Laser pulse shape design for laser-indirect-driven quasi-isentropic compression experiments
NASA Astrophysics Data System (ADS)
Xue, Quanxi; Jiang, Shaoen; Wang, Zhebin; Wang, Feng; Zhao, Xueqing; Ding, Yongkun
2018-02-01
Laser pulse shape design is a key work in the design of indirect-laser-driven experiments, especially for long pulse laser driven quasi-isentropic compression experiments. A method for designing such a laser pulse shape is given here. What's more, application experiments were performed, and the results of a typical shot are presented. At last of this article, the details of the application of the method are discussed, such as the equation parameter choice, radiation ablation pressure expression, and approximations in the method. The application shows that the method can provide reliable descriptions of the energy distribution in a hohlraum target; thus, it can be used in the design of long-pulse laser driven quasi-isentropic compression experiments and even other indirect-laser-driven experiments.
NASA Astrophysics Data System (ADS)
Yaakobi, B.; Boehly, T. R.; Sangster, T. C.; Meyerhofer, D. D.; Remington, B. A.; Allen, P. G.; Pollaine, S. M.; Lorenzana, H. E.; Lorenz, K. T.; Hawreliak, J. A.
2008-06-01
The use of in situ extended x-ray absorption fine structure (EXAFS) for characterizing nanosecond laser-shocked vanadium, titanium, and iron has recently been demonstrated. These measurements are extended to laser-driven, quasi-isentropic compression experiments (ICE). The radiation source (backlighter) for EXAFS in all of these experiments is obtained by imploding a spherical target on the OMEGA laser [T. R. Boehly et al., Rev. Sci. Instrum. 66, 508 (1995)]. Isentropic compression (where the entropy is kept constant) enables to reach high compressions at relatively low temperatures. The absorption spectra are used to determine the temperature and compression in a vanadium sample quasi-isentropically compressed to pressures of up to ˜0.75Mbar. The ability to measure the temperature and compression directly is unique to EXAFS. The drive pressure is calibrated by substituting aluminum for the vanadium and interferometrically measuring the velocity of the back target surface by the velocity interferometer system for any reflector (VISAR). The experimental results obtained by EXAFS and VISAR agree with each other and with the simulations of a hydrodynamic code. The role of a shield to protect the sample from impact heating is studied. It is shown that the shield produces an initial weak shock that is followed by a quasi-isentropic compression at a relatively low temperature. The role of radiation heating from the imploding target as well as from the laser-absorption region is studied. The results show that in laser-driven ICE, as compared with laser-driven shocks, comparable compressions can be achieved at lower temperatures. The EXAFS results show important details not seen in the VISAR results.
2012-06-01
driven down the barrel , compressing the test gas in an approximately isentropic manner. A representative pressure history measured within in the barrel ...have shown that the isentropic compression is a good approximation for the test flow which is first discharged from the barrel . A survey of nozzle exit...of the craft, and air is delivered by an axi-symmetric, internal compression inlet. The external laser induced df’tnnation configuration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maytal, Ben-Zion; Pfotenhauer, John M.
2014-01-29
Solvay, Stirling and Gifford-McMahon types of cryocoolers employ an isentropic expander which is their elementary mechanism for temperature reduction (following the unified model of cryocoolers as described in a previous paper, Part A). Solvay and Stirling cryocoolers are driven by a larger temperature reduction than that of the Gifford-McMahon cycle, for a similar compression ratio. These cryocoolers are compared from the view of the unified model, in terms of the lowest attainable temperature, compression ratio, the size of the interchanger and the applied heat load.
NASA Astrophysics Data System (ADS)
Largent, Billy T.
The state of matter at extremely high pressures and densities is of fundamental interest to many branches of research, including planetary science, material science, condensed matter physics, and plasma physics. Matter with pressures, or energy densities, above 1 megabar (100 gigapascal) are defined as High Energy Density (HED) plasmas. They are directly relevant to the interiors of planets such as Earth and Jupiter and to the dense fuels in Inertial Confinement Fusion (ICF) experiments. To create HEDP conditions in laboratories, a sample may be compressed by a smoothly varying pressure ramp with minimal temperature increase, following the isentropic thermodynamic process. Isentropic compression of aluminum targets has been done using magnetic pressure produced by megaampere, pulsed power currents having 100 ns rise times. In this research project, magnetically driven, cylindrical isentropic compression has been numerically studied. In cylindrical geometry, material compression and pressure become higher than in planar geometry due to geometrical effects. Based on a semi-analytical model for the Magnetized Liner Inertial Fusion (MagLIF) concept, a code called "SA" was written to design cylindrical compression experiments on the 1.0 MA Zebra pulsed power generator at the Nevada Terawatt Facility (NTF). To test the physics models in the code, temporal progresses of rod compression and pressure were calculated with SA and compared with 1-D magnetohydrodynamic (MHD) codes. The MHD codes incorporated SESAME tables, for equation of state and resistivity, or the classical Spitzer model. A series of simulations were also run to find optimum rod diameters for 1.0 MA and 1.8 MA Zebra current pulses. For a 1.0 MA current peak and 95 ns rise time, a maximum compression of 2.35 ( 6.3 g/cm3) and a pressure of 900 GPa within a 100 mum radius were found for an initial diameter of 1.05 mm. For 1.8 MA peak simulations with the same rise time, the initial diameter of 1.3 mm was optimal with 3.32 ( 9.0 g/cm 3) compression.
Experimental investigation of dynamic compression and spallation of Cerium at pressures up to 6 GPa
NASA Astrophysics Data System (ADS)
Zubareva, A. N.; Kolesnikov, S. A.; Utkin, A. V.
2014-05-01
In this study the experiments on one-dimensional dynamic compression of Cerium (Ce) samples to pressures of 0.5 to 6 GPa using various types of explosively driven generators were conducted. VISAR laser velocimeter was used to obtain Ce free surface velocity profiles. The isentropic compression wave was registered for γ-phase of Ce at pressures lower than 0.76 GPa that corresponds to γ-α phase transition pressure in Ce. Shock rarefaction waves were also registered in several experiments. Both observations were the result of the anomalous compressibility of γ-phase of Ce. On the basis of our experimental results the compression isentrope of Ce γ-phase was constructed. Its comparison with volumetric compression curves allowed to estimate the magnitude of shear stress at dynamic compression conditions for Ce. Spall strength measurements were also conducted for several samples. They showed a strong dependence of the spall strength of Ce on the strain rate.
Verification of conventional equations of state for tantalum under quasi-isentropic compression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Binqiang, Luo; Guiji, Wang; Jianjun, Mo
2014-11-21
Shock Hugoniot data have been widely used to calibrate analytic equations of state (EOSs) of condensed matter at high pressures. However, the suitability of particular analytic EOSs under off-Hugoniot states has not been sufficiently verified using experimental data. We have conducted quasi-isentropic compression experiments (ICEs) of tantalum using the compact pulsed power generator CQ-4, and explored the relation of longitudinal stress versus volume of tantalum under quasi-isentropic compression using backward integration and characteristic inverse methods. By subtracting the deviatoric stress and additional pressure caused by irreversible plastic dissipation, the isentropic pressure can be extracted from the longitudinal stress. Several theoreticalmore » isentropes are deduced from analytic EOSs and compared with ICE results to validate the suitability of these analytic EOSs in isentropic compression states. The comparisons show that the Gruneisen EOS with Gruneisen Gamma proportional to volume is accurate, regardless whether the Hugoniot or isentrope is used as the reference line. The Vinet EOS yields better accuracy in isentropic compression states. Theoretical isentropes derived from Tillotson, PUFF, and Birch-Murnaghan EOSs well agree with the experimental isentrope in the range of 0–100 GPa, but deviate gradually with pressure increasing further.« less
NASA Astrophysics Data System (ADS)
Gurovich, V.; Virozub, A.; Rososhek, A.; Bland, S.; Spielman, R. B.; Krasik, Ya. E.
2018-05-01
A major experimental research area in material equation-of-state today involves the use of off-Hugoniot measurements rather than shock experiments that give only Hugoniot data. There is a wide range of applications using quasi-isentropic compression of matter including the direct measurement of the complete isentrope of materials in a single experiment and minimizing the heating of flyer plates for high-velocity shock measurements. We propose a novel approach to generating quasi-isentropic compression of matter. Using analytical modeling and hydrodynamic simulations, we show that a working fluid composed of compressed water, generated by an underwater electrical explosion of a planar wire array, might be used to efficiently drive the quasi-isentropic compression of a copper target to pressures ˜2 × 1011 Pa without any complex target designs.
NASA Astrophysics Data System (ADS)
Ramanaiah, S.; Rao, C. Narasimha; Nagaraja, P.; Venkateswarlu, P.
2015-11-01
Exces volumes, VE, and excess isentropic compressibilities, κSE, have been reported as a function of composition for binary liquid mixtures of trichloroethylene with ethyl acetate, n-propyl acetate, and n-butyl acetate at 303.15 K. Isentropic compressibilities are calculated using measured sound speeds and density data for pure components and for binary mixtures. Excess volumes and excess isentropic compressibilities are found to be negative for the three systems studied over the entire composition range at 303.15 K, whereas these values become more negative with an increase of carbon chain length. The results are discussed in terms of intermolecular interactions between unlike molecules.
Metal liner-driven quasi-isentropic compression of deuterium
NASA Astrophysics Data System (ADS)
Weinwurm, Marcus; Bland, Simon N.; Chittenden, Jeremy P.
2013-09-01
Properties of degenerate hydrogen and deuterium (D) at pressures of the order of terapascals are of key interest to Planetary Science and Inertial Confinement Fusion. In order to recreate these conditions in the laboratory, we present a scheme, where a metal liner drives a cylindrically convergent quasi-isentropic compression in a D fill. We first determined an external pressure history for driving a self-similar implosion of a D shell from a fictitious flow simulation [D. S. Clark and M. Tabak, Nucl. Fusion 47, 1147 (2007)]. Then, it is shown that this D implosion can be recreated inside a beryllium liner by shaping the current pulse. For a peak current of 10.8 MA cold and nearly isochoric D is assembled at around 12 500 kg/m3. Finally, our two-dimensional Gorgon simulations show the robustness of the implosion method to the magneto-Rayleigh-Taylor instability when using a sufficiently thick liner.
Shock driven melting and resolidification upon release in cerium
NASA Astrophysics Data System (ADS)
Bolme, Cindy; Bronkhorst, Curt; Brown, Don; Cherne, Frank; Cooley, Jason; Furlanetto, Michael; Gleason, Arianna; Jensen, Brian; Owens, Charles; Ali, Suzanne; Fratanduono, Dayne; Galtier, Eric; Granados, Eduardo; Lee, Hae Ja; Nagler, Bob
2017-06-01
The temperature rise due to increasing entropy during shock compression and the corresponding temperature decrease due to isentropic expansion upon release cause the physics of melting and solidification under dynamic pressure changes to differ fundamentally from the more common liquid-solid transitions governed by thermal diffusion. We investigated laser shock driven melting and resolidification during release in cerium to examine the dynamics of these processes. Cerium was selected as the material of study due to the low pressure at which γ-cerium melts along the principle Hugoniot and due to cerium's anomalous melt boundary at low pressure, which facilitates its transition from liquid to solid during isentropic release. The structural phase of cerium was probed with X-ray diffraction using the LCLS X-ray free electron laser, which provided in situ measurements of the transition dynamics. The experimental results will be presented showing the resolidification occurring over 10s of ns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Binsong; Bian, Kaifu; Lane, J. Matthew D.
Gold nanostructured materials exhibit important size- and shape-dependent properties that enable a wide variety of applications in photocatalysis, nanoelectronics and phototherapy. Here we show the use of superfast dynamic compression to synthesize extended gold nanostructures, such as nanorods, nanowires and nanosheets, with nanosecond coalescence times. Using a pulsed power generator, we ramp compress spherical gold nanoparticle arrays to pressures of tens of GPa, demonstrating pressure-driven assembly beyond the quasi-static regime of the diamond anvil cell. Our dynamic magnetic ramp compression approach produces smooth, shockless (that is, isentropic) one-dimensional loading with low-temperature states suitable for nanostructure synthesis. Transmission electron microscopy clearlymore » establishes that various gold architectures are formed through compressive mesoscale coalescences of spherical gold nanoparticles, which is further confirmed by in-situ synchrotron X-ray studies and large-scale simulation. As a result, this nanofabrication approach applies magnetically driven uniaxial ramp compression to mimic established embossing and imprinting processes, but at ultra-short (nanosecond) timescales.« less
Li, Binsong; Bian, Kaifu; Lane, J. Matthew D.; ...
2017-03-16
Gold nanostructured materials exhibit important size- and shape-dependent properties that enable a wide variety of applications in photocatalysis, nanoelectronics and phototherapy. Here we show the use of superfast dynamic compression to synthesize extended gold nanostructures, such as nanorods, nanowires and nanosheets, with nanosecond coalescence times. Using a pulsed power generator, we ramp compress spherical gold nanoparticle arrays to pressures of tens of GPa, demonstrating pressure-driven assembly beyond the quasi-static regime of the diamond anvil cell. Our dynamic magnetic ramp compression approach produces smooth, shockless (that is, isentropic) one-dimensional loading with low-temperature states suitable for nanostructure synthesis. Transmission electron microscopy clearlymore » establishes that various gold architectures are formed through compressive mesoscale coalescences of spherical gold nanoparticles, which is further confirmed by in-situ synchrotron X-ray studies and large-scale simulation. As a result, this nanofabrication approach applies magnetically driven uniaxial ramp compression to mimic established embossing and imprinting processes, but at ultra-short (nanosecond) timescales.« less
NASA Astrophysics Data System (ADS)
Li, Binsong; Bian, Kaifu; Lane, J. Matthew D.; Salerno, K. Michael; Grest, Gary S.; Ao, Tommy; Hickman, Randy; Wise, Jack; Wang, Zhongwu; Fan, Hongyou
2017-03-01
Gold nanostructured materials exhibit important size- and shape-dependent properties that enable a wide variety of applications in photocatalysis, nanoelectronics and phototherapy. Here we show the use of superfast dynamic compression to synthesize extended gold nanostructures, such as nanorods, nanowires and nanosheets, with nanosecond coalescence times. Using a pulsed power generator, we ramp compress spherical gold nanoparticle arrays to pressures of tens of GPa, demonstrating pressure-driven assembly beyond the quasi-static regime of the diamond anvil cell. Our dynamic magnetic ramp compression approach produces smooth, shockless (that is, isentropic) one-dimensional loading with low-temperature states suitable for nanostructure synthesis. Transmission electron microscopy clearly establishes that various gold architectures are formed through compressive mesoscale coalescences of spherical gold nanoparticles, which is further confirmed by in-situ synchrotron X-ray studies and large-scale simulation. This nanofabrication approach applies magnetically driven uniaxial ramp compression to mimic established embossing and imprinting processes, but at ultra-short (nanosecond) timescales.
Li, Binsong; Bian, Kaifu; Lane, J Matthew D; Salerno, K Michael; Grest, Gary S; Ao, Tommy; Hickman, Randy; Wise, Jack; Wang, Zhongwu; Fan, Hongyou
2017-03-16
Gold nanostructured materials exhibit important size- and shape-dependent properties that enable a wide variety of applications in photocatalysis, nanoelectronics and phototherapy. Here we show the use of superfast dynamic compression to synthesize extended gold nanostructures, such as nanorods, nanowires and nanosheets, with nanosecond coalescence times. Using a pulsed power generator, we ramp compress spherical gold nanoparticle arrays to pressures of tens of GPa, demonstrating pressure-driven assembly beyond the quasi-static regime of the diamond anvil cell. Our dynamic magnetic ramp compression approach produces smooth, shockless (that is, isentropic) one-dimensional loading with low-temperature states suitable for nanostructure synthesis. Transmission electron microscopy clearly establishes that various gold architectures are formed through compressive mesoscale coalescences of spherical gold nanoparticles, which is further confirmed by in-situ synchrotron X-ray studies and large-scale simulation. This nanofabrication approach applies magnetically driven uniaxial ramp compression to mimic established embossing and imprinting processes, but at ultra-short (nanosecond) timescales.
Li, Binsong; Bian, Kaifu; Lane, J. Matthew D.; Salerno, K. Michael; Grest, Gary S.; Ao, Tommy; Hickman, Randy; Wise, Jack; Wang, Zhongwu; Fan, Hongyou
2017-01-01
Gold nanostructured materials exhibit important size- and shape-dependent properties that enable a wide variety of applications in photocatalysis, nanoelectronics and phototherapy. Here we show the use of superfast dynamic compression to synthesize extended gold nanostructures, such as nanorods, nanowires and nanosheets, with nanosecond coalescence times. Using a pulsed power generator, we ramp compress spherical gold nanoparticle arrays to pressures of tens of GPa, demonstrating pressure-driven assembly beyond the quasi-static regime of the diamond anvil cell. Our dynamic magnetic ramp compression approach produces smooth, shockless (that is, isentropic) one-dimensional loading with low-temperature states suitable for nanostructure synthesis. Transmission electron microscopy clearly establishes that various gold architectures are formed through compressive mesoscale coalescences of spherical gold nanoparticles, which is further confirmed by in-situ synchrotron X-ray studies and large-scale simulation. This nanofabrication approach applies magnetically driven uniaxial ramp compression to mimic established embossing and imprinting processes, but at ultra-short (nanosecond) timescales. PMID:28300067
NASA Astrophysics Data System (ADS)
Sawada, Hiroshi; Daykin, Tyler; Bauer, Bruno; Beg, Farhat
2017-10-01
We have developed an experimental platform to study material properties of magnetically compressed cylinder using a 1 MA pulsed power generator Zebra and a 50 TW subpicosecond short-pulse laser Leopard at the UNR's Nevada Terawatt Facility. According to a MHD simulation, strong magnetic fields generated by 100 ns rise time Zebra current can quasi-isentropically compress a material to the strongly coupled plasma regime. Taking advantage of the cylindrical geometry, a metal rod can be brought to higher pressures than that in the planar geometry. To diagnose the compressed rod with high precision x-ray measurements, an initial laser-only experiment was carried out to characterize laser-produced x-rays. Interaction of a high-intensity, short-pulse laser with solids produces broadband and monochromatic x-rays with photon energies high enough to probe dense metal rods. Bremsstrahlung was measured with Imaging plate-based filter stack spectrometers and monochromatic 8.0 keV Cu K-alpha was recorded with an absolutely calibrated Bragg crystal spectrometer. The broadband x-ray source was applied to radiography of thick metal objects and different filter materials were tested. The experimental results and a design of a coupled experiment will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemke, R. W., E-mail: rwlemke@sandia.gov; Dolan, D. H.; Dalton, D. G.
We report on a new technique for obtaining off-Hugoniot pressure vs. density data for solid metals compressed to extreme pressure by a magnetically driven liner implosion on the Z-machine (Z) at Sandia National Laboratories. In our experiments, the liner comprises inner and outer metal tubes. The inner tube is composed of a sample material (e.g., Ta and Cu) whose compressed state is to be inferred. The outer tube is composed of Al and serves as the current carrying cathode. Another aluminum liner at much larger radius serves as the anode. A shaped current pulse quasi-isentropically compresses the sample as itmore » implodes. The iterative method used to infer pressure vs. density requires two velocity measurements. Photonic Doppler velocimetry probes measure the implosion velocity of the free (inner) surface of the sample material and the explosion velocity of the anode free (outer) surface. These two velocities are used in conjunction with magnetohydrodynamic simulation and mathematical optimization to obtain the current driving the liner implosion, and to infer pressure and density in the sample through maximum compression. This new equation of state calibration technique is illustrated using a simulated experiment with a Cu sample. Monte Carlo uncertainty quantification of synthetic data establishes convergence criteria for experiments. Results are presented from experiments with Al/Ta, Al/Cu, and Al liners. Symmetric liner implosion with quasi-isentropic compression to peak pressure ∼1000 GPa is achieved in all cases. These experiments exhibit unexpectedly softer behavior above 200 GPa, which we conjecture is related to differences in the actual and modeled properties of aluminum.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemke, R. W.; Dolan, D. H.; Dalton, D. G.
We report on a new technique for obtaining off-Hugoniot pressure vs. density data for solid metals compressed to extreme pressure by a magnetically driven liner implosion on the Z-machine (Z) at Sandia National Laboratories. In our experiments, the liner comprises inner and outer metal tubes. The inner tube is composed of a sample material (e.g., Ta and Cu) whose compressed state is to be inferred. The outer tube is composed of Al and serves as the current carrying cathode. Another aluminum liner at much larger radius serves as the anode. A shaped current pulse quasi-isentropically compresses the sample as itmore » implodes. The iterative method used to infer pressure vs. density requires two velocity measurements. Photonic Doppler velocimetry probes measure the implosion velocity of the free (inner) surface of the sample material and the explosion velocity of the anode free (outer) surface. These two velocities are used in conjunction with magnetohydrodynamic simulation and mathematical optimization to obtain the current driving the liner implosion, and to infer pressure and density in the sample through maximum compression. This new equation of state calibration technique is illustrated using a simulated experiment with a Cu sample. Monte Carlo uncertainty quantification of synthetic data establishes convergence criteria for experiments. Results are presented from experiments with Al/Ta, Al/Cu, and Al liners. Symmetric liner implosion with quasi-isentropic compression to peak pressure ~1000 GPa is achieved in all cases. Lastly, these experiments exhibit unexpectedly softer behavior above 200 GPa, which we conjecture is related to differences in the actual and modeled properties of aluminum.« less
Lemke, R. W.; Dolan, D. H.; Dalton, D. G.; ...
2016-01-07
We report on a new technique for obtaining off-Hugoniot pressure vs. density data for solid metals compressed to extreme pressure by a magnetically driven liner implosion on the Z-machine (Z) at Sandia National Laboratories. In our experiments, the liner comprises inner and outer metal tubes. The inner tube is composed of a sample material (e.g., Ta and Cu) whose compressed state is to be inferred. The outer tube is composed of Al and serves as the current carrying cathode. Another aluminum liner at much larger radius serves as the anode. A shaped current pulse quasi-isentropically compresses the sample as itmore » implodes. The iterative method used to infer pressure vs. density requires two velocity measurements. Photonic Doppler velocimetry probes measure the implosion velocity of the free (inner) surface of the sample material and the explosion velocity of the anode free (outer) surface. These two velocities are used in conjunction with magnetohydrodynamic simulation and mathematical optimization to obtain the current driving the liner implosion, and to infer pressure and density in the sample through maximum compression. This new equation of state calibration technique is illustrated using a simulated experiment with a Cu sample. Monte Carlo uncertainty quantification of synthetic data establishes convergence criteria for experiments. Results are presented from experiments with Al/Ta, Al/Cu, and Al liners. Symmetric liner implosion with quasi-isentropic compression to peak pressure ~1000 GPa is achieved in all cases. Lastly, these experiments exhibit unexpectedly softer behavior above 200 GPa, which we conjecture is related to differences in the actual and modeled properties of aluminum.« less
Accessing ultrahigh-pressure, quasi-isentropic states of mattera)
NASA Astrophysics Data System (ADS)
Lorenz, K. T.; Edwards, M. J.; Glendinning, S. G.; Jankowski, A. F.; McNaney, J.; Pollaine, S. M.; Remington, B. A.
2005-05-01
A new approach to the study of material strength of metals at extreme pressures has been developed on the Omega laser, using a ramped plasma piston drive. The laser drives a shock through a solid plastic reservoir that unloads at the rear free surface, expands across a vacuum gap, and stagnates on the metal sample under study. This produces a gently increasing ram pressure, compressing the sample nearly isentropically. The peak pressure on the sample, inferred from interferometric measurements of velocity, can be varied by adjusting the laser energy and pulse length, gap size, and reservoir density, and obeys a simple scaling relation [J. Edwards et al., Phys. Rev. Lett. 92, 075002 (2004)]. In an important application, using in-flight x-ray radiography, the material strength of solid-state samples at high pressure can be inferred by measuring the reductions in the growth rates (stabilization) of Rayleigh-Taylor unstable interfaces. This paper reports the first attempt to use this new laser-driven, quasi-isentropic technique for determining material strength in high-pressure solids. Modulated foils of Al-6061-T6 were accelerated and compressed to peak pressures of ˜200kbar. Modulation growth was recorded at a series of times after peak acceleration and well into the release phase. Fits to the growth data, using a Steinberg-Guinan constitutive strength model, give yield strengths 38% greater than those given by the nominal parameters for Al-6061-T6. Calculations indicate that the dynamic enhancement to the yield strength at ˜200kbar is a factor of ˜3.6× over the ambient yield strength of 2.9kbar. Experimental designs based on this drive developed for the National Ignition Facility laser [W. Hogan, E. Moses, B. Warner, M. Sorem, and J. Soures, Nuclear Fusion 41, 567 (2001)] predict that solid-state samples can be quasi-isentropically driven to pressures an order of magnitude higher than on Omega, accessing new regimes of dense, high-pressure matter.
Dynamic compression of copper to over 450 GPa: A high-pressure standard
Kraus, R. G.; Davis, J. -P.; Seagle, C. T.; ...
2016-04-12
We obtained an absolute stress-density path for shocklessly compressed copper to over 450 GPa. A magnetic pressure drive is temporally tailored to generate shockless compression waves through over 2.5-mm-thick copper samples. Furthermore, the free-surface velocity data is analyzed for Lagrangian sound velocity using the iterative Lagrangian analysis (ILA) technique, which relies upon the method of characteristics. We correct for the effects of strength and plastic work heating to determine an isentropic compression path. By assuming a Debye model for the heat capacity, we can further correct the isentrope to an isotherm. Finally, our determination of the isentrope and isotherm ofmore » copper represents a highly accurate pressure standard for copper to over 450 GPa.« less
Electrophysical properties of water and ice under isentropic compression to megabar pressures
NASA Astrophysics Data System (ADS)
Belov, S. I.; Boriskov, G. V.; Bykov, A. I.; Dolotenko, M. I.; Egorov, N. I.; Korshunov, A. S.; Kudasov, Yu. B.; Makarov, I. V.; Selemir, V. D.; Filippov, A. V.
2017-02-01
The relative permittivity and specific conductivity of water and ice are measured under isentropic compression to pressures above 300 GPa. Compression is initiated by a pulse of an ultrahigh magnetic field generated by an MK-1 magnetocumulative generator. The sample is placed in a coaxial compression chamber with an initial volume of about 40 cm3. The complex relative permittivity was measured by a fast-response reflectometer at a frequency of about 50 MHz. At the compression of water, its relative permittivity increases to ɛ = 350 at a pressure of 8 GPa, then drops sharply to ɛ = 140, and further decreases smoothly. It is shown that measurements of the relative permittivity under isentropic compression make it possible to determine interfaces between ordered and disordered phases of water and ice, as well as to reveal features associated with a change in the activation energy of defects.
Modeling pressure-driven assembly of polymer coated nanoparticles
NASA Astrophysics Data System (ADS)
Lane, J. Matthew D.; Salerno, K. Michael; Grest, Gary S.; Fan, Hongyou
2017-06-01
High-pressure experiments have successfully produced a variety of gold nanostructures by compressing polymer coated spherical nanoparticles. We apply atomistic simulation to understand the role of the soft polymer response in determining the pressure-driven assembly of gold nanostructures. Quasi-isentropic experiments have shown that 1D, 2D and 3D nanostructures can be formed and recovered from dynamic compression of fcc superlattices of alkanethiol-coated gold nanocrystals on Sandia's Veloce pulsed power accelerator. Molecular modeling has shown that the dimensionality of the final structures depends on the orientation of the superlattice and the uniaxial loading. We describe the role of coating ligand length and grafting density, on ligand migration and deformation processes during pressure-driven coalescence of the cores into permanent nanowires, nanosheets and 3D structures. The role of uniaxial vs isotropic pressure and the effects of compression along various superlattice orientations will be discussed. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Ao, Tommy; Asay, James; Knudson, Marcus; Davis, Jean-Paul
2007-06-01
The Isentropic Compression Experiment technique has proven to be a valuable complement to the well-established method of shock compression of condensed matter. However, whereas the high-pressure compression response of window materials has been studied extensively under shock loading, similar knowledge of these materials under ICE loading is limited. We present recent experimental results on the isentropic compression of the high-pressure windows sapphire and LiF. It has previously been observed that c-cut sapphire yields under shock loading at the HEL of ˜15-18GPa, and subsequently loses transparency at higher stresses. However, it will be shown that under isentropic ramp wave loading sapphire appears to remain elastic and transparent at stresses well above 20GPa [D.B. Hayes et al, JAP 94, 2331 (2003)]. LiF is another frequently used window material in isentropic loading and unloading experiments, yet the unloading response of LiF is usually neglected. Research is in progress to measure strength properties of LiF for ramp loading and unloading. It will be shown how the strength of LiF may influence wave profile analysis and thus inferred material strength. Sandia is a multiprogram laboratory operated by Sandia Corp., a Lockheed Martin Company, for the US DOE's NNSA under Contract No.DE-AC04-94AL85000.
Near Mbar-Level Dynamic Loading of Materials by Direct Laser-Irradiation
NASA Astrophysics Data System (ADS)
Tierney, T. E.; Swift, D. C.; Gammel, J. T.; Luo, S.; Johnson, R. P.
2003-12-01
We are developing techniques to perform direct-laser-illumination-driven, dynamic materials experiments at up to Mbar pressures with use of the Trident Laser Laboratory at Los Alamos. By temporally controlling the laser-irradiance, we are able to shape our loading for studies of fast-rise shocks, precursors, or isentropic compression. Laser-driven shock experiments are advantageous when considering the efficiency (fast turnaround), relative ease of sample recovery, taylorable dynamic loading, and in-situ structure diagnostics. Frequently, these experiments last 1-5 nanoseconds, and thus, permit investigation of rate-dependent processes and high strain rate environments. Laser-driven dynamic experiments are an important complement to traditional dynamic (e.g., light-gas gun) and static (e.g., diamond-anvil cell) experiments with certain advantages in studying equation of state, phase transitions and mechanical-chemical properties of Earth and planetary materials. Understanding high-pressure behavior in this regime is critical to phase boundaries for planetary interiors and dynamic properties of impact processes. Although we have studied silicates, oxides, metals, alloys and organic materials, this paper will focus on shocked and isentropically-compressed results obtained for iron in the range of 10-70 GPa (0.1-0.7 Mbar). Free surface velocities are measured using a Velocity Interferometer System for Any Reflector (VISAR). Nanosecond-scale laser experiments were interpreted with careful attention to exaggerated elastic-plastic effects and using accurate new equations of state for the phases of iron. This poster will present our technique, experimental results, and interpretation. *Work performed under the auspices of the US DOE under contract No. W-7405-ENG-36.
Unified solver for fluid dynamics and aeroacoustics in isentropic gas flows
NASA Astrophysics Data System (ADS)
Pont, Arnau; Codina, Ramon; Baiges, Joan; Guasch, Oriol
2018-06-01
The high computational cost of solving numerically the fully compressible Navier-Stokes equations, together with the poor performance of most numerical formulations for compressible flow in the low Mach number regime, has led to the necessity for more affordable numerical models for Computational Aeroacoustics. For low Mach number subsonic flows with neither shocks nor thermal coupling, both flow dynamics and wave propagation can be considered isentropic. Therefore, a joint isentropic formulation for flow and aeroacoustics can be devised which avoids the need for segregating flow and acoustic scales. Under these assumptions density and pressure fluctuations are directly proportional, and a two field velocity-pressure compressible formulation can be derived as an extension of an incompressible solver. Moreover, the linear system of equations which arises from the proposed isentropic formulation is better conditioned than the homologous incompressible one due to the presence of a pressure time derivative. Similarly to other compressible formulations the prescription of boundary conditions will have to deal with the backscattering of acoustic waves. In this sense, a separated imposition of boundary conditions for flow and acoustic scales which allows the evacuation of waves through Dirichlet boundaries without using any tailored damping model will be presented.
Dynamic Behaviors of Materials under Ramp Wave Loading on Compact Pulsed Power Generators
NASA Astrophysics Data System (ADS)
Zhao, Jianheng; Luo, Binqiang; Wang, Guiji; Chong, Tao; Tan, Fuli; Liu, Cangli; Sun, Chengwei
The technique using intense current to produce magnetic pressure provides a unique way to compress matter near isentrope to high density without obvious temperature increment, which is characterized as ramp wave loading, and firstly developed by Sandia in 1998. Firstly recent advances on compact pulsed power generators developed in our laboratory, such as CQ-4, CQ-3-MMAF and CQ-7 devices, are simply introduced here, which devoted to ramp wave loading from 50GPa to 200 GPa, and to ultrahigh-velocity flyer launching up to 30 km/s. And then, we show our progress in data processing methods and experiments of isentropic compression conducted on these devices mentioned above. The suitability of Gruneisen EOS and Vinet EOS are validated by isentropic experiments of tantalum, and the parameters of SCG constitutive equation of aluminum and copper are modified to give better prediction under isentropic compression. Phase transition of bismuth and tin are investigated under different initial temperatures, parameters of Helmholtz free energy and characteristic relaxation time in kinetic phase transition equation are calibrated. Supported by NNSF of China under Contract No.11327803 and 11176002
Isentropic compressive wave generator impact pillow and method of making same
Barker, Lynn M.
1985-01-01
An isentropic compressive wave generator and method of making same. The w generator comprises a disk or flat "pillow" member having component materials of different shock impedances formed in a configuration resulting in a smooth shock impedance gradient over the thickness thereof for interpositioning between an impactor member and a target specimen for producing a shock wave of a smooth predictable rise time. The method of making the pillow member comprises the reduction of the component materials to a powder form and forming the pillow member by sedimentation and compressive techniques.
Isentropic compressive wave generator and method of making same
Barker, L.M.
An isentropic compressive wave generator and method of making same are disclosed. The wave generator comprises a disk or flat pillow member having component materials of different shock impedances formed in a configuration resulting in a smooth shock impedance gradient over the thickness thereof for interpositioning between an impactor member and a target specimen for producing a shock wave of a smooth predictable rise time. The method of making the pillow member comprises the reduction of the component materials to a powder form and forming the pillow member by sedimentation and compressive techniques.
Optimization of a two stage light gas gun. M.S. Thesis
NASA Technical Reports Server (NTRS)
Rynearson, R. J.; Rand, J. L.
1972-01-01
Performance characteristics of the Texas A&M University light gas gun are presented along with a review of basic gun theory and popular prediction methods. A computer routine based on the simple isentropic compression method is discussed. Results from over 60 test shots are given which demonstrate an increase in gun muzzle velocity from 9.100 ft/sec. to 19,000 ft/sec. The data gathered indicated the Texas A&M light gas gun more closely resembles an isentropic compression gun rather than a shock compression gun.
NASA Astrophysics Data System (ADS)
Kluge, Thomas
2015-11-01
Combining ultra-intense short-pulse and high-energy long-pulse lasers, with brilliant coherent hard X-ray FELs, such as the Helmholtz International Beamline for Extreme Fields (HIBEF) under construction at the HED Instrument of European XFEL, or MEC at LCLS, holds the promise to revolutionize our understanding of many High Energy Density Physics phenomena. Examples include the relativistic electron generation, transport, and bulk plasma response, and ionization dynamics and heating in relativistic laser-matter interactions, or the dynamics of laser-driven shocks, quasi-isentropic compression, and the kinetics of phase transitions at high pressure. A particularly promising new technique is the use of coherent X-ray diffraction to characterize electron density correlations, and by resonant scattering to characterize the distribution of specific charge-state ions, either on the ultrafast time scale of the laser interaction, or associated with hydrodynamic motion. As well one can image slight density changes arising from phase transitions inside of shock-compressed high pressure matter. The feasibility of coherent diffraction techniques in laser-driven matter will be discussed. including recent results from demonstration experiments at MEC. Among other things, very sharp density changes from laser-driven compression are observed, having an effective step width of 10 nm or smaller. This compares to a resolution of several hundred nm achievedpreviously with phase contrast imaging. and on behalf of HIBEF User Consortium, for the Helmholtz International Beamline for Extreme Fields at the European XFEL.
Quasi-isentropic compression of materials using the magnetic loading technique
NASA Astrophysics Data System (ADS)
Ao, Tommy
2009-06-01
The Isentropic Compression Experiment (ICE) technique has proven to be a valuable complement to the well-established method of shock compression of condensed matter. The magnetic loading technique using pulsed power generators was first developed about a decade ago on the Z Accelerator, and has matured significantly. The recent development of small pulsed power generators have enabled several key issues in ICE, such as panel & sample preparation, uniformity of loading, and edge effects to be studied. Veloce is a medium-voltage, high-current, compact pulsed power generator developed for cost effective isentropic experiments. The machine delivers up to 3 MA of current rapidly (˜ 440-530 ns) into an inductive load where significant magnetic pressures are produced. Examples of recent material strength measurements from quasi-isentropic loading and unloading of materials will be presented. In particular, the influence that the strength of interferometer windows has on wave profile analyses and thus the inferred strength of materials is examined. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.
Dynamic compression and volatile release of carbonates
NASA Technical Reports Server (NTRS)
Tyburczy, J. A.; Ahrens, T. J.
1984-01-01
Particle velocity profiles upon shock compression and isentropic releases were measured for polycrystalline calcite. The Solenhofen limestone release paths lie, close to the Hugoniot. Calcite 3 to 2 transition, upon release, was observed, but rarefaction shocks were not detected. The equation of state is used to predict the fraction of material devolatilized upon isentropic release as a function of shock pressure. The effect of ambient partial pressure of CO2 on the calculations is demonstrated and considered in models of atmospheric evolution by impact induced mineral devolatilization. The radiative characteristics of shocked calcite indicate that localization of thermal energy occurs under shock compression. Shock entropy calculations result in a minimum estimate of 90% devolatilization upon complete release from 10 GPa. Isentropic release paths from calculated continuum Hugoniot temperatures cross into the CaO (solid) + CO2 (vapor) field at improbably low pressures. It is found that release paths from measured shock temperatures cross into the melt plus vapor field at pressures greater than .5 GPa, which suggests that devolatilization is initiated at the shear banding sites.
Isentropic expansion and related thermodynamic properties of non-ionic amphiphile-water mixtures.
Reis, João Carlos R; Douhéret, Gérard; Davis, Michael I; Fjellanger, Inger Johanne; Høiland, Harald
2008-01-28
A concise thermodynamic formalism is developed for the molar isentropic thermal expansion, ES,m = ( partial differential Vm/ partial differential T)(Sm,x), and the ideal and excess quantities for the molar, apparent molar and partial molar isentropic expansions of binary liquid mixtures. Ultrasound speeds were determined by means of the pulse-echo-overlap method in aqueous mixtures of 2-methylpropan-2-ol at 298.15 K over the entire composition range. These data complement selected extensive literature data on density, isobaric heat capacity and ultrasound speed for 9 amphiphile (methanol, ethanol, propan-1-ol, propan-2-ol, 2-methylpropan-2-ol, ethane-1,2-diol, 2-methoxyethanol, 2-ethoxyethanol or 2-butoxyethanol)-water binary systems, which form the basis of tables listing molar and excess molar isobaric expansions and heat capacities, and molar and excess molar isentropic compressions and expansions at 298.15 K and at 65 fixed mole fractions spanning the entire composition range and fine-grained in the water-rich region. The dependence on composition of these 9 systems is graphically depicted for the excess molar isobaric and isentropic expansions and for the excess partial molar isobaric and isentropic expansions of the amphiphile. The analysis shows that isentropic thermal expansion properties give a much stronger response to amphiphile-water molecular interactions than do their isobaric counterparts. Depending on the pair property-system, the maximum excess molar isentropic value is generally twenty- to a hundred-fold greater than the corresponding maximum isobaric value, and occurs at a lower mole fraction of the amphiphile. Values at infinite dilution of the 9 amphiphiles in water are given for the excess partial molar isobaric heat capacity, isentropic compression, isobaric expansion and isentropic expansion. These values are interpreted in terms of the changes occurring when amphiphile molecules cluster into an oligomeric form. Present results are discussed from theoretical and experimental thermodynamic viewpoints. It is concluded that isentropic thermal expansion properties constitute a new distinct resource for revealing particular features and trends in complex mixing processes, and that analyses using these new properties compare favourably with conventional approaches.
Quasi-Isentropic Compressibility of Deuterium at a Pressure of 12 TPa
NASA Astrophysics Data System (ADS)
Mochalov, M. A.; Il'kaev, R. I.; Fortov, V. E.; Mikhailov, A. L.; Arinin, V. A.; Blikov, A. O.; Komrakov, V. A.; Maksimkin, I. P.; Ogorodnikov, V. A.; Ryzhkov, A. V.
2018-04-01
An experimental result for the quasi-isentropic compressibility of a strongly nonideal deuterium plasma compressed in a spherical device by the pressure P = 11400 GPa (114 Mbar) to the density ρ ≈ 10g/cm3 has been reported. The characteristics of the experimental device, diagnostic methods, and experimental results have been described. The trajectory of motion of metallic shells compressing a deuterium plasma has been recorded using intense pulsed sources of X rays with the boundary energy of electrons up to 60 MeV. The deuterium plasma density ρ ≈ 10g/cm3 has been determined from the measured radius of the shell at the time of its "stop." The pressure of the compressed plasma has been determined from gas-dynamic calculations taking into account the real characteristics of the experimental device.
Strain-Rate Dependence of Deformation-Twinning in Tantalum
NASA Astrophysics Data System (ADS)
Abeywardhana, Jayalath; Germann, Tim; Ravelo, Ramon
2017-06-01
Large-Scale molecular dynamics (MD) simulations are used to model quasi-isentropic compression and expansion (QIC) in tantalum crystals varying the rate of deformation between the range 108 -1012s-1 and compressive pressures up to 100 GPa. The atomic interactions were modeled employing an embedded-atom method (EAM) potential of Ta. Isentropic expansion was done employing samples initially compressed to pressures of 60 and 100 GPa followed by uniaxial and quasi-isentropically expansion to zero pressure. The effect of initial dislocation density on twinning was also examined by varying the initial defect density of the Ta samples (1010 -1012cm-2). At these high-strain rates, a threshold in strain-rate on deformation twining is observed. Under expansion or compression, deformation twinning increases with strain rate for strain-rates >109s-1 . Below this value, small fraction of twins nucleates but anneal out with time. Samples with lower fraction of twins equilibrate to defect states containing higher screw dislocation densities from those with initially higher twinning fractions. This work was supported by the Department of Energy under contract DE-AC52-06NA25396 and by the Air Force Office of Scientific Research under AFOSR Award No. FA9550-12-1-0476.
NASA Astrophysics Data System (ADS)
Waisman, E. M.; Reisman, D. B.; Stoltzfus, B. S.; Stygar, W. A.; Cuneo, M. E.; Haill, T. A.; Davis, J.-P.; Brown, J. L.; Seagle, C. T.; Spielman, R. B.
2016-06-01
The Thor pulsed power generator is being developed at Sandia National Laboratories. The design consists of up to 288 decoupled and transit time isolated capacitor-switch units, called "bricks," that can be individually triggered to achieve a high degree of pulse tailoring for magnetically driven isentropic compression experiments (ICE) [D. B. Reisman et al., Phys. Rev. Spec. Top.-Accel. Beams 18, 090401 (2015)]. The connecting transmission lines are impedance matched to the bricks, allowing the capacitor energy to be efficiently delivered to an ICE strip-line load with peak pressures of over 100 GPa. Thor will drive experiments to explore equation of state, material strength, and phase transition properties of a wide variety of materials. We present an optimization process for producing tailored current pulses, a requirement for many material studies, on the Thor generator. This technique, which is unique to the novel "current-adder" architecture used by Thor, entirely avoids the iterative use of complex circuit models to converge to the desired electrical pulse. We begin with magnetohydrodynamic simulations for a given material to determine its time dependent pressure and thus the desired strip-line load current and voltage. Because the bricks are connected to a central power flow section through transit-time isolated coaxial cables of constant impedance, the brick forward-going pulses are independent of each other. We observe that the desired equivalent forward-going current driving the pulse must be equal to the sum of the individual brick forward-going currents. We find a set of optimal brick delay times by requiring that the L2 norm of the difference between the brick-sum current and the desired forward-going current be a minimum. We describe the optimization procedure for the Thor design and show results for various materials of interest.
Waisman, E M; Reisman, D B; Stoltzfus, B S; Stygar, W A; Cuneo, M E; Haill, T A; Davis, J-P; Brown, J L; Seagle, C T; Spielman, R B
2016-06-01
The Thor pulsed power generator is being developed at Sandia National Laboratories. The design consists of up to 288 decoupled and transit time isolated capacitor-switch units, called "bricks," that can be individually triggered to achieve a high degree of pulse tailoring for magnetically driven isentropic compression experiments (ICE) [D. B. Reisman et al., Phys. Rev. Spec. Top.-Accel. Beams 18, 090401 (2015)]. The connecting transmission lines are impedance matched to the bricks, allowing the capacitor energy to be efficiently delivered to an ICE strip-line load with peak pressures of over 100 GPa. Thor will drive experiments to explore equation of state, material strength, and phase transition properties of a wide variety of materials. We present an optimization process for producing tailored current pulses, a requirement for many material studies, on the Thor generator. This technique, which is unique to the novel "current-adder" architecture used by Thor, entirely avoids the iterative use of complex circuit models to converge to the desired electrical pulse. We begin with magnetohydrodynamic simulations for a given material to determine its time dependent pressure and thus the desired strip-line load current and voltage. Because the bricks are connected to a central power flow section through transit-time isolated coaxial cables of constant impedance, the brick forward-going pulses are independent of each other. We observe that the desired equivalent forward-going current driving the pulse must be equal to the sum of the individual brick forward-going currents. We find a set of optimal brick delay times by requiring that the L2 norm of the difference between the brick-sum current and the desired forward-going current be a minimum. We describe the optimization procedure for the Thor design and show results for various materials of interest.
Waste Heat Approximation for Understanding Dynamic Compression in Nature and Experiments
NASA Astrophysics Data System (ADS)
Jeanloz, R.
2015-12-01
Energy dissipated during dynamic compression quantifies the residual heat left in a planet due to impact and accretion, as well as the deviation of a loading path from an ideal isentrope. Waste heat ignores the difference between the pressure-volume isentrope and Hugoniot in approximating the dissipated energy as the area between the Rayleigh line and Hugoniot (assumed given by a linear dependence of shock velocity on particle velocity). Strength and phase transformations are ignored: justifiably, when considering sufficiently high dynamic pressures and reversible transformations. Waste heat mis-estimates the dissipated energy by less than 10-20 percent for volume compressions under 30-60 percent. Specific waste heat (energy per mass) reaches 0.2-0.3 c02 at impact velocities 2-4 times the zero-pressure bulk sound velocity (c0), its maximum possible value being 0.5 c02. As larger impact velocities are implied for typical orbital velocities of Earth-like planets, and c02 ≈ 2-30 MJ/kg for rock, the specific waste heat due to accretion corresponds to temperature rises of about 3-15 x 103 K for rock: melting accompanies accretion even with only 20-30 percent waste heat retained. Impact sterilization is similarly quantified in terms of waste heat relative to the energy required to vaporize H2O (impact velocity of 7-8 km/s, or 4.5-5 c0, is sufficient). Waste heat also clarifies the relationship between shock, multi-shock and ramp loading experiments, as well as the effect of (static) pre-compression. Breaking a shock into 2 steps significantly reduces the dissipated energy, with minimum waste heat achieved for two equal volume compressions in succession. Breaking a shock into as few as 4 steps reduces the waste heat to within a few percent of zero, documenting how multi-shock loading approaches an isentrope. Pre-compression, being less dissipative than an initial shock to the same strain, further reduces waste heat. Multi-shock (i.e., high strain-rate) loading of pre-compressed samples may thus offer the closest approach to an isentrope, and therefore the most extreme compression at which matter can be studied at the "warm" temperatures of planetary interiors.
NASA Astrophysics Data System (ADS)
Ali, A.; Bidhuri, P.; Uzair, S.
2014-07-01
Ultrasonic speed u, densities ρ and viscosities η of xylitol in water and in 0.001 m aqueous l-tyrosine (Tyr) and l-phenylalanine (Phe) have been measured at different temperatures. From the density and ultrasonic speed measurements apparent molar isentropic compression κ_{φ}, apparent molar isentropic compressions at infinite dilution κ_{{S,φ}}0 , experimental slope S K , hydration number n H , transfer partial molar isentropic compressibility Δ_{tr} κ_{{S,φ}}0 of xylitol from water to aqueous Tyr and Phe have been obtained. From the viscosity data, B-coefficient and B-coefficient of transfer Δ tr B of xylitol from water to aqueous Phe and Tyr at different temperatures have also been estimated. Gibbs free energies of activation of viscous flow per mole of solvent Δ μ 1 0# and per mole of solute Δ μ 2 0# have been calculated by using Feakins transition state theory for the studied systems. The calculated parameters have been interpreted in terms of solute-solute and solute-solvent interactions and hydration behavior of xylitol.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lefrancois, A.; Reisman, D. B.; Bastea, M.
2006-02-13
Isentropic compression experiments and numerical simulations on metals are performed at Z accelerator facility from Sandia National Laboratory and at Lawrence Livermore National Laboratory in order to study the isentrope, associated Hugoniot and phase changes of these metals. 3D configurations have been calculated here to benchmark the new beta version of the electromagnetism package coupled with the dynamics in Ls-Dyna and compared with the ICE Z shots 1511 and 1555. The electromagnetism module is being developed in the general-purpose explicit and implicit finite element program LS-DYNA{reg_sign} in order to perform coupled mechanical/thermal/electromagnetism simulations. The Maxwell equations are solved using amore » Finite Element Method (FEM) for the solid conductors coupled with a Boundary Element Method (BEM) for the surrounding air (or vacuum). More details can be read in the references.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lefrancois, A.; Hare, D.; L'Eplattenier, P.
2006-02-13
Isentropic compression experiments and numerical simulations on LX-04 (HMX / Viton 85/15) were performed respectively at Z accelerator facility from Sandia National Laboratory and at Lawrence Livermore National Laboratory in order to study the isentrope and associated Hugoniot of this HE. 2D and 3D configurations have been calculated here to test the new beta version of the electromagnetism package coupled with the dynamics in Ls-Dyna and compared with the ICE Z shot 1067 on LX 04. The electromagnetism module is being developed in the general-purpose explicit and implicit finite element program LS-DYNA{reg_sign} in order to perform coupled mechanical/thermal/electromagnetism simulations. Themore » Maxwell equations are solved using a Finite Element Method (FEM) for the solid conductors coupled with a Boundary Element Method (BEM) for the surrounding air (or vacuum). More details can be read in the references.« less
Shockwave compression of Ar gas at several initial densities
NASA Astrophysics Data System (ADS)
Dattelbaum, Dana M.; Goodwin, Peter M.; Garcia, Daniel B.; Gustavsen, Richard L.; Lang, John M.; Aslam, Tariq D.; Sheffield, Stephen A.; Gibson, Lloyd L.; Morris, John S.
2017-01-01
Experimental data of the principal Hugoniot locus of variable density gas-phase noble and molecular gases are rare. The majority of shock Hugoniot data is either from shock tube experiments on low-pressure gases or from plate impact experiments on cryogenic, liquefied gases. In both cases, physics regarding shock compressibility, thresholds for the on-set of shock-driven ionization, and even dissociation chemistry are difficult to infer for gases at intermediate densities. We have developed an experimental target design for gas gun-driven plate impact experiments on noble gases at initial pressures between 200-1000 psi. Using optical velocimetry, we are able to directly determine both the shock and particle velocities of the gas on the principal Hugoniot locus, as well as clearly differentiate ionization thresholds. The target design also results in multiply shocking the gas in a quasi-isentropic fashion yielding off-Hugoniot compression data. We describe the results of a series of plate impact experiments on Ar with starting densities between 0.02-0.05 g/cm3 at room temperature. Furthermore, by coupling optical fibers to the targets, we have measured the time-resolved optical emission from the shocked gas using a spectrometer coupled to an optical streak camera to spectrally-resolve the emission, and with a 5-color optical pyrometer for temperature determination.
Modeling Ultra-fast assembly and sintering of gold nanostructures
NASA Astrophysics Data System (ADS)
Lane, J. Matthew D.; Salerno, K. Michael; Grest, Gary S.; Fan, Hongyou
We use fully atomistic simulations to understand the role of extreme pressure in the assembly and sintering of fcc superlattices of alkanethiol-coated gold nanocrystals into larger nanostructures. Recent quasi-isentropic experiments have shown that 1D, 2D and 3D nanostructures can be formed and recovered from dynamic compression experiments on Sandia's Veloce pulsed power accelerator. Here, we describe the role of coating properties, such as ligand length and grafting density, on ligand migration and deformation processes during pressure-driven coalescence of metal nano cores into permanent nanowires, nanosheets and 3D structures. The role of uniaxial vs isotropic pressure and the effects of compression along various superlattice orientations will be discussed. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Sound velocities in shocked liquid D2 to 28 GPa
NASA Astrophysics Data System (ADS)
Holmes, N. C.; Ross, M.; Nellis, W. J.
1999-06-01
Recent measurements of shock temperatures(N. C. Holmes, W. J. Nellis, and M. Ross, Phys. Rev.) B52, 15835 (1995). and laser-driven Hugoniot measurements(L. B. Da Silva, et al.), Phys. Rev. Lett. 78, 483 (1997). of shocked liquid deuterium strongly indicate that molecular dissociation is important above 20 GPa. Since the amount of expected dissociation is small on the Hugoniot at the 30 GPa limit of conventional impact experiments, other methods must be used to test our understanding of the physics of highly compressed deuterium in this regime. We have recently performed experiments to measure the sound velocity of deuterium which test the isentropic compressibility, c^2 = (partial P/partial ρ)_S. We used the shock overtake method to measure sound velocities at several shock pressures between 10--28 GPa. These data provide support for recently developed molecular dissociation models.
Quasi-Isentropic Compression of Wrought and Additively Manufactures 304L Stainless Steel
NASA Astrophysics Data System (ADS)
Specht, Paul; Brown, Justin; Wise, Jack; Furnish, Michael; Adams, David
2017-06-01
The thermodynamic and constitutive responses of both additively manufactured (AM) and traditional wrought processed 304L stainless steel (SS) were investigated through quasi-isentropic compression to peak stresses near 1Mbar using Sandia National Laboratories' Z machine. The AM 304L SS samples were made with a laser engineered net shaping (LENS™) technique. Compared to traditional wrought processed 304L SS, the AM samples were highly textured with larger grain sizes (i.e.near 1mm) and residual stresses (> 100 MPa). Interferometric measurements of interface velocities enabled inference of the quasi-isentropes for each fabrication type of 304L SS. Release from peak stress provided flow strength measurements of the wrought and AM 304L SS. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Approved For Unclassified Unlimited Release SAND2017-2040A.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mochalov, M. A., E-mail: postmaster@ifv.vniief.ru; Il'kaev, R. I.; Fortov, V. E.
2012-10-15
The quasi-isentropic compressibility of helium and deuterium plasmas at pressures of up to 1500-2000 GPa has been measured using devices with spherical geometry and an X-ray diagnostic complex comprising three betatrons and a multichannel imaging system with electro-optic gamma detectors. A deuterium density of 4.5 g/cm{sup 3} and a helium density of 3.8 g/cm{sup 3} have been obtained at pressures of 2210 and 1580 GPa, respectively. The internal energy of a deuterium plasma at the indicated pressure is about 1 MJ/cm{sup 3}, which is about 100 times greater than the specific energy of condensed chemical explosives. Analysis of the obtainedmore » data shows that the degree of helium ionization under the achieved plasma compression parameters is about 0.9.« less
NASA Astrophysics Data System (ADS)
Asimow, P. D.; Nguyen, J.; Akin, M. C.; Fatýanov, O. V.
2015-12-01
Detailed elasticity data on liquid Fe and candidate molten core alloys should offer new constraints on the under-constrained problem of Earth's core composition. Density, sound speed, and the gradient in sound speed with pressure are each potentially distinct experimental constraints and are each well-known for Earth. The gradient in sound speed, though, has not been used because sound speed depends on both T and P, such that data must be collected or reconstructed along the correct, nearly adiabatic, thermal profile. Reconstruction requires the Grüneisen γ, which is composition-dependent, and data over a large P-T space to allow extrapolation. Both static and dynamic compression methods could be used, but the conditions (140 - 330 GPa and 4000 - 6000 K) are very challenging for static methods and standard shock compression only samples the outer core P-T profile at a single P. Instead we are applying quasi-isentropic dynamic ramp compression, using pre-heating of the target and impedance of the leading edge of a graded-density impactor (GDI) to select a probable outer core isentrope. The target material is melted and raised to a point on the outer core isentrope by the initial shock, then quasi-isentropically ramped to a maximum P by increasing shock impedance of trailing GDI layers. Particle velocity is monitored by photonic doppler velocimetry (PDV) at two step thicknesses at the interface of Fe or Fe-alloy target and MgO windows. The difference in arrival time of each particle velocity at the two steps directly gives the Lagrangian sound speed vs. particle velocity, which is integrated to obtain Pand density. At the writing of this abstract, we have completed one shot of this type. We successfully heated a two-step Fe target in a Mo capsule with MgO windows to 1350 °C, maintaining sufficient alignment and reflectivity to collect PDV signal returns. We characterized the velocity correction factor for PDV observation through MgO windows, and have confirmed that MgO remains sufficiently transparent on this loading path to act as a window. Our shot used a Mg-Ta graded density impactor launched at 5.6 km/s by the Caltech two-stage light gas gun, providing continuous sampling of the sound speed of liquid Fe from 70 GPa and ~2800 K up the isentrope to 243 GPa. Analysis continues. Prepared by LLNL under Contract DE-AC52-07NA27344
Decay estimates of solutions to the bipolar non-isentropic compressible Euler-Maxwell system
NASA Astrophysics Data System (ADS)
Tan, Zhong; Wang, Yong; Tong, Leilei
2017-10-01
We consider the global existence and large time behavior of solutions near a constant equilibrium state to the bipolar non-isentropic compressible Euler-Maxwell system in {R}3 , where the background magnetic field could be non-zero. The global existence is established under the assumption that the H 3 norm of the initial data is small, but its higher order derivatives could be large. Combining the negative Sobolev (or Besov) estimates with the interpolation estimates, we prove the optimal time decay rates of the solution and its higher order spatial derivatives. In this sense, our results improve the similar ones in Wang et al (2012 SIAM J. Math. Anal. 44 3429-57).
Isentropic compression of liquid metals near the melt line
NASA Astrophysics Data System (ADS)
Seagle, Christopher; Porwitzky, Andrew
2017-06-01
A series of experiments designed to study the liquid metal response to isentropic compression have been conducted at Sandia's Z Pulsed Power Facility. Cerium and Tin have been shock melted by driving a quasi-ballistic flyer into the samples followed by a ramp compression wave generated by an increased driving magnetic field. The sound speed of the liquid metals has been investigated with the purpose of exploring possible solidification on ramp compression. Additional surface sensitive diagnostics have been employed to search for signatures of solidification at the window interface. Results of these experiments will be discussed in relation to the existing equation of state models and phase diagrams for these materials as well as future plans for exploring the response of liquid metals near the melt line. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waisman, E. M.; Reisman, D. B.; Stoltzfus, B. S.
2016-06-15
The Thor pulsed power generator is being developed at Sandia National Laboratories. The design consists of up to 288 decoupled and transit time isolated capacitor-switch units, called “bricks,” that can be individually triggered to achieve a high degree of pulse tailoring for magnetically driven isentropic compression experiments (ICE) [D. B. Reisman et al., Phys. Rev. Spec. Top.–Accel. Beams 18, 090401 (2015)]. The connecting transmission lines are impedance matched to the bricks, allowing the capacitor energy to be efficiently delivered to an ICE strip-line load with peak pressures of over 100 GPa. Thor will drive experiments to explore equation of state,more » material strength, and phase transition properties of a wide variety of materials. We present an optimization process for producing tailored current pulses, a requirement for many material studies, on the Thor generator. This technique, which is unique to the novel “current-adder” architecture used by Thor, entirely avoids the iterative use of complex circuit models to converge to the desired electrical pulse. We begin with magnetohydrodynamic simulations for a given material to determine its time dependent pressure and thus the desired strip-line load current and voltage. Because the bricks are connected to a central power flow section through transit-time isolated coaxial cables of constant impedance, the brick forward-going pulses are independent of each other. We observe that the desired equivalent forward-going current driving the pulse must be equal to the sum of the individual brick forward-going currents. We find a set of optimal brick delay times by requiring that the L{sub 2} norm of the difference between the brick-sum current and the desired forward-going current be a minimum. We describe the optimization procedure for the Thor design and show results for various materials of interest.« less
An isentropic compression-heated Ludweig tube transient wind tunnel
NASA Technical Reports Server (NTRS)
Magari, Patrick J.; Lagraff, John E.
1991-01-01
Theoretical development and experimental results show that the Ludweig tube with isentropic heating (LICH) transient wind tunnel described is a viable means of producing flow conditions that are suitable for a variety of experimental investigations. A complete analysis of the wave dynamics of the pump tube compression process is presented. The LICH tube operating conditions are very steady and run times are greater than those of other types of transient facilities such as shock tubes and gas tunnels. This facility is well suited for producing flow conditions that are dynamically similar to those found in a gas turbine, i.e., transonic Mach number, gas-to-wall temperature ratios of about 1.5, and Reynolds numbers greater than 10 to the 6th.
Miniature reciprocating heat pumps and engines
NASA Technical Reports Server (NTRS)
Thiesen, Jack H. (Inventor); Mohling, Robert A. (Inventor); Willen, Gary S. (Inventor)
2003-01-01
The present invention discloses a miniature thermodynamic device that can be constructed using standard micro-fabrication techniques. The device can be used to provide cooling, generate power, compress gases, pump fluids and reduce pressure below ambient (operate as a vacuum pump). Embodiments of the invention relating to the production of a cooling effect and the generation of electrical power, change the thermodynamic state of the system by extracting energy from a pressurized fluid. Energy extraction is attained using an expansion process, which is as nearly isentropic as possible for the appropriately chosen fluid. An isentropic expansion occurs when a compressed gas does work to expand, and in the disclosed embodiments, the gas does work by overcoming either an electrostatic or a magnetic force.
Computer program for natural gas flow through nozzles
NASA Technical Reports Server (NTRS)
Johnson, R. C.
1972-01-01
Subroutines, FORTRAN 4 type, were developed for calculating isentropic natural gas mass flow rate through nozzle. Thermodynamic functions covering compressibility, entropy, enthalpy, and specific heat are included.
Modelling the effect of shear strength on isentropic compression experiments
NASA Astrophysics Data System (ADS)
Thomson, Stuart; Howell, Peter; Ockendon, John; Ockendon, Hilary
2017-01-01
Isentropic compression experiments (ICE) are a way of obtaining equation of state information for metals undergoing violent plastic deformation. In a typical experiment, millimetre thick metal samples are subjected to pressures on the order of 10 - 102 GPa, while the yield strength of the material can be as low as 10-2 GPa. The analysis of such experiments has so far neglected the effect of shear strength, instead treating the highly plasticised metal as an inviscid compressible fluid. However making this approximation belies the basic elastic nature of a solid object. A more accurate method should strive to incorporate the small but measurable effects of shear strength. Here we present a one-dimensional mathematical model for elastoplasticity at high stress which allows for both compressibility and the shear strength of the material. In the limit of zero yield stress this model reproduces the hydrodynamic models currently used to analyse ICEs. Numerical solutions of the governing equations will then be presented for problems relevant to ICEs in order to investigate the effects of shear strength compared with a model based purely on hydrodynamics.
Variable-pulse-shape pulsed-power accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoltzfus, Brian S.; Austin, Kevin; Hutsel, Brian Thomas
A variable-pulse-shape pulsed-power accelerator is driven by a large number of independent LC drive circuits. Each LC circuit drives one or more coaxial transmission lines that deliver the circuit's output power to several water-insulated radial transmission lines that are connected in parallel at small radius by a water-insulated post-hole convolute. The accelerator can be impedance matched throughout. The coaxial transmission lines are sufficiently long to transit-time isolate the LC drive circuits from the water-insulated transmission lines, which allows each LC drive circuit to be operated without being affected by the other circuits. This enables the creation of any power pulsemore » that can be mathematically described as a time-shifted linear combination of the pulses of the individual LC drive circuits. Therefore, the output power of the convolute can provide a variable pulse shape to a load that can be used for magnetically driven, quasi-isentropic compression experiments and other applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Michael
The Generator Knowledge Report for the Plutonium Isentropic Compression Experiment Containment Systems (GK Report) provides information for the Plutonium Isentropic Compression Experiment (Pu- ICE) program to support waste management and characterization efforts. Attachment 3-18 presents generator knowledge (GK) information specific to the eighteenth Pu-ICE conducted in August 2015, also known as ‘Shot 18 (Aug 2015) and Pu-ICE Z-2841 (1).’ Shot 18 (Aug 2015) was generated on August 28, 2015 (1). Calculations based on the isotopic content of Shot 18 (Aug 2015) and the measured mass of the containment system demonstrate the post-shot containment system is low-level waste (LLW). Therefore, thismore » containment system will be managed at Sandia National Laboratory/New Mexico (SNL/NM) as LLW. Attachment 3-18 provides documentation of the TRU concentration and documents the concentration of any hazardous constituents.« less
The effect of shear strength on isentropic compression experiments
NASA Astrophysics Data System (ADS)
Thomson, Stuart; Howell, Peter; Ockendon, John; Ockendon, Hilary
2015-06-01
Isentropic compression experiments (ICE) are a novel way of obtaining equation of state information for metals undergoing violent plastic deformation. In a typical experiment, millimetre thick metal samples are subjected to pressures on the order of 10 -102 GPa, while the yield strength of the material can be as low as 10-1GPa. The analysis of such experiments has so far neglected the effect of shear strength, instead treating the highly plasticised metal as an inviscid compressible fluid. However making this approximation belies the basic elastic nature of a solid object. A more accurate method should strive to incorporate the small but measurable effects of shear strength. Here we present a one-dimensional mathematical model for elastoplasticity at high stress which allows for both compressibility and the shear strength of the material. In the limit of zero yield stress this model reproduces the hydrodynamic models currently used to analyse ICEs. We will also show using a systematic asymptotic analysis that entropy changes are universally negligible in the absence of shocks. Numerical solutions of the governing equations will then be presented for problems relevant to ICEs in order to investigate the effects of shear strength over a model based purely on hydrodynamics.
NASA Astrophysics Data System (ADS)
Lemke, Raymond
2015-06-01
The focus of this talk is on magnetically driven, liner implosion experiments on the Z machine (Z) in which a solid, metal tube is shocklessly compressed to multi-megabar pressure. The goal of the experiments is to collect velocimetry data that can be used in conjunction with a new optimization based analysis technique to infer the principal isentrope of the tube material over a range of pressures. For the past decade, shock impact and ramp loading experiments on Z have used planar platforms exclusively. While producing state-of-the-art results for material science, it is difficult to produce drive pressures greater than 6 Mbar in the divergent planar geometry. In contrast, a cylindrical liner implosion is convergent; magnetic drive pressures approaching 50 Mbar are possible with the available current on Z (~ 20 MA). In our cylindrical experiments, the liner comprises an inner tube composed of the sample material (e.g., Ta) of unknown equation of state, and an outer tube composed of aluminum (Al) that serves as the current carrying cathode. Internal to the sample are fielded multiple PDV (Photonic Doppler Velocimetry) probes that measure velocity of the inner free surface of the imploding sample. External to the composite liner, at much larger radius, is an Al tube that is the return current anode. VISAR (velocity interferometry system for any reflector) probes measure free surface velocity of the exploding anode. Using the latter, MHD and optimization codes are employed to solve an inverse problem that yields the current driving the liner implosion. Then, the drive current, PDV velocity, MHD and optimization codes, are used to solve another inverse problem that yields pressure vs. density on approximately the principal isentrope of the sample material. Results for Ta, Re, and Cu compressed to ~ 10 Mbar are presented. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livescu, Daniel; Wieland, Scott A.; Reckinger, Scott
The simulations compare, for the first time, three practically important background stratifications under thermal equilibrium and out of equilibrium (isentropic, isopycnic) and show significant differences on the instability growth
Temperature anomalies of shock and isentropic waves of quark-hadron phase transition
NASA Astrophysics Data System (ADS)
Konyukhov, A. V.; Iosilevskiy, I. L.; Levashov, P. R.; Likhachev, A. P.
2018-01-01
In this work, we consider a phenomenological equation of state, which combinesstatistical description for hadron gas and a bag-model-based approach for the quark-gluon plasma. The equation of state is based on the excluded volume method in its thermodynamically consistent variant from Satarov et al [2009 Phys. At. Nucl. 72 1390]. The characteristic shape of the Taub adiabats and isentropes in the phase diagram is affected by the anomalous pressure-temperature dependence along the curve of phase equilibrium. The adiabats have kink points at the boundary of the two-phase region, inside which the temperature decreases with compression. Thermodynamic properties of matter observed in the quark-hadron phase transition region lead to hydrodynamic anomalies (in particular, to the appearance of composite compression and rarefaction waves). On the basis of relativistic hydrodynamics equations we investigate and discuss the structure and anomalous temperature behavior in these waves.
NASA Astrophysics Data System (ADS)
Grundland, A. M.; Lalague, L.
1996-04-01
This paper presents a new method of constructing, certain classes of solutions of a system of partial differential equations (PDEs) describing the non-stationary and isentropic flow for an ideal compressible fluid. A generalization of the symmetry reduction method to the case of partially-invariant solutions (PISs) has been formulated. We present a new algorithm for constructing PISs and discuss in detail the necessary conditions for the existence of non-reducible PISs. All these solutions have the defect structure 0305-4470/29/8/019/img1 and are computed from four-dimensional symmetric subalgebras. These theoretical considerations are illustrated by several examples. Finally, some new classes of invariant solutions obtained by the symmetry reduction method are included. These solutions represent central, conical, rational, spherical, cylindrical and non-scattering double waves.
The plastic response of Tantalum in Quasi-Isentropic Compression Ramp and Release
NASA Astrophysics Data System (ADS)
Moore, Alexander; Brown, Justin; Lim, Hojun; Lane, J. Matthew D.
2017-06-01
The mechanical response of various forms of tantalum under extreme pressures and strain rates is studied using dynamic quasi-isentropic compression loading conditions in atomistic simulations. Ramp compression in bcc metals under these conditions tend to show a significant strengthening effect with increasing pressure; however, due to limitations of experimental methods in such regimes, the underlying physics for this phenomenon is not well understood. Molecular dynamics simulations provide important information about the plasticity mechanisms and can be used to investigate this strengthening. MD simulations are performed on nanocrystalline Ta and single crystal defective Ta with dislocations and point defects to uncover how the material responds and the underlying plasticity mechanisms. The different systems of solid Ta are seen to plastically deform through different mechanisms. Fundamental understanding of tantalum plasticity in these high pressure and strain rate regimes is needed to model and fully understand experimental results. Sandia National Labs is a multi program laboratory managed and operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Chemical thermodynamics of ultrasound speed in solutions and liquid mixtures.
Reis, João Carlos R; Santos, Angela F S; Lampreia, Isabel M S
2010-02-01
A comprehensive formalism is developed to treat thermodynamically speed of ultrasound data for solutions and liquid mixtures. For solutions, the apparent speed of ultrasound of a solute is introduced and proposed to take the place of empirically defined quantities. The partial speed of ultrasound of a solute is defined and related to the partial molar volume and partial molar isentropic compression. For liquid mixtures, the concept of speed of sound before mixing pure liquids is presented and used to define the change in speed of ultrasound upon ideal mixing, which is predicted to be generally a negative quantity. A new thermodynamic equation is derived linking the values for excess speed of ultrasound, excess molar volume and excess molar isentropic compression of a mixture, and its applications are discussed. Ideal and excess apparent speeds of ultrasound, as well as ideal and excess partial speeds of ultrasound, are defined for substances making up a liquid mixture. Accurate speeds of ultrasound in 31 mixtures of water with the amphiphile 2-(ethylamino)ethanol at 293.15 K are reported. These data are used to demonstrate the ability of the apparent speed of ultrasound to describe the impact of solutes on sonic properties of solutions and the advantages of analysing thermodynamic properties of binary liquid mixtures in terms of the dependence on composition of Balankina's ratios between excess and ideal values. It is concluded that the new thermodynamic functions defined for speeds of ultrasound in solutions and liquid mixtures give, at the least, equivalent information on molecular aspects to the usual functions related to the isentropic compressibility, without needing density data for this purpose.
Davis, Jean -Paul; Brown, Justin L.; Knudson, Marcus D.; ...
2014-11-26
In this research, magnetically-driven, planar shockless-compression experiments to multi-megabar pressures were performed on tantalum samples using a stripline target geometry. Free-surface velocity waveforms were measured in 15 cases; nine of these in a dual-sample configuration with two samples of different thicknesses on opposing electrodes, and six in a single-sample configuration with a bare electrode opposite the sample. Details are given on the application of inverse Lagrangian analysis (ILA) to these data, including potential sources of error. The most significant source of systematic error, particularly for single-sample experiments, was found to arise from the pulse-shape dependent free-surface reflected wave interactions withmore » the deviatoric-stress response of tantalum. This could cause local, possibly temporary, unloading of material from a ramp compressed state, and thus multi-value response in wave speed that invalidates the free-surface to in-material velocity mapping step of ILA. By averaging all 15 data sets, a final result for the principal quasi-isentrope of tantalum in stress-strain was obtained to a peak longitudinal stress of 330 GPa with conservative uncertainty bounds of ±4.5% in stress. The result agrees well with a tabular equation of state developed at Los Alamos National Laboratory.« less
NASA Astrophysics Data System (ADS)
Bordbar, G. H.; Hosseini, S.; Poostforush, A.
2017-05-01
Correlations in quantum fluids such as liquid 3He continue to be of high interest to scientists. Based on this prospect, the present work is devoted to study the effects of spin-spin correlation function on the thermodynamic properties of polarized liquid 3He such as pressure, velocity of sound, adiabatic index and adiabatic compressibility along different isentropic paths, using the Lennard-Jones potential and employing the variational approach based on cluster expansion of the energy functional. The inclusion of this correlation improves our previous calculations and leads to good agreements with experimental results.
Hugoniot and refractive indices of bromoform under shock compression
NASA Astrophysics Data System (ADS)
Liu, Q. C.; Zeng, X. L.; Zhou, X. M.; Luo, S. N.
2018-01-01
We investigate physical properties of bromoform (liquid CHBr3) including compressibility and refractive index under dynamic extreme conditions of shock compression. Planar shock experiments are conducted along with high-speed laser interferometry. Our experiments and previous results establish a linear shock velocity-particle velocity relation for particle velocities below 1.77 km/s, as well as the Hugoniot and isentropic compression curves up to ˜21 GPa. Shock-state refractive indices of CHBr3 up to 2.3 GPa or ˜26% compression, as a function of density, can be described with a linear relation and follows the Gladstone-Dale relation. The velocity corrections for laser interferometry measurements at 1550 nm are also obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mochalov, M. A., E-mail: postmaster@ifv.vniief.ru; Il’kaev, R. I.; Fortov, V. E.
We report on the experimental results on the quasi-isentropic compressibility of a strongly nonideal deuterium plasma that have been obtained on setups of cylindrical and spherical geometries in the pressure range of up to P ≈ 5500 GPa. We describe the characteristics of experimental setups, as well as the methods for the diagnostics and interpretation of the experimental results. The trajectory of metal shells that compress the deuterium plasma was detected using powerful pulsed X-ray sources with a maximal electron energy of up to 60 MeV. The values of the plasma density, which varied from ρ ≈ 0.8 g/cm{sup 3}more » to ρ ≈ 6 g/cm{sup 3}, which corresponds to pressure P ≈ 5500 GPa (55 Mbar), were determined from the measured value of the shell radius at the instant that it was stopped. The pressure of the compressed plasma was determined using gasdynamic calculations taking into account the actual characteristics of the experimental setups. We have obtained a strongly compressed deuterium plasma in which electron degeneracy effects under the conditions of strong interparticle interaction are significant. The experimental results have been compared with the theoretical models of a strongly nonideal partly degenerate plasma. We have obtained experimental confirmation of the plasma phase transition in the pressure range near 150 GPa (1.5 Mbar), which is in keeping with the conclusion concerning anomaly in the compressibility of the deuterium plasma drawn in [1].« less
Generalized Forchheimer Flows of Isentropic Gases
NASA Astrophysics Data System (ADS)
Celik, Emine; Hoang, Luan; Kieu, Thinh
2018-03-01
We consider generalized Forchheimer flows of either isentropic gases or slightly compressible fluids in porous media. By using Muskat's and Ward's general form of the Forchheimer equations, we describe the fluid dynamics by a doubly nonlinear parabolic equation for the appropriately defined pseudo-pressure. The volumetric flux boundary condition is converted to a time-dependent Robin-type boundary condition for this pseudo-pressure. We study the corresponding initial boundary value problem, and estimate the L^∞ and W^{1,2-a} (with 0
Non-uniqueness of admissible weak solutions to the Riemann problem for isentropic Euler equations
NASA Astrophysics Data System (ADS)
Chiodaroli, Elisabetta; Kreml, Ondřej
2018-04-01
We study the Riemann problem for multidimensional compressible isentropic Euler equations. Using the framework developed in Chiodaroli et al (2015 Commun. Pure Appl. Math. 68 1157–90), and based on the techniques of De Lellis and Székelyhidi (2010 Arch. Ration. Mech. Anal. 195 225–60), we extend the results of Chiodaroli and Kreml (2014 Arch. Ration. Mech. Anal. 214 1019–49) and prove that it is possible to characterize a set of Riemann data, giving rise to a self-similar solution consisting of one admissible shock and one rarefaction wave, for which the problem also admits infinitely many admissible weak solutions.
Perturbational blowup solutions to the compressible Euler equations with damping.
Cheung, Ka Luen
2016-01-01
The N-dimensional isentropic compressible Euler system with a damping term is one of the most fundamental equations in fluid dynamics. Since it does not have a general solution in a closed form for arbitrary well-posed initial value problems. Constructing exact solutions to the system is a useful way to obtain important information on the properties of its solutions. In this article, we construct two families of exact solutions for the one-dimensional isentropic compressible Euler equations with damping by the perturbational method. The two families of exact solutions found include the cases [Formula: see text] and [Formula: see text], where [Formula: see text] is the adiabatic constant. With analysis of the key ordinary differential equation, we show that the classes of solutions include both blowup type and global existence type when the parameters are suitably chosen. Moreover, in the blowup cases, we show that the singularities are of essential type in the sense that they cannot be smoothed by redefining values at the odd points. The two families of exact solutions obtained in this paper can be useful to study of related numerical methods and algorithms such as the finite difference method, the finite element method and the finite volume method that are applied by scientists to simulate the fluids for applications.
NASA Astrophysics Data System (ADS)
Zeng, Huihui
2017-10-01
For the gas-vacuum interface problem with physical singularity and the sound speed being {C^{{1}/{2}}}-Hölder continuous near vacuum boundaries of the isentropic compressible Euler equations with damping, the global existence of smooth solutions and the convergence to Barenblatt self-similar solutions of the corresponding porous media equation are proved in this paper for spherically symmetric motions in three dimensions; this is done by overcoming the analytical difficulties caused by the coordinate's singularity near the center of symmetry, and the physical vacuum singularity to which standard methods of symmetric hyperbolic systems do not apply. Various weights are identified to resolve the singularity near the vacuum boundary and the center of symmetry globally in time. The results obtained here contribute to the theory of global solutions to vacuum boundary problems of compressible inviscid fluids, for which the currently available results are mainly for the local-in-time well-posedness theory, and also to the theory of global smooth solutions of dissipative hyperbolic systems which fail to be strictly hyperbolic.
Computation of Thermally Perfect Properties of Oblique Shock Waves
NASA Technical Reports Server (NTRS)
Tatum, Kenneth E.
1996-01-01
A set of compressible flow relations describing flow properties across oblique shock waves, derived for a thermally perfect, calorically imperfect gas, is applied within the existing thermally perfect gas (TPG) computer code. The relations are based upon a value of cp expressed as a polynomial function of temperature. The updated code produces tables of compressible flow properties of oblique shock waves, as well as the original properties of normal shock waves and basic isentropic flow, in a format similar to the tables for normal shock waves found in NACA Rep. 1135. The code results are validated in both the calorically perfect and the calorically imperfect, thermally perfect temperature regimes through comparisons with the theoretical methods of NACA Rep. 1135, and with a state-of-the-art computational fluid dynamics code. The advantages of the TPG code for oblique shock wave calculations, as well as for the properties of isentropic flow and normal shock waves, are its ease of use, and its applicability to any type of gas (monatomic, diatomic, triatomic, polyatomic, or any specified mixture thereof).
Magnetically launched flyer plate technique for probing electrical conductivity of compressed copper
NASA Astrophysics Data System (ADS)
Cochrane, K. R.; Lemke, R. W.; Riford, Z.; Carpenter, J. H.
2016-03-01
The electrical conductivity of materials under extremes of temperature and pressure is of crucial importance for a wide variety of phenomena, including planetary modeling, inertial confinement fusion, and pulsed power based dynamic materials experiments. There is a dearth of experimental techniques and data for highly compressed materials, even at known states such as along the principal isentrope and Hugoniot, where many pulsed power experiments occur. We present a method for developing, calibrating, and validating material conductivity models as used in magnetohydrodynamic (MHD) simulations. The difficulty in calibrating a conductivity model is in knowing where the model should be modified. Our method isolates those regions that will have an impact. It also quantitatively prioritizes which regions will have the most beneficial impact. Finally, it tracks the quantitative improvements to the conductivity model during each incremental adjustment. In this paper, we use an experiment on Sandia National Laboratories Z-machine to isentropically launch multiple flyer plates and, with the MHD code ALEGRA and the optimization code DAKOTA, calibrated the conductivity such that we matched an experimental figure of merit to +/-1%.
Magnetically launched flyer plate technique for probing electrical conductivity of compressed copper
Cochrane, Kyle R.; Lemke, Raymond W.; Riford, Z.; ...
2016-03-11
The electrical conductivity of materials under extremes of temperature and pressure is of crucial importance for a wide variety of phenomena, including planetary modeling, inertial confinement fusion, and pulsed power based dynamic materialsexperiments. There is a dearth of experimental techniques and data for highly compressed materials, even at known states such as along the principal isentrope and Hugoniot, where many pulsed power experiments occur. We present a method for developing, calibrating, and validating material conductivity models as used in magnetohydrodynamic(MHD) simulations. The difficulty in calibrating a conductivity model is in knowing where the model should be modified. Our method isolatesmore » those regions that will have an impact. It also quantitatively prioritizes which regions will have the most beneficial impact. Finally, it tracks the quantitative improvements to the conductivity model during each incremental adjustment. In this study, we use an experiment on Sandia National Laboratories Z-machine to isentropically launch multiple flyer plates and, with the MHD code ALEGRA and the optimization code DAKOTA, calibrated the conductivity such that we matched an experimental figure of merit to +/–1%.« less
Isentropic compression of argon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veeser, L.R.; Ekdahl, C.A.; Oona, H.
1997-06-01
The compression was done in an MC-1 flux compression (explosive) generator, in order to study the transition from an insulator to a conductor. Since conductivity signals were observed in all the experiments (except when the probe is removed), both the Teflon and the argon are becoming conductive. The conductivity could not be determined (Teflon insulation properties unknown), but it could be bounded as being {sigma}=1/{rho}{le}8({Omega}cm){sub -1}, because when the Teflon breaks down, the dielectric constant is reduced. The Teflon insulator problem remains, and other ways to better insulate the probe or to measure the conductivity without a probe is beingmore » sought.« less
Shock-adiabatic to quasi-isentropic compression of warm dense helium up to 150 GPa
NASA Astrophysics Data System (ADS)
Zheng, J.; Chen, Q. F.; Gu, Y. J.; Li, J. T.; Li, Z. G.; Li, C. J.; Chen, Z. Y.
2017-06-01
Multiple reverberation compression can achieve higher pressure, higher temperature, but lower entropy. It is available to provide an important validation for the elaborate and wider planetary models and simulate the inertial confinement fusion capsule implosion process. In the work, we have developed the thermodynamic and optical properties of helium from shock-adiabatic to quasi-isentropic compression by means of a multiple reverberation technique. By this technique, the initial dense gaseous helium was compressed to high pressure and high temperature and entered the warm dense matter (WDM) region. The experimental equation of state (EOS) of WDM helium in the pressure-density-temperature (P-ρ -T) range of 1 -150 GPa , 0.1 -1.1 g c m-3 , and 4600-24 000 K were measured. The optical radiations emanating from the WDM helium were recorded, and the particle velocity profiles detecting from the sample/window interface were obtained successfully up to 10 times compression. The optical radiation results imply that dense He has become rather opaque after the 2nd compression with a density of about 0.3 g c m-3 and a temperature of about 1 eV. The opaque states of helium under multiple compression were analyzed by the particle velocity measurements. The multiple compression technique could efficiently enhanced the density and the compressibility, and our multiple compression ratios (ηi=ρi/ρ0,i =1 -10 ) of helium are greatly improved from 3.5 to 43 based on initial precompressed density (ρ0) . For the relative compression ratio (ηi'=ρi/ρi -1) , it increases with pressure in the lower density regime and reversely decreases in the higher density regime, and a turning point occurs at the 3rd and 4th compression states under the different loading conditions. This nonmonotonic evolution of the compression is controlled by two factors, where the excitation of internal degrees of freedom results in the increasing compressibility and the repulsive interactions between the particles results in the decreasing compressibility at the onset of electron excitation and ionization. In the P-ρ -T contour with the experiments and the calculations, our multiple compression states from insulating to semiconducting fluid (from transparent to opaque fluid) are illustrated. Our results give an elaborate validation of EOS models and have applications for planetary and stellar opaque atmospheres.
A Numerical Simulation of a Normal Sonic Jet into a Hypersonic Cross-Flow
NASA Technical Reports Server (NTRS)
Jeffries, Damon K.; Krishnamurthy, Ramesh; Chandra, Suresh
1997-01-01
This study involves numerical modeling of a normal sonic jet injection into a hypersonic cross-flow. The numerical code used for simulation is GASP (General Aerodynamic Simulation Program.) First the numerical predictions are compared with well established solutions for compressible laminar flow. Then comparisons are made with non-injection test case measurements of surface pressure distributions. Good agreement with the measurements is observed. Currently comparisons are underway with the injection case. All the experimental data were generated at the Southampton University Light Piston Isentropic Compression Tube.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Younger, S.M.; Fowler, C.M.; Lindemuth, I.
1999-03-15
Since 1992, the All-Russian Scientific Research Institute of Experimental Physics and the Los Alamos National Laboratory, the institutes that designed the first nuclear weapons of the Soviet Union and the US, respectively, have been working together in fundamental research related to pulsed power and high energy density science. This collaboration has enabled scientists formerly engaged in weapons activities to redirect their attention to peaceful pursuits of wide benefit to the technical community. More than thirty joint experiments have been performed at Sarov and Los Alamos in areas as diverse as solid state physics in high magnetic fields, fusion plasma formation,more » isentropic compression of noble gases, and explosively driven-high current generation technology. Expanding on the introductory comments of the conference plenary presentation, this paper traces the origins of this collaboration and briefly reviews the scientific accomplishments. Detailed reports of the scientific accomplishments can be found in other papers in these proceedings and in other publications.« less
Interactive computer graphics applications for compressible aerodynamics
NASA Technical Reports Server (NTRS)
Benson, Thomas J.
1994-01-01
Three computer applications have been developed to solve inviscid compressible fluids problems using interactive computer graphics. The first application is a compressible flow calculator which solves for isentropic flow, normal shocks, and oblique shocks or centered expansions produced by two dimensional ramps. The second application couples the solutions generated by the first application to a more graphical presentation of the results to produce a desk top simulator of three compressible flow problems: 1) flow past a single compression ramp; 2) flow past two ramps in series; and 3) flow past two opposed ramps. The third application extends the results of the second to produce a design tool which solves for the flow through supersonic external or mixed compression inlets. The applications were originally developed to run on SGI or IBM workstations running GL graphics. They are currently being extended to solve additional types of flow problems and modified to operate on any X-based workstation.
Accessing Ultrahigh-Pressure, Quasi-Isentropic States of Matter
NASA Astrophysics Data System (ADS)
Lorenz, Thomas
2004-11-01
A new approach to materials science at extreme pressures has been developed on the OMEGA laser, using a ramped plasma piston drive. The laser drives a shock through a solid plastic reservoir that unloads at the rear free surface, expands across a vacuum gap, and stagnates on the metal sample under study. This produces a gently increasing ram pressure, compressing the sample nearly isentropically. The peak pressure on the sample, diagnosed with VISAR measurements, can be varied by adjusting the laser energy and pulse length, gap size, and reservoir density, and obeys a simple scaling relation. [1] This has been demonstrated at OMEGA at pressures of P = 0.1-2.0 Mbar in Al foils. [2] In an important application, using in-flight x-ray radiography, the material strength of solid-state samples at high pressure can be inferred by measuring the reductions in the growth rates (stabilization) of Rayleigh-Taylor (RT) unstable interfaces. The material strength is predicted to be as much as an order of magnitude higher at P ˜ 1 Mbar than at ambient pressures. Initial RT measurements testing this prediction in foils of Al and V will be shown. We also use TEM microscopy of recovered targets to show that the samples never melted, and the presence of pressure-induced structural defects. [3,4] Experimental designs based on this drive have been developed for the NIF laser, predicting that solid-state samples can be quasi-isentropically driven to pressures an order of magnitude higher than on Omega - accessing new regimes of dense, high-pressure matter. [5] [1] J. Edwards et al., Phys. Rev. Lett., 92, 075002 (2004). [2] K.T. Lorenz et al., submitted, J. Appl. Phys. (2004). [3] J. McNaney et al., in press, Met. Mat. Trans. 35A (2004). [4] E.M. Bringa et al., to be submitted, Nature (2004). [5] B.A. Remington et al., in press, Met. Mat. Trans. 35A (2004). This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.
Compressible Fluids Interacting with a Linear-Elastic Shell
NASA Astrophysics Data System (ADS)
Breit, Dominic; Schwarzacher, Sebastian
2018-05-01
We study the Navier-Stokes equations governing the motion of an isentropic compressible fluid in three dimensions interacting with a flexible shell of Koiter type. The latter one constitutes a moving part of the boundary of the physical domain. Its deformation is modeled by a linearized version of Koiter's elastic energy. We show the existence of weak solutions to the corresponding system of PDEs provided the adiabatic exponent satisfies {γ > 12/7} ({γ >1 } in two dimensions). The solution exists until the moving boundary approaches a self-intersection. This provides a compressible counterpart of the results in Lengeler and Růžičkaka (Arch Ration Mech Anal 211(1):205-255, 2014) on incompressible Navier-Stokes equations.
NASA Technical Reports Server (NTRS)
Melcher, Kevin J.
2006-01-01
The Compressible Flow Toolbox is primarily a MATLAB-language implementation of a set of algorithms that solve approximately 280 linear and nonlinear classical equations for compressible flow. The toolbox is useful for analysis of one-dimensional steady flow with either constant entropy, friction, heat transfer, or Mach number greater than 1. The toolbox also contains algorithms for comparing and validating the equation-solving algorithms against solutions previously published in open literature. The classical equations solved by the Compressible Flow Toolbox are as follows: The isentropic-flow equations, The Fanno flow equations (pertaining to flow of an ideal gas in a pipe with friction), The Rayleigh flow equations (pertaining to frictionless flow of an ideal gas, with heat transfer, in a pipe of constant cross section), The normal-shock equations, The oblique-shock equations, and The expansion equations.
2011-06-01
method was used vice more accurate immersion techniques based on Archimedes principle . The initial volume of the technical sand was determined by filling...of Porous Materials In solid materials small stresses and strains are very close to being the same as the shock Hugoniot and the principle isentrope
Flow Simulation of Supersonic Inlet with Bypass Annular Duct
NASA Technical Reports Server (NTRS)
Kim, HyoungJin; Kumano, Takayasu; Liou, Meng-Sing; Povinelli, Louis A.; Conners, Timothy R.
2011-01-01
A relaxed isentropic compression supersonic inlet is a new concept that produces smaller cowl drag than a conventional inlet, but incurs lower total pressure recovery and increased flow distortion in the (radially) outer flowpath. A supersonic inlet comprising a bypass annulus to the relaxed isentropic compression inlet dumps out airflow of low quality through the bypass duct. A reliable computational fluid dynamics solution can provide considerable useful information to ascertain quantitatively relative merits of the concept, and further provide a basis for optimizing the design. For a fast and reliable performance evaluation of the inlet performance, an equivalent axisymmetric model whose area changes accounts for geometric and physical (blockage) effects resulting from the original complex three-dimensional configuration is proposed. In addition, full three-dimensional calculations are conducted for studying flow phenomena and verifying the validity of the equivalent model. The inlet-engine coupling is carried out by embedding numerical propulsion system simulation engine data into the flow solver for interactive boundary conditions at the engine fan face and exhaust plane. It was found that the blockage resulting from complex three-dimensional geometries in the bypass duct causes significant degradation of inlet performance by pushing the terminal normal shock upstream.
Unsteady Specific Work and Isentropic Efficiency of a Radial Turbine Driven by Pulsed Detonations
2012-06-14
iv AFIT/DS/ENY/12-25 Abstract There has been longstanding government and industry interest in pressure-gain combustion for use in Brayton cycle...10 III.A. Unsteady Flow in Conventional Brayton Cycle Turbines ........................10 III.B. Unsteady Flow in Pulsed Detonation Driven...Szpynda and Nalim 2007) 114 Figure 69. Heiser and Pratt comparison of ideal PDE, Humphrey, and Brayton cycles on a temperature-entropy diagram (Heiser
Diffusive wave in the low Mach limit for non-viscous and heat-conductive gas
NASA Astrophysics Data System (ADS)
Liu, Yechi
2018-06-01
The low Mach number limit for one-dimensional non-isentropic compressible Navier-Stokes system without viscosity is investigated, where the density and temperature have different asymptotic states at far fields. It is proved that the solution of the system converges to a nonlinear diffusion wave globally in time as Mach number goes to zero. It is remarked that the velocity of diffusion wave is proportional with the variation of temperature. Furthermore, it is shown that the solution of compressible Navier-Stokes system also has the same phenomenon when Mach number is suitably small.
Conservation laws with coinciding smooth solutions but different conserved variables
NASA Astrophysics Data System (ADS)
Colombo, Rinaldo M.; Guerra, Graziano
2018-04-01
Consider two hyperbolic systems of conservation laws in one space dimension with the same eigenvalues and (right) eigenvectors. We prove that solutions to Cauchy problems with the same initial data differ at third order in the total variation of the initial datum. As a first application, relying on the classical Glimm-Lax result (Glimm and Lax in Decay of solutions of systems of nonlinear hyperbolic conservation laws. Memoirs of the American Mathematical Society, No. 101. American Mathematical Society, Providence, 1970), we obtain estimates improving those in Saint-Raymond (Arch Ration Mech Anal 155(3):171-199, 2000) on the distance between solutions to the isentropic and non-isentropic inviscid compressible Euler equations, under general equations of state. Further applications are to the general scalar case, where rather precise estimates are obtained, to an approximation by Di Perna of the p-system and to a traffic model.
NASA Astrophysics Data System (ADS)
Austin, Daniel E.; Shen, Andy H. T.; Beauchamp, J. L.; Ahrens, Thomas J.
2012-04-01
We have developed an orthogonal-acceleration time-of-flight mass spectrometer to study the volatiles produced when a mineral's shock-compressed state is isentropically released, as occurs when a shock wave, driven into the mineral by an impact, reflects upon reaching a free surface. The instrument is designed to use a gun or explosive-launched projectile as the source of the shock wave, impact onto a flange separating a poor vacuum and the high vacuum (10-7 Torr) interior of the mass spectrometer, and transmission of the shock wave through the flange to a mineral sample mounted on the high-vacuum side of the flange. The device extracts and analyzes the neutrals and ions produced from the shocked mineral prior to the possible occurrence of collateral instrument damage from the shock-inducing impact. The instrument has been tested using laser ablation of various mineral surfaces, and the resulting spectra are presented. Mass spectra are compared with theoretical distributions of molecular species, and with expected distributions from laser desorption.
Nonexistence of compressible irrotational inviscid flows along infinite protruding corners
NASA Astrophysics Data System (ADS)
Elling, Volker
2018-06-01
We consider inviscid flow with isentropic coefficient greater than one. For flow along smooth infinite protruding corners, we attempt to impose a nonzero limit for velocity at infinity at the upstream wall. We prove that the problem does not have any irrotational uniformly subsonic solutions, whereas rotational flows do exist. This can be considered a case of a slip-condition solid "generating" vorticity in inviscid flow.
NASA Technical Reports Server (NTRS)
Melcher, Kevin J.
2006-01-01
This report provides a user guide for the Compressible Flow Toolbox, a collection of algorithms that solve almost 300 linear and nonlinear classical compressible flow relations. The algorithms, implemented in the popular MATLAB programming language, are useful for analysis of one-dimensional steady flow with constant entropy, friction, heat transfer, or shock discontinuities. The solutions do not include any gas dissociative effects. The toolbox also contains functions for comparing and validating the equation-solving algorithms against solutions previously published in the open literature. The classical equations solved by the Compressible Flow Toolbox are: isentropic-flow equations, Fanno flow equations (pertaining to flow of an ideal gas in a pipe with friction), Rayleigh flow equations (pertaining to frictionless flow of an ideal gas, with heat transfer, in a pipe of constant cross section.), normal-shock equations, oblique-shock equations, and Prandtl-Meyer expansion equations. At the time this report was published, the Compressible Flow Toolbox was available without cost from the NASA Software Repository.
Quasi-isentropic Compression of Iron and Magnesium Oxide to 3 Mbar at the Omega Laser Facility
NASA Astrophysics Data System (ADS)
Wang, J.; Smith, R. F.; Coppari, F.; Eggert, J. H.; Boehly, T.; Collins, G.; Duffy, T. S.
2011-12-01
Developing a high-pressure, modest temperature ramp compression drive permits exploration of new regions of thermodynamic space, inaccessible through traditional methods of shock or static compression, and of particular relevance to material conditions found in planetary interiors both within and outside our solar system. Ramp compression is a developing technique that allows materials to be compressed along a quasi-isentropic path and provides the ability to study materials in the solid state to higher pressures than can be achieved with diamond anvil cell or shock wave methods. Iron and magnesium oxide are geologically important materials each representative of one of the two major interior regions (core and mantle) of terrestrial planets. An experimental platform for ramp loading of iron (Fe) and magnesium oxide (MgO), has been established and tested in experiments at the Omega Laser Facility, University of Rochester. Omega is a 60-beam ultraviolet (352 nm) neodymium glass laser which is capable of delivery kilojoules of energy in ~10 ns pulses onto targets of a few mm in dimension. In the current experiments, we used a composite ramped laser pulse involving typically 15 beams with total energy of 2.6-3.3 kJ. The laser beams were used to launch spatially planar ramp compression waves into Fe and MgO targets. Each target had four steps that were approximately 5-7 μm thick. Detection of the ramp wave arrival and its velocity at the free surface of each step was made using a VISAR velocity interferometer. Through the use of Lagrangian analysis on the measured wave profiles, stress-density states in iron and magnesium oxide have been determined to pressures of 291 GPa and 260 GPa respectively. For Fe, the α-ɛ transition of iron is overdriven by an initial shock pulse of ~90.1 GPa followed by ramp compression to the peak pressure. The results will be compared with shock compression and diamond anvil cell data for both materials.
We acknowledge the Omega staff at LLE for their assistance, Micro/Nano fabrication laboratory staff at Princeton University and the Target Engineering Team at LLNL for fabrication and metrology of the targets used in these experiments. The research was supported by DOE under DE-FG52-09NA29037.
Deep-release of Epon 828 epoxy from the shock-driven reaction product phase
NASA Astrophysics Data System (ADS)
Lang, John; Fredenburg, Anthony; Coe, Joshua; Dattelbaum, Dana
2017-06-01
A challenge in improving equations-of-state (EOS) for polymers and their product phase is the lack of off-Hugoniot data. Here, we describe a novel experimental approach for obtaining release pathways along isentropes from the shocked products. A series of gas-gun experiments was conducted to obtain release isentropes of the products for 70/30 wt% Epon 828 epoxy resin/Jeffamine T-403 curing agent. Thin epoxy flyers backed by a low-density syntactic foam were impacted into LiF windows at up to 6.3 mm/ μs, creating stresses in excess of those required for reaction ( 25 GPa). Following a sustained shock input, a rarefaction fan from the back of the thin flyer reduced the pressure in the epoxy products along a release isentrope. Optical velocimetry (PDV) was used to measure the particle velocity at the epoxy/LiF interface. Numerical simulations using several different EOS describing the reactant-to-product transformation were conducted, and the results were compared with measured wave profiles. The best agreement with experiment was obtained using separate tabular EOS for the polymer ``reactant'' (e.g. epoxy) and product mixture, suggesting the transition to the products is irreversible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Epstein, R.; Goncharov, V. N.; Marshall, F. J.
Pressure, by definition, characterizes the conditions within an isobaric implosion core at peak compression [Gus'kov et al., Nucl. Fusion 16, 957 (1976); Betti et al., Phys. Plasmas 8, 5257 (2001)] and is a key parameter in quantifying its near-ignition performance [Lawson, Proc. Phys. Soc. London, B 70, 6 (1957); Betti et al., Phys. Plasmas 17, 058102 (2010); Goncharov et al., Phys. Plasmas 21, 056315 (2014); and Glenzer et al., Phys. Plasmas 19, 056318 (2012)]. At high spectral energy, where the x-ray emission from an imploded hydrogen core is optically thin, the emissivity profile can be inferred from the spatially resolvedmore » core emission. This emissivity, which can be modeled accurately under hot-core conditions, is dependent almost entirely on the pressure when measured within a restricted spectral range matched to the temperature range anticipated for the emitting volume. In this way, the hot core pressure at the time of peak emission can be inferred from the measured free-free emissivity profile. The pressure and temperature dependences of the x-ray emissivity and the neutron-production rate explain a simple scaling of the total filtered x-ray emission as a constant power of the total neutron yield for implosions of targets of similar design over a broad range of shell implosion isentropes. This scaling behavior has been seen in implosion simulations and is confirmed by measurements of high-isentrope implosions [Sangster et al., Phys. Plasmas 20, 056317 (2013)] on the OMEGA laser system [Boehly et al., Opt. Commun. 133, 495 (1997)]. Attributing the excess emission from less-stable, low-isentrope implosions, above the level expected from this neutron-yield scaling, to the higher emissivity of shell carbon mixed into the implosion's central hot spot, the hot-spot “fuel–shell” mix mass can be inferred.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Epstein, R.; Goncharov, V. N.; Marshall, F. J.
Pressure, by definition, characterizes the conditions within an isobaric implosion core at peak compression [Gus’kov et al., Nucl. Fusion 16, 957 (1976); Betti et al., Phys. Plasmas 8, 5257 (2001)] and is a key parameter in quantifying its near-ignition performance [Lawson, Proc. Phys. Soc. London, B 70, 6 (1957); Betti et al., Phys. Plasmas 17, 058102 (2010); Goncharov et al., Phys. Plasmas 21, 056315 (2014); and Glenzer et al., Phys. Plasmas 19, 056318 (2012)]. At high spectral energy, where the x-ray emission from an imploded hydrogen core is optically thin, the emissivity profile can be inferred from the spatially resolvedmore » core emission. This emissivity, which can be modeled accurately under hot-core conditions, is dependent almost entirely on the pressure when measured within a restricted spectral range matched to the temperature range anticipated for the emitting volume. In this way, the hot core pressure at the time of peak emission can be inferred from the measured free-free emissivity profile. The pressure and temperature dependences of the x-ray emissivity and the neutron-production rate explain a simple scaling of the total filtered x-ray emission as a constant power of the total neutron yield for implosions of targets of similar design over a broad range of shell implosion isentropes. This scaling behavior has been seen in implosion simulations and is confirmed by measurements of high-isentrope implosions [Sangster et al., Phys. Plasmas 20, 056317 (2013)] on the OMEGA laser system [Boehly et al., Opt. Commun. 133, 495 (1997)]. Attributing the excess emission from less-stable, low-isentrope implosions, above the level expected from this neutron-yield scaling, to the higher emissivity of shell carbon mixed into the implosion’s central hot spot, the hot-spot “fuel–shell” mix mass can be inferred.« less
Deceleration of a supersonic flow behind a curved shock wave with isentropic precompression
NASA Technical Reports Server (NTRS)
Dulov, V. G.; Shchepanovskiy, V. A.
1985-01-01
Three-dimensional supersonic flows of an ideal fluid in the neighborhood of bodies formed by being cut out along the streamlines of an axisymmetric flow are investigated. The flow consists of a region of isoentropic compression and a region of vortex flow. An exact solution with variable entropy is used to describe the flow in the vortex region. In the continuous flow region an approximate solution is constructed by expanding the solution in a series in a small parameter. The effect of the shape of the excision and the vorticity of the flow on compression of the jet and and the total pressure loss coefficient is studied.
Results from new multi-megabar shockless compression experiments at the Z machine
Davis, Jean-Paul; Knudson, Marcus D.; Brown, Justin L.
2017-01-01
Sandia’s Z Machine has been used to magnetically drive shockless compression of materials in a planar configuration to multi-megabar pressure levels, allowing accurate measurements of quasi-isentropic mechanical response at relatively low temperatures in the solid phase. This work details recent improvements to design and analysis of such experiments, including the use of new data on the mechanical and optical response of lithium fluoride windows. Comparison of windowed and free-surface data on copper to 350 GPa lends confidence to the window correction method. Preliminary results are presented on gold to 500 GPa and platinum to 450 GPa; both appear stiffer thanmore » existing models.« less
Toward Sodium X-Ray Diffraction in the High-Pressure Regime
NASA Astrophysics Data System (ADS)
Gong, X.; Polsin, D. N.; Rygg, J. R.; Boehly, T. R.; Crandall, L.; Henderson, B. J.; Hu, S. X.; Huff, M.; Saha, R.; Collins, G. W.; Smith, R.; Eggert, J.; Lazicki, A. E.; McMahon, M.
2017-10-01
We are working to quasi-isentropically compress sodium into the terapascal regime to test theoretical predictions that sodium transforms to an electride. A series of hydrodynamic simulations have been performed to design experiments to investigate the structure and optical properties of sodium at pressures up to 500 GPa. We show preliminary results where sodium samples, sandwiched between diamond plates and lithium-fluoride windows, are ramp compressed by a gradual increase in the drive-laser intensity. The low sound speed in sodium makes it particularly susceptible to forming a shock; therefore, it is difficult to compress without melting the sample. Powder x-ray diffraction is used to provide information on the structure of sodium at these high pressures. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Shock-Ramp Loading of Tin and Aluminum
NASA Astrophysics Data System (ADS)
Seagle, Christopher; Davis, Jean; Martin, Matthew; Hanshaw, Heath
2013-06-01
Equation of state properties for materials off the principle Hugoniot and isentrope are currently poorly constrained. The ability to directly probe regions of phase space between the Hugoniot and isentrope under dynamic loading will greatly improve our ability to constrain equation of state properties under a variety of conditions and study otherwise inaccessible phase transitions. We have developed a technique at Sandia's Z accelerator to send a steady shock wave through a material under test, and subsequently ramp compress from the Hugoniot state. The shock-ramp experimental platform results in a unique loading path and enables probing of equation of state properties in regions of phase space otherwise difficult to access in dynamic experiments. A two-point minimization technique has been developed for the analysis of shock-ramp velocity data. The technique correctly accounts for the ``initial'' Hugoniot density of the material under test before the ramp wave arrives. Elevated quasi-isentropes have been measured for solid aluminum up to 1.4 Mbar and liquid tin up to 1.1 Mbar using the shock ramp technique. These experiments and the analysis of the resulting velocity profiles will be discussed. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85.
NASA Technical Reports Server (NTRS)
Rodriquez, J. M.; Douglass, A.R.; Yoshida, Y.; Strahan, S.; Duncan, B.; Olsen, M.; Gille, J.; Yudin, V.; Nardi, B.
2008-01-01
isentropic exchange of air masses between the tropical upper troposphere and mid-latitude lowermost stratosphere (the so-called "middle world") is an important pathway for stratospheric-tropospheric exchange. A seasonal, global view of this process has been difficult to obtain, in part due to the lack of the vertical resolution in satellite observations needed to capture the laminar character of these events. Ozone observations at a resolution of about 1 km from the High Resolution Dynamic Limb Sounder (HIRDLS) on NASA's Aura satellite show instances of these intrusions. Such intrusions should also be observable in HN03 observations; however, the abundances of nitric acid could be additionally controlled by chemical processes or incorporation and removal into ice clouds. We present a systematic examination of the HIRDLS data on O3 and HNO3 to determine the seasonal and spatial characteristics of the distribution of isentropic intrusions. At the same time, we compare the observed distributions with those calculated by the Global Modeling Initiative combined tropospheric-stratospheric model, which has a vertical resolution of about I km. This Chemical Transport Model (CTM) is driven by meteorological fields obtained from the GEOS-4 system of NASA/Goddard Global Modeling and Assimilation Office (GMAO), for the Aura time period, at a vertical resolution of about 1 km. Such comparison brings out the successes and limitations of the model in representing isentropic stratospheric-tropospheric exchange, and the different processes controlling HNO3 in the UTAS.
NASA Technical Reports Server (NTRS)
Hall, R. M.; Adcock, J. B.
1981-01-01
The real gas behavior of nitrogen, the gas normally used in transonic cryogenic tunnels, is reported for the following flow processes: isentropic expansion, normal shocks, boundary layers, and interactions between shock waves and boundary layers. The only difference in predicted pressure ratio between nitrogen and an ideal gas which may limit the minimum operating temperature of transonic cryogenic wind tunnels occur at total pressures approaching 9 atm and total temperatures 10 K below the corresponding saturation temperature. These pressure differences approach 1 percent for both isentropic expansions and normal shocks. Alternative cryogenic test gases were also analyzed. Differences between air and an ideal diatomic gas are similar in magnitude to those for nitrogen and should present no difficulty. However, differences for helium and hydrogen are over an order of magnitude greater than those for nitrogen or air. It is concluded that helium and cryogenic hydrogen would not approximate the compressible flow of an ideal diatomic gas.
Direct numerical simulations of premixed autoignition in compressible uniformly-sheared turbulence
NASA Astrophysics Data System (ADS)
Towery, Colin; Darragh, Ryan; Poludnenko, Alexei; Hamlington, Peter
2017-11-01
High-speed combustion systems, such as scramjet engines, operate at high temperatures and pressures, extremely short combustor residence times, very high rates of shear stress, and intense turbulent mixing. As a result, the reacting flow can be premixed and have highly-compressible turbulence fluctuations. We investigate the effects of compressible turbulence on the ignition delay time, heat-release-rate (HRR) intermittency, and mode of autoignition of premixed Hydrogen-air fuel in uniformly-sheared turbulence using new three-dimensional direct numerical simulations with a multi-step chemistry mechanism. We analyze autoignition in both the Eulerian and Lagrangian reference frames at eight different turbulence Mach numbers, Mat , spanning the quasi-isentropic, linear thermodynamic, and nonlinear compressibility regimes, with eddy shocklets appearing in the nonlinear regime. Results are compared to our previous study of premixed autoignition in isotropic turbulence at the same Mat and with a single-step reaction mechanism. This previous study found large decreases in delay times and large increases in HRR intermittency between the linear and nonlinear compressibility regimes and that detonation waves could form in both regimes.
Probing the Interiors of the Ice Giants: Shock Compression of Water to 700 GPa and 3.8 g/cm³
Knudson, M. D.; Desjarlais, M. P.; Lemke, R. W.; ...
2012-02-27
Recently, there has been a tremendous increase in the number of identified extrasolar planetary systems. Our understanding of their formation is tied to exoplanet internal structure models, which rely upon equations of state of light elements and compounds such as water. Here, we present shock compression data for water with unprecedented accuracy that show that water equations of state commonly used in planetary modeling significantly overestimate the compressibility at conditions relevant to planetary interiors. Furthermore, we show that its behavior at these conditions, including reflectivity and isentropic response, is well-described by a recent first-principles based equation of state. These findingsmore » advocate that this water model be used as the standard for modeling Neptune, Uranus, and “hot Neptune” exoplanets and should improve our understanding of these types of planets.« less
NASA Technical Reports Server (NTRS)
Biringen, S. H.; Mcmillan, O. J.
1980-01-01
The use of a computer code for the calculation of two dimensional inlet flow fields in a supersonic free stream and a nonorthogonal mesh-generation code are illustrated by specific examples. Input, output, and program operation and use are given and explained for the case of supercritical inlet operation at a subdesign Mach number (M Mach free stream = 2.09) for an isentropic-compression, drooped-cowl inlet. Source listings of the computer codes are also provided.
Mesoscale Modeling of LX-17 Under Isentropic Compression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Springer, H K; Willey, T M; Friedman, G
Mesoscale simulations of LX-17 incorporating different equilibrium mixture models were used to investigate the unreacted equation-of-state (UEOS) of TATB. Candidate TATB UEOS were calculated using the equilibrium mixture models and benchmarked with mesoscale simulations of isentropic compression experiments (ICE). X-ray computed tomography (XRCT) data provided the basis for initializing the simulations with realistic microstructural details. Three equilibrium mixture models were used in this study. The single constituent with conservation equations (SCCE) model was based on a mass-fraction weighted specific volume and the conservation of mass, momentum, and energy. The single constituent equation-of-state (SCEOS) model was based on a mass-fraction weightedmore » specific volume and the equation-of-state of the constituents. The kinetic energy averaging (KEA) model was based on a mass-fraction weighted particle velocity mixture rule and the conservation equations. The SCEOS model yielded the stiffest TATB EOS (0.121{micro} + 0.4958{micro}{sup 2} + 2.0473{micro}{sup 3}) and, when incorporated in mesoscale simulations of the ICE, demonstrated the best agreement with VISAR velocity data for both specimen thicknesses. The SCCE model yielded a relatively more compliant EOS (0.1999{micro}-0.6967{micro}{sup 2} + 4.9546{micro}{sup 3}) and the KEA model yielded the most compliant EOS (0.1999{micro}-0.6967{micro}{sup 2}+4.9546{micro}{sup 3}) of all the equilibrium mixture models. Mesoscale simulations with the lower density TATB adiabatic EOS data demonstrated the least agreement with VISAR velocity data.« less
The isentropic exponent in plasmas
NASA Astrophysics Data System (ADS)
Burm, K. T. A. L.; Goedheer, W. J.; Schram, D. C.
1999-06-01
The isentropic exponent for gases is a physical quantity that can ease significantly the hydrodynamic modeling effort. In gas dynamics the isentropic exponent depends only on the number of degrees of freedom of the considered gas. The isentropic exponent for a plasma is lower due to an extra degree of freedom caused by ionization. In this paper it will be shown that, like for gases, the isentropic exponent for atomic plasmas is also constant, as long as the ionization degree is between 5%-80%. Only a very weak dependence on the electron temperature and the two nonequilibrium parameters remain. An argon plasma is used to demonstrate the behavior of the isentropic exponent on the plasma conditions, and to make an estimation of the value of the isentropic exponent of a customary plasma. For atmospheric plasmas, which usually have an electron temperature of about 1 eV, a sufficiently accurate estimate for the isentropic exponent of plasmas is 1.16.
Experimental technique for measuring the isentrope of hydrogen to several megabars
NASA Astrophysics Data System (ADS)
Barker, L. M.; Truncano, T. G.; Wise, J. I.; Asay, J. R.
The experimental measurement of the Equations of State (EOS) of hydrogen has been of interest for some time because of the theoretical expectation of a transition to the metallic state in the multi-megabar pressure regime. Previous experiments have reported results which are consistent with a metallic transition, but experimental uncertainties have precluded positive identification of the metallic phase. In this paper we describe a new experimental approach to the measurement of the high-pressure EOS of hydrogen. A cryogenic hydrogen specimen, either liquid or solid, is located in the muzzle of a gun barrel between a tungsten anvil and another tungsten disk called a shim. Helium gas in the gun barrel cushions the impact and allows nearly isentropic compression of the hydrogen. The time-resolved pressure in the specimen is calculated from a laser interferometer (VISAR) measurement of the acceleration history of the anvil's free surface, and volume measurements at specific times are made by combining VISAR data, which define the position of the anvil, with flash X-ray photographs which define the shim position.
Isentropic Transport of Ozone Across the Tropopause on 345K
NASA Astrophysics Data System (ADS)
Jing, P.; Cunnold, D.
2002-05-01
Quantifying the transport of ozone from the stratosphere to the troposphere has been a challenge for many years. There are two types of cross-tropopause transport: the vertical diabatic transport and the quasi-horizontal isentropic transport. Because isentropic transport generally occurs more frequently than diabatic transport [Chen, 1995], it is a potentially important path for ozone to exchange between the stratosphere and the troposphere and to influence the chemistry in both regions. Based on the technique of contour advection, a method is developed to quantify the isentropic transport of ozone across the tropopause on the isentropic surface of 345K for the year 1990. This study employs the GSFC Data Assimilation Office assimilated products. It is shown that isentropic transport of ozone is a two-way process, but the annually integrated isentropic mass flux of ozone across the tropopause is directed from the stratosphere into the troposphere. The seasonality of the isentropic transport of ozone is also analyzed.
The development of a performance-enhancing additive for vapor-compression heat pumps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grzyll, L.R.; Scaringe, R.P.; Gottschlich, J.M.
1997-12-31
This paper describes the testing results of a vapor-compression heat pump operating with HFC-134a refrigerant and a performance-enhancing additive. Preliminary bench-top testing of this additive, when added to polyolester (POE) lubricant and HFC-134a refrigerant, showed surprising enhancements to system COP. To further investigate this finding, the authors designed and fabricated a vapor-compression heat pump test stand for the 3--5 ton range. The authors investigated the effect of different concentrations of this additive on various system performance parameters such as cooling capacity, compressor power requirement, pressure ratio, compressor pressure difference, compressor isentropic efficiency, refrigerant flow rate, and heat exchanger performance. Themore » authors investigated various heat source and heat sink conditions to simulate air-conditioning and heat pump operating conditions. To investigate the effect of this additive on compressor lubrication and life, the authors performed compressor life tests (with scroll and reciprocating compressors), and had lubrication wear tests performed with various concentrations of the additive in the POE lubricant.« less
New Experimental Capabilities and Theoretical Insights of High Pressure Compression Waves
NASA Astrophysics Data System (ADS)
Orlikowski, Daniel; Nguyen, Jeffrey H.; Patterson, J. Reed; Minich, Roger; Martin, L. Peter; Holmes, Neil C.
2007-12-01
Currently there are three platforms that offer quasi-isentropic compression or ramp-wave compression (RWC): light-gas gun, magnetic flux (Z-pinch), and laser. We focus here on the light-gas gun technique and on some current theoretical insights from experimental data. An impedance gradient through the length of the impactor provides the pressure pulse upon impact to the subject material. Applications and results are given concerning high-pressure strength and the liquid-to-solid, phase transition of water giving its first associated phase fraction history. We also introduce the Korteweg-deVries-Burgers equation as a means to understand the evolution of these RWC waves as they propagate through the thickness of the subject material. This model equation has the necessary competition between non-linear, dispersion, and dissipation processes, which is shown through observed structures that are manifested in the experimental particle velocity histories. Such methodology points towards a possibility of quantifying dissipation, through which RWC experiments may be analyzed.
Transient processes in the combustion of nitramine propellants
NASA Technical Reports Server (NTRS)
Cohen, N. S.; Strand, L. D.
1978-01-01
A transient combustion model of nitramine propellants is combined with an isentropic compression shock formation model to determine the role of nitramine propellant combustion in DDT, excluding effects associated with propellant structural properties or mechanical behavior. The model is derived to represent the closed pipe experiment that is widely used to characterize explosives, except that the combustible material is a monolithic charge rather than compressed powder. Computations reveal that the transient combustion process cannot by itself produce DDT by this model. Compressibility of the solid at high pressure is the key factor limiting pressure buildups created by the combustion. On the other hand, combustion mechanisms which promote pressure buildups are identified and related to propellant formulation variables. Additional combustion instability data for nitramine propellants are presented. Although measured combustion response continues to be low, more data are required to distinguish HMX and active binder component contributions. A design for a closed vessel apparatus for experimental studies of high pressure combustion is discussed.
Numerical Simulation of Energy Conversion Mechanism in Electric Explosion
NASA Astrophysics Data System (ADS)
Wanjun, Wang; Junjun, Lv; Mingshui, Zhu; Qiubo, Fu; EFIs Integration R&D Group Team
2017-06-01
Electric explosion happens when micron-scale metal films such as copper film is stimulated by short-time current pulse, while generating high temperature and high pressure plasma. The expansion process of the plasma plays an important role in the study of the generation of shock waves and the study of the EOS of matter under high pressure. In this paper, the electric explosion process is divided into two stages: the energy deposition stage and the quasi-isentropic expansion stage, and a dynamic EOS of plasma considering the energy replenishment is established. On this basis, flyer driven by plasma is studied numerically, the pressure and the internal energy of plasma in the energy deposition stage and the quasi - isentropic expansion stage are obtained by comparing the velocity history of the flyer with the experimental results. An energy conversion model is established, and the energy conversion efficiency of each process is obtained, and the influence of impedance matching relationship between flyer and metal plasma on the energy conversion efficiency is proposed in this paper.
Melts in the Deep Earth: Calculating the Densities of CaO-FeO-MgO-Al2O3-SiO2 Liquids
NASA Astrophysics Data System (ADS)
Thomas, C.; Guo, X.; Agee, C. B.; Asimow, P. D.; Lange, R. A.
2012-12-01
We present new equation of state (EOS) measurements for hedenbergite (Hd, CaFeSi2O6) and forsterite (Fo, Mg2SiO4) liquids. These liquid EOS add to the basis set in the CaO-FeO-MgO-Al2O3-SiO2 (CMASF) oxide space at elevated temperatures and pressures; other liquids include: enstatite (En, MgSiO3), anorthite (An, CaAl2Si2O8), diopside (Di, CaMgSi2O6), and fayalite (Fa, Fe2SiO4). The Hd EOS measurement was a multi-technique collaboration using 1-atm double-bob Archimedean, ultrasonic, sink/float, and shock wave techniques. Un-weighted linear fitting of the shock data in shock velocity (US)-particle velocity (up) space defines a pre-heated (1400 °C) Hugoniot US = 2.628(0.024) + 1.54(0.01)up km/s. The slope corresponds to a K' of 5.16(0.04), consistent with piston-cylinder and multi-anvil sink/float experiments. The intercept is fixed at the ultrasonic sound speed (Co) since the unconstrained intercept is within the stated error. This behavior demonstrates consistency across methods and that the liquid is relaxed during shock compression. Shock compression of pre-heated (2000°C) single crystal Fo gives an un-weighted linear Hugoniot of US = 2.674(0.188) + 1.64(0.06)up km/s. The unconstrained Co falls below estimates based on extrapolation in both temperature and composition from two published partial molar sound speed models, 3.195m/s [1] and 3.126 m/s [2]. The shock-derived Co indicates that dC/dT is negative for Fo liquid, contrary to the positive [1] and zero [2] temperature dependences derived over relatively narrow temperature intervals. CMASF liquid isentropes were calculated using five end-members (En, Fo, Fa, An, Di). For modeling crystallization of a fictive magma ocean, we examined two liquids: peridotite [3] (P=.33En+.56Fo+.07Fa+.03An+.007Di) and simplified chondrite [4] (Ch=.62En+.24Fo+.08Fa+.04An+.02Di). Each end-member is defined by a 3rd or 4th order Birch-Murnaghan isentrope, Mie-Grüneisen thermal pressure and a constant heat capacity. The volumes are assumed to ideally mix allowing for interpolation between end-member compositions. Results show the chondrite critical isentrope intersecting its liquidus at the core-mantle boundary with a potential temperature (TP) of 2400 K, whereas the peridotite critical isentrope has a TP of 2800 K and first crystallizes at 85 GPa. An identical calculation fails to recover the Hd isentrope (Hd = Di+0.5Fa-0.5Fo). This failure is likely due to the very different partial molar volumes of FeO in Hd and Fa, which have average Fe2+ coordination states of ~4.5 and ~6, respectively [5]. Consequently the simple ideal model is likely to only support mixing among like-coordinated Fe2+ liquids. We hope to further investigate this hypothesis for linear-mixing by constraining the EOS of An-Hd (50:50), and An-Di-Hd (33:33:33) melts using pre-heated shock wave techniques. [1] Ghiorso & Kress (2004) AJS 304, 679-751.[2] Ai & Lange(2008) JGR 113,B04203.[3] Fiquet et al. (2010) Science 329, 1516-1518.[4]Andrault et al. (2011) EPSL 304, 251-259.[5]Lange et al. (2012) Goldschmidt meeting, abstract.
NASA Astrophysics Data System (ADS)
McBride, R. D.; Martin, M. R.; Lemke, R. W.; Greenly, J. B.; Jennings, C. A.; Rovang, D. C.; Sinars, D. B.; Cuneo, M. E.; Herrmann, M. C.; Slutz, S. A.; Nakhleh, C. W.; Ryutov, D. D.; Davis, J.-P.; Flicker, D. G.; Blue, B. E.; Tomlinson, K.; Schroen, D.; Stamm, R. M.; Smith, G. E.; Moore, J. K.; Rogers, T. J.; Robertson, G. K.; Kamm, R. J.; Smith, I. C.; Savage, M.; Stygar, W. A.; Rochau, G. A.; Jones, M.; Lopez, M. R.; Porter, J. L.; Matzen, M. K.
2013-05-01
Multiple experimental campaigns have been executed to study the implosions of initially solid beryllium (Be) liners (tubes) on the Z pulsed-power accelerator. The implosions were driven by current pulses that rose from 0 to 20 MA in either 100 or 200 ns (200 ns for pulse shaping experiments). These studies were conducted in support of the recently proposed Magnetized Liner Inertial Fusion concept [Slutz et al., Phys. Plasmas 17, 056303 (2010)], as well as for exploring novel equation-of-state measurement techniques. The experiments used thick-walled liners that had an aspect ratio (initial outer radius divided by initial wall thickness) of either 3.2, 4, or 6. From these studies, we present three new primary results. First, we present radiographic images of imploding Be liners, where each liner contained a thin aluminum sleeve for enhancing the contrast and visibility of the liner's inner surface in the images. These images allow us to assess the stability of the liner's inner surface more accurately and more directly than was previously possible. Second, we present radiographic images taken early in the implosion (prior to any motion of the liner's inner surface) of a shockwave propagating radially inward through the liner wall. Radial mass density profiles from these shock compression experiments are contrasted with profiles from experiments where the Z accelerator's pulse shaping capabilities were used to achieve shockless ("quasi-isentropic") liner compression. Third, we present "micro-Ḃ" measurements of azimuthal magnetic field penetration into the initially vacuum-filled interior of a shocked liner. Our measurements and simulations reveal that the penetration commences shortly after the shockwave breaks out from the liner's inner surface. The field then accelerates this low-density "precursor" plasma to the axis of symmetry.
An Equation of State for Polymethylpentene (TPX) including Multi-Shock Response
NASA Astrophysics Data System (ADS)
Aslam, Tariq; Gustavsen, Richard; Sanchez, Nathaniel; Bartram, Brian
2011-06-01
The equation of state (EOS) of polymethylpentene (TPX) is examined through both single shock Hugoniot data as well as more recent multi-shock compression and release experiments. Results from the recent multi-shock experiments on LANL's 2-stage gas gun will be presented. A simple conservative Lagrangian numerical scheme utilizing total-variation-diminishing interpolation and an approximate Riemann solver will be presented as well as the methodology of calibration. It is shown that a simple Mie-Gruneisen EOS based off a Keane fitting form for the isentrope can replicate both the single shock and multi-shock experiments.
An equation of state for polymethylpentene (TPX) including multi-shock response
NASA Astrophysics Data System (ADS)
Aslam, Tariq D.; Gustavsen, Rick; Sanchez, Nathaniel; Bartram, Brian D.
2012-03-01
The equation of state (EOS) of polymethylpentene (TPX) is examined through both single shock Hugoniot data as well as more recent multi-shock compression and release experiments. Results from the recent multi-shock experiments on LANL's two-stage gas gun will be presented. A simple conservative Lagrangian numerical scheme utilizing total variation diminishing interpolation and an approximate Riemann solver will be presented as well as the methodology of calibration. It is shown that a simple Mie-Grüneisen EOS based on a Keane fitting form for the isentrope can replicate both the single shock and multi-shock experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
John, J.E.A.
1984-01-01
The book treats the basic fundamentals of compressible flow and gas dynamics using a wide breadth of topical coverage. It emphasizes the clear, logical development of basic theory and applies theory to real engineering systems. New in this edition is a complete changeover from English units to SI units. New charts for computing flows containing conical shock waves and expanded tables for isentropic flow and normal shocks are featured. The text emphasizes one dimensional and internal flow, and contains: improved illustrations; many new homework problems; examples and problems involving current applications; and new Mollier diagrams for computing real gas effects.
Yang, Jubiao; Wang, Xingshi; Krane, Michael; Zhang, Lucy T.
2017-01-01
In this study, a fully-coupled fluid–structure interaction model is developed for studying dynamic interactions between compressible fluid and aeroelastic structures. The technique is built based on the modified Immersed Finite Element Method (mIFEM), a robust numerical technique to simulate fluid–structure interactions that has capabilities to simulate high Reynolds number flows and handles large density disparities between the fluid and the solid. For accurate assessment of this intricate dynamic process between compressible fluid, such as air and aeroelastic structures, we included in the model the fluid compressibility in an isentropic process and a solid contact model. The accuracy of the compressible fluid solver is verified by examining acoustic wave propagations in a closed and an open duct, respectively. The fully-coupled fluid–structure interaction model is then used to simulate and analyze vocal folds vibrations using compressible air interacting with vocal folds that are represented as layered viscoelastic structures. Using physiological geometric and parametric setup, we are able to obtain a self-sustained vocal fold vibration with a constant inflow pressure. Parametric studies are also performed to study the effects of lung pressure and vocal fold tissue stiffness in vocal folds vibrations. All the case studies produce expected airflow behavior and a sustained vibration, which provide verification and confidence in our future studies of realistic acoustical studies of the phonation process. PMID:29527067
NASA Astrophysics Data System (ADS)
Markfelder, Simon; Klingenberg, Christian
2018-03-01
In this paper we consider the isentropic compressible Euler equations in two space dimensions together with particular initial data. This data consists of two constant states, where one state lies in the lower and the other state in the upper half plane. The aim is to investigate whether there exists a unique entropy solution or if the convex integration method produces infinitely many entropy solutions. For some initial states this question has been answered by Feireisl and Kreml (J Hyperbolic Differ Equ 12(3):489-499, 2015), and also Chen and Chen (J Hyperbolic Differ Equ 4(1):105-122, 2007), where there exists a unique entropy solution. For other initial states Chiodaroli and Kreml (Arch Ration Mech Anal 214(3):1019-1049, 2014) and Chiodaroli et al. (Commun Pure Appl Math 68(7):1157-1190, 2015), showed that there are infinitely many entropy solutions. For still other initial states the question on uniqueness remained open and this will be the content of this paper. This paper can be seen as a completion of the aforementioned papers by showing that the solution is non-unique in all cases (except if the solution is smooth).
Real-gas effects 1: Simulation of ideal gas flow by cryogenic nitrogen and other selected gases
NASA Technical Reports Server (NTRS)
Hall, R. M.
1980-01-01
The thermodynamic properties of nitrogen gas do not thermodynamically approximate an ideal, diatomic gas at cryogenic temperatures. Choice of a suitable equation of state to model its behavior is discussed and the equation of Beattie and Bridgeman is selected as best meeting the needs for cryogenic wind tunnel use. The real gas behavior of nitrogen gas is compared to an ideal, diatomic gas for the following flow processes: isentropic expansion; normal shocks; boundary layers; and shock wave boundary layer interactions. The only differences in predicted pressure ratio between nitrogen and an ideal gas that may limit the minimum operating temperatures of transonic cryogenic wind tunnels seem to occur at total pressures approaching 9atmospheres and total temperatures 10 K below the corresponding saturation temperature, where the differences approach 1 percent for both isentropic expansions and normal shocks. Several alternative cryogenic test gases - air, helium, and hydrogen - are also analyzed. Differences in air from an ideal, diatomic gas are similar in magnitude to those of nitrogen. Differences for helium and hydrogen are over an order of magnitude greater than those for nitrogen or air. Helium and hydrogen do not approximate the compressible flow of an ideal, diatomic gas.
Quantifying isentropic stratosphere-troposphere exchange of ozone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Huang; Chen, Gang; Tang, Qi
There is increased evidence that stratosphere-troposphere exchange (STE) of ozone has a significant impact on tropospheric chemistry and radiation. Traditional diagnostics of STE consider the ozone budget in the lowermost stratosphere (LMS) as a whole. However, this can only render the hemispherically integrated ozone flux and therefore does not distinguish the exchange of ozone into low latitudes from that into high latitudes. The exchange of ozone at different latitudes may have different tropospheric impacts. This present study extends the traditional approach from the entire LMS to individual isentropic layers in the LMS and therefore gives the meridional distribution of STEmore » by the latitudes where each isentropic surface intersects the tropopause. The specified dynamics version of the Whole Atmosphere Community Climate Model is used to estimate the STE ozone flux on each isentropic surface. It is found that net troposphere-to-stratosphere ozone transport occurs in low latitudes along the 350–380 K isentropic surfaces and that net stratosphere-to-troposphere ozone transport takes place in the extratropics along the 280–350 K isentropes. Particularly, the seasonal cycle of extratropical STE ozone flux in the Northern Hemisphere displays a maximum in late spring and early summer, following the seasonal migration of the upper tropospheric jet and associated isentropic mixing. Moreover, differential diabatic heating and isentropic mixing tend to induce STE ozone fluxes in opposite directions, but the net effect results in a spatiotemporal pattern similar to the STE ozone flux associated with isentropic mixing.« less
Quantifying isentropic stratosphere-troposphere exchange of ozone
Yang, Huang; Chen, Gang; Tang, Qi; ...
2016-03-25
There is increased evidence that stratosphere-troposphere exchange (STE) of ozone has a significant impact on tropospheric chemistry and radiation. Traditional diagnostics of STE consider the ozone budget in the lowermost stratosphere (LMS) as a whole. However, this can only render the hemispherically integrated ozone flux and therefore does not distinguish the exchange of ozone into low latitudes from that into high latitudes. The exchange of ozone at different latitudes may have different tropospheric impacts. This present study extends the traditional approach from the entire LMS to individual isentropic layers in the LMS and therefore gives the meridional distribution of STEmore » by the latitudes where each isentropic surface intersects the tropopause. The specified dynamics version of the Whole Atmosphere Community Climate Model is used to estimate the STE ozone flux on each isentropic surface. It is found that net troposphere-to-stratosphere ozone transport occurs in low latitudes along the 350–380 K isentropic surfaces and that net stratosphere-to-troposphere ozone transport takes place in the extratropics along the 280–350 K isentropes. Particularly, the seasonal cycle of extratropical STE ozone flux in the Northern Hemisphere displays a maximum in late spring and early summer, following the seasonal migration of the upper tropospheric jet and associated isentropic mixing. Moreover, differential diabatic heating and isentropic mixing tend to induce STE ozone fluxes in opposite directions, but the net effect results in a spatiotemporal pattern similar to the STE ozone flux associated with isentropic mixing.« less
Well-posedness of the free boundary problem in compressible elastodynamics
NASA Astrophysics Data System (ADS)
Trakhinin, Yuri
2018-02-01
We study the free boundary problem for the flow of a compressible isentropic inviscid elastic fluid. At the free boundary moving with the velocity of the fluid particles the columns of the deformation gradient are tangent to the boundary and the pressure vanishes outside the flow domain. We prove the local-in-time existence of a unique smooth solution of the free boundary problem provided that among three columns of the deformation gradient there are two which are non-collinear vectors at each point of the initial free boundary. If this non-collinearity condition fails, the local-in-time existence is proved under the classical Rayleigh-Taylor sign condition satisfied at the first moment. By constructing an Hadamard-type ill-posedness example for the frozen coefficients linearized problem we show that the simultaneous failure of the non-collinearity condition and the Rayleigh-Taylor sign condition leads to Rayleigh-Taylor instability.
Mach 6.5 air induction system design for the Beta 2 two-stage-to-orbit booster vehicle
NASA Technical Reports Server (NTRS)
Midea, Anthony C.
1991-01-01
A preliminary, two-dimensional, mixed compression air induction system is designed for the Beta II Two Stage to Orbit booster vehicle to minimize installation losses and efficiently deliver the required airflow. Design concepts, such as an external isentropic compression ramp and a bypass system were developed and evaluated for performance benefits. The design was optimized by maximizing installed propulsion/vehicle system performance. The resulting system design operating characteristics and performance are presented. The air induction system design has significantly lower transonic drag than similar designs and only requires about 1/3 of the bleed extraction. In addition, the design efficiently provides the integrated system required airflow, while maintaining adequate levels of total pressure recovery. The excellent performance of this highly integrated air induction system is essential for the successful completion of the Beta II booster vehicle mission.
Modeling dynamic beta-gamma polymorphic transition in Tin
NASA Astrophysics Data System (ADS)
Chauvin, Camille; Montheillet, Frank; Petit, Jacques; CEA Gramat Collaboration; EMSE Collaboration
2015-06-01
Solid-solid phase transitions in metals have been studied by shock waves techniques for many decades. Recent experiments have investigated the transition during isentropic compression experiments and shock-wave compression and have highlighted the strong influence of the loading rate on the transition. Complementary data obtained with velocity and temperature measurements around the polymorphic transition beta-gamma of Tin on gas gun experiments have displayed the importance of the kinetics of the transition. But, even though this phenomenon is known, modeling the kinetic remains complex and based on empirical formulations. A multiphase EOS is available in our 1D Lagrangian code Unidim. We propose to present the influence of various kinetic laws (either empirical or involving nucleation and growth mechanisms) and their parameters (Gibbs free energy, temperature, pressure) on the transformation rate. We compare experimental and calculated velocities and temperature profiles and we underline the effects of the empirical parameters of these models.
The reactants equation of state for the tri-amino-tri-nitro-benzene (TATB) based explosive PBX 9502
NASA Astrophysics Data System (ADS)
Aslam, Tariq D.
2017-07-01
The response of high explosives (HEs), due to mechanical and/or thermal insults, is of great importance for both safety and performance. A major component of how an HE responds to these stimuli stems from its reactant equation of state (EOS). Here, the tri-amino-tri-nitro-benzene based explosive PBX 9502 is investigated by examining recent experiments. Furthermore, a complete thermal EOS is calibrated based on the functional form devised by Wescott, Stewart, and Davis [J. Appl. Phys. 98, 053514 (2005)]. It is found, by comparing to earlier calibrations, that a variety of thermodynamic data are needed to sufficiently constrain the EOS response over a wide range of thermodynamic state space. Included in the calibration presented here is the specific heat as a function of temperature, isobaric thermal expansion, and shock Hugoniot response. As validation of the resulting model, isothermal compression and isentropic compression are compared with recent experiments.
Equation of state of iron under core conditions of large rocky exoplanets
NASA Astrophysics Data System (ADS)
Smith, Raymond F.; Fratanduono, Dayne E.; Braun, David G.; Duffy, Thomas S.; Wicks, June K.; Celliers, Peter M.; Ali, Suzanne J.; Fernandez-Pañella, Amalia; Kraus, Richard G.; Swift, Damian C.; Collins, Gilbert W.; Eggert, Jon H.
2018-04-01
The recent discovery of thousands of planets outside our Solar System raises fundamental questions about the variety of planetary types and their corresponding interior structures and dynamics. To better understand these objects, there is a strong need to constrain material properties at the extreme pressures found within planetary interiors1,2. Here we used high-powered lasers at the National Ignition Facility to ramp compress iron over nanosecond timescales to 1.4 TPa (14 million atmospheres)—a pressure four times higher than for previous static compression data. A Lagrangian sound-speed analysis was used to determine pressure, density and sound speed along a continuous isentropic compression path. Our peak pressures are comparable to those predicted at the centre of a terrestrial-type exoplanet of three to four Earth masses3, representing the first absolute equation of state measurements for iron at such conditions. These results provide an experiment-based mass-radius relationship for a hypothetical pure iron planet that can be used to evaluate plausible compositional space for large, rocky exoplanets.
Equation of state of iron under core conditions of large rocky exoplanets
NASA Astrophysics Data System (ADS)
Smith, Raymond F.; Fratanduono, Dayne E.; Braun, David G.; Duffy, Thomas S.; Wicks, June K.; Celliers, Peter M.; Ali, Suzanne J.; Fernandez-Pañella, Amalia; Kraus, Richard G.; Swift, Damian C.; Collins, Gilbert W.; Eggert, Jon H.
2018-06-01
The recent discovery of thousands of planets outside our Solar System raises fundamental questions about the variety of planetary types and their corresponding interior structures and dynamics. To better understand these objects, there is a strong need to constrain material properties at the extreme pressures found within planetary interiors1,2. Here we used high-powered lasers at the National Ignition Facility to ramp compress iron over nanosecond timescales to 1.4 TPa (14 million atmospheres)—a pressure four times higher than for previous static compression data. A Lagrangian sound-speed analysis was used to determine pressure, density and sound speed along a continuous isentropic compression path. Our peak pressures are comparable to those predicted at the centre of a terrestrial-type exoplanet of three to four Earth masses3, representing the first absolute equation of state measurements for iron at such conditions. These results provide an experiment-based mass-radius relationship for a hypothetical pure iron planet that can be used to evaluate plausible compositional space for large, rocky exoplanets.
X3 expansion tube driver gas spectroscopy and temperature measurements
NASA Astrophysics Data System (ADS)
Parekh, V.; Gildfind, D.; Lewis, S.; James, C.
2018-07-01
The University of Queensland's X3 facility is a large, free-piston driven expansion tube used for super-orbital and high Mach number scramjet aerothermodynamic studies. During recent development of new scramjet test flow conditions, experimentally measured shock speeds were found to be significantly lower than that predicted by initial driver performance calculations. These calculations were based on ideal, isentropic compression of the driver gas and indicated that loss mechanisms, not accounted for in the preliminary analysis, were significant. The critical determinant of shock speed is peak driver gas sound speed, which for a given gas composition depends on the peak driver gas temperature. This temperature may be inaccurately estimated if an incorrect fill temperature is assumed, or if heat losses during driver gas compression are significant but not accounted for. For this study, the ideal predicted peak temperature was 3750 K, without accounting for losses. However, a much lower driver temperature of 2400 K is suggested based on measured experimental shock speeds. This study aimed to measure initial and peak driver gas temperatures for a representative X3 operating condition. Examination of the transient temperatures of the driver gas and compression tube steel wall during the initial fill process showed that once the filling process was complete, the steady-state driver gas temperature closely matched the tube wall temperature. Therefore, while assuming the gas is initially at the ambient laboratory temperature is not a significant source of error, it can be entirely mitigated by simply monitoring tube wall temperature. Optical emission spectroscopy was used to determine the driver gas spectra after diaphragm rupture; the driver gas emission spectrum exhibited a significant continuum radiation component, with prominent spectral lines attributed to contamination of the gas. A graybody approximation of the continuum suggested a peak driver gas temperature of 3200 K; uncertainty associated with the blackbody curve fit is ±100 K. However, work is required to quantify additional sources of uncertainty due to the graybody assumption and the presence of contaminant particles in the driver gas; these are potentially significant. The estimate of the driver gas temperature suggests that driver heat losses are not the dominant contributor to the lower-than-expected shock speeds for X3. Since both the driver temperature and pressure have been measured, investigation of total pressure losses during driver gas expansion across the diaphragm and driver-to-driven tube area change (currently not accounted for) is recommended for future studies as the likely mechanism for the observed performance gap.
X3 expansion tube driver gas spectroscopy and temperature measurements
NASA Astrophysics Data System (ADS)
Parekh, V.; Gildfind, D.; Lewis, S.; James, C.
2017-11-01
The University of Queensland's X3 facility is a large, free-piston driven expansion tube used for super-orbital and high Mach number scramjet aerothermodynamic studies. During recent development of new scramjet test flow conditions, experimentally measured shock speeds were found to be significantly lower than that predicted by initial driver performance calculations. These calculations were based on ideal, isentropic compression of the driver gas and indicated that loss mechanisms, not accounted for in the preliminary analysis, were significant. The critical determinant of shock speed is peak driver gas sound speed, which for a given gas composition depends on the peak driver gas temperature. This temperature may be inaccurately estimated if an incorrect fill temperature is assumed, or if heat losses during driver gas compression are significant but not accounted for. For this study, the ideal predicted peak temperature was 3750 K, without accounting for losses. However, a much lower driver temperature of 2400 K is suggested based on measured experimental shock speeds. This study aimed to measure initial and peak driver gas temperatures for a representative X3 operating condition. Examination of the transient temperatures of the driver gas and compression tube steel wall during the initial fill process showed that once the filling process was complete, the steady-state driver gas temperature closely matched the tube wall temperature. Therefore, while assuming the gas is initially at the ambient laboratory temperature is not a significant source of error, it can be entirely mitigated by simply monitoring tube wall temperature. Optical emission spectroscopy was used to determine the driver gas spectra after diaphragm rupture; the driver gas emission spectrum exhibited a significant continuum radiation component, with prominent spectral lines attributed to contamination of the gas. A graybody approximation of the continuum suggested a peak driver gas temperature of 3200 K; uncertainty associated with the blackbody curve fit is ±100 K. However, work is required to quantify additional sources of uncertainty due to the graybody assumption and the presence of contaminant particles in the driver gas; these are potentially significant. The estimate of the driver gas temperature suggests that driver heat losses are not the dominant contributor to the lower-than-expected shock speeds for X3. Since both the driver temperature and pressure have been measured, investigation of total pressure losses during driver gas expansion across the diaphragm and driver-to-driven tube area change (currently not accounted for) is recommended for future studies as the likely mechanism for the observed performance gap.
Cuneo, M E; Vesey, R A; Sinars, D B; Chittenden, J P; Waisman, E M; Lemke, R W; Lebedev, S V; Bliss, D E; Stygar, W A; Porter, J L; Schroen, D G; Mazarakis, M G; Chandler, G A; Mehlhorn, T A
2005-10-28
Nested wire-array pinches are shown to generate soft x-ray radiation pulse shapes required for three-shock isentropic compression and hot-spot ignition of high-yield inertial confinement fusion capsules. We demonstrate a reproducible and tunable foot pulse (first shock) produced by interaction of the outer and inner arrays. A first-step pulse (second shock) is produced by inner array collision with a central CH2 foam target. Stagnation of the inner array at the axis produces the third shock. Capsules optimized for several of these shapes produce 290-900 MJ fusion yields in 1D simulations.
NASA Astrophysics Data System (ADS)
Mattsson, Thomas R.
2011-11-01
Significant progress has over the last few years been made in high energy density physics (HEDP) by executing high-precision multi-Mbar experiments and performing first-principles simulations for elements ranging from carbon [1] to xenon [2]. The properties of water under HEDP conditions are of particular importance in planetary science due to the existence of ice-giants like Neptune and Uranus. Modeling the two planets, as well as water-rich exoplanets, requires knowing the equation of state (EOS), the pressure as a function of density and temperature, of water with high accuracy. Although extensive density functional theory (DFT) simulations have been performed for water under planetary conditions [3] experimental validation has been lacking. Accessing thermodynamic states along planetary isentropes in dynamic compression experiments is challenging because the principal Hugoniot follows a significantly different path in the phase diagram. In this talk, we present experimental data for dynamic compression of water up to 700 GPa, including in a regime of the phase-diagram intersected by the Neptune isentrope and water-rich models for the exoplanet GJ436b. The data was obtained on the Z-accelerator at Sandia National Laboratories by performing magnetically accelerated flyer plate impact experiments measuring both the shock and re-shock in the sample. The high accuracy makes it possible for the data to be used for detailed model validation: the results validate first principles based thermodynamics as a reliable foundation for planetary modeling and confirm the fine effect of including nuclear quantum effects on the shock pressure. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. [4pt] [1] M.D. Knudson, D.H. Dolan, and M.P. Desjarlais, SCIENCE 322, 1822 (2008).[0pt] [2] S. Root, et al., Phys. Rev. Lett. 105, 085501 (2010).[0pt] [3] M. French, et al., Phys. Rev. B 79, 054107 (2009).
On hydrostatic flows in isentropic coordinates
NASA Astrophysics Data System (ADS)
Bokhove, Onno
2000-01-01
The hydrostatic primitive equations of motion which have been used in large-scale weather prediction and climate modelling over the last few decades are analysed with variational methods in an isentropic Eulerian framework. The use of material isentropic coordinates for the Eulerian hydrostatic equations is known to have distinct conceptual advantages since fluid motion is, under inviscid and statically stable circumstances, confined to take place on quasi-horizontal isentropic surfaces. First, an Eulerian isentropic Hamilton's principle, expressed in terms of fluid parcel variables, is therefore derived by transformation of a Lagrangian Hamilton's principle to an Eulerian one. This Eulerian principle explicitly describes the boundary dynamics of the time-dependent domain in terms of advection of boundary isentropes sB; these are the values the isentropes have at their intersection with the (lower) boundary. A partial Legendre transform for only the interior variables yields an Eulerian ‘action’ principle. Secondly, Noether's theorem is used to derive energy and potential vorticity conservation from the Eulerian Hamilton's principle. Thirdly, these conservation laws are used to derive a wave-activity invariant which is second-order in terms of small-amplitude disturbances relative to a resting or moving basic state. Linear stability criteria are derived but only for resting basic states. In mid-latitudes a time- scale separation between gravity and vortical modes occurs. Finally, this time-scale separation suggests that conservative geostrophic and ageostrophic approximations can be made to the Eulerian action principle for hydrostatic flows. Approximations to Eulerian variational principles may be more advantageous than approximations to Lagrangian ones because non-dimensionalization and scaling tend to be based on Eulerian estimates of the characteristic scales involved. These approximations to the stratified hydrostatic formulation extend previous approximations to the shallow- water equations. An explicit variational derivation is given of an isentropic version of Hoskins & Bretherton's model for atmospheric fronts.
NASA Astrophysics Data System (ADS)
Huang, Xiangdi
2017-02-01
One of the most influential fundamental tools in harmonic analysis is the Riesz transforms. It maps Lp functions to Lp functions for any p ∈ (1 , ∞) which plays an important role in singular operators. As an application in fluid dynamics, the norm equivalence between ‖∇u‖Lp and ‖ div u ‖ Lp +‖ curl u ‖ Lp is well established for p ∈ (1 , ∞). However, since Riesz operators sent bounded functions only to BMO functions, there is no hope to bound ‖∇u‖L∞ in terms of ‖ div u ‖ L∞ +‖ curl u ‖ L∞. As pointed out by Hoff (2006) [11], this is the main obstacle to obtain uniqueness of weak solutions for isentropic compressible flows. Fortunately, based on new observations, see Lemma 2.2, we derive an exact estimate for ‖∇u‖L∞ ≤ (2 + 1 / N)‖ div u ‖ L∞ for any N-dimensional radially symmetric vector functions u. As a direct application, we give an affirmative answer to the open problem of uniqueness of some weak solutions to the compressible spherically symmetric flows in a bounded ball.
A short-pulse mode for the SPHINX LTD Z-pinch driver
NASA Astrophysics Data System (ADS)
D'Almeida, Thierry; Lassalle, Francis; Zucchini, Frederic; Loyen, Arnaud; Morell, Alain; Chuvatin, Alexander
2015-11-01
The SPHINX machine is a 6MA, 1 μs, LTD Z-pinch driver at CEA Gramat (France) and primarily used for studying radiation effects. Different power amplification concepts were examined in order to reduce the current rise time without modifying the generator discharge scheme, including the Dynamic Load Current Multiplier (DLCM) proposed by Chuvatin. A DLCM device, capable of shaping the current pulse without reducing the rise time, was developed at CEA. This device proved valuable for isentropic compression experiments in cylindrical geometry. Recently, we achieved a short pulse operation mode by inserting a vacuum closing switch between the DLCM and the load. The current rise time was reduced to ~300 ns. We explored the use of a reduced-height wire array for the Dynamic Flux Extruder in order to improve the wire array compression rate and increase the efficiency of the current transfer to the load. These developments are presented. Potential benefits of these developments for future Z pinch experiments are discussed.
NASA Technical Reports Server (NTRS)
Haut, R. C.; Adcock, J. B.
1976-01-01
The isentropic expansions of parahydrogen at various total pressures and total temperatures were numerically determined by iterating Mach number and by using a modified interval halving method. The calculated isentropic values and related properties are presented in tabulated form.
Review of controlled fusion research using laser heating.
NASA Technical Reports Server (NTRS)
Hertzberg, A.
1973-01-01
Development of methods for generating high laser pulse energy has stimulated research leading to new ideas for practical controlled thermonuclear fusion machines. A review is presented of some important efforts in progress, and two different approaches have been selected as examples for discussion. One involves the concept of very short pulse lasers with power output tailored, in time, to obtain a nearly isentropic compression of a deuterium-tritium pellet to very high densities and temperatures. A second approach utilizing long wavelength, long pulse, efficient gas lasers to heat a column of plasma contained in a solenoidal field is also discussed. The working requirements of the laser and various magnetic field geometries of this approach are described.
Climate Simulations with an Isentropic Finite Volume Dynamical Core
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chih-Chieh; Rasch, Philip J.
2012-04-15
This paper discusses the impact of changing the vertical coordinate from a hybrid pressure to a hybrid-isentropic coordinate within the finite volume dynamical core of the Community Atmosphere Model (CAM). Results from a 20-year climate simulation using the new model coordinate configuration are compared to control simulations produced by the Eulerian spectral and FV dynamical cores of CAM which both use a pressure-based ({sigma}-p) coordinate. The same physical parameterization package is employed in all three dynamical cores. The isentropic modeling framework significantly alters the simulated climatology and has several desirable features. The revised model produces a better representation of heatmore » transport processes in the atmosphere leading to much improved atmospheric temperatures. We show that the isentropic model is very effective in reducing the long standing cold temperature bias in the upper troposphere and lower stratosphere, a deficiency shared among most climate models. The warmer upper troposphere and stratosphere seen in the isentropic model reduces the global coverage of high clouds which is in better agreement with observations. The isentropic model also shows improvements in the simulated wintertime mean sea-level pressure field in the northern hemisphere.« less
NASA Technical Reports Server (NTRS)
Wang, Pi-Huan; Cunnold, Derek M.; Zawodny, Joseph M.; Pierce, R. Bradley; Olson, Jennifer R.; Kent, Geoffrey S.; Skeens, Kristi, M.
1998-01-01
To provide observational evidence on the extratropical cross-tropopause transport between the stratosphere and the troposphere via quasi-isentropic processes in the middleworld (the part of the atmosphere in which the isentropic surfaces intersect the tropopause), this report presents an analysis of the seasonal variations of the ozone latitudinal distribution in the isentropic layer between 330 K and 380 K based on the measurements from the Stratospheric Aerosol and Gas Experiment (SAGE) II. The results from SAGE II data analysis are consistent with (1) the buildup of ozone-rich air in the extratropical middleworld through the large-scale descending mass circulation during winter, (2) the spread of ozone-rich air in the isentropic layer from midlatitudes to subtropics via quasi-isentropic transport during spring, (3) significant photochemical ozone removal and the absence of an ozone-rich supply of air to the layer during summer, and (4) air mass exchange between the subtropics and the extratropics during the summer monsoon period. Thus the SAGE II observed ozone seasonal variations in the middleworld are consistent with the existing model calculated annual cycle of the diabatic circulation as well as the conceptual role of the eddy quasi-adiabatic transport in the stratosphere-troposphere exchange reported in the literature.
NASA Technical Reports Server (NTRS)
Mostrel, M. M.
1988-01-01
New shock-capturing finite difference approximations for solving two scalar conservation law nonlinear partial differential equations describing inviscid, isentropic, compressible flows of aerodynamics at transonic speeds are presented. A global linear stability theorem is applied to these schemes in order to derive a necessary and sufficient condition for the finite element method. A technique is proposed to render the described approximations total variation-stable by applying the flux limiters to the nonlinear terms of the difference equation dimension by dimension. An entropy theorem applying to the approximations is proved, and an implicit, forward Euler-type time discretization of the approximation is presented. Results of some numerical experiments using the approximations are reported.
NASA Astrophysics Data System (ADS)
Xiong, Ming; Zheng, Huinan; Wu, S. T.; Wang, Yuming; Wang, Shui
2007-11-01
Numerical studies of the interplanetary "multiple magnetic clouds (Multi-MC)" are performed by a 2.5-dimensional ideal magnetohydrodynamic (MHD) model in the heliospheric meridional plane. Both slow MC1 and fast MC2 are initially emerged along the heliospheric equator, one after another with different time intervals. The coupling of two MCs could be considered as the comprehensive interaction between two systems, each comprising of an MC body and its driven shock. The MC2-driven shock and MC2 body are successively involved into interaction with MC1 body. The momentum is transferred from MC2 to MC1. After the passage of MC2-driven shock front, magnetic field lines in MC1 medium previously compressed by MC2-driven shock are prevented from being restored by the MC2 body pushing. MC1 body undergoes the most violent compression from the ambient solar wind ahead, continuous penetration of MC2-driven shock through MC1 body, and persistent pushing of MC2 body at MC1 tail boundary. As the evolution proceeds, the MC1 body suffers from larger and larger compression, and its original vulnerable magnetic elasticity becomes stiffer and stiffer. So there exists a maximum compressibility of Multi-MC when the accumulated elasticity can balance the external compression. This cutoff limit of compressibility mainly decides the maximally available geoeffectiveness of Multi-MC because the geoeffectiveness enhancement of MCs interacting is ascribed to the compression. Particularly, the greatest geoeffectiveness is excited among all combinations of each MC helicity, if magnetic field lines in the interacting region of Multi-MC are all southward. Multi-MC completes its final evolutionary stage when the MC2-driven shock is merged with MC1-driven shock into a stronger compound shock. With respect to Multi-MC geoeffectiveness, the evolution stage is a dominant factor, whereas the collision intensity is a subordinate one. The magnetic elasticity, magnetic helicity of each MC, and compression between each other are the key physical factors for the formation, propagation, evolution, and resulting geoeffectiveness of interplanetary Multi-MC.
Isentropic fluid dynamics in a curved pipe
NASA Astrophysics Data System (ADS)
Colombo, Rinaldo M.; Holden, Helge
2016-10-01
In this paper we study isentropic flow in a curved pipe. We focus on the consequences of the geometry of the pipe on the dynamics of the flow. More precisely, we present the solution of the general Cauchy problem for isentropic fluid flow in an arbitrarily curved, piecewise smooth pipe. We consider initial data in the subsonic regime, with small total variation about a stationary solution. The proof relies on the front-tracking method and is based on [1].
NASA Astrophysics Data System (ADS)
Nalle, Pallavi B.; Deshmukh, S. S.; Dorik, R. G.; Jadhav, K. M.
2016-12-01
The ultrasonic velocity (U), density (ρ), and viscosity (η) of an ethanolic extract of drug Piper nigrum with MgCl2 (metal ions) have been measured as a function of the number of moles n = (0.7009, 1.4018, 2.1027, 2.8036 and 3.5045) at 303.15, 308.15, 313.15 and 318.15 K temperature. Various thermoacoustic and their excess values such as adiabatic compressibilities (β), intermolecular free lengths (Lf), excess adiabatic compressibility (βE), excess intermolecular free length (?) have been computed using values of ultrasonic velocity (U), density (ρ), and viscosity (η). The excess values of ultrasonic velocity, specific acoustic impedance are positive, whereas isentropic compressibility and intermolecular free lengths are negative over the entire composition range of MgCl2 + P. nigrum which indicates the presence of specific interactions between unlike molecules. Molecular association is reflected by ultrasonic investigation. This may be interpreted due to the of complex formation. The chemical interaction may involve the association due to the solute-solvent and ion-solvent interaction and due to the formation of charge-transfer complexes, which is useful to understand the mechanism of their metabolism in living systems. The results obtained from these studies are helpful for pharmacological applications of drugs, transport of drugs across biological membranes.
Simulating CO2 profiles using NIES TM and comparison with HIAPER Pole-to-Pole Observations
NASA Astrophysics Data System (ADS)
Song, C.; Maksyutov, S.; Belikov, D.; Takagi, H.; Shu, J.
2015-03-01
We present a study on validation of the National Institute for Environmental Studies Transport Model (NIES TM) by comparing to observed vertical profiles of atmospheric CO2. The model uses a hybrid sigma-isentropic (σ-θ) vertical coordinate that employs both terrain-following and isentropic parts switched smoothly in the stratosphere. The model transport is driven by reanalyzed meteorological fields and designed to simulate seasonal and diurnal cycles, synoptic variations, and spatial distributions of atmospheric chemical constituents in the troposphere. The model simulations were run for biosphere, fossil fuel, air-ocean exchange, biomass burning and inverse correction fluxes of carbon dioxide (CO2) by GOSAT Level 4 product. We compared the NIES TM simulated fluxes with data from the HIAPER Pole-to-Pole Observations (HIPPO) Merged 10 s Meteorology, Atmospheric Chemistry, and Aerosol Data, including HIPPO-1, HIPPO-2 and HIPPO-3 from 128.0° E to -84.0° W, and 87.0° N to -67.2° S. The simulation results were compared with CO2 observations made in January and November 2009, and March and April 2010. The analysis attests that the model is good enough to simulate vertical profiles with errors generally within 1-2 ppmv, except for the lower stratosphere in the Northern Hemisphere high latitudes.
Mixing in the Extratropical Stratosphere: Model-measurements Comparisons using MLM Diagnostics
NASA Technical Reports Server (NTRS)
Ma, Jun; Waugh, Darryn W.; Douglass, Anne R.; Kawa, Stephan R.; Bhartia, P. K. (Technical Monitor)
2001-01-01
We evaluate transport processes in the extratropical lower stratosphere for both models and measurements with the help of equivalent length diagnostic from the modified Lagrangian-mean (MLM) analysis. This diagnostic is used to compare measurements of long-lived tracers made by the Cryogenic Limb Array Etalon Spectrometer (CLAES) on the Upper Atmosphere Research Satellite (UARS) with simulated tracers. Simulations are produced in Chemical and Transport Models (CTMs), in which meteorological fields are taken from the Goddard Earth Observing System Data Assimilation System (GEOS DAS), the Middle Atmosphere Community Climate Model (MACCM2), and the Geophysical Fluid Dynamics Laboratory (GFDL) "SKYHI" model, respectively. Time series of isentropic equivalent length show that these models are able to capture major mixing and transport properties observed by CLAES, such as the formation and destruction of polar barriers, the presence of surf zones in both hemispheres. Differences between each model simulation and the observation are examined in light of model performance. Among these differences, only the simulation driven by GEOS DAS shows one case of the "top-down" destruction of the Antarctic polar vortex, as observed in the CLAES data. Additional experiments of isentropic advection of artificial tracer by GEOS DAS winds suggest that diabatic movement might have considerable contribution to the equivalent length field in the 3D CTM diagnostics.
Release Path Temperatures of Shock-Compressed Tin from Dynamic Reflectance and Radiance Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
La Lone, B. M.; Stevens, G. D.; Turley, W. D.
2013-08-01
Dynamic reflectance and radiance measurements were conducted for tin samples shock compressed to 35 GPa and released to 15 GPa using high explosives. We determined the reflectance of the tin samples glued to lithium fluoride windows using an integrating sphere with an internal xenon flashlamp as an illumination source. The dynamic reflectance (R) was determined at near normal incidence in four spectral bands with coverage in visible and near-infrared spectra. Uncertainties in R/R0 are < 2%, and uncertainties in absolute reflectance are < 5%. In complementary experiments, thermal radiance from the tin/glue/lithium fluoride interface was recorded with similar shock stressmore » and spectral coverage as the reflectance measurements. The two sets of experiments were combined to obtain the temperature history of the tin surface with an uncertainty of < 2%. The stress at the interface was determined from photonic Doppler velocimetry and combined with the temperatures to obtain temperature-stress release paths for tin. We discuss the relationship between the experimental release paths and release isentropes that begin on the principal shock Hugoniot.« less
Jamal, Muhammad Asghar; Rashad, Muhammad; Khosa, Muhammad Kaleem; Bhatti, Haq Nawaz
2015-04-15
Densities and ultrasonic velocity values for aqueous solutions of sodium saccharin (SS) has been measured as a function of concentration at 20.0-45.0 °C and atmospheric pressure using DSA-5000 M. The density and ultrasonic velocity values have been further used to calculate apparent molar volume, apparent specific volume, isentropic apparent molar compressibility and compressibility hydration numbers and reported. The values for apparent molar volume obtained at given temperatures showed negative deviations from Debye-Hückel limiting law and used as a direct measure of the ion-ion and ion-solvent interactions. The apparent specific volumes of the solute were calculated and it was found that these values of the investigated solutions lie on the borderline between the values reported for sweet substances. The sweetness response of the sweeteners is then explained in terms of their solution behaviours. Furthermore, the partial molar expansibility, its second derivative, (∂(2)V°/∂T(2)) as Hepler's constant and thermal expansion coefficient have been estimated. Copyright © 2014 Elsevier Ltd. All rights reserved.
Calculation of Compressible Flows past Aerodynamic Shapes by Use of the Streamline Curvature
NASA Technical Reports Server (NTRS)
Perl, W
1947-01-01
A simple approximate method is given for the calculation of isentropic irrotational flows past symmetrical airfoils, including mixed subsonic-supersonic flows. The method is based on the choice of suitable values for the streamline curvature in the flow field and the subsequent integration of the equations of motion. The method yields limiting solutions for potential flow. The effect of circulation is considered. A comparison of derived velocity distributions with existing results that are based on calculation to the third order in the thickness ratio indicated satisfactory agreement. The results are also presented in the form of a set of compressibility correction rules that lie between the Prandtl-Glauert rule and the von Karman-Tsien rule (approximately). The different rules correspond to different values of the local shape parameter square root sign YC sub a, in which Y is the ordinate and C sub a is the curvature at a point on an airfoil. Bodies of revolution, completely supersonic flows, and the significance of the limiting solutions for potential flow are also briefly discussed.
The methodology of the gas turbine efficiency calculation
NASA Astrophysics Data System (ADS)
Kotowicz, Janusz; Job, Marcin; Brzęczek, Mateusz; Nawrat, Krzysztof; Mędrych, Janusz
2016-12-01
In the paper a calculation methodology of isentropic efficiency of a compressor and turbine in a gas turbine installation on the basis of polytropic efficiency characteristics is presented. A gas turbine model is developed into software for power plant simulation. There are shown the calculation algorithms based on iterative model for isentropic efficiency of the compressor and for isentropic efficiency of the turbine based on the turbine inlet temperature. The isentropic efficiency characteristics of the compressor and the turbine are developed by means of the above mentioned algorithms. The gas turbine development for the high compressor ratios was the main driving force for this analysis. The obtained gas turbine electric efficiency characteristics show that an increase of pressure ratio above 50 is not justified due to the slight increase in the efficiency with a significant increase of turbine inlet combustor outlet and temperature.
Isentropic Analysis of a Simulated Hurricane
NASA Technical Reports Server (NTRS)
Mrowiec, Agnieszka A.; Pauluis, Olivier; Zhang, Fuqing
2016-01-01
Hurricanes, like many other atmospheric flows, are associated with turbulent motions over a wide range of scales. Here the authors adapt a new technique based on the isentropic analysis of convective motions to study the thermodynamic structure of the overturning circulation in hurricane simulations. This approach separates the vertical mass transport in terms of the equivalent potential temperature of air parcels. In doing so, one separates the rising air parcels at high entropy from the subsiding air at low entropy. This technique filters out oscillatory motions associated with gravity waves and separates convective overturning from the secondary circulation. This approach is applied here to study the flow of an idealized hurricane simulation with the Weather Research and Forecasting (WRF) Model. The isentropic circulation for a hurricane exhibits similar characteristics to that of moist convection, with a maximum mass transport near the surface associated with a shallow convection and entrainment. There are also important differences. For instance, ascent in the eyewall can be readily identified in the isentropic analysis as an upward mass flux of air with unusually high equivalent potential temperature. The isentropic circulation is further compared here to the Eulerian secondary circulation of the simulated hurricane to show that the mass transport in the isentropic circulation is much larger than the one in secondary circulation. This difference can be directly attributed to the mass transport by convection in the outer rainband and confirms that, even for a strongly organized flow like a hurricane, most of the atmospheric overturning is tied to the smaller scales.
NASA Astrophysics Data System (ADS)
Fajber, R. A.; Kushner, P. J.; Laliberte, F. B.
2017-12-01
In the midlatitude atmosphere, baroclinic eddies are able to raise warm, moist air from the surface into the midtroposphere where it condenses and warms the atmosphere through latent heating. This coupling between dynamics and moist thermodynamics motivates using a conserved moist thermodynamic variable, such as the equivalent potential temperature, to study the midlatitude circulation and associated heat transport since it implicitly accounts for latent heating. When the equivalent potential temperature is used to zonally average the circulation, the moist isentropic circulation takes the form of a single cell in each hemisphere. By utilising the statistical transformed Eulerian mean (STEM) circulation we are able to parametrize the moist isentropic circulation in terms of second order dynamic and moist thermodynamic statistics. The functional dependence of the STEM allows us to analytically calculate functional derivatives that reveal the spatially varying sensitivity of the moist isentropic circulation to perturbations in different statistics. Using the STEM functional derivatives as sensitivity kernels we interpret changes in the moist isentropic circulation from two experiments: surface heating in an idealised moist model, and a climate change scenario in a comprehensive atmospheric general circulation model. In both cases we find that the changes in the moist isentropic circulation are well predicted by the functional sensitivities, and that the total heat transport is more sensitive to changes in dynamical processes driving local changes in poleward heat transport than it is to thermodynamic and/or radiative processes driving changes to the distribution of equivalent potential temperature.
Detonation Products EOS by Specifying Gamma (V) for the Principal Isentrope
NASA Astrophysics Data System (ADS)
Partom, Yehuda
2011-07-01
The standard way of defining an equation of state (EOS) for detonation products is (1) choose a function Ps(V) for the pressure along the principal isentrope, with enough adjustable parameters; (2) integrate it to obtain the internal energy Es(V); (3) determine the parameters from available data (Chapman Jouget (CJ) state and cylinder expansion test); (4) refer a Gruneisen EOS to this principal isentrope. Using this approach, (1) most of the adjustable parameters have no physical meaning; (2) they are determined simultaneously; and (3) changing one of them requires changing the others. Instead, we define the principal isentrope by choosing a function for the adiabatic gamma γs(V). We show that this has the following advantages over the standard approach: (1) the parameters have physical meaning; (2) they can be determined by a recursive process; (3) the influence of changes in the parameters to cylinder expansion results is obvious.
NASA Astrophysics Data System (ADS)
Hong, Guangyi; Luo, Tao; Zhu, Changjiang
2018-07-01
This paper is concerned with spherically symmetric motions of non-isentropic viscous gaseous stars with self-gravitation. When the stationary entropy S ‾ (x) is spherically symmetric and satisfies a suitable smallness condition, the existence and properties of the stationary solutions are obtained for 6/5 < γ < 2 with weaker constraints upon S ‾ (x) compared with the one in [26], where γ is the adiabatic exponent. The global existence of strong solutions capturing the physical vacuum singularity that the sound speed is C 1/2 -Hölder continuous across the vacuum boundary to a simplified system for non-isentropic viscous flow with self-gravitation and the nonlinear asymptotic stability of the stationary solution are proved when 4/3 < γ < 2 with the detailed convergence rates, motivated by the results and analysis of the nonlinear asymptotic stability of Lane-Emden solutions for isentropic flows in [29,30].
Cheung, Ka Luen; Wong, Sen
2016-01-01
The blowup phenomenon of solutions is investigated for the initial-boundary value problem (IBVP) of the N-dimensional Euler equations with spherical symmetry. We first show that there are only trivial solutions when the velocity is of the form c(t)|x|α−1 x + b(t)(x/|x|) for any value of α ≠ 1 or any positive integer N ≠ 1. Then, we show that blowup phenomenon occurs when α = N = 1 and c2(0)+c˙(0)<0. As a corollary, the blowup properties of solutions with velocity of the form (a˙t/at)x+b(t)(x/x) are obtained. Our analysis includes both the isentropic case (γ > 1) and the isothermal case (γ = 1). PMID:27066528
Ultra high-speed x-ray imaging of laser-driven shock compression using synchrotron light
NASA Astrophysics Data System (ADS)
Olbinado, Margie P.; Cantelli, Valentina; Mathon, Olivier; Pascarelli, Sakura; Grenzer, Joerg; Pelka, Alexander; Roedel, Melanie; Prencipe, Irene; Laso Garcia, Alejandro; Helbig, Uwe; Kraus, Dominik; Schramm, Ulrich; Cowan, Tom; Scheel, Mario; Pradel, Pierre; De Resseguier, Thibaut; Rack, Alexander
2018-02-01
A high-power, nanosecond pulsed laser impacting the surface of a material can generate an ablation plasma that drives a shock wave into it; while in situ x-ray imaging can provide a time-resolved probe of the shock-induced material behaviour on macroscopic length scales. Here, we report on an investigation into laser-driven shock compression of a polyurethane foam and a graphite rod by means of single-pulse synchrotron x-ray phase-contrast imaging with MHz frame rate. A 6 J, 10 ns pulsed laser was used to generate shock compression. Physical processes governing the laser-induced dynamic response such as elastic compression, compaction, pore collapse, fracture, and fragmentation have been imaged; and the advantage of exploiting the partial spatial coherence of a synchrotron source for studying low-density, carbon-based materials is emphasized. The successful combination of a high-energy laser and ultra high-speed x-ray imaging using synchrotron light demonstrates the potentiality of accessing complementary information from scientific studies of laser-driven shock compression.
Micro-Ramps for External Compression Low-Boom Inlets
NASA Technical Reports Server (NTRS)
Rybalko, Michael; Loth, Eric; Chima, Rodrick V.; Hirt, Stefanie M.; DeBonis, James R.
2010-01-01
The application of vortex generators for flow control in an external compression, axisymmetric, low-boom concept inlet was investigated using RANS simulations with three-dimensional (3-D), structured, chimera (overset) grids and the WIND-US code. The low-boom inlet design is based on previous scale model 1- by 1-ft wind tunnel tests and features a zero-angle cowl and relaxed isentropic compression centerbody spike, resulting in defocused oblique shocks and a weak terminating normal shock. Validation of the methodology was first performed for micro-ramps in supersonic flow on a flat plate with and without oblique shocks. For the inlet configuration, simulations with several types of vortex generators were conducted for positions both upstream and downstream of the terminating normal shock. The performance parameters included incompressible axisymmetric shape factor, separation area, inlet pressure recovery, and massflow ratio. The design of experiments (DOE) methodology was used to select device size and location, analyze the resulting data, and determine the optimal choice of device geometry. The optimum upstream configuration was found to substantially reduce the post-shock separation area but did not significantly impact recovery at the aerodynamic interface plane (AIP). Downstream device placement allowed for fuller boundary layer velocity profiles and reduced distortion. This resulted in an improved pressure recovery and massflow ratio at the AIP compared to the baseline solid-wall configuration.
Phase Transitions in Aluminum Under Shockless Compression at the Z Machine
NASA Astrophysics Data System (ADS)
Davis, Jean-Paul; Brown, Justin; Shulenburger, Luke; Knudson, Marcus
2017-06-01
Aluminum 6061 alloy has been used extensively as an electrode material in shockless ramp-wave experiments at the Z Machine. Previous theoretical work suggests that the principal quasi-isentrope in aluminum should pass through two phase transitions at multi-megabar pressures, first from the ambient fcc phase to hcp at around 200 GPa, then to bcc at around 320 GPa. Previous static measurements in a diamond-anvil cell have detected the hcp phase above 200 GPa along the room-temperature isentherm. Recent laser-based dynamic compression experiments have observed both the hcp and bcc phases using X-ray diffraction. Here we present high-accuracy velocity waveform data taken on pure and alloy aluminum materials at the Z Machine under shockless compression with 200-ns rise-time to 400 GPa using copper electrodes and lithium-fluoride windows. These are compared to recent EOS tables developed at Los Alamos National Laboratory, to our own results from diffusion quantum Monte-Carlo calculations, and to multi-phase EOS models with phase-transition kinetics. We find clear evidence of a fast transition around 200 GPa as expected, and a possible suggestion of a slower transition at higher pressure. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE AC04-94AL85000.
When is the Anelastic Approximation a Valid Model for Compressible Convection?
NASA Astrophysics Data System (ADS)
Alboussiere, T.; Curbelo, J.; Labrosse, S.; Ricard, Y. R.; Dubuffet, F.
2017-12-01
Compressible convection is ubiquitous in large natural systems such Planetary atmospheres, stellar and planetary interiors. Its modelling is notoriously more difficult than the case when the Boussinesq approximation applies. One reason for that difficulty has been put forward by Ogura and Phillips (1961): the compressible equations generate sound waves with very short time scales which need to be resolved. This is why they introduced an anelastic model, based on an expansion of the solution around an isentropic hydrostatic profile. How accurate is that anelastic model? What are the conditions for its validity? To answer these questions, we have developed a numerical model for the full set of compressible equations and compared its solutions with those of the corresponding anelastic model. We considered a simple rectangular 2D Rayleigh-Bénard configuration and decided to restrict the analysis to infinite Prandtl numbers. This choice is valid for convection in the mantles of rocky planets, but more importantly lead to a zero Mach number. So we got rid of the question of the interference of acoustic waves with convection. In that simplified context, we used the entropy balances (that of the full set of equations and that of the anelastic model) to investigate the differences between exact and anelastic solutions. We found that the validity of the anelastic model is dictated by two conditions: first, the superadiabatic temperature difference must be small compared with the adiabatic temperature difference (as expected) ɛ = Δ TSA / delta Ta << 1, and secondly that the product of ɛ with the Nusselt number must be small.
NASA Astrophysics Data System (ADS)
Archer, R. D.; Milton, B. E.
Techniques and facilities are examined, taking into account compressor cascades research using a helium-driven shock tube, the suppression of shocks on transonic airfoils, methods of isentropically achieving superpressures, optimized performance of arc heated shock tubes, pressure losses in free piston driven shock tubes, large shock tubes designed for nuclear survivability testing, and power-series solutions of the gasdynamic equations for Mach reflection of a planar shock by a wedge. Other subjects considered are related to aerodynamics in shock tubes, shocks in dusty gases, chemical kinetics, and lasers, plasmas, and optical methods. Attention is given to vapor explosions and the blast at Mt. St. Helens, combustion reaction mechanisms from ignition delay times, the development and use of free piston wind tunnels, models for nonequilibrium flows in real shock tubes, air blast measuring techniques, finite difference computations of flow about supersonic lifting bodies, and the investigation of ionization relaxation in shock tubes.
Investigation of Spheromak Plasma Cooling through Metallic Liner Spallation during Compression
NASA Astrophysics Data System (ADS)
Ross, Keeton; Mossman, Alex; Young, William; Ivanov, Russ; O'Shea, Peter; Howard, Stephen
2016-10-01
Various magnetic-target fusion (MTF) reactor concepts involve a preliminary magnetic confinement stage, followed by a metallic liner implosion that compresses the plasma to fusion conditions. The process is repeated to produce a pulsed, net-gain energy system. General Fusion, Inc. is pursuing one scheme that involves the compression of spheromak plasmas inside a liner formed by a collapsing vortex of liquid Pb-Li. The compression is driven by focused acoustic waves launched by gas-driven piston impacts. Here we describe a project to exploring the effects of possible liner spallation during compression on the spheromaks temperature, lifetime, and stability. We employ a 1 J, 10 ns pulsed YAG laser at 532nm focused onto a thin film of Li or Al to inject a known quantity of metallic impurities into a spheromak plasma and then measure the response. Diagnostics including visible and ultraviolet spectrometers, ion Doppler, B-probes, and Thomson scattering are used for plasma characterization. We then plan to apply the trends measured under these controlled conditions to evaluate the role of wall impurities during `field shots', where spheromaks are compressed through a chemically driven implosion of an aluminum flux conserver. The hope is that with further study we could more accurately include the effect of wall impurities on the fusion yield of a reactor-scale MTF system. Experimental procedures and results are presented, along with their relation to other liner-driven, MTF schemes. -/a
Interaction of laser beams with magnetized substance in a strong magnetic field
NASA Astrophysics Data System (ADS)
Kuzenov, V. V.
2018-03-01
Laser-driven magneto-inertial fusion assumed plasma and magnetic flux compression by quasisymmetric laser-driven implosion of magnetized target. We develop a 2D radiation magnetohydrodynamic code and a formulation for the one-fluid two-temperature equations for simulating compressible non-equilibrium magnetized target plasma. Laser system with pulse radiation with 10 ns duration is considered for numerical experiments. A numerical study of a scheme of magnetized laser-driven implosion in the external magnetic field is carried out.
NASA Astrophysics Data System (ADS)
Kaspi, Yohai
This thesis studies the dynamics of a rotating compressible gas sphere, driven by internal convection, as a model for the dynamics on the giant planets. We develop a new general circulation model for the Jovian atmosphere, based on the MITgcm dynamical core augmenting the nonhydrostatic model. The grid extends deep into the planet's interior allowing the model to compute the dynamics of a whole sphere of gas rather than a spherical shell (including the strong variations in gravity and the equation of state). Different from most previous 3D convection models, this model is anelastic rather than Boussinesq and thereby incorporates the full density variation of the planet. We show that the density gradients caused by convection drive the system away from an isentropic and therefore barotropic state as previously assumed, leading to significant baroclinic shear. This shear is concentrated mainly in the upper levels and associated with baroclinic compressibility effects. The interior flow organizes in large cyclonically rotating columnar eddies parallel to the rotation axis, which drive upgradient angular momentum eddy fluxes, generating the observed equatorial superrotation. Heat fluxes align with the axis of rotation, contributing to the observed flat meridional emission. We show the transition from weak convection cases with symmetric spiraling columnar modes similar to those found in previous analytic linear theory, to more turbulent cases which exhibit similar, though less regular and solely cyclonic, convection columns which manifest on the surface in the form of waves embedded within the superrotation. We develop a mechanical understanding of this system and scaling laws by studying simpler configurations and the dependence on physical properties such as the rotation period, bottom boundary location and forcing structure. These columnar cyclonic structures propagate eastward, driven by dynamics similar to that of a Rossby wave except that the restoring planetary vorticity gradient is in the opposite direction, due to the spherical geometry in the interior. We further study these interior dynamics using a simplified barotropic annulus model, which shows that the planetary vorticity radial variation causes the eddy angular momentum flux divergence, which drives the superrotating equatorial flow. In addition we study the interaction of the interior dynamics with a stable exterior weather layer, using a quasigeostrophic two layer channel model on a beta plane, where the columnar interior is therefore represented by a negative beta effect. We find that baroclinic instability of even a weak shear can drive strong, stable multiple zonal jets. For this model we find an analytic nonlinear solution, truncated to one growing mode, that exhibits a multiple jet meridional structure, driven by the nonlinear interaction between the eddies. Finally, given the density field from our 3D convection model we derive the high order gravitational spectra of Jupiter, which is a measurable quantity for the upcoming JUNO mission to Jupiter. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)
NASA Astrophysics Data System (ADS)
Tahir, N. A.; Shutov, A.; Lomonosov, I. V.; Gryaznov, V.; Deutsch, C.; Fortov, V. E.; Hoffmann, D. H. H.; Ni, P.; Piriz, A. R.; Udrea, S.; Varentsov, D.; Wouchuk, G.
2006-06-01
Intense beams of energetic heavy ions are believed to be a very efficient and novel tool to create states of High-Energy-Density (HED) in matter. This paper shows with the help of numerical simulations that the heavy ion beams that will be generated at the future Facility for Antiprotons and Ion Research (FAIR)[W.F. Henning, Nucl. Instr. Meth. B 214, 211 (2004)] will allow one to use two different experimental schemes to study HED states in matter. First scheme named HIHEX (Heavy Ion Heating and EXpansion), will generate high-pressure, high-entropy states in matter by volumetric isochoric heating. The heated material will then be allowed to expand isentropically. Using this scheme, it will be possible to study important regions of the phase diagram that are either difficult to access or are even unaccessible using traditional methods of shock compression. The second scheme would allow one to achieve low-entropy compression of a sample material like hydrogen or water to produce conditions that are believed to exist in the interiors of the giant planets. This scheme is named LAPLAS (LAboratory PLAnetary Sciences).
Isentropic Analysis of Convective Motions
NASA Technical Reports Server (NTRS)
Pauluis, Olivier M.; Mrowiec, Agnieszka A.
2013-01-01
This paper analyzes the convective mass transport by sorting air parcels in terms of their equivalent potential temperature to determine an isentropic streamfunction. By averaging the vertical mass flux at a constant value of the equivalent potential temperature, one can compute an isentropic mass transport that filters out reversible oscillatory motions such as gravity waves. This novel approach emphasizes the fact that the vertical energy and entropy transports by convection are due to the combination of ascending air parcels with high energy and entropy and subsiding air parcels with lower energy and entropy. Such conditional averaging can be extended to other dynamic and thermodynamic variables such as vertical velocity, temperature, or relative humidity to obtain a comprehensive description of convective motions. It is also shown how this approach can be used to determine the mean diabatic tendencies from the three-dimensional dynamic and thermodynamic fields. A two-stream approximation that partitions the isentropic circulation into a mean updraft and a mean downdraft is also introduced. This offers a straightforward way to identify the mean properties of rising and subsiding air parcels. The results from the two-stream approximation are compared with two other definitions of the cloud mass flux. It is argued that the isentropic analysis offers a robust definition of the convective mass transport that is not tainted by the need to arbitrarily distinguish between convection and its environment, and that separates the irreversible convective overturning fromoscillations associated with gravity waves.
A Multi-Mode Shock Tube for Investigation of Blast-Induced Traumatic Brain Injury
Reneer, Dexter V.; Hisel, Richard D.; Hoffman, Joshua M.; Kryscio, Richard J.; Lusk, Braden T.
2011-01-01
Abstract Blast-induced mild traumatic brain injury (bTBI) has become increasingly common in recent military conflicts. The mechanisms by which non-impact blast exposure results in bTBI are incompletely understood. Current small animal bTBI models predominantly utilize compressed air-driven membrane rupture as their blast wave source, while large animal models use chemical explosives. The pressure-time signature of each blast mode is unique, making it difficult to evaluate the contributions of the different components of the blast wave to bTBI when using a single blast source. We utilized a multi-mode shock tube, the McMillan blast device, capable of utilizing compressed air- and compressed helium-driven membrane rupture, and the explosives oxyhydrogen and cyclotrimethylenetrinitramine (RDX, the primary component of C-4 plastic explosives) as the driving source. At similar maximal blast overpressures, the positive pressure phase of compressed air-driven blasts was longer, and the positive impulse was greater, than those observed for shockwaves produced by other driving sources. Helium-driven shockwaves more closely resembled RDX blasts, but by displacing air created a hypoxic environment within the shock tube. Pressure-time traces from oxyhydrogen-driven shockwaves were very similar those produced by RDX, although they resulted in elevated carbon monoxide levels due to combustion of the polyethylene bag used to contain the gases within the shock tube prior to detonation. Rats exposed to compressed air-driven blasts had more pronounced vascular damage than those exposed to oxyhydrogen-driven blasts of the same peak overpressure, indicating that differences in blast wave characteristics other than peak overpressure may influence the extent of bTBI. Use of this multi-mode shock tube in small animal models will enable comparison of the extent of brain injury with the pressure-time signature produced using each blast mode, facilitating evaluation of the blast wave components contributing to bTBI. PMID:21083431
A multi-mode shock tube for investigation of blast-induced traumatic brain injury.
Reneer, Dexter V; Hisel, Richard D; Hoffman, Joshua M; Kryscio, Richard J; Lusk, Braden T; Geddes, James W
2011-01-01
Blast-induced mild traumatic brain injury (bTBI) has become increasingly common in recent military conflicts. The mechanisms by which non-impact blast exposure results in bTBI are incompletely understood. Current small animal bTBI models predominantly utilize compressed air-driven membrane rupture as their blast wave source, while large animal models use chemical explosives. The pressure-time signature of each blast mode is unique, making it difficult to evaluate the contributions of the different components of the blast wave to bTBI when using a single blast source. We utilized a multi-mode shock tube, the McMillan blast device, capable of utilizing compressed air- and compressed helium-driven membrane rupture, and the explosives oxyhydrogen and cyclotrimethylenetrinitramine (RDX, the primary component of C-4 plastic explosives) as the driving source. At similar maximal blast overpressures, the positive pressure phase of compressed air-driven blasts was longer, and the positive impulse was greater, than those observed for shockwaves produced by other driving sources. Helium-driven shockwaves more closely resembled RDX blasts, but by displacing air created a hypoxic environment within the shock tube. Pressure-time traces from oxyhydrogen-driven shockwaves were very similar those produced by RDX, although they resulted in elevated carbon monoxide levels due to combustion of the polyethylene bag used to contain the gases within the shock tube prior to detonation. Rats exposed to compressed air-driven blasts had more pronounced vascular damage than those exposed to oxyhydrogen-driven blasts of the same peak overpressure, indicating that differences in blast wave characteristics other than peak overpressure may influence the extent of bTBI. Use of this multi-mode shock tube in small animal models will enable comparison of the extent of brain injury with the pressure-time signature produced using each blast mode, facilitating evaluation of the blast wave components contributing to bTBI.
Thermally generated magnetic fields in laser-driven compressions and explosions
NASA Technical Reports Server (NTRS)
Tidman, D. A.
1975-01-01
The evolution of thermally generated magnetic fields in a plasma undergoing a nearly spherically symmetric adiabatic compression or expansion is calculated. The analysis is applied to obtain approximate results for the development of magnetic fields in laser-driven compression and explosion of a pellet of nuclear fuel. Localized sources, such as those occurring at composition boundaries in structured pellets or at shock fronts, give stronger fields than those deriving from smoothly distributed asymmetries. Although these fields may approach 10 million G in the late stages of compression, this is not expected to present difficulties for the compression process. Assuming ignition of a nuclear explosion occurs, the sources become much stronger, and values of approximately 10 billion G are obtained at tamper boundaries assuming a 20% departure from spherical symmetry during the explosion.
NASA Technical Reports Server (NTRS)
Hunt, J. L.; Souders, S. W.
1975-01-01
Normal- and oblique-shock flow parameters for air in thermochemical equilibrium are tabulated as a function of shock angle for altitudes ranging from 15.24 km to 91.44 km in increments of 7.62 km at selected hypersonic speeds. Post-shock parameters tabulated include flow-deflection angle, velocity, Mach number, compressibility factor, isentropic exponent, viscosity, Reynolds number, entropy difference, and static pressure, temperature, density, and enthalpy ratios across the shock. A procedure is presented for obtaining oblique-shock flow properties in equilibrium air on surfaces at various angles of attack, sweep, and dihedral by use of the two-dimensional tabulations. Plots of the flow parameters against flow-deflection angle are presented at altitudes of 30.48, 60.96, and 91.44 km for various stream velocities.
Global transport calculations with an equivalent barotropic system
NASA Technical Reports Server (NTRS)
Salby, Murry L.; O'Sullivan, Donal; Garcia, Rolando R.; Tribbia, Joseph
1990-01-01
Transport properties of the two-dimensional equations governing equivalent barotropic motion are investigated on the sphere. This system has ingredients such as forcing, equivalent depth, and thermal dissipation explicitly represented, and takes into account compression effects associated with vertical motion along isentropic surfaces. Horizontal transport properties of this system are investigated under adiabatic and diabatic conditions for different forms of dissipation, and over a range of resolutions. It is shown that forcing represetative of time-mean and amplified conditions at 10 mb leads to the behavior typical of observations at this level. The displacement of the polar night vortex and its distortion into a comma shape are evident, as is irreversible mixing under sufficiently strong forcing amplitude. It is shown that thermal dissipation influences the behavior significantly by inhibiting the amplification of unstable eddies and thereby the horizontal stirring of air.
The isentropic quantum drift-diffusion model in two or three space dimensions
NASA Astrophysics Data System (ADS)
Chen, Xiuqing
2009-05-01
We investigate the isentropic quantum drift-diffusion model, a fourth order parabolic system, in space dimensions d = 2, 3. First, we establish the global weak solutions with large initial value and periodic boundary conditions. Then we show the semiclassical limit by delicate interpolation estimates and compactness argument.
Large eddy simulations of time-dependent and buoyancy-driven channel flows
NASA Technical Reports Server (NTRS)
Cabot, William H.
1993-01-01
The primary goal of this work has been to assess the performance of the dynamic SGS model in the large eddy simulation (LES) of channel flows in a variety of situations, viz., in temporal development of channel flow turned by a transverse pressure gradient and especially in buoyancy-driven turbulent flows such as Rayleigh-Benard and internally heated channel convection. For buoyancy-driven flows, there are additional buoyant terms that are possible in the base models, and one objective has been to determine if the dynamic SGS model results are sensitive to such terms. The ultimate goal is to determine the minimal base model needed in the dynamic SGS model to provide accurate results in flows with more complicated physical features. In addition, a program of direct numerical simulation (DNS) of fully compressible channel convection has been undertaken to determine stratification and compressibility effects. These simulations are intended to provide a comparative base for performing the LES of compressible (or highly stratified, pseudo-compressible) convection at high Reynolds number in the future.
Flash Kα radiography of laser-driven solid sphere compression for fast ignition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawada, H.; Lee, S.; Shiroto, T.
2016-06-20
Time-resolved compression of a laser-driven solid deuterated plastic sphere with a cone was measured with flash Kα x-ray radiography. A spherically converging shockwave launched by nanosecond GEKKO XII beams was used for compression while a flash of 4.51 keV Ti Kα x-ray backlighter was produced by a high-intensity, picosecond laser LFEX (Laser for Fast ignition EXperiment) near peak compression for radiography. Areal densities of the compressed core were inferred from two-dimensional backlit x-ray images recorded with a narrow-band spherical crystal imager. The maximum areal density in the experiment was estimated to be 87 ± 26 mg/cm 2. Lastly, the temporalmore » evolution of the experimental and simulated areal densities with a 2-D radiation-hydrodynamics code is in good agreement.« less
Flash Kα radiography of laser-driven solid sphere compression for fast ignition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawada, H.; Lee, S.; Nagatomo, H.
2016-06-20
Time-resolved compression of a laser-driven solid deuterated plastic sphere with a cone was measured with flash Kα x-ray radiography. A spherically converging shockwave launched by nanosecond GEKKO XII beams was used for compression while a flash of 4.51 keV Ti Kα x-ray backlighter was produced by a high-intensity, picosecond laser LFEX (Laser for Fast ignition EXperiment) near peak compression for radiography. Areal densities of the compressed core were inferred from two-dimensional backlit x-ray images recorded with a narrow-band spherical crystal imager. The maximum areal density in the experiment was estimated to be 87 ± 26 mg/cm{sup 2}. The temporal evolution of the experimental andmore » simulated areal densities with a 2-D radiation-hydrodynamics code is in good agreement.« less
Compressible flow at high pressure with linear equation of state
NASA Astrophysics Data System (ADS)
Sirignano, William A.
2018-05-01
Compressible flow varies from ideal-gas behavior at high pressures where molecular interactions become important. Density is described through a cubic equation of state while enthalpy and sound speed are functions of both temperature and pressure, based on two parameters, A and B, related to intermolecular attraction and repulsion, respectively. Assuming small variations from ideal-gas behavior, a closed-form solution is obtained that is valid over a wide range of conditions. An expansion in these molecular-interaction parameters simplifies relations for flow variables, elucidating the role of molecular repulsion and attraction in variations from ideal-gas behavior. Real-gas modifications in density, enthalpy, and sound speed for a given pressure and temperature lead to variations in many basic compressible flow configurations. Sometimes, the variations can be substantial in quantitative or qualitative terms. The new approach is applied to choked-nozzle flow, isentropic flow, nonlinear-wave propagation, and flow across a shock wave, all for the real gas. Modifications are obtained for allowable mass-flow through a choked nozzle, nozzle thrust, sonic wave speed, Riemann invariants, Prandtl's shock relation, and the Rankine-Hugoniot relations. Forced acoustic oscillations can show substantial augmentation of pressure amplitudes when real-gas effects are taken into account. Shocks at higher temperatures and pressures can have larger pressure jumps with real-gas effects. Weak shocks decay to zero strength at sonic speed. The proposed framework can rely on any cubic equation of state and be applied to multicomponent flows or to more-complex flow configurations.
Performance Measurements and Mapping of a R-407C Vapor Injection Scroll Compressor
NASA Astrophysics Data System (ADS)
Lumpkin, Domenique; Spielbauer, Niklas; Groll, Eckhard
2017-08-01
Environmental conditions significantly define the performance of HVAC&R systems. Vapor compression systems in hot climates tend to operate at higher pressure ratios, leading to increased discharge temperatures. Higher discharge temperatures can lead to higher irreversibilities in the compression process, lower specific enthalpies differences across the evaporator, and possibly a reduction in the compressor life due to the breakdown of the oil used for lubrication. To counter these effects, the use of economized, vapor injection compressors is proposed for vapor compression systems in high temperature climates. Such compressors are commercially available for refrigeration applications, in particular, supermarket refrigeration systems. However, compressor maps for vapor injection compressors are limited and none exist for R-407C. Through calorimeter testing, a compressor map for a single-port vapor injection compressor using R-407C was developed. A standard correlation for mapping single-port vapor injection compressors is proposed and validated using the compressor test results. The system and compressor performance with and without vapor injection was considered. As expected, with vapor injection there was a reduction in compressor discharge temperatures and an increase in the system coefficient of performance. The proposed dimensionless correlation is more accurate than the AHRI polynomial for mapping the injection ratio, discharge temperature, and compressor heat loss. The predicted volumetric efficiency values from the dimensionless correlation is within 1% of the measured valued. Similarly, the predicted isentropic efficiency values are within 2% of the measured values.
Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraus, D.; Vorberger, J.; Pak, A.
The effects of hydrocarbon reactions and diamond precipitation on the internal structure and evolution of icy giant planets such as Neptune and Uranus have been discussed for more than three decades. Inside these celestial bodies, simple hydrocarbons such as methane, which are highly abundant in the atmospheres, are believed to undergo structural transitions that release hydrogen from deeper layers and may lead to compact stratified cores. Indeed, from the surface towards the core, the isentropes of Uranus and Neptune intersect a temperature–pressure regime in which methane first transforms into a mixture of hydrocarbon polymers, whereas, in deeper layers, a phasemore » separation into diamond and hydrogen may be possible. Here in this paper, we show experimental evidence for this phase separation process obtained by in situ X-ray diffraction from polystyrene (C 8H 8) n samples dynamically compressed to conditions around 150 GPa and 5,000 K; these conditions resemble the environment around 10,000 km below the surfaces of Neptune and Uranus. Our findings demonstrate the necessity of high pressures for initiating carbon–hydrogen separation and imply that diamond precipitation may require pressures about ten times as high as previously indicated by static compression experiments. In conclusion, our results will inform mass–radius relationships of carbon-bearing exoplanets, provide constraints for their internal layer structure and improve evolutionary models of Uranus and Neptune, in which carbon–hydrogen separation could influence the convective heat transport.« less
Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions
Kraus, D.; Vorberger, J.; Pak, A.; ...
2017-08-21
The effects of hydrocarbon reactions and diamond precipitation on the internal structure and evolution of icy giant planets such as Neptune and Uranus have been discussed for more than three decades. Inside these celestial bodies, simple hydrocarbons such as methane, which are highly abundant in the atmospheres, are believed to undergo structural transitions that release hydrogen from deeper layers and may lead to compact stratified cores. Indeed, from the surface towards the core, the isentropes of Uranus and Neptune intersect a temperature–pressure regime in which methane first transforms into a mixture of hydrocarbon polymers, whereas, in deeper layers, a phasemore » separation into diamond and hydrogen may be possible. Here in this paper, we show experimental evidence for this phase separation process obtained by in situ X-ray diffraction from polystyrene (C 8H 8) n samples dynamically compressed to conditions around 150 GPa and 5,000 K; these conditions resemble the environment around 10,000 km below the surfaces of Neptune and Uranus. Our findings demonstrate the necessity of high pressures for initiating carbon–hydrogen separation and imply that diamond precipitation may require pressures about ten times as high as previously indicated by static compression experiments. In conclusion, our results will inform mass–radius relationships of carbon-bearing exoplanets, provide constraints for their internal layer structure and improve evolutionary models of Uranus and Neptune, in which carbon–hydrogen separation could influence the convective heat transport.« less
Lu, Yi; Zhang, Chunmei; Zheng, Guanyu; Zhou, Lixiang
2018-04-22
Prior to mechanical dewatering, sludge conditioning is indispensable to reduce the difficulty of sludge treatment and disposal. The effect of bioacidification conditioning driven by Acidithiobacillus ferrooxidans LX5 on the dewatering rate and extent of sewage sludge during compression dewatering process was investigated in this study. The results showed that the bioacidification of sludge driven by A. ferrooxidans LX5 simultaneously improved both the sludge dewatering rate and extent, which was not attained by physical/chemical conditioning approaches, including ultrasonication, microwave, freezing/thawing, or by adding the chemical conditioner cationic polyacrylamide (CPAM). During the bioacidification of sludge, the decrease in sludge pH induced the damage of sludge microbial cell structures, which enhanced the dewatering extent of sludge, and the added Fe 2+ and the subsequent bio-oxidized Fe 3+ effectively flocculated the damaged sludge flocs to improve the sludge dewatering rate. In the compression dewatering process consisting of filtration and expression stages, high removal of moisture and a short dewatering time were achieved during the filtration stage and the expression kinetics were also improved because of the high elasticity of sludge cake and the rapid creeping of the aggregates within the sludge cake. In addition, the usefulness of bioacidification driven by A. ferrooxidans LX5 in improving the compression dewatering of sewage sludge could not be attained by the chemical treatment of sludge through pH modification and Fe 3+ addition. Therefore, the bioacidification of sludge driven by A. ferrooxidans LX5 is an effective conditioning method to simultaneously improve the rate and extent of compression dewatering of sewage sludge.
Lagrangian Transport Calculations Using UARS Data. Part I: Passive Tracers
NASA Technical Reports Server (NTRS)
Manney, G. L.; Lahoz, W. A.; Harwood, R. S.; Zurek, R. W.; Kumer, J. B.; Mergenthaler, J. L.; Roche, A. E.; O'Neill, A; Swinbank, R.; Waters, J. W.
1994-01-01
The transport of passive tracers observed by UARS has been simulated using computed trajectories of thousands of air parcels initialized on a three-dimensional stratospheric grid. These trajectories are calculated in isentropic coordinates using horizontal winds provided by the United Kingdom Meteorological Office data assimilation system and vertical (cross-isentropic) velocities computed using a fast radiation code.
Magnetized Plasma Compression for Fusion Energy
NASA Astrophysics Data System (ADS)
Degnan, James; Grabowski, Christopher; Domonkos, Matthew; Amdahl, David
2013-10-01
Magnetized Plasma Compression (MPC) uses magnetic inhibition of thermal conduction and enhancement of charge particle product capture to greatly reduce the temporal and spatial compression required relative to un-magnetized inertial fusion (IFE)--to microseconds, centimeters vs nanoseconds, sub-millimeter. MPC greatly reduces the required confinement time relative to MFE--to microseconds vs minutes. Proof of principle can be demonstrated or refuted using high current pulsed power driven compression of magnetized plasmas using magnetic pressure driven implosions of metal shells, known as imploding liners. This can be done at a cost of a few tens of millions of dollars. If demonstrated, it becomes worthwhile to develop repetitive implosion drivers. One approach is to use arrays of heavy ion beams for energy production, though with much less temporal and spatial compression than that envisioned for un-magnetized IFE, with larger compression targets, and with much less ambitious compression ratios. A less expensive, repetitive pulsed power driver, if feasible, would require engineering development for transient, rapidly replaceable transmission lines such as envisioned by Sandia National Laboratories. Supported by DOE-OFES.
NASA Technical Reports Server (NTRS)
Sherif, S.A.; Hunt, P. L.; Holladay, J. B.; Lear, W. E.; Steadham, J. M.
1998-01-01
Jet pumps are devices capable of pumping fluids to a higher pressure by inducing the motion of a secondary fluid employing a high speed primary fluid. The main components of a jet pump are a primary nozzle, secondary fluid injectors, a mixing chamber, a throat, and a diffuser. The work described in this paper models the flow of a two-phase primary fluid inducing a secondary liquid (saturated or subcooled) injected into the jet pump mixing chamber. The model is capable of accounting for phase transformations due to compression, expansion, and mixing. The model is also capable of incorporating the effects of the temperature and pressure dependency in the analysis. The approach adopted utilizes an isentropic constant pressure mixing in the mixing chamber and at times employs iterative techniques to determine the flow conditions in the different parts of the jet pump.
NASA Technical Reports Server (NTRS)
Martin, E. Dale
1961-01-01
The impact motion of the inflated sphere landing vehicle with a payload centrally supported from the spherical skin by numerous cords has been determined on the assumption of uniform isentropic gas compression during impact. The landing capabilities are determined for a system containing suspension cords of constant cross section. The effects of deviations in impact velocity and initial gas temperature from the design conditions are studied. Also discussed are the effects of errors in the time at which the skin is ruptured. These studies indicate how the design parameters should be chosen to insure reliability of the landing system. Calculations have been made and results are presented for a sphere inflated with hydrogen, landing on the moon in the absence of an atmosphere. The results are presented for one value of the skin-strength parameter.
Performance Optimization of Irreversible Air Heat Pumps Considering Size Effect
NASA Astrophysics Data System (ADS)
Bi, Yuehong; Chen, Lingen; Ding, Zemin; Sun, Fengrui
2018-06-01
Considering the size of an irreversible air heat pump (AHP), heating load density (HLD) is taken as thermodynamic optimization objective by using finite-time thermodynamics. Based on an irreversible AHP with infinite reservoir thermal-capacitance rate model, the expression of HLD of AHP is put forward. The HLD optimization processes are studied analytically and numerically, which consist of two aspects: (1) to choose pressure ratio; (2) to distribute heat-exchanger inventory. Heat reservoir temperatures, heat transfer performance of heat exchangers as well as irreversibility during compression and expansion processes are important factors influencing on the performance of an irreversible AHP, which are characterized with temperature ratio, heat exchanger inventory as well as isentropic efficiencies, respectively. Those impacts of parameters on the maximum HLD are thoroughly studied. The research results show that HLD optimization can make the size of the AHP system smaller and improve the compactness of system.
NASA Astrophysics Data System (ADS)
Ali, Anwar; Ansari, Sana; Uzair, Sahar; Tasneem, Shadma; Nabi, Firdosa
2015-11-01
Densities ρ and ultrasonic speeds u for pure diethylene glycol, 1-butanol, 2-butanol, and 1,4-butanediol and for their binary mixtures over the entire composition range were measured at 298.15 K, 303.15 K, 308.15 K, and 313.15 K. Using these data, the excess molar volumes, VE_m, deviations in isentropic compressibilities, {\\varDelta }ks, apparent molar volumes, V_{φi} , partial molar volumes, overline{V}_{m,i} , and excess partial molar volumes, overline{V}_{m,i}^E , have been calculated over the entire composition range, and also the excess partial molar volumes of the components at infinite dilution, overline{V}_{m,i}^{E,infty } have been calculated. The excess functions have been correlated using the Redlich-Kister equation at different temperatures. The variations of these derived parameters with composition and temperature are presented graphically.
Collective many-body bounce in the breathing-mode oscillations of a Tonks-Girardeau gas
NASA Astrophysics Data System (ADS)
Atas, Y. Y.; Bouchoule, I.; Gangardt, D. M.; Kheruntsyan, K. V.
2017-10-01
We analyze the breathing-mode oscillations of a harmonically quenched Tonks-Giradeau (TG) gas using an exact finite-temperature dynamical theory. We predict a striking collective manifestation of impenetrability—a collective many-body bounce effect. The effect, although being invisible in the evolution of the in situ density profile of the gas, can be revealed through a nontrivial periodic narrowing of its momentum distribution, taking place at twice the rate of the fundamental breathing-mode frequency. We identify physical regimes for observing the many-body bounce and construct the respective nonequilibrium phase diagram as a function of the quench strength and the initial temperature of the gas. We also develop a finite-temperature hydrodynamic theory of the TG gas wherein the many-body bounce is explained by an increased thermodynamic pressure during the isentropic compression cycle, which acts as a potential barrier for the particles to bounce off.
Wang, Yuhao; Li, Xin; Xu, Kai; Ren, Fengbo; Yu, Hao
2017-04-01
Compressive sensing is widely used in biomedical applications, and the sampling matrix plays a critical role on both quality and power consumption of signal acquisition. It projects a high-dimensional vector of data into a low-dimensional subspace by matrix-vector multiplication. An optimal sampling matrix can ensure accurate data reconstruction and/or high compression ratio. Most existing optimization methods can only produce real-valued embedding matrices that result in large energy consumption during data acquisition. In this paper, we propose an efficient method that finds an optimal Boolean sampling matrix in order to reduce the energy consumption. Compared to random Boolean embedding, our data-driven Boolean sampling matrix can improve the image recovery quality by 9 dB. Moreover, in terms of sampling hardware complexity, it reduces the energy consumption by 4.6× and the silicon area by 1.9× over the data-driven real-valued embedding.
NASA Astrophysics Data System (ADS)
Javed, Hassan; Armstrong, Peter
2015-08-01
The efficiency bar for a Minimum Equipment Performance Standard (MEPS) generally aims to minimize energy consumption and life cycle cost of a given chiller type and size category serving a typical load profile. Compressor type has a significant chiller performance impact. Performance of screw and reciprocating compressors is expressed in terms of pressure ratio and speed for a given refrigerant and suction density. Isentropic efficiency for a screw compressor is strongly affected by under- and over-compression (UOC) processes. The theoretical simple physical UOC model involves a compressor-specific (but sometimes unknown) volume index parameter and the real gas properties of the refrigerant used. Isentropic efficiency is estimated by the UOC model and a bi-cubic, used to account for flow, friction and electrical losses. The unknown volume index, a smoothing parameter (to flatten the UOC model peak) and bi-cubic coefficients are identified by curve fitting to minimize an appropriate residual norm. Chiller performance maps are produced for each compressor type by selecting optimized sub-cooling and condenser fan speed options in a generic component-based chiller model. SEER is the sum of hourly load (from a typical building in the climate of interest) and specific power for the same hourly conditions. An empirical UAE cooling load model, scalable to any equipment capacity, is used to establish proposed UAE MEPS. Annual electricity use and cost, determined from SEER and annual cooling load, and chiller component cost data are used to find optimal chiller designs and perform life-cycle cost comparison between screw and reciprocating compressor-based chillers. This process may be applied to any climate/load model in order to establish optimized MEPS for any country and/or region.
Seeding magnetic fields for laser-driven flux compression in high-energy-density plasmas.
Gotchev, O V; Knauer, J P; Chang, P Y; Jang, N W; Shoup, M J; Meyerhofer, D D; Betti, R
2009-04-01
A compact, self-contained magnetic-seed-field generator (5 to 16 T) is the enabling technology for a novel laser-driven flux-compression scheme in laser-driven targets. A magnetized target is directly irradiated by a kilojoule or megajoule laser to compress the preseeded magnetic field to thousands of teslas. A fast (300 ns), 80 kA current pulse delivered by a portable pulsed-power system is discharged into a low-mass coil that surrounds the laser target. A >15 T target field has been demonstrated using a <100 J capacitor bank, a laser-triggered switch, and a low-impedance (<1 Omega) strip line. The device has been integrated into a series of magnetic-flux-compression experiments on the 60 beam, 30 kJ OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. The initial application is a novel magneto-inertial fusion approach [O. V. Gotchev et al., J. Fusion Energy 27, 25 (2008)] to inertial confinement fusion (ICF), where the amplified magnetic field can inhibit thermal conduction losses from the hot spot of a compressed target. This can lead to the ignition of massive shells imploded with low velocity-a way of reaching higher gains than is possible with conventional ICF.
A compressible two-layer model for transient gas-liquid flows in pipes
NASA Astrophysics Data System (ADS)
Demay, Charles; Hérard, Jean-Marc
2017-03-01
This work is dedicated to the modeling of gas-liquid flows in pipes. As a first step, a new two-layer model is proposed to deal with the stratified regime. The starting point is the isentropic Euler set of equations for each phase where the classical hydrostatic assumption is made for the liquid. The main difference with the models issued from the classical literature is that the liquid as well as the gas is assumed compressible. In that framework, an averaging process results in a five-equation system where the hydrostatic constraint has been used to define the interfacial pressure. Closure laws for the interfacial velocity and source terms such as mass and momentum transfer are provided following an entropy inequality. The resulting model is hyperbolic with non-conservative terms. Therefore, regarding the homogeneous part of the system, the definition and uniqueness of jump conditions is studied carefully and acquired. The nature of characteristic fields and the corresponding Riemann invariants are also detailed. Thus, one may build analytical solutions for the Riemann problem. In addition, positivity is obtained for heights and densities. The overall derivation deals with gas-liquid flows through rectangular channels, circular pipes with variable cross section and includes vapor-liquid flows.
Multi-Mbar Ramp Compression of Copper
NASA Astrophysics Data System (ADS)
Kraus, Rick; Davis, Jean-Paul; Seagle, Christopher; Fratanduono, Dayne; Swift, Damian; Eggert, Jon; Collins, Gilbert
2015-06-01
The cold curve is a critical component of equation of state models. Diamond anvil cell measurements can be used to determine isotherms, but these have generally been limited to pressures below 1 Mbar. The cold curve can also be extracted from Hugoniot data, but only with assumptions about the thermal pressure. As the National Ignition Facility will be using copper as an ablator material at pressures in excess of 10 Mbar, we need a better understanding of the high-density equation of state. Here we present ramp-wave compression experiments at the Sandia Z-Machine that we have used to constrain the isentrope of copper to a stress state of nearly 5 Mbar. We use the iterative Lagrangian analysis technique, developed by Rothman and Maw, to determine the stress-strain path. We also present a new iterative forward analysis (IFA) technique coupled to the ARES hydrocode that performs a non-linear optimization over the pressure drive and equation of state in order to match the free surface velocities. The IFA technique is an advantage over iterative Lagrangian analysis for experiments with growing shocks or systems with time dependent strength, which violate the assumptions of iterative Lagrangian analysis. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Liu, Shun; Xu, Jinglei; Yu, Kaikai
2017-06-01
This paper proposes an improved approach for extraction of pressure fields from velocity data, such as obtained by particle image velocimetry (PIV), especially for steady compressible flows with strong shocks. The principle of this approach is derived from Navier-Stokes equations, assuming adiabatic condition and neglecting viscosity of flow field boundaries measured by PIV. The computing method is based on MacCormack's technique in computational fluid dynamics. Thus, this approach is called the MacCormack method. Moreover, the MacCormack method is compared with several approaches proposed in previous literature, including the isentropic method, the spatial integration and the Poisson method. The effects of velocity error level and PIV spatial resolution on these approaches are also quantified by using artificial velocity data containing shock waves. The results demonstrate that the MacCormack method has higher reconstruction accuracy than other approaches, and its advantages become more remarkable with shock strengthening. Furthermore, the performance of the MacCormack method is also validated by using synthetic PIV images with an oblique shock wave, confirming the feasibility and advantage of this approach in real PIV experiments. This work is highly significant for the studies on aerospace engineering, especially the outer flow fields of supersonic aircraft and the internal flow fields of ramjets.
Sadeghi, Rahmat; Ebrahimi, Nosaibah
2011-11-17
A systematic study of osmotic coefficient, conductivity, volumetric and acoustic properties of solutions of ionic liquid 1-hexyl-3-methylimidazolium chloride ([C(6)mim][Cl]) in various molecular solvents has been made at different temperatures in order to study of ionic association and solvation behavior of [C(6)mim][Cl] in different solutions. Precise measurements on electrical conductances of solutions of [C(6)mim][Cl] in water, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, and acetonitrile at 293.15, 298.15, and 303.15 K are reported and analyzed with Barthel's low-concentration chemical model (lcCM) to obtain the limiting molar conductivities and association constants of this ionic liquid in the investigated solvents. Strong ion pairing was found for the ionic liquid in 2-propanol, 1-butanol, and 1-propanol, whereas ion association in acetonitrile, methanol and ethanol is rather weak and in water the ionic liquid is fully dissociated. In the second part of this work, the apparent molar volumes and isentropic compressibilities of [C(6)mim][Cl] in water, methanol, ethanol, acetonitrile, 1-propanol, 2-propanol, and 1-butanol are obtained at the 288.15-313.15 K temperature range at 5 K intervals at atmospheric pressure from the precise measurements of density and sound velocity. The infinite dilution apparent molar volume and isentropic compressibility values of the free ions and ion pairs of [C(6)mim][Cl] in the investigated solvents as well as the excess molar volume of the investigated solutions are determined and their variations with temperature and type of solvents are also studied. Finally, the experimental measurements of osmotic coefficient at 318.15 K for binary solutions of [C(6)mim][Cl] in water, methanol, ethanol, 2-propanol, and acetonitrile are taken using the vapor pressure osmometry (VPO) method and from which the values of the solvent activity, vapor pressure, activity coefficients, and Gibbs free energies are calculated. The results are interpreted in terms of ion association, ion-dipole interactions, and structural factors of the ionic liquid and investigated organic solvents. The ionic liquid is solvated to a different extent by the molecular solvents, and ionic association is affected significantly by ionic solvation.
A PV view of the zonal mean distribution of temperature and wind in the extratropical troposphere
NASA Technical Reports Server (NTRS)
Sun, De-Zheng; Lindzen, Richard S.
1994-01-01
The dependence of the temperature and wind distribution of the zonal mean flow in the extratropical troposphere on the gradient of pontential vorticity along isentropes is examined. The extratropics here refer to the region outside the Hadley circulation. Of particular interest is whether the distribution of temperature and wind corresponding to a constant potential vorticity (PV) along isentropes resembles the observed, and the implications of PV homogenization along isentropes for the role of the tropics. With the assumption that PV is homogenized along isentropes, it is found that the temperature distribution in the extratropical troposphere may be determined by a linear, first-order partial differential equation. When the observed surface temperature distribution and tropical lapse rate are used as the boundary conditions, the solution of the equation is close to the observed temperature distribution except in the upper troposphere adjacent to the Hadley circulation, where the troposphere with no PV gradient is considerably colder. Consequently, the jet is also stronger. It is also found that the meridional distribution of the balanced zonal wind is very sensitive to the meridional distribution of the tropopause temperature. The result may suggest that the requirement of the global momentum balance has no practical role in determining the extratropical temperature distribution. The authors further investigated the sensitivity of the extratropical troposphere with constant PV along isentropes to changes in conditions at the tropical boundary (the edge of the Hadley circulation). It is found that the temperature and wind distributions in the extratropical troposphere are sensitive to the vertical distribution of PV at the tropical boundary. With a surface distribution of temperature that decreases linearly with latitude, the jet maximum occurs at the tropical boundary and moves with it. The overall pattern of wind distribution is not sensitive to the change of the position of the tropical boundary. Finally, the temperature and wind distributions of an extratropical troposphere with a finite PV gradient are calculated. It is found that the larger the isentropic PV gradient, the warmer the troposphere and the weaker the jet.
ERIC Educational Resources Information Center
Gibson, A. F.
1980-01-01
Discusses the present status and future prospects of laser-driven fusion. Current research (which is classified under three main headings: laser-matter interaction processes, compression, and laser development) is also presented. (HM)
Portable radiography system using a relativistic electron beam
Hoeberling, Robert F.
1990-01-01
A portable radiographic generator is provided with an explosive magnetic flux compression generator producing the high voltage necessary to generate a relativistic electron beam. The relativistic electron beam is provided with target materials which generates the desired radiographic pulse. The magnetic flux compression generator may require at least two conventional explosively driven generators in series to obtain a desired output voltage of at least 1 MV. The cathode and anode configuration of the diode are selected to provide a switching action wherein a high impedance load is presented to the magnetic flux compression generator when the high voltage is being generated, and thereafter switching to a low impedance load to generate the relativistic electron beam. Magnetic flux compression generators can be explosively driven and provided in a relatively compact, portable form for use with the relativistic x-ray equipment.
Portable radiography system using a relativistic electron beam
Hoeberling, R.F.
1987-09-22
A portable radiographic generator is provided with an explosive magnetic flux compression generator producing the high voltage necessary to generate a relativistic electron beam. The relativistic electron beam is provided with target materials which generates the desired radiographic pulse. The magnetic flux compression generator may require at least two conventional explosively driven generators in series to obtain a desired output voltage of at least 1 MV. The cathode and anode configuration of the diode are selected to provide a switching action wherein a high impedance load is presented to the magnetic flux compression generator when the high voltage is being generated, and thereafter switching to a low impedance load to generate the relativistic electron beam. Magnetic flux compression generators can be explosively driven and provided in a relatively compact, portable form for use with the relativistic x-ray equipment. 8 figs.
Hybrid-drive implosion system for ICF targets
Mark, James W.
1988-08-02
Hybrid-drive implosion systems (20,40) for ICF targets (10,22,42) are described which permit a significant increase in target gain at fixed total driver energy. The ICF target is compressed in two phases, an initial compression phase and a final peak power phase, with each phase driven by a separate, optimized driver. The targets comprise a hollow spherical ablator (12) surroundingly disposed around fusion fuel (14). The ablator is first compressed to higher density by a laser system (24), or by an ion beam system (44), that in each case is optimized for this initial phase of compression of the target. Then, following compression of the ablator, energy is directly delivered into the compressed ablator by an ion beam driver system (30,48) that is optimized for this second phase of operation of the target. The fusion fuel (14) is driven, at high gain, to conditions wherein fusion reactions occur. This phase separation allows hydrodynamic efficiency and energy deposition uniformity to be individually optimized, thereby securing significant advantages in energy gain. In additional embodiments, the same or separate drivers supply energy for ICF target implosion.
Hybrid-drive implosion system for ICF targets
Mark, James W.
1988-01-01
Hybrid-drive implosion systems (20,40) for ICF targets (10,22,42) are described which permit a significant increase in target gain at fixed total driver energy. The ICF target is compressed in two phases, an initial compression phase and a final peak power phase, with each phase driven by a separate, optimized driver. The targets comprise a hollow spherical ablator (12) surroundingly disposed around fusion fuel (14). The ablator is first compressed to higher density by a laser system (24), or by an ion beam system (44), that in each case is optimized for this initial phase of compression of the target. Then, following compression of the ablator, energy is directly delivered into the compressed ablator by an ion beam driver system (30,48) that is optimized for this second phase of operation of the target. The fusion fuel (14) is driven, at high gain, to conditions wherein fusion reactions occur. This phase separation allows hydrodynamic efficiency and energy deposition uniformity to be individually optimized, thereby securing significant advantages in energy gain. In additional embodiments, the same or separate drivers supply energy for ICF target implosion.
Hybrid-drive implosion system for ICF targets
Mark, J.W.K.
1987-10-14
Hybrid-drive implosion systems for ICF targets are described which permit a significant increase in target gain at fixed total driver energy. The ICF target is compressed in two phases, an initial compression phase and a final peak power phase, with each phase driven by a separate, optimized driver. The targets comprise a hollow spherical ablator surroundingly disposed around fusion fuel. The ablator is first compressed to higher density by a laser system, or by an ion beam system, that in each case is optimized for this initial phase of compression of the target. Then, following compression of the ablator, energy is directly delivered into the compressed ablator by an ion beam driver system that is optimized for this second phase of operation of the target. The fusion fuel is driven, at high gain, to conditions wherein fusion reactions occur. This phase separation allows hydrodynamic efficiency and energy deposition uniformity to be individually optimized, thereby securing significant advantages in energy gain. In additional embodiments, the same or separate drivers supply energy for ICF target implosion. 3 figs.
Interannual variability of trace gases in the subtropical winter stratosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, L.J.; Russell, J.M. III
1999-04-01
Measurements of water vapor and methane from the Halogen Occultation Experiment instrument on board the Upper Atmosphere Research Satellite are used to study the interannual variability of trace gas distributions in the atmosphere. Particular attention is paid to the mechanisms influencing trace gas distributions in the subtropics. The study highlights the quasi-biennial oscillation (QBO) dependence of subtropical tracer distributions more clearly than in previous studies. There is a strong correlation between the equatorial wind QBO and the slope of the tracer isolines in the Northern Hemisphere subtropics, with steeper subtropical isoline slopes in the easterly phase compared with the westerlymore » phase. This is particularly so in the lower stratosphere. Two possible mechanisms for the QBO signal in subtropical isoline slopes are identified: advection by the mean circulation and isentropic mixing. A comparison between the QBO signal in the slope of the tracer isolines and the isentropic tracer gradients is proposed as a method of determining which process is dominant. The authors suggest that the behavior of these two data diagnostics provides a stringent constraint on computer models of the atmosphere. On the basis of these diagnostics three height regions of the subtropical atmosphere are identified. (1) Below 450--500 K isentropic mixing associated with tropospheric disturbances penetrating the lower stratosphere is dominant. (2) In the region 500--750 K the data suggest that advection by the mean meridional circulation is important and that the role of isentropic mixing by eddies is relatively small. (3) Above 750 K isentropic mixing becomes increasingly important with height, and both advection and mixing are influential in determining the subtropical tracer distributions.« less
The long-range transport of aerosol particles over the north Atlantic Ocean
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellis, W.G. Jr.
1992-01-01
As part of the Atmosphere/Ocean Chemistry Experiment (AE-ROCE), daily aerosol samples were collected at Bermuda and Barbados. In addition, gas-phase [sup 222]Rn concentrations were analyzed hourly from July 1991 to June 1992. Isentropic analyses, isentropic trajectories, and non-isentropic tranjectories were used to understand the long-range transport of these substances. In particular, the sources of selenium (Se) at Bermuda and Barbados, the transport of aluminum (Al) at Barbados, and the effect of atmospheric stability on radionuclides at Bermuda, were investigated. At Bermuda, approximately 55% of the aerosol Se came from anthropogenic sources located in North America, while the remainder appeared tomore » be from a marine biogenic sources. At Barbados, 60-80% of the Se was attributed to marine biogenic sources. At Barbados, the transport of Al from northern Africa to Barbados was modeled using a vertical interpolation of wind fields. Stoke's law of gravitational settling was used to parameterize the vertical motion. The trajectories using Stokes's law more more accurately predicted the source region of the Al compared to low-level isentropic trajectories. The affect of tropospheric stability on the concentrations of [sup 222]Rn, [sup 210]Pb, and [sup 7]Be sampled at Bermuda was investigated. [sup 7]Be has an upper tropospheric source, while [sup 222]Rn and [sup 210]Pb both have a continental source. The stability of the lower troposphere was calculated based on the relative separation of isentropic surfaces over North America. The results showed that this measure of stability was able to resolve the seasonal effect of stability on these radionuclides, but was not a quantitative predictor.« less
Ageostrophic winds in the severe strom environment
NASA Technical Reports Server (NTRS)
Moore, J. T.
1982-01-01
The period from 1200 GMT 10 April to 0000 GMT 11 April 1979, during which time several major tornadoes and severe thunderstorms, including the Wichita Falls tornado occurred was studied. A time adjusted, isentropic data set was used to analyze key parameters. Fourth order centered finite differences were used to compute the isallobaric, inertial advective, tendency, inertial advective geostrophic and ageostrophic winds. Explicit isentropic trajectories were computed through the isentropic, inviscid equations of motion using a 15 minute time step. Ageostrophic, geostrophic and total vertical motion fields were computed to judge the relative importance of ageostrophy in enhancing the vertical motion field. It is found that ageostrophy is symptomatic of those mass adjustments which take place during upper level jet streak propagation and can, in a favorable environment, act to increase and release potential instability over meso alpha time periods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erbar, J.H.; Maddox, R.N.
1981-07-06
Expansion processes, using either Joule-Thomson or isentropic principles play an important role in the processing of natural gas streams for liquid recovery and/or hydrocarbon-dewpoint control. Constant-enthalpy expansion has been an integral part of gas processing schemes for many years. The constant entropy, or isentropic, process is more recent but has achieved wide-spread popularity. In typcial flow sheets for expansion processess, the expansion device is shown to be a value or choke. It also could be an expansion turbine to indicate an isentropic expansion. The expansion may be to lower pressure; or, in the case of turboexpansion, it could recover materialmore » or produce work. More frequently, the aim of the expansion is to produce low temperature and enhance liquid recovery.« less
NASA Astrophysics Data System (ADS)
Knudson, Marcus
2013-06-01
The past several years have seen tremendous increase in the number of identified extra-solar planetary systems. Our understanding of the formation of these systems is tied to our understanding of the internal structure of these exoplanets, which in turn rely upon equations of state of light elements and compounds such as water and hydrogen. Here we present shock compression data for water with unprecedented accuracy that shows commonly used models for water in planetary modeling significantly overestimate the compressibility at conditions relevant to planetary interiors. Furthermore, we show that its behavior at these conditions, including reflectivity and isentropic response, is well described by a recent first-principles based equation of state. These findings advocate the use of this model as the standard for modeling Neptune, Uranus, and ``hot Neptune'' exoplanets, and should contribute to improved understanding of the interior structure of these planets, and perhaps improved understanding of formation mechanisms of planetary systems. We also present very recent experiments on deuterium that have taken advantage of continued improvements in both experimental configuration and the understanding of the quartz shock standard to obtain Hugoniot data with a significant increase in precision. These data will prove to provide a stringent test for the equation of state of hydrogen and its isotopes. Sandia is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the US Department of Energy's National Nuclear Security Administration under Contract No. DE-ACO4-94AL85000.
NASA Technical Reports Server (NTRS)
Jing, P.; Cunnold, D. M.; Yang, E.-S.; Wang, H.-J.
2005-01-01
The isentropic cross-tropopause ozone transport has been estimated in both hemispheres in 1999 based on the potential vorticity mapping of Stratospheric Aerosol and Gas Experiment 11 ozone measurements and contour advection calculations using the NASA Goddard Space Flight Center Global and Modeling Assimilation Office analysis. The estimated net isentropic stratosphere-to-troposphere ozone flux is approx.118 +/- 61 x 10(exp9)kg/yr globally within the layer between 330 and 370 K in 1999; 60% of it is found in the Northern Hemisphere, and 40% is found in the Southern Hemisphere. The monthly average ozone fluxes are strongest in summer and weakest in winter in both hemispheres. The seasonal variations of ozone in the lower stratosphere (LS) and upper troposphere (UT) have been analyzed using ozonesonde observations from ozonesonde stations in the extratropics and subtropics, respectively. It is shown that observed ozone levels increase in the UT over subtropical ozonesonde stations and decrease in the LS over extratropical stations in late spring/early summer and that the ozone increases in the summertime subtropical UT are unlikely to be explained by photochemical ozone production and diabatic transport alone. We conclude that isentropic transport is a significant contributor to ozone levels in the subtropical upper troposphere, especially in summer.
Cooled-Spool Piston Compressor
NASA Technical Reports Server (NTRS)
Morris, Brian G.
1994-01-01
Proposed cooled-spool piston compressor driven by hydraulic power and features internal cooling of piston by flowing hydraulic fluid to limit temperature of compressed gas. Provides sufficient cooling for higher compression ratios or reactive gases. Unlike conventional piston compressors, all parts of compressed gas lie at all times within relatively short distance of cooled surface so that gas cooled more effectively.
Pulse Power Applications of Flux Compression Generators
1981-06-01
Characteristics are presented for two different types of explosive driven flux compression generators and a megavolt pulse transformer. Status reports are given for rail gun and plasma focus programs for which the generators serve as power sources.
Compensating effect of the coherent synchrotron radiation in bunch compressors
NASA Astrophysics Data System (ADS)
Jing, Yichao; Hao, Yue; Litvinenko, Vladimir N.
2013-06-01
Typical bunch compression for a high-gain free-electron laser (FEL) requires a large compression ratio. Frequently, this compression is distributed in multiple stages along the beam transport line. However, for a high-gain FEL driven by an energy recovery linac (ERL), compression must be accomplished in a single strong compressor located at the beam line’s end; otherwise the electron beam would be affected severely by coherent synchrotron radiation (CSR) in the ERL’s arcs. In such a scheme, the CSR originating from the strong compressors could greatly degrade the quality of the electron beam. In this paper, we present our design for a bunch compressor that will limit the effect of CSR on the e-beam’s quality. We discuss our findings from a study of such a compressor, and detail its potential for an FEL driven by a multipass ERL developed for the electron-Relativistic Heavy Ion Collider.
The least-squares finite element method for low-mach-number compressible viscous flows
NASA Technical Reports Server (NTRS)
Yu, Sheng-Tao
1994-01-01
The present paper reports the development of the Least-Squares Finite Element Method (LSFEM) for simulating compressible viscous flows at low Mach numbers in which the incompressible flows pose as an extreme. Conventional approach requires special treatments for low-speed flows calculations: finite difference and finite volume methods are based on the use of the staggered grid or the preconditioning technique; and, finite element methods rely on the mixed method and the operator-splitting method. In this paper, however, we show that such difficulty does not exist for the LSFEM and no special treatment is needed. The LSFEM always leads to a symmetric, positive-definite matrix through which the compressible flow equations can be effectively solved. Two numerical examples are included to demonstrate the method: first, driven cavity flows at various Reynolds numbers; and, buoyancy-driven flows with significant density variation. Both examples are calculated by using full compressible flow equations.
Turbulent Compressible Convection with Rotation. Part 1; Flow Structure and Evolution
NASA Technical Reports Server (NTRS)
Brummell, Nicholas H.; Hurlburt, Neal E.; Toomre, Juri
1996-01-01
The effects of Coriolis forces on compressible convection are studied using three-dimensional numerical simulations carried out within a local modified f-plane model. The physics is simplified by considering a perfect gas occupying a rectilinear domain placed tangentially to a rotating sphere at various latitudes, through which a destabilizing heat flux is driven. The resulting convection is considered for a range of Rayleigh, Taylor, and Prandtl (and thus Rossby) numbers, evaluating conditions where the influence of rotation is both weak and strong. Given the computational demands of these high-resolution simulations, the parameter space is explored sparsely to ascertain the differences between laminar and turbulent rotating convection. The first paper in this series examines the effects of rotation on the flow structure within the convection, its evolution, and some consequences for mixing. Subsequent papers consider the large-scale mean shear flows that are generated by the convection, and the effects of rotation on the convective energetics and transport properties. It is found here that the structure of rotating turbulent convection is similar to earlier nonrotating studies, with a laminar, cellular surface network disguising a fully turbulent interior punctuated by vertically coherent structures. However, the temporal signature of the surface flows is modified by inertial motions to yield new cellular evolution patterns and an overall increase in the mobility of the network. The turbulent convection contains vortex tubes of many scales, including large-scale coherent structures spanning the full vertical extent of the domain involving multiple density scale heights. Remarkably, such structures align with the rotation vector via the influence of Coriolis forces on turbulent motions, in contrast with the zonal tilting of streamlines found in laminar flows. Such novel turbulent mechanisms alter the correlations which drive mean shearing flows and affect the convective transport properties. In contrast to this large-scale anisotropy, small-scale vortex tubes at greater depths are randomly orientated by the rotational mixing of momentum, leading to an increased degree of isotropy on the medium to small scales of motion there. Rotation also influences the thermodynamic mixing properties of the convection. In particular, interaction of the larger coherent vortices causes a loss of correlation between the vertical velocity and the temperature leaving a mean stratification which is not isentropic.
DOT National Transportation Integrated Search
2006-06-01
Five contracts from the Central Artery/Tunnel (CA/T) project in Boston, MA, were reviewed to document issues related to design and construction of driven pile foundations. Given the soft and compressible marine clays in the Boston area, driven pile f...
Hugoniot equation of state and dynamic strength of boron carbide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grady, Dennis E.
Boron carbide ceramics have been particularly problematic in attempts to develop adequate constitutive model descriptions for purposes of analysis of dynamic response in the shock and impact environment. Dynamic strength properties of boron carbide ceramic differ uniquely from comparable ceramics. Furthermore, boron carbide is suspected, but not definitely shown, to undergoing polymorphic phase transformation under shock compression. In the present paper, shock-wave compression measurements conducted over the past 40 years are assessed for the purpose of achieving improved understanding of the dynamic equation of state and strength of boron carbide. In particular, attention is focused on the often ignored Losmore » Alamos National Laboratory (LANL) Hugoniot measurements performed on porous sintered boron carbide ceramic. The LANL data are shown to exhibit two compression anomalies on the shock Hugoniot within the range of 20–60 GPa that may relate to crystallographic structure transitions. More recent molecular dynamics simulations on the compressibility of the boron carbide crystal lattice reveal compression transitions that bear similarities to the LANL Hugoniot results. The same Hugoniot data are complemented with dynamic isentropic compression data for boron carbide extracted from Hugoniot measurements on boron carbide and copper granular mixtures. Other Hugoniot measurements, however, performed on near-full-density boron carbide ceramic differ markedly from the LANL Hugoniot data. These later data exhibit markedly less compressibility and tend not to show comparable anomalies in compressibility. Alternative Hugoniot anomalies, however, are exhibited by the near-full-density data. Experimental uncertainty, Hugoniot strength, and phase transformation physics are all possible explanations for the observed discrepancies. It is reasoned that experimental uncertainty and Hugoniot strength are not likely explanations for the observed differences. The notable mechanistic difference in the processes of shock compression between the LANL data and that of the other studies is the markedly larger inelastic deformation and dissipation experienced in the shock event brought about by compaction of the substantially larger porosity LANL test ceramics. High-pressure diamond anvil cell experiments reveal extensive amorphization, reasoned to be a reversion product of a higher-pressure crystallographic phase, which is a consequence of application of both high pressure and shear deformation to the boron carbide crystal structure. A dependence of shock-induced high-pressure phase transformation in boron carbide on the extent of shear deformation experienced in the shock process offers a plausible explanation for the differences observed in the LANL Hugoniot data on porous ceramic and that of other shock data on near-full-density boron carbide.« less
On solving the compressible Navier-Stokes equations for unsteady flows at very low Mach numbers
NASA Technical Reports Server (NTRS)
Pletcher, R. H.; Chen, K.-H.
1993-01-01
The properties of a preconditioned, coupled, strongly implicit finite difference scheme for solving the compressible Navier-Stokes equations in primitive variables are investigated for two unsteady flows at low speeds, namely the impulsively started driven cavity and the startup of pipe flow. For the shear-driven cavity flow, the computational effort was observed to be nearly independent of Mach number, especially at the low end of the range considered. This Mach number independence was also observed for steady pipe flow calculations; however, rather different conclusions were drawn for the unsteady calculations. In the pressure-driven pipe startup problem, the compressibility of the fluid began to significantly influence the physics of the flow development at quite low Mach numbers. The present scheme was observed to produce the expected characteristics of completely incompressible flow when the Mach number was set at very low values. Good agreement with incompressible results available in the literature was observed.
NASA Technical Reports Server (NTRS)
Johnson, Donald R.
1998-01-01
The goal of this research is the continued development and application of global isentropic modeling and analysis capabilities to describe hydrologic processes and energy exchange in the climate system, and discern regional climate change. This work involves a combination of modeling and analysis efforts involving 4DDA datasets and simulations from the University of Wisconsin (UW) hybrid isentropic-sigma (theta-sigma) coordinate model and the GEOS GCM.
Fluids, superfluids and supersolids: dynamics and cosmology of self-gravitating media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Celoria, Marco; Comelli, Denis; Pilo, Luigi, E-mail: marco.celoria@gssi.infn.it, E-mail: comelli@fe.infn.it, E-mail: luigi.pilo@aquila.infn.it
We compute cosmological perturbations for a generic self-gravitating media described by four derivatively-coupled scalar fields. Depending on the internal symmetries of the action for the scalar fields, one can describe perfect fluids, superfluids, solids and supersolids media. Symmetries dictate both dynamical and thermodynamical properties of the media. Generically, scalar perturbations include, besides the gravitational potential, an additional non-adiabatic mode associated with the entropy per particle σ. While perfect fluids and solids are adiabatic with σ constant in time, superfluids and supersolids feature a non-trivial dynamics for σ. Special classes of isentropic media with zero σ can also be found. Tensormore » modes become massive for solids and supersolids. Such an effective approach can be used to give a very general and symmetry driven modelling of the dark sector.« less
Acoustically Driven Magnetized Target Fusion At General Fusion: An Overview
NASA Astrophysics Data System (ADS)
O'Shea, Peter; Laberge, M.; Donaldson, M.; Delage, M.; the Fusion Team, General
2016-10-01
Magnetized Target Fusion (MTF) involves compressing an initial magnetically confined plasma of about 1e23 m-3, 100eV, 7 Tesla, 20 cm radius, >100 μsec life with a 1000x volume compression in 100 microseconds. If near adiabatic compression is achieved, the final plasma of 1e26 m-3, 10keV, 700 Tesla, 2 cm radius, confined for 10 μsec would produce interesting fusion energy gain. General Fusion (GF) is developing an acoustic compression system using pneumatic pistons focusing a shock wave on the CT plasma in the center of a 3 m diameter sphere filled with liquid lead-lithium. Low cost driver, straightforward heat extraction, good tritium breeding ratio and excellent neutron protection could lead to a practical power plant. GF (65 employees) has an active plasma R&D program including both full scale and reduced scale plasma experiments and simulation of both. Although acoustic driven compression of full scale plasmas is the end goal, present compression studies use reduced scale plasmas and chemically accelerated Aluminum liners. We will review results from our plasma target development, motivate and review the results of dynamic compression field tests and briefly describe the work to date on the acoustic driver front.
Unsteady specific work and isentropic efficiency of a radial turbine driven by pulsed detonations
NASA Astrophysics Data System (ADS)
Rouser, Kurt P.
There has been longstanding government and industry interest in pressure-gain combustion for use in Brayton cycle based engines. Theoretically, pressure-gain combustion allows heat addition with reduced entropy loss. The pulsed detonation combustor (PDC) is a device that can provide such pressure-gain combustion and possibly replace typical steady deflagration combustors. The PDC is inherently unsteady, however, and comparisons with conventional steady deflagration combustors must be based upon time-integrated performance variables. In this study, the radial turbine of a Garrett automotive turbocharger was coupled directly to and driven, full admission, by a PDC in experiments fueled by hydrogen or ethylene. Data included pulsed cycle time histories of turbine inlet and exit temperature, pressure, velocity, mass flow, and enthalpy. The unsteady inlet flowfield showed momentary reverse flow, and thus unsteady accumulation and expulsion of mass and enthalpy within the device. The coupled turbine-driven compressor provided a time-resolved measure of turbine power. Peak power increased with PDC fill fraction, and duty cycle increased with PDC frequency. Cycle-averaged unsteady specific work increased with fill fraction and frequency. An unsteady turbine efficiency formulation is proposed, including heat transfer effects, enthalpy flux-weighted total pressure ratio, and ensemble averaging over multiple cycles. Turbine efficiency increased with frequency but was lower than the manufacturer reported conventional steady turbine efficiency.
Development and validation of a turbulent-mix model for variable-density and compressible flows.
Banerjee, Arindam; Gore, Robert A; Andrews, Malcolm J
2010-10-01
The modeling of buoyancy driven turbulent flows is considered in conjunction with an advanced statistical turbulence model referred to as the BHR (Besnard-Harlow-Rauenzahn) k-S-a model. The BHR k-S-a model is focused on variable-density and compressible flows such as Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM), and Kelvin-Helmholtz (KH) driven mixing. The BHR k-S-a turbulence mix model has been implemented in the RAGE hydro-code, and model constants are evaluated based on analytical self-similar solutions of the model equations. The results are then compared with a large test database available from experiments and direct numerical simulations (DNS) of RT, RM, and KH driven mixing. Furthermore, we describe research to understand how the BHR k-S-a turbulence model operates over a range of moderate to high Reynolds number buoyancy driven flows, with a goal of placing the modeling of buoyancy driven turbulent flows at the same level of development as that of single phase shear flows.
NASA Astrophysics Data System (ADS)
Li, Y.; Capatina, D.; D'Amico, K.; Eng, P.; Hawreliak, J.; Graber, T.; Rickerson, D.; Klug, J.; Rigg, P. A.; Gupta, Y. M.
2017-06-01
Coupling laser-driven compression experiments to the x-ray beam at the Dynamic Compression Sector (DCS) at the Advanced Photon Source (APS) of Argonne National Laboratory requires state-of-the-art x-ray focusing, pulse isolation, and diagnostics capabilities. The 100J UV pulsed laser system can be fired once every 20 minutes so precise alignment and focusing of the x-rays on each new sample must be fast and reproducible. Multiple Kirkpatrick-Baez (KB) mirrors are used to achieve a focal spot size as small as 50 μm at the target, while the strategic placement of scintillating screens, cameras, and detectors allows for fast diagnosis of the beam shape, intensity, and alignment of the sample to the x-ray beam. In addition, a series of x-ray choppers and shutters are used to ensure that the sample is exposed to only a single x-ray pulse ( 80ps) during the dynamic compression event and require highly precise synchronization. Details of the technical requirements, layout, and performance of these instruments will be presented. Work supported by DOE/NNSA.
Smalyuk, V. A.; Robey, H. F.; Döppner, T.; ...
2015-08-27
Radiation-driven, layered deuterium-tritium plastic capsule implosions were carried out using a new, 3-shock “adiabat-shaped” drive on the National Ignition Facility. The purpose of adiabat shaping is to use a stronger first shock, reducing hydrodynamic instability growth in the ablator. The shock can decay before reaching the deuterium-tritium fuel leaving it on a low adiabat and allowing higher fuel compression. The fuel areal density was improved by ~25% with this new drive compared to similar “high-foot” implosions, while neutron yield was improved by more than 4 times, compared to “low-foot” implosions driven at the same compression and implosion velocity.
The Fusion Gain Analysis of the Inductively Driven Liner Compression Based Fusion
NASA Astrophysics Data System (ADS)
Shimazu, Akihisa; Slough, John
2016-10-01
An analytical analysis of the fusion gain expected in the inductively driven liner compression (IDLC) based fusion is conducted to identify the fusion gain scaling at various operating conditions. The fusion based on the IDLC is a magneto-inertial fusion concept, where a Field-Reversed Configuration (FRC) plasmoid is compressed via the inductively-driven metal liner to drive the FRC to fusion conditions. In the past, an approximate scaling law for the expected fusion gain for the IDLC based fusion was obtained under the key assumptions of (1) D-T fuel at 5-40 keV, (2) adiabatic scaling laws for the FRC dynamics, (3) FRC energy dominated by the pressure balance with the edge magnetic field at the peak compression, and (4) the liner dwell time being liner final diameter divided by the peak liner velocity. In this study, various assumptions made in the previous derivation is relaxed to study the change in the fusion gain scaling from the previous result of G ml1 / 2 El11 / 8 , where ml is the liner mass and El is the peak liner kinetic energy. The implication from the modified fusion gain scaling on the performance of the IDLC fusion reactor system is also explored.
On Exact Solutions of Rarefaction-Rarefaction Interactions in Compressible Isentropic Flow
NASA Astrophysics Data System (ADS)
Jenssen, Helge Kristian
2017-12-01
Consider the interaction of two centered rarefaction waves in one-dimensional, compressible gas flow with pressure function p(ρ )=a^2ρ ^γ with γ >1. The classic hodograph approach of Riemann provides linear 2nd order equations for the time and space variables t, x as functions of the Riemann invariants r, s within the interaction region. It is well known that t( r, s) can be given explicitly in terms of the hypergeometric function. We present a direct calculation (based on works by Darboux and Martin) of this formula, and show how the same approach provides an explicit formula for x( r, s) in terms of Appell functions (two-variable hypergeometric functions). Motivated by the issue of vacuum and total variation estimates for 1-d Euler flows, we then use the explicit t-solution to monitor the density field and its spatial variation in interactions of two centered rarefaction waves. It is found that the variation is always non-monotone, and that there is an overall increase in density variation if and only if γ >3. We show that infinite duration of the interaction is characterized by approach toward vacuum in the interaction region, and that this occurs if and only if the Riemann problem defined by the extreme initial states generates a vacuum. Finally, it is verified that the minimal density in such interactions decays at rate O(1)/ t.
NASA Astrophysics Data System (ADS)
Rothman, Stephen; Edwards, Rhys; Vogler, Tracy J.; Furnish, M. D.
2012-03-01
Velocity-time histories of free- or windowed-surfaces have been used to calculate wave speeds and hence deduce the shear moduli for materials at high pressure. This is important to high velocity impact phenomena, e.g. shaped-charge jets, long rod penetrators, and other projectile/armour interactions. Historically the shock overtake method has required several experiments with different depths of material to account for the effect of the surface on the arrival time of the release. A characteristics method, previously used for analysis of isentropic compression experiments, has been modified to account for the effect of the surface interactions, thus only one depth of material is required. This analysis has been applied to symmetric copper impacts performed at Sandia National Laboratory's Star Facility. A shear modulus of 200GPa, at a pressure of ~180GPa, has been estimated. These results are in broad agreement with previous work by Hayes et al.
NASA Astrophysics Data System (ADS)
Rothman, Stephen; Edwards, Rhys; Vogler, Tracy; Furnish, Mike
2011-06-01
Velocity-time histories of free- or windowed-surfaces have been used to calculate wave speeds and hence deduce the shear modulus for materials at high pressure. This is important to high velocity impact phenomena, e.g. shaped-charge jets, long rod penetrators, and other projectile/armour interactions. Historically the shock overtake method has required several experiments with different depths of material to account for the effect of the surface on the arrival time of the release. A characteristics method, previously used for analysis of isentropic compression experiments, has been modified to account for the effect of the surface interactions, thus only one depth of material is required. This analysis has been applied to symmetric copper impacts performed at Sandia National Laboratory's Star Facility. A shear modulus of 200Gpa, at a pressure of ~180GPa, has been estimated. These results are in broad agreement with previous work by Hayes et al.
NASA Astrophysics Data System (ADS)
Kheruntsyan, Karen; Atas, Yasar; Bouchoule, Isabelle; Gangardt, Dimitri
2017-04-01
We analyse the breathing-mode oscillations of a harmonically quenched Tonks-Giradeau (TG) gas using an exact finite-temperature dynamical theory. We predict a striking collective manifestation of impenetrability-a collective many-body bounce effect. The effect, while being invisible in the evolution of the in situ density profile of the gas, can be revealed through a nontrivial periodic narrowing of its momentum distribution, taking place at twice the rate of the fundamental breathing-mode frequency of oscillations of the density profile. We identify physical regimes for observing the many-body bounce and construct the respective nonequilibrium phase diagram as a function of the quench strength and the initial equilibrium temperature of the gas. We also develop a finite-temperature hydrodynamic theory of the TG gas, wherein the many-body bounce is explained by an increased thermodynamic pressure during the isentropic compression cycle, which acts as a potential barrier for the particles to bounce off.
NASA Technical Reports Server (NTRS)
Haberbusch, Mark S.; Meyer, Michael L. (Technical Monitor)
2002-01-01
A thermodynamic study has been conducted that investigated the effects of the boost-phase environment on densified propellant thermal conditions for expendable launch vehicles. Two thermodynamic models were developed and utilized to bound the expected thermodynamic conditions inside the cryogenic liquid hydrogen and oxygen propellant tanks of an Atlas IIAS/Centaur launch vehicle during the initial phases of flight. The ideal isentropic compression model was developed to predict minimum pressurant gas requirements. The thermal equilibrium model was developed to predict the maximum pressurant gas requirements. The models were modified to simulate the required flight tank pressure profiles through ramp pressurization, liquid expulsion, and tank venting. The transient parameters investigated were: liquid temperature, liquid level, and pressurant gas consumption. Several mission scenarios were analyzed using the thermodynamic models, and the results indicate that flying an Atlas IIAS launch vehicle with densified propellants is feasible and beneficial but may require some minor changes to the vehicle.
Investigation of characteristics of feed system instabilities
NASA Technical Reports Server (NTRS)
Vaage, R. D.; Fidler, L. E.; Zehnle, R. A.
1972-01-01
The relationship between the structural and feed system natural frequencies in structure-propulsion system coupled longitudinal oscillations (pogo) is investigated. The feed system frequencies are usually very dependent upon the compressibility (compliance) of cavitation bubbles that exist to some extent in all operating turbopumps. This document includes: a complete review of cavitation mechanisms; development of a turbopump cavitation compliance model; an accumulation and analysis of all available cavitation compliance test data; and a correlation of empirical-analytical results. The analytical model is based on the analysis of flow relative to a set of cascaded blades, having any described shape, and assumes phase changes occur under conditions of isentropic equilibrium. Analytical cavitation compliance predictions for the J-2 LOX, F-1 LOX, H-1 LOX and LR87 oxidizer turbopump inducers do not compare favorably with test data. The model predicts much less cavitation than is derived from the test data. This implies that mechanisms other than blade cavitation contribute significantly to the total amount of turbopump cavitation.
NASA Astrophysics Data System (ADS)
Saini, Balwinder; Kumar, Ashwani; Rani, Ruby; Bamezai, Rajinder K.
2016-07-01
The density, viscosity and speed of sound of pure p-anisaldehyde and some alkanols, for example, methanol, ethanol, propan-1-ol, propan-2-ol, butan-1-ol, butan-2-ol, 2-methylpropan-1-ol, and the binary mixtures of p-anisaldehyde with these alkanols were measured over the entire composition range at 303.15 K. From the experimental data, various thermodynamic parameters such as excess molar volume ( V E), excess Gibbs free energy of activation (Δ G*E), and deviation parameters like viscosity (Δη), speed of sound (Δ u), isentropic compressibility (Δκs), are calculated. The excess as well as deviation parameters are fitted to Redlich—Kister equation. Additionally, the viscosity data for the systems has been used to correlate the application of empirical relation given by Grunberg and Nissan, Katti and Chaudhari, and Hind et al. The results are discussed in terms of specific interactions present in the mixtures.
CAS2D: FORTRAN program for nonrotating blade-to-blade, steady, potential transonic cascade flows
NASA Technical Reports Server (NTRS)
Dulikravich, D. S.
1980-01-01
An exact, full-potential-equation (FPE) model for the steady, irrotational, homentropic and homoenergetic flow of a compressible, homocompositional, inviscid fluid through two dimensional planar cascades of airfoils was derived, together with its appropriate boundary conditions. A computer program, CAS2D, was developed that numerically solves an artificially time-dependent form of the actual FPE. The governing equation was discretized by using type-dependent, rotated finite differencing and the finite area technique. The flow field was discretized by providing a boundary-fitted, nonuniform computational mesh. The mesh was generated by using a sequence of conforming mapping, nonorthogonal coordinate stretching, and local, isoparametric, bilinear mapping functions. The discretized form of the FPE was solved iteratively by using successive line overrelaxation. The possible isentropic shocks were correctly captured by adding explicitly an artificial viscosity in a conservative form. In addition, a three-level consecutive, mesh refinement feature makes CAS2D a reliable and fast algorithm for the analysis of transonic, two dimensional cascade flows.
Laser shock compression experiments on precompressed water in ``SG-II'' laser facility
NASA Astrophysics Data System (ADS)
Shu, Hua; Huang, Xiuguang; Ye, Junjian; Fu, Sizu
2017-06-01
Laser shock compression experiments on precompressed samples offer the possibility to obtain new hugoniot data over a significantly broader range of density-temperature phase than was previously achievable. This technique was developed in ``SG-II'' laser facility. Hugoniot data were obtained for water in 300 GPa pressure range by laser-driven shock compression of samples statically precompressed in diamond-anvil cells.
Coulomb-Driven Relativistic Electron Beam Compression
NASA Astrophysics Data System (ADS)
Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhao, Lingrong; Zhu, Pengfei; Xiang, Dao; Zhang, Jie
2018-01-01
Coulomb interaction between charged particles is a well-known phenomenon in many areas of research. In general, the Coulomb repulsion force broadens the pulse width of an electron bunch and limits the temporal resolution of many scientific facilities such as ultrafast electron diffraction and x-ray free-electron lasers. Here we demonstrate a scheme that actually makes use of the Coulomb force to compress a relativistic electron beam. Furthermore, we show that the Coulomb-driven bunch compression process does not introduce additional timing jitter, which is in sharp contrast to the conventional radio-frequency buncher technique. Our work not only leads to enhanced temporal resolution in electron-beam-based ultrafast instruments that may provide new opportunities in probing material systems far from equilibrium, but also opens a promising direction for advanced beam manipulation through self-field interactions.
Coulomb-Driven Relativistic Electron Beam Compression.
Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhao, Lingrong; Zhu, Pengfei; Xiang, Dao; Zhang, Jie
2018-01-26
Coulomb interaction between charged particles is a well-known phenomenon in many areas of research. In general, the Coulomb repulsion force broadens the pulse width of an electron bunch and limits the temporal resolution of many scientific facilities such as ultrafast electron diffraction and x-ray free-electron lasers. Here we demonstrate a scheme that actually makes use of the Coulomb force to compress a relativistic electron beam. Furthermore, we show that the Coulomb-driven bunch compression process does not introduce additional timing jitter, which is in sharp contrast to the conventional radio-frequency buncher technique. Our work not only leads to enhanced temporal resolution in electron-beam-based ultrafast instruments that may provide new opportunities in probing material systems far from equilibrium, but also opens a promising direction for advanced beam manipulation through self-field interactions.
Robey, H. F.; Smalyuk, V. A.; Milovich, J. L.; ...
2016-04-01
A series of indirectly driven capsule implosions has been performed on the National Ignition Facility to assess the relative contributions of ablation-front instability growth vs. fuel compression on implosion performance. Laser pulse shapes for both low and high-foot pulses were modified to vary ablation-front growth & fuel adiabat, separately and controllably. Two principal conclusions are drawn from this study: 1) It is shown that an increase in laser picket energy reduces ablation-front instability growth in low-foot implosions resulting in a substantial (3-10X) increase in neutron yield with no loss of fuel compression. 2.) It is shown that a decrease inmore » laser trough power reduces the fuel adiabat in high-foot implosions results in a significant (36%) increase in fuel compression together with no reduction in neutron yield. These results taken collectively bridge the space between the higher compression low-foot results and the higher yield high-foot results.« less
Foam relaxation in fractures and narrow channels
NASA Astrophysics Data System (ADS)
Lai, Ching-Yao; Rallabandi, Bhargav; Perazzo, Antonio; Stone, Howard A.
2017-11-01
Various applications, from foam manufacturing to hydraulic fracturing with foams, involve pressure-driven flow of foams in narrow channels. We report a combined experimental and theoretical study of this problem accounting for the compressible nature of the foam. In particular, in our experiments the foam is initially compressed in one channel and then upon flow into a second channel the compressed foam relaxes as it moves. A plug flow is observed in the tube and the pressure at the entrance of the tube is higher than the exit. We measure the volume collected at the exit of the tube, V, as a function of injection flow rate, tube length and diameter. Two scaling behaviors for V as a function of time are observed depending on whether foam compression is important or not. Our work may relate to foam fracturing, which saves water usage in hydraulic fracturing, more efficient enhanced oil recovery via foam injection, and various materials manufacturing processes involving pressure-driven flow foams.
Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition.
Kodama, R; Norreys, P A; Mima, K; Dangor, A E; Evans, R G; Fujita, H; Kitagawa, Y; Krushelnick, K; Miyakoshi, T; Miyanaga, N; Norimatsu, T; Rose, S J; Shozaki, T; Shigemori, K; Sunahara, A; Tampo, M; Tanaka, K A; Toyama, Y; Yamanaka, T; Zepf, M
2001-08-23
Modern high-power lasers can generate extreme states of matter that are relevant to astrophysics, equation-of-state studies and fusion energy research. Laser-driven implosions of spherical polymer shells have, for example, achieved an increase in density of 1,000 times relative to the solid state. These densities are large enough to enable controlled fusion, but to achieve energy gain a small volume of compressed fuel (known as the 'spark') must be heated to temperatures of about 108 K (corresponding to thermal energies in excess of 10 keV). In the conventional approach to controlled fusion, the spark is both produced and heated by accurately timed shock waves, but this process requires both precise implosion symmetry and a very large drive energy. In principle, these requirements can be significantly relaxed by performing the compression and fast heating separately; however, this 'fast ignitor' approach also suffers drawbacks, such as propagation losses and deflection of the ultra-intense laser pulse by the plasma surrounding the compressed fuel. Here we employ a new compression geometry that eliminates these problems; we combine production of compressed matter in a laser-driven implosion with picosecond-fast heating by a laser pulse timed to coincide with the peak compression. Our approach therefore permits efficient compression and heating to be carried out simultaneously, providing a route to efficient fusion energy production.
Transform coding for space applications
NASA Technical Reports Server (NTRS)
Glover, Daniel
1993-01-01
Data compression coding requirements for aerospace applications differ somewhat from the compression requirements for entertainment systems. On the one hand, entertainment applications are bit rate driven with the goal of getting the best quality possible with a given bandwidth. Science applications are quality driven with the goal of getting the lowest bit rate for a given level of reconstruction quality. In the past, the required quality level has been nothing less than perfect allowing only the use of lossless compression methods (if that). With the advent of better, faster, cheaper missions, an opportunity has arisen for lossy data compression methods to find a use in science applications as requirements for perfect quality reconstruction runs into cost constraints. This paper presents a review of the data compression problem from the space application perspective. Transform coding techniques are described and some simple, integer transforms are presented. The application of these transforms to space-based data compression problems is discussed. Integer transforms have an advantage over conventional transforms in computational complexity. Space applications are different from broadcast or entertainment in that it is desirable to have a simple encoder (in space) and tolerate a more complicated decoder (on the ground) rather than vice versa. Energy compaction with new transforms are compared with the Walsh-Hadamard (WHT), Discrete Cosine (DCT), and Integer Cosine (ICT) transforms.
46 CFR 112.50-7 - Compressed air starting.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-7 Compressed... emergency power source. If this compressor supplies other auxiliaries, there must be a non-return valve at...
NASA Astrophysics Data System (ADS)
Bencherif, H.; El Amraoui, L.; Kirgis, G.; Leclair de Bellevue, J.; Hauchecorne, A.; Mzé, N.; Portafaix, T.
2010-07-01
This paper reports on an increase of ozone event observed over Kerguelen (49.4° S, 70.3° E) in relationship with large-scale isentropic transport. It is evidenced from ground-based observations, together with satellite global observations and assimilated fields. The study is based on the analyses of the first ozonesonde experiment never recorded at the Kerguelen site in the framework of a French campaign called ROCK that took place from April to August 2008. Comparisons and interpretations of the observed event are supported by co-localised SAOZ observations, by global mapping of tracers (O3, N2O and columns of O3) from Aura/MLS and Aura/OMI experiments, and by model simulations of Ertel Potential Vorticity initialised by ECMWF (European Centre for Medium-Range Weather Forecasts) data reanalyses. Satellite and ground-based observational data revealed a consistent increase of ozone in the local stratosphere by mid-April 2008. Additionally, Ozone (O3) and nitrous oxide (N2O) profiles obtained during January-May 2008 by the Microwave Lamb Sounder (MLS) aboard the Aura satellite are assimilated into MOCAGE (MOdèle de Chimie Atmosphérique à Grande Echelle), a global three-dimensional chemistry transport model of Météo-France. The assimilated total O3 values are consistent with SAOZ ground observations (within ±5%), and isentropic distributions of O3 are matching well with maps of advected potential vorticity (APV) derived from the MIMOSA model, a high-resolution advection transport model, and from ECMWF reanalysis. The studied event seems to be related to isentropic transport of air masses that took place simultaneously in the lower- and middle-stratosphere, respectively from the polar region and from tropics to the mid-latitudes. In fact, the studied ozone increase by mid April 2008 results simultaneously: (1) from an equator-ward departure of polar air masses characterised with a high-ozone layer in the lower stratosphere (nearby the 475 K isentropic level), and (2) from a reverse isentropic transport from tropics to mid- and high-latitudes in the upper stratosphere (nearby the 700 K level). The increase of ozone observed over Kerguelen from the 16-April ozonesonde profile is then attributed to a concomitant isentropic transport of ozone in two stratospheric layers: the tropical air moving southward and reaches over Kerguelen in the upper stratosphere, and the polar air passing over the same area but in the lower stratosphere.
Analytics-Driven Lossless Data Compression for Rapid In-situ Indexing, Storing, and Querying
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenkins, John; Arkatkar, Isha; Lakshminarasimhan, Sriram
2013-01-01
The analysis of scientific simulations is highly data-intensive and is becoming an increasingly important challenge. Peta-scale data sets require the use of light-weight query-driven analysis methods, as opposed to heavy-weight schemes that optimize for speed at the expense of size. This paper is an attempt in the direction of query processing over losslessly compressed scientific data. We propose a co-designed double-precision compression and indexing methodology for range queries by performing unique-value-based binning on the most significant bytes of double precision data (sign, exponent, and most significant mantissa bits), and inverting the resulting metadata to produce an inverted index over amore » reduced data representation. Without the inverted index, our method matches or improves compression ratios over both general-purpose and floating-point compression utilities. The inverted index is light-weight, and the overall storage requirement for both reduced column and index is less than 135%, whereas existing DBMS technologies can require 200-400%. As a proof-of-concept, we evaluate univariate range queries that additionally return column values, a critical component of data analytics, against state-of-the-art bitmap indexing technology, showing multi-fold query performance improvements.« less
46 CFR 112.50-7 - Compressed air starting.
Code of Federal Regulations, 2011 CFR
2011-10-01
... AND POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-7 Compressed... emergency generator room and a handcranked, diesel-powered air compressor for recharging the air receiver..., and energy storing devices must be in the emergency generator room, except for the main or auxiliary...
46 CFR 112.50-7 - Compressed air starting.
Code of Federal Regulations, 2010 CFR
2010-10-01
... AND POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-7 Compressed... emergency generator room and a handcranked, diesel-powered air compressor for recharging the air receiver..., and energy storing devices must be in the emergency generator room, except for the main or auxiliary...
Douglas, David R [Newport News, VA; Tennant, Christopher D [Williamsburg, VA
2012-07-10
A method of avoiding CSR induced beam quality defects in free electron laser operation by a) controlling the rate of compression and b) using a novel means of integrating the compression with the remainder of the transport system: both are accomplished by means of dispersion modulation. A large dispersion is created in the penultimate dipole magnet of the compression region leading to rapid compression; this large dispersion is demagnified and dispersion suppression performed in a final small dipole. As a result, the bunch is short for only a small angular extent of the transport, and the resulting CSR excitation is small.
NASA Astrophysics Data System (ADS)
Clamond, Didier; Dutykh, Denys
2018-02-01
A new regularisation of the shallow water (and isentropic Euler) equations is proposed. The regularised equations are non-dissipative, non-dispersive and posses a variational structure; thus, the mass, the momentum and the energy are conserved. Hence, for instance, regularised hydraulic jumps are smooth and non-oscillatory. Another particularly interesting feature of this regularisation is that smoothed 'shocks' propagates at exactly the same speed as the original discontinuous ones. The performance of the new model is illustrated numerically on some dam-break test cases, which are classical in the hyperbolic realm.
Generalized Grueneisen tensor from solid nonlinearity parameters
NASA Technical Reports Server (NTRS)
Cantrell, J. H., Jr.
1980-01-01
Anharmonic effects in solids are often described in terms of generalized Grueneisen parameters which measure the strain dependence of the lattice vibrational frequencies. The relationship between these parameters and the solid nonlinearity parameters measured directly in ultrasonic harmonic generation experiments is derived using an approach valid for normal-mode elastic wave propagation in any crystalline direction. The resulting generalized Grueneisen parameters are purely isentropic in contrast to the Brugger-Grueneisen parameters which are of a mixed thermodynamic state. Experimental data comparing the isentropic generalized Grueneisen parameters and the Brugger-Grueneisen parameters are presented.
Detonation properties of 1,1-diamino-2,2-dinitroethene (DADNE).
Trzciński, Waldemar A; Cudziło, Stanisław; Chyłek, Zbigniew; Szymańczyk, Leszek
2008-09-15
1,1-Diamino-2,2-dinitroethene (DADNE, FOX-7) is an explosive of current interest. In our work, an advanced study of detonation characteristics of this explosive was performed. DADNE was prepared and recrystallized on a laboratory scale. Some sensitivity and detonation properties of DADNE were determined. The detonation performance was established by measurements of the detonation wave velocity, detonation pressure and calorimetric heat of explosion as well as the accelerating ability. The JWL (Jones-Wilkins-Lee) isentrope and the constant-gamma isentrope for the detonation products of DADNE were also found.
Gehrig, Nicolas; Dragotti, Pier Luigi
2009-03-01
In this paper, we study the sampling and the distributed compression of the data acquired by a camera sensor network. The effective design of these sampling and compression schemes requires, however, the understanding of the structure of the acquired data. To this end, we show that the a priori knowledge of the configuration of the camera sensor network can lead to an effective estimation of such structure and to the design of effective distributed compression algorithms. For idealized scenarios, we derive the fundamental performance bounds of a camera sensor network and clarify the connection between sampling and distributed compression. We then present a distributed compression algorithm that takes advantage of the structure of the data and that outperforms independent compression algorithms on real multiview images.
NASA Astrophysics Data System (ADS)
Griffin, Kyle S.
Time extended EOF (TE-EOF) analysis is employed to examine the synoptic-scale evolution of the two leading modes of north Pacific jet stream variability, namely its zonal extension/retraction (TE-EOF 1) and the north/south shift of its exit region (TE-EOF 2). Composite analyses are constructed preceding and following peaks in the principal component associated with each of the two TE-EOFs, providing insight into the preferred evolutions of the north Pacific jet. Jet extension events are associated with an anomalous Gulf of Alaska cyclone, while jet retractions are associated with an anomalous ridge over the Aleutians. Similar but shifted upper level patterns are noted with the corresponding poleward/equatorward shifted jet phases, with the poleward (equatorward) shift of the jet exit region associated with anomalous low-level warmth (cold) over western North America. Such composites also suggest connections between certain phases of these leading modes of jet variability and deep convection in the tropics, a connection that has been challenging to physically diagnose in previous studies. The isentropic pressure depth measures the mass contained within an isentropic layer in a given grid column, enabling the tracking of mass exhausted by deep convection. The gradient of isentropic pressure depth is directly associated with the vertical geostrophic wind shear in that layer and thus provides a means to track the influence of convective mass flux on the evolution of the jet stream. A case study focused on the extreme North American warm episode of March 2012 demonstrates how positive pressure depth anomalies from a strong MJO event impact the jet stream over eastern Asia and drive a portion of the mid-latitude response that leads to the flow amplification and subsequent downstream warmth. This study demonstrates one way by which isentropic pressure depth can diagnose the impacts of tropical deep convection on the mid-latitude circulation. Using TE-EOFs, composites of isentropic pressure depth are constructed, to examine the evolution of pressure depth anomalies preceding each phase of the two leading modes of jet variability. In jet extension events, a large negative pressure depth anomaly in the 315-330 K isentropic layer and a positive pressure depth anomaly in the 340-355 K isentropic layer align north and south of the climatological jet exit region, respectively. A similar but opposite configuration is found in jet retraction events. During poleward shifted jet events, the configuration of pressure depth anomalies is comparable to that observed in jet extension events, but shifted poleward. Positive pressure depth anomalies in each set of events predominantly originate from either the Maritime Continent or East Asia and track along the climatological jet before impacting the exit region of the jet stream. Negative pressure depth anomalies have similar upstream origins before moving through the jet in a similar manner. These composite evolutions provide insight into the synoptic-scale evolutions that precede the preferred modes of jet variability, highlighting the influence of both mid-latitude weather systems and mass flux from tropical deep convection on North Pacific jet variability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pak, A., E-mail: pak5@llnl.gov; Field, J. E.; Benedetti, L. R.
2014-11-15
In an indirectly driven implosion, non-radial translational motion of the compressed fusion capsule is a signature of residual kinetic energy not coupled into the compressional heating of the target. A reduction in compression reduces the peak pressure and nuclear performance of the implosion. Measuring and reducing the residual motion of the implosion is therefore necessary to improve performance and isolate other effects that degrade performance. Using the gated x-ray diagnostic, the x-ray Bremsstrahlung emission from the compressed capsule is spatially and temporally resolved at x-ray energies of >8.7 keV, allowing for measurements of the residual velocity. Here details of themore » x-ray velocity measurement and fitting routine will be discussed and measurements will be compared to the velocities inferred from the neutron time of flight detectors.« less
Development of a broadband reflectivity diagnostic for laser driven shock compression experiments
Ali, S. J.; Bolme, C. A.; Collins, G. W.; ...
2015-04-16
Here, a normal-incidence visible and near-infrared shock wave optical reflectivity diagnostic was constructed to investigate changes in the optical properties of materials under dynamic laser compression. Documenting wavelength- and time-dependent changes in the optical properties of laser-shock compressed samples has been difficult, primarily due to the small sample sizes and short time scales involved, but we succeeded in doing so by broadening a series of time delayed 800-nm pulses from an ultrafast Ti:sapphire laser to generate high-intensity broadband light at nanosecond time scales. This diagnostic was demonstrated over the wavelength range 450–1150 nm with up to 16 time displaced spectramore » during a single shock experiment. Simultaneous off-normal incidence velocity interferometry (velocity interferometer system for any reflector) characterized the sample under laser-compression and also provided an independent reflectivity measurement at 532 nm wavelength. The shock-driven semiconductor-to-metallic transition in germanium was documented by the way of reflectivity measurements with 0.5 ns time resolution and a wavelength resolution of 10 nm.« less
Campbell, Gene K.
1983-01-01
A pumping system is described for pumping fluids, such as water with entrained mud and small rocks, out of underground cavities such as drilled wells, which can effectively remove fluids down to a level very close to the bottom of the cavity and which can operate solely by compressed air pumped down through the cavity. The system utilizes a subassembly having a pair of parallel conduit sections (44, 46) adapted to be connected onto the bottom of a drill string utilized for drilling the cavity, the drill string also having a pair of coaxially extending conduits. The subassembly includes an upper portion which has means for connection onto the drill string and terminates the first conduit of the drill string in a plenum (55). A compressed air-driven pump (62) is suspended from the upper portion. The pump sucks fluids from the bottom of the cavity and discharges them into the second conduit. Compressed air pumped down through the first conduit (46) to the plenum powers the compressed air-driven pump and aerates the fluid in the second conduit to lift it to the earth's surface.
Filling-driven Mott transition in SU(N ) Hubbard models
NASA Astrophysics Data System (ADS)
Lee, Seung-Sup B.; von Delft, Jan; Weichselbaum, Andreas
2018-04-01
We study the filling-driven Mott transition involving the metallic and paramagnetic insulating phases in SU (N ) Fermi-Hubbard models, using the dynamical mean-field theory and the numerical renormalization group as its impurity solver. The compressibility shows a striking temperature dependence: near the critical end-point temperature, it is strongly enhanced in the metallic phase close to the insulating phase. We demonstrate that this compressibility enhancement is associated with the thermal suppression of the quasiparticle peak in the local spectral functions. We also explain that the asymmetric shape of the quasiparticle peak originates from the asymmetry in the dynamics of the generalized doublons and holons.
Remotely controllable mixing system
NASA Technical Reports Server (NTRS)
Belew, R. R. (Inventor)
1986-01-01
This invention relates to a remotely controllable mixing system in which a plurality of mixing assemblies are arranged in an annular configuration, and wherein each assembly employs a central chamber and two outer, upper and lower chambers. Valves are positioned between chambers, and these valves for a given mixing assembly are operated by upper and lower control rotors, which in turn are driven by upper and lower drive rotors. Additionally, a hoop is compressed around upper control rotors and a hoop is compressed around lower control rotors to thus insure constant frictional engagement between all control rotors and drive rotors. The drive rollers are driven by a motor.
Air motion determination by tracking humidity patterns in isentropic layers
NASA Technical Reports Server (NTRS)
Mancuso, R. L.; Hall, D. J.
1975-01-01
Determining air motions by tracking humidity patterns in isentropic layers was investigated. Upper-air rawinsonde data from the NSSL network and from the AVE-II pilot experiment were used to simulate temperature and humidity profile data that will eventually be available from geosynchronous satellites. Polynomial surfaces that move with time were fitted to the mixing-ratio values of the different isentropic layers. The velocity components of the polynomial surfaces are part of the coefficients that are determined in order to give an optimum fitting of the data. In the mid-troposphere, the derived humidity motions were in good agreement with the winds measured by rawinsondes so long as there were few or no clouds and the lapse rate was relatively stable. In the lower troposphere, the humidity motions were unreliable primarily because of nonadiabatic processes and unstable lapse rates. In the upper troposphere, the humidity amounts were too low to be measured with sufficient accuracy to give reliable results. However, it appears that humidity motions could be used to provide mid-tropospheric wind data over large regions of the globe.
Simultaneous determination of Hugoniot and Isentrope in gas gun experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thoe, R S
2007-02-22
We have been exploring the use of the ''reverse ballistics'' method to obtain Hugoniot and off Hugoniot Equation Of State. This method uses the unknown sample as the flyer and collides it into a window whose EOS is well known. A VISAR determines the particle velocity which when combined with the windows EOS gives a direct determination of the pressure. Since the pressure and particle velocity are continuous across the interface the shock speed in the flyer can be determined: Us = P/(rhoUp). Subtracting the time of arrival of the shock at the back of the flyer from the timesmore » of arrival of the rarefaction wave allows the determination of the release isentrope centered at the measured Hugoniot point and extending down to the release pressure as determined by the impedance of the sabot. Besides obtaining both Hugoniot and isentrope data on a single shot, this method has an advantage in that all the timing information is accomplished within the interferometer, i.e. no dependence of cable delays etc.« less
Metastable sound speed in gas-liquid mixtures
NASA Technical Reports Server (NTRS)
Bursik, J. W.; Hall, R. M.
1979-01-01
A new method of calculating speed of sound for two-phase flow is presented. The new equation assumes no phase change during the propagation of an acoustic disturbance and assumes that only the total entropy of the mixture remains constant during the process. The new equation predicts single-phase values for the speed of sound in the limit of all gas or all liquid and agrees with available two-phase, air-water sound speed data. Other expressions used in the two-phase flow literature for calculating two-phase, metastable sound speed are reviewed and discussed. Comparisons are made between the new expression and several of the previous expressions -- most notably a triply isentropic equation as used, a triply isentropic equation as used, among others, by Karplus and by Wallis. Appropriate differences are pointed out and a thermodynamic criterion is derived which must be satisfied in order for the triply isentropic expression to be thermodynamically consistent. This criterion is not satisfied for the cases examined, which included two-phase nitrogen, air-water, two-phase parahydrogen, and steam-water. Consequently, the new equation derived is found to be superior to the other equations reviewed.
Compressibility effects on dynamic stall of airfoils undergoing rapid transient pitching motion
NASA Technical Reports Server (NTRS)
Chandrasekhara, M. S.; Platzer, M. F.
1992-01-01
The research was carried out in the Compressible Dynamic Stall Facility, CDSF, at the Fluid Mechanics Laboratory (FML) of NASA Ames Research Center. The facility can produce realistic nondimensional pitch rates experienced by fighter aircraft, which on model scale could be as high as 3600/sec. Nonintrusive optical techniques were used for the measurements. The highlight of the effort was the development of a new real time interferometry method known as Point Diffraction Interferometry - PDI, for use in unsteady separated flows. This can yield instantaneous flow density information (and hence pressure distributions in isentropic flows) over the airfoil. A key finding is that the dynamic stall vortex forms just as the airfoil leading edge separation bubble opens-up. A major result is the observation and quantification of multiple shocks over the airfoil near the leading edge. A quantitative analysis of the PDI images shows that pitching airfoils produce larger suction peaks than steady airfoils at the same Mach number prior to stall. The peak suction level reached just before stall develops is the same at all unsteady rates and decreases with increase in Mach number. The suction is lost once the dynamic stall vortex or vortical structure begins to convect. Based on the knowledge gained from this preliminary analysis of the data, efforts to control dynamic stall were initiated. The focus of this work was to arrive at a dynamically changing leading edge shape that produces only 'acceptable' airfoil pressure distributions over a large angle of attack range.
Polishuk, Ilya
2013-03-14
This study is the first comparative investigation of predicting the isochoric and the isobaric heat capacities, the isothermal and the isentropic compressibilities, the isobaric thermal expansibilities, the thermal pressure coefficients, and the sound velocities of ionic liquids by statistical associating fluid theory (SAFT) equation of state (EoS) models and cubic-plus-association (CPA). It is demonstrated that, taking into account the high uncertainty of the literature data (excluding sound velocities), the generalized for heavy compounds version of SAFT+Cubic (GSAFT+Cubic) appears as a robust estimator of the auxiliary thermodynamic properties under consideration. In the case of the ionic liquids the performance of PC-SAFT seems to be less accurate in comparison to ordinary compounds. In particular, PC-SAFT substantially overestimates heat capacities and underestimates the temperature and pressure dependencies of sound velocities and compressibilities. An undesired phenomenon of predicting high fictitious critical temperatures of ionic liquids by PC-SAFT should be noticed as well. CPA is the less accurate estimator of the liquid phase properties, but it is advantageous in modeling vapor pressures and vaporization enthalpies of ionic liquids. At the same time, the preliminary results indicate that the inaccuracies in predicting the deep vacuum vapor pressures of ionic liquids do not influence modeling of phase equilibria in their mixtures at much higher pressures.
NASA Astrophysics Data System (ADS)
Danchin, Raphaël; Xu, Jiang
2017-04-01
The global existence issue for the isentropic compressible Navier-Stokes equations in the critical regularity framework was addressed in Danchin (Invent Math 141(3):579-614, 2000) more than 15 years ago. However, whether (optimal) time-decay rates could be shown in critical spaces has remained an open question. Here we give a positive answer to that issue not only in the L 2 critical framework of Danchin (Invent Math 141(3):579-614, 2000) but also in the general L p critical framework of Charve and Danchin (Arch Ration Mech Anal 198(1):233-271, 2010), Chen et al. (Commun Pure Appl Math 63(9):1173-1224, 2010), Haspot (Arch Ration Mech Anal 202(2):427-460, 2011): we show that under a mild additional decay assumption that is satisfied if, for example, the low frequencies of the initial data are in {L^{p/2}(Rd)}, the L p norm (the slightly stronger dot B^0_{p,1} norm in fact) of the critical global solutions decays like t^{-d(1/p - 1/4} for {tto+∞,} exactly as firstly observed by Matsumura and Nishida in (Proc Jpn Acad Ser A 55:337-342, 1979) in the case p = 2 and d = 3, for solutions with high Sobolev regularity. Our method relies on refined time weighted inequalities in the Fourier space, and is likely to be effective for other hyperbolic/parabolic systems that are encountered in fluid mechanics or mathematical physics.
Lawlor, Shawn P [Bellevue, WA; Novaresi, Mark A [San Diego, CA; Cornelius, Charles C [Kirkland, WA
2008-02-26
A gas compressor based on the use of a driven rotor having an axially oriented compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which forms a supersonic shockwave axially, between adjacent strakes. In using this method to compress inlet gas, the supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdyanamic flow path formed between the gas compression ramp on a strake, the shock capture lip on the adjacent strake, and captures the resultant pressure within the stationary external housing while providing a diffuser downstream of the compression ramp.
Test Operations Procedure (TOP) 10-2-400 Open End Compressed Gas Driven Shock Tube
gas-driven shock tube. Procedures are provided for instrumentation, test item positioning, estimation of key test parameters, operation of the shock...tube, data collection, and reporting. The procedures in this document are based on the use of helium gas and Mylar film diaphragms.
NASA Astrophysics Data System (ADS)
Akkermans, J. A. G.; Di Mitri, S.; Douglas, D.; Setija, I. D.
2017-08-01
High gain free electron lasers (FELs) driven by high repetition rate recirculating accelerators have received considerable attention in the scientific and industrial communities in recent years. Cost-performance optimization of such facilities encourages limiting machine size and complexity, and a compact machine can be realized by combining bending and bunch length compression during the last stage of recirculation, just before lasing. The impact of coherent synchrotron radiation (CSR) on electron beam quality during compression can, however, limit FEL output power. When methods to counteract CSR are implemented, appropriate beam diagnostics become critical to ensure that the target beam parameters are met before lasing, as well as to guarantee reliable, predictable performance and rapid machine setup and recovery. This article describes a beam line for bunch compression and recirculation, and beam switchyard accessing a diagnostic line for EUV lasing at 1 GeV beam energy. The footprint is modest, with 12 m compressive arc diameter and ˜20 m diagnostic line length. The design limits beam quality degradation due to CSR both in the compressor and in the switchyard. Advantages and drawbacks of two switchyard lines providing, respectively, off-line and on-line measurements are discussed. The entire design is scalable to different beam energies and charges.
Fuel Areal-Density Measurements in Laser-Driven Magnetized Inertial Fusion from Secondary Neutrons
NASA Astrophysics Data System (ADS)
Davies, J. R.; Barnak, D. H.; Betti, R.; Glebov, V. Yu.; Knauer, J. P.; Peebles, J. L.
2017-10-01
Laser-driven magnetized liner inertial fusion is being developed on the OMEGA laser to provide the first data at a significantly smaller scale than the Z pulsed-power machine in order to test scaling and to provide more shots with better diagnostic access than Z. In OMEGA experiments, a 0.6-mm-outer-diam plastic cylinder filled with 11 atm of D2 is placed in an axial magnetic field of 10 T, the D2 is preheated by a single beam along the axis, and then the cylinder is compressed by 40 beams. Secondary DT neutron yields provide a measurement of the areal density of the compressed D2 because the compressed fuel is much smaller than the mean free path and the Larmor radius of the T produced in D-D fusion. Measured secondary yields confirm theoretical predictions that preheating and magnetization reduce fuel compression. Higher fuel compression is found to consistently lead to lower neutron yields, which is not predicted by simulations. The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000568 and the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Thermodynamic analyses and the experimental validation of the Pulse Tube Expander system
NASA Astrophysics Data System (ADS)
Jia, Qiming; Gong, Linghui; Feng, Guochao; Zou, Longhui
2018-04-01
A Pulse Tube Expander (PTE) for small and medium capacity cryogenic refrigeration systems is described in this paper. An analysis of the Pulse Tube Expander is developed based on the thermodynamic analyses of the system. It is shown that the gas expansion is isentropic in the cold end of the pulse tube. The temperature variation at the outlet of Pulse Tube Expander is measured and the isentropic efficiency is calculated to be 0.455 at 2 Hz. The pressure oscillations in the pulse tube are obtained at different frequencies. The limitations and advantages of this system are also discussed.
NASA Astrophysics Data System (ADS)
Bencherif, H.; El Amraoui, L.; Kirgis, G.; Leclair de Bellevue, J.; Hauchecorne, A.; Mzé, N.; Portafaix, T.; Pazmino, A.; Goutail, F.
2011-01-01
This paper reports on an increase of ozone event observed over Kerguelen (49.4° S, 70.3° E) in relationship with large-scale isentropic transport. This is evidenced by ground-based observations (co-localised radiosonde and SAOZ experiments) together with satellite global observations (Aura/MLS) assimilated into MOCAGE, a Méteo-France model. The study is based on the analyses of the first ozonesonde experiment never recorded at the Kerguelen site within the framework of a French campaign called ROCK that took place from April to August 2008. Comparisons and interpretations of the observed event are supported by co-localised SAOZ observations, by global mapping of tracers (O3, N2O and columns of O3) from Aura/MLS and Aura/OMI experiments, and by model simulations of Ertel Potential Vorticity initialised by the ECMWF (European Centre for Medium-Range Weather Forecasts) data reanalyses. Satellite and ground-based observational data revealed a consistent increase of ozone in the local stratosphere by mid-April 2008. Additionally, Ozone (O3) and nitrous oxide (N2O) profiles obtained during January-May 2008 using the Microwave Limb Sounder (MLS) aboard the Aura satellite are assimilated into MOCAGE (MOdèle de Chimie Atmosphérique à Grande Echelle), a global three-dimensional chemistry transport model of Météo-France. The assimilated total O3 values are consistent with SAOZ ground observations (within ±5%), and isentropic distributions of O3 match well with maps of advected potential vorticity (APV) derived from the MIMOSA model, a high-resolution advection transport model, and from the ECMWF reanalysis. The event studied seems to be related to the isentropic transport of air masses that took place simultaneously in the lower- and middle-stratosphere, respectively from the polar region and from the tropics to the mid-latitudes. In fact, the ozone increase observed by mid April 2008 resulted simultaneously: (1) from an equator-ward departure of polar air masses characterised with a high-ozone layer in the lower stratosphere (near the 475 K isentropic level), and (2) from a reverse isentropic transport from the tropics to mid- and high-latitudes in the upper stratosphere (nearby the 700 K level). The increase of ozone observed over Kerguelen from the 16-April ozonesonde profile is thus attributed to a concomitant isentropic transport of ozone in two stratospheric layers: the tropical air moving southward and reaching over Kerguelen in the upper stratosphere, and the polar air passing over the same area but in the lower stratosphere.
Study on the CO2 electric driven fixed swash plate type compressor for eco-friendly vehicles
NASA Astrophysics Data System (ADS)
Nam, Donglim; Kim, Kitae; Lee, Jehie; Kwon, Yunki; Lee, Geonho
2017-08-01
The purpose of this study is to experiment and to performance analysis about the electric-driven fixed swash plate compressor using alternate refrigerant(R744). Comprehensive simulation model for an electric driven compressor using CO2 for eco-friendly vehicle is presented. This model consists of compression model and dynamic model. The compression model included valve dynamics, leakage, and heat transfer models. And the dynamic model included frictional loss between piston ring and cylinder wall, frictional loss between shoe and swash plate, frictional loss of bearings, and electric efficiency. Especially, because the efficiency of an electric parts(motor and inverter) in the compressor affects the loss of the compressor, the dynamo test was performed. We made the designed compressor, and tested the performance of the compressor about the variety pressure conditions. Also we compared the performance analysis result and performance test result.
The effect of pressure on Cu-btc: framework compression vs. guest inclusion.
Graham, Alexander J; Tan, Jin-Chong; Allan, David R; Moggach, Stephen A
2012-02-01
Here we present detailed structural data on the effect of high pressure on Cu-btc. Application of pressure causes solvent to be squeezed into the pores until a phase transition occurs, driven by the sudden compression and expansion of equatorial and axial Cu-O bonds. This journal is © The Royal Society of Chemistry 2012
Inertial fusion program. Progress report, January 1-June 30, 1978
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skoberne, F.
1980-05-01
Studies and experiments aimed at investigating the possibility of restoring wavefront quality in optical systems through phase conjugation are summarized, and work that could lead to the development of highly damage-resistant isolators is discussed. The effects of various parameters on pulse-energy uniformity and of multipass extraction on laser efficiency are reported. Results of equation-of-state, shock propagation, multiburst simulation, and opacity measurements are discussed. Target designs are described that should provide a smooth transition from the exploding-pusher regime of experiments to that of isentropic compression. Progress in target fabrication techniques toward creating a 20-times-liquid-density target are outlined, and efforts that ledmore » to the extension of our neutron detection capability to levels of less than 10/sup 3/ n are summarized. The results of various studies of laser fusion application, e.g., for producing ultrahigh-temperature process heat or hydrogen from water decomposition are presented, as well as investigations of fusion-fission hybrids for the production of /sup 233/U from /sup 232/Th.« less
A Simple Model for the Dependence on Local Detonation Speed (D) of the Product Entropy (S)
NASA Astrophysics Data System (ADS)
Hetherington, David
2011-06-01
The generation of a burn time field as a pre-processing step ahead of a hydrocode calculation has been mostly upgraded in the explosives modelling community from the historical model of single-speed programmed burn to DSD. However, with this advance has come the problem that the previously conventional approach to the hydrodynamic stage of the model results in S having the wrong correlation with D. Instead of being higher where the detonation speed is lower, i.e. where reaction occurs at lower compression, the conventional method leads to S being lower where D is lower, resulting in a completely fictitious enhancement of available energy where the burn is degraded! A technique is described which removes this deficiency of the historical model when used with a DSD-generated burn time field. By treating the conventional JWL equation as a semi-empirical expression for the local expansion isentrope, and constraining the local parameter set for consistency with D, it is possible to obtain the two desirable outcomes that the model of the detonation wave is internally consistent, and S is realistically correlated with D.
The gas jet behavior in submerged Laval nozzle flow
NASA Astrophysics Data System (ADS)
Gong, Zhao-xin; Lu, Chuan-jing; Li, Jie; Cao, Jia-yi
2017-12-01
The behavior of the combustion gas jet in a Laval nozzle flow is studied by numerical simulations. The Laval nozzle is installed in an engine and the combustion gas comes out of the engine through the nozzle and then injects into the surrounding environment. First, the jet injection into the air is simulated and the results are verified by the theoretical solutions of the 1-D isentropic flow. Then the behavior of the gas jet in a submerged Laval nozzle flow is simulated for various water depths. The stability of the jet and the jet evolution with a series of expansion waves and compression waves are analyzed, as well as the mechanism of the jet in a deep water depth. Finally, the numerical results are compared with existing experimental data and it is shown that the characteristics of the water blockage and the average values of the engine thrust are in good agreement and the unfixed engine in the experiment is the cause of the differences of the frequency and the amplitude of the oscillation.
NASA Astrophysics Data System (ADS)
Federrath, C.; Roman-Duval, J.; Klessen, R. S.; Schmidt, W.; Mac Low, M.-M.
2010-03-01
Context. Density and velocity fluctuations on virtually all scales observed with modern telescopes show that molecular clouds (MCs) are turbulent. The forcing and structural characteristics of this turbulence are, however, still poorly understood. Aims: To shed light on this subject, we study two limiting cases of turbulence forcing in numerical experiments: solenoidal (divergence-free) forcing and compressive (curl-free) forcing, and compare our results to observations. Methods: We solve the equations of hydrodynamics on grids with up to 10243 cells for purely solenoidal and purely compressive forcing. Eleven lower-resolution models with different forcing mixtures are also analysed. Results: Using Fourier spectra and Δ-variance, we find velocity dispersion-size relations consistent with observations and independent numerical simulations, irrespective of the type of forcing. However, compressive forcing yields stronger compression at the same rms Mach number than solenoidal forcing, resulting in a three times larger standard deviation of volumetric and column density probability distributions (PDFs). We compare our results to different characterisations of several observed regions, and find evidence of different forcing functions. Column density PDFs in the Perseus MC suggest the presence of a mainly compressive forcing agent within a shell, driven by a massive star. Although the PDFs are close to log-normal, they have non-Gaussian skewness and kurtosis caused by intermittency. Centroid velocity increments measured in the Polaris Flare on intermediate scales agree with solenoidal forcing on that scale. However, Δ-variance analysis of the column density in the Polaris Flare suggests that turbulence is driven on large scales, with a significant compressive component on the forcing scale. This indicates that, although likely driven with mostly compressive modes on large scales, turbulence can behave like solenoidal turbulence on smaller scales. Principal component analysis of G216-2.5 and most of the Rosette MC agree with solenoidal forcing, but the interior of an ionised shell within the Rosette MC displays clear signatures of compressive forcing. Conclusions: The strong dependence of the density PDF on the type of forcing must be taken into account in any theory using the PDF to predict properties of star formation. We supply a quantitative description of this dependence. We find that different observed regions show evidence of different mixtures of compressive and solenoidal forcing, with more compressive forcing occurring primarily in swept-up shells. Finally, we emphasise the role of the sonic scale for protostellar core formation, because core formation close to the sonic scale would naturally explain the observed subsonic velocity dispersions of protostellar cores. A movie is only available in electronic form at http://www.aanda.org
Thermodynamic and fluid mechanic analysis of rapid pressurization in a dead-end tube
NASA Technical Reports Server (NTRS)
Leslie, Ian H.
1989-01-01
Three models have been applied to very rapid compression of oxygen in a dead-ended tube. Pressures as high as 41 MPa (6000 psi) leading to peak temperatures of 1400 K are predicted. These temperatures are well in excess of the autoignition temperature (750 K) of teflon, a frequently used material for lining hoses employed in oxygen service. These findings are in accord with experiments that have resulted in ignition and combustion of the teflon, leading to the combustion of the stainless steel braiding and catastrophic failure. The system analyzed was representative of a capped off-high-pressure oxygen line, which could be part of a larger system. Pressurization of the larger system would lead to compression in the dead-end line, and possible ignition of the teflon liner. The model consists of a large plenum containing oxygen at the desired pressure (500 to 6000 psi). The plenum is connected via a fast acting valve to a stainless steel tube 2 cm inside diameter. Opening times are on the order of 15 ms. Downstream of the valve is an orifice sized to increase filling times to around 100 ms. The total length from the valve to the dead-end is 150 cm. The distance from the valve to the orifice is 95 cm. The models describe the fluid mechanics and thermodynamics of the flow, and do not include any combustion phenomena. A purely thermodynamic model assumes filling to be complete upstream of the orifice before any gas passes through the orifice. This simplification is reasonable based on experiment and computer modeling. Results show that peak temperatures as high as 4800 K can result from recompression of the gas after expanding through the orifice. An approximate transient model without an orifice was developed assuming an isentropic compression process. An analytical solution was obtained. Results indicated that fill times can be considerably shorter than valve opening times. The third model was a finite difference, 1-D transient compressible flow model. Results from the code show the recompression effect but predict much lower peak temperatures than the thermodynamic model.
Thermodynamic and fluid mechanic analysis of rapid pressurization in a dead-end tube
NASA Astrophysics Data System (ADS)
Leslie, Ian H.
1989-12-01
Three models have been applied to very rapid compression of oxygen in a dead-ended tube. Pressures as high as 41 MPa (6000 psi) leading to peak temperatures of 1400 K are predicted. These temperatures are well in excess of the autoignition temperature (750 K) of teflon, a frequently used material for lining hoses employed in oxygen service. These findings are in accord with experiments that have resulted in ignition and combustion of the teflon, leading to the combustion of the stainless steel braiding and catastrophic failure. The system analyzed was representative of a capped off-high-pressure oxygen line, which could be part of a larger system. Pressurization of the larger system would lead to compression in the dead-end line, and possible ignition of the teflon liner. The model consists of a large plenum containing oxygen at the desired pressure (500 to 6000 psi). The plenum is connected via a fast acting valve to a stainless steel tube 2 cm inside diameter. Opening times are on the order of 15 ms. Downstream of the valve is an orifice sized to increase filling times to around 100 ms. The total length from the valve to the dead-end is 150 cm. The distance from the valve to the orifice is 95 cm. The models describe the fluid mechanics and thermodynamics of the flow, and do not include any combustion phenomena. A purely thermodynamic model assumes filling to be complete upstream of the orifice before any gas passes through the orifice. This simplification is reasonable based on experiment and computer modeling. Results show that peak temperatures as high as 4800 K can result from recompression of the gas after expanding through the orifice. An approximate transient model without an orifice was developed assuming an isentropic compression process. An analytical solution was obtained.
Cylinder Expansion Experiments and Measured Product Isentropes for XTX-8004 Explosive
NASA Astrophysics Data System (ADS)
Jackson, Scott
2015-06-01
We present cylinder expansion data from full-scale (25.4-mm inner diameter) and half-scale (12.7-mm inner diameter) experiments with XTX-8004 explosive, composed of 80% RDX explosive and 20% Sylgard 182 silicone elastomer. An analytic method is reviewed and used to recover detonation product isentropes from the experimental data, which are presented in the standard JWL form. The cylinder expansion data was found to scale well, indicating ideal detonation behavior across the test scales. The analytically determined product JWLs were found to agree well with those produced via iterative hydrocode methods, but required significantly less computational effort.
Real-gas effects associated with one-dimensional transonic flow of cryogenic nitrogen
NASA Technical Reports Server (NTRS)
Adcock, J. B.
1976-01-01
Real gas solutions for one-dimensional isentropic and normal-shock flows of nitrogen were obtained for a wide range of temperatures and pressures. These calculations are compared to ideal gas solutions and are presented in tables. For temperatures (300 K and below) and pressures (1 to 10 atm) that cover those anticipated for transonic cryogenic tunnels, the solutions are analyzed to obtain indications of the magnitude of inviscid flow simulation errors. For these ranges, the maximum deviation of the various isentropic and normal shock parameters from the ideal values is about 1 percent or less, and for most wind tunnel investigations this deviation would be insignificant.
Laser driven supersonic flow over a compressible foam surface on the Nike lasera)
NASA Astrophysics Data System (ADS)
Harding, E. C.; Drake, R. P.; Aglitskiy, Y.; Plewa, T.; Velikovich, A. L.; Gillespie, R. S.; Weaver, J. L.; Visco, A.; Grosskopf, M. J.; Ditmar, J. R.
2010-05-01
A laser driven millimeter-scale target was used to generate a supersonic shear layer in an attempt to create a Kelvin-Helmholtz (KH) unstable interface in a high-energy-density (HED) plasma. The KH instability is a fundamental fluid instability that remains unexplored in HED plasmas, which are relevant to the inertial confinement fusion and astrophysical environments. In the experiment presented here the Nike laser [S. P. Obenschain et al., Phys. Plasmas 3, 2098 (1996)] was used to create and drive Al plasma over a rippled foam surface. In response to the supersonic Al flow (Mach=2.6±1.1) shocks should form in the Al flow near the perturbations. The experimental data were used to infer the existence and location of these shocks. In addition, the interface perturbations show growth that has possible contributions from both KH and Richtmyer-Meshkov instabilities. Since compressible shear layers exhibit smaller growth, it is important to use the KH growth rate derived from the compressible dispersion relation.
In situ X-Ray Diffraction of Shock-Compressed Fused Silica
NASA Astrophysics Data System (ADS)
Tracy, Sally June; Turneaure, Stefan J.; Duffy, Thomas S.
2018-03-01
Because of its widespread applications in materials science and geophysics, SiO2 has been extensively examined under shock compression. Both quartz and fused silica transform through a so-called "mixed-phase region" to a dense, low compressibility high-pressure phase. For decades, the nature of this phase has been a subject of debate. Proposed structures include crystalline stishovite, another high-pressure crystalline phase, or a dense amorphous phase. Here we use plate-impact experiments and pulsed synchrotron x-ray diffraction to examine the structure of fused silica shock compressed to 63 GPa. In contrast to recent laser-driven compression experiments, we find that fused silica adopts a dense amorphous structure at 34 GPa and below. When compressed above 34 GPa, fused silica transforms to untextured polycrystalline stishovite. Our results can explain previously ambiguous features of the shock-compression behavior of fused silica and are consistent with recent molecular dynamics simulations. Stishovite grain sizes are estimated to be ˜5 - 30 nm for compression over a few hundred nanosecond time scale.
Ramsey, Scott D.; Ivancic, Philip R.; Lilieholm, Jennifer F.
2015-12-10
This work is concerned with the use of similarity solutions of the compressible flow equations as benchmarks or verification test problems for finite-volume compressible flow simulation software. In practice, this effort can be complicated by the infinite spatial/temporal extent of many candidate solutions or “test problems.” Methods can be devised with the intention of ameliorating this inconsistency with the finite nature of computational simulation; the exact strategy will depend on the code and problem archetypes under investigation. For example, self-similar shock wave propagation can be represented in Lagrangian compressible flow simulations as rigid boundary-driven flow, even if no such “piston”more » is present in the counterpart mathematical similarity solution. The purpose of this work is to investigate in detail the methodology of representing self-similar shock wave propagation as a piston-driven flow in the context of various test problems featuring simple closed-form solutions of infinite spatial/temporal extent. The closed-form solutions allow for the derivation of similarly closed-form piston boundary conditions (BCs) for use in Lagrangian compressible flow solvers. Finally, the consequences of utilizing these BCs (as opposed to directly initializing the self-similar solution in a computational spatial grid) are investigated in terms of common code verification analysis metrics (e.g., shock strength/position errors and global convergence rates).« less
Time-resolved Sensing of Meso-scale Shock Compression with Multilayer Photonic Crystal Structures
NASA Astrophysics Data System (ADS)
Scripka, David; Lee, Gyuhyon; Summers, Christopher J.; Thadhani, Naresh
2017-06-01
Multilayer Photonic Crystal structures can provide spatially and temporally resolved data needed to validate theoretical and computational models relevant for understanding shock compression in heterogeneous materials. Two classes of 1-D photonic crystal multilayer structures were studied: optical microcavities (OMC) and distributed Bragg reflectors (DBR). These 0.5 to 5 micron thick structures were composed of SiO2, Al2O3, Ag, and PMMA layers fabricated primarily via e-beam evaporation. The multilayers have unique spectral signatures inherently linked to their time-resolved physical states. By observing shock-induced changes in these signatures, an optically-based pressure sensor was developed. Results to date indicate that both OMCs and DBRs exhibit nanosecond-resolved spectral shifts of several to 10s of nanometers under laser-driven shock compression loads of 0-10 GPa, with the magnitude of the shift strongly correlating to the shock load magnitude. Additionally, spatially and temporally resolved spectral shifts under heterogeneous laser-driven shock compression created by partial beam blocking have been successfully demonstrated. These results illustrate the potential for multilayer structures to serve as meso-scale sensors, capturing temporal and spatial pressure profile evolutions in shock-compressed heterogeneous materials, and revealing meso-scale pressure distributions across a shocked surface. Supported by DTRA Grant HDTRA1-12-1-005 and DoD, AFOSR, National Defense Science and Eng. Graduate Fellowship, 32 CFR 168a.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramsey, Scott D.; Ivancic, Philip R.; Lilieholm, Jennifer F.
This work is concerned with the use of similarity solutions of the compressible flow equations as benchmarks or verification test problems for finite-volume compressible flow simulation software. In practice, this effort can be complicated by the infinite spatial/temporal extent of many candidate solutions or “test problems.” Methods can be devised with the intention of ameliorating this inconsistency with the finite nature of computational simulation; the exact strategy will depend on the code and problem archetypes under investigation. For example, self-similar shock wave propagation can be represented in Lagrangian compressible flow simulations as rigid boundary-driven flow, even if no such “piston”more » is present in the counterpart mathematical similarity solution. The purpose of this work is to investigate in detail the methodology of representing self-similar shock wave propagation as a piston-driven flow in the context of various test problems featuring simple closed-form solutions of infinite spatial/temporal extent. The closed-form solutions allow for the derivation of similarly closed-form piston boundary conditions (BCs) for use in Lagrangian compressible flow solvers. Finally, the consequences of utilizing these BCs (as opposed to directly initializing the self-similar solution in a computational spatial grid) are investigated in terms of common code verification analysis metrics (e.g., shock strength/position errors and global convergence rates).« less
Analytic model for the dynamic Z-pinch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piriz, A. R., E-mail: roberto.piriz@uclm.es; Sun, Y. B.; Tahir, N. A.
2015-06-15
A model is presented for describing the cylindrical implosion of a shock wave driven by an accelerated piston. It is based in the identification of the acceleration of the shocked mass with the acceleration of the piston. The model yields the separate paths of the piston and the shock. In addition, by considering that the shocked region evolves isentropically, the approximate profiles of all the magnitudes in the shocked region are obtained. The application to the dynamic Z-pinch is presented and the results are compared with the well known snowplow and slug models which are also derived as limiting casesmore » of the present model. The snowplow model is seen to yield a trajectory in between those of the shock and the piston. Instead, the neglect of the inertial effects in the slug model is seen to produce a too fast implosion, and the pressure uniformity is shown to lead to an unphysical instantaneous piston stopping when the shock arrives to the axis.« less
Paisley, Dennis L; Luo, Sheng-Nian; Greenfield, Scott R; Koskelo, Aaron C
2008-02-01
We present validation and some applications of two laser-driven shock wave loading techniques: laser-launched flyer plate and confined laser ablation. We characterize the flyer plate during flight and the dynamically loaded target with temporally and spatially resolved diagnostics. With transient imaging displacement interferometry, we demonstrate that the planarity (bow and tilt) of the loading induced by a spatially shaped laser pulse is within 2-7 mrad (with an average of 4+/-1 mrad), similar to that in conventional techniques including gas gun loading. Plasma heating of target is negligible, in particular, when a plasma shield is adopted. For flyer plate loading, supported shock waves can be achieved. Temporal shaping of the drive pulse in confined laser ablation allows for flexible loading, e.g., quasi-isentropic, Taylor-wave, and off-Hugoniot loading. These techniques can be utilized to investigate such dynamic responses of materials as Hugoniot elastic limit, plasticity, spall, shock roughness, equation of state, phase transition, and metallurgical characteristics of shock-recovered samples.
RF pulse compression for future linear colliders
NASA Astrophysics Data System (ADS)
Wilson, Perry B.
1995-07-01
Future (nonsuperconducting) linear colliders will require very high values of peak rf power per meter of accelerating structure. The role of rf pulse compression in producing this power is examined within the context of overall rf system design for three future colliders at energies of 1.0-1.5 TeV, 5 TeV, and 25 TeV. In order to keep the average AC input power and the length of the accelerator within reasonable limits, a collider in the 1.0-1.5 TeV energy range will probably be built at an x-band rf frequency, and will require a peak power on the order of 150-200 MW per meter of accelerating structure. A 5 TeV collider at 34 GHz with a reasonable length (35 km) and AC input power (225 MW) would require about 550 MW per meter of structure. Two-beam accelerators can achieve peak powers of this order by applying dc pulse compression techniques (induction linac modules) to produce the drive beam. Klystron-driven colliders achieve high peak power by a combination of dc pulse compression (modulators) and rf pulse compression, with about the same overall rf system efficiency (30-40%) as a two-beam collider. A high gain (6.8) three-stage binary pulse compression system with high efficiency (80%) is described, which (compared to a SLED-II system) can be used to reduce the klystron peak power by about a factor of two, or alternatively, to cut the number of klystrons in half for a 1.0-1.5 TeV x-band collider. For a 5 TeV klystron-driven collider, a high gain, high efficiency rf pulse compression system is essential.
Filming the invisible - time-resolved visualization of compressible flows
NASA Astrophysics Data System (ADS)
Kleine, H.
2010-04-01
Essentially all processes in gasdynamics are invisible to the naked eye as they occur in a transparent medium. The task to observe them is further complicated by the fact that most of these processes are also transient, often with characteristic times that are considerably below the threshold of human perception. Both difficulties can be overcome by combining visualization methods that reveal changes in the transparent medium, and high-speed photography techniques that “stop” the motion of the flow. The traditional approach is to reconstruct a transient process from a series of single images, each taken in a different experiment at a different instant. This approach, which is still widely used today, can only be expected to give reliable results when the process is reproducible. Truly time-resolved visualization, which yields a sequence of flow images in a single experiment, has been attempted for more than a century, but many of the developed camera systems were characterized by a high level of complexity and limited quality of the results. Recent advances in digital high-speed photography have changed this situation and have provided the tools to investigate, with relative ease and in sufficient detail, the true development of a transient flow with characteristic time scales down to one microsecond. This paper discusses the potential and the limitations one encounters when using density-sensitive visualization techniques in time-resolved mode. Several examples illustrate how this approach can reveal and explain a number of previously undetected phenomena in a variety of highly transient compressible flows. It is demonstrated that time-resolved visualization offers numerous advantages which normally outweigh its shortcomings, mainly the often-encountered loss in resolution. Apart from the capability to track the location and/or shape of flow features in space and time, adequate time-resolved visualization allows one to observe the development of deliberately introduced near-isentropic perturbation wavelets. This new diagnostic tool can be used to qualitatively and quantitatively determine otherwise inaccessible thermodynamic properties of a compressible flow.
Preliminary characterization of an expanding flow of siloxane vapor MDM
NASA Astrophysics Data System (ADS)
Spinelli, A.; Cozzi, F.; Cammi, G.; Zocca, M.; Gaetani, P.; Dossena, V.; Guardone, A.
2017-03-01
The early experimental results on the characterization of expanding flows of siloxane vapor MDM (C8H24O2Si3, octamethyltrisiloxane) are presented. The measurements were performed on the Test Rig for Organic VApors (TROVA) at the CREA Laboratory of Politecnico di Milano. The TROVA test-rig was built in order to investigate the non-ideal compressible-fluid behavior of typical expanding flows occurring within organic Rankine cycles (ORC) turbine passages. The test rig implements a batch Rankine cycle where a planar converging-diverging nozzle replaces the turbine and represents a test section. Investigations related to both fields of non-ideal compressible-fluid dynamics fundamentals and turbomachinery are allowed. The nozzle can be operated with different working fluids and operating conditions aiming at measuring independently the pressure, the temperature and the velocity field and thus providing data to verify the thermo-fluid dynamic models adopted to predict the behavior of these flows. The limiting values of pressure and temperature are 50 bar and 400 °C respectively. The early measurements are performed along the nozzle axis, where an isentropic process is expected to occur. In particular, the results reported here refer to the nozzle operated in adapted conditions using the siloxane vapor MDM as working fluid in thermodynamic regions where mild to medium non-ideal compressible-fluid effects are present. Both total temperature and total pressure of the nozzle are measured upstream of the test section, while static pressure are measured along the nozzle axis. Schlieren visualizations are also carried out in order to complement the pressure measurement with information about the 2D density gradient field. The Laser Doppler Velocimetry technique is planned to be used in the future for velocity measurements. The measured flow field has also been interpreted by resorting to the quasi-one-dimensional theory and two dimensional CFD viscous calculation. In both cases state-of-the-art thermodynamic models were applied.
NASA Astrophysics Data System (ADS)
Johnson, Donald R.; Lenzen, Allen J.; Zapotocny, Tom H.; Schaack, Todd K.
2000-11-01
A challenge common to weather, climate, and seasonal numerical prediction is the need to simulate accurately reversible isentropic processes in combination with appropriate determination of sources/sinks of energy and entropy. Ultimately, this task includes the distribution and transport of internal, gravitational, and kinetic energies, the energies of water substances in all forms, and the related thermodynamic processes of phase changes involved with clouds, including condensation, evaporation, and precipitation processes.All of the processes noted above involve the entropies of matter, radiation, and chemical substances, conservation during transport, and/or changes in entropies by physical processes internal to the atmosphere. With respect to the entropy of matter, a means to study a model's accuracy in simulating internal hydrologic processes is to determine its capability to simulate the appropriate conservation of potential and equivalent potential temperature as surrogates of dry and moist entropy under reversible adiabatic processes in which clouds form, evaporate, and precipitate. In this study, a statistical strategy utilizing the concept of `pure error' is set forth to assess the numerical accuracies of models to simulate reversible processes during 10-day integrations of the global circulation corresponding to the global residence time of water vapor. During the integrations, the sums of squared differences between equivalent potential temperature e numerically simulated by the governing equations of mass, energy, water vapor, and cloud water and a proxy equivalent potential temperature te numerically simulated as a conservative property are monitored. Inspection of the differences of e and te in time and space and the relative frequency distribution of the differences details bias and random errors that develop from nonlinear numerical inaccuracies in the advection and transport of potential temperature and water substances within the global atmosphere.A series of nine global simulations employing various versions of Community Climate Models CCM2 and CCM3-all Eulerian spectral numerics, all semi-Lagrangian numerics, mixed Eulerian spectral, and semi-Lagrangian numerics-and the University of Wisconsin-Madison (UW) isentropic-sigma gridpoint model provides an interesting comparison of numerical accuracies in the simulation of reversibility. By day 10, large bias and random differences were identified in the simulation of reversible processes in all of the models except for the UW isentropic-sigma model. The CCM2 and CCM3 simulations yielded systematic differences that varied zonally, vertically, and temporally. Within the comparison, the UW isentropic-sigma model was superior in transporting water vapor and cloud water/ice and in simulating reversibility involving the conservation of dry and moist entropy. The only relative frequency distribution of differences that appeared optimal, in that the distribution remained unbiased and equilibrated with minimal variance as it remained statistically stationary, was the distribution from the UW isentropic-sigma model. All other distributions revealed nonstationary characteristics with spreading and/or shifting of the maxima as the biases and variances of the numerical differences of e and te amplified.
Fast and predictable video compression in software design and implementation of an H.261 codec
NASA Astrophysics Data System (ADS)
Geske, Dagmar; Hess, Robert
1998-09-01
The use of software codecs for video compression becomes commonplace in several videoconferencing applications. In order to reduce conflicts with other applications used at the same time, mechanisms for resource reservation on endsystems need to determine an upper bound for computing time used by the codec. This leads to the demand for predictable execution times of compression/decompression. Since compression schemes as H.261 inherently depend on the motion contained in the video, an adaptive admission control is required. This paper presents a data driven approach based on dynamical reduction of the number of processed macroblocks in peak situations. Besides the absolute speed is a point of interest. The question, whether and how software compression of high quality video is feasible on today's desktop computers, is examined.
Ultrafast observation of lattice dynamics in laser-irradiated gold foils
Hartley, N. J.; Ozaki, Norimasa; Matsuoka, T.; ...
2017-02-13
Here, we have observed the lattice expansion before the onset of compression in an optical-laser-driven target, using diffraction of femtosecond X-ray beams generated by the SPring-8 Angstrom Compact Free-electron Laser. The change in diffraction angle provides a direct measure of the lattice spacing, allowing the density to be calculated with a precision of ±1%. From the known equation of state relations, this allows an estimation of the temperature responsible for the expansion as <1000 K. The subsequent ablation-driven compression was observed with a clear rise in density at later times. This demonstrates the feasibility of studying the dynamics of preheatingmore » and shock formation with unprecedented detail.« less
Ultrafast observation of lattice dynamics in laser-irradiated gold foils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartley, N. J.; Ozaki, Norimasa; Matsuoka, T.
Here, we have observed the lattice expansion before the onset of compression in an optical-laser-driven target, using diffraction of femtosecond X-ray beams generated by the SPring-8 Angstrom Compact Free-electron Laser. The change in diffraction angle provides a direct measure of the lattice spacing, allowing the density to be calculated with a precision of ±1%. From the known equation of state relations, this allows an estimation of the temperature responsible for the expansion as <1000 K. The subsequent ablation-driven compression was observed with a clear rise in density at later times. This demonstrates the feasibility of studying the dynamics of preheatingmore » and shock formation with unprecedented detail.« less
Performance Analysis of Stirling Engine-Driven Vapor Compression Heat Pump System
NASA Astrophysics Data System (ADS)
Kagawa, Noboru
Stirling engine-driven vapor compression systems have many unique advantages including higher thermal efficiencies, preferable exhaust gas characteristics, multi-fuel usage, and low noise and vibration which can play an important role in alleviating environmental and energy problems. This paper introduces a design method for the systems based on reliable mathematical methods for Stirling and Rankin cycles using reliable thermophysical information for refrigerants. The model deals with a combination of a kinematic Stirling engine and a scroll compressor. Some experimental coefficients are used to formulate the model. The obtained results show the performance behavior in detail. The measured performance of the actual system coincides with the calculated results. Furthermore, the calculated results clarify the performance using alternative refrigerants for R-22.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Jesse S.; Sinogeikin, Stanislav V.; Lin, Chuanlong
Complementary advances in high pressure research apparatus and techniques make it possible to carry out time-resolved high pressure research using what would customarily be considered static high pressure apparatus. This work specifically explores time-resolved high pressure x-ray diffraction with rapid compression and/or decompression of a sample in a diamond anvil cell. Key aspects of the synchrotron beamline and ancillary equipment are presented, including source considerations, rapid (de)compression apparatus, high frequency imaging detectors, and software suitable for processing large volumes of data. A number of examples are presented, including fast equation of state measurements, compression rate dependent synthesis of metastable statesmore » in silicon and germanium, and ultrahigh compression rates using a piezoelectric driven diamond anvil cell.« less
Femtosecond X-ray Diffraction: Applications for Laser-Irradiated Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wark, Justin S.
2009-09-10
Over the past few years short pulse x-ray diffraction at the nanosecond and picosecond level has become an established technique in many high-power laser laboratories for interrogating the lattice response of laser-perturbed and shocked matter, and is now finding applications in diagnosing the state of crystalline materials subject to quasi-isentropic compression. We review some of the previous results obtained in this area, for example the direct observation of coherent phonons, the first direct confirmation of the alpha-epsilon transition in shocked iron, and recent measurements indicating that the strength of matter can be measured at shock pressures exceeding a Mbar. Themore » majority of sources used to date have been laser-plasma based, with some work being performed using 3{sup rd} generation synchrotron sources. However, the development of 4{sup th} generation x-ray free-electron lasers, such as LCLS, afford many new opportunities, with pulse lengths in the femtosecond regime. The extremely low divergence and monochromatic nature of the LCLS beam make it well suited to study compressed polycrystalline matter, especially samples with small grain sizes. At extremely short pulse lengths, such that the pulse is shorter than an x-ray extinction depth traversal time, the diffraction process itself becomes time-dependent, and in certain cases the full wave-field solution will be required, particularly if the matter itself is being rapidly perturbed, as will occur if the intense x-ray radiation is used to create warm dense matter, as in recent experiments on FLASH at DESY.« less
Ablation driven by hot electrons generated during the ignitor laser pulse in shock ignition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piriz, A. R.; Rodriguez Prieto, G.; Tahir, N. A.
2012-12-15
An analytical model for the ablation driven by hot electrons is presented. The hot electrons are assumed to be generated during the high intensity laser spike used to produce the ignitor shock wave in the shock ignition driven inertial fusion concept, and to carry on the absorbed laser energy in its totality. Efficient energy coupling requires to keep the critical surface sufficiently close to the ablation front and this goal can be achieved for high laser intensities provided that the laser wavelength is short enough. Scaling laws for the ablation pressure and the other relevant magnitudes of the ablation cloudmore » are found in terms of the laser and target parameters. The effect of the preformed plasma assembled by the compression pulse, previous to the ignitor, is also discussed. It is found that a minimum ratio between the compression and the ignitor pulses would be necessary for the adequate matching of the corresponding scale lengths.« less
Segmentation-driven compound document coding based on H.264/AVC-INTRA.
Zaghetto, Alexandre; de Queiroz, Ricardo L
2007-07-01
In this paper, we explore H.264/AVC operating in intraframe mode to compress a mixed image, i.e., composed of text, graphics, and pictures. Even though mixed contents (compound) documents usually require the use of multiple compressors, we apply a single compressor for both text and pictures. For that, distortion is taken into account differently between text and picture regions. Our approach is to use a segmentation-driven adaptation strategy to change the H.264/AVC quantization parameter on a macroblock by macroblock basis, i.e., we deviate bits from pictorial regions to text in order to keep text edges sharp. We show results of a segmentation driven quantizer adaptation method applied to compress documents. Our reconstructed images have better text sharpness compared to straight unadapted coding, at negligible visual losses on pictorial regions. Our results also highlight the fact that H.264/AVC-INTRA outperforms coders such as JPEG-2000 as a single coder for compound images.
High precision Hugoniot measurements on statically pre-compressed fluid helium
NASA Astrophysics Data System (ADS)
Seagle, Christopher T.; Reinhart, William D.; Lopez, Andrew J.; Hickman, Randy J.; Thornhill, Tom F.
2016-09-01
The capability for statically pre-compressing fluid targets for Hugoniot measurements utilizing gas gun driven flyer plates has been developed. Pre-compression expands the capability for initial condition control, allowing access to thermodynamic states off the principal Hugoniot. Absolute Hugoniot measurements with an uncertainty less than 3% on density and pressure were obtained on statically pre-compressed fluid helium utilizing a two stage light gas gun. Helium is highly compressible; the locus of shock states resulting from dynamic loading of an initially compressed sample at room temperature is significantly denser than the cryogenic fluid Hugoniot even for relatively modest (0.27-0.38 GPa) initial pressures. The dynamic response of pre-compressed helium in the initial density range of 0.21-0.25 g/cm3 at ambient temperature may be described by a linear shock velocity (us) and particle velocity (up) relationship: us = C0 + sup, with C0 = 1.44 ± 0.14 km/s and s = 1.344 ± 0.025.
Bulk Properties of Isentropic Mixing into the Tropics in the Lower Stratosphere
NASA Technical Reports Server (NTRS)
Minschwaner, K.; Dessler, A. E.; Elkins, J. W.; Volk, C. M.; Fahey, D. W.; Loewenstein, M.; Podolske, J. R.; Chan, K. R.; Roche, A. E.
1996-01-01
Timescales for mixing of midlatitude air into the tropical lower stratosphere are deduced from observations of long-lived tracers N2O and CCl3F. Bulk mixing between tropical and midlatitude regions is assumed to be isentropic and relatively slow compared with local mixing within each region. The mean value of the mixing timescale ranges from 12 to 18 months near 20 km. There is a tendency for shorter mixing times at higher and lower altitudes, although vertical profiles of mixing cannot be definitively established by the data. A more robust quantity is given by the fraction of midlatitude air entrained into the tropical upwelling region. Implied mixing fractions exceed 50% above 22 km.
The Life Cycle of Stratospheric Aerosol Particles
NASA Technical Reports Server (NTRS)
Hamill, Patrick; Jensen, Eric J.; Russell, P. B.; Bauman, Jill J.
1997-01-01
This paper describes the life cycle of the background (nonvolcanic) stratospheric sulfate aerosol. The authors assume the particles are formed by homogeneous nucleation near the tropical tropopause and are carried aloft into the stratosphere. The particles remain in the Tropics for most of their life, and during this period of time a size distribution is developed by a combination of coagulation, growth by heteromolecular condensation, and mixing with air parcels containing preexisting sulfate particles. The aerosol eventually migrates to higher latitudes and descends across isentropic surfaces to the lower stratosphere. The aerosol is removed from the stratosphere primarily at mid- and high latitudes through various processes, mainly by isentropic transport across the tropopause from the stratosphere into the troposphere.
NASA Technical Reports Server (NTRS)
Gordon, Sanford; Zeleznik, Frank J.; Huff, Vearl N.
1959-01-01
A general computer program for chemical equilibrium and rocket performance calculations was written for the IBM 650 computer with 2000 words of drum storage, 60 words of high-speed core storage, indexing registers, and floating point attachments. The program is capable of carrying out combustion and isentropic expansion calculations on a chemical system that may include as many as 10 different chemical elements, 30 reaction products, and 25 pressure ratios. In addition to the equilibrium composition, temperature, and pressure, the program calculates specific impulse, specific impulse in vacuum, characteristic velocity, thrust coefficient, area ratio, molecular weight, Mach number, specific heat, isentropic exponent, enthalpy, entropy, and several thermodynamic first derivatives.
NASA Technical Reports Server (NTRS)
Bleck, Rainer; Bao, Jian-Wen; Benjamin, Stanley G.; Brown, John M.; Fiorino, Michael; Henderson, Thomas B.; Lee, Jin-Luen; MacDonald, Alexander E.; Madden, Paul; Middlecoff, Jacques;
2015-01-01
A hydrostatic global weather prediction model based on an icosahedral horizontal grid and a hybrid terrain following/ isentropic vertical coordinate is described. The model is an extension to three spatial dimensions of a previously developed, icosahedral, shallow-water model featuring user-selectable horizontal resolution and employing indirect addressing techniques. The vertical grid is adaptive to maximize the portion of the atmosphere mapped into the isentropic coordinate subdomain. The model, best described as a stacked shallow-water model, is being tested extensively on real-time medium-range forecasts to ready it for possible inclusion in operational multimodel ensembles for medium-range to seasonal prediction.
van Tulder, R; Roth, D; Krammel, M; Laggner, R; Heidinger, B; Kienbacher, C; Novosad, H; Chwojka, C; Havel, C; Sterz, F; Schreiber, W; Herkner, H
2014-01-01
Compression depth is frequently suboptimal in cardiopulmonary resuscitation (CPR). We investigated effects of intensified wording and/or repetitive target depth instructions on compression depth in telephone-assisted, protocol driven, bystander CPR on a simulation manikin. Thirty-two volunteers performed 10 min of compression only-CPR in a prospective, investigator-blinded, 4-armed, factorial setting. Participants were randomized either to standard wording ("push down firmly 5 cm"), intensified wording ("it is very important to push down 5 cm every time") or standard or intensified wording repeated every 20s. Three dispatchers were randomized to give these instructions. Primary outcome was relative compression depth (absolute compression depth minus leaning depth). Secondary outcomes were absolute distance, hands-off times as well as BORG-scale and nine-hole peg test (NHPT), pulse rate and blood pressure to reflect physical exertion. We applied a random effects linear regression model. Relative compression depth was 35 ± 10 mm (standard) versus 31 ± 11 mm (intensified wording) versus 25 ± 8 mm (repeated standard) and 31 ± 14 mm (repeated intensified wording). Adjusted for design, body mass index and female sex, intensified wording and repetition led to decreased compression depth of 13 (95%CI -25 to -1) mm (p=0.04) and 9 (95%CI -21 to 3) mm (p=0.13), respectively. Secondary outcomes regarding intensified wording showed significant differences for absolute distance (43 ± 2 versus 20 (95%CI 3-37) mm; p=0.01) and hands-off times (60 ± 40 versus 157 (95%CI 63-251) s; p=0.04). In protocol driven, telephone-assisted, bystander CPR, intensified wording and/or repetitive target depth instruction will not improve compression depth compared to the standard instruction. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Biot-Savart helicity versus physical helicity: A topological description of ideal flows
NASA Astrophysics Data System (ADS)
Sahihi, Taliya; Eshraghi, Homayoon
2014-08-01
For an isentropic (thus compressible) flow, fluid trajectories are considered as orbits of a family of one parameter, smooth, orientation-preserving, and nonsingular diffeomorphisms on a compact and smooth-boundary domain in the Euclidian 3-space which necessarily preserve a finite measure, later interpreted as the fluid mass. Under such diffeomorphisms the Biot-Savart helicity of the pushforward of a divergence-free and tangent to the boundary vector field is proved to be conserved and since these circumstances present an isentropic flow, the conservation of the "Biot-Savart helicity" is established for such flows. On the other hand, the well known helicity conservation in ideal flows which here we call it "physical helicity" is found to be an independent constant with respect to the Biot-Savart helicity. The difference between these two helicities reflects some topological features of the domain as well as the velocity and vorticity fields which is discussed and is shown for simply connected domains the two helicities coincide. The energy variation of the vorticity field is shown to be formally the same as for the incompressible flow obtained before. For fluid domains consisting of several disjoint solid tori, at each time, the harmonic knot subspace of smooth vector fields on the fluid domain is found to have two independent base sets with a special type of orthogonality between these two bases by which a topological description of the vortex and velocity fields depending on the helicity difference is achieved since this difference is shown to depend only on the harmonic knot parts of velocity, vorticity, and its Biot-Savart vector field. For an ideal magnetohydrodynamics (MHD) flow three independent constant helicities are reviewed while the helicity of magnetic potential is generalized for non-simply connected domains by inserting a special harmonic knot field in the dynamics of the magnetic potential. It is proved that the harmonic knot part of the vorticity in hydrodynamics and the magnetic field in MHD is presented by constant coefficients (fluxes) when expanded in terms of one of the time dependent base functions.
Plasma Gradient Piston: a new approach to precision pulse shaping
NASA Astrophysics Data System (ADS)
Prisbrey, Shon T.
2011-10-01
We have successfully developed a method to create shaped pressure drives from large shocks that can be applied to a wide variety of experimental platforms. The method consists of transforming a large shock or blast wave into a ramped pressured drive by utilizing a graded density reservoir that unloads across a gap and stagnates against the sample being studied. The utilization of a graded density reservoir, different materials, and a gap transforms the energy in the initial large shock into a quasi-isentropic ramped compression. Control of the ramp history is via the size of the initial shock, the chosen reservoir materials, their densities, the thickness of each density layer, and the gap size. There are two keys to utilizing this approach to create ramped drives: the ability to produce a large shock, and making the layered density reservoir. A number of facilities can produce the strong initial shock (Z, Omega, NIF, Phoenix, high explosives, NIKE, LMJ, pulsed power,...). We have demonstrated ramped drives from 0.5 to 1.5 Mbar utilizing a large shock created at the Omega laser facility. We recently concluded a pair of NIF drive shots where we successfully converted a hohlraum-generated shock into a stepped, ramped pressure drive with a peak pressure of ~4 - 5 Mbar in a Ta sample. We will explain the basic concepts needed for producing a ramped pressure drive, compare experimental data with simulations from Omega (Pmax ~ 1 Mbar) and NIF (Pmax ~ 5-10 Mbar), and present designs for ramped, staged-shock designs up to Pmax ~ 30 Mbar. The approach that we have developed enables precision pulse shaping of the drive (applied pressure vs. time) via target characteristics, as opposed to tailoring laser power vs time or Z-pinch facility current vs time. This enables ramped, quasi-isentropic materials studies to be performed on a wide variety of HED facilities. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-490532.
Ali, S. J.; Kraus, R. G.; Fratanduono, D. E.; ...
2017-05-18
Here, we developed an iterative forward analysis (IFA) technique with the ability to use hydrocode simulations as a fitting function for analysis of dynamic compression experiments. The IFA method optimizes over parameterized quantities in the hydrocode simulations, breaking the degeneracy of contributions to the measured material response. Velocity profiles from synthetic data generated using a hydrocode simulation are analyzed as a first-order validation of the technique. We also analyze multiple magnetically driven ramp compression experiments on copper and compare with more conventional techniques. Excellent agreement is obtained in both cases.
NASA Astrophysics Data System (ADS)
Yoshizawa, Akira
1991-12-01
A mass-weighted mean compressible turbulence model is presented with the aid of the results from a two-scale DIA. This model aims at dealing with two typical aspects in compressible flows: the interaction of a shock wave with turbulence in high-speed flows and strong buoyancy effects in thermally-driven flows as in stellar convection and conflagration. The former is taken into account through the effect of turbulent dilatation that is related to the density fluctuation and leads to the enhanced kinetic-energy dissipation. The latter is incorporated through the interaction between the gravitational and density-fluctuation effects.
Schwartz, Andrew H; Shinn-Cunningham, Barbara G
2013-04-01
Many hearing aids introduce compressive gain to accommodate the reduced dynamic range that often accompanies hearing loss. However, natural sounds produce complicated temporal dynamics in hearing aid compression, as gain is driven by whichever source dominates at a given moment. Moreover, independent compression at the two ears can introduce fluctuations in interaural level differences (ILDs) important for spatial perception. While independent compression can interfere with spatial perception of sound, it does not always interfere with localization accuracy or speech identification. Here, normal-hearing listeners reported a target message played simultaneously with two spatially separated masker messages. We measured the amount of spatial separation required between the target and maskers for subjects to perform at threshold in this task. Fast, syllabic compression that was independent at the two ears increased the required spatial separation, but linking the compressors to provide identical gain to both ears (preserving ILDs) restored much of the deficit caused by fast, independent compression. Effects were less clear for slower compression. Percent-correct performance was lower with independent compression, but only for small spatial separations. These results may help explain differences in previous reports of the effect of compression on spatial perception of sound.
Quan, Xin; Guo, Kai; Wang, Yuqing; Huang, Liangliang; Chen, Beiyu; Ye, Zhengxu; Luo, Zhuojing
2014-01-01
In a primary spinal cord injury, the amount of mechanical compression insult that the neurons experience is one of the most critical factors in determining the extent of the injury. The ultrastructural changes that neurons undergo when subjected to mechanical compression are largely unknown. In the present study, using a compression-driven instrument that can simulate mechanical compression insult, we applied mechanical compression stimulation at 0.3, 0.5, and 0.7 MPa to dorsal root ganglion (DRG) neurons for 10 min. Combined with atomic force microscopy, we investigated nanoscale changes in the membrane-skeleton, cytoskeleton alterations, and apoptosis induced by mechanical compression injury. The results indicated that mechanical compression injury leads to rearrangement of the membrane-skeleton compared with the control group. In addition, mechanical compression stimulation induced apoptosis and necrosis and also changed the distribution of the cytoskeleton in DRG neurons. Thus, the membrane-skeleton may play an important role in the response to mechanical insults in DRG neurons. Moreover, sudden insults caused by high mechanical compression, which is most likely conducted by the membrane-skeleton, may induce necrosis, apoptosis, and cytoskeletal alterations.
Compressed-air flow control system.
Bong, Ki Wan; Chapin, Stephen C; Pregibon, Daniel C; Baah, David; Floyd-Smith, Tamara M; Doyle, Patrick S
2011-02-21
We present the construction and operation of a compressed-air driven flow system that can be used for a variety of microfluidic applications that require rapid dynamic response and precise control of multiple inlet streams. With the use of inexpensive and readily available parts, we describe how to assemble this versatile control system and further explore its utility in continuous- and pulsed-flow microfluidic procedures for the synthesis and analysis of microparticles.
NASA Astrophysics Data System (ADS)
Zhao, Yang; Yang, Jia-Min; Zhang, Ji-Yan; Yang, Guo-Hong; Xiong, Gang; Wei, Min-Xi; Song, Tian-Ming; Zhang, Zhi-Yu
2013-06-01
A time-resolved K edge absorption measurement of warm dense KCl was performed on Shenguang II laser facility. The x-ray radiation driven shocks were adopted to take colliding shocks compression. By using Dog bone hohlraum the CH/KCl/CH sample was shielded from the laser hitting point to suppress the M band preheating and enhance the compressibility. Thus, an unexplored and extreme region of the plasma state with the maximum 5 times solid density and temperature lower than 3 eV (with coupling constant Γii around 100) was first obtained. The photoabsorption spectra of chlorine near the K-shell edge have been measured with a crystal spectrometer using a short x-ray backlighter. The K edge red shift up to 11.7 eV and broadening of 15.2 eV were obtained for the maximum compression. The electron temperature, inferred by Fermi-Dirac fit of the measured K-edge broadening, was consistent with the hydrodynamic predictions. The comparison of the K edge shift with a plasma model, in which the ionization effect, continuum lowering and partial degeneracy are considered, shows that more improvements are desired to describe in details the variation of K edge shift. This work might extend future study of WDM in extreme conditions of high compression.
Development of 1D Liner Compression Code for IDL
NASA Astrophysics Data System (ADS)
Shimazu, Akihisa; Slough, John; Pancotti, Anthony
2015-11-01
A 1D liner compression code is developed to model liner implosion dynamics in the Inductively Driven Liner Experiment (IDL) where FRC plasmoid is compressed via inductively-driven metal liners. The driver circuit, magnetic field, joule heating, and liner dynamics calculations are performed at each time step in sequence to couple these effects in the code. To obtain more realistic magnetic field results for a given drive coil geometry, 2D and 3D effects are incorporated into the 1D field calculation through use of correction factor table lookup approach. Commercial low-frequency electromagnetic fields solver, ANSYS Maxwell 3D, is used to solve the magnetic field profile for static liner condition at various liner radius in order to derive correction factors for the 1D field calculation in the code. The liner dynamics results from the code is verified to be in good agreement with the results from commercial explicit dynamics solver, ANSYS Explicit Dynamics, and previous liner experiment. The developed code is used to optimize the capacitor bank and driver coil design for better energy transfer and coupling. FRC gain calculations are also performed using the liner compression data from the code for the conceptual design of the reactor sized system for fusion energy gains.
Large Grüneisen Gamma of Dense Silicate Liquids: More Experiments and a First Self- consistent Model
NASA Astrophysics Data System (ADS)
Asimow, P. D.; Mosenfelder, J. L.; Ahrens, T. J.; Sun, D.
2007-12-01
The Grüneisen parameter, γ, of solid materials normally decreases upon compression, approximately as γρq = constant where q=1. However, multiple lines of evidence now indicate the opposite behavior in silicate liquids, in which γ increases upon compression (i.e., q<0). This was observed in shock-melted (Mg,Fe)2SiO4 liquid by Brown et al. [1] via comparison of the Hugoniot and release velocity. We observed the same behavior in Mg2SiO4 liquid (q ≤ -1.5) from comparison of the Hugoniots of forsterite and wadsleyite [2]. First-principles molecular dynamics simulations of MgSiO3 liquid [3] confirm that γ increases with density and show that γ in the liquid phase mimics solids with similar Si coordination state. Hence a continuous increase in γ of silicate liquids to lowermost mantle pressures, well beyond the range where transition to six-coordination of Si is complete, suggests that even higher-coordinated species are forming in the melt and by extension there may be 8- coordinated silicate minerals with stability fields beginning not very far above the Earth's core-mantle boundary pressure [4]. We present new experimental evidence for this behavior in another liquid composition. The Hugoniot of 1400°C anorthite-diopside eutectic liquid was measured at low pressure by Rigden et al. [5] and extended to 110 GPa by our recent work. We collected a Hugoniot point on a solid aggregate of the same composition initially at room temperature, shocked into the melt regime at 133 GPa. The difference in internal energy between this point and the hot liquid Hugoniot allows determination of the γ of this aluminosilicate liquid at 50% compression; the result fits q = -1.85±0.2, entirely consistent with the behavior of enstatite, forsterite, and Fe- bearing olivine liquids. We suggested on the basis of an approximate calculation that the large γ of dense silicate liquids yields a liquid isentrope steeper than the liquidus of a lower mantle magma ocean [2]. Here we show a preliminary self-consistent thermodynamic model of the MgO-SiO2 binary that matches the phase diagrams of MgO, Mg2SiO4, MgSiO3, and SiO2 in the lower mantle, that incorporates negative q in the γ model of the liquid, and that allows calculation of pressure-entropy diagrams showing how model isentropes behave during cooling. We find that for peridotite or chondritic compositions, perovskite crystallization begins at an entropy maximum near 60 GPa. The consequences for geochemical evolution depend on whether these crystals remain turbulently suspended or fractionate [6]; in the case of suspension our model shows that the mush transition affects the entire lower mantle over a rather narrow range in potential temperature. Below this point the solidus does not have a maximum and normal decompression melting behavior is observed. 1. Brown et al., in High-Pressure Research in Mineral Physics, M.H. Manghnani and Y. Syono, Editors. 1987, AGU: Washington, DC. p. 373-384. 2. Mosenfelder et al., J. Geophys. Res., 2007. 112: p. B06208. 3. Stixrude & Karki, Science, 2005. 310(5746): p. 297-299. 4. Akins & Ahrens, Geophys. Res. Lett., 2002. 29(10): 1394-1397. 5. Rigden et al. J. Geophys. Res. 1988. 93(B1): p. 367-382. 6. Solomatov & Stevenson. J. Geophys. Res., 1993. 98(E3): p. 5375-5390.
Computer Programs for Calculating the Isentropic Flow Properties for Mixtures of R-134a and Air
NASA Technical Reports Server (NTRS)
Kvaternik, Raymond G.
2000-01-01
Three computer programs for calculating the isentropic flow properties of R-134a/air mixtures which were developed in support of the heavy gas conversion of the Langley Transonic Dynamics Tunnel (TDT) from dichlorodifluoromethane (R-12) to 1,1,1,2 tetrafluoroethane (R-134a) are described. The first program calculates the Mach number and the corresponding flow properties when the total temperature, total pressure, static pressure, and mole fraction of R-134a in the mixture are given. The second program calculates tables of isentropic flow properties for a specified set of free-stream Mach numbers given the total pressure, total temperature, and mole fraction of R-134a. Real-gas effects are accounted for in these programs by treating the gases comprising the mixture as both thermally and calorically imperfect. The third program is a specialized version of the first program in which the gases are thermally perfect. It was written to provide a simpler computational alternative to the first program in those cases where real-gas effects are not important. The theory and computational procedures underlying the programs are summarized, the equations used to compute the flow quantities of interest are given, and sample calculated results that encompass the operating conditions of the TDT are shown.
The 'surf zone' in the stratosphere
NASA Astrophysics Data System (ADS)
McIntyre, M. E.; Palmer, T. N.
Synoptic, coarse-grain, isentropic maps of Ertel's potential vorticity Q for the northern middle stratosphere, estimated using a large-Richardson-number approximation, are presented for a number of days in January-February 1979, together with some related isentropic trajectory calculations The effects of substituting FGGE for NMC base data are noted, as well as some slight corrections to maps published earlier. The combined evidence from the observations and from dynamical models strongly indicates the existence of planetary-wave breaking, a process in which material contours are rapidly and irreversibly deformed. In the winter stratosphere this occurs most spectacularly in a gigantic 'nonlinear critical layer', or 'surf zone', which surrounds the main polar vortex, and which tends to erode the vortex when wave amplitudes become large. Some of the FGGE-based Q maps suggest that we may be seeing glimpses of local dynamical instabilities and vortex-rollup phenomena within breaking planetary waves. Related phenomena in the troposphere are discussed. An objective definition of the area A( t) of the main vortex, as it appears on isentropic Q maps, is proposed. A smoothed time series of daily values of A( t) should be a statistically powerful 'circulation index' for the state of the winter-time middle stratosphere, which avoids the loss of information incurred by Eulerian space and time averaging.
Diagnostic quality driven physiological data collection for personal healthcare.
Jea, David; Balani, Rahul; Hsu, Ju-Lan; Cho, Dae-Ki; Gerla, Mario; Srivastava, Mani B
2008-01-01
We believe that each individual is unique, and that it is necessary for diagnosis purpose to have a distinctive combination of signals and data features that fits the personal health status. It is essential to develop mechanisms for reducing the amount of data that needs to be transferred (to mitigate the troublesome periodically recharging of a device) while maintaining diagnostic accuracy. Thus, the system should not uniformly compress the collected physiological data, but compress data in a personalized fashion that preserves the 'important' signal features for each individual such that it is enough to make the diagnosis with a required high confidence level. We present a diagnostic quality driven mechanism for remote ECG monitoring, which enables a notation of priorities encoded into the wave segments. The priority is specified by the diagnosis engine or medical experts and is dynamic and individual dependent. The system pre-processes the collected physiological information according to the assigned priority before delivering to the backend server. We demonstrate that the proposed approach provides accurate inference results while effectively compressing the data.
Fluid driven torsional dipole seismic source
Hardee, Harry C.
1991-01-01
A compressible fluid powered oscillating downhole seismic source device capable of periodically generating uncontaminated horizontally-propagated, shear waves is provided. A compressible fluid generated oscillation is created within the device which imparts an oscillation to a housing when the device is installed in a housing such as the cylinder off an existing downhole tool, thereby a torsional seismic source is established. Horizontal waves are transferred to the surrounding bore hole medium through downhole clamping.
NASA Astrophysics Data System (ADS)
James, C. M.; Gildfind, D. E.; Lewis, S. W.; Morgan, R. G.; Zander, F.
2018-03-01
Expansion tubes are an important type of test facility for the study of planetary entry flow-fields, being the only type of impulse facility capable of simulating the aerothermodynamics of superorbital planetary entry conditions from 10 to 20 km/s. However, the complex flow processes involved in expansion tube operation make it difficult to fully characterise flow conditions, with two-dimensional full facility computational fluid dynamics simulations often requiring tens or hundreds of thousands of computational hours to complete. In an attempt to simplify this problem and provide a rapid flow condition prediction tool, this paper presents a validated and comprehensive analytical framework for the simulation of an expansion tube facility. It identifies central flow processes and models them from state to state through the facility using established compressible and isentropic flow relations, and equilibrium and frozen chemistry. How the model simulates each section of an expansion tube is discussed, as well as how the model can be used to simulate situations where flow conditions diverge from ideal theory. The model is then validated against experimental data from the X2 expansion tube at the University of Queensland.
Strain-rate dependence of ramp-wave evolution and strength in tantalum
Lane, J. Matthew D.; Foiles, Stephen M.; Lim, Hojun; ...
2016-08-25
We have conducted molecular dynamics (MD) simulations of quasi-isentropic ramp-wave compression to very high pressures over a range of strain rates from 10 11 down to 10 8 1/s. Using scaling methods, we collapse wave profiles from various strain rates to a master profile curve, which shows deviations when material response is strain-rate dependent. Thus, we can show with precision where, and how, strain-rate dependence affects the ramp wave. We find that strain rate affects the stress-strain material response most dramatically at strains below 20%, and that above 30% strain the material response is largely independent of strain rate. Wemore » show good overall agreement with experimental stress-strain curves up to approximately 30% strain, above which simulated response is somewhat too stiff. We postulate that this could be due to our interatomic potential or to differences in grain structure and/or size between simulation and experiment. Strength is directly measured from per-atom stress tensor and shows significantly enhanced elastic response at the highest strain rates. As a result, this enhanced elastic response is less pronounced at higher pressures and at lower strain rates.« less
Non-iterative determination of the stress-density relation from ramp wave data through a window
NASA Astrophysics Data System (ADS)
Dowling, Evan; Fratanduono, Dayne; Swift, Damian
2017-06-01
In the canonical ramp compression experiment, a smoothly-increasing load is applied the surface of the sample, and the particle velocity history is measured at interfaces two or more different distances into the sample. The velocity histories are used to deduce a stress-density relation by correcting for perturbations caused by reflected release waves, usually via the iterative Lagrangian analysis technique of Rothman and Maw. We previously described a non-iterative (recursive) method of analysis, which was more stable and orders of magnitude faster than iteration, but was subject to the limitation that the free surface velocity had to be sampled at uniform intervals. We have now developed more general recursive algorithms suitable for analyzing ramp data through a finite-impedance window. Free surfaces can be treated seamlessly, and the need for uniform velocity sampling has been removed. These calculations require interpolation of partially-released states using the partially-constructed isentrope, making them slower than the previous free-surface scheme, but they are still much faster than iterative analysis. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Numerical Simulation of the Working Process in the Twin Screw Vacuum Pump
NASA Astrophysics Data System (ADS)
Lu, Yang; Fu, Yu; Guo, Bei; Fu, Lijuan; Zhang, Qingqing; Chen, Xiaole
2017-08-01
Twin screw vacuum pumps inherit the advantages of screw machinery, such as high reliability, stable medium conveying, small vibration, simple and compact structures, convenient operation, etc, which have been widely used in petrochemical and air industry. On the basis of previous studies, this study analyzed the geometric features of variable pitch of the twin screw vacuum pump such as the sealing line, the meshing line and the volume between teeth. The mathematical model of numerical simulation of the twin screw vacuum pump was established. The leakage paths of the working volume including the sealing line and the addendum arc were comprehensively considered. The corresponding simplified geometric model of leakage flow was built up for different leak paths and the flow coefficients were calculated. The flow coefficient value range of different leak paths was given. The results showed that the flow coefficient of different leak paths can be taken as constant value for the studied geometry. The analysis of recorded indicator diagrams showed that the increasing rotational speed can dramatically decrease the exhaust pressure and the lower rotational speed can lead to over-compression. The pressure of the isentropic process which was affected by leakage was higher than the theoretical process.
NASA Astrophysics Data System (ADS)
Arts, T.; Lambertderouvroit, M.; Rutherford, A. W.
1990-09-01
An experimental aerothermal investigation of a highly loaded transonic turbine nozzle guide vane mounted in a linear cascade arrangement is presented. The measurements were performed in a short duration isentropic light piston compression tube facility, allowing a correct simulation of Mach and Reynolds numbers as well as of the gas to wall temperature ratio compared to the values currently observed in modern aeroengines. The experimental program consisted of the following: (1) flow periodicity checks by means of wall static pressure measurements and Schlieren flow visualizations; (2) blade velocity distribution measurements by means of static pressure tappings; (3) blade convective heat transfer measurements by means of static pressure tappings; (4) blade convective heat transfer measurements by means of platinium thin films; (5) downstream loss coefficient and exit flow angle determinations by using a new fast traversing mechanism; and (6) free stream turbulence intensity and spectrum measurements. These different measurements were performed for several combinations of the free stream flow parameters looking at the relative effects on the aerodynamic blade performance and blade convective heat transfer of Mach number, Reynolds number, and freestream turbulence intensity.
Apparatus for the liquefaction of natural gas and methods relating to same
Wilding, Bruce M [Idaho Falls, ID; McKellar, Michael G [Idaho Falls, ID; Turner, Terry D [Ammon, ID; Carney, Francis H [Idaho Falls, ID
2009-09-29
An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through an expander creating work output. A compressor may be driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheehey, P.T.; Faehl, R.J.; Kirkpatrick, R.C.
1997-12-31
Magnetized Target Fusion (MTF) experiments, in which a preheated and magnetized target plasma is hydrodynamically compressed to fusion conditions, present some challenging computational modeling problems. Recently, joint experiments relevant to MTF (Russian acronym MAGO, for Magnitnoye Obzhatiye, or magnetic compression) have been performed by Los Alamos National Laboratory and the All-Russian Scientific Research Institute of Experimental Physics (VNIIEF). Modeling of target plasmas must accurately predict plasma densities, temperatures, fields, and lifetime; dense plasma interactions with wall materials must be characterized. Modeling of magnetically driven imploding solid liners, for compression of target plasmas, must address issues such as Rayleigh-Taylor instability growthmore » in the presence of material strength, and glide plane-liner interactions. Proposed experiments involving liner-on-plasma compressions to fusion conditions will require integrated target plasma and liner calculations. Detailed comparison of the modeling results with experiment will be presented.« less
Density Fluctuations in the Solar Wind Driven by Alfvén Wave Parametric Decay
NASA Astrophysics Data System (ADS)
Bowen, Trevor A.; Badman, Samuel; Hellinger, Petr; Bale, Stuart D.
2018-02-01
Measurements and simulations of inertial compressive turbulence in the solar wind are characterized by anti-correlated magnetic fluctuations parallel to the mean field and density structures. This signature has been interpreted as observational evidence for non-propagating pressure balanced structures, kinetic ion-acoustic waves, as well as the MHD slow-mode. Given the high damping rates of parallel propagating compressive fluctuations, their ubiquity in satellite observations is surprising and suggestive of a local driving process. One possible candidate for the generation of compressive fluctuations in the solar wind is the Alfvén wave parametric instability. Here, we test the parametric decay process as a source of compressive waves in the solar wind by comparing the collisionless damping rates of compressive fluctuations with growth rates of the parametric decay instability daughter waves. Our results suggest that generation of compressive waves through parametric decay is overdamped at 1 au, but that the presence of slow-mode-like density fluctuations is correlated with the parametric decay of Alfvén waves.
Leung, Chung Ming; Or, Siu Wing; Ho, S L
2013-12-01
A force sensing device capable of sensing dc (or static) compressive forces is developed based on a NAS106N stainless steel compressive spring, a sintered NdFeB permanent magnet, and a coil-wound Tb(0.3)Dy(0.7)Fe(1.92)/Pb(Zr, Ti)O3 magnetostrictive∕piezoelectric laminate. The dc compressive force sensing in the device is evaluated theoretically and experimentally and is found to originate from a unique force-induced, position-dependent, current-driven dc magnetoelectric effect. The sensitivity of the device can be increased by increasing the spring constant of the compressive spring, the size of the permanent magnet, and/or the driving current for the coil-wound laminate. Devices of low-force (20 N) and high-force (200 N) types, showing high output voltages of 262 and 128 mV peak, respectively, are demonstrated at a low driving current of 100 mA peak by using different combinations of compressive spring and permanent magnet.
High precision Hugoniot measurements on statically pre-compressed fluid helium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seagle, Christopher T.; Reinhart, William D.; Lopez, Andrew J.
Here we describe how the capability for statically pre-compressing fluid targets for Hugoniot measurements utilizing gas gun driven flyer plates has been developed. Pre-compression expands the capability for initial condition control, allowing access to thermodynamic states off the principal Hugoniot. Absolute Hugoniot measurements with an uncertainty less than 3% on density and pressure were obtained on statically pre-compressed fluid helium utilizing a two stage light gas gun. Helium is highly compressible; the locus of shock states resulting from dynamic loading of an initially compressed sample at room temperature is significantly denser than the cryogenic fluid Hugoniot even for relatively modestmore » (0.27–0.38 GPa) initial pressures. Lastly, the dynamic response of pre-compressed helium in the initial density range of 0.21–0.25 g/cm3 at ambient temperature may be described by a linear shock velocity (us) and particle velocity (u p) relationship: u s = C 0 + su p, with C 0 = 1.44 ± 0.14 km/s and s = 1.344 ± 0.025.« less
High precision Hugoniot measurements on statically pre-compressed fluid helium
Seagle, Christopher T.; Reinhart, William D.; Lopez, Andrew J.; ...
2016-09-27
Here we describe how the capability for statically pre-compressing fluid targets for Hugoniot measurements utilizing gas gun driven flyer plates has been developed. Pre-compression expands the capability for initial condition control, allowing access to thermodynamic states off the principal Hugoniot. Absolute Hugoniot measurements with an uncertainty less than 3% on density and pressure were obtained on statically pre-compressed fluid helium utilizing a two stage light gas gun. Helium is highly compressible; the locus of shock states resulting from dynamic loading of an initially compressed sample at room temperature is significantly denser than the cryogenic fluid Hugoniot even for relatively modestmore » (0.27–0.38 GPa) initial pressures. Lastly, the dynamic response of pre-compressed helium in the initial density range of 0.21–0.25 g/cm3 at ambient temperature may be described by a linear shock velocity (us) and particle velocity (u p) relationship: u s = C 0 + su p, with C 0 = 1.44 ± 0.14 km/s and s = 1.344 ± 0.025.« less
3D Printed Silicones with Shape Memory
Wu, Amanda S.; Small IV, Ward; Bryson, Taylor M.; ...
2017-07-05
Direct ink writing enables the layer-by-layer manufacture of ordered, porous structures whose mechanical behavior is driven by architecture and material properties. Here, we incorporate two different gas filled microsphere pore formers to evaluate the effect of shell stiffness and T g on compressive behavior and compression set in siloxane matrix printed structures. The lower T g microsphere structures exhibit substantial compression set when heated near and above T g, with full structural recovery upon reheating without constraint. By contrast, the higher T g microsphere structures exhibit reduced compression set with no recovery upon reheating. Aside from their role in tuningmore » the mechanical behavior of direct ink write structures, polymer microspheres are good candidates for shape memory elastomers requiring structural complexity, with potential applications toward tandem shape memory polymers.« less
3D Printed Silicones with Shape Memory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Amanda S.; Small IV, Ward; Bryson, Taylor M.
Direct ink writing enables the layer-by-layer manufacture of ordered, porous structures whose mechanical behavior is driven by architecture and material properties. Here, we incorporate two different gas filled microsphere pore formers to evaluate the effect of shell stiffness and T g on compressive behavior and compression set in siloxane matrix printed structures. The lower T g microsphere structures exhibit substantial compression set when heated near and above T g, with full structural recovery upon reheating without constraint. By contrast, the higher T g microsphere structures exhibit reduced compression set with no recovery upon reheating. Aside from their role in tuningmore » the mechanical behavior of direct ink write structures, polymer microspheres are good candidates for shape memory elastomers requiring structural complexity, with potential applications toward tandem shape memory polymers.« less
Lucas, Timothy S.
1991-01-01
A compressor for compression-evaporation cooling systems, which requires no moving parts. A gaseous refrigerant inside a chamber is acoustically compressed and conveyed by means of a standing acoustic wave which is set up in the gaseous refrigerant. This standing acoustic wave can be driven either by a transducer, or by direct exposure of the gas to microwave and infrared sources, including solar energy. Input and output ports arranged along the chamber provide for the intake and discharge of the gaseous refrigerant. These ports can be provided with optional valve arrangements, so as to increase the compressor's pressure differential. The performance of the compressor in either of its transducer or electromagnetically driven configurations, can be optimized by a controlling circuit. This controlling circuit holds the wavelength of the standing acoustical wave constant, by changing the driving frequency in response to varying operating conditions.
Velocity measurement using frequency domain interferometer and chirped pulse laser
NASA Astrophysics Data System (ADS)
Ishii, K.; Nishimura, Y.; Mori, Y.; Hanayama, R.; Kitagawa, Y.; Sekine, T.; Sato, N.; Kurita, T.; Kawashima, T.; Sunahara, A.; Sentoku, Y.; Miura, E.; Iwamoto, A.; Sakagami, H.
2017-02-01
An ultra-intense short pulse laser induces a shock wave in material. The pressure of shock compression is stronger than a few tens GPa. To characterize shock waves, time-resolved velocity measurement in nano- or pico-second time scale is needed. Frequency domain interferometer and chirped pulse laser provide single-shot time-resolved measurement. We have developed a laser-driven shock compression system and frequency domain interferometer with CPA laser. In this paper, we show the principle of velocity measurement using a frequency domain interferometer and a chirped pulse laser. Next, we numerically calculated spectral interferograms and show the time-resolved velocity measurement can be done from the phase analysis of spectral interferograms. Moreover we conduct the laser driven shock generation and shock velocity measurement. From the spectral fringes, we analyze the velocities of the sample and shockwaves.
NASA Astrophysics Data System (ADS)
Borovsky, Joseph E.; Horne, Richard B.; Meredith, Nigel P.
2017-12-01
Compressional magnetic pumping is an interaction between cyclic magnetic compressions and pitch angle scattering with the scattering acting as a catalyst to allow the cyclic compressions to energize particles. Compressional magnetic pumping of the outer electron radiation belt at geosynchronous orbit in the dayside magnetosphere is analyzed by means of computer simulations, wherein solar wind compressions of the dayside magnetosphere energize electrons with electron pitch angle scattering by chorus waves and by electromagnetic ion cyclotron (EMIC) waves. The magnetic pumping is found to produce a weak bulk heating of the electron radiation belt, and it also produces an energetic tail on the electron energy distribution. The amount of energization depends on the robustness of the solar wind compressions and on the amplitude of the chorus and/or EMIC waves. Chorus-catalyzed pumping is better at energizing medium-energy (50-200 keV) electrons than it is at energizing higher-energy electrons; at high energies (500 keV-2 MeV) EMIC-catalyzed pumping is a stronger energizer. The magnetic pumping simulation results are compared with energy diffusion calculations for chorus waves in the dayside magnetosphere; in general, compressional magnetic pumping is found to be weaker at accelerating electrons than is chorus-driven energy diffusion. In circumstances when solar wind compressions are robust and when EMIC waves are present in the dayside magnetosphere without the presence of chorus, EMIC-catalyzed magnetic pumping could be the dominant energization mechanism in the dayside magnetosphere, but at such times loss cone losses will be strong.
Magnetized Target Fusion At General Fusion: An Overview
NASA Astrophysics Data System (ADS)
Laberge, Michel; O'Shea, Peter; Donaldson, Mike; Delage, Michael; Fusion Team, General
2017-10-01
Magnetized Target Fusion (MTF) involves compressing an initial magnetically confined plasma on a timescale faster than the thermal confinement time of the plasma. If near adiabatic compression is achieved, volumetric compression of 350X or more of a 500 eV target plasma would achieve a final plasma temperature exceeding 10 keV. Interesting fusion gains could be achieved provided the compressed plasma has sufficient density and dwell time. General Fusion (GF) is developing a compression system using pneumatic pistons to collapse a cavity formed in liquid metal containing a magnetized plasma target. Low cost driver, straightforward heat extraction, good tritium breeding ratio and excellent neutron protection could lead to a practical power plant. GF (65 employees) has an active plasma R&D program including both full scale and reduced scale plasma experiments and simulation of both. Although pneumatic driven compression of full scale plasmas is the end goal, present compression studies use reduced scale plasmas and chemically accelerated aluminum liners. We will review results from our plasma target development, motivate and review the results of dynamic compression field tests and briefly describe the work to date on the pneumatic driver front.
An analysis of 5-day midtropospheric flow patterns for the South Pole: 1985-1989
NASA Astrophysics Data System (ADS)
Harris, Joyce M.
1992-09-01
An analysis of 5-day midtropospheric flow patterns for the South Pole during 1985-1989 is presented. Cluster analysis was used to summarize trajectories by year and by month. The results indicate that flow from the east was most often anticyclonic and light, occurring 8-18% of the time. Westerly flow patterns were the strongest and most frequent (37-51% occurrence). They were consistently cyclonic, usually reflecting storms in the Ross Sea area, the average center of the circumpolar vortex. Strong northerly flow occurred more often in 1987 than in other years. Year-to-year variability was also evident in southwesterly flow, which was enhanced in 1988, and weaker in 1987, compared with other years. The lightest winds over the South Pole occur during January, while the most vigorous long-range transport to South Pole occurs from July through October. Selected isentropic trajectories were examined to determine errors inherent in the isobaric estimates. Isentropic trajectories from the east showed little vertical motion and good agreement with isobaric ones. Over west Antarctica, however, isentropic trajectories consistently showed positive vertical motion. As a result, their isobaric counterparts were too long and overestimated the cyclonic curvature in the flow. Preferred transport from the west with warm-air advection results from the circumpolar vortex being asymmetrical, and the average isotherms, though roughly circular, being offset to the east of the South Pole.
Numerical analysis of laser-driven reservoir dynamics for shockless loading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Mu; Zhang Hongping; Sun Chengwei
2011-05-01
Laser-driven plasma loader for shockless compression provides a new approach to study the rapid compression response of materials not attainable in conventional shock experiments. In this method, the strain rate is varied from {approx}10{sup 6}/s to {approx}10{sup 8}/s, significantly higher than other shockless compression methods. Thus, this loading process is attractive in the research of solid material dynamics and astrophysics. The objective of the current study is to demonstrate the dynamic properties of the jet from the rear surface of the reservoir, and how important parameters such as peak load, rise time, shockless compression depth, and stagnating melt depth inmore » the sample vary with laser intensity, laser pulse length, reservoir thickness, vacuum gap size, and even the sample material. Numerical simulations based on the space-time conservation element and solution element method, together with the bulk ablation model, were used. The dynamics of the reservoir depend on the laser intensity, pulse length, equation of state, as well as the molecular structure of the reservoir. The critical pressure condition at which the reservoir will unload, similar to a gas or weak plasma, is 40-80 GPa before expansion. The momentum distribution bulges downward near the front of the plasma jet, which is an important characteristic that determines shockless compression. The total energy density is the most important parameter, and has great influence on the jet characteristics, and consequently on the shockless compression characteristics. If the reservoir is of a single material irradiated at a given laser condition, the relation of peak load and shockless compression depth is in conflict, and the highest loads correspond to the smallest thickness of sample. The temperature of jet front runs up several electron volts after impacting on the sample, and the heat transfer between the stagnating plasma and the sample is sufficiently significant to induce the melting of the sample surface. However, this diffusion heat wave propagates much more slowly than the stress wave, and has minimal effect on the shockless compression progress at a deeper position.« less
Recent Decline in Extratropical Lower Stratospheric Ozone Attributed to Circulation Changes
NASA Astrophysics Data System (ADS)
Wargan, Krzysztof; Orbe, Clara; Pawson, Steven; Ziemke, Jerald R.; Oman, Luke D.; Olsen, Mark A.; Coy, Lawrence; Emma Knowland, K.
2018-05-01
The 1998-2016 ozone trends in the lower stratosphere are examined using the Modern-Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2) and related National Aeronautics and Space Administration products. After removing biases resulting from step changes in the MERRA-2 ozone observations, a discernible negative trend of -1.67 ± 0.54 Dobson units per decade (DU/decade) is found in the 10-km layer above the tropopause between 20°N and 60°N. A weaker but statistically significant trend of -1.17 ± 0.33 DU/decade exists between 50°S and 20°S. In the Tropics, a positive trend is seen in a 5-km layer above the tropopause. Analysis of an idealized tracer in a model simulation constrained by MERRA-2 meteorological fields provides strong evidence that these trends are driven by enhanced isentropic transport between the tropical (20°S-20°N) and extratropical lower stratosphere in the past two decades. This is the first time that a reanalysis data set has been used to detect and attribute trends in lower stratospheric ozone.
Magnetic stirling cycles: A new application for magnetic materials
NASA Technical Reports Server (NTRS)
Brown, G. V.
1977-01-01
The elements of the cycle are summarized. The basic advantages include high entropy density in the magnetic material, completely reversible processes, convenient control of the entropy by the applied field, the feature that heat transfer is possible during all processes, and the ability of the ideal cycle to attain Carnot efficiency. The mean field theory is used to predict the entropy of a ferromagnet in an applied field and also the isothermal entropy change and isentropic temperature change caused by applying a field. The results for isentropic temperature change are compared with experimental data on Gd. Coarse mixtures of ferromagnetic materials with different Curie points are proposed to modify the path of the cycle in the T-S diagram in order to improve the efficiency or to increase the specific power.
Driven neutron star collapse: Type I critical phenomena and the initial black hole mass distribution
NASA Astrophysics Data System (ADS)
Noble, Scott C.; Choptuik, Matthew W.
2016-01-01
We study the general relativistic collapse of neutron star (NS) models in spherical symmetry. Our initially stable models are driven to collapse by the addition of one of two things: an initially ingoing velocity profile, or a shell of minimally coupled, massless scalar field that falls onto the star. Tolman-Oppenheimer-Volkoff (TOV) solutions with an initially isentropic, gamma-law equation of state serve as our NS models. The initial values of the velocity profile's amplitude and the star's central density span a parameter space which we have surveyed extensively and which we find provides a rich picture of the possible end states of NS collapse. This parameter space survey elucidates the boundary between Type I and Type II critical behavior in perfect fluids which coincides, on the subcritical side, with the boundary between dispersed and bound end states. For our particular model, initial velocity amplitudes greater than 0.3 c are needed to probe the regime where arbitrarily small black holes can form. In addition, we investigate Type I behavior in our system by varying the initial amplitude of the initially imploding scalar field. In this case we find that the Type I critical solutions resemble TOV solutions on the 1-mode unstable branch of equilibrium solutions, and that the critical solutions' frequencies agree well with the fundamental mode frequencies of the unstable equilibria. Additionally, the critical solution's scaling exponent is shown to be well approximated by a linear function of the initial star's central density.
NASA Astrophysics Data System (ADS)
Kinoshita, T.; Sato, K.
2016-12-01
The Transformed Eulerian-Mean (TEM) equations were derived by Andrews and McIntyre (1976, 1978) and have been widely used to examine wave-mean flow interaction in the meridional cross section. According to previous studies, the Brewer-Dobson circulation in the stratosphere is driven by planetary waves, baroclinic waves, and inertia-gravity waves, and that the meridional circulation from the summer hemisphere to the winter hemisphere in the mesosphere is mainly driven by gravity waves (e.g., Garcia and Boville 1994; Plumb and Semeniuk 2003; Watanabe et al. 2008; Okamoto et al. 2011). However, the TEM equations do not provide the three-dimensional view of the transport, so that the three dimensional TEM equations have been formulated (Hoskins et al. 1983, Trenberth 1986, Plumb 1985, 1986, Takaya and Nakamura 1997, 2001, Miyahara 2006, Kinoshita et al. 2010, Noda 2010, Kinoshita and Sato 2013a, b, and Noda 2014). On the other hand, the TEM equations cannot properly treat the lower boundary and unstable waves. The Mass-weighted Isentropic Mean (MIM) equations derived by Iwasaki (1989, 1990) are the equations that overcome those problems and the formulation of three-dimensional MIM equations have been studied. The present study applies the three-dimensional TEM and MIM equations to the ERA-Interim reanalysis data and examines the climatological character of three-dimensional structure of Stratospheric Brewer-Dobson circulation. Next, we will discuss how to treat the flow associated with spatial structure of stationary waves.
THERMALLY DRIVEN ATMOSPHERIC ESCAPE: TRANSITION FROM HYDRODYNAMIC TO JEANS ESCAPE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkov, Alexey N.; Johnson, Robert E.; Tucker, Orenthal J.
2011-03-10
Thermally driven escape from planetary atmospheres changes in nature from an organized outflow (hydrodynamic escape) to escape on a molecule-by-molecule basis (Jeans escape) with increasing Jeans parameter, {lambda}, the ratio of the gravitational to thermal energy of the atmospheric molecules. This change is described here for the first time using the direct simulation Monte Carlo method. When heating is predominantly below the lower boundary of the simulation region, R{sub 0}, and well below the exobase of a single-component atmosphere, the nature of the escape process changes over a surprisingly narrow range of Jeans parameters, {lambda}{sub 0}, evaluated at R{sub 0}.more » For an atomic gas, the transition occurs over {lambda}{sub 0} {approx} 2-3, where the lower bound, {lambda}{sub 0} {approx} 2.1, corresponds to the upper limit for isentropic, supersonic outflow. For {lambda}{sub 0} > 3 escape occurs on a molecule-by-molecule basis and we show that, contrary to earlier suggestions, for {lambda}{sub 0} > {approx}6 the escape rate does not deviate significantly from the familiar Jeans rate. In a gas composed of diatomic molecules, the transition shifts to {lambda}{sub 0} {approx} 2.4-3.6 and at {lambda}{sub 0} > {approx}4 the escape rate increases a few tens of percent over that for the monatomic gas. Scaling by the Jeans parameter and the Knudsen number, these results can be applied to thermally induced escape of the major species from solar and extrasolar planets.« less
Laser-driven shock compression of gold foam in the terapascal pressure range
NASA Astrophysics Data System (ADS)
Liu, Wei; Duan, Xiaoxi; Jiang, Shaoen; Wang, Zhebin; Sun, Liang; Liu, Hao; Yang, Weiming; Zhang, Huan; Ye, Qing; Wang, Peng; Li, Yulong; Yi, Lin; Dong, Suo
2018-06-01
Shock compression experiments are carried out on gold foam with an initial density of 3.2 g/cm3 through indirectly laser-driven shock waves at the SG-III prototype laser facility. The impedance-matching technique is applied to determine the equation-of-state (EOS) data of the shocked gold foam. A passive shock breakout diagnostic system is employed to obtain the shock velocities in both the standard material and gold foam. The gold foams are compressed to a maximum density of 20 g/cm3 under a shock pressure of about 2 TPa. The effects of the unsteadiness of shock waves on the EOS measurement are quantitatively analyzed and corrected. The correction of unsteady waves, as well as the good planarity of the shock waves and the low preheating of the gold foam, contributes high-confidence EOS data for the gold foam. The corrected experimental data are compared with the Hugoniot states from the SESAME library. The comparison suggests that the database is suitable for describing the states of gold foam with an initial density of 3.2 g/cm3 under a pressure of about 2 TPa.
NASA Astrophysics Data System (ADS)
Teng, J.; Gu, Y. Q.; Zhu, B.; Hong, W.; Zhao, Z. Q.; Zhou, W. M.; Cao, L. F.
2013-11-01
This paper presents a new method of laser produced proton beam collimation and spectrum compression using a combination of a solenoid field and a RF cavity. The solenoid collects laser-driven protons efficiently within an angle that is smaller than 12 degrees because it is mounted few millimeters from the target, and collimates protons with energies around 2.3 MeV. The collimated proton beam then passes through a RF cavity to allow compression of the spectrum. Particle-in-cell (PIC) simulations demonstrate the proton beam transport in the solenoid and RF electric fields. Excellent energy compression and collection efficiency of protons are presented. This method for proton beam optimization is suitable for high repetition-rate laser acceleration proton beams, which could be used as an injector for a conventional proton accelerator.
Laser-driven magnetic-flux compression in high-energy-density plasmas.
Gotchev, O V; Chang, P Y; Knauer, J P; Meyerhofer, D D; Polomarov, O; Frenje, J; Li, C K; Manuel, M J-E; Petrasso, R D; Rygg, J R; Séguin, F H; Betti, R
2009-11-20
The demonstration of magnetic field compression to many tens of megagauss in cylindrical implosions of inertial confinement fusion targets is reported for the first time. The OMEGA laser [T. R. Boehly, Opt. Commun. 133, 495 (1997)10.1016/S0030-4018(96)00325-2] was used to implode cylindrical CH targets filled with deuterium gas and seeded with a strong external field (>50 kG) from a specially developed magnetic pulse generator. This seed field was trapped (frozen) in the shock-heated gas fill and compressed by the imploding shell at a high implosion velocity, minimizing the effect of resistive flux diffusion. The magnetic fields in the compressed core were probed via proton deflectrometry using the fusion products from an imploding D3He target. Line-averaged magnetic fields between 30 and 40 MG were observed.
NASA Technical Reports Server (NTRS)
Ratcliffe, James G.; Jackson, Wade C.
2008-01-01
A simple analysis method has been developed for predicting the residual compressive strength of impact-damaged sandwich panels. The method is tailored for honeycomb core-based sandwich specimens that exhibit an indentation growth failure mode under axial compressive loading, which is driven largely by the crushing behavior of the core material. The analysis method is in the form of a finite element model, where the impact-damaged facesheet is represented using shell elements and the core material is represented using spring elements, aligned in the thickness direction of the core. The nonlinear crush response of the core material used in the analysis is based on data from flatwise compression tests. A comparison with a previous analysis method and some experimental data shows good agreement with results from this new approach.
NASA Technical Reports Server (NTRS)
Ratcliffe, James G.; Jackson, Wade C.
2008-01-01
A simple analysis method has been developed for predicting the residual compression strength of impact-damaged sandwich panels. The method is tailored for honeycomb core-based sandwich specimens that exhibit an indentation growth failure mode under axial compression loading, which is driven largely by the crushing behavior of the core material. The analysis method is in the form of a finite element model, where the impact-damaged facesheet is represented using shell elements and the core material is represented using spring elements, aligned in the thickness direction of the core. The nonlinear crush response of the core material used in the analysis is based on data from flatwise compression tests. A comparison with a previous analysis method and some experimental data shows good agreement with results from this new approach.
Progress In Magnetized Target Fusion Driven by Plasma Liners
NASA Technical Reports Server (NTRS)
Thio, Francis Y. C.; Kirkpatrick, Ronald C.; Knapp, Charles E.; Cassibry, Jason; Eskridge, Richard; Lee, Michael; Smith, James; Martin, Adam; Wu, S. T.; Schmidt, George;
2001-01-01
Magnetized target fusion (MTF) attempts to combine the favorable attributes of magnetic confinement fusion (MCF) for energy confinement with the attributes of inertial confinement fusion (ICF) for efficient compression heating and wall-free containment of the fusing plasma. It uses a material liner to compress and contain a magnetized plasma. For practical applications, standoff drivers to deliver the imploding momentum flux to the target plasma remotely are required. Spherically converging plasma jets have been proposed as standoff drivers for this purpose. The concept involves the dynamic formation of a spherical plasma liner by the merging of plasma jets, and the use of the liner so formed to compress a spheromak or a field reversed configuration (FRC).
Direct numerical simulation of turbulence in injection-driven plane channel flows
NASA Astrophysics Data System (ADS)
Venugopal, Prem; Moser, Robert D.; Najjar, Fady M.
2008-10-01
Compressible turbulent flow in a periodic plane channel with mass injecting walls is studied as a simplified model for core flow in a solid-propellant rocket motor with homogeneous propellant and other injection-driven internal flows. In this model problem, the streamwise direction was asymptotically homogenized by assuming that at large distances from the closed end, both the mean and rms of turbulent fluctuations evolve slowly in the streamwise direction when compared to the turbulent fluctuations themselves. The Navier-Stokes equations were then modified to account for this slow growth. A direct numerical simulation of the homogenized compressible injection-driven turbulent flow was then conducted for conditions occurring at a streamwise location situated 40 channel half-widths from the closed off end and at an injection Reynolds number of approximately 190. The turbulence in this model flow was found to be only weakly compressible, although significant compressibility existed in the mean flow. As in nontranspired channels, turbulence resulted in increased near-wall shear for the mean streamwise velocity. When normalized by the average rate of turbulence production, the magnitudes of near-wall velocity fluctuations were similar to those in the log region of nontranspired wall-bounded turbulence. However, the sharp peak in streamwise velocity fluctuations observed in nontranspired channels was absent. While streaks and inclined vortices were observed in the near-wall region, their structure was very similar to those observed in the log region of nontranspired channels. These differences are attributed to the absence of a viscous sublayer in the transpired case which in turn is the result of the fact that the no-slip condition for the transpired case is an inviscid boundary condition. That is, unlike nontranspired walls, with transpiration, zero tangential velocity boundary conditions can be imposed at the wall for the Euler (inviscid) equations. The results of this study have important implications on the ability of turbulence models to predict this flow.
Performance of pile supported sign structures : final report.
DOT National Transportation Integrated Search
2015-01-01
Foundations for sign structures are subjected primarily to overturning loads, but published methods for designing driven pile groups only address groups subjected either to compression or uplift, not both simultaneously. A lateral load test of two fo...
Negative-pressure-induced enhancement in a freestanding ferroelectric
NASA Astrophysics Data System (ADS)
Wang, Jin; Wylie-van Eerd, Ben; Sluka, Tomas; Sandu, Cosmin; Cantoni, Marco; Wei, Xian-Kui; Kvasov, Alexander; McGilly, Leo John; Gemeiner, Pascale; Dkhil, Brahim; Tagantsev, Alexander; Trodahl, Joe; Setter, Nava
2015-10-01
Ferroelectrics are widespread in technology, being used in electronics and communications, medical diagnostics and industrial automation. However, extension of their operational temperature range and useful properties is desired. Recent developments have exploited ultrathin epitaxial films on lattice-mismatched substrates, imposing tensile or compressive biaxial strain, to enhance ferroelectric properties. Much larger hydrostatic compression can be achieved by diamond anvil cells, but hydrostatic tensile stress is regarded as unachievable. Theory and ab initio treatments predict enhanced properties for perovskite ferroelectrics under hydrostatic tensile stress. Here we report negative-pressure-driven enhancement of the tetragonality, Curie temperature and spontaneous polarization in freestanding PbTiO3 nanowires, driven by stress that develops during transformation of the material from a lower-density crystal structure to the perovskite phase. This study suggests a simple route to obtain negative pressure in other materials, potentially extending their exploitable properties beyond their present levels.
Cost Modeling and Design of Field-Reversed Configuration Fusion Power Plants
NASA Astrophysics Data System (ADS)
Kirtley, David; Slough, John; Helion Team
2017-10-01
The Inductively Driven Liner (IDL) fusion concept uses the magnetically driven implosion of thin (0.5-1 mm) Aluminum hoops to magnetically compress a merged Field-Reversed Configuration (FRC) plasma to fusion conditions. Both the driver and the target have been studied experimentally and theoretically by researchers at Helion Energy, MSNW, and the University of Washington, demonstrating compression fields greater than 100 T and suitable fusion targets. In the presented study, a notional power plant facility using this approach will be described. In addition, a full cost study based on the LLNL Z-IFE and HYLIFE-II studies, the ARIES Tokamak concept, and RAND power plant studies will be described. Finally, the expected capital costs, development requirements, and LCOE for 50 and 500 MW power plants will be given. This analysis includes core FRC plant scaling, metallic liner recycling, radiation shielding, operations, and facilities capital requirements.
Datta, S.; Do, L.V.; Young, T.M.
2004-01-01
A simple compressed-gas driven system for field processing and extracting water for subsequent analyses of hydrophobic organic compounds is presented. The pumping device is a pneumatically driven pump and filtration system that can easily clarify at 4L/min. The extraction device uses compressed gas to drive filtered water through two parallel XAD-2 resin columns, at about 200 mL/min. No batteries or inverters are required for water collection or processing. Solvent extractions were performed directly in the XAD-2 glass columns. Final extracts are cleaned-up on Florisil cartridges without fractionation and contaminants analyzed by GC-MS. Method detection limits (MDLs) and recoveries for dissolved organic contaminants, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and pesticides are reported along with results of surface water analysis for the San Francisco Bay, CA.
Semi-analytic model of plasma-jet-driven magneto-inertial fusion
Langendorf, Samuel J.; Hsu, Scott C.
2017-03-01
A semi-analytic model for plasma-jet-driven magneto-inertial fusion is presented here. Compressions of a magnetized plasma target by a spherically imploding plasma liner are calculated in one dimension (1D), accounting for compressible hydrodynamics and ionization of the liner material, energy losses due to conduction and radiation, fusion burn and alpha deposition, separate ion and electron temperatures in the target, magnetic pressure, and fuel burn-up. Results show 1D gains of 3–30 at spherical convergence ratio <15 and 20–40 MJ of liner energy, for cases in which the liner thickness is 1 cm and the initial radius of a preheated magnetized target ismore » 4 cm. Some exploration of parameter space and physics settings is presented. The yields observed suggest that there is a possibility of igniting additional dense fuel layers to reach high gain.« less
Moisture and wave-mean flow interactions in the general circulation of Earth's atmosphere
NASA Astrophysics Data System (ADS)
Yamada, Ray
Baroclinic eddies play an important role in shaping the midlatitude climate and its variability. They are the dominant means by which heat, momentum, and water vapor are transported in the atmosphere, but their turbulent nature makes it challenging to grasp their aggregate effect on the mean circulation. Wave-mean flow diagnostics provide an effective means for understanding the interactions between eddies and the mean circulation. These diagnostics are derived by dynamically motivated averaging of the equations of motion, which exposes the total explicit eddy effect on the mean circulation tendency. Most of the classic formulations of these diagnostics have been limited by the fact that they do not account for the eddy flux of water vapor, which can drive circulation through latent heat released from condensation. In the first part of this thesis, a moist isentropic generalization of the Eliassen-Palm (EP) flux diagnostic is developed. Moist isentropes are often not invertible with height, which prevents the standard techniques used to derive the dry diagnostic from being applied in the moist case. This issue is resolved by using a conditional-averaging approach to define a weak coordinate transformation. The primitive equations, EP flux, and EP theorem are derived in generality for non- invertible coordinates, without assumptions of quasi-geostrophy or small wave-amplitude. It is shown that, in the reanalysis climatology, the moist EP flux is twice as strong as the dry EP flux and has a greater equatorward extent. Physically, the increase in momentum exchange is tied to an enhancement of the form drag associated with the horizontal structure of midlatitude eddies, where the poleward flow of moist air is located in regions of strong eastward pressure gradients. The second part of this thesis studies the effect of latent heating on the mean flow adjustment in idealized baroclinic life cycles. The life cycles are simulated in an idealized moist general circulation model (GCM) with no convective parameterizations and diabatic heating is due entirely to the latent heat released from large-scale condensation. A series of life cycle simulations are run varying only the initially prescribed value of the relative humidity. It is shown that increasing relative humidity acts to decrease the baroclinic shear of the adjusting zonal jet. By solving a moist elliptic equation for the Eulerian-mean circulation forced by the eddy fluxes, it is shown that the eddy moisture flux drives an indirect Eulerian circulation on the equatorward flank of the jet. This in turn increases the strength and equatorward extent of the developing surface westerlies. The reduction of baroclinicity is consistent with the earlier idea that moisture fluxes increase the EP flux and form drag associated with baroclinic eddies. The final topic of this thesis is about the extratropical internal variability of the atmosphere. The annular mode (AM) has long been considered the dominant mode of atmospheric variability driven by midlatitude storms. It describes a north-south vacillation of the eddy-driven jet on intraseasonal timescales which are considerably longer than the life cycle of typical synoptic storms. This low-frequency variability of the AM is thought to be supported by a mean-eddy feedback, in which a poleward shift of the jet is supported by a poleward shift of the baroclinic zone. However, it is shown that the atmospheric energy transport and isentropic circulation shift equatorward in the monthly AM composites. This shift is mainly the result of a poleward shift of the Ferrel cell. An alternative mean-eddy feedback mechanism based on the idea of the jet acting as a mixing barrier is proposed as an explanation for the small response of the eddy energy flux.
Compression After Impact Testing of Sandwich Structures Using the Four Point Bend Test
NASA Technical Reports Server (NTRS)
Nettles, Alan T.; Gregory, Elizabeth; Jackson, Justin; Kenworthy, Devon
2008-01-01
For many composite laminated structures, the design is driven by data obtained from Compression after Impact (CAI) testing. There currently is no standard for CAI testing of sandwich structures although there is one for solid laminates of a certain thickness and lay-up configuration. Most sandwich CAI testing has followed the basic technique of this standard where the loaded ends are precision machined and placed between two platens and compressed until failure. If little or no damage is present during the compression tests, the loaded ends may need to be potted to prevent end brooming. By putting a sandwich beam in a four point bend configuration, the region between the inner supports is put under a compressive load and a sandwich laminate with damage can be tested in this manner without the need for precision machining. Also, specimens with no damage can be taken to failure so direct comparisons between damaged and undamaged strength can be made. Data is presented that demonstrates the four point bend CAI test and is compared with end loaded compression tests of the same sandwich structure.
NASA Astrophysics Data System (ADS)
Lee, Sung Keun; Park, Sun Young; Kim, Hyo-Im; Tschauner, Oliver; Asimow, Paul; Bai, Ligang; Xiao, Yuming; Chow, Paul
2012-03-01
The detailed atomic structures of shock compressed basaltic glasses are not well understood. Here, we explore the structures of shock compressed silicate glass with a diopside-anorthite eutectic composition (Di64An36), a common Fe-free model basaltic composition, using oxygen K-edge X-ray Raman scattering and high- resolution 27Al solid-state NMR spectroscopy and report previously unknown details of shock-induced changes in the atomic configurations. A topologically driven densification of the Di64An36 glass is indicated by the increase in oxygen K-edge energy for the glass upon shock compression. The first experimental evidence of the increase in the fraction of highly coordinated Al in shock compressed glass is found in the 27Al NMR spectra. This unambiguous evidence of shock-induced changes in Al coordination environments provides atomistic insights into shock compression in basaltic glasses and allows us to microscopically constrain the magnitude of impact events or relevant processes involving natural basalts on Earth and planetary surfaces.
Elasticity, shear-mode softening and high-pressure polymorphism of wüstite (Fe1-xO)
NASA Astrophysics Data System (ADS)
Jackson, Ian; Khanna, S. K.; Revcolevschi, A.; Berthon, J.
1990-12-01
Elastic wave travel times have been determined as functions of hydrostatic pressure to 3 GPa for five modes of propagation in synthetic single-crystal wüstite Feo.943O by ultrasonic phase comparison. The measured travel times, corrected for transducer-bond phase shifts, constrain very accurately the zero-pressure elastic moduli (GPa) and, for the first time, their first pressure derivatives (dimensionless) as follows: C11∶218.4, dC11/dP∶9.65, C12∶123.0, dC12/dP∶2.77, C44∶45.5, dC44/dP∶-1.03. The zero-pressure moduli are in good agreement with the results of previous determinations by ultrasonic wave propagation but not with all of the moduli determined by resonance techniques. The variation of bulk modulus with pressure calculated from the Cij (P) is extrapolated to much higher pressures via third-order Eulerian isotherms and isentropes based on K0S = 154.9 GPa and (dKs/dP)0T = 4.90. The resulting isothermal and shock compression curves satisfactorily reproduce the experimental data to ˜70 GPa, thereby providing a unified description of essentially all data bearing on the compressibility of wüstite. At higher pressures, published shock compression studies provide clear evidence for the existence of a different phase of much greater density and incompressibility. Metallic values of electrical conductivity have been reported for pressures >70 GPa under conditions of shock and high-temperature static loading. Polyhedral face-sharing in either the B8(NiAs) or B2(CsCl) (or derivative) structures would result in shorter Fe-Fe distances, allowing greater 3d orbital overlap conducive to metallic conductivity. However, none of these possibilities satisfactorily accounts for the large inferred increase (14-20%) in zero-pressure density unless the Fe-O distance is also reduced by 3-5% by electron delocalization or spin-pairing. The marked violation of the Cauchy condition associated with the very low value of C44 and its unusual temperature and pressure derivatives are attributable mainly to exchange coupling between nearest and next-nearest neighbor spins.
A Bunch Compression Method for Free Electron Lasers that Avoids Parasitic Compressions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benson, Stephen V.; Douglas, David R.; Tennant, Christopher D.
2015-09-01
Virtually all existing high energy (>few MeV) linac-driven FELs compress the electron bunch length though the use of off-crest acceleration on the rising side of the RF waveform followed by transport through a magnetic chicane. This approach has at least three flaws: 1) it is difficult to correct aberrations--particularly RF curvature, 2) rising side acceleration exacerbates space charge-induced distortion of the longitudinal phase space, and 3) all achromatic "negative compaction" compressors create parasitic compression during the final compression process, increasing the CSR-induced emittance growth. One can avoid these deficiencies by using acceleration on the falling side of the RF waveformmore » and a compressor with M 56>0. This approach offers multiple advantages: 1) It is readily achieved in beam lines supporting simple schemes for aberration compensation, 2) Longitudinal space charge (LSC)-induced phase space distortion tends, on the falling side of the RF waveform, to enhance the chirp, and 3) Compressors with M 56>0 can be configured to avoid spurious over-compression. We will discuss this bunch compression scheme in detail and give results of a successful beam test in April 2012 using the JLab UV Demo FEL« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garimella, Sandilya V. B.; Ibrahim, Yehia M.; Tang, Keqi
A novel concept for ion spatial peak compression is described, and discussed primarily in the context of ion mobility spectrometry (IMS). Using theoretical and numerical methods, the effects of using non-constant (e.g., linearly varying) electric fields on ion distributions (e.g., an ion mobility peak) is evaluated both in the physical and temporal domains. The application of linearly decreasing electric field in conjunction with conventional drift field arrangements is shown to lead to a reduction in IMS physical peak width. When multiple ion packets in a selected mobility window are simultaneously subjected to such fields, there is ion packet compression, i.e.,more » a reduction in peak widths of all species. This peak compression occurs with a modest reduction of resolution, but which can be quickly recovered as ions drift in a constant field after the compression event. Compression also yields a significant increase in peak intensities. In addition, approaches for peak compression in traveling wave IMS are also discussed. Ion mobility peak compression can be particularly useful for mitigating diffusion driven peak spreading over very long path length separations (e.g., in cyclic multi-pass arrangements), and for achieving higher S/N and IMS resolution over a selected mobility range.« less
Spin quenching assisted by a strongly anisotropic compression behavior in MnP
NASA Astrophysics Data System (ADS)
Han, Fei; Wang, Di; Wang, Yonggang; Li, Nana; Bao, Jin-Ke; Li, Bing; Botana, Antia S.; Xiao, Yuming; Chow, Paul; Chung, Duck Young; Chen, Jiuhua; Wan, Xiangang; Kanatzidis, Mercouri G.; Yang, Wenge; Mao, Ho-Kwang
2018-02-01
We studied the crystal structure and spin state of MnP under high pressure with synchrotron x-ray diffraction and x-ray emission spectroscopy (XES). MnP has an exceedingly strong anisotropy in compressibility, with the primary compressible direction along the b axis of the Pnma structure. XES reveals a pressure-driven quenching of the spin state in MnP. First-principles calculations suggest that the strongly anisotropic compression behavior significantly enhances the dispersion of the Mn d-orbitals and the splitting of the d-orbital levels compared to the hypothetical isotropic compression behavior. Thus, we propose spin quenching results mainly from the significant enhancement of the itinerancy of d electrons and partly from spin rearrangement occurring in the split d-orbital levels near the Fermi level. This explains the fast suppression of magnetic ordering in MnP under high pressure. The spin quenching lags behind the occurrence of superconductivity at ˜8 GPa implying that spin fluctuations govern the electron pairing for superconductivity.
Apparatus for the liquefaction of natural gas and methods relating to same
Wilding, Bruce M [Idaho Falls, ID; Bingham, Dennis N [Idaho Falls, ID; McKellar, Michael G [Idaho Falls, ID; Turner, Terry D [Ammon, ID; Raterman, Kevin T [Idaho Falls, ID; Palmer, Gary L [Shelley, ID; Klingler, Kerry M [Idaho Falls, ID; Vranicar, John J [Concord, CA
2007-05-22
An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO.sub.2) clean-up cycle.
Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same
Wilding, Bruce M.; Bingham, Dennis N.; McKellar, Michael G.; Turner, Terry D.; Rateman, Kevin T.; Palmer, Gary L.; Klinger, Kerry M.; Vranicar, John J.
2005-11-08
An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO2) clean-up cycle.
Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same
Wilding, Bruce M.; Bingham, Dennis N.; McKellar, Michael G.; Turner, Terry D.; Raterman, Kevin T.; Palmer, Gary L.; Klingler, Kerry M.; Vranicar, John J.
2005-05-03
An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO2) clean-up cycle.
Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same
Wilding, Bruce M.; Bingham, Dennis N.; McKellar, Michael G.; Turner, Terry D.; Raterman, Kevin T.; Palmer, Gary L.; Klingler, Kerry M.; Vranicar, John J.
2003-06-24
An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO.sub.2) clean-up cycle.
Spin quenching assisted by a strongly anisotropic compression behavior in MnP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Fei; Wang, Di; Wang, Yonggang
We studied the crystal structure and spin state of MnP under high pressure with synchrotron X-ray diffraction and X-ray emission spectroscopy. MnP has an exceedingly strong anisotropy in compressibility, with the primary compressible direction along the b axis of the Pnma structure. X-ray emission spectroscopy reveals a pressure-driven quenching of the spin state in MnP. First-principles calculations suggest that the strongly anisotropic compression behavior significantly enhances the dispersion of the Mn d-orbitals and the splitting of the d-orbital levels compared to the hypothetical isotropic compression behavior. Thus, we propose spin quenching results mainly from the significant enhancement of the itinerancymore » of d electrons and partly from spin rearrangement occurring in the split d-orbital levels near the Fermi level. This explains the fast suppression of magnetic ordering in MnP under high pressure. The spin quenching lags behind the occurrence of superconductivity at ~8 GPa implying that spin fluctuations govern the electron pairing for superconductivity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robey, H. F.; Smalyuk, V. A.; Milovich, J. L.
A series of indirectly driven capsule implosions has been performed on the National Ignition Facility to assess the relative contributions of ablation-front instability growth vs. fuel compression on implosion performance. Laser pulse shapes for both low and high-foot pulses were modified to vary ablation-front growth and fuel adiabat, separately and controllably. Three principal conclusions are drawn from this study: (1) It is shown that reducing ablation-front instability growth in low-foot implosions results in a substantial (3-10X) increase in neutron yield with no loss of fuel compression. (2) It is shown that reducing the fuel adiabat in high-foot implosions results inmore » a significant (36%) increase in fuel compression together with a small (10%) increase in neutron yield. (3) Increased electron preheat at higher laser power in high-foot implosions, however, appears to offset the gain in compression achieved by adiabat-shaping at lower power. These results taken collectively bridge the space between the higher compression low-foot results and the higher yield high-foot results.« less
Compressed digital holography: from micro towards macro
NASA Astrophysics Data System (ADS)
Schretter, Colas; Bettens, Stijn; Blinder, David; Pesquet-Popescu, Béatrice; Cagnazzo, Marco; Dufaux, Frédéric; Schelkens, Peter
2016-09-01
signal processing methods from software-driven computer engineering and applied mathematics. The compressed sensing theory in particular established a practical framework for reconstructing the scene content using few linear combinations of complex measurements and a sparse prior for regularizing the solution. Compressed sensing found direct applications in digital holography for microscopy. Indeed, the wave propagation phenomenon in free space mixes in a natural way the spatial distribution of point sources from the 3-dimensional scene. As the 3-dimensional scene is mapped to a 2-dimensional hologram, the hologram samples form a compressed representation of the scene as well. This overview paper discusses contributions in the field of compressed digital holography at the micro scale. Then, an outreach on future extensions towards the real-size macro scale is discussed. Thanks to advances in sensor technologies, increasing computing power and the recent improvements in sparse digital signal processing, holographic modalities are on the verge of practical high-quality visualization at a macroscopic scale where much higher resolution holograms must be acquired and processed on the computer.
100J Pulsed Laser Shock Driver for Dynamic Compression Research
NASA Astrophysics Data System (ADS)
Wang, X.; Sethian, J.; Bromage, J.; Fochs, S.; Broege, D.; Zuegel, J.; Roides, R.; Cuffney, R.; Brent, G.; Zweiback, J.; Currier, Z.; D'Amico, K.; Hawreliak, J.; Zhang, J.; Rigg, P. A.; Gupta, Y. M.
2017-06-01
Logos Technologies and the Laboratory for Laser Energetics (LLE, University of Rochester) - in partnership with Washington State University - have designed, built and deployed a one of a kind 100J pulsed UV (351 nm) laser system to perform real-time, x-ray diffraction and imaging experiments in laser-driven compression experiments at the Dynamic Compression Sector (DCS) at the Advanced Photon Source, Argonne National Laboratory. The laser complements the other dynamic compression drivers at DCS. The laser system features beam smoothing for 2-d spatially uniform loading of samples and four, highly reproducible, temporal profiles (total pulse duration: 5-15 ns) to accommodate a wide variety of scientific needs. Other pulse shapes can be achieved as the experimental needs evolve. Timing of the laser pulse is highly precise (<200 ps) to allow accurate synchronization of the x-rays with the dynamic compression event. Details of the laser system, its operating parameters, and representative results will be presented. Work supported by DOE/NNSA.
Choi, Sung Soo; Yun, Seong-Woo; Lee, Byung Kook; Jeung, Kyung Woon; Song, Kyoung Hwan; Lee, Chang-Hee; Park, Jung Soo; Jeong, Ji Yeon; Shin, Sang Yeol
2015-03-01
To improve the quality of chest compression (CC), we developed the assistant-push method, whereby the second rescuer pushes the back of the chest compressor during CC. We investigated the effectiveness and feasibility of assistant push in achieving and maintaining the CC quality. This was a randomized crossover trial in which 41 subjects randomly performed both of standard CC (single-rescuer group) and CC with instructor-driven assistant push (assistant-push group) in different order. Each session of CC was performed for 2 minutes using a manikin. Subjects were also assigned to both roles of chest compressor and assistant and together performed CC with subject-driven assistant push. Depth of CC, compression to recoil ratio, duty cycle, and rate of incomplete recoil were quantified. The mean depth of CC (57.0 [56.0-59.0] vs 55.0 [49.5-57.5], P < .001) was significantly deeper, and the compression force (33.8 [29.3-36.4] vs 23.3 [20.4-25.3], P < .001) was stronger in the assistant-push group. The ratio of compression to recoil, duty cycle, and rate of incomplete chest recoil were comparable between the 2 groups. The CC depth in the single-rescuer group decreased significantly every 30 seconds, whereas in the assistant-push group, it was comparable at 60- and 90-second time points (P = .004). The subject assistant-push group performed CCs at a depth comparable with that of the instructor assistant-push group. The assistant-push method improved the depth of CC and attenuated its decline, eventually helping maintain adequate CC depth over time. Subjects were able to feasibly learn assistant push and performed effectively. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paggi, A., E-mail: alpaggi@tenaris.com; Angella, G.; Donnini, R.
Static and metadynamic recrystallization of an AISI 304L austenitic stainless steel was investigated at 1100 °C and 10{sup −} {sup 2} s{sup −} {sup 1} strain rate. The kinetics of recrystallization was determined through double hit compression tests. Two strain levels were selected for the first compression hit: ε{sub f} = 0.15 for static recrystallization (SRX) and 0.25 for metadynamic recrystallization (MDRX). Both the as-deformed and the recrystallized microstructures were investigated through optical microscopy and electron back-scattered diffraction (EBSD) technique. During deformation, strain induced grain boundary migration appeared to be significant, producing a square-like grain boundary structure aligned along themore » directions of the maximum shear stresses in compression. EBSD analysis revealed to be as a fundamental technique that the dislocation density was distributed heterogeneously in the deformed grains. Grain growth driven by surface energy reduction was also investigated, finding that it was too slow to explain the experimental data. Based on microstructural results, it was concluded that saturation of the nucleation sites occurred in the first stages of recrystallization, while grain growth driven by strain induced grain boundary migration (SIGBM) dominated the subsequent stages. - Highlights: • Recrystallization behavior of a stainless steel was investigated at 1100 °C. • EBSD revealed that the dislocation density distribution was heterogeneous during deformation. • Saturation of nucleation sites occurred in the first stages of recrystallization. • Strain induced grain boundary migration (SIGBM) effects were significant. • Grain growth driven by SIGBM dominated the subsequent stages.« less
An Effective Continuum Model for the Gas Evolution in Internal Steam Drives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsimpanogiannis, Ioannis N.; Yortsos, Yanis C.
This report examines the gas phase growth from a supersaturated, slightly compressible, liquid in a porous medium, driven by heat transfer and controlled by the application of a constant-rate decline of the system pressure.
NASA Astrophysics Data System (ADS)
Zhang, Cun-quan; Zhong, Cheng
2015-03-01
The concept of a new type of pneumatically-driven split-Stirling-cycle cryocooler with clearance-phase-adjustor is proposed. In this implementation, the gap between the phase-adjusting part and the cylinder of the spring chamber is used, instead of dry friction acting on the pneumatically-driven rod to control motion damping of the displacer and to adjust the phase difference between the compression piston and displacer. It has the advantages of easy damping adjustment, low cost, and simplified manufacturing and assembly. A theoretical model has been established to simulate its dynamic performance. The linear compressor is modeled under adiabatic conditions, and the displacement of the compression piston is experimentally rectified. The working characteristics of the compressor motor and the principal losses of cooling, including regenerator inefficiency loss, solid conduction loss, shuttle loss, pump loss and radiation loss, are taken into account. The displacer motion was modeled as a single-degree-of-freedom (SDOF) forced system. A set of governing equations can be solved numerically to simulate the cooler's performance. The simulation is useful for understanding the physical processes occurring in the cooler and for predicting the cooler's performance.
Compression-Driven Enhancement of Electronic Correlations in Simple Alkali Metals
NASA Astrophysics Data System (ADS)
Fabbris, Gilberto; Lim, Jinhyuk; Veiga, Larissa; Haskel, Daniel; Schilling, James
2015-03-01
Alkali metals are the best realization of the nearly free electron model. This scenario appears to change dramatically as the alkalis are subjected to extreme pressure, leading to unexpected properties such as the departure from metallic behavior in Li and Na, and the occurrence of remarkable low-symmetry crystal structures in all alkalis. Although the mechanism behind these phase transitions is currently under debate, these are believed to be electronically driven. In this study the high-pressure electronic and structural ground state of Rb and Cs was investigated through low temperature XANES and XRD measurements combined with ab initio calculations. The results indicate that the pressure-induced localization of the conduction band triggers a Peierls-like mechanism, inducing the low symmetry phases. This localization process is evident by the pressure-driven increase in the number of d electrons, which takes place through strong spd hybridization. These experimental results indicate that compression turns the heavy alkali metals into strongly correlated electron systems. Work at Argonne was supported by DOE No. DE-AC02-06CH11357. Research at Washington University was supported by NSF DMR-1104742 and CDAC/DOE/NNSA DE-FC52-08NA28554.
THz-driven zero-slippage IFEL scheme for phase space manipulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curry, E.; Fabbri, S.; Musumeci, P.
In this paper, we describe an inverse free electron laser (IFEL) interaction driven by a near single-cycle THz pulse that is group velocity-matched to an electron bunch inside a waveguide, allowing for a sustained interaction in a magnetic undulator. We discuss the application of this guided-THz IFEL technique for compression of a relativistic electron bunch and synchronization with the external laser pulse used to generate the THz pulse via optical rectification, as well as a laser-driven THz streaking diagnostic with the potential for femtosecond scale temporal resolution. Initial measurements of the THz waveform via an electro-optic sampling based technique confirm the predicted reduction of the group velocity, using a curved parallel plate waveguide, as a function of the varying aperture size of the guide. We also present the design of a proof-of-principle experiment based on the bunch parameters available at the UCLA PEGASUS laboratory. With amore » $$10\\,\\mathrm{MV}\\,{{\\rm{m}}}^{-1}$$ THz peak field, our simulation model predicts compression of a $$6\\,\\mathrm{MeV}$$ $$100\\,\\mathrm{fs}$$ electron beam by nearly an order of magnitude and a significant reduction of its initial timing jitter.« less
THz-driven zero-slippage IFEL scheme for phase space manipulation
Curry, E.; Fabbri, S.; Musumeci, P.; ...
2016-11-24
In this paper, we describe an inverse free electron laser (IFEL) interaction driven by a near single-cycle THz pulse that is group velocity-matched to an electron bunch inside a waveguide, allowing for a sustained interaction in a magnetic undulator. We discuss the application of this guided-THz IFEL technique for compression of a relativistic electron bunch and synchronization with the external laser pulse used to generate the THz pulse via optical rectification, as well as a laser-driven THz streaking diagnostic with the potential for femtosecond scale temporal resolution. Initial measurements of the THz waveform via an electro-optic sampling based technique confirm the predicted reduction of the group velocity, using a curved parallel plate waveguide, as a function of the varying aperture size of the guide. We also present the design of a proof-of-principle experiment based on the bunch parameters available at the UCLA PEGASUS laboratory. With amore » $$10\\,\\mathrm{MV}\\,{{\\rm{m}}}^{-1}$$ THz peak field, our simulation model predicts compression of a $$6\\,\\mathrm{MeV}$$ $$100\\,\\mathrm{fs}$$ electron beam by nearly an order of magnitude and a significant reduction of its initial timing jitter.« less
NASA Technical Reports Server (NTRS)
Talcott, N. A., Jr.
1977-01-01
Equations and computer code are given for the thermodynamic properties of gaseous fluorocarbons in chemical equilibrium. In addition, isentropic equilibrium expansions of two binary mixtures of fluorocarbons and argon are included. The computer code calculates the equilibrium thermodynamic properties and, in some cases, the transport properties for the following fluorocarbons: CCl2F, CCl2F2, CBrF3, CF4, CHCl2F, CHF3, CCL2F-CCl2F, CCLF2-CClF2, CF3-CF3, and C4F8. Equilibrium thermodynamic properties are tabulated for six of the fluorocarbons(CCl3F, CCL2F2, CBrF3, CF4, CF3-CF3, and C4F8) and pressure-enthalpy diagrams are presented for CBrF3.
A model of stratospheric chemistry and transport on an isentropic surface
NASA Technical Reports Server (NTRS)
Austin, John; Holton, James R.
1990-01-01
This paper presents a new photochemical transport model designed to simulate the behavior of stratospheric trace species in the middle stratosphere. The model has an Eulerian grid with the latitude and longitude coordinates on a single isentropic surface (hemispheric or global), in which both the dynamical and the photochemical processes can be accurately represented. The model is intgegrated for 12 days with winds and temperatures supplied by three-dimensional integration of an idealized wavenumber-one disturbance. The results for the long-lived tracers such as N2O showed excellent correlation with the potential vorticity distribution, validating the transport scheme. Calculations with zonally averaged wind and temperature fields showed that discrepancies in the calculation of the zonal mean were less than 10 percent for O3 and HNO3, compared with the zonal mean of the previous results.
An alternative to the TEM (Transformed Eulerian Mean) equations
NASA Astrophysics Data System (ADS)
Gaßmann, Almut
2013-04-01
The TEM equations constitute a powerful means to get access to the residual circulation. However, due to their foundation on the wave perspective, they deliver only a zonally averaged picture without access to the three-dimensional structure or the local origins of the residual circulation. Therefore it is worth to investigate whether there are alternatives. The pathway followed here is to perform a transformation of the momentum and the potential temperature equation before taking the zonal mean. This is done by removing the steady state ideal wind solution vid = ?×?B-(?±P) from the equations (? - potential temperature, B - Bernoulli function, P - Ertel's potential vorticity EPV, ?± - density). The advantage of that approach is that the total EPV-flux does no longer contain an explicitly visible 'do-nothing-flux'. This flux, ?? ×?B, does only vanish when averaging on isentropic surfaces, but not on other isosurfaces. Here we find the reason why the conventional zonal mean on isentropes delivers a direct overturning cell on each hemisphere, whereas on other isosurfaces we obtain the typical three-cell structure with Headley, Ferrel, and polar cells. It will be demonstrated and made visible through idealized climate experiments with the ICON-IAP model that the zonal averages of the nonideal wind components vnid = v - vid and wnid = w - wid constitute similar direct overturning cells on non-isentropic surfaces as obtained with the TEM-generated v* and w*. It is also interesting to inspect fields of local nonideal wind components, the very origin of the residual circulation.
NASA Technical Reports Server (NTRS)
Weinstock, E. M.; Pittman, J. V.; Sayres, D. S.; Smith, J. B.; Anderson, J. G.; Wofsy, S. C.; Xueref, I.; Gerbig, C.; Daube, B. C.; Pfister, L.;
2007-01-01
The chemical composition of the lowermost stratosphere exhibits both spatial and temporal variability depending upon the relative strength of (1) isentropic transport from the tropical tropopause layer (TTL), (2) diabatic descent from the midlatitude and northern midlatitude stratosphere followed by equatorward isentropic transport, and (3) diabatic ascent from the troposphere through convection. In situ measurements made in the lowermost stratosphere over Florida illustrate the additional impact of equatorward flow around the monsoon anticyclone. This flow carries, along with older stratospheric air, the distinct signature of deep midlatitude convection. We use simultaneous in situ measurements of water vapor (H2O), ozone (O3), total odd nitrogen (NOy), carbon dioxide (CO2), and carbon monoxide (CO) in the framework of a simple box model to quantify the composition of the air sampled in the lowermost stratosphere during the mission on the basis of tracer mixing ratios ascribed to the source regions for these transport pathways. The results show that in the summer, convection has a significant impact on the composition of air in the lowermost stratosphere, being the dominant source of water vapor up to the 380 K isentrope. The implications of these results extend from the potential for heterogeneous ozone loss resulting from the increased frequency and lifetime of cirrus near the local tropopause, to air with increased water vapor that as part of the equatorward flow associated with the North American monsoon can become part of the general circulation.
Precise method to determine points on isentropic release curve on copper
NASA Astrophysics Data System (ADS)
Remiot, C.; Mexmain, J. M.; Bonnet, L.
1996-05-01
When a higher shock impedance foil (with several hundreds of μm in thickness) is set on the studied material surface, the release phase occurs by steps, whose duration of each plateau corresponds to a go and return of the shock wave in the foil. Step velocity levels can be easily measured by D.L.I. technique. The intermediate velocity values, connected with the knowledge of the foil Hugoniot, allow us to determine a few points on the isentropic release curve. The experiments have been achieved on a two stage light gas gun with a projectile velocity varying from 1400 to 3000 m/s. The caliber of the launcher is 30 mm. For this study concerning copper, the target is composed of a 2 mm thickness copper transmitter on which the sample is mechanically held. The tungsten (W) thick foil is, under pressure, sticked on the sample with UV stick-cord. The free surface velocity measurement accuracy of the tungsten foil is 0.4% for values between 1500 to 3500 m/s. The first shock in the sample is varying from 40 to 120 GPa and the mass velocity from 800 to 2000 m/s. By impedance matching between the copper sample and the tungsten thick foil, we deduce for each experiment three points on the copper isentropic release curve and the final free surface velocity. The accuracy we obtain is in order of 0.4 GPa for the pressure and 10 m/s for the mass velocity.
NASA Astrophysics Data System (ADS)
Bradshaw, Craig R.; Kemp, Greg; Orosz, Joe; Groll, Eckhard A.
2017-08-01
An improvement to the design process of the rotating spool compressor is presented. This improvement utilizes a comprehensive model to explore two working uids (R410A and R134a), various displaced volumes, at a variety of geometric parameters. The geometric parameters explored consists of eccentricity ratio and length-to-diameter ratio. The eccentricity ratio is varied between 0.81 and 0.92 and the length-to-diameter ratio is varied between 0.4 and 3. The key tradeoffs are evaluated and the results show that there is an optimum eccentricity and length-to-diameter ratio, which will maximize the model predicted performance, that is unique to a particular uid and displaced volume. For R410A, the modeling tool predicts that the overall isentropic efficiency will optimize at a length-to-diameter ratio that is lower than for R134a. Additionally, the tool predicts that as the displaced volume increases the overall isentropic efficiency will increase and the ideal length-to-diameter ratio will shift. The result from this study are utilized to develop a basic design for a 141 kW (40 tonsR) capacity prototype spool compressor for light-commercial air-conditioning applications. Results from a prototype compressor constructed based on these efforts is presented. The volumetric efficiency predictions are found to be very accurate with the overall isentropic efficiency predictions shown to be slightly over-predicted.
Use of compression garments by women with lymphoedema secondary to breast cancer treatment.
Longhurst, E; Dylke, E S; Kilbreath, S L
2018-02-19
This aim of this study was to determine the use of compression garments by women with lymphoedema secondary to breast cancer treatment and factors which underpin use. An online survey was distributed to the Survey and Review group of the Breast Cancer Network Australia. The survey included questions related to the participants' demographics, breast cancer and lymphoedema medical history, prescription and use of compression garments and their beliefs about compression and lymphoedema. Data were analysed using principal component analysis and multivariable logistic regression. Compression garments had been prescribed to 83% of 201 women with lymphoedema within the last 5 years, although 37 women had discontinued their use. Even when accounting for severity of swelling, type of garment(s) and advice given for use varied across participants. Use of compression garments was driven by women's beliefs that they were vulnerable to progression of their disease and that compression would prevent its worsening. Common reasons given as to why women had discontinued their use included discomfort, and their lymphoedema was stable. Participant characteristics associated with discontinuance of compression garments included their belief that (i) the garments were not effective in managing their condition, (ii) experienced mild-moderate swelling and/or (iii) had experienced swelling for greater than 5 years. The prescription of compression garments for lymphoedema is highly varied and may be due to lack of underpinning evidence to inform treatment.
Metal hydride hydrogen compression: recent advances and future prospects
NASA Astrophysics Data System (ADS)
Yartys, Volodymyr A.; Lototskyy, Mykhaylo; Linkov, Vladimir; Grant, David; Stuart, Alastair; Eriksen, Jon; Denys, Roman; Bowman, Robert C.
2016-04-01
Metal hydride (MH) thermal sorption compression is one of the more important applications of the MHs. The present paper reviews recent advances in the field based on the analysis of the fundamental principles of this technology. The performances when boosting hydrogen pressure, along with two- and three-step compression units, are analyzed. The paper includes also a theoretical modelling of a two-stage compressor aimed at describing the performance of the experimentally studied systems, their optimization and design of more advanced MH compressors. Business developments in the field are reviewed for the Norwegian company HYSTORSYS AS and the South African Institute for Advanced Materials Chemistry. Finally, future prospects are outlined presenting the role of the MH compression in the overall development of the hydrogen-driven energy systems. The work is based on the analysis of the development of the technology in Europe, USA and South Africa.
X-ray scattering measurements of strong ion-ion correlations in shock-compressed aluminum.
Ma, T; Döppner, T; Falcone, R W; Fletcher, L; Fortmann, C; Gericke, D O; Landen, O L; Lee, H J; Pak, A; Vorberger, J; Wünsch, K; Glenzer, S H
2013-02-08
The strong ion-ion correlation peak characteristic of warm dense matter (WDM) is observed for the first time using simultaneous angularly, temporally, and spectrally resolved x-ray scattering measurements in laser-driven shock-compressed aluminum. Laser-produced molybdenum x-ray line emission at an energy of 17.9 keV is employed to probe aluminum compressed to a density of ρ>8 g/cm(3). We observe a well pronounced peak in the static structure factor at a wave number of k=4.0 Å(-1). The measurements of the magnitude and position of this correlation peak are precise enough to test different theoretical models for the ion structure and show that only models taking the complex interaction in WDM into account agree with the data. This also demonstrates a new highly accurate diagnostic to directly measure the state of compression of warm dense matter.
High-harmonic generation in ZnO driven by self-compressed mid-infrared pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gholam-Mirzaei, Shima; Beetar, John E.; Chacon, Alexis
Progress in attosecond science has relied on advancements in few-cycle pulse generation technology and its application to high-order harmonic generation. Traditionally, self-phase modulation in bulk solids has been used for the compression of moderate-energy pulses, additionally exhibiting favorable dispersion properties for mid-infrared (mid-IR) pulses. For this study, we use the anomalous dispersion of Y 3Al 5O 12 (YAG) to self-compress many-cycle pulses from a 50 kHz mid-IR OPA down to produce sub-three-cycle 10 μJ pulses and further use them to generate high-order harmonics in a ZnO crystal. In agreement with theoretical predictions, we observe a boost in the harmonic yieldmore » by a factor of two, and spectral broadening of above-gap harmonics, compared to longer driving pulses. The enhanced yield results from an increase in the intensity for the self-compressed pulses.« less
Metal hydride hydrogen compression: Recent advances and future prospects
Bowman, Jr., Robert C.; Yartys, Volodymyr A.; Lototskyy, Mykhaylo V.; ...
2016-03-17
Metal hydride (MH) thermal sorption compression is one of the more important applications of the metal hydrides. The present paper reviews recent advances in the field based on the analysis of the fundamental principles of this technology. The performances when boosting hydrogen pressure, along with two- and three-step compression units are analyzed. The paper includes also a theoretical modeling of a two-stage compressor aimed at both describing the performance of the experimentally studied systems, but, also, on their optimization and design of more advanced MH compressors. Business developments in the field are reviewed for the Norwegian company HYSTORSYS AS andmore » the South African Institute for Advanced Materials Chemistry. Finally, future prospects are outlined presenting the role of the metal hydride compression in the overall development of the hydrogen driven energy systems. Lastly, the work is based on the analysis of the development of the technology in Europe, USA and South Africa.« less
Gas turbine power plant with supersonic shock compression ramps
Lawlor, Shawn P [Bellevue, WA; Novaresi, Mark A [San Diego, CA; Cornelius, Charles C [Kirkland, WA
2008-10-14
A gas turbine engine. The engine is based on the use of a gas turbine driven rotor having a compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which compresses inlet gas against a stationary sidewall. The supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdynamic flow path formed between the rim of the rotor, the strakes, and a stationary external housing. Part load efficiency is enhanced by use of a lean pre-mix system, a pre-swirl compressor, and a bypass stream to bleed a portion of the gas after passing through the pre-swirl compressor to the combustion gas outlet. Use of a stationary low NOx combustor provides excellent emissions results.
High-harmonic generation in ZnO driven by self-compressed mid-infrared pulses
Gholam-Mirzaei, Shima; Beetar, John E.; Chacon, Alexis; ...
2018-02-20
Progress in attosecond science has relied on advancements in few-cycle pulse generation technology and its application to high-order harmonic generation. Traditionally, self-phase modulation in bulk solids has been used for the compression of moderate-energy pulses, additionally exhibiting favorable dispersion properties for mid-infrared (mid-IR) pulses. For this study, we use the anomalous dispersion of Y 3Al 5O 12 (YAG) to self-compress many-cycle pulses from a 50 kHz mid-IR OPA down to produce sub-three-cycle 10 μJ pulses and further use them to generate high-order harmonics in a ZnO crystal. In agreement with theoretical predictions, we observe a boost in the harmonic yieldmore » by a factor of two, and spectral broadening of above-gap harmonics, compared to longer driving pulses. The enhanced yield results from an increase in the intensity for the self-compressed pulses.« less
Morphological changes in polycrystalline Fe after compression and release
NASA Astrophysics Data System (ADS)
Gunkelmann, Nina; Tramontina, Diego R.; Bringa, Eduardo M.; Urbassek, Herbert M.
2015-02-01
Despite a number of large-scale molecular dynamics simulations of shock compressed iron, the morphological properties of simulated recovered samples are still unexplored. Key questions remain open in this area, including the role of dislocation motion and deformation twinning in shear stress release. In this study, we present simulations of homogeneous uniaxial compression and recovery of large polycrystalline iron samples. Our results reveal significant recovery of the body-centered cubic grains with some deformation twinning driven by shear stress, in agreement with experimental results by Wang et al. [Sci. Rep. 3, 1086 (2013)]. The twin fraction agrees reasonably well with a semi-analytical model which assumes a critical shear stress for twinning. On reloading, twins disappear and the material reaches a very low strength value.
Supercharging an internal combustion engine by aid of a dual-rotor bi-flux axial compressor
NASA Astrophysics Data System (ADS)
Grǎdinariu, Andrei Cristian; Mihai, Ioan
2016-12-01
Internal combustion engines can be supercharged in order to enhance their performances [1-3]. Engine power is proportional to the quantity of fresh fluid introduced into the cylinder. At present, the general tendency is to try to obtain actual specific powers as high as possible, for as small as possible cylinder capacity, without increasing the generated pollution hazards. The present paper investigates the impact of replacing a centrifugal turbo-compressor with an axial double-rotor bi-flux one [4]. The proposed method allows that for the same number of cylinders, an increase in discharged airflow, accompanied by a decrease in fuel consumption. Using a program developed under the MathCad environment, the present work was aimed at studying the way temperature modifies at the end of isentropic compression under supercharging conditions. Taking into account a variation between extreme limits of the ambient temperature, its influence upon the evolution of thermal load coefficient was analyzed considering the air pressure at the compressor cooling system outlet. This analysis was completed by an exergetical study of the heat evacuated through cylinder walls in supercharged engine conditions. The conducted investigation allows verification of whether significant differences can be observed between an axial, dual-rotor, bi-flux compressor and centrifugal compressors.
Simulations of ultrafast x-ray laser experiments
NASA Astrophysics Data System (ADS)
Fortmann-Grote, C.; Andreev, A. A.; Appel, K.; Branco, J.; Briggs, R.; Bussmann, M.; Buzmakov, A.; Garten, M.; Grund, A.; Huebl, A.; Jurek, Z.; Loh, N. D.; Nakatsutsumi, M.; Samoylova, L.; Santra, R.; Schneidmiller, E. A.; Sharma, A.; Steiniger, K.; Yakubov, S.; Yoon, C. H.; Yurkov, M. V.; Zastrau, U.; Ziaja-Motyka, B.; Mancuso, A. P.
2017-06-01
Simulations of experiments at modern light sources, such as optical laser laboratories, synchrotrons, and free electron lasers, become increasingly important for the successful preparation, execution, and analysis of these experiments investigating ever more complex physical systems, e.g. biomolecules, complex materials, and ultra-short lived states of matter at extreme conditions. We have implemented a platform for complete start-to-end simulations of various types of photon science experiments, tracking the radiation from the source through the beam transport optics to the sample or target under investigation, its interaction with and scattering from the sample, and registration in a photon detector. This tool allows researchers and facility operators to simulate their experiments and instruments under real life conditions, identify promising and unattainable regions of the parameter space and ultimately make better use of valuable beamtime. In this paper, we present an overview about status and future development of the simulation platform and discuss three applications: 1.) Single-particle imaging of biomolecules using x-ray free electron lasers and optimization of x-ray pulse properties, 2.) x-ray scattering diagnostics of hot dense plasmas in high power laser-matter interaction and identification of plasma instabilities, and 3.) x-ray absorption spectroscopy in warm dense matter created by high energy laser-matter interaction and pulse shape optimization for low-isentrope dynamic compression.
Turneaure, Stefan J.; Sinclair, N.; Gupta, Y. M.
2016-07-20
Experimental determination of atomistic mechanisms linking crystal structures during a compression driven solid-solid phase transformation is a long standing and challenging scientific objective. Also, when using new capabilities at the Dynamic Compression Sector at the Advanced Photon Source, the structure of shocked Si at 19 GPa was identified as simple hexagonal and the lattice orientations between ambient cubic diamond and simple hexagonal structures were related. Furthermore, this approach is general and provides a powerful new method for examining atomistic mechanisms during stress-induced structural changes.
Electric and hybrid vehicle environmental control subsystem study
NASA Technical Reports Server (NTRS)
Heitner, K. L.
1980-01-01
An environmental control subsystem (ECS) in electric and hybrid vehicles is studied. A combination of a combustion heater and gasoline engine (Otto cycle) driven vapor compression air conditioner is selected. The combustion heater, the small gasoline engine, and the vapor compression air conditioner are commercially available. These technologies have good cost and performance characteristics. The cost for this ECS is relatively close to the cost of current ECS's. Its effect on the vehicle's propulsion battery is minimal and the ECS size and weight do not have significant impact on the vehicle's range.
Experimental Compressibility of Molten Hedenbergite at High Pressure
NASA Astrophysics Data System (ADS)
Agee, C. B.; Barnett, R. G.; Guo, X.; Lange, R. A.; Waller, C.; Asimow, P. D.
2010-12-01
Experiments using the sink/float method have bracketed the density of molten hedenbergite (CaFeSi2O6) at high pressures and temperatures. The experiments are the first of their kind to determine the compressibility of molten hedenbergite at high pressure and are part of a collaborative effort to establish a new database for an array of silicate melt compositions, which will contribute to the development of an empirically based predictive model that will allow calculation of silicate liquid density and compressibility over a wide range of P-T-X conditions where melting could occur in the Earth. Each melt composition will be measured using: (i) double-bob Archimedean method for melt density and thermal expansion at ambient pressure, (ii) sound speed measurements on liquids to constrain melt compressibility at ambient pressure, (iii) sink/float technique to measure melt density to 15 GPa, and (iv) shock wave measurements of P-V-E equation of state and temperature between 10 and 150 GPa. Companion abstracts on molten fayalite (Waller et al., 2010) and liquid mixes of hedenbergite-diopside and anorthite-hedenbergite-diopside (Guo and Lange, 2010) are also presented at this meeting. In the present study, the hedenbergite starting material was synthesized at the Experimental Petrology Lab, University of Michigan, where melt density, thermal expansion, and sound speed measurements were also carried out. The starting material has also been loaded into targets at the Caltech Shockwave Lab, and experiments there are currently underway. We report here preliminary results from static compression measurement performed at the Department of Petrology, Vrije Universiteit, Amsterdam, and the High Pressure Lab, Institute of Meteoritics, University of New Mexico. Experiments were carried out in Quick Press piston-cylinder devices and a Walker-style multi-anvil device. Sink/float marker spheres implemented were gem quality synthetic forsterite (Fo100), San Carlos olivine (Fo90), and natural pyropic garnet(Pyr74 Alm13.5 Gro12.5). We bracketed the density of molten hedenbergite with Fo100 to be 3.09 g cm-3 at 1.1 GPa and 1450°C, and with Fo90 to be 3.27 g cm-3 at 3.0 GPa and 1450-1550°C. These sink-float values represent an increase in isothermal density from reference ambient pressure of 6% and 12% respectively, or linear compressions of 0.16 and 0.12 g cm-3 GPa-1. The density-with-pressure increases in our static compression experiments are in good agreement with the Michigan ambient pressure sound speed measurements that yield an isentropic bulk modulus of KS=18.77 GPa. Currently we are performing higher pressure sink/float experiments in the range 7-8 GPa with pyrope garnet marker spheres to better constrain values for the isothermal bulk modulus (KT) and its pressure derivative K'. As a by-product of our sink/float experiments we are also determining the melting curve of hedenbergite well beyond the published pressure extent of approximately 1.5 GPa (Lindsley, 1967). Our early data show the hedenbergite liquidus to be 1450°C at 3 GPa and approximately 1750°C at 7 GPa.
Implosion of Cylindrical Cavities via Short Duration Impulsive Loading
NASA Astrophysics Data System (ADS)
Huneault, Justin; Higgins, Andrew
2014-11-01
An apparatus has been developed to study the collapse of a cylindrical cavity in gelatin subjected to a symmetric impact-driven impulsive loading. A gas-driven annular projectile is accelerated to approximately 50 m/s, at which point it impacts a gelatin casting confined by curved steel surfaces that allow a transition from an annular geometry to a cylindrically imploding motion. The implosion is visualized by a high-speed camera through a window which forms the top confining wall of the implosion cavity. The initial size of the cavity is such that the gelatin wall is two to five times thicker than the impacting projectile. Thus, during impact the compression wave which travels towards the cavity is closely followed by a rarefaction resulting from the free surface reflection of the compression wave in the projectile. As the compression wave in the gelatin reaches the inner surface, it will also reflect as a rarefaction wave. The interaction between the rarefaction waves from the gelatin and projectile free surfaces leads to large tensile stresses resulting in the spallation of a relatively thin shell. The study focuses on the effect of impact parameters on the thickness and uniformity of the imploding shell formed by the cavitation in the imploding gelatin cylinder.
Radiation hydrodynamics of triggered star formation: the effect of the diffuse radiation field
NASA Astrophysics Data System (ADS)
Haworth, Thomas J.; Harries, Tim J.
2012-02-01
We investigate the effect of including diffuse field radiation when modelling the radiatively driven implosion of a Bonnor-Ebert sphere (BES). Radiation-hydrodynamical calculations are performed by using operator splitting to combine Monte Carlo photoionization with grid-based Eulerian hydrodynamics that includes self-gravity. It is found that the diffuse field has a significant effect on the nature of radiatively driven collapse which is strongly coupled to the strength of the driving shock that is established before impacting the BES. This can result in either slower or more rapid star formation than expected using the on-the-spot approximation depending on the distance of the BES from the source object. As well as directly compressing the BES, stronger shocks increase the thickness and density in the shell of accumulated material, which leads to short, strong, photoevaporative ejections that reinforce the compression whenever it slows. This happens particularly effectively when the diffuse field is included as rocket motion is induced over a larger area of the shell surface. The formation and evolution of 'elephant trunks' via instability is also found to vary significantly when the diffuse field is included. Since the perturbations that seed instabilities are smeared out elephant trunks form less readily and, once formed, are exposed to enhanced thermal compression.
NASA Astrophysics Data System (ADS)
Seo, Byonghoon; Li, Hui; Bellan, Paul
2017-10-01
We are studying magnetized target fusion using an experimental method where an imploding liner compressing a plasma is simulated by a high-speed MHD-driven plasma jet colliding with a gas target cloud. This has the advantage of being non-destructive so orders of magnitude more shots are possible. Since the actual density and temperature are much more modest than fusion-relevant values, the goal is to determine the scaling of the increase in density and temperature when an actual experimental plasma is adiabatically compressed. Two new-developed diagnostics are operating and providing data. The first new diagnostic is a fiber-coupled interferometer which measures line-integrated electron density not only as a function of time, but also as a function of position along the jet. The second new diagnostic is laser Thomson scattering which measures electron density and temperature at the location where the jet collides with the cloud. These diagnostics show that when the jet collides with a target cloud the jet slows down substantially and both the electron density and temperature increase. The experimental measurements are being compared with 3D MHD and hybrid kinetic numerical simulations that model the actual experimental geometry.
Effects of diabatic heating on the ageostrophic circulation of an upper tropospheric jet streak
NASA Technical Reports Server (NTRS)
Keyser, D. A.; Johnson, D. R.
1982-01-01
Interaction between the mass circulation within a mesoscale convective complex (MCC) and a direct mass circulation in the entrance region of an upper tropospheric polar jet streak was examined within the isentropic structure to investigate mechanisms responsible for linking these two scales of motion. The results establish that latent heating in the MCC modifies the direct mass circulation in the jet streak entrance region through the diabatically induced components of ageostrophic motion analyzed within isentropic coordinates. Within the strong mesoscale mass circulation of each MCC, strong horizontal mass flux convergence into the MCC at low levels is balanced by strong horizontal mass flux divergence away from the convergence at upper levels. Locations of large diabatic heating rates correspond well to the MCC position for each case; diabatic heating forces the upward vertical branch for the mesoscale mass circulation.
NASA Technical Reports Server (NTRS)
Lahoz, W. A.; O'Neill, A.; Carr, E. S.; Harwood, R. S.; Froidevaux, L.; Read, W. G.; Waters, J. W.; Kumer, J. B.; Mergenthaler, J. L.; Roche, A. E.
1994-01-01
The three-dimensional evolution of stratospheric water vapor distributions observed by the Microwave Limb Sounder (MLS) during the period October 1991 - July 1992 is documented. The transport features inferred from the MLS water vapor distributions are corroborated using other dynamical fields, namely, nitrous oxide from the Cryogenic Limb Array Etalon Spectrometer instrument, analyzed winds from the U.K. Meteorological Office (UKMO), UKMO-derived potential vorticity, and the diabatic heating field. By taking a vortex-centered view and an along-track view, the authors observe in great detail the vertical and horizontal structure of the northern winter stratosphere. It is demonstrated that the water vapor distributions show clear signatures of the effects of diabatic descent through isentropic surfaces and quasi-horizontal transport along isentropic surfaces, and that the large-scale winter flow is organized by the interaction between the westerly polar vortex and the Aleutian high.
Isentropic mixing in the Artic stratosphere during the 1992-1993 and 1993-1994 winters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahlberg, S.P.; Bowman, K.P.
1995-05-15
Dynamic isolation of the winter Arctic circumpolar vortex during 1992-1993 and 1993-1994 (the second and third northern hemisphere winters of the UARS mission) is studied using quasi-horizontal isentropic trajectories. Ejection of vortex air and entrainment of mid-latitude air into the vortex are quantified and compared with climatological values obtained from the analysis of 16 Arctic winters. A number of unusual features of both winters are discussed. The most notable features are the anomalous isolation experienced by the vortex during December 1992 and the unusual degree of isolation and persistence of the vortex during February and March of both years. Themore » 1992-1993 winter season is the most consistently isolated vortex on record. Only during January 1993, when entrainment is large, is this pattern of extreme isolation broken. 14 refs., 3 tabs.« less
Quantum molecular dynamics simulation of shock-wave experiments in aluminum
NASA Astrophysics Data System (ADS)
Minakov, D. V.; Levashov, P. R.; Khishchenko, K. V.; Fortov, V. E.
2014-06-01
We present quantum molecular dynamics calculations of principal, porous, and double shock Hugoniots, release isentropes, and sound velocity behind the shock front for aluminum. A comprehensive analysis of available shock-wave data is performed; the agreement and discrepancies of simulation results with measurements are discussed. Special attention is paid to the melting region of aluminum along the principal Hugoniot; the boundaries of the melting zone are estimated using the self-diffusion coefficient. Also, we make a comparison with a high-quality multiphase equation of state for aluminum. Independent semiempirical and first-principle models are very close to each other in caloric variables (pressure, density, particle velocity, etc.) but the equation of state gives higher temperature on the principal Hugoniot and release isentropes than ab initio calculations. Thus, the quantum molecular dynamics method can be used for calibration of semiempirical equations of state in case of lack of experimental data.
Review of Jones-Wilkins-Lee equation of state
NASA Astrophysics Data System (ADS)
Baudin, G.; Serradeill, R.
The JWL EOS is widely used in different forms (two, three terms) according to the level of accuracy in the pressure-volume domain that applications need. The foundations of the relationship chosen to represent the reference curve, Chapman-Jouguet (CJ) isentrope, can be found assuming that the DP expansion isentrope issued from the CJ point is very nearly coincident with the Crussard curve in the pressure-material velocity plane. Its mathematical expression, using an appropriate relationship between shock velocity and material velocity leads to the exponential terms of the JWL EOS. It well validates the pressure-volume relationship chosen to represent the reference curves for DP. Nevertheless, the assumption of constant Gruneisen coefficient and heat capacity in the EOS thermal part remains the more restrictive assumption. A new derivation of JWL EOS is proposed, using a less restrictive assumption for the Gruneisen coefficient suggested by W.C. Davis to represent both large expansions and near-CJ states.
Quantum molecular dynamics simulation of shock-wave experiments in aluminum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minakov, D. V.; Khishchenko, K. V.; Fortov, V. E.
2014-06-14
We present quantum molecular dynamics calculations of principal, porous, and double shock Hugoniots, release isentropes, and sound velocity behind the shock front for aluminum. A comprehensive analysis of available shock-wave data is performed; the agreement and discrepancies of simulation results with measurements are discussed. Special attention is paid to the melting region of aluminum along the principal Hugoniot; the boundaries of the melting zone are estimated using the self-diffusion coefficient. Also, we make a comparison with a high-quality multiphase equation of state for aluminum. Independent semiempirical and first-principle models are very close to each other in caloric variables (pressure, density,more » particle velocity, etc.) but the equation of state gives higher temperature on the principal Hugoniot and release isentropes than ab initio calculations. Thus, the quantum molecular dynamics method can be used for calibration of semiempirical equations of state in case of lack of experimental data.« less
Dynamic XRD, Shock and Static Compression of CaF2
NASA Astrophysics Data System (ADS)
Kalita, Patricia; Specht, Paul; Root, Seth; Sinclair, Nicholas; Schuman, Adam; White, Melanie; Cornelius, Andrew; Smith, Jesse; Sinogeikin, Stanislav
2017-06-01
The high-pressure behavior of CaF2 is probed with x-ray diffraction (XRD) combined with both dynamic compression, using a two-stage light gas gun, and static compression, using diamond anvil cells. We use XRD to follow the unfolding of a shock-driven, fluorite to cotunnite phase transition, on the timescale of nanoseconds. The dynamic behavior of CaF2 under shock loading is contrasted with that under static compression. This work leverages experimental capabilities at the Advanced Photon Source: dynamic XRD and shock experiments at the Dynamic Compression Sector, as well as XRD and static compression in diamond anvil cell at the High-Pressure Collaborative Access Team. These experiments and cross-platform comparisons, open the door to an unprecedented understanding of equations of state and phase transitions at the microstructural level and at different time scales and will ultimately improve our capability to simulate the behavior of materials at extreme conditions. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Hayden, Steven C.; Junghans, Ann; Majewski, Jaroslaw; ...
2017-02-22
Neutron reflectometry was used to monitor structural variations in surface supported DMPC bilayers induced by the addition of Triton X-100, a surfactant commonly used to aid solubilization of membrane proteins, and the co-addition of a membrane spanning non-ionic amphiphilic triblock copolymer, (PEO 117-PPO 47-PE O117, Pluronic F98). Surfactant addition causes slight compression of the bilayer thickness and the creation of a distinct EO layer that increases the hydrophilic layer proximal to the supporting substrate (i.e., a water and EO gap between the lipid bilayer and quartz) to 6.8 ± 0.4 Å. Addition of the triblock copolymer into the DMPC: Tritonmore » X-100 bilayer increases the complexity (broadens) the lipid phase transition, further compresses the bilayer, and continues to expand the proximal hydrophilic layer thickness. The observed structural changes are temperature dependent with transmembrane polymer insertion achieved at 37 °C leading to a compressed membrane thickness of 39.2 ± 0.2 Å and proximal gap of 45.2 ± 0.2 Å. Temperature driven exclusion of the polymer at 15 °C causes partitioning of the polymer into the proximal space generating a large hydrogel cushion 162 ± 16 Å thick. An intermediate gap width (10 – 27 Å) is achieved at room temperature (22 – 25 °C). The temperature-driven changes in the proximal hydrophilic gap dimensions are shown to be reversible but thermal history causes variation in magnitude. Temperature-driven changes in polymer association with a supported lipid bilayer offer a facile means to reversibly control both the membrane characteristics as well as the separation between membrane and solid substrate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayden, Steven C.; Junghans, Ann; Majewski, Jaroslaw
Neutron reflectometry was used to monitor structural variations in surface supported DMPC bilayers induced by the addition of Triton X-100, a surfactant commonly used to aid solubilization of membrane proteins, and the co-addition of a membrane spanning non-ionic amphiphilic triblock copolymer, (PEO 117-PPO 47-PE O117, Pluronic F98). Surfactant addition causes slight compression of the bilayer thickness and the creation of a distinct EO layer that increases the hydrophilic layer proximal to the supporting substrate (i.e., a water and EO gap between the lipid bilayer and quartz) to 6.8 ± 0.4 Å. Addition of the triblock copolymer into the DMPC: Tritonmore » X-100 bilayer increases the complexity (broadens) the lipid phase transition, further compresses the bilayer, and continues to expand the proximal hydrophilic layer thickness. The observed structural changes are temperature dependent with transmembrane polymer insertion achieved at 37 °C leading to a compressed membrane thickness of 39.2 ± 0.2 Å and proximal gap of 45.2 ± 0.2 Å. Temperature driven exclusion of the polymer at 15 °C causes partitioning of the polymer into the proximal space generating a large hydrogel cushion 162 ± 16 Å thick. An intermediate gap width (10 – 27 Å) is achieved at room temperature (22 – 25 °C). The temperature-driven changes in the proximal hydrophilic gap dimensions are shown to be reversible but thermal history causes variation in magnitude. Temperature-driven changes in polymer association with a supported lipid bilayer offer a facile means to reversibly control both the membrane characteristics as well as the separation between membrane and solid substrate.« less
NASA Astrophysics Data System (ADS)
Verscharen, D.; Chandran, B. D. G.; Klein, K. G.; Quataert, E.
2016-12-01
Compressive fluctuations are a minor yet significant component of astrophysical plasma turbulence. In the solar wind, long-wavelength compressive slow-mode fluctuations lead to changes in β∥p ≡ 8πnpkBT∥p/B2 and in Rp ≡ T⊥p/T∥p, where T⊥p and T∥p are the perpendicular and parallel temperatures of the protons, B is the magnetic field strength, and np is the proton density. If the amplitude of the compressive fluctuations is large enough, Rp crosses one or more instability thresholds for anisotropy-driven micro-instabilities. The enhanced field fluctuations from these micro-instabilities scatter the protons so as to reduce the anisotropy of the pressure tensor, driving the average value of Rp away from the marginal stability boundary until the fluctuating value of Rp stops crossing the boundary. We model this "fluctuating-anisotropy effect" using linear Vlasov-Maxwell theory to describe the large-scale compressive fluctuations. We show that this effect can explain why, in the nearly collisionless solar wind, the average value of Rp is close to unity.
He, Junfeng; Hogan, T.; Mion, Thomas R.; ...
2015-04-27
Negative compressibility is a sign of thermodynamic instability of open1,2,3 or non-equilibrium4,5 systems. In quantum materials consisting of multiple mutually coupled subsystems, the compressibility of one subsystem can be negative if it is countered by positive compressibility of the others. Manifestations of this effect have so far been limited to low-dimensional dilute electron systems6,7,8,9,10,11. Here, we present evidence from angle-resolved photoemission spectroscopy (ARPES) for negative electronic compressibility (NEC) in the quasi-three-dimensional (3D) spin–orbit correlated metal (Sr1-xLax)3Ir2O7. Increased electron filling accompanies an anomalous decrease of the chemical potential, as indicated by the overall movement of the deep valence bands. Such anomaly,more » suggestive of NEC, is shown to be primarily driven by the lowering in energy of the conduction band as the correlated bandgap reduces. Our finding points to a distinct pathway towards an uncharted territory of NEC featuring bulk correlated metals with unique potential for applications in low-power nanoelectronics and novel metamaterials.« less
Bar-Kochba, Eyal; Scimone, Mark T.; Estrada, Jonathan B.; Franck, Christian
2016-01-01
In the United States over 1.7 million cases of traumatic brain injury are reported yearly, but predictive correlation of cellular injury to impact tissue strain is still lacking, particularly for neuronal injury resulting from compression. Given the prevalence of compressive deformations in most blunt head trauma, this information is critically important for the development of future mitigation and diagnosis strategies. Using a 3D in vitro neuronal compression model, we investigated the role of impact strain and strain rate on neuronal lifetime, viability, and pathomorphology. We find that strain magnitude and rate have profound, yet distinctively different effects on the injury pathology. While strain magnitude affects the time of neuronal death, strain rate influences the pathomorphology and extent of population injury. Cellular injury is not initiated through localized deformation of the cytoskeleton but rather driven by excess strain on the entire cell. Furthermore we find that, mechanoporation, one of the key pathological trigger mechanisms in stretch and shear neuronal injuries, was not observed under compression. PMID:27480807
Picosecond time scale dynamics of short pulse laser-driven shocks in tin
NASA Astrophysics Data System (ADS)
Grigsby, W.; Bowes, B. T.; Dalton, D. A.; Bernstein, A. C.; Bless, S.; Downer, M. C.; Taleff, E.; Colvin, J.; Ditmire, T.
2009-05-01
The dynamics of high strain rate shock waves driven by a subnanosecond laser pulse in thin tin slabs have been investigated. These shocks, with pressure up to 1 Mbar, have been diagnosed with an 800 nm wavelength ultrafast laser pulse in a pump-probe configuration, which measured reflectivity and two-dimensional interferometry of the expanding rear surface. Time-resolved rear surface expansion data suggest that we reached pressures necessary to shock melt tin upon compression. Reflectivity measurements, however, show an anomalously high drop in the tin reflectivity for free standing foils, which can be attributed to microparticle formation at the back surface when the laser-driven shock releases.
Influence of Sub-grid-Scale Isentropic Transports on McRAS Evaluations using ARM-CART SCM Datasets
NASA Technical Reports Server (NTRS)
Sud, Y. C.; Walker, G. K.; Tao, W. K.
2004-01-01
In GCM-physics evaluations with the currently available ARM-CART SCM datasets, McRAS produced very similar character of near surface errors of simulated temperature and humidity containing typically warm and moist biases near the surface and cold and dry biases aloft. We argued it must have a common cause presumably rooted in the model physics. Lack of vertical adjustment of horizontal transport was thought to be a plausible source. Clearly, debarring such a freedom would force the incoming air to diffuse into the grid-cell which would naturally bias the surface air to become warm and moist while the upper air becomes cold and dry, a characteristic feature of McRAS biases. Since, the errors were significantly larger in the two winter cases that contain potentially more intense episodes of cold and warm advective transports, it further reaffirmed our argument and provided additional motivation to introduce the corrections. When the horizontal advective transports were suitably modified to allow rising and/or sinking following isentropic pathways of subgrid scale motions, the outcome was to cool and dry (or warm and moisten) the lower (or upper) levels. Ever, crude approximations invoking such a correction reduced the temperature and humidity biases considerably. The tests were performed on all the available ARM-CART SCM cases with consistent outcome. With the isentropic corrections implemented through two different numerical approximations, virtually similar benefits were derived further confirming the robustness of our inferences. These results suggest the need for insentropic advective transport adjustment in a GCM due to subgrid scale motions.
Study of Plasma Liner Driven Magnetized Target Fusion Via Advanced Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samulyak, Roman V.; Brookhaven National Lab.; Parks, Paul
The feasibility of the plasma liner driven Magnetized Target Fusion (MTF) via terascale numerical simulations will be assessed. In the MTF concept, a plasma liner, formed by merging of a number (60 or more) of radial, highly supersonic plasma jets, implodes on the target in the form of two compact plasma toroids, and compresses it to conditions of the fusion ignition. By avoiding major difficulties associated with both the traditional laser driven inertial confinement fusion and solid liner driven MTF, the plasma liner driven MTF potentially provides a low-cost and fast R&D path towards the demonstration of practical fusion energy.more » High fidelity numerical simulations of full nonlinear models associated with the plasma liner MTF using state-of-art numerical algorithms and terascale computing are necessary in order to resolve uncertainties and provide guidance for future experiments. At Stony Brook University, we have developed unique computational capabilities that ideally suite the MTF problem. The FronTier code, developed in collaboration with BNL and LANL under DOE funding including SciDAC for the simulation of 3D multi-material hydro and MHD flows, has beenbenchmarked and used for fundamental and engineering problems in energy science applications. We have performed 3D simulations of converging supersonic plasma jets, their merger and the formation of the plasma liner, and a study of the corresponding oblique shock problem. We have studied the implosion of the plasma liner on the magnetized plasma target by resolving Rayleigh-Taylor instabilities in 2D and 3D and other relevant physics and estimate thermodynamic conditions of the target at the moment of maximum compression and the hydrodynamic efficiency of the method.« less
Observations of strong ion-ion correlations in dense plasmas
Ma, T.; Fletcher, L.; Pak, A.; ...
2014-04-24
Using simultaneous spectrally, angularly, and temporally resolved x-ray scattering, we measure the pronounced ion-ion correlation peak in a strongly coupled plasma. Laser-driven shock-compressed aluminum at ~3× solid density is probed with high-energy photons at 17.9 keV created by molybdenum He-α emission in a laser-driven plasma source. The measured elastic scattering feature shows a well-pronounced correlation peak at a wave vector of k=4Å –1. The magnitude of this correlation peak cannot be described by standard plasma theories employing a linear screened Coulomb potential. Advanced models, including a strong short-range repulsion due to the inner structure of the aluminum ions are howevermore » in good agreement with the scattering data. These studies have demonstrated a new highly accurate diagnostic technique to directly measure the state of compression and the ion-ion correlations. Furthermore, we have since applied this new method in single-shot wave-number resolved S(k) measurements to characterize the physical properties of dense plasmas.« less
Eichhorn, Stefan; Spindler, Johannes; Polski, Marcin; Mendoza, Alejandro; Schreiber, Ulrich; Heller, Michael; Deutsch, Marcus Andre; Braun, Christian; Lange, Rüdiger; Krane, Markus
2017-05-01
Investigations of compressive frequency, duty cycle, or waveform during CPR are typically rooted in animal research or computer simulations. Our goal was to generate a mechanical model incorporating alternate stiffness settings and an integrated blood flow system, enabling defined, reproducible comparisons of CPR efficacy. Based on thoracic stiffness data measured in human cadavers, such a model was constructed using valve-controlled pneumatic pistons and an artificial heart. This model offers two realistic levels of chest elasticity, with a blood flow apparatus that reflects compressive depth and waveform changes. We conducted CPR at opposing levels of physiologic stiffness, using a LUCAS device, a motor-driven plunger, and a group of volunteers. In high-stiffness mode, blood flow generated by volunteers was significantly less after just 2min of CPR, whereas flow generated by LUCAS device was superior by comparison. Optimal blood flow was obtained via motor-driven plunger, with trapezoidal waveform. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
Kluge, T.; Rödel, C.; Rödel, M.; ...
2017-10-23
In this paper, we study the feasibility of using small angle X-ray scattering (SAXS) as a new experimental diagnostic for intense laser-solid interactions. By using X-ray pulses from a hard X-ray free electron laser, we can simultaneously achieve nanometer and femtosecond resolution of laser-driven samples. This is an important new capability for the Helmholtz international beamline for extreme fields at the high energy density endstation currently built at the European X-ray free electron laser. We review the relevant SAXS theory and its application to transient processes in solid density plasmas and report on first experimental results that confirm the feasibilitymore » of the method. Finally, we present results of two test experiments where the first experiment employs ultra-short laser pulses for studying relativistic laser plasma interactions, and the second one focuses on shock compression studies with a nanosecond laser system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kluge, T.; Rödel, C.; Rödel, M.
In this paper, we study the feasibility of using small angle X-ray scattering (SAXS) as a new experimental diagnostic for intense laser-solid interactions. By using X-ray pulses from a hard X-ray free electron laser, we can simultaneously achieve nanometer and femtosecond resolution of laser-driven samples. This is an important new capability for the Helmholtz international beamline for extreme fields at the high energy density endstation currently built at the European X-ray free electron laser. We review the relevant SAXS theory and its application to transient processes in solid density plasmas and report on first experimental results that confirm the feasibilitymore » of the method. Finally, we present results of two test experiments where the first experiment employs ultra-short laser pulses for studying relativistic laser plasma interactions, and the second one focuses on shock compression studies with a nanosecond laser system.« less
NASA Astrophysics Data System (ADS)
Alay, E.; Skotak, M.; Misistia, A.; Chandra, N.
2018-01-01
Dynamic loads on specimens in live-fire conditions as well as at different locations within and outside compressed-gas-driven shock tubes are determined by both static and total blast overpressure-time pressure pulses. The biomechanical loading on the specimen is determined by surface pressures that combine the effects of static, dynamic, and reflected pressures and specimen geometry. Surface pressure is both space and time dependent; it varies as a function of size, shape, and external contour of the specimens. In this work, we used two sets of specimens: (1) anthropometric dummy head and (2) a surrogate rodent headform instrumented with pressure sensors and subjected them to blast waves in the interior and at the exit of the shock tube. We demonstrate in this work that while inside the shock tube the biomechanical loading as determined by various pressure measures closely aligns with live-fire data and shock wave theory, significant deviations are found when tests are performed outside.
NASA Astrophysics Data System (ADS)
Li, M.; Yuan, T.; Xu, Y. X.; Luo, S. N.
2018-05-01
When an intense picosecond laser pulse is loaded upon a dense plasma, a high energy density plasma bunch, including electron bunch and ion bunch, can be generated in the target. We simulate this process through one-dimensional particle-in-cell simulation and find that the electron bunch generation is mainly due to a local high energy density electron sphere originated in the plasma skin layer. Once generated the sphere rapidly expands to compress the surrounding electrons and induce high density electron layer, coupled with that, hot electrons are efficiently triggered in the local sphere and traveling in the whole target. Under the compressions of light pressure, forward-running and backward-running hot electrons, a high energy density electron bunch generates. The bunch energy density is as high as TJ/m3 order of magnitude in our conditions, which is significant in laser driven dynamic high pressure generation and may find applications in high energy density physics.
NASA Astrophysics Data System (ADS)
Liu, Peng; Zhang, He; Ma, Shaojie; Shi, Yunlei
2018-05-01
A compact explosively driven ferromagnetic generator (FMG) is developed for seed power source of helical magnetic flux compression generator (HMFCG). The mechanism of FMG is studied by establishing a magnetoelectric conversion model. Analytical calculations and numerical simulations are conducted on the magnetostatic field of open-circuit magnet in FMG. The calculation method for the magnet's cross-sectional magnetic flux is obtained. The pulse sources made of different materials and equipped with different initiation modes are experimentally explored. Besides, the dynamic coupling experiments of FMG and HMFCG are carried out. The results show that, N35 single-ended and double-ended initiating FMGs have an energy conversion efficiency ηt not less than 14.6% and 24.4%, respectively; FMG has an output pulse current not less than 4kA and an energy of about 3J on 320nH inductive load; HMFCG experiences energy gains of about 2-3 times. FMG and HMFCG can be coupled to form a full-blast electrical driving pulse source.
NASA Astrophysics Data System (ADS)
Parazoo, Nicholas C.
Mass transport along moist isentropic surfaces on baroclinic waves represents an important component of the atmospheric heat engine that operates between the equator and poles. This is also an important vehicle for tracer transport, and is correlated with ecosystem metabolism because large-scale baroclinicity and photosynthesis are both driven seasonally by variations in solar radiation. In this research, I pursue a dynamical framework for explaining atmospheric transport of CO2 by synoptic weather systems at middle and high latitudes. A global model of atmospheric tracer transport, driven by meteorological analysis in combination with a detailed description of surface fluxes, is used to create time varying CO2 distributions in the atmosphere. Simulated mass fluxes of CO2 are then decomposed into a zonal monthly mean component and deviations from the monthly mean in space and time. Mass fluxes of CO2 are described on moist isentropic surfaces to represent frontal transport along storm tracks. Forward simulations suggest that synoptic weather systems transport large amounts of CO2 north and south in northern mid-latitudes, up to 1 PgC month-1 during winter when baroclinic wave activity peaks. During boreal winter when northern plants respire, warm moist air, high in CO2, is swept upward and poleward along the east side of baroclinic waves and injected into the polar vortex, while cold dry air, low in CO 2, that had been transported into the polar vortex earlier in the year is advected equatorward. These synoptic eddies act to strongly reduce seasonality of CO2 in the biologically active mid-latitudes by 50% of that implied by local net ecosystem exchange while correspondingly amplifying seasonality in the Arctic. Transport along stormtracks is correlated with rising, moist, cloudy air, which systematically hides this CO2 transport from satellite observing systems. Meridional fluxes of CO2 are of comparable magnitude as surface exchange of CO2 in mid-latitudes, and thus require careful consideration in (inverse) modeling of the carbon cycle. Because synoptic transport of CO2 by frontal systems and moist processes is generally unobserved and poorly represented in global models, it may be a source of error for inverse flux estimates. Uncertainty in CO 2 transport by synoptic eddies is investigated using a global model driven by four reanalysis products from the Goddard EOS Data Assimilation System for 2005. Eddy transport is found to be highly variable between model analysis, with significant seasonal differences of up to 0.2 PgC, which represents up to 50% of fossil fuel emissions. The variations are caused primarily by differences in grid spacing and vertical mixing by moist convection and PBL turbulence. To test for aliasing of transport bias into inverse flux estimates, synthetic satellite data is generated using a model at 50 km global resolution and inverted using a global model run with coarse grid transport. An ensemble filtering method called the Maximum Likelihood Ensemble Filter (MLEF) is used to optimize fluxes. Flux estimates are found to be highly sensitive to transport biases at pixel and continental scale, with errors of up to 0.5 PgC year-1 in Europe and North America.
Evaluating the effect of online data compression on the disk cache of a mass storage system
NASA Technical Reports Server (NTRS)
Pentakalos, Odysseas I.; Yesha, Yelena
1994-01-01
A trace driven simulation of the disk cache of a mass storage system was used to evaluate the effect of an online compression algorithm on various performance measures. Traces from the system at NASA's Center for Computational Sciences were used to run the simulation and disk cache hit ratios, number of files and bytes migrating to tertiary storage were measured. The measurements were performed for both an LRU and a size based migration algorithm. In addition to seeing the effect of online data compression on the disk cache performance measure, the simulation provided insight into the characteristics of the interactive references, suggesting that hint based prefetching algorithms are the only alternative for any future improvements to the disk cache hit ratio.
Enhanced densification under shock compression in porous silicon
NASA Astrophysics Data System (ADS)
Lane, J. Matthew D.; Thompson, Aidan P.; Vogler, Tracy J.
2014-10-01
Under shock compression, most porous materials exhibit lower densities for a given pressure than that of a full-dense sample of the same material. However, some porous materials exhibit an anomalous, or enhanced, densification under shock compression. We demonstrate a molecular mechanism that drives this behavior. We also present evidence from atomistic simulation that silicon belongs to this anomalous class of materials. Atomistic simulations indicate that local shear strain in the neighborhood of collapsing pores nucleates a local solid-solid phase transformation even when bulk pressures are below the thermodynamic phase transformation pressure. This metastable, local, and partial, solid-solid phase transformation, which accounts for the enhanced densification in silicon, is driven by the local stress state near the void, not equilibrium thermodynamics. This mechanism may also explain the phenomenon in other covalently bonded materials.
NASA Astrophysics Data System (ADS)
Benedetti, Laura Robin; Eggert, J. H.; Kilkenny, J. D.; Bradley, D. K.; Bell, P. M.; Palmer, N. E.; Rygg, J. R.; Boehly, T. R.; Collins, G. W.; Sorce, C.
2017-06-01
Since X-ray diffraction is the most definitive method for identifying crystalline phases of a material, it is an important technique for probing high-energy-density materials during laser-driven compression experiments. We are developing a design for collecting several x-ray diffraction datasets during a single laser-driven experiment, with a goal of achieving temporal resolution better than 1ns. The design combines x-ray streak cameras, for a continuous temporal record of diffraction, with fast x-ray imagers, to collect several diffraction patterns with sufficient solid angle range and resolution to identify crystalline texture. Preliminary experiments will be conducted at the Omega laser and then implemented at the National Ignition Facility. We will describe the status of the conceptual design, highlighting tradeoffs in the design process. We will also discuss the technical issues that must be addressed in order to develop a successful experimental platform. These include: Facility-specific geometric constraints such as unconverted laser light and target alignment; EMP issues when electronic diagnostics are close to the target; X-ray source requirements; and detector capabilities. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, LLNL-ABS-725146.
Note: A table-top blast driven shock tube
NASA Astrophysics Data System (ADS)
Courtney, Michael W.; Courtney, Amy C.
2010-12-01
The prevalence of blast-induced traumatic brain injury in conflicts in Iraq and Afghanistan has motivated laboratory scale experiments on biomedical effects of blast waves and studies of blast wave transmission properties of various materials in hopes of improving armor design to mitigate these injuries. This paper describes the design and performance of a table-top shock tube that is more convenient and widely accessible than traditional compression driven and blast driven shock tubes. The design is simple: it is an explosive driven shock tube employing a rifle primer that explodes when impacted by the firing pin. The firearm barrel acts as the shock tube, and the shock wave emerges from the muzzle. The small size of this shock tube can facilitate localized application of a blast wave to a subject, tissue, or material under test.
Note: A table-top blast driven shock tube.
Courtney, Michael W; Courtney, Amy C
2010-12-01
The prevalence of blast-induced traumatic brain injury in conflicts in Iraq and Afghanistan has motivated laboratory scale experiments on biomedical effects of blast waves and studies of blast wave transmission properties of various materials in hopes of improving armor design to mitigate these injuries. This paper describes the design and performance of a table-top shock tube that is more convenient and widely accessible than traditional compression driven and blast driven shock tubes. The design is simple: it is an explosive driven shock tube employing a rifle primer that explodes when impacted by the firing pin. The firearm barrel acts as the shock tube, and the shock wave emerges from the muzzle. The small size of this shock tube can facilitate localized application of a blast wave to a subject, tissue, or material under test.
NASA Astrophysics Data System (ADS)
Huang, C. W.; Chu, Y. H.; Chen, Z. H.; Wang, Junling; Sritharan, T.; He, Q.; Ramesh, R.; Chen, Lang
2010-10-01
Strain-driven phase transitions and related intrinsic polarization, dielectric, and piezoelectric properties for single-domain films were studied for BiFeO3 using phenomenological Landau-Devonshire theory. A stable and mixed structure between tetragonal and rhombohedral-like (monoclinic) phases is predicted at a compressive misfit strain of um=-0.0382 without an energy barrier. For a tensile misfit strain of um=0.0272, another phase transition between the monoclinic and orthorhombic phases was predicted with sharply high dielectric and piezoelectric responses.
Two stroke homogenous charge compression ignition engine with pulsed air supplier
Clarke, John M.
2003-08-05
A two stroke homogenous charge compression ignition engine includes a volume pulsed air supplier, such as a piston driven pump, for efficient scavenging. The usage of a homogenous charge tends to decrease emissions. The use of a volume pulsed air supplier in conjunction with conventional poppet type intake and exhaust valves results in a relatively efficient scavenging mode for the engine. The engine preferably includes features that permit valving event timing, air pulse event timing and injection event timing to be varied relative to engine crankshaft angle. The principle use of the invention lies in improving diesel engines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raduta, Ad. R.; Gulminelli, F.; Oertel, M.
2015-02-24
We discuss the thermodynamics of compressed baryonic matter with strangeness within non-relativistic mean-field models with effective interactions. The phase diagram of the full baryonic octet under strangeness equilibrium is built and discussed in connection with its relevance for core-collapse supernovae and neutron stars. A simplified framework corresponding to (n, p, Λ)(+e)-mixtures is employed in order to test the sensitivity of the existence of a phase transition on the (poorely constrained) interaction coupling constants and the compatibility between important hyperonic abundances and 2M{sub ⊙} neutron stars.
Reverse Brayton Cycle with Bladeless Turbo Compressor for Automotive Environmental Cooling
NASA Technical Reports Server (NTRS)
Ganapathi, Gani B. (Inventor); Cepeda-Rizo, Juan (Inventor)
2016-01-01
An automotive cabin cooling system uses a bladeless turbocompressor driven by automobile engine exhaust to compress incoming ambient air. The compressed air is directed to an intercooler where it is cooled and then to another bladeless turbine used as an expander where the air cools as it expands and is directed to the cabin interior. Excess energy may be captured by an alternator couple to the expander turbine. The system employs no chemical refrigerant and may be further modified to include another intercooler on the output of the expander turbine to isolate the cooled cabin environment.
Yang, Li-Juan; Weng, Ya-Kui; Zhang, Hui-Min; Dong, Shuai
2014-11-26
The compressive strain effect on the magnetic ground state and electronic structure of strained GdTiO3 has been studied using the first-principles method. Unlike the cases of congeneric YTiO3 and LaTiO3, both of which become the A-type antiferromagnetism on the (0 0 1) LaAlO3 substrate despite their contrastive magnetism, the ground state of strained GdTiO3 on the LaAlO3 substrate changes from the original ferromagnetism to a G-type antiferromagnetim, instead of the A-type one although Gd(3+) is between Y(3+) and La(3+). It is only when the in-plane compressive strain is large enough, e.g. on the (0 0 1) YAlO3 substrate, that the ground state finally becomes the A-type. The band structure calculation shows that the compressive strained GdTiO3 remains insulating, although the band gap changes a little in the strained GdTiO3.
NASA Astrophysics Data System (ADS)
Schwiedrzik, Jakob; Raghavan, Rejin; Bürki, Alexander; Lenader, Victor; Wolfram, Uwe; Michler, Johann; Zysset, Philippe
2014-07-01
Ageing societies suffer from an increasing incidence of bone fractures. Bone strength depends on the amount of mineral measured by clinical densitometry, but also on the micromechanical properties of the hierarchical organization of bone. Here, we investigate the mechanical response under monotonic and cyclic compression of both single osteonal lamellae and macroscopic samples containing numerous osteons. Micropillar compression tests in a scanning electron microscope, microindentation and macroscopic compression tests were performed on dry ovine bone to identify the elastic modulus, yield stress, plastic deformation, damage accumulation and failure mechanisms. We found that isolated lamellae exhibit a plastic behaviour, with higher yield stress and ductility but no damage. In agreement with a proposed rheological model, these experiments illustrate a transition from a ductile mechanical behaviour of bone at the microscale to a quasi-brittle response driven by the growth of cracks along interfaces or in the vicinity of pores at the macroscale.
Application of a New Hybrid RANS/LES Modeling Paradigm to Compressible Flow
NASA Astrophysics Data System (ADS)
Oliver, Todd; Pederson, Clark; Haering, Sigfried; Moser, Robert
2017-11-01
It is well-known that traditional hybrid RANS/LES modeling approaches suffer from a number of deficiencies. These deficiencies often stem from overly simplistic blending strategies based on scalar measures of turbulence length scale and grid resolution and from use of isotropic subgrid models in LES regions. A recently developed hybrid modeling approach has shown promise in overcoming these deficiencies in incompressible flows [Haering, 2015]. In the approach, RANS/LES blending is accomplished using a hybridization parameter that is governed by an additional model transport equation and is driven to achieve equilibrium between the resolved and unresolved turbulence for the given grid. Further, the model uses an tensor eddy viscosity that is formulated to represent the effects of anisotropic grid resolution on subgrid quantities. In this work, this modeling approach is extended to compressible flows and implemented in the compressible flow solver SU2 (http://su2.stanford.edu/). We discuss both modeling and implementation challenges and show preliminary results for compressible flow test cases with smooth wall separation.
Irradiation of materials with short, intense ion pulses at NDCX-II
NASA Astrophysics Data System (ADS)
Seidl, P. A.; Barnard, J. J.; Feinberg, E.; Friedman, A.; Gilson, E. P.; Grote, D. P.; Ji, Q.; Kaganovich, I. D.; Ludewigt, B.; Persaud, A.; Sierra, C.; Silverman, M.; Stepanov, A. D.; Sulyman, A.; Treffert, F.; Waldron, W. L.; Zimmer, M.; Schenkel, T.
2017-06-01
We present an overview of the performance of the Neutralized Drift Compression Experiment-II (NDCX-II) accelerator at Berkeley Lab, and report on recent target experiments on beam driven melting and transmission ion energy loss measurements with nanosecond and millimeter-scale ion beam pulses and thin tin foils. Bunches with around 10^11 ions, 1-mm radius, and 2-30 ns FWHM duration have been created with corresponding fluences in the range of 0.1 to 0.7 J/cm^2. To achieve these short pulse durations and mm-scale focal spot radii, the 1.1 MeV He+ ion beam is neutralized in a drift compression section, which removes the space charge defocusing effect during final compression and focusing. The beam space charge and drift compression techniques resemble necessary beam conditions and manipulations in heavy ion inertial fusion accelerators. Quantitative comparison of detailed particle-in-cell simulations with the experiment play an important role in optimizing accelerator performance.
Combined rankine and vapor compression cycles
Radcliff, Thomas D.; Biederman, Bruce P.; Brasz, Joost J.
2005-04-19
An organic rankine cycle system is combined with a vapor compression cycle system with the turbine generator of the organic rankine cycle generating the power necessary to operate the motor of the refrigerant compressor. The vapor compression cycle is applied with its evaporator cooling the inlet air into a gas turbine, and the organic rankine cycle is applied to receive heat from a gas turbine exhaust to heat its boiler within one embodiment, a common condenser is used for the organic rankine cycle and the vapor compression cycle, with a common refrigerant, R-245a being circulated within both systems. In another embodiment, the turbine driven generator has a common shaft connected to the compressor to thereby eliminate the need for a separate motor to drive the compressor. In another embodiment, an organic rankine cycle system is applied to an internal combustion engine to cool the fluids thereof, and the turbo charged air is cooled first by the organic rankine cycle system and then by an air conditioner prior to passing into the intake of the engine.
Oscillating-Linear-Drive Vacuum Compressor for CO2
NASA Technical Reports Server (NTRS)
Izenson, Michael G.; Shimko, Martin
2005-01-01
A vacuum compressor has been designed to compress CO2 from approximately equal to 1 psia (approximately equal to 6.9 kPa absolute pressure) to approximately equal to 75 psia (approximately equal to 0.52 MPa), to be insensitive to moisture, to have a long operational life, and to be lightweight, compact, and efficient. The compressor consists mainly of (1) a compression head that includes hydraulic diaphragms, a gas-compression diaphragm, and check valves; and (2) oscillating linear drive that includes a linear motor and a drive spring, through which compression force is applied to the hydraulic diaphragms. The motor is driven at the resonance vibrational frequency of the motor/spring/compression-head system, the compression head acting as a damper that takes energy out of the oscillation. The net effect of the oscillation is to cause cyclic expansion and contraction of the gas-compression diaphragm, and, hence, of the volume bounded by this diaphragm. One-way check valves admit gas into this volume from the low-pressure side during expansion and allow the gas to flow out to the high-pressure side during contraction. Fatigue data and the results of diaphragm stress calculations have been interpreted as signifying that the compressor can be expected to have an operational life of greater than 30 years with a confidence level of 99.9 percent.
NASA Astrophysics Data System (ADS)
Sawada, Hiroshi; Fujioka, S.; Lee, S.; Arikawa, Y.; Shigemori, K.; Nagatomo, H.; Nishimura, H.; Sunahara, A.; Theobald, W.; Perez, F.; Patel, P. K.; Beg, F. N.
2015-11-01
Formation of a high density fusion fuel is essential in both conventional and advanced Inertial Confinement Fusion (ICF) schemes for the self-sustaining fusion process. In cone-guided Fast Ignition (FI), a metal cone is attached to a spherical target to maintain the path for the injection of an intense short-pulse ignition laser from blow-off plasma created when nanoseconds compression lasers drive the target. We have measured a temporal evolution of a compressed deuterated carbon (CD) sphere using 4.5 keV K-alpha radiography with the Kilo-Joule, picosecond LFEX laser at the Institute of Laser Engineering. A 200 μm CD sphere attached to the tip of a Au cone was directly driven by 9 Gekko XII beams with 300 J/beam in a 1.3 ns Gaussian pulse. The LFEX laser irradiated on a Ti foil to generate 4.51 Ti K-alpha x-ray. By varying the delay between the compression and backlighter lasers, the measured radiograph images show an increase of the areal density of the imploded target. The detail of the quantitative analyses to infer the areal density and comparisons to hydrodynamics simulations will be presented. This work was performed with the support and under the auspices of the NIFS Collaboration Research program (NIFS13KUGK072). H.S. was supported by the UNR's International Activities Grant program.
Intrinsically irreversible heat engine
Wheatley, J.C.; Swift, G.W.; Migliori, A.
1984-01-01
A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.
Intrinsically irreversible heat engine
Wheatley, John C.; Swift, Gregory W.; Migliori, Albert
1984-01-01
A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. the second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.
Intrinsically irreversible heat engine
Wheatley, J.C.; Swift, G.W.; Migliori, A.
1984-12-25
A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat. 11 figs.
Results of subscale MTF compression experiments
NASA Astrophysics Data System (ADS)
Howard, Stephen; Mossman, A.; Donaldson, M.; Fusion Team, General
2016-10-01
In magnetized target fusion (MTF) a magnetized plasma torus is compressed in a time shorter than its own energy confinement time, thereby heating to fusion conditions. Understanding plasma behavior and scaling laws is needed to advance toward a reactor-scale demonstration. General Fusion is conducting a sequence of subscale experiments of compact toroid (CT) plasmas being compressed by chemically driven implosion of an aluminum liner, providing data on several key questions. CT plasmas are formed by a coaxial Marshall gun, with magnetic fields supported by internal plasma currents and eddy currents in the wall. Configurations that have been compressed so far include decaying and sustained spheromaks and an ST that is formed into a pre-existing toroidal field. Diagnostics measure B, ne, visible and x-ray emission, Ti and Te. Before compression the CT has an energy of 10kJ magnetic, 1 kJ thermal, with Te of 100 - 200 eV, ne 5x1020 m-3. Plasma was stable during a compression factor R0/R >3 on best shots. A reactor scale demonstration would require 10x higher initial B and ne but similar Te. Liner improvements have minimized ripple, tearing and ejection of micro-debris. Plasma facing surfaces have included plasma-sprayed tungsten, bare Cu and Al, and gettering with Ti and Li.
Supernova Driving. II. Compressive Ratio in Molecular-cloud Turbulence
NASA Astrophysics Data System (ADS)
Pan, Liubin; Padoan, Paolo; Haugbølle, Troels; Nordlund, Åke
2016-07-01
The compressibility of molecular cloud (MC) turbulence plays a crucial role in star formation models, because it controls the amplitude and distribution of density fluctuations. The relation between the compressive ratio (the ratio of powers in compressive and solenoidal motions) and the statistics of turbulence has been previously studied systematically only in idealized simulations with random external forces. In this work, we analyze a simulation of large-scale turbulence (250 pc) driven by supernova (SN) explosions that has been shown to yield realistic MC properties. We demonstrate that SN driving results in MC turbulence with a broad lognormal distribution of the compressive ratio, with a mean value ≈0.3, lower than the equilibrium value of ≈0.5 found in the inertial range of isothermal simulations with random solenoidal driving. We also find that the compressibility of the turbulence is not noticeably affected by gravity, nor are the mean cloud radial (expansion or contraction) and solid-body rotation velocities. Furthermore, the clouds follow a general relation between the rms density and the rms Mach number similar to that of supersonic isothermal turbulence, though with a large scatter, and their average gas density probability density function is described well by a lognormal distribution, with the addition of a high-density power-law tail when self-gravity is included.
Mechanical and optical response of [100] lithium fluoride to multi-megabar dynamic pressures
NASA Astrophysics Data System (ADS)
Davis, Jean-Paul; Knudson, Marcus D.; Shulenburger, Luke; Crockett, Scott D.
2016-10-01
An understanding of the mechanical and optical properties of lithium fluoride (LiF) is essential to its use as a transparent tamper and window for dynamic materials experiments. In order to improve models for this material, we applied iterative Lagrangian analysis to ten independent sets of data from magnetically driven planar shockless compression experiments on single crystal [100] LiF to pressures as high as 350 GPa. We found that the compression response disagreed with a prevalent tabular equation of state for LiF that is commonly used to interpret shockless compression experiments. We also present complementary data from ab initio calculations performed using the diffusion quantum Monte Carlo method. The agreement between these two data sets lends confidence to our interpretation. In order to aid in future experimental analysis, we have modified the tabular equation of state to match the new data. We have also extended knowledge of the optical properties of LiF via shock-compression and shockless compression experiments, refining the transmissibility limit, measuring the refractive index to ˜300 GPa, and confirming the nonlinear dependence of the refractive index on density. We present a new model for the refractive index of LiF that includes temperature dependence and describe a procedure for correcting apparent velocity to true velocity for dynamic compression experiments.
Passive margins getting squeezed in the mantle convection vice
NASA Astrophysics Data System (ADS)
Husson, Laurent; Yamato, Philippe; Becker, Thorsten; Pedoja, Kevin
2013-04-01
Quaternary coastal geomorphology reveals that passive margins underwent wholesale uplift at least during the glacial cycle. In addition, these not-so-passive margins often exhibit long term exhumation and tectonic inversion, which suggest that compression and tectonic shortening could be the mechanism that triggers their overall uplift. We speculate that the compression in the lithosphere gradually increased during the Cenozoic. The many mountain belts at active margins that accompany this event readily witness this increase. Less clear is how that compression increase affects passive margins. In order to address this issue, we design minimalist 2D viscous models to quantify the impact of plate collision on the stress regime. In these models, a sluggish plate is disposed on a less viscous mantle. It is driven by a "mantle conveyor belt" alternatively excited by lateral shear stresses that represent a downwelling on one side, an upwelling on the other side, or both simultaneously. The lateral edges of the plate are either free or fixed, respectively representing the cases of free convergence and collision. In practice, it dramatically changes the upper boundary condition for mantle circulation and subsequently, for the stress field. The flow pattern transiently evolves almost between two end-members, starting from a situation close to a Couette flow to a pattern that looks like a Poiseuille flow with an almost null velocity at the surface (though in the models, the horizontal velocity at the surface is not strictly null, as the lithosphere deforms). In the second case, the lithosphere is highly stressed horizontally and deforms. For an equivalent bulk driving force, compression increases drastically at passive margins if upwellings are active because they push plates towards the collision. Conversely, if only downwellings are activated, compression occurs on one half of the plate and extension on the other half, because only the downwelling is pulling the plate. Thus, active upwellings underneath oceanic plates are required to explain compression at passive margins. This conclusion is corroborated by "real-Earth" 3D spherical models, wherein the flow is alternatively driven by density anomalies inferred from seismic tomography -and therefore include both downwellings at subduction zones and upwellings above the superswells- and density anomalies that correspond to subducting slabs only. While the second scenario mostly compresses the active margins of upper plates and leave other areas at rest, the first scenario efficiently compresses passive margins where the geological record reveals their uplift, exhumation, and tectonic inversion.
Van Blarigan, Peter
2001-01-01
A combustion system which can utilize high compression ratios, short burn durations, and homogeneous fuel/air mixtures in conjunction with low equivalence ratios. In particular, a free-piston, two-stroke autoignition internal combustion engine including an electrical generator having a linear alternator with a double-ended free piston that oscillates inside a closed cylinder is provided. Fuel and air are introduced in a two-stroke cycle fashion on each end, where the cylinder charge is compressed to the point of autoignition without spark plugs. The piston is driven in an oscillating motion as combustion occurs successively on each end. This leads to rapid combustion at almost constant volume for any fuel/air equivalence ratio mixture at very high compression ratios. The engine is characterized by high thermal efficiency and low NO.sub.x emissions. The engine is particularly suited for generating electrical current in a hybrid automobile.
Chialvo, Ariel A.; Vlcek, Lukas; Cummings, Peter T.
2014-10-17
We studied the link between the water-mediated (tensile or compressive) strain-driven hydration free energy changes in the association process involving finite-size graphene surfaces, the resulting water-graphene interfacial behavior, and the combined effect of surface strain and fluid confinement on the thermodynamic response functions and the dynamics of water. In this study, we found that either small surface corrugation (compressive strain) or surface stretching (tensile strain) is able to enhance significantly the water-graphene hydrophobicity relative to that of the unstrained surface, an effect that exacerbates the confinement impact on the isothermal compressibility and isobaric thermal expansivity of confined water, as wellmore » as on the slowing down of its dynamics that gives rise to anomalous diffusivity.« less
High Pressure and High Temperature State of Oxygen Enriched Ice
NASA Astrophysics Data System (ADS)
LI, M.; Zhang, S.; Jeanloz, R.; Militzer, B.
2016-12-01
Interior models for Uranus and Neptune include a hydrogen/helium/water outer envelope and a core of rock and metal at the center, with superionic water-rich ice proposed as comprising an intermediate layer. Here we consider an oxygen-enriched ice, such as H2O2 hydrogen peroxide (± water), that could form through chemical reaction between water-rich and underlying rocky (i.e., oxygen-rich) layers. As oxygen and its compounds (e.g., H2O, SiO2) form metallic fluids at pressures above 100-150 GPa, the problem amounts to considering oxygen alloying of semiconducting or metallic water. The density of H2O2 is 1.45 g/cc at ambient pressure and 0° C, increasing to 1.71 g/cc in the solid state at about -20° C. There are no Hugoniot data beyond 30 GPa, so we estimated Hugoniots for H2O2 with different initial densities, using both a mixing model based on Hugoniot data for H2O2 and 1/2 O2 (molar volume summation under pressure) and ab initio calculations for unreacted H2O2. The results agree with each other to pressures of about 200 GPa, and the ab initio calculations show evidence of a superionic state at temperatures as low as 500 K, much lower than for water ice. Hydrogen peroxide is expected to be liquid along planetary isentropes for Uranus and Neptune, suggesting that H2O2 may not be present as a pure compound in these planets. Instead, oxygen-enriched H2O ice may be the relevant form of water and oxygen, and might be produced in the laboratory by way of dynamic compression of H2O2 or laser-heating of statically compressed H2O + O2 and/or H2O2.
Invariant Functional Forms for K(r,P) Type Equations of State for Hydrodynamically Driven Flow
NASA Astrophysics Data System (ADS)
Hrbek, George
2001-06-01
At the 11th American Physical Society Topical Group Meeting on Shock Compression of Condensed Matter, Group Theoretic Methods, as defined by Lie were applied to the problem of temperature independent, hydrodynamic shock in a Birch-Murnaghan continuum. (1) Group parameter ratios were linked to the physical quantities (i.e., KT, K'T, and K''T) specified for the various order Birch-Murnaghan approximations. This technique has now been generalized to provide a mathematical formalism applicable to a wide class of forms (i.e., K(r,P)) for the equation of state. Variations in material expansion and resistance (i.e., counter pressure) are shown to be functions of compression and material variation ahead of the expanding front. Illustrative examples include the Birch-Murnaghan, Vinet, Brennan-Stacey, Shanker, Tait, Poirier, and Jones-Wilkins-Lee (JWL) forms. The results of this study will allow the various equations of state, and their respective fitting coefficients, to be compared with experiments. To do this, one must introduce the group ratios into a numerical simulation for the flow and generate the density, pressure, and particle velocity profiles as the shock moves through the material. (2) (1) Hrbek, G. M., Invariant Functional Forms For The Second, Third, And Fourth Order Birch-Murnaghan Equation of State For Materials Subject to Hydrodynamic Shock, Proceedings of the 11th American Physical Society Topical Group Meeting on Shock Compression of Condensed Matter (SCCM Shock 99), Snowbird, Utah (2) Hrbek, G. M., Physical Interpretation of Mathematically Invariant K(r,P) Type Equations Of State For Hydrodynamically Driven Flows, Submitted to the 12th American Physical Society Topical Group Meeting on Shock Compression of Condensed Matter (SCCM Shock 01), Atlanta, Georgia
NASA Technical Reports Server (NTRS)
Tripathi, Om Prakash; Leblanc, Thierry; McDermid, I. Stuart; Lefevre, Frank; Marchand, Marion; Hauchecorne, Alain
2006-01-01
In mid-March 2005 the northern lower stratospheric polar vortex experienced a severe stretching episode, bringing a large polar filament far south of Alaska toward Hawaii. This meridional intrusion of rare extent, coinciding with the polar vortex final warming and breakdown, was followed by a zonal stretching in the wake of the easterly propagating subtropical main flow. This caused polar air to remain over Hawaii for several days before diluting into the subtropics. After being successfully forecasted to pass over Hawaii by the high-resolution potential vorticity advection model Modele Isentrope du transport Meso-echelle de l'Ozone Stratospherique par Advection (MIMOSA), the filament was observed on isentropic surfaces between 415 K and 455 K (17-20 km) by the Jet Propulsion Laboratory stratospheric ozone lidar measurements at Mauna Loa Observatory, Hawaii, between 16 and 19 March 2005. It was materialized as a thin layer of enhanced ozone peaking at 1.6 ppmv in a region where the climatological values usually average 1.0 ppmv. These values were compared to those obtained by the three dimensional Chemistry-Transport Model MIMOSA-CHIM. Agreement between lidar and model was excellent, particularly in the similar appearance of the ozone peak near 435 K (18.5 km) on 16 March, and the persistence of this layer at higher isentropic levels for the following three days. Passive ozone, also modeled by MIMOSA-CHIM, was at about 3-4 ppmv inside the filament while above Hawaii. A detailed history of the modeled chemistry inside the filament suggests that the air mass was still polar ozone- depleted when passing over Hawaii. The filament quickly separated from the main vortex after its Hawaiian overpass. It never reconnected and, in less than 10 days, dispersed entirely in the subtropics.
NASA Astrophysics Data System (ADS)
Montoux, N.; Keckhut, P.; Hauchecorne, A.; Jumelet, J.; Brogniez, H.; David, C.
2010-01-01
This publication provides a detailed study of one cirrus cloud observed by lidar at the Observatory of Haute-Provence (˜44°N) in January 2006 in the vicinity of the tropopause (12-14 km/˜136-190 hPa/328-355 K). The higher part of the air mass observed comes from the wet subtropics while the lower part comes from the midlatitudes. Both are advected by the Azores anticyclone, encounter cold temperatures (˜205 K) above the North Atlantic Ocean, and flow eastward along the anticyclonic flank of the polar jet stream. A simulation of this cloud by an isentropic model is tested to see if synoptic-scale atmospheric structures could explain by itself the presence of such clouds. The developments made in the Modélisation Isentrope du transport Méso-échelle de l'Ozone Stratosphérique par Advection (MIMOSA) model to take into account the three phases of water and their interactions allow reproduction of the occurrence of the cirrus and its temporal evolution. MIMOSA-H2O reproduces the atmospheric water vapor structures observed with Atmospheric Infrared Sounder (AIRS) with, however, an apparent wet bias of around 50%. Reliable water vapor fields appear to be the main condition to correctly simulate such cirrus clouds. The model reproduces the cirrus cloud altitude for fall speeds around 1 cm/s and gives ice water content around 3-4 mg/m3. Fall speed is also a critical parameter, and a better parameterization with altitude or other atmospheric conditions in the modeling of such cirrus clouds is required. This study also shows that supersaturation threshold impacts strongly the vertical and horizontal extension of the cirrus cloud but more slightly the ice water path.
Studying the Structure of Condensables Jupiter’s 24deg Jet
NASA Astrophysics Data System (ADS)
Flom, Abigail; Sankar, Ramanakumar; Palotai, Csaba J.; Dowling, Timothy E.
2017-10-01
Simulations of the atmospheres of Jovian planets can be used to check our current understanding of the physics of their atmospheres. Such studies have been performed in the past, but the development of cloud microphysics models allows us to gain new insight in how the clouds form and behave in areas of interest. This study conducts high resolution cloudy simulations of the 24 degree north high speed jet for a period of 200 days. The models were created using the Explicit Planetary Isentropic_Coordinate (EPIC) general circulation model (Dowling et al 1998, 2006) that includes full hydrological cycle for multiple condensible species (Palotai and dowling 2008, Palotai et al 2016). This builds off of work presented by our group last year at DPS. The simulations were run under various conditions again in order to test what parameters led to stable simulations. These results help describe which physical parameters can lead to stable high speed jets and how water and ammonia behave within these features. Reference: [1] T. Dowling, A. Fischer, P. Gierasch, J. Harrington, R. Lebeau, and C. Santori. The explicit planetary isentropic-coordinate (epic) atmospheric model. Icarus, 1998. [2] T. E. Dowling, M. E. Bradley, E. Colon, J. Kramer, R. P. LeBeau, G. C. H. Lee, T. I. Mattox, R. Morales-Juberias, C. J. Palotai, V. k. Parimi, and A. P. Showman. The epic atmospheric model with an isentropic/terrain-following hybrid vertical coordinate. Icarus, 182:259-273, may 2006.[3] C. Palotai and T. E. Dowling. Addition of water and ammonia cloud microphysics to the epic model. Icarus, 2008.[4] C. J. Palotai, R. P. Le Beau, R. Shankar, A. Flom, J. Lashley, and T. McCabe. A cloud microphysics model for the gas giant planets. In AAS/Division for Planetary Sciences Meeting Abstracts, 2016.
NASA Astrophysics Data System (ADS)
Kaplan, Michael L.; Tilley, Jeffrey S.; Hatchett, Benjamin J.; Smith, Craig M.; Walston, Joshua M.; Shourd, Kacie N.; Lewis, John M.
2017-10-01
On 27 September 2010 the Los Angeles Civic Center reached its all-time record maximum temperature of 45°C before 1330 local daylight time with several other regional stations observing all-time record breaking heat early in that afternoon. This record event is associated with a general circulation pattern predisposed to hemispheric wave breaking. Three days before the event, wave breaking organizes complex terrain- and coastal-induced processes that lead to isentropic surface folding into the Los Angeles Basin. The first wave break occurs over the western two thirds of North America leading to trough elongation across the southwestern U.S. Collocated with this trough is an isentropic potential vorticity filament that is the locus of a thermally indirect circulation central to warming and associated thickness increases and ridging westward across the Great Basin. In response to this circulation, two subsynoptic wave breaks are triggered along the Pacific coast. The isentropic potential vorticity filament is coupled to the breaking waves and the interaction produces a subsynoptic low-pressure center and a deep vortex aloft over the southeastern California desert. This coupling leads to advection of an elevated mixed layer over Point Conception the night before the record-breaking heat that creates a coastally trapped low-pressure area southwest of Los Angeles. The two low-pressure centers create a low-level pressure gradient and east-southeasterly jet directed offshore over the Los Angeles Basin by sunrise on 27 September. This allows the advection of low-level warm air from the inland terrain toward the coastally trapped disturbance and descending circulation resulting in record heating.
The balance of dynamic vorticity for the Presidents' Day storm
NASA Astrophysics Data System (ADS)
Zapotocny, Tom Harmon
1990-06-01
The maintenance of isentropic dynamic vorticity, defined as the vertical component of the curl of momentum, is examined for the life cycle of the Presidents'Day storm. Dynamic vorticity and its tendency are also compared to the more commonly used kinematic vorticity and its tendency. Diagnostics are first performed on an inviscid numerical simulation of an amplifying baroclinic disturbance by a hybrid isentropic-sigma coordinate channel model. The main purpose for studying a simulation with the channel model is to examine the first-order balance of dynamic vorticity during development under simplified conditions. A more in-depth evaluation of dynamic vorticity is presented for an excellent numerical simulation of the Presidents' Day storm of 18 to 20 February 1979. Dynamic vorticity diagnostics for the Presidents' Day storm reveal the importance of mass asymmetries within an isentropic layer and also document the effect of weak static stability. Prior to cyclogenesis, a strong cyclonic circulation tendency exists from both the vertical advection of vorticity and tilting terms. Another important feature is the merging of two synoptic scale short waves; one propagating southeast from the Great Lakes states, the other moving northeast from the Gulf of Mexico. Cyclogenesis is initiated by the latter of these two short waves, while rapid development occurs when the Great Lakes short waves reaches the Middle Atlantic states. During rapid development, an assessment of the ageostrophic component on spin-up is obtained from a balance of the divergence term and pressure stresses. Spin-up from the ageostrophic component is largest ahead of the lower tropospheric warm front. The impact of an 80 m/s subtropical jet streak, which enhances upper tropospheric processes during development, is also examined.
In situ insights into shock-driven reactive flow
NASA Astrophysics Data System (ADS)
Dattelbaum, Dana
2017-06-01
Shock-driven reactions are commonplace. Examples include the detonation of high explosives, shock-driven dissociation of polymers, and transformation of carbon from graphite to diamond phases. The study of shock-driven chemical reactions is important for understanding reaction thresholds, their mechanisms and rates, and associated state sensitivities under the extreme conditions generated by shock compression. Reactions are distinguished by their thermicity - e.g. the volume and enthalpy changes along the reaction coordinate. A survey of the hallmarks of shock-driven reactivity for a variety of simple molecules and polymers will be presented, including benzene, acetylenes and nitriles, and formic acid. Many of the examples will illustrate the nature of the reactive flow through particle velocity wave profiles measured by in situ electromagnetic gauging in gas gun-driven plate impact experiments. General trends will be presented linking molecular moieties, shock temperatures, and reaction state sensitivities. Progress in applying bond-specific diagnostics will also be presented, including time-resolved Raman spectroscopy, and recent results of in situ x-ray diffraction of carbon at the Linac Coherent Light Souce (LCLS) free electron laser.
Method to study cell migration under uniaxial compression
Srivastava, Nishit; Kay, Robert R.; Kabla, Alexandre J.
2017-01-01
The chemical, physical, and mechanical properties of the extracellular environment have a strong effect on cell migration. Aspects such as pore size or stiffness of the matrix influence the selection of the mechanism used by cells to propel themselves, including by pseudopods or blebbing. How a cell perceives its environment and how such a cue triggers a change in behavior are largely unknown, but mechanics is likely to be involved. Because mechanical conditions are often controlled by modifying the composition of the environment, separating chemical and physical contributions is difficult and requires multiple controls. Here we propose a simple method to impose a mechanical compression on individual cells without altering the composition of the matrix. Live imaging during compression provides accurate information about the cell's morphology and migratory phenotype. Using Dictyostelium as a model, we observe that a compression of the order of 500 Pa flattens the cells under gel by up to 50%. This uniaxial compression directly triggers a transition in the mode of migration from primarily pseudopodial to bleb driven in <30 s. This novel device is therefore capable of influencing cell migration in real time and offers a convenient approach with which to systematically study mechanotransduction in confined environments. PMID:28122819
Improving Remote Health Monitoring: A Low-Complexity ECG Compression Approach
Al-Ali, Abdulla; Mohamed, Amr; Ward, Rabab
2018-01-01
Recent advances in mobile technology have created a shift towards using battery-driven devices in remote monitoring settings and smart homes. Clinicians are carrying out diagnostic and screening procedures based on the electrocardiogram (ECG) signals collected remotely for outpatients who need continuous monitoring. High-speed transmission and analysis of large recorded ECG signals are essential, especially with the increased use of battery-powered devices. Exploring low-power alternative compression methodologies that have high efficiency and that enable ECG signal collection, transmission, and analysis in a smart home or remote location is required. Compression algorithms based on adaptive linear predictors and decimation by a factor B/K are evaluated based on compression ratio (CR), percentage root-mean-square difference (PRD), and heartbeat detection accuracy of the reconstructed ECG signal. With two databases (153 subjects), the new algorithm demonstrates the highest compression performance (CR=6 and PRD=1.88) and overall detection accuracy (99.90% sensitivity, 99.56% positive predictivity) over both databases. The proposed algorithm presents an advantage for the real-time transmission of ECG signals using a faster and more efficient method, which meets the growing demand for more efficient remote health monitoring. PMID:29337892
Liu, Gang; Kong, Lingping; Yan, Jinyuan; Liu, Zhenxian; Zhang, Hengzhong; Lei, Pei; Xu, Tao; Mao, Ho-Kwang; Chen, Bin
2016-06-09
We report an unprecedented surface doping-driven anomaly in the compression behaviors of nanocrystals demonstrating that the change of surface chemistry can lead to an interior bulk structure change in nanoparticles. In the synchrotron-based X-ray diffraction experiments, titania nanocrystals with low concentration yttrium dopants at the surface are found to be less compressible than undoped titania nanocrystals. More surprisingly, an unexpected TiO2(ii) phase (α-PbO2 type) is induced and obvious anisotropy is observed in the compression of yttrium-doped TiO2, in sharp contrast to the compression behavior of undoped TiO2. In addition, the undoped brookite nanocrystals remain with the same structure up to 30 GPa, whereas the yttrium-doped brookite amorphizes above 20 GPa. The abnormal structural evolution observed in yttrium-doped TiO2 does not agree with the reported phase stability of nano titania polymorphs, thus suggesting that the physical properties of the interior of nanocrystals can be controlled by the surface, providing an unconventional and new degree of freedom in search for nanocrystals with novel tunable properties that can trigger applications in multiple areas of industry and provoke more related basic science research.
NASA Astrophysics Data System (ADS)
Verscharen, Daniel; Chandran, Benjamin D. G.; Klein, Kristopher G.; Quataert, Eliot
2016-11-01
Compressive fluctuations are a minor yet significant component of astrophysical plasma turbulence. In the solar wind, long-wavelength compressive slow-mode fluctuations lead to changes in {β }\\parallel {{p}}\\equiv 8π {n}{{p}}{k}{{B}}{T}\\parallel {{p}}/{B}2 and in {R}{{p}}\\equiv {T}\\perp {{p}}/{T}\\parallel {{p}}, where {T}\\perp {{p}} and {T}\\parallel {{p}} are the perpendicular and parallel temperatures of the protons, B is the magnetic field strength, and {n}{{p}} is the proton density. If the amplitude of the compressive fluctuations is large enough, {R}{{p}} crosses one or more instability thresholds for anisotropy-driven microinstabilities. The enhanced field fluctuations from these microinstabilities scatter the protons so as to reduce the anisotropy of the pressure tensor. We propose that this scattering drives the average value of {R}{{p}} away from the marginal stability boundary until the fluctuating value of {R}{{p}} stops crossing the boundary. We model this “fluctuating-anisotropy effect” using linear Vlasov-Maxwell theory to describe the large-scale compressive fluctuations. We argue that this effect can explain why, in the nearly collisionless solar wind, the average value of {R}{{p}} is close to unity.
Improving Remote Health Monitoring: A Low-Complexity ECG Compression Approach.
Elgendi, Mohamed; Al-Ali, Abdulla; Mohamed, Amr; Ward, Rabab
2018-01-16
Recent advances in mobile technology have created a shift towards using battery-driven devices in remote monitoring settings and smart homes. Clinicians are carrying out diagnostic and screening procedures based on the electrocardiogram (ECG) signals collected remotely for outpatients who need continuous monitoring. High-speed transmission and analysis of large recorded ECG signals are essential, especially with the increased use of battery-powered devices. Exploring low-power alternative compression methodologies that have high efficiency and that enable ECG signal collection, transmission, and analysis in a smart home or remote location is required. Compression algorithms based on adaptive linear predictors and decimation by a factor B / K are evaluated based on compression ratio (CR), percentage root-mean-square difference (PRD), and heartbeat detection accuracy of the reconstructed ECG signal. With two databases (153 subjects), the new algorithm demonstrates the highest compression performance ( CR = 6 and PRD = 1.88 ) and overall detection accuracy (99.90% sensitivity, 99.56% positive predictivity) over both databases. The proposed algorithm presents an advantage for the real-time transmission of ECG signals using a faster and more efficient method, which meets the growing demand for more efficient remote health monitoring.
Flow-through compression cell for small-angle and ultra-small-angle neutron scattering measurements
NASA Astrophysics Data System (ADS)
Hjelm, Rex P.; Taylor, Mark A.; Frash, Luke P.; Hawley, Marilyn E.; Ding, Mei; Xu, Hongwu; Barker, John; Olds, Daniel; Heath, Jason; Dewers, Thomas
2018-05-01
In situ measurements of geological materials under compression and with hydrostatic fluid pressure are important in understanding their behavior under field conditions, which in turn provides critical information for application-driven research. In particular, understanding the role of nano- to micro-scale porosity in the subsurface liquid and gas flow is critical for the high-fidelity characterization of the transport and more efficient extraction of the associated energy resources. In other applications, where parts are produced by the consolidation of powders by compression, the resulting porosity and crystallite orientation (texture) may affect its in-use characteristics. Small-angle neutron scattering (SANS) and ultra SANS are ideal probes for characterization of these porous structures over the nano to micro length scales. Here we show the design, realization, and performance of a novel neutron scattering sample environment, a specially designed compression cell, which provides compressive stress and hydrostatic pressures with effective stress up to 60 MPa, using the neutron beam to probe the effects of stress vectors parallel to the neutron beam. We demonstrate that the neutron optics is suitable for the experimental objectives and that the system is highly stable to the stress and pressure conditions of the measurements.
Adiabatic Compression Sensitivity of Liquid Fuels and Monopropellants
NASA Technical Reports Server (NTRS)
Ismail, Ismail M. K.; Hawkins, Tom W.
2000-01-01
Liquid rocket propellants can be sensitive to rapid compression. Such liquids may undergo decomposition and their handling may be accompanied with risk. Decomposition produces small gas bubbles in the liquid, which upon rapid compression may cause catastrophic explosions. The rapid compression can result from mechanical shocks applied on the tank containing the liquid or from rapid closure of the valves installed on the lines. It is desirable to determine the conditions that may promote explosive reactions. At Air Force Research Laboratory (AFRL), we constructed an apparatus and established a safe procedure for estimating the sensitivity of propellant materials towards mechanical shocks (Adiabatic Compression Tester). A sample is placed on a stainless steel U-tube, held isothermally at a temperature between 20 and 150 C then exposed to an abrupt mechanical shock of nitrogen gas at a pressure between 6.9 and 20.7 MPa (1000 to 3000 psi). The apparatus is computer interfaced and is driven with LABTECH NOTEBOOK-pro (registered) Software. In this presentation, the design of the apparatus is shown, the operating procedure is outlined, and the safety issues are addressed. The results obtained on different energetic materials are presented.
CFD Based Prediction of Discharge Coefficient of Sonic Nozzle with Surface Roughness
NASA Astrophysics Data System (ADS)
Bagaskara, Agastya; Agoes Moelyadi, Mochammad
2018-04-01
Due to its simplicity and accuracy, sonic nozzle is widely used in gas flow measurement, gas flow meter calibration standard, and flow control. The nozzle obtains mass flow rate by measuring temperature and pressure in the inlet during choked flow condition and calculate the flow rate using the one-dimensional isentropic flow equation multiplied by a discharge coefficient, which takes into account multiple non-isentropic effects, which causes the reduction in mass flow. Proper determination of discharge coefficient is crucial to ensure the accuracy of mass flow measurement by the nozzle. Available analytical solution for the prediction of discharge coefficient assumes that the nozzle wall is hydraulically smooth which causes disagreement with experimental results. In this paper, the discharge coefficient of sonic nozzle is determined using computational fluid dynamics method by taking into account the roughness of the wall. It is found that the result shows better agreement with the experiment data compared to the analytical result.
A Survey of the Isentropic Euler Vortex Problem Using High-Order Methods
NASA Technical Reports Server (NTRS)
Spiegel, Seth C.; Huynh, H. T.; DeBonis, James R.
2015-01-01
The flux reconstruction (FR) method offers a simple, efficient, and easy to implement method, and it has been shown to equate to a differential approach to discontinuous Galerkin (DG) methods. The FR method is also accurate to an arbitrary order and the isentropic Euler vortex problem is used here to empirically verify this claim. This problem is widely used in computational fluid dynamics (CFD) to verify the accuracy of a given numerical method due to its simplicity and known exact solution at any given time. While verifying our FR solver, multiple obstacles emerged that prevented us from achieving the expected order of accuracy over short and long amounts of simulation time. It was found that these complications stemmed from a few overlooked details in the original problem definition combined with the FR and DG methods achieving high-accuracy with minimal dissipation. This paper is intended to consolidate the many versions of the vortex problem found in literature and to highlight some of the consequences if these overlooked details remain neglected.
NASA Technical Reports Server (NTRS)
Bursik, J. W.; Hall, R. M.
1980-01-01
The saturated equilibrium expansion approximation for two phase flow often involves ideal-gas and latent-heat assumptions to simplify the solution procedure. This approach is well documented by Wegener and Mack and works best at low pressures where deviations from ideal-gas behavior are small. A thermodynamic expression for liquid mass fraction that is decoupled from the equations of fluid mechanics is used to compare the effects of the various assumptions on nitrogen-gas saturated equilibrium expansion flow starting at 8.81 atm, 2.99 atm, and 0.45 atm, which are conditions representative of transonic cryogenic wind tunnels. For the highest pressure case, the entire set of ideal-gas and latent-heat assumptions are shown to be in error by 62 percent for the values of heat capacity and latent heat. An approximation of the exact, real-gas expression is also developed using a constant, two phase isentropic expansion coefficient which results in an error of only 2 percent for the high pressure case.
Practical exergy analysis of centrifugal compressor performance using ASME-PTC-10 data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carranti, F.J.
1997-07-01
It has been shown that measures of performance currently in use for industrial and process compressors do not give a true measure of energy utilization, and that the required assumptions of isentropic or adiabatic behavior are now always valid. A better indication of machine or process performance can be achieved using exergetic (second law) efficiencies and by employing the second law of thermodynamics to indicate the nature of irreversibilities and entropy generation in the compression process. In this type of analysis, performance is related to an environmental equilibrium condition, or dead state. Often, the differences between avoidable and unavoidable irreversibilitiesmore » ca be interpreted from these results. A general overview of the techniques involved in exergy analysis as applied to compressors and blowers is presented. A practical method to allow the calculation of exergetic efficiencies by manufacturers and end users is demonstrated using data from ASME Power Test Code input. These data are often readily available from compressor manufacturers for both design and off-design conditions, or can sometimes be obtained from field measurements. The calculations involved are simple and straightforward, and can demonstrate the energy usage situation for a variety of conditions. Here off-design is taken to mean at different rates of flow, as well as at different environmental states. The techniques presented are also applicable to many other equipment and process types.« less
NASA Astrophysics Data System (ADS)
Hogan, M. T.; McNamara, B. R.; Pulido, F. A.; Nulsen, P. E. J.; Vantyghem, A. N.; Russell, H. R.; Edge, A. C.; Babyk, Iu.; Main, R. A.; McDonald, M.
2017-12-01
We present accurate mass and thermodynamic profiles for 57 galaxy clusters observed with the Chandra X-ray Observatory. We investigate the effects of local gravitational acceleration in central cluster galaxies, and explore the role of the local free-fall time ({t}{ff}) in thermally unstable cooling. We find that the radially averaged cooling time ({t}{cool}) is as effective an indicator of cold gas, traced through its nebular emission, as the ratio {t}{cool}/{t}{ff}. Therefore, {t}{cool} primarily governs the onset of thermally unstable cooling in hot atmospheres. The location of the minimum {t}{cool}/{t}{ff}, a thermodynamic parameter that many simulations suggest is key in driving thermal instability, is unresolved in most systems. Consequently, selection effects bias the value and reduce the observed range in measured {t}{cool}/{t}{ff} minima. The entropy profiles of cool-core clusters are characterized by broken power laws down to our resolution limit, with no indication of isentropic cores. We show, for the first time, that mass isothermality and the K\\propto {r}2/3 entropy profile slope imply a floor in {t}{cool}/{t}{ff} profiles within central galaxies. No significant departures of {t}{cool}/{t}{ff} below 10 are found. This is inconsistent with models that assume thermally unstable cooling ensues from linear perturbations at or near this threshold. We find that the inner cooling times of cluster atmospheres are resilient to active galactic nucleus (AGN)-driven change, suggesting gentle coupling between radio jets and atmospheric gas. Our analysis is consistent with models in which nonlinear perturbations, perhaps seeded by AGN-driven uplift of partially cooled material, lead to cold gas condensation.
Laser-driven shock experiments on precompressed water: Implications for "icy" giant planets.
Lee, Kanani K M; Benedetti, L Robin; Jeanloz, Raymond; Celliers, Peter M; Eggert, Jon H; Hicks, Damien G; Moon, Stephen J; Mackinnon, Andrew; Da Silva, Luis B; Bradley, David K; Unites, Walter; Collins, Gilbert W; Henry, Emeric; Koenig, Michel; Benuzzi-Mounaix, Alessandra; Pasley, John; Neely, David
2006-07-07
Laser-driven shock compression of samples precompressed to 1 GPa produces high-pressure-temperature conditions inducing two significant changes in the optical properties of water: the onset of opacity followed by enhanced reflectivity in the initially transparent water. The onset of reflectivity at infrared wavelengths can be interpreted as a semiconductor<-->electronic conductor transition in water, and is found at pressures above approximately 130 GPa for single-shocked samples precompressed to 1 GPa. Our results indicate that conductivity in the deep interior of "icy" giant planets is greater than realized previously because of an additional contribution from electrons.
K-Shell Photoabsorption Edge of Strongly Coupled Matter Driven by Laser-Converted Radiation
NASA Astrophysics Data System (ADS)
Zhao, Yang; Yang, Jiamin; Zhang, Jiyan; Yang, Guohong; Wei, Minxi; Xiong, Gang; Song, Tianming; Zhang, Zhiyu; Bao, Lihua; Deng, Bo; Li, Yukun; He, Xiaoan; Li, Chaoguang; Mei, Yu; Yu, Ruizhen; Jiang, Shaoen; Liu, Shenye; Ding, Yongkun; Zhang, Baohan
2013-10-01
The first observation of the K-shell photoabsorption edge of strongly coupled matter with an ion-ion coupling parameter of about 65 generated by intense x-ray radiation-driven shocks is reported. The soft x-ray radiation generated by laser interaction with a “dog bone” high-Z hohlraum is used to ablate two thick CH layers, which cover a KCl sample, to create symmetrical inward shocks. While the two shocks impact at the central KCl sample, a highly compressed KCl is obtained with a density of 3-5 times solid density and a temperature of about 2-4 eV. The photoabsorption spectra of chlorine near the K-shell edge are measured with a crystal spectrometer using a short x-ray backlighter. The redshift of the K edge up to 11.7 eV and broadening of 15.2 eV are obtained for the maximum compression. A comparison of the measured redshifts and broadenings with dense plasma calculations are made, and it indicates potential improvements in the theoretical description.
On the formation of Friedlander waves in a compressed-gas-driven shock tube
Tasissa, Abiy F.; Hautefeuille, Martin; Fitek, John H.; Radovitzky, Raúl A.
2016-01-01
Compressed-gas-driven shock tubes have become popular as a laboratory-scale replacement for field blast tests. The well-known initial structure of the Riemann problem eventually evolves into a shock structure thought to resemble a Friedlander wave, although this remains to be demonstrated theoretically. In this paper, we develop a semi-analytical model to predict the key characteristics of pseudo blast waves forming in a shock tube: location where the wave first forms, peak over-pressure, decay time and impulse. The approach is based on combining the solutions of the two different types of wave interactions that arise in the shock tube after the family of rarefaction waves in the Riemann solution interacts with the closed end of the tube. The results of the analytical model are verified against numerical simulations obtained with a finite volume method. The model furnishes a rational approach to relate shock tube parameters to desired blast wave characteristics, and thus constitutes a useful tool for the design of shock tubes for blast testing. PMID:27118888
NASA Astrophysics Data System (ADS)
Belikov, D. A.; Maksyutov, S.; Sherlock, V.; Aoki, S.; Deutscher, N. M.; Dohe, S.; Griffith, D.; Kyro, E.; Morino, I.; Nakazawa, T.; Notholt, J.; Rettinger, M.; Schneider, M.; Sussmann, R.; Toon, G. C.; Wennberg, P. O.; Wunch, D.
2013-02-01
We have developed an improved version of the National Institute for Environmental Studies (NIES) three-dimensional chemical transport model (TM) designed for accurate tracer transport simulations in the stratosphere, using a hybrid sigma-isentropic (σ-θ) vertical coordinate that employs both terrain-following and isentropic parts switched smoothly around the tropopause. The air-ascending rate was derived from the effective heating rate and was used to simulate vertical motion in the isentropic part of the grid (above level 350 K), which was adjusted to fit to the observed age of the air in the stratosphere. Multi-annual simulations were conducted using the NIES TM to evaluate vertical profiles and dry-air column-averaged mole fractions of CO2 and CH4. Comparisons with balloon-borne observations over Sanriku (Japan) in 2000-2007 revealed that the tracer transport simulations in the upper troposphere and lower stratosphere are performed with accuracies of ~5% for CH4 and SF6, and ~1% for CO2 compared with the observed volume-mixing ratios. The simulated column-averaged dry air mole fractions of atmospheric carbon dioxide (XCO2) and methane (XCH4) were evaluated against daily ground-based high-resolution Fourier Transform Spectrometer (FTS) observations measured at twelve sites of the Total Carbon Column Observing Network (TCCON) (Bialystok, Bremen, Darwin, Garmisch, Izaña, Lamont, Lauder, Orleans, Park Falls, Sodankylä, Tsukuba, and Wollongong) between January 2009 and January 2011. The comparison shows the model's ability to reproduce the site-dependent seasonal cycles as observed by TCCON, with correlation coefficients typically on the order 0.8-0.9 and 0.4-0.8 for XCO2 and XCH4, respectively, and mean model biases of ±0.2% and ±0.5%, excluding Sodankylä, where strong biases are found. The ability of the model to capture the tracer total column mole fractions is strongly dependent on the model's ability to reproduce seasonal variations in tracer concentrations in the planetary boundary layer (PBL). We found a marked difference in the model's ability to reproduce near-surface concentrations at sites located some distance from multiple emission sources and where high emissions play a notable role in the tracer's budget. Comparisons with aircraft observations over Surgut (West Siberia), in an area with high emissions of methane from wetlands, show contrasting model performance in the PBL and in the free troposphere. Thus, the PBL is another critical region for simulating the tracer total column mole fractions.
Low-speed performance of an axisymmetric, mixed-compression, supersonic inlet with auxiliary inlets
NASA Technical Reports Server (NTRS)
Trefny, C. J.; Wasserbauer, J. W.
1986-01-01
A test program was conducted to determine the aerodynamic performance and acoustic characteristics associated with the low-speed operation of a supersonic, axisymmetric, mixed-compression inlet with auxiliary inlets. Blow-in-auxiliary doors were installed on the NASA Ames P inlet. One door per quadrant was located on the cowl in the subsonic diffuser selection of the inlet. Auxiliary inlets with areas of 20 and 40 percent of the inlet capture area were tested statically and at free-stream Mach numbers of 0.1 and 0.2. The effects of boundary layer bleed inflow were investigated. A JT8D fan simulator driven by compressed air was used to pump inlet flow and to provide a characteristic noise signature. Baseline data were obtained at static free-stream conditions with the sharp P-inlet cowl lip replaced by a blunt lip. Auxiliary inlets increased overall total pressure recovery of the order of 10 percent.
High-energy synchrotron X-ray radiography of shock-compressed materials
NASA Astrophysics Data System (ADS)
Rutherford, Michael E.; Chapman, David J.; Collinson, Mark A.; Jones, David R.; Music, Jasmina; Stafford, Samuel J. P.; Tear, Gareth R.; White, Thomas G.; Winters, John B. R.; Drakopoulos, Michael; Eakins, Daniel E.
2015-06-01
This presentation will discuss the development and application of a high-energy (50 to 250 keV) synchrotron X-ray imaging method to study shock-compressed, high-Z samples at Beamline I12 at the Diamond Light Source synchrotron (Rutherford-Appleton Laboratory, UK). Shock waves are driven into materials using a portable, single-stage gas gun designed by the Institute of Shock Physics. Following plate impact, material deformation is probed in-situ by white-beam X-ray radiography and complimentary velocimetry diagnostics. The high energies, large beam size (13 x 13 mm), and appreciable sample volumes (~ 1 cm3) viable for study at Beamline I12 compliment existing in-house pulsed X-ray capabilities and studies at the Dynamic Compression Sector. The authors gratefully acknowledge the ongoing support of Imperial College London, EPSRC, STFC and the Diamond Light Source, and AWE Plc.
Optical and transport properties of dense liquid silica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Tingting; Millot, Marius; Kraus, Richard G.
2015-06-15
Using density-functional-theory based molecular dynamics and the Kubo-Greenwood linear response theory, we evaluated the high-pressure equation of state and the optical and transport properties of quartz and fused silica shock-compressed to 2000 GPa. The computed Hugoniots and corresponding optical reflectivity values are in very good agreement with published data for quartz, and new data that we obtained on fused silica using magnetically launched flyer plate experiments. The rise of optical reflectivity upon shock compression appears to be primarily a temperature-driven mechanism, which is relatively insensitive to small density variation. We observed that the electrical conductivity does not display Drude-like frequencymore » dependence, especially at lower temperatures. In addition, the Wiedemann-Franz relation between electrical and thermal conductivities was found to be invalid. It suggests that even at three-fold compression, warm dense liquid silica on the Hugoniot curve is still far away from the degenerate limit.« less
Guler, N; Volegov, P; Danly, C R; Grim, G P; Merrill, F E; Wilde, C H
2012-10-01
Inertial confinement fusion experiments at the National Ignition Facility are designed to understand the basic principles of creating self-sustaining fusion reactions by laser driven compression of deuterium-tritium (DT) filled cryogenic plastic capsules. The neutron imaging diagnostic provides information on the distribution of the central fusion reaction region and the surrounding DT fuel by observing neutron images in two different energy bands for primary (13-17 MeV) and down-scattered (6-12 MeV) neutrons. From this, the final shape and size of the compressed capsule can be estimated and the symmetry of the compression can be inferred. These experiments provide small sources with high yield neutron flux. An aperture design that includes an array of pinholes and penumbral apertures has provided the opportunity to image the same source with two different techniques. This allows for an evaluation of these different aperture designs and reconstruction algorithms.
NASA Technical Reports Server (NTRS)
Rost, Martin C.; Sayood, Khalid
1991-01-01
A method for efficiently coding natural images using a vector-quantized variable-blocksized transform source coder is presented. The method, mixture block coding (MBC), incorporates variable-rate coding by using a mixture of discrete cosine transform (DCT) source coders. Which coders are selected to code any given image region is made through a threshold driven distortion criterion. In this paper, MBC is used in two different applications. The base method is concerned with single-pass low-rate image data compression. The second is a natural extension of the base method which allows for low-rate progressive transmission (PT). Since the base method adapts easily to progressive coding, it offers the aesthetic advantage of progressive coding without incorporating extensive channel overhead. Image compression rates of approximately 0.5 bit/pel are demonstrated for both monochrome and color images.
NASA Astrophysics Data System (ADS)
Li, Chenguang; Yang, Xianjun
2016-10-01
The Magnetized Plasma Fusion Reactor concept is proposed as a magneto-inertial fusion approach based on the target plasma created through the collision merging of two oppositely translating field reversed configuration plasmas, which is then compressed by the imploding liner driven by the pulsed-power driver. The target creation process is described by a two-dimensional magnetohydrodynamics model, resulting in the typical target parameters. The implosion process and the fusion reaction are modeled by a simple zero-dimensional model, taking into account the alpha particle heating and the bremsstrahlung radiation loss. The compression on the target can be 2D cylindrical or 2.4D with the additive axial contraction taken into account. The dynamics of the liner compression and fusion burning are simulated and the optimum fusion gain and the associated target parameters are predicted. The scientific breakeven could be achieved at the optimized conditions.
Enhanced densification under shock compression in porous silicon
Lane, J. Matthew; Thompson, Aidan Patrick; Vogler, Tracy
2014-10-27
Under shock compression, most porous materials exhibit lower densities for a given pressure than that of a full-dense sample of the same material. However, some porous materials exhibit an anomalous, or enhanced, densification under shock compression. The mechanism driving this behavior was not completely determined. We present evidence from atomistic simulation that pure silicon belongs to this anomalous class of materials and demonstrate the associated mechanisms responsible for the effect in porous silicon. Atomistic response indicates that local shear strain in the neighborhood of collapsing pores catalyzes a local solid-solid phase transformation even when bulk pressures are below the thermodynamicmore » phase transformation pressure. This metastable, local, and partial, solid-solid phase transformation, which accounts for the enhanced densification in silicon, is driven by the local stress state near the void, not equilibrium thermodynamics. This mechanism may also explain the phenomenon in other covalently bonded materials.« less
NASA Astrophysics Data System (ADS)
Guler, Nevzat; Aragonez, Robert J.; Archuleta, Thomas N.; Batha, Steven H.; Clark, David D.; Clark, Deborah J.; Danly, Chris R.; Day, Robert D.; Fatherley, Valerie E.; Finch, Joshua P.; Gallegos, Robert A.; Garcia, Felix P.; Grim, Gary; Hsu, Albert H.; Jaramillo, Steven A.; Loomis, Eric N.; Mares, Danielle; Martinson, Drew D.; Merrill, Frank E.; Morgan, George L.; Munson, Carter; Murphy, Thomas J.; Oertel, John A.; Polk, Paul J.; Schmidt, Derek W.; Tregillis, Ian L.; Valdez, Adelaida C.; Volegov, Petr L.; Wang, Tai-Sen F.; Wilde, Carl H.; Wilke, Mark D.; Wilson, Douglas C.; Atkinson, Dennis P.; Bower, Dan E.; Drury, Owen B.; Dzenitis, John M.; Felker, Brian; Fittinghoff, David N.; Frank, Matthias; Liddick, Sean N.; Moran, Michael J.; Roberson, George P.; Weiss, Paul; Buckles, Robert A.; Cradick, Jerry R.; Kaufman, Morris I.; Lutz, Steve S.; Malone, Robert M.; Traille, Albert
2013-11-01
Inertial Confinement Fusion experiments at the National Ignition Facility (NIF) are designed to understand and test the basic principles of self-sustaining fusion reactions by laser driven compression of deuterium-tritium (DT) filled cryogenic plastic (CH) capsules. The experimental campaign is ongoing to tune the implosions and characterize the burning plasma conditions. Nuclear diagnostics play an important role in measuring the characteristics of these burning plasmas, providing feedback to improve the implosion dynamics. The Neutron Imaging (NI) diagnostic provides information on the distribution of the central fusion reaction region and the surrounding DT fuel by collecting images at two different energy bands for primary (13-15 MeV) and downscattered (10-12 MeV) neutrons. From these distributions, the final shape and size of the compressed capsule can be estimated and the symmetry of the compression can be inferred. The first downscattered neutron images from imploding ICF capsules are shown in this paper.
Apparatus for the liquefaction of natural gas and methods relating to same
Turner, Terry D [Ammon, ID; Wilding, Bruce M [Idaho Falls, ID; McKellar, Michael G [Idaho Falls, ID
2009-09-22
An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through an expander creating work output. A compressor may be driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is expanded to liquefy the natural gas. A gas-liquid separator separates a vapor from the liquid natural gas. A portion of the liquid gas is used for additional cooling. Gas produced within the system may be recompressed for reintroduction into a receiving line or recirculation within the system for further processing.
Shear-driven phase transformation in silicon nanowires
NASA Astrophysics Data System (ADS)
Vincent, L.; Djomani, D.; Fakfakh, M.; Renard, C.; Belier, B.; Bouchier, D.; Patriarche, G.
2018-03-01
We report on an unprecedented formation of allotrope heterostructured Si nanowires by plastic deformation based on applied radial compressive stresses inside a surrounding matrix. Si nanowires with a standard diamond structure (3C) undergo a phase transformation toward the hexagonal 2H-allotrope. The transformation is thermally activated above 500 °C and is clearly driven by a shear-stress relief occurring in parallel shear bands lying on {115} planes. We have studied the influence of temperature and axial orientation of nanowires. The observations are consistent with a martensitic phase transformation, but the finding leads to clear evidence of a different mechanism of deformation-induced phase transformation in Si nanowires with respect to their bulk counterpart. Our process provides a route to study shear-driven phase transformation at the nanoscale in Si.
Shear-driven phase transformation in silicon nanowires.
Vincent, L; Djomani, D; Fakfakh, M; Renard, C; Belier, B; Bouchier, D; Patriarche, G
2018-03-23
We report on an unprecedented formation of allotrope heterostructured Si nanowires by plastic deformation based on applied radial compressive stresses inside a surrounding matrix. Si nanowires with a standard diamond structure (3C) undergo a phase transformation toward the hexagonal 2H-allotrope. The transformation is thermally activated above 500 °C and is clearly driven by a shear-stress relief occurring in parallel shear bands lying on {115} planes. We have studied the influence of temperature and axial orientation of nanowires. The observations are consistent with a martensitic phase transformation, but the finding leads to clear evidence of a different mechanism of deformation-induced phase transformation in Si nanowires with respect to their bulk counterpart. Our process provides a route to study shear-driven phase transformation at the nanoscale in Si.
NASA Astrophysics Data System (ADS)
Yang, Li-Juan; Weng, Ya-Kui; Zhang, Hui-Min; Dong, Shuai
2014-11-01
The compressive strain effect on the magnetic ground state and electronic structure of strained GdTiO3 has been studied using the first-principles method. Unlike the cases of congeneric YTiO3 and LaTiO3, both of which become the A-type antiferromagnetism on the (0 0 1) LaAlO3 substrate despite their contrastive magnetism, the ground state of strained GdTiO3 on the LaAlO3 substrate changes from the original ferromagnetism to a G-type antiferromagnetim, instead of the A-type one although Gd3+ is between Y3+ and La3+. It is only when the in-plane compressive strain is large enough, e.g. on the (0 0 1) YAlO3 substrate, that the ground state finally becomes the A-type. The band structure calculation shows that the compressive strained GdTiO3 remains insulating, although the band gap changes a little in the strained GdTiO3.
NASA Astrophysics Data System (ADS)
Stekovic, Svjetlana; Nissen, Erin; Bhowmick, Mithun; Stewart, Donald S.; Dlott, Dana D.
2017-06-01
The objective of this work is to numerically analyze shock behavior as it propagates through compressed, unreactive and reactive liquid, such as liquid water and liquid nitromethane. Parameters, such as pressure and density, are analyzed using the Mie-Gruneisen EOS and each multi-material system is modeled using the ALE3D software. The motivation for this study is based on provided high-resolution, optical interferometer (PDV) and optical pyrometer measurements. In the experimental set-up, a liquid is placed between an Al 1100 plate and Pyrex BK-7 glass. A laser-driven Al 1100 flyer impacts the plate, causing the liquid to be highly compressed. The numerical model investigates the influence of the high pressure, shock-compressed behavior in each liquid, the energy transfer, and the wave impedance at the interface of each material in contact. The numerical results using ALE3D will be validated by experimental data. This work aims to provide further understanding of shock-compressed behavior and how the shock influences phase transition in each liquid.
Irradiation of materials with short, intense ion pulses at NDCX-II
Seidl, P. A.; Barnard, J. J.; Feinberg, E.; ...
2017-05-31
Abstract We present an overview of the performance of the Neutralized Drift Compression Experiment-II (NDCX-II) accelerator at Berkeley Lab, and report on recent target experiments on beam-driven melting and transmission ion energy loss measurements with nanosecond and millimeter-scale ion beam pulses and thin tin foils. Bunches with around 10 11ions, 1 mm radius, and 2–30 ns full width at half maximum duration have been created with corresponding fluences in the range of 0.1–0.7 J/cm 2. To achieve these short pulse durations and mm-scale focal spot radii, the 1.1 MeV [megaelectronvolt (10 6eV)] He +ion beam is neutralized in a driftmore » compression section, which removes the space charge defocusing effect during final compression and focusing. The beam space charge and drift compression techniques resemble necessary beam conditions and manipulations in heavy ion inertial fusion accelerators. Quantitative comparison of detailed particle-in-cell simulations with the experiment plays an important role in optimizing accelerator performance.« less
Irradiation of materials with short, intense ion pulses at NDCX-II
Seidl, P. A.; Barnard, J. J.; Feinberg, E.; ...
2017-05-31
Here, we present an overview of the performance of the Neutralized Drift Compression Experiment-II (NDCX-II) accelerator at Berkeley Lab, and report on recent target experiments on beam-driven melting and transmission ion energy loss measurements with nanosecond and millimeter-scale ion beam pulses and thin tin foils. Bunches with around 10 11 ions, 1 mm radius, and 2–30 ns full width at half maximum duration have been created with corresponding fluences in the range of 0.1–0.7 J/cm 2. To achieve these short pulse durations and mm-scale focal spot radii, the 1.1 MeV [megaelectronvolt (10 6 eV)] He + ion beam is neutralizedmore » in a drift compression section, which removes the space charge defocusing effect during final compression and focusing. The beam space charge and drift compression techniques resemble necessary beam conditions and manipulations in heavy ion inertial fusion accelerators. In conclusion, quantitative comparison of detailed particle-in-cell simulations with the experiment plays an important role in optimizing accelerator performance« less
Irradiation of materials with short, intense ion pulses at NDCX-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seidl, P. A.; Barnard, J. J.; Feinberg, E.
Abstract We present an overview of the performance of the Neutralized Drift Compression Experiment-II (NDCX-II) accelerator at Berkeley Lab, and report on recent target experiments on beam-driven melting and transmission ion energy loss measurements with nanosecond and millimeter-scale ion beam pulses and thin tin foils. Bunches with around 10 11ions, 1 mm radius, and 2–30 ns full width at half maximum duration have been created with corresponding fluences in the range of 0.1–0.7 J/cm 2. To achieve these short pulse durations and mm-scale focal spot radii, the 1.1 MeV [megaelectronvolt (10 6eV)] He +ion beam is neutralized in a driftmore » compression section, which removes the space charge defocusing effect during final compression and focusing. The beam space charge and drift compression techniques resemble necessary beam conditions and manipulations in heavy ion inertial fusion accelerators. Quantitative comparison of detailed particle-in-cell simulations with the experiment plays an important role in optimizing accelerator performance.« less
SUPERNOVA DRIVING. II. COMPRESSIVE RATIO IN MOLECULAR-CLOUD TURBULENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Liubin; Padoan, Paolo; Haugbølle, Troels
2016-07-01
The compressibility of molecular cloud (MC) turbulence plays a crucial role in star formation models, because it controls the amplitude and distribution of density fluctuations. The relation between the compressive ratio (the ratio of powers in compressive and solenoidal motions) and the statistics of turbulence has been previously studied systematically only in idealized simulations with random external forces. In this work, we analyze a simulation of large-scale turbulence (250 pc) driven by supernova (SN) explosions that has been shown to yield realistic MC properties. We demonstrate that SN driving results in MC turbulence with a broad lognormal distribution of themore » compressive ratio, with a mean value ≈0.3, lower than the equilibrium value of ≈0.5 found in the inertial range of isothermal simulations with random solenoidal driving. We also find that the compressibility of the turbulence is not noticeably affected by gravity, nor are the mean cloud radial (expansion or contraction) and solid-body rotation velocities. Furthermore, the clouds follow a general relation between the rms density and the rms Mach number similar to that of supersonic isothermal turbulence, though with a large scatter, and their average gas density probability density function is described well by a lognormal distribution, with the addition of a high-density power-law tail when self-gravity is included.« less
Mechanical and optical response of [100] lithium fluoride to multi-megabar dynamic pressures
Davis, Jean -Paul; Knudson, Marcus D.; Shulenburger, Luke; ...
2016-10-26
An understanding of the mechanical and optical properties of lithium fluoride (LiF) is essential to its use as a transparent tamper and window for dynamic materials experiments. In order to improve models for this material, we applied iterative Lagrangian analysis to ten independent sets of data from magnetically driven planar shockless compression experiments on single crystal [100] LiF to pressures as high as 350 GPa. We found that the compression response disagreed with a prevalent tabular equation of state for LiF that is commonly used to interpret shockless compression experiments. We also present complementary data from ab initio calculations performedmore » using the diffusion quantum Monte Carlo method. The agreement between these two data sets lends confidence to our interpretation. In order to aid in future experimental analysis, we have modified the tabular equation of state to match the new data. We have also extended knowledge of the optical properties of LiF via shock-compression and shockless compression experiments, refining the transmissibility limit, measuring the refractive index to ~300 GPa, and confirming the nonlinear dependence of the refractive index on density. Lastly, we present a new model for the refractive index of LiF that includes temperature dependence and describe a procedure for correcting apparent velocity to true velocity for dynamic compression experiments.« less
Detonability of turbulent white dwarf plasma: Hydrodynamical models at low densities
NASA Astrophysics Data System (ADS)
Fenn, Daniel
The origins of Type Ia supernovae (SNe Ia) remain an unsolved problem of contemporary astrophysics. Decades of research indicate that these supernovae arise from thermonuclear runaway in the degenerate material of white dwarf stars; however, the mechanism of these explosions is unknown. Also, it is unclear what are the progenitors of these objects. These missing elements are vital components of the initial conditions of supernova explosions, and are essential to understanding these events. A requirement of any successful SN Ia model is that a sufficient portion of the white dwarf plasma must be brought under conditions conducive to explosive burning. Our aim is to identify the conditions required to trigger detonations in turbulent, carbon-rich degenerate plasma at low densities. We study this problem by modeling the hydrodynamic evolution of a turbulent region filled with a carbon/oxygen mixture at a density, temperature, and Mach number characteristic of conditions found in the 0.8+1.2 solar mass (CO0812) model discussed by Fenn et al. (2016). We probe the ignition conditions for different degrees of compressibility in turbulent driving. We assess the probability of successful detonations based on characteristics of the identified ignition kernels, using Eulerian and Lagrangian statistics of turbulent flow. We found that material with very short ignition times is abundant in the case that turbulence is driven compressively. This material forms contiguous structures that persist over many ignition time scales, and that we identify as prospective detonation kernels. Detailed analysis of the kernels revealed that their central regions are densely filled with material characterized by short ignition times and contain the minimum mass required for self-sustained detonations to form. It is conceivable that ignition kernels will be formed for lower compressibility in the turbulent driving. However, we found no detonation kernels in models driven 87.5 percent compressively. We indirectly confirmed the existence of the lower limit of the degree of compressibility of the turbulent drive for the formation of detonation kernels by analyzing simulation results of the He0609 model of Fenn et al. (2016), which produces a detonation in a helium-rich boundary layer. We found that the amount of energy in the compressible component of the kinetic energy in this model corresponds to about 96 percent compressibility in the turbulent drive. The fact that no detonation was found in the original CO0812 model for nominally the same problem conditions suggests that models with carbon-rich boundary layers may require higher resolution in order to adequately represent the mass distributions in terms of ignition times.
NASA Astrophysics Data System (ADS)
Kaluza, Thorsten; Hoor, Peter; Kunkel, Daniel
2017-04-01
Studies of baroclinic life cycles recently revelead that the tropopause inversion layer (TIL) in the extratropics is significantly strengthened by diabatic processes related to moist tropospheric dynamics as well as by breaking of the baroclinic wave itself. However, these findings summarize the results from idealized model simulations and the contribution from processes related to baroclinic life cycles relative to other processes enhancing the lower stratospheric static stability (stratospheric dynamics, seasonal variation of radiative feedbacks) to the observed TIL at midlatitudes has yet to be assessed. Further the role of the TIL for stratosphere-troposphere exchange (STE) is currently still under debate. In preparation of the up-coming field campaign WISE (Wave driven isentropic exchange) we explore the state and variability of the TIL over the North Atlantic between August and October in analysis model data. We use high resolution operational analysis from the European Center for Medium Range Weather Forecast to study the mesoscale structure of the TIL. The main focus is on case studies of the TIL in real baroclinic life cycles, in particular on small scale enhancements within the baroclinic disturbances and the relation to STE. Moreover, a summary is presented about the quasi climatological state of the tropopause location and sharpness over the North Atlantic over recent years.
49 CFR 571.303 - Standard No. 303; Fuel system integrity of compressed natural gas vehicles.
Code of Federal Regulations, 2014 CFR
2014-10-01
... vehicle crashes. S3. Application. This standard applies to passenger cars, multipurpose passenger vehicles... requirements. S5.1Vehicle requirements. S5.1.1Vehicles with GVWR of 10,000 pounds or less. Each passenger car... has an electrically driven fuel pump that normally runs when the vehicle's electrical system is...
49 CFR 571.303 - Standard No. 303; Fuel system integrity of compressed natural gas vehicles.
Code of Federal Regulations, 2012 CFR
2012-10-01
... vehicle crashes. S3. Application. This standard applies to passenger cars, multipurpose passenger vehicles... requirements. S5.1Vehicle requirements. S5.1.1Vehicles with GVWR of 10,000 pounds or less. Each passenger car... has an electrically driven fuel pump that normally runs when the vehicle's electrical system is...
49 CFR 571.303 - Standard No. 303; Fuel system integrity of compressed natural gas vehicles.
Code of Federal Regulations, 2011 CFR
2011-10-01
... vehicle crashes. S3. Application. This standard applies to passenger cars, multipurpose passenger vehicles... requirements. S5.1Vehicle requirements. S5.1.1Vehicles with GVWR of 10,000 pounds or less. Each passenger car... has an electrically driven fuel pump that normally runs when the vehicle's electrical system is...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-22
.... Create a central gas/liquids separation facility (Ryckman Plant) where all of the gas pipelines meet. It would contain a small electric-driven compressor to compress casing head gas, liquids separation... Convenience and Necessity under section 7 of the Natural Gas Act. The Bureau of Land Management (BLM) is...
Physics of spinning gases and plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geyko, Vasily I.
Initially motivated by the problem of compression of spinning plasma in Z-pinch devices and related applications, the thesis explores a number of interesting smaller-scale problems related to physics of gas and plasma rotation. In particular, thermodynamics of ideal spinning gas is studied. It is found that rotation modifies the heat capacity of the gas and reduces the gas compressibility. It is also proposed that, by performing a series of measurement of external parameters of a spinning gas, one can infer the distribution of masses of gas constituents. It is also proposed how to use the rotation-dependent heat capacity for improvingmore » the thermodynamic efficiency of internal combustion engines. To that end, two possible engine embodiments are proposed and explored in detail. In addition, a transient piezothermal effect is discovered numerically and is given a theoretical explanation. The effect consists of the formation of a radial temperature gradient driven by gas heating or compression along the rotation axis. By elaborating on this idea, a theoretical explanation is proposed also for the operation of so-called vortex tubes, which so far have been lacking rigorous theory. Finally, adiabatic compression of spinning plasmas and ionized gases are considered, and the effect of the electrostatic interactions on the compressibility and heat capacity is predicted.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langet, Hélène; Laboratoire des Signaux et Systèmes, CentraleSupélec, Gif-sur-Yvette F-91192; Center for Visual Computing, CentraleSupélec, Châtenay-Malabry F-92295
2015-09-15
Purpose: This paper addresses the reconstruction of x-ray cone-beam computed tomography (CBCT) for interventional C-arm systems. Subsampling of CBCT is a significant issue with C-arms due to their slow rotation and to the low frame rate of their flat panel x-ray detectors. The aim of this work is to propose a novel method able to handle the subsampling artifacts generally observed with analytical reconstruction, through a content-driven hierarchical reconstruction based on compressed sensing. Methods: The central idea is to proceed with a hierarchical method where the most salient features (high intensities or gradients) are reconstructed first to reduce the artifactsmore » these features induce. These artifacts are addressed first because their presence contaminates less salient features. Several hierarchical schemes aiming at streak artifacts reduction are introduced for C-arm CBCT: the empirical orthogonal matching pursuit approach with the ℓ{sub 0} pseudonorm for reconstructing sparse vessels; a convex variant using homotopy with the ℓ{sub 1}-norm constraint of compressed sensing, for reconstructing sparse vessels over a nonsparse background; homotopy with total variation (TV); and a novel empirical extension to nonlinear diffusion (NLD). Such principles are implemented with penalized iterative filtered backprojection algorithms. For soft-tissue imaging, the authors compare the use of TV and NLD filters as sparsity constraints, both optimized with the alternating direction method of multipliers, using a threshold for TV and a nonlinear weighting for NLD. Results: The authors show on simulated data that their approach provides fast convergence to good approximations of the solution of the TV-constrained minimization problem introduced by the compressed sensing theory. Using C-arm CBCT clinical data, the authors show that both TV and NLD can deliver improved image quality by reducing streaks. Conclusions: A flexible compressed-sensing-based algorithmic approach is proposed that is able to accommodate for a wide range of constraints. It is successfully applied to C-arm CBCT images that may not be so well approximated by piecewise constant functions.« less
NASA Astrophysics Data System (ADS)
Kalita, Patricia; Specht, Paul; Root, Seth; Sinclair, Nicholas; Schuman, Adam; White, Melanie; Cornelius, Andrew L.; Smith, Jesse; Sinogeikin, Stanislav
2017-12-01
We report real-time observations of a phase transition in the ionic solid CaF2 , a model A B2 structure in high-pressure physics. Synchrotron x-ray diffraction coupled with dynamic loading to 27.7 GPa, and separately with static compression, follows, in situ, the fluorite to cotunnite structural phase transition, both on nanosecond and on minute time scales. Using Rietveld refinement techniques, we examine the kinetics and hysteresis of the transition. Our results give insight into the kinetic time scale of the fluorite-cotunnite phase transition under shock compression, which is relevant to a number of isomorphic compounds.
The Principal Hugoniot of Forsterite to 950 GPa
NASA Astrophysics Data System (ADS)
Root, Seth; Townsend, Joshua P.; Davies, Erik; Lemke, Raymond W.; Bliss, David E.; Fratanduono, Dayne E.; Kraus, Richard G.; Millot, Marius; Spaulding, Dylan K.; Shulenburger, Luke; Stewart, Sarah T.; Jacobsen, Stein B.
2018-05-01
Forsterite (Mg2SiO4) single crystals were shock compressed to pressures between 200 and 950 GPa using independent plate-impact steady shocks and laser-driven decaying shock compression experiments. Additionally, we performed density functional theory-based molecular dynamics to aid interpretation of the experimental data and to investigate possible phase transformations and phase separations along the Hugoniot. We show that the experimentally obtained Hugoniot cannot distinguish between a pure liquid Mg2SiO4 and an assemblage of solid MgO plus liquid magnesium silicate. The measured reflectivity is nonzero and increases with pressure, which implies that the liquid is a poor electrical conductor at low pressures and that the conductivity increases with pressure.
Kinetically reduced local Navier-Stokes equations for simulation of incompressible viscous flows.
Borok, S; Ansumali, S; Karlin, I V
2007-12-01
Recently, another approach to study incompressible fluid flow was suggested [S. Ansumali, I. Karlin, and H. Ottinger, Phys. Rev. Lett. 94, 080602 (2005)]-the kinetically reduced local Navier-Stokes (KRLNS) equations. We consider a simplified two-dimensional KRLNS system and compare it with Chorin's artificial compressibility method. A comparison of the two methods for steady state computation of the flow in a lid-driven cavity at various Reynolds numbers shows that the results from both methods are in good agreement with each other. However, in the transient flow, it is demonstrated that the KRLNS equations correctly describe the time evolution of the velocity and of the pressure, unlike the artificial compressibility method.
Comparison and analysis of the results of direct-driven targets implosion
NASA Astrophysics Data System (ADS)
Demchenko, N. N.; Dolgoleva, G. V.; Gus'kov, S. Yu; Kuchugov, P. A.; Rozanov, V. B.; Stepanov, R. V.; Zmitrenko, N. V.; Yakhin, R. A.
2017-10-01
The article presents calculation results, which were received for the implosion of the typical cryogenic thermonuclear direct-drive targets that are intended for use at the OMEGA facility, NIF and Russian laser facility. The compression and burning characteristics, which were obtained using various numerical codes of different scientific groups, are compared. The data indicate good agreement between the numerical results. Various sources of target irradiation inhomogeneity and their influence on the implosion parameters are considered. The nominal scales of these disturbances for various facilities are close to each other. The main negative effect on the efficiency of compression and burning is due to the accidental offset of the target from the center of the chamber.
NASA Astrophysics Data System (ADS)
Shlyaptsev, Vyacheslav N.; Tatchyn, Roman O.
2004-01-01
The advantages and challenges of using a powerful x-ray source for the fast ignition of compressed Inertial Confinement Fusion (ICF) targets have been considered. The requirements for such a source together with the optics to focus the x-rays onto compressed DT cores lead to a conceptual design based on Energy Recovery Linacs (ERLs) and long wigglers to produce x-ray pulses with the appropriate phase space properties. A comparative assessment of the parameters of the igniter system indicates that the technologies for building it, although expensive, are physically achievable. Our x-ray fast ignition (XFI) scheme requires substantially smaller energy for the initiation of nuclear fusion reactions than other methods.
Kalita, Patricia E.; Specht, Paul Elliot; Root, Seth; ...
2017-12-21
Here, we report real-time observations of a phase transition in the ionic solid CaF 2, a model AB 2 structure in high-pressure physics. Synchrotron x-ray diffraction coupled with dynamic loading to 27.7 GPa, and separately with static compression, follows, in situ, the fluorite to cotunnite structural phase transition, both on nanosecond and on minute time scales. Using Rietveld refinement techniques, we examine the kinetics and hysteresis of the transition. Our results give insight into the kinetic time scale of the fluorite-cotunnite phase transition under shock compression, which is relevant to a number of isomorphic compounds.
van Tulder, Raphael; Roth, Dominik; Krammel, Mario; Laggner, Roberta; Schriefl, Christoph; Kienbacher, Calvin; Lorenzo Hartmann, Alexander; Novosad, Heinz; Constantin Chwojka, Christof; Havel, Christoph; Schreiber, Wolfgang; Herkner, Harald
2015-01-01
We investigated the effect on compression rate and depth of a conventional metronome and a voice metronome in simulated telephone-assisted, protocol-driven bystander Cardiopulmonary resucitation (CPR) compared to standard instruction. Thirty-six lay volunteers performed 10 minutes of compression-only CPR in a prospective, investigator-blinded, 3-arm study on a manikin. Participants were randomized either to standard instruction ("push down firmly, 5 cm"), a regular metronome pacing 110 beats per minute (bpm), or a voice metronome continuously prompting "deep-deepdeep- deeper" at 110 bpm. The primary outcome was deviation from the ideal chest compression target range (50 mm compression depth x 100 compressions per minute x 10 minutes = 50 m). Secondary outcomes were CPR quality measures (compression and leaning depth, rate, no-flow times) and participants' related physiological response (heart rate, blood pressure and nine hole peg test and borg scales score). We used a linear regression model to calculate effects. The mean (SD) deviation from the ideal target range (50 m) was -11 (9) m in the standard group, -20 (11) m in the conventional metronome group (adjusted difference [95%, CI], 9.0 [1.2-17.5 m], P=.03), and -18 (9) m in the voice metronome group (adjusted difference, 7.2 [-0.9-15.3] m, P=.08). Secondary outcomes (CPR quality measures and physiological response of participants to CPR performance) showed no significant differences. Compared to standard instruction, the conventional metronome showed a significant negative effect on the chest compression target range. The voice metronome showed a non-significant negative effect and therefore cannot be recommended for regular use in telephone-assisted CPR.
Buckling Causes Nonlinear Dynamics of Filamentous Viruses Driven through Nanopores.
McMullen, Angus; de Haan, Hendrick W; Tang, Jay X; Stein, Derek
2018-02-16
Measurements and Langevin dynamics simulations of filamentous viruses driven through solid-state nanopores reveal a superlinear rise in the translocation velocity with driving force. The mobility also scales with the length of the virus in a nontrivial way that depends on the force. These dynamics are consequences of the buckling of the leading portion of a virus as it emerges from the nanopore and is put under compressive stress by the viscous forces it encounters. The leading tip of a buckled virus stalls and this reduces the total viscous drag force. We present a scaling theory that connects the solid mechanics to the nonlinear dynamics of polyelectrolytes translocating nanopores.