the axis of the hohlraum. The velocity of the bubble is related to the square root of the energy in the picket of the pulse - thus the picket energy and pulse duration set the allowable hohlraum size and case-to-capsule ratio. In this talk, will discuss a data based model to describe the bubble motion and apply this model to a broad set of data from a variety of ablators (CH, HDC, Be), pulse durations (6-14 ns), case-to-capsule ratios (rhohl/rcap of 3-4.2), hohlraum sizes (5.4-6.7 mm diameter), and hohlraum gasfill densities (0.3-0.6 mg/cc). We will discuss how this model can help guide future designs and how improvements in the hohlraum (foam liners, hohlraum shape) can open up new parts of parameter space. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA273.
Novel spherical hohlraum with cylindrical laser entrance holes and shields
NASA Astrophysics Data System (ADS)
Lan, Ke; Zheng, Wudi
2014-09-01
Our recent works [K. Lan et al., Phys. Plasmas 21, 010704 (2014); K. Lan et al., Phys. Plasmas 21, 052704 (2014)] have shown that the octahedral spherical hohlraums are superior to the cylindrical hohlraums in both higher symmetry during the capsule implosion and lower backscatter without supplementary technology. However, both the coupling efficiency from the drive laser energy to the capsule and the capsule symmetry decrease remarkably when larger laser entrance holes (LEHs) are used. In addition, the laser beams injected at angles > 45° transport close to the hohlraum wall, thus the wall blowoff causes the LEH to close faster and results in strong laser plasma interactions inside the spherical hohlraums. In this letter, we propose a novel octahedral hohlraum with LEH shields and cylindrical LEHs to alleviate these problems. From our theoretical study, with the LEH shields, the laser coupling efficiency is significantly increased and the capsule symmetry is remarkably improved in the spherical hohlraums. The cylindrical LEHs take advantage of the cylindrical hohlraum near the LEH and mitigate the influence of the blowoff on laser transport inside a spherical hohlraum. The cylindrical LEHs can also be applied to the rugby and elliptical hohlraums.
Precision shock tuning on the national ignition facility.
Robey, H F; Celliers, P M; Kline, J L; Mackinnon, A J; Boehly, T R; Landen, O L; Eggert, J H; Hicks, D; Le Pape, S; Farley, D R; Bowers, M W; Krauter, K G; Munro, D H; Jones, O S; Milovich, J L; Clark, D; Spears, B K; Town, R P J; Haan, S W; Dixit, S; Schneider, M B; Dewald, E L; Widmann, K; Moody, J D; Döppner, T D; Radousky, H B; Nikroo, A; Kroll, J J; Hamza, A V; Horner, J B; Bhandarkar, S D; Dzenitis, E; Alger, E; Giraldez, E; Castro, C; Moreno, K; Haynam, C; LaFortune, K N; Widmayer, C; Shaw, M; Jancaitis, K; Parham, T; Holunga, D M; Walters, C F; Haid, B; Malsbury, T; Trummer, D; Coffee, K R; Burr, B; Berzins, L V; Choate, C; Brereton, S J; Azevedo, S; Chandrasekaran, H; Glenzer, S; Caggiano, J A; Knauer, J P; Frenje, J A; Casey, D T; Johnson, M Gatu; Séguin, F H; Young, B K; Edwards, M J; Van Wonterghem, B M; Kilkenny, J; MacGowan, B J; Atherton, J; Lindl, J D; Meyerhofer, D D; Moses, E
2012-05-25
Ignition implosions on the National Ignition Facility [J. D. Lindl et al., Phys. Plasmas 11, 339 (2004)] are underway with the goal of compressing deuterium-tritium fuel to a sufficiently high areal density (ρR) to sustain a self-propagating burn wave required for fusion power gain greater than unity. These implosions are driven with a very carefully tailored sequence of four shock waves that must be timed to very high precision to keep the fuel entropy and adiabat low and ρR high. The first series of precision tuning experiments on the National Ignition Facility, which use optical diagnostics to directly measure the strength and timing of all four shocks inside a hohlraum-driven, cryogenic liquid-deuterium-filled capsule interior have now been performed. The results of these experiments are presented demonstrating a significant decrease in adiabat over previously untuned implosions. The impact of the improved shock timing is confirmed in related deuterium-tritium layered capsule implosions, which show the highest fuel compression (ρR~1.0 g/cm(2)) measured to date, exceeding the previous record [V. Goncharov et al., Phys. Rev. Lett. 104, 165001 (2010)] by more than a factor of 3. The experiments also clearly reveal an issue with the 4th shock velocity, which is observed to be 20% slower than predictions from numerical simulation.
Dante soft x-ray power diagnostic for National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dewald, E.L.; Campbell, K.M.; Turner, R.E.
2004-10-01
Soft x-ray power diagnostics are essential for measuring the total x-ray flux, radiation temperature, conversion efficiency, and albedo that define the energetics in indirect and direct drive, as well as other types of high temperature laser plasma experiments. A key diagnostic for absolute radiation flux and radiation temperature in hohlraum experiments is the Dante broadband soft x-ray spectrometer. For the extended range of x-ray fluxes predicted for National Ignition Facility (NIF) compared to Omega or Nova hohlraums, the Dante spectrometer for NIF will include more high energy (<2 keV) edge filter band-pass channels and access to an increased dynamic rangemore » using grids and signal division. This will allow measurements of radiation fluxes of between 0.01 to 100 TW/sr, for hohlraum radiation temperatures between 50 eV and 1 keV. The NIF Dante will include a central four-channel imaging line-of-sight to verify the source size, alignment as well as checking for any radiation contributions from unconverted laser light plasmas.« less
NASA Astrophysics Data System (ADS)
Swadling, G. F.; Ross, J. S.; Datte, P.; Moody, J.; Divol, L.; Jones, O.; Landen, O.
2016-11-01
An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. This diagnostic is designed to make measurements of the hohlraum plasma parameters, such as the electron temperature and the density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature, hohlraums produce intense soft x-ray emission, which can cause "blanking" (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated to be ˜8 J cm-2. This is significantly above the expected threshold for the onset of "blanking" effects. A novel xenon plasma x-ray shield is proposed to protect the blast shield from x-rays and mitigate "blanking." Estimates suggest that an areal density of 1019 cm-2 Xe atoms will be sufficient to absorb 99.5% of the soft x-ray flux. Two potential designs for this shield are presented.
Swadling, G F; Ross, J S; Datte, P; Moody, J; Divol, L; Jones, O; Landen, O
2016-11-01
An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. This diagnostic is designed to make measurements of the hohlraum plasma parameters, such as the electron temperature and the density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature, hohlraums produce intense soft x-ray emission, which can cause "blanking" (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated to be ∼8 J cm -2 . This is significantly above the expected threshold for the onset of "blanking" effects. A novel xenon plasma x-ray shield is proposed to protect the blast shield from x-rays and mitigate "blanking." Estimates suggest that an areal density of 10 19 cm -2 Xe atoms will be sufficient to absorb 99.5% of the soft x-ray flux. Two potential designs for this shield are presented.
Dewald, E. L.; Milovich, J. L.; Michel, P.; ...
2013-12-01
At the National Ignition Facility (NIF) we have successfully tuned the early time (~2 ns) lowest order Legendre mode (P 2) of the incoming radiation drive asymmetry of indirectly driven ignition capsule implosions by varying the inner power cone fraction. The measured P 2/P 0 sensitivity vs come fraction is similar to calculations, but a significant -15 to -20% P 2/P 0 offset was observed. This can be explained by a considerable early time laser energy transfer from the outer to the inner beams during the laser burn-through of the Laser Entrance Hole (LEH) windows and hohlraum fill gas whenmore » the LEH plasma is still dense and relatively cold.« less
Hohlraum energetics scaling to 520 TW on the National Ignition Facilitya)
NASA Astrophysics Data System (ADS)
Kline, J. L.; Callahan, D. A.; Glenzer, S. H.; Meezan, N. B.; Moody, J. D.; Hinkel, D. E.; Jones, O. S.; MacKinnon, A. J.; Bennedetti, R.; Berger, R. L.; Bradley, D.; Dewald, E. L.; Bass, I.; Bennett, C.; Bowers, M.; Brunton, G.; Bude, J.; Burkhart, S.; Condor, A.; Di Nicola, J. M.; Di Nicola, P.; Dixit, S. N.; Doeppner, T.; Dzenitis, E. G.; Erbert, G.; Folta, J.; Grim, G.; Glenn, S.; Hamza, A.; Haan, S. W.; Heebner, J.; Henesian, M.; Hermann, M.; Hicks, D. G.; Hsing, W. W.; Izumi, N.; Jancaitis, K.; Jones, O. S.; Kalantar, D.; Khan, S. F.; Kirkwood, R.; Kyrala, G. A.; LaFortune, K.; Landen, O. L.; Lagin, L.; Larson, D.; Pape, S. Le; Ma, T.; MacPhee, A. G.; Michel, P. A.; Miller, P.; Montincelli, M.; Moore, A. S.; Nikroo, A.; Nostrand, M.; Olson, R. E.; Pak, A.; Park, H. S.; Patel, J. P.; Pelz, L.; Ralph, J.; Regan, S. P.; Robey, H. F.; Rosen, M. D.; Ross, J. S.; Schneider, M. B.; Shaw, M.; Smalyuk, V. A.; Strozzi, D. J.; Suratwala, T.; Suter, L. J.; Tommasini, R.; Town, R. P. J.; Van Wonterghem, B.; Wegner, P.; Widmann, K.; Widmayer, C.; Wilkens, H.; Williams, E. A.; Edwards, M. J.; Remington, B. A.; MacGowan, B. J.; Kilkenny, J. D.; Lindl, J. D.; Atherton, L. J.; Batha, S. H.; Moses, E.
2013-05-01
Indirect drive experiments have now been carried out with laser powers and energies up to 520 TW and 1.9 MJ. These experiments show that the energy coupling to the target is nearly constant at 84% ± 3% over a wide range of laser parameters from 350 to 520 TW and 1.2 to 1.9 MJ. Experiments at 520 TW with depleted uranium hohlraums achieve radiation temperatures of ˜330 ± 4 eV, enough to drive capsules 20 μm thicker than the ignition point design to velocities near the ignition goal of 370 km/s. A series of three symcap implosion experiments with nearly identical target, laser, and diagnostics configurations show the symmetry and drive are reproducible at the level of ±8.5% absolute and ±2% relative, respectively.
NASA Astrophysics Data System (ADS)
Ren, Guoli; Pei, Wenbing; Lan, Ke; Li, Xin; Hohlraum Physics Team
2014-10-01
In current routine 2D simulation of hohlraum physics, we adopt the principal-quantum-number (n-level) average atom model (AAM) in NLTE plasma description. The more sophisticated atomic kinetics description is better choice, but the in-line calculation consumes much more resource. By distinguishing the much more fast bound-bound atomic processes from the relative slow bound-free atomic processes, we found a method to built up a bound electron distribution (n-level or nl-level) using in-line n-level calculated plasma condition (such as temperature, density, average ionization degree). We name this method ``quasi-steady approximation.'' Using this method and the plasma condition calculated under n-level, we re-build the nl-level bound electron distribution (Pnl), and acquire a new hohlraum radiative drive by post-processing. Comparison with the n-level post-processed hohlraum drive shows that we get an almost identical radiation flux but with more-detailed frequency-dependant structures. Also we use this method in the benchmark gold sphere experiment, the constructed nl-level radiation drive resembles the experimental results and DCA results, while the n-level raditation does not.
Kinetic physics in ICF: present understanding and future directions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rinderknecht, Hans G.; Amendt, P. A.; Wilks, S. C.
Kinetic physics has the potential to impact the performance of indirect-drive inertial confinement fusion (ICF) experiments. Systematic anomalies in the National Ignition Facility implosion dataset have been identified in which kinetic physics may play a role, including inferred missing energy in the hohlraum, drive asymmetry in near-vacuum hohlraums, low areal density and high burn-averaged ion temperatures (T i ) compared with mainline simulations, and low ratios of the DD-neutron and DT-neutron yields and inferred T i . Several components of ICF implosions are likely to be influenced or dominated by kinetic physics: laser-plasma interactions in the LEH and hohlraum interior;more » the hohlraum wall blowoff, blowoff/gas and blowoff/ablator interfaces; the ablator and ablator/ice interface; and the DT fuel all present conditions in which kinetic physics can significantly affect the dynamics. This review presents the assembled experimental data and simulation results to date, which indicate that the effects of long mean-free-path plasma phenomena and self-generated electromagnetic fields may have a significant impact in ICF targets. Finally, simulation and experimental efforts are proposed to definitively quantify the importance of these effects at ignition-relevant conditions, including priorities for ongoing study.« less
Kinetic physics in ICF: present understanding and future directions
Rinderknecht, Hans G.; Amendt, P. A.; Wilks, S. C.; ...
2018-03-19
Kinetic physics has the potential to impact the performance of indirect-drive inertial confinement fusion (ICF) experiments. Systematic anomalies in the National Ignition Facility implosion dataset have been identified in which kinetic physics may play a role, including inferred missing energy in the hohlraum, drive asymmetry in near-vacuum hohlraums, low areal density and high burn-averaged ion temperatures (T i ) compared with mainline simulations, and low ratios of the DD-neutron and DT-neutron yields and inferred T i . Several components of ICF implosions are likely to be influenced or dominated by kinetic physics: laser-plasma interactions in the LEH and hohlraum interior;more » the hohlraum wall blowoff, blowoff/gas and blowoff/ablator interfaces; the ablator and ablator/ice interface; and the DT fuel all present conditions in which kinetic physics can significantly affect the dynamics. This review presents the assembled experimental data and simulation results to date, which indicate that the effects of long mean-free-path plasma phenomena and self-generated electromagnetic fields may have a significant impact in ICF targets. Finally, simulation and experimental efforts are proposed to definitively quantify the importance of these effects at ignition-relevant conditions, including priorities for ongoing study.« less
Kinetic physics in ICF: present understanding and future directions
NASA Astrophysics Data System (ADS)
Rinderknecht, Hans G.; Amendt, P. A.; Wilks, S. C.; Collins, G.
2018-06-01
Kinetic physics has the potential to impact the performance of indirect-drive inertial confinement fusion (ICF) experiments. Systematic anomalies in the National Ignition Facility implosion dataset have been identified in which kinetic physics may play a role, including inferred missing energy in the hohlraum, drive asymmetry in near-vacuum hohlraums, low areal density and high burn-averaged ion temperatures (〈Ti 〉) compared with mainline simulations, and low ratios of the DD-neutron and DT-neutron yields and inferred 〈Ti 〉. Several components of ICF implosions are likely to be influenced or dominated by kinetic physics: laser-plasma interactions in the LEH and hohlraum interior; the hohlraum wall blowoff, blowoff/gas and blowoff/ablator interfaces; the ablator and ablator/ice interface; and the DT fuel all present conditions in which kinetic physics can significantly affect the dynamics. This review presents the assembled experimental data and simulation results to date, which indicate that the effects of long mean-free-path plasma phenomena and self-generated electromagnetic fields may have a significant impact in ICF targets. Simulation and experimental efforts are proposed to definitively quantify the importance of these effects at ignition-relevant conditions, including priorities for ongoing study.
Pulsed Magnetic Field System for Magnetized Target Experiments at the National Ignition Facility
NASA Astrophysics Data System (ADS)
Rhodes, M. A.; Solberg, J. M.; Logan, B. G.; Perkins, L. J.
2014-10-01
High-magnitude magnetic fields applied to inertially confined targets may improve fusion yield and enable basic science applications. We discuss the development of a pulsed magnetic field system for NIF with the goal of applying 10--70 T to various NIF targets. While the driver may be little more than a spark-gap switched capacitor, numerous complex challenges exist in fielding such a system on NIF. The coil surrounding the metallic hohlraum drives induced current in the hohlraum wall. Both the coil and hohlraum wall must survive ohmic heating and J × B forces for several microseconds. Pulsed power must couple to the coil in the NIF environment. The system must not cause late-time optics damage due to debris. There is very limited volume for the driver in a NIF Diagnostic Instrument Manipulator (DIM). We are modeling the coil and hohlraum MHD effects with the LLNL code, ALE3D. However, the simulations lack complete and accurate data for all the required thermo-physical material properties over the expected range of temperatures (below vaporization) and pressures. Therefore, substantial experimental development is planned in the coming year. We present coil and hohlraum simulations results, overall system design, and progress towards an operational prototype test-stand. LLNL is operated by LLNS, LLC, for the U.S. D.O.E., NNSA under Contract DE-AC52-07NA27344. This work was supported by LLNL LDRD 14-ER-028.
Design and Fabrication of Opacity Targets for the National Ignition Facility
Cardenas, Tana; Schmidt, Derek William; Dodd, Evan S.; ...
2017-12-22
Accurate models for opacity of partially ionized atoms are important for modeling and understanding stellar interiors and other high-energy-density phenomena such as inertial confinement fusion. Lawrence Livermore National Laboratory is leading a multilaboratory effort to conduct experiments on the National Ignition Facility (NIF) to try to reproduce recent opacity tests at the Sandia National Laboratory Z-facility. Since 2015, the NIF effort has evolved several hohlraum designs that consist of multiple pieces joined together. The target also has three components attached to the main stalk over a long distance with high tolerances that have resulted in several design iterations. The targetmore » has made use of rapid prototyped features to attach a capsule and collimator under the hohlraum while avoiding interference with the beams. Furthermore, this paper discusses the evolution of the hohlraum and overall target design and the challenges involved with fabricating and assembling these targets.« less
Design and Fabrication of Opacity Targets for the National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardenas, Tana; Schmidt, Derek William; Dodd, Evan S.
Accurate models for opacity of partially ionized atoms are important for modeling and understanding stellar interiors and other high-energy-density phenomena such as inertial confinement fusion. Lawrence Livermore National Laboratory is leading a multilaboratory effort to conduct experiments on the National Ignition Facility (NIF) to try to reproduce recent opacity tests at the Sandia National Laboratory Z-facility. Since 2015, the NIF effort has evolved several hohlraum designs that consist of multiple pieces joined together. The target also has three components attached to the main stalk over a long distance with high tolerances that have resulted in several design iterations. The targetmore » has made use of rapid prototyped features to attach a capsule and collimator under the hohlraum while avoiding interference with the beams. Furthermore, this paper discusses the evolution of the hohlraum and overall target design and the challenges involved with fabricating and assembling these targets.« less
Laser-Plasma Interactions in Drive Campaign targets on the National Ignition Facility
NASA Astrophysics Data System (ADS)
Hinkel, D. E.; Callahan, D. A.; Moody, J. D.; Amendt, P. A.; Lasinski, B. F.; MacGowan, B. J.; Meeker, D.; Michel, P. A.; Ralph, J.; Rosen, M. D.; Ross, J. S.; Schneider, M. B.; Storm, E.; Strozzi, D. J.; Williams, E. A.
2016-03-01
The Drive campaign [D A Callahan et al., this conference] on the National Ignition Facility (NIF) laser [E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, R. Al-Ayat, Phys. Plasmas 16, 041006 (2009)] has the focused goal of understanding and optimizing the hohlraum for ignition. Both the temperature and symmetry of the radiation drive depend on laser and hohlraum characteristics. The drive temperature depends on the coupling of laser energy to the hohlraum, and the symmetry of the drive depends on beam-to-beam interactions that result in energy transfer [P. A. Michel, S. H. Glenzer, L. Divol, et al, Phys. Plasmas 17, 056305 (2010).] within the hohlraum. To this end, hohlraums are being fielded where shape (rugby vs. cylindrical hohlraums), gas fill composition (neopentane at room temperature vs. cryogenic helium), and gas fill density (increase of ∼ 150%) are independently changed. Cylindrical hohlraums with higher gas fill density show improved inner beam propagation, as should rugby hohlraums, because of the larger radius over the capsule (7 mm vs. 5.75 mm in a cylindrical hohlraum). Energy coupling improves in room temperature neopentane targets, as well as in hohlraums at higher gas fill density. In addition cross-beam energy transfer is being addressed directly by using targets that mock up one end of a hohlraum, but allow observation of the laser beam uniformity after energy transfer. Ideas such as splitting quads into “doublets” by re-pointing the right and left half of quads are also being pursued. LPI results of the Drive campaign will be summarized, and analyses of future directions presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lan, Ke; Liu, Jie; He, Xian-Tu
2014-01-15
We propose a spherical hohlraum with octahedral six laser entrance holes at a specific hohlraum-to-capsule radius ratio of 5.14 for inertial fusion study, which has robust high symmetry during the capsule implosion and low backscatter without supplementary technology. To produce an ignition radiation pulse of 300 eV, it needs 1.5 MJ absorbed laser energy in such a golden octahedral hohlraum, about 30% more than a traditional cylinder. Nevertheless, it is worth for a high symmetry and low backscatter. The proposed octahedral hohlraum is also flexible and can be applicable to diverse inertial fusion drive approaches.
2-Shock layered tuning campaign
NASA Astrophysics Data System (ADS)
Masse, Laurent; Dittrich, T.; Khan, S.; Kyrala, G.; Ma, T.; MacLaren, S.; Ralph, J.; Salmonson, J.; Tipton, R.; Los Alamos Natl Lab Team; Lawrence Livermore Natl Lab Team
2016-10-01
The 2-Shock platform has been developed to maintain shell sphericity throughout the compression phase of an indirect-drive target implosion and produce a stagnating hot spot in a quasi 1D-like manner. A sub-scale, 1700 _m outer diameter, and thick, 200 _m, uniformly Silicon doped, gas-filled plastic capsule is driven inside a nominal size 5750 _m diameter ignition hohlraum. The hohlraum fill is near vacuum to reduce back-scatter and improve laser/drive coupling. A two-shock pulse of about 1 MJ of laser energy drives the capsule. The thick capsule prevents ablation front feed-through to the imploded core. This platform has demonstrated its efficiency to tune a predictable and reproducible 1-D implosion with a nearly round shape. It has been shown that the high foot performance was dominated by the local defect growth due to the ablation front instability and by the hohlraum radiation asymmetries. The idea here is to take advantage of this 2-Shock platform to design a 1D-like layered implosion and eliminates the deleterious effects of radiation asymmetries and ablation front instability growth. We present the design work and our first experimental results of this near one-dimensional 2-Shock layered design. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.
A High-Resolution Integrated Model of the National Ignition Campaign Cryogenic Layered Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, O. S.; Callahan, D. A.; Cerjan, C. J.
A detailed simulation-based model of the June 2011 National Ignition Campaign (NIC) cryogenic DT experiments is presented. The model is based on integrated hohlraum-capsule simulations that utilize the best available models for the hohlraum wall, ablator, and DT equations of state and opacities. The calculated radiation drive was adjusted by changing the input laser power to match the experimentally measured shock speeds, shock merger times, peak implosion velocity, and bangtime. The crossbeam energy transfer model was tuned to match the measured time-dependent symmetry. Mid-mode mix was included by directly modeling the ablator and ice surface perturbations up to mode 60.more » Simulated experimental values were extracted from the simulation and compared against the experiment. The model adjustments brought much of the simulated data into closer agreement with the experiment, with the notable exception of the measured yields, which were 15-40% of the calculated yields.« less
A High-Resolution Integrated Model of the National Ignition Campaign Cryogenic Layered Experiments
Jones, O. S.; Callahan, D. A.; Cerjan, C. J.; ...
2012-05-29
A detailed simulation-based model of the June 2011 National Ignition Campaign (NIC) cryogenic DT experiments is presented. The model is based on integrated hohlraum-capsule simulations that utilize the best available models for the hohlraum wall, ablator, and DT equations of state and opacities. The calculated radiation drive was adjusted by changing the input laser power to match the experimentally measured shock speeds, shock merger times, peak implosion velocity, and bangtime. The crossbeam energy transfer model was tuned to match the measured time-dependent symmetry. Mid-mode mix was included by directly modeling the ablator and ice surface perturbations up to mode 60.more » Simulated experimental values were extracted from the simulation and compared against the experiment. The model adjustments brought much of the simulated data into closer agreement with the experiment, with the notable exception of the measured yields, which were 15-40% of the calculated yields.« less
Indirect drive ignition at the National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meezan, N. B.; Edwards, M. J.; Hurricane, O. A.
This article reviews scientific results from the pursuit of indirect drive ignition on the National Ignition Facility (NIF) and describes the program's forward looking research directions. In indirect drive on the NIF, laser beams heat an x-ray enclosure called a hohlraum that surrounds a spherical pellet. X-ray radiation ablates the surface of the pellet, imploding a thin shell of deuterium/tritium (DT) that must accelerate to high velocity (v > 350 km s -1) and compress by a factor of several thousand. Since 2009, substantial progress has been made in understanding the major challenges to ignition: Rayleigh Taylor (RT) instability seededmore » by target imperfections; and low-mode asymmetries in the hohlraum x-ray drive, exacerbated by laser-plasma instabilities (LPI). Requirements on velocity, symmetry, and compression have been demonstrated separately on the NIF but have not been achieved simultaneously. We now know that the RT instability, seeded mainly by the capsule support tent, severely degraded DT implosions from 2009–2012. Experiments using a 'high-foot' drive with demonstrated lower RT growth improved the thermonuclear yield by a factor of 10, resulting in yield amplification due to alpha particle heating by more than a factor of 2. However, large time dependent drive asymmetry in the LPI-dominated hohlraums remains unchanged, preventing further improvements. High fidelity 3D hydrodynamic calculations explain these results. In conclusion, future research efforts focus on improved capsule mounting techniques and on hohlraums with little LPI and controllable symmetry. In parallel, we are pursuing improvements to the basic physics models used in the design codes through focused physics experiments.« less
Indirect drive ignition at the National Ignition Facility
Meezan, N. B.; Edwards, M. J.; Hurricane, O. A.; ...
2016-10-27
This article reviews scientific results from the pursuit of indirect drive ignition on the National Ignition Facility (NIF) and describes the program's forward looking research directions. In indirect drive on the NIF, laser beams heat an x-ray enclosure called a hohlraum that surrounds a spherical pellet. X-ray radiation ablates the surface of the pellet, imploding a thin shell of deuterium/tritium (DT) that must accelerate to high velocity (v > 350 km s -1) and compress by a factor of several thousand. Since 2009, substantial progress has been made in understanding the major challenges to ignition: Rayleigh Taylor (RT) instability seededmore » by target imperfections; and low-mode asymmetries in the hohlraum x-ray drive, exacerbated by laser-plasma instabilities (LPI). Requirements on velocity, symmetry, and compression have been demonstrated separately on the NIF but have not been achieved simultaneously. We now know that the RT instability, seeded mainly by the capsule support tent, severely degraded DT implosions from 2009–2012. Experiments using a 'high-foot' drive with demonstrated lower RT growth improved the thermonuclear yield by a factor of 10, resulting in yield amplification due to alpha particle heating by more than a factor of 2. However, large time dependent drive asymmetry in the LPI-dominated hohlraums remains unchanged, preventing further improvements. High fidelity 3D hydrodynamic calculations explain these results. In conclusion, future research efforts focus on improved capsule mounting techniques and on hohlraums with little LPI and controllable symmetry. In parallel, we are pursuing improvements to the basic physics models used in the design codes through focused physics experiments.« less
Efficient Production of 4-KeV X Rays from Laser-Heated Xe Gas = Confined Within a Hohlraum
NASA Astrophysics Data System (ADS)
Grun, Jacob; Suter, Larry J.; Back, Christina A.; Decker, Chris; Kauffman, Robert L.; Davis, John F.
1996-11-01
Clean (debris-free) and efficient multi-kilovolt x-ray sources are needed for irradiating large military test objects and for use as backlighters in future Inertial Confinement Fusion experiments. Laser-plasma x-ray sources are particularly attractive for these uses since their spectrum can be controlled by proper choice of plasma material and laser intensity; and because many laser-plasma sources can be designed to produce little or no particulate debris. We report on an experiment in which we measured the production-efficiency, spectrum, and time history of 1-4 KeV x-rays from beryllium hohlraums which were filled with 1 and 2 atm of Xe gas and then irradiated by a 2-nsec pulse from the NOVA laser. It is predicted that 17be converted into > 4KeV x rays and 30history of >4KeV part of the spectrum is predicted to exhibit a dip in intensity whose depth and location vary with fill pressure and hohlraum size.. We also measured the debris produced by these sources. Work supported by the Defense Special Weapons Agency and the U.S. Department of Energy at LLNL under W-7405-ENG-48.
Symmetry control using beam phasing in ~0.2 NIF scale high temperature Hohlraum experiment on OMEGA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delamater, Norman D; Wilson, Goug C; Kyrala, George A
2009-01-01
Results are shown from recent experiments at the Omega laser facility, using 40 Omega beams driving the hohlraum with 3 cones from each side and up to 19.5 kJ of laser energy. Beam phasing is achieved by decreasing the energy separately in each of the three cones, by 3 kJ, for a total drive energy of 16.5kJ. This results in a more asymmetric drive, which will vary the shape of the imploded symmetry capsule core from round to oblate or prolate in a systematic and controlled manner. These results would be the first demonstration of beam phasing for implosions inmore » such 'high temperature' (275 eV) hohlraums at Omega. Dante measurements confirmed the predicted peak drive temperatures of 275 eV. Implosion core time dependent x-ray images were obtained from framing camera data which show the expected change in symmetry due to beam phasing and which also agree well with post processed hydro code calculations. Time resolved hard x-ray data has been obtained and it was found that the hard x-rays are correlated mainly with the low angle 21{sup o} degree cone.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swadling, G. F.; Ross, J. S.; Datte, P.
An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. This diagnostic is designed to make measurements of the hohlraum plasma parameters, such as the electron temperature and the density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature, hohlraums produce intense soft x-ray emission, which can cause “blanking” (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimatedmore » to be ∼8 J cm{sup −2}. This is significantly above the expected threshold for the onset of “blanking” effects. A novel xenon plasma x-ray shield is proposed to protect the blast shield from x-rays and mitigate “blanking.” Estimates suggest that an areal density of 10{sup 19} cm{sup −2} Xe atoms will be sufficient to absorb 99.5% of the soft x-ray flux. Two potential designs for this shield are presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swadling, G. F.; Ross, J. S.; Datte, P.
An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Labs (LLNL). This diagnostic is designed to make measurements of hohlraum plasma parameters, such as the electron temperature and density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature hohlraums produce intense soft x-ray emission, which can cause “blanking” (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated tomore » be ~ 8 J cm -2. This is then significantly above the expected threshold for the onset of “blanking” effects. A novel Xenon Plasma X-ray Shield (XPXS) has been proposed to protect the blast shield from x-rays and mitigate “blanking”. Finally, these estimates suggest that an areal density of 10 19 cm -2 Xe atoms will be sufficient to absorb 99.5% the soft x-ray flux. Two potential designs for this shield are presented.« less
Swadling, G. F.; Ross, J. S.; Datte, P.; ...
2016-07-21
An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Labs (LLNL). This diagnostic is designed to make measurements of hohlraum plasma parameters, such as the electron temperature and density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature hohlraums produce intense soft x-ray emission, which can cause “blanking” (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated tomore » be ~ 8 J cm -2. This is then significantly above the expected threshold for the onset of “blanking” effects. A novel Xenon Plasma X-ray Shield (XPXS) has been proposed to protect the blast shield from x-rays and mitigate “blanking”. Finally, these estimates suggest that an areal density of 10 19 cm -2 Xe atoms will be sufficient to absorb 99.5% the soft x-ray flux. Two potential designs for this shield are presented.« less
Park, Hye-Sook; Dewald, E D; Glenzer, S; Kalantar, D H; Kilkenny, J D; MacGowan, B J; Maddox, B R; Milovich, J L; Prasad, R R; Remington, B A; Robey, H F; Thomas, C A
2010-10-01
Understanding hot electron distributions generated inside Hohlraums is important to the national ignition campaign for controlling implosion symmetry and sources of preheat. While direct imaging of hot electrons is difficult, their spatial distribution and spectrum can be deduced by detecting high energy x-rays generated as they interact with target materials. We used an array of 18 pinholes with four independent filter combinations to image entire Hohlraums with a magnification of 0.87× during the Hohlraum energetics campaign on NIF. Comparing our results with Hohlraum simulations indicates that the characteristic 10-40 keV hot electrons are mainly generated from backscattered laser-plasma interactions rather than from Hohlraum hydrodynamics.
Rugby-like hohlraum experimental designs for demonstrating x-ray drive enhancement
NASA Astrophysics Data System (ADS)
Amendt, Peter; Cerjan, C.; Hinkel, D. E.; Milovich, J. L.; Park, H.-S.; Robey, H. F.
2008-01-01
A suite of experimental designs for the Omega laser facility [Boehly et al., Opt. Commun. 133, 495 (1997)] using rugby and cylindrical hohlraums is proposed to confirm the energetics benefits of rugby-shaped hohlraums over cylinders under optimal implosion symmetry conditions. Postprocessed Dante x-ray drive measurements predict a 12-17eV (23%-36%) peak hohlraum temperature (x-ray flux) enhancement for a 1ns flattop laser drive history. Simulated core self-emission x-ray histories also show earlier implosion times by 200-400ps, depending on the hohlraum case-to-capsule ratio and laser-entrance-hole size. Capsules filled with 10 or 50atm of deuterium (DD) are predicted to give in excess of 1010 neutrons in two-dimensional hohlraum simulations in the absence of mix, enabling DD burn history measurements for the first time in indirect-drive on Omega. Capsule designs with 50atm of DHe3 are also proposed to make use of proton slowing for independently verifying the drive benefits of rugby hohlraums. Scale-5/4 hohlraum designs are also introduced to provide further margin to potential laser-plasma-induced backscatter and hot-electron production.
Compression Dynamics of an Indirect Drive Fast Ignition Target
NASA Astrophysics Data System (ADS)
Stephens, R. B.; Hatchett, S. A.; Turner, R. E.; Tanaka, K. A.; Kodama, R.; Soures, J.
2002-11-01
We have compared the compression of an indirectly driven cone-in-shell target, a type proposed for the fast ignition concept, with models. The experimental parameters -500 μm diameter plastic shell with 60 μm thick wall were a 1/5 scale realization of a fast ignition target designed for NIF (absorbing 180 kJ for compression and ˜30 kJ for ignition, and yielding ˜30 MJ) [1]. The implosion was backlit with 6.4 keV x-rays, and observed with a framing camera which captured the implosion from ˜2.6 to 3.3 ns after the onset. The collapsing structure was very similar to model predictions except that non-thermal m-band emissions from the hohlraum penetrated the shell and vaporized gold off the reentrant cone. This could be eliminated by changing the hohlraum composition. [1] S. Hatchett, et al., 5th Wkshp on Fast Ignition of Fusion Targets (Satellite Wkshp, 28th EPS Conf. on Contr. Fusion and Plasma Phys.), Madeira, Portugal (2001).
``Green's function'' approach & low-mode asymmetries
NASA Astrophysics Data System (ADS)
Masse, Laurent; Clark, Dan; Salmonson, Jay; MacLaren, Steve; Ma, Tammy; Khan, Shahab; Pino, Jesse; Ralph, Jo; Czajka, C.; Tipton, Robert; Landen, Otto; Kyrala, Georges; 2 Team; 1 Team
2017-10-01
Long wavelength, low mode asymmetries are believed to play a leading role in limiting the performance of current ICF implosions on NIF. These long wavelength modes are initiated and driven by asymmetries in the x-ray flux from the hohlraum; however, the underlying hydrodynamics of the implosion also act to amplify these asymmetries. The work presented here aim to deepen our understanding of the interplay of the drive asymmetries and the underlying implosion hydrodynamics in determining the final imploded configuration. This is accomplished through a synthesis of numerical modeling, analytic theory, and experimental data. In detail, we use a Green's function approach to connect the drive asymmetry seen by the capsule to the measured inflight and hot spot symmetries. The approach has been validated against a suite of numerical simulations. Ultimately, we hope this work will identify additional measurements to further constrain the asymmetries and increase hohlraum illumination design flexibility on the NIF. The technique and derivation of associated error bars will be presented. LLC, (LLNS) Contract No. DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Berzak Hopkins, L.; Divol, L.; Lepape, S.; Meezan, N. B.; Dewald, E.; Ho, D.; Khan, S.; Pak, A.; Ralph, J.; Ross, J. S.
2016-10-01
Recent simulation-based and experimental work using high-density carbon ablators in unlined uranium hohlraums with 0.3 mg/cc helium fill have demonstrated round implosions with minimal evolution of Legendre moment P2 during burn. To extend this promising work, design studies have been performed to explore potential performance improvements with larger capsules, while maintaining similar case-to-capsule target ratios. We present here the results of these design studies, which will motivate a series of upcoming experiments at the National Ignition Facility. Prepared by LLNL under Contract DE-AC52-07NA27344.
Simakov, A. N.; Wilson, D. C.; Yi, S. A.; ...
2017-05-10
When used with 1.06-mm beryllium (Be) capsules on the National Ignition Facility, gold hohlraums with the inner diameter of 5.75 mm and helium gas fill density of 1.6 mg/cm 3 exhibit significant drive degradation due to laser energy backscatter (of order 14%–17%) and “missing” X-ray drive energy (about 32% during the main pulse). Also, hard to simulate cross-beam energy transfer (CBET) must be used to control the implosion symmetry. Larger, 6.72-mm hohlraums with fill densities ≤0.6 mg/cm 3 generally offer improved drive efficiency, reduced hot-electron preheat, and better control of the implosion symmetry without CBET. Recently, we carried out anmore » exploratory campaign to evaluate performance of 1.06-mm Be capsules in such hohlraums and determine optimal hohlraum parameters. Specifically, we performed in this paper a hohlraum fill-density scan with a three-shock, 9.5-ns laser pulse and found that an appropriate axial laser repointing and azimuthal outer-quad splitting resulted in significantly improved hohlraum energetics at fill densities ≤0.3 mg/cm 3 (with backscattered and “missing” energies being of about 5% and 23% of the total laser energy, respectively). The capsule shape at stagnation was slightly oblate and improved with lowering the fill density. We also performed an implosion with a lower-picket, 12.6-ns pulse at the hohlraum fill density of 0.15 mg/cm 3 to observe comparable hohlraum energetics (about 3% of backscattered and 27% of “missing” energy) but an even more oblate implosion shape. Finally, achieving symmetric implosions of 1.06-mm Be capsules in low-fill, 6.72-mm gold hohlraums with reasonably low-adiabat pulses may not be feasible. However, symmetric implosions have recently been successfully demonstrated in such hohlraums with 0.8-mm Be capsules.« less
Towards an Integrated Model of the NIC Layered Implosions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, O S; Callahan, D A; Cerjan, C J
A detailed simulation-based model of the June 2011 National Ignition Campaign (NIC) cryogenic DT experiments is presented. The model is based on integrated hohlraum-capsule simulations that utilize the best available models for the hohlraum wall, ablator, and DT equations of state and opacities. The calculated radiation drive was adjusted by changing the input laser power to match the experimentally measured shock speeds, shock merger times, peak implosion velocity, and bangtime. The crossbeam energy transfer model was tuned to match the measured time-dependent symmetry. Mid-mode mix was included by directly modeling the ablator and ice surface perturbations up to mode 60.more » Simulated experimental values were extracted from the simulation and compared against the experiment. The model adjustments brought much of the simulated data into closer agreement with the experiment, with the notable exception of the measured yields, which were 15-45% of the calculated yields.« less
Simulations of super-ellipse hohlraum targets as a path to high neutron yields
NASA Astrophysics Data System (ADS)
Milovich, Jose; Amendt, Peter; Storm, Erik; Robey, Harry; Haan, Steve; Landen, Otto; Meezan, Nathan; Lindl, John
2017-10-01
Recently neutron yields in excess of 1016 have been achieved at the National Ignition Facility (NIF) using a low-density gas fill hohlraum and a subscale high-density-carbon capsule. The laser power used was near the current maximum level allowed on the inner cones of the NIF laser. While more energy can be extracted from the laser to provide additional improvement on the neutron yield, a more efficient design is desired. A new effort has begun to investigate alternatives to the current cylinder-shaped hohlraum for driving larger capsules (1.1 mm outer radius). If these new hohlraums can preserve the implosion symmetry, the additional absorbed energy is expected to provide a path to high neutron yield and potential ignition. Super-ellipse hohlraums, a generalization of an earlier rugby hohlraum design, have the advantage of a larger waist diameter and reduced parasitic energy losses from the corners of cylindrical hohlraums while still being able to produce the required capsule drive at the current energy and power limits available at the NIF. We will present plausible designs of these hohlraums based on the Lamé mathematical construction, and discuss their prospects to reach high neutron gains. Prepared by LLNL under Contract DE-AC52-07NA27344.
The first experiments on the national ignition facility
NASA Astrophysics Data System (ADS)
Landen, O. L.; Glenzer, S.; Froula, D.; Dewald, E.; Suter, L. J.; Schneider, M.; Hinkel, D.; Fernandez, J.; Kline, J.; Goldman, S.; Braun, D.; Celliers, P.; Moon, S.; Robey, H.; Lanier, N.; Glendinning, G.; Blue, B.; Wilde, B.; Jones, O.; Schein, J.; Divol, L.; Kalantar, D.; Campbell, K.; Holder, J.; McDonald, J.; Niemann, C.; MacKinnon, A.; Collins, R.; Bradley, D.; Eggert, J.; Hicks, D.; Gregori, G.; Kirkwood, R.; Niemann, C.; Young, B.; Foster, J.; Hansen, F.; Perry, T.; Munro, D.; Baldis, H.; Grim, G.; Heeter, R.; Hegelich, B.; Montgomery, D.; Rochau, G.; Olson, R.; Turner, R.; Workman, J.; Berger, R.; Cohen, B.; Kruer, W.; Langdon, B.; Langer, S.; Meezan, N.; Rose, H.; Still, B.; Williams, E.; Dodd, E.; Edwards, J.; Monteil, M.-C.; Stevenson, M.; Thomas, B.; Coker, R.; Magelssen, G.; Rosen, P.; Stry, P.; Woods, D.; Weber, S.; Alvarez, S.; Armstrong, G.; Bahr, R.; Bourgade, J.-L.; Bower, D.; Celeste, J.; Chrisp, M.; Compton, S.; Cox, J.; Constantin, C.; Costa, R.; Duncan, J.; Ellis, A.; Emig, J.; Gautier, C.; Greenwood, A.; Griffith, R.; Holdner, F.; Holtmeier, G.; Hargrove, D.; James, T.; Kamperschroer, J.; Kimbrough, J.; Landon, M.; Lee, D.; Malone, R.; May, M.; Montelongo, S.; Moody, J.; Ng, E.; Nikitin, A.; Pellinen, D.; Piston, K.; Poole, M.; Rekow, V.; Rhodes, M.; Shepherd, R.; Shiromizu, S.; Voloshin, D.; Warrick, A.; Watts, P.; Weber, F.; Young, P.; Arnold, P.; Atherton, L.; Bardsley, G.; Bonanno, R.; Borger, T.; Bowers, M.; Bryant, R.; Buckman, S.; Burkhart, S.; Cooper, F.; Dixit, S.; Erbert, G.; Eder, D.; Ehrlich, B.; Felker, B.; Fornes, J.; Frieders, G.; Gardner, S.; Gates, C.; Gonzalez, M.; Grace, S.; Hall, T.; Haynam, C.; Heestand, G.; Henesian, M.; Hermann, M.; Hermes, G.; Huber, S.; Jancaitis, K.; Johnson, S.; Kauffman, B.; Kelleher, T.; Kohut, T.; Koniges, A. E.; Labiak, T.; Latray, D.; Lee, A.; Lund, D.; Mahavandi, S.; Manes, K. R.; Marshall, C.; McBride, J.; McCarville, T.; McGrew, L.; Menapace, J.; Mertens, E.; Munro, D.; Murray, J.; Neumann, J.; Newton, M.; Opsahl, P.; Padilla, E.; Parham, T.; Parrish, G.; Petty, C.; Polk, M.; Powell, C.; Reinbachs, I.; Rinnert, R.; Riordan, B.; Ross, G.; Robert, V.; Tobin, M.; Sailors, S.; Saunders, R.; Schmitt, M.; Shaw, M.; Singh, M.; Spaeth, M.; Stephens, A.; Tietbohl, G.; Tuck, J.; van Wonterghem, B.; Vidal, R.; Wegner, P.; Whitman, P.; Williams, K.; Winward, K.; Work, K.; Wallace, R.; Nobile, A.; Bono, M.; Day, B.; Elliott, J.; Hatch, D.; Louis, H.; Manzenares, R.; O'Brien, D.; Papin, P.; Pierce, T.; Rivera, G.; Ruppe, J.; Sandoval, D.; Schmidt, D.; Valdez, L.; Zapata, K.; MacGowan, B.; Eckart, M.; Hsing, W.; Springer, P.; Hammel, B.; Moses, E.; Miller, G.
2006-06-01
A first set of shock propagation, laser-plasma interaction, hohlraum energetics and hydrodynamic experiments have been performed using the first 4 beams of the National Ignition Facility (NIF), in support of indirect drive Inertial Confinement Fusion (ICF) and High Energy Density Physics.
NASA Astrophysics Data System (ADS)
Sanford, T. W. L.; Olson, R. E.; Mock, R. C.; Chandler, G. A.; Leeper, R. J.; Nash, T. J.; Ruggles, L. E.; Simpson, W. W.; Struve, K. W.; Peterson, D. L.; Bowers, R. L.; Matuska, W.
2000-11-01
A Z-pinch radiation source has been developed that generates 60±20 kJ of x rays with a peak power of 13±4 TW through a 4-mm-diam axial aperture on the Z facility. The source has heated National Ignition Facility-scale (6-mm-diam by 7-mm-high) hohlraums to 122±6 eV and reduced-scale (4-mm-diam by 4-mm-high) hohlraums to 155±8 eV—providing environments suitable for indirect-drive inertial confinement fusion studies. Eulerian-RMHC (radiation-magnetohydrodynamics code) simulations that take into account the development of the Rayleigh-Taylor instability in the r-z plane provide integrated calculations of the implosion, x-ray generation, and hohlraum heating, as well as estimates of wall motion and plasma fill within the hohlraums. Lagrangian-RMHC simulations suggest that the addition of a 6 mg/cm3 CH2 fill in the reduced-scale hohlraum decreases hohlraum inner-wall velocity by ˜40% with only a 3%-5% decrease in peak temperature, in agreement with measurements.
Electromagnetic radiations from laser interaction with gas-filled Hohlraum
NASA Astrophysics Data System (ADS)
Yang, Ming; Yang, Yongmei; Li, Tingshuai; Yi, Tao; Wang, Chuanke; Liu, Shenye; Jiang, Shaoen; Ding, Yongkun
2018-01-01
The emission of intensive electromagnetic pulse (EMP) due to laser-target interactions at the ShenGuang-III laser facility has been evaluated by probes. EMP signals measured using the small discone antennas demonstrated two variation trends including a bilateral oscillation wave and a unilateral oscillation wave. The new trend of unilateral oscillation could be attributed to the hohlraum structure and low-Z gas in the hohlraum. The EMP waveform showed multiple peaks when the gas-filled hohlraum was shot by the high-power laser. Comparing the EMP signals with the verification of stimulated Raman scattering energy and hard x-ray energy spectrum, we found that the intensity of EMP signals decreased with the increase of the hohlraum size. The current results are expected to offer preliminary information to study physical processes on laser injecting gas-filled hohlraums in the National Ignition Facility implementation.
Soft x-ray power diagnostic improvements at the Omega Laser Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorce, C.; Schein, J.; Weber, F.
2006-10-15
Soft x-ray power diagnostics are essential for evaluating high temperature laser plasma experiments. The Dante soft x-ray spectrometer, a core diagnostic for radiation flux and temperature measurements of Hohlraums, installed on the Omega Laser Facility at the Laboratory for Laser Energetics has recently undergone a series of upgrades. Work performed at Brookhaven National Laboratory for the development of the National Ignition Facility (NIF) Dante spectrometer enables the Omega Dante to offer a total of 18 absolutely calibrated channels in the energy range from 50 eV to 20 keV. This feature provides Dante with the capability to measure higher, NIF relevant,more » radiation temperatures with increased accuracy including a differentiation of higher energy radiation such as the Au M and L bands. Diagnostic monitoring using experimental data from directly driven Au spherical shots is discussed.« less
Experimental Demonstration of X-Ray Drive Enhancement with Rugby-Shaped Hohlraums
NASA Astrophysics Data System (ADS)
Philippe, F.; Casner, A.; Caillaud, T.; Landoas, O.; Monteil, M. C.; Liberatore, S.; Park, H. S.; Amendt, P.; Robey, H.; Sorce, C.; Li, C. K.; Seguin, F.; Rosenberg, M.; Petrasso, R.; Glebov, V.; Stoeckl, C.
2010-01-01
Rugby-shaped hohlraums have been suggested as a way to enhance x-ray drive in the indirect drive approach to inertial confinement fusion. This Letter presents an experimental comparison of rugby-shaped and cylinder hohlraums used for D2 and DHe3-filled capsules implosions on the Omega laser facility, demonstrating an increase of x-ray flux by 18% in rugby-shaped hohlraums. The highest yields to date for deuterium gas implosions in indirect drive on Omega (1.5×1010 neutrons) were obtained, allowing for the first time the measurement of a DD burn history. Proton spectra measurements provide additional validation of the higher drive in rugby-shaped hohlraums.
NASA Astrophysics Data System (ADS)
Ralph, Joseph; Pak, Arthur; Otto, Landen; Kritcher, Andrea; Ma, Tammy; Charles, Jarrott; Callahan, Debra; Hinkel, Denise; Berzak Hopkins, Laura; Moody, John; Khan, Shahab; Doeppner, Tilo; Rygg, Ryan; Hurricane, Omar
2016-10-01
The current high foot hohlraum design fielded on the National Ignition Facility is aimed at providing uniform x-ray drive to provide a spherical implosion by lowering the gas fill from 1.6 to 0.6 mg/cc and increasing the hohlraum width from 5.75 to 6.72 mm while maintaining the same 1.8 mm capsule diameter from previous designs. These changes are intended to improve beam propagation without the need for crossed beam energy transfer. Analysis of the measurements of hard x-ray emission from the gated x-ray detector (GXD) and the static x-ray imager (SXI) looking through the laser entrance hole indicate a significant fraction of the inner beam incident energy is absorbed in the high z blow-off region (either uranium or gold) before reaching the inner wall near the equator. Comparison of inner beam absorption in this region and its effect on the implosion symmetry measurements will be presented. Additionally, the sensitivity of this absorption feature and therefore the implosion symmetry to the pulse shape, hohlraum fill pressure and fraction of energy in beams depositing energy at the hohlraum equator will be discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
New designs of LMJ targets for early ignition experiments
NASA Astrophysics Data System (ADS)
C-Clérouin, C.; Bonnefille, M.; Dattolo, E.; Fremerye, P.; Galmiche, D.; Gauthier, P.; Giorla, J.; Laffite, S.; Liberatore, S.; Loiseau, P.; Malinie, G.; Masse, L.; Poggi, F.; Seytor, P.
2008-05-01
The LMJ experimental plans include the attempt of ignition and burn of an ICF capsule with 40 laser quads, delivering up to 1.4MJ and 380TW. New targets needing reduced laser energy with only a small decrease in robustness are then designed for this purpose. A first strategy is to use scaled-down cylindrical hohlraums and capsules, taking advantage of our better understanding of the problem, set on theoretical modelling, simulations and experiments. Another strategy is to work specifically on the coupling efficiency parameter, i.e. the ratio of the energy absorbed by the capsule to the laser energy, which is with parametric instabilities a crucial drawback of indirect drive. An alternative design is proposed, made up of the nominal 60 quads capsule, named A1040, in a rugby-shaped hohlraum. Robustness evaluations of these different targets are in progress.
Non-destructive analysis of DU content in the NIF hohlraums
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gharibyan, Narek; Moody, Ken J.; Shaughnessy, Dawn A.
2015-12-16
The advantage of using depleted uranium (DU) hohlraums in high-yield deuterium-tritium (DT) shots at the National Ignition Facility (NIF) is addressed by Döppner, et al., in great detail [1]. This DU based hohlraum incorporates a thin layer of DU, ~7 μm thick, on the inner surface along with a thin layer of a gold coating, ~0.7 μm thick, while the outer layer is ~22 μm thick gold. A thickness measurement of the DU layer can be performed using an optical microscope where the total DU weight can be computed provided a uniform DU layer. However, the uniformity of the thicknessmore » is not constant throughout the hohlraum since CAD drawing calculations of the DU weight do not agree with the computed values from optical measurements [2]. Therefore, a non-destructive method for quantifying the DU content in hohlraums has been established by utilizing gamma-ray spectroscopy. The details of this method, along with results from several hohlraums, are presented in this report.« less
Recent advances in theoretical and numerical studies of wire array Z-pinch in the IAPCM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Ning, E-mail: ding-ning@iapcm.ac.cn; Zhang, Yang, E-mail: ding-ning@iapcm.ac.cn; Xiao, Delong, E-mail: ding-ning@iapcm.ac.cn
2014-12-15
Fast Z-pinch has produced the most powerful X-ray radiation source in laboratory and also shows the possibility to drive inertial confinement fusion (ICF). Recent advances in wire-array Z-pinch researches at the Institute of Applied Physics and Computational Mathematics are presented in this paper. A typical wire array Z-pinch process has three phases: wire plasma formation and ablation, implosion and the MRT instability development, stagnation and radiation. A mass injection model with azimuthal modulation coefficient is used to describe the wire initiation, and the dynamics of ablated plasmas of wire-array Z-pinches in (r, θ) geometry is numerically studied. In the implosionmore » phase, a two-dimensional(r, z) three temperature radiation MHD code MARED has been developed to investigate the development of the Magneto-Rayleigh-Taylor(MRT) instability. We also analyze the implosion modes of nested wire-array and find that the inner wire-array is hardly affected before the impaction of the outer wire-array. While the plasma accelerated to high speed in the implosion stage stagnates on the axis, abundant x-ray radiation is produced. The energy spectrum of the radiation and the production mechanism are investigated. The computational x-ray pulse shows a reasonable agreement with the experimental result. We also suggest that using alloyed wire-arrays can increase multi-keV K-shell yield by decreasing the opacity of K-shell lines. In addition, we use a detailed circuit model to study the energy coupling between the generator and the Z-pinch implosion. Recently, we are concentrating on the problems of Z-pinch driven ICF, such as dynamic hohlraum and capsule implosions. Our numerical investigations on the interaction of wire-array Z-pinches on foam convertors show qualitative agreements with experimental results on the “Qiangguang I” facility. An integrated two-dimensional simulation of dynamic hohlraum driven capsule implosion provides us the physical insights of wire-array plasma acceleration, shock generation and production, hohlraum formation, radiation ablation and fuel compression.« less
NASA Astrophysics Data System (ADS)
Glenzer, S. H.; MacGowan, B. J.; Meezan, N. B.; Adams, P. A.; Alfonso, J. B.; Alger, E. T.; Alherz, Z.; Alvarez, L. F.; Alvarez, S. S.; Amick, P. V.; Andersson, K. S.; Andrews, S. D.; Antonini, G. J.; Arnold, P. A.; Atkinson, D. P.; Auyang, L.; Azevedo, S. G.; Balaoing, B. N. M.; Baltz, J. A.; Barbosa, F.; Bardsley, G. W.; Barker, D. A.; Barnes, A. I.; Baron, A.; Beeler, R. G.; Beeman, B. V.; Belk, L. R.; Bell, J. C.; Bell, P. M.; Berger, R. L.; Bergonia, M. A.; Bernardez, L. J.; Berzins, L. V.; Bettenhausen, R. C.; Bezerides, L.; Bhandarkar, S. D.; Bishop, C. L.; Bond, E. J.; Bopp, D. R.; Borgman, J. A.; Bower, J. R.; Bowers, G. A.; Bowers, M. W.; Boyle, D. T.; Bradley, D. K.; Bragg, J. L.; Braucht, J.; Brinkerhoff, D. L.; Browning, D. F.; Brunton, G. K.; Burkhart, S. C.; Burns, S. R.; Burns, K. E.; Burr, B.; Burrows, L. M.; Butlin, R. K.; Cahayag, N. J.; Callahan, D. A.; Cardinale, P. S.; Carey, R. W.; Carlson, J. W.; Casey, A. D.; Castro, C.; Celeste, J. R.; Chakicherla, A. Y.; Chambers, F. W.; Chan, C.; Chandrasekaran, H.; Chang, C.; Chapman, R. F.; Charron, K.; Chen, Y.; Christensen, M. J.; Churby, A. J.; Clancy, T. J.; Cline, B. D.; Clowdus, L. C.; Cocherell, D. G.; Coffield, F. E.; Cohen, S. J.; Costa, R. L.; Cox, J. R.; Curnow, G. M.; Dailey, M. J.; Danforth, P. M.; Darbee, R.; Datte, P. S.; Davis, J. A.; Deis, G. A.; Demaret, R. D.; Dewald, E. L.; di Nicola, P.; di Nicola, J. M.; Divol, L.; Dixit, S.; Dobson, D. B.; Doppner, T.; Driscoll, J. D.; Dugorepec, J.; Duncan, J. J.; Dupuy, P. C.; Dzenitis, E. G.; Eckart, M. J.; Edson, S. L.; Edwards, G. J.; Edwards, M. J.; Edwards, O. D.; Edwards, P. W.; Ellefson, J. C.; Ellerbee, C. H.; Erbert, G. V.; Estes, C. M.; Fabyan, W. J.; Fallejo, R. N.; Fedorov, M.; Felker, B.; Fink, J. T.; Finney, M. D.; Finnie, L. F.; Fischer, M. J.; Fisher, J. M.; Fishler, B. T.; Florio, J. W.; Forsman, A.; Foxworthy, C. B.; Franks, R. M.; Frazier, T.; Frieder, G.; Fung, T.; Gawinski, G. N.; Gibson, C. R.; Giraldez, E.; Glenn, S. M.; Golick, B. P.; Gonzales, H.; Gonzales, S. A.; Gonzalez, M. J.; Griffin, K. L.; Grippen, J.; Gross, S. M.; Gschweng, P. H.; Gururangan, G.; Gu, K.; Haan, S. W.; Hahn, S. R.; Haid, B. J.; Hamblen, J. E.; Hammel, B. A.; Hamza, A. V.; Hardy, D. L.; Hart, D. R.; Hartley, R. G.; Haynam, C. A.; Heestand, G. M.; Hermann, M. R.; Hermes, G. L.; Hey, D. S.; Hibbard, R. L.; Hicks, D. G.; Hinkel, D. E.; Hipple, D. L.; Hitchcock, J. D.; Hodtwalker, D. L.; Holder, J. P.; Hollis, J. D.; Holtmeier, G. M.; Huber, S. R.; Huey, A. W.; Hulsey, D. N.; Hunter, S. L.; Huppler, T. R.; Hutton, M. S.; Izumi, N.; Jackson, J. L.; Jackson, M. A.; Jancaitis, K. S.; Jedlovec, D. R.; Johnson, B.; Johnson, M. C.; Johnson, T.; Johnston, M. P.; Jones, O. S.; Kalantar, D. H.; Kamperschroer, J. H.; Kauffman, R. L.; Keating, G. A.; Kegelmeyer, L. M.; Kenitzer, S. L.; Kimbrough, J. R.; King, K.; Kirkwood, R. K.; Klingmann, J. L.; Knittel, K. M.; Kohut, T. R.; Koka, K. G.; Kramer, S. W.; Krammen, J. E.; Krauter, K. G.; Krauter, G. W.; Krieger, E. K.; Kroll, J. J.; La Fortune, K. N.; Lagin, L. J.; Lakamsani, V. K.; Landen, O. L.; Lane, S. W.; Langdon, A. B.; Langer, S. H.; Lao, N.; Larson, D. W.; Latray, D.; Lau, G. T.; Le Pape, S.; Lechleiter, B. L.; Lee, Y.; Lee, T. L.; Li, J.; Liebman, J. A.; Lindl, J. D.; Locke, S. F.; Loey, H. K.; London, R. A.; Lopez, F. J.; Lord, D. M.; Lowe-Webb, R. R.; Lown, J. G.; Ludwigsen, A. P.; Lum, N. W.; Lyons, R. R.; Ma, T.; MacKinnon, A. J.; Magat, M. D.; Maloy, D. T.; Malsbury, T. N.; Markham, G.; Marquez, R. M.; Marsh, A. A.; Marshall, C. D.; Marshall, S. R.; Maslennikov, I. L.; Mathisen, D. G.; Mauger, G. J.; Mauvais, M.-Y.; McBride, J. A.; McCarville, T.; McCloud, J. B.; McGrew, A.; McHale, B.; Macphee, A. G.; Meeker, J. F.; Merill, J. S.; Mertens, E. P.; Michel, P. A.; Miller, M. G.; Mills, T.; Milovich, J. L.; Miramontes, R.; Montesanti, R. C.; Montoya, M. M.; Moody, J.; Moody, J. D.; Moreno, K. A.; Morris, J.; Morriston, K. M.; Nelson, J. R.; Neto, M.; Neumann, J. D.; Ng, E.; Ngo, Q. M.; Olejniczak, B. L.; Olson, R. E.; Orsi, N. L.; Owens, M. W.; Padilla, E. H.; Pannell, T. M.; Parham, T. G.; Patterson, R. W., Jr.; Pavel, G.; Prasad, R. R.; Pendlton, D.; Penko, F. A.; Pepmeier, B. L.; Petersen, D. E.; Phillips, T. W.; Pigg, D.; Piston, K. W.; Pletcher, K. D.; Powell, C. L.; Radousky, H. B.; Raimondi, B. S.; Ralph, J. E.; Rampke, R. L.; Reed, R. K.; Reid, W. A.; Rekow, V. V.; Reynolds, J. L.; Rhodes, J. J.; Richardson, M. J.; Rinnert, R. J.; Riordan, B. P.; Rivenes, A. S.; Rivera, A. T.; Roberts, C. J.; Robinson, J. A.; Robinson, R. B.; Robison, S. R.; Rodriguez, O. R.; Rogers, S. P.; Rosen, M. D.; Ross, G. F.; Runkel, M.; Runtal, A. S.; Sacks, R. A.; Sailors, S. F.; Salmon, J. T.; Salmonson, J. D.; Saunders, R. L.; Schaffer, J. R.; Schindler, T. M.; Schmitt, M. J.; Schneider, M. B.; Segraves, K. S.; Shaw, M. J.; Sheldrick, M. E.; Shelton, R. T.; Shiflett, M. K.; Shiromizu, S. J.; Shor, M.; Silva, L. L.; Silva, S. A.; Skulina, K. M.; Smauley, D. A.; Smith, B. E.; Smith, L. K.; Solomon, A. L.; Sommer, S.; Soto, J. G.; Spafford, N. I.; Speck, D. E.; Springer, P. T.; Stadermann, M.; Stanley, F.; Stone, T. G.; Stout, E. A.; Stratton, P. L.; Strausser, R. J.; Suter, L. J.; Sweet, W.; Swisher, M. F.; Tappero, J. D.; Tassano, J. B.; Taylor, J. S.; Tekle, E. A.; Thai, C.; Thomas, C. A.; Thomas, A.; Throop, A. L.; Tietbohl, G. L.; Tillman, J. M.; Town, R. P. J.; Townsend, S. L.; Tribbey, K. L.; Trummer, D.; Truong, J.; Vaher, J.; Valadez, M.; van Arsdall, P.; van Prooyen, A. J.; Vergel de Dios, E. O.; Vergino, M. D.; Vernon, S. P.; Vickers, J. L.; Villanueva, G. T.; Vitalich, M. A.; Vonhof, S. A.; Wade, F. E.; Wallace, R. J.; Warren, C. T.; Warrick, A. L.; Watkins, J.; Weaver, S.; Wegner, P. J.; Weingart, M. A.; Wen, J.; White, K. S.; Whitman, P. K.; Widmann, K.; Widmayer, C. C.; Wilhelmsen, K.; Williams, E. A.; Williams, W. H.; Willis, L.; Wilson, E. F.; Wilson, B. A.; Witte, M. C.; Work, K.; Yang, P. S.; Young, B. K.; Youngblood, K. P.; Zacharias, R. A.; Zaleski, T.; Zapata, P. G.; Zhang, H.; Zielinski, J. S.; Kline, J. L.; Kyrala, G. A.; Niemann, C.; Kilkenny, J. D.; Nikroo, A.; van Wonterghem, B. M.; Atherton, L. J.; Moses, E. I.
2011-02-01
We demonstrate the hohlraum radiation temperature and symmetry required for ignition-scale inertial confinement fusion capsule implosions. Cryogenic gas-filled hohlraums with 2.2 mm-diameter capsules are heated with unprecedented laser energies of 1.2 MJ delivered by 192 ultraviolet laser beams on the National Ignition Facility. Laser backscatter measurements show that these hohlraums absorb 87% to 91% of the incident laser power resulting in peak radiation temperatures of TRAD=300eV and a symmetric implosion to a 100μm diameter hot core.
A novel flat-response x-ray detector in the photon energy range of 0.1-4 keV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Zhichao; Guo Liang; Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900
2010-07-15
A novel flat-response x-ray detector has been developed for the measurement of radiation flux from a hohlraum. In order to obtain a flat response in the photon energy range of 0.1-4 keV, it is found that both the cathode and the filter of the detector can be made of gold. A further improvement on the compound filter can then largely relax the requirement of the calibration x-ray beam. The calibration of the detector, which is carried out on Beijing Synchrotron Radiation Facility at Institute of High Energy Physics, shows that the detector has a desired flat response in the photonmore » energy range of 0.1-4 keV, with a response flatness smaller than 13%. The detector has been successfully applied in the hohlraum experiment on Shenguang-III prototype laser facility. The radiation temperatures inferred from the detector agree well with those from the diagnostic instrument Dante installed at the same azimuth angle from the hohlraum axis, demonstrating the feasibility of the detector.« less
A novel flat-response x-ray detector in the photon energy range of 0.1-4 keV.
Li, Zhichao; Jiang, Xiaohua; Liu, Shenye; Huang, Tianxuan; Zheng, Jian; Yang, Jiamin; Li, Sanwei; Guo, Liang; Zhao, Xuefeng; Du, Huabin; Song, Tianming; Yi, Rongqing; Liu, Yonggang; Jiang, Shaoen; Ding, Yongkun
2010-07-01
A novel flat-response x-ray detector has been developed for the measurement of radiation flux from a hohlraum. In order to obtain a flat response in the photon energy range of 0.1-4 keV, it is found that both the cathode and the filter of the detector can be made of gold. A further improvement on the compound filter can then largely relax the requirement of the calibration x-ray beam. The calibration of the detector, which is carried out on Beijing Synchrotron Radiation Facility at Institute of High Energy Physics, shows that the detector has a desired flat response in the photon energy range of 0.1-4 keV, with a response flatness smaller than 13%. The detector has been successfully applied in the hohlraum experiment on Shenguang-III prototype laser facility. The radiation temperatures inferred from the detector agree well with those from the diagnostic instrument Dante installed at the same azimuth angle from the hohlraum axis, demonstrating the feasibility of the detector.
Chen, Hui; Palmer, N; Dayton, M; Carpenter, A; Schneider, M B; Bell, P M; Bradley, D K; Claus, L D; Fang, L; Hilsabeck, T; Hohenberger, M; Jones, O S; Kilkenny, J D; Kimmel, M W; Robertson, G; Rochau, G; Sanchez, M O; Stahoviak, J W; Trotter, D C; Porter, J L
2016-11-01
A novel x-ray imager, which takes time-resolved gated images along a single line-of-sight, has been successfully implemented at the National Ignition Facility (NIF). This Gated Laser Entrance Hole diagnostic, G-LEH, incorporates a high-speed multi-frame CMOS x-ray imager developed by Sandia National Laboratories to upgrade the existing Static X-ray Imager diagnostic at NIF. The new diagnostic is capable of capturing two laser-entrance-hole images per shot on its 1024 × 448 pixels photo-detector array, with integration times as short as 1.6 ns per frame. Since its implementation on NIF, the G-LEH diagnostic has successfully acquired images from various experimental campaigns, providing critical new information for understanding the hohlraum performance in inertial confinement fusion (ICF) experiments, such as the size of the laser entrance hole vs. time, the growth of the laser-heated gold plasma bubble, the change in brightness of inner beam spots due to time-varying cross beam energy transfer, and plasma instability growth near the hohlraum wall.
Interplay of Laser-Plasma Interactions and Inertial Fusion Hydrodynamics.
Strozzi, D J; Bailey, D S; Michel, P; Divol, L; Sepke, S M; Kerbel, G D; Thomas, C A; Ralph, J E; Moody, J D; Schneider, M B
2017-01-13
The effects of laser-plasma interactions (LPI) on the dynamics of inertial confinement fusion hohlraums are investigated via a new approach that self-consistently couples reduced LPI models into radiation-hydrodynamics numerical codes. The interplay between hydrodynamics and LPI-specifically stimulated Raman scatter and crossed-beam energy transfer (CBET)-mostly occurs via momentum and energy deposition into Langmuir and ion acoustic waves. This spatially redistributes energy coupling to the target, which affects the background plasma conditions and thus, modifies laser propagation. This model shows reduced CBET and significant laser energy depletion by Langmuir waves, which reduce the discrepancy between modeling and data from hohlraum experiments on wall x-ray emission and capsule implosion shape.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strozzi, D. J.; Bailey, D. S.; Michel, P.
The effects of laser-plasma interactions (LPI) on the dynamics of inertial confinement fusion hohlraums are investigated in this work via a new approach that self-consistently couples reduced LPI models into radiation-hydrodynamics numerical codes. The interplay between hydrodynamics and LPI—specifically stimulated Raman scatter and crossed-beam energy transfer (CBET)—mostly occurs via momentum and energy deposition into Langmuir and ion acoustic waves. This spatially redistributes energy coupling to the target, which affects the background plasma conditions and thus, modifies laser propagation. In conclusion, this model shows reduced CBET and significant laser energy depletion by Langmuir waves, which reduce the discrepancy between modeling andmore » data from hohlraum experiments on wall x-ray emission and capsule implosion shape.« less
Inline CBET Model Including SRS Backscatter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, David S.
2015-06-26
Cross-beam energy transfer (CBET) has been used as a tool on the National Ignition Facility (NIF) since the first energetics experiments in 2009 to control the energy deposition in ignition hohlraums and tune the implosion symmetry. As large amounts of power are transferred between laser beams at the entrance holes of NIF hohlraums, the presence of many overlapping beat waves can lead to stochastic ion heating in the regions where laser beams overlap [P. Michel et al., Phys. Rev. Lett. 109, 195004 (2012)]. Using the CBET gains derived in this paper, we show how to implement these equations in amore » ray-based laser source for a rad-hydro code.« less
eHXI: A permanently installed, hard x-ray imager for the National Ignition Facility
Doppner, T.; Bachmann, B.; Albert, F.; ...
2016-06-14
We have designed and built a multi-pinhole imaging system for high energy x-rays (≥ 50 keV) that is permanently installed in the equatorial plane outside of the target chamber at the National Ignition Facility (NIF). It records absolutely-calibrated, time-integrated x-ray images with the same line-of-sight as the multi-channel, spatially integrating hard x-ray detector FFLEX [McDonald et al., Rev. Sci. Instrum. 75 (2004) 3753], having a side view of indirect-drive inertial confinement fusion (ICF) implosion targets. The equatorial hard x-ray imager (eHXI) has recorded images on the majority of ICF implosion experiments since May 2011. Lastly, eHXI provides valuable information onmore » hot electron distribution in hohlraum experiments, target alignment, potential hohlraum drive asymmetries and serves as a long term reference for the FFLEX diagnostics.« less
Origins of the high flux hohlraum model
NASA Astrophysics Data System (ADS)
Rosen, M. D.; Hinkel, D. E.; Williams, E. A.; Callahan, D. A.; Town, R. P. J.; Scott, H. A.; Kruer, W. L.; Suter, L. J.
2010-11-01
We review how the ``high flux model'' (HFM) helped clarify the performance of the Autumn 09 National Ignition Campaign (NIC) gas filled/capsule imploding hohlraum energetics campaign. This campaign showed good laser-hohlraum coupling, reasonably high drive, and implosion symmetry control via cross beam transfer. Mysteries that remained included the level and spectrum of the Stimulated Raman light, the tendency towards pancaked implosions, and drive that exceeded (standard model) predictions early in the campaign, and lagged those predictions late in the campaign. The HFM uses a detailed configuration accounting (DCA) atomic physics and a generous flux limiter (f=0.2) both of which contribute to predicting a hohlraum plasma that is cooler than the standard, XSN average atom, f=0.05 model. This cooler plasma proved to be key in solving all of those mysteries. Despite past successes of the HFM in correctly modeling Omega Laser Au sphere data and NIC empty hohlraum drive, the model lacked some credibility for this energetics campaign, because it predicted too much hohlraum drive. Its credibility was then boosted by a re-evaluation of the initially reported SRS levels.
K-shell photoabsorption edge of strongly coupled aluminum driven by laser-converted radiation
NASA Astrophysics Data System (ADS)
Zhao, Yang; Zhang, Zhiyu; Qing, Bo; Yang, Jiamin; Zhang, Jiyan; Wei, Minxi; Yang, Guohong; Song, Tianming; Xiong, Gang; Lv, Min; Hu, Zhimin; Deng, Bo; Hu, Xin; Zhang, Wenhai; Shang, Wanli; Hou, Lifei; Du, Huabing; Zhan, Xiayu; Yu, Ruizhen
2017-03-01
The first observation of the K-shell photoabsorption edge of strongly coupled aluminum generated by intense x-ray radiation-driven shocks is reported. By using a “dog bone” gold hohlraum as an x-ray converter, colliding shocks compression and preheating shielding are achieved to generate an unexplored state with a density of 5.5 g/cm3 and temperature of 0.43 eV (the ion-ion coupling parameter Γii is around 240). The time-resolved K-shell photoabsorption edges are measured with a crystal spectrometer using a short x-ray backlighter. The broadenings and redshifts of the edges are studied by using the slope fitting of the edge and quantum molecular dynamics calculations. This work shows that the K-edge of aluminum driven by laser-converted radiation provides a novel capability to probe WDM at extended conditions.
The high velocity, high adiabat, ``Bigfoot'' campaign and tests of indirect-drive implosion scaling
NASA Astrophysics Data System (ADS)
Casey, Daniel
2017-10-01
To achieve hotspot ignition, inertial confinement fusion (ICF) implosions must achieve high hotspot internal energy that is inertially confined by a dense shell of DT fuel. To accomplish this, implosions are designed to achieve high peak implosion velocity, good energy coupling between the hotspot and imploding shell, and high areal-density at stagnation. However, experiments have shown that achieving these simultaneously is extremely challenging, partly because of inherent tradeoffs between these three interrelated requirements. The Bigfoot approach is to intentionally trade off high convergence, and therefore areal-density, in favor of high implosion velocity and good coupling between the hotspot and shell. This is done by intentionally colliding the shocks in the DT ice layer. This results in a short laser pulse which improves hohlraum symmetry and predictability while the reduced compression improves hydrodynamic stability. The results of this campaign will be reviewed and include demonstrated low-mode symmetry control at two different hohlraum geometries (5.75 mm and 5.4 mm diameters) and at two different target scales (5.4 mm and 6.0 mm hohlraum diameters) spanning 300-430 TW in laser power and 0.8-1.7 MJ in laser energy. Results of the 10% scaling between these designs for the hohlraum and capsule will be presented. Hydrodynamic instability growth from engineering features like the capsule fill tube are currently thought to be a significant perturbation to the target performance and a major factor in reducing its performance compared to calculations. Evidence supporting this hypothesis as well as plans going forward will be presented. Ongoing experiments are attempting to measure the impact on target performance from increase in target scale, and the preliminary results will also be discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Interplay of Laser-Plasma Interactions and Inertial Fusion Hydrodynamics
Strozzi, D. J.; Bailey, D. S.; Michel, P.; ...
2017-01-12
The effects of laser-plasma interactions (LPI) on the dynamics of inertial confinement fusion hohlraums are investigated in this work via a new approach that self-consistently couples reduced LPI models into radiation-hydrodynamics numerical codes. The interplay between hydrodynamics and LPI—specifically stimulated Raman scatter and crossed-beam energy transfer (CBET)—mostly occurs via momentum and energy deposition into Langmuir and ion acoustic waves. This spatially redistributes energy coupling to the target, which affects the background plasma conditions and thus, modifies laser propagation. In conclusion, this model shows reduced CBET and significant laser energy depletion by Langmuir waves, which reduce the discrepancy between modeling andmore » data from hohlraum experiments on wall x-ray emission and capsule implosion shape.« less
Convergent ablation measurements of plastic ablators in gas-filled rugby hohlraums on OMEGA
NASA Astrophysics Data System (ADS)
Casner, A.; Jalinaud, T.; Masse, L.; Galmiche, D.
2015-10-01
Indirect-drive implosions experiments were conducted on the Omega Laser Facility to test the performance of uniformly doped plastic ablators for Inertial Confinement Fusion. The first convergent ablation measurements in gas-filled rugby hohlraums are reported. Ignition relevant limb velocities in the range from 150 to 300 μm .n s-1 have been reached by varying the laser drive energy and the initial capsule aspect ratio. The measured capsule trajectory and implosion velocity are in good agreement with 2D integrated simulations and a zero-dimensional modeling of the implosions. We demonstrate experimentally the scaling law for the maximum implosion velocity predicted by the improved rocket model [Y. Saillard, Nucl. Fusion 46, 1017 (2006)] in the high-ablation regime case.
The Role of Nonlocal Heat Flow in Hohlraums
NASA Astrophysics Data System (ADS)
Town, R. P. J.; Short, R. W.; Verdon, C. P.; Afeyan, B. B.; Glenzer, S. H.; Suter, L. J.
1997-11-01
Glenzer,(Submitted to Physical Review Letters.)* using the Thomson scattering technique, has measured the time evolution of the electron temperature in scale-1 hohlraums. The measured peak electron temperature was 5 keV. Lasnex simulations, using a flux-limited Spitzer heat diffusion model with the standard sharp-cutoff flux limiter of 0.05, gave a peak electron temperature of only 3 keV. Good agreement between simulation and experiment was found when Lasnex simulations employed a time-varying flux limiter, which had a value of 0.01 when the main drive came on. The need to severly inhibit heat transport over the entire volume of hot plasma at late time suggests that nonlocal heat flow could be important in explaining these experimental observations. In this presentation we will report on Fokker--Planck calculations of idealized hohlraums and compare them to standard hydrodynamic calculations using flux-limited Spitzer heat flow. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460. Also, work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-ENG-48.
Microstructure Filled Hohlraums
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, A. S.; Thomas, C. A.; Reese, T. M.
2017-02-24
We propose replacing the gas fill in a hohlraum with a low average density, variable uniformity 3D printed structure. This creates a bimodal hohlraum which acts like a vacuum hohlraum initially during the picket, but could protect the capsule from glint or direct illumination, and then once expanded, homogenizes to behave like a variable z gas-fill during peak portion of the drive. This is motivated by a two main aims: 1) reduction of the Au bubble velocity to improve inner beam propagation, and 2) the introduction of a low density, high-Z, x-ray converter to improve x-ray production in the hohlraummore » and uniformity of the radiation field seen by the capsule.« less
Platinum Electrodeposition for Supported ALD Templated Foam Hohlraum Liners
Horwood, Corie; Stadermann, Michael; Biener, Monika; ...
2017-12-20
Two commercially available platinum plating solutions (Platanex III and Platanex Luna) were evaluated for the electrodeposition of platinum layers on gold hohlraums and cylindrically shaped silver-gold ingots. The successful deposition of thin Pt layers on gold hohlraums as well as thick Pt layers on silver-gold alloys will allow for the integration of atomic layer deposition templated foam inside a hohlraum. We found that when the manufacturer’s recommendations for the Pt plating solutions were used, the coatings obtained were unacceptable because of cracking, poor adhesion, or thin and powdery Pt deposits. Therefore, alternative plating parameters were investigated, and the conditions resultingmore » in acceptable coatings are reported here.« less
Platinum Electrodeposition for Supported ALD Templated Foam Hohlraum Liners
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horwood, Corie; Stadermann, Michael; Biener, Monika
Two commercially available platinum plating solutions (Platanex III and Platanex Luna) were evaluated for the electrodeposition of platinum layers on gold hohlraums and cylindrically shaped silver-gold ingots. The successful deposition of thin Pt layers on gold hohlraums as well as thick Pt layers on silver-gold alloys will allow for the integration of atomic layer deposition templated foam inside a hohlraum. We found that when the manufacturer’s recommendations for the Pt plating solutions were used, the coatings obtained were unacceptable because of cracking, poor adhesion, or thin and powdery Pt deposits. Therefore, alternative plating parameters were investigated, and the conditions resultingmore » in acceptable coatings are reported here.« less
NASA Astrophysics Data System (ADS)
Mishra, Gaurav; Ghosh, Karabi; Ray, Aditi; Gupta, N. K.
2018-06-01
Radiation hydrodynamic (RHD) simulations for four different potential high-Z hohlraum materials, namely Tungsten (W), Gold (Au), Lead (Pb), and Uranium (U) are performed in order to investigate their performance with respect to x-ray absorption, re-emission and ablation properties, when irradiated by constant temperature drives. A universal functional form is derived for estimating time dependent wall albedo for high-Z materials. Among the high-Z materials studied, it is observed that for a fixed simulation time the albedo is maximum for Au below 250 eV, whereas it is maximum for U above 250 eV. New scaling laws for shock speed vs drive temperature, applicable over a wide temperature range of 100 eV to 500 eV, are proposed based on the physics of x-ray driven stationary ablation. The resulting scaling relation for a reference material Aluminium (Al), shows good agreement with that of Kauffman's power law for temperatures ranging from 100 eV to 275 eV. New scaling relations are also obtained for temperature dependent mass ablation rate and ablation pressure, through RHD simulation. Finally, our study reveals that for temperatures above 250 eV, U serves as a better hohlraum material since it offers maximum re-emission for x-rays along with comparable mass ablation rate. Nevertheless, traditional choice, Au works well for temperatures below 250 eV. Besides inertial confinement fusion (ICF), the new scaling relations may find its application in view-factor codes, which generally ignore atomic physics calculations of opacities and emissivities, details of laser-plasma interaction and hydrodynamic motions.
Laser Program Annual Report - 1979 Unclassified Excerpts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindl, J D
The objective of the Lawrence Livermore National Laboratory (LLNL) Inertial Confinement Fusion (ICF) program is to demonstrate the scientific feasibility of ICF for military applications (to develop and utilize the capability to study nuclear weapons physics in support of the weapons program) and for energy-directed uses in the civilian sector. The demonstration of scientific feasibility for both military and civilian objectives will require achieving gains on the order of 10 to 100 in fusion microexplosions. Our major near-term milestones include the attainment of high compression, one-hundred to one-thousand times (100 to 1000X) liquid D-T density in the thermonuclear fuel andmore » ignition of thermonuclear burn. In 1979, our laser fusion experiments and analysis programs focused on two important areas related to achieving this goal: conducting x-ray-driven implosions of a variety of D-T-filled fuel capsule's to unprecedented high densities ({approx}> 50X liquid D-T density) and the determination of the scaling of hot electrons and thermal radiation in hohlraums.« less
Electron Temperature and Plasma Flow Measurements of NIF Hohlraum Plasmas
NASA Astrophysics Data System (ADS)
Barrios, M. A.; Liedahl, D. A.; Schneider, M. B.; Jones, O.; Brow, G. V.; Regan, S. P.; Fournier, K. B.; Moore, A. S.; Ross, J. S.; Eder, D.; Landen, O.; Kauffman, R. L.; Nikroo, A.; Kroll, J.; Jaquez, J.; Huang, H.; Hansen, S. B.; Callahan, D. A.; Hinkel, D. E.; Bradley, D.; Moody, J. D.; LLNL Collaboration; LLE Collaboration; GA Collaboration; SNL Collaboration
2016-10-01
Characterizing the plasma conditions inside NIF hohlraums, in particular mapping the plasma Te, is critical to gaining insight into mechanisms that affect energy coupling and transport in the hohlraum. The dot spectroscopy platform provides a temporal history of the localized Te and plasma flow inside a NIF hohlraum, by introducing a Mn-Co tracer dot, at strategic locations inside the hohlraum, that comes to equilibrium with the local plasma. K-shell X-ray spectroscopy of the tracer dot is recorded onto an absolutely calibrated X-ray streak spectrometer. Isoelectronic and interstage line ratios are used to infer localized Te through comparison with atomic physics calculations using SCRAM. Time resolved X-ray images are simultaneously taken of the expanding dot, providing plasma (ion) flow information. We present recent results provided by this platform and compare with simulations using HYDRA. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.
A high-resolution integrated model of the National Ignition Campaign cryogenic layered experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, O. S.; Cerjan, C. J.; Marinak, M. M.
A detailed simulation-based model of the June 2011 National Ignition Campaign cryogenic DT experiments is presented. The model is based on integrated hohlraum-capsule simulations that utilize the best available models for the hohlraum wall, ablator, and DT equations of state and opacities. The calculated radiation drive was adjusted by changing the input laser power to match the experimentally measured shock speeds, shock merger times, peak implosion velocity, and bangtime. The crossbeam energy transfer model was tuned to match the measured time-dependent symmetry. Mid-mode mix was included by directly modeling the ablator and ice surface perturbations up to mode 60. Simulatedmore » experimental values were extracted from the simulation and compared against the experiment. Although by design the model is able to reproduce the 1D in-flight implosion parameters and low-mode asymmetries, it is not able to accurately predict the measured and inferred stagnation properties and levels of mix. In particular, the measured yields were 15%-40% of the calculated yields, and the inferred stagnation pressure is about 3 times lower than simulated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, D. S.; Weber, C. R.; Milovich, J. L.
In order to achieve the several hundred Gbar stagnation pressures necessary for inertial confinement fusion ignition, implosion experiments on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] require the compression of deuterium-tritium fuel layers by a convergence ratio as high as forty. Such high convergence implosions are subject to degradation by a range of perturbations, including the growth of small-scale defects due to hydrodynamic instabilities, as well as longer scale modulations due to radiation flux asymmetries in the enclosing hohlraum. Due to the broad range of scales involved, and also the genuinely three-dimensionalmore » (3D) character of the flow, accurately modeling NIF implosions remains at the edge of current simulation capabilities. This study describes the current state of progress of 3D capsule-only simulations of NIF implosions aimed at accurately describing the performance of specific NIF experiments. Current simulations include the effects of hohlraum radiation asymmetries, capsule surface defects, the capsule support tent and fill tube, and use a grid resolution shown to be converged in companion two-dimensional simulations. The results of detailed simulations of low foot implosions from the National Ignition Campaign are contrasted against results for more recent high foot implosions. While the simulations suggest that low foot performance was dominated by ablation front instability growth, especially the defect seeded by the capsule support tent, high foot implosions appear to be dominated by hohlraum flux asymmetries, although the support tent still plays a significant role. Finally, for both implosion types, the simulations show reasonable, though not perfect, agreement with the data and suggest that a reliable predictive capability is developing to guide future implosions toward ignition.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, D. S.; Weber, C. R.; Milovich, J. L.
In order to achieve the several hundred Gbar stagnation pressures necessary for inertial confinement fusion ignition, implosion experiments on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] require the compression of deuterium-tritium fuel layers by a convergence ratio as high as forty. Such high convergence implosions are subject to degradation by a range of perturbations, including the growth of small-scale defects due to hydrodynamic instabilities, as well as longer scale modulations due to radiation flux asymmetries in the enclosing hohlraum. Due to the broad range of scales involved, and also the genuinely three-dimensionalmore » (3D) character of the flow, accurately modeling NIF implosions remains at the edge of current simulation capabilities. This paper describes the current state of progress of 3D capsule-only simulations of NIF implosions aimed at accurately describing the performance of specific NIF experiments. Current simulations include the effects of hohlraum radiation asymmetries, capsule surface defects, the capsule support tent and fill tube, and use a grid resolution shown to be converged in companion two-dimensional simulations. The results of detailed simulations of low foot implosions from the National Ignition Campaign are contrasted against results for more recent high foot implosions. While the simulations suggest that low foot performance was dominated by ablation front instability growth, especially the defect seeded by the capsule support tent, high foot implosions appear to be dominated by hohlraum flux asymmetries, although the support tent still plays a significant role. For both implosion types, the simulations show reasonable, though not perfect, agreement with the data and suggest that a reliable predictive capability is developing to guide future implosions toward ignition.« less
Clark, D. S.; Weber, C. R.; Milovich, J. L.; ...
2016-03-14
In order to achieve the several hundred Gbar stagnation pressures necessary for inertial confinement fusion ignition, implosion experiments on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] require the compression of deuterium-tritium fuel layers by a convergence ratio as high as forty. Such high convergence implosions are subject to degradation by a range of perturbations, including the growth of small-scale defects due to hydrodynamic instabilities, as well as longer scale modulations due to radiation flux asymmetries in the enclosing hohlraum. Due to the broad range of scales involved, and also the genuinely three-dimensionalmore » (3D) character of the flow, accurately modeling NIF implosions remains at the edge of current simulation capabilities. This study describes the current state of progress of 3D capsule-only simulations of NIF implosions aimed at accurately describing the performance of specific NIF experiments. Current simulations include the effects of hohlraum radiation asymmetries, capsule surface defects, the capsule support tent and fill tube, and use a grid resolution shown to be converged in companion two-dimensional simulations. The results of detailed simulations of low foot implosions from the National Ignition Campaign are contrasted against results for more recent high foot implosions. While the simulations suggest that low foot performance was dominated by ablation front instability growth, especially the defect seeded by the capsule support tent, high foot implosions appear to be dominated by hohlraum flux asymmetries, although the support tent still plays a significant role. Finally, for both implosion types, the simulations show reasonable, though not perfect, agreement with the data and suggest that a reliable predictive capability is developing to guide future implosions toward ignition.« less
Measurements of the temporal onset of mega-Gauss magnetic fields in a laser-driven solenoid
NASA Astrophysics Data System (ADS)
Goyon, Clement; Polllock, B. B.; Turnbull, D. T.; Hazi, A.; Ross, J. S.; Mariscal, D. A.; Patankar, S.; Williams, G. J.; Farmer, W. A.; Moody, J. D.; Fujioka, S.; Law, K. F. F.
2016-10-01
We report on experimental results obtained at Omega EP showing a nearly linear increase of the B-field up to about 2 mega-Gauss in 0.75 ns in a 1 mm3 region. The field is generated using 1 TW of 351 nm laser power ( 8*1015 W/cm2) incident on a laser-driven solenoid target. The coil target converts about 1% of the laser energy into the B-field measured both inside and outside the coil using proton deflectometry with a grid and Faraday rotation of probe beam through SiO2 glass. Proton data indicates a current rise up to hundreds of kA with a spatial distribution in the Au solenoid conductor evolving in time. These results give insight into the generating mechanism of the current between the plates and the time behavior of the field. These experiments are motivated by recent efforts to understand and utilize High Energy Density (HED) plasmas in the presence of external magnetic fields in areas of research from Astrophysics to Inertial Confinement Fusion. We will describe the experimental results and scale them to a NIF hohlraum size. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Schneider, M. B.; MacLaren, S. A.; Widmann, K.; Meezan, N. B.; Hammer, J. H.; Yoxall, B. E.; Bell, P. M.; Benedetti, L. R.; Bradley, D. K.; Callahan, D. A.; Dewald, E. L.; Döppner, T.; Eder, D. C.; Edwards, M. J.; Guymer, T. M.; Hinkel, D. E.; Hohenberger, M.; Hsing, W. W.; Kervin, M. L.; Kilkenny, J. D.; Landen, O. L.; Lindl, J. D.; May, M. J.; Michel, P.; Milovich, J. L.; Moody, J. D.; Moore, A. S.; Ralph, J. E.; Regan, S. P.; Thomas, C. A.; Wan, A. S.
2015-12-01
At the National Ignition Facility, a thermal X-ray drive is created by laser energy from 192 beams heating the inside walls of a gold cylinder called a "hohlraum." The x-ray drive heats and implodes a fuel capsule. The laser beams enter the hohlraum via laser entrance holes (LEHs) at each end. The LEH radius decreases as heated plasma from the LEH material blows radially inward but this is largely balanced by hot plasma from the high-intensity region in the center of the LEH pushing radially outward. The x-ray drive on the capsule is deduced by measuring the time evolution and spectra of the x-radiation coming out of the LEH and correcting for geometry and for the radius of the LEH. Previously, the LEH radius was measured using time-integrated images in an x-ray band of 3-5 keV (outside the thermal x-ray region). For gas-filled hohlraums, the measurements showed that the LEH radius is larger than that predicted by the standard High Flux radiation-hydrodynamic model by about 10%. A new platform using a truncated hohlraum ("ViewFactor hohlraum") is described, which allows time-resolved measurements of the LEH radius at thermal x-ray energies from two views, from outside the hohlraum and from inside the hohlraum. These measurements show that the LEH radius closes during the low power part of the pulse but opens up again at peak power. The LEH radius at peak power is larger than that predicted by the models by about 15%-20% and does not change very much with time. In addition, time-resolved images in a >4 keV (non-thermal) x-ray band show a ring of hot, optically thin gold plasma just inside the optically thick LEH plasma. The structure of this plasma varies with time and with Cross Beam Energy Transfer.
High Resolution Integrated Hohlraum-Capsule Simulations for Virtual NIF Ignition Campaign
NASA Astrophysics Data System (ADS)
Jones, O. S.; Marinak, M. M.; Cerjan, C. J.; Clark, D. S.; Edwards, M. J.; Haan, S. W.; Langer, S. H.; Salmonson, J. D.
2009-11-01
We have undertaken a virtual campaign to assess the viability of the sequence of NIF experiments planned for 2010 that will experimentally tune the shock timing, symmetry, and ablator thickness of a cryogenic ignition capsule prior to the first ignition attempt. The virtual campaign consists of two teams. The ``red team'' creates realistic simulated diagnostic data for a given experiment from the output of a detailed radiation hydrodynamics calculation that has physics models that have been altered in a way that is consistent with probable physics uncertainties. The ``blue team'' executes a series of virtual experiments and interprets the simulated diagnostic data from those virtual experiments. To support this effort we have developed a capability to do very high spatial resolution integrated hohlraum-capsule simulations using the Hydra code. Surface perturbations for all ablator layer surfaces and the DT ice layer are calculated explicitly through mode 30. The effects of the fill tube, cracks in the ice layer, and defects in the ablator are included in models extracted from higher resolution calculations. Very high wave number mix is included through a mix model. We will show results from these calculations in the context of the ongoing virtual campaign.
Automated data acquisition and processing for a Hohlraum reflectometer
NASA Technical Reports Server (NTRS)
Difilippo, Frank; Mirtich, Michael J.
1988-01-01
A computer and data acquisition board were used to automate a Perkin-Elmer Model 13 spectrophotometer with a Hohlraum reflectivity attachment. Additional electronic circuitry was necessary for amplification, filtering, and debouncing. The computer was programmed to calculate spectral emittance from 1.7 to 14.7 micrometers and also total emittance versus temperature. Automation of the Hohlraum reflectometer reduced the time required to determine total emittance versus temperature from about three hours to about 40 minutes.
Indirect drive targets for fusion power
Amendt, Peter A.; Miles, Robin R.
2016-10-11
A hohlraum for an inertial confinement fusion power plant is disclosed. The hohlraum includes a generally cylindrical exterior surface, and an interior rugby ball-shaped surface. Windows over laser entrance holes at each end of the hohlraum enclose inert gas. Infrared reflectors on opposite sides of the central point reflect fusion chamber heat away from the capsule. P2 shields disposed on the infrared reflectors help assure an enhanced and more uniform x-ray bath for the fusion fuel capsule.
LLE Review 117 (October-December 2008)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bittle, W., editor
2009-05-28
This volume of the LLE Review, covering October-December 2008, features 'Demonstration of the Shock-Timing Technique for Ignition Targets at the National Ignition Facility' by T. R. Boehly, V. N. Goncharov, S. X. Hu, J. A. Marozas, T. C. Sangster, D. D. Meyerhofer (LLE), D. Munro, P. M. Celliers, D. G. Hicks, G. W. Collins, H. F. Robey, O. L. Landen (LLNL), and R. E. Olson (SNL). In this article (p. 1) the authors report on a technique to measure the velocity and timing of shock waves in a capsule contained within hohlraum targets. This technique is critical for optimizing themore » drive profiles for high-performance inertial-confinement-fusion capsules, which are compressed by multiple precisely timed shock waves. The shock-timing technique was demonstrated on OMEGA using surrogate hohlraum targets heated to 180 eV and fitted with a re-entrant cone and quartz window to facilitate velocity measurements using velocity interferometry. Cryogenic experiments using targets filled with liquid deuterium further demonstrated the entire timing technique in a hohlraum environment. Direct-drive cryogenic targets with multiple spherical shocks were also used to validate this technique, including convergence effects at relevant pressures (velocities) and sizes. These results provide confidence that shock velocity and timing can be measured in NIF ignition targets, thereby optimizing these critical parameters.« less
Further Experimental Investigations of the Richtmyer-Meshkov Instability
NASA Astrophysics Data System (ADS)
Miller, P. L.; Peyser, T. A.; Stry, P. E.; Logory, L. M.; Farley, D. R.
1996-11-01
We report on further experimental investigations of the Richtmyer-Meshkov instability from an initially nonlinear perturbation, conducted on the Nova laser. The experiments use a Nova hohlraum as a driver source for a strong shock in a miniature shock tube attached to the hohlraum. The shock tube contains brominated plastic and low-density carbon foam as the two working fluids, with a micro-machined sawtooth interface between them serving as the perturbation. The shock, upon crossing the interface, instigates the Richtmyer-Meshkov instability from the perturbation. The resulting growth of the mixing layer is diagnosed radiographically. We have previously reported upon a results from a single wavelength and amplitude of perturbation (T. A. Peyser et al., Phys. Rev. Lett.) 75, 2332 (1996).. A study of the effect of variations in amplitude and wavelength on the nonlinear growth of the instability will be discussed.
Fabrication of Low-Density Foam Liners in Hohlraums for NIF Targets
Bhandarkar, Suhas; Baumann, Ted; Alfonso, Noel; ...
2018-01-15
Low-density foam liners are seen as a means to mitigate hohlraum wall motion that can interfere with the inner set of beams that are pointed toward the middle section of the hohlraum. These liners need to meet several requirements, most notably the material choice and the maximum allowable solid fraction and thickness, which necessitate development of new processing capabilities. In this paper, we discuss our strategy and work on fabrication of a tantalum oxide foam liner and its assembly into targets for the National Ignition Facility (NIF). Finally, in particular, we discuss our approach to finding solutions to the uniquemore » challenges that come up in working with such low-density materials so as to be able establish a viable platform for production of cryogenic targets for NIF with foam-lined hohlraums.« less
Fabrication of Low-Density Foam Liners in Hohlraums for NIF Targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhandarkar, Suhas; Baumann, Ted; Alfonso, Noel
Low-density foam liners are seen as a means to mitigate hohlraum wall motion that can interfere with the inner set of beams that are pointed toward the middle section of the hohlraum. These liners need to meet several requirements, most notably the material choice and the maximum allowable solid fraction and thickness, which necessitate development of new processing capabilities. In this paper, we discuss our strategy and work on fabrication of a tantalum oxide foam liner and its assembly into targets for the National Ignition Facility (NIF). Finally, in particular, we discuss our approach to finding solutions to the uniquemore » challenges that come up in working with such low-density materials so as to be able establish a viable platform for production of cryogenic targets for NIF with foam-lined hohlraums.« less
NLTE atomic kinetics modeling in ICF target simulations
NASA Astrophysics Data System (ADS)
Patel, Mehul V.; Mauche, Christopher W.; Scott, Howard A.; Jones, Ogden S.; Shields, Benjamin T.
2017-10-01
Radiation hydrodynamics (HYDRA) simulations using recently developed 1D spherical and 2D cylindrical hohlraum models have enabled a reassessment of the accuracy of energetics modeling across a range of NIF target configurations. Higher-resolution hohlraum calculations generally find that the X-ray drive discrepancies are greater than previously reported. We identify important physics sensitivities in the modeling of the NLTE wall plasma and highlight sensitivity variations between different hohlraum configurations (e.g. hohlraum gas fill). Additionally, 1D capsule only simulations show the importance of applying a similar level of rigor to NLTE capsule ablator modeling. Taken together, these results show how improved target performance predictions can be achieved by performing inline atomic kinetics using more complete models for the underlying atomic structure and transitions. Prepared by LLNL under Contract DE-AC52-07NA27344.
The high velocity, high adiabat, "Bigfoot" campaign and tests of indirect-drive implosion scaling
NASA Astrophysics Data System (ADS)
Casey, D. T.; Thomas, C. A.; Baker, K. L.; Spears, B. K.; Hohenberger, M.; Khan, S. F.; Nora, R. C.; Weber, C. R.; Woods, D. T.; Hurricane, O. A.; Callahan, D. A.; Berger, R. L.; Milovich, J. L.; Patel, P. K.; Ma, T.; Pak, A.; Benedetti, L. R.; Millot, M.; Jarrott, C.; Landen, O. L.; Bionta, R. M.; MacGowan, B. J.; Strozzi, D. J.; Stadermann, M.; Biener, J.; Nikroo, A.; Goyon, C. S.; Izumi, N.; Nagel, S. R.; Bachmann, B.; Volegov, P. L.; Fittinghoff, D. N.; Grim, G. P.; Yeamans, C. B.; Gatu Johnson, M.; Frenje, J. A.; Rice, N.; Kong, C.; Crippen, J.; Jaquez, J.; Kangas, K.; Wild, C.
2018-05-01
The Bigfoot approach is to intentionally trade off high convergence, and therefore areal-density, in favor of high implosion velocity and good coupling between the laser, hohlraum, shell, and hotspot. This results in a short laser pulse that improves hohlraum symmetry and predictability, while the reduced compression reduces hydrodynamic instability growth. The results thus far include demonstrated low-mode symmetry control at two different hohlraum geometries (5.75 mm and 5.4 mm diameters) and at two different target scales (5.4 mm and 6.0 mm hohlraum diameters) spanning 300-405 TW in laser power and 0.8-1.6 MJ in laser energy. Additionally, by carefully scaling the 5.4 mm design to 6.0 mm, an increase in target scale of 13%, equivalent to 40% increase in laser energy, has been demonstrated.
pF3D Simulations of Large Outer-Beam Brillouin Scattering from NIF Rugby Hohlraums
NASA Astrophysics Data System (ADS)
Langer, Steven; Strozzi, David; Chapman, Thomas; Amendt, Peter
2015-11-01
We assess the cause of large outer-beam stimulated Brillouin scattering (SBS) in a NIF shot with a rugby-shaped hohlraum, which has less wall surface loss and thus higher x-ray drive than a cylindrical hohlraum of the same radius. This shot differed from a prior rugby shot with low SBS in three ways: outer beam pointing, split-pointing of the four beams within each outer-beam quadruplet, and a small amount of neon added to the hohlraum helium fill gas. We use pF3D, a massively-parallel, paraxial-envelope laser plasma interaction code, with plasma profiles from the radiation-hydrodynamics code Lasnex. We determine which change between the two shots increased the SBS by adding them one at a time to the simulations. We compare the simulations to experimental data for total SBS power, its spatial distribution at the lens, and the SBS spectrum. For each shot, we use profiles from Lasnex simulations with and without a model for mix at the hohlraum wall-gas interface. Work performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344. Release number LLNL-ABS-674893.
A journey from nuclear criticality methods to high energy density radflow experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urbatsch, Todd James
Los Alamos National Laboratory is a nuclear weapons laboratory supporting our nation's defense. In support of this mission is a high energy-density physics program in which we design and execute experiments to study radiationhydrodynamics phenomena and improve the predictive capability of our largescale multi-physics software codes on our big-iron computers. The Radflow project’s main experimental effort now is to understand why we haven't been able to predict opacities on Sandia National Laboratory's Z-machine. We are modeling an increasing fraction of the Z-machine's dynamic hohlraum to find multi-physics explanations for the experimental results. Further, we are building an entirely different opacitymore » platform on Lawrence Livermore National Laboratory's National Ignition Facility (NIF), which is set to get results early 2017. Will the results match our predictions, match the Z-machine, or give us something entirely different? The new platform brings new challenges such as designing hohlraums and spectrometers. The speaker will recount his history, starting with one-dimensional Monte Carlo nuclear criticality methods in graduate school, radiative transfer methods research and software development for his first 16 years at LANL, and, now, radflow technology and experiments. Who knew that the real world was more than just radiation transport? Experiments aren't easy, but they sure are fun.« less
NIF Discovery Science Eagle Nebula
NASA Astrophysics Data System (ADS)
Kane, Jave; Martinez, David; Pound, Marc; Heeter, Robert; Casner, Alexis; Villette, Bruno; Mancini, Roberto
2017-10-01
The University of Maryland and and LLNL are investigating the origin and dynamics of the famous Pillars of the Eagle Nebula and similar parsec-scale structures at the boundaries of HII regions in molecular hydrogen clouds. The National Ignition Facility (NIF) Discovery Science program Eagle Nebula has performed NIF shots to study models of pillar formation. The shots feature a new long-duration x-ray source, in which multiple hohlraums mimicking a cluster of stars are driven with UV light in series for 10 to 15 ns each to create a 30 to 60 ns output x-ray pulse. The source generates deeply nonlinear hydrodynamics in the Eagle science package, a structure of dense plastic and foam mocking up a molecular cloud containing a dense core. Omega EP and NIF shots have validated the source concept, showing that earlier hohlraums do not compromise later ones by preheat or by ejecting ablated plumes that deflect later beams. The NIF shots generated radiographs of shadowing-model pillars, and also showed evidence that cometary structures can be generated. The velocity and column density profiles of the NIF shadowing and cometary pillars have been compared with observations of the Eagle Pillars made at the millimeter-wave BIMA and CARMA observatories. Prepared by LLNL under Contract DE-AC52-07NA27344.
Ultrafast probing of magnetic field growth inside a laser-driven solenoid
NASA Astrophysics Data System (ADS)
Goyon, C.; Pollock, B. B.; Turnbull, D. P.; Hazi, A.; Divol, L.; Farmer, W. A.; Haberberger, D.; Javedani, J.; Johnson, A. J.; Kemp, A.; Levy, M. C.; Grant Logan, B.; Mariscal, D. A.; Landen, O. L.; Patankar, S.; Ross, J. S.; Rubenchik, A. M.; Swadling, G. F.; Williams, G. J.; Fujioka, S.; Law, K. F. F.; Moody, J. D.
2017-03-01
We report on the detection of the time-dependent B-field amplitude and topology in a laser-driven solenoid. The B-field inferred from both proton deflectometry and Faraday rotation ramps up linearly in time reaching 210 ± 35 T at the end of a 0.75-ns laser drive with 1 TW at 351 nm. A lumped-element circuit model agrees well with the linear rise and suggests that the blow-off plasma screens the field between the plates leading to an increased plate capacitance that converts the laser-generated hot-electron current into a voltage source that drives current through the solenoid. ALE3D modeling shows that target disassembly and current diffusion may limit the B-field increase for longer laser drive. Scaling of these experimental results to a National Ignition Facility (NIF) hohlraum target size (˜0.2 cm3 ) indicates that it is possible to achieve several tens of Tesla.
Ultrafast probing of magnetic field growth inside a laser-driven solenoid.
Goyon, C; Pollock, B B; Turnbull, D P; Hazi, A; Divol, L; Farmer, W A; Haberberger, D; Javedani, J; Johnson, A J; Kemp, A; Levy, M C; Grant Logan, B; Mariscal, D A; Landen, O L; Patankar, S; Ross, J S; Rubenchik, A M; Swadling, G F; Williams, G J; Fujioka, S; Law, K F F; Moody, J D
2017-03-01
We report on the detection of the time-dependent B-field amplitude and topology in a laser-driven solenoid. The B-field inferred from both proton deflectometry and Faraday rotation ramps up linearly in time reaching 210 ± 35 T at the end of a 0.75-ns laser drive with 1 TW at 351 nm. A lumped-element circuit model agrees well with the linear rise and suggests that the blow-off plasma screens the field between the plates leading to an increased plate capacitance that converts the laser-generated hot-electron current into a voltage source that drives current through the solenoid. ALE3D modeling shows that target disassembly and current diffusion may limit the B-field increase for longer laser drive. Scaling of these experimental results to a National Ignition Facility (NIF) hohlraum target size (∼0.2cm^{3}) indicates that it is possible to achieve several tens of Tesla.
NASA Astrophysics Data System (ADS)
Amendt, Peter
2006-10-01
The goal of demonstrating ignition on the National Ignition Facility (NIF) has motivated a revisit of double-shell (DS) [1] targets as a complementary path to the baseline cryogenic single-shell approach [2]. Benefits of DS targets include room-temperature deuterium-tritium (DT) fuel preparation, minimal hohlraum-plasma-mediated laser backscatter, low threshold-ignition temperatures (4 keV) for relaxed hohlraum x-ray flux asymmetry tolerances [3], and loose shock timing requirements. On the other hand, DS ignition presents several challenges, including room-temperature containment of high-pressure DT (790 atm) in the inner shell; strict concentricity requirements on the two shells; development of nanoporous, low-density, metallic foams for structural support of the inner shell and hydrodynamic instability mitigation; and effective control of perturbation growth on the high-Atwood number interface between the DT fuel and the high-Z inner shell. Recent progress in DS ignition target designs using vacuum hohlraums is described, offering the potential for low levels of laser backscatter from stimulated Raman and Brillouin processes. In addition, vacuum hohlraums have the operational advantages of room temperature fielding and fabrication simplicity, as well as benefiting from extensive benchmarking on the Nova and Omega laser facilities. As an alternative to standard cylindrical hohlraums, a rugby-shaped geometry is also introduced that may provide energetics and symmetry tuning benefits for more robust DS designs with yields exceeding 10 MJ for 2 MJ of 3w laser energy. The recent progress in hohlraum designs and required advanced materials development are scheduled to culminate in a prototype demonstration of a NIF-scale ignition-ready DS in 2007. [1] P. Amendt et al., PoP 9, 2221 (2002). [2] J.D. Lindl et al., PoP 11, 339 (2004). [3] M.N. Chizhkov et al., Laser Part. Beams 23, 261 (2005). In collaboration with C. Cerjan, A. Hamza, J. Milovich and H. Robey.
NASA Astrophysics Data System (ADS)
Ren, Guoli; Pei, Wenbing; Lan, Ke; Gu, Peijun; Li, Xin; Institute of Applied Physics; Computional Mathematics Team
2011-10-01
In current routine 2D simulation of hohlraum physics, we adopt the principal-quantum- number(n-level) average atom model(AAM). However, the experimental frequency-dependant radiative drive differs from our n-level simulated drive, which reminds us the need of a more detailed atomic kinetics description. The orbital-quantum-number(nl-level) AAM is a natural consideration but the in-line calculation consumes much more resources. We use a new method to built up a nl-level bound electron distribution using in-line n-level calculated plasma condition (such as temperature, density, average ionization degree). We name this method ``quasi-steady approximation.'' Using the re-built nl-level bound electron distribution (Pnl) , we acquire a new hohlraum radiative drive by post-processing. Comparison with the n-level post-processed hohlraum drive shows that we get an almost identical radiation flux but with more-detailed frequency-dependant structures.
Lead (Pb) Hohlraum: Target for Inertial Fusion Energy
Ross, J. S.; Amendt, P.; Atherton, L. J.; Dunne, M.; Glenzer, S. H.; Lindl, J. D.; Meeker, D.; Moses, E. I.; Nikroo, A.; Wallace, R.
2013-01-01
Recent progress towards demonstrating inertial confinement fusion (ICF) ignition at the National Ignition Facility (NIF) has sparked wide interest in Laser Inertial Fusion Energy (LIFE) for carbon-free large-scale power generation. A LIFE-based fleet of power plants promises clean energy generation with no greenhouse gas emissions and a virtually limitless, widely available thermonuclear fuel source. For the LIFE concept to be viable, target costs must be minimized while the target material efficiency or x-ray albedo is optimized. Current ICF targets on the NIF utilize a gold or depleted uranium cylindrical radiation cavity (hohlraum) with a plastic capsule at the center that contains the deuterium and tritium fuel. Here we show a direct comparison of gold and lead hohlraums in efficiently ablating deuterium-filled plastic capsules with soft x rays. We report on lead hohlraum performance that is indistinguishable from gold, yet costing only a small fraction. PMID:23486285
Lead (Pb) hohlraum: target for inertial fusion energy.
Ross, J S; Amendt, P; Atherton, L J; Dunne, M; Glenzer, S H; Lindl, J D; Meeker, D; Moses, E I; Nikroo, A; Wallace, R
2013-01-01
Recent progress towards demonstrating inertial confinement fusion (ICF) ignition at the National Ignition Facility (NIF) has sparked wide interest in Laser Inertial Fusion Energy (LIFE) for carbon-free large-scale power generation. A LIFE-based fleet of power plants promises clean energy generation with no greenhouse gas emissions and a virtually limitless, widely available thermonuclear fuel source. For the LIFE concept to be viable, target costs must be minimized while the target material efficiency or x-ray albedo is optimized. Current ICF targets on the NIF utilize a gold or depleted uranium cylindrical radiation cavity (hohlraum) with a plastic capsule at the center that contains the deuterium and tritium fuel. Here we show a direct comparison of gold and lead hohlraums in efficiently ablating deuterium-filled plastic capsules with soft x rays. We report on lead hohlraum performance that is indistinguishable from gold, yet costing only a small fraction.
Mode-coupling and 3D effects in Indirect-Drive Rayleigh-Taylor experiments on OMEGA
NASA Astrophysics Data System (ADS)
Casner, Alexis; Huser, G.; Jadaud, J.-P.; Liberatore, S.; Galmiche, D.; Vandenboomgaerde, M.
2006-10-01
Indirect-Drive Rayleigh-Taylor experiments have been performed on the OMEGA laser facility since 2002 with rugby-ball shaped hohlraums [1]. A set of consistent data has been acquired for different single mode wavelengths (λ = 35, 50 and 70 μm) machined on brominated and germanium-doped samples. Hohlraum energetics was characterized by Dante measurements through the LEH while complementary shock breakout measurements or side-on radiography allow us to assess the x-ray flux incident on the wall-mounted sample. We recently address the problem of mode-coupling by comparing the growth of 2-mode patterns (λ = 35 and 70 μm), either in phase or in opposite phase. Depending on phase one or the other wavelength becomes predominant. Comparison between the FCI2 code calculations and the experimental data will be shown. We will also compare the experimental growth of 3D pattern (70 μm * 70 μm) with the equivalent 2D (λ =50 μm) one. [1] A. Casner et al., Proceedings of the 4^thIFSA Conference, Biarritz (2005).
NASA Astrophysics Data System (ADS)
Clark, Daniel
2015-11-01
In order to achieve the several hundred Gbar stagnation pressures necessary for inertial confinement fusion ignition, implosion experiments on the National Ignition Facility (NIF) require the compression of deuterium-tritium fuel layers by a convergence ratio as high as forty. Such high convergence implosions are subject to degradation by a range of perturbations, including the growth of small-scale defects due to hydrodynamic instabilities, as well as longer scale modulations due to radiation flux asymmetries in the enclosing hohlraum. Due to the broad range of scales involved, and also the genuinely three-dimensional (3-D) character of the flow, accurately modeling NIF implosions remains at the edge of current radiation hydrodynamics simulation capabilities. This talk describes the current state of progress of 3-D, high-resolution, capsule-only simulations of NIF implosions aimed at accurately describing the performance of specific NIF experiments. Current simulations include the effects of hohlraum radiation asymmetries, capsule surface defects, the capsule support tent and fill tube, and use a grid resolution shown to be converged in companion two-dimensional simulations. The results of detailed simulations of low foot implosions from the National Ignition Campaign are contrasted against results for more recent high foot implosions. While the simulations suggest that low foot performance was dominated by ablation front instability growth, especially the defect seeded by the capsule support tent, high foot implosions appear to be dominated by hohlraum flux asymmetries, although the support tent still plays a significant role. Most importantly, it is found that a single, standard simulation methodology appears adequate to model both implosion types and gives confidence that such a model can be used to guide future implosion designs toward ignition. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Laser-generated magnetic fields in quasi-hohlraum geometries
NASA Astrophysics Data System (ADS)
Pollock, Bradley; Turnbull, David; Ross, Steven; Hazi, Andrew; Ralph, Joseph; Lepape, Sebastian; Froula, Dustin; Haberberger, Dan; Moody, John
2014-10-01
Laser-generated magnetic fields of 10--40 T have been produced with 100--4000 J laser drives at Omega EP and Titan. The fields are generated using the technique described by Daido et al. [Phys. Rev. Lett. 56, 846 (1986)], which works by directing a laser through a hole in one plate to strike a second plate. Hot electrons generated in the laser-produced plasma on the second plate collect on the first plate. A strap connects the two plates allowing a current of 10 s of kA to flow and generate a solenoidal magnetic field. The magnetic field is characterized using Faraday rotation, b-dot probes, and proton radiography. Further experiments to study the effect of the magnetic field on hohlraum performance are currently scheduled for Omega. This work was performed under the auspices of the United States Department of Energy by the Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA-27344.
Imaging of High-Z doped, Imploded Capsule Cores
NASA Astrophysics Data System (ADS)
Prisbrey, Shon T.; Edwards, M. John; Suter, Larry J.
2006-10-01
The ability to correctly ascertain the shape of imploded fusion capsules is critical to be able to achieve the spherical symmetry needed to maximize the energy yield of proposed fusion experiments for the National Ignition Facility. Implosion of the capsule creates a hot, dense core. The introduction of a high-Z dopant into the gas-filled core of the capsule increases the amount of bremsstrahlung radiation produced in the core and should make the imaging of the imploded core easier. Images of the imploded core can then be analyzed to ascertain the symmetry of the implosion. We calculate that the addition of Ne gas into a deuterium gas core will increase the amount of radiation emission while preserving the surrogacy of the radiation and hydrodynamics in the indirect drive NIF hohlraum in the proposed cryogenic hohlraums. The increased emission will more easily enable measurement of asymmetries and tuning of the implosion.
Plasma-based beam combiner for very high fluence and energy
Kirkwood, R. K.; Turnbull, D. P.; Chapman, T.; ...
2017-10-02
Extreme optical fluences, much beyond the damage threshold of conventional optics, are of interest for a range of high-energy-density physics applications. Nonlinear interactions of multiple beams in plasmas have the potential to produce optics that operate at much higher intensity and fluence than is possible in solids. In inertial confinement fusion experiments indirectly driven with lasers, many beams overlap in the plasma inside a hohlraum, and cross-beam energy transfer by Brillouin scattering has been employed to redistribute energy between laser beams within the target. Here in this paper, we show that in a hot, under-dense plasma the energy of manymore » input beams can be combined into a single well-collimated beam. The emerging beam has an energy of 4 kJ (over 1 ns) that is more than triple that of any incident beam, and a fluence that is more than double. Because the optic produced is plasma, and is diffractive, it is inherently capable of generating higher fluences in a single beam than solid-state refractive or reflective optics.« less
NASA Astrophysics Data System (ADS)
Parrilla, Nicholas; Ralph, Joe; Bachmann, Ben; Goyon, Clement; Dewald, Eduard
2017-10-01
The temperature profile from the Laser Entrance Hole to 3.5 mm from the exit point was measured for plasma with high atomic number (high-Z) of Depleted Uranium ignition scale hohlraums. Each hohlraum was filled with 0.6 mg/cc He as part of the high foot CH campaign. Temperature of the flowing plasma is measured by fitting the velocity distribution to a Maxwellian and considering the Planckian spectral distributions with and without a 42 um Ge filter. The two spectra are then compared to determine the temperature of the high-Z plasma.
NASA Astrophysics Data System (ADS)
Kantsyrev, V. L.; Chuvatin, A. S.; Safronova, A. S.; Rudakov, L. I.; Esaulov, A. A.; Velikovich, A. L.; Shrestha, I.; Astanovitsky, A.; Osborne, G. C.; Shlyaptseva, V. V.; Weller, M. E.; Keim, S.; Stafford, A.; Cooper, M.
2014-03-01
This article reports on the joint success of two independent lines of research, each of them being a multi-year international effort. One of these is the development of innovative sources, such as planar wire arrays (PWAs). PWAs turned out to be a prolific radiator, which act mainly as a resistor, even though the physical mechanism of efficient magnetic energy conversion into radiation still remains unclear. We review the results of our extensive studies of PWAs. We also report the new results of the experimental comparison PWAs with planar foil liners (another promising alternative to wire array loads at multi-mega-ampere generators). Pioneered at UNR, the PWA Z-pinch loads have later been tested at the Sandia National Laboratories (SNL) on the Saturn generator, on GIT-12 machine in Russia, and on the QiangGuang-1 generator in China, always successfully. Another of these is the drastic improvement in energy efficiency of pulsed-power systems, which started in early 1980s with Zucker's experiments at Naval Research Laboratory (NRL). Successful continuation of this approach was the Load Current Multiplier (LCM) proposed by Chuvatin in collaboration with Rudakov and Weber from NRL. The 100 ns LCM was integrated into the Zebra generator, which almost doubled the plasma load current, from 0.9 to 1.7 MA. The two above-mentioned innovative approaches were used in combination to produce a new compact hohlraum radiation source for ICF, as jointly proposed by SNL and UNR [Jones et al., Phys. Rev. Lett. 104, 125001 (2010)]. The first successful proof-of-the-principle experimental implementation of new hohlraum concept at university-scale generator Zebra/LCM is demonstrated. A numerical simulation capability with VisRaD code (from PRISM Co.) established at UNR allowed for the study of hohlraum coupling physics and provides the possibility of optimization of a new hohlraum. Future studies are discussed.
Characterization of Blistering and Delamination in Depleted Uranium Hohlraums
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biobaum, K. J. M.
2013-03-01
Blistering and delamination are the primary failure mechanisms during the processing of depleted uranium (DU) hohlraums. These hohlraums consist of a sputter-deposited DU layer sandwiched between two sputter-deposited layers of gold; a final thick gold layer is electrodeposited on the exterior. The hohlraum is deposited on a copper-coated aluminum mandrel; the Al and Cu are removed with chemical etching after the gold and DU layers are deposited. After the mandrel is removed, blistering and delamination are observed on the interiors of some hohlraums, particularly at the radius region. It is hypothesized that blisters are caused by pinholes in the coppermore » and gold layers; etchant leaking through these holes reaches the DU layer and causes it to oxidize, resulting in a blister. Depending on the residual stress in the deposited layers, blistering can initiate larger-scale delamination at layer interfaces. Scanning electron microscopy indicates that inhomogeneities in the machined aluminum mandrel are replicated in the sputter-deposited copper layer. Furthermore, the Cu layer exhibits columnar growth with pinholes that likely allow etchant to come in contact with the gold layer. Any inhomogeneities or pinholes in this initial gold layer then become nucleation sites for blistering. Using a focused ion beam system to etch through the gold layer and extract a cross-sectional sample for transmission electron microscopy, amorphous, intermixed layers at the gold/DU interfaces are observed. Nanometer-sized bubbles in the sputtered and electrodeposited gold layers are also present. Characterization of the morphology and composition of the deposited layers is the first step in determining modifications to processing parameters, with the goal of attaining a significant improvement in hohlraum yield.« less
NASA Astrophysics Data System (ADS)
Zhang, Wen-Shuai; Cai, Hong-Bo; Shan, Lian-Qiang; Zhang, Hua-Sen; Gu, Yu-Qiu; Zhu, Shao-Ping
2017-06-01
Observations of anomalous neutron yield in the indirect-drive inertial confinement fusion implosion experiments conducted at SG-III prototype and SG-II upgrade laser facilities are interpreted. The anomalous mechanism results in a neutron yield which is 100-times higher than that predicted by 1D radiation-hydrodynamic simulations. 2D radiation-hydrodynamic simulations show that the supersonic, radially directed gold (Au) plasma jets arising from the laser-hohlraum interactions can collide with the carbon-deuterium (CD) corona plasma of the compressed pellet. It is found that in the interaction front of the high-Z jet with the low-Z corona, with low density ˜{{10}20}~\\text{c}{{\\text{m}}-3} and high temperature ˜keV, kinetic effects become important. Particle-in-cell simulations indicate that an electrostatic shock wave can be driven when the high-temperature Au jet expands into the low-temperature CD corona. Deuterium ions with an amount of ˜1015 can be accelerated to ˜25 keV by the collisionless shock wave, thus causing efficient neutron productions though the beam-target method by stopping these energetic ions in the corona. The evaluated neutron yield is consistent with the experiments conducted at SG laser facilities.
NASA Astrophysics Data System (ADS)
Epstein, R.; Regan, S. P.; Hammel, B. A.; Suter, L. J.; Scott, H. A.; Barrios, M. A.; Bradley, D. K.; Callahan, D. A.; Cerjan, C.; Collins, G. W.; Dixit, S. N.; Döppner, T.; Edwards, M. J.; Farley, D. R.; Fournier, K. B.; Glenn, S.; Glenzer, S. H.; Golovkin, I. E.; Hamza, A.; Hicks, D. G.; Izumi, N.; Jones, O. S.; Key, M. H.; Kilkenny, J. D.; Kline, J. L.; Kyrala, G. A.; Landen, O. L.; Ma, T.; MacFarlane, J. J.; Mackinnon, A. J.; Mancini, R. C.; McCrory, R. L.; Meyerhofer, D. D.; Meezan, N. B.; Nikroo, A.; Park, H.-S.; Patel, P. K.; Ralph, J. E.; Remington, B. A.; Sangster, T. C.; Smalyuk, V. A.; Springer, P. T.; Town, R. P. J.; Tucker, J. L.
2017-03-01
Current inertial confinement fusion experiments on the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)] are attempting to demonstrate thermonuclear ignition using x-ray drive by imploding spherical targets containing hydrogen-isotope fuel in the form of a thin cryogenic layer surrounding a central volume of fuel vapor [J. Lindl, Phys. Plasmas 2, 3933 (1995)]. The fuel is contained within a plastic ablator layer with small concentrations of one or more mid-Z elements, e.g., Ge or Cu. The capsule implodes, driven by intense x-ray emission from the inner surface of a hohlraum enclosure irradiated by the NIF laser, and fusion reactions occur in the central hot spot near the time of peak compression. Ignition will occur if the hot spot within the compressed fuel layer attains a high-enough areal density to retain enough of the reaction product energy to reach nuclear reaction temperatures within the inertial hydrodynamic disassembly time of the fuel mass [J. Lindl, Phys. Plasmas 2, 3933 (1995)]. The primary purpose of the ablator dopants is to shield the ablator surface adjacent to the DT ice from heating by the hohlraum x-ray drive [S. W. Haan et al., Phys. Plasmas 18, 051001 (2011)]. Simulations predicted that these dopants would produce characteristic K-shell emission if ablator material mixed into the hot spot [B. A. Hammel et al., High Energy Density Phys. 6, 171 (2010)]. In NIF ignition experiments, emission and absorption features from these dopants appear in x-ray spectra measured with the hot-spot x-ray spectrometer in Supersnout II [S. P. Regan et al., "Hot-Spot X-Ray Spectrometer for the National Ignition Facility," to be submitted to Review of Scientific Instruments]. These include K-shell emission lines from the hot spot (driven primarily by inner-shell collisional ionization and dielectronic recombination) and photoionization edges, fluorescence, and absorption lines caused by the absorption of the hot-spot continuum in the shell. These features provide diagnostics of the central hot spot and the compressed shell, plus a measure of the shell mass that has mixed into the hot spot [S. P. Regan et al., Phys. Plasmas 19, 056307 (2012)] and evidence locating the origin of the mixed shell mass in the imploding ablator [S. P. Regan et al., Phys. Rev. Lett. 111, 045001 (2013)]. Spectra are analyzed and interpreted using detailed atomic models (including radiation-transport effects) to determine the characteristic temperatures, densities, and sizes of the emitting regions. A mix diagnostic based on enhanced continuum x-ray production, relative to neutron yield, provides sensitivity to the undoped shell material mixed into the hot spot [T. Ma et al., Phys. Rev. Lett., 111, 085004 (2013)]. Together, these mix-mass measurements confirm that mix is a serious impediment to ignition. The spectroscopy and atomic physics of shell dopants have become essential in confronting this impediment and will be described.
Multi-keV x-ray sources from metal-lined cylindrical hohlraums
NASA Astrophysics Data System (ADS)
Jacquet, L.; Girard, F.; Primout, M.; Villette, B.; Stemmler, Ph.
2012-08-01
As multi-keV x-ray sources, plastic hohlraums with inner walls coated with titanium, copper, and germanium have been fired on Omega in September 2009. For all the targets, the measured and calculated multi-keV x-ray power time histories are in a good qualitative agreement. In the same irradiation conditions, measured multi-keV x-ray conversion rates are ˜6%-8% for titanium, ˜2% for copper, and ˜0.5% for germanium. For titanium and copper hohlraums, the measured conversion rates are about two times higher than those given by hydroradiative computations. Conversely, for the germanium hohlraum, a rather good agreement is found between measured and computed conversion rates. To explain these findings, multi-keV integrated emissivities calculated with RADIOM [M. Busquet, Phys. Fluids 85, 4191 (1993)], the nonlocal-thermal-equilibrium atomic physics model used in our computations, have been compared to emissivities obtained from different other models. These comparisons provide an attractive way to explain the discrepancies between experimental and calculated quantitative results.
A journey from nuclear criticality methods to high energy density radflow experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urbatsch, Todd James
Los Alamos National Laboratory is a nuclear weapons laboratory supporting our nation's defense. In support of this mission is a high energy-density physics program in which we design and execute experiments to study radiationhydrodynamics phenomena and improve the predictive capability of our largescale multi-physics software codes on our big-iron computers. The Radflow project’s main experimental effort now is to understand why we haven't been able to predict opacities on Sandia National Laboratory's Z-machine. We are modeling an increasing fraction of the Z-machine's dynamic hohlraum to find multi-physics explanations for the experimental results. Further, we are building an entirely different opacitymore » platform on Lawrence Livermore National Laboratory's National Ignition Facility (NIF), which is set to get results early 2017. Will the results match our predictions, match the Z-machine, or give us something entirely different? The new platform brings new challenges such as designing hohlraums and spectrometers. The speaker will recount his history, starting with one-dimensional Monte Carlo nuclear criticality methods in graduate school, radiative transfer methods research and software development for his first 16 years at LANL, and, now, radflow technology and experiments. Who knew that the real world was more than just radiation transport? Experiments aren't easy and they are as saturated with politics as a presidential election, but they sure are fun.« less
Advances in target design for heavy ion fusion
NASA Astrophysics Data System (ADS)
Callahan, D. A.; Tabak, M.; Bennett, G. R.; Cuneo, M. E.; Vesey, R. A.; Nikroo, A.; Czechowicz, D.; Steinman, D.
2005-12-01
Over the past few years, the emphasis in heavy ion target design has moved from the distributed radiator target to the 'hybrid' target because the hybrid target allows a larger beam focal spot than the distributed radiator (~5 mm radius rather than ~2 mm radius). The larger spot relaxes some of the requirements on the driver, but introduces some new target physics issues. Most notable is the use of shine shields and shims in the hohlraum to achieve symmetry rather than achieving symmetry by beam placement. The shim is a thin layer of material placed on or near the capsule surface to block a small amount of excess radiation. While we have been developing this technique for the heavy ion hybrid target, the technique can also be used in any indirect drive target. We have begun testing the concept of a shim to improve symmetry using a double-ended z-pinch hohlraum on the Sandia Z-machine. Experiments using shimmed thin wall capsules have shown that we can reverse the sign of a P2 asymmetry and significantly reduce the size of a P4 asymmetry. These initial experiments demonstrate the concept of a shim as another method for controlling early time asymmetries in ICF capsules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Callahan, D. A.; Hurricane, O. A.; Hinkel, D. E.
By increasing the velocity in “high foot” implosions [Dittrich et al., Phys. Rev. Lett. 112, 055002 (2014); Park et al., Phys. Rev. Lett. 112, 055001 (2014); Hurricane et al., Nature 506, 343 (2014); Hurricane et al., Phys. Plasmas 21, 056314 (2014)] on the National Ignition Facility laser, we have nearly doubled the neutron yield and the hotspot pressure as compared to the implosions reported upon last year. The implosion velocity has been increased using a combination of the laser (higher power and energy), the hohlraum (depleted uranium wall material with higher opacity and lower specific heat than gold hohlraums), andmore » the capsule (thinner capsules with less mass). We find that the neutron yield from these experiments scales systematically with a velocity-like parameter of the square root of the laser energy divided by the ablator mass. By connecting this parameter with the inferred implosion velocity (v), we find that for shots with primary yield >1 × 10{sup 15} neutrons, the total yield ∼ v{sup 9.4}. This increase is considerably faster than the expected dependence for implosions without alpha heating (∼v{sup 5.9}) and is additional evidence that these experiments have significant alpha heating.« less
Higher velocity, high-foot implosions on the National Ignition Facility laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Callahan, D. A.; Hurricane, O. A.; Hinkel, D. E.
By increasing the velocity in “high foot” implosions [Dittrich et al., Phys. Rev. Lett. 112, 055002 (2014); Park et al., Phys. Rev. Lett. 112, 055001 (2014); Hurricane et al., Nature 506, 343 (2014); Hurricane et al., Phys. Plasmas 21, 056314 (2014)] on the National Ignition Facility laser, we have nearly doubled the neutron yield and the hotspot pressure as compared to the implosions reported upon last year. The implosion velocity has been increased using a combination of the laser (higher power and energy), the hohlraum (depleted uranium wall material with higher opacity and lower specific heat than gold hohlraums), andmore » the capsule (thinner capsules with less mass). We find that the neutron yield from these experiments scales systematically with a velocity-like parameter of the square root of the laser energy divided by the ablator mass. By connecting this parameter with the inferred implosion velocity (v), we find that for shots with primary yield >1e15 neutrons, the total yield ~ v⁹˙⁴. This increase is considerably faster than the expected dependence for implosions without alpha heating ( ~v⁵˙⁹) and is additional evidence that these experiments have significant alpha heating.« less
Higher velocity, high-foot implosions on the National Ignition Facility laser
Callahan, D. A.; Hurricane, O. A.; Hinkel, D. E.; ...
2015-05-15
By increasing the velocity in “high foot” implosions [Dittrich et al., Phys. Rev. Lett. 112, 055002 (2014); Park et al., Phys. Rev. Lett. 112, 055001 (2014); Hurricane et al., Nature 506, 343 (2014); Hurricane et al., Phys. Plasmas 21, 056314 (2014)] on the National Ignition Facility laser, we have nearly doubled the neutron yield and the hotspot pressure as compared to the implosions reported upon last year. The implosion velocity has been increased using a combination of the laser (higher power and energy), the hohlraum (depleted uranium wall material with higher opacity and lower specific heat than gold hohlraums), andmore » the capsule (thinner capsules with less mass). We find that the neutron yield from these experiments scales systematically with a velocity-like parameter of the square root of the laser energy divided by the ablator mass. By connecting this parameter with the inferred implosion velocity (v), we find that for shots with primary yield >1e15 neutrons, the total yield ~ v⁹˙⁴. This increase is considerably faster than the expected dependence for implosions without alpha heating ( ~v⁵˙⁹) and is additional evidence that these experiments have significant alpha heating.« less
Imposed magnetic field and hot electron propagation in inertial fusion hohlraums
Strozzi, David J.; Perkins, L. J.; Marinak, M. M.; ...
2015-12-02
The effects of an imposed, axial magnetic fieldmore » $$B_{z0}$$ on hydrodynamics and energetic electrons in inertial confinement fusion indirect-drive hohlraums are studied. We present simulations from the radiation-hydrodynamics code HYDRA of a low-adiabat ignition design for the National Ignition Facility, with and without $$B_{z0}=70~\\text{T}$$. The field’s main hydrodynamic effect is to significantly reduce electron thermal conduction perpendicular to the field. This results in hotter and less dense plasma on the equator between the capsule and hohlraum wall. The inner laser beams experience less inverse bremsstrahlung absorption before reaching the wall. The X-ray drive is thus stronger from the equator with the imposed field. We study superthermal, or ‘hot’, electron dynamics with the particle-in-cell code ZUMA, using plasma conditions from HYDRA. During the early-time laser picket, hot electrons based on two-plasmon decay in the laser entrance hole (Regan et al., Phys. Plasmas, vol. 17(2), 2010, 020703) are guided to the capsule by a 70 T field. Twelve times more energy deposits in the deuterium–tritium fuel. For plasma conditions early in peak laser power, we present mono-energetic test-case studies with ZUMA as well as sources based on inner-beam stimulated Raman scattering. Furthermore, the effect of the field on deuterium–tritium deposition depends strongly on the source location, namely whether hot electrons are generated on field lines that connect to the capsule.« less
Review of Inertial Confinement Fusion
NASA Astrophysics Data System (ADS)
Haines, M. G.
The physics of inertial confinement fusion is reviewed. The trend to short-wavelength lasers is argued, and the distinction between direct and indirect (soft X-ray) drive is made. Key present issues include the non-linear growth of Rayleigh-Taylor (R-T) instabilities, the seeding of this instability by the initial laser imprint, the relevance of self-generated magnetic fields, and the importance of parametric instabilities (stimulated Brillouin and Raman scattering) in gas-filled hohlraums. Experiments are reviewed which explore the R-T instability in both planar and converging geometry. The employment of various optical smoothing techniques is contrasted with the overcoating of the capsule by gold coated plastic foams to reduce considerably the imprint problem. The role of spontaneously generated magnetic fields in non-symmetric plasmas is discussed. Recent hohlraum compression results are presented together with gas bag targets which replicate the long-scale-length low density plasmas expected in NIF gas filled hohlraums. The onset of first Brillouin and then Raman scattering is observed. The fast ignitor scheme is a proposal to use an intense short pulse laser to drill a hole through the coronal plasma and then, with laser excited fast electrons, create a propagating thermonuclear spark in a dense, relatively cold laser-compressed target. Some preliminary results of laser hole drilling and 2-D and 3-D PIC simulations of this and the > 10^8 Gauss self-generated magnetic fields are presented. The proposed National Ignition Facility (NIF) is described.
LMJ Target design with the A1040 CH-ignition capsule in a cocktail holraum
NASA Astrophysics Data System (ADS)
Malinie, G.; Boniface, C.
2008-11-01
The A1040 indirect-drive ignition capsule was originally designed for the ``Full LMJ'' 240-beam configuration. An ``Ignition milestone'' has been scheduled, when the LMJ will be only partly completed, with a 160-beam, 2-cone configuration. A first approach to meet this milestone is to scale down the capsule and hohlraum of the full LMJ design. Here we use a different approach and show the A1040 ``as is'' can still meet the milestone, provided that a suitable cocktail-walled rugby hohlraum is used to drive the capsule. This is because this kind of hohlraum has a better energetic efficiency than the gold-walled cylinder originally used. From 1D and 2D integrated simulations, we investigate the influence of various parameters of the design, such as the shape of the four steps of the laser pulse, the density of the H/He gas filling of the hohlraum, and the effect of a thin gold coating on the outer surface of the polyimid window used to contain the gas.
Implosion dynamics measurements at the National Ignition Facility
NASA Astrophysics Data System (ADS)
Hicks, D. G.; Meezan, N. B.; Dewald, E. L.; Mackinnon, A. J.; Olson, R. E.; Callahan, D. A.; Döppner, T.; Benedetti, L. R.; Bradley, D. K.; Celliers, P. M.; Clark, D. S.; Di Nicola, P.; Dixit, S. N.; Dzenitis, E. G.; Eggert, J. E.; Farley, D. R.; Frenje, J. A.; Glenn, S. M.; Glenzer, S. H.; Hamza, A. V.; Heeter, R. F.; Holder, J. P.; Izumi, N.; Kalantar, D. H.; Khan, S. F.; Kline, J. L.; Kroll, J. J.; Kyrala, G. A.; Ma, T.; MacPhee, A. G.; McNaney, J. M.; Moody, J. D.; Moran, M. J.; Nathan, B. R.; Nikroo, A.; Opachich, Y. P.; Petrasso, R. D.; Prasad, R. R.; Ralph, J. E.; Robey, H. F.; Rinderknecht, H. G.; Rygg, J. R.; Salmonson, J. D.; Schneider, M. B.; Simanovskaia, N.; Spears, B. K.; Tommasini, R.; Widmann, K.; Zylstra, A. B.; Collins, G. W.; Landen, O. L.; Kilkenny, J. D.; Hsing, W. W.; MacGowan, B. J.; Atherton, L. J.; Edwards, M. J.
2012-12-01
Measurements have been made of the in-flight dynamics of imploding capsules indirectly driven by laser energies of 1-1.7 MJ at the National Ignition Facility [Miller et al., Nucl. Fusion 44, 228 (2004)]. These experiments were part of the National Ignition Campaign [Landen et al., Phys. Plasmas 18, 051002 (2011)] to iteratively optimize the inputs required to achieve thermonuclear ignition in the laboratory. Using gated or streaked hard x-ray radiography, a suite of ablator performance parameters, including the time-resolved radius, velocity, mass, and thickness, have been determined throughout the acceleration history of surrogate gas-filled implosions. These measurements have been used to establish a dynamically consistent model of the ablative drive history and shell compressibility throughout the implosion trajectory. First results showed that the peak velocity of the original 1.3-MJ Ge-doped polymer (CH) point design using Au hohlraums reached only 75% of the required ignition velocity. Several capsule, hohlraum, and laser pulse changes were then implemented to improve this and other aspects of implosion performance and a dedicated effort was undertaken to test the sensitivity of the ablative drive to the rise time and length of the main laser pulse. Changing to Si rather than Ge-doped inner ablator layers and increasing the pulse length together raised peak velocity to 93% ± 5% of the ignition goal using a 1.5 MJ, 420 TW pulse. Further lengthening the pulse so that the laser remained on until the capsule reached 30% (rather than 60%-70%) of its initial radius, reduced the shell thickness and improved the final fuel ρR on companion shots with a cryogenic hydrogen fuel layer. Improved drive efficiency was observed using U rather than Au hohlraums, which was expected, and by slowing the rise time of laser pulse, which was not. The effect of changing the Si-dopant concentration and distribution, as well as the effect of using a larger initial shell thickness were also examined, both of which indicated that instabilities seeded at the ablation front are a significant source of hydrodynamic mix into the central hot spot. Additionally, a direct test of the surrogacy of cryogenic fuel layered versus gas-filled targets was performed. Together all these measurements have established the fundamental ablative-rocket relationship describing the dependence of implosion velocity on fractional ablator mass remaining. This curve shows a lower-than-expected ablator mass at a given velocity, making the capsule more susceptible to feedthrough of instabilities from the ablation front into the fuel and hot spot. This combination of low velocity and low ablator mass indicates that reaching ignition on the NIF will require >20 μm (˜10%) thicker targets and laser powers at or beyond facility limits.
Implosion dynamics measurements at the National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hicks, D. G.; Meezan, N. B.; Dewald, E. L.
2012-12-15
Measurements have been made of the in-flight dynamics of imploding capsules indirectly driven by laser energies of 1-1.7 MJ at the National Ignition Facility [Miller et al., Nucl. Fusion 44, 228 (2004)]. These experiments were part of the National Ignition Campaign [Landen et al., Phys. Plasmas 18, 051002 (2011)] to iteratively optimize the inputs required to achieve thermonuclear ignition in the laboratory. Using gated or streaked hard x-ray radiography, a suite of ablator performance parameters, including the time-resolved radius, velocity, mass, and thickness, have been determined throughout the acceleration history of surrogate gas-filled implosions. These measurements have been used tomore » establish a dynamically consistent model of the ablative drive history and shell compressibility throughout the implosion trajectory. First results showed that the peak velocity of the original 1.3-MJ Ge-doped polymer (CH) point design using Au hohlraums reached only 75% of the required ignition velocity. Several capsule, hohlraum, and laser pulse changes were then implemented to improve this and other aspects of implosion performance and a dedicated effort was undertaken to test the sensitivity of the ablative drive to the rise time and length of the main laser pulse. Changing to Si rather than Ge-doped inner ablator layers and increasing the pulse length together raised peak velocity to 93% {+-} 5% of the ignition goal using a 1.5 MJ, 420 TW pulse. Further lengthening the pulse so that the laser remained on until the capsule reached 30% (rather than 60%-70%) of its initial radius, reduced the shell thickness and improved the final fuel {rho}R on companion shots with a cryogenic hydrogen fuel layer. Improved drive efficiency was observed using U rather than Au hohlraums, which was expected, and by slowing the rise time of laser pulse, which was not. The effect of changing the Si-dopant concentration and distribution, as well as the effect of using a larger initial shell thickness were also examined, both of which indicated that instabilities seeded at the ablation front are a significant source of hydrodynamic mix into the central hot spot. Additionally, a direct test of the surrogacy of cryogenic fuel layered versus gas-filled targets was performed. Together all these measurements have established the fundamental ablative-rocket relationship describing the dependence of implosion velocity on fractional ablator mass remaining. This curve shows a lower-than-expected ablator mass at a given velocity, making the capsule more susceptible to feedthrough of instabilities from the ablation front into the fuel and hot spot. This combination of low velocity and low ablator mass indicates that reaching ignition on the NIF will require >20 {mu}m ({approx}10%) thicker targets and laser powers at or beyond facility limits.« less
Rayleigh--Taylor spike evaporation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schappert, G. T.; Batha, S. H.; Klare, K. A.
2001-09-01
Laser-based experiments have shown that Rayleigh--Taylor (RT) growth in thin, perturbed copper foils leads to a phase dominated by narrow spikes between thin bubbles. These experiments were well modeled and diagnosed until this '' spike'' phase, but not into this spike phase. Experiments were designed, modeled, and performed on the OMEGA laser [T. R. Boehly, D. L. Brown, R. S. Craxton , Opt. Commun. 133, 495 (1997)] to study the late-time spike phase. To simulate the conditions and evolution of late time RT, a copper target was fabricated consisting of a series of thin ridges (spikes in cross section) 150more » {mu}m apart on a thin flat copper backing. The target was placed on the side of a scale-1.2 hohlraum with the ridges pointing into the hohlraum, which was heated to 190 eV. Side-on radiography imaged the evolution of the ridges and flat copper backing into the typical RT bubble and spike structure including the '' mushroom-like feet'' on the tips of the spikes. RAGE computer models [R. M. Baltrusaitis, M. L. Gittings, R. P. Weaver, R. F. Benjamin, and J. M. Budzinski, Phys. Fluids 8, 2471 (1996)] show the formation of the '' mushrooms,'' as well as how the backing material converges to lengthen the spike. The computer predictions of evolving spike and bubble lengths match measurements fairly well for the thicker backing targets but not for the thinner backings.« less
Indirect drive ablative Rayleigh-Taylor experiments with rugby hohlraums on OMEGA
NASA Astrophysics Data System (ADS)
Casner, A.; Galmiche, D.; Huser, G.; Jadaud, J.-P.; Liberatore, S.; Vandenboomgaerde, M.
2009-09-01
Results of ablative Rayleigh-Taylor instability growth experiments performed in indirect drive on the OMEGA laser facility [T. R. Boehly, D. L. Brown, S. Craxton et al., Opt. Commun. 133, 495 (1997)] are reported. These experiments aim at benchmarking hydrocodes simulations and ablator instabilities growth in conditions relevant to ignition in the framework of the Laser MégaJoule [C. Cavailler, Plasma Phys. Controlled Fusion 47, 389 (2005)]. The modulated samples under study were made of germanium-doped plastic (CHGe), which is the nominal ablator for future ignition experiments. The incident x-ray drive was provided using rugby-shaped hohlraums [M. Vandenboomgaerde, J. Bastian, A. Casner et al., Phys. Rev. Lett. 99, 065004 (2007)] and was characterized by means of absolute time-resolved soft x-ray power measurements through a dedicated diagnostic hole, shock breakout data and one-dimensional and two-dimensional (2D) side-on radiographies. All these independent x-ray drive diagnostics lead to an actual on-foil flux that is about 50% smaller than laser-entrance-hole measurements. The experimentally inferred flux is used to simulate experimental optical depths obtained from face-on radiographies for an extensive set of initial conditions: front-side single-mode (wavelength λ =35, 50, and 70 μm) and two-mode perturbations (wavelength λ =35 and 70 μm, in phase or in opposite phase). Three-dimensional pattern growth is also compared with the 2D case. Finally the case of the feedthrough mechanism is addressed with rear-side modulated foils.
NASA Astrophysics Data System (ADS)
Young, Christopher; Meezan, Nathan; Landen, Otto
2017-10-01
A cylindrical National Ignition Facility hohlraum irradiated exclusively by NOVA-like outer quads (44 .5° and 50° beams) is proposed to minimize laser plasma interaction (LPI) losses and avoid problems with propagating the inner (23 .5° and 30°) beams. Symmetry and drive are controlled by shortening the hohlraum, using a smaller laser entrance hole (LEH), beam phasing the 44 .5° and 50° beams, and correcting the remaining P4 asymmetry with a capsule shim. Ensembles of time-resolved view factor simulations help narrow the design space of the new configuration, with fine tuning provided by the radiation-hydrodynamic code HYDRA. Prepared by LLNL under Contract DE-AC52-07NA27344.
Laboratory-Produced X-Ray Photoionized Plasmas for Astrophysics Exploration
NASA Astrophysics Data System (ADS)
Goyon, Clement; Le Pape, Sebastien; Liedahl, Duane; Ma, Tammy; Berzak-Hopkins, Laura; Reverdin, Charles; Rousseaux, Christophe; Renaudin, Patrick; Blancard, Christophe; Nottet, Edouard; Bidault, Niels; Mancini, Roberto; Koenig, Michel
2015-11-01
X-ray photoionized plasmas are rare in the laboratory, but of broad importance in astrophysical objects such as active galactic nuclei, x-ray binaries. Indeed, existing models are not yet able to accurately describe these plasmas where ionization is driven by radiation rather than electron collisions. Here, we describe an experiment on the LULI2000 facility whose versatility allows for measuring the X-ray absorption of the plasma while independently probing its electron density and temperature. The bright X-ray source is created by the two main beams focused inside a gold hohlraum and is used to photoionise a Neon gas jet. Then, a thin gold foil serves as a source of backlit photons for absorption spectroscopy. The transmitted spectrum through the plasma is collected by a crystal spectrometer. We will present the experimental setup used to characterize both plasma conditions and X-ray emission. Then we will show the transmitted spectra through the plasma to observe the transition from collision dominated to radiation dominated ionization and compare it to model predictions. This work was performed under the auspices of the U.S.Department of Energy by Lawrence Livermore Natl Lab under Contract No. DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Milovich, J. L.; Dewald, E. L.; Pak, A.; Michel, P.; Town, R. P. J.; Bradley, D. K.; Landen, O.; Edwards, M. J.
2016-03-01
Achieving ignition on the National Ignition Facility (NIF) is tied to our ability to control and minimize deviations from sphericity of the capsule implosion. Low-mode asymmetries of the hot spot result from the combined effect of radiation drive asymmetries throughout the laser pulse and initial roughness on the capsule surface. In this paper, we report on simulations and experiments designed to assess, measure, and correct the drive asymmetries produced by the early-time (≈first 2 ns or "picket") period of the laser pulse. The drive asymmetry during the picket is commonly thought to introduce distortions in the hot-spot shape at ignition time. However, a more subtle effect not previously considered is that it also leads to an asymmetry in shock velocity and timing, thereby increasing the fuel adiabat and reducing the margin for ignition. It is shown via hydrodynamic simulations that minimizing this effect requires that the early-time asymmetry be kept below 7.5% in the second Legendre mode (P2), thus keeping the loss of performance margin below ≈10% for a layered implosion. Asymmetries during the picket of the laser pulse are measured using the instantaneous self-emission of a high-Z re-emission sphere in place of an ignition capsule in a hohlraum with large azimuthal diagnostic windows. Three dimensional simulations using the code HYDRA (to capture the effect of non-azimuthal hohlraum features) coupled to a cross-beam energy transfer model [Michel et al., Phys. Plasmas 17, 056305 (2010)] are used to establish the surrogacy of the re-emit target and to assess the early-time drive symmetry. Calculations using this model exhibit the same sensitivity to variations in the relative input powers between the different cones of NIF beams as measured for the "Rev5" CH target [Haan et al., Phys Plasmas 18, 051001 (2011)] and reported by Dewald et al. [Phys. Rev. Lett. 111, 235001 (2013)]. The same methodology applied to recently improved implosions using different hohlraum geometries and picket powers show good agreement with experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milovich, J. L., E-mail: milovich1@llnl.gov; Dewald, E. L.; Pak, A.
2016-03-15
Achieving ignition on the National Ignition Facility (NIF) is tied to our ability to control and minimize deviations from sphericity of the capsule implosion. Low-mode asymmetries of the hot spot result from the combined effect of radiation drive asymmetries throughout the laser pulse and initial roughness on the capsule surface. In this paper, we report on simulations and experiments designed to assess, measure, and correct the drive asymmetries produced by the early-time (≈first 2 ns or “picket”) period of the laser pulse. The drive asymmetry during the picket is commonly thought to introduce distortions in the hot-spot shape at ignition time.more » However, a more subtle effect not previously considered is that it also leads to an asymmetry in shock velocity and timing, thereby increasing the fuel adiabat and reducing the margin for ignition. It is shown via hydrodynamic simulations that minimizing this effect requires that the early-time asymmetry be kept below 7.5% in the second Legendre mode (P{sub 2}), thus keeping the loss of performance margin below ≈10% for a layered implosion. Asymmetries during the picket of the laser pulse are measured using the instantaneous self-emission of a high-Z re-emission sphere in place of an ignition capsule in a hohlraum with large azimuthal diagnostic windows. Three dimensional simulations using the code HYDRA (to capture the effect of non-azimuthal hohlraum features) coupled to a cross-beam energy transfer model [Michel et al., Phys. Plasmas 17, 056305 (2010)] are used to establish the surrogacy of the re-emit target and to assess the early-time drive symmetry. Calculations using this model exhibit the same sensitivity to variations in the relative input powers between the different cones of NIF beams as measured for the “Rev5” CH target [Haan et al., Phys Plasmas 18, 051001 (2011)] and reported by Dewald et al. [Phys. Rev. Lett. 111, 235001 (2013)]. The same methodology applied to recently improved implosions using different hohlraum geometries and picket powers show good agreement with experimental data.« less
A simple model of hohlraum power balance and mitigation of SRS
Albright, Brian J.; Montgomery, David S.; Yin, Lin; ...
2016-04-01
A simple energy balance model has been obtained for laser-plasma heating in indirect drive hohlraum plasma that allows rapid temperature scaling and evolution with parameters such as plasma density and composition. Furthermore, this model enables assessment of the effects on plasma temperature of, e.g., adding high-Z dopant to the gas fill or magnetic fields.
Quantifying design trade-offs of beryllium targets on NIF
NASA Astrophysics Data System (ADS)
Yi, S. A.; Zylstra, A. B.; Kline, J. L.; Loomis, E. N.; Kyrala, G. A.; Shah, R. C.; Perry, T. S.; Kanzleiter, R. J.; Batha, S. H.; MacLaren, S. A.; Ralph, J. E.; Masse, L. P.; Salmonson, J. D.; Tipton, R. E.; Callahan, D. A.; Hurricane, O. A.
2017-10-01
An important determinant of target performance is implosion kinetic energy, which scales with the capsule size. The maximum achievable performance for a given laser is thus related to the largest capsule that can be imploded symmetrically, constrained by drive uniformity. A limiting factor for symmetric radiation drive is the ratio of hohlraum to capsule radii, or case-to-capsule ratio (CCR). For a fixed laser energy, a larger hohlraum allows for driving bigger capsules symmetrically at the cost of reduced peak radiation temperature (Tr). Beryllium ablators may thus allow for unique target design trade-offs due to their higher ablation efficiency at lower Tr. By utilizing larger hohlraum sizes than most modern NIF designs, beryllium capsules thus have the potential to operate in unique regions of the target design parameter space. We present design simulations of beryllium targets with a large CCR = 4.3 3.7 . These are scaled surrogates of large hohlraum low Tr beryllium targets, with the goal of quantifying symmetry tunability as a function of CCR. This work performed under the auspices of the U.S. DOE by LANL under contract DE-AC52- 06NA25396, and by LLNL under Contract DE-AC52-07NA27344.
First shock tuning and backscatter measurements for large case-to-capsule ratio beryllium targets
NASA Astrophysics Data System (ADS)
Loomis, Eric; Yi, Austin; Kline, John; Kyrala, George; Simakov, Andrei; Wilson, Doug; Ralph, Joe; Dewald, Eduard; Strozzi, David; Celliers, Peter; Millot, Marius; Tommasini, Riccardo
2016-10-01
The current under performance of target implosions on the National Ignition Facility (NIF) has necessitated scaling back from high convergence ratio to access regimes of reduced physics uncertainties. These regimes, we expect, are more predictable by existing radiation hydrodynamics codes giving us a better starting point for isolating key physics questions. One key question is the lack of predictable in-flight and hot spot shape due to a complex hohlraum radiation environment. To achieve more predictable, shape tunable implosions we have designed and fielded a large 4.2 case-to-capsule ratio (CCR) target at the NIF using 6.72 mm diameter Au hohlraums and 1.6 mm diameter Cu-doped Be capsules. Simulations show that at these dimensions during a 10 ns 3-shock laser pulse reaching 270 eV hohlraum temperatures, the interaction between hohlraum and capsule plasma, which at lower CCR lead to beam propagation impedance by artificial plasma stagnation, are reduced. In this talk we will present measurements of early time drive symmetry using two-axis line-imaging velocimetry (VISAR) and streaked radiography measuring velocity of the imploding shell and their comparisons to post-shot calculations using the code HYDRA (Lawrence Livermore National Laboratory).
Symmetry control in subscale near-vacuum hohlraums
NASA Astrophysics Data System (ADS)
Turnbull, D.; Berzak Hopkins, L. F.; Le Pape, S.; Divol, L.; Meezan, N.; Landen, O. L.; Ho, D. D.; Mackinnon, A.; Zylstra, A. B.; Rinderknecht, H. G.; Sio, H.; Petrasso, R. D.; Ross, J. S.; Khan, S.; Pak, A.; Dewald, E. L.; Callahan, D. A.; Hurricane, O.; Hsing, W. W.; Edwards, M. J.
2016-05-01
Controlling the symmetry of indirect-drive inertial confinement fusion implosions remains a key challenge. Increasing the ratio of the hohlraum diameter to the capsule diameter (case-to-capsule ratio, or CCR) facilitates symmetry tuning. By varying the balance of energy between the inner and outer cones as well as the incident laser pulse length, we demonstrate the ability to tune from oblate, through round, to prolate at a CCR of 3.2 in near-vacuum hohlraums at the National Ignition Facility, developing empirical playbooks along the way for cone fraction sensitivity of various laser pulse epochs. Radiation-hydrodynamic simulations with enhanced inner beam propagation reproduce most experimental observables, including hot spot shape, for a majority of implosions. Specular reflections are used to diagnose the limits of inner beam propagation as a function of pulse length.
Initial Computational Study of a New Multi-Hole Hohlraum (the "Midraum")
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tabak, M.; Jones, O. S.
2017-11-02
Existing cylindrical hohlraums with two oppositely positioned laser entrance holes (LEHs) have multiple constraints. Their goal is to produce radiation sources distributed over the sky, as visible from the spherical implosion capsule, with most of the deposition near the zeroes of the fourth Legendre polynomial in cosine of the polar angle. This requires some of the laser light to propagate across the hohlraum to positions near the hohlraum symmetry plane. The ratio of case spherical radius to capsule spherical radius should exceed 3 so that the light doesn’t pass through over-dense ablator plasma. Radiation transport can smooth higher radiation modes.more » For capsules that demand long pulse lengths, hohlraum walls can blow in and change the position where light is absorbed. This changes the radiation symmetry in a time dependent fashion. This affects both P2 and P4. This wall motion can be reduced by introducing fill gas into the hohlraum. The gas provides back pressure and tamps the wall motion. Adding the fill gas comes at some cost. It leads to increased absorption of laser light along the path. The fill gas adds heat capacity to the system, ultimately requiring more laser energy to meet the radiation flux goals, both in total and particularly in the amount of radiation coming from the vicinity of the capsule waist. Given the existing beam pointing at NIF energy from the outer beams must be transferred into the inner beams. Cross beam energy transport (CBET) is accomplished via a plasma instability. This transfer is not perfectly predictable. In addition, the higher intensity required to make up for the losses along the long path can lead to stimulated backscatter as well as the generation of suprathermal electrons. The inner beams will pass through the plasma ablated from the capsule toward the end of the pulse. Heating this plasma acts as another parasitic loss. In addition, the light passing through the turbulent blow-off can be refracted in unpredictable directions.« less
Dynamic Symmetry of Indirectly Driven ICF Capsules on NIF
NASA Astrophysics Data System (ADS)
Town, R. P. J.
2013-10-01
In order to achieve ignition it is important to control the growth of low-mode asymmetries as the capsule is compressed. Understanding the time-dependent evolution of the shape of the imploding capsule, hot spot and surrounding fuel layer is crucial to optimizing implosion performance. A design and experimental campaign to examine the sources of asymmetry and to measure the symmetry throughout the implosion has been developed and executed on the NIF. For the first time on NIF, two-dimensional radiographs of the capsule during its implosion phase have been measured to infer the symmetry of the radiation drive. Time dependent equatorial symmetry has been measured of gas-filled capsules and capsules with cryogenic DT layers. These measurements have been used to modify the hohlraum geometry and the wavelength tuning to improve the inflight implosion symmetry. The technique is being extended to study azimuthal symmetry by imaging along the hohlraum axis. We have also expanded our shock timing measurements by the addition of extra mirrors inside the re-entrant cone to allow the simultaneous measurement of shock symmetry in three locations on a single shot, providing a measurement of asymmetries up to mode 4 in both the equatorial and azimuthal planes. The shape of the hot spot during final stagnation is measured using time-resolved imaging of the self-emission, and information on the shape of the fuel at stagnation can be obtained from Compton radiography using a wire-backlighter. In addition to x-ray diagnostics, a series of neutron and proton measurements of the low-mode areal density of the fuel at peak compression and at shock-flash time have been made. This talk will discuss the new imaging techniques, the results, and the analysis of the experiments done to date and their implication for ignition on NIF. The sensitivity of the in-flight and final implosion symmetry to imposed changes will be presented and compared to model predictions. This work performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.
Cryogenic thermonuclear fuel implosions on the National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glenzer, S. H.; Callahan, D. A.; MacKinnon, A. J.
2012-05-15
The first inertial confinement fusion implosion experiments with equimolar deuterium-tritium thermonuclear fuel have been performed on the National Ignition Facility. These experiments use 0.17 mg of fuel with the potential for ignition and significant fusion yield conditions. The thermonuclear fuel has been fielded as a cryogenic layer on the inside of a spherical plastic capsule that is mounted in the center of a cylindrical gold hohlraum. Heating the hohlraum with 192 laser beams for a total laser energy of 1.6 MJ produces a soft x-ray field with 300 eV temperature. The ablation pressure produced by the radiation field compresses themore » initially 2.2-mm diameter capsule by a factor of 30 to a spherical dense fuel shell that surrounds a central hot-spot plasma of 50 {mu}m diameter. While an extensive set of x-ray and neutron diagnostics has been applied to characterize hot spot formation from the x-ray emission and 14.1 MeV deuterium-tritium primary fusion neutrons, thermonuclear fuel assembly is studied by measuring the down-scattered neutrons with energies in the range of 10 to 12 MeV. X-ray and neutron imaging of the compressed core and fuel indicate a fuel thickness of (14 {+-} 3) {mu}m, which combined with magnetic recoil spectrometer measurements of the fuel areal density of (1 {+-} 0.09) g cm{sup -2} result in fuel densities approaching 600 g cm{sup -3}. The fuel surrounds a hot-spot plasma with average ion temperatures of (3.5 {+-} 0.1) keV that is measured with neutron time of flight spectra. The hot-spot plasma produces a total fusion neutron yield of 10{sup 15} that is measured with the magnetic recoil spectrometer and nuclear activation diagnostics that indicate a 14.1 MeV yield of (7.5{+-}0.1) Multiplication-Sign 10{sup 14} which is 70% to 75% of the total fusion yield due to the high areal density. Gamma ray measurements provide the duration of nuclear activity of (170 {+-} 30) ps. These indirect-drive implosions result in the highest areal densities and neutron yields achieved on laser facilities to date. This achievement is the result of the first hohlraum and capsule tuning experiments where the stagnation pressures have been systematically increased by more than a factor of 10 by fielding low-entropy implosions through the control of radiation symmetry, small hot electron production, and proper shock timing. The stagnation pressure is above 100 Gbars resulting in high Lawson-type confinement parameters of P{tau} Asymptotically-Equal-To 10 atm s. Comparisons with radiation-hydrodynamic simulations indicate that the pressure is within a factor of three required for reaching ignition and high yield. This will be the focus of future higher-velocity implosions that will employ additional optimizations of hohlraum, capsule and laser pulse shape conditions.« less
Symmetry control in subscale near-vacuum hohlraums
Turnbull, D.; Berzak Hopkins, L. F.; Le Pape, S.; ...
2016-05-18
Controlling the symmetry of indirect-drive inertial confinement fusion implosions remains a key challenge. Increasing the ratio of the hohlraum diameter to the capsule diameter (case-to-capsule ratio, or CCR) facilitates symmetry tuning. By varying the balance of energy between the inner and outer cones as well as the incident laser pulse length, we demonstrate the ability to tune from oblate, through round, to prolate at a CCR of 3.2 in near-vacuum hohlraums at the National Ignition Facility, developing empirical playbooks along the way for cone fraction sensitivity of various laser pulse epochs. Radiation-hydrodynamic simulations with enhanced inner beam propagation reproduce mostmore » experimental observables, including hot spot shape, for a majority of implosions. In conclusion, specular reflections are used to diagnose the limits of inner beam propagation as a function of pulse length.« less
Design of the optical backscatter diagnostic for laser plasma interaction measurements on NIF
NASA Astrophysics Data System (ADS)
Moody, J. D.; Datte, P.; Ng, E.; Maitland, K.; Hsing, W.; MacGowan, B. J.; Froula, D. H.; Neumayer, P.; Sutter, L.; Meezan, N.; Glenzer, S. H.; Kirkwood, R. K.; Divol, L.; Andrews, S.; Jackson, J.; MacKinnon, A.; Jovanovic, I.; Beeler, R.; Bertolini, L.; Landon, M.; Alvarez, S.; Lee, T.; Watts, P.
2007-11-01
We describe the design of the backscatter diagnostic for NIF laser-plasma interaction (LPI) studies. It will initially be used to validate the 280 eV point design hohlraum and select phase plates for the ignition experiments. Backscatter measurements are planned for two separate groups of 4 beams (a quad). One quad is 30^o from the hohlraum axis and the other at 50^o. The backscatter measurement utilizes 2 instruments for each beam quad. The full aperture backscatter system (FABS) measures light backscattered into the final focus lens of each beam in the quad. The near backscatter imager (NBI) measures light backscattered outside of the beam quad. Both instruments must work in conjunction to provide spectrally and temporally resolved backscatter power. We describe the design of the diagnostic and its capabilities as well as plans for calibrating it and analyzing the resulting data. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.
Heat transport modeling of the dot spectroscopy platform on NIF
Farmer, W. A.; Jones, O. S.; Barrios, M. A.; ...
2018-02-13
Electron heat transport within an inertial-fusion hohlraum plasma is difficult to model due to the complex interaction of kinetic plasma effects, magnetic fields, laser-plasma interactions, and microturbulence. In this paper, simulations using the radiation-hydrodynamic code, HYDRA, are compared to hohlraum plasma experiments which contain a Manganese–Cobalt tracer dot (Barrios et al 2016 Phys. Plasmas 23 056307). The dot is placed either on the capsule or on a film midway between the capsule and the laser-entrance hole. From spectroscopic measurements, electron temperature and position of the dot are inferred. Simulations are performed with ad hoc flux limiters of f = 0.15more » and f = 0.03 (with electron heat flux, q, limited to fnT 3/2/m 1/2), and two more physical means of flux limitation: the magnetohydrodynamics and nonlocal packages. The nonlocal model agrees best with the temperature of the dot-on-film and dot-on-capsule. The hohlraum produced x-ray flux is over-predicted by roughly ~11% for the f = 0.03 model and the remaining models by ~16%. The simulated trajectories of the dot-on-capsule are slightly ahead of the experimental trajectory for all but the f = 0.03 model. The simulated dot-on-film position disagrees with the experimental measurement for all transport models. In the MHD simulation of the dot-on-film, the dot is strongly perturbative, though the simulation predicts a peak dot-on-film temperature 2–3 keV higher than the measurement. Finally, this suggests a deficiency in the MHD modeling possibly due to the neglect of the Righi–Leduc term or interpenetrating flows of multiple ion species which would reduce the strength of the self-generated fields.« less
Heat transport modeling of the dot spectroscopy platform on NIF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, W. A.; Jones, O. S.; Barrios, M. A.
Electron heat transport within an inertial-fusion hohlraum plasma is difficult to model due to the complex interaction of kinetic plasma effects, magnetic fields, laser-plasma interactions, and microturbulence. In this paper, simulations using the radiation-hydrodynamic code, HYDRA, are compared to hohlraum plasma experiments which contain a Manganese–Cobalt tracer dot (Barrios et al 2016 Phys. Plasmas 23 056307). The dot is placed either on the capsule or on a film midway between the capsule and the laser-entrance hole. From spectroscopic measurements, electron temperature and position of the dot are inferred. Simulations are performed with ad hoc flux limiters of f = 0.15more » and f = 0.03 (with electron heat flux, q, limited to fnT 3/2/m 1/2), and two more physical means of flux limitation: the magnetohydrodynamics and nonlocal packages. The nonlocal model agrees best with the temperature of the dot-on-film and dot-on-capsule. The hohlraum produced x-ray flux is over-predicted by roughly ~11% for the f = 0.03 model and the remaining models by ~16%. The simulated trajectories of the dot-on-capsule are slightly ahead of the experimental trajectory for all but the f = 0.03 model. The simulated dot-on-film position disagrees with the experimental measurement for all transport models. In the MHD simulation of the dot-on-film, the dot is strongly perturbative, though the simulation predicts a peak dot-on-film temperature 2–3 keV higher than the measurement. Finally, this suggests a deficiency in the MHD modeling possibly due to the neglect of the Righi–Leduc term or interpenetrating flows of multiple ion species which would reduce the strength of the self-generated fields.« less
Heat transport modeling of the dot spectroscopy platform on NIF
NASA Astrophysics Data System (ADS)
Farmer, W. A.; Jones, O. S.; Barrios, M. A.; Strozzi, D. J.; Koning, J. M.; Kerbel, G. D.; Hinkel, D. E.; Moody, J. D.; Suter, L. J.; Liedahl, D. A.; Lemos, N.; Eder, D. C.; Kauffman, R. L.; Landen, O. L.; Moore, A. S.; Schneider, M. B.
2018-04-01
Electron heat transport within an inertial-fusion hohlraum plasma is difficult to model due to the complex interaction of kinetic plasma effects, magnetic fields, laser-plasma interactions, and microturbulence. Here, simulations using the radiation-hydrodynamic code, HYDRA, are compared to hohlraum plasma experiments which contain a Manganese-Cobalt tracer dot (Barrios et al 2016 Phys. Plasmas 23 056307). The dot is placed either on the capsule or on a film midway between the capsule and the laser-entrance hole. From spectroscopic measurements, electron temperature and position of the dot are inferred. Simulations are performed with ad hoc flux limiters of f = 0.15 and f = 0.03 (with electron heat flux, q, limited to fnT 3/2/m 1/2), and two more physical means of flux limitation: the magnetohydrodynamics and nonlocal packages. The nonlocal model agrees best with the temperature of the dot-on-film and dot-on-capsule. The hohlraum produced x-ray flux is over-predicted by roughly ˜11% for the f = 0.03 model and the remaining models by ˜16%. The simulated trajectories of the dot-on-capsule are slightly ahead of the experimental trajectory for all but the f = 0.03 model. The simulated dot-on-film position disagrees with the experimental measurement for all transport models. In the MHD simulation of the dot-on-film, the dot is strongly perturbative, though the simulation predicts a peak dot-on-film temperature 2-3 keV higher than the measurement. This suggests a deficiency in the MHD modeling possibly due to the neglect of the Righi-Leduc term or interpenetrating flows of multiple ion species which would reduce the strength of the self-generated fields.
K-Shell Photoabsorption Edge of Strongly Coupled Matter Driven by Laser-Converted Radiation
NASA Astrophysics Data System (ADS)
Zhao, Yang; Yang, Jiamin; Zhang, Jiyan; Yang, Guohong; Wei, Minxi; Xiong, Gang; Song, Tianming; Zhang, Zhiyu; Bao, Lihua; Deng, Bo; Li, Yukun; He, Xiaoan; Li, Chaoguang; Mei, Yu; Yu, Ruizhen; Jiang, Shaoen; Liu, Shenye; Ding, Yongkun; Zhang, Baohan
2013-10-01
The first observation of the K-shell photoabsorption edge of strongly coupled matter with an ion-ion coupling parameter of about 65 generated by intense x-ray radiation-driven shocks is reported. The soft x-ray radiation generated by laser interaction with a “dog bone” high-Z hohlraum is used to ablate two thick CH layers, which cover a KCl sample, to create symmetrical inward shocks. While the two shocks impact at the central KCl sample, a highly compressed KCl is obtained with a density of 3-5 times solid density and a temperature of about 2-4 eV. The photoabsorption spectra of chlorine near the K-shell edge are measured with a crystal spectrometer using a short x-ray backlighter. The redshift of the K edge up to 11.7 eV and broadening of 15.2 eV are obtained for the maximum compression. A comparison of the measured redshifts and broadenings with dense plasma calculations are made, and it indicates potential improvements in the theoretical description.
The physics basis for ignition using indirect-drive targets on the National Ignition Facility
NASA Astrophysics Data System (ADS)
Lindl, John D.; Amendt, Peter; Berger, Richard L.; Glendinning, S. Gail; Glenzer, Siegfried H.; Haan, Steven W.; Kauffman, Robert L.; Landen, Otto L.; Suter, Laurence J.
2004-02-01
The 1990 National Academy of Science final report of its review of the Inertial Confinement Fusion Program recommended completion of a series of target physics objectives on the 10-beam Nova laser at the Lawrence Livermore National Laboratory as the highest-priority prerequisite for proceeding with construction of an ignition-scale laser facility, now called the National Ignition Facility (NIF). These objectives were chosen to demonstrate that there was sufficient understanding of the physics of ignition targets that the laser requirements for laboratory ignition could be accurately specified. This research on Nova, as well as additional research on the Omega laser at the University of Rochester, is the subject of this review. The objectives of the U.S. indirect-drive target physics program have been to experimentally demonstrate and predictively model hohlraum characteristics, as well as capsule performance in targets that have been scaled in key physics variables from NIF targets. To address the hohlraum and hydrodynamic constraints on indirect-drive ignition, the target physics program was divided into the Hohlraum and Laser-Plasma Physics (HLP) program and the Hydrodynamically Equivalent Physics (HEP) program. The HLP program addresses laser-plasma coupling, x-ray generation and transport, and the development of energy-efficient hohlraums that provide the appropriate spectral, temporal, and spatial x-ray drive. The HEP experiments address the issues of hydrodynamic instability and mix, as well as the effects of flux asymmetry on capsules that are scaled as closely as possible to ignition capsules (hydrodynamic equivalence). The HEP program also addresses other capsule physics issues associated with ignition, such as energy gain and energy loss to the fuel during implosion in the absence of alpha-particle deposition. The results from the Nova and Omega experiments approach the NIF requirements for most of the important ignition capsule parameters, including drive temperature, drive symmetry, and hydrodynamic instability. This paper starts with a review of the NIF target designs that have formed the motivation for the goals of the target physics program. Following that are theoretical and experimental results from Nova and Omega relevant to the requirements of those targets. Some elements of this work were covered in a 1995 review of indirect-drive [J. D. Lindl, ``Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain,'' Phys. Plasmas 2, 3933 (1995)]. In order to present as complete a picture as possible of the research that has been carried out on indirect drive, key elements of that earlier review are also covered here, along with a review of work carried out since 1995.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rice, Neal G.; Vu, M.; Kong, C.
Capsule drive in National Ignition Facility (NIF) indirect drive implosions is generated by x-ray illumination from cylindrical hohlraums. The cylindrical hohlraum geometry is axially symmetric but not spherically symmetric causing capsule-fuel drive asymmetries. We hypothesize that fabricating capsules asymmetric in wall thickness (shimmed) may compensate for drive asymmetries and improve implosion symmetry. Simulations suggest that for high compression implosions Legendre mode P 4 hohlraum flux asymmetries are the most detrimental to implosion performance. General Atomics has developed a diamond turning method to form a GDP capsule outer surface to a Legendre mode P 4 profile. The P 4 shape requiresmore » full capsule surface coverage. Thus, in order to avoid tool-lathe interference flipping the capsule part way through the machining process is required. This flipping process risks misalignment of the capsule causing a vertical step feature on the capsule surface. Recent trials have proven this step feature height can be minimized to ~0.25 µm.« less
A Close-Coupled, Heavy Ion ICF Target
NASA Astrophysics Data System (ADS)
Callahan-Miller, Debra A.; Tabak, Max
1998-11-01
A ``close-coupled'' version of the distributed radiator, heavy ion ICF target has produced gain > 130 from 3.1 MJ of ion beam energy. To achieve these results, we reduced the hohlraum dimensions by 27% from our previous designs(M. Tabak, D. Callahan-Miller, D. D.-M. Ho, G. B. Zimmerman, Nuc. Fusion, 38, 509 (1998)) (M. Tabak, D. A. Callahan-Miller, Phys. Plasmas, 5, 1895 (1998).) while driving the same capsule. This reduced the beam energy required from 5.9-6.5 MJ to 3.1 MJ. The smaller hohlraum resulted in a smaller beam spot; elliptically shaped beams with effective radius 1.7 mm were used in this design. In addition to describing this target, we will discuss the effect of the close-coupled hohlraum on the Rayleigh-Taylor instability and scaling this design down to 1.5-2 MJ for an ETF (Engineering Test Facility).
Demonstrated high performance of gas-filled rugby-shaped hohlraums on Omega
NASA Astrophysics Data System (ADS)
Philippe, F.; Tassin, V.; Depierreux, S.; Gauthier, P.; Masson-Laborde, P. E.; Monteil, M. C.; Seytor, P.; Villette, B.; Lasinski, B.; Park, H. S.; Ross, J. S.; Amendt, P.; Döppner, T.; Hinkel, D. E.; Wallace, R.; Williams, E.; Michel, P.; Frenje, J.; Gatu-Johnson, M.; Li, C. K.; Petrasso, R.; Glebov, V.; Sorce, C.; Stoeckl, C.; Nikroo, A.; Giraldez, E.
2014-07-01
A direct experimental comparison of rugby-shaped and cylindrical shaped gas-filled hohlraums on the Omega laser facility demonstrates that higher coupling and minimal backscatter can be achieved in the rugby geometry, leading to significantly enhanced implosion performance. A nearly 50% increase of x-ray drive is associated with earlier bangtime and increase of neutron production. The observed drive enhancement from rugby geometry in this study is almost twice stronger than in previously published results.
Kyrala, G A; Dixit, S; Glenzer, S; Kalantar, D; Bradley, D; Izumi, N; Meezan, N; Landen, O L; Callahan, D; Weber, S V; Holder, J P; Glenn, S; Edwards, M J; Bell, P; Kimbrough, J; Koch, J; Prasad, R; Suter, L; Kline, J L; Kilkenny, J
2010-10-01
Ignition of imploding inertial confinement capsules requires, among other things, controlling the symmetry with high accuracy and fidelity. We have used gated x-ray imaging, with 10 μm and 70 ps resolution, to detect the x-ray emission from the imploded core of symmetry capsules at the National Ignition Facility. The measurements are used to characterize the time dependent symmetry and the x-ray bang time of the implosion from two orthogonal directions. These measurements were one of the primary diagnostics used to tune the parameters of the laser and Hohlraum to vary the symmetry and x-ray bang time of the implosion of cryogenically cooled ignition scale deuterium/helium filled plastic capsules. Here, we will report on the successful measurements performed with up to 1.2 MJ of laser energy in a fully integrated cryogenics gas-filled ignition-scale Hohlraum and capsule illuminated with 192 smoothed laser beams. We will describe the technique, the accuracy of the technique, and the results of the variation in symmetry with tuning parameters, and explain how that set was used to predictably tune the implosion symmetry as the laser energy, the laser cone wavelength separation, and the Hohlraum size were increased to ignition scales. We will also describe how to apply that technique to cryogenically layered tritium-hydrogen-deuterium capsules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Xiaoding; Research Center of Laser Fusion, P. O. Box 919-986, Mianyang 621900; Zhang Jiyan
Generating a well-characterized hot-dense sample is of great importance to high quality opacity measurements. In this paper, we report on an experimental investigation of the plasma nonuniformity in a radiatively heated iron opacity sample by spatially resolved Al 1s-2p absorption spectroscopy. The iron sample was tamped by plastic at both sides and was heated by thermal x-ray radiation generated in a gold Hohlraum, and an Al layer attached to it was used as a tracer for temperature diagnosis. Spatially resolved 1s-2p transition absorption spectra of the Al tracer were measured by the technique of point-projection-spectroscopy, and temperatures in the samplemore » were obtained by comparing the measured spectra with detailed-term-accounting model calculations, with the density of the sample deduced using a combination of side-on radiography and radiative hydrodynamic simulation. The results showed the existence of axial temperature nonuniformity in the sample, and these temperature variations have been used to explain the shift of iron 2p-3d transition absorption feature along the axial direction of the Hohlraum used to heat the sample successfully.« less
Diffusive, Supersonic X-ray Transport in Foam Cylinders
NASA Astrophysics Data System (ADS)
Back, Christina A.
1999-11-01
Diffusive supersonic radiation transport, where the ratio of the diffusive radiation front velocity to the material sound speed >2 has been studied in a series of laboratory experiments on low density foams. This work is of interest for radiation transport in basic science and astrophysics. The Marshak radiation wave transport is studied for both low and high Z foam materials and for different length foams in a novel hohlraum geometry that allows direct comparisons with 2-dimensional analytic models and code simulations. The radiation wave is created by a ~ 80 eV near blackbody 12-ns long drive or a ~ 200 eV 1.2-2.4 ns long drive generated by laser-heated Au hohlraums. The targets are SiO2 and Ta2O5 aerogel foams of varying lengths which span 10 to 50 mg/cc densities. Clean signatures of radiation breakout were observed by radially resolved face-on transmission measurements of the radiation flux at a photon energy of 250 eV or 550 eV. The high quality data provides new detailed information on the importance of both the fill and wall material opacities and heat capacities in determining the radiation front speed and curvature. note number.
Foam-lined hohlraums at the National Ignition Facility
NASA Astrophysics Data System (ADS)
Thomas, Cliff
2017-10-01
Indirect drive inertial confinement fusion (ICF) is made difficult by hohlraum wall motion, laser backscatter, x-ray preheat, high-energy electrons, and specular reflection of the incident laser (i.e. glint). To mitigate, we line the hohlraum with a low-density metal foam, or tamper, whose properties can be readily engineered (opacity, density, laser absorption, ion-acoustic damping, etc.). We motivate the use of low-density foams for these purposes, discuss their development, and present initial findings. Importantly, we demonstrate that we can fabricate a 200-500 um thick liner at densities of 10-100 mg/cm3 that could extend the capabilities of existing physics platforms. The goal of this work is to increase energy coupled to the capsule, and maximize the yield available to science missions at the National Ignition Facility. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Theoretical study of symmetry of flux onto a capsule
NASA Astrophysics Data System (ADS)
Duan, Hao; Wu, Changshu; Pei, Wenbing; Zou, Shiyang
2015-09-01
An analytic model to describe the flux asymmetry onto a capsule based on the viewfactor approximation is developed and verified with numerical simulations. By using a nested spheres technique to represent the various sources of flux asymmetry, the model can treat spherically and cylindrically symmetric hohlraums, e.g., cylinder, elliptic, and rugby. This approach includes the more realistic case of frequency-dependent flux asymmetry compared with the more standard frequency-integrated or single-frequency approaches [D. W. Phillion and S. M. Pollaine, Phys. Plasmas 1, 2963 (1994)]. Correspondingly, the approach can be used to assess x-ray preheat asymmetry generated from localized laser absorption in the high-Z hohlraum wall. For spherical hohlraums with 4, 6, or 8 laser entrance holes (LEHs), an optimal configuration of LEHs, laser spot placement, and angle-of-incidence of the single-ringed laser beams is defined. An analogy between minimizing the flux asymmetry onto a capsule and the Thomson problem of point charge placement on a sphere for minimized energy is shown.
Theoretical study of symmetry of flux onto a capsule
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, Hao; Wu, Changshu; Zou, Shiyang, E-mail: duan-hao@iapcm.ac.cn
2015-09-15
An analytic model to describe the flux asymmetry onto a capsule based on the viewfactor approximation is developed and verified with numerical simulations. By using a nested spheres technique to represent the various sources of flux asymmetry, the model can treat spherically and cylindrically symmetric hohlraums, e.g., cylinder, elliptic, and rugby. This approach includes the more realistic case of frequency-dependent flux asymmetry compared with the more standard frequency-integrated or single-frequency approaches [D. W. Phillion and S. M. Pollaine, Phys. Plasmas 1, 2963 (1994)]. Correspondingly, the approach can be used to assess x-ray preheat asymmetry generated from localized laser absorption inmore » the high-Z hohlraum wall. For spherical hohlraums with 4, 6, or 8 laser entrance holes (LEHs), an optimal configuration of LEHs, laser spot placement, and angle-of-incidence of the single-ringed laser beams is defined. An analogy between minimizing the flux asymmetry onto a capsule and the Thomson problem of point charge placement on a sphere for minimized energy is shown.« less
Smalyuk, V A; Tipton, R E; Pino, J E; Casey, D T; Grim, G P; Remington, B A; Rowley, D P; Weber, S V; Barrios, M; Benedetti, L R; Bleuel, D L; Bradley, D K; Caggiano, J A; Callahan, D A; Cerjan, C J; Clark, D S; Edgell, D H; Edwards, M J; Frenje, J A; Gatu-Johnson, M; Glebov, V Y; Glenn, S; Haan, S W; Hamza, A; Hatarik, R; Hsing, W W; Izumi, N; Khan, S; Kilkenny, J D; Kline, J; Knauer, J; Landen, O L; Ma, T; McNaney, J M; Mintz, M; Moore, A; Nikroo, A; Pak, A; Parham, T; Petrasso, R; Sayre, D B; Schneider, M B; Tommasini, R; Town, R P; Widmann, K; Wilson, D C; Yeamans, C B
2014-01-17
We present the first results from an experimental campaign to measure the atomic ablator-gas mix in the deceleration phase of gas-filled capsule implosions on the National Ignition Facility. Plastic capsules containing CD layers were filled with tritium gas; as the reactants are initially separated, DT fusion yield provides a direct measure of the atomic mix of ablator into the hot spot gas. Capsules were imploded with x rays generated in hohlraums with peak radiation temperatures of ∼294 eV. While the TT fusion reaction probes conditions in the central part (core) of the implosion hot spot, the DT reaction probes a mixed region on the outer part of the hot spot near the ablator-hot-spot interface. Experimental data were used to develop and validate the atomic-mix model used in two-dimensional simulations.
MacPhee, A. G.; Casey, D. T.; Clark, D. S.; ...
2017-03-30
Measurements of hydrodynamic instability growth for a high-density carbon ablator for indirectly driven inertial confinement fusion implosions on the National Ignition Facility are reported. We observe significant unexpected features on the capsule surface created by shadows of the capsule fill tube, as illuminated by laser-irradiated x-ray spots on the hohlraum wall. These shadows increase the spatial size and shape of the fill tube perturbation in a way that can significantly degrade performance in layered implosions compared to previous expectations. The measurements were performed at a convergence ratio of ~2 using in-flight x-ray radiography. The initial seed due to shadow imprintmore » is estimated to be equivalent to ~50–100 nm of solid ablator material. As a result, this discovery has prompted the need for a mitigation strategy for future inertial confinement fusion designs as proposed here.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacPhee, A. G.; Casey, D. T.; Clark, D. S.
Measurements of hydrodynamic instability growth for a high-density carbon ablator for indirectly driven inertial confinement fusion implosions on the National Ignition Facility are reported. We observe significant unexpected features on the capsule surface created by shadows of the capsule fill tube, as illuminated by laser-irradiated x-ray spots on the hohlraum wall. These shadows increase the spatial size and shape of the fill tube perturbation in a way that can significantly degrade performance in layered implosions compared to previous expectations. The measurements were performed at a convergence ratio of ~2 using in-flight x-ray radiography. The initial seed due to shadow imprintmore » is estimated to be equivalent to ~50–100 nm of solid ablator material. As a result, this discovery has prompted the need for a mitigation strategy for future inertial confinement fusion designs as proposed here.« less
The structure of the Laser Entrance Hole in NIF Ignition gas-filled hohlraums
NASA Astrophysics Data System (ADS)
Schneider, M. B.; Doeppner, T.; Thomas, C. A.; Widmann, K.; MacLaren, S. A.; Meezan, N. B.; Bell, P. M.; Benedetti, L. R.; Bradley, D. K.; Callahan, D. A.; Eder, D.; Hammer, J. H.; Hinkel, D. E.; Jones, O. S.; Michel, P.; Milovich, J. L.; Moody, J. D.; Moore, A. J.; Park, H. S.; Ralph, J. E.; Regan, S. E.; Strozzi, D. J.; Town, R. P.
2014-10-01
At the National Ignition Facility (NIF), the energy from 192 laser beams is converted to an x-ray drive in a gas-filled hohlraum. The drive heats and implodes a fuel capsule. The laser beams enter the hohlraum via laser entrance holes (LEHs) at each end. The LEH size decreases as heated plasma from the LEH material blows radially inward but this is largely balanced by hot plasma in the laser deposition region pushing radially outward. Compared to models, the LEH size is larger than predicted. In addition, the plasma in the LEH region is hotter than predicted. Instead of being at the radiation temperature of about 300 eV, it is at an electron temperature of 1 to a few keV. The experimental measurements for this conclusion are discussed. Data on the LEH as a function of laser pulse shape, gas fill, and energy transfer are presented. This work performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Investigating radial wire array Z pinches as a compact x-ray source on the Saturn generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ampleford, David J.; Bland, S. N.; Jennings, Christopher A.
2015-08-27
Radial wire array z pinches, where wires are positioned radially outward from a central cathode to a concentric anode, can act as a compact bright x-ray source that could potentially be used to drive a hohlraum. Experiments were performed on the 7-MA Saturn generator using radial wire arrays. These experiments studied a number of potential risks in scaling radial wire arrays up from the 1-MA level, where they have been shown to be a promising compact X-ray source. Data indicates that at 7 MA, radial wire arrays can radiate ~9 TW with 10-ns full-width at half-maximum from a compact pinch.
Park, H-S; Hurricane, O A; Callahan, D A; Casey, D T; Dewald, E L; Dittrich, T R; Döppner, T; Hinkel, D E; Berzak Hopkins, L F; Le Pape, S; Ma, T; Patel, P K; Remington, B A; Robey, H F; Salmonson, J D; Kline, J L
2014-02-07
This Letter reports on a series of high-adiabat implosions of cryogenic layered deuterium-tritium (DT) capsules indirectly driven by a "high-foot" laser drive pulse at the National Ignition Facility. High-foot implosions have high ablation velocities and large density gradient scale lengths and are more resistant to ablation-front Rayleigh-Taylor instability induced mixing of ablator material into the DT hot spot. Indeed, the observed hot spot mix in these implosions was low and the measured neutron yields were typically 50% (or higher) of the yields predicted by simulation. On one high performing shot (N130812), 1.7 MJ of laser energy at a peak power of 350 TW was used to obtain a peak hohlraum radiation temperature of ∼300 eV. The resulting experimental neutron yield was (2.4±0.05)×10(15) DT, the fuel ρR was (0.86±0.063) g/cm2, and the measured Tion was (4.2±0.16) keV, corresponding to 8 kJ of fusion yield, with ∼1/3 of the yield caused by self-heating of the fuel by α particles emitted in the initial reactions. The generalized Lawson criteria, an ignition metric, was 0.43 and the neutron yield was ∼70% of the value predicted by simulations that include α-particle self-heating.
Non-LTE modeling for the National Ignition Facility (and beyond)
NASA Astrophysics Data System (ADS)
Scott, H. A.; Hammel, B. A.; Hansen, S. B.
2012-05-01
Considerable progress has been made in the last year in the study of laser-driven inertial confinement fusion at the National Ignition Facility (NIF). Experiments have demonstrated symmetric capsule implosions with plasma conditions approaching those required for ignition. Improvements in computational models - in large part due to advances in non-LTE modeling - have resulted in simulations that match experimental results quite well for the X-ray drive, implosion symmetry and total wall emission [1]. Non-LTE modeling is a key part of the NIF simulation effort, affecting several aspects of experimental design and diagnostics. The X-rays that drive the capsule arise from high-Z material ablated off the hohlraum wall. Current capsule designs avoid excessive preheat from high-energy X-rays by shielding the fuel with a mid-Z dopant, which affects the capsule dynamics. The dopant also mixes into the hot spot through hydrodynamic instabilities, providing diagnostic possibilities but potentially impacting the energy balance of the capsule [2]. Looking beyond the NIF, a proposed design for a fusion reactor chamber depends on lowdensity high-Z gas absorbing X-rays and particles to protect the first wall [3]. These situations encompass a large range of temperatures, densities and spatial scales. They each emphasize different aspects of atomic physics and present a variety of challenges for non-LTE modeling. We discuss the relevant issues and summarize the current state of the modeling effort for these applications.
Capsule implosion optimization during the indirect-drive National Ignition Campaign
NASA Astrophysics Data System (ADS)
Landen, O. L.; Edwards, J.; Haan, S. W.; Robey, H. F.; Milovich, J.; Spears, B. K.; Weber, S. V.; Clark, D. S.; Lindl, J. D.; MacGowan, B. J.; Moses, E. I.; Atherton, J.; Amendt, P. A.; Boehly, T. R.; Bradley, D. K.; Braun, D. G.; Callahan, D. A.; Celliers, P. M.; Collins, G. W.; Dewald, E. L.; Divol, L.; Frenje, J. A.; Glenzer, S. H.; Hamza, A.; Hammel, B. A.; Hicks, D. G.; Hoffman, N.; Izumi, N.; Jones, O. S.; Kilkenny, J. D.; Kirkwood, R. K.; Kline, J. L.; Kyrala, G. A.; Marinak, M. M.; Meezan, N.; Meyerhofer, D. D.; Michel, P.; Munro, D. H.; Olson, R. E.; Nikroo, A.; Regan, S. P.; Suter, L. J.; Thomas, C. A.; Wilson, D. C.
2011-05-01
Capsule performance optimization campaigns will be conducted at the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Nucl. Fusion 44, 228 (2004)] to substantially increase the probability of ignition. The campaigns will experimentally correct for residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models using a variety of ignition capsule surrogates before proceeding to cryogenic-layered implosions and ignition experiments. The quantitative goals and technique options and down selections for the tuning campaigns are first explained. The computationally derived sensitivities to key laser and target parameters are compared to simple analytic models to gain further insight into the physics of the tuning techniques. The results of the validation of the tuning techniques at the OMEGA facility [J. M. Soures et al., Phys. Plasmas 3, 2108 (1996)] under scaled hohlraum and capsule conditions relevant to the ignition design are shown to meet the required sensitivity and accuracy. A roll-up of all expected random and systematic uncertainties in setting the key ignition laser and target parameters due to residual measurement, calibration, cross-coupling, surrogacy, and scale-up errors has been derived that meets the required budget. Finally, we show how the tuning precision will be improved after a number of shots and iterations to meet an acceptable level of residual uncertainty.
Beryllium Ignition Targets for Indirect Drive NIF Experiments
NASA Astrophysics Data System (ADS)
Simakov, A. N.; Wilson, D. C.; Yi, S. A.; Kline, J. L.; Salmonson, J. D.; Clark, D. S.; Milovich, J. L.; Marinak, M. M.; Callahan, D. A.
2013-10-01
Current NIF plastic capsules are under-performing, and alternate ablators are being investigated. Beryllium presents an attractive option, since it has lower opacity and therefore higher ablation rate, pressure, and velocity. Previous NIF Be designs assumed significantly better hohlraum performance than recently observed (e.g., 7.5 vs. 15-17% of back-scattered power and 1.0 vs. 0.85 main pulse's power multipliers) and employed less accurate atomic configuration models than currently used (XSN vs. DCA), and thus an updated design is required. We present a new, Rev. 6 Be ignition target design that employs the full NIF capacity (1.8 MJ, 520 TW) and uses a standard 5.75 mm gold hohlraum with 1.5 mg/cm3 of helium gas fill. The 1051 μm capsule features 180 μm of layered copper-doped (with the maximum of 3 atom-%) Be ablator and 90 μm of cryogenic deuterium-tritium fuel. The peak implosion velocity of 367 μm/ns results in 4.1 keV of no-burn ion temperature, 1.6 and 1.9 g/cm2 of fuel and total areal densities, respectively, and 20.6 MJ of fusion yield. The capsule demonstrates robust performance with surface/interface roughnesses up to 1.6 times larger that Rev. 3 specs. Work supported by the US Department of Energy.
On krypton-doped capsule implosion experiments at the National Ignition Facility
NASA Astrophysics Data System (ADS)
Chen, Hui; Ma, T.; Nora, R.; Barrios, M. A.; Scott, H. A.; Schneider, M. B.; Berzak Hopkins, L.; Casey, D. T.; Hammel, B. A.; Jarrott, L. C.; Landen, O. L.; Patel, P. K.; Rosenberg, M. J.; Spears, B. K.
2017-07-01
This paper presents the spectroscopic aspects of using Krypton as a dopant in NIF capsule implosions through simulation studies and the first set of NIF experiments. Using a combination of 2D hohlraum and 1D capsule simulations with comprehensive spectroscopic modeling, the calculations focused on the effect of dopant concentration on the implosion, and the impact of gradients in the electron density and temperature to the Kr line features and plasma opacity. Experimental data were obtained from three NIF Kr-dopant experiments, performed with varying Kr dopant concentrations between 0.01% and 0.03%. The implosion performance, hotspot images, and detailed Kr spectral analysis are summarized relative to the predictions. Data show that fuel-dopant spectroscopy can serve as a powerful and viable diagnostic for inertial confinement fusion implosions.
Capsule Performance Optimization for the National Ignition Facility
NASA Astrophysics Data System (ADS)
Landen, Otto
2009-11-01
The overall goal of the capsule performance optimization campaign is to maximize the probability of ignition by experimentally correcting for likely residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models before proceeding to cryogenic-layered implosions and ignition attempts. This will be accomplished using a variety of targets that will set key laser, hohlraum and capsule parameters to maximize ignition capsule implosion velocity, while minimizing fuel adiabat, core shape asymmetry and ablator-fuel mix. The targets include high Z re-emission spheres setting foot symmetry through foot cone power balance [1], liquid Deuterium-filled ``keyhole'' targets setting shock speed and timing through the laser power profile [2], symmetry capsules setting peak cone power balance and hohlraum length [3], and streaked x-ray backlit imploding capsules setting ablator thickness [4]. We will show how results from successful tuning technique demonstration shots performed at the Omega facility under scaled hohlraum and capsule conditions relevant to the ignition design meet the required sensitivity and accuracy. We will also present estimates of all expected random and systematic uncertainties in setting the key ignition laser and target parameters due to residual measurement, calibration, cross-coupling, surrogacy, and scale-up errors, and show that these get reduced after a number of shots and iterations to meet an acceptable level of residual uncertainty. Finally, we will present results from upcoming tuning technique validation shots performed at NIF at near full-scale. Prepared by LLNL under Contract DE-AC52-07NA27344. [4pt] [1] E. Dewald, et. al. Rev. Sci. Instrum. 79 (2008) 10E903. [0pt] [2] T.R. Boehly, et. al., Phys. Plasmas 16 (2009) 056302. [0pt] [3] G. Kyrala, et. al., BAPS 53 (2008) 247. [0pt] [4] D. Hicks, et. al., BAPS 53 (2008) 2.
Comparison of plastic, high-density carbon, and beryllium as NIF ablators
NASA Astrophysics Data System (ADS)
Kritcher, Andrea
2017-10-01
An effort is underway to compare the three principal ablators for National Ignition Facility (NIF) implosions: plastic (CH), High Density Carbon (HDC), and beryllium (Be). This presentation will summarize the comparison and discuss in more detail the issues pertaining to hohlraum performance and symmetry. Several aspects of the hohlraum design are affected by the ablator properties, as the ablator constrains the first shock and determines the overall pulse length. HDC targets can utilize shorter pulse lengths due to the thinner, higher density shell, and should be less susceptible to late time wall motion. However, HDC requires a larger picket energy to ensure adequate melt, leading to increased late time wall movement. Be is intermediate to CH and HDC in both these regards, and has more ablated material in the hohlraum. These tradeoffs as well as other design choices for currently fielded campaigns are assessed in this work. To assess consistently the radiation drive and symmetry, integrated postshot simulations of the hohlraum and capsule were done for each design using the same methodology. The simulation results are compared to experimental data. Using this post-shot model, we make a projection of the relative plausible performance that can be achieved, while maintaining adequate symmetry, using the full NIF laser, i.e. 1.8 MJ/500 TW Full NIF Equivalent (FNE). The hydrodynamic stability of the different ablators is also an important consideration and will be presented for the current platforms and projection to FNE. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
The Bigfoot Drive; Experimental Results
NASA Astrophysics Data System (ADS)
Baker, Kevin; Thomas, Cliff; Khan, Shahab; Casey, Daniel; Spears, Brian; Nora, Ryan; Munro, Davis; Eder, David; Milovich, Jose; Berger, Dick; Strozzi, David; Goyon, Clement; Turnbull, David; Ma, Tammy; Izumi, Nobuhiko; Benedetti, Robin; Millot, Marius; Celliers, Peter; Yeamans, Charles; Hatarik, Robert; Landen, Nino; Hurricane, Omar; Callahan, Debbie
2016-10-01
The Bigfoot platform was developed on the National Ignition Facility to investigate low convergence, high adiabat, high rhoR hotspot implosions. This platform was designed to be less susceptible to wall motion, LPI and CBET and to be more robust against capsule hydrodynamic instabilities. To date experimental studies have been carried out at two hohlraum scales, a 5.75 and 5.4 mm diameter hohlraum. We will present experimental results from these tuning campaigns including the shape vs. cone fraction, surrogacy comparisons of self-emission from the capsules vs. radiography of the imploding capsule and doped vs. undoped capsules. Prepared by LLNL under Contract DE-AC52-07NA27344.
To acquire more detailed radiation drive by use of ``quasi-steady'' approximation in atomic kinetics
NASA Astrophysics Data System (ADS)
Ren, Guoli; Pei, Wenbing; Lan, Ke; Gu, Peijun; Li, Xin
2012-10-01
In current routine 2D simulation of hohlraum physics, we adopt the principal-quantum- number(n-level) average atom model(AAM) in NLTE plasma description. However, the detailed experimental frequency-dependant radiative drive differs from our n-level simulated drive, which reminds us the need of a more detailed atomic kinetics description. The orbital-quantum- number(nl-level) average atom model is a natural consideration, however the nl-level in-line calculation needs much more computational resource. By distinguishing the rapid bound-bound atomic processes from the relative slow bound-free atomic processes, we found a method to build up a more detailed bound electron distribution(nl-level even nlm-level) using in-line n-level calculated plasma conditions(temperature, density, and average ionization degree). We name this method ``quasi-steady approximation'' in atomic kinetics. Using this method, we re-build the nl-level bound electron distribution (Pnl), and acquire a new hohlraum radiative drive by post-processing. Comparison with the n-level post-processed hohlraum drive shows that we get an almost identical radiation flux but with more fine frequency-denpending spectrum structure which appears only in nl-level transition with same n number(n=0) .
Symmetry control strategies in low gas-fill hohlraum
NASA Astrophysics Data System (ADS)
Goyon, Clement; Le Pape, S.; Berzak Hopkins, L. F.; Divol, L.; Meezan, N. B.; Dewald, E.; Ho, D. D.; Weber, C.; Khan, S. F.; Ma, T.; Milovich, J. L.; Moore, A. S.; Benedetti, R.; Pak, A. E.; Ross, J. S.; Nagel, S. R.; Grim, G. P.; Volegov, P.; Biener, J.; Nikroo, A.; Callahan, D. A.; Hurricane, O. A.; Hsing, W. W.; Town, R. P.; Edwards, M. J.
2017-10-01
The primary neutron yield record, to-date, for an ICF implosion on the NIF (1.47*1016) has been achieved using a doped HDC capsule (D =1.82 mm) in an unlined DU hohlraum (D =6.20 mm, L = 11.3 mm) filled with a low He gas-fill (0.3 mg/cc). This platform uses a new ``drooping'' pulse designed to keep high remaining mass and short coasting time. Prior to the high convergence (27x) cryogenic DT implosion, our ability to tune hot spot symmetry using this new pulse was tested at lower convergence (15x) using DD gas-filled capsules. Hot spot symmetry was tuned using beam pointing, gas-fill density, and power balance between outer and inner beams. The main metrics to assess the efficiency of each change are the implosion shape (time resolved X-ray emission of the hot spot) and DD neutron yield. In addition, we will describe the irradiation pattern obtained in each case using X-ray (soft and hard) diagnostics and the laser coupling to the hohlraum. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.
High-density carbon (HDC) capsule designs for α-heating and for ignition
NASA Astrophysics Data System (ADS)
Ho, D.; Amendt, A.; Clark, D.; Haan, S.; Milovich, J.; Salmonson, J.; Zimmerman, G.; Berzak Hopkins, L.; Biener, J.; Meezan, N.; Thomas, C.; Benedict, L.; Le Pape, S.; MacKinnon, A.; Ross, S.
2014-10-01
We show capsule designs that have HDC ablators, using 2, 3 and 4 shocks. Their advantages and disadvantages will be discussed. Two-shock designs have the shortest pulse length but have the worst 1-D ignition margin because of the high fuel adiabat. Four-shock designs have the highest 1-D ignition margin with the lowest adiabat, but have higher RT ablation front growth. This disadvantage can be overcome by using a picket to generate the 1st shock. The picket reduces the RT growth factor while the decaying 1st shock lowers the fuel adiabat further. The picket has the additional advantage of shortening the pulse length. Dopant requirements for different hohlraums will be discussed. A 3-shock design for achieving alpha heating is described, which can use either high-gas-fill (1.6 mg/cc) or near-vacuum hohlraums. A rugby-shaped hohlraum with low gas-fill (0.5 mg/cc) has high laser coupling efficiency and provides good symmetry for a 4-shock design. Comparison of simulations for selected recent HDC shots with experimental data will be presented. Prepared by LLNL under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Zhao, Yang; Yang, Jia-Min; Zhang, Ji-Yan; Yang, Guo-Hong; Xiong, Gang; Wei, Min-Xi; Song, Tian-Ming; Zhang, Zhi-Yu
2013-06-01
A time-resolved K edge absorption measurement of warm dense KCl was performed on Shenguang II laser facility. The x-ray radiation driven shocks were adopted to take colliding shocks compression. By using Dog bone hohlraum the CH/KCl/CH sample was shielded from the laser hitting point to suppress the M band preheating and enhance the compressibility. Thus, an unexplored and extreme region of the plasma state with the maximum 5 times solid density and temperature lower than 3 eV (with coupling constant Γii around 100) was first obtained. The photoabsorption spectra of chlorine near the K-shell edge have been measured with a crystal spectrometer using a short x-ray backlighter. The K edge red shift up to 11.7 eV and broadening of 15.2 eV were obtained for the maximum compression. The electron temperature, inferred by Fermi-Dirac fit of the measured K-edge broadening, was consistent with the hydrodynamic predictions. The comparison of the K edge shift with a plasma model, in which the ionization effect, continuum lowering and partial degeneracy are considered, shows that more improvements are desired to describe in details the variation of K edge shift. This work might extend future study of WDM in extreme conditions of high compression.
Backscatter measurements for NIF ignition targets (invited).
Moody, J D; Datte, P; Krauter, K; Bond, E; Michel, P A; Glenzer, S H; Divol, L; Niemann, C; Suter, L; Meezan, N; MacGowan, B J; Hibbard, R; London, R; Kilkenny, J; Wallace, R; Kline, J L; Knittel, K; Frieders, G; Golick, B; Ross, G; Widmann, K; Jackson, J; Vernon, S; Clancy, T
2010-10-01
Backscattered light via laser-plasma instabilities has been measured in early NIF hohlraum experiments on two beam quads using a suite of detectors. A full aperture backscatter system and near backscatter imager (NBI) instrument separately measure the stimulated Brillouin and stimulated Raman scattered light. Both instruments work in conjunction to determine the total backscattered power to an accuracy of ∼15%. In order to achieve the power accuracy we have added time-resolution to the NBI for the first time. This capability provides a temporally resolved spatial image of the backscatter which can be viewed as a movie.
Replicating the Z iron opacity experiments on the NIF
NASA Astrophysics Data System (ADS)
Perry, T. S.; Heeter, R. F.; Opachich, Y. P.; Ross, P. W.; Kline, J. L.; Flippo, K. A.; Sherrill, M. E.; Dodd, E. S.; DeVolder, B. G.; Cardenas, T.; Archuleta, T. N.; Craxton, R. S.; Zhang, R.; McKenty, P. W.; Garcia, E. M.; Huffman, E. J.; King, J. A.; Ahmed, M. F.; Emig, J. A.; Ayers, S. L.; Barrios, M. A.; May, M. J.; Schneider, M. B.; Liedahl, D. A.; Wilson, B. G.; Urbatsch, T. J.; Iglesias, C. A.; Bailey, J. E.; Rochau, G. A.
2017-06-01
X-ray opacity is a crucial factor of all radiation-hydrodynamics calculations, yet it is one of the least validated of the material properties in the simulation codes. Recent opacity experiments at the Sandia Z-machine have shown up to factors of two discrepancies between theory and experiment, casting doubt on the validity of the opacity models. Therefore, a new experimental opacity platform is being developed on the National Ignition Facility (NIF) not only to verify the Z-machine experimental results but also to extend the experiments to other temperatures and densities. The first experiments will be directed towards measuring the opacity of iron at a temperature of ∼160 eV and an electron density of ∼7 × 1021 cm-3. Preliminary experiments on NIF have demonstrated the ability to create a sufficiently bright point backlighter using an imploding plastic capsule and also a hohlraum that can heat the opacity sample to the desired conditions. The first of these iron opacity experiments is expected to be performed in 2017.
Experimental measurements of hydrodynamic instabilities on NOVA of relevance to astrophysics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budil, K S; Cherfils, C; Drake, R P
1998-09-11
Large lasers such as Nova allow the possibility of achieving regimes of high energy densities in plasmas of millimeter spatial scales and nanosecond time scales. In those plasmas where thermal conductivity and viscosity do not play a significant role, the hydrodynamic evolution is suitable for benchmarking hydrodynamics modeling in astrophysical codes. Several experiments on Nova examine hydrodynamically unstable interfaces. A typical Nova experiment uses a gold millimeter-scale hohlraum to convert the laser energy to a 200 eV blackbody source lasting about a nanosecond. The x-rays ablate a planar target, generating a series of shocks and accelerating the target. The evolvingmore » area1 density is diagnosed by time-resolved radiography, using a second x-ray source. Data from several experiments are presented and diagnostic techniques are discussed.« less
BigFoot, a program to reduce risk for indirect drive laser fusion
NASA Astrophysics Data System (ADS)
Thomas, Cliff
2016-10-01
The conventional approach to inertial confinement fusion (ICF) is to maximize compressibility, or, total areal density. To achieve high convergence (40), the laser pulse is shaped to launch a weak first shock, which is followed in turn by 2-3 stronger shocks. Importantly, this has an outsized effect on integrated target physics, as the time it takes the shocks to transit the shell is related to hohlraum wall motion and filling, and can contribute to difficulties achieving an implosion that is fast, tunable, and/or predictable. At its outset, this approach attempts to predict the tradeoff in capsule and hohlraum physics in a case that is challenging, and assumes the hotspot can still reach the temperature and density necessary to self-heat (4-5 keV and 0.1-0.2 g/cm2, respectively). Here, we consider an alternate route to fusion ignition, for which the benefits of predictability, control, and coupling could exceed the benefits of convergence. In this approach we avoid uncertainty, and instead, seek a target that is predictable. To simplify hohlraum physics and limit wall motion we keep the implosion time short (6-7 ns), and design the target to avoid laser-plasma instabilities. Whereas the previous focus was on density, it is now on making a 1D hotspot at low convergence (20) that is robust with respect to alpha heating (5-6 keV, and 0.2-0.3 g/cm2) . At present, we estimate the tradeoff between convergence and control is relatively flat, and advantages in coupling enable high velocity (450-500 um/ns) and high yield (1E17). Were the approach successful, we believe it could reduce barriers to progress, as further improvements could be made with small, incremental increases in areal density. Details regarding the ``BigFoot'' platform and pulse are reported, as well as initial experiments. Work that could enable additional improvements in laser power, laser control, and capsule stability will also be discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Capsule implosion optimization during the indirect-drive National Ignition Campaign
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landen, O. L.; Edwards, J.; Haan, S. W.
2011-05-15
Capsule performance optimization campaigns will be conducted at the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Nucl. Fusion 44, 228 (2004)] to substantially increase the probability of ignition. The campaigns will experimentally correct for residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models using a variety of ignition capsule surrogates before proceeding to cryogenic-layered implosions and ignition experiments. The quantitative goals and technique options and down selections for the tuning campaigns are first explained. The computationally derived sensitivities to key laser and target parameters are compared to simple analyticmore » models to gain further insight into the physics of the tuning techniques. The results of the validation of the tuning techniques at the OMEGA facility [J. M. Soures et al., Phys. Plasmas 3, 2108 (1996)] under scaled hohlraum and capsule conditions relevant to the ignition design are shown to meet the required sensitivity and accuracy. A roll-up of all expected random and systematic uncertainties in setting the key ignition laser and target parameters due to residual measurement, calibration, cross-coupling, surrogacy, and scale-up errors has been derived that meets the required budget. Finally, we show how the tuning precision will be improved after a number of shots and iterations to meet an acceptable level of residual uncertainty.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strozzi, David J.; Perkins, L. J.; Marinak, M. M.
The effects of an imposed, axial magnetic fieldmore » $$B_{z0}$$ on hydrodynamics and energetic electrons in inertial confinement fusion indirect-drive hohlraums are studied. We present simulations from the radiation-hydrodynamics code HYDRA of a low-adiabat ignition design for the National Ignition Facility, with and without $$B_{z0}=70~\\text{T}$$. The field’s main hydrodynamic effect is to significantly reduce electron thermal conduction perpendicular to the field. This results in hotter and less dense plasma on the equator between the capsule and hohlraum wall. The inner laser beams experience less inverse bremsstrahlung absorption before reaching the wall. The X-ray drive is thus stronger from the equator with the imposed field. We study superthermal, or ‘hot’, electron dynamics with the particle-in-cell code ZUMA, using plasma conditions from HYDRA. During the early-time laser picket, hot electrons based on two-plasmon decay in the laser entrance hole (Regan et al., Phys. Plasmas, vol. 17(2), 2010, 020703) are guided to the capsule by a 70 T field. Twelve times more energy deposits in the deuterium–tritium fuel. For plasma conditions early in peak laser power, we present mono-energetic test-case studies with ZUMA as well as sources based on inner-beam stimulated Raman scattering. Furthermore, the effect of the field on deuterium–tritium deposition depends strongly on the source location, namely whether hot electrons are generated on field lines that connect to the capsule.« less
NIF unconverted light and its influence on DANTE measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Girard, Frederic; Suter, Larry; Landen, Otto
2009-06-15
NIF laser facility produces 1053 nm light and a fundamental requirement for NIF is to give up to 1.8 MJ of 351 nm light for target physics experiments. The 351 nm light is provided by frequency tripling the 1053 nm light in nonlinear crystals in the final optics assembly, just before the laser light enters the target chamber. Since this tripling process is not 100% efficient, unconverted light from the conversion process also enters the chamber. This unconverted light does not directly hit the target but it can strike target support structures at average intensities of few TW/cm{sup 2} wheremore » it can generate unwanted, background soft x-rays that are measured by the soft x-ray diagnostic DANTE installed on the NIF target chamber. This diagnostic quantifies the x-radiation intensity inside the hohlraum by measuring the x-ray flux coming from the target's laser entrance hole. Due to its centimeter wide field of view, it integrates x-ray emission from both the flux exiting a hohlraum laser entrance hole and from the target support structure irradiated by residual 1{omega} and 2{omega} unconverted light. This work gives quantitative evaluations of the unconverted light for the first time and the effects on DANTE measurements for the future NIF tuning experiment called ''Shock timing.'' Emission spectra are significantly modified leading to an overestimation of radiative temperature during the foot of the laser pulse since background x-rays are predominant in first two DANTE channel measurements. Mitigations of these effects by coating silicon paddle with plastic, using a smaller collimator to reduce DANTE field of view or eliminating DANTE channels in the analysis have been investigated.« less
X-ray conversion efficiency of high-Z hohlraum wall materials for indirect drive ignition
NASA Astrophysics Data System (ADS)
Dewald, E. L.; Rosen, M.; Glenzer, S. H.; Suter, L. J.; Girard, F.; Jadaud, J. P.; Schein, J.; Constantin, C.; Wagon, F.; Huser, G.; Neumayer, P.; Landen, O. L.
2008-07-01
The conversion efficiency of 351nm laser light to soft x rays (0.1-5keV) was measured for Au, U, and high Z mixture "cocktails" used as hohlraum wall materials in indirect drive fusion experiments. For the spherical targets in a direct drive geometry, flattop laser pulses and laser smoothing with phase plates are employed to achieve constant and uniform laser intensities of 1014 and 1015W/cm2 over the target surface that are relevant for the future ignition experiments at the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Nucl. Fusion 44, 228 (2004)]. The absolute time and spectrally resolved radiation flux is measured with a multichannel soft x-ray power diagnostic. The conversion efficiency is then calculated by dividing the measured x-ray power by the incident laser power from which the measured laser backscattering losses are subtracted. After ˜0.5ns, the time resolved x-ray conversion efficiency reaches a slowly increasing plateau of 95% at 1014W/cm2 laser intensity and of 80% at 1015W/cm2. The M-band flux (2-5keV) is negligible at 1014W/cm2 reaching ˜1% of the total x-ray flux for all target materials. In contrast, the M-band flux is significant and depends on the target material at 1015W/cm2 laser intensity, reaching values between 10% of the total flux for U and 27% for Au. LASNEX simulations [G. B. Zimmerman and W. L. Kruer, Comm. Plasma Phys. Contr. Fusion 2, 51 (1975)] show good agreement in conversion efficiency and radiated spectra with data when using XSN atomic physics model and a flux limiter of 0.15, but they underestimate the generated M-band flux.
NIF unconverted light and its influence on DANTE measurements.
Girard, Frederic; Suter, Larry; Landen, Otto; Munro, Dave; Regan, Sean; Kline, John
2009-06-01
NIF laser facility produces 1053 nm light and a fundamental requirement for NIF is to give up to 1.8 MJ of 351 nm light for target physics experiments. The 351 nm light is provided by frequency tripling the 1053 nm light in nonlinear crystals in the final optics assembly, just before the laser light enters the target chamber. Since this tripling process is not 100% efficient, unconverted light from the conversion process also enters the chamber. This unconverted light does not directly hit the target but it can strike target support structures at average intensities of few TW/cm2 where it can generate unwanted, background soft x-rays that are measured by the soft x-ray diagnostic DANTE installed on the NIF target chamber. This diagnostic quantifies the x-radiation intensity inside the hohlraum by measuring the x-ray flux coming from the target's laser entrance hole. Due to its centimeter wide field of view, it integrates x-ray emission from both the flux exiting a hohlraum laser entrance hole and from the target support structure irradiated by residual 1omega and 2omega unconverted light. This work gives quantitative evaluations of the unconverted light for the first time and the effects on DANTE measurements for the future NIF tuning experiment called "Shock timing." Emission spectra are significantly modified leading to an overestimation of radiative temperature during the foot of the laser pulse since background x-rays are predominant in first two DANTE channel measurements. Mitigations of these effects by coating silicon paddle with plastic, using a smaller collimator to reduce DANTE field of view or eliminating DANTE channels in the analysis have been investigated.
First liquid-layer implosion experiments at the NIF
NASA Astrophysics Data System (ADS)
Zylstra, Alex
2017-10-01
Replacing the standard ice layer in an ignition design with a liquid layer allows fielding the target with a higher central vapor pressure, leading to reduced implosion convergence ratio (CR). At lower CR, the implosions are expected to be more robust to instabilities and asymmetries than standard ice-layer designs, and are also unique in that the hot spot can be primarily formed from material originating in the central fuel vapor. The first liquid-layer implosions on the National Ignition Facility (NIF) have been performed by wicking the liquid fuel into a supporting foam that lines the inside surface of the capsule. A series of shots has been conducted between CR of 12 and 20 using a HDC ablator driven by a 3-shock pulse in a near-vacuum Au hohlraum. At the lowest CR the implosion performance is well predicted by 2-D radiation-hydrodynamics calculations. However, as the CR is increased the nominal simulations do not capture the experimentally observed trends. Data-based models suggest that the hot spot formation is unexpectedly suppressed at higher convergence. The data could be explained by reduced hydrodynamic coupling efficiency, or an anomalously enhanced thermal conductivity in the mixed DT/foam material. We show that the latter hypothesis can explain observed trends in several experimental metrics, including the yield, ion temperature, and burn duration. This work was performed under the auspices of the U.S. DoE by LANL under contract DE-AC52-06NA52396.
Ross, J S; Datte, P; Divol, L; Galbraith, J; Froula, D H; Glenzer, S H; Hatch, B; Katz, J; Kilkenny, J; Landen, O; Manuel, A M; Molander, W; Montgomery, D S; Moody, J D; Swadling, G; Weaver, J
2016-11-01
An optical Thomson scattering diagnostic has been designed for the National Ignition Facility to characterize under-dense plasmas. We report on the design of the system and the expected performance for different target configurations. The diagnostic is designed to spatially and temporally resolve the Thomson scattered light from laser driven targets. The diagnostic will collect scattered light from a 50 × 50 × 200 μm volume. The optical design allows operation with different probe laser wavelengths. A deep-UV probe beam (λ 0 = 210 nm) will be used to Thomson scatter from electron plasma densities of ∼5 × 10 20 cm -3 while a 3ω probe will be used for plasma densities of ∼1 × 10 19 cm -3 . The diagnostic package contains two spectrometers: the first to resolve Thomson scattering from ion acoustic wave fluctuations and the second to resolve scattering from electron plasma wave fluctuations. Expected signal levels relative to background will be presented for typical target configurations (hohlraums and a planar foil).
3D MHD Simulations of Radial Wire Array Z-pinches
NASA Astrophysics Data System (ADS)
Niasse, N.; Chittenden, J. P.; Bland, S. N.; Suzuki-Vidal, F. A.; Hall, G. N.; Lebedev, S. V.; Calamy, H.; Zucchini, F.; Lassalle, F.; Bedoch, J. P.
2009-01-01
Recent experiments carried out on the MAGPIE (1 MA, 250 ns), OEDIPE (730 kA, 1.5 μs) and SPHINX (4 MA, 700 ns)[1] facilities have shown the relatively high level of scalability of the Radial Wire Array Z-pinches. These configurations where the wires stretch radially outwards from a central cathode offer numerous advantages over standard cylindrical arrays. In particular, imploding in a very stable and compact way, they seem suitable for coupling to small scale hohlraums. Making use of the 3D resistive magneto-hydrodynamic code GORGON[2] developed at Imperial College, the dynamic of the radial wire arrays is investigated. Influence of the cathode hotspots and wires angle on the x-ray emissions is also discussed. Comparison with experiments is offered to validate the numerical studies.
Simulation of self-generated magnetic fields in an inertial fusion hohlraum environment
Farmer, W. A.; Koning, J. M.; Strozzi, D. J.; ...
2017-05-09
Here, we present radiation-hydrodynamic simulations of self-generated magnetic field in a hohlraum, which show an increased temperature in large regions of the underdense fill. Non-parallel gradients in electron density and temperature in a laser-heated plasma give rise to a self-generated field by the “Biermann battery” mechanism. Here, HYDRA simulations of three hohlraum designs on the National Ignition Facility are reported, which use a partial magnetohydrodynamic (MHD) description that includes the self-generated source term, resistive dissipation, and advection of the field due to both the plasma flow and the Nernst term. Anisotropic electron heat conduction parallel and perpendicular to the fieldmore » is included, but not the Righi-Leduc heat flux. The field strength is too small to compete significantly with plasma pressure, but affects plasma conditions by reducing electron heat conduction perpendicular to the field. Significant reductions in heat flux can occur, especially for high Z plasma, at modest values of the Hall parameter, Ω eτ ei≲1, where Ω e = eB/m ec and τ ei is the electron-ion collision time. The inclusion of MHD in the simulations leads to 1 keV hotter electron temperatures in the laser entrance hole and high- Z wall blowoff, which reduces inverse-bremsstrahlung absorption of the laser beam. This improves propagation of the inner beams pointed at the hohlraum equator, resulting in a symmetry shift of the resulting capsule implosion towards a more prolate shape. The time of peak x-ray production in the capsule shifts later by only 70 ps (within experimental uncertainty), but a decomposition of the hotspot shape into Legendre moments indicates a shift of P 2/P 0 by ~20%. As a result, this indicates that MHD cannot explain why simulated x-ray drive exceeds measured levels, but may be partially responsible for failures to correctly model the symmetry.« less
Simulation of self-generated magnetic fields in an inertial fusion hohlraum environment
NASA Astrophysics Data System (ADS)
Farmer, W. A.; Koning, J. M.; Strozzi, D. J.; Hinkel, D. E.; Berzak Hopkins, L. F.; Jones, O. S.; Rosen, M. D.
2017-05-01
We present radiation-hydrodynamic simulations of self-generated magnetic field in a hohlraum, which show an increased temperature in large regions of the underdense fill. Non-parallel gradients in electron density and temperature in a laser-heated plasma give rise to a self-generated field by the "Biermann battery" mechanism. Here, HYDRA simulations of three hohlraum designs on the National Ignition Facility are reported, which use a partial magnetohydrodynamic (MHD) description that includes the self-generated source term, resistive dissipation, and advection of the field due to both the plasma flow and the Nernst term. Anisotropic electron heat conduction parallel and perpendicular to the field is included, but not the Righi-Leduc heat flux. The field strength is too small to compete significantly with plasma pressure, but affects plasma conditions by reducing electron heat conduction perpendicular to the field. Significant reductions in heat flux can occur, especially for high Z plasma, at modest values of the Hall parameter, Ωeτei≲1 , where Ωe=e B /mec and τei is the electron-ion collision time. The inclusion of MHD in the simulations leads to 1 keV hotter electron temperatures in the laser entrance hole and high-Z wall blowoff, which reduces inverse-bremsstrahlung absorption of the laser beam. This improves propagation of the inner beams pointed at the hohlraum equator, resulting in a symmetry shift of the resulting capsule implosion towards a more prolate shape. The time of peak x-ray production in the capsule shifts later by only 70 ps (within experimental uncertainty), but a decomposition of the hotspot shape into Legendre moments indicates a shift of P2/P0 by ˜20 % . This indicates that MHD cannot explain why simulated x-ray drive exceeds measured levels, but may be partially responsible for failures to correctly model the symmetry.
3D integrated HYDRA simulations of hohlraums including fill tubes
NASA Astrophysics Data System (ADS)
Marinak, M. M.; Milovich, J.; Hammel, B. A.; Macphee, A. G.; Smalyuk, V. A.; Kerbel, G. D.; Sepke, S.; Patel, M. V.
2017-10-01
Measurements of fill tube perturbations from hydro growth radiography (HGR) experiments on the National Ignition Facility show spoke perturbations in the ablator radiating from the base of the tube. These correspond to the shadow of the 10 μm diameter glass fill tube cast by hot spots at early time. We present 3D integrated HYDRA simulations of these experiments which include the fill tube. Meshing techniques are described which were employed to resolve the fill tube structure and associated perturbations in the simulations. We examine the extent to which the specific illumination geometry necessary to accommodate a backlighter in the HGR experiment contributes to the spoke pattern. Simulations presented include high resolution calculations run on the Trinity machine operated by the Alliance for Computing at Extreme Scale (ACES) partnership. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.
Data Analysis of the Gated-LEH X-Ray Imaging Diagnostic at the NIF
NASA Astrophysics Data System (ADS)
Thibodeau, Matthew; Chen, Hui
2017-10-01
The Gated Laser Entrance Hole (G-LEH) x-ray imaging diagnostic in use at the NIF offers a desirable combination of spatial and temporal resolution. By looking inside of NIF hohlraums with time resolution, G-LEH measures target features including LEH size and capsule size. A framework is presented for automated and systematic analysis of G-LEH images that measures several physical parameters of interest and their evolution over time. The results from these analyses enable comparisons with hohlraum models and allow model validation of LEH closure velocity and the extent of capsule blow-off. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Images of the laser entrance hole from the static x-ray imager at NIF.
Schneider, M B; Jones, O S; Meezan, N B; Milovich, J L; Town, R P; Alvarez, S S; Beeler, R G; Bradley, D K; Celeste, J R; Dixit, S N; Edwards, M J; Haugh, M J; Kalantar, D H; Kline, J L; Kyrala, G A; Landen, O L; MacGowan, B J; Michel, P; Moody, J D; Oberhelman, S K; Piston, K W; Pivovaroff, M J; Suter, L J; Teruya, A T; Thomas, C A; Vernon, S P; Warrick, A L; Widmann, K; Wood, R D; Young, B K
2010-10-01
The static x-ray imager at the National Ignition Facility is a pinhole camera using a CCD detector to obtain images of Hohlraum wall x-ray drive illumination patterns seen through the laser entrance hole (LEH). Carefully chosen filters, combined with the CCD response, allow recording images in the x-ray range of 3-5 keV with 60 μm spatial resolution. The routines used to obtain the apparent size of the backlit LEH and the location and intensity of beam spots are discussed and compared to predictions. A new soft x-ray channel centered at 870 eV (near the x-ray peak of a 300 eV temperature ignition Hohlraum) is discussed.
High-foot Implosion Workshop (March 22-24, 2016) Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurricane, O.
From March 22-24, 2016 at Workshop was held at Lawrence Livermore National Laboratory bringing together international experts in inertial confinement fusion research for the purpose of discussing the results from the ‘high-foot implosion campaign.’ The Workshop topics covered a retrospective of the first two years of experiments, a discussion of our best present understanding of what the data and our models imply, a discussion about remaining mysteries that are not understood at this time, and a discussion of our strategy moving forward. The material herein contains information from published and unpublished sources and is distributed solely for the purposes ofmore » this Workshop. Key assessments and conclusions resulting from the Workshop are: “The high foot campaign is extremely well documented and the interested reader is urged to go directly to the peer-reviewed journal literature for details.” – D. Haynes (LANL) “Overall progress in understanding of fuel and hot-spot properties near peak burn is excellent.” – V. Goncharov (LLE) “I would say that given the constraints of using the same hohlraum and similar capsule designs to the National Ignition Campaign, the High Foot Campaign achieved as much as could be expected. Indeed the demonstration of significant alpha particle heating remains a landmark achievement.” – J. Chittenden (Imperial College) “One of the principal points of discussion at the meeting was the importance of the roll over in inferred pressure that occurs with reducing coast time for different ablator thicknesses and the idea of repeating shot N140819 to confirm this. I would be very interested to see a return to the High Foot platform as a way to exercise the improved radiographic capabilities such as the curved crystal imaging system and as a way to examine the hypothesis of ‘burn truncation by aneurism.’ ” – J. Chittenden (Imperial College) “It is clear from the quality of the data presented during this workshop that the High-Foot experimental series has been a success. It has fulfilled the original goal of being an implosion platform that could separate the low-mode effects from the high-mode effects. Just because we now know when the High-Foot implosions break, it does not mean that they have served their purpose. This will be a very useful platform to study hohlraum coupling, to determine if controlling shape reduces residual kinetic energy, and testing hypotheses of how the hot-spot assembles.” – J. Knauer (LLE) “The LLNL "base camp" strategy for hohlraums was finally presented. Goals are to understand the safe operating space for the hohlraum and to find designs with good enough symmetry inside NIF's envelope, varying the CCR, pulse length and capsule designs. LLNL has a draft set of drive asymmetry requirements.” – P. Gauthier (CEA)« less
Replicating the Z iron opacity experiments on the NIF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perry, T. S.; Heeter, R. F.; Opachich, Y. P.
Here, X-ray opacity is a crucial factor of all radiation-hydrodynamics calculations, yet it is one of the least validated of the material properties in the simulation codes. Recent opacity experiments at the Sandia Z-machine have shown up to factors of two discrepancies between theory and experiment, casting doubt on the validity of the opacity models. Therefore, a new experimental opacity platform is being developed on the National Ignition Facility (NIF) not only to verify the Z-machine experimental results but also to extend the experiments to other temperatures and densities. The first experiments will be directed towards measuring the opacity ofmore » iron at a temperature of ~160 eV and an electron density of ~7 x 10 21 cm -3. Preliminary experiments on NIF have demonstrated the ability to create a sufficiently bright point backlighter using an imploding plastic capsule and also a hohlraum that can heat the opacity sample to the desired conditions. The first of these iron opacity experiments is expected to be performed in 2017.« less
Replicating the Z iron opacity experiments on the NIF
Perry, T. S.; Heeter, R. F.; Opachich, Y. P.; ...
2017-05-12
Here, X-ray opacity is a crucial factor of all radiation-hydrodynamics calculations, yet it is one of the least validated of the material properties in the simulation codes. Recent opacity experiments at the Sandia Z-machine have shown up to factors of two discrepancies between theory and experiment, casting doubt on the validity of the opacity models. Therefore, a new experimental opacity platform is being developed on the National Ignition Facility (NIF) not only to verify the Z-machine experimental results but also to extend the experiments to other temperatures and densities. The first experiments will be directed towards measuring the opacity ofmore » iron at a temperature of ~160 eV and an electron density of ~7 x 10 21 cm -3. Preliminary experiments on NIF have demonstrated the ability to create a sufficiently bright point backlighter using an imploding plastic capsule and also a hohlraum that can heat the opacity sample to the desired conditions. The first of these iron opacity experiments is expected to be performed in 2017.« less
NASA Astrophysics Data System (ADS)
Yamanaka, C.
1999-06-01
Inertial confinement fusion (ICF) is an alternative way to control fusion which is based on scaling down a thermonuclear explosion to a small size, applicable for power production, a kind of thermonuclear internal combustion engine. This book extends many interesting topics concerning the research and development on ICF of the last 25 years. It provides a systematic development of the physics basis and also various experimental data on radiation driven implosion. This is a landmark treatise presented at the right time. It is based on the article ``Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain'' by J.D. Lindl, published in Physics of Plasmas, Vol. 2, November 1995, pp. 3933-4024. As is well known, in the United States of America research on the target physics basis for indirect drive remained largely classified until 1994. The indirect drive approaches were closely related to nuclear weapons research at Lawrence Livermore and Los Alamos National Laboratories. In Japan and other countries, inertial confinement fusion research for civil energy has been successfully performed to achieve DT fuel pellet compression up to 1000 times normal density, and indirect drive concepts, such as the `Cannon Ball' scheme, also prevailed at several international conferences. In these circumstances the international fusion community proposed the Madrid Manifesto in 1988, which urged openness of ICF information to promote international collaboration on civil energy research for the future resources of the human race. This proposal was also supported by some of the US scientists. The United States Department of Energy revised its classification guidelines for ICF six years after the Madrid Manifesto. This first book from the USA treating target physics issues, covering topics from implosion dynamics to hydrodynamic stability, ignition physics, high-gain target design and the scope for energy applications is enthusiastically welcomed. The author joined Lawrence Livermore National Laboratory in 1972 to perform intensive theoretical and computational research on implosion and ignition. He was awarded the Edward Teller Medal in 1993. One therefore expects the topics to be treated with authority, and this expectation is well fulfilled. The general treatment throughout the book is to begin with the basic physics of implosion and show how its development leads to an explanation of many fundamental ideas about implosion, via direct drive or indirect drive, particularly ideas associated with radiation transport. This approach is generally successful, with the reader immediately able to relate the theoretical treatments to physical problems. One danger in this approach, however, is that fundamental concepts in implosion often become stressed within the framework of indirect radiation drive of hohlraum targets oriented towards research in the National Ignition Facility. The references in this book to Livermore or Los Alamos internal documents are not yet publicly available, because many are in the process of review for declassification. The reader will have to become accustomed to this situation, which has lasted for a long time but now seems to be gradually improving. The treatise is composed of 13 chapters, including 271 illustrations. An overview of ICF and the historical development of indirect drive in the ICF programme are described in Chapters 1 and 2. Direct drive and indirect drive have different features. The choice of which to use is a very interesting issue. The former has a higher laser-target coupling efficiency but is less uniform in laser irradiation due to discrete beams of lasers. Beam smoothing techniques have a key role in direct drive. The indirect drive by soft X rays which are generated at the inner surface of a hohlraum can have a higher uniform irradiation to reduce the growth of perturbations due to Rayleigh-Taylor (RT) instabilities. The soft X ray drive has much higher ablation rates and is less sensitive to hot electron preheat. A potential disadvantage of indirect drive is the larger scale length of the plasma travelled by the laser beam from the inlet hole to the hohlraum wall. Parametric instabilities in hohlraums have problems because of energy loss and coupling. One of the most important issues for indirect drive is a radiation drive concept which is essentially independent of the driver, such as laser or particle beam. The historical progress of ICF in the USA mainly depended upon the resolution of the fusion database for weaponry. This was a reason to choose indirect drive as the main scheme. Several structures of hohlraum target are described which for a long time were closed to the public. As the minimum energy for ignition depends strongly on the achievable implosion velocity, a great deal of benefit is derived from operating at the highest possible hohlraum temperature and in-flight aspect ratio (IFAR). The conclusion of Chapters 3, 4 and 5 is that achieving an implosion velocity of 3 × 107cm/s with an IFAR-30 Fermi degenerated shell would require a minimum drive temperature of about 200 eV. The hydrodynamic instability, ignition threshold and capsule gain are discussed in Chapter 6. The RT hydrodynamic instability began at the upper limit of the IFAR and hence at the peak implosion velocity. The growth rate of the instability in the acceleration phase was found to be suppressed by the ablation flow at Osaka. Instability during the deceleration phase was primarily stabilized by electron conduction. The combined effects of acceleration, feed-through and deceleration show that the principal modes contributing to perturbations in the fuel have spherical harmonic mode numbers less than about 30-40. The higher modes are rapidly reduced by rarefaction. The lower modes are killed by so-called `fire polishing'. The target uniformity and irradiation uniformity are very effective at suppressing instabilities. The maximum number of e-foldings sets the upper limit of the implosion velocity. This gives the threshold energy of ignition. The minimum capsule energy for ignition for indirect drive is compared with Nuckoll's projections for direct drive. The estimation depends strongly upon the effects of hydrodynamic instability and symmetry in the compressed fuel volume. If the margin of energy is 2, the necessary capsule absorbed energy is about 90 kJ with a radiation temperature of 300 eV. The coupling between driver and capsule is 10-15%, and the driver energy is 0.6-0.9 MJ. The scaling laws for the capsule absorbed power, radius and pulse length with a certain IFAR are given. It is concluded (Chapter 6) that the optimum strategy for gain is operation at the minimum implosion velocity consistent with the desired capsule size and yield, because at the excess implosion velocity the capsules tend to ignite earlier than the optimal point in the compression process. The most crucial issues for the hohlraum target are the coupling efficiency and hohlraum radiation uniformity. Various kinds of devices for hohlraum structures and double cone irradiation schemes have been investigated. These technological developments are energetically described. The implosion symmetry reproducibility (Chapters 7 and 8) for the Precision Nova advanced system meets the requirement of 1% uniformity for ignition experiment time averaged flux. Combined tests of symmetry and hydrodynamic instability as well as the hohlraum plasma conditions estimating the simulated Brillouin scattering (SBS) and simulated Raman scattering (SRS) effects and their influence on the hot electron preheat are summarized in Chapters 9, 10 and 11. The tolerable fraction of hot electrons for keeping the DT fuel preheat at approximately the Fermi specific energy indicates that direct drive capsules are 3 to 4 times larger than the indirect drive capsules. As a conclusion, Chapters 12 and 13 are proudly devoted to the National Ignition Facility and ignition targets. The NIF has a 192 beam, frequency tripled Nd:glass laser system with routine target energies and powers of 1.8 MJ and 500 TW, appropriately pulse shaped. The 192 beams are clustered in groups of 4, so that there are effectively 8 spots in each of the inner cones, and 16 in the outer cones in the hohlraum. Each cluster of 4 beams combines to form an effective f/8 optic. Various kinds of target design are described, for instance, a baseline design 300 eV hohlraum capsule, which absorbs 1.35 MJ of light, an ignition point hydrocarbon (CH) capsule, which is aimed at determining the requirements for symmetry, stability and ignition, and a lower temperature 250 eV capsule with a beryllium ablator, which provides a trade-off between hydroinstabilities and laser-plasma effects. The NIF baseline capsule designs absorb 150 kJ, of which about 25 kJ ends up in the compressed fuel. The central temperature increases to 10 keV when the capsule produces 400 kJ. The fuel energy gain is about 16 at ignition, or when the alpha particle deposition is about 3 times the initial energy delivered to the compressed fuel. The NIF baseline targets are then expected to yield up to 15 MJ and a fuel gain of about 600. Estimates based on NOVA experiments and modelling indicate that SBS, SRS and other plasma hazard processes can be kept within acceptable limits. If these are not attained, the ultimate recourse is to increase the hohlraum size, reduce the laser intensity and reduce the drive temperature to that of the 250 eV design, which has significantly less plasma. The remaining uncertainties can be mitigated by changes in the target design. The author has confidence ignition will be achieved in NIF, which seems to be strongly supported by the Centurion-Halite underground nuclear experiments demonstrating the excellent performance and the basic feasibility of achieving high gain. He thoughtfully adds a comment that developments in direct drive have reached the point where this approach also looks quite promising. NIF will be able to shift rapidly ( <= 1 d) between indirect drive and direct drive. Finally, the short last chapter (Chapter 13) gives an overview on the greatest potential for future ICF power plants. In a book review, questions are usually asked about the readers the book is primarily intended for, whether the book is written at the appropriate level for those readers and whether there are other books that achieve similar objectives. The last section of the Preface states that this book provides an in-depth analysis of theoretical and experimental work on indirect drive ICF classified up to 1994, as well as work carried out throughout the world. It is intended to serve as a reference guide for researchers in the field. Each topic covered contains enough introductory material that the book can also be used at the graduate level by students or newly interested researchers. Most of the laser technology and diagnostic development are not covered at all. To this reviewer that statement is a succinct summary of what the book achieves. Working fusion physicists, particularly in ICF, will find the book to be both instructive and enjoyable. As a secondary market, the book could well be used as a text for a graduate course in laser plasma physics, although some parts are like review papers. As to which books cover some of the same material, W.L. Kruer published Physics of Laser Plasma Interactions (Addison-Wesley, Redwood City, CA, 1988), which is suitable as a textbook for graduate students and also for the plasma physicist in general and C. Yamanaka published Introduction to Laser Fusion (Harwood Academic, Chur, 1991), which is the only book treating implosion physics, lasers, target design and diagnostics prior to the USDOE's declassification. As for the Handbook of Plasma Physics series (edited by M.N. Rosenbluth and R.Z. Sagdeev), Vol. 3, Physics of Laser Plasma (edited by A.H. Rubenchik and S. Witkowski) (Elsevier Science, Amsterdam, 1991) comes to mind. However, this last book is larger, and covers somewhat diverse topics. The typography of the book presently under review is also much to be preferred. In summary, I would strongly recommend the book by Lindl to my colleagues in plasma physics, particularly to those engaged in ICF.
Simulations of the National Ignition Facility Opacity Sample
NASA Astrophysics Data System (ADS)
Martin, M. E.; London, R. A.; Heeter, R. F.; Dodd, E. S.; Devolder, B. G.; Opachich, Y. P.; Liedahl, D. A.; Perry, T. S.
2017-10-01
A platform to study the opacity of high temperature materials at the National Ignition Facility has been developed. Experiments to study the opacity of materials relevant to inertial confinement fusion and stellar astrophysics are being conducted. The initial NIF experiments are focused on reaching the same plasma conditions (T >150 eV and Ne >= 7 ×1021 cm-3) , for iron, as those achieved in previous experiments at Sandia National Laboratories' (SNL) Z-facility which have shown discrepancies between opacity theory and experiment. We developed a methodology, using 1D HYDRA simulations, to study the effects of tamper thickness on the conditions of iron-magnesium samples. We heat the sample using an x-ray drive from 2D LASNEX hohlraum simulations. We also use this methodology to predict sample uniformity and expansion for comparison with experimental data. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC.
Mission and Objectives for the X-1 Advanced Radiation Source*
NASA Astrophysics Data System (ADS)
Rochau, Gary E.; Ramirez, Juan J.; Raglin, Paul S.
1998-11-01
Sandia National Laboratories PO Box 5800, MS-1178, Albuquerque, NM 87185 The X-1 Advanced Radiation Source represents a next step in providing the U.S. Department of Energy's Stockpile Stewardship Program with the high-energy, large volume, laboratory x-ray source for the Radiation Effects Science and Simulation, Inertial Confinement Fusion, and Weapon Physics Programs. Advances in fast pulsed power technology and in z-pinch hohlraums on Sandia National Laboratories' Z Accelerator provide sufficient basis for pursuing the development of X-1. The X-1 plan follows a strategy based on scaling the 2 MJ x-ray output on Z via a 3-fold increase in z-pinch load current. The large volume (>5 cm3), high temperature (>150 eV), temporally long (>10 ns) hohlraums are unique outside of underground nuclear weapon testing. Analytical scaling arguments and hydrodynamic simulations indicate that these hohlraums at temperatures of 230-300 eV will ignite thermonuclear fuel and drive the reaction to a yield of 200 to 1,200 MJ in the laboratory. Non-ignition sources will provide cold x-ray environments (<15 keV) and high yield fusion burn sources will provide high fidelity warm x-ray environments (15 keV-80 keV). This paper will introduce the X-1 Advanced Radiation Source Facility Project, describe the project mission, objective, and preliminary schedule.
Development of the re-emit technique for ICF foot symmetry tuning for indirect drive ignition on NIF
NASA Astrophysics Data System (ADS)
Dewald, Eduard; Milovich, Jose; Edwards, John; Thomas, Cliff; Kalantar, Dan; Meeker, Don; Jones, Ogden
2007-11-01
Tuning of the the symmetry of the hohlraum radiation drive for the first 2 ns of the ICF pulse on NIF will be assessed by the re-emit technique [1] which measures the instantaneous x-ray drive asymmetry based on soft x-ray imaging of the re-emission of a high-Z sphere surrogate capsule. We will discuss the design of re-emit foot symmetry tuning measurements planned on NIF and their surrogacy for ignition experiments, including assessing the residual radiation asymmetry of the patches required for soft x-ray imaging. We will present the tuning strategy and expected accuracies based on calculations, analytical estimates and first results from scaled experiments performed at the Omega laser facility. [1] N. Delamater, G. Magelssen, A. Hauer, Phys. Rev. E 53, 5241 (1996.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Shiyang; Song, Peng; Pei, Wenbing
2013-09-15
Based on the conjugate gradient method, a simple algorithm is presented for deconvolving the temporal response of photoelectric x-ray detectors (XRDs) to reconstruct the resolved time-dependent x-ray fluxes. With this algorithm, we have studied the impact of temporal response of XRD on the radiation diagnosis of hohlraum heated by a short intense laser pulse. It is found that the limiting temporal response of XRD not only postpones the rising edge and peak position of x-ray pulses but also smoothes the possible fluctuations of radiation fluxes. Without a proper consideration of the temporal response of XRD, the measured radiation flux canmore » be largely misinterpreted for radiation pulses of a hohlraum heated by short or shaped laser pulses.« less
Capsule Performance Optimization in the National Ignition Campaign
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landen, O L; MacGowan, B J; Haan, S W
2009-10-13
A capsule performance optimization campaign will be conducted at the National Ignition Facility to substantially increase the probability of ignition. The campaign will experimentally correct for residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models before proceeding to cryogenic-layered implosions and ignition attempts. The required tuning techniques using a variety of ignition capsule surrogates have been demonstrated at the Omega facility under scaled hohlraum and capsule conditions relevant to the ignition design and shown to meet the required sensitivity and accuracy. In addition, a roll-up of all expected random and systematic uncertainties in setting themore » key ignition laser and target parameters due to residual measurement, calibration, cross-coupling, surrogacy, and scale-up errors has been derived that meets the required budget.« less
Capsule performance optimization in the national ignition campaign
NASA Astrophysics Data System (ADS)
Landen, O. L.; MacGowan, B. J.; Haan, S. W.; Edwards, J.
2010-08-01
A capsule performance optimization campaign will be conducted at the National Ignition Facility [1] to substantially increase the probability of ignition. The campaign will experimentally correct for residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models before proceeding to cryogenic-layered implosions and ignition attempts. The required tuning techniques using a variety of ignition capsule surrogates have been demonstrated at the Omega facility under scaled hohlraum and capsule conditions relevant to the ignition design and shown to meet the required sensitivity and accuracy. In addition, a roll-up of all expected random and systematic uncertainties in setting the key ignition laser and target parameters due to residual measurement, calibration, cross-coupling, surrogacy, and scale-up errors has been derived that meets the required budget.
Characterizing NIF hohlraum energy and particle transport using mid-Z spectroscopic tracer materials
NASA Astrophysics Data System (ADS)
Moody, J. D.; Barrios, M. A.; Widmann, K.; Suter, L. J.; Liedahl, D. A.; Schneider, M. B.; Thorn, D. B.; Farmer, W. A.; Landen, O. L.; Kauffman, R. L.; Jarrott, C.; Sherlock, M. W.; Chen, H.; Jones, O.; MacLaren, S. A.; Eder, D.; Strozzi, D. J.; Meezan, N. B.; Nikroo, A.; Kroll, J. J.; Johnson, S.; Jaquez, J.; Huang, H.
2017-10-01
Line emission from mid-Z dopants placed at several spatial locations is used to determine the electron temperature (Te) and plasma flow in NIF hohlraums. Laser drive ablates the dopant and launches it on a trajectory recorded with a framing camera. Analysis of temporally streaked spectroscopy provides an estimate of the time-resolved Te. The estimated temperature gradients show evidence for significantly restricted thermal conduction. Non-local thermal conductivity can account for part of this; additional effects due to magnetic fields, return-current instabilities, ion acoustic turbulence and other physics are considered. We describe our findings and discuss interpretations. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Probing matter at extreme Gbar pressures at the NIF
Kritcher, A. L.; Doeppner, T.; Swift, D.; ...
2013-12-04
Here we describe a platform to measure the material properties, specifically the equation of state and electron temperature, at pressures of 100 Mbar to a Gbar at the National Ignition Facility (NIF). In our experiments we launch spherically convergent shock waves into solid CH, CD, or diamond samples using a hohlraum radiation drive, in an indirect drive laser geometry. X-ray radiography is applied to measure the shock speed and infer the mass density profile, enabling determination of the material pressure and Hugoniot equation of state. X-ray scattering is applied to measure the electron temperature through probing of the electron velocitymore » distribution via Doppler broadening.« less
Moody, J. D.; Strozzi, D. J.; Divol, L.; ...
2013-07-09
Stimulated Raman backscatter is used as a remote sensor to quantify the instantaneous laser power after transfer from outer to inner cones that cross in a National Ignition Facility (NIF) gas-filled hohlraum plasma. By matching stimulated Raman backscatter between a shot reducing outer versus a shot reducing inner power we infer that about half of the incident outer-cone power is transferred to inner cones, for the specific time and wavelength configuration studied. Furthermore, this is the first instantaneous nondisruptive measure of power transfer in an indirect drive NIF experiment using optical measurements.
Edwards, E. R.; Cassata, W. S.; Velsko, C. A.; ...
2016-09-22
Precisely-known fission yield distributions are needed to determine a fissioning isotope and the incident neutron energy in nuclear security applications. 14 MeV neutrons from DT fusion at the National Ignition Facility (NIF) induce fission in depleted uranium (DU) contained in the target assembly hohlraum. The fission yields of Kr isotopes (85m, 87, 88, and 89) are measured relative to the cumulative yield of 88Kr and compared to previously tabulated values. Here, the results from this experiment and England and Rider are in agreement, except for the 85mKr/ 88Kr ratio, which may be the result of incorrect nuclear data.
Development of Thomson scattering system on Shenguang-III prototype laser facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Tao; Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900; Li, Zhichao
2015-02-15
A Thomson scattering diagnostic system, using a 263 nm laser as the probe beam, is designed and implemented on Shenguang-III prototype laser facility. The probe beam is provided by an additional beam line completed recently. The diagnostic system allows simultaneous measurements of both ion feature and red-shifted electron feature from plasmas in a high-temperature (≥2 keV) and high-density (≥10{sup 21} cm{sup −3}) regime. Delicate design is made to satisfy the requirements for successful detection of the electron feature. High-quality ion feature spectra have already been diagnosed via this system in recent experiments with gas-filled hohlraums.
Edwards, E R; Cassata, W S; Velsko, C A; Yeamans, C B; Shaughnessy, D A
2016-11-01
Precisely-known fission yield distributions are needed to determine a fissioning isotope and the incident neutron energy in nuclear security applications. 14 MeV neutrons from DT fusion at the National Ignition Facility induce fission in depleted uranium contained in the target assembly hohlraum. The fission yields of Kr isotopes (85m, 87, 88, and 89) are measured relative to the cumulative yield of 88 Kr and compared to previously tabulated values. The results from this experiment and England and Rider are in agreement, except for the 85m Kr/ 88 Kr ratio, which may be the result of incorrect nuclear data.
Long duration X-ray drive hydrodynamics experiments relevant for laboratory astrophysics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casner, A.; Martinez, D.; Smalyuk, V.
The advent of high-power lasers facilities such as the National Ignition Facility (NIF), and the Laser Megajoule (LMJ) in the near future, opens a new era in the field of High Energy Density Laboratory Astrophysics. These versatile laser facilities will provide unique platforms to study the rich physics of nonlinear and turbulent mixing flows. The extended laser pulse duration could be harnessed to accelerate targets over much larger distances and longer time periods than previously achieved. Here, we report on the first results acquired on NIF with the ablative Rayleigh–Taylor Instability (RTI) platform. A 20-ns X-ray drive is tailored tomore » accelerate planar modulated samples into the highly-nonlinear bubble merger regime. Based on the analogy between flames front and ablation front, highly nonlinear RTI measurements at ablation front can provide important insights into the initial deflagration stage of thermonuclear supernova of Type Ia. We also report on an innovative concept used to create even longer drive on multi-beam laser facilities. The multi-barrel hohlraum (Gattling Gun) approach consists, here, of three adjacent cavities, driven in succession in time. This novel concept has been validated on the Omega EP laser system. The three cavities were irradiated with three 6–10 ns pulse UV beams and a 30 ns, 90 eV X-ray radiation drive was measured with the time-resolved X-ray spectrometer μDMX. This concept is promising to investigate the pillar structures in the Eagle Nebula or for photoionization studies which require a steady light source of sufficient duration to recreate relevant physics.« less
Long duration X-ray drive hydrodynamics experiments relevant for laboratory astrophysics
Casner, A.; Martinez, D.; Smalyuk, V.; ...
2014-09-20
The advent of high-power lasers facilities such as the National Ignition Facility (NIF), and the Laser Megajoule (LMJ) in the near future, opens a new era in the field of High Energy Density Laboratory Astrophysics. These versatile laser facilities will provide unique platforms to study the rich physics of nonlinear and turbulent mixing flows. The extended laser pulse duration could be harnessed to accelerate targets over much larger distances and longer time periods than previously achieved. Here, we report on the first results acquired on NIF with the ablative Rayleigh–Taylor Instability (RTI) platform. A 20-ns X-ray drive is tailored tomore » accelerate planar modulated samples into the highly-nonlinear bubble merger regime. Based on the analogy between flames front and ablation front, highly nonlinear RTI measurements at ablation front can provide important insights into the initial deflagration stage of thermonuclear supernova of Type Ia. We also report on an innovative concept used to create even longer drive on multi-beam laser facilities. The multi-barrel hohlraum (Gattling Gun) approach consists, here, of three adjacent cavities, driven in succession in time. This novel concept has been validated on the Omega EP laser system. The three cavities were irradiated with three 6–10 ns pulse UV beams and a 30 ns, 90 eV X-ray radiation drive was measured with the time-resolved X-ray spectrometer μDMX. This concept is promising to investigate the pillar structures in the Eagle Nebula or for photoionization studies which require a steady light source of sufficient duration to recreate relevant physics.« less
Ross, J. S.; Datte, P.; Divol, L.; ...
2016-07-28
An optical Thomson scattering diagnostic has been designed for the National Ignition Facility to characterize under-dense plasmas. Here, we report on the design of the system and the expected performance for different target configurations. The diagnostic is designed to spatially and temporally resolve the Thomson scattered light from laser driven targets. The diagnostic will collect scattered light from a 50 × 50 × 200 μm volume. The optical design allows operation with different probe laser wavelengths. A deep-UV probe beam (λ 0 = 210 nm) will be used to Thomson scatter from electron plasma densities of ~5 × 10 20more » cm -3 while a 3ω probe will be used for plasma densities of ~1 × 10 19 cm -3. The diagnostic package contains two spectrometers: the first to resolve Thomson scattering from ion acoustic wave fluctuations and the second to resolve scattering from electron plasma wave fluctuations. Expected signal levels relative to background will be presented for typical target configurations (hohlraums and a planar foil).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, J. S., E-mail: ross36@llnl.gov; Datte, P.; Divol, L.
2016-11-15
An optical Thomson scattering diagnostic has been designed for the National Ignition Facility to characterize under-dense plasmas. We report on the design of the system and the expected performance for different target configurations. The diagnostic is designed to spatially and temporally resolve the Thomson scattered light from laser driven targets. The diagnostic will collect scattered light from a 50 × 50 × 200 μm volume. The optical design allows operation with different probe laser wavelengths. A deep-UV probe beam (λ{sub 0} = 210 nm) will be used to Thomson scatter from electron plasma densities of ∼5 × 10{sup 20} cm{supmore » −3} while a 3ω probe will be used for plasma densities of ∼1 × 10{sup 19} cm{sup −3}. The diagnostic package contains two spectrometers: the first to resolve Thomson scattering from ion acoustic wave fluctuations and the second to resolve scattering from electron plasma wave fluctuations. Expected signal levels relative to background will be presented for typical target configurations (hohlraums and a planar foil).« less
Effect of Energetic Electrons Produced by Raman Scattering on Hohlraum Dynamics
NASA Astrophysics Data System (ADS)
Strozzi, D. J.; Bailey, D. S.; Doeppner, T.; Divol, L.; Harte, J. A.; Michel, P.; Thomas, C. A.
2016-10-01
A reduced model of laser-plasma interactions, namely crossed-beam energy transfer and stimulated Raman scattering (SRS), has recently been implemented in a self-consistent or ``inline'' way in radiation-hydrodynamics codes. We extend this work to treat the energetic electrons produced by Langmuir waves (LWs) from SRS by a suprathermal, multigroup diffusion model. This gives less spatially localized heating than depositing the LW energy into the local electron fluid. We compare the resulting hard x-ray production to imaging data on the National Ignition Facility, which indicate significant emission around the laser entrance hole. We assess the effects of energetic electrons, as well as background electron heat flow, on hohlraum dynamics and capsule implosion symmetry. Work performed under the auspices of the U.S. D.O.E. by LLNL under Contract No. DE-AC52-07NA27344.
Diffusive, supersonic x-ray transport in radiatively heated foam cylinders
NASA Astrophysics Data System (ADS)
Back, C. A.; Bauer, J. D.; Hammer, J. H.; Lasinski, B. F.; Turner, R. E.; Rambo, P. W.; Landen, O. L.; Suter, L. J.; Rosen, M. D.; Hsing, W. W.
2000-05-01
Diffusive supersonic radiation transport, where the ratio of the diffusive radiation front velocity to the material sound speed >2 has been studied in experiments on low density (40 mg/cc to 50 mg/cc) foams. Laser-heated Au hohlraums provided a radiation drive that heated SiO2 and Ta2O5 aerogel foams of varying lengths. Face-on emission measurements at 550 eV provided clean signatures of the radiation breakout. The high quality data provides new detailed information on the importance of both the fill and wall material opacities and heat capacities in determining the radiation front speed and curvature. The Marshak radiation wave transport is studied in a geometry that allows direct comparisons with analytic models and two-dimensional code simulations. Experiments show important effects that will affect even nondiffusive and transonic radiation transport experiments studied by others in the field. This work is of basic science interest with applications to inertial confinement fusion and astrophysics.
Beryllium implosion experiments at high case-to-capsule ratio on the National Ignition Facility
NASA Astrophysics Data System (ADS)
Zylstra, Alex; Yi, Austin; Kline, John; Kyrala, George; Loomis, Eric; Perry, Ted; Shah, Rahul; Batha, Steve; MacLaren, Steve; Ralph, Joe; Salmonson, Jay; Masse, Laurent; Nikroo, Abbas; Stadermann, Michael; Callahan, Debbie; Hurricane, Omar; Rice, Neal; Huang, Haibo; Kong, Casey
2017-10-01
Using beryllium as an ablator material has several potential advantages for inertial fusion because of its low opacity and thus higher ablation rate. This could enable novel designs taking advantage of the reduced ablation-front growth rate, or operating at lower radiation temperature. To investigate the integrated performance of beryllium implosions, we conducted a tuning campaign leading into DT layered implosions using a 900um radius capsule in a 6.72mm diameter hohlraum (case-to-capsule ratio CCR=3.7); the large CCR enables direct study of the 1-D implosion performance. The tuning campaign shots demonstrate excellent control over the shock timing and implosion symmetry at this CCR. Performance data from the DT experiments will also be discussed. This work was performed under the auspices of the U.S. DoE by LANL under contract DE-AC52-06NA52396.
A near one-dimensional 2-shock indirectly driven implosion at convergence ratio 30
NASA Astrophysics Data System (ADS)
MacLaren, Steve
2017-10-01
Inertial confinement fusion implosions at the National Ignition Facility, while successfully demonstrating self-heating due to alpha-particle deposition, have fallen short of the performance predicted by one-dimensional multi-physics implosion simulations. The current understanding, based on simulations as well as experimental evidence, suggests that the principle reason for the disagreement is a breeching of the cold fuel assembly at stagnation which would otherwise completely confine the hot spot. 3-D simulations indicate a combination of low-mode symmetry swings and ablation-front hydrodynamic instability seeded by engineering features such as the capsule tent and fill tube lead to localized thinning and perforation of the stagnated fuel, resulting in a loss of hot spot pressure and energy. We describe a short series of experiments on the NIF designed specifically to avoid these issues in order to understand if, once they are removed, a suspended-fuel-layer deuterium-tritium implosion can achieve 1-D simulated performance. The particular implosion system combines a thick capsule shell with an elevated initial ablation temperature to minimize the ablation front perturbations from the engineering features, and incorporates a large ratio of hohlraum-to-capsule radius as a means to permit a higher degree of control over implosion symmetry. The resulting implosion at a convergence ratio of 30 was not perfectly spherically symmetric as observed by both neutron and time-resolved x-ray imaging diagnostics. However, the stagnation observables match closely the performance predicted by 1D simulations, including, when some hot spot motion is accounted for, the apparent ion temperature. We present this result along with the design for an upcoming 2-shock experiment to test whether this level of agreement with the 1D model can be achieved in the self-heating regime. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.
Capsule modeling of high foot implosion experiments on the National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, D. S.; Kritcher, A. L.; Milovich, J. L.
This study summarizes the results of detailed, capsule-only simulations of a set of high foot implosion experiments conducted on the National Ignition Facility (NIF). These experiments span a range of ablator thicknesses, laser powers, and laser energies, and modeling these experiments as a set is important to assess whether the simulation model can reproduce the trends seen experimentally as the implosion parameters were varied. Two-dimensional (2D) simulations have been run including a number of effects—both nominal and off-nominal—such as hohlraum radiation asymmetries, surface roughness, the capsule support tent, and hot electron pre-heat. Selected three-dimensional simulations have also been run tomore » assess the validity of the 2D axisymmetric approximation. As a composite, these simulations represent the current state of understanding of NIF high foot implosion performance using the best and most detailed computational model available. While the most detailed simulations show approximate agreement with the experimental data, it is evident that the model remains incomplete and further refinements are needed. Nevertheless, avenues for improved performance are clearly indicated.« less
Capsule modeling of high foot implosion experiments on the National Ignition Facility
Clark, D. S.; Kritcher, A. L.; Milovich, J. L.; ...
2017-03-21
This study summarizes the results of detailed, capsule-only simulations of a set of high foot implosion experiments conducted on the National Ignition Facility (NIF). These experiments span a range of ablator thicknesses, laser powers, and laser energies, and modeling these experiments as a set is important to assess whether the simulation model can reproduce the trends seen experimentally as the implosion parameters were varied. Two-dimensional (2D) simulations have been run including a number of effects—both nominal and off-nominal—such as hohlraum radiation asymmetries, surface roughness, the capsule support tent, and hot electron pre-heat. Selected three-dimensional simulations have also been run tomore » assess the validity of the 2D axisymmetric approximation. As a composite, these simulations represent the current state of understanding of NIF high foot implosion performance using the best and most detailed computational model available. While the most detailed simulations show approximate agreement with the experimental data, it is evident that the model remains incomplete and further refinements are needed. Nevertheless, avenues for improved performance are clearly indicated.« less
Progress on LMJ targets for ignition
NASA Astrophysics Data System (ADS)
Cherfils-Clérouin, C.; Boniface, C.; Bonnefille, M.; Fremerye, P.; Galmiche, D.; Gauthier, P.; Giorla, J.; Lambert, F.; Laffite, S.; Liberatore, S.; Loiseau, P.; Malinie, G.; Masse, L.; Masson-Laborde, P. E.; Monteil, M. C.; Poggi, F.; Seytor, P.; Wagon, F.; Willien, J. L.
2010-08-01
Targets designed to produce ignition on the Laser MegaJoule are presented. The LMJ experimental plans include the attempt of ignition and burn of an ICF capsule with 160 laser beams, delivering up to 1.4MJ and 380TW. New targets needing reduced laser energy with only a small decrease in robustness have then been designed for this purpose. Working specifically on the coupling efficiency parameter, i.e. the ratio of the energy absorbed by the capsule to the laser energy, has led to the design of a rugby-shaped cocktail hohlraum. 1D and 2D robustness evaluations of these different targets shed light on critical points for ignition, that can be traded off by tightening some specifications or by preliminary experimental and numerical tuning experiments.
Bhandarkar, Suhas; Betcher, Jacob; Smith, Ryan; ...
2016-06-30
Targets for ICF shots on NIF typically use ~500nm thin polyimide films with a coating of 25nm of aluminum as windows that seal the laser entrance hole or LEH. Their role is to contain the hohlraum gas and minimize the extraneous infra-red radiation getting in. This is necessary to precisely control the hohlraum thermal environment for layering inside the capsule with solid deuterium-tritium at 18K. Here, we use our empirical data on the bulging behavior of these foils under various different conditions to develop models to capture the complex viscoelastic behavior of these films at both ambient and cryogenic temperatures.more » The constitutive equations derived from these models give us the ability to quantitatively specify the film’s behavior during the fielding of these targets and set the best parameters for new target designs.« less
NASA Astrophysics Data System (ADS)
Ortner, A.; Schumacher, D.; Cayzac, W.; Frank, A.; Basko, M. M.; Bedacht, S.; Blazevic, A.; Faik, S.; Kraus, D.; Rienecker, T.; Schaumann, G.; Tauschwitz, An.; Wagner, F.; Roth, M.
2016-03-01
We report on a new experimental setup for ion energy loss measurements in dense moderately coupled plasma which has recently been developed and tested at GSI Darmstadt. A partially ionized, moderately coupled carbon plasma (ne ≤ 0.8• 1022 cm-3, Te = 15 eV, z = 2.5, Γ = 0.5) is generated by volumetrical heating of two thin carbon foils with soft X-rays. This plasma is then probed by a bunched heavy ion beam. For that purpose, a special double gold hohlraum target of sub-millimeter size has been developed which efficiently converts intense laser light into thermal radiation and guarantees a gold-free interaction path for the ion beam traversing the carbon plasma. This setup allows to do precise energy loss measurements in non-ideal plasma at the level of 10 percent solid-state density.
NASA Astrophysics Data System (ADS)
Town, R. P. J.; Bradley, D. K.; Kritcher, A.; Jones, O. S.; Rygg, J. R.; Tommasini, R.; Barrios, M.; Benedetti, L. R.; Berzak Hopkins, L. F.; Celliers, P. M.; Döppner, T.; Dewald, E. L.; Eder, D. C.; Field, J. E.; Glenn, S. M.; Izumi, N.; Haan, S. W.; Khan, S. F.; Kline, J. L.; Kyrala, G. A.; Ma, T.; Milovich, J. L.; Moody, J. D.; Nagel, S. R.; Pak, A.; Peterson, J. L.; Robey, H. F.; Ross, J. S.; Scott, R. H. H.; Spears, B. K.; Edwards, M. J.; Kilkenny, J. D.; Landen, O. L.
2014-05-01
In order to achieve ignition using inertial confinement fusion it is important to control the growth of low-mode asymmetries as the capsule is compressed. Understanding the time-dependent evolution of the shape of the hot spot and surrounding fuel layer is crucial to optimizing implosion performance. A design and experimental campaign to examine sources of asymmetry and to quantify symmetry throughout the implosion has been developed and executed on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)]. We have constructed a large simulation database of asymmetries applied during different time intervals. Analysis of the database has shown the need to measure and control the hot-spot shape, areal density distribution, and symmetry swings during the implosion. The shape of the hot spot during final stagnation is measured using time-resolved imaging of the self-emission, and information on the shape of the fuel at stagnation can be obtained from Compton radiography [R. Tommasini et al., Phys. Plasmas 18, 056309 (2011)]. For the first time on NIF, two-dimensional inflight radiographs of gas-filled and cryogenic fuel layered capsules have been measured to infer the symmetry of the radiation drive on the capsule. These results have been used to modify the hohlraum geometry and the wavelength tuning to improve the inflight implosion symmetry. We have also expanded our shock timing capabilities by the addition of extra mirrors inside the re-entrant cone to allow the simultaneous measurement of shock symmetry in three locations on a single shot, providing asymmetry information up to Legendre mode 4. By diagnosing the shape at nearly every step of the implosion, we estimate that shape has typically reduced fusion yield by about 50% in ignition experiments.
Simulations and experiments of the growth of the “tent” perturbation in NIF ignition implosions
NASA Astrophysics Data System (ADS)
Hammel, B. A.; Tommasini, R.; Clark, D. S.; Field, J.; Stadermann, M.; Weber, C.
2016-05-01
NIF capsules are supported in the hohlraum by two thin (∼15-110 nm) Formvar films (“tent”). Highly resolved HYDRA simulations indicate that a large (∼40% peak-average) areal density (ρR) perturbation develops on the capsule during acceleration as a consequence of this support geometry. This perturbation results in a jet of dense DT and, in some cases, CH that penetrates and cools the hot spot, significantly degrading the neutron yield (∼10-20% of 1D yield). We examine “low-foot” and “high-foot” pulse shapes, tent thicknesses, and geometries. Simulations indicate that thinner tents result in a smaller pR perturbation, however, the departure angle of the tent from the capsule surface is important, with steeper angles resulting in larger perturbations.
Reducing wall plasma expansion with gold foam irradiated by laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Lu; Ding, Yongkun, E-mail: ding-yk@vip.sina.com; Jiang, Shaoen, E-mail: jiangshn@vip.sina.com
The experimental study on the expanding plasma movement of low-density gold foam (∼1% solid density) irradiated by a high power laser is reported in this paper. Experiments were conducted using the SG-III prototype laser. Compared to solid gold with 19.3 g/cc density, the velocities of X-ray emission fronts moving off the wall are much smaller for gold foam with 0.3 g/cc density. Theoretical analysis and MULTI 1D simulation results also show less plasma blow-off, and that the density contour movement velocities of gold foam are smaller than those of solid gold, agreeing with experimental results. These results indicate that foam walls havemore » advantages in symmetry control and lowering plasma fill when used in ignition hohlraum.« less
Design of Initial Opacity Platform at the National Ignition Facility
NASA Astrophysics Data System (ADS)
Heeter, R. F.; Ahmed, M. F.; Ayers, S. L.; Emig, J. A.; Iglesias, C. A.; Liedahl, D. A.; Schneider, M. B.; Wilson, B. G.; Huffman, E. J.; King, J. A.; Opachich, Y. P.; Ross, P. W.; Bailey, J. E.; Rochau, G. A.; Craxton, R. S.; Garcia, E. M.; McKenty, P. W.; Zhang, R.; Cardenas, T.; Devolder, B. G.; Dodd, E. S.; Kline, J. L.; Sherrill, M. E.; Perry, T. S.
2016-10-01
The absorption and re-emission of x-rays by partly stripped ions plays a critical role in stars and in many laboratory plasmas. A NIF Opacity Platform has been designed to resolve a persistent disagreement between theory and experiments on the Sandia Z facility, studying iron in conditions closely related to the solar radiation-convection transition boundary. A laser heated hohlraum ``oven'' will produce iron plasmas at temperatures >150 eV and electron densities >=7x1021/cm3, and be probed with continuum X-rays from a capsule implosion backlighter source. The resulting X-ray transmission spectra will be recorded on a specially designed Opacity Spectrometer. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.
Developing targets for radiation transport experiments at the Omega laser facility
Capelli, Deanna; Charsley-Groffman, C. A.; Randolph, Randall Blaine; ...
2017-07-13
Targets have been developed to measure supersonic radiation transport in aerogel foams using absorption spectroscopy. The target consists of an aerogel foam uniformly doped with either titanium or scandium inserted into an undoped aerogel foam package. This creates a localized doped foam region to provide spatial resolution for the measurement. Development and characterization of the foams is a key challenge in addition to machining and assembling the two foams so they mate without gaps. The foam package is inserted into a beryllium sleeve and mounted on a gold hohlraum. The target is mounted to a holder created using additive manufacturingmore » and mounted on a stalk. As a result, the manufacturing of the components, along with assembly and metrology of the target are described here.« less
Developing targets for radiation transport experiments at the Omega laser facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capelli, Deanna; Charsley-Groffman, C. A.; Randolph, Randall Blaine
Targets have been developed to measure supersonic radiation transport in aerogel foams using absorption spectroscopy. The target consists of an aerogel foam uniformly doped with either titanium or scandium inserted into an undoped aerogel foam package. This creates a localized doped foam region to provide spatial resolution for the measurement. Development and characterization of the foams is a key challenge in addition to machining and assembling the two foams so they mate without gaps. The foam package is inserted into a beryllium sleeve and mounted on a gold hohlraum. The target is mounted to a holder created using additive manufacturingmore » and mounted on a stalk. As a result, the manufacturing of the components, along with assembly and metrology of the target are described here.« less
Verification of unfold error estimates in the UFO code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fehl, D.L.; Biggs, F.
Spectral unfolding is an inverse mathematical operation which attempts to obtain spectral source information from a set of tabulated response functions and data measurements. Several unfold algorithms have appeared over the past 30 years; among them is the UFO (UnFold Operator) code. In addition to an unfolded spectrum, UFO also estimates the unfold uncertainty (error) induced by running the code in a Monte Carlo fashion with prescribed data distributions (Gaussian deviates). In the problem studied, data were simulated from an arbitrarily chosen blackbody spectrum (10 keV) and a set of overlapping response functions. The data were assumed to have anmore » imprecision of 5% (standard deviation). 100 random data sets were generated. The built-in estimate of unfold uncertainty agreed with the Monte Carlo estimate to within the statistical resolution of this relatively small sample size (95% confidence level). A possible 10% bias between the two methods was unresolved. The Monte Carlo technique is also useful in underdetemined problems, for which the error matrix method does not apply. UFO has been applied to the diagnosis of low energy x rays emitted by Z-Pinch and ion-beam driven hohlraums.« less
Simulations of 2-shock Convergence Scan Shots
NASA Astrophysics Data System (ADS)
Bradley, Paul; Olson, R. E.; Kline, J. L.; MacLaren, S. A.; Ma, T.; Salmonson, J. D.; Kyrala, G. A.; Pino, J.; Dewald, E.; Khan, S.; Sayre, D.; Ralph, J.; Turnbull, D.
2016-10-01
The 2-shock campaign is a joint Los Alamos/Livermore project to investigate the role of shock timing, asymmetry, and shock convergence on the performance of ignition relevant capsules. This campaign uses a simple two step pulse that makes it easier to correlate the effect of changing the laser pulse on the performance of the capsule. The 680 micron outer radius capsule has a CH +1 at% Si ablator approximately 175 microns thick surrounding a DD or HT gas region with fill densities between 0.0085 and 0.00094 g/cc. The capsules are indirectly driven inside a gold hohlraum that is 9.2 mm long by 5.75 mm in diameter. Some capsules had about 3 microns of CD on the inner surface. The CD inner surface capsules utilized HT fuel so that the DT yield arises from mixing of CD shell material into the tritium of the gas region. Our simulated results compare well to the experimental yield, ion temperature, burn width, x-ray size, convergence ratio, and radius versus time data. Work performed by Los Alamos National Laboratory under contract DE-AC52-06NA25396 for the National Nuclear Security Administration of the U.S. Department of Energy.
Laser plasma coupling with moderate Z, long scalelength underdense plasma
NASA Astrophysics Data System (ADS)
Kruer, William; Berger, Richard; Meezan, Nathaniel; Suter, Larry; Moody, John; Glenzer, Siegfried; Stevenson, R. M.; Oades, K.
2004-11-01
Recent experiments1,2 have focussed new attention on the coupling of laser light with moderate Z, long scalelength underdense plasmas. We discuss some intriguing features of these experiments, including a significant reduction of stimulated Raman and Brillouin scattering in higher Z plasmas, such as Krypton and Xenon. Threshold conditions for various instabilities are discussed, and potential consequences of thermal filamentation and self-focussing are explored. The presence of significant temperature modulations in the plasma can lead to a number of interesting effects not usually taken into account, such as ion wave refraction out of hot spots and instability reduction by the long wavelength modulations. We also consider the extrapolation of these results to the higher temperature regimes more relevant to ignition-scale hohlraums. 1. R. M. Stevenson, et. al, Phys. Plasmas 11, 2709 (2004) 2. J. Moody (to be published) Work performed under the auspices of the U.S. DOE by the Lawrence Livermore National Laboratory under Contract W-7405-ENG-48.
The Ignition Physics Campaign on NIF: Status and Progress
NASA Astrophysics Data System (ADS)
Edwards, M. J.; Ignition Team
2016-03-01
We have made significant progress in ICF implosion performance on NIF since the 2011 IFSA. Employing a 3-shock, high adiabat CH (“High-Foot”) design, total neutron yields have increased 10-fold to 6.3 x1015 (a yield of ∼ 17 kJ, which is greater than the energy invested in the DT fuel ∼ 12kJ). At that level, the yield from alpha self-heating is essentially equivalent to the compression yield, indicating that we are close to the alpha self-heating regime. Low adiabat, 4-shock High Density Carbon (HDC) capsules have been imploded in conventional gas-filled hohlraums, and employing a 6 ns, 2-shock pulse, HDC capsules were imploded in near-vacuum hohlraums with overall coupling ∼ 98%. Both the 4- and 2-shock HDC capsules had very low mix and high yield over simulated performance. Rugby holraums have demonstrated uniform x-ray drive with minimal Cross Beam Energy Transfer (CBET), and we have made good progress in measuring and modelling growth of ablation front hydro instabilities.
Inhibition of crossed-beam energy transfer induced by expansion-velocity fluctuations
NASA Astrophysics Data System (ADS)
Neuville, C.; Glize, K.; Loiseau, P.; Masson-Laborde, P.-E.; Debayle, A.; Casanova, M.; Baccou, C.; Labaune, C.; Depierreux, S.
2018-04-01
Crossed-beam energy transfer between three laser beams has been experimentally investigated in a flowing plasma. Time-evolution measurements of the amplification of a first beam by a second beam highlighted the inhibition of energy transfer by hydrodynamic modifications of the plasma in the crossing volume due to the propagation of a third beam. According to 3D simulations and an analytical model, it appears that the long-wavelength expansion-velocity fluctuations produced by the propagation of the third beam in the crossing volume are responsible for this mitigation of energy transfer. This effect could be a cause of the over-estimation of the amount of the transferred energy in indirect-drive inertial confinement fusion experiments. Besides, tuning such long-wavelength fluctuations could be a way to completely inhibit CBET at the laser entrance holes of hohlraums.
A new compact, high sensitivity neutron imaging systema)
NASA Astrophysics Data System (ADS)
Caillaud, T.; Landoas, O.; Briat, M.; Rossé, B.; Thfoin, I.; Philippe, F.; Casner, A.; Bourgade, J. L.; Disdier, L.; Glebov, V. Yu.; Marshall, F. J.; Sangster, T. C.; Park, H. S.; Robey, H. F.; Amendt, P.
2012-10-01
We have developed a new small neutron imaging system (SNIS) diagnostic for the OMEGA laser facility. The SNIS uses a penumbral coded aperture and has been designed to record images from low yield (109-1010 neutrons) implosions such as those using deuterium as the fuel. This camera was tested at OMEGA in 2009 on a rugby hohlraum energetics experiment where it recorded an image at a yield of 1.4 × 1010. The resolution of this image was 54 μm and the camera was located only 4 meters from target chamber centre. We recently improved the instrument by adding a cooled CCD camera. The sensitivity of the new camera has been fully characterized using a linear accelerator and a 60Co γ-ray source. The calibration showed that the signal-to-noise ratio could be improved by using raw binning detection.
Uncertainty analysis technique for OMEGA Dante measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
May, M. J.; Widmann, K.; Sorce, C.
2010-10-15
The Dante is an 18 channel x-ray filtered diode array which records the spectrally and temporally resolved radiation flux from various targets (e.g., hohlraums, etc.) at x-ray energies between 50 eV and 10 keV. It is a main diagnostic installed on the OMEGA laser facility at the Laboratory for Laser Energetics, University of Rochester. The absolute flux is determined from the photometric calibration of the x-ray diodes, filters and mirrors, and an unfold algorithm. Understanding the errors on this absolute measurement is critical for understanding hohlraum energetic physics. We present a new method for quantifying the uncertainties on the determinedmore » flux using a Monte Carlo parameter variation technique. This technique combines the uncertainties in both the unfold algorithm and the error from the absolute calibration of each channel into a one sigma Gaussian error function. One thousand test voltage sets are created using these error functions and processed by the unfold algorithm to produce individual spectra and fluxes. Statistical methods are applied to the resultant set of fluxes to estimate error bars on the measurements.« less
Uncertainty Analysis Technique for OMEGA Dante Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
May, M J; Widmann, K; Sorce, C
2010-05-07
The Dante is an 18 channel X-ray filtered diode array which records the spectrally and temporally resolved radiation flux from various targets (e.g. hohlraums, etc.) at X-ray energies between 50 eV to 10 keV. It is a main diagnostics installed on the OMEGA laser facility at the Laboratory for Laser Energetics, University of Rochester. The absolute flux is determined from the photometric calibration of the X-ray diodes, filters and mirrors and an unfold algorithm. Understanding the errors on this absolute measurement is critical for understanding hohlraum energetic physics. We present a new method for quantifying the uncertainties on the determinedmore » flux using a Monte-Carlo parameter variation technique. This technique combines the uncertainties in both the unfold algorithm and the error from the absolute calibration of each channel into a one sigma Gaussian error function. One thousand test voltage sets are created using these error functions and processed by the unfold algorithm to produce individual spectra and fluxes. Statistical methods are applied to the resultant set of fluxes to estimate error bars on the measurements.« less
NASA Astrophysics Data System (ADS)
Hohenberger, Matthias; Casey, D. T.; Thomas, C. A.; Baker, K. L.; Spears, B. K.; Khan, S. F.; Hurricane, O. A.; Callahan, D.
2017-10-01
The Bigfoot approach to indirect-drive inertial confinement fusion (ICF) has been developed as a compromise trading high-convergence and areal densities for high implosion velocities, large adiabats and hydrodynamic stability. Shape control and predictability are maintained by using relatively short laser pulses and merging the shocks within the DT-ice layer. These design choices ultimately limit the theoretically achievable performance, and one strategy to increase the 1-D performance is to reduce the shell adiabat by extending the pulse shape. However, this can result in loss of low-mode symmetry control, as the hohlraum ``bubble,'' the high-Z material launched by the outer-cone beams during the early part of the laser pulse, has more time to expand and will eventually intercept inner-cone beams preventing them from reaching the hohlraum waist, thus losing equatorial capsule drive. We report on experimental results exploring shape control and predictability with extended pulse shapes in BigFoot implosions. Prepared by LLNL under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Barrios, M. A.; Liedahl, D. A.; Schneider, M. B.; Jones, O.; Brown, G. V.; Regan, S. P.; Fournier, K. B.; Moore, A. S.; Ross, J. S.; Landen, O.; Kauffman, R. L.; Nikroo, A.; Kroll, J.; Jaquez, J.; Huang, H.; Hansen, S. B.; Callahan, D. A.; Hinkel, D. E.; Bradley, D.; Moody, J. D.
2016-05-01
The first measurement of the electron temperature (Te) inside a National Ignition Facility hohlraum is obtained using temporally resolved K-shell X-ray spectroscopy of a mid-Z tracer dot. Both isoelectronic- and interstage-line ratios are used to calculate the local Te via the collisional-radiative atomic physics code SCRAM [Hansen et al., High Energy Density Phys 3, 109 (2007)]. The trajectory of the mid-Z dot as it is ablated from the capsule surface and moves toward the laser entrance hole (LEH) is measured using side-on x-ray imaging, characterizing the plasma flow of the ablating capsule. Data show that the measured dot location is farther away from the LEH in comparison to the radiation-hydrodynamics simulation prediction using HYDRA [Marinak et al., Phys. Plasmas 3, 2070 (1996)]. To account for this discrepancy, the predicted simulation Te is evaluated at the measured dot trajectory. The peak Te, measured to be 4.2 keV ± 0.2 keV, is ˜0.5 keV hotter than the simulation prediction.
Why So Many More Americans Die in Fires
NASA Astrophysics Data System (ADS)
Cranberg, Lawrence
2009-03-01
``Why So Many More Americans Die in Fires'' is the headline on Page 3 of The New York Times' full-page story on December 22, l991, by D. G. McNeil, Jr. This is a partial report based on personal experience with domestic fire making for thermal comfort since l975 (1) and a published claim (2) of unique safety benefits.The McNeil report attributes the problem to ``A Case of Bad Attitude'' and ``A Reliance on Technology.'' That implies a ``bad attitude'' on the part of technologists - a conclusion consistent with this technologist's thirty-five years of experience with fellow technologists, who has found ``buck-passing'' the favorite recourse of technologists in the highest places in government even though, as McNeil has written, ``Many children never wake up. Smoke or toxic gases overcome them as they sleep. When fire fighters lift them, their imprints remain.'' Regrettably, in this author's experience, the courts have also displayed a ``bad attitude'' where ``life and death issues'' have been pleaded. 1. L. Cranberg, Slot Flame Stablity with Hohlraum Radiation Pattern, BAPS, Series II, Vol. 20, No. 9, Sept., l978. 2. L. Cranberg, Fireplace Firesafety, Fire Journal, Letter, May/June,l987
Simulations of the impact of localized defects on ICF implosions
NASA Astrophysics Data System (ADS)
Milovich, Jose; Robey, Harry; Weber, Christopher; Sepke, Scott; Clark, Daniel; Koning, Joe; Smalyuk, Vladimir; Martinez, David
2016-10-01
Recent experiments have identified the tent membranes that support the capsule as a source of a large azimuthal perturbation at the point of departure from the surface. Highly-resolved 2D simulations have shown that vorticity generated by the interaction of the ablated capsule material and the tent allows for the penetration of cold ablator material into the burning hot-spot likely cooling the central burning plasma. These observations have motivated the search for alternative supporting methods. One of the techniques being considered uses the existing fill-tube (needed to deliver the cryogenic fuel) supported against gravity by a thin rod (cantilever) spanning the hohlraum diameter. Recent experiments have assessed the perturbation induced on the target as the rod is positioned along the fill-tube at different distances from the capsule surface and found optical-depth modulations oriented along the cantilever direction, possibly caused by laser spot shadowing or hydro-coupling. To fully understand the data we have undertaken an extensive study of highly-resolved 2D integrated simulations abled to resolve the 12 um diameter cantilever. Results of our computations and comparison with the experiments will be presented. Prepared by LLNL under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Berzak Hopkins, L.; Lepape, S.; Divol, L.; Pak, A.; Goyon, C.; Dewald, E.; Ho, D. D.; Khan, S. F.; Weber, C.; Meezan, N. B.; Biener, J.; Grim, G.; Ma, T.; Milovich, J. L.; Moore, A. S.; Nikroo, A.; Ross, J. S.; Stadermann, M.; Volegov, P.; Wild, C.; Callahan, D. A.; Hurricane, O. A.; Hsing, W. W.; Town, R. P. J.; Edwards, M. J.
2017-10-01
We have demonstrated nearly 3x alpha-heating at the National Ignition Facility by using tungsten-doped High-Density Carbon (HDC) capsules in low gasfill, unlined, uranium (DU) hohlraums. Shot N170601 achieved a primary neutron yield of 1.5 x 1016 neutrons with a Deuterium-Tritium ion temperature of 4.7 keV. Predecessor experiments demonstrated high-performing, efficient performance, as noted through high neutron yield production per laser energy input. Building on these `subscale' results, follow-on experiments utilize an 8% larger target than the predecessor campaign, to increase the capsule surface area and absorbed energy. The capsule fill tube has been reduced in size from 10 to 5 micron diameter, and the laser design implements a new, ``drooping'' technique for the end of the pulse, to reduce the time between laser shut-off and capsule peak emission while still maintaining capsule mass remaining. Design of the current platform as well as avenues to potentially improve performance based on these experiments will be discussed. Work performed under the auspices of the U.S. D.O.E. by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, W. A.; Koning, J. M.; Strozzi, D. J.
Here, we present radiation-hydrodynamic simulations of self-generated magnetic field in a hohlraum, which show an increased temperature in large regions of the underdense fill. Non-parallel gradients in electron density and temperature in a laser-heated plasma give rise to a self-generated field by the “Biermann battery” mechanism. Here, HYDRA simulations of three hohlraum designs on the National Ignition Facility are reported, which use a partial magnetohydrodynamic (MHD) description that includes the self-generated source term, resistive dissipation, and advection of the field due to both the plasma flow and the Nernst term. Anisotropic electron heat conduction parallel and perpendicular to the fieldmore » is included, but not the Righi-Leduc heat flux. The field strength is too small to compete significantly with plasma pressure, but affects plasma conditions by reducing electron heat conduction perpendicular to the field. Significant reductions in heat flux can occur, especially for high Z plasma, at modest values of the Hall parameter, Ω eτ ei≲1, where Ω e = eB/m ec and τ ei is the electron-ion collision time. The inclusion of MHD in the simulations leads to 1 keV hotter electron temperatures in the laser entrance hole and high- Z wall blowoff, which reduces inverse-bremsstrahlung absorption of the laser beam. This improves propagation of the inner beams pointed at the hohlraum equator, resulting in a symmetry shift of the resulting capsule implosion towards a more prolate shape. The time of peak x-ray production in the capsule shifts later by only 70 ps (within experimental uncertainty), but a decomposition of the hotspot shape into Legendre moments indicates a shift of P 2/P 0 by ~20%. As a result, this indicates that MHD cannot explain why simulated x-ray drive exceeds measured levels, but may be partially responsible for failures to correctly model the symmetry.« less
Plasma interpenetration study on the Omega laser facility
NASA Astrophysics Data System (ADS)
Le Pape, Sebastien; Divol, Laurent; Ross, Steven; Wilks, Scott; Amendt, Peter; Berzak Hopkins, Laura; Huser, Gael; Moody, John; MacKinnon, Andy; Meezan, Nathan
2016-10-01
The Near Vacuum Campaign on the National Ignition Facility has sparked an interest on the nature of the gold/carbon interface at high velocity, high electron temperature, low-electron density. Indeed radiation-hydrodynamic simulations have been unable to accurately reproduce the experimental shape of the hot spot resulting from implosion driven in Near Vacuum Holhraum. The experimental data are suggesting that the inner beams are freely propagating to the waist of the hohlraum when simulations predict that a density ridge at the gold/carbon interface blocks the inner beams. The discrepancy between experimental data and simulation might be explained by the fluid description of the plasma interface in a rad-hydro code which is probably not valid in when two plasma at high velocity, high temperature are meeting. To test our assumption, we went to the Omega laser facility to study gold/carbon interface in the relevant regime. Time resolved images of the self-emission as well as Thomson scattering data will be presented. For the first time, a transition from a multifluid to a single fluid is observed as plasmas are interacting. This work was performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
Ignition at NIF: Where we have been, and where we are going
NASA Astrophysics Data System (ADS)
Rosen, Mordecai
2014-10-01
This talk reviews results from the past several years in the pursuit of indirect-drive ignition on the National Ignition Facility (NIF), and summarizes ideas and plans for moving forward. We describe the challenging issues encountered by the low-adiabat (``low foot''), ``ignition point design'' approach, such as: hydrodynamic instability growth and ensuing mix of the CH ablator into the DT hot spot; very high convergence implosions with resultant imperfect symmetry; possible other issues such as hot electron preheat. The complex interplay among these issues is a key theme. We describe the progress that has been made in the understanding and diagnosis of these issues. We present the results from the high-adiabat (``high foot'') approach, with its property of relative hydrodynamic stability when compared to the low foot approach, its somewhat reduced convergence ratio, and its achievement of entering the alpha heating regime, an important milestone on the road to ignition. Paths forward towards ignition include excursions from the present approaches in pulse shape, hohlraum, and choice of ablator. Further pulse shaping can lower the adiabat of the high foot approach and lead to higher performance if it continues to retain its hydrodynamic stability properties. Conversely, pulse shaping can provide for ``adiabat-shaping'' for the low foot approach for it to try to attain better stability. A plethora of hohlraum approaches (size, shape, materials, gas fills) can improve the zero-order drive, as well as the low-mode shape of the implosion. Diagnosing, and then correcting, the time dependence of the symmetry is also a key issue. A variety of ablator materials, along with carefully engineering the drive spectrum, can increase implosion velocity. The high-density carbon ablator has shown promising results in this regard. Some combinations of these developments may allow for an operating space that has a relatively short pulse, in a near vacuum hohlraum. That combination has shown, to date, much better coupling efficiency, and a much lower level of laser plasma instabilities (thus, less electron preheat), than the longer pulse, full gas-fill, ignition hohlraums. Advances in modeling, experimental platforms, and diagnostic techniques developed over the past several years have been key enabling technologies in moving towards ignition, and we anticipate further advances as well. We gratefully acknowledge the dedicated efforts of many hundreds of personnel across the globe who have participated in the laser construction, operation, target fabrication, and all aspects of the target physics program, that have taken us this far towards ignition. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Overview of Target Fabrication in Support of Sandia National Laboratories
NASA Astrophysics Data System (ADS)
Schroen, Diana; Breden, Eric; Florio, Joseph; Grine-Jones, Suzi; Holt, Randy; Krych, Wojtek; Metzler, James; Russell, Chris; Stolp, Justin; Streit, Jonathan; Youngblood, Kelly
2004-11-01
Sandia National Laboratories has succeeded in making its pulsed power driver, the Z machine, a valuable testbed for a great variety of experiments. These experiments include ICF, weapon physics, Equation of State and astrophysics. There are four main target types: Dynamic Hohlraum, Double Pinch, Fast Igniter and EOS. The target sizes are comparable to projected NIF sizes. For example, capsules up to 5 mm have been fielded. This talk will focus on the assembly challenges and the use of foams to create these targets. For many targets, diagnostics and capsules are embedded in the foams, and foam dopants have been added. It is the 14 mg/cc foam target with an embedded capsule (containing deuterium) that has reproducibly produced thermonuclear neutrons. For all target types, the characterization and documentation has had to develop to ensure understanding of target performance. To achieve the required resolution we are using a Nikon automated microscope and a custom OMEGA/NIF target assembly system. Our drive for quality has lead us develop a management system that been registered to ISO 9001.
Ma, T; Patel, P K; Izumi, N; Springer, P T; Key, M H; Atherton, L J; Benedetti, L R; Bradley, D K; Callahan, D A; Celliers, P M; Cerjan, C J; Clark, D S; Dewald, E L; Dixit, S N; Döppner, T; Edgell, D H; Epstein, R; Glenn, S; Grim, G; Haan, S W; Hammel, B A; Hicks, D; Hsing, W W; Jones, O S; Khan, S F; Kilkenny, J D; Kline, J L; Kyrala, G A; Landen, O L; Le Pape, S; MacGowan, B J; Mackinnon, A J; MacPhee, A G; Meezan, N B; Moody, J D; Pak, A; Parham, T; Park, H-S; Ralph, J E; Regan, S P; Remington, B A; Robey, H F; Ross, J S; Spears, B K; Smalyuk, V; Suter, L J; Tommasini, R; Town, R P; Weber, S V; Lindl, J D; Edwards, M J; Glenzer, S H; Moses, E I
2013-08-23
Deuterium-tritium inertial confinement fusion implosion experiments on the National Ignition Facility have demonstrated yields ranging from 0.8 to 7×10(14), and record fuel areal densities of 0.7 to 1.3 g/cm2. These implosions use hohlraums irradiated with shaped laser pulses of 1.5-1.9 MJ energy. The laser peak power and duration at peak power were varied, as were the capsule ablator dopant concentrations and shell thicknesses. We quantify the level of hydrodynamic instability mix of the ablator into the hot spot from the measured elevated absolute x-ray emission of the hot spot. We observe that DT neutron yield and ion temperature decrease abruptly as the hot spot mix mass increases above several hundred ng. The comparison with radiation-hydrodynamic modeling indicates that low mode asymmetries and increased ablator surface perturbations may be responsible for the current performance.
Progress on LMJ targets for ignition
NASA Astrophysics Data System (ADS)
Cherfils-Clérouin, C.; Boniface, C.; Bonnefille, M.; Dattolo, E.; Galmiche, D.; Gauthier, P.; Giorla, J.; Laffite, S.; Liberatore, S.; Loiseau, P.; Malinie, G.; Masse, L.; Masson-Laborde, P. E.; Monteil, M. C.; Poggi, F.; Seytor, P.; Wagon, F.; Willien, J. L.
2009-12-01
Targets designed to produce ignition on the Laser Megajoule (LMJ) are being simulated in order to set specifications for target fabrication. The LMJ experimental plans include the attempt of ignition and burn of an ICF capsule with 160 laser beams, delivering up to 1.4 MJ and 380 TW. New targets needing reduced laser energy with only a small decrease in robustness have then been designed for this purpose. Working specifically on the coupling efficiency parameter, i.e. the ratio of the energy absorbed by the capsule to the laser energy, has led to the design of a rugby-ball shaped cocktail hohlraum; with these improvements, a target based on the 240-beam A1040 capsule can be included in the 160-beam laser energy-power space. Robustness evaluations of these different targets shed light on critical points for ignition, which can trade off by tightening some specifications or by preliminary experimental and numerical tuning experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, Douglas Carl; Loomis, Eric Nicholas
2017-08-17
We are anticipating our first NIF double shell shot using an aluminum ablator and a glass inner shell filled with deuterium shown in figure 1. The expected yield is between a few 10 10 to a few 10 11 dd neutrons. The maximum credible yield is 5e+13. This memo describes why, and what would be expected with variations on the target. This memo evaluates the maximum credible yield for deuterium filled double shell capsule targets with an aluminum ablator shell and a glass inner shell in yield Category A (< 10 14 neutrons). It also pertains to fills of gasmore » diluted with hydrogen, helium ( 3He or 4He), or any other fuel except tritium. This memo does not apply to lower z ablator dopants, such as beryllium, as this would increase the ablation efficiency. This evaluation is for 5.75 scale hohlraum targets of either gold or uranium with helium gas fills with density between 0 and 1.6 mg/cc. It could be extended to other hohlraum sizes and shapes with slight modifications. At present only laser pulse energies up to 1.5 MJ were considered with a single step laser pulse of arbitrary shape. Since yield decreases with laser energy for this target, the memo could be extended to higher laser energies if desired. These maximum laser parameters of pulses addressed here are near the edge of NIF’s capability, and constitute the operating envelope for experiments covered by this memo. We have not considered multiple step pulses, would probably create no advantages in performance, and are not planned for double shell capsules. The main target variables are summarized in Table 1 and explained in detail in the memo. Predicted neutron yields are based on 1D and 2D clean simulations.« less
NASA Astrophysics Data System (ADS)
Clark, D. S.; Weber, C. R.; Eder, D. C.; Haan, S. W.; Hammel, B. A.; Hinkel, D. E.; Jones, O. S.; Kritcher, A. L.; Marinak, M. M.; Milovich, J. L.; Patel, P. K.; Robey, H. F.; Salmonson, J. D.; Sepke, S. M.
2016-05-01
Several dozen high convergence inertial confinement fusion ignition experiments have now been completed on the National Ignition Facility (NIF). These include both “low foot” experiments from the National Ignition Campaign (NIC) and more recent “high foot” experiments. At the time of the NIC, there were large discrepancies between simulated implosion performance and experimental data. In particular, simulations over predicted neutron yields by up to an order of magnitude, and some experiments showed clear evidence of mixing of ablator material deep into the hot spot that could not be explained at the time. While the agreement between data and simulation improved for high foot implosion experiments, discrepancies nevertheless remain. This paper describes the state of detailed modelling of both low foot and high foot implosions using 1-D, 2-D, and 3-D radiation hydrodynamics simulations with HYDRA. The simulations include a range of effects, in particular, the impact of the plastic membrane used to support the capsule in the hohlraum, as well as low-mode radiation asymmetries tuned to match radiography measurements. The same simulation methodology is applied to low foot NIC implosion experiments and high foot implosions, and shows a qualitatively similar level of agreement for both types of implosions. While comparison with the experimental data remains imperfect, a reasonable level of agreement is emerging and shows a growing understanding of the high-convergence implosions being performed on NIF.
Use of a priori spectral information in the measurement of x-ray flux with filtered diode arrays
Marrs, R. E.; Widmann, K.; Brown, G. V.; ...
2015-10-29
Filtered x-ray diode (XRD) arrays are often used to measure x-ray spectra vs. time from spectrally continuous x-ray sources such as hohlraums. A priori models of the incident x-ray spectrum enable a more accurate unfolding of the x-ray flux as compared to the standard technique of modifying a thermal Planckian with spectral peaks or dips at the response energy of each filtered XRD channel. A model x-ray spectrum consisting of a thermal Planckian, a Gaussian at higher energy, and (in some cases) a high energy background provides an excellent fit to XRD-array measurements of x-ray emission from laser heated hohlraums.more » If high-resolution measurements of part of the x-ray emission spectrum are available, that information can be included in the a priori model. In cases where the x-ray emission spectrum is not Planckian, candidate x-ray spectra can be allowed or excluded by fitting them to measured XRD voltages. Here, examples are presented from the filtered XRD arrays, named Dante, at the National Ignition Facility and the Laboratory for Laser Energetics.« less
Hybrid indirect-drive/direct-drive target for inertial confinement fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perkins, Lindsay John
A hybrid indirect-drive/direct drive for inertial confinement fusion utilizing laser beams from a first direction and laser beams from a second direction including a central fusion fuel component; a first portion of a shell surrounding said central fusion fuel component, said first portion of a shell having a first thickness; a second portion of a shell surrounding said fusion fuel component, said second portion of a shell having a second thickness that is greater than said thickness of said first portion of a shell; and a hohlraum containing at least a portion of said fusion fuel component and at leastmore » a portion of said first portion of a shell; wherein said hohlraum is in a position relative to said first laser beam and to receive said first laser beam and produce X-rays that are directed to said first portion of a shell and said fusion fuel component; and wherein said fusion fuel component and said second portion of a shell are in a position relative to said second laser beam such that said second portion of a shell and said fusion fuel component receive said second laser beam.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrios, M. A.; Liedahl, D. A.; Schneider, M. B.
The first measurement of the electron temperature (T{sub e}) inside a National Ignition Facility hohlraum is obtained using temporally resolved K-shell X-ray spectroscopy of a mid-Z tracer dot. Both isoelectronic- and interstage-line ratios are used to calculate the local T{sub e} via the collisional–radiative atomic physics code SCRAM [Hansen et al., High Energy Density Phys 3, 109 (2007)]. The trajectory of the mid-Z dot as it is ablated from the capsule surface and moves toward the laser entrance hole (LEH) is measured using side-on x-ray imaging, characterizing the plasma flow of the ablating capsule. Data show that the measured dotmore » location is farther away from the LEH in comparison to the radiation-hydrodynamics simulation prediction using HYDRA [Marinak et al., Phys. Plasmas 3, 2070 (1996)]. To account for this discrepancy, the predicted simulation T{sub e} is evaluated at the measured dot trajectory. The peak T{sub e}, measured to be 4.2 keV ± 0.2 keV, is ∼0.5 keV hotter than the simulation prediction.« less
BigFoot: a program to reduce risk for indirect drive laser fusion
NASA Astrophysics Data System (ADS)
Thomas, Cliff
2017-10-01
The conventional approach to inertial confinement fusion (ICF) with indirect drive is to design for high convergence (40), DT areal density, and target gain. By construction, this strategy is challenged by low-mode control of the implosion (Legendre P2 and P4), instability, and difficulties interpreting data. Here we consider an alternative - an approach to ICF that emphasizes control. To begin, we optimize for hohlraum predictability, and coupling to the capsule. Rather than focus on density, we work on making a high-energy hotspot we can diagnose and ``tune'' at low convergence (20). Though gain is reduced, this makes it possible to study (and improve) stagnation physics in a regime relevant to ignition (1E16-1E17). Further improvements can then be made with small, incremental increases in areal density, target scale, etc. Details regarding the ``BigFoot'' platform and pulse are reported, including recent findings. Work that could enable additional improvements in capsule stability and hohlraum control will also be discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Computer acquired performance data from a chemically vapor-deposited-rhenium, niobium planar diode
NASA Technical Reports Server (NTRS)
Manista, E. J.; Morris, J. F.; Smith, A. L.; Lancashire, R. B.
1973-01-01
Performance data from a chemically vapor-deposited-rhenium, niobium thermionic converter are presented. The planar converter has a guard-ringed collector and a nominal fixed spacing of 0.25 mm (10 mils). The data were obtained by using a computerized acquisition system and are available on request to one of the authors on microfiche as individual and composite parametric current, voltage curves. The parameters are the temperatures of the emitter T sub E collector T sub C, and cesium reservoir T sub R. The composite plots have constant T sub E and varying T sub C or T sub R, or both. Current, voltage envelopes having constant T sub E with and without fixed T sub C appear in the present report. The diode was tested at increments between 1600 and 2000 K for the emitter Hohlraum, 800 to 1100 K for the collector, and 540 and 650 K for the reservoir. A total of 312 current, voltage curves were obtained in the present performance evaluation. Current, voltage envelopes from three rhenium emitter converters evaluated in the present program are also given. The data are compared at commom emitter Hohlraum temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perry, Theodore Sonne; Dodd, Evan S.; DeVolder, Barbara Gloria
X-ray opacity is a crucial factor in all radiation-hydrodynamics calculations, yet it is one of the least validated of the material properties in simulation codes for high-energy-density plasmas. Recent opacity experiments at the Sandia Z-machine have shown up to factors of two discrepancies between theory and experiment for various mid-Z elements (Fe, Cr, Ni). These discrepancies raise doubts regarding the accuracy of the opacity models which are used in ICF and stewardship as well as in astrophysics. Therefore, a new experimental opacity platform has been developed on the National Ignition Facility (NIF), not only to verify the Z-machine experimental results,more » but also to extend the experiments to other temperatures and densities. Within the context of the national opacity strategy, the first NIF experiments were directed towards measuring the opacity of iron at a temperature of ~160 eV and an electron density of ~7xl021 cm-3(Anchor 1). The Z data agree with theory at these conditions, providing a reference point for validation of the NIF platform. Development shots on NIF have demonstrated the ability to create a sufficiently bright point backlighter using an imploding plastic capsule, and also a combined hohlraum, sample and laser drive able to produce iron plasmas at the desired conditions. Spectrometer qualification has been completed, albeit with additional improvements planned, and the first iron absorption spectra have now been obtained.« less
Buoyancy driven mixing of miscible fluids by volumetric energy deposition of microwaves.
Wachtor, Adam J; Mocko, Veronika; Williams, Darrick J; Goertz, Matthew P; Jebrail, Farzaneh F
2013-01-01
An experiment that seeks to investigate buoyancy driven mixing of miscible fluids by microwave volumetric energy deposition is presented. The experiment involves the use of a light, non-polar fluid that initially rests on top of a heavier fluid which is more polar. Microwaves preferentially heat the polar fluid, and its density decreases due to thermal expansion. As the microwave heating continues, the density of the lower fluid eventually becomes less than that of the upper, and buoyancy driven Rayleigh-Taylor mixing ensues. The choice of fluids is crucial to the success of the experiment, and a description is given of numerous fluid combinations considered and characterized. After careful consideration, the miscible pair of toluene/tetrahydrofuran (THF) was determined as having the best potential for successful volumetric energy deposition buoyancy driven mixing. Various single fluid calibration experiments were performed to facilitate the development of a heating theory. Thereafter, results from two-fluid mixing experiments are presented that demonstrate the capability of this novel Rayleigh-Taylor driven experiment. Particular interest is paid to the onset of buoyancy driven mixing and unusual aspects of the experiment in the context of typical Rayleigh-Taylor driven mixing.
Multiple Experimental Platform Consistency at NIF
NASA Astrophysics Data System (ADS)
Benedetti, L. R.; Barrios, M. A.; Bradley, D. K.; Eder, D. C.; Khan, S. F.; Izumi, N.; Jones, O. S.; Ma, T.; Nagel, S. R.; Peterson, J. L.; Rygg, J. R.; Spears, B. K.; Town, R. P.
2013-10-01
ICF experiments at NIF utilize several platforms to assess different metrics of implosion quality. In addition to the point design-a target capsule of DT ice inside a thin plastic ablator-notable platforms include: (i) Symmetry Capsules(SymCaps), mass-adjusted CH capsules filled with DT gas for similar hydrodynamic performance without the need for a DT crystal; (ii) D:3He filled SymCaps, designed for low neutron yield implosions to accommodate a variety of x-ray and optical diagnostics; and (iii) Convergent Ablators, SymCaps coupled with x-radiography to assess in-flight velocity and symmetry of the implosion over ~1 ns before stagnation and burn. These platforms are expected to be good surrogates for one another, and their hohlraum and implosion performance variations have been simulated in detail. By comparing results of similar experiments, we isolate platform-specific variations. We focus on the symmetry, convergence, and timing of x-ray emission as observed in each platform as this can be used to infer stagnation pressure and temperature. This work performed under the auspices of the U.S. Dept. of Energy by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-640865.
Inertial Conference Fusion Semiannual Report October 1999 - March 2000, Volume 1, Number 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miguel, Al; Carpenter, Jason; Cassady, Cindy
2000-03-01
This first issue of the ''ICF Semiannual Report'' contains articles whose diverse subjects attest to the broad technical and scientific challenges that are at the forefront of the ICF program at LLNL. The first article describes the progress being made at solving the surface roughness problem on capsule mandrels. All NIF capsule options, except machined beryllium, require a mandrel upon which the ablator is deposited. This mandrel sets the baseline sphericity of the final capsule. Problems involving defects in the mandrel have been overcome using various techniques so that 2-mm-size mandrels can now be made that meet the NIF designmore » specification. The second article validates and provides a detailed numerical investigation of the shadowgraph technique currently used to diagnose the surface roughness of a fuel ice layer inside of a transparent capsule. It is crucial for the success of the indirect-drive ignition targets that the techniques used to characterize ice-surface roughness be well understood. This study identifies methods for analyzing the bright band that give an accurate measure of the ice-surface roughness. The third article describes a series of realistic laser and target modifications that can lead to 3-4 times more energy coupling and 10 times greater yield from a NIF indirect-drive ignition target. Target modifications include using various mixtures of rare-earth and other high-Z metals as hohlraum wall material and adjusting the laser-entrance-hole size and the case-to-capsule size ratio. Each option is numerically examined separately and together. The fourth article reviews how detailed x-ray and Thomson scattering measurements from a high-density and high-temperature gasbag plasma are used to test spectroscopic modeling techniques. There is good agreement between the model and experimental dielectronic capture satellite intensities. However, improvements are required in the modeling of inner shell collisionally populated satellite states. These improvements can have important implications for the interpretation of inertial confinement fusion capsule implosions. The fifth article reports on experiments using the OMEGA laser that investigate symmetry control in hohlraums. The experiments explore a control method where different pointings are used for different groups of beams and the beams are staggered in time. This gives a dynamic beam pointing adjustment during the laser pulse. Measurements of the capsule symmetry show agreement with simulations and show the ability to control low-mode drive asymmetries. The sixth article reports on the observation of an intense high-energy proton beam produced by irradiating a thin-foil target with the petawatt laser. This experiment is important for understanding new mechanisms of ion acceleration using high-intensity short-pulse lasers. Proton beams of the type observed here could be of interest for applications ranging from medicine to fast ignition.« less
Asymmetric-shell ignition capsule design to tune the low-mode asymmetry during the peak drive
NASA Astrophysics Data System (ADS)
Gu, Jianfa; Dai, Zhensheng; Song, Peng; Zou, Shiyang; Ye, Wenhua; Zheng, Wudi; Gu, Peijun; Wang, Jianguo; Zhu, Shaoping
2016-08-01
The low-mode radiation flux asymmetry in the hohlraum is a main source of performance degradation in the National Ignition Facility (NIF) implosion experiments. To counteract the deleterious effects of the large positive P2 flux asymmetry during the peak drive, this paper develops a new tuning method called asymmetric-shell ignition capsule design which adopts the intentionally asymmetric CH ablator layer or deuterium-tritium (DT) ice layer. A series of two-dimensional implosion simulations have been performed, and the results show that the intentionally asymmetric DT ice layer can significantly improve the fuel ρR symmetry, hot spot shape, hot spot internal energy, and the final neutron yield compared to the spherical capsule. This indicates that the DT asymmetric-shell capsule design is an effective tuning method, while the CH ablator asymmetric-shell capsule could not correct the fuel ρR asymmetry, and it is not as effective as the DT asymmetric-shell capsule design.
Asymmetric-shell ignition capsule design to tune the low-mode asymmetry during the peak drive
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Jianfa, E-mail: gu-jianfa@iapcm.ac.cn; Dai, Zhensheng, E-mail: dai-zhensheng@iapcm.ac.cn; Song, Peng
2016-08-15
The low-mode radiation flux asymmetry in the hohlraum is a main source of performance degradation in the National Ignition Facility (NIF) implosion experiments. To counteract the deleterious effects of the large positive P2 flux asymmetry during the peak drive, this paper develops a new tuning method called asymmetric-shell ignition capsule design which adopts the intentionally asymmetric CH ablator layer or deuterium-tritium (DT) ice layer. A series of two-dimensional implosion simulations have been performed, and the results show that the intentionally asymmetric DT ice layer can significantly improve the fuel ρR symmetry, hot spot shape, hot spot internal energy, and themore » final neutron yield compared to the spherical capsule. This indicates that the DT asymmetric-shell capsule design is an effective tuning method, while the CH ablator asymmetric-shell capsule could not correct the fuel ρR asymmetry, and it is not as effective as the DT asymmetric-shell capsule design.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodrick, Jonathan P.; Kingham, R. J.; Marinak, M. M.
Three models for nonlocal electron thermal transport are here compared against Vlasov-Fokker-Planck (VFP) codes to assess their accuracy in situations relevant to both inertial fusion hohlraums and tokamak scrape-off layers. The models tested are (i) a moment-based approach using an eigenvector integral closure (EIC) originally developed by Ji, Held, and Sovinec [Phys. Plasmas 16, 022312 (2009)]; (ii) the non-Fourier Landau-fluid (NFLF) model of Dimits, Joseph, and Umansky [Phys. Plasmas 21, 055907 (2014)]; and (iii) Schurtz, Nicolaï, and Busquet’s [Phys. Plasmas 7, 4238 (2000)] multigroup diffusion model (SNB). We find that while the EIC and NFLF models accurately predict the dampingmore » rate of a small-amplitude temperature perturbation (within 10% at moderate collisionalities), they overestimate the peak heat flow by as much as 35% and do not predict preheat in the more relevant case where there is a large temperature difference. The SNB model, however, agrees better with VFP results for the latter problem if care is taken with the definition of the mean free path. Additionally, we present for the first time a comparison of the SNB model against a VFP code for a hohlraum-relevant problem with inhomogeneous ionisation and show that the model overestimates the heat flow in the helium gas-fill by a factor of ~2 despite predicting the peak heat flux to within 16%.« less
Kindt, Merel; van den Hout, Marcel; Arntz, Arnoud; Drost, Jolijn
2008-12-01
Ehlers and Clark [(2000). A cognitive model of posttraumatic stress disorder. Behaviour Research and Therapy, 38, 319-345] propose that a predominance of data-driven processing during the trauma predicts subsequent PTSD. We wondered whether, apart from data-driven encoding, sustained data-driven processing after the trauma is also crucial for the development of PTSD. Both hypotheses were tested in two analogue experiments. Experiment 1 demonstrated that relative to conceptually-driven processing (n=20), data-driven processing after the film (n=14), resulted in more intrusions. Experiment 2 demonstrated that relative to the neutral condition (n=24) and the data-driven encoding condition (n=24), conceptual encoding (n=25) reduced suppression of intrusions and a trend emerged for memory fragmentation. The difference between the two encoding styles was due to the beneficial effect of induced conceptual encoding and not to the detrimental effect of data-driven encoding. The data support the viability of the distinction between data-driven/conceptually-driven processing for the understanding of the development of PTSD.
Mixed signals: The effect of conflicting reward- and goal-driven biases on selective attention.
Preciado, Daniel; Munneke, Jaap; Theeuwes, Jan
2017-07-01
Attentional selection depends on the interaction between exogenous (stimulus-driven), endogenous (goal-driven), and selection history (experience-driven) factors. While endogenous and exogenous biases have been widely investigated, less is known about their interplay with value-driven attention. The present study investigated the interaction between reward-history and goal-driven biases on perceptual sensitivity (d') and response time (RT) in a modified cueing paradigm presenting two coloured cues, followed by sinusoidal gratings. Participants responded to the orientation of one of these gratings. In Experiment 1, one cue signalled reward availability but was otherwise task irrelevant. In Experiment 2, the same cue signalled reward, and indicated the target's most likely location at the opposite side of the display. This design introduced a conflict between reward-driven biases attracting attention and goal-driven biases directing it away. Attentional effects were examined comparing trials in which cue and target appeared at the same versus opposite locations. Two interstimulus interval (ISI) levels were used to probe the time course of attentional effects. Experiment 1 showed performance benefits at the location of the reward-signalling cue and costs at the opposite for both ISIs, indicating value-driven capture. Experiment 2 showed performance benefits only for the long ISI when the target was at the opposite to the reward-associated cue. At the short ISI, only performance costs were observed. These results reveal the time course of these biases, indicating that reward-driven effects influence attention early but can be overcome later by goal-driven control. This suggests that reward-driven biases are integrated as attentional priorities, just as exogenous and endogenous factors.
Plasma instability control toward high fluence, high energy x-ray continuum source
NASA Astrophysics Data System (ADS)
Poole, Patrick; Kirkwood, Robert; Wilks, Scott; Blue, Brent
2017-10-01
X-ray source development at Omega and NIF seeks to produce powerful radiation with high conversion efficiency for material effects studies in extreme fluence environments. While current K-shell emission sources can achieve tens of kJ on NIF up to 22 keV, the conversion efficiency drops rapidly for higher Z K-alpha energies. Pulsed power devices are efficient generators of MeV bremsstrahlung x-rays but are unable to produce lower energy photons in isolation, and so a capability gap exists for high fluence x-rays in the 30 - 100 keV range. A continuum source under development utilizes instabilities like Stimulated Raman Scattering (SRS) to generate plasma waves that accelerate electrons into high-Z converter walls. Optimizing instabilities using existing knowledge on their elimination will allow sufficiently hot and high yield electron distributions to create a superior bremsstrahlung x-ray source. An Omega experiment has been performed to investigate the optimization of SRS and high energy x-rays using Au hohlraums with parylene inner lining and foam fills, producing 10× greater x-ray yield at 50 keV than conventional direct drive experiments on the facility. Experiment and simulation details on this campaign will be presented. This work was performed under the auspices of the US DoE by LLNL under Contract No. DE-AC52-07NA27344.
Ride-along data LOS 130, 170 & LO330 shots z3139, 3140 and 3141
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loisel, Guillaume Pascal
Each instrument records the x-ray emission from the Z-pinch dynamic hohlraum (ZPDH); LOS 130 TIXTLs instruments record the absorption of the pinch backlighter through an expanding NaF/Mg foil; LOS 170 MLM instruments record monochromatic images at 276 and 528 eV energies near and before ZPDH stagnation time; LOS 330 TREX 6A & B: recoded time resolved absorption spectra from a radiatively heated Ne gas.
NASA Astrophysics Data System (ADS)
Clark, D. S.; Hinkel, D. E.; Eder, D. C.; Jones, O. S.; Haan, S. W.; Hammel, B. A.; Marinak, M. M.; Milovich, J. L.; Robey, H. F.; Suter, L. J.; Town, R. P. J.
2013-05-01
More than two dozen inertial confinement fusion ignition experiments with cryogenic deuterium-tritium layers have now been performed on the National Ignition Facility (NIF) [G. H. Miller et al., Opt. Eng. 443, 2841 (2004)]. Each of these yields a wealth of data including neutron yield, neutron down-scatter fraction, burn-averaged ion temperature, x-ray image shape and size, primary and down-scattered neutron image shape and size, etc. Compared to 2-D radiation-hydrodynamics simulations modeling both the hohlraum and the capsule implosion, however, the measured capsule yield is usually lower by a factor of 5 to 10, and the ion temperature varies from simulations, while most other observables are well matched between experiment and simulation. In an effort to understand this discrepancy, we perform detailed post-shot simulations of a subset of NIF implosion experiments. Using two-dimensional HYDRA simulations [M. M. Marinak, et al., Phys. Plasmas 8, 2275 (2001).] of the capsule only, these simulations represent as accurately as possible the conditions of a given experiment, including the as-shot capsule metrology, capsule surface roughness, and ice layer defects as seeds for the growth of hydrodynamic instabilities. The radiation drive used in these capsule-only simulations can be tuned to reproduce quite well the measured implosion timing, kinematics, and low-mode asymmetry. In order to simulate the experiments as accurately as possible, a limited number of fully three-dimensional implosion simulations are also being performed. Despite detailed efforts to incorporate all of the effects known and believed to be important in determining implosion performance, substantial yield discrepancies remain between experiment and simulation. Some possible alternate scenarios and effects that could resolve this discrepancy are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oldenburg, C.M.
2011-06-01
The need for risk-driven field experiments for CO{sub 2} geologic storage processes to complement ongoing pilot-scale demonstrations is discussed. These risk-driven field experiments would be aimed at understanding the circumstances under which things can go wrong with a CO{sub 2} capture and storage (CCS) project and cause it to fail, as distinguished from accomplishing this end using demonstration and industrial scale sites. Such risk-driven tests would complement risk-assessment efforts that have already been carried out by providing opportunities to validate risk models. In addition to experimenting with high-risk scenarios, these controlled field experiments could help validate monitoring approaches to improvemore » performance assessment and guide development of mitigation strategies.« less
Verification of unfold error estimates in the unfold operator code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fehl, D.L.; Biggs, F.
Spectral unfolding is an inverse mathematical operation that attempts to obtain spectral source information from a set of response functions and data measurements. Several unfold algorithms have appeared over the past 30 years; among them is the unfold operator (UFO) code written at Sandia National Laboratories. In addition to an unfolded spectrum, the UFO code also estimates the unfold uncertainty (error) induced by estimated random uncertainties in the data. In UFO the unfold uncertainty is obtained from the error matrix. This built-in estimate has now been compared to error estimates obtained by running the code in a Monte Carlo fashionmore » with prescribed data distributions (Gaussian deviates). In the test problem studied, data were simulated from an arbitrarily chosen blackbody spectrum (10 keV) and a set of overlapping response functions. The data were assumed to have an imprecision of 5{percent} (standard deviation). One hundred random data sets were generated. The built-in estimate of unfold uncertainty agreed with the Monte Carlo estimate to within the statistical resolution of this relatively small sample size (95{percent} confidence level). A possible 10{percent} bias between the two methods was unresolved. The Monte Carlo technique is also useful in underdetermined problems, for which the error matrix method does not apply. UFO has been applied to the diagnosis of low energy x rays emitted by Z-pinch and ion-beam driven hohlraums. {copyright} {ital 1997 American Institute of Physics.}« less
Simulation of Ge Dopant Emission in Indirect-Drive ICF Implosion Experiments
NASA Astrophysics Data System (ADS)
Macfarlane, J. J.; Golovkin, I.; Kulkarni, S.; Regan, S.; Epstein, R.; Mancini, R.; Peterson, K.; Suter, L. J.
2013-10-01
We present results from simulations performed to study the radiative properties of dopants used in inertial confinement fusion indirect-drive capsule implosion experiments on NIF. In Rev5 NIF ignition capsules, a Ge dopant is added to an inner region of the CH ablator to absorb hohlraum x-ray preheat. Spectrally resolved emission from ablator dopants can be used to study the degree of mixing of ablator material into the ignition hot spot. Here, we study the atomic processes that affect the radiative characteristics of these elements using a set of simulation tools to first estimate the evolution of plasma conditions in the compressed target, and then to compute the atomic kinetics of the dopant and the resultant radiative emission. Using estimates of temperature and density profiles predicted by radiation-hydrodynamics simulations, we set up simple 2-D plasma grids where we allow dopant material to be embedded in the fuel, and perform multi-dimensional collisional-radiative simulations using SPECT3D to compute non-LTE atomic level populations and spectral signatures from the dopant. Recently improved Stark-broadened line shape modeling for Ge K-shell lines has been included. The goal is to study the radiative and atomic processes that affect the emergent spectra, including the effects of inner-shell photoabsorption and K α reemission from the dopant.
National Ignition Facility: Experimental plan
NASA Astrophysics Data System (ADS)
1994-05-01
As part of the Conceptual Design Report (CDR) for the National Ignition Facility (NIF), scientists from Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), the University of Rochester's Laboratory for Laser Energetics (UR/LLE), and EG&G formed an NIF Target Diagnostics Working Group. The purpose of the Target Diagnostics Working Group is to prepare conceptual designs of target diagnostics for inclusion in the facility CDR and to determine how these specifications impact the CDR. To accomplish this, a subgroup has directed its efforts at constructing an approximate experimental plan for the ignition campaign of the NIF CDR. The results of this effort are contained in this document, the Experimental Plan for achieving fusion ignition in the NIF. This group initially concentrated on the flow-down requirements of the experimental campaign leading to ignition, which will dominate the initial efforts of the NIF. It is envisaged, however, that before ignition, there will be parallel campaigns supporting weapons physics, weapons effects, and other research. This plan was developed by analyzing the sequence of activities required to finally fire the laser at the level of power and precision necessary to achieve the conditions of an ignition hohlraum target, and to then use our experience in activating and running Nova experiments to estimate the rate of completing these activities.
Brodrick, Jonathan P.; Kingham, R. J.; Marinak, M. M.; ...
2017-09-06
Three models for nonlocal electron thermal transport are here compared against Vlasov-Fokker-Planck (VFP) codes to assess their accuracy in situations relevant to both inertial fusion hohlraums and tokamak scrape-off layers. The models tested are (i) a moment-based approach using an eigenvector integral closure (EIC) originally developed by Ji, Held, and Sovinec [Phys. Plasmas 16, 022312 (2009)]; (ii) the non-Fourier Landau-fluid (NFLF) model of Dimits, Joseph, and Umansky [Phys. Plasmas 21, 055907 (2014)]; and (iii) Schurtz, Nicolaï, and Busquet’s [Phys. Plasmas 7, 4238 (2000)] multigroup diffusion model (SNB). We find that while the EIC and NFLF models accurately predict the dampingmore » rate of a small-amplitude temperature perturbation (within 10% at moderate collisionalities), they overestimate the peak heat flow by as much as 35% and do not predict preheat in the more relevant case where there is a large temperature difference. The SNB model, however, agrees better with VFP results for the latter problem if care is taken with the definition of the mean free path. Additionally, we present for the first time a comparison of the SNB model against a VFP code for a hohlraum-relevant problem with inhomogeneous ionisation and show that the model overestimates the heat flow in the helium gas-fill by a factor of ~2 despite predicting the peak heat flux to within 16%.« less
NASA Astrophysics Data System (ADS)
Brodrick, J. P.; Kingham, R. J.; Marinak, M. M.; Patel, M. V.; Chankin, A. V.; Omotani, J. T.; Umansky, M. V.; Del Sorbo, D.; Dudson, B.; Parker, J. T.; Kerbel, G. D.; Sherlock, M.; Ridgers, C. P.
2017-09-01
Three models for nonlocal electron thermal transport are here compared against Vlasov-Fokker-Planck (VFP) codes to assess their accuracy in situations relevant to both inertial fusion hohlraums and tokamak scrape-off layers. The models tested are (i) a moment-based approach using an eigenvector integral closure (EIC) originally developed by Ji, Held, and Sovinec [Phys. Plasmas 16, 022312 (2009)]; (ii) the non-Fourier Landau-fluid (NFLF) model of Dimits, Joseph, and Umansky [Phys. Plasmas 21, 055907 (2014)]; and (iii) Schurtz, Nicolaï, and Busquet's [Phys. Plasmas 7, 4238 (2000)] multigroup diffusion model (SNB). We find that while the EIC and NFLF models accurately predict the damping rate of a small-amplitude temperature perturbation (within 10% at moderate collisionalities), they overestimate the peak heat flow by as much as 35% and do not predict preheat in the more relevant case where there is a large temperature difference. The SNB model, however, agrees better with VFP results for the latter problem if care is taken with the definition of the mean free path. Additionally, we present for the first time a comparison of the SNB model against a VFP code for a hohlraum-relevant problem with inhomogeneous ionisation and show that the model overestimates the heat flow in the helium gas-fill by a factor of ˜2 despite predicting the peak heat flux to within 16%.
Creating and measuring white dwarf photospheres in a terrestrial laboratory
NASA Astrophysics Data System (ADS)
Falcon, Ross Edward
2014-08-01
As the ultimate fate of nearly all stars, including our Sun, white dwarfs (WDs) hold rich and informative histories in their observable light. To determine a fundamental parameter of WDs, mass, we perform the first measurement of the average gravitational redshift of an ensemble of WDs. We find a larger mean mass than that determined from the primary and expansive technique known as the spectroscopic method. The potential inaccuracy of this method has broad astrophysical implications, including for our understanding of Type 1a supernova progenitors and for constraining the age of the Universe. This motivates us to investigate the WD atmosphere models used with the spectroscopic method, particularly the input theoretical line profiles, by developing a new experimental platform to create plasmas at WD photospheric conditions (Te~1 eV, ne~1017 cm-3). Instead of observing WD spectra to infer the plasma conditions at the surface of the star, we set the conditions and measure the emergent spectra in the laboratory. X-rays from a z-pinch dynamic hohlraum generated at the Z Pulsed Power Facility at Sandia National Laboratories irradiate a gas cell to initiate formation of a large (120x20x10 mm or 24 cm3) plasma. We observe multiple Balmer lines from our plasma in emission and in absorption simultaneously along relatively long (~120 mm) lines of sight perpendicular to the heating radiation. Using a large, radiation-driven plasma aides us to achieve homogeneity along our observed lines of sight. With time-resolved spectroscopy we measure lines at a range of electron densities that spans an order of magnitude, and we do this within one pulsed power shot experiment. Observing our plasma in absorption not only provides the signal-to-noise to measure relative line shapes, it allows us to measure relative line strengths because the lines share the same lower level population. This constrains the theoretical reduction factors used to describe ionization potential depression or the occupation probabilities associated with these Balmer lines. We compare our measured line shapes with the theoretical ones used in WD atmosphere models as part of the first fruits of this rich experimental platform.
Experience-driven plasticity in binocular vision
Klink, P. Christiaan; Brascamp, Jan W.; Blake, Randolph; van Wezel, Richard J.A.
2010-01-01
Summary Experience-driven neuronal plasticity allows the brain to adapt its functional connectivity to recent sensory input. Here we use binocular rivalry [1], an experimental paradigm where conflicting images are presented to the individual eyes, to demonstrate plasticity in the neuronal mechanisms that convert visual information from two separated retinas into single perceptual experiences. Perception during binocular rivalry tended to initially consist of alternations between exclusive representations of monocularly defined images, but upon prolonged exposure, mixture percepts became more prevalent. The completeness of suppression, reflected in the incidence of mixture percepts, plausibly reflects the strength of inhibition that likely plays a role in binocular rivalry [2]. Recovery of exclusivity was possible, but required highly specific binocular stimulation. Documenting the prerequisites for these observed changes in perceptual exclusivity, our experiments suggest experience-driven plasticity at interocular inhibitory synapses, driven by the (lack of) correlated activity of neurons representing the conflicting stimuli. This form of plasticity is consistent with a previously proposed, but largely untested, anti-Hebbian learning mechanism for inhibitory synapses in vision [3, 4]. Our results implicate experience-driven plasticity as one governing principle in the neuronal organization of binocular vision. PMID:20674360
NASA Astrophysics Data System (ADS)
Pak, A.; Divol, L.; Kritcher, A. L.; Ma, T.; Ralph, J. E.; Bachmann, B.; Benedetti, L. R.; Casey, D. T.; Celliers, P. M.; Dewald, E. L.; Döppner, T.; Field, J. E.; Fratanduono, D. E.; Berzak Hopkins, L. F.; Izumi, N.; Khan, S. F.; Landen, O. L.; Kyrala, G. A.; LePape, S.; Millot, M.; Milovich, J. L.; Moore, A. S.; Nagel, S. R.; Park, H.-S.; Rygg, J. R.; Bradley, D. K.; Callahan, D. A.; Hinkel, D. E.; Hsing, W. W.; Hurricane, O. A.; Meezan, N. B.; Moody, J. D.; Patel, P.; Robey, H. F.; Schneider, M. B.; Town, R. P. J.; Edwards, M. J.
2017-05-01
This paper details and examines the origins of radiation drive asymmetries present during the initial High Foot implosion experiments. Such asymmetries are expected to reduce the stagnation pressure and the resulting yield of these experiments by several times. Analysis of reemission and dual axis shock timing experiments indicates that a flux asymmetry, with a P2/P0 amplitude that varies from -10% to -5%, is present during the first shock of the implosion. This first shock asymmetry can be corrected through adjustments to the laser cone fraction. A thin shell model and more detailed radiation hydrodynamic calculations indicate that an additional negative P2/P0 asymmetry during the second or portions of the third shock is required to reach the observed amount of asymmetry in the shape of the ablator at peak implosion velocity. In conjunction with symmetry data from the x-ray self emission produced at stagnation, these models also indicate that after the initially negative P2/P0 flux asymmetry, the capsule experiences a positive P2/P0 flux asymmetry that develops at or before ˜2 ns into the peak of the laser power. Here, direct evidence for this inference, using measurements of the x-ray emission produced by the lasers irradiating the hohlraum, is presented. These data indicate that the reduction in the transmitted inner laser cone energy results from impeded propagation through the plasma associated with the ablation of the capsule target. This paper also correlates measurements of the outer cone laser deposition location with variations in the observed x-ray self emission shape from experiments conducted with nominally the same input conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pak, A.; Divol, L.; Kritcher, A. L.
This paper details and examines the origins of radiation drive asymmetries present during the initial High Foot implosion experiments. Such asymmetries are expected to reduce the stagnation pressure and the resulting yield of these experiments by several times. Analysis of reemission and dual axis shock timing experiments indicates that a flux asymmetry, with a P2/P0 amplitude that varies from -10 to -5 %, is present during the first shock of the implosion. This first shock asymmetry can be corrected through adjustments to the laser cone fraction. A thin shell model and more detailed radiation hydrodynamic calculations indicate that an additionalmore » negative P2/P0 asymmetry during the second or portions of the third shock is required to reach the observed amount of asymmetry in the shape of the ablator at peak implosion velocity. In conjunction with symmetry data from the x-ray self emission produced at stagnation, these models also indicate that after the initially negative P2/P0 flux asymmetry, the capsule experiences a positive P2/P0 flux asymmetry that develops at or before ~2 ns into the peak of the laser power. Here, direct evidence for this inference, using measurements of the x-ray emission produced by the lasers irradiating the hohlraum, is presented. This data indicates that the reduction in the transmitted inner laser cone energy results from impeded propagation through the plasma associated with the ablation of the capsule target. This paper also correlates measurements of the outer cone laser deposition location with variations in the observed x-ray self emission shape from experiments conducted with nominally the same input conditions.« less
Pak, A.; Divol, L.; Kritcher, A. L.; ...
2017-03-24
This paper details and examines the origins of radiation drive asymmetries present during the initial High Foot implosion experiments. Such asymmetries are expected to reduce the stagnation pressure and the resulting yield of these experiments by several times. Analysis of reemission and dual axis shock timing experiments indicates that a flux asymmetry, with a P2/P0 amplitude that varies from -10 to -5 %, is present during the first shock of the implosion. This first shock asymmetry can be corrected through adjustments to the laser cone fraction. A thin shell model and more detailed radiation hydrodynamic calculations indicate that an additionalmore » negative P2/P0 asymmetry during the second or portions of the third shock is required to reach the observed amount of asymmetry in the shape of the ablator at peak implosion velocity. In conjunction with symmetry data from the x-ray self emission produced at stagnation, these models also indicate that after the initially negative P2/P0 flux asymmetry, the capsule experiences a positive P2/P0 flux asymmetry that develops at or before ~2 ns into the peak of the laser power. Here, direct evidence for this inference, using measurements of the x-ray emission produced by the lasers irradiating the hohlraum, is presented. This data indicates that the reduction in the transmitted inner laser cone energy results from impeded propagation through the plasma associated with the ablation of the capsule target. This paper also correlates measurements of the outer cone laser deposition location with variations in the observed x-ray self emission shape from experiments conducted with nominally the same input conditions.« less
Progress in the Science and Technology of Direct Drive Laser Fusion with the KrF Laser
2010-12-01
important parameters KrF technology leads) Direct Laser Drive is a better choice for Energy Indirect Drive (initial path for NIF ) Laser Beams x-rays Hohlraum...Pellet Direct Drive (IFE) Laser Beams Pellet .. • ID Ignition being explored on NIF • Providing high enough gain for pure fusion energy is...challenging. • DD Ignition physics can be explored on NIF . • More efficient use of laser light, and greater flexibility in applying drive provides potential for
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurricane, O. A.; Clark, D. S.
The work is summarized from several perspectives: 1D simulation perspective: Post-shot models agree with yield data to within a factor of ~2 at low implosion velocities, but the models diverge from the data as the velocity and convergence ratio increase. 2D simulation perspective: Integrated hohlraum-capsule post-shot models agree with primary data for most implosions, but overpredict yield and DSR for a few of the highest velocity implosions. High-resolution 3D post-shot capsule-only modeling captures much of the delivered performance of the one shot currently simulated.
Gharibyan, N.; Shaughnessy, D. A.; Moody, K. J.; ...
2016-08-05
The solid debris collection capability at the National Ignition Facility has been expanded to include a third line-of-sight assembly. The solid radiochemistry nuclear diagnostic measurement of the ratio of gold isotopes is dependent on the efficient collection of neutron-activated hohlraum debris by passive metal disks. As a result, the collection of target debris at this new location is more reliable in comparison to the historic locations, and it appears to be independent of collector surface ablation.
Gharibyan, N; Shaughnessy, D A; Moody, K J; Grant, P M; Despotopulos, J D; Faye, S A; Jedlovec, D R; Yeamans, C B
2016-11-01
The solid debris collection capability at the National Ignition Facility has been expanded to include a third line-of-sight assembly. The solid radiochemistry nuclear diagnostic measurement of the ratio of gold isotopes is dependent on the efficient collection of neutron-activated hohlraum debris by passive metal disks. The collection of target debris at this new location is more reliable in comparison to the historic locations, and it appears to be independent of collector surface ablation.
NASA Astrophysics Data System (ADS)
Macphee, Andrew; Casey, Daniel; Clark, Daniel; Field, John; Haan, Steven; Hammel, Bruce; Kroll, Jeremy; Landen, Otto; Martinez, David; Milovich, Jose; Nikroo, Abbas; Rice, Neal; Robey, Harry; Smalyuk, Vladimir; Stadermann, Michael; Weber, Christopher; Lawrence Livermore National Laboratory Collaboration; Atomics Collaboration, General
2016-10-01
Features associated with the target support tent and deuterium-tritium fuel fill tube and support rods can seed hydrodynamic instabilities leading to degraded performance for inertial confinement fusion (ICF) experiments at the National Ignition Facility. We performed in-flight radiography of ICF capsules in the vicinity of the capsule support tent and fill tube surrogates to investigate instability growth associated with these features. For both plastic and high density carbon ablators, the shadow of the 10 μm diameter glass fill-tube cast by the x-ray spots on the hohlraum wall were observed to imprint radial instabilities around the fill tube/capsule interface. Similarly, instability growth was observed for the shadow cast by 12 μm diameter silicon carbide capsule support rods mounted orthogonal to the fill tube as a tent alternative for a plastic ablator. The orientation of the shadows is consistent with raytracing. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Bachmann, B; Kritcher, A L; Benedetti, L R; Falcone, R W; Glenn, S; Hawreliak, J; Izumi, N; Kraus, D; Landen, O L; Le Pape, S; Ma, T; Pérez, F; Swift, D; Döppner, T
2014-11-01
We have developed an experimental platform for absolute equation of state measurements up to Gbar pressures on the National Ignition Facility (NIF) within the Fundamental Science Program. We use a symmetry-tuned hohlraum drive to launch a spherical shock wave into a solid CH sphere. Streaked radiography is the primary diagnostic to measure the density change at the shock front as the pressure increases towards smaller radii. At shock stagnation in the center of the capsule, we observe a short and bright x-ray self emission from high density (∼50 g/cm(3)) plasma at ∼1 keV. Here, we present results obtained with penumbral imaging which has been carried out to characterize the size of the hot spot emission. This allows extending existing NIF diagnostic capabilities for spatial resolution (currently ∼10 μm) at higher sensitivity. At peak emission we find the hot spot radius to be as small as 5.8 +/- 1 μm, corresponding to a convergence ratio of 200.
Khan, S. F.; MacLaren, S. A.; Salmonson, J. D.; ...
2016-04-27
Here, we introduce a new quasi 1-D implosion experimental platform at the National Ignition Facility designed to validate physics models as well as to study various Inertial Confinement Fusion aspects such as implosion symmetry, convergence, hydrodynamic instabilities, and shock timing. The platform has been developed to maintain shell sphericity throughout the compression phase and produce a round hot core at stagnation. This platform utilizes a 2-shock 1 MJ pulse with 340 TW peak power in a near-vacuum AuHohlraum and a CH ablator capsule uniformly doped with 1% Si. We also performed several inflight radiography, symmetry capsule, and shock timing experimentsmore » in order to tune the symmetry of the capsule to near round throughout several epochs of the implosion. Finally, adjusting the relative powers of the inner and outer cones of beams has allowed us to control the drive at the poles and equator of the capsule, thus providing the mechanism to achieve a spherical capsule convergence. Details and results of the tuning experiments are described.« less
The design of the optical Thomson scattering diagnostic for the National Ignition Facility.
Datte, P S; Ross, J S; Froula, D H; Daub, K D; Galbraith, J; Glenzer, S; Hatch, B; Katz, J; Kilkenny, J; Landen, O; Manha, D; Manuel, A M; Molander, W; Montgomery, D; Moody, J; Swadling, G F; Weaver, J
2016-11-01
The National Ignition Facility (NIF) is a 192 laser beam facility designed to support the Stockpile Stewardship, High Energy Density and Inertial Confinement Fusion (ICF) programs. We report on the design of an Optical Thomson Scattering (OTS) diagnostic that has the potential to transform the community's understanding of NIF hohlraum physics by providing first principle, local, time-resolved measurements of under-dense plasma conditions. The system design allows operation with different probe laser wavelengths by manual selection of the appropriate beam splitter and gratings before the shot. A deep-UV probe beam (λ 0 -210 nm) will be used to optimize the scattered signal for plasma densities of 5 × 10 20 electrons/cm 3 while a 3ω probe will be used for experiments investigating lower density plasmas of 1 × 10 19 electrons/cm 3 . We report the phase I design of a two phase design strategy. Phase I includes the OTS telescope, spectrometer, and streak camera; these will be used to assess the background levels at NIF. Phase II will include the design and installation of a probe laser.
Results From the New NIF Gated LEH imager
NASA Astrophysics Data System (ADS)
Chen, Hui; Amendt, P.; Barrios, M.; Bradley, D.; Casey, D.; Hinkel, D.; Berzak Hopkins, L.; Kilkenny, J.; Kritcher, A.; Landen, O.; Jones, O.; Ma, T.; Milovich, J.; Michel, P.; Moody, J.; Ralph, J.; Pak, A.; Palmer, N.; Schneider, M.
2016-10-01
A novel ns-gated Laser Entrance Hole (G-LEH) diagnostic has been successfully implemented at the National Ignition Facility (NIF). This diagnostic has successfully acquired images from various experimental campaigns, providing critical information for inertial confinement fusion experiments. The G-LEH diagnostic which takes time-resolved gated images along a single line-of-sight, incorporates a high-speed multi-frame CMOS x-ray imager developed by Sandia National Laboratories into the existing Static X-ray Imager diagnostic at NIF. It is capable of capturing two laser-entrance-hole images per shot on its 1024x448 pixel photo-detector array, with integration times as short as 2 ns per frame. The results that will be presented include the size of the laser entrance hole vs. time, the growth of the laser-heated gold plasma bubble, the change in brightness of inner beam spots due to time-varying cross beam energy transfer, and plasma instability growth near the hohlraum wall. This work was performed under the auspices of the U.S. Department of Energy by LLNS, LLC, under Contract No. DE-AC52- 07NA27344.
ARES Simulations of a Double Shell Surrogate Target
NASA Astrophysics Data System (ADS)
Sacks, Ryan; Tipton, Robert; Graziani, Frank
2015-11-01
Double shell targets provide an alternative path to ignition that allows for a less robust laser profile and non-cryogenic initial temperatures. The target designs call for a high-Z material to abut the gas/liquid DT fuel which is cause for concern due to possible mix of the inner shell with the fuel. This research concentrates on developing a surrogate target for a double shell capsule that can be fielded in a current NIF two-shock hohlraum. Through pressure-density scaling the hydrodynamic behavior of the high-Z pusher of a double shell can be approximated allowing for studies of performance and mix. Use of the ARES code allows for investigation of mix in one and two dimensions and analysis of instabilities in two dimensions. Development of a shell material that will allow for experiments similar to CD Mix is also discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344, Lawrence Livermore National Security, LLC. Information Management release number LLNL-ABS-675098.
Comparison of plastic, high density carbon, and beryllium as indirect drive NIF ablators
NASA Astrophysics Data System (ADS)
Kritcher, A. L.; Clark, D.; Haan, S.; Yi, S. A.; Zylstra, A. B.; Callahan, D. A.; Hinkel, D. E.; Berzak Hopkins, L. F.; Hurricane, O. A.; Landen, O. L.; MacLaren, S. A.; Meezan, N. B.; Patel, P. K.; Ralph, J.; Thomas, C. A.; Town, R.; Edwards, M. J.
2018-05-01
Detailed radiation hydrodynamic simulations calibrated to experimental data have been used to compare the relative strengths and weaknesses of three candidate indirect drive ablator materials now tested at the NIF: plastic, high density carbon or diamond, and beryllium. We apply a common simulation methodology to several currently fielded ablator platforms to benchmark the model and extrapolate designs to the full NIF envelope to compare on a more equal footing. This paper focuses on modeling of the hohlraum energetics which accurately reproduced measured changes in symmetry when changes to the hohlraum environment were made within a given platform. Calculations suggest that all three ablator materials can achieve a symmetric implosion at a capsule outer radius of ˜1100 μm, a laser energy of 1.8 MJ, and a DT ice mass of 185 μg. However, there is more uncertainty in the symmetry predictions for the plastic and beryllium designs. Scaled diamond designs had the most calculated margin for achieving symmetry and the highest fuel absorbed energy at the same scale compared to plastic or beryllium. A comparison of the relative hydrodynamic stability was made using ultra-high resolution capsule simulations and the two dimensional radiation fluxes described in this work [Clark et al., Phys. Plasmas 25, 032703 (2018)]. These simulations, which include low and high mode perturbations, suggest that diamond is currently the most promising for achieving higher yields in the near future followed by plastic, and more data are required to understand beryllium.
Source geometric considerations for OMEGA Dante measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
May, M. J.; Patterson, J. R.; Widmann, K.
2012-10-15
The Dante is a 15 channel filtered diode array which is installed on the OMEGA laser facility at the Laboratory for Laser Energetics, University of Rochester. The system yields the spectrally and temporally resolved radiation flux from 50 eV to 10 keV from various targets (i.e., Hohlraum, gas pipes, etc.). The absolute flux is determined from the radiometric calibration of the x-ray diodes, filters, and mirrors and an unfold algorithm applied to the recorded voltages from each channel. The unfold algorithm assumes an emitting source that is spatially uniform and has a constant area as a function of photon energy.more » The emitting x-ray source is usually considered to be the laser entrance hole (LEH) of a given diameter for Hohlraum type targets or the effective wall area of high conversion efficiency K-shell type targets. This assumption can be problematic for several reasons. High intensity regions or 'hot spots' in the x-ray are observed where the drive laser beams strike the target. The 'hot spots' create non-uniform emission seen by the Dante. Additionally, thinned walled (50 {mu}m) low-Z targets (C{sub 22}H{sub 10}N{sub 2}O{sub 5}) have an energy dependent source size since the target's walls will be fully opaque for low energies (E < 2-3 keV) yet fully transmissive at higher energies. Determining accurate yields can be challenging for these types of targets. Discussion and some analysis will be presented.« less
Source geometric considerations for OMEGA Dante measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
May, M. J.; Patterson, J. R.; Sorce, C.
2012-10-01
The Dante is a 15 channel filtered diode array which is installed on the OMEGA laser facility at the Laboratory for Laser Energetics, University of Rochester. The system yields the spectrally and temporally resolved radiation flux from 50 eV to 10 keV from various targets (i.e., Hohlraum, gas pipes, etc.). The absolute flux is determined from the radiometric calibration of the x-ray diodes, filters, and mirrors and an unfold algorithm applied to the recorded voltages from each channel. The unfold algorithm assumes an emitting source that is spatially uniform and has a constant area as a function of photon energy.more » The emitting x-ray source is usually considered to be the laser entrance hole (LEH) of a given diameter for Hohlraum type targets or the effective wall area of high conversion efficiency K-shell type targets. This assumption can be problematic for several reasons. High intensity regions or “hot spots” in the x-ray are observed where the drive laser beams strike the target. The “hot spots” create non-uniform emission seen by the Dante. Additionally, thinned walled (50 μm) low-Z targets (C22H10N2O5) have an energy dependent source size since the target's walls will be fully opaque for low energies (E < 2–3 keV) yet fully transmissive at higher energies. Determining accurate yields can be challenging for these types of targets. Discussion and some analysis will be presented.« less
Considerations for Explosively Driven Conical Shock Tube Design: Computations and Experiments
2017-02-16
ARL-TR-7953 ● FEB 2017 US Army Research Laboratory Considerations for Explosively Driven Conical Shock Tube Design : Computations...The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized...Considerations for Explosively Driven Conical Shock Tube Designs : Computations and Experiments by Joel B Stewart Weapons and Materials Research Directorate
Wetted Foam Liquid DT Layer ICF Experiments at the NIF
NASA Astrophysics Data System (ADS)
Olson, R. E.; Leeper, R. J.; Peterson, R. R.; Yi, S. A.; Zylstra, A. B.; Kline, J. L.; Bradley, P. A.; Yin, L.; Wilson, D. C.; Haines, B. M.; Batha, S. H.
2016-10-01
A key physics issue in indirect-drive ICF relates to the understanding of the limitations on hot spot convergence ratio (CR), principally set by the hohlraum drive symmetry, the capsule mounting hardware (the ``tent''), and the capsule fill tube. An additional key physics issue relates to the complex process by which a hot spot must be dynamically formed from the inner ice surface in a DT ice-layer implosion. These physics issues have helped to motivate the development of a new liquid DT layer wetted foam platform at the NIF that provides an ability to form the hot spot from DT vapor and experimentally study and understand hot spot formation at a variety of CR's in the range of 12
PRP Comments for ICF Q1/Q2 FY17 Experiments 3/10/16
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kauffman, R.
2016-04-14
The PRP generally endorsed the Program plan during the short time for discussions. We agree that the strategy to develop a hohlraum that is symmetric and has low laser-plasma instabilities and to develop an alternative method for supporting the capsule is the best path forward for making progress in understanding ignition performance. The Program is oriented toward a milestone in 2020 for “determining the efficacy of NIF for ignition and credible physics-scaling to multi-megajoule yields for all ICF approaches.” We are concerned that the time and resources are not sufficient to vet all of the various approaches that are beingmore » pursued to make an informed decision by this date. For NIF to meet this goal, a process will be needed to to select the most promising paths forward. We recommend that the Program develop this process for selecting the path forward to optimize resources. We were glad to see that the direct drive program took our comments under consideration. We think that the proposed experiments have the program headed in a better direction. The PRP had only a short time to discuss the detailed experimental proposals. The following are comments on the detailed proposals. We did not have time to discuss them as a group. They represent individual opinions and provided to you as feedback to your proposals.« less
A Multifluid Numerical Algorithm for Interpenetrating Plasma Dynamics
NASA Astrophysics Data System (ADS)
Ghosh, Debojyoti; Kavouklis, Christos; Berger, Richard; Chapman, Thomas; Hittinger, Jeffrey
2017-10-01
Interpenetrating plasmas occur in situations including inertial confinement fusion experiments, where plasmas ablate off the hohlraum and capsule surfaces and interact with each other, and in high-energy density physics experiments that involve the collision of plasma streams ablating off discs irradiated by laser beams. Single-fluid, multi-species hydrodynamic models are not well-suited to study this interaction because they cannot support more than a single fluid velocity; this results in unphysical solutions. Though kinetic models yield accurate solutions for multi-fluid interactions, they are prohibitively expensive for at-scale three-dimensional (3D) simulations. In this study, we propose a multifluid approach where the compressible fluid equations are solved for each ion species and the electrons. Electrostatic forces and inter-species friction and thermal equilibration couple the species. A high-order finite-volume algorithm with explicit time integration is used to solve on a 3D Cartesian domain, and a high-order Poisson solver is used to compute the electrostatic potential. We present preliminary results for the interpenetration of two plasma streams in vacuum and in the presence of a gas fill. This work was performed under the auspices of the U.S. DOE by Lawrence Livermore National Laboratory under Contract No. DE-AC52- 07NA27344 and funded by the LDRD Program at LLNL under project tracking code 17-ERD-081.
Simulation of Ge Dopant Emission in Indirect-Drive ICF Implosion Experiments
NASA Astrophysics Data System (ADS)
Macfarlane, Joseph; Golovkin, I.; Regan, S.; Epstein, R.; Mancini, R.; Peterson, K.; Suter, L.
2012-10-01
We present results from simulations performed to study the radiative properties of dopants used in inertial confinement fusion indirect-drive capsule implosion experiments on NIF. In Rev5 NIF ignition capsules, a Ge dopant is added to an inner region of the CH ablator to absorb hohlraum x-ray preheat. Spectrally resolved emission from ablator dopants can be used to study the degree of mixing of ablator material into the ignition hot spot. Here, we study the atomic processes that affect the radiative characteristics of these elements using a set of simulation tools to first estimate the evolution of plasma conditions in the compressed target, and then to compute the atomic kinetics of the dopant and the resultant radiative emission. Using estimates of temperature and density profiles predicted by radiation-hydrodynamics simulations, we set up simple plasma grids where we allow dopant material to be embedded in the fuel, and perform multi-dimensional collisional-radiative simulations using SPECT3D to compute non-LTE atomic level populations and spectral signatures from the dopant. Recently improved Stark-broadened line shape modeling for Ge K-shell lines has been included. The goal is to study the radiative and atomic processes that affect the emergent spectra, including the effects of inner-shell photoabsorption and Kα reemission from the dopant, and to study the sensitivity of the emergent spectra to the dopant and the hot spot and ablator conditions.
Hart-Smith, Gene; Reis, Rodrigo S.; Waterhouse, Peter M.; Wilkins, Marc R.
2017-01-01
Quantitative proteomics strategies – which are playing important roles in the expanding field of plant molecular systems biology – are traditionally designated as either hypothesis driven or non-hypothesis driven. Many of these strategies aim to select individual peptide ions for tandem mass spectrometry (MS/MS), and to do this mixed hypothesis driven and non-hypothesis driven approaches are theoretically simple to implement. In-depth investigations into the efficacies of such approaches have, however, yet to be described. In this study, using combined samples of unlabeled and metabolically 15N-labeled Arabidopsis thaliana proteins, we investigate the mixed use of targeted data acquisition (TDA) and data dependent acquisition (DDA) – referred to as TDA/DDA – to facilitate both hypothesis driven and non-hypothesis driven quantitative data collection in individual LC-MS/MS experiments. To investigate TDA/DDA for hypothesis driven data collection, 7 miRNA target proteins of differing size and abundance were targeted using inclusion lists comprised of 1558 m/z values, using 3 different TDA/DDA experimental designs. In samples in which targeted peptide ions were of particularly low abundance (i.e., predominantly only marginally above mass analyser detection limits), TDA/DDA produced statistically significant increases in the number of targeted peptides identified (230 ± 8 versus 80 ± 3 for DDA; p = 1.1 × 10-3) and quantified (35 ± 3 versus 21 ± 2 for DDA; p = 0.038) per experiment relative to the use of DDA only. These expected improvements in hypothesis driven data collection were observed alongside unexpected improvements in non-hypothesis driven data collection. Untargeted peptide ions with m/z values matching those in inclusion lists were repeatedly identified and quantified across technical replicate TDA/DDA experiments, resulting in significant increases in the percentages of proteins repeatedly quantified in TDA/DDA experiments only relative to DDA experiments only (33.0 ± 2.6% versus 8.0 ± 2.7%, respectively; p = 0.011). These results were observed together with uncompromised broad-scale MS/MS data collection in TDA/DDA experiments relative to DDA experiments. Using our observations we provide guidelines for TDA/DDA method design for quantitative plant proteomics studies, and suggest that TDA/DDA is a broadly underutilized proteomics data acquisition strategy. PMID:29021799
Dante Soft X-ray Power Diagnostic for NIF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dewald, E; Campbell, K; Turner, R
2004-04-15
Soft x-ray power diagnostics are essential for measuring spectrally resolved the total x-ray flux, radiation temperature, conversion efficiency and albedo that are important quantities for the energetics of indirect drive hohlraums. At the Nova or Omega Laser Facilities, these measurements are performed mainly with Dante, but also with DMX and photo-conductive detectors (PCD's). The Dante broadband spectrometer is a collection of absolute calibrated vacuum x-ray diodes, thin filters and x-ray mirrors used to measure the soft x-ray emission for photon energies above 50 eV.
3φ Laser Beam Propagation in Inertial Confinement Plasmas*
NASA Astrophysics Data System (ADS)
Froula, Dustin
2006-10-01
A study of the relevant laser-plasma interaction processes in a long-scale length high-temperature transparent plasma has been performed using a new target platform to emulate the plasma conditions in an indirect drive fusion target. Recent experiments in this plasma emulator have demonstrated that for ignition relevant conditions (Te>3 keV, I < 2x10^15 W-cm-2) the 3φ laser light propagates through a high-density (5x10^20 cm-3) plasma with a peak transmission of 90%. Experiments have demonstrated an understanding of filamentation in these conditions that is consistent with theory increasing our confidence in our ability to execute the beam conditioning and focal spot designs for future ignition experiments. This target has been well characterized using Thomson-scattering where the peak electron temperature is shown to be 3.5 keV. The electron temperature measurements agree with HYDRA flux-limited radiation hydrodynamics calculations. Using a recently implemented 3φ transmitted beam diagnostic, the filamentation threshold has been experimentally measured for a beam that employs a continuous phase plate (CPP). For intensities above the threshold for filamentation, the beam was shown to spray. Defocusing the high-power laser beam reduced the backscatter while filamentation was not changed as predicted. Recent experiments investigating the importance of polarization and temporal smoothing of laser beams for propagation in this target platform will be presented. Detailed hydrodynamic and laser-plasma interaction simulations capture the stimulated Brillouin, stimulated Raman, and filamentation thresholds providing significant confidence that our models used for ignition designs can correctly predict the conditions where energy loss and beam propagation through the under dense NIF hohlraum plasmas will be small. ** Collaborators: L. Divol, S. H. Glenzer, J. S. Ross, N. Meezan, S. Prisbrey, S. Dixit.
Overview of the National Ignition Campaign (NIC)
NASA Astrophysics Data System (ADS)
Moses, Edward
2010-11-01
The 192-beam National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is now operational. NIF has conducted 192-beam implosion experiments with energies as high as 1.2 MJ and has also demonstrated the unprecedented energy and pulse shaping control required for ignition experiments. The successful commissioning of the NIF laser is the first step in demonstrating inertial confinement fusion (ICF) ignition in the laboratory. The NIF ignition program is executed via the National Ignition Campaign (NIC)---a partnership between Los Alamos National Laboratory, Lawrence Berkeley Laboratory, LLNL, General Atomics, the University of Rochester Laboratory for Laser Energetics, Sandia National Laboratories, the Massachusetts Institute of Technology, and other national and international partners. The NIC relies on a novel integrated experimental and computational program to tune the target to the conditions required for indirect-drive ignition. This approach breaks the tuning process into four phases. The first two phases involve tuning of the hohlraum and capsule to produce the correct radiation drive, symmetry, and shock timing conditions. The third phase consists of layered cryogenic implosions conducted with a 50%/49%/1% mixture of tritium, hydrogen, and deuterium (THD) respectively. The reduced yield from these THD targets allows the full diagnostic suite to be employed and the presence of the required temperature and fuel areal density to be verified. The final step is DT ignition implosions with expected gains of 10-20. DT ignition experiments will be conducted with Elaser ˜1.2 MJ. Laser energies of 1.8 MJ should be available for subsequent experiments. This talk will review the multi-phase tuning approach to the ignition effort, including the physics issues associated with the various steps, and current and future plans for the NIF ignition program.
Solid-state experiments at high pressure and strain rates
NASA Astrophysics Data System (ADS)
Kalantar, D. H.
1999-11-01
We are developing experiments on intense laser facilities to study shock compressed metal foils in the solid state. At high pressure, Rayleigh-Taylor induced perturbation growth can be reduced by the strength of the material. [1] We use this to characterize the strength of the metal foils accelerated at high pressure in the solid state. In our experiments, Al and Cu foils are compressed and accelerated with staged shocks using a temporally shaped x-ray drive that is generated in a Nova laser hohlraum target. [2] The peak pressures exceed 1 Mbar (100 GPa), and strain rates are very high, 10^7-10^9 s-1. The instability growth is observed by x-ray radiography. To probe the state of the material under compression and to demonstrate that it remains solid, we are using the dynamic Bragg diffraction technique. [3] This technique has been demonstrated on the Nova laser [4] using Si crystals shocked to 200-500 kbar. Additionally, we have observed diffraction from Cu crystals that are shocked to 100-200 kbar by direct laser irradiation on the Trident and OMEGA lasers. Compressions of up to a 10in the crystal lattice spacing have been observed. We will present the results of our work to develop these high pressure solid-state hydrodynamics experiments. 1. J. F. Barnes et al, J. Appl. Phys. 45, 727 (1974); A. I. Lebedev et al , Proc. 4th IWPCTM, 29 March-1 April, 1993, p. 81. 2. D. H. Kalantar et al., to appear in Int. J. of Impact Eng. (1999). 3. R. R. Whitlock and J. S. Wark, Phys. Rev. B 52, 8 (1995). 4. D. H. Kalantar et al, Rev. Sci. Instrum. 70, 629 (1999).
Pataky, Todd C; Robinson, Mark A; Vanrenterghem, Jos
2018-01-03
Statistical power assessment is an important component of hypothesis-driven research but until relatively recently (mid-1990s) no methods were available for assessing power in experiments involving continuum data and in particular those involving one-dimensional (1D) time series. The purpose of this study was to describe how continuum-level power analyses can be used to plan hypothesis-driven biomechanics experiments involving 1D data. In particular, we demonstrate how theory- and pilot-driven 1D effect modeling can be used for sample-size calculations for both single- and multi-subject experiments. For theory-driven power analysis we use the minimum jerk hypothesis and single-subject experiments involving straight-line, planar reaching. For pilot-driven power analysis we use a previously published knee kinematics dataset. Results show that powers on the order of 0.8 can be achieved with relatively small sample sizes, five and ten for within-subject minimum jerk analysis and between-subject knee kinematics, respectively. However, the appropriate sample size depends on a priori justifications of biomechanical meaning and effect size. The main advantage of the proposed technique is that it encourages a priori justification regarding the clinical and/or scientific meaning of particular 1D effects, thereby robustly structuring subsequent experimental inquiry. In short, it shifts focus from a search for significance to a search for non-rejectable hypotheses. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiang, J.; Ding, Y.; Emma, P.
The shot-noise driven microbunching instability can significantly degrade electron beam quality in x-ray free electron laser light sources. Experiments were carried out at the Linac Coherent Light Source (LCLS) to study this instability. Here in this paper, we present start-to-end simulations of the shot-noise driven microbunching instability experiment at the LCLS using the real number of electrons. The simulation results reproduce the measurements quite well. A microbunching self-heating mechanism is also illustrated in the simulation, which helps explain the experimental observation.
Qiang, J.; Ding, Y.; Emma, P.; ...
2017-05-23
The shot-noise driven microbunching instability can significantly degrade electron beam quality in x-ray free electron laser light sources. Experiments were carried out at the Linac Coherent Light Source (LCLS) to study this instability. Here in this paper, we present start-to-end simulations of the shot-noise driven microbunching instability experiment at the LCLS using the real number of electrons. The simulation results reproduce the measurements quite well. A microbunching self-heating mechanism is also illustrated in the simulation, which helps explain the experimental observation.
Ignition and Inertial Confinement Fusion at The National Ignition Facility
NASA Astrophysics Data System (ADS)
Moses, Edward I.
2016-10-01
The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and for studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF is now conducting experiments to commission the laser drive, the hohlraum and the capsule and to develop the infrastructure needed to begin the first ignition experiments in FY 2010. Demonstration of ignition and thermonuclear bum in the laboratory is a major NIF goal. NIF will achieve this by concentrating the energy from the 192 beams into a mm3-sized target and igniting a deuterium-tritium mix, liberating more energy than is required to initiate the fusion reaction. NIP's ignition program is a national effort managed via the National Ignition Campaign (NIC). The NIC has two major goals: execution of DT ignition experiments starting in FY20l0 with the goal of demonstrating ignition and a reliable, repeatable ignition platform by the conclusion of the NIC at the end of FY2012. The NIC will also develop the infrastructure and the processes required to operate NIF as a national user facility. The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on laser fusion as a viable energy option. A laser fusion-based energy concept that builds on NIF, known as LIFE (Laser Inertial Fusion Energy), is currently under development. LIFE is inherently safe and can provide a global carbon-free energy generation solution in the 21st century. This paper describes recent progress on NIF, NIC, and the LIFE concept.
Magnetized HDC ignition capsules for yield enhancement and implosion magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Zimmerman, G.; Ho, D.; Perkins, J.; Logan, G.; Hawkins, S.; Rhodes, M.
2014-10-01
Imposing a magnetic field on capsules can turn capsules that fail, because of low 1-D margin, into igniting capsules that give yield in the MegaJoule range. The imposed magnetic field can be amplified by up to O(103) as it is being compressed by the imploding shell, e.g. if the initial field is 50 T, then the field in the hot spot of the assembled configuration can reach >104 T. (We are currently designing hardware that can provide a field in the 50 T range inside NIF hohlraums.) With this highly compressed field strength, the gyro radius of alpha particles becomes smaller than the hot spot size. Consequently, the heating of the hot spot becomes more efficient. The imposed field can also prevent hot electrons in the holhraum from reaching the capsule. We choose capsules with high-density carbon (HDC) ablators for this study. HDC capsules have good 1-D performance and also have short pulses (10 ns or less), allowing the use of low gas-filled or near-vacuum hohlraums which provide high coupling efficiency. We describe a 2-D simulation of a 3-shock HDC capsule. We will show detailed magnetohydrodynamic evolution of the implosion. HDC capsules with 2-shock pulses have low margin because of their high adiabat, and it is difficult to achieve ignition in realistic 2-D simulations. The improvement in performance for 2-shock magnetized capsules will be presented. This work was supported by LLNL Laboratory Directed Research and Development LDRD 14-ER-028 under Contract DE-AC52-07NA27344.
Electrically Driven Single Phase Thermal Management: STP-H5 EHD Experiment
NASA Technical Reports Server (NTRS)
Didion, Jeffrey R.
2016-01-01
The Electrically Driven Single Phase Thermal Management: STP-H5 iEHDS Experiment is a technology demonstration of prototype proof of concept hardware to establish the feasilibilty and long term operation of this hardware. This is a structural thermal plate that will operate continuous as part of the STP-H5 ISEM experiment for up to 18 months. This presentation discusses the design, fabrication and environmental operational paramertes of the experiment hardware.
Christensen, P A; Mashhadani, Z T A W; Md Ali, Abd Halim Bin
2018-04-04
This paper reports the application of in situ reflectance Fourier Transform InfraRed spectroscopy to the study of the thermal and plasma driven reaction of IsoPropyl Alcohol (IPA) at SnO2-coated Macor, the latter a ceramic material comprised of the oxides of Al, Mg and Si. The data so obtained were compared to those obtained using uncoated Macor. When uncoated Macor was employed, no reaction of the IPA was observed up to 600 °C in the thermal experiments, whereas a number of products were observed in the plasma-driven experiments. The results obtained using coated Macor were somewhat different, with no reaction taking place in the plasma-driven experiments, whilst significant reaction took place in the thermally-driven process. In the latter experiments, the chemistry was observed to show four distinct temperature regions, with electron injection into the conduction band of the SnO2 playing a significant role, culminating in the production of CO2. The data were interpreted in terms of a model in which physisorbed IPA was converted to two forms of isopropoxide: this was converted to acetone and acetaldehyde via adsorbed enolate. The data clearly support the catalytic activity of Macor in the plasma-driven conversion of IPA.
Systematic investigation of NLTE phenomena in the limit of small departures from LTE
NASA Astrophysics Data System (ADS)
Libby, S. B.; Graziani, F. R.; More, R. M.; Kato, T.
1997-04-01
In this paper, we begin a systematic study of Non-Local Thermal Equilibrium (NLTE) phenomena in near equilibrium (LTE) high energy density, highly radiative plasmas. It is shown that the principle of minimum entropy production rate characterizes NLTE steady states for average atom rate equations in the case of small departures form LTE. With the aid of a novel hohlraum-reaction box thought experiment, we use the principles of minimum entropy production and detailed balance to derive Onsager reciprocity relations for the NLTE responses of a near equilibrium sample to non-Planckian perturbations in different frequency groups. This result is a significant symmetry constraint on the linear corrections to Kirchoff's law. We envisage applying our strategy to a number of test problems which include: the NLTE corrections to the ionization state of an ion located near the edge of an otherwise LTE medium; the effect of a monochromatic radiation field perturbation on an LTE medium; the deviation of Rydberg state populations from LTE in recombining or ionizing plasmas; multi-electron temperature models such as that of Busquet; and finally, the effect of NLTE population shifts on opacity models.
A Computational Study of Re-emission Balls Proposed for the NIF Ignition Symmetry Campaign
NASA Astrophysics Data System (ADS)
Meeker, D. J.; Amendt, P.; Dewald, E.; Edwards, M. J.; Milovich, J.; Suter, L.
2006-10-01
Re-emission balls are high-Z spheres used as surrogates for ICF ignition capsules to detect and correct early-time asymmetries of radiation flux at the target. Emission from these balls mimics the incoming flux due to their high albedo, providing a useful symmetry diagnostic. Experiments on Nova by LANL [1] and LLNL used bismuth (Bi) as the surrogate, selected for its high albedo and insensitivity to the fluorescence of the gold hohlraum wall. We are studying the applicability of these capsules to the NIF symmetry campaign as a potential tuning mechanism to achieve the accuracies required for symmetric implosions. We will describe 2-D simulations that predict the emission of the Bi ball as a function of time, frequency, and spatial distribution, as well as quantifying surrogacy of re- emission balls. Using several tuning examples, we will show the resolution expected from this diagnostic. Suggestions for extending this technique to longer times will be discussed as well as describing 3-D effects from diagnostic viewing ports and an opposing hole to eliminate competing wall emission. [1] Delamater, Phys. Rev. E 53, 5240 (1996), Magelssen, Phys. Rev. E 57, 4663 (1998)
Pavlovian reward learning underlies value driven attentional capture.
Bucker, Berno; Theeuwes, Jan
2017-02-01
Recent evidence shows that distractors that signal high compared to low reward availability elicit stronger attentional capture, even when this is detrimental for task-performance. This suggests that simply correlating stimuli with reward administration, rather than their instrumental relationship with obtaining reward, produces value-driven attentional capture. However, in previous studies, reward delivery was never response independent, as only correct responses were rewarded, nor was it completely task-irrelevant, as the distractor signaled the magnitude of reward that could be earned on that trial. In two experiments, we ensured that associative reward learning was completely response independent by letting participants perform a task at fixation, while high and low rewards were automatically administered following the presentation of task-irrelevant colored stimuli in the periphery (Experiment 1) or at fixation (Experiment 2). In a following non-reward test phase, using the additional singleton paradigm, the previously reward signaling stimuli were presented as distractors to assess truly task-irrelevant value driven attentional capture. The results showed that high compared to low reward-value associated distractors impaired performance, and thus captured attention more strongly. This suggests that genuine Pavlovian conditioning of stimulus-reward contingencies is sufficient to obtain value-driven attentional capture. Furthermore, value-driven attentional capture can occur following associative reward learning of temporally and spatially task-irrelevant distractors that signal the magnitude of available reward (Experiment 1), and is independent of training spatial shifts of attention towards the reward signaling stimuli (Experiment 2). This confirms and strengthens the idea that Pavlovian reward learning underlies value driven attentional capture.
NASA Technical Reports Server (NTRS)
Didion, Jeffrey R.
2018-01-01
Electrically Driven Thermal Management is an active research and technology development initiative incorporating ISS technology flight demonstrations (STP-H5), development of Microgravity Science Glovebox (MSG) flight experiment, and laboratory-based investigations of electrically based thermal management techniques. The program targets integrated thermal management for future generations of RF electronics and power electronic devices. This presentation reviews four program elements: i.) results from the Electrohydrodynamic (EHD) Long Term Flight Demonstration launched in February 2017 ii.) development of the Electrically Driven Liquid Film Boiling Experiment iii.) two University based research efforts iv.) development of Oscillating Heat Pipe evaluation at Goddard Space Flight Center.
Valkenborg, Dirk; Baggerman, Geert; Vanaerschot, Manu; Witters, Erwin; Dujardin, Jean-Claude; Burzykowski, Tomasz; Berg, Maya
2013-01-01
Abstract Combining liquid chromatography-mass spectrometry (LC-MS)-based metabolomics experiments that were collected over a long period of time remains problematic due to systematic variability between LC-MS measurements. Until now, most normalization methods for LC-MS data are model-driven, based on internal standards or intermediate quality control runs, where an external model is extrapolated to the dataset of interest. In the first part of this article, we evaluate several existing data-driven normalization approaches on LC-MS metabolomics experiments, which do not require the use of internal standards. According to variability measures, each normalization method performs relatively well, showing that the use of any normalization method will greatly improve data-analysis originating from multiple experimental runs. In the second part, we apply cyclic-Loess normalization to a Leishmania sample. This normalization method allows the removal of systematic variability between two measurement blocks over time and maintains the differential metabolites. In conclusion, normalization allows for pooling datasets from different measurement blocks over time and increases the statistical power of the analysis, hence paving the way to increase the scale of LC-MS metabolomics experiments. From our investigation, we recommend data-driven normalization methods over model-driven normalization methods, if only a few internal standards were used. Moreover, data-driven normalization methods are the best option to normalize datasets from untargeted LC-MS experiments. PMID:23808607
Rejecting salient distractors: Generalization from experience.
Vatterott, Daniel B; Mozer, Michael C; Vecera, Shaun P
2018-02-01
Distraction impairs performance of many important, everyday tasks. Attentional control limits distraction by preferentially selecting important items for limited-capacity cognitive operations. Research in attentional control has typically investigated the degree to which selection of items is stimulus-driven versus goal-driven. Recent work finds that when observers initially learn a task, the selection is based on stimulus-driven factors, but through experience, goal-driven factors have an increasing influence. The modulation of selection by goals has been studied within the paradigm of learned distractor rejection, in which experience over a sequence of trials enables individuals eventually to ignore a perceptually salient distractor. The experiments presented examine whether observers can generalize learned distractor rejection to novel distractors. Observers searched for a target and ignored a salient color-singleton distractor that appeared in half of the trials. In Experiment 1, observers who learned distractor rejection in a variable environment rejected a novel distractor more effectively than observers who learned distractor rejection in a less variable, homogeneous environment, demonstrating that variable, heterogeneous stimulus environments encourage generalizable learned distractor rejection. Experiments 2 and 3 investigated the time course of learned distractor rejection across the experiment and found that after experiencing four color-singleton distractors in different blocks, observers could effectively reject subsequent novel color-singleton distractors. These results suggest that the optimization of attentional control to the task environment can be interpreted as a form of learning, demonstrating experience's critical role in attentional control.
LLE Review 120 (July-September 2009)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edgell, D.H., editor
2001-02-19
This issue has the following articles: (1) The Omega Laser Facility Users Group Workshop; (2) The Effect of Condensates and Inner Coatings on the Performance of Vacuum Hohlraum Targets; (3) Zirconia-Coated-Carbonyl-Iron-Particle-Based Magnetorheological Fluid for Polishing Optical Glasses and Ceramics; (4) All-Fiber Optical Magnetic Field Sensor Based on Faraday Rotation in Highly Terbium Doped Fiber; (5) Femtosecond Optical Pump-Probe Characterization of High-Pressure-Grown Al{sub 0.86}Ga{sub 0.14}N Single Crystals; (6) LLE's Summer High School Research Program; (7) Laser Facility Report; and (8) National Laser Users Facility and External Users Programs.
Han, Chang-Hee; Lim, Jeong-Hwan; Lee, Jun-Hak; Kim, Kangsan; Im, Chang-Hwan
2016-01-01
It has frequently been reported that some users of conventional neurofeedback systems can experience only a small portion of the total feedback range due to the large interindividual variability of EEG features. In this study, we proposed a data-driven neurofeedback strategy considering the individual variability of electroencephalography (EEG) features to permit users of the neurofeedback system to experience a wider range of auditory or visual feedback without a customization process. The main idea of the proposed strategy is to adjust the ranges of each feedback level using the density in the offline EEG database acquired from a group of individuals. Twenty-two healthy subjects participated in offline experiments to construct an EEG database, and five subjects participated in online experiments to validate the performance of the proposed data-driven user feedback strategy. Using the optimized bin sizes, the number of feedback levels that each individual experienced was significantly increased to 139% and 144% of the original results with uniform bin sizes in the offline and online experiments, respectively. Our results demonstrated that the use of our data-driven neurofeedback strategy could effectively increase the overall range of feedback levels that each individual experienced during neurofeedback training.
Lim, Jeong-Hwan; Lee, Jun-Hak; Kim, Kangsan
2016-01-01
It has frequently been reported that some users of conventional neurofeedback systems can experience only a small portion of the total feedback range due to the large interindividual variability of EEG features. In this study, we proposed a data-driven neurofeedback strategy considering the individual variability of electroencephalography (EEG) features to permit users of the neurofeedback system to experience a wider range of auditory or visual feedback without a customization process. The main idea of the proposed strategy is to adjust the ranges of each feedback level using the density in the offline EEG database acquired from a group of individuals. Twenty-two healthy subjects participated in offline experiments to construct an EEG database, and five subjects participated in online experiments to validate the performance of the proposed data-driven user feedback strategy. Using the optimized bin sizes, the number of feedback levels that each individual experienced was significantly increased to 139% and 144% of the original results with uniform bin sizes in the offline and online experiments, respectively. Our results demonstrated that the use of our data-driven neurofeedback strategy could effectively increase the overall range of feedback levels that each individual experienced during neurofeedback training. PMID:27631005
Thinshell symmetry surrogates for the National Ignition Facility: A rocket equation analysis
NASA Astrophysics Data System (ADS)
Amendt, Peter; Shestakov, A. I.; Landen, O. L.; Bradley, D. K.; Pollaine, S. M.; Suter, L. J.; Turner, R. E.
2001-06-01
Several techniques for inferring the degree of flux symmetry in indirectly driven cylindrical hohlraums have been developed over the past several years for eventual application to the National Ignition Facility (NIF) [Paisner et al., Laser Focus World 30, 75 (1994)]. These methods use various ignition capsule surrogates, including non-cryogenic imploded capsules [Hauer et al., Phys. Plasmas 2, 2488 (1995)], backlit aerogel foamballs [Amendt et al., Rev. Sci. Instrum. 66, 785 (1995)], reemission balls [Delamater, Magelssen, and Hauer, Phys. Rev. E 53, 5240 (1996)], and backlit thinshells [Pollaine et al., Phys. Plasmas 8, 2357 (2001)]. Recent attention has focussed on the backlit thinshells as a promising means for detecting higher-order Legendre flux asymmetries, e.g., P6 and P8, which are predicted to be important sources of target performance degradation on the NIF for levels greater than 1% [Haan et al., Phys. Plasmas 2, 2490 (1995)]. A key property of backlit thinshells is the strong amplification of modal flux asymmetry imprinting with shell convergence. A simple single-parameter analytic description based on a rocket model is presented which explores the degree of linearity of the shell response to an imposed flux asymmetry. Convergence and mass ablation effects introduce a modest level of nonlinearity in the shell response. The effect of target fabrication irregularities on shell distortion is assessed with the rocket model and particular sensitivity to shell thickness variations is shown. The model can be used to relate an observed or simulated backlit implosion trajectory to an ablation pressure asymmetry history. Ascertaining this history is an important element for readily establishing the degree of surrogacy of a symmetry target for a NIF ignition capsule.
Minimizing scatter-losses during pre-heat for magneto-inertial fusion targets
NASA Astrophysics Data System (ADS)
Geissel, Matthias; Harvey-Thompson, Adam J.; Awe, Thomas J.; Bliss, David E.; Glinsky, Michael E.; Gomez, Matthew R.; Harding, Eric; Hansen, Stephanie B.; Jennings, Christopher; Kimmel, Mark W.; Knapp, Patrick; Lewis, Sean M.; Peterson, Kyle; Schollmeier, Marius; Schwarz, Jens; Shores, Jonathon E.; Slutz, Stephen A.; Sinars, Daniel B.; Smith, Ian C.; Speas, C. Shane; Vesey, Roger A.; Weis, Matthew R.; Porter, John L.
2018-02-01
The size, temporal and spatial shape, and energy content of a laser pulse for the pre-heat phase of magneto-inertial fusion affect the ability to penetrate the window of the laser-entrance-hole and to heat the fuel behind it. High laser intensities and dense targets are subject to laser-plasma-instabilities (LPI), which can lead to an effective loss of pre-heat energy or to pronounced heating of areas that should stay unexposed. While this problem has been the subject of many studies over the last decades, the investigated parameters were typically geared towards traditional laser driven Inertial Confinement Fusion (ICF) with densities either at 10% and above or at 1% and below the laser's critical density, electron temperatures of 3-5 keV, and laser powers near (or in excess of) 1 × 1015 W/cm2. In contrast, Magnetized Liner Inertial Fusion (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 (2010) and Slutz and Vesey, Phys. Rev. Lett. 108, 025003 (2012)] currently operates at 5% of the laser's critical density using much thicker windows (1.5-3.5 μm) than the sub-micron thick windows of traditional ICF hohlraum targets. This article describes the Pecos target area at Sandia National Laboratories using the Z-Beamlet Laser Facility [Rambo et al., Appl. Opt. 44(12), 2421 (2005)] as a platform to study laser induced pre-heat for magneto-inertial fusion targets, and the related progress for Sandia's MagLIF program. Forward and backward scattered light were measured and minimized at larger spatial scales with lower densities, temperatures, and powers compared to LPI studies available in literature.
Theoretical z -pinch scaling relations for thermonuclear-fusion experiments.
Stygar, W A; Cuneo, M E; Vesey, R A; Ives, H C; Mazarakis, M G; Chandler, G A; Fehl, D L; Leeper, R J; Matzen, M K; McDaniel, D H; McGurn, J S; McKenney, J L; Muron, D J; Olson, C L; Porter, J L; Ramirez, J J; Seamen, J F; Speas, C S; Spielman, R B; Struve, K W; Torres, J A; Waisman, E M; Wagoner, T C; Gilliland, T L
2005-08-01
We have developed wire-array z -pinch scaling relations for plasma-physics and inertial-confinement-fusion (ICF) experiments. The relations can be applied to the design of z -pinch accelerators for high-fusion-yield (approximately 0.4 GJ/shot) and inertial-fusion-energy (approximately 3 GJ/shot) research. We find that (delta(a)/delta(RT)) proportional (m/l)1/4 (Rgamma)(-1/2), where delta(a) is the imploding-sheath thickness of a wire-ablation-dominated pinch, delta(RT) is the sheath thickness of a Rayleigh-Taylor-dominated pinch, m is the total wire-array mass, l is the axial length of the array, R is the initial array radius, and gamma is a dimensionless functional of the shape of the current pulse that drives the pinch implosion. When the product Rgamma is held constant the sheath thickness is, at sufficiently large values of m/l, determined primarily by wire ablation. For an ablation-dominated pinch, we estimate that the peak radiated x-ray power P(r) proportional (I/tau(i))(3/2)Rlphigamma, where I is the peak pinch current, tau(i) is the pinch implosion time, and phi is a dimensionless functional of the current-pulse shape. This scaling relation is consistent with experiment when 13 MA < or = I < or = 20 MA, 93 ns < or = tau(i) < or = 169 ns, 10 mm < or = R < or = 20 mm, 10 mm < or = l < or = 20 mm, and 2.0 mg/cm < or = m/l < or = 7.3 mg/cm. Assuming an ablation-dominated pinch and that Rlphigamma is held constant, we find that the x-ray-power efficiency eta(x) congruent to P(r)/P(a) of a coupled pinch-accelerator system is proportional to (tau(i)P(r)(7/9 ))(-1), where P(a) is the peak accelerator power. The pinch current and accelerator power required to achieve a given value of P(r) are proportional to tau(i), and the requisite accelerator energy E(a) is proportional to tau2(i). These results suggest that the performance of an ablation-dominated pinch, and the efficiency of a coupled pinch-accelerator system, can be improved substantially by decreasing the implosion time tau(i). For an accelerator coupled to a double-pinch-driven hohlraum that drives the implosion of an ICF fuel capsule, we find that the accelerator power and energy required to achieve high-yield fusion scale as tau(i)0.36 and tau(i)1.36, respectively. Thus the accelerator requirements decrease as the implosion time is decreased. However, the x-ray-power and thermonuclear-yield efficiencies of such a coupled system increase with tau(i). We also find that increasing the anode-cathode gap of the pinch from 2 to 4 mm increases the requisite values of P(a) and E(a) by as much as a factor of 2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reusch, Joshua A.; Bodner, Grant M.; Bongard, Michael W.
This public data set contains openly-documented, machine readable digital research data corresponding to figures published in J.A. Reusch et al., 'Non-inductively Driven Tokamak Plasmas at Near-Unity βt in the Pegasus Toroidal Experiment,' Phys. Plasmas 25, 056101 (2018).
ERIC Educational Resources Information Center
Ralston, Christine R.
2012-01-01
The purpose of this qualitative study was to describe the lived experiences of primary classroom teachers participating in collaborative data-driven decision making. Hermeneutic phenomenology served as the theoretical framework. Data were collected by conducting interviews with thirteen classroom teachers who taught in grades kindergarten through…
Polar-direct-drive experiments with contoured-shell targets on OMEGA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, F. J.; Radha, P. B.; Bonino, M. J.
Polar-driven direct-drive experiments recently performed on the OMEGA Laser System have demonstrated the efficacy of using a target with a contoured shell with varying thickness to improve the symmetry and fusion performance of the implosion. The polar-driven contoured-shell implosions have substantially reduced low mode perturbations compared to polar-driven spherical-shell implosions as diagnosed by x-ray radiographs up to shell stagnation. As a result, fusion yields were increased by more than a factor of ~2 without increasing the energy of the laser by the use of contoured shells.
Polar-direct-drive experiments with contoured-shell targets on OMEGA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, F. J.; Radha, P. B.; Bonino, M. J.
Polar-driven direct-drive experiments recently performed on the OMEGA Laser System have demonstrated the efficacy of using a target with a contoured shell with varying thickness to improve the symmetry and fusion performance of the implosion. The polar-driven contoured-shell implosions have substantially reduced low mode perturbations compared to polar-driven spherical-shell implosions as diagnosed by x-ray radiographs up to shell stagnation. Fusion yields were increased by more than a factor of ∼2 without increasing the energy of the laser by the use of contoured shells.
Polar-direct-drive experiments with contoured-shell targets on OMEGA
Marshall, F. J.; Radha, P. B.; Bonino, M. J.; ...
2016-01-28
Polar-driven direct-drive experiments recently performed on the OMEGA Laser System have demonstrated the efficacy of using a target with a contoured shell with varying thickness to improve the symmetry and fusion performance of the implosion. The polar-driven contoured-shell implosions have substantially reduced low mode perturbations compared to polar-driven spherical-shell implosions as diagnosed by x-ray radiographs up to shell stagnation. As a result, fusion yields were increased by more than a factor of ~2 without increasing the energy of the laser by the use of contoured shells.
Surface tension driven flow in glass melts and model fluids
NASA Technical Reports Server (NTRS)
Mcneil, T. J.; Cole, R.; Subramanian, R. S.
1982-01-01
Surface tension driven flow has been investigated analytically and experimentally using an apparatus where a free column of molten glass or model fluids was supported at its top and bottom faces by solid surfaces. The glass used in the experiments was sodium diborate, and the model fluids were silicone oils. In both the model fluid and glass melt experiments, conclusive evidence was obtained to prove that the observed flow was driven primarily by surface tension forces. The experimental observations are in qualitative agreement with predictions from the theoretical model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swadling, G. F.; Ross, J. S.; Manha, D.
The design principles of a xenon gas shield device that is intended to protect optical components from x-ray induced opacity (“x-ray blanking”) have been experimentally demonstrated at the OMEGA-60 Laser Facility at the Laboratory for Laser Energetics, University of Rochester. A volume of xenon gas placed in front of an optical component absorbs the incoming soft x-ray radiation but transmits optical and ultra-violet radiation. The time-resolved optical (532 nm) transmission of samples was recorded as they were exposed to soft x-rays produced by a gold sphere source (1.5 kJ sr $-$1, 250–300 eV). Blanking of fused silica (SiO 2) wasmore » measured to occur over a range of time-integrated soft x-ray (<3 keV) fluence from ~0.2–2.5 J cm $-$2. A shield test device consisting of a 30 nm silicon nitride (Si 3N 4) and a 10 cm long volume of 0.04 bar xenon gas succeeded in delaying loss of transmission through a magnesium fluoride sample; optical transmission was observed over a longer period than for the unprotected sample. It is hoped that the design of this x-ray shield can be scaled in order to produce a shield device for the National Ignition Facility optical Thomson scattering collection telescope, in order to allow measurements of hohlraum plasma conditions produced in inertial confinement fusion experiments. Finally, if successful, it will also have applications in many other high energy density experiments where optical and ultra-violet measurements are desirable.« less
Swadling, G. F.; Ross, J. S.; Manha, D.; ...
2017-03-16
The design principles of a xenon gas shield device that is intended to protect optical components from x-ray induced opacity (“x-ray blanking”) have been experimentally demonstrated at the OMEGA-60 Laser Facility at the Laboratory for Laser Energetics, University of Rochester. A volume of xenon gas placed in front of an optical component absorbs the incoming soft x-ray radiation but transmits optical and ultra-violet radiation. The time-resolved optical (532 nm) transmission of samples was recorded as they were exposed to soft x-rays produced by a gold sphere source (1.5 kJ sr $-$1, 250–300 eV). Blanking of fused silica (SiO 2) wasmore » measured to occur over a range of time-integrated soft x-ray (<3 keV) fluence from ~0.2–2.5 J cm $-$2. A shield test device consisting of a 30 nm silicon nitride (Si 3N 4) and a 10 cm long volume of 0.04 bar xenon gas succeeded in delaying loss of transmission through a magnesium fluoride sample; optical transmission was observed over a longer period than for the unprotected sample. It is hoped that the design of this x-ray shield can be scaled in order to produce a shield device for the National Ignition Facility optical Thomson scattering collection telescope, in order to allow measurements of hohlraum plasma conditions produced in inertial confinement fusion experiments. Finally, if successful, it will also have applications in many other high energy density experiments where optical and ultra-violet measurements are desirable.« less
Goal-driven modulation of stimulus-driven attentional capture in multiple-cue displays.
Richard, Christian M; Wright, Richard D; Ward, Lawrence M
2003-08-01
Six location-cuing experiments were conducted to examine the goal-driven control of attentional capture in multiple-cue displays. In most of the experiments, the cue display consisted of the simultaneous presentation of a red direct cue that was highly predictive of the target location (the unique cue) and three gray direct cues (the standard cues) that were not predictive of the location. The results indicated that although target responses were faster at all cued locations relative to uncued locations, they were significantly faster at the unique-cue location than at the standard-cue locations. Other results suggest that the faster responses produced by direct cues may be associated with two different components: an attention-related component that can be modulated by goal-driven factors and a nonattentional component that occurs in parallel at multiple direct-cue locations and is minimally affected by the same goal-driven factors.
Electrically Driven Liquid Film Boiling Experiment
NASA Technical Reports Server (NTRS)
Didion, Jeffrey R.
2016-01-01
This presentation presents the science background and ground based results that form the basis of the Electrically Driven Liquid Film Boiling Experiment. This is an ISS experiment that is manifested for 2021. Objective: Characterize the effects of gravity on the interaction of electric and flow fields in the presence of phase change specifically pertaining to: a) The effects of microgravity on the electrically generated two-phase flow. b) The effects of microgravity on electrically driven liquid film boiling (includes extreme heat fluxes). Electro-wetting of the boiling section will repel the bubbles away from the heated surface in microgravity environment. Relevance/Impact: Provides phenomenological foundation for the development of electric field based two-phase thermal management systems leveraging EHD, permitting optimization of heat transfer surface area to volume ratios as well as achievement of high heat transfer coefficients thus resulting in system mass and volume savings. EHD replaces buoyancy or flow driven bubble removal from heated surface. Development Approach: Conduct preliminary experiments in low gravity and ground-based facilities to refine technique and obtain preliminary data for model development. ISS environment required to characterize electro-wetting effect on nucleate boiling and CHF in the absence of gravity. Will operate in the FIR - designed for autonomous operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, K; Weber, F; Dewald, E
2004-04-15
The Dante soft x-ray spectrometer installed on the Omega laser facility at the Laboratory for Laser Energetics, University of Rochester is a twelve-channel filter-edge defined x-ray power diagnostic. It is used to measure the absolute flux from direct drive, indirect drive (hohlraums) and other plasma sources. Calibration efforts using two beam lines, U3C (50eV-1keV) and X8A (1keV-6keV) at the National Synchrotron Light Source (NSLS) have been implemented to insure the accuracy of these measurements. We have calibrated vacuum x-ray diodes, mirrors and filters.
Mitigating stimulated scattering processes in gas-filled Hohlraums via external magnetic fields
NASA Astrophysics Data System (ADS)
Gong, Tao; Zheng, Jian; Li, Zhichao; Ding, Yongkun; Yang, Dong; Hu, Guangyue; Zhao, Bin
2015-09-01
A simple model, based on energy and pressure equilibrium, is proposed to deal with the effect of external magnetic fields on the plasma parameters inside the laser path, which shows that the electron temperature can be significantly enhanced as the intensity of the external magnetic fields increases. With the combination of this model and a 1D three-wave coupling code, the effect of external magnetic fields on the reflectivities of stimulated scattering processes is studied. The results indicate that a magnetic field with an intensity of tens of Tesla can decrease the reflectivities of stimulated scattering processes by several orders of magnitude.
Laser-driven planar Rayleigh-Taylor instability experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glendinning, S.G.; Weber, S.V.; Bell, P.
1992-08-24
We have performed a series of experiments on the Nova Laser Facility to examine the hydrodynamic behavior of directly driven planar foils with initial perturbations of varying wavelength. The foils were accelerated with a single, frequency doubled, smoothed and temporally shaped laser beam at 0.8{times}10{sup 14} W/cm{sup 2}. The experiments are in good agreement with numerical simulations using the computer codes LASNEX and ORCHID which show growth rates reduced to about 70% of classical for this nonlinear regime.
Datte, P. S.; Ross, J. S.; Froula, D. H.; ...
2016-09-21
Here, the National Ignition Facility (NIF) is a 192 laser beam facility designed to support the Stockpile Stewardship, High Energy Density and Inertial Confinement Fusion (ICF) programs. We report on the design of an Optical Thomson Scattering (OTS) diagnostic that has the potential to transform the community’s understanding of NIF hohlraum physics by providing first principle, local, time-resolved measurements of under-dense plasma conditions. The system design allows operation with different probe laser wavelengths by manual selection of the appropriate beam splitter and gratings before the shot. A deep-UV probe beam (λ 0-210 nm) will be used to optimize the scatteredmore » signal for plasma densities of 5 × 10 20 electrons/cm 3 while a 3ω probe will be used for experiments investigating lower density plasmas of 1 × 10 19 electrons/cm 3. We report the phase I design of a two phase design strategy. Phase I includes the OTS telescope, spectrometer, and streak camera; these will be used to assess the background levels at NIF. Phase II will include the design and installation of a probe laser.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Datte, P. S.; Ross, J. S.; Froula, D. H.
Here, the National Ignition Facility (NIF) is a 192 laser beam facility designed to support the Stockpile Stewardship, High Energy Density and Inertial Confinement Fusion (ICF) programs. We report on the design of an Optical Thomson Scattering (OTS) diagnostic that has the potential to transform the community’s understanding of NIF hohlraum physics by providing first principle, local, time-resolved measurements of under-dense plasma conditions. The system design allows operation with different probe laser wavelengths by manual selection of the appropriate beam splitter and gratings before the shot. A deep-UV probe beam (λ 0-210 nm) will be used to optimize the scatteredmore » signal for plasma densities of 5 × 10 20 electrons/cm 3 while a 3ω probe will be used for experiments investigating lower density plasmas of 1 × 10 19 electrons/cm 3. We report the phase I design of a two phase design strategy. Phase I includes the OTS telescope, spectrometer, and streak camera; these will be used to assess the background levels at NIF. Phase II will include the design and installation of a probe laser.« less
New tuning method of the low-mode asymmetry for ignition capsule implosions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Jianfa, E-mail: gu-jianfa@iapcm.ac.cn; Dai, Zhensheng; Zou, Shiyang
2015-12-15
In the deuterium-tritium inertial confinement fusion implosion experiments on the National Ignition Facility, the hot spot and the surrounding main fuel layer show obvious P2 asymmetries. This may be caused by the large positive P2 radiation flux asymmetry during the peak pulse resulting form the poor propagation of the inner laser beam in the gas-filled hohlraum. The symmetry evolution of ignition capsule implosions is investigated by applying P2 radiation flux asymmetries during different time intervals. A series of two-dimensional simulation results show that a positive P2 flux asymmetry during the peak pulse results in a positive P2 shell ρR asymmetry;more » while an early time positive P2 flux asymmetry causes a negative P2 in the fuel ρR shape. The opposite evolution behavior of shell ρR asymmetry is used to develop a new tuning method to correct the radiation flux asymmetry during the peak pulse by adding a compensating same-phased P2 drive asymmetry during the early time. The significant improvements of the shell ρR symmetry, hot spot shape, hot spot internal energy, and neutron yield indicate that the tuning method is quite effective. The similar tuning method can also be used to control the early time drive asymmetries.« less
NASA Astrophysics Data System (ADS)
Parsons, R.; Hustoft, J. W.; Holtzman, B. K.; Kohlstedt, D. L.; Phipps Morgan, J.
2004-12-01
As discussed in the two previous abstracts in this series, simple shear experiments on synthetic upper mantle-type rock samples reveal the segregation of melt into melt-rich bands separated by melt-depleted lenses. Here, we present new results from experiments designed to understand the driving forces working for and against melt segregation. To better understand the kinetics of surface tension-driven melt redistribution, we first deform samples at similar conditions (starting material, sample size, stress and strain) to produce melt-rich band networks that are statistically similar. Then the load is removed and the samples are statically annealed to allow surface tension to redistribute the melt-rich networks. Three samples of olivine + 20 vol% chromite + 4 vol% MORB were deformed at a confining pressure of 300 MPa and a temperature of 1523 K in simple shear at shear stresses of 20 - 55 MPa to shear strains of 3.5 and then statically annealed for 0, 10, or 100 h at the same P-T conditions. Melt-rich bands are fewer in number and appear more diffuse when compared to the deformed but not annealed samples. Bands with less melt tend to disappear more rapidly than more melt-rich ones. The melt fraction in the melt-rich bands decreased from 0.2 in the quenched sample to 0.1 in the sample annealed for 100 h. After deformation, the melt fraction in the melt-depleted regions are ~0.006; after static annealing for 100 h, this value increases to 0.02. These experiments provide new quantitative constraints on the kinetics of melt migration driven by surface tension. By quantifying this driving force in the same samples in which stress-driven distribution occurred, we learn about the relative kinetics of stress-driven melt segregation. The kinetics of both of these processes must be scaled together to mantle conditions to understand the importance of stress-driven melt segregation in the Earth, and to understand the interaction of this process with melt-rock reaction-driven processes.
Using neutrons to measure keV temperatures in highly compressed plastic at multi-Gbar pressures
NASA Astrophysics Data System (ADS)
Nilsen, J.; Bachmann, B.; Zimmerman, G. B.; Hatarik, R.; Döppner, T.; Swift, D.; Hawreliak, J.; Collins, G. W.; Falcone, R. W.; Glenzer, S. H.; Kraus, D.; Landen, O. L.; Kritcher, A. L.
2016-12-01
We have designed an experiment for the National Ignition Facility to measure the Hugoniot of materials such as plastic at extreme pressures. The design employs a strong spherically converging shock launched through a solid ball of material using a hohlraum radiation drive. The shock front conditions can be characterized using X-ray radiography until background from shock coalescence overtakes the backlit signal. Shock coalescence at the center is predicted to reach tens of Gbars and can be further characterized by measuring the X-ray self-emission and 2.45 MeV neutrons emitted from the shock flash region. In this simulation design work the standard plastic sphere is replaced with a deuterated polyethylene sphere, CD2, that reaches sufficiently high densities and temperatures in the central hot spot to produce neutrons from Deuterium-Deuterium (DD) fusion reactions that can be measured by a neutron time of flight spectrometer (nTOF) and act as a temperature diagnostic. This paper focuses on the design of these experiments, based on an extensive suite of radiation-hydrodynamics simulations, and the interpretation of the predicted DD neutron signals. The simulations predict mean temperatures of 1 keV in the central hot spot with mean densities of 33 g/cc and mean pressures of 25 Gbar. A preliminary comparison with early experimental results looks promising with an average ion temperature of 1.06 ± 0.15 keV in the central hot spot estimated from the nTOF spectral width and measured neutron yield of 7.0 (±0.5) × 109 DD neutrons.
A gasdynamic gun driven by gaseous detonation
NASA Astrophysics Data System (ADS)
Li, Jinping; Chen, Hong; Zhang, Shizhong; Zhang, Xiaoyuan; Yu, Hongru
2016-01-01
A gasdynamic gun driven by gaseous detonation was developed to address the disadvantages of the insufficient driving capability of high-pressure gas and the constraints of gunpowder. The performance of this gasdynamic gun was investigated through experiments and numerical simulations. Much more powerful launching capability was achieved by this gun relative to a conventional high-pressure gas gun, owing to the use of the chemical energy of the driver gas. To achieve the same launching condition, the initial pressure required for this gun was an order of magnitude lower than that for a gun driven by high-pressure H2. Because of the presence of the detonation, however, a more complex internal ballistic process of this gun was observed. Acceleration of projectiles for this gun was accompanied by a series of impulse loads, in contrast with the smooth acceleration for a conventional one, which indicates that this gun should be used conditionally. The practical feasibility of this gun was verified by experiments. The experiments demonstrated the convenience of taking advantage of the techniques developed for detonation-driven shock tubes and tunnels.
NASA Astrophysics Data System (ADS)
Olmstead, Dean A.; Schertler, Ronald R.; Randall, Laura A.
1992-03-01
The Advanced Communications Technology Satellite (ACTS), now under development and scheduled for launch in early 1993, is the current focus of NASA's commercial communications satellite program. The full power of the key technologies on ACTS can only be realized if industry assumes an active role in the conduct of experiments and demonstrations. This paper discusses the current market-driven rationale behind the ACTS Experiments Program activities aimed at getting industry involved - a rationale that addresses industry concerns and responds to industry inputs.
How Evolution May Work Through Curiosity-Driven Developmental Process.
Oudeyer, Pierre-Yves; Smith, Linda B
2016-04-01
Infants' own activities create and actively select their learning experiences. Here we review recent models of embodied information seeking and curiosity-driven learning and show that these mechanisms have deep implications for development and evolution. We discuss how these mechanisms yield self-organized epigenesis with emergent ordered behavioral and cognitive developmental stages. We describe a robotic experiment that explored the hypothesis that progress in learning, in and for itself, generates intrinsic rewards: The robot learners probabilistically selected experiences according to their potential for reducing uncertainty. In these experiments, curiosity-driven learning led the robot learner to successively discover object affordances and vocal interaction with its peers. We explain how a learning curriculum adapted to the current constraints of the learning system automatically formed, constraining learning and shaping the developmental trajectory. The observed trajectories in the robot experiment share many properties with those in infant development, including a mixture of regularities and diversities in the developmental patterns. Finally, we argue that such emergent developmental structures can guide and constrain evolution, in particular with regard to the origins of language. Copyright © 2016 Cognitive Science Society, Inc.
Heat Transfer Experiments on a Pulse Detonation Driven Combustor
2011-03-01
steps that need to take place before such a hybrid is successfully developed. PDEs obtain their increased efficiency by means of detonation , a pressure...combustion in the Brayton cycle. A PDE utilizes detonations , which offer much higher pressures at the site of fuel ignition, generating less...HEAT TRANSFER EXPERIMENTS ON A PULSE DETONATION DRIVEN COMBUSTOR THESIS Nicholas C. Longo, Captain, USAF AFIT/GAE/ENY/11-M18
ERIC Educational Resources Information Center
Atkinson, Linton
2015-01-01
This paper is a research dissertation based on a qualitative case study conducted on Teachers' Experiences within a Data-Driven Decision Making (DDDM) process. The study site was a Title I elementary school in a large school district in Central Florida. Background information is given in relation to the need for research that was conducted on the…
NASA Astrophysics Data System (ADS)
Strom, K.; Rouhnia, M.
2016-12-01
Previous studies have suggested that sedimentation from buoyant, muddy plumes lofting over clear saltwater can take place at rates higher than that expected from individual particle settling (i.e., CWs). Two potential drivers of enhanced sedimentation are flocculation and interfacial instabilities. We experimentally measured the sediment fluxes from each of these processes using two sets of laboratory experiments that investigate two different modes of instability, one driven by sediment settling and one driven by fluid shear. The settling-driven and shear-driven instability experiments were carried out in a stagnant stratification tank and a stratification flume respectively. In both sets, continuous interface monitoring and concentration measurements were made to observe developments of instabilities and their effects on the removal of sediment. Floc size was measured during the experiments using a floc camera and image analysis routines. This presentation will provide an overview of the stagnant tank experiments, but will focus on results from the stratified flume experiments and an analysis that attempts to synthesizes the results from the entirety of the study. The results from the stratified flume experiments show that under shear instabilities, the effective settling velocity is greater than the floc settling velocity, and that the rate increases with plume velocity and interface mixing. The difference between effective and floc settling velocity was denoted as the shear-induced settling velocity. This rate was found to be a strong function of the Richardson number, and was attributed to mixing processes at the interface. Conceptual and empirical analysis shows that the shear-induced settling velocity is proportional to URi-2. The resulting effective settling velocity models developed from these experiments are then used to examine the rates and potential locations of operations of these mechanism over the length of a river mouth plume.
A combustion driven shock tunnel to complement the free piston shock tunnel T5 at GALCIT
NASA Technical Reports Server (NTRS)
Belanger, Jacques; Hornung, Hans G.
1992-01-01
A combustion driven shock tunnel was designed and built at GALCIT to supply the hypersonic facility T5 with 'hot' hydrogen for mixing and combustion experiments. This system was chosen over other options for better flexibility and for safety reasons. The shock tunnel is described and the overall efficiency of the system is discussed. The biggest challenge in the design was to synchronize the combustion driven shock tunnel with T5. To do so, the main diaphragm of the combustion driven shock tunnel is locally melted by an electrical discharge. This local melting is rapidly followed by the complete collapse of the diaphragm in a very repeatable way. A first set of experiments on supersonic hydrogen transverse jets over a flat plate have just been completed with the system and some of the preliminary results are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, K.M.; Weber, F.A.; Dewald, E.L.
2004-10-01
The Dante soft x-ray spectrometer, installed on the Omega laser facility at the Laboratory for Laser Energetics, University of Rochester, is a 12-channel filter-edge defined soft x-ray power diagnostic. It is used to measure the spectrally resolved, absolute flux from direct drive, indirect drive (hohlraums) and other plasma sources. Dante component calibration efforts using two beam lines, U3C (50 eV-1 keV) and X8A (1-6 keV) at the National Synchrotron Light Source have been implemented to improve the accuracy of these measurements. We have calibrated metallic vacuum x-ray diodes, mirrors and filters.
NIF Ignition Target 3D Point Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, O; Marinak, M; Milovich, J
2008-11-05
We have developed an input file for running 3D NIF hohlraums that is optimized such that it can be run in 1-2 days on parallel computers. We have incorporated increasing levels of automation into the 3D input file: (1) Configuration controlled input files; (2) Common file for 2D and 3D, different types of capsules (symcap, etc.); and (3) Can obtain target dimensions, laser pulse, and diagnostics settings automatically from NIF Campaign Management Tool. Using 3D Hydra calculations to investigate different problems: (1) Intrinsic 3D asymmetry; (2) Tolerance to nonideal 3D effects (e.g. laser power balance, pointing errors); and (3) Syntheticmore » diagnostics.« less
NASA Astrophysics Data System (ADS)
Dewald, E. L.; Tommasini, R.; Mackinnon, A.; MacPhee, A.; Meezan, N.; Olson, R.; Hicks, D.; LePape, S.; Izumi, N.; Fournier, K.; Barrios, M. A.; Ross, S.; Pak, A.; Döppner, T.; Kalantar, D.; Opachich, K.; Rygg, R.; Bradley, D.; Bell, P.; Hamza, A.; Dzenitis, B.; Landen, O. L.; MacGowan, B.; LaFortune, K.; Widmayer, C.; Van Wonterghem, B.; Kilkenny, J.; Edwards, M. J.; Atherton, J.; Moses, E. I.
2016-03-01
Streaked 1-dimensional (slit imaging) radiography of 1.1 mm radius capsules in ignition hohlraums was recently introduced on the National Ignition Facility (NIF) and gives an inflight continuous record of capsule ablator implosion velocities, shell thickness and remaining mass in the last 3-5 ns before peak implosion time. The high quality data delivers good accuracy in implosion metrics that meets our requirements for ignition and agrees with recently introduced 2-dimensional pinhole radiography. Calculations match measured trajectory across various capsule designs and laser drives when the peak laser power is reduced by 20%. Furthermore, calculations matching measured trajectories give also good agreement in ablator shell thickness and remaining mass.
NASA Astrophysics Data System (ADS)
Hagmann, C.; Shaughnessy, D. A.; Moody, K. J.; Grant, P. M.; Gharibyan, N.; Gostic, J. M.; Wooddy, P. T.; Torretto, P. C.; Bandong, B. B.; Bionta, R.; Cerjan, C. J.; Bernstein, L. A.; Caggiano, J. A.; Herrmann, H. W.; Knauer, J. P.; Sayre, D. B.; Schneider, D. H.; Henry, E. A.; Fortner, R. J.
2015-07-01
A new radiochemical method for determining deuterium-tritium (DT) fuel and plastic ablator (CH) areal densities (ρR) in high-convergence, cryogenic inertial confinement fusion implosions at the National Ignition Facility is described. It is based on measuring the 198Au/196Au activation ratio using the collected post-shot debris of the Au hohlraum. The Au ratio combined with the independently measured neutron down scatter ratio uniquely determines the areal densities ρR(DT) and ρR(CH) during burn in the context of a simple 1-dimensional capsule model. The results show larger than expected ρR(CH) values, hinting at the presence of cold fuel-ablator mix.